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Abstract

We give an overview of the foundations and the basic results of the classical

Brill-Noether Theory, which deals with the geometry of the moduli varieties

parametrizing effective divisors and linear series on a given curve.

We mainly follow the treatment proposed in the book Geometry of Algebraic

Curves written by Arbarello, Cornalba, Griffiths and Harris. The classical

theory, as presented in the book, was developed for curves over the complex

numbers during the last century.

Our discussion, instead, avoids the use of any complex-analytic tool and it is

completely formulated in terms of modern algebraic geometry. As a result of

this more general approach, we are able to generalize two key results of the

classical theory – the Existence and Connectedness Theorems – to curves

over an arbitrary algebraically closed field.

It is important to highlight that the Brill-Noether theory heavily relies on

sheaf cohomology and abstract homological algebra and, in particular, a

crucial role is played by the so called Petri’s map, which is in fact a coho-

molgical cup-product homomorphism. Motivated by these observations, it

seems reasonable to expect the ideas described in the classical theory not

to be strictly dependent on complex analysis and, thus, that most of the

classical results can be extended to more general fields.

The complete LaTex source of this document can be downloaded from the repository
https://github.com/AndreaBarbon/Algebraic-Brill-Noether-Theory

https://github.com/AndreaBarbon/Algebraic-Brill-Noether-Theory


iv



Index

1 Preliminaries and geometrical intuition 1

1.1 Divisors and the Abel-Jacobi map . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Linear equivalence and Abel’s Theorem . . . . . . . . . . . . . . . . . . 4

1.3 The canonical map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 The Riemann-Roch Theorem . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Special exceptional divisors . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Geometrical interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.7 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 The Divisor and Picard schemes 17

2.1 Working assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 The relative Divisor functor . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 The relative Picard functor . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Universal divisor and universal line bundle . . . . . . . . . . . . . . . . . 21

2.5 Tangent spaces of Xd and Pic dX . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 Tangent bundles of Xd and Pic dX . . . . . . . . . . . . . . . . . . . . . . 26

2.7 Cohomological description of the Abel-Jacobi map . . . . . . . . . . . . 28

2.7.1 Fiberwise description . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.7.2 Global description . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Moduli varieties and their tangent spaces 33

3.1 Fitting ideals and degeneracy loci . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Definition of Xr
d and W r

d . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Dimensional lower bounds . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Definition of G r
d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

i



INDEX

3.5 Cohomological description for the tangent spaces . . . . . . . . . . . . . 42

3.6 Consequences of the infinitesimal study . . . . . . . . . . . . . . . . . . . 45

4 Existence and Connectedness Theorems 49

4.1 An alternative perspective on W r
d . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Ampleness of (ν∗L )∗ ⊗ ν∗(L /L (−Γ)) . . . . . . . . . . . . . . . . . . . 51

4.3 Existence and Connectedness Theorems . . . . . . . . . . . . . . . . . . 54

5 Appendix A: Some Results in Algebraic Geometry 57

5.1 Degeneracy loci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Cohomology and base change . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 Line Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4 Tangent space of schemes . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.5 Clifford’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 Appendix B: Serre Duality and Riemann-Roch 71

6.1 Cheap Riemann-Roch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2 Serre Duality Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.3 Duality between α and δ . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.4 Riemann-Roch Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Bibliography 81

ii



1

Preliminaries and geometrical
intuition

In this Chapter we introduce some of the ideas which form the foundations of the

classical Brill-Noether Theory. We define the concepts of divisors and line bundles

on a curve and, further, the Abel-Jacobi map which associates a line bundle to any

effective divisor. Thanks to the Abel’s Theorem, this function can be seen as a quotient

map and the corresponding equivalence classes are the so called complete linear series,

whose behaviour is one of the central themes of the Theory. Another key ingredient is

the famous Riemann-Roch Theorem which, as we will see, describes the duality between

a linear series and its residual one.

All of these concepts are rather abstract, nevertheless we will try to give some insight

on their geometrical meaning, by proposing informal interpretations and by taking

advantage of some pictures. We remark that such drawings only represent the real

skeleton of the curve and, therefore, they should not be intended – in any way – as

precise representations, but just as sketches which may help the reader to build some

geometrical intuition.

1.1 Divisors and the Abel-Jacobi map

Let X be a smooth projective curve over an algebraically closed field k. Consider the

set DivX of divisors over X – i.e. the free abelian group on the points of X – and denote

by EDivX the subset of effective divisors – i.e. the free monoid on the points of X. One

1



1. PRELIMINARIES AND GEOMETRICAL INTUITION

can build an intuitive idea of effective divisors by thinking about the finite formal sum

D =
∑

imiPi as a book-keeping device containing the points of intersection between X

and another variety, where the (positive) coefficient mi of each point Pi measures the

multiplicity of the intersection, as Figure 1.1 shows.

Figure 1.1: The effective divisor P1 + 2P2 + P3 obtained as the intersection between the
curve X and a line

Another way to obtain (not necessarily effective) divisors is to start from any non-zero

rational map g defined locally on the curve and build a divisor by the recipe

Div(g) = (g) =
∑
P∈X

vP (g) · P

where vP (g) is the valuation of g at the point P given by the choice of a local uniformizer.

Remark 1.1. If the divisor of g is given by (g) =
∑

imiPi then, motivated by the
definition of local uniformizer, we say that on the point Pi the map g presents a zero
of order mi if mi > 0, and a pole of order mi if mi < 0.

Let f ∈ k(X)∗ be globally defined, then the associated divisor (f) is called principal

divisor and the well known fact that deg(f) = 0 can be explained, informally, by saying

that a global rational map on a complete curve has the same number of zeros and poles

counted with multiplicity.

The degree of a divisor is defined as the sum of its coefficient, so that it gives a group

homomorphism from the set of divisors to Z and takes non negative values when re-

stricted to effective divisors. We write Xd for the set of effective divisors of degree d.
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1.1 Divisors and the Abel-Jacobi map

Next, we define the Picard group of X as the sheaf cohomology group

PicX := H1(X,O∗X) ,

which is well known to be isomorphic to the set of line bundles up to isomorphism, with

group structure induced by the usual tensor product of coherent sheaves.

To any divisor D ∈ DivX one can associate the line bundle OX(D) defined over any

open set U ⊂ X by the prescription

H0(U,OX(D)) =
{
f ∈ k(X)∗ | (f)|U +D|U ≥ 0

}
which can be seen as the line bundle whose global sections are locally controlled by D.

In other words, the sections of OX(D) are allowed to present poles on any point of the

support of D, with order bounded by the coefficient of the point appearing in the formal

sum.

It is an easy consequence of the Riemann-Roch Theorem that every line bundle L on

X admits a global section s and, thus, it can be written in the form L = OX(D) with

D = (s) being the divisor corresponding to such a section. Thus we define the degree

of L to be the degree of the divisor D. We will denote by Pic dX the set of line bundles

of degree d.

Based on the above construction, we give a definition of the so called Abel-Jacobi

map by the assignment

u : DivX → PicX D 7→ OX(D)

Remark 1.2. Recall that classically, in the theory of smooth curves over C, the Abel-
Jacobi map is defined for a one-point divisor P (and then extended linearly) by means
of the Abelian integrals as

u : Xd → J(X), P 7→
( ∫ P

P0

ω1 , . . . ,

∫ P

P0

ωg

)
mod Λ,

where P0 is a fixed point of X, the ωi’s form a basis of the space of Abelian differentials
and Λ is a nondegenerate lattice arising from the Riemann bilinear relations.
Our definition of the Abel-Jacobi map is simpler, more elegant and does not rely on
analytical tools such as path-integration, nevertheless it turns out to be equivalent to
its classical counterpart.
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1. PRELIMINARIES AND GEOMETRICAL INTUITION

1.2 Linear equivalence and Abel’s Theorem

Principal divisors can be used to define an equivalence relation on the set of divisors

of X, by declaring two divisors D and E to be linearly equivalent if they differ by a

principal divisor. More precisely, we define

D ∼ E def⇐⇒ ∃ f ∈ k(X)∗ such that E = D + (f)

and, given an effective divisor D ∈ EDivX , we denote by |D| the set of all effective

divisors which are linearly equivalent to D, the so called complete linear series of D.

By sending a global section f ∈ H0(D) to the divisor (f) + D, we obtain a canonical

isomorphism

PH0(D) ∼= |D|

which identifies the complete linear series of D with the projectification of the vector

space of global sections of the line bundle OX(D). Motivated by this observation, to

any linear subspace V ⊂ H0(D) we associate the projective space PV and call it a (not

necessarily complete) linear series.

Definition 1.3. Let D be a divisor of degree d and V ⊂ H0(D) a linear subspace of
dimension r + 1. We define a grd to be the linear series associated to PV .

The classical Abel’s Theorem states that the quotient map associated to the equivalence

relation defined above is nothing but the Abel-Jacobi map or, in other terms, that the

fibres of u are complete linear series.

Abel’s Theorem. Let D,E ∈ EDivX be two effective divisors of degree d on X. Then

D ∼ E ⇐⇒ u(D) = u(E).

Abel’s Theorem was originally proved for Riemann surfaces – see [5] for instance – but it

remains valid for smooth curves over of any algebraically closed field. It plays a crucial

role in the Brill-Noether theory because it allows to treat linear series as degeneracy

loci of the Abel-Jacobi map, as we will see in Section 3.1.
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1.3 The canonical map

1.3 The canonical map

The recipe we used to obtain divisor (g) from a locally defined rational map g can

be extended to the define divisor associated to sections of arbitrary line bundles. In

particular, given any global section ω of the cotangent bundle of X, we can pick an

open cover
⋃
i Ui of X and a local uniformizer πi for every Ui, then ω can be written

locally on every Ui as ω = gi d πi and the corresponding divisor (ω) :=
∑

i(gi) is called

canonical divisor.

Remark 1.4. All the canonical divisors on a curve of genus g are linearly equivalent
and, as it follows from the Riemann-Roch Theorem, have degree 2g− 2. Notice that, if
g > 0, a canonical divisor is not principal and its degree is non-zero.

Notation 1. From now on we will abuse notation and write K both for any canonical
divisor and for the cotangent bundle Ω1

X , while the corresponding cohomology groups
will be denoted by H i(K).

Next, recall the definition of a base-point-free linear series which we will need for the

following construction.

Definition 1.5. A grd is said to be base-point-free if there is no point which is con-
tained in the supports of all the divisors belonging to the linear series.

Any base-point-free grd with linear series PV can be used to obtain a map of the curve

X to a projective space, by considering the assignment

φV : X → PV ∗ P 7→ { s ∈ V | s(P ) = 0 } .

Notice that, since the grd is base-point-free, the requirement s(P ) = 0 gives a non trivial

linear condition hence it defines an hyperplane of V . Therefore φV (P ) can be seen as

a point of the dual projective space PV ∗ parametrizing hyperplanes and, thus, φV is a

well-defined function.

Definition 1.6. We extend the map φV to any effective divisor D =
∑d

i=1 Pi with
distinct points, by declaring φV (D) := span{φV (P1), . . . , φV (Pd)}.

We now assume that X has genus g ≥ 2. Choose any canonical divisor K and recall

that the genus of X is defined as g := h0(X,K), so that the complete linear series |K|
gives rise to a map φK : X → Pg−1 which is called the canonical map.
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1. PRELIMINARIES AND GEOMETRICAL INTUITION

It is easy to show that, if X is not hyperelliptic, this map is in fact an embedding and

gives a canonical, preferred realization of our curve in a (g − 1)-dimensional projective

space. If the curve is hyperelliptic, instead, φK : X → Pg−1 is not an embedding, but a

2 to 1 map exhibiting X as a double cover of a rational normal curve in Pg−1.

X Pg−1
φK

(a) X not hyperelliptic

X Pg−1

P1

φK

h vg−1

(b) X hyperelliptic

Assumption 1. For the rest of the Chapter we will assume that X is not hyperelliptic
and, for simplicity, we identify X with its isomorphic image φK(X).

The most interesting feature of the canonical embedding is that, by construction, any

global section of the cotangent bundle ω ∈ H0(X,K) corresponds to a hyperplane

Hω ⊂ Pg−1 which intersects X precisely in the points forming the support of the

divisor (ω), counted with the right multiplicity.

Figure 1.2: The canonical embedding of a non-hyperelliptic curve of genus g = 3 in
the plane. The picture shows how two canonical divisors are linearly equivalent, being
connected by a moving hyperplane

Given any rational map f ∈ k(X), the product f · ω is still an element of H0(X,K)

and, therefore, it corresponds to another hyperplane Hfω via the canonical embedding.

Since the support of (f · ω) = (f) + (ω) is in general different from the one of (ω), we

6



1.4 The Riemann-Roch Theorem

can interpret f geometrically as a transformation which moves the hyperplane Hω to

a different hyperplane Hfω. Hence we could informally say that, under the canonical

embedding, two divisors are linearly equivalent if and only if they are connected by a

moving hyperplane.

This intuitive idea is pictured in Figure 1.2, where an non-hyperelliptic curve of genus

g = 3 is considered, so that φK embeds it into P2. Notice that, in this example, the

linearly equivalent divisors P1 + P2 + P3 + P4 and Q1 + 2Q2 + Q3 are both canonical

and have degree 2g − 2 = 4.

1.4 The Riemann-Roch Theorem

Given any divisor D on X, define its residual divisor or dual divisor as D′ := K−D.

Looking at the canonical embedding of our non hyperelliptic curve and considering a

divisor D of degree d < g consisting distinct points, we claim that we can always find a

canonical divisor K = (ω) such that D ≤ K. Indeed, we can always find a hyperplane

of Pg−1 passing through the φK(D), whose dimension is at most d− 1. In this setting

we can think of the support of the residual D′ as those points of intersection between

the hyperplane and the curve which do not belong to the support of D – see Figure 1.3.

The famous Riemann-Roch Theorem 6.4 can be interpreted, thanks to Serre duality,

as a statement on the relationship between a divisor and its residual. In fact, given a

divisor D ∈ DivX of degree d, the Riemann-Roch formula

h0(D)− h0(D′) = d− g + 1

implies that the knowledge of the dimension of H0(D) is equivalent to that of the di-

mension of H0(D′) and viceversa.

We highlight, moreover, that the statement of the Riemann-Roch is completely sym-

metric with respect to residual duality. Indeed, since the degree of the canonical divisor

equals 2g − 2 and the degree of D′ is given by d′ = deg(K)− d, one can easily see that

a completely equivalent formulation of the Theorem is

h0(D′)− h0(D) = d′ − g + 1

7



1. PRELIMINARIES AND GEOMETRICAL INTUITION

Figure 1.3: A divisor D of degree d = 2 and its residual, pictured in the canonical
embedding of a genus 3 curve. In this particular case, since deg(ω) = 2g − 2 = 4, the
degree d′ of the residual divisor is 2, as well

thus showing that the Riemann-Roch does not discriminate between a divisor and its

residual. This implies that the information we can get from the behaviour of a given

divisor can be equivalently obtained by looking at its residual and viceversa, a fact

which will be exploited to draw Figure 1.4.

The relationship between the Theorem and linear series is therefore well understood by

means of the above mentioned canonical isomorphism PH0(D) ∼= |D| which identifies

the complete linear series of D with the projectification of the space of global sections

of OX(D). Therefore, using the standard notation r(D) := dim |D| for the dimension

of |D|, we can rewrite the Riemann-Roch formula as

r(D′)− r(D) = d′ − g + 1 (1.1)

thus making it clear that it can be interpreted as a statement on the dimension spread

between a linear series and its residual.

The Riemann-Roch Theorem is an extremely useful result, with applications ranging

from pure mathematics to applied graph theory and even communication engineering.

But what is the geometrical meaning of the Riemann-Roch formula? We will try to

answer this fascinating question in the following Sections.

8



1.5 Special exceptional divisors

1.5 Special exceptional divisors

Some divisors on the curve X – and the corresponding linear series – are more important

than others, in the sense that they contain more information about the curve itself.

A good reason to study the so called special exceptional divisors of a given curve,

as we will exemplify in Section 1.7, is that the behaviour of the corresponding linear

series may help distinguish the curve among other curves.

Put r = r(D). For a curve of genus g the region of special exceptional divisors is given,

as a subset of the (d, r)-plane, by the inequalities

r > 0 and 2r < d < g

as we picture in Figure 1.4. The reasons for these constraints are the following:

• If r = 0 then the linear series |D| is trivial;

• Due to the duality involved in the Riemann-Roch formula, we can restrict our

attention to linear series of degree d < g;

• For non trivial linear series of degree d < g, Clifford’s Theorem 5.5 gives the upper

bound r < d/2.

=  interesting region of
     exceptional divisors

Cli�ord line d=2r

Riemann-Roch
 lin

e r =
 d - g

K

Figure 1.4: The region of Special Exceptional divisors for a curve of genus g = 9
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1. PRELIMINARIES AND GEOMETRICAL INTUITION

1.6 Geometrical interpretation

In the following we will give some insights into the geometrical meaning of the Riemann-

Roch formula. In order to do so, we start by introducing the cup-product homomor-

phism

µ0 : H0(D)⊗H0(K −D) −→ H0(K)

which is also know as the Petri’s map and, as we will see in Chapter 3, plays a fun-

damental role in the linear approximation of the varieties Xr
d and W r

d parametrizing

linear series.

Consider an effective divisor D of degree d < g consisting of distinct points and notice

that the vector space H0(K −D) can be interpreted as the linear subspace consisting

of those ω ∈ H0(K) such that (ω) ≥ K or, in other words, PH0(K −D) parametrizes

the hyperplanes of Pg−1 which cut X in a set of points containing D. Among these

hyperplanes there is a unique one passing through the support of the residual D′, which

can be identified with the unique generator of H0(K −D −D′) ∼= H0(OX).

Now, by restricting the Petri’s map to H0(D)⊗H0(K −D −D′), we get a map

µ0 : H0(D)⊗H0(K −D −D′) −→ H0(K −D′)

whose target space corresponds (up to scalar multiplication) to the hyperplanes cutting

the curve in a set of points containing the support of D′. From the natural isomorphism

H0(K −D′) ∼= H0(D) we deduce that the number of such hyperplanes is given by the

integer r(D) = dimPH0(D), a fact which can be used to shade light on the geometrical

interpretation of the Riemann-Roch . Indeed, one can equivalently rewrite the formula

(1.1) as

r(D) = [ g − 1 ] − [ d′ − r(D′) ]

and observe that g − 1 is nothing but the dimension of the projective space Pg−1 in

which X is canonically embedded. Therefore we see that d′ − r(D′) equals the number

of linearly independent points of the support of D′ and, consequently, that the integer

r(D′) counts the number of independent linear relations among these points. Hence the

Riemann-Roch is simply telling us that the complete linear series |D| can be geometri-

cally visualized as a family of hyperplanes passing through φK(D′), each one of them

cutting X in a set of points consisting of D′ plus a divisor in |D|.

10



1.6 Geometrical interpretation

Therefore we understand how the fact that the dimension spread r(D) − r(D′) is a

constant depending on d and g has a clear geometrical meaning: a higher number r(D′)

of independent linear relations among the support of D′ corresponds to a larger family

of hyperplanes passing through φK(D′), the dimension of this family being precisely the

dimension r(D) of the linear series |D|.

In the next page, we show two pictures that might help the reader visualizing the geo-

metrical meaning of r(D), in the context of the canonical embedding of a curve of genus

4. Figure 1.6 presents an example of a g3
1, with one linear relation among the 3 points

of D, while Figure 1.7 shows a trivial linear series, where no linear relations among the

points of D is present.

Moreover, notice that the above geometrical interpretation allows to exclude some oth-

erwise possible scenarios. For instance, the canonical embedding of a genus 4 curve

cannot appear as pictured in Figure 1.5, because this would correspond to the values

d = 2, d′ = 4 and r(D) = 0, r(D′) = 2 which do not satisfy the Riemann-Roch formula.

Figure 1.5: An hypothetical curve of genus 4 embedded in P3, showing a g02 whose
residual series is a g24 . This situation is actually impossible, as one can deduce form the
Riemann-Roch Theorem

11



1. PRELIMINARIES AND GEOMETRICAL INTUITION

Figure 1.6: An example of a complete linear series on a curve of genus 4 canonically
embedded into P3. The global section f ∈ H0(D) has poles only on the points of D, hence
the hyperplane Hω associated to ω ∈ H0(K −D −D′) is moved away from D by f , but
stays on the points of the residual divisor D′. Notice that, for this particular choice of D,
there is one linear relation among the points of both D and D′, so that r(D) = r(D′) = 1

and each divisor gives rise to a g13 .

Figure 1.7: In this example a divisor D of degree 3 gives rise to a trivial linear series.
The reason is that the points of D′ are linearly independent, therefore there is only one
hyperplane passing through φK(D +D′).

12



1.7 Examples

1.7 Examples

In this Section we will analyse the case of a non-hyperelliptic curve X of genus 4 in

which, as it follows from the discussion of Section 1.5, the only special exceptional linear

series – if any exists – are g3
1. Actually, the Existence Theorem 4.3 states that whenever

the Brill-Noether number

ρ(g, d, r) := g − (r + 1)(g − d+ r)

is non-negative, then there exists at least one grd on the curve. In our case we find

ρ(4, 3, 1) = 0 and, as a consequence we deduce that our curve admits a g1
3.

It is a well known fact in algebraic geometry that any smooth projective curve of genus

4 comes as the complete intersection of a quadric surface with a cubic surface inside P3

and, moreover, that any quadric of P3 is ( up to projective equivalence ) a ruled surface.

Hence we see that there are two distinct possibilities:

i) If the quadric is smooth, then it is a saddle surface, doubly-ruled by two families

of perpendicular lines;

ii) If the quadric is singular, then it is a conic surface and there is only one family of

ruling lines, all passing through the singular point.

Let us start by looking at the first case of a curve on a smooth quadric surface.

Example 1. Up to projective equivalence, the smooth quadratic surface Q corresponds
to the equation

X0X3 = X1X2

and it is naturally isomorphic to the product P1×P1 of two projective lines. The double
ruling of Q is given by two P1 families of lines

A =

X0 = aX1

X2 = aX3

and B =

X0 = bX2

X1 = bX3

where the parameters a and b vary in P1. It is easy to check that any two lines Lα ∈ A
and Lβ ∈ B intersect in the unique point [αβ, β, α, 1] and, hence, their span is a plane
Hαβ = Span(Lα, Lβ). Suppose that such a plane cuts X on the effective divisor

Hαβ ·X = Dα +Dβ, Dα ∈ Lα, Dβ ∈ Lβ

13



1. PRELIMINARIES AND GEOMETRICAL INTUITION

Figure 1.8: A genus 4 curve contained in a doubly-ruled smooth quadratic surface – a
hyperbolic paraboloid. The blue dots form the support of a divisor Dα contained in a g13 ,
while the orange ones form the support of the residual Dβ belonging to the other g13

and recall that, since Hαβ is a hyperplane of P3, the divisor Dα + Dβ is canonical of
degree 2g − 2 = 6. Each line Lα and Lβ moves in a P1-family, so it follows that

r(Dα) ≥ 1 and r(Dβ) ≥ 1

and, as a consequence, Clifford’s Theorem 5.5 implies that both deg(Dα) ≥ 2 and
deg(Dβ) ≥ 2. But, since X is not hyperelliptic, these inequalities are actually strict and
from deg(Dα + Dβ) = 6 we deduce deg(Dα) = deg(Dβ) = 3, thus another application
of the Clifford’s Theorem ensures that

r(Dα) = r(Dβ) = 1 .

Hence we conclude that the linear series |Dα| and |Dβ| are both g3
1 or, in other words,

X admits two triple covers of P1 obtained by projecting in the directions of Lα and Lβ .
This situation is pictured in Figure 1.6, where the orange and the blue lines belong to
distinct families of lines and cut a pair of residual divisors.

Example 2. Up to projective equivalence, the singular quadratic surface Q corresponds
to the equation

X2
0 = X1X2

14



1.7 Examples

Figure 1.9: A genus 4 curve contained in a singular ruled quadratic surface – namely a
cone. There is a P1-family of hyperplanes passing through φk(D′), each one cutting the
curve in D′ plus a divisor belonging to the unique g13 . Notice that, in contrast with Figure
1.8, every divisor of the g13 can be obtained by rotating a plane on the orange axis

and can be viewed as the union of a P1 family of lines, parametrized by a plane conic,
which can be described as

A =

X0 = aX1

X2 = a2X1

where the parameter a varies in P1. It is easy to check that any two lines Lα, Lβ ∈ A
intersect in the singular point [0, 0, 0, 1] of Q and, hence, that their span is a plane
Hαβ = Span(Lα, Lβ). Again, such a plane cuts X on the canonical divisor

Hαβ ·X = Dα +Dβ, Dα ∈ Lα, Dβ ∈ Lβ

and we realize that the situation is closely related to the one of Example 1. Reasoning
in a similar way one can check that both Dα and Dβ give rise to a g1

3, but the crucial
difference from the previous Example is that this time there is a unique family of lines
and, as a consequence, the two linear series coincide: |Dα| = |Dβ|.
The situation is pictured in Figure 1.7, with a P1 family of planes rotating around
φK(D′), where each plane intersects the curve in a set of points consisting of D′ and
a divisor in |D|. The reader should notice that a rotation of Hω by 90 degrees gives a
plane which is tangent to the cone Q and which cuts X in the divisor 2D′, thus showing
that also D′ belongs to the linear series |D|.

15



1. PRELIMINARIES AND GEOMETRICAL INTUITION

We therefore see that, in the case of a genus 4 curve, it is sufficient to count the number

of g1
3’s to be able to distinguish between the two possible scenarios described above.

More precisely, the variety G1
3 parametrizing linear series of degree 3 and dimension 1 is

zero dimensional in both cases, but in Example 1 it consists of 2 distinct points, while

it degenerates to a unique point in the case of Example 2.

It is important to remark that the cup-product homomorphism µ0 is injective in the

situation of Example 1, while it presents a 1-dimensional kernel in the degenerate situ-

ation of Example 2. As we will explain in Chapter 3, this is an instance of the general

fact that a non trivial kernel of µ0 indicates the presence of singularities in the moduli

varieties.
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2

The Divisor and Picard schemes

In the first part of this Chapter we will introduce the relative Divisor and Picard functors

which, respectively, map a scheme T to flat families of effective Cartier divisors and to

families of line bundles with rigidification parametrised by T . The representability

of such functors – achieved under some particular assumptions – gives rise to scheme

structures for the sets of divisors and line bundles on the curve X and, further, to two

universal objects which will be fundamental for the rest of our discussion: the universal

divisor ∆ and the universal line bundle L .

Next, exploiting the obtained scheme structure for EDivX and PicX , we will compute

their tangent spaces. It is interesting to observe that the tangent space at a closed

point D of the Divisor scheme is naturally isomorphic to the cohomology group H0(D)D

arising from the sheaf-cohomology of the line bundle OX(D) and that, moreover, the

tangent space of the Picard scheme at any closed point is simply isomorphic to H1(OX)

– the space of first order deformations of line bundles. This cohomological point of view

leads to a description of the Abel-Jacobi map by means of the coboundary morphism

δD : H0(D)D −→ H1(OX)

appearing in the long cohomology sequence of OX(D), from which one realises that the

study of linear series is deeply related to the sheaf-cohomology of the curve.

Finally, building on the above idea, we will achieve a global cohomological description

of the tangent sheaves T EDivX and T PicX – this is where the universal objects start

to reveal their crucial role. In fact, the formal replacement of D by the universal divisor

∆ allows to produce a long cohomology sequence containing the locally-free sheaves

17



2. THE DIVISOR AND PICARD SCHEMES

π∗O∆(∆) and R1π∗OZ , which we will show to be isomorphic to the tangent sheaves of

EDivX and PicX , respectively. Moreover, the global coboundary morphism

δ : π∗O∆(∆) −→ R1π∗OZ

appearing in the cohomology sequence can be identified with the tangent morphism of

sheaves Tu, thus giving a global cohomological way to describe the degeneracy loci of

the Abel-Jacobi map which will be exploited in the next Chapter.

2.1 Working assumptions

Let k be an algebraically closed field of any characteristic. Even though most of what

follows can be defined in a more general setting, we restrict our attention to the case in

which the following conditions are satisfied:

(?)


f : X → S is quasi-compact and quasi-separated
f : X → S admits a section ε : S → X

f∗OXT
∼= OT for every S-scheme T

where we abuse notation by writing f for the pullback morphism XT → T given by the

fibre product. It is easy to show that conditions (?) are fulfilled in our case of interest,

which is described by the following assumptions:

Assumption 2. For the rest of our discussion, let X → S be a smooth projective curve
of genus g over an algebraically closed field k = k̄ and let S = Spec(k) be the trivial
base scheme.

2.2 The relative Divisor functor

Let T be a scheme over S and let us denote by XT the fibered product X ×S T . To

start, let us introduce the notion of a relative effective Cartier divisors.

Definition 2.1. A relative effective Cartier divisor on XT /T is a closed subscheme
D ⊂ XT such that its ideal sheaf OD ⊂ OX is invertible and the map ϕ : D → T is flat.
Associated to any such divisor we have a map to the natural numbers given by

degD : T → N, t 7→ rank of ϕ∗(OD) as a OT,t - module

and, in case of this map being constantly equal to d ∈ N, we say that D has degree d.
The sum D1 + D1 is defined as the closed subscheme of X corresponding to the sheaf
of ideals OD1OD2 ⊂ OX .

18



2.3 The relative Picard functor

We refer to [9, Tag 01WO] for further details and for a proof of the fact that relative

effective Cartier divisors are closed under the above defined sum.

Based on this notion we now define the contravariant functor DivX/S which maps an

S-scheme T to the set of families of divisors parametrized by T .

Definition 2.2. We define the relative effective Cartier divisors functor by

DivX/S : SchopS → Set, T 7→ { Relative effective Cartier divisors on XT /T } .

and the action on morphism by sending an S-map T ′ f→ T to the pullback (1X × f)∗.
Moreover, for every d ∈ N define the subfunctors DivdX/S : SchS → Set by restricting
to divisors of degree d.

Remark 2.3. Notice that composition of morphisms is obviously respected and, further,
the flatness of D → T ensures that the pullback (1X×f)∗D is a relative effective Cartier
divisor on XT ′/T

′. Hence we see that DivX/S is in fact a (contravariant) functor
Further one can show that, if DivX/S is representable by a scheme EDivX , then the
subfunctors DivdX/S are representable by open and closed subschemes Xd which form a
disjoint cover of EDivX – see Exercise 3.8 of [1] for details.

Notation 2. In the following we will abuse notation by simply writing f∗ instead of
(1X × f)∗ , whenever the meaning is clear from the context and no confusion arises.

Under reasonable hypothesis on X → S, the relative Divisor functor turns out to be

representable, the representing scheme being an open subscheme of the Hilbert scheme.

Theorem 2.4. If the structure morphism f : X → S is projective and flat, then the
functor DivX/S is representable by an open subscheme of the Hilbert scheme.

Proof. A proof can be found for instance in [1] – see Theorem 3.7.

Therefore under our assumptions – X a projective curve and S = Spec(k) – the relative

Divisor functor is representable.

2.3 The relative Picard functor

We now want to define a relative Picard functor, which extends the concept Picard

group to flat families of line bundles parametrized by any S-scheme T . But let us first

recall how the classical Picard group is defined:
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2. THE DIVISOR AND PICARD SCHEMES

Definition 2.5. Let X be a scheme over a field k. We define the Picard group of X
as the as the sheaf cohomology group

Pic(X) := H1(X,O∗X)

There are subtle issues involved in the definition of the relative Picard functor and one

needs to be careful. A naive definition could be of the form

T 7→ Pic(XT )/Pic(T )

but this does not lead to a representable functor, as one can see it only defines a presheaf

with respect to both the étale and flat topologies. To solve this problem and hope for

a representable Picard functor, one could define it as the sheafification of the above

naive one, with respect to a reasonable Grothendieck topology on the category SchS .

Another strategy, which leads to the same result but is conceptually more transparent,

is to get rid of the automorphisms of the objects – families of line bundles – we want to

parametrize with our functor. We will adopt this latter approach, thus restricting our

attention to the class of rigidified line bundles which we now introduce.

Definition 2.6. Let f : Y → B be a scheme, ε : B → Y a section of f and L a line
bundle over Y . A rigidification of L along ε is an isomorphism α : ε∗L

∼=−→ OB. We
define a rigidified line bundle on Y/B to be a pair (L,α) consisting of a line bundle
on Y together with a rigidification along ε.

One can show that, under our hypothesis, any such line bundle can be written in the

form O(D) for an effective Cartier divisor D on Y/B. Thus we define the degree of a

rigidified line bundle (L,α) to be the degree of the corresponding divisor.

Going back to our situation (?) of a scheme f : X → S with a section ε : S → X at our

disposal, for every T ∈ SchS there is a canonical way to rigidify line bundles on XT /T

along the induced section εT – which by abuse of notation we will also denote by ε.

XT T

X S

f

ε

ε

f
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2.4 Universal divisor and universal line bundle

In fact, given a line bundle M over XT , one can obtain a line bundle (L,α) with

rigidification along ε by setting

L := M ⊗ f∗ε∗M−1.

Indeed, recalling that by definition of section f ◦ ε ≡ 1, we find that

ε∗L = ε∗M ⊗ ε∗f∗ε∗M−1 = ε∗M ⊗ (f ◦ ε)∗ε∗M−1 = ε∗(M ⊗M−1) = OT

as desired. The key feature of rigidified line bundles is that they do not admit nontrivial

automorphisms, as we show in Proposition 5.10 of Appendix A.

We are now ready to define the relative Picard functor:

Definition 2.7. We define the relative Picard functor by the assignment

PicX/S : SchopS → Ab, T 7→ { Rigidified line bundles on XT /T }

and the action on morphism by sending an S-map T ′ f→ T to the pullback (1X × f)∗.
Moreover, for every d ∈ N, we define the subfunctors PicdX/S : SchS → Set by restricting
to line bundles of degree d.

Remark 2.8. Notice that composition of morphisms is obviously respected and, further,
it is a well known fact that line bundles are stable under pullbacks. Hence we see that
PicX/S is in fact a (contravariant) functor.

It can be shown (see for instance Section 8.1 of [3]) that conditions (?) imply the

representability of PicX/S and, moreover, that for every S-scheme T there is a natural

isomorphism

PicX/S(T ) ∼= Pic(XT )/Pic(T ) (2.1)

2.4 Universal divisor and universal line bundle

As remarked above, under our hypothesis Theorem 2.4 applies, therefore DivdX/S is

representable and we will denote the representing S-scheme by Xd, which is unique up

to unique isomorphism. For Xd to be the representing scheme it means that there are

canonical isomorphisms

DivX/S(T ) ∼= HomS(T,Xd), ∀ T ∈ SchS
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2. THE DIVISOR AND PICARD SCHEMES

and a universal object ∆ ∈ DivX/S(Xd) with the property that to every morphism

f ∈ HomS(T,Xd) corresponds a unique D ∈ DivX/S(T ) given as the pullback f∗(∆)

of ∆ via f . This is the universal property of ∆. Notice that there is a bijection be-

tween the set of closed points of Xd and the set of effective divisors of degree d on X.

In particular with T = S, for any divisor D ∈ Xd there is a unique canonical S-map

f : S ↪→ Xd such that f∗(∆) = D.

The same reasoning applies to line bundles: as soon as PicdX/S is representable we get

a representing S-scheme Pic dX unique up to unique isomorphism (whose points are line

bundles of degree d on X/S) and a universal line bundle L ∈ PicX/S(Pic dX). Notice

that, under our hypothesis, the relative Picard functor PicX/S is representable and

identification (2.1) holds.

Due to their importance in the rest of our discussion, we summarize below the nature

of the universal objects we just obtained, in a concise fashion:

Notation 3. The above universal objects are denoted by

∆ ⊂ X ×Xd  Universal divisor

L −→ X × Pic dX  Universal line bundle

It is interesting to notice that, as we will show in the next sections, these universal

objects can be used to describe the tangent sheaves of the Divisor and Picard schemes.

2.5 Tangent spaces of Xd and Pic dX

Within the categorical setting introduced in the previous Sections, the Abel-Jacobi map

can be seen as a natural transformation of functors between DivX/S and PicX/S .

Definition 2.9. We define the Abel-Jacobi map (also known as the Albanese map) as
the natural transformation of functors

u : DivX/S → PicX/S , D 7→ O(D).
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2.5 Tangent spaces of Xd and Pic dX

For every d ∈ N the classical Abel-Jacobi map induces a morphism in the category of

schemes over S, between the representing schemes

u : Xd → Pic dX , D 7→ OX(D)

and, in order to study its tangent map at a closed point D ∈ Xd

TDu : TDXd → Tu(D) Pic dX ,

we should, first of all, understand the above tangent spaces. A very useful tool for this

purpose is the ring of the dual numbers kε = k[ε]/ε2 and the associated fibred product

Xε := X ×
S

Spec(kε).

Moreover, for any k-scheme P with a rational point e, denote by P (kε)e the set of all

k-maps from the free tangent vector Spec(kε) to P which are supported at e.

In this situation Lemma 5.11 of Appendix A shows that the k-vector space P (kε)e is in

fact isomorphic to the tangent space to P at the point e, in formula

P (kε)e ∼= TeP.

Further Lemma 5.12 of Appendix A tells us that, if P is a group scheme, then the

tangent space at the identity element e is simply given by

TeP ∼= ker
(
P (kε)→ P (k)

)
.

In order to describe the tangent space of Pic dX it is useful to introduce the normal sheaf

associated to a divisor, by means of the following

Definition 2.10. The normal sheaf associated to a divisor D ∈ Pic dX is defined as

OD(D) := OX(D)⊗ OD.

We remark that, even though OD(D) is a sheaf on D, we will often treat it as a sheaf
on X by implicitly pushing it forward via the natural inclusion of D into X.

Notation 4. With the aim of making our notation lighter, we will often write

H i(D)D ≡ H i(X,OD(D))

for the i-th cohomology group of the normal sheaf.
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Remark 2.11. The ideal sheaf of OD is OX(−D), so we have a natural short exact
sequence

0→ OX(−D)→ OX → OD → 0

and, since tensoring with the invertible sheaf OX(D) leaves the sequence exact, we get

0→ OX → OX(D)→ OD(D)→ 0.

The following proposition shows that the normal sheaf OD(D) is the house of the in-

finitesimal deformations of a divisor D, so that the tangent space of Xd at D is just its

space of global sections H0(D)D.

Proposition 2.12. Let D be a closed point of Xd. We have an isomorphism of vector
spaces

TDXd
∼= H0(D)D.

Proof. From Lemma 5.11 of Appendix A we know that the tangent space TDXd =

TDDivX/S(k) coincides with DivX/S(kε)D, which can be described as the vector space

V =

{
Relative effective Cartier divisors on Xε/kε whose
pull-back to the closed fibre X ⊂ Xε is D.

}
Let Gi ∈ H0(Ui,OX(−D)) be local equations for D over an open cover Ui. Then an
element of V has local equations

Fi = Gi + εHi, Hi ∈ H0(Ui,OX)

satisfying the glueing condition Fi = (unit) · Fj on Ui,j . Equivalently, such conditions
can be expressed as

Gi + εHi = (ai,j + εbi,j) · (Gj + εHj)

for some bi,j ∈ H0(Ui,j ,OX) and ai,j ∈ H0(Ui,j ,O
∗
X), which implies that

Gi = ai,jGj and Hi = ai,jHj + bi,jGj .

It follows that the assignment Fi 7→ Hi/Gi is well-defined, since the identity

Hi

Gi
− Hj

Gj
= bi,j · aj,i

ensures that {Hi/Gi} glues to a global section of OD(D). It is easy to check that this
gives a bijections of vector spaces.
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2.5 Tangent spaces of Xd and Pic dX

We now turn to the tangent space of the Picard scheme, which actually admits a simpler

description.

Proposition 2.13. Let L be a closed point of Pic dX and assume conditions (?) of Section
2.1 are met. Then we have an isomorphism of vector spaces

TL Pic dX
∼= H1(OX).

Proof. First of all notice that Pic = td∈N Pic dX is a group scheme, therefore the tangent
space at every point L is canonically isomorphic to the tangent space at the identity
element 0 ∈ Pic0

X = Pic0
X/S(k). Hence, from Lemma 5.12 of Appendix A we know

what we are looking for: the kernel of the map PicX/S(kε) → PicX/S(k). In order to
compute it, consider the truncated exponential sequence

0→ OX → O∗Xε
→ O∗X → 0,

where the first map is the exponentiation e : f 7→ 1 + εf . Notice that this map enjoys
the key property of the classical exponential, as we have

e(f + g) = 1 + ε(f + g) = (1 + εf) · (1 + εg) = e(f) · e(g)

so that its name is justified. The above sequence splits using the natural inclusion of
O∗X into O∗Xε

, so we obtain a short exact sequence in cohomology of degree 1

0→ H1(OX)→ H1(O∗Xε
)→ H1(O∗X)→ 0.

Now, the fact that conditions (?) are satisfied implies that the natural identification
(2.1) holds, thus giving isomorphisms

PicX/S(k) ∼= Pic(X) = H1(O∗X) and PicX/S(k) ∼= Pic(Xε) = H1(O∗Xε
) .

Therefore we have the following commutative diagram with exact rows, where the two
vertical arrows on the right are isomorphisms and thus the same holds for the induced
vertical map between the kernels.

0 H1(OX) H1(O∗Xε
) H1(O∗X) 0

0 T0 PicX/S(k) PicX/S(kε) PicX/S(k) 0

Finally, one can easily check that the above dashed isomorphism is in fact an isomor-
phism of vector spaces.
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2.6 Tangent bundles of Xd and Pic dX

In the last section we gave an entirely cohomological description of the tangent spaces

of both Xd and Pic dX . We will now show that we can actually do much better, giving

a cohomological description for the tangent sheaves of those varieties, thus achieving a

global analogue of the identifications obtained, fiberwise, in the last section.

We start with a Lemma showing that the sheaves we are interested in are locally-free.

Notation 5. In order to make our notation shorter, in the following we will use write
simply Z to denote the product X ×Xd, and we will write π : Z → Xd for the natural
projection on the second factor.

Definition 2.14. A locally free sheaf of rank n on a scheme Y is defined as an
OY -module F that is locally a free sheaf of rank n. More precisely, there is an open
cover {Ui} of Y such that over each Ui we have an isomorphism F|Ui

∼= O⊕nUi
.

Remark 2.15. It is a well known fact that, in our case of a smooth projective curve
over an algebraically closed field, the representing schemes Xd and Pic dX are in fact
smooth varieties in any characteristic. We do not prove these facts here but we refer to
the literature – see for instance the discussion in Chapter 5 of [1]. Therefore it follows
that the tangent sheaves TXd and T Pic dX are locally-free.
Moreover, we remark that the quasi-coherent sheaves π∗O∆(∆) and R1π∗OZ are locally-
free, as will show in Proposition 2.20.

Starting from the tangent sheaf of the Divisor scheme, our strategy is to pass from a

single divisor D to the universal divisor ∆, making the formal replacement

H0(D)D, vector space 7→ π∗O∆(∆), locally free sheaf

Proposition 2.16. There is a canonical isomorphism of sheaves TXd
∼= π∗O∆(∆).

Proof. Let π̃ denote the restriction of π : X ×Xd → Xd to the divisor ∆ and look at
the diagram of the closed immersion

∆ X ×Xd

Xd

π
π̃
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2.6 Tangent bundles of Xd and Pic dX

from which we readily observe that we have natural identifications

π̃∗(TXd) = (π∗TXd)|∆ and T (X ×Xd)|∆ = (π∗TXd)|∆ ⊕ (Pr∗X TX)|∆ .

Moreover, since O∆(∆) is the normal bundle of the divisor ∆, there is a natural map

T (X ×Xd) −→ O∆(∆)

which, in light of the above identifications, gives a map from π∗TXd to O∆(∆) obtained
by restriction. Therefore by the adjunction between π∗ and π∗ we find what we were
looking for: a morphism

TXd −→ π∗O∆(∆).

As remarked in Remark 2.15, the two sheaves in question are locally free of finite rank,
therefore it is sufficient to show that the above global map induces isomorphisms on
each fibre. One can check that, in fact, this global morphisms restricts on every fibre
to the linear map

TDXd

∼=−→ H0(D)D

which we proved to be an isomorphism in Proposition 2.12, thus achieving the desired
conclusion.

We now turn to the case of the Picard scheme, in which our strategy is in some sense

to make the formal replacement

H1(OX), vector space 7→ R1π∗OZ , locally free sheaf

Proposition 2.17. There is a canonical isomorphism of sheaves u∗T Pic dX
∼= R1π∗OZ .

Proof. First of all recall from Proposition 2.13 that we have an isomorphism

T0 PicX/S ∼= H1(X,OX)

then notice that, since PicX/S is a group variety, its tangent sheaf is constant with
fibers H1(X,OX). The same is true if we restrict to the subscheme Pic dX , thus we see
that T Pic dX is the constant sheaf H1(X,OX) over Pic dX .
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2. THE DIVISOR AND PICARD SCHEMES

Actually, we claim that R1π∗OZ is also constant with fibers H1(X,OX). To see this
consider the base change diagram

Z X

Xd S

π f

g

and notice that, since we are assuming S = Spec(k), the structure morphism f : X → S

is flat. Hence the above diagram describes a flat base change and thus ( use Proposition
9.3 of [7] for instance ) we get

R1π∗OZ ∼= g∗
(
R1f∗OX

) ∼= g∗H1(X,OX),

from which we deduce that R1π∗OZ is the constant sheaf with fibers H1(X,OX) over
Xd. Therefore it follows that u∗T Pic dX

∼= R1π∗OZ .

2.7 Cohomological description of the Abel-Jacobi map

In this section we will achieve a purely cohomological description of the tangent map

Tu of the Abel-Jacobi map, first fiberwise and then globally.

2.7.1 Fiberwise description

In section 2.5 we showed that, on every closed point D, the tangent morphism TDu is a

linear map H0(D)D → H1(OX), which looks pretty familiar. Indeed from the natural

short exact sequence of sheaves of Remark 2.11, i.e.

0→ OX → OX(D)→ OD(D)→ 0

we get, observing that H1(X,OD(D)) is trivial since D is 0-dimensional, the following

long exact sequence in cohomology

0→ H0(OX)→ H0(D)→ H0(D)D
δD−→ H1(OX)→ H1(D)→ 0 (2.2)

and we are going to show that the coboundary map δD can be identified with TDu.

Proposition 2.18. Under the isomorphisms of Propositions 2.12 and 2.13, the maps
δD and TDu can be identified.
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2.7 Cohomological description of the Abel-Jacobi map

Proof. We want to prove the commutativity of the following diagram

H0(D)D TDXd

H1(OX) Tu(D) Pic dX

∼

∼

δD TDu

where the lower horizontal map is the exponentiation f 7→ 1 + εf .
Let Gi be local equations for D and Hi/Gi represent a global section of H0(D)D. The
coubandary map acts on it as

δD

(
Hi

Gi

)
=
Hi

Gi
− Hj

Gj
.

On the other hand, Hi/Gi is identified with the element of TDXd defined by local
equations Fi = Gi + εHi and gets mapped through TDu to the element of Tu(D) Pic dX
with transition functions given by

σi,j = Fi/Fj .

This can be expanded (here’s the trick!) as

σi,j = (Gi + εHi)/(Gj + εHj)

= GiG
−1
j · (1 + εHi/Gi) · (1− εHj/Gj)

= GiG
−1
j · (1 + ε(Hi/Gi −Hj/Gj)).

Now notice that GiG−1
j represents a section of OX(D), thus we can divide them out:

this just means translating σi,j back to the origin of Pic dX . We are left with

1 + ε

(
Hi

Gi
− Hj

Gj

)
,

which is the image under the exponential map of δD(Hi/Gi), as we wanted.

We can now rewrite the long exact sequence (2.2) as

0 H0(D)/k H0(D)D H1(OX) H1(D) 0

0 TD|D| TDXd TOX(D) Pic dX

δD

TDu

∼= ∼= ∼=

(2.3)

from which we make the following observations:
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i) The dimension of the Picard scheme is bounded by h1(OX) and equality holds if

and only if Pic dX is smooth, at any point and hence everywhere. In the case of X

being a smooth curve of genus g, recall that by definition h1(OX) = h0(K) = g;

ii) The kernel of TDu is H0(D)/k ∼= PH0(D), so one notices that u is constant on

linear series. This is the content of Abel’s theorem.

2.7.2 Global description

In the last Section we showed that the tangent spaces of Xd and Pic dX can be seen as

cohomology groups and, further, that the tangent map TDu at any point D is a linear

map of vector spaces. We now want to make this idea global, aiming for a cohomological

description of the tangent sheaves of Xd and Pic dX and the sheaf morphism Tu. To do

so, we will make use of the universal divisor ∆ and the universal line bundle L to obtain

two exact sequences of sheaves, which will serve as global analogues of (2.2). Moreover,

we will show that the last part of these sequences are free presentations, a fact that will

be of crucial importance for the definition of the moduli varieties parametrising linear

series and, in general, for the rest of our discussion.

Definition 2.19. Choose a divisor M =
∑m

i=1 Pi consisting of m ≥ 2g− d− 1 distinct
points of X, then define the product divisor

Γ := M × Pic dX

Proposition 2.20. Let π : X×Xd → Xd and ν : X×Pic dX → Pic dX denote the natural
projections on the second factor. Then the exact sequence of sheaves

π∗O∆(∆)
δ→ R1π∗OZ → R1π∗OZ(∆)→ 0 (2.4)

is a free presentation of R1π∗OZ(∆), while the exact sequence of sheaves

ν∗L (Γ)→ ν∗L (Γ)/L → R1ν∗L → 0 (2.5)

is a free presentation of R1ν∗L .

Proof. We start by looking at the natural short exact sequence

0→ OZ → OZ(∆)→ O∆(∆)→ 0 (2.6)
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2.7 Cohomological description of the Abel-Jacobi map

associated to the universal divisor, which is in some sense the global analogue of the
second sequence appearing in Remark 2.11. Since D is 0-dimensional and h1(DD) = 0,
Proposition 5.3 of Appendix A implies that R1π∗O∆(∆) = 0, therefore the last part of
the direct image sequence of 2.6 is given by

π∗O∆(∆)
δ→ R1π∗OZ → R1π∗OZ(∆)→ 0.

As we showed in Section 2.5, for every D ∈ Xd the cohomology groups

H0(X,DD) ∼= TDXd and H1(X,OX) ∼= TOX(D) Pic dX

are fiberwise vector spaces of dimensions d and g. Hence Proposition 5.3 implies that
π∗O∆(∆) is locally free of rank d and that R1π∗OZ is locally free of rank g, thus showing
that (2.4) is in fact a free presentation.
Moving towards the second sequence, notice that we have the natural short exact se-
quence

0→ L → L (Γ)→ L (Γ)/L → 0 (2.7)

and, since by Lemma 5.5 of Appendix A we have R1ν∗L (Γ) = 0, the corresponding
direct image sequence is given by

0→ ν∗L → ν∗L (Γ)
γ−→ ν∗L (Γ)/L → R1ν∗L → 0 . (2.8)

Moreover, since for every L ∈ Pic dX the Riemann-Roch implies h0(X,L(M)) = d+m−
g+ 1, another application of Proposition 5.3 implies that ν∗L (Γ) is locally free of rank
d + m − g + 1. Finally, we notice that L (Γ)/L can be seen as a line bundle on Γ, so
it follows that ν∗L (Γ)/L is locally free of rank m, as ν restricts to a finite locally free
morphism of degree m on Γ ⊂ X × Pic dX .

Remark 2.21. During the proof of the above Lemma we showed that the ranks of the
first two bundles appearing in the presentation (2.5) are d + m − g + 1 and m. Keep
it in mind, because this fact will be exploited during the proof of the Connectedness
Theorem.

Collecting the results of this Chapter, we are now able to write down a commutative

diagram in the category of coherent sheaves which is in some sense the global version of

(2.3) and, thus, gives an identification of the coboundary map δ : π∗O∆(∆)→ R1π∗OZ

with the morphism of locally free sheaves Tu : TXd → u∗T Pic dX , representing the

tangent map of the Abel-Jacobi map u restricted to divisors of degree d.
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2. THE DIVISOR AND PICARD SCHEMES

Figure 2.1: The projection ν restricts to a finite locally free morphism of degree m on
the product Γ ⊂ X × Pic dX

π∗OZ(∆) π∗O∆(∆) R1π∗OZ R1π∗OZ(∆)

TXd u∗T Pic dX

δ

Tu

∼= ∼=

The commutativity of this global diagram follows from the commutativity of its fiberwise

counterparts – achieved in Proposition 2.18 – together with the fact that the sheaves

appearing in the central square are locally free, as we observed in Remark 2.15.
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3

Moduli varieties and their tangent
spaces

In this Chapter we give a scheme-theoretic definition of the moduli varietiesXr
d parametriz-

ing effective divisors and W r
d parametrizing linear series. The idea is to start from the

two free presentations (2.4) and (2.5) of the sheaves R1π∗OZ(∆) and R1ν∗L arising

from some specific cohomology sequences related to the universal divior ∆ and the uni-

versal line bundle L .

Then we introduce the concept of Fitting ideals, which is at the heart of this technical –

but extremely useful – approach. Fitting ideals enjoy nice scheme-theoretical properties

and, consequently, the scheme structure that we get on the moduli varieties turns out

to be satisfactory for different reasons. For instance, Proposition 3.11 shows that the

obvious set-theoretic identity Xr
d = u−1(W r

d ) holds in the category of schemes.

As a consequence of our definitions, it will be possible to exploit a Theorem on the

height of Fitting ideals, proved by Eagon and Northcott, to give a lower bound to the

dimension of the moduli varieties Xr
d and W r

d in terms of the Brill-Noether number ρ.

Next we will introduce the variety Grd parametrizing (not necessarily complete) linear

series which, in the following Section, will permit to achieve a completely cohomological

description of the tangent spaces of Xr
d and W r

d , in which the Petri’s map

µ0 : H0(D)⊗H0(K −D) −→ H0(K)

will turn out to play a crucial role. Relying on this description we will be able to

characterize the singularities of the moduli varieties.
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3. MODULI VARIETIES AND THEIR TANGENT SPACES

3.1 Fitting ideals and degeneracy loci

Given a linear map ϕ : V → W between finite dimensional vector spaces, one can look

at its rank to get information about the amount of degeneracy involved in the mapping.

More precisely, the lower the rank of ϕ is, the bigger the dimension of its fibres will be

or, in other words, more directions in V will be collapsed. Moreover, if the map and

the vector spaces depend on some parameters x = x1, . . . , xn, one can define the locus

where the rank of ϕ(x) is at most t, what is usually referred to as the t-degeneracy

locus of ϕ.

In our case we work in a more general setting: we consider a morphism between two

locally free sheaves of finite type, but the underlying intuition is similar.

Let ϕ : E → F be a morphism of locally free sheaves of finite ranks e and f over a

Noetherian scheme Y and n ≤ min(e, f). We are interested in studying the (n − 1)-

degeneracy locus of ϕ, which is defined as

Dn−1(ϕ) = { y ∈ Y | ranky(ϕ) < n } .

Since we want to work with degeneracy loci, it is useful to define the ideal In(ϕ),

generated by all of the n × n minors of ϕ. This can be done in a coordinate-free way

through the formalism of exterior algebra:

Definition 3.1. Let ϕ : E → F be a map of free modules over a ring R. We define the
ideal In(ϕ) ⊂ R to be the image of the canonical map induced by ϕ

∧nE ⊗ ∧nF ∗ → R.

Remark 3.2. The canonical map involved in the definition of In(ϕ) is obtained in the
following way: first, by the universal property of exterior algebra, given ϕ : E → F we
have a unique map

∧nϕ : ∧nE → ∧nF

and we can thus define the above canonical map as

∧nE ⊗ ∧nF ∗ → R, a⊗ b 7→ b(∧nϕ(a))

Next we introduce the concept of the n-th Fitting ideal associated to to a finitely

presented module. This is a powerful algebraic invariant, which will serve us to define

the moduli varieties Xr
d and W r

d parametrising effective divisors and linear series.
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3.1 Fitting ideals and degeneracy loci

Definition 3.3. Let G be a finitely presented module over a ring R and consider a free
presentation

E
ϕ→ F → G→ 0

of G such that F is a finitely generated R-module of rank f . For every integer t ∈ N
we define the t-th Fitting ideal of G to be

Fittt(G) := If−t(ϕ).

Remark 3.4. Fitting ideals are well-defined, since Fittt(G) does not depend on the
chosen presentation. More precisely, if we have another presentation

E′
ϕ′→ F ′ → G→ 0

with F ′ of rank f ′ then If−t(ϕ) = If ′−t(ϕ
′), as it was proved by Hans Fitting in his

paper [10] of 1936.

The above remark allow us to extend the definition to quasicoherent sheaves over a

scheme.

Definition 3.5. Let G be a locally-free coherent sheaf over a Noetherian scheme Y .
We have local free presentations of G over an open cover of Y and, due to the above
remark, the local t-th Fitting ideals fit together into a globally defined sheaf of ideals
on Y , which we denote by Fittt(G) ⊂ OY .
Since the ideal sheaf Fittt(G) is coherent by construction, it cuts out a closed subscheme
of Y which we denote by FittSt(G), the t-Fitting scheme of G.

Another useful property of Fitting ideals is their invariance under base change.

More precisely, for every morphism of schemes f : Y ′ → Y , the pullback of the Fitting

ideal f∗ Fittt(G) is generated as an OY ′-module by the Fitting ideal of the pullback

Fittt(f
∗G).

Finally we define the locus of points y where the fibers of ϕy have a certain dimension:

Definition 3.6. Let m ∈ N and ϕ : E → F be a morphism of locally free sheaves over
a Noetherian scheme Y . We define the set

Fiberm(ϕ) = { y ∈ Y | fibers of ϕy have dimension ≥ m }
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3. MODULI VARIETIES AND THEIR TANGENT SPACES

Notice that, if s ∈ N and we have a free presentation of a coherent sheaf G

E
ϕ→ F → G→ 0

with E of rank e and F of rank f , then it is a trivial consequence of the definitions that

there is the following set-theoretic relationship among the objects we just defined:

Supp
[

FittS(s−1)(G)
]

= D(f−s)(ϕ) = Fiber(e−f+s)(ϕ). (3.1)

3.2 Definition of Xr
d and W r

d

In order to defineXr
d andW

r
d – the varieties parametrising linear series – we will consider

the free presentation appearing in Proposition 2.20, namely

π∗O∆(∆)
δ−→ R1π∗OZ −→ R1π∗OZ(∆) −→ 0

arising naturally from the universal divisor ∆ and, further, the free presentation

ν∗L (Γ) −→ ν∗L (Γ)/L −→ R1ν∗L −→ 0

associated to the universal line bundle L . As we explained in Chapter 2, the first of

the above presentations – which lives over X ×Xd – is related to the tangent map of

the Abel-Jacobi map u and thus embeds information on its degeneracy loci. Further,

in Proposition 3.11 we will show that the second one – which lives over X × Pic dX –

encodes basically the same information modulo linear equivalence and in fact pulls back

to the first one, via u. For these reasons we will use the schemes associated to some

specific Fitting ideals of these presentations to define Xr
d and W r

d .

Definition 3.7. We define

Xr
d := FittS(g−d+r−1)(R

1π∗OZ(∆)) and W r
d := FittS(g−d+r−1)(R

1ν∗L )

As a preparation for the next Proposition we need the following Lemma, which illus-

trates in what precise sense the sequence (2.8) associated to the universal divisor is

functorial.

Lemma 3.8. Let L be a line bundle of degree d on X × T and let f : T → Pic dX the
unique map for which

f∗L ∼= L⊗ φ∗F
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3.2 Definition of Xr
d and W r

d

where F is a line bundle over T and φ : X × T → T is the natural projection. Further,
let Γ′ := φ∗M where M is a divisor of high degree m as defined in 2.19. Then the
sequence (2.8) pulls back via f to the exact sequence

0→ φ∗L⊗ F → φ∗L(Γ′)⊗ F → φ∗(L(Γ′)/L)⊗ F → R1φ∗L⊗ F → 0

Remark 3.9. Before starting with the proof let us remark that, given a family of line
bundles L as in the above statement, we have an exact sequence which is very similar
to (2.8). Indeed, since Γ′ is the pullback of a divisor of high degree on X, Lemma 5.5
of Appendix A implies R1φ∗L(Γ′) = 0. Therefore, considering the short exact sequence

0→ L→ L(Γ′)→ L(Γ′)/L→ 0

and taking the direct image through φ we obtain the exact sequence

0→ φ∗L→ φ∗L(Γ′)→ φ∗(L(Γ′)/L)→ R1φ∗L→ 0 .

Proof. First of all we notice that the locally free sheaf L (Γ) enjoys the following prop-
erties

• ν∗L (Γ) is locally free, as showed in Proposition 2.20

• Riν∗L (Γ) = 0 for every i ≥ 1, as proven in Lemma 5.5

Hence we can apply Proposition 5.4 of Appendix A to the base change diagram

X × T X × Pic dX

T Pic dX

1× f

f

φ ν

and, using the Projection Formula (5.2), we deduce that there is a natural isomorphism

f∗R1ν∗L (Γ) ∼= R1π∗f
∗L (Γ) ∼= R1π∗(L(Γ′)⊗ φ∗F ) ∼= R1π∗L(Γ′)⊗ F . (3.2)

Moreover, during the proof of Proposition 2.20 we showed that ν∗L (Γ)/L is also locally
free and, further, from the exactness of the direct image sequence

· · · → R1ν∗L → 0→ R1ν∗L (Γ)/L → 0→ . . .
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3. MODULI VARIETIES AND THEIR TANGENT SPACES

we see that Riν∗L (Γ)/L = 0 for every i ≥ 1 and, therefore, another application of
Proposition 5.4 together with the projection formula gives us the natural isomorphism

f∗R1ν∗L (Γ)/L ∼= R1π∗L(Γ′)/L⊗ F .

As a result, recalling that tensoring with a line bundle is an exact functor, we get the
commutative diagram

0 f∗(ν∗L ) f∗(ν∗L (Γ)) f∗(ν∗L (Γ)/L ) f∗(R1ν∗L ) 0

0 φ∗L⊗ F φ∗L(Γ′)⊗ F φ∗(L(Γ′)/L)⊗ F R1φ∗L⊗ F 0

∼= ∼=

where of course the dashed arrows are also isomorphisms.

For future reference, we remark the following obvious consequence of the above Lemma.

Corollary 3.10. In the situation of the above Lemma, we have a natural isomorphism

f∗R1ν∗L ∼= R1φ∗L⊗ F

The following proposition will clarify the relationship between Xr
d and W r

d , showing

that Xr
d is the scheme-theoretical inverse image of W r

d .

Proposition 3.11. The scheme theoretic inverse image of the variety W r
d via the Abel-

Jacobi map equals Xr
d . In symbols this amounts to

u−1(W r
d ) = Xr

d .

Proof. We remarked already that Fitting ideals are stable under base change and this
implies in particular that, for any sheaf F , u∗ Fitt(F ) is generated as a module by
Fitt(u∗F ). Therefore the ideal sheaf of u−1(W r

d ) is generated by Fitt(u∗R1ν∗L ) and
thus it is enough to show that the latter is isomorphic to Fitt(R1π∗OZ(∆)). To begin,
pick D ∈ Xd and notice that the canonical maps

f : D ↪→ Xd and g : OX(D) ↪→ Pic dX

satisfy the relation g = u ◦ f . So fiberwise we have the identities

(u∗L )|D = f∗u∗L = (u ◦ f)∗L = g∗L = O(D) = O(f∗∆) = f∗O(∆) = O(∆)|D
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and we can therefore apply Lemma 5.9 of Appendix A to get a line bundle F over Xd

such that
u∗L ∼= OZ(∆)⊗ π∗F ,

where π : X ×Xd → Xd is the natural projection map. Finally, from Corollary 3.10 we
get a natural isomorphism

u∗R1ν∗L ∼= R1π∗OZ(∆)⊗ F

and, since �⊗F is a right-exact functor and does not affect Fitting ideals, we therefore
conclude that

Fitt(u∗R1ν∗L ) ∼= Fitt(R1π∗OZ(∆)) ,

as desired.

We will now show that the support of Xr
d consists of divisors with rank at least r. To

start, recall from Proposition 2.20 that the terms appearing in (2.4) are locally free

sheaves over Xd, and the first two have rank respectively d and g, so that with respect

to the notation used in the identities (3.1) we have

e = d, f = g and s = g − d+ r. (3.3)

Moreover from Proposition 2.18 we know that we can identify δ with Tu and thus,

exploiting the above mentioned identities , we find

Supp(Xr
d) = Fiber(r)(Tu) = { D ∈ Xd | r(D) ≥ r } .

Since from Proposition 3.11 it follows in particular that u maps Xr
d onto W r

d , we there-

fore immediately see that the support of W r
d is given by

Supp(W r
d ) =

{
L ∈ Pic dX | r(L) ≥ r

}

3.3 Dimensional lower bounds

First of all let us introduce to the reader the so called Brill-Noether number, which will

turn to be a crucial ingredient of Brill-Noether theory.

Definition 3.12. Let d, g and r be natural numbers. The Brill-Noether number is
defined as

ρ = ρ(d, g, r) = g − (r + 1)(g − d+ r)
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3. MODULI VARIETIES AND THEIR TANGENT SPACES

Figure 3.1: An intuitive picture of the Degeneracy loci of the Abel-Jacobi map u.

Let now G be a finitely presented sheaf which admits the free presentation

E
ϕ→ F → G→ 0

with E of rank e and F of rank f . Applying Theorem 5.1 of Appendix A to G we get

height(Fittt(G)) ≤ (e− f + t+ 1)(t+ 1).

In the case of Xr
d , the sheaves appearing in the presentation (2.4) have rank d and g as

in (3.3). Hence, denoting by I the (Fitting) ideal sheaf of Xr
d we have

height(I) ≤ r(g − d+ r).

Since Xd is a variety over a field, it is a catenary scheme and we have the equality

codimXr
d + dimXr

d = dimXd. Thus, recalling that dimXd = d we get the lower bound

dimXr
d ≥ d− r(g − d+ r) = g − (r + 1)(g − d+ r) + r = ρ+ r
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3.4 Definition of G r
d

for the dimension of every irreducible component of Xr
d . Further, invoking Proposition

3.11 we deduce that any irreducible component of W r
d has dimension greater or equal

than ρ. Let us state these results in the form of a Theorem, for future reference

Theorem 3.13. Every irreducible component of Xr
d has dimension at least ρ+ r, while

every irreducible component of W r
d has dimension at least ρ.

3.4 Definition of G r
d

We are now going to define a variety G r
d parametrising grd on the curve X, i.e. (not

necessarily complete) linear series of degree d and dimension r. Our objective is to give

the right definition for G r
d and then show that its support is given by

Supp(G r
d ) =

{
(L,W ) ∈ Pic dX ×G(r + 1, H0(L))

}
where L is a line bundle on X and G(r + 1, H0(L)) denotes the Grassmannian bundle

of (r+ 1)-dimensional linear subspaces of H0(L). In order to give a scheme structure to

G r
d , we need to introduce a useful algebraic object. Let G be a locally free and finitely

presented sheaf over a scheme Y and E ϕ→ F → G→ 0 a free presentation of G, where

E and F have finite ranks e and f . Moreover, for every natural number t ≤ e, let

π : G(e− t, E)→ Y

be the projection from the Grassmannian bundle of (e − t)-subspaces of sections of E

to Y . Consider the natural short exact sequence of sheaves over G(e− t, E)

0→ S → π∗E → Q→ 0

where S and Q are the universal subbundle and quotient bundle of G(e− t, E). In order

to better understand this sequence, let y ∈ Y and let the (e − t)-subspace V = π1(y)

be the corresponding fiber over y. Then the fiberwise short exact sequence over V is

simply given by

0→ V → Ey → Ey/V → 0 .

Next, we define the following subset of G(e− t, E) as a specific vanishing locus:
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3. MODULI VARIETIES AND THEIR TANGENT SPACES

Definition 3.14. We define Grasst(G) ⊂ G(e − t, E) to be the vanishing locus of the
morphism of sheaves

S −→ π∗E
π∗ϕ−→ π∗F

i.e. the closed subset of the support of G(e− t, E) consisting of those points over which
S → π∗F restricts to the zero morphism.

Remark 3.15. Notice that, by definition, the support of Grasst(G) consists of pairs
(y, V ) where y ∈ Y and V ⊂ Ey is a (e − t)-subspace contained in the kernel of the
linear map ϕy : Ey → Fy.

Hence we can use the notion of Grasst(•) to define the variety G r
d . To do so, first recall

the definition of the high-degree divisor Γ of degree m as in Definition 2.19 and then

consider the free presentation (2.5) of finite rank locally free sheaves over Pic dX

ν∗L (Γ)
γ→ R1ν∗L (Γ)/L → R1ν∗L → 0

which was involved in the definition of W r
d .

Definition 3.16. We define G r
d to be the closed subscheme of G(r+ 1, ν∗L (Γ)) given

by Grass(d+m−g+r)(R
1ν∗L ).

One can show that the above definition is independent from the choice of the presenta-

tion of R1ν∗L . We do not deal with this problem and we leave it as an exercise to the

interested reader.

It is now time to check thatG r
d actually parametrizes grd on the curve. First of all observe

that, by Lemma 3.8, the kernel of γ|L over any L ∈ Pic dX is canonically isomorphic to

H0(L). Therefore, looking at Remark 3.15, we see that the support of G r
d consists of

couples (L,W ) where L is a line bundle of degree d andW ⊂ H0(L) is a linear subspace

of dimension r + 1, as desired.

3.5 Cohomological description for the tangent spaces

In the following we will use the short hand notations

Xr
d = Xr

d \Xr+1
d and W r

d = W r
d \W r+1

d
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3.5 Cohomological description for the tangent spaces

and we will refer to the points of Xr
d and W r

d as good points.

With the aim of describing the tangent space ofW r
d and Xr

d , we will first look at the one

of G r
d . A motivation for this approach is the observation that the natural projection

β : G r
d →W r

d , (L,W ) 7→ L

is biregular away of W r+1
d . Indeed β is clearly a regular map and, further, the preimage

of L ∈ W r
d consists just of the point w = (L,H0(L)). It follows that, as far as W r

d is

regarded, Tβ gives an isomorphism between the tangent spaces

Tβ : TwG
r
d

∼=−→ TLW
r
d , ∀L ∈W r

d. (3.4)

In order to describe the tangent space of G r
d , a preliminary result about the first order

deformations of a pair (L, s) ∈ Picd×H0(L) will turn out to be crucial.

Proposition 3.17. Let L ∈ Picd be a line bundle over X and s ∈ H0(L) a global
section. Then an element φ ∈ TL Picd ∼= H1(OX) induces a first order deformation of
the pair (L, s) if and only if φ · s = 0 in H1(L).

Proof. Assume that L is given by transition functions gαβ on a open cover Uα of X.
We already know that TL Picd ∼= H1(OX) and a first order deformation L′ of L is
represented by a class φ ∈ H1(OX) in the following way

gαβ
φ
 g′αβ = gαβ · (1 + εφαβ).

On the other hand, on a first order deformation of the pair (L, s) to (L′, s′) we have the
additional requirement that the section s′ corresponds to a linear deformation of s. In
formula this is expressed as

s′α = sα + εtα, t ∈ H0(L).

The action of the transition functions can therefore be expanded as

s′β = g′αβ · s′α ⇐⇒ sβ + εtβ = gαβ · (1 + εφαβ) · (sα + εtα)

and imposes the conditions

sβ = gαβ · sα and φαβ · sα = tα − gβα · tβ.
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3. MODULI VARIETIES AND THEIR TANGENT SPACES

The first one is automatically satisfied since s is a global section of L, while the second
one can be rewritten in terms of the coboundary map ∂ : C0(L)→ C1(L) as

φ · s = ∂(t),

thus giving the desired result.

We now have a way to describe an element of TwG r
d . In fact the latter is nothing but

a first order deformation of the pair (L,W ) and, as an immediate consequence of the

above Proposition, one such deformation corresponds to an element φ ∈ H1(OX) such

that φ ·W = 0. Hence we deduce that the image of Tβ at a point w = (L,W ) can be

described as

Tβ(TwG
r
d ) ∼=

{
φ ∈ H1(OX) | φ ·W = 0 in H1(L)

}
.

Further, this description can be reformulated using Serre duality by considering the

restriction of µ0 to W ⊆ H0(L), i.e. the map

µ0,W : W ⊗H0(K − L)→ H0(K), s⊗ s′ 7→ s · s′.

Indeed, since the duality pairing is perfect, the condition φ ·W = 0 is equivalent to

require that ∀s ∈W and ∀s′ ∈ H0(K − L) the pairing

〈 s′, s · φ 〉 = 〈 s′ · s, φ 〉

vanishes. Notice that the above identity follows from Lemma 6.10 of Appendix A and

the local description of Abelian differentials. Therefore, in a more concise form, we can

write

Tβ(TwG
r
d ) ∼= ( Imµ0,W )∨. (3.5)

As a consequence, at least for good points, we can easily describe the tangent space of

W r
d in a purely cohomological fashion.

Proposition 3.18. For every good point L ∈W r
d the tangent space is given by

TLW
r
d
∼= ( Imµ0 )∨

where µ0 : H0(L)⊗H0(K − L)→ H0(K) is the cup product.

Proof. This follows immediately from (3.4) and (3.5), taking W = H0(L).
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3.6 Consequences of the infinitesimal study

Exploiting the fact that α is dual to δ we get, as a corollary, a nice cohomological

description for the tangent space of Xr
d as well.

Corollary 3.19. For every good point D ∈ Xr
d the tangent space is given by

TDX
r
d
∼= ( Imαµ0 )∨

where µ0 : H0(D)⊗H0(K −D)→ H0(K) is the cup product.

Proof. Let D ∈ Xr
d and set L = u(D). Using Proposition 3.18 we find

TDX
r
d = u−1

∗ TLW
r
d

= u−1
∗ ( Imµ0 )∨

= δ−1 ( Imµ0 )∨

= ( Imαµ0 )∨

where the last equality holds because α is dual to δ, as shown in Appendix B – see
identity (6.3).

3.6 Consequences of the infinitesimal study

The results achieved in this Section shade light on the crucial role of the cup-product

homomorphism µ0 in the study of the geometry of linear series. Indeed, as we will see

in the following, the moduli varieties parametrizing effective divisors and linear series

present singularities on those points over which the cup-product presents a non trivial

kernel. This is a fact which was already observed in the toy-model examples of Section

1.7.

We start with a proposition about the dimension of G r
d .

Proposition 3.20. The dimension of G r
d is at least ρ and, at every point w = (L,W ),

dimTwG
r
d = ρ+ dim(kerµ0,W ).

Hence G r
d is smooth of dimension ρ at w if and only if µ0,W is injective.
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Proof. The lower bound on the dimension of G r
d follows directly from Theorem 3.13,

since β is onto W r
d . To get the dimension of TwG r

d , notice that the fiber of β over a
point L ∈ W r

d is canonically isomorphic to the Grassmannian G(r + 1, H0(L)), whose
tangent space at a point W is given by Homk(W,H0(L)/W ). Hence we have a short
exact sequence

0→ Homk(W,H0(L)/W )→ TwG
r
d → Im(Tβ)→ 0

and the result follows from a trivial computation:

dimTwG
r
d = dim Im(Tβ) + dim Homk(W,H0(L)/W )

= g − dim Imµ0,W + (r + 1)(h0(L)− r − 1)

= g − (r + 1)h0(K − L) + dim(kerµ0,W ) + (r + 1)(h0(L)− r − 1)

= g − (r + 1)(h0(K − L)− h0(L) + r + 1) + dim(kerµ0,W )

= g − (r + 1)(g − d+ r) + dim(kerµ0,W )

= ρ+ dim(kerµ0,W )

The statement about the smoothness now follows immediately.

As a corollary, we get an important result about the dimension and smoothness of W r
d

at good points L ∈W r
d.

Corollary 3.21. The variety W r
d is smooth of dimension ρ at L ∈ W r

d if and only if
the cup product µ0 : H0(L)⊗H0(K − L)→ H0(K) is injective.

Proof. From Proposition 3.20 together with (3.4) we know that for every good point L

dimTLW
r
d = ρ+ dim(kerµ0)

so it is enough to invoke the lower bound of Theorem 3.13 to conclude.

Finally, we have the corresponding result on the dimension and smoothness of Xr
d .

Proposition 3.22. The variety Xr
d is smooth of dimension ρ + r at D ∈ Xr

d if and
only if the cup product µ0 : H0(D)⊗H0(K −D)→ H0(K) is injective.
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Proof. This is another a trivial computation. Indeed, using Corollary 3.19 and noticing
that kerα = H0(K −D) is contained in the image of µ0, we get

dimTDX
r
d = d− dim Imαµ0 = d− dim Imµ0 + dim kerα

= d− (r + 1)(g − d+ r) + dim kerµ0 + g − d+ r

= r + g − (r + 1)(g − d+ r) + dim kerµ0

= r + ρ+ dim kerµ0.

The remark about the smoothness of Xr
d at D follows from the above combined with

the lower bound of Theorem 3.13.

These results make it natural to ask how the tangent spaces of the moduli varieties

behave in the case of a general curve. An answer is given by a classical result due to

Gieseker, which was proved during the last decades for the case of curves over C.

Smoothness Theorem. Let X be a general curve of genus g and let d ≥ 1, r ≥ 0 be
natural numbers. Then G r

d is smooth of dimension ρ.

An extension of this Theorem to an arbitrary algebraically closed field is out of the

scope of this Thesis, nevertheless the above achieved results strongly suggest that such

a generalization is possible.

Because of the cohomological description of the infinitesimal structure of the moduli

varieties, the Smoothness Theorem can also be stated in an equivalent and purely co-

homological manner:

Smoothness Theorem 2. Let X be a general curve of genus g and D and effective
divisor on X. Then the cup-product homomorphism

µ0 : H0(D)⊗H0(K −D)→ H0(K)

is injective.
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4

Existence and Connectedness
Theorems

The scope of this Chapter is to achieve a generalization of two basic results of the

classical Brill-Noether Theory, the Existence and Connectedness Theorems, to the case

of an arbitrary algebraically closed field. The content of the Theorems underlines the

crucial role of the Brill-Noether number ρ in the study of linear series: in fact, a non

negative value of ρ implies that W r
d is not empty and, moreover, ρ > 0 ensures its

connectedness. These results were proved in the last decades for curves over the complex

numbers but, as we will see, can be extended to closed fields of positive characteristic.

Thanks to a general result on degeneracy loci proved by Fulton – Theorem 5.2 of

Appendix A – the Existence and Connectedness Theorems will follow immediately,

but first we need to show that Fulton’s hypothesis are met in our situation. The first

step is to show that W r
d can be seen as a degeneracy locus of a morphism of vector

bundles

ϕ : E −→ F

where E and F arise from a specific cohomology sequence associated to the universal

line bundle L . It is crucial to choose these vector bundles in a smart way, in order to

simplify the following and last step, in which we need to show that the tensor product

E∗ ⊗ F ∼= Homk(E,F ) is an ample vector bundle.
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4.1 An alternative perspective on W r
d

Notation 6. For every natural number d ∈ N, let M =
∑m

i=1 pi be a divisor of high
degree m ≥ 2g − d− 1 on X and set n := m+ d.

To begin, we will give a recipe to construct an explicit universal line bundle Ln of

degree n which enjoys the characterizing universal property. Because of the uniqueness

up to isomorphisms of such an universal object, the explicit recipe given in this Section

is compatible with the non-constructive approach we adopted in the previous Chapters.

For now and for the rest of the section, choose a closed point Q ∈ X and define

[Q] := { D ∈ Xn | Q ∈ Supp(D) } ⊂ Xn

Further, let ∆ be a universal divisor of degree n, let u : Xn → PicnX the Abel-Jacobi

map and π : Z = X ×Xn → Xn the natural projection.

Definition 4.1. We define a universal line bundle Ln → X × PicnX of degree n by

Ln := (1X × u)∗(OZ(∆− π∗[Q]))

Notice that the above pushforward gives in fact a line bundle, the reason being that

the Abel-Jacobi map u is onto PicnX since n is greater than 2g− 1. Moreover, it is easy

to check that the resulting line bundle enjoys the universal property of a universal line

bundle, but we leave the details to the interested reader.

Recall that the moduli variety W r
d was defined as a Fitting scheme associated to the

sheaf R1ν∗Ld, where Ld is a universal line bundle of degree d. It will be convenient, in

this section, to translate our point of view and work directly in higher degree. Hence,

using the recipe provided by Definition 4.1, choose Ln to be a universal line bundle of

degree n = d+m. Further, let Γ = M × PicnX and use the isomorphism

a : Pic dX
∼=−→ PicnX , L 7→ L⊗ O(M)

to define the universal line bundle Ld of degree d as the pull-back of Ln(−Γ)

Ld := a∗Ln(−Γ).
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We claim that the image a(W r
d ) ⊂ PicnX is the closed subscheme Y corresponding to

the Fitting ideal Fittt(R
1ν∗Ln(−Γ)) with t = g − d+ r − 1, the reason being that the

scheme theoretic preimage a−1(Y ) corresponds to the ideal sheaf

a∗ Fittt(R
1ν∗Ln(−Γ)) = Fittt(a

∗R1ν∗Ln(−Γ)) = Fittt(R
1ν∗Ld)

as one sees invoking Corollary 3.10 and recalling that Fitting ideals – defined through

a free presentation – are not affected by tensor product. Therefore we understand that

W r
d can also be seen as the (m− g + d− r)-degeneracy locus of the evaluation map

E := ν∗Ln −→ ν∗(Ln/Ln(−Γ)) =: F,

which will turn out to be a convenient point of view, as we will see in the next Section.

4.2 Ampleness of (ν∗L )∗ ⊗ ν∗(L /L (−Γ))

We start by exploiting the choice of the vector bundle F = ν∗(Ln/Ln(−Γ)), showing

that it admits a simple description in the following Lemma.

Notation 7. For the rest of this Section we will write L = Ln to denote the universal
line bundle of degree n. Further, for any closed point P ∈ X, denote by ΓP the divisor
P × PicnX ⊂ X × PicnX .

Definition 4.2. Two line bundles L1 and L2 over a scheme Y are said to be alge-
braically equivalent if there exist a connected scheme T , two closed points t1, t2 ∈ T
and a line bundle L over Y × T such that

L|Y×t1
∼= L1 and L|Y×t2

∼= L2.

Lemma 4.3. If the divisor M =
∑m

i=1 pi is reduced, then F = ν∗(L /L (−Γ)) is a
direct sum of algebraically trivial line bundles.

Proof. Let P be a closed point of X and notice that L /L (−ΓP ) is just the restriction
of L to ΓP . Therefore, from the natural isomorphism

OX×Xn(∆)⊗ O{P}×Xn
∼= OXn([P ])

together with the explicit form of the universal line bundle L = (1X×u)∗(O(∆−π∗[Q])),
we deduce that

ν∗ (L /L (−ΓP )) ∼= u∗OXn([P ]− [Q]). (4.1)
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To show that u∗OXn([P ]− [Q]) is algebraically equivalent to the trivial bundle, following
the notation of Definition 4.2 we can take L = L , T = X and t1 = P , t2 = Q for the
points. Indeed one can easily see that we have

L|Picn
X ×{P}

∼= u∗OXn([P ]− [Q]) and L|Picn
X ×{Q}

∼= u∗OXn
∼= OPicn

X

Remark 4.4. In the case of a non-reduced M (i.e. if the pi’s are not distinct), the
statement of the above Lemma is no longer true. However, one can still show that F
admits a filtration with successive quotients being trivial line bundles. The latter fact
is enough for the next arguments, allowing minor modifications. Nevertheless, we will
just deal with the reduced case here, leaving the generalisation as an exercise for the
reader.

Our next objective is to show that the vector bundle ν∗L is ample, but first of all we

need to clarify what ampleness means in this setting.

Definition 4.5. A vector bundle E over a variety X is said to be ample if the tauto-
logical line bundle OPE∗(1) is ample.

We now move to the vector bundle E = ν∗L , looking in particular to its associated

projectified bundle.

Proposition 4.6. The projectified bundle PE is naturally isomorphic to Xn and the
projection PE → PicnX coincides with the Abel-Jacobi map Xn

u−→ PicnX . Moreover,
under this isomorphism we have

OPE(1) ∼= OXn([Q])

Proof. Every fiber of E = ν∗L over L ∈ PicnX coincides with the vector space of global
sections H0(X,L), hence the points of PE are pairs (L, σ) where σ is a 1-dimensional
subspace of H0(X,L), which is the same as a divisor D ∈ |L|. Therefore PE ∼= Xn, and
the projection onto PicnX is given by the Abel-Jacobi map (L, σ) 7→ L.

For the second statement, consider the natural map

ψ : E → ν∗(L /L (−ΓQ))
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obtained by evaluation and restriction, an pull it back via u to get a morphism

OPE(−1)→ u∗E → u∗(ν∗(L /L (−ΓQ)))

where the last bundle is trivial, as one immediately sees from the description 4.1 given
in the proof of Lemma 4.3. Hence passing to the dual we find the transpose morphism

OXn → OPE(1)

which, by definition of ψ, vanishes of order 1 over [Q]. Therefore we obtain an induced
isomorphism

OXn([Q])
∼=−→ OPE(1)

Exploiting the description of OPE(1) we just achieved, we will now show that E∗ is

ample.

Proposition 4.7. The vector bundle E∗ = (ν∗L )∗ is ample.

Proof. Our objective is to show that OPE(1) ∼= OXn([Q]) is ample as a line bundle
over Xn, so it is useful to apply Proposition 5.6 of Appendix A to the quotient map
ζ : Xn → Xn and look at the pullback of OXn([Q]). This can be written as

ζ∗OXn([Q]) =
n⊗
i=1

π∗iOX(Q) ,

where πi : Xn → X is the projection on the i-th component.
Now notice that OX(Q) is ample being of positive degree and, so, from Lemma 5.8 of
Appendix A it follows that the tensor product ⊗ni=1π

∗
iOX(Q) is ample as well, showing

that ζ∗OXn([Q]) and hence OXn([Q]) is ample, as desired.

Now, since we showed that E∗ is ample and F is the direct sum of algebraically trivial

line bundles, it follows immediately that the vector bundle

E∗ ⊗ F ∼= Hom(E,F )

is ample. This is exactly what we need, in the following section, to apply Theorem 5.2 of

Appendix A to our situation thus getting the Existence and Connectedness Theorems.
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4.3 Existence and Connectedness Theorems

In the previous section we proved the ampleness of the vector bundle

E∗ ⊗ F = (ν∗L )∗ ⊗ ν∗(L /L (−Γ))

and, as a consequence, we can apply Theorem 5.2 of Appendix A to the bundle morphism

ν∗L
ϕ−→ ν∗(L /L (−Γ))

getting as a result the Existence and Connectedness Theorems.

Existence Theorem. Let X be a smooth projective curve of genus g and d, r ∈ N such
that

ρ = g − (r + 1)(g − d+ r) ≥ 0.

Then the moduli variety W r
d is not empty.

Connectedness Theorem. Let X be a smooth projective curve of genus g and d, r ∈ N
such that

ρ = g − (r + 1)(g − d+ r) > 0.

Then the moduli variety W r
d is connected.

Proof. Since pullback preserves the rank of vector bundles, we deduce from Remark
2.21 that E and F have ranks e = d+m− g+ 1 and f = m. Then, recall from the last
Section that W r

d can be interpreted as the degeneracy locus

W r
d = FittS(s−1)(R

1ν∗L (−Γ)) = D(m−s)(ϕ)

with s = g− d+ r. Further, we know that the dimension of Y = PicnX is given by g, so
a trivial computation shows that

dim(Y ) ≥ (e− (m− s))(f − (m− s)) ⇐⇒ g ≥ (r + 1)(g − d+ r) ⇐⇒ ρ ≥ 0 ,

therefore both the Existence and Connectedness Theorems follow immediately from
Theorem 5.2 of Appendix A.

Looking at the above results, a natural question to ask is whether a negative value

of the Brill-Noether number ρ, for given integers d and r, implies the absence of grd
on the curve X. This question admits a positive answer in the classical setting of a

smooth projective curve over C, as the following Theorem – originally stated by Brill

and Noether and then proved by Griffiths and Harris – implies.
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Dimension Theorem. Let X be a smooth projective curve of genus g over the complex
numbers and fix integers d ≥ 1 and r ≥ 0. Then the variety G r

d is empty if ρ < 0, while
it is reduced of pure dimension ρ if ρ ≥ 0.

The Dimension Theorem was out of the scope of this thesis, nevertheless our intuition

suggests that such a result should remain valid over a more general algebraically closed

field k. In any case we would like to highlight the fact that the Dimension Theorem

allows to further restrict the region of special exceptional divisors, thus obtaining a

refined version of Figure 1.4, as showed below

Riemann-Roch
 lin

e r =
 d - g

=  interesting region of
     exceptional divisors

K

Figure 4.1: The interesting region of exceptional special divisors in the case of a curve of
genus g = 9, further refined exploiting the Dimension Theorem
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5

Appendix A: Some Results in
Algebraic Geometry

In this Appendix we collect a number of technical results which are exploited in various

parts of the Thesis, a solution adopted with the objective of making the main text

lighter and more readable.

For some of the statements a direct proof is given in these pages, while for others we

refer to the literature, giving precise references.

5.1 Degeneracy loci

Recall from Section 3.1 the definition of degeneracy ideals Inϕ. A result by Eagon and

Northcott on the height of such ideals is exploited in Section 3.3 to obtain a lower bound

for the dimension of connected components of the varieties Xr
d and W r

d .

Theorem 5.1. Let ϕ : E → F be a morphism of locally free sheaves of finite rank e
and f . Then for every p a minimal prime ideal of Inϕ we have

height(p) ≤ (e− n+ 1)(f − n+ 1).

Proof. See [8], Theorem 3.

A general result about the degeneracy locus of a vector bundle morphism turns out to

be the crucial ingredient we need to get the Existence and Connectedness Theorems.
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Recall our notation for the n-degeneracy locus associated to a morphism ϕ of vector

bundles over X:

Dn(ϕ) = { x ∈ X | rankx(ϕ) ≤ n }

Theorem 5.2. Let Y be an irreducible algebraic variety over an algebraically closed
field k and ϕ : E → F a morphism of vector bundles of dimension e and f over Y , such
that E∗ ⊗ F is ample. Then

dim(Y ) ≥ (e− n)(f − n) =⇒ Dn(ϕ) is not empty

and

dim(Y ) > (e− n)(f − n) =⇒ Dn(ϕ) is connected

Proof. The Theorem is stated and proved in the case k = C in [2] (see Theorem 1.1).
Moreover, Remark 1.7 of the same article ensures that the result is still valid for an
arbitrary algebraically closed field k. The argument needs to be modified slightly, using
the étale cohomology in place of the singular cohomology.

5.2 Cohomology and base change

First of all we recall here a basic result about proper base change and cohomology,

appearing for example in the nice book Abelian Varieties by David Mumford.

Proper Base Change Theorem. Let f : X → Y be a proper morphism of Noetherian
schemes with Y = Spec(A) affine, and F a coherent sheaf on X, flat over Y . Then
there exists a finite complex

K• : 0→ K0 → K1 → · · · → Kn → 0

of finitely generated projective A-modules, together with a natural isomorphism of func-
tors

Hp(X ×Y �,F ⊗A �) ∼= H (K• ⊗A �)

on the category of A-algebras.

Proof. The proof can be found in Chapter II, Section 5 of [4] – see the second Theorem.
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As a corollary of the above Theorem we get a statement on the relationship between the

direct image and cohomology functors, ensuring that the fibers of R•f∗ coincide with

H• as long as the dimensions of the cohomology groups are fiberwise constant. Since

any second cohomology group is trivial on a curve, this result is particularly useful in

our context and is exploited more than once.

Proposition 5.3. Let f : X → Y be a proper morphism of Noetherian schemes, and
F a coherent sheaf on X, flat over Y . Assume Y is reduced and connected, then the
following are equivalent for every i ∈ N

(i) The function y 7→ dimk(y)H
i(Xy, F|y) is constant

(ii) Rif∗F is a locally free sheaf on Y and the natural map

Rif∗F ⊗ k(y)→ H i(Xy, F|y)

is an isomorphism for every y ∈ Y .

Moreover, if the above conditions are fulfilled, the natural map

Ri−1f∗F ⊗ k(y)→ H i−1(Xy, F|y)

is an isomorphism for every y ∈ Y .

Proof. The proof can be found in Chapter II, Section 5 of [4] – see Corollary 2.

Applying the above Proposition to the case of a locally free sheaf F with trivial coho-

mology in positive degrees, we get the following Proposition:

Proposition 5.4. Let f : X → Y be a proper morphism of Noetherian schemes with
Y reduced and connected, and F a coherent sheaf on X with the properties

• F is flat over Y

• f∗F is locally free

• Rif∗F = 0 for every i > 0

X ′ X

Y ′ Y

h

g

f ′ f

Then for every base change diagram as above, setting F ′ = h∗F , the natural map
g∗Rif∗F → Rif ′∗F

′ is an isomorphism for every i ≥ 0.
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Proof. First observe that on fibres, for every y ∈ Y and y′ ∈ Y ′ such that g(y′) = y, we
have isomorphisms

H i(Xy,F|y) ∼= H i(Xy′ ,F
′
|y′) ∀ i ≥ 0 . (5.1)

Next, applying Proposition 5.3 and using induction from above, we readily see that our
hypothesis of the vanishing of Rif∗F in positive degrees implies that

H i(Xy,F|y) = 0 ∀ i > 0 and H0(Xy,F|y) ∼= f∗F|y .

Further, combining the above with (5.1), we deduce that the function y′ 7→ hi(Xy′ ,F
′
|y′)

is constantly equal to zero ∀ i > 0, hence – invoking Proposition 5.3 again – it follows
that Rif ′∗F ′ vanishes for positive i and, moreover, that

H0(Xy′ ,F
′
|y′) ∼= f ′∗F

′
|y′ ∀ y′ ∈ Y ′.

Therefore we deduce – we can apply Proposition 5.3 since f∗F is locally free – that the
function

y′ 7→ h0(Xy′ ,F
′
|y′) = h0(Xy,F|y)

is also constant, hence f ′∗F ′ is locally free. Since pullbacks preserve locally free sheaves,
the sheaf g∗f∗F is locally free as well and, as a consequence, we have

g∗f∗F|y′ = f∗F|y ∼= H0(Xy,F|y).

Now, for i > 0 we are done, while for i = 0 we have a natural map g∗f∗F → f ′∗F
′

between two locally-free sheaves. Form the above discussion combined with (5.1), it
follows that the two sheaves are fiberwise isomorphic and, further, one can check that
the isomorphisms on fibres are induced by the natural map, thus getting to the desired
conclusion.

We continue this Section by proving an easy Lemma, which is used more than once

during our discussion. The idea is that to kill the higher cohomology of a family of line

bundles it is enough to add a divisor of high degree, then the Riemann-Roch finishes

the job.

Lemma 5.5. Let X be a smooth projective curve over an algebraically closed field, let
T be an S-scheme and L a family of line bundles of degree d parametrised by T . Denote
by φ : XT → T the natural projection, pick a divisor D ⊂ X of degree higher than
2g − d− 1 and let Γ := φ∗D be the product divisor on XT . Then

Riφ∗L = 0 ∀ i ≥ 1
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Proof. Since over any closed point t ∈ T the line bundle L|t has degree d, it follows that
L(Γ)|t has degree strictly higher than 2g − 2. Hence from the Riemann-Roch Theorem
we deduce that the function

t 7→ dimH1(X,L|t)

is everywhere vanishing and therefore Proposition 5.3 implies that R1φ∗L is the trivial
sheaf, being locally free with trivial fibres. For i > 1 a similar argument applies: the
only difference is that, since we are working on a curve, we do not even need to invoke
the Riemann-Roch.

Another well known and useful result is the so called Projection Formula.

Projection Formula. Let f : X → Y be a morphism of locally ringed spaces, F an
OX-module and E a locally free OY -module of finite rank. Then ∀ i ≥ 0 we have natural
isomorphisms

Rif∗(F ⊗ f∗E ) ∼= Rif∗(F )⊗ E (5.2)

Proof. A proof can be found in [9, Lemma 01E8]. Nevertheless, we give here an alter-
native and more down-to-earth proof of the result.
First of all we will show that there is a natural morphism

f∗F ⊗ E → f∗(F ⊗ f∗E )

and, to do so, it is useful to recall the following basic results, where we denote by H

the Hom sheaf prescribed on open sets U as U 7→ Hom (�|U ,�|U )

(1) Adjunction between ⊗ and H

HomX(A ⊗B, C ) ∼= HomX(A , HX(B,C ))

(2) Adjunction between f∗ and f∗

Hom Y (f∗F , E ) ∼= HomX(F , f∗E )

(3) Identity which follows from the definitions of H and f∗

f∗HX(A , B) ∼= HY (f∗A , f∗B)
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Then, the existence of the above mentioned natural map follows from the chain of
isomorphisms: just pick the identity!

Hom Y (f∗F ⊗ E , f∗(F ⊗ f∗E ))
(1)∼= Hom Y (E , HY (f∗F , f∗(F ⊗ f∗E )))

(3)∼= Hom Y (E , f∗HX(F , (F ⊗ f∗E )))

(2)∼= HomX(f∗E , HX(F , (F ⊗ f∗E )))

(1)∼= HomX(F ⊗ f∗E , F ⊗ f∗E )

We are now going to show that the obtained natural map is in fact an isomorphism.
Since all the functors involved commute with open restrictions, we can reduce to the
affine case and assume E is free. One can check that the above global map agrees with
the chain of isomorphisms

f∗(F ⊗ f∗E ) ∼= f∗(F ⊗ O n
X)

∼= f∗(F ⊗ OX)n

∼= f∗(F )n

∼= f∗(F )⊗ O n
Y

∼= f∗(F )⊗ E

where we used multiple times the fact that the functors involved are additive and thus
commute with finite direct sums. The obtained isomorphism implies that

Rif∗(F ⊗ f∗E ) ∼= Ri(f∗(F )⊗ E ) ∼= Rif∗(F )⊗ E

for every i ∈ N. For the second isomorphism we used the well known fact that tensoring
with a locally free module is an exact functor.

5.3 Line Bundles

In Section 4.2 we need to show that a certain line bundle of interest is ample and, to do

so, we exploit the combination of the following criterions for ampleness together with

the next Lemma.

Proposition 5.6. Let f : X → Y be a finite and surjective morphism between proper
Noetherian schemes and L a line bundle over Y . Then L is ample if and only if its
pullback f∗L is.
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Proof. We refer to [7], where the result is given in Ex. III.5.7.d.

Proposition 5.7. Let Y be a smooth projective surface. Then the line bundle corre-
sponding to a Cartier divisor D is ample if and only if the self-intersection number D2

is strictly positive and C ·D > 0 for every irreducible curve C ⊂ Y .

Proof. We refer to [7], Theorem V.1.10.

Lemma 5.8. For every i = 1, . . . n, let Yi be a smooth projective curve over an alge-
braically closed field k and Mi an ample line bundle on Yi. Further let Y = Y1×· · ·×Yn
and denote by πi : Y → Yi the projection on the i-th component. Then the line bundle
⊗ni=1π

∗
iMi over Y is ample.

Proof. We will prove the claim for the case n = 2, then the general result easily follows
by induction over n. Notice that Y1 × Y2 is a smooth projective surface.

Set L = π∗1M1⊗ π∗2M2. Since M1 and M2 are ample, replacing L with L⊗m with m big
enough ( if needed ) we see that L admits a section which corresponds to the effective
divisor

D =
∑
a

Fa +
∑
b

Gb

where each Fa is a fiber of π1 and each Gb is a fiber of π2. Notice that, since the surface
Y1×Y2 is the product of two curves, all such fibres are algebraically equivalent. Hence,
given an irreducible curve C ⊂ Y , we can choose the fibres Fa and Fb in such a way that
the intersection between C and D is proper, so that we get C ·D > 0. Moreover, this
argument applies to the case C = D as well, therefore also D2 > 0 and by Proposition
5.7 we conclude that L is ample.

We now prove a Lemma about the behaviour of line bundles over a product with a

complete factor, which we use in Section 3.2.

Lemma 5.9. Let X and Y be schemes, with X complete and L,M line bundles over
X × Y such that ∀y ∈ Y we have Ly ∼= My. Then there exists a line bundle F over Y
such that L ∼= M ⊗ π∗F , where π : X × Y → Y is the natural projection.

Proof. Let F = L ⊗M−1 and notice that, since Fy is trivial and X is complete, for
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every y ∈ Y we have H0(X,Fy) = k(y). Hence the function

y 7→ dimk(y)H
0(X,Fy)

is constantly equal to 1. Therefore, by Proposition 5.3, π∗F is locally free of rank 1, i.e.
it is a line bundle over Y . Now, if we show that the natural map

ϕ : π∗π∗F → F

is an isomorphism, we are done. On every fiber the above map restricts to the isomor-
phism

OX ⊗H0(X,OX)
∼=−→ OX

so by Nakayama’s lemma we deduce that ϕ is surjective. But rank is invariant under
pullback, so π∗π∗F has rank 1, thus forcing ϕ to be an isomorphism.

Finally, we prove that line bundles on XT /T with the canonical rigidification discussed

in Section 2.3 admit no nontrivial automorphisms. This is the main reason why one

defines the relative Picard functor as in Section 2.3, since the absence of automorphisms

allows for its representability.

Proposition 5.10. Under hypothesis and notation of (?) from Section 2.1, line bundles
on XT /T with the canonical rigidification along εT have no nontrivial automorphisms.

Proof. First of all, to make the setting clear, let us draw the fibered diagram we are
working with, filled with the sections we have at our disposal (we abuse notation and
write ε also for the pullback morphism εT ). Further, we draw the diagram describing a
morphism of line bundles with rigidification on the right.

XT T

X S

OT ε∗L1

OT ε∗L2

f

ε

ε

f

α1

= ε∗ϕ

α2

Recall that a morphism between two line bundle with rigidification ϕ : (L1, α1) →
(L2, α2) consists of a morphism of (plain) line bundles ϕ : L1 → L2 such that (ε∗ ϕ)α1 =
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α2 and, in particular, an endomorphism is an element h ∈ Γ(XT ,OXT
) such that ε∗ h =

1. But from of our assumption f∗OXT
∼= OT , contained in (?), we get isomorphisms

Γ(XT ,OXT
) ∼= Γ(T, f∗OXT

) ∼=
(?)

Γ(T,OT )

and we therefore see that the only automorphisms are the trivial ones.

5.4 Tangent space of schemes

The following basic lemmata allow us to compute the tangent spaces of the schemes

EDivX and PicX in Section 2.5. Recall that we use the notation kε for the ring of dual

numbers k[ε]/ε2.

Lemma 5.11. Let P be a scheme over S = Spec(k) locally of finite type and e ∈ P a
rational point. Then we have an isomorphism of vector spaces

P (kε)e ∼= TeP.

Proof. Let m be the maximal ideal of e and A its local ring. The Zariski tangent space
at e is Homk(m/m2, k), which can naturally be identified with the set of k-derivations
δ : A→ k. To any such derivation corresponds bijectively a k-map

uδ : A→ kε, a 7→ a mod m + εδ(a),

as it is easy to show. Further, any such map gives rise to a unique map of schemes

tδ : Spec(kε)→ P

which is supported at e, and viceversa. Therefore we proved that P (kε)e ∼= TeP as sets.
We now want to see how the vector space structure of TeP transfers to P (kε)e, starting
from the multiplication by scalars. For b ∈ k it is easy to check that the k-map

µb : kε → kε, ε 7→ b · ε

corresponds to multiplication by b in TeP . Therefore scalar multiplication by b on
P (kε)e is given by the map

P (µb) : P (kε)e → P (kε)e.
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For the additive structure, first define kε,ε′ to be the ring obtained by adjoining to kε
an element ε′ such that ε′2 = εε′ = 0. Secondly define maps σ1, σ2 : kε,ε′ → kε by

σ1 : ε 7→ ε, ε′ 7→ 0, σ2 : ε 7→ 0, ε′ 7→ ε

and use them to get a bijection π : P (kε,ε′)e
∼=−→ P (kε)e × P (kε)e. Further, let

σ : kε,ε′ → kε, ε 7→ ε, ε′ 7→ ε

and finally set α = P (σ) ◦ π−1. It is now a triviality to check that α corresponds to
summation in TeP .

In the case of a group scheme we can state a slightly more powerful result:

Lemma 5.12. Let P be a group scheme over S = Spec(k) locally of finite type and
e ∈ P the identity element. Then we have an isomorphism of vector spaces

TeP ∼= ker
(
P (kε)→ P (k)

)
.

Proof. The natural map of rings kε → k gives rise to a map of schemes ρ : P (kε)→ P (k)

whose kernel is P (kε)e ∼= TeP . So to conclude we just need to show that the sum on TeP
corresponds to the group operation of ker(ρ), i.e., using the notation of the previous
lemma, that we have

α(m,n) = m · n.

Let i : kε → kε,ε′ be the natural inclusion and notice that the map σ2 ◦ i factors via
kε → k. Thus for every m ∈ P (kε)e we find P (σ2) ◦ P (i)(m) = e. Moreover the maps
σ ◦ i and σ1 ◦ i coincide with the identity of kε, which implies

P (σ) ◦ P (i)(m) = m and π ◦ P (i)(m) = (m, e).

Hence we deduce

α(m, e) = P (σ) ◦ π−1(m, e) = P (σ) ◦ P (i)(m) = m

and similarly α(e, n) = n. Since α arises from the composition of two ring homomor-
phisms, it is a group homomorphism and therefore

α(m,n) = α(m, e) · α(e, n) = m · n

as desired.
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5.5 Clifford’s Theorem

This Section is dedicated to the famous Theorem of Clifford, which gives an upper bound

on the dimension of linear series. In order to prove it, we first need some preliminary

results.

Lemma 5.13. For a divisor D on a curve X we have dim |D| ≥ k if and only if for
every set of k points p1, . . . , pk of X there exists an element of |D| containing all of
them.

Proof. If for every set of k points p1, . . . , pk of X there exists a divisor in |D| containing
all of them, then trivially dim |D| ≥ k since the family

∑d
i=1 pi is k-dimensional.

Conversely, assume dim |D| ≥ k and pick k points p1, . . . , pk of X. We have

h0(X,D −
d∑
i=1

pi) ≥ h0(X,D)− k ≥ 1,

so that there exists a global section f ∈ H0(X,D −
∑d

i=1 pi) such that

(f) +D −
d∑
i=1

pi ≥ 0 ⇐⇒ D′ = (f) +D ≥
d∑
i=1

pi,

therefore D′ is an element of |D| containing all the points.

Corollary 5.14. Let D1 and D2 be two effective divisors of X. Then

dim |D1|+ dim |D2| ≤ |D1 +D2|.

Proof. Assume di = dim(Di) and let p1, . . . , pd1 and q1, . . . , qd2 be points of X. Then
by the lemma we can find divisors D′1 ∈ |D1| and D′2 ∈ |D2| containing respectively
p1, . . . , pd1 and q1, . . . , qd2 . Therefore the divisor D′1 + D′2 ∈ |D1 + D2| contains all of
the d1 + d2 points and, applying the lemma again, we find

dim |D1 +D2| ≥ d1 + d1.

We now state another useful Lemma, for which we need the following well-known fact

about the non-degeneracy of the canonical image
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Proposition 5.15. Let d ≤ g, and X a curve of genus g. Then any d points of the
canonical image φ(X) are linearly independent, i.e. they span a Pd−1.

Lemma 5.16. Let X be a hyperelliptic curve of genus g, and d ≤ g. Then any complete
grd on X is of the form

r · g1
2 + P1 + · · ·+ Pd−2r,

where none of the Pi is conjugate under the hyperelliptic involution.

Proof. Almost immediate using the above proposition.

Now we are almost ready to prove the crucial Clifford’s theorem, which gives a bound

to the dimension of the complete linear system |D|. But first we need another classical

result, i.e. the

General Position Theorem. Let r ≥ 2 and X ⊂ Pr be an irreducible nondegenerate
curve of degree d. Then a general hyperplane cuts X in d points, any r of which are
linearly independent.

A proof of the above theorem can be found in [5]. Next, we finally move to the

Clifford’s Theorem. Let D be an effective divisor on a curve X with d = deg(D) ≤
2g − 2. Then we have:

(i) dim |D| ≤ d
2 .

(ii) The equality holds only if D = 0, D = K or, in case X is hyperelliptic, if D is a
multiple of the hyperelliptic involution.

Proof. Before beginning with the proof, recall that a divisor D is called special if
h0(K −D) > 0.

(i) If D is not special then by the Riemann-Roch we get

h0(D) = d− g + 1 ⇐⇒ dim |D| = d− g

which by hypothesis is strictly lower than d/2, since g ≥ d/2 + 1. If D is special,
instead, there exists an effective divisor D′ such that K = D + D′. Therefore
applying the above corollary we find

dim |D|+ dim |D′| ≤ dim |K| = g − 1.
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Moreover, since D′ = K −D, the Riemann-Roch formula gives

dim |D| − dim |D′| = d− g + 1.

Adding up the two equations we obtain the result.

(ii) If the equality holds we have

r(D) + r(D′) = g − 1.

Since the degree of K = D+D′ is 2g−2, without losing generality we can assume
deg(D) ≤ g − 1 and from part (i) it follows that

r(D) = 0 =⇒ deg(D′) = 2g − 2 =⇒ D ∼ 0.

Otherwise, let r(D) > 0 and suppose X is not hyperelliptic. From the geometric
Riemann-Roch we know that any hyperplane of Pg−1 cuts X in deg(D) ≤ g − 1

points of E ∈ |D| which are not independent (recall that r(D) > 0 means there is
at least one linear relation among them). But this contradicts the general position
theorem, therefore r(D) > 0 forcesX to be hyperelliptic. In this case using Lemma
5.16 we know that any complete grd on X is of the form

|D| = r · g1
2 + P1 + · · ·+ Pd−2r

and, since we are assuming d = 2r, we see that |D| is a multiple of the hyperelliptic
involution.
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6

Appendix B: Serre Duality and
Riemann-Roch

In this Chapter we give the statement and a proof of the Riemann-Roch Theorem. As

we will see, the cheap version of the result can be easily obtained, while the complete

statement heavily relies on the Serre Duality Theorem, which we prove in Section 6.2

following the original work of Serre.

Further, in Section 6.3 we give a motivation for the fact that the restriction map

α : H0(K)→ H0(K ⊗ O(D))

is, with respect to the Serre duality pairing, dual to the cohomological coboundary map

δ : H0(D)D → H1(OX).

6.1 Cheap Riemann-Roch

In this section we state and prove the cheap version of the fundamental Riemann-Roch

theorem. We will be able to prove the complete version of the theorem at the end of

this Appendix, exploiting Serre duality.

Cheap Riemann-Roch Theorem. Let X be a complete curve of genus g, K a canon-
ical divisor and D ∈ Xd. Then

h0(D)− h1(D) = deg(D)− g + 1.
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Remark 6.1. The Euler characteristic of a line bundle L over a curve X is defined
as

χ(L) = h0(X,L)− h1(X,L),

so we can rewrite the statement of the Riemann-Roch as

χ(D) = deg(D)− g + 1.

Proof. We first prove the theorem for effective divisors D ≥ 0, proceeding by induction
over d = deg(D). For d = 0 we obtain O(D) = OX and, since by definition g = h1(OX),
the formula holds trivially

h0(OX)− h1(OX) = 1− g.

Now suppose the relation holds for all effective divisors with deg < d. Let D′ ≥ 0 be
of degree d − 1 and set D = D′ + P for P ∈ X. We have a short exact sequence of
quasi-coherent sheaves

0→ O(D′)→ O(D)→ kP → 0,

where kP is the skyscraper sheaf at P and the map O(D)→ kP is the evaluation at P .
Thus using the fact that the Euler characteristic is additive on short exact sequences
we obtain

χ(D) = χ(D′) + 1 = (d− 1− g + 1) + 1 = d− g + 1,

as required. For the general case D = D1 −D2 with Di effective of degree di we have
the short exact sequence

0→ O(D)→ O(D1)→ kd2 → 0

which easily leads to the desired result.

6.2 Serre Duality Theorem

This Section is based on the first chapter of the wonderful book Algebraic Groups and

Class Fields written by Serre, which appears as entry number [6] in our Bibliography.

Even though Serre duality for curves can be derived as a consequence of Grothendieck’s

duality Theorem (see for instance Theorem III.7.6 of [7]), we will give a more direct

proof for the case of curves, inspired by the classical proof used by Weil. A crucial

ingredient is the the ring of repartitions, which we now introduce.
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Definition 6.2. Define R, the ring of repartitions on X, as the set of collections
{rP }P∈X such that rP ∈ k(X) for every P ∈ X and rP ∈ OX,P for all but finitely many
P ∈ X. This is a very big ring, containing in particular k(X), but can also be seen as a
k-vector space. Further, for any divisor D ∈ DivX , we define R(D) to be the k-vector
subspace of R consisting of those repartitions r for which

vP (rP ) + vP (D) ≥ 0, ∀P ∈ X.

As one can easily guess, the space R(D) is strictly related to the invertible sheaf OX(D).

The following proposition will make this idea precise, but first we need an easy Lemma.

Lemma 6.3. Let X be an irreducible topological space and A a constant sheaf of abelian
groups on X. Then

H1(X,A) = 0

Proof. Let {Uα}α∈I be an open cover of X and (gαβ) be a 1-cocycle in Z1(X,A). Since
X is irreducible, the constant presheaf Apre is already a sheaf, thus we can fix i ∈ I and
define the 0-cochain

hα := gα,i ∀α ∈ I.

The coboundary condition on (gαβ) implies that

∂(hα) = (hα − hβ) = (gα,i + gi,β) = (gαβ)

so we see that (gαβ) is a coboundary and it is therefore trivial in H1(X,A).

Remark 6.4. A shorter proof of the above Lemma can be given in terms of Grothendieck’s
functorial definition of sheaf cohomology. The point is that constant sheaves on alge-
braic varieties are flasque, and these have trivial cohomology in positive degrees. See
Proposition 2.5, Chapter III.2 of [7].

Proposition 6.5. There is a canonical isomorphism H1(D) ∼= R
R(D)+k(X) .

Proof. Let k(X) denote the constant sheaf with stalks k(X) and let S be the cokernel of
the natural inclusion OX(D) ↪→ k(X). We thus have a short exact sequence of invertible
sheaves

0→ OX(D)→ k(X)→ S → 0
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which, since by Lemma 6.3 we know H1(k(X)) = 0, gives the following exact sequence
in cohomology

0→ H0(D)→ k(X)→ H0(S)→ H1(D)→ 0.

Hence we just need to show that H0(S) ∼= R/R(D) to be done. In order to do so recall
that, by definition of quotient sheaf, S is the sheaf corresponding to the pre-sheaf Spre

with stalks at P given by

SP :=
k(X)

OX(D)P

Notice, moreover, that R/R(D) is the direct sum of SP over all points of X

R/R(D) =
⊕
P∈X

SP

so it suffices to show that H0(S) =
⊕

P∈X SP get the conclusion. To see it, pick an
arbitrary P ∈ X and consider a nonzero element of the the stalk SP . Extend it to a
section s ∈ Γ(U, S) locally defined in a neighborhood U of P and observe this implies
that s has a pole at P – otherwise it would be zero in the stalk SP . Since the locus of
points where s is singular is a Zariski closed subset of X, we can find a smaller open
U ′ ⊂ U containing no other singularities of s apart from P . Hence we have s ≡ 0

on U ′ \ P , so it follows that Spre = S is a sheaf on its own right and moreover, since
X is complete and any discrete compact set is finite, we see that S is a direct sum of
skyscraper sheaves: S =

⊕
P∈X(iP )∗SP , where iP : P ↪→ X is the inclusion of P in X.

Therefore we find

H0(S) = H0

(⊕
P∈X

(iP )∗SP

)
=
⊕
P∈X

SP

as desired.

Definition 6.6. Given a divisor D, define J(D) := H1(D)∨.

From the above proposition it follows that J(D) is the space of linear functionals

H1(D) → k which vanish on R(D) and k(X). Hence it follows that J(D) ⊂ J(D′)

if and only if D′ ≤ D, and we can consider the direct system

{ J(D) | D ∈ DivX }

over the directed set { DivX ,� }, where we set D � D′ ⇐⇒ D′ ≤ D. Then we define

J to be direct limit of the J(D)’s with respect to the above direct system which, since

we are taking the limit simply over the inclusion maps, coincides with the union over

all divisors D ∈ DivX of the sets J(D).
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Remark 6.7. Notice that J has a natural structure of vector space over k(X): if
α ∈ J(D) and f ∈ H0(E) then the product f · α belongs to J(D − E) ⊂ J .

We can give a very strict bound on the dimension of J which will be essential to prove

Serre duality.

Proposition 6.8. The dimension of J as a vector space over k(X) is at most 1.

Proof. Suppose α and β are two elements of J which are linearly independent over
k(X) and notice that we can always find a divisor D of degree d such that α, β ∈ J(D).
Further, observe that for any divisor E of degree e and functions f, g ∈ H0(E) we have

fα ∈ J(D − E) and gβ ∈ J(D − E).

The assumption that α and β are linearly independent implies that the map

ϕ : H0(E)×H0(E)→ J(D − E) (f, g) 7→ fα+ gβ

in an injection, therefore looking at the dimensions of the source and the target we
deduce that

h1(D − E) ≥ 2h0(E)

and using Theorem 6.1 (Cheap Riemann Roch) we can rewrite the above inequality as

h0(D − E)− (d− e) + g − 1 ≥ 2(h1(E) + e− g + 1) ≥ 2(e− g + 1).

In order to get the desired contradiction is now sufficient to notice that for any choice
of e = deg(E) > d we have h0(D − E) = 0 and thus we get

3g − 3− d ≥ e,

clearly absurd due to the arbitrary of e.

It is now finally the time to define the pairing that will give us Serre duality.

Definition 6.9. Let A denote the space of Abelian differentials on X, and define the
map

〈 •, • 〉 : R×A→ k, 〈 r, ω 〉 :=
∑
P∈X

ResP (rP · ω)

where we take as the definition of residue the one given in Chapter 7 of [6], which is
purely algebraic.
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Lemma 6.10. The map 〈 •, • 〉 has the following properties:

(i) r ∈ R(D), ω ∈ H0(K −D) =⇒ 〈 r, ω 〉 = 0

(ii) r ∈ k(X) =⇒ 〈 r, ω 〉 = 0

(iii) f ∈ k(X) =⇒ 〈 fr, ω 〉 = 〈 r, fω 〉

Proof.

(i) Any repartition r ∈ R(D) has singularities bounded by D and any form in
H0(K −D) vanishes on D with enough multiplicity, so their product is a reg-
ular form with no poles.

(ii) An immediate application of the Residue Theorem.

(iii) Follows directly from the definition: both 〈 fr, ω 〉 and 〈 r, fω 〉 are equal to∑
P∈X

ResP (f · rP · ω).

As a consequence of the above lemma combined with Proposition 6.5 we obtain a well-

defined pairing

〈 •, • 〉 : H1(D)⊗H0(K −D)→ k

and hence for every divisor D we can define linear maps

θD : H0(K −D)→ J(D), ω 7→ 〈 •, ω 〉

which, since A =
⋃
DH

0(K −D), can be put together in a unique map θ : A→ J . We

are almost there, but before we can face the proof of Serre duality we need another easy

fact.

Lemma 6.11. Let ω ∈ A be an abelian differential. We have

θ(ω) ∈ J(D) =⇒ ω ∈ H0(K −D).
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Proof. Suppose ω 6∈ H0(K −D). Then there is a point P ∈ X such that

vP (ω) < vP (D),

therefore – if π is a uniformizer at P – the repartition r defined by

rQ = 0 ∀Q 6= P, rP =
1

πvp(ω)+1

belongs to R(D). Moreover we notice that vP (rP · ω) = −1, hence we find

〈 r, ω 〉 =
∑
Q∈X

ResQ(rQ · ω) = ResP (rP · ω) 6= 0.

This is a contradiction: by hypothesis θ(ω) ∈ J(D) so we should have 〈 r, ω 〉 = 0.

We are finally ready to prove Serre duality, which, after our preparation, is actually a

triviality.

Serre Duality Theorem. The pairing 〈 •, • 〉 is a duality and for every divisor D we
have

H0(K −D) ∼= H1(D)∨

Proof. The linear map θD : H0(K−D)→ H1(D)∨ is injective. Indeed if θ(ω) = 0 then
it belongs to J(E) for every divisor E, so from Lemma 6.11 it follows that ω ∈ H0(K−E)

and the arbitrariness of E forces ω = 0.
For surjectivity notice that the space of Abelian differentials A is 1-dimensional over
k(X) and thus Proposition 6.8 forces θ : A → J to be surjective. Therefore another
application of Lemma 6.11 ensures that θD : H0(K − D) → H1(D)∨ is surjective,
too.

6.3 Duality between α and δ

The objective of this section is to show that, for every divisor D ∈ Xd, the maps

δ : H0(DD)→ H1(OX) and α : H0(J)→ H0(KD)

are dual to each other. To start, consider the short exact sequence of invertible sheaves

0→ OX → OX(D)→ OD(D)→ 0
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and apply the cohomology functor to obtain the long exact sequence of finite dimensional

vector spaces

0→ k → H0(D)→ H0(DD)
δ−→ H1(OX)→ H1(D)→ 0. (6.1)

Now let D′ = K −D be the residual of D, consider the short exact sequence

0→ D′ → K → KD → 0

and apply the cohomology functor to get the exact sequence of vector spaces

0→ H0(D′)→ H0(K)→ H0(KD)
α−→ H1(D′)→ H0(D)→ 0.

Serre duality ensures that the four outer terms of the dual sequence

0→ H1(K)∨ → H1(D′)∨ → H0(KD)∨
α∨−→ H0(K)∨ → H0(D′)∨ → 0.

are isomorphic the the corresponding terms of 6.1. Hence, exploiting to the functoriality

of the duality pairings θ, we get a commutative diagram

0 H0(OX) H0(D) H0(DD) H1(OX) H1(D) 0

0 H1(K)∨ H1(D′)∨ H0(KD)∨ H0(K)∨ H0(D′)∨ 0

δ

α∨

θ θ ϑ θ θ

(6.2)

and invoking the Five Lemma we obtain the dashed isomorphism ϑ, which we use to

define the perfect pairing

〈 •, • 〉 : H0(DD)⊗H0(KD)→ k

so that the desired duality between α and δ is a consequence of the commutativity of

the above diagram. In other words for every v ∈ H0(DD) and ω ∈ H0(KD) we have

the formula

〈 δv, ω 〉 = 〈 v, αω 〉 (6.3)
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Figure 6.1: A more artistic representation of the duality involved in diagram (6.2)

6.4 Riemann-Roch Theorem

Using Serre duality we immediately get the final version of the theorem.

Riemann-Roch Theorem. Let X be a complete curve of genus g, K a canonical
divisor and D ∈ Xd. Then

h0(D)− h0(K −D) = d− g + 1 (6.4)

Notice that, plugging-in the canonical class K in the Riemann-Roch formula and re-

calling that by definition h0(K) = g, we get

deg(K) = 2g − 2

which, since K is the dual of the tangent bundle, is an analogue of the Hopf index

theorem for Riemann surfaces.
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