
C O V E R F E A T U R E

0018-9162/06/$20.00 © 2006 IEEE44 Computer P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

However, before getting into the details, a few words
about the relationship between reliability and security
are in order. Problems with each of these domains often
have the same root cause: bugs in the software. A buffer
overrun error can cause a system crash (reliability prob-
lem), but it can also allow a cleverly written virus or
worm to take over the computer (security problem).
Although we focus primarily on reliability, improving
reliability can also improve security.

WHY ARE SYSTEMS UNRELIABLE?
Current operating systems have two characteristics

that make them unreliable and insecure: They are huge
and they have very poor fault isolation. The Linux ker-
nel has more than 2.5 million lines of code; the Windows
XP kernel is more than twice as large.

One study of software reliability showed that code
contains between six and 16 bugs per 1,000 lines of exe-
cutable code,1 while another study put the fault density
at two to 75 bugs per 1,000 lines of executable code,2

depending on module size. Using a conservative estimate
of six bugs per 1,000 lines of code, the Linux kernel
probably has something like 15,000 bugs; Windows XP
has at least double that.

To make matters worse, typically, about 70 percent
of the operating system consists of device drivers, which
have error rates three to seven times higher than ordi-
nary code,3 so the bug counts cited above are probably
gross underestimates. Clearly, finding and correcting all

Microkernels—long discarded as unacceptable because of their lower performance

compared with monolithic kernels—might be making a comeback in operating systems

due to their potentially higher reliability, which many researchers now regard as more

important than performance.

Andrew S. Tanenbaum, Jorrit N. Herder, and Herbert Bos
Vrije Universiteit, Amsterdam

W hen was the last time your TV set crashed
or implored you to download some emer-
gency software update from the Web? After
all, unless it is an ancient set, it is just a com-
puter with a CPU, a big monitor, some ana-

log electronics for decoding radio signals, a couple of
peculiar I/O devices—a remote control, a built-in VCR
or DVD drive—and a boatload of software in ROM.

This rhetorical question points out a nasty little secret
that we in the computer industry do not like to discuss:
Why are TV sets, DVD recorders, MP3 players, cell
phones, and other software-laden electronic devices reli-
able and secure but computers are not? Of course there
are many “reasons”—computers are flexible, users can
change the software, the IT industry is immature, and
so on—but as we move to an era in which the vast
majority of computer users are nontechnical people,
increasingly these seem like lame excuses to them.

What consumers expect from a computer is what they
expect from a TV set: You buy it, you plug it in, and it
works perfectly for the next 10 years. As IT profession-
als, we need to take up this challenge and make com-
puters as reliable and secure as TV sets.

The worst offender when it comes to reliability and
security is the operating system. Although application
programs contain many flaws, if the operating system
were bug free, bugs in application programs could do
only limited damage, so we will focus here on operat-
ing systems.

Can We Make
Operating Systems
Reliable and Secure?

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on June 25,2022 at 20:13:54 UTC from IEEE Xplore. Restrictions apply.

May 2006 45

these bugs is simply not feasible; fur-
thermore, bug fixes frequently intro-
duce new bugs.

The large size of current operating
systems means that no one person
can understand the whole thing.
Clearly, it is difficult to engineer a sys-
tem well when nobody really under-
stands it.

This brings us to the second issue:
fault isolation. No single person
understands everything about how
an aircraft carrier works either, but
the subsystems on an aircraft carrier
are well isolated. A problem with a
clogged toilet cannot affect the mis-
sile-launching subsystem.

Operating systems do not have this
kind of isolation between components. A modern oper-
ating system contains hundreds or thousands of proce-
dures linked together as a single binary program running
in kernel mode. Every single one of the millions of lines
of kernel code can overwrite key data structures that an
unrelated component uses, crashing the system in ways
difficult to detect. In addition, if a virus or worm infects
one kernel procedure, there is no way to keep it from
rapidly spreading to others and taking control of the
entire machine.

Going back to our ship analogy, modern ships have
multiple compartments within the hull; if one compart-
ment springs a leak, only that one is flooded, not the
entire hull. Current operating systems are like ships
before compartmentalization was invented: Every leak
can sink the ship.

Fortunately, the situation is not hopeless. Researchers
are endeavoring to produce more reliable operating sys-
tems. Here we address four different approaches that
researchers are using to make future operating systems
more reliable and secure, proceeding from the least rad-
ical to the most radical solution.

ARMORED OPERATING SYSTEMS
The most conservative approach, Nooks,4 is designed

to improve the reliability of existing operating systems
such as Windows and Linux. Nooks maintains the
monolithic kernel structure, with hundreds or thousands
of procedures linked together in a single address space
in kernel mode, but it focuses on making device dri-
vers—the core of the problem—less dangerous.

In particular, as Figure 1 shows, Nooks protects the
kernel from buggy device drivers by wrapping each dri-
ver in a layer of protective software to form a lightweight
protection domain, a technique sometimes called sand-
boxing. The wrapper around each driver carefully mon-
itors all interactions between the driver and the kernel.
This technique can also be used for other extensions to

the kernel such as loadable file systems, but for sim-
plicity we will just refer to drivers.

The Nooks project’s goals are to

• protect the kernel against driver failures,
• recover automatically when a driver fails, and
• do all of this with as few changes as possible to exist-

ing drivers and the kernel.

Protecting the kernel against malicious drivers is not a
goal. The initial implementation was on Linux, but the
ideas apply equally well to other legacy kernels.

Isolation
The main tool used to keep faulty drivers from trash-

ing kernel data structures is the virtual memory page
map. When a driver runs, all pages outside it are
changed to read-only, thus implementing a separate
lightweight protection domain for each driver. In this
way, the driver can read the kernel data structures it
needs, but any attempt to directly modify a kernel data
structure results in a CPU exception that the Nooks iso-
lation manager catches. Access to the driver’s private
memory, where it stores stacks, a heap, private data
structures, and copies of kernel objects, is read-write.

Interposition
Each driver class exports a set of functions that the

kernel can call. For example, sound drivers might offer
a call to write a block of audio samples to the card,
another one to adjust the volume, and so on. When the
driver is loaded, an array of pointers to the driver’s func-
tions is filled in, so the kernel can find each one. In addi-
tion, the driver imports a set of functions provided by
the kernel, for example, for allocating a data buffer.

Nooks provides wrappers for both the exported and
imported functions. When the kernel now calls a driver

…

Nooks isolation manager

User
mode

Kernel
mode

…Shell Make User

File
system

Memory
management

Process
managementScheduling

Printer
driver

Disk
driver

LAN
driver

Wrapper

Stub

Figure 1.The Nooks model. Each driver is wrapped in a layer of protective software

that monitors all interactions between the driver and the kernel.

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on June 25,2022 at 20:13:54 UTC from IEEE Xplore. Restrictions apply.

46 Computer

function or a driver calls a kernel function, the call actu-
ally goes to a wrapper that checks the parameters for
validity and manages the call. While the wrapper stubs—
shown in Figure 1 as lines sticking into and out of the
drivers—are generated automatically from their func-
tion prototypes, developers must handwrite the wrapper
bodies. In all, the Nooks team wrote 455 wrappers: 329
for functions the kernel exports and 126 for functions
the device drivers export.

When a driver tries to modify a kernel object, its wrap-
per copies the object into the driver’s protection domain,
that is, onto its private read-write pages. The driver then
modifies the copy. Upon successful completion of the
request, the isolation manager copies modified kernel
objects back to the kernel. In this way, a driver crash or
failure during a call always leaves kernel objects in a
valid state. Keeping track of imported objects is object
specific, so the Nooks team had to handwrite code to
track the 43 classes of objects the Linux drivers use.

Recovery
After a failure, the user-mode recovery agent runs and

consults a configuration database to see what to do. In
many cases, releasing any resources held and restarting
the driver is enough because most common algorithmic
bugs are usually found in testing, leaving mostly timing
and uncommon bugs.

This technique can recover the system, but running
applications can fail. In additional work,5 the Nooks
team added the concept of shadow drivers to allow appli-
cations to continue after a driver failure.

In short, during normal operation, a shadow driver
logs communication between each driver and the ker-
nel if it will be needed for recovery. After a driver restart,
the shadow driver feeds the newly restarted driver from
the log—for example, repeating the I/O control (IOCTL)
system call to set parameters such as audio volume. The

kernel is unaware of the process of get-
ting the new driver back into the same
state the old one was in. Once this is
accomplished, the driver begins pro-
cessing new requests.

Limitations
While experiments show that Nooks

can catch 99 percent of the fatal driver
errors and 55 percent of the nonfatal
ones, it is not perfect. For example, dri-
vers can execute privileged instructions
they should not execute; they can write
to incorrect I/O ports; and they can get
into infinite loops. Furthermore, the
Nooks team had to write large num-
bers of wrappers manually, and they
could contain faults. Finally, drivers
are not prevented from reenabling

write access to all of memory. Nevertheless, it is poten-
tially a useful step toward improving the reliability of
legacy kernels.

PARAVIRTUAL MACHINES
A second approach has its roots in the virtual machine

concept, which goes back to the late 1960s.6 In short,
the idea is to run a special control program, called a vir-
tual machine monitor, on the bare hardware instead of
an operating system. The virtual machine creates mul-
tiple instances of the true machine. Each instance can
run any software the bare machine can.

This technique is commonly used to allow two or
more operating systems, say Linux and Windows, to run
on the same hardware at the same time, with each one
thinking it has the entire machine to itself. The use of
virtual machines has a well-deserved reputation for good
fault isolation—after all, if none of the virtual machines
even know about the other ones, problems in one
machine cannot spread to others.

The research here is to adapt this concept to protec-
tion within a single operating system, rather than
between different operating systems.7 Furthermore,
because the Pentium is not fully virtualizable, a conces-
sion was made to the idea of running an unmodified
operating system in the virtual machine. This conces-
sion allows modifications to be made to the operating
system to make sure it does not do anything that cannot
be virtualized. To distinguish it from true virtualization,
this technique is called paravirtualization.

Specifically, in the 1990s, a research group at the
University of Karlsruhe built the L4 microkernel.8 They
were able to run a slightly modified version of Linux
(L4Linux) on top of L4 in what could be described as a
kind of virtual machine.9 The researchers later realized
that instead of running only one copy of Linux on L4,
they could run multiple copies. As Figure 2 shows, this

L4 microkernel

Linux VM #1 Linux VM #2

OS

User
mode

Kernel
mode

Shell Make

Disk
driver

LAN
driver

File
system

Memory
management

Process
managementScheduling

…

Interrupts

Figure 2. Virtual machines. One of the virtual Linux machines runs the application

programs while one or more other machines run the device drivers.

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on June 25,2022 at 20:13:54 UTC from IEEE Xplore. Restrictions apply.

May 2006 47

insight led to the idea of having
one of the virtual Linux machines
run the application programs
while one or more other machines
run the device drivers.

By putting the device drivers in
one or more virtual machines sep-
arated from the main virtual
machine running the rest of the
operating system and the applica-
tion programs, if a device driver
crashes, only its virtual machine
goes down, not the main one. An
additional advantage of this
approach is that the device drivers
do not have to be modified as they
see a normal Linux kernel envi-
ronment. Of course, the Linux ker-
nel itself had to be modified to
achieve paravirtualization, but this
is a one-time change, and it is not necessary to repeat it
for each device driver.

Since the device drivers are running in the hardware’s
user mode, a major issue is how they actually perform
I/O and handle interrupts. Physical I/O is handled by
adding about 3,000 lines of code to the Linux kernel on
which the drivers run to allow them to use the L4 ser-
vices for I/O instead of doing it themselves. An addi-
tional 5,000 lines of code handle communication
between the three isolated drivers—disk, network, and
PCI bus—and the virtual machine running the applica-
tion programs.

In principle, this approach should provide greater reli-
ability than a single operating system because when a
virtual machine containing one or more drivers crashes,
the virtual machine can be rebooted and the drivers
returned to their initial state. No attempt is made to
return drivers to their previous (precrash state) as in
Nooks. Thus, if an audio driver crashes, it will be
restored with the sound level set to the default, rather
than to the level it had prior to the crash.

Performance measurements have shown that the over-
head of using paravirtualized machines in this fashion is
about 3 to 8 percent.

MULTISERVER OPERATING SYSTEMS
The first two approaches focus on patching legacy

operating systems. The next two focus on future sys-
tems.

One of these approaches directly attacks the core of
the problem: having the entire operating system run as
a single gigantic binary program in kernel mode. Instead,
only a tiny microkernel runs in kernel mode with the
rest of the operating system running as a collection of
fully isolated user-mode server and driver processes.

This idea has been around for 20 years, but it was not

fully explored the first time around because it has
slightly lower performance than a monolithic kernel. In
the 1980s, performance counted for everything, and reli-
ability and security were not yet on the radar. Of course,
at the time, aeronautical engineers did not worry too
much about miles per gallon or the ability of cockpit
doors to withstand armed attacks. Times change, and
people’s ideas of what is important change too.

Multiserver architecture
Taking a look at a modern example helps to make

the idea of a multiserver operating system clearer. As
Figure 3 shows, in Minix 3, the microkernel handles
interrupts, provides the basic mechanisms for process
management, implements interprocess communication,
and performs process scheduling. It also offers a small
set of kernel calls to authorized drivers and servers, such
as reading a selected portion of a specific user’s address
space or writing to authorized I/O ports. The clock
driver shares the microkernel’s address space, but it is
scheduled as a separate process. No other drivers run in
kernel mode.

Above the microkernel is the device driver layer.10

Each I/O device has its own driver that runs as a sepa-
rate process in its own private address space, protected
by the memory management unit (MMU) hardware.
The layer includes driver processes for the disk, termi-
nal (keyboard and display), Ethernet, printer, audio, and
so on. The drivers run in user mode and cannot execute
privileged instructions or read or write the computer’s
I/O ports; they must make kernel calls to obtain these
services. While introducing a small amount of overhead,
this design also enhances reliability.

On top of the device driver layer is the server layer.
The file server is a small (4,500 lines of executable code)
program that accepts requests from user processes for

User
mode

Kernel
mode

Process

Servers

Drivers

…

…

…Shell Make User

File Process
manager

Reincarnation
server Other

Other

Clock System

Disk TTY Ether Print

Microkernel handles interrupts,
processes, scheduling, IPC

Figure 3.The Minix 3 architecture.The microkernel handles interrupts, provides the

basic mechanisms for process management, implements interprocess communication,

and performs process scheduling.

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on June 25,2022 at 20:13:54 UTC from IEEE Xplore. Restrictions apply.

48 Computer

the Posix system calls relating to files, such as read, write,
lseek, and stat and carries them out. Also in this layer is
the process manager, which handles process and mem-
ory management and carries out Posix and other system
calls such as fork, exec, and brk.

A somewhat unusual feature is the reincarnation
server, which is the parent process of all the other servers
and all the drivers. If a driver or
server crashes, exits, or fails to
respond to the periodic pings, the
reincarnation server kills it if neces-
sary and then restarts it from a copy
on disk or in RAM. Drivers can be
restarted this way, but currently only
servers that do not maintain much
internal state can be restarted.

Other servers include the network
server, which contains a complete
TCP/IP stack; the data store, a simple name server that
the other servers use; and the information server, which
aids debugging.

Finally, located above the server layer are the user
processes. The only difference between this and other
Unix systems is that the library procedures for read,
write, and the other system calls do their work by send-
ing messages to servers. Other than this difference—hid-
den in the system libraries—they are normal user
processes that can use the Posix API.

Interprocess communication
Because it allows all processes to cooperate, inter-

process communication (IPC) is of crucial importance
in a multiserver operating system. However, since all
servers and drivers in Minix 3 run as physically isolated
processes, they cannot directly call each other’s func-
tions or share data structures. Instead, Minix 3 performs
IPC by passing fixed-length messages using the ren-
dezvous principle: When both the sender and the
receiver are ready, the system copies the message directly
from the sender to the receiver. In addition, an asyn-
chronous event notification mechanism is available.
Events that cannot be delivered are marked pending a
bitmap in the process table.

Minix 3 elegantly integrates interrupts with the mes-
sage passing system. Interrupt handlers use the notifi-
cation mechanism to signal I/O completion. This
mechanism allows a handler to set a bit in the driver’s
‘‘pending interrupts’’ bitmap and then continue without
blocking. When the driver is ready to receive the inter-
rupt, the kernel turns it into a normal message.

Reliability features
Minix 3’s reliability comes from multiple sources. First,

only about 4,000 lines of code run in the kernel, so with
a conservative estimate of six bugs per 1,000 lines, the
total number of bugs in the kernel is probably only about

24—compared with 15,000 for Linux and far more for
Windows. Since all device drivers except the clock are
user processes, no foreign code ever runs in kernel mode.
The kernel’s small size also could make it practical to ver-
ify its code, either manually or by formal techniques.

Minix 3’s IPC design does not require message queu-
ing or buffering, which eliminates the need for buffer

management in the kernel. Further-
more, since IPC is a powerful con-
struct, the IPC capabilities of each
server and driver are tightly con-
fined. For each process, the available
IPC primitives, allowed destinations,
and user event notifications are
restricted. User processes, for exam-
ple, can use only the rendezvous
principle and can send to only the
Posix servers.

In addition, all kernel data structures are static. All of
these features greatly simplify the code and eliminate
kernel bugs associated with buffer overruns, memory
leaks, untimely interrupts, untrusted kernel code, and
more. Of course, moving most of the operating system
to user mode does not eliminate the inevitable bugs in
drivers and servers, but it renders them far less power-
ful. A kernel bug can trash critical data structures, write
garbage to the disk, and so on; a bug in most drivers and
servers cannot do as much damage since these processes
are strongly compartmentalized, and they are very
restricted in what they can do.

The user-mode drivers and servers do not run as super-
user. They cannot access memory outside their own
address spaces except by making kernel calls (which the
kernel inspects for validity). Stronger yet, bitmaps and
ranges within the kernel’s process table control the set
of permitted kernel calls, IPC capabilities, and allowed
I/O ports on a per-process basis. For example, the ker-
nel can prevent the printer driver from writing to user
address spaces, touching the disk’s I/O ports, or send-
ing messages to the audio driver. In traditional mono-
lithic systems, any driver can do anything.

Another reliability feature is the use of separate
instruction and data spaces. Should a bug or virus man-
age to overrun a driver or server buffer and place foreign
code in data space, the injected code cannot be executed
by jumping to it or having a procedure return to it, since
the kernel will not run code unless it is in the process’s
(read-only) instruction space.

Among the other specific features aimed at improving
reliability, the most crucial is the self-healing property.
If a driver does a store through an invalid pointer, gets
into an infinite loop, or otherwise misbehaves, the rein-
carnation server will automatically replace it, often with-
out affecting running processes.

While restarting a logically incorrect driver will not
remove the bug, in practice subtle timing and similar

Minix 3 elegantly

integrates interrupts

with the

message passing

system.

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on June 25,2022 at 20:13:54 UTC from IEEE Xplore. Restrictions apply.

bugs cause many problems, and restarting the driver will
often repair the system. In addition, this mechanism
allows recovery from failures that are caused by attacks,
such as the “ping of death,” which can crash a computer
by sending it an incorrectly formatted IP packet.

Performance considerations
For decades, researchers have crit-

icized multiserver architectures
based on microkernels because of
alleged performance problems.
However, various projects have
proven that modular designs actually
can provide competitive perfor-
mance. Despite the fact that Minix 3
has not been optimized for perfor-
mance, the system is reasonably fast.
The performance loss that user-mode
drivers cause compared to in-kernel drivers is less than
10 percent, and the system can build itself, including the
kernel, common drivers, and all servers (112 compila-
tions and 11 links) in less than 6 seconds on a 2.2-GHz
Athlon processor.

The fact that multiserver architectures make it possi-
ble to provide a highly reliable Unix-like environment
at the cost of only a small performance overhead makes
this approach practical. Minix 3 for the Pentium is avail-
able for free download under the Berkeley license at
www.minix3.org. Ports to other architectures and to
embedded systems are under development.

LANGUAGE-BASED PROTECTION
The most radical approach comes from an unexpected

source—Microsoft Research. In effect, the Microsoft
approach discards the concept of an operating system
as a single program running in kernel mode plus some
collection of user processes running in user mode, and
replaces it with a system written in new type-safe lan-
guages that do not have all the pointer and other prob-
lems associated with C and C++. Like the previous two
approaches, this one has been around for decades.

The Burroughs B5000 computer used this approach.
The only language available then was Algol, and pro-
tection was handled not by an MMU—which the
machine did not have—but by the Algol compiler’s
refusal to generate “dangerous” code. Microsoft
Research’s approach updates this idea for the 21st cen-
tury.

Overview
This system, called Singularity, is written almost

entirely in Sing#, a new type-safe language. This lan-
guage is based on C#, but augmented with message pass-
ing primitives whose semantics are defined by formal,
written contracts. Because language safety tightly con-
strains the system and user processes, all processes can

run together in a single virtual address space. This design
leads to both safety—because the compiler will not
allow a process to touch another process’s data—and
efficiency—because it eliminates kernel traps and con-
text switches.

Furthermore, the Singularity design is flexible because
each process is a closed entity and thus can have its own

code, data structures, memory lay-
out, runtime system, libraries, and
garbage collector. The MMU is
enabled, but only to map pages
rather than to establish a separate
protection domain for each process.

A key Singularity design principle
is that it forbids dynamic process
extensions. Among other conse-
quences, the design does not permit
loadable modules such as device dri-

vers and browser plug-ins because they would introduce
unverified foreign code that could corrupt the mother
process. Instead, such extensions must run as separate
processes, completely walled off and communicating by
the standard IPC mechanism.

The microkernel
The Singularity operating system consists of a micro-

kernel process and a set of user processes, all typically
running in a common virtual address space. The micro-
kernel controls access to hardware; allocates and de-
allocates memory; creates, destroys, and schedules
threads; handles thread synchronization with mutexes;
handles interprocess synchronization with channels;
and supervises I/O. Each device driver runs as a sepa-
rate process.

Although most of the microkernel is written in Sing#,
a small portion is written in C#, C++, or assembler and
must be trusted since it cannot be verified. The trusted
code includes the hardware abstraction layer and the
garbage collector. The hardware abstraction layer hides
the low-level hardware from the system by hiding
concepts such as I/O ports, interrupt request lines, direct
memory access channels, and timers to present
machine-independent abstractions to the rest of the
operating system.

Interprocess communication
User processes obtain system services by sending

strongly typed messages to the microkernel over point-
to-point bidirectional channels. In fact, all process-to-
process communication uses these channels. Unlike
other message-passing systems, which have SEND and
RECEIVE functions in some library, Sing# fully supports
channels in the language, including formal typing and
protocol specifications.

To make this point clear, consider this channel speci-
fication:

May 2006 49

The Singularity

operating system

is written almost entirely

in Sing#, a new type-safe

language.

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on June 25,2022 at 20:13:54 UTC from IEEE Xplore. Restrictions apply.

50 Computer

contract C1 {
in message Request(int x) requires x > 0;
out message Reply(int y);
out message Error();

state Start:
Request? -> Pending;

state Pending: one {
Reply! -> Start;
Error! -> Stopped;

}
state Stopped: ;

}

This contract declares that the channel accepts three mes-
sages, Request, Reply, and Error, the first with a positive
integer as parameter, the second with any integer as para-
meter, and the third with no parameters. When used for a
channel to a server, the Request messages go from the client
to the server and the other two messages go the other way.
A state machine specifies the protocol for the channel.

In the Start state, the client sends the Request message,
putting the channel into the Pending state. The server
can either respond with a Reply message or an Error mes-
sage. The Reply message transitions the channel back to
the Start state, where communication can continue. The
Error message transitions the channel to the Stopped
state, ending communication on the channel.

The heap
If all data, such as file blocks read from disk, had to

go over channels, the system would be very slow, so an
exception is made to the basic rule that each process’s
data is completely private and internal to itself.
Singularity supports a shared object heap, but at each
instant every object on the heap belongs to a single
process. However, ownership of an object can be passed
over a channel.

As an example of how the heap works, consider I/O.
When a disk driver reads in a block, it puts the block on
the heap. Later, the system passes the handle for the
block to the user requesting the data, maintaining the
single-owner principle but allowing data to move from
disk to user with zero copies.

The file system
Singularity maintains a single hierarchical name space

for all services. A root name server handles the top of
the tree, but other name servers can be mounted on its
nodes. In particular, the file system, which is just a
process, is mounted on /fs, so a name like /fs/users/
linda/foo could be a user’s file. Files are implemented as
B-trees, with the block numbers as the keys. When a user
process asks for a file, the file system commands the disk
driver to put the requested blocks on the heap.
Ownership is then passed as described.

Verification
Each system component has metadata describing its

dependencies, exports, resources, and behavior. This meta-
data is used for verification. The system image consists of

the microkernel, drivers, and applica-
tions needed to run the system, along
with their metadata. External verifiers
can perform many checks on the
image before the system executes it,
such as making sure that drivers do
not have resource conflicts.

Verification is a three-step process:

• The compiler checks type safety, object ownership,
channel protocols, and so on.

• The compiler generates Microsoft Intermediate
Language, a portable JVM-like byte code that the ver-
ifier can check.

• MSIL is compiled to x86 code by a back-end com-
piler, which could insert runtime checks into the code
(the current compiler does not do this though).

The point of redundant verification is to catch errors in
the verifiers.

E ach of the four different attempts to improve oper-
ating system reliability focuses on preventing buggy
device drivers from crashing the system.

In the Nooks approach, each driver is individually
hand wrapped in a software jacket to carefully control
its interactions with the rest of the operating system, but
it leaves all the drivers in the kernel. The paravirtual
machine approach takes this one step further and moves
the drivers to one or more machines distinct from the
main one, taking away even more power from the dri-
vers. Both of these approaches are intended to improve
the reliability of existing (legacy) operating systems.

In contrast, two other approaches replace legacy oper-
ating systems with more reliable and secure ones. The
multiserver approach runs each driver and operating sys-
tem component in a separate user process and allows
them to communicate using the microkernel’s IPC mech-
anism. Finally, Singularity, the most radical approach,
uses a type-safe language, a single address space, and for-
mal contracts to carefully limit what each module can do.

Three of the four research projects—L4-based paravir-
tualization, Minix 3, and Singularity—use microkernels.
It is not yet known which, if any, of these approaches will
be widely adopted in the long run. Nevertheless, it is inter-
esting to note that microkernels—long discarded as unac-
ceptable because of their lower performance compared
with monolithic kernels—might be making a comeback
due to their potentially higher reliability, which many peo-
ple now regard as more important than performance. The
wheel of reincarnation has turned. ■

Singularity maintains

a single hierarchical name

space for all services.

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on June 25,2022 at 20:13:54 UTC from IEEE Xplore. Restrictions apply.

Acknowledgments

We thank Brian Bershad, Galen Hunt, and Michael
Swift for their comments and suggestions. This work
was supported in part by the Netherlands Organization
for Scientific Research under grant 612-060-420.

References

1. V.R. Basili and B.T. Perricone, ‘‘Software Errors and Com-
plexity: An Empirical Investigation,’’ Comm. ACM, Jan. 1984,
pp. 42-52.

2. T.J. Ostrand and E.J. Weyuker, ‘‘The Distribution of Faults in
a Large Industrial Software System,’’ Proc. Int’l Symp. Soft-
ware Testing and Analysis, ACM Press, 2002, pp. 55-64.

3. A. Chou et al., ‘‘An Empirical Study of Operating System
Errors,’’ Proc. 18th ACM Symp. Operating System Principles,
ACM Press, 2001, pp. 73-88.

4. M. Swift, B. Bershad, and H. Levy, ‘‘Improving the Reliabil-
ity of Commodity Operating Systems,’’ ACM Trans. Com-
puter Systems, vol. 23, 2005, pp. 77-110.

5. M. Swift et al., ‘‘Recovering Device Drivers,’’ Proc. 6th Symp.
Operating System Design and Implementation, ACM Press,
2003, pp. 1-16.

6. R.P. Goldberg, ‘‘Architecture of Virtual Machines,’’ Proc.
Workshop Virtual Computer Systems, ACM Press, 1973, pp.
74-112.

7. J. LeVasseur et al., ‘‘Unmodified Device Driver Reuse and
Improved System Dependability via Virtual Machines,’’ Proc.
6th Symp. Operating System Design and Implementation,
2004, pp. 17-30.

8. J. Liedtke, ‘‘On Microkernel Construction,’’ Proc. 15th ACM
Symp. Operating System Principles, ACM Press, 1995, pp.
237-250.

9. H. Hartig et al., ‘‘The Performance of Microkernel-Based Sys-
tems,’’ Proc. 16th ACM Symp. Operating System Principles,
ACM Press, 1997, pp. 66-77.

10. J.N. Herder et al., “Modular System Programming in MINIX
3,” Usenix; www.usenix.org/publications/login/2006-04/
openpdfs/herder.pdf.

Andrew S. Tanenbaum is a professor of computer science
at Vrije Universiteit, Amsterdam. His research interests
focus on operating systems and computer security. Tanen-
baum received an SB from MIT and a PhD from the Uni-
versity of California, Berkeley. He is a Fellow of the IEEE
and the ACM. Contact him at ast@cs.vu.nl.

Jorrit N. Herder is a PhD student in the Computer Systems
Section of the Department of Computer Science at Vrije
Universiteit, Amsterdam. His research focuses on the design
and implementation of secure and reliable operating sys-
tems. Herder received an MSc in computer science from
Vrije Universiteit. Contact him at jnherder@cs.vu.nl.

Herbert Bos is an assistant professor in the Computer Sys-
tems Section of the Department of Computer Science at
Vrije Universiteit. His research interests include advanced
networking technology, operating systems, and computer
security. Bos received a PhD from the University of Cam-
bridge. Contact him at bos@cs.vu.nl.

May 2006 51

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on June 25,2022 at 20:13:54 UTC from IEEE Xplore. Restrictions apply.

