


Texts and Monographs in 
Symbolic Computation 

A Series of the 
Research Institute for Symbolic Computation, 

Johannes-Kepler-University, linz, Austria 

Edited by 
B. Buchberger and G. E. Collins 



F. Winkler 

Polynomial Algorithms 
in Computer Algebra 

Springer-Verlag Wien GmbH 



Dipl.-Ing. Df. Franz Winkler 
Research Institute for Symbolic Computation 
Johannes-Kepler-University Linz, Linz, Austria 

This work is subject to copyright. 
AII rights are reserved, whether the whole or part of the material is concerned, specif
ically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction 
by photo-copying machi nes or similar means, and storage in data banks. 
© 1996 Springer-Verlag Wien 
Originally published by Springer-VerlaglWien in 1996 

Data con vers ion by H.-D. Ecker, Btiro ftir Textverarbeitung, Bonn 

Printed on acid-free and chlorine-free bleached paper 

With 13 Figures 

Library of Congress Cataloging-in-Publication Data 

Winkler, Franz. 
Polynomial algorithms in computer algebra / Franz Winkler. 

p. cm. - (Texts and monographs in symbolic computation, ISSN 
0943-853X) 

Includes bibliographical references and index. 
ISBN 978-3-211-82759-8 ISBN 978-3-7091-6571-3 (eBook) 
DOI 1O.l007/978-3-7091-6571-3 
1. Algebra-Data processing. 2. Computer algorithms. I. Title. 

II. Series. 
QAI55.7.E4W56 1996 
512.9'42-dc20 

ISSN 0943-853X 
ISBN 978-3-211-82759-8 

96-7170 
CIP 



Preface 

For several years now I have been teaching courses in computer algebra at the 
Universitat Linz, the University of Delaware, and the Universidad de Alcala de 
Henares. In the summers of 1990 and 1992 I have organized and taught summer 
schools in computer algebra at the Universitat Linz. Gradually a set of course 
notes has emerged from these activities. People have asked me for copies of 
the course notes, and different versions of them have been circulating for a few 
years. Finally I decided that I should really take the time to write the material up 
in a coherent way and make a book out of it. Here, now, is the result of this work. 

Over the years many students have been helpful in improving the quality of 
the notes, and also several colleagues at Linz and elsewhere have contributed 
to it. I want to thank them all for their effort, in particular I want to thank 
B. Buchberger, who taught me the theory of Grabner bases nearly two decades 
ago, B. F. Caviness and B. D. Saunders, who first stimulated my interest in 
various problems in computer algebra, G. E. Collins, who showed me how to 
compute in algebraic domains, and J. R. Sendra, with whom I started to apply 
computer algebra methods to problems in algebraic geometry. Several colleagues 
have suggested improvements in earlier versions of this book. However, I want 
to make it clear that I am responsible for all remaining mistakes. Research of 
the author was partially supported by Osterreichischer Fonds zur Farderung der 
wissenschaftlichen Forschung, project nos. P6763 (ASAG) and P8573 (SGC). 

Let me give a brief overview of the contents of this book. In Chap. I a mo
tivation for studying computer algebra is given, and several prerequisites for 
the area, such as algebraic preliminaries, representation of algebraic structures, 
and complexity measurement are introduced. Some of the more important basic 
domains of computer algebra are investigated in Chap. 2. Of course, this list is 
by no means exhaustive. So, for instance, power series and matrices have not 
been included in the list. The criterion for including a particular basic domain 
was its importance for the more advanced topics in the subsequent chapters. 
Computation by homomorphic images is presented in Chap. 3. Such homomor
phic images will be of great importance in gcd computation and factorization 
of polynomials. These topics are dealt with in Chaps. 4 and 5. Chapter 6 con
tains algorithms for decomposition of polynomials. Linear systems appear often 
as subproblems in different areas of computer algebra. They are investigated in 
Chap. 7. Problems like computation of resultants, gcds, or factorizations of poly
nomials can be reduced to certain linear systems, so-called Hankel systems. In 
Chap. 8 an introduction to the theory of Grabner bases for polynomial ideals is 
given, and Grabner bases are applied to some important problems in polynomial 



VI 

ideal theory and solution of systems of polynomial equations. In the last three 
chapters, polynomial algorithms are applied to some higher level problems in 
computer algebra. Problems in real algebraic geometry can be decided by decid
ing problems in the elementary theory of real closed fields, i.e., by polynomial 
algorithms. Such a decision algorithm is presented in Chap. 9. Chapter 10 gives 
a description of Gosper's algorithm for solving summation problems. Finally, in 
Chap. 11, gcd computation, factorization, and solution of systems of algebraic 
equations are applied for deriving an algorithm for deciding whether an alge
braic curve can be parametrized by rational functions, and if so for computing 
such a parametrization. 

Clearly there are important topics in computer algebra missing from the 
contents of this book, such as simplification of expressions, integration of ele
mentary functions, computer algebra solutions to differential equation problems, 
or algebraic computations in finite group theory. Including all these other top
ics would increase the size of the book beyond any reasonable bound. For this 
reason I limit myself to discussing that part of computer algebra, which deals 
with polynomials. 

In recent years several books on computer algebra have been published. They 
all approach the field from their own particular angle. The emphasis in this book 
is on introducing polynomial algorithms in computer algebra from the bottom 
up, starting from very basic problems in computation over the integers, and 
finally leading to, e.g., advanced topics in factorization, solution of polynomial 
equations and constructive algebraic geometry. Along the way, the complexity 
of many of the algorithms is investigated. 

I hope that this book might serve as the basis for exciting new developments 
in computer algebra. 

Franz Winkler 



Contents 

1 Introduction 1 
1.1 What is computer algebra? 
1.2 Program systems in computer algebra 8 
1.3 Algebraic preliminaries 13 
1.4 Representation of algebraic structures 18 
1.5 Measuring the complexity of algorithms 22 
1.6 Bibliographic notes 24 

2 Arithmetic in basic domains 26 
2.1 Integers 26 
2.2 Polynomials 37 
2.3 Quotient fields 43 
2.4 Algebraic extension fields 45 
2.5 Finite fields 47 
2.6 Bibliographic notes 50 

3 Computing by homomorphic images 51 
3.1 The Chinese remainder problem and the modular method 51 
3.2 p-adic approximation 61 
3.3 The fast Fourier transform 67 
3.4 Bibliographic notes 81 

4 Greatest common divisors of polynomials 82 
4.1 Polynomial remainder sequences 82 
4.2 A modular gcd algorithm 91 
4.3 Computation of resultants 96 
4.4 Squarefree factorization 101 
4.5 Squarefree partial fraction decomposition 104 
4.6 Integration of rational functions 105 
4.7 Bibliographic notes 111 

5 Factorization of polynomials 112 
5.1 Factorization over finite fields 112 
5.2 Factorization over the integers 115 
5.3 A polynomial-time factorization algorithm over the integers 125 
5.4 Factorization over algebraic extension fields 140 



viii 

5.5 Factorization over an algebraically closed field 146 
5.6 Bibliographic notes ISO 

6 Decomposition of polynomials 151 
6.1 A polynomial-time algorithm for decomposition lSI 
6.2 Bibliographic notes 156 

7 Linear algebra - solving linear systems 157 
7.1 Bareiss's algorithm 157 
7.2 Hankel matrices 163 
7.3 Application of Hankel matrices to polynomial problems 166 
7.4 Bibliographic notes 171 

8 The method of Grobner bases 172 
8.1 Reduction relations 172 
8.2 Polynomial reduction and Grabner bases 179 
8.3 Computation of Grabner bases 183 
8.4 Applications of Grabner bases 189 
8.5 Speed-ups and complexity considerations 201 
8.6 Bibliographic notes 202 

9 Quantifier elimination in real closed fields 204 
9.1 The problem of quantifier elimination 204 
9.2 Cylindrical algebraic decomposition 206 
9.3 Bibliographic notes 214 

10 Indefinite summation 215 
10.1 Gosper's algorithm 215 
10.2 Bibliographic notes 223 

11 Parametrization of algebraic curves 224 
11.1 Plane algebraic curves 224 
11.2 A parametrization algorithm 230 
11.3 Bibliographic notes 236 

Solutions of selected exercises 237 
References 249 
Subject index 265 



1 Introduction 

1.1 What is computer algebra? 

In the recent decades it has been more and more realized that computers are 
of enormous importance for numerical computations. However, these powerful 
general purpose machines can also be used for transforming, combining and 
computing symbolic algebraic expressions. In other words, computers can not 
only deal with numbers, but also with abstract symbols representing mathemat
ical formulas. This fact has been realized much later and is only now gaining 
acceptance among mathematicians and engineers. 

Mathematicians in the old period, say before 1850 A.D., solved the majority 
of mathematical problems by extensive calculations. A typical example of this 
type of mathematical problem solver is Euler. Even Gauss in 180 I temporarily 
abandoned his research in arithmetic and number theory in order to calculate 
the orbit of the newly discovered planetoid Ceres. It was this calculation much 
more than his masterpiece Disquisitiones Arithmeticae which became the basis 
for his fame as the most important mathematician of his time. 

So it is not astonishing that in the 18th and beginning 19th centuries many 
mathematicians were real wizzards of computation. However, during the 19th 
century the style of mathematical research changed from quantitative to qual
itative aspects. A number of reasons were responsible for this change, among 
them the importance of providing a sound basis for the vast theory of analysis. 
But the fact that computations gradually became more and more complicated 
certainly also played its role. This impediment has been removed by the advent 
of modern digital computers in general and by the development of program 
systems in computer algebra, in particular. By the aid of computer algebra the 
capacity for mathematical problem solving has been decisively improved. 

Even in our days many mathematicians think that there is a natural division 
of labor between man and computer: a person applies the appropriate algebraic 
transformations to the problem at hand and finally arrives at a program which 
then can be left to a "number crunching" computer. But already in 1844, Lady 
Augusta Ada Byron, countess Lovelace, recognized that this division of labor 
is not inherent in mathematical problem solving and may be even detrimental. 
In describing the possible applications of the Anal.vtical Engine developed by 
Charles Babbage she writes: 

"Many persons who are not conversant with mathematical studies imagine that 
because the business of [Babbage's Analytical Engine] is to give its results in 
numerical notation, the nature of its processes must consequently be arithmetical 



2 Introduction 

and numerical rather than algebraic and analytical. This is an error. The engine 
can arrange and combine its numerical quantities exactly as if they were letters 
or any other general symbols; and in fact it might bring out its results in algebraic 
notation were provisions made accordingly." 

And indeed a modem digital computer is a "universal" machine capable of 
carrying out an arbitrary algorithm, i.e., an exactly specified procedure, algebraic 
algorithms being no exceptions. 

An attempt at a definiton 

Now what exactly is symbolic algebraic computation or, in other words, com
puter algebra? In his introduction to Buchberger et al. (1983), R. Loos made 
the following attempt at a definition: 

"Computer algebra is that part of computer science which designs, analyzes, 
implements, and applies algebraic algorithms." 

While it is arguable whether computer algebra is part of computer science or 
mathematics, we certainly agree with the rest of the statement. In fact, in our 
view computer algebra is a special form of scientific computation, and it com
prises a wide range of basic goals, methods, and applications. In contrast to 
numerical computation the emphasis is on computing with symbols represent
ing mathematical concepts. Of course that does not mean that computer algebra 
is devoid of computations with numbers. Decimal or other positional represen
tations of integers, rational numbers and the like appear in any symbolic com
putation. But integers or real numbers are not the sole objects. In addition to 
these basic numerical entities, computer algebra deals with polynomials, rational 
functions, trigonometric functions, algebraic numbers, etc. That does not mean 
that we will not need numerical algorithms any more. Both forms of scientific 
computation have their merits and they should be combined in a computational 
environment. For instance, in order to compute an approximate solution to a 
differential equation it might be reasonable to determine the first n terms of a 
power series solution by exact methods from computer algebra before handing 
these terms over to a numerical package for evaluating the power series. 

Summarizing, we might list the following characteristics of computer alge
bra: 

1. Computer algebra is concerned with computing in algebraic structures. 
This might mean in basic algebraic number domains, in algebraic extensions of 
such domains, in polynomial rings or function fields, in differential or differ
ence fields, in the abstract setting of group theory, or the like. Often it is more 
economical in terms of computation time to simplify an expression algebraically 
before evaluating it numerically. In this way the expression becomes simpler 
and less prone to numerical errors. 

2. The results of computer algebra algorithms are exact and not subject 
to approximation errors. So, typically, when we solve a system of algebraic 



1.1 Computer algebra 

equations like 
X4 + 2x2i + 3x2y + l-l = 0 

X 2 + i-I = 0 

3 

we are interested in an exact representation (-J3 /2, -1/2) instead of an approx
imative one (0.86602 ... , -0.5). 

3. In general the inputs to algorithms are expressions or formulas and one 
also expects expressions or formulas as the result. Computer algebra algorithms 
are capable of giving results in algebraic form rather than numerical values for 
specific evaluation points. From such an algebraic expression one can deduce 
how changes in the parameters affect the result of the computation. So a typical 
result of computer algebra is 

f _x_dx = Inlx2 -al 
x 2 - a 2 

instead of 11/2 x 
-2-- dx = 0.1438 ... 

o x-I 

As a consequence one can build decision algorithms on computer algebra, 
e.g., for the factorizability of polynomials, the equivalence of algebraic expres
sions, the solvability of integration problems in a specific class of expressions, 
the solvability of certain differential equation problems, the solvability of sys
tems of algebraic equations, the validity of geometric statements, the parametriz
ability of algebraic curves. 

Some application areas of computer algebra 

1. The "piano movers problem" in robotics: The problem is to "find a path that 
will allow to move a given body B from an initial position to a desired final 
position. Along this path the body B should not hit any obstacles." 

Fig. 1 



4 Introduction 

A(Yl'O) Fig. 2 

A possible approach, described for instance in Schwarz and Sharir (1983), 
consists in representing the legal positions of B as a semi-algebraic set L in 
]Rm, i.e., as a union, intersection, or difference of sets 

{(XI, ... ,Xm) Ip(XI, ... ,Xm)~O}, 

where p is a polynomial with integral coefficients and ~ E { =, <, > }. Thus the 
problem is reduced to the question: "Can two points PI, P2 in a semi-algebraic 
set L be connected by a path, i.e., are they in the same connected component 
of L?" Collins's cad algorithm for quantifier elimination over real closed fields 
can answer this question. 

2. Geometric theorem proving: There are several computer algebra approach
es to proving theorems in Euclidean geometry which can be stated as polyno
mial equations. An example is: "The altitude pedal of the hypothenuse of a right
angled triangle and the midpoints of the three sides of the triangle are cocircu
lar" (Fig. 2). The hypotheses of this geometric statement, describing a correct 
drawing of the corresponding figure, are polynomial equations in the coordinates 
of the points in the figure. The same holds for the conclusion. 

Hypotheses: 
hI == 2Y3 - YI = 0 (E is the midpoint of AC), 
h2 == (Y7 - Y3)2 + Y~ - (Y7 - Y4)2 - (YH - ."5)2 = 0 

(EM and F M are equally long), 

hm . 

Conclusion: 
c == (Y7 - Y3)2 + Y~ - (Y7 - Y9)2 - (Ys - \,]())2 = 0 

(E M and H M are equally long). 

So the geometric problem is reduced to showing that the conclusion poly
nomial c vanishes on all the common roots of the hypothesis polynomials, i.e., 
c is contained in the radical ideal generated by hI, ... , hill' This question can 
be determined by a Grabner basis computation. 

3. Analysis of algebraic varieties: We consider the tacnode curve (Fig. 3), a 



1.1 Computer algebra 5 

2 

~~~~-+-+-+-r~~~~~+-+-+-~~~X 

-2 -) 2 

-0.5 Fig. 3 

plane algebraic curve defined by the equation 

The tacnode is an irreducible curve, which can be checked by trying to factor 
f (x, y) over C by the use of a computer algebra system. The tacnode has 
two singular points, where branches intersect. The coordinates of these singular 
points are the solutions of the system of algebraic equations 

f(x,y)=O, 

of 
-(x, y) = 8x3 - 6xy = 0 , ox 

of 1 2 2 
- (x, y) = 4 Y - 3x - 6 y + 2 y = 0 . oy 

By a Grabner basis computation this system is transformed into the equivalent 
system 

3x2 + 2y2 - 2y = 0 , 

xy = 0, 

x 3 = 0 

from which the singular points (0, 0) and (0, 1) can immediately be read off. 
We get the tangents at a singular point (a, b) by moving it to the origin with the 
transformation T(x, y) = (x+a, y+b), factoring the form oflowest degree, and 
applying the inverse transformation T- 1 (x, y) = (x-a, y-b). So the tangents at 
(0, 1) are y = 1 ±.J3x and there is one tangent y = 0 of multiplicity 2 at (0,0). 



6 Introduction 

A global rational parametrization of the tacnode 

t 3 - 6t2 + 9t - 2 
xU)= , 

2t4 - l6t3 + 40t2 - 32t + 9 

t 2 - 4t + 4 

yet) = 2t4 - l6t3 + 40t2 - 32t + 9 

can be computed. 
Or we might just be interested in power series approximations of the branches 

through the singular point (0,0). They are 

x(t) = t, yet) = t 2 - 2t4 + 0(t5) and 

x(t) = t, yet) = 2t2 + l6t4 + OU5 ) . 

4. Modelling in science and technology: Very often problems in these fields 
are posed as integration problems or differential equation problems, e.g., 

aq a2p 
-6-(x) + -2 (x) - 6 sin(x) = 0 , 

ax ax 

a2q 2 ap 
6-2 (x)+a -(x)-6cos(x) =0 

ax ax 

with initial values p (0) = 0, q (0) = l, pi (0) = 0, q I (0) = 1. 
An application of computer algebra algorithms will yield the formal solution 

12 sin(ax) 6 cos(ax) 12 sin(x) 6 
p(x) = - (2 1) - 2 + 2 1 + 2" ' aa - a a - a 

sin (ax ) 2 cos (ax ) (a 2 + 1) cos(x) 
q(x) = - 2 1 + 2 1 a a - a -

for a rf- {-l, 0, l}. 

Usually scientific theories rest on certain mathematical models. In order to 
test such theories it is necessary to compute in the mathematical model and 
thus derive theoretic predictions which can then be compared with actual exper
iments. Computer algebra offers a tool for the scientist to carry out the often ex
tensive algebraic computations in mathematical models of scientific theories. So 
computer algebra contributes to shifting the frontiers of scientific intractability. 

Limitations of computer algebra 

So if computer algebra can do all the above, why hasn't it completely superseded 
numerical computation? The reason is that computer algebra - just like any other 
theory or collection of methods - has its limitations. There are problems for 



1.1 Computer algebra 7 

which the computation of an exact symbolic solution is prohibitively expensive; 
there are other problems for which no exact symbolic solution is known; and then 
there are problems for which one can rigorously prove that no exact symbolic 
solution exists. Let us look at examples for each of these situations. 

1. Elimination theory: The problem consists in "finding" the solutions to a 
system of algebraic equations 

where the Ii's are polynomials with, say, integral coefficients. If there are only 
finitely many solutions of this system, then a symbolic method consists of first 
triangularizing the system, i.e., finding a univariate polynomial gl.l (XI), whose 
roots a are the xI-coordinates of the solutions of the system, bivariate polyno
mials g2, I (XI, X2), ... , g2,i2 (XI, X2), such that the x2-coordinates of the solutions 
of the system are the roots of g2.1 (a, X2), ... , g2.h(a, X2), etc., and then lifting 
solutions of the simplified problems to solutions of the whole system. 

There are general symbolic methods for solving the elimination problem, 
but their complexity is at least exponential in the number of the variables n. So, 
consequently, they are applicable only to systems in relatively few variables. 

Nevertheless, there are approximative numerical approaches to "solving" 
systems in high numbers of variables, such as homotopy methods. 

2. Differential equations: There are simple types of differential equations, 
such as integration problems, or homogeneous linear differential equations, for 
which the existence of Liouvillian solutions can be decided and such solutions 
can be computed if they exist (see Kovacic 1986, Singer 1981). However, not 
much is known in terms of symbolic algorithms for other types of differential 
equations, in particular partial differential equations. 

3. Canonical simplification: Often symbolic expressions need to be simpli
fied in order to avoid an enormous swell of intermediate expressions, or also 
for making decisions about equality of expressions. 

The class of radical expressions ER is built from variables XI, ... ,Xn , ra
tional constants, the arithmetic function symbols +, -, " /, and the radical sign 
if, or, equivalently, rational powers ("radicals") sr for r E Q. We call two rad
ical expressions equivalent iff they describe the same meromorphic functions. 
So, for instance, 

~.VX+I 

JXTI . v24x + 24 6x +6 

The equivalence of unnested radical expressions, i.e., radicals do not contain 
other radicals, can be decided by an algorithm due to B. F. Caviness and R. J. 
Fateman (Caviness 1970, Fateman 1972, Caviness and Fateman 1976). 



8 Introduction 

Now let us consider the class of transcendental expressions ET, built from 
one variable x, rational constants, the transcendental constant IT, and the function 
symbols +, " sin(.), I . I (absolute value). Two expressions are equivalent iff 
they describe the same functions on JR. Based on work by D. Richardson and 
J. Matijasevic on the undecidability of Hilbert's 10th problem, B. F. Caviness 
(1970) proved that the equivalence of expressions in ET is undecidable. 

1.2 Program systems in computer algebra 

The first beginnings of the development of program systems for computer alge
bra date back to the 1950s. In 1953 H. G. Kahrimanian wrote a master's thesis 
on analytic differentiation at Temple University in Philadelphia. He also wrote 
corresponding assembler programs for the UNIVAC 1. At the end of the 1950s 
and the beginning of the 1960s a lot of effort at the Massachusetts Institute of 
Technology was directed towards research that paved the way for computer alge
bra systems as we know them today. An example of this is J. McCarthy's work 
on the programming language LISP. Other people implemented list processing 
packages in existing languages. In the early 1960s G. E. Collins created the sys
tem PM, which later developed into the computer algebra system AIdes/SAC-II, 
and more recently into the library SACLIB written in C. 

Currently there exist a large number of computer algebra systems. Most 
of them are written for narrowly specified fields of applications, e.g., for high 
energy physics, celestial mechanics, general relativity, and algebraic geometry. 
Instead of listing a great number of rather specialized systems, we concentrate 
on the few ones which offer most of the existing computer algebra algorithms 
and which are of interest to a general user. 

SAC: Starting in the late 1960s, the SAC computer algebra system was de
veloped mainly at the University of Wisconsin at Madison under the direction of 
G. E. Collins. Currently the center of development is at RISC-Linz. The system 
has gone through various stages, SAC-I, SAC-II, and now SACLIB, which is writ
ten in C. Being a research system, SAC does not offer an elaborate user interface. 
The emphasis is on the implementation and experimentation with the newest and 
fastest algorithms for computing with polynomials and algebraic numbers. 

Macsyma: Starting in the late 1960s, Macsyma was developed at the Mas
sachusetts Institute of Technology (MIT) under the direction of J. Moses. Mac
syma is one of the truly general computer algebra systems. The system contains 
one of the biggest libraries of algebraic algorithms available in any computer 
algebra system. Currently there are various versions of Macsyma in existence. 

Reduce: Also in the late 1960s, the development of Reduce was started at 
the University of Utah under the direction of A. Hearn. Currently the center 
of development is at the Rand corporation. Reduce started out as a specialized 
system for physics, with many of the special functions needed in this area. In 
the meantime it has changed into a general computer algebra system. 

Magma: In the 1970s, J. Cannon at Sidney started the development of the 
Cayley system, which ultimately led to the present system Magma. Its main 
emphasis is on group theoretic computations and finite geometries. 



1.2 Program systems 9 

Derive: This is the only general purpose computer algebra system which 
has been written specifically for the limited resources available on PCS and 
other small machines. D. Stoutemeyer has been developing the system (and its 
predecessor muMath) at the University of Hawaii. 

Maple: The system has been developed at the University of Waterloo by a 
group directed by K. O. Geddes and G. H. Gonnet, starting around 1980. It is 
designed to have a relatively small kernel, so that many users can be supported 
at the same time. Additional packages have to be loaded as needed. Maple is 
currently one of the most widely used computer algebra systems. 

Mathematica: This is a relatively young computer algebra system; the first 
versions were available just a few years ago. It has been developed by S. Wol
fram Research Inc. Notable are its links to numerical computation and graphical 
output. 

Axiom: At the IBM research center at Yorktown Heights a group directed by 
R. D. Jenks has for a long time been developing the Scratchpad system. Recently 
Scratchpad has been renamed Axiom and its distribution is now organized by 
The Numerical Algorithms Group (NAG) in Oxford. Axiom features a very 
modern approach to computer algebra systems in several ways, providing generic 
algorithms and a natural mathematical setting in which to implement algorithms. 

A sample session of Maple 

> maple 
1\-/1 Maple V Release 3 (University of Linz) 

._1\1 1/1_. Copyright (c) 1981-1994 by Waterloo Maple Software and the 
\ MAPLE I University of Waterloo. All rights reserved. Maple and Maple 
< ________ > V are registered trademarks of Waterloo Maple Software. 

Type? for help. 
> 
> # as any other computer algebra system, Maple computes with long 
> # integers 
> 
> bigint:= sum(i-2, i=l .. 99999999); 

bigint := 333333328333333350000000 

> ifactor(bigint); 

(2)7 (3) (5)8 (11) (73) (89) (101) (137) (1447) (1553) 

> 
> # now let's see some examples of computations with polynomials 
> 
> pol:=expand( (x-2)-2 * (x+l) * (x-3-23*x+l)-2 ); 

pol := 

x9 _ 46 x7 + 144 x6 + 523 x5 - 1817 x4 + 147 x3 - 3 x8 + 2113 x2 

- 184 x + 4 

> po2:= expand( (x-2) *(x-5+31*x-3+2*x) ); 

po2 := x6 + 31 x4 + 2 x2 - 2 x5 - 62 x3 - 4 x 

> gcd(pol,po2); 
x - 2 

> gcdex(pol,po2,x,'s','t'); 

x - 2 



10 Introduction 

> Sj 

_ 1/2 _ ~~~~~~!!~~~~~~~~~~ 2 
48979363028959228 x 

582350036308715 
24489681514479614 

x -
12543465117426833 4 
48979363028959228 x 

> tj 

9412368064896 3 
- 12244840757239807 x 

7767142427983062623 3 7240172238838992023 2 
-48979363028959228- x - -48979363028959228- x 

1113115808836205007 301071640470705033 5 
+ -48979363028959228- - -24489681514479614 x 

12543465117426833 7 
+ 48979363028959228 x 

> simplify(pol*s+po2*t); 

12505815645167249 6 
- 48979363028959228 x 

x - 2 

12715368265072921137 
- --48979363028959228- x 

150074005808315194 4 
+ -12244840757239807 x 

> # a square free factorization of pol is computed 
> 
> sqrfree (pol) ; 

[1, [[x + 1, 1], [x 4 - 2 x 3 - 23 x 2 + 47 x - 2, 2]]] 

> 
> # now let's factor pol completely over the integers modulo 3 and 
> # over the rational numbers, and over an algebraic extension of the 
> # rational numbers 
> 
> Factor(pol) mod 3; 

> factor(pol); 

(x - 2)2 (x + 1) (x3 - 23 x + 1)2 

> minpo:~ subs(x~y,op(3,")); 

minpo 

> alias(alpha ~ RootDf(minpo)): 

> factor(pol,alpha); 

(x + 1) (x2 + alpha x - 23 + alpha2)2 (x - alpha)2 (x - 2)2 

> # the following polynomial is irreducible over the rationals, but 
> # factors over the complex numbers 

po3 

> factor(po3); 

> evala(AFactor(po3)); 

2 2 
:~ x + y 

2 2 
x + Y 

(x - RootDf(_Z2 + 1) y) (x + RootDf(_Z2 + 1) y) 

> 
> # for doing linear algebra we load the package "linalg" 
> 
> with(linalg): 
Warning: new definition for norm 
Warning: new definition for trace 
> 
> A:~atrix([[1,-3,3], [3,-5,3], [6,-6,4]]); 

[ -3 3 
[ 

A [3 -5 3 
[ 
[6 -6 4 



1.2 Program systems 

> det(A); 
16 

> charpoly(A,x); 

x3 - 12 x - 16 

> eigenvals(A); 
4, -2, -2 

> eigenvects(A); 
[4, 1, {[ 1, 1, 2 ]}], [-2, 2, {[ 1, 1, 0], [ -1, 0, 1 ]}] 

> ffgausselim(A,'r' ,'d'); # fraction free Gaussian elimination 

-3 3 

° 4 -6 

° ° 16 > r; # the rank of A 
3 

> d; # the determinant of A 
16 

> B:=matrix(3,3,[1,2,3,1,2,3,1,5,6]); 

2 3 

B:= 1 2 3 

5 6 

> linsolve(B,[O,O,O]); 

> 
> # maple can do indefinite summation 
> 

> 

1/3 i 3 1/2 i 2 + 1/6 i 

# l*a-l + ... + i*a-i 

~=_i!_~_:_!_:_~L 
(a - 1)2 

> # differentiation, integration 
> 
> exprl:= x-(x-x); 

exprl 
> diff(exprl,x); 

> integrate(",x); 

expr2 := 
3 2 

x +ax +x 

> integrate(expr2,x); 

In(x) - 1/2 In(x2 + a x + 1) + 

11 



12 

> diff(",x); 

> simplify("); 

(x2 + a x + 1) x 

> expr3:=1/(sqrt(a"2-x"2)); 

expr3 

> int(expr3,x=O .. a); 

1/2 Pi 

> 
> # some differential equations can be solved symbolically 
> 

2 
- sin(a x) a 

+ sin(a x) sin(- x + a x) 3 
+ sin(a x) a sin(- x + a x) a 

3 
+ cos(a x) a + cos(a x) cos(- x + a x) cos(- x + a x) a 

+ sin(a x) sin(x + a x) a3 + sin(a x) sin(x + a x) a 

+ cos(a x) cos(x + a x) a3 + cos(a x) cos(x + a x) a 

5 
+ sin(a x) sin(- x + a x) - sin(a x) sin(x + a x) - 4 ~--~~~~~-~~ 

a 2 - 1 

a 3 cos (a x) 4 2 / 3 2 
+ 4 ----2------ + 2 a sin(a x) - 2 a sin(a x)) / (a (a - 1)), 

a - 1 / 

p(x) = 

(12 sin(x) 3 - 12 sin (x) 6 sin(a x) cos (x + a x) a a + 

- 6 sin(a x) cos(x + a x) a + 6 sin(a x) cos(- x + a x) a 
+ 6 sin(a x) cos(- x + a x) - 6 cos(a x) sin(- x + a x) a 
- 6 cos(a x) sin(- x + a x) - 6 cos(a x) sin(x + a x) 

Introduction 

4 2 
+ 6 cos(a x) sin(x + a x) a + 6 a - 6 a3_ 12 ~--~~!!~~-~~ + 12 ~--~~!!~~-~~ 

2 2 
a - 1 a - 1 

- 6 a3 cos(a x) + 6 cos(a x) a) 

} 



1.3 Algebraic preliminaries 

> 
> # computation of Groebner basis, determining singularities of an 
> # algebraic curve by solving a system of algebraic equations 
> 
> with(grobner); 

[finduni, finite, gbasis, gsolve, leadmon, normalf, solvable, spoly] 
> curve:=2*x-4-3*x-2*y+y-2-2*y-3+y-4; 

curve := 2 x4 _ 3 x2 Y + y2 _ 2 y3 + y4 

> gbasis({curve,diff(curve,x),diff(curve,y)},[x,y],plex); 

[3 x2 + 2 y2 _ 2 y, x y, _ y2 + y3] 

> 
> # plotting 
> 
> interface(plotdevice=postscript,plotoutput=figure4); 
> funct4:=b-2+27/(2*b)-45/2; 

2 27 
funct4 := b + 2-b - 45/2 

> plot (funct4 ,b=-8 .. 8,-30 .. 30); 
> interface(plotoutput=figure5); 
> funct5:=x-2+3*BesselJ(O,y-2)*exp(1-x-2-y-2); 

funct5 := x2 + 3 BesselJ(O, y2) exp(l _ x2 _ y2) 

> plot3d(funct5,x=-2 .. 2,y=-2 .. 2,axes=FRAME); 
> 
> # writing programs in Maple, e.g. for extended Euclidean algorithm 
> 
> myee:=proc(f,g,x) 
> 
> 
> 

local h,s,t; 
h:=gcdex(f,g,x,'s','t'); 
RETURN([h,eval(s),eval(t)]) 

> end: 
> 
> fl:=expand«x+l)*(x+2)); 

fl := x2 + 3 x + 2 

> f2:=expand«x+l)*(x-l)); 

f2 := x2 - 1 

> myee(fl,f2,x); 

[x + 1, 1/3, -1/3] 

> simplify ( .. [2] *f 1 + .. [3] *f2) ; 

x + 1 

> quit; 

1.3 Algebraic preliminaries 

13 

For a thorough introduction to algebra we refer the reader to any of a great num
ber of classical textbooks, e.g., Lang (1984), MacLane and Birkhoff (1979), van 
der Waerden (1970), or Zariski and Samuel (1958). Here we simply introduce 
some definitions and basic facts that will be useful in subsequent chapters. 

Throughout this book we will denote the set of natural numbers by N, the 
natural numbers with 0 by No, the integers by ;Z;, the rational numbers by Q, 
the real numbers by JR., and the complex numbers by Co Furthermore, we will 
denote the integers without 0 by Z*, and similarly for other domains. 

A semigroup (S, 0) is a set S together with an associative binary operation 0 



14 

30 

20 

10 

~~~~~~HH~HH~~~~~~~~~++~b 

-8 

8 

6 

4 

2 

-2 

-20 

-30 

Fig. 4. Maple plot output, figure 4 

2 2 

Fig. 5. Maple plot output, figure 5 

6 8 

-2 

Introduction 

on S. A monoid (S, 0, e) is a semigroup with an identity element e; that is, eo x 
= xoe = x for all XES. Alternatively we could define a monoid as a semigroup 
with a nullary operation which yields the identity element. A semi group or a 
monoid is commutative iff the operation ° is commutative. If the operations 
are understood from the context, then we often speak of the semigroup or the 
monoid S without directly mentioning the operations. 

A group (G, 0, 0, e) is a monoid (G, 0, e) together with a unary inverse 
operation 0, i.e., x ° (ox) = e = (ox) ° x for all x E G. G is a commutative or 
abelian group if ° is commutative. 

A ring (R, +, -, ·,0) is an abelian group (R, +, -,0) and a semigroup 
(R, .) satisfying the laws of distributivity x . (y + z) = x . y + x . z and (x + y) . z 
= X· Z + y. z. A commutative ring is one in which the operation· is commutative. 
A ring with identity is a ring R together with an element 1 (#- 0), such that 



1.3 Algebraic preliminaries 15 

(R, ., 1) is a monoid. Unless stated otherwise, we will always use the symbols 
+, -, ·,0, 1 for the operations of a ring. We call these operations addition, 
minus, multiplication, zero, and one. The subtraction operation (also written 
as -) is defined as x - y : = x + (-y) for x, y E R. Multiplication is usually 
denoted simply by concatenation. The characteristic of a commutative ring with 
identity R, char(R), is the least positive integer m such that 

1+···+1=0. 
'-,-' 

m times 

char(R) = 0 if no such m exists. 

(1.3.1) 

Let (R, +, -, ·,0) and (R', +', -', ·',0') be rings. A homomorphism of rings 
h is a function from R to R' satisfying the conditions 

h(O) = 0', her + s) = her) +' h(s), her . s) = her) .' h(s) . (1.3.2) 

If Rand R' are rings with identities 1 and I', respectively, then h also has to 
satisfy 

hO) = I' . (1.3.3) 

A homomorphism h is an isomorphism from R to R' iff h is one-to-one and 
onto. In this case we say that Rand R' are isomorphic, R ~ R'. 

Let R be a commutative ring with identity. A subset I of R is an ideal in 
R if a + bEl and ac E I for all a, bEl and c E R. I is a proper ideal if 
{OJ #- I #- R. I is a maximal ideal if it is not contained in a bigger proper ideal. 
I is a prime ideal if ab E I implies a E I or bEl. I is a primary ideal if 
ab E I implies a E I or bn E I for some n E N. I is a radical ideal if an E I 
for some n E N implies a E I. The radical of the ideal I, radical(I) or ,Jl, is 
the ideal {a I an E I for some n EN}. A set B S; R generates the ideal I or B 
is a generating set or basis for I if 

0.3.4) 

In this case we say that I is the ideal generated by B, I = ideal(B) = (B). I is 
finitely generated if it has a finite generating set. I is a principal ideal if it has 
a generating set of cardinality 1. 

An ideal I in R generates a congruence relation =1 on R by a =1 b or 
a = b mod I iff a - bEl (a is congruent to b modulo I). The factor ring R/I 
(consisting of the congruence classes w.r.t. =1) inherits the operations of R in 
a natural way. If R is a commutative ring with 1 and I is prime, then R/I is an 
integral domain. If I is maximal, then R / 1 is a field. 

In the following considerations let us take non-zero elements of a commuta
tive ring R with identity 1. Invertible elements of R are called units. If a = b· u 
for a unit u, then a and b are called associates. b divides a iff a = b· c for some 
c E R. If c divides a -b we say that a is congruent to b modulo c, a = b mod c. 



16 Introduction 

For every c the congruence modulo c is an equivalence relation. An element a 
of R is irreducible iff every b dividing a is either a unit or an associate of a. An 
element a of R is prime iff a is not a unit, and whenever a divides a product 
b . c, then a divides either b or c. In general prime and irreducible elements can 
be different, e.g., 6 has two different factorizations into irreducibles in Z[.J=5] 
and none of these factors is prime (compare Exercise 2). 

A zero divisor in a commutative ring R is a non-zero element a E R such 
that for some non-zero b E R we have ab = 0. An integral domain or simply 
domain D is a commutative ring with identity having no zero divisors. An 
integral domain D satisfies the cancellation law: 

ab = ac and a =I ° ====} b = c . (1.3.5) 

If R is an integral domain, then also the ring of polynomials R[x] over R is an 
integral domain. A principal ideal domain is a domain in which every ideal is 
principal. 

An integral domain D is a unique factorization domain (ufd) iff every non
unit of D is a finite product of irreducible factors and every such factorization 
is unique up to reordering and unit factors. In a unique factorization domain 
prime and irreducible elements are the same. Moreover, any pair of elements 
a, b (not both elements being equal to 0) has a greatest common divisor (gcd) 
d satisfying (i) d divides both a and b, and (ii) if c is a common divisor of a 
and b, then c divides d. The gcd of a and b is determined up to associates. If 
gcd(a, b) = 1 we say that a and b are relatively prime. We list some important 
properties of gcds: 

(GCD 1) gcd(gcd(a, b), c) = gcd(a, gcd(b, c». 
(GCD 2) gcd(a . c, b . c) = c . gcd(a, b). 
(GCD 3) gcd(a + b· c, c) = gcd(a, c). 
(GCD 4) If c = gcd(a, b) then gcd(alc, blc) = 1. 
(GCD 5) If gcd(a, b) = 1 then gcd(a, b . c) = gcd(a, c). 

In Z we have the well-known Euclidean algorithm for computing a gcd. In 
general, an integral domain D in which we can execute the Euclidean algorithm, 
i.e., we have division with quotient and remainder such that the remainder is 
less than the divisor, is called a Euclidean domain. 

Afield (K, +, -, " -1,0, 1) is a commutative ring with identity (K, +, -, " 
0,1) and simultaneously a group (K \ {o}, " -1,1). If all the operations on K 
are computable, we call K a computable field. If D is an integral domain, the 
quotient field Q(D) of D is defined as 

where 
a a' " 
- '" - ¢::=:> ab = a b . 
b b' 

(1.3.6) 



1.3 Algebraic preliminaries 17 

The operations +, -, ., -I can be defined on representatives of the elements of 
Q(D) in the following way: 

0.3.7) 

The equivalence classes of 0/1 and 1/1 are the zero and one in Q(D), respec
tively. Q(D) is the smallest field containing D. 

Let R be a ring. A (univariate) polynomial over R is a mapping p: No -0 R, 
n f--* PII' such that Pn = 0 nearly everywhere, i.e., for all but finitely many values 
of n. If n I < 112 < ... < Il,. are the nonnegative integers for which P yields 
a non-zero result, then we usually write p = p(x) = L;'=I PilI XIIi . Pj is the 
coefficient of x j in the polynomial p. We write coetT(p, j) for Pj. The set of 
all polynomials over R together with the usual addition and multiplication of 
polynomials form a ring. We denote this ring of polynomials over R as R[x]. 
(In fact, as can be seen from the formal definition, the polynomial ring does 
not really depend on x, which just acts as a convenient symbol for denoting 
polynomials.) Many properties of a ring R are inherited by the polynomial 
ring R[x]. Examples of such inherited properties are commutativity, having a 
multiplicative identity, being an integral domain, or being a ufd. Let P be a non
zero element of R[x]. The degree of p, deg(p), is the maximal 11 E No such 
that Pn #- O. The leading term of p, It(p), is x deg (I'). The leading coefficient 
of p, lc(p), is the coefficient of It(p) in p. The polynomial p(x) is monic if 
lc(p) = I. 

An n-variate polynomial over the ring R is a mapping p: No -0 R, (iI, ... , 
ill) f--* Pi I .... )", such that Pil ..... i" = 0 nearly everywhere. P is usually written 

as LPil ..... i"X;I .. . x;;', where the formal summation ranges over all tuples (il . 
. . . , ill) on which p does not vanish. The set of all n-variate polynomials over 
R form a ring, R[XI, ... , XII]. This II-variate polynomial ring can be viewed 
as built up successively from R by adjoining one polynomial variable at a 
time. In fact, R[XI, ... , XII] is isomorphic to (R[XI, ... , x ll -l1)[xll ]. The (total) 
degree of an n-variate polynomial p E R[XI, ... , X,,]* is defined as deg(p) 
:= max{Lj'=1 ij I Pil ..... i" #- OJ. We write coeff(p, XII' j) for the coefficient of 

x!, in p, where p is considered in (R[XI, .... xll -l1)[xll ]. The degree of p = 
L~~o Pi(XI, .... xll-j)x:, E (R[XI, ... , xll-l1)[xIIJ* ill the variable 11, degx)p), 
is m, if Pill #- O. By reordering the set of variables we get degxi (p) for all 
I :s i :s n. In a similar way we get It'i(P) and lc'l(p), 

Let p (x) = PIIX II + ... + Po be a polynomial of degree Il over JR.. For 
measuring the size of p we will use various lIorms, e.g., 

II 

IIp(x)111 = Llpil, 
i=O 

IIp(x)llx = max{lplIl,···, Ipol} . 

The resultant resx(.f, g) of two univariate polynomials f(x), g(x) over an 



18 Introduction 

integral domain D is the determinant of the Sylvester matrix of I and g, con
sisting of shifted lines of coefficients of I and g. resxCI, g) is a constant in D. 
For m = deg(f), n = deg(g), we have resxCI, g) = (-l)mnresx (g, f), i.e., the 
resultant is symmetric up to sign. If aI, ... , am are the roots of I and b l , ... , bn 

are the roots of g in their common splitting field, then 

m n 
resxCI, g) = lc(f)nlc(g)m n n (ai - bj ) . 

i=lj=1 

The resultant has the important property that, for non-zero polynomials I and g, 
resx (f, g) = 0 if and only if I and g have a common root, and in fact, if D is 
a ufd, I and g have a common divisor of positive degree in D[x]. If I and g 
have positive degrees, then there exist polynomials a(x), b(x) over I such that 
al + bg = resx(f, g). The discriminant of I(x) is 

discrx (f) = (_l)m(m-1)/2lc(f)2(m-l) n (ai - aj) . 
if.j 

We have the relation resxCI, I') = (-l)m(m-I)/2lc(f)discrxCf), where I' is the 
derivative of I. 

Let K be a field. A power series A(x) over K is a mapping A: No ---+ K. 
We usually write the power series A as A(x) = L~o a;x i , where ai is the 
image of i under the mapping A. The power series over K form a commutative 
ring with 1 and we denote this ring by K[[x]]. The order of the power series 
A is the smallest i such that ai =f=. O. 

Let K, L be fields such that K C L. Let a E L \ K such that I(a) = 0 
for some irreducible I E K [x]. Then a is called algebraic over K of degree 
deg(f). I is determined up to a constant and is called the minimal polynomial 
for a over K. By K(a) we denote the smallest field containing K and a. K(a) 
is an algebraic extension field of K. 

Exercises 

1. Prove: If D is an integral domain, then also the polynomial ring D[x] is an 
integral domain. 

2. Let R be the ring Z[ H], i.e., the ring of complex numbers of the form 
a + bH, where a, bE Z. Show 
a. R is an integral domain, 
b. R is not a unique factorization domain (e.g., 6 and 9 do not have unique 

factorizations) . 

1.4 Representation of algebraic structures 

Before we can hope to compute with algebraic expressions, we have to de
vise a representation of these algebraic expressions suitable for the operations 



1.4 Representation 19 

we want to perform. Whereas in numerical computation floating point or ex
tended precision numbers and arrays are the representation of choice, these data 
structures prove to be totally inadequate for the purpose of symbolic algebraic 
computation. Let us demonstrate this fact by a few typical examples. 

As a first example we take the computation of the greatest common divisor 
(gcd) of two polynomials f(x, y), g(x, y) with integral coefficients. For two 
primitive polynomials their gcd can be computed by constructing a polynomial 
remainder sequence ro, rl, ... ,rk (basically by pseudodivision) starting with f 
and g (see Chap. 4). The primitive part of the last non-zero element rk in this 
sequence is the gcd of f and g. For the two relatively small polynomials 

f(x, y) = i + xi + x 3y - xy + x4 - x 2 , 

g(x, y) = xi - 2y5 +x2i - 2xi +xi +x2y 

we get the polynomial remainder sequence 

ro = f , 
rl =g, 

r2 = (2x - x2)l + (2x 2 - x3)i + (x 5 - 4x4 + 3x3 + 4x2 - 4x)y 

+ x6 - 4x5 + 3x4 + 4x3 - 4x2 , 

r3 = (_x7 + 6x6 - 12x5 + 8x4)i + (_x 13 + 12x12 - 58x 11 + 136x lO 

- 121x9 - 117x8 + 362x7 - 236x6 - 104x5 + 192x4 - 64x3)y 

- x14 + 12x 13 - 58x 12 + 136x 11 - 121x lO - 116x9 + 356x8 

- 224x7 - 112x6 + 192x5 - 64x4 , 

r4 = (_x 28 + 26x27 - 308x26 + 2184x25 - 10198x24 + 32188x23 

- 65932x22 + 68536x21 + 42431x20 - 274533x 19 + 411512x 18 

- 149025x 17 - 431200x 16 + 729296x 15 - 337472x 14 - 318304x 13 

+ 523264x 12 - 225280x 11 - 78848x lO + 126720x9 - 53248x8 

+ 8192x7)y - x 29 + 26x28 - 308x27 + 21 84x26 - 10198x25 

+ 32188x24 - 65932x 23 + 68536x22 + 4243lx 21 - 274533x20 

+ 411512x 19 - 149025x 18 - 431200x 17 + 729296x 16 - 337472x 15 

- 318304x 14 + 523264x 13 - 225280x 12 -78848x 11 + 126720x lO 

- 53248x9 + 8192x8 . 

The gcd of f and g is the primitive part (with respect to y) of r4, which is 
y + x. So we see that although the two input polynomials are of moderate size, 
the intermediate expressions get bigger and bigger. The final result, however, is 
again a small polynomial. Actually the biggest polynomial in this computation 
occurs in the pseudo-division of r3 by r4. The intermediate polynomial has 
degree 70 in x! 



20 Introduction 

Very similar phenomena occur in many algorithms of computer algebra, 
e.g., in integration algorithms or Grabner basis computations. Therefore we 
need dynamic storage allocation in computer algebra. The data structures used 
for algebraic computation must be able to reflect the expansion and shrinking 
of the objects during computation. A data structure that has all these properties 
is the list structure. 

Definition 1.4.1. Let A be a set. The set of lists over A, list(A), is defined as 
the smallest set containing the empty list [ ] (different from any element of A) 
and the list [aI, ... , an] for all aI, ... , all E AU list(A). 

list(A) is equipped with the following (partial) operations: 
- EMPTY: list(A) ~ {T, F) maps [ ] to T and all other lists to F. 
- FIRST: list(A) ~ list(A) U A maps [al, .. " all] to al and is undefined 

for [ ]. 
- REST: list(A) ~ list(A) maps [aI, a2, ... , all] to [a2, ... , an] and is unde

fined for [ ]. 
- CONS: A U list(A) x list(A) ~ list(A) maps (a, [aI, ... , allD to [a, aI, 

... ,all]' 
- APPEND: list(A) x list(A) ~ list(A) maps ([aI, ... , all], [b l , ... , blllD to 

[al,"" an, b l , ... , bm]. 
- LENGTH: list(A) ~ No maps [] to 0 and [al, ... , all] to n. 
- INV: list(A) ~ list(A) maps [aI, ... , all] to [all, ... , ad. 
- INIT: No x list(A) ~ list(A) is defined as INIT(O, L) = [], INIT(m, L) = L 

for m > LENGTH(L), and INIT(m, [aI, ... ,aIlD = [aI, ... ,am] for m < 
LENGTH(L). 

- DEL: No x list(A) ~ list(A) is defined as DEL(m, L) = [] for m > 
LENGTH(L) and DEL(m, [al, .. " all]) = [all/+I, ... , all] for m < n. 

- SHIFT: No x A x list(A) ~ list(A) is defined as SHIFT(O, a, L) = Land 
SHIFT(n, a, L) = CONS(a, SHIFT(n - 1, a, L» for n > O. 

Observe that all lists over a set A can be constructed by successive applica
tion of CONS, starting with the list [ ]. 

Lists are suited for representing objects of variable length because they are 
not fixed in size. Whenever we have an object represented by a list, e.g., a 
polynomial x 5 + 2x3 - x 2 + I represented by [[5, I], [3,2], [2, -1], [0, 1]], the 
object can be enlarged by adding a new first element, e.g., by adding the term 
3x6 to the polynomial, yielding the representation [[6,3], [5, 1], ... , [0, 1]]. 

The final goal of computer algebra is to implement algebraic structures and 
algorithms on a computer. Of course, we cannot describe here the implementa
tion on a specific make of computer. Instead, we describe the implementation on 
a hypothetical machine. The model we use is a random access machine (RAM) 
as specified in Aho et al. (1974). We suppose that the machine has set aside a 
part of its memory for list processing, and that this part of the memory is ini
tially organized in a so-called available-space-list (ASL). Each pair of adjacent 
words in the ASL is combined into a list cell. The first word in such a cell, 
called the information field, is used for storing information, the second word, 
called the address or pointer field, holds the address of the next list cell. The 



1.4 Representation 

ASL -----+ 1001 
1003 
1005 

9997 
9999 

21 

1003 } cell 

1005 
1007 

Fig. 6 

last cell in the ASL holds an invalid address, e.g., -I, indicating that there is 
no successor to this cell. The ASL is then identified with the address of its first 
cell. See Fig. 6. 

The specific addresses in the address fields of the ASL are not really of 
interest to us. What matters only is that the successive cells of the ASL are 
linked together by pointers and ASL points to the first cell in this collection. So 
graphically we represent the ASL as a sequence of cells connected by pointers: 

-----+ ,-----I _IL----------' 
In order to store the list L = [ai, ... ,ad, k cells are removed from the ASL 
and linked together. The address of the first of these cells is stored in L. These 
removed cells need not be consecutive elements of ASL: 

Now let us describe the general situation. The empty list is represented by the 
empty pointer _ (an invalid address, e.g., -I). If L is represented by 

L -----+ ,-----I _'----------'~ -----+ ,---I _1,-------' 
then the list L' = [a, L] is represented by 

i.e., as a pointer to a cell containing a in the information field and a pointer to 
L in the address field. If a itself is a list, then a pointer to this list is stored in 
the information field of the first cell of L '. 

Of course the problem arises how to distinguish between actual information, 
i.e., an element of A if we are considering lists over A, and addresses to sublists 
in the information field of a list. This can be achieved by sacrificing 1 bit of 



22 Introduction 

the information field. From now on we tacitly assume that we can always make 
this distinction. 

As an example let us consider the list 

L = [ [10, []], 3, [[5], 2], 7] 

over N. Its machine representation is 

L-+I j-+I 3 I j-+I I j-+I 7 I • t t 
10 j-+I • I • I I I j-+I 2 I • t 

I 5 I • I 
All the operations defined on lists can be carried out rather efficiently on this 

representation. For computing EMPTY(L) we just have to check whether the 
pointer stored in L is a valid one. FIRST(L) has to extract the contents of the 
information field of the first cell of L. REST(L) has to extract the contents of the 
address field of the first cell of L. CONS(a, L) is computed by retrieving a new 
cell C from the ASL, storing a in the information field and L in the address field 
of C and returning the address of C. All these operations are clearly independent 
of the length of L, since only the pointer L or the first cell of the list have to 
be inspected or changed. Their computation time is a constant. For computing 
APPEND(LI, L2), the list LI is copied into L; and the contents of the address 
field of the last cell of L; is changed to L2. This takes time proportional to the 
length of LI. Also for computing LENGTH(L), the successive cells of L have 
to be counted off, which clearly takes time proportional to the length of L. 

The basic concepts of lists and operations on them have been introduced 
in Newell et al. (1957). The language LISP by J. McCarthy is based on list 
processing (McCarthy et al. 1962). A thorough treatment of list processing can 
be found in Knuth (1973) or Horowitz and Sahni (1976). 

There are, of course, also other possible representations of algebraic objects. 
The basic concept and use of straight-line programs in algebraic computation 
are, for instance, described in Strassen (1972), Freeman et al. (1986), von zur 
Gathen (1987), and Kaltofen (1988). The computer algebra system Maple uses 
dynamic arrays instead of linked lists. 

1.5 Measuring the complexity of algorithms 

The complexity analysis of algorithms is an important research area in its own 
right. The reader is referred to Aho et al. (1974), Book (1986), Kaltofen (1990). 
For our purposes the following simple approach is sufficient. Our model of 
computation is a RAM equipped with the storage management for lists described 
in the previous section. Nevertheless, we will not use the language of a RAM 
for describing algorithms, but we will employ a certain pseudocode language, 
the so-called algorithmic language. We do not give a formal specification of 



1.5 Measuring the complexity of algorithms 23 

the algorithmic language but just say that it is a PASCAL like language, with 
assignments, "iLthen_else," "for" and "while" loops, and recursive calls. It will 
always be clear how an algorithm A described in the algorithmic language can 
be translated into a program A' on a RAM. We measure the complexity of an 
algorithm A by measuring the complexity of its translation A' on a RAM. By 
tA(X) we denote the time, i.e., the number of basic steps, needed for executing 
the algorithm A on the input x. The following definition can be found in Collins 
(1973). 

Definition 1.5.1. Let X be the set of inputs of an algorithm A, and let P = 
{Xj }jEJ be a partition of X into finite sets, such that Xi n Xj = 0 for i =F j and 
X = UjEJ X j . 

By t)'(j) := max{tA(x) I x E Xj } we denote the maximum computing time 
function or the maximum time complexity function of A (with respect to the 
partition P). 

By tA (j) := min{tA(x) I x E X j } we denote the minimum computing time 
function or the minimum time complexity function of A (with respect to the 
partition P). 

By tA(j) := LXEX tA(x)/IXjl we denote the average computing timefunc-
i 

tion or the average time complexity function of A (with respect to the parti-
tion P). 

For a given algorithm A and a partition P = {Xj }jEJ of the input set X of 
A, the complexity functions t)' and t A are functions from J to Nand tA is a 
function from J to tQ+, the positive rational numbers. 

Definition 1.5.2. Let f and g be functions from a set S to JR+, the positive 
real numbers. f is dominated by g or g dominates f or f is of order g, in 
symbols f ::S g or f = O(g), iff there is a positive real number c such that 
f(x) ::: c . g(x) for all XES. f and g are codominant or proportional, in 
symbols f '" g, iff f ::S g and g ::S f· If f ::S g and not g ::S f then we say 
that g strictly dominates f, in symbols f -< g. 

::S is a partial ordering on (JR+)s and'" is an equivalence relation on (JR+)s. 
We will often use the following properties, which can be easily verified. 

Lemma 1.5.1. Let f, g be functions from S to JR+. 
a. If f(x) ::: c· g(x) for c E JR+ and for all but a finite number of XES, then 

f = O(g). 
b. If f = 0 (g) then g + f '" g. 

Lemma 1.5.2. 
a. If c,d E No, c < d, and n E N, then nC -< nd. 
b. If c, dEN, I < C, d, and x EN, then loge x '" logdx. 

Only for a few algorithms will we give an analysis of the minimum or aver-



24 Introduction 

fen) 

trade-off point n Fig. 7 

age complexity functions. Usually it is much simpler to determine the maximum 
complexity function, and in many cases this is the best we can achieve. So when 
we talk of the complexity of an algorithm A, we usually mean the maximum 
complexity. 

The order of the complexity function of an algorithm tells us the asymptotic 
time requirement for executing the algorithm on large inputs. Let us assume that 
AI, A2 , A3 are algorithms for solving the same problem, and their complexities 
are, respectively, O(n), 0(n 3 ), 0(211). Suppose in time t (e.g., I second) we can 
solve a problem of size Si by the algorithm Ai. Then in time lOt we can solve 
a problem of size lOs] by AI, a problem of size 3.16s2 by the algorithm A 2, 

and a problem of size only S3 + 3.3 by the algorithm A3. 

However, we should be careful about relying too heavily on the theoretical 
complexity of algorithms, if we supply only inputs of small or moderate size. So, 
for instance, the Karatsuba algorithm for mUltiplying integers has a complexity 
of 0(nlog23), whereas the Schonhage-Strassen algorithm has a complexity of 
O(n . log n . log log n). Nevertheless, in all the major computer algebra systems 
only the Karatsuba algorithm is used, because the superior complexity of the 
Schonhage-Strassen algorithm becomes effective only for integers of astronom
ical size. For smaller inputs the constant of the Schonhage-Strassen algorithm 
determines the practical complexity. A similar phenomenon can be observed in 
factorization of polynomials, where in practice the Beriekamp-Hensel algorithm 
is preferred to the theoretically better Lenstra-Lenstra-Lovasz algorithm. 

In general, if fen), g(n) are the complexity functions of two competing al
gorithms, where f -< g, we need to determine the trade-off point, i.e., the value 
of n for which f(m) < gem), for m > n. See Fig. 7. 

1.6 Bibliographic notes 

There are several general articles and books on computer algebra and related 
topics. Some of them are Akritas (1989), Boyle and Caviness (1990), Buchberger 
et al. (1983), Caviness (1986), Cohen (1993), Davenport et al. (1988), Geddes 
et al. (1992), Knuth (1981), Kutzler et al. (1992), Lidl and Pilz (1984), Lipson 
(1981), Mignotte (1992), Mishra (1993), Moses (I971a, b), Pavelle et al. (1981), 



1.6 Bibliographic notes 25 

Pohst and Zassenhaus (1989), Rand and Armbruster (1987), Rolletschek (1991), 
Winkler (1987, 1988b, 1993), Zippel (1993). The use of computer algebra for 
education in mathematics is described in Karian (1992). 

For further information on particular computer algebra systems we refer to 
Buchberger et al. (1993), Cannon (1984), Char et al. (1991a, b, 1992), Collins 
and Loos (1982), Fitch (1985), Gonnet and Gruntz (1993), Harper et al. (1991), 
Heck (1993), Hehl et al. (1992), Jenks and Sutor (1992), MacCallum and Wright 
(1991), Maeder (1991), Pavelle and Wang (1985), Rand (1984), Rayna (1987), 
Rich et al. (1988), Simon (1990), Wolfram (1991). 

There were or are several series of conferences in computer algebra and 
related topics, e.g., SYMSAC, EUROSAM, EUROCAL, ISSAC, AAECC, DISCO, 
as well as single conferences and workshops organized for particular areas or 
applications. We list some of the most important ones: Bobrow (1968), Bronstein 
(1993), Buchberger (1985a), Calmet (1982, 1986), Caviness (1985), Char (1986), 
Chudnovsky and Jenks (1990), Cohen (1991), Cohen and van Gastel (1992), 
Cohen et al. (1993), Davenport (1989), Della Dora and Fitch (1989), Fateman 
(1977), Fitch (1984), Floyd (1966), Gianni (1989), Gonnet (1989), Grossman 
(1989), Huguet and Poli (1989), JanBen (1987), Jenks (1974, 1976), Kaltofen 
and Watt (1989), Leech (1970), Levelt (1995), Lewis (1979), Mattson and Mora 
(1991), Mattson et al. (1991), Miola (1993), Mora (1989), Mora and Traverso 
(1991), Ng (1979), Pavelle (1985), Petrick (1971), Sakata (1991), Shirkov et al. 
(1991), van Hulzen (1983), von zur Gathen and Giesbrecht (1994), Wang (1981, 
1992), Watanabe and Nagata (1990), Watt (1991), Yun (1980). 

Periodical publications specializing in computer algebra are Journal of Sym
bolic Computation (JSC), editor B. F. Caviness (formerly B. Buchberger), pub
lished by Academic Press; Applicable Algebra in Engineering, Communica
tion, and Computing (AAECC), editor J. Calmet, published by Springer-Verlag; 
SIGSAM Bulletin, editor R. Grossman, published by ACM Press. 



2 Arithmetic 
in basic domains 

2.1 Integers 

For the purposes of exact algebraic computation integers have to be represented 
exactly. In practice, of course, the size of the machine memory bounds the 
integers that can be represented. But it is certainly not acceptable to be limited 
by the word length of the machine, say 232 . 

Definition 2.1.1. Let f3 :::: 2 be a natural number. A f3-digit is an integer b in 
the range -f3 < b < f3. Every positive integer a can be written uniquely as 

",11-1 f3i C ",1 • f3 d" d a = Li=O ai lor some n E n, aO, ... , an-1 nonnegative - Iglts an al1 -1 

> O. In the positional number system with basis (or radix) f3 the number a 
is represented by the uniquely determined list a(f3) = [+, ao, ... , a l1 -11. In an 
analogous way a negative integer a is represented by a(f3) = [-, ao, ... ,an-d, 

where a = L;l~ci (-ai )f3i, n E N, ao, .... (/11-1 nonnegative f3-digits and al1 -1 

> O. The number 0 is represented by the empty list [ ]. 
If the integer a is represented by the list [±, ao, .... an-d, then Lf3(a) := n 

is the length of a w.r.t. f3. L f3 (O) := O. 

So, for example, in the positional number system with basis 10000, the 
integer 2000014720401 is represented by the list [+,401,1472,0,2]. By rep
resenting integers as lists, we can exactly represent integers of arbitrary size. 
The memory needed can be allocated dynamically, "as the need arises." For all 
practical purposes we will choose f3 such that a f3-digit can be stored in a single 
machine word. 

In measuring the complexity of arithmetic operations on integers we will 
often give the complexity functions as functions of L f3, the length of the integer 
arguments of the operations W.r.t. to the basis f3 of the number system, i.e., we 
decompose Z as 

ex; 

Z = UZ(I1) , 
i=O 

where Z(I1) = {a E Z I Lf3(a) = n}. Similarly, for algorithms taking two integers 
as inputs we decompose 

Z x Z = U Z(IIl.I1) ' 

1Il.I1El\lo 



2.1 Integers 27 

It is crucial to note that for two different radices fJ and y the associated 
length functions are proportional. So we will often speak of the length of an 
integer without referring to a specific radix. The proof of the following lemma 
is left as an exercise. 

Lemma 2.1.1. Let fJ and y be two radices for positional number systems in Z. 
a. LfJ(a) = 1l0gfJ(lal)J + I for a =I O. 
b. LfJ '" L y . 

For future reference we note that obviously the algorithm INT _SIGN for 
computing the sign ± I or 0 of an integer a takes constant time. So signs do not 
present a problem in integer arithmetic, and we will omit their computation in 
subsequent algorithms. 

In fact, we could also omit the sign bit in the representation of integers, 
and instead use non-positive digits for representing negative numbers. This, 
of course, means that we need a new algorithm for determining the sign of 
an integer. Such an algorithm is developed in the exercises and in fact one can 
prove that this determination of the sign, although in the worst case proportional 
to the length of the integer, in average is only proportional to a constant. 

Addition 

The "classical" addition algorithm INT _SUMC considers both inputs a and b as 
numbers of equal length (with leading zeros, if necessary) and adds correspond
ing digits with carry until both inputs are exhausted. So fINLsuMc(m, n) '" 
max(m, n), where m and n are the lengths of the inputs. A closer analysis, 
however, reveals that after the shorter input is exhausted the carry has to be 
propagated only as long as the corresponding digits of the longer input are 
fJ - I or -fJ + I, respectively. This fact is used for constructing a more effi
cient algorithm, whose computing time depends only linearly on the length of 
the shorter of the two summands. We assume that an algorithm DIGIT _SUM 
is available, which adds the contents of two machine words, i.e., two fJ-digits 
a, b, yielding a digit c and a digit d E {-I, 0, I}, such that (a + b)(fJ) = [c, d]. 
Obviously the complexity function of DIGIT _SUM is constant. 

First, let us simplify our problem by assuming that the two integers to be 
added have the same sign. 

Algorithm INT_SUMl(in: a, b; out: c); 
[a, b are integers, sign(a) = sign(b) =I 0; c = a + b] 
1. [the sign of c is initialized, the signs of a, b are removed] 

c := CONS(FIRST(a), [ D; e := 0; a' := REST(a); b' := REST(b); 
2. [while a' and b' are not exhausted, add successive digits of a' and b'] 

while a' =I [ ] and b' =I [ ] do 
{dl := FIRST(a'); a' := REST(a'); d2 := FIRST(b'); b' := REST(b'); 
(d, f) := DIGILSUM(dl, d2); 
if f =I 0 
then (d, f') := DIGILSUM(d, e) [f' = 0 in this case] 



28 

else (d, f) := DIGILSUM(d, e); 
c := CONS(d, c); e := f}; 

Arithmetic in basic domains 

3. [the carry is propagated, until it disappears or both numbers are exhausted] 
if a' = [ ] then g := b' else g := a' ; 
while e # 0 and g # [ ] do 

{dl := FIRST(g); g := REST(g); 
(d, e) := DIGILSUM(d1, e); c := CONS(d, c)}; 

4. if e = 0 
then {c := INV(c); c := APPEND(c, g)} 
else {c := CONS(e, c); c := INV(c)}; 
return. 

Lemma 2.1.2. For a, b E Z with sign(a) = sign(b) # 0, INLSUMI correctly 
computes a + b. 

Proof We only consider the case a, b > O. For a, b < 0 the correctness can 
be proved analogously. Let m = L{J(a), n = L{J(b), w.l.o.g. m .:s n. After the 
"while" loop in step (2) has been executed i times, 0 .:s i .:s m, we have 

a + b = INV(c) + f3i . e + f3i . (a' + b' ) . 

So when step (2) is finished, 

a + b = INV(c) + 13m . e + 13m . b' . 

After the "while" loop in step (3) has been executed j times, 0 .:s j .:s n - m, 
we have 

a+b=INV(c)+f3m+J .e+f3m+J ·b' . 

When the carry e becomes 0 we only need to combine INV(c) and b' . Otherwise 
b' = [ ] after n - m iterations and we only need to add e as the highest digit to 
the result. 0 

Theorem 2.1.3. The maximum, minimum, and average complexity functions 
of INLSUMI are proportional to max(m, n), min(m, n), and min(m, n), respec
tively, where m and n are the f3-lengths of the inputs. 

Proof The maximum and minimum complexity functions for INLSUMI are 
obvious. So let us consider the average complexity. 

Let a, b be the inputs of INLSUMl, and let m = L(a), n = L(b). Obviously 
the complexity of steps (1), (2) is proportional to min(m, n). We will show that 
the average complexity function of step (3) is constant. This will imply that the 
length of c in step (4) will be proportional to min(m, n), and therefore also the 
average complexity of this step is proportional to min(m, n). 

W.l.o.g. assume that the inputs are positive and that m < n. Let k = n - m. 
If 13 is the radix of the number system, then there are (13 - l)f3k-l possible 



2.1 Integers 29 

assignments for the k highest digits of b. The carry has to be propagated exactly 
up to position m + i of b for i < k, if the digits in positions m + 1, ... , m + i-I 
of b all are 13 - 1 and the digit in position m + i is less than 13 - 1. So there are 
(13 - 1)2 f3 k- i -1 possible assignments of the digits in positions m + 1, ... , m + k 
of b, for which exactly i iterations through step (3) are required. There are 13 - 2 
assignments for which the carry is propagated exactly up to position m + k, and 
for one assignment the propagation is up to position m + k + 1. Summation over 
the total time for all these assignments yields 

k-I I> . (13 - 1)2 f3 k- i -I + k . (13 - 2) + (k + 1) . 1 
i=1 

= (13 k - 13k + k - 1) + 13k - k + I = 13k . 

So the average complexity for step (3) is 

13 k = _13_ < 2 
(13 - l)f3k-1 13 - 1 - , 

i.e., it is constant. o 

By similar considerations one can develop an algorithm INT _SUM2 for 
adding two nonzero integers with opposite signs in maximum, minimum, and 
average time proportional to the maximum, minimum, and minimum of the 
lengths of the inputs, respectively (see Exercises). The combination of these 
two algorithms leads to an addition algorithm INT _SUM for adding two arbi
trary integers. This proves the following theorem. 

Theorem 2.1.4. There is an addition algorithm INT _SUM for integers with max
imum, minimum, and average complexity functions proportional to max(m, n), 
min(m, n), and min(m, n), respectively, where m and n are the f3-1engths of the 
inputs. 

The algorithm INT -.NEG for computing the additive inverse -a of an integer 
a is obviously of constant complexity. The difference a - b of two integers a and 
b can be computed as INLSUM(a, INT -.NEG(b)). So the algorithm INLDIFF 
for computing the difference of two integers has the same complexity behaviour 
as INT _SUM. The algorithm INT _ABS for computing the absolute value of an 
integer is either of constant complexity or proportional to the length of the input, 
depending on which representation of integers we use. 

Multiplication 

Now we approach the question of how fast we can multiply two integers. Here 
we can give only a first answer. We will come back to this question later in 
Sect. 3.3. The "classical" multiplication algorithm INT -.MULTC proceeds by 



30 Arithmetic in basic domains 

multiplying every digit of the first input by every digit of the second input and 
adding the results after appropriate shifts. The complexity of INT _MULTC is 
proportional to the product of the lengths of the two inputs, and if the inputs are 
of the same length n, then the complexity of INLMULTC is proportional to n2 . 

A faster multiplication algorithm has been discovered by A. Karatsuba and 
Yu. Of man (1962). The basic idea in the Karatsuba algorithm is to cut the two 
inputs x, y of length .:::: n into pieces of length .:::: n /2 such that 

x = a . f311/2 + b, y = c . f311/2 + d . (2.1.1 ) 

A usual divide-and-conquer approach would reduce the product of two integers 
of length n to four products of integers of length n /2. The complexity of this 
algorithm would still be O(n2). Karatsuba and Of man, however, noticed that 
one of the four multiplications can be dispensed with. 

x . y = acf311 + (ad + bC)f311/2 + bd 

= acf311 + «a + b)(c + d) - ac - bd) f311/2 + bd . 
(2.1.2) 

So three multiplications of integers of length n /2 and a few shifts and additions 
are sufficient for computing the product x . y. 

In the Karatsuba algorithm INT ~ULTK we neglect the signs of the inte
gers. Their handling is rather obvious and only obscures the statement of the 
algorithm. 

Algorithm INT_MULTK(in: x, y; out: z); 
[x, y integers; z = X· y] 
n := max(LENGTH(x), LENGTH(y»; 
if n = 1 then {z := INLMULTC(x, y); return}; 
if n is odd then n : = n + 1; 
(a, b) := (DEL(n/2, x), INIT(n/2, x); 
(c, d) := (DEL(n/2, y), INIT(n/2, y); 
u := INT~ULTK(a + b, c + d); 
v := INLMULTK(a, c); 
w := INT ~ULTK(b, d); 
z := vf311 + (u - v - w)f311/2 + w; 
return. 

Theorem 2.1.5. The complexity of the Karatsuba algorithm INT _MULTK is 
O(nlog23), where n is the length of the inputs. 

Proof Initially we assume that n is a power of 2. Let x and y be integers of 
length not exceeding n, and let a, b, c, d be the parts of x, y as in (2.1.1). During 
the execution of the Karatsuba algorithm we have to compute the products 
(a + b)(c + d), ac, bd. All the other operations are additions and shifts, which 
take time proportional to n. The factors in ac and bd are of length not exceeding 



2.1 Integers 31 

n12, whereas the factors in (a +b)(c + d) might be of length nl2 + 1. We write 
the factors as 

(2.1.3) 

where al and CI are the leading digits of a + band c + d, respectively. Now 

(2.1.4) 

In the product bldl the factors are of length not exceeding n12. All the other 
operations are multiplications by a single digit or shifts, and together their com
plexity is proportional to n. 

So if we denote the time for multiplying two integers of length n by M(n), 
we get the recursion equation 

M(n) = { ~M(nI2) + kn 
for n = 1, 

for n > 1. 
(2.1.5) 

Here we have taken the -constant k to be a bound for the complexity of mul
tiplication of digits as well as for the constant factor in the linear complexity 
functions of the addition and shift operations. The solution to (2.1.5) is 

(2.1.6) 

which can easily be verified by induction. This proves the assertion for all n 
which are powers of 2. 

Finally let us consider the general case, where n is an arbitrary positive inte
ger. In this case we could, theoretically, increase the length of the inputs to the 
next higher power of 2 by adding leading zeros. The length of the multiplicands 
is at most doubled in this process. In the asymptotic complexity, however, the 
factor 2 is negligible, since (2n)log23 is O(nlog23). D 

The Karatsuba algorithm is practically used in computer algebra systems. In 
fact, the idea of Karatsuba and Of man can be generalized to yield a multipli
cation algorithm of complexity n l+E for any positive real E. We do not go into 
details here, but rather refer to the excellent exposition in Knuth (1981: sect. 
4.3.3). We will, however, describe a theoretically even faster method, based on 
the fast Fourier transform (see Sect. 3.3). For these faster methods, however, 
the overhead is so enormous, that a practical importance seems unlikely. 

That the complexity of multiplication depends mainly on the smaller of the 
two inputs is explained by the following theorem. 

Theorem 2.1.6. Let 1M be a multiplication algorithm for integers with com
plexity tit(m) for multiplying two integers of lengths not greater than m, such 



32 Arithmetic in basic domains 

that m :S tit(m). Then there exists a multiplication algorithm 1M' with 

+ { (min) . tit(n) 
tiM/em, n) :S + 

(nlm) . tIM(m) 

for inputs of lengths m and n, respectively. 

for m ::: n, 

for m < n 

Proof Let a, b be the integers to be multiplied, and m = L(a), n = L(b). 
W.l.o.g. assume that m ::: n. 1M' decomposes a into pieces aQ, ... , aJ-1 of 
length::::: n, such that a = L~:b ai . f3 ni . The number of pieces can be chosen as 
1= rmlnl ::::: (min) + 1. Now each piece ai is multiplied by b by algorithm 1M 
and finally these partial results are shifted and added. Thus for some positive 
constant e 

+ (m) + (m ) + tiM/em, n)::::: - + 1 . t'M(n) + - + 1 . en :S (min) . tIM(n) , 
n n 

which completes the proof. D 

Division 

The problem of integer division consists of computing the uniquely determined 
integral quotient, q = quot(a, b), and remainder, r = rem(a, b), for a, b E Z, 
b =f. 0, such that 

a = q. b + rand { 0 ::::: r < Ibl for a ::: 0, 

-Ibl < r ::::: 0 for a < o. 

If lal < f3j . Ibl for j EN, then q has at most j digits. j will be approximately 
L(a) - L(b) + 1. For determining the highest digit in the quotient one certainly 
does not need more than linear time in L(b), even if all the possible digits are 
tried. So we get 

Theorem 2.1.7. There is an algorithm INLDIV for computing the quotient and 
remainder of two integers a, b of lengths m, n, respectively, m ::: n, whose 
complexity ti~LDIv(m, n) is O(n . (m - n + 1)). 

In fact we need not really try all the possible digits of the quotient, but 
there is a very efficient algorithmic way of "guessing" the highest digit. Such 
a method has been described in Pope and Stein (1960), where the following 
theorem is proved. See also Collins et al. (1983). 

Theorem 2.1.8. Let a(/3) = [+, aQ, ai, ... , am-d, b(/3) = [+, bQ, ... , bn-d, 

f3 j b ::::: a < f3j+ 1b for j E N, m ::: nand bn- I ::: Lf312J. If q is maximal in 
Z with qf3 j b ::::: a and q* = L(an+jf3 + an+j_I)lbn-IJ (we set ai = 0 for i 
::: L(a)), then q ::::: q* ::::: q + 2. 



2.1 Integers 33 

By a successive application of Theorem 2.1.8 the digits in the quotient q 
of a and b can be computed. Let m = L(a), n = L(b), 0 :::: a, 0 < b, and 
bn- I ~ L.B/2J. Then a < f3m- n+1 b, so q has at most m - n + 1 digits. First the 
highest digit qm-n is determined from the guess q*. We need at most 2 correction 
steps of subtracting 1 from the initial guess. Collins and Musser (1977) have 
shown that the probabilities of q* being qm-Il + i for i = 0,1,2 are 0.67,0.32, 
and 0.01, respectively. Now a - f3 m- lI qm_llb < 13m- li b and the process can be 
continued to yield qm-n-I and so on. 

The condition bn- I ~ Lf3/2J can be satisfied by replacing a and b by a' = 
a· d, b' = b· d, respectively, where d = Lf3/(bll - 1 + 1)J. This does not change 
the quotient q and rem(a, b) = (a' - q . b')/d. 

These considerations lead to a better division algorithm INT ~IV, the Pope
Stein algorithm. The theoretical complexity function of the Pope-Stein algo
rithm, however, is still n(m - n + 1), as in Theorem 2.1.7. 

In Aho et al. (1974), the relation of the complexity of integer multiplication, 
division, and some other operations is investigated. It is shown that the com
plexity functions for multiplication of integers of length :::: n and division of 
integers of length :::: 2n by integers of length :::: n are proportional. 

Conversion 

We assume that we have the arithmetic operations for integers in f3-representation 
available. There are two types of conversions that we need to investigate: 
(1) conversion of an integer a from v-representation into f3-representation, and 
(2) conversion of a from f3-representation into v-representation. 

It is quite obvious how we can do arithmetic with radix f3 i , if we can do 
arithmetic with radix 13. So in conversion problem 1 we may assume that V < 13, 
i.e., V is a f3-digit. If a(y) = [±, ao, ... , all-d, then we get a(f3) by Horner's 
rule 

a = ( ... «an-I V + all -2)V + all -3)V + ... + a])v + ao . 

Every multiplication by V takes time linear in the length of the multiplicand, and 
every addition of a V-digit ai takes constant time. So the maximum complexity 
of conversion of type 1 is proportional to 

n-I L:> "-' n2 = L y (a)2 . 
i=1 

Conversion problem 2 can be solved by successive division by V = V(f3). 
Every such division step reduces the length of the input by a constant, and takes 
time proportional to the length of the intermediate result, i.e., the maximum 
complexity of conversion of type 2 is proportional to L f3 (a)2 . 



34 Arithmetic in basic domains 

Computation of greatest common divisors 

Z is a unique factorization domain. So for any two integers x, y which are 
not both equal to 0, there is a greatest common divisor (gcd) g of x and y. g 
is determined up to multiplication by units, i.e., up to sign. Usually we mean 
the positive greatest common divisor when we speak of "the greatest common 
divisor." For the sake of completeness let us define gcd(O, 0) := O. 

But in addition to mere existence of gcds in Z, there is also a very efficient 
algorithm due to Euclid (~ 330-275 B.C.) for computing the gcd. This is proba
bly the oldest full fledged non-trivial algorithm in the history of mathematics. In 
later chapters we will provide an extension of the scope of Euclid's algorithm to 
its proper algebraic setting. But for the time being, we are just concerned with 
integers. 

Suppose we want to compute gcd(x, y) for x, yEN. We divide x by y, i.e., 
we determine the quotient q and the remainder r of x divided by y, such that 

x = q . y + r, with r < y . 

Now gcd(x, y) = gcd(y, r), i.e., the size of the problem has been reduced. 
This process is repeated as long as r #- O. Thus we get the so-called Euclidean 
remainder sequence 

with r1 = x, r2 = y, r; = rem(r;_2, r;-d for 3 :s i :s n+ I and rll +1 = O. Clear
ly gcd(x, y) = r II. Associated with this remainder sequence we get a sequence 
of quotients 

such that 
r; = q; . r;+1 + r;+2 for 1:s i :s n - 1 . 

Thus in Z greatest common divisors can be computed by the Euclidean algorithm 
INT_GCDE. 

Algorithm INT _GCDE(in: x, y; out: g); 
[x, yare integers; g = gcd(x, y), g ~ 0] 
1. r':= INLABS(x); r" := INLABS(y); 
2. while r" #- 0 do 

{(q, r) := INLDIV(r', r"); 
r' := r"; r" := r}; 

3. g:= r'; 
return. 

The computation of gcds of integers is an extremely frequent operation in any 
computation in computer algebra. So we must carefully analyze its complexity. 
G. Lame proved already in the 19th century that for positive inputs bounded by n 
the number of division steps in the Euclidean algorithm is at most Ilog¢ ( J5n) 1 
- 2, where ¢ = ~(1 + J5). See Knuth (1981: sect. 4.5.3). 



2.1 Integers 35 

Theorem 2.1.9. Let II, 12 be the lengths of the inputs x, y of INLGCDE, and 
let k be the length of the output. Then t1tLGCDE(/I, 12, k) is O(min(/I,/2)' 
(max(ll, 12) - k + I). 

Proof Steps (1) and (3) take constant time. So it remains to investigate the com
plexity behaviour of step (2), (i (II, 12, k). 

Let rl, r2, ... , rn+1 be the remainder sequence and ql, ... ,qn-I the quotient 
sequence computed by INLGCDE for the inputs x, y. If Ix I < I y I then the first 
iteration through the loop in (2) results in a reversal of the input pair. In this 
case the first iteration through the loop takes time proportional to min(ll' 12). So 
in the sequel we assume that Ixl :::: l.vl > O. By Theorem 2.1.7 

ti (11,/2, k) :5 '~ L(qi )L(ri+d .:s L(r1) . (i! L(qi + 1) + L(qn-d) . (2.1.7) 
i=1 i=1 

qi :::: 1 for 1 .:s i .:s n - 2 and qn-I :::: 2. By Exercise 5 

n-2 n-2 
L L(qi + I) + L(ql1-l) "'-' L( ql1-1 . n (qi + 1)) . 
i=1 i=1 

(2.1.8) 

For 1 .:s i .:s n - 2 we have ri+2(qi + 1) < ri+lqi + ri+2 = ri, and therefore 
qi + 1 < ri/ ri+2. Furthermore ql1-1 = rl1 -l/rn. Thus 

(2.1.9) 

Combining (2.l.7), (2.1.8), and (2.l.9) we finally arrive at 

D 

The greatest common divisor g of x and y generates an ideal (x, y) in Z, 
and g E (x, y). So in particular g can be written as a linear combination of x 
and y, 

g=u·x+v·y. 

These linear coefficients can be computed by a straightforward extension of 
INT _GCDE, the extended Euclidean algorithm INT _GCDEE. Throughout the al
gorithm INT _GCDEE the invariant 



36 Arithmetic in basic domains 

r' = u' . x + v' . y and r" = u" . X + v" . y 

is preserved. 

Algorithm INT_GCDEE(in: x, y; out: g, u, v); 
[x, y are integers; g = gcd(x, y) = u . x + v . y, g :::: 0] 
1. (r', u', v') := (INLABS(x), INLSIGN(x), 0); 

(r", u", v") := (INLABS(y), 0, INLSIGN(y»; 
2. while r" #- 0 do 

{q := INLQUOT(r', r"); 
(r, u, v):= (r', u', v') - q. (r", u", v"); 
(r', u', v') := (r", u", v"); 
(r", u", v") := (r, u, v);} 

3. (g, u, v) := (r', u', v'); 
return. 

Exercises 

1. Prove Lemma 2.1.1. 
2. Assume that in the representation of integers as lists we omit the 

information about the sign, and we use nonnegative digits for positive 
integers and nonpositive digits for negative numbeffi. Design an algorithm 
which computes the sign of an integer in this representation in constant 
average time. 

3. Develop an algorithm INT _SUM2 for adding two nonzero integers of 
different sign with average complexity proportional to the minimum of the 
lengths of the inputs. 

4. Implement the multiplication algorithm of Karatsuba and Of man and 
determine the trade-off point between the "classical" algorithm INT _MULTC 
and INT ~ULTK. 

5. Let aI, a2, ... be an infinite sequence of integers with a; ::: 2 for 
all i. Define the functions f, g from N to lR as fen) := L~=l L(a;), 
g(n) := L(07=1 a;). Prove that fen) ~ g(n) by uniform constants 
independent of the a; 's, i.e., for some c, C E lR+, c· fen) ::: g(n) ::: C . fen) 
for all n EN. 

6. Design a division algorithm for positive integers based on Theorem 2.1.8 for 
guessing the digits in the quotient. Presuppose that there is an algorithm for 
determining L(a,B + b)/cJ for ,B-digits a, b, c, i.e., an algorithm for dividing 
an integer of length 2 by a digit. Many computers provide an instruction for 
dividing a double-precision integer by a single precision integer. 

7. Prove that the outputs of INT _OCDEE are no larger than the two inputs. 
8. Let a, b, a', b', a", b" be positive integers such that a'lb' ::: alb::: a" Ib", 

and let q = quot(a, b), q' = quot(a', b'), q" = quot(a", b"), r' = rem(a', b'). 
Prove: If q' = q" and r' > 0, then 

b' b b" 
------ > ----- > ----~
a' - q'b' - a - qb - a" - q"b" 



2.2 Polynomials 

9. Based on Exercise 8 devise an algorithm which computes the remainder 
sequence of two arbitrarily long integers x, y using only divisions by single 
digits. (Such an algorithm is originally due to D. H. Lehmer (1938).) 

2.2 Polynomials 

37 

We consider polynomials over a commutative ring R in finitely many variables 
XI, ... , Xn, i.e., our domain of computation is R[XI, ... , xn]. Before we can 
design algorithms on polynomials, we need to introduce some notation and 
suitable representations. 

Representations 

A representation of polynomials can be either recursive or distributive, and it can 
be either dense or sparse. Thus, there are four basically different representations 
of multivariate polynomials. 

In a recursive representation a nonzero polynomial p(XI, ... ,xn) is viewed 
as an element of (R[XI, ... , xn-d)[xll ], i.e., as a univariate polynomial in the 
main variable Xn, 

m 

p(xI, ... ,Xn)=LPi(XI, ... ,xll-dx~, with Pm#-O. 
i=O 

In the dense recursive representation P is represented as the list 

where (Pi)(dr) is in tum the dense recursive representation of the coefficient 
Pi(XI, ... , Xn-I). If n = I then the coefficients Pi are elements of the ground 
ring R and are represented as such. The dense representation makes sense if 
many coefficients are different from zero. On the other hand, if the set of sup
port of a polynomial is sparse, then a sparse recursive representation is better 
suited, i.e., 

k 
P(XI, ... , xn) = LPi (XI, ... , Xn-I)X~j , 

i=O 

eo > ... > ek and Pi #- 0 for 0::::: i ::::: k , 

is represented as the list 

Again, in the base case n = I the coefficients Pi are elements of R and are 
represented as such. 

In a distributive representation a nonzero polynomial P(XI, ... , xn) is viewed 



38 Arithmetic in basic domains 

as an element of R[XI, ... , xn], i.e., a function from the set of power products in 
. t R A ( . .) f d./1 jn XI, ... , XI1 ill 0 . n exponent vector JI, ..• , JI1 0 a power pro uct xI ... XI1 

is mapped to a coefficient in R. In a dense distributive representation we need 
a bijection e: N ----+ N3. A polynomial 

r 
( ) " ,e(i) p XI, ... , X" = LGiX with ar =I- 0 

i=O 

is represented as the list 

P(dd) = [a r • ...• ao] . 

A sparse distributive representation of 

s 

( ) " e(k) P XI. "',Xn = Laix ' with Gi =I- 0 for 0:::: i :::: s 
i=O 

is the list 
P(sd) = [e(koL ao. "', e(kJ. asJ . 

Which representation is actually employed depends of course on the algo
rithms that are to be applied. In later chapters we will see examples for algo
rithms that depend crucially on a recursive representation and also for algorithms 
that need a distributive representation. However, only very rarely will there be 
a need for dense representations in computer algebra. If the set of support of 
multivariate polynomials is dense, then the number of terms even in polynomials 
of modest degree is so big, that in all likelihood no computations are possible 
any more. 

In the sequel we will mainly analyze the complexity of operations on poly
nomials in recursive representation. So if not explicitly stated otherwise, the 
representation of polynomials is assumed to be recursive. 

Addition and subtraction 

The algorithms for addition and subtraction of polynomials are obvious: the coef
ficients of like powers have to be added or subtracted, respectively. If P and q are 
n-variate polynomials in dense representation, with max(degxi (p). degxi (q)) :::: d 
for 1 :::: i :::: n, then the complexity of adding p and q is O(A(p, q) . (d + 1)11), 
where A (P. q) is the maximal time needed for adding two coefficients of p 
and q in the ground ring R. If P and q are in sparse representation, and t is 
a bound for the number of terms X;11 with nonzero coefficient in p and q. for 
1 :::: i :::: n, then the complexity of adding p and q is O(A(p, q) . tn). 



2.2 Polynomials 39 

Multiplication 

In the classical method for multiplying univariate polynomials p(x) = 2.::r=o Pixi 

and q(x) = 2.::1=0 qjX j the formula 

m+lI( ) 
p(x) . q(x) = 2.:: 2.:: Pi . qj xl 

1=0 i+j=1 
(2.2.1) 

is employed. If P and q are n-variate polynomials in dense representation with d 
as above, then the complexity of mUltiplying P and q is O(M(p, q). (d + 1)211), 
where M (p, q) is the maximal time needed for multiplying two coefficients of 
P and q in the ground ring R. Observe that (d + 1)" is a good measure of the 
size of the polynomials, when the size of the coefficients is neglected. 

As for integer multiplication one can apply the Karatsuba method. That is, 
the multiplicands P and q are decomposed as 

p(x) = PI (x) . x[d/2] + po(x), q(x) = ql (x) . x[d/2[ + qo(x) , 

and the product is computed as 

p(x) . q(x) = PI . ql . x 2[d/2[ 

+ (PI + po) . (ql + qo) - PI . ql - Po . qo) . x[d/2] + Po . qo . 

Neglecting the complexity of operations on elements of the ground ring R, we 
get that the complexity of multiplying P and q is O«d + 1)" log2 3). 

For mUltiplying the sparsely represented polynomials p(x) = 2.:::=0 Pixei 

and q(x) = 2.::J=oqjX fJ , one basically has to (I) compute P . qjxfJ for j = 
0, ... , t, and (2) add this to the already computed partial result, which has 
roughly (j - 1)t terms, if t « deg(p), deg(q). So the overall time complexity 
of mUltiplying polynomials in sparse representation is 

t 
2.::(M(p,q) ·t+(i -l)t) ~ M(p,q) ·t3 . 
i=1 ~ '--..-' 

(I) (2) 

Division 

First let us assume that we are dealing with univariate polynomials over a 
field K. If b(x) is a non-zero polynomial in K [x], then every other polynomial 
a(x) E K[x] can be divided by b(x) in the sense that one can compute a quotient 
q(x) = quot(a, b) and a remainder rex) = rem(a, b) such that 

a(x) = q(x) . b(x) + rex) and (r(x) = ° or deg(r) < deg(b». (2.2.2) 

The quotient q and remainder r in (2.2.2) are unique. The algorithm POLDIVK 



40 Arithmetic in basic domains 

computes the quotient and remainder for densely represented polynomials. It 
can easily be modified for sparsely represented polynomials. 

Algorithm POL_DIVK(in: a, b; out: q, r); 
[a, b E K[x], b #- 0; q = quot(a, b), r = rem(a, b). a and b are assumed to be 
in dense representation, the results q and r are likewise in dense representation] 
1. q:= [ ]; a' := a; c := 1c(b); m := deg(a'); n := deg(b); 
2. while m ~ n do 

{d := 1c(a')jc; q := CONS(d, q); a' := a' - d . x m- n . b; 
for i = 1 to min{m - deg(a') - 1, m - n} do q := CONS(O, q); 
m := deg(a')}; 

3. q:= INV(q); r := a'; return. 

Theorem 2.2.1. Let a(x), b(x) E K[x], b #- 0, m = deg(a), n = deg(b), 
m ~ n. The number of field operations in executing POLDIVK on the inputs a 
and b is O«n + 1)(m - n + 1)). 

Proof The "while"-loop is executed m - n + 1 times. The number of field 
operations in one pass through the loop is O(n + 1). D 

The algorithm POLDIVK is not applicable any more, if the underlying 
domain of coefficients is not a field. In this case, the leading coefficient of a 
may not be divisible by the leading coefficient of b. Important examples of such 
polynomial rings are Z[x] or multivariate polynomial rings. In fact, there are no 
quotient and remainder satisfying Eq. (2.2.2). However, it is possible to satisfy 
(2.2.2) if we allow to normalize the polynomial a by a certain power of the 
leading coefficient of b. 

Theorem 2.2.2. Let R be an integral domain, a(x), b(x) E R[x], b #- 0, and 
m = deg(a) ~ n = deg(b). There are uniquely defined polynomials q(x), rex) 
E R[x] such that 

1c(b)m-n+l . a(x) = q(x) . b(x) + rex) and 

(r(x) = ° or deg(r) < deg(b)) . 
(2.2.3) 

Proof R being an integral domain guarantees that multiplication of a polynomial 
by a non-zero constant does not change the degree. 

For proving the existence of q and r we proceed by induction on m - n. For 
m - n = ° the polynomials q(x) = 1c(a), rex) = 1c(b) . a -1c(a) . b obviously 
satisfy (2.2.3). 

Now let m - n > 0. Let 

c(x) := lc(b) . a(x) - xm- n ·lc(a) . b(x) and m':= deg(c) . 



2.2 Polynomials 41 

Then m' < m. For m' < n we can set q' := 0, r := lc(b)m-n . c and we get 
lc(b)m-n . c(x) = q'(x) . b(x) + r(x). For m' ::: n we can use the induction 
hypothesis on c and b, yielding ql ,rl such that 

lc(b)m'-n+1 . c = ql . b + rl and (rl = 0 or deg(rd < deg(b)) . 

Now we can multiply both sides by lc(b)m-m'-I and we get 

lc(b)m-n . c(x) = q'(x) . b(x) + r(x), where r = 0 or deg(r) < deg(b) . 

Back substitution for c yields (2.2.3). 
For establishing the uniqueness of q and r, we assume to the contrary that 

both ql, rl and q2, r2 satisfy (2.2.3). Then ql ·b+rl = q2 ·b+r2, and (ql -q2)·b 
= r2-rl. Forql #- q2 we would have deg«ql-q2)·b) ::: deg(b) > deg(rl-r2), 
which is impossible. Therefore ql = q2 and consequently also rl = r2. D 

Definition 2.2.1. Let R, a(x), b(x), m, n be as in Theorem 2.2.2. Then the 
uniquely defined polynomials q(x) and r(x) satisfying (2.2.3) are called the 
pseudoquotient and the pseudoremainder, respectively, of a and b. We write 
q = pquot(a, b), r = prem(a, b). 

Algorithm POL_DIVP(in: a, b; out: q, r); 
[a, bE R[x], b #- 0; q = pquot(a, b), r = prem(a, b). a and b are assumed to be 
in dense representation, the results q and r are likewise in dense representation] 
1. q:= [ ]; a' := a; c := lc(b); m := deg(a'); n := deg(b); 
2. c(I):= c; for i = 2 to m - n do c(i) := c . c(i-I); 
3. while m ::: n do 

{d := lc(a') . c(m-n); q := CONS(d, q); a' := c· a' -lc(a') . x m- n . b; 
for i = 1 to min{m - deg(a') - 1, m - n} do 

{q := CONS (0, q); a' := c· a'}; 
m := deg(a')}; 

4. q:= INV(q); r := a'; return. 

The algorithm POLDIVP computes the pseudoquotient and pseudoremainder 
of two polynomials over an integral domain R. 

Theorem 2.2.3. Let a(x), b(x) E Z[x], m = deg(a) ::: n = deg(b), 1 = 
L(max{llall oo , Ilbll oo }). Then the complexity of POLDIVP executed on a and b 
is O(m . (m - n + 1)2 ./2). 

Proof The precomputation of powers of c in step (2) takes time O«m - n)2/2). 
The "while"-loop is executed m - n + 1 times, if we assume that the drop 

in degree of a' is always 1, which is clearly the worst case. At the beginning of 
the i-th iteration through the loop, L(lla'lloo) is O(il). So the computation of d 



42 Arithmetic in basic domains 

takes time OU(m -n+ l-i)l2). The computation of a' takes time OU·m ·l2). 
The overall complexity is of the order 

m-n+1 
(m - n)2l2 + L i· m ·l2 "-' (m - n + 1)2 . m ·l2 . 

;=1 
D 

As we will see later, pseudoremainders can be used in a generalization of 
Euclid's algorithm. The following is an important technical requirement for this 
generalization. 

Lemma 2.2.4. Let R, a(x), b(x), m, n be as in Theorem 2.2.2. Let a, fJ E R. 
Then pquot(a . a, fJ . b) = fJm-n . a . pquot(a, b) and prem(a . a, fJ . b) = 
fJm-n+1 . a . prem(a, b). 

Evaluation 

Finally we consider the problem of evaluating polynomials. Let p(x) = Pnxn + 
... + Po E R[x] for a commutative ring R and a E R. We want to compute pea). 

Successive computation and addition of Po, PIX, ... , Pnxn requires 2n - 1 
multiplications and n additions in R. A considerable improvement is· obtained 
by Homer's rule, which evaluates P at a according to the scheme 

pea) = ( ... (Pn . a + Pn-d . a + ... ) . a + Po , 

requiring n multiplications and n additions in R. One get's Homer's rule from 
the computation of rem(p, X -a), by using the relation pea) = rem(p, X -a). In 
fact, pea) = rem(p, f)(a) for every polynomial f with f(a) = O. In particular, 
for f(x) = x 2 - a2 one gets the 2nd order Homer's rule, which evaluates the 
polynomial 

Ln/2j rn/21-1 
2· 2 ·+1 

p(x) = L P2jX J + L P2j+IX J 
j=O j=O 
~ ~--~~--~ 

p{even) 

at a as 

(even) « 2 ) 2 ) 2 + P = ... P2Ln/2j· a + P2(Ln/2j-l) . a + .... a Po , 

p(Odd) = « ... (P2rn/21-1 . a2 + P2rn/21-3) . a2 + ... ) . a2 + PI) . a . 

The second order Homer's rule requires n + 1 multiplications and n additions 
in R, which is no improvement over the 1st order Homer's rule. However, if 
both pea) and p( -a) are needed, then the second evaluation can be computed 
by just one more addition. 



2.3 Quotient fields 

Exercises 

1. Analyze the complexity of adding n-variate polynomials 
p, q E Z[Xl, ... , xn] in dense representation, where degx. (p), degx. (q) :::: d 
for 1 :::: i :::: n and L(max{liplioo, Iiq liooD = t. I I 

2. With the notation of Exercise 1, analyze the complexity of multiplying p 
and q by (2.2.1). 

3. Let a(x), b(x) E Q[x], b =1= 0, m = deg(a), n = deg(b), m ~ n, and 
L ( v) :::: D for every coefficient v of the numerator or denominator of a or b. 
What is the complexity of POLDIVK executed on a and b? 

4. Prove Lemma 2.2.4. 
5. What is the complexity of POLDIVP, if we count only the number of ring 

operations in R? 
6. Derive Homer's rule and the 2nd order Homer's rule from division by x - a 

and x 2 - a2• 

2.3 Quotient fields 

43 

Let D be an integral domain and Q(D) its quotient field. The arithmetic opera
tions in Q(D) can be based on (1.3.7). If D is actually a Euclidean domain, then 
we can compute normal forms of quotients by eliminating the gcd of the numer
ator and the denominator. We say that r E Q(D) is in lowest terms if numerator 
and denominator of r are relatively prime. The rational numbers Q = Q(Z) and 
the rational functions K (x) = Q (K [x]), for a field K, are important examples 
of such quotient fields. 

The efficiency of arithmetic depends on a clever choice of when exactly the 
gcd is eliminated in the result. In a classical approach numerators and denomi
nators are computed according to (1.3.7) and afterwards the result is transformed 
into lowest terms. P. Henrici (1956) has devised the fastest known algorithms 
for arithmetic in such quotients fields. The so-called Henrici algorithms for 
addition and multiplication of rl/r2 and sl/s2 in Q(D) rely on the following 
facts. 

Theorem 2.3.1. Let D be a Euclidean domain, rl, r2, Sl, S2 E D, gcd(rl, r2) = 
gcd(sl, S2) = 1. 
a. If d = gcd(r2, S2), r~ = r2ld, s~ = s2ld, 

then gcd(rls~ + slr~, r2s~) = gcd(rls~ + slr~, d). 
b. If dl = gcd(rl, S2), d2 = gcd(sl, r2), r; = rl I dl, r~ = r21 d2, s; = sJ! d2, 

s~ = s2ldl, 
then gcd(r; s; , r~s~) = 1. 

Algorithm QF _SUMH(in: r = (rl, r2), s = (Sl, S2); out: t = (tl, t2»; 
[r, s E Q(D) in lowest terms. t is a representation of r + s in lowest terms.] 
1. if rl = 0 then {t := s; return}; 

if Sl = 0 then {t := r; return}; 
2. d:= gcd(r2, S2); 



44 

3. if d = 1 
then {tl :=rls2+r2sl; t2 :=r2s2} 
else 

Arithmetic in basic domains 

{r~ := r2/d; s~ := S2/d; ti := rls~ + slr~; t~ := r2s~; 
if ti = 0 
then {tl := 0; t2 := I} 
else {e := gcd(ti, d); 

if e = 1 
then {tl := ti; t2 := t~} 
else {tl := tile; t2 := t~/e} } } 

return. 

Since the majority of the computing time is spent in extracting the gcd from 
the result, the Henrici algorithms derive their advantage from replacing one gcd 
computation of large inputs by several gcd computations for smaller inputs. 

Algorithm QF_MULTH(in: r = (rl' r2), S = (SI, S2); out: t = (tl, t2)); 
[r, S E Q(D) in lowest terms. t is a representation of r . S in lowest terms.] 
1. if rl = 0 or SI = 0 then {tl := 0; t2 := 1; return}; 
2. dl := gcd(rl, S2); d2 := gcd(sl, r2); 
3. if dl = 1 

then {r; := rl; s~ := S2} 
else {r; := rJ/dl; s~ := s2/dd; 
if d2 = 1 
then {si := SI; r~ := r2} 
else {s; := SJ/d2; r~ := r2/d2}; 

4 t · r's'· t· r's'· . 1·= I I' 2·= 2 2' 
return. 

Let us compare the complexities of the classical algorithm QF _SUMC versus 
the Henrici algorithm for addition in Q. We will only take into account the gcd 
computations, since they are the most expensive operations in any algorithm. 

Suppose r = rJ/r2, s = SI/S2 E Q and the numerators and denominators 
are bounded by n in length. In QF _SUMC we have to compute a gcd of 2 
integers of length 2n each. In QF _SUMH we first compute a gcd of 2 integers 
of length n each, and, if d = gcd(r2, S2) =j:. 1 and k = L(d), a gcd of integers 
of length 2n - k and k, respectively. We will make use of the complexity 
function for gcd computation stated in Theorem 2.1.9, i.e., t1tLGCD(/I, 12, k) is 
O(min(/I, 12) . (max(ll, 12) - k + 1)). 

If d = 1, then the computing time for the gcd in QF_SUMC is roughly 4n2, 

whereas the gcd in QF _SUMH takes time roughly n2 . SO QF _SUMH is faster 
than QF _SUMC by a factor of 4. 

Now let us assume that d =j:. 1, k = n/2, and e = 1. In this case the 
computation time for the gcd in QF_SUMC is 2n(2n - n/2) = 3n2 . The times 
for the gcd computations in QF _SUMH are n (n - n /2) = n 2/2 and (n /2) (3n /2) 
= 3n2 /4. So in this case QF _SUMH is faster than QF _SUMC by a factor of 12/5. 

The advantage of the Henrici algorithms over the classical ones becomes 



2.4 Algebraic extension fields 45 

even more pronounced with increasing costs of gcd computations, e.g., in mul
tivariate function fields like Q(Xj, ... , xn) = Q(Q[Xj, ... ,xnD. 

Whether we use the classical algorithms or the Henrici algorithms for arith
metic in Q(D), it is clear that arithmetic in the quotient field is considerably 
more expensive than the arithmetic in the underlying domain. So whenever pos
sible, we will try to avoid working in Q(D). In particular, this is possible in 
gcd computation and factorization of polynomials over the integers. 

Exercises 

1. Prove Theorem 2.3.1. 
2. Apply the classical and the Henrici algorithms for computing 

a. 1089/140 + 633/350 and 
b x3+x -x-I. x 2+5x+6 

. x 2-4 x 3-x2-x+l· 
3. Compare the classical and the Henrici algorithm for multiplication in Q in a 

similar way as we have done for addition. 
4. Conduct a series of experiments to find out about the mean increase in 

length in addition of rational numbers. 

2.4 Algebraic extension fields 

Let K be a field and a algebraic over K. Let f(x) E K[x] be the minimal 
polynomial of a and m = deg(f). For representing the elements in the algebraic 
extension field K(a) of K we use the isomorphism K(a) ~ K[x]/(f(x»). Every 
polynomial p(x) can be reduced modulo f(x) to some r(x) with deg(r) < m. 
On the other hand, two different polynomials r(x), s(x) with deg(r) , deg(s) < m 
cannot be congruent modulo f (x), since otherwise r - s, a non-zero polynomial 
of degree less than m, would be a multiple of f. Thus, every element a E K(a) 
has a unique representation 

a = ~m_jXm-j + ... + ajX + a~ + (f(x»), aj E K . 

a(x) 

We call a(x) the normal representation of a, and sometimes we also write a(a). 
From this unique normal representation we can immediately deduce that 

K(a) is a vector space over K of dimension m and {l, a, a 2, ... , a m - j } is a 
basis of this vector space. 

Consider, for instance, the field Q and let a be a root of x 3 - 2. Q(a) = 
Q[x]/(x3-2) is an algebraic extension field of Q, in which x 3 - 2 has a root, 

namely a, whose normal representation is x. So Q(a) = Q( V2) can be repre
sented as {a2x2 + ajX + ao I aj E Q}. In Q(a)[x] the polynomial x 3 - 2 factors 
into x 3 - 2 = (x - a)(x2 + ax + ( 2). 

Addition and subtraction in K (a) can obviously be carried out by simply 
adding and subtracting the normal representations of the arguments. The result 
is again a normal representation. Multiplication of normal representations and 



46 Arithmetic in basic domains 

subsequent reduction (i.e., remainder computation) by the minimal polynomial 
f(x) yields the normal representation of the product of two elements in K(a). 

If we assume that the complexity of field operations in K is proportional 
to 1, then the complexity for addition and subtraction in K(a) is Oem). The 
complexity of multiplication is dominated by the complexity of the reduction 
modulo f(x). A polynomial of degree < 2m has to be divided by a polynomial 
of degree m, i.e., the complexity of multiplication in K(a) is O(m2). 

The inverse a-I of a E K (a) can be computed by an application of the 
extended Euclidean algorithm E£UCLID (see Sect. 3.1) to the minimal poly
nomial f(x) and the normal representation a(x) of a. Since f(x) and a(x) are 
relatively prime, the extended Euclidean algorithm yields the gcd 1 and linear 
factors u(x), vex) E K[x] such that 

u(x)f(x) + v(x)a(x) = 1 and deg(v) < m . 

So vex) is the normal representation of a-I. 

For example, let Q(a) be as above, i.e., a a root of x 3 - 2. Let a, b E Q(a) 
with normal representations a(x) = 2x2 -x + 1 and b(x) = x +2, respectively. 
Then a + b = 2x2 + 3, a . b = rem(2x 3 + 3x2 - X + 2, x 3 - 2) = 3x2 - X + 6. 
For computing a-I we apply E£UCLID to x 3 - 2 and a(x), getting 

4~ (2x - 19)(x3 - 2) + 413 (_x2 + 9x + 5)a(x) = 1 . 

So a-I has the normal representation (-x2 + 9x + 5)/43. 
An algebraic extension K (a) over K with minimal polynomial f (x) is 

separable if and only if f (x) has no multiple roots or, in other words, f' (x) =1= o. 
In characteristic 0 every algebraic extension is separable. Let K (al) ... (an) be a 
multiple algebraic extension of K. So ai is the root of an irreducible polynomial 
fi(X) E K(al) ... (ai-d[x]. For every such multiple separable algebraic field 
extension there exists an algebraic element y over K such that 

i.e., every multiple separable algebraic extension can be rewritten as a simple 
algebraic extension. y is a primitive element of this algebraic extension. For an 
algorithmic determination of primitive elements we refer to Sect. 5.4. 

Exercises 

1. Let R be the ring Ql[xl/(f(x)), where f(x) = x 3 - x 2 + 2x - 2. Decide 
whether p(x) (or, more precisely, the equivalence class of p(x» has an 
inverse in R, and if so, compute p-l. 

a. p(x) = x 2 + X + 1, 
b. p(x) = x 2 + X - 2. 

2. Let Zs (a) be the algebraic extension of Zs by a root a of the irreducible 



2.4 Algebraic extension fields 

polynomial x 5 + 4x + 1. Compute the normal representation of (a . b)/c, 
where a = a 3 + a + 2, b = 3a4 + 2a2 + 4a, c = 2a4 + a 3 + 2a + 1. 

2.5 Finite fields 

Modular arithmetic in residue class rings 

47 

Every integer m generates an ideal (m) in Z. Two integers a, b are congruent 
modulo (m) iff a - bE (m), or in other words, mla - b. In this case we write 

a == b mod m or a ==mod m b . 

So obviously a and b are congruent modulo m if and only if they have the same 
residue modulo m. Since ==modm is an equivalence relation, we get a decompo
sition of the integers into equivalence classes, the residue classes modulo m. 

Let us consider the residue classes of integers modulo any positive integer m. 
In general, this is not a field, not even an integral domain, but just a commutative 
ring. This commutative ring is calle9 the residue class ring modulo m and it is 
denoted by Z/(m) or just Z/m. The residue class ring is a field if and only if the 
modulus m is a prime number. 

For the purpose of computation in such a residue class ring we need to 
choose representations of the elements. There are two natural representations 
for Z/m, namely as the residue classes corresponding to 

to, 1, ... , m - 1} (least non-negative representation) 

or the residue classes corresponding to 

(zero-centered representation). 

Both representations are useful in specific applications. Of course a change of 
representations is trivial. 

The canonical homomorphism Hm which maps an integer a to its repre
sentation in Z/m is simply the computation of the remainder of a w.r.t. m. So 
according to Theorem 2.1.7 it takes time proportional to L(m)(L(a)-L(m)+l). 

Addition +m and multiplication ·m in Z/m are defined as follows on the 
representatives 

a +m b = Hm(a + b), a ·m b = Hm(a . b) . 

Using this definition and the bounds of Sect. 2.1, we see that the obvious algo
rithms MLSUM and MLMULT for +m and ·m, respectively, have the complex
ities tt\'1LSUM' tMLSUM ~ L(m) and t~U1ULT ~ L(m)2 + L(m)(2L(m) - L(m) 
+ 1) r-v L (m)2. So even if we use faster multiplication methods, the bound for 
MLMULT does not decrease. 



48 Arithmetic in basic domains 

An element a E 'lLlm has an inverse if and only if gcd(m, a) = I, otherwise a 
is a zero-divisor. So we can decide whether a can be inverted and if so compute 
a-I by applying INLGCDEE to m and a. If a is invertible we will get a linear 
combination u . m + v . a = 1, and v will be the inverse of a. The time complexity 
for computing the inverse is O(L(m)2). 

An important property of modular arithmetic is captured in Fermat's "lit
tle" theorem. Theoretically this provides an alternative method for computing 
inverses modulo primes. 

Theorem 2.5.1 (Fermat's little theorem). If p is a prime and a is an integer not 
divisible by p, then a P- 1 == I mod p. 

Arithmetic in finite fields 

Now let us turn to finite fields. As we have seen above, 'lL lp will be a finite field 
if and only if p is a prime number. In general a finite field need not have prime 
cardinality. However, every finite field has cardinality pn, for p a prime. On the 
other hand, for every prime p and natural number n there exists a unique (up 
to isomorphism) finite field of order plZ. This field is usually denoted GF(pn), 
the Galois field of order pn. 

From what we have derived in previous sections, it is not difficult to construct 
Galois fields and to compute in them. Let f (x) be an irreducible polynomial 
of degree n in 'lLp[x]. We will see later how to check irreducibility efficiently, 
and in fact for every choice of p and n there is a corresponding f. Then f 
determines an algebraic field extension of 'lLp of degree n, i.e., 

So the arithmetic operations can be handled as in any algebraic extension field. 
For a thorough introduction to the theory of finite fields, we refer to Lidl 

and Niederreiter (1983) and Lidl and Pilz (1984). Here we list only some facts 
that will be useful in subsequent chapters. 

GF(plZ) is the splitting field of x p" - x over 'lLp, i.e., 

x p" - x = n (x - a) . 
aEGF(p") 

Every f3 E GF(pn) is algebraic over 'lLp. If s is the smallest positive integer 
such that fJPs = f3, then mfJ(x) = n::ri(x - fJP') is the minimal polynomial of 
f3 over 'lLp. The multiplicative group of GF(plZ) is cyclic. A generating element 
of this cyclic group is called a primitive element of the Galois field. 

An important property of Galois fields is the "freshman's dream." In fact, 
this theorem holds for any field of characteristic p. 

Theorem 2.5.2. Let a(x), hex) E GF(plZ)[X]. Then (a(x) + h(x))P = a(x)P + 
h(x)P. 



2.4 Algebraic extension fields 49 

Proof In the binomial expansion of the left-hand side 

P (p) . . 
i~ i a(x)/ b(x)P~' 

all the binomial coefficients except the first and the last are divisible by p and 
for those we have (g) = 1 = (~). D 

Corollary. Let a(x) E 2:p [x]. Then a(x)P = a(xP). 

Proof Let a(x) = Lr=Oaixi. By Theorem 2.5.2 and Fermat's little theorem 
h ( )p - "m ( . i)p _ "m ip - ( P) D we ave a x - Li=O a/x - Li=O aix - a x . 

Example 2.5.1. Let us carry out some of these constructions in GF(24 ). The 
polynomial f (x) = x4 + X + 1 is irreducible over 2:2, so 

Table 1. GF(24). Elements f3 = bo+bla+b2a2+b3a3 of 2Zda), where a4+a+ 1= 0 

f3 bo b l b2 b3 minimal polynomial of 
f3 over :2:;2 

0 0 0 0 0 x 
0 0 0 x+l 

a 0 I 0 0 x4 + X + I 
0 0 0 I 0 X4 + X + I a-

a 3 0 0 0 X4 + x 3 + x 2 + X + I 
I + a = a 4 I 0 0 X4 +x + I 

a + a 2 = as 0 I 0 x 2 + X + I 
a 2 + a 3 = a 6 0 0 I x4 + x 3 + x 2 + X + I 

I + a + a 3 = a 7 I 0 I x4 + x 3 + I 
1+ a 2 = a 8 I 0 0 x4 +x + I 
a + a 3 = a 9 0 0 I x4 + x 3 + x 2 + X + I 

l+a+a2 =a IO I 0 x 2 + X + I 
a + a 2 + a 3 = all 0 x4 + x 3 + I 

I + a + a 2 + a 3 = a l2 X4 + x 3 + x 2 + X + I 
1+ a 2 + a 3 = a l3 0 x4 + x 3 + I 

1+ a 3 = a l4 0 0 X4 + x 3 + I 

1 = a lS 0 0 0 x+l 



50 Arithmetic in basic domains 

Let a be a root of f. Every f3 E GF(24) has a unique representation as 

For computing the minimal polynomial m f3 (x) for f3 = a 6, we consider the 
powers f32 = a l2 , f34 = a 9 , f38 = a 3, f316 = a 6 = f3 (Table 1), so 

3 . 

mf3(x) = O(x-f3 P')=x4 +x3 +x2 +x+l. 
i=O 

Every f3 E GF(24 ) is a power of a, so a is a primitive element of GF(24 ). 

However, not every irreducible polynomial has a primitive element as a root. 
For instance, g(x) = x4 + x 3 + x 2 + X + 1 also is irreducible over Z2[X], so 
GF(24) ~ Z2[X]/(g(x»). But f3, a root of g, is not a primitive element of GF(16), 
since f35 = 1. 

Exercises 

I. Check the "freshman's dream" by computing both sides of 
(a(x) + b(x))2 = a(x)2 + b(x)2, where a(x), b(x) are the polynomials 
a(x) = (l + y)x 3 + (y2 + y)x 2, b(x) = (l + y + l)x2 + (y3 + 1) 

over the Galois field GF(24 ) = ZdY]/()A+y+l). 

2. What is the complexity of computing a(x)P in Zp[x], where deg(a) = m? 

3. Consider the finite field Z3(a) = Z3[X]/(x4+x+2) (~ GF(34)). Determine the 

minimal polynomial for f3 = 2a3 + a. 

2.6 Bibliographic notes 

Further material on arithmetic in basic domains can be found in Heindel (1971), 
Caviness and Collins (1976), Collins et al. (1983), and lebelean (1993). Com
plexity of polynomial multiplication over finite fields is considered in Kaminski 
and Bshouty (1989), sparse polynomial division in Kaminski (1987). Handling 
of power series in computer algebra is described in Koepf (1992). 



3 Computing by 
homomorphic images 

3.1 The Chinese remainder problem and the modular method 

The Chinese remainder method has already been investigated by Chinese math
ematicians more than 2000 years ago. For a short introduction to the history we 
refer to Knuth (1981). The main idea consists of solving a problem over the in
tegers by solving this problem in several homomorphic images modulo various 
primes, and afterwards combining the solutions of the modular problems to a 
solution of the problem over the integers. In fact, the method can be general
ized to work over arbitrary Euclidean domains, i.e., domains in which we can 
compute greatest common divisors by the Euclidean algorithm. An interesting 
list of different statements of the Chinese remainder theorem is given in Davis 
and Hersh (1981). 

Euclidean domains 

Definition 3.1.1. A Euclidean domain (ED) D is an integral domain together 
with a degree function deg: D* -+ No, such that 
a. deg(a· b)::: deg(a) for all a, bE D*, 
b. (division property) for all a, bED, b =I 0, there exists a quotient q and a 

remainder r in D such that a = q . b + rand (r = 0 or deg(r) < deg(b)). 

When we write "r = a mod b" we mean that r is a remainder of a and b as 
in (a). In other words, the function mod b returns a remainder of its argument 
modulo b. In the same way we will consider functions quot and rem, yielding 
q and r, respectively, for inputs a and b as in Definition 3.1.1. 

Example 3.1.1. a. Z with deg(a) = lal is an ED. If a = q . b + rand 0 < r 
< Ibl, then also q + 1 and r - b are a possible pair of quotient and remainder 
for a and b. So in an ED quotients and remainders are not uniquely defined. 

b. Every field K with deg(a) = 1 for all a E K* is an ED. 
c. For every field K the univariate polynomial ring K[x], where the de

gree function deg returns the usual degree of a polynomial (canonical degree 
function), is an ED. In fact, quotient and remainder can be computed by the 
algorithm POLDIVK. 

d. If the coefficient ring of R[x] is not a field, then R[x] with the canonical 
degree function is not an ED. Consider ax = q . (bx) + r, where a, b E R. 
For q and r to be a quotient and remainder of ax and bx, q would have 
to be an element of R satisfying a = q . b. This equation, however, is not 



52 Homomorphic images 

solvable for arbitrary a, b E R*. So, for instance, polynomials over the integers 
and multivariate polynomials over a field together with the canonical degree 
function do not form Euclidean domains. 

In an ED D we have deg(l) :s deg(a) for all non-zero a, and deg(l) 
deg(a) if and only if a is a unit. If c is not a unit and non-zero and a = b . c, 
then deg(b) < deg(a). 

Theorem 3.1.1. Any two non-zero elements a, b of an ED D have a greatest 
common divisor g which can be written as a linear combination g = s· a + t . b 
for some s, tED. 

Proof Let 1 = (a, b), the ideal generated by a, b in D. Let g be a non-zero 
element of 1 with minimal degree, i.e., for all c E 1*, deg(g) :s deg(c). So 
g = S . a + t . b for some s, tED. Obviously (g) <; I. On the other hand, let 
c E I. There are a quotient q and a remainder r such that c = q . g + rand 
r = 0 or deg(r) < deg(g). But rEI, so we have r = O. Thus, (g) = I. So g 
is a common divisor of a and b. Now let c be any common divisor of a and b. 
Then c divides S . a + t . b = g. D 

Definition 3.1.2. For a, b E D*, D an ED, and g = gcd(a, b), the equation 
g = S . a + t . b is called the Bezout equality and s, tare Bezout cofactors. 

The Bezout equality can obviously be generalized to arbitrary elements of 
D, if we set gcd(O, 0) = O. 

Using Theorem 3.1.1 it is rather straightforward to show that any ED is a 
ufd, cf. Exercise 3. So in an ED any non-zero a can be written as a = PI .... 
. Ps, where PI, ... , Ps are prime. This representation is unique up to units and 
reordering of the factors. 

An ED in which quotient and remainder are computable by algorithms quot 
and rem admits an algorithm for computing the greatest common divisor g of 
any two elements a, b. This algorithm has originally been stated by Euclid for 
the domain of the integers. In fact, it can be easily extended to compute not only 
the gcd but also the coefficients s, t in the linear combination g = s . a + t . b, 
i.e., the Bezout cofactors. 

Algorithm E_EUCLID(in: a, b; out: g, s, t); 
[a, b are elements of the Euclidean domain D; g is the greatest common divisor 
of a, band g = s . a + t . b] 
1. (ro, rl, So, Sl, to, td := (a, b, 1,0,0,1); 

i := 1; 
2. while ri =P 0 do 

{qi := quot(ri-I, ri); 
(ri+l, Si+l, ti+l) := (ri~l, Si~l, ti~d - qi . (ri' Si, ti); 
i := i + I}; 

3. (g, s, t) := (ri~l, Si~l, ti~d; return. 



3.1 Chinese remainder problem 53 

The extended Euclidean algorithm, E-EUCLID, terminates, because deg(ri) de
creases in every iteration. Throughout the algorithm the relation ri = Si . a + ti . b 
is preserved, so at termination we have g = S . a + t . b. Also, throughout the 
algorithm gcd(ri' ri+I) = gcd(ri+I, ri+2). So, when finally a remainder ri = 0 
is reached, then the previous ri-I must be the desired greatest common divisor. 

Theorem 3.1.2. Let K be a field, a, b E K[x], deg(a) ~ deg(b) > 0, a and b 
not associates. Let g, s, t be the result of applying E-EUCLID to a and b. Then 
deg(s) < deg(b) - deg(g) and deg(t) < deg(a) - deg(g). 

Proof Let ro, rI, ... , rk-I, rk = 0 be the sequence of remainders computed 
by E-EUCLID, and similarly qI, ... , qk-I the sequence of quotients and So, SI, 
... ,Sb to, tI, ... ,tk the sequences of linear coefficients. Obviously deg(qi) = 
deg(ri-d - deg(ri) for 1 :::: i :::: k - 1. 

For k = 2 the statement obviously holds. If k > 2, then for 2 :::: i :::: k - 1 

we have deg(ri) = deg(rI) - 2::;=2 deg(q/) < deg(rI) - 2::;:~ deg(q/), deg(Si) :::: 

2::;:~ deg(qt) and deg(ti) :::: 2::!:: deg(q/). So deg(ri) + deg(si) < deg(rI) and 
deg(ri) + deg(ti) < deg(rd + deg(qI) for 2 :::: i :::: k - 1. For i = k - 1 we get 
the desired result. 0 

Corollary. Let a, bE K[x] be relatively prime, c E K[x]* such that deg(c) < 
deg(a . b). Then c can be represented uniquely as c = u . a + v . b, where 
deg(u) < deg(b) and deg(v) < deg(a). 

Proof By Theorem 3.1.2 we can write 1 = u . a + v . b, where deg(u) < deg(b) 
and deg(v) < deg(a). 

Obviously c = (c· u)· a + (c· v)· b. If c· u or c· v do not satisfy the degree 
bounds, then we set u' := rem(c . u, b) and v' := c· v + quot(c· u, b) . a. Now 
we have c = u' . a + v' . band deg(u') < deg(b). From comparing coefficients 
of like powers we also see that deg(v') < deg(a). This proves the existence of 
u and v. 

If U I, VI and U2, V2 are two pairs of linear coefficients satisfying the degree 
constraints, then (UI - U2) . a = (V2 - vd . b. So a divides V2 - VI. This is 
only possible if V2 - VI = O. Thus, the linear coefficients u, v are uniquely 
determined. 0 

Theorem 3.1.3. Let K be a field and a, b E K[x] with deg(a) ~ deg(b) > O. 
Let g be the greatest common divisor of a and b. Then the number of arithmetic 
operations in K required by E-EUCLID is O«deg(a) - deg(g) + 1) . deg(b)). 

Proof Let k be the length of the sequence of remainders computed by E-EU
CLID, i.e., g = rk-I. The complexity of the body of the "while" loop is dom
inated by the polynomial division for computing quot(ri-I, ri). By Theorem 
2.2.1 the number of arithmetic operations in this division is O«deg(ri) + 1) . 
(deg(ri-I) - deg(ri) + 1). So the complexity of step (2), and also of the whole 



54 Homomorphic images 

algorithm, is dominated by 

k-I 

L (deg(ri) + 1) . (deg(ri-d - deg(ri) + 1) 
;=1 

::: (deg(b) + 1) . (deg(a) - deg(g) + k - 1) . 

Since k - 2 ::: deg(a) - deg(g), we get deg(b) . (deg(a) - deg(g) + 1) as a 
dominating function for the complexity of E~UCLID. D 

The Chinese remainder algorithm 

For the remainder of this section we assume that D is a Euclidean domain. The 
problem that we want to solve is the following. 

Chinese remainder problem (CRP) 
Given: rl, ... ,rn E D (remainders) 

m I, ... ,mn E D* (moduli), pairwise relatively prime 
Find: rED, such that r == ri mod mi for 1 ::: i ::: n 

We indicate the size of the CRP by an appropriate index, i.e., CRPn is a CRP 
with n remainders and moduli. We describe two solutions of the CRP. The first 
one is usually associated with the name of J. L. Lagrange. The second one is 
associated with 1. Newton and is a recursive solution. 

In the Lagrangian solution one first determines Ukj such that 

This can obviously be achieved by the extended Euclidean algorithm. Next one 
considers the elements 

n 

h:= fl Ujkmj, for I ::: k ::: n . 
j=l.j# 

Clearly, h == 0 mod mj for all j =j:. k. On the other hand, lk = flj=l.j#(1 -

Ukjmk) == 1 mod mk. So 

solves CRP. 
The disadvantage of the Lagrangian approach is that it yields a static algo

rithm, i.e., it is virtually impossible to increase the size of the problem by one 
more pair rn+l, mn+1 without having to recompute everything from the start. 
This is the reason why we do not investigate this approach further. 

So now we consider the recursive Newton approach. Let us first deal with 
the special case n = 2, i.e., with CRP2. For given remainders rl, r2 and moduli 
m I, m2 we want to find an rED such that 



3.1 Chinese remainder problem 55 

1. r == r] modm], 
2. r == r2 mod m2. 
The solutions of congruence (1) have the form r] + u m] for arbitrary u ED. 
Moreover, we also have a solution of (2) if r] + u m] == r2 mod m2, i.e., if 
um] == r2 - r] mod m2. By Theorem 3.1.1 there is a e E D such that em] == 
1 mod m2. So for u = (r2 - rde we also get a solution of (2). Thus, we have 
shown that CRP2 always has a solution. The obvious algorithm is called the 
Chinese remainder algorithm. 

Theorem 3.1.4 (Chinese remainder theorem). CRP2 always has a solution, 
which can be computed by the algorithm CRA_2. 

Algorithm CRA_2(in: r], r2, m], m2; out: r); 
[r], r2, m], m2 determine a CRP2 over D; r solves the CRP2] 
1. c:= ml] mod m2; 
2. r;:= r] mod m]; 
3. u:= (r2 - r;)c mod m2; 
4. r:= r; + um]; return. 

The general CRP of size n can be solved by reducing it to CRPs of size 2. 
This reduction is based on the following facts, which will be proved in the 
Exercises. 

Lemma 3.1.5. a. Let m], ... ,mil E D* be pairwise relatively prime and let 

M = n7~i mi· Then mn and M are relatively prime. 
b. Let r, r' E D, and m], m2 E D* be relatively prime. Then r == r' mod m] 

and r == r' mod m2 if and only if r == r' mod m]m2. 

So now let R2 be a solution of the first two congruences of CRPn . Then the 
solutions of the original CRPn are the same as the solutions of the following 
CRPn-] 

r == R2 mod m]m2 , 

r == ri mod mi, for i = 3, ... ,n . 

Iterating this process we finally arrive at a CRP of size 2 which can be solved 
by CRA_2. 

Theorem 3.1.6. A CRPn of any size n always has a solution, which can be 
computed by the algorithm CRA_n. 

Algorithm CRA_n(in: r], ... , r n, m I, ... , mn; out: r); 
[r], ... , rn, m], ... , mn determine a CRPn over D; r solves the CRPn ] 

1. M:=m]; 
2. r:= r] mod m]; 
3. for k = 2 to n do 



56 

{r := CRA_2(r, rk, M, mk); 
M:= M ·md; 

return. 

Example 3.1.2. We want to find an integer r such that 
1. r == 3 mod 4, 
2. r == 5 mod 7 , 
3. r == 2 mod 3 . 

Homomorphic images 

We apply CRAJl in the Euclidean domain Z. First, CRA_2 is applied to the 
congruences (1), (2): c = 4- 1 mod 7 = 2, a = (5 - 3) ·2 mod 7 = 4, r 
3 + 4·4 = 19. So r = 19 solves (1), (2). Now the problem is reduced to 

(1,2) r == 19mod28, (3) r ==2mod3. 

By another application of CRA_2 we get c = 28- 1 mod 3 = 1, a = (2 - 19) . 
1 mod 3 = 1, r = 19 + 1 ·28 = 47. So r = 47 is the least positive solution of 
the CRP (1), (2), (3). 

A CRP of size n > 2 could also be reduced to CRPs of size 2 by splitting 
the remainders and moduli into two groups 

(rl, ... ,rLnj2J, ml, ... ,mLnj2J) and 

(rLnj2J+I, ... , rn, mLnj2J+I,···, mn) , 

recursively applying this splitting process to the problems of size n12, solving 
the resulting CRPs of size 2, and combining the partial results again by solving 
CRPs of size 2. Such a reduction lends itself very naturally to parallelization. The 
disadvantage is that in order to add one more remainder rn+1 and modulus mn+1 
to the problem, the separation into the two groups of equal size gets destroyed. 
That, however, is exactly the pattern of most applications in computer algebra. 

The Chinese remainder problem can, in fact, be described in greater gener
ality. Let R be a commutative ring with unity 1. 

Abstract Chinese remainder problem 
Given: rl, ... , rn E R (remainders) 

11, ... , In ideals in R (moduli), such that Ii + Ij = R for all i =f. j 
Find: r E R, such that r == ri mod Ii for 1 ::: i ::: n 

The abstract Chinese remainder problem can be treated basically in the same 
way as the CRP over Euclidean domains. Again there is a Lagrangian and a 
Newtonian approach and one can show that the problem always has a solution 
and if r is a solution then the set of all solutions is given by r + II n ... n In. 



3.1 Chinese remainder problem 57 

That is, the map ¢J: r t-+ (r + h, ... , r + In) is a homomorphism from R onto 
nj=1 R/lj with kernel II n ... n In. However, in the absence of the Euclidean 
algorithm it is not possible to compute a solution of the abstract CRP. See Lauer 
(1983). 

A preconditioned Chinese remainder algorithm 

If the CRA is applied in a setting where many conversions w.r.t. a fixed set of 
moduli have to be computed, it is reasonable to precompute all partial results 
depending on the moduli alone. This idea leads to a preconditioned CRA, as 
described in Aho et al. (1974). 

Theorem 3.1.7. Let rl, ... , rn and ml, ... , mn be the remainders and moduli, 
respectively, of a CRP in the Euclidean domain D. Let m be the product of all 
the moduli. Let Ci = m/mi and di = ci l mod mi for 1 :::s i :::s n. Then 

n 

r = LCidiri mod m 
i=1 

is a solution to the corresponding CRP. 

(3.l.1) 

Proof Since Ci is divisible by mj for j =1= i, we have Cidiri == 0 mod mj for 
j =1= i. Therefore 

n 

LCidiri == cjdjrj == rj mod mj, for all l:::s j :::s n . 0 
i=1 

A more detailed analysis of (3.l.1) reveals many common factors of the 
expressions Cidiri. Let us assume that n is a power of 2, n = 2t. Obviously, 
ml ..... mn/2 is a factor of Cidiri for all i > n/2 and m n/2+1 ..... mn is a 
factor of Cidiri for all i :::s n/2. So we could write (3.1.1) as 

(3.1.2) 

where < = (mi· ... ·mn/2)/mi and c;' = (m n/2+I· ... ·mn)/mi. The expression 
(3.l.2) suggests a divide-and-conquer approach. The quantities we will use are 

i+2L I 

% = n ml 
l=i 

i+2j-1 

and sij = L %dm/ml. 
l=i 



58 Homomorphic images 

For j = 0 we have Si~ = di ri, and for j > 0 we can compute sij by the formula 

Finally we reach SIt = r, i.e., an evaluation of (3.1.2). These considerations 
lead to CRA~C, a preconditioned CRA. 

Algorithm CRA_PC(in: rl, ... , r n, m I, ... , mil' dl, ... , dn; out: r); 
[rl, ... , r n, ml, ... , mn determine a CRPII over D, 
d i = (m/mi)-I mod mi for I :": i :": n, where m = OJ=1 mj, 

n = 2t for some tEN; r solves the CRPn ] 

1. [compute the %' s] 
for i = 1 to n do qiO := mi; 
for j = 1 to t do 

for i = 1 step 2j to n do 
qij := qi.j-I . qi+2J-1,j-l; 

2. [compute the sij's] 
for i = 1 to n do Si~ := di . ri; 
for j = 1 to t do 

for i = 1 step 2j to n do 
Sij := Si,j-I . qi+2J-1,j-1 + si+2J-1,j-1 . qi,j-I; 

3. r:= SIt; return. 

A correctness proof for CRA~C can be derived easily by induction on j. 

Example 3.1.3. We execute CRA_PC over the integers for (rl, r2, r3, r4) 

(1,2,4,3) and (ml,m2,m3,m4) = (2,3,5,7). The corresponding inverses are 
(d l , d2, d3, d4) = (1,1,3,4). We start by computing the values of the qij's in 
step (1): 

qlO = ml = 2, q20 = m2 = 3, q30 = m3 = 5, q40 = m4 = 7 

qll = mlm2 = 6, q31 = m3m4 = 35 

q12 = mlm2m3m4 = 210 

In step (2) the computation of the sij' s yields 

SIO = 1, S20 = 2, S30 = 12, S40 = 12 

SII =7, S31 = 144 

SI2 = 1109 

So the result returned in step (3) is 1109, which is congruent to 59 modulo 210. 
In fact, we could reach the minimal solution 59 if in step (2) we took every sij 

modulo %. 



3.1 Chinese remainder problem 59 

CRA over the integers 

When we apply the Chinese remainder algorithm CRA to integers, we can always 
assume that the moduli are positive and that the function mod m returns the 
smallest positive remainder. The following is based on these assumptions. 

Theorem 3.1.S. Over the integers the algorithm CRA-Il computes the unique 
solution of the CRP satisfying 0 .:::: r < n~=1 mk. 

Proof. By inspection of CRA_2 we find that 0 .:::: r; < m I and 0 .:::: (Y < m2. So 
the result computed by CRA_2 satisfies 0 .:::: r < mlm2. Since CRA-Il is simply 
a recursive application of CRA-Il we get the bounds for r. 

If r, r' are two solutions of the CRP within the bounds, then n~=1 mk Ir - r', 
so they have to be equal. 0 

In a typical application of CRA-Il on a computer, the remainders rk and the 
moduli mk will be single digit numbers, i.e., they will fit into single computer 
words. So when CRA-2 is applied in the "for" loop of CRA_n, rand M are of 
length k - 1 and rk, mk are of length 1. In computing M-1 mod mk one divides 
M by mk and afterwards applies the Euclidean algorithm to rem(M, mk) and mk. 
The division takes time O(k) and the Euclidean algorithm takes some constant 
time (inputs are single digits). Steps (2) and (4) in CRA-2 take constant time. 
Step (3) in CRA_2 takes time O(k). So the complexity of the call to CRA_2 in 
the k-th iteration in CRA-Il is O(k). Also the multiplication M . mk takes time 
O(k). So the whole k-th iteration in CRA-Il takes time O(k). By summation 
over all iterations we get that the complexity of CRA-Il is O(n2). 

Theorem 3.1.9. If all the remainders and moduli are positive integers with 
o .:::: ri < mi and L(mi) = 1 for 1 .:::: i .:::: n, then the complexity of CRA-Il is 
O(n2). 

Theorem 3.1.10. Let n be a power of 2 and let m I, ... , mn , rl, ... , r n determine 
a CRP over the integers. Assume that every one of the moduli and remainders 
has length less than or equal to the positive integer b. Let M(l) denote the 
complexity function for mUltiplying two integers of length I. Then CRAJ>C 
(where in step (2) all Sij are taken modulo qij) takes time proportional to M(bn)· 
logn. 

A proof of Theorem 3.1.10 can be found in Aho et al. (1974: theorem 8.12). 

CRA in polynomial rings 

Let us now consider the Euclidean domain K[x], where K is a field. As for the 
case of the integers we investigate the solution of CRP by CRA-Il and we give 
a complexity analysis of CRA-Il. We also consider the case of linear moduli, 
which leads to Newton's scheme of interpolation. 



60 Homomorphic images 

Theorem 3.1.11. In K[x] the algorithm CRA-Il computes the unique solution r 
of the CRP satisfying deg(r) < L:?=I deg(mi). 

Proof Investigating the solution r computed by CRA_2, we find that deg(r) = 
deg(r; + ami) ~ max{deg(md - 1, deg(m2) - 1 + deg(ml)} < deg(ml) + 
deg(m2). Induction yields the degree bound for the output of CRA-Il. The unique
ness can be shown by an argument analogous to the one in Theorem 3.1.8 and 
~~~~~~ D 

Theorem 3.1.12. If all the remainders ri have degree less than the corresponding 
moduli mi and deg(mi) ~ d for 1 ~ i ~ n, then the number of arithmetic 
operations in K required by CRA-Il on K[x] is O(d2n2). 

Proof In the k-th iteration, the degrees of rand M are bounded by (k - l)d. 
So the division of M by mk takes (k - l)d2 arithmetical operations, and the 
subsequent application of E-EUCLID takes d2 operations. Steps (2) to (4) of 
CRA-2 are also bounded by (k - l)d2• So the number of arithmetic operations 
in CRA-Il is of the order L:~=2(k - l)d2 "'-' d2n2. D 

A special case of the CRP in K[x] is the interpolation problem. All the 
moduli mi are linear polynomials of the form x - fh. 

Interpolation problem IP 
Given: ai, ... , an E K, 

fh, ... , fJn E K, such that fJi #- fJj for i #- j, 
Find: u(x) E K[x], such that U(fJi) = ai for 1 ~ i ~ n. 

Since p(x) mod (x - fJ) = p(fJ) for fJ E K, the interpolation problem is a 
special case of the CRP. The inverse of p(x) in K[xl;(x-.8) is p(fJ)-I. So CRA-Il 
yields a solution algorithm for IP, namely the Newton interpolation algorithm. 
By applying Theorem 3.1.12 we see that the number of arithmetic operations in 
the Newton interpolation algorithm is of the order n2. 

The modular method 

Let P be a problem whose input and output are from a domain D. The basic idea 
of the modular method in computer algebra consists of applying homomorphisms 
'PI, ... , 'Pm to D, 'Pi: D t--+ D i , such that the corresponding problem Pi can be 
more easily solved in Di and the solutions of the problems in the image domains 
can be combined to yield the solution of the original problem P in D. So usually 
we need a criterion for detecting whether the following diagram commutes, i.e., 
whether 'Pi is a "good" or "lucky" homomorphism, 

D 
P 

r---+ 

'Pi .} comm. 

Di 
Pi 

r---+ 



3.2 p-adic approximation 61 

and how many homomorphisms we need for reconstructing the actual solution 
of Pin D. 

The constructive solvability of Chinese remainder problems in Euclidean 
domains such as Z or K [x], K a field, enables us to solve many problems in 
computer algebra by the modular method. The basic idea consists in solving a 
problem P over the ED D by reducing it to several problems modulo different 
primes, solving the simpler problems modulo the primes, and then combining 
the partial solutions by the Chinese remainder algorithm. In many situations, 
such as greatest common divisors or resultants of polynomials, this modular 
method results in algorithms with extremely good complexity behaviour. 

Exercises 

1. Let D be an ED, a, bE D*. Prove that if b is a proper divisor of a, then 
deg(b) < deg(a). 

2. Prove that in an ED D every ideal is principal. 
3. Prove that in an ED every non-zero element can be factored uniquely into a 

product of finitely many irreducible elements, up to units and reordering of 
factors. 

4. Prove that the ring Zli], i = yCT, of Gaussian integers is an ED and 
compute the gcd of 5 - Si and 7 + 3i. 

5. Let f (x) = x 3 - x 2 + 2, g(x) = x 2 + X + I be polynomials over Ql. Compute 
a representation of hex) = x4 + 2x as hex) = p(x)f(x) + q(x)g(x), where 
deg(p) < 2 and deg(q) < 3. 

6. Compute the polynomial r(x) E Ql[x] of least degree satisfying 
r(x)==2x 2 +1 modx 3 +x2 -1 
rex) == x + 2 mod x 2 + 2x + 2. 

7. Prove Lemma 3.1.5. 
S. Consider an algorithm for solving a CRP" by splitting it into two CRPn / 2 

recursively, as long as n > 2. What is the time complexity of such an 
algorithm over the integers? 

9. Let R be a commutative ring with 1. Let I, II, ... , I" be ideals in R 
satisfying 1+ h = R for I S k S n. Prove that I + II n ... n I" = R. 

10. Let R be a commutative ring with 1. Let II,"" I" be ideals in R 
satisfying Ii + Ij = R for i # j. Then R/llnn/ll ~ n;'=1 R/li ' 

II. Generalize the Corollary to Theorem 3.1.2, i.e., show that for 
al, ... , ar E K[x] pairwise relatively prime and c E K[x] with 
deg(c) < deg(al) + ... + deg(a r ) = 11 there exist ltl, ... , lIr E K[x] with 
deg(ui) < deg(ai) for lSi S r, such that c = L;=I(Ui n~=l.Niaj). 

3.2 p-adic approximation 

In contrast to the modular method, which solves a problem by solving various 
homomorphic images of the problem and combining the solutions in the im
age domains by the Chinese remainder algorithm, in this section we consider a 
single modulus p. The approach consists of solving a problem modulo p and 



62 Homomorphic images 

then lifting this solution to a solution modulo pk for suitable k. Newton's ap
proximation algorithm for determining the roots of equations can be adapted 
to the problem of lifting modular solutions. Throughout this section let R be a 
commutative ring with identity 1 and I an ideal in R. Before we state and prove 
the main theorem on this lifting approach we start with a technical lemma on 
Taylor expansion. 

Lemma 3.2.1. Let f E R[XI, ... , x,], r ~ 1, YI, ... , Y, new polynomial vari
ables. Then 

, af 
f(xi + YI,···, x, + y,) = f(XI, ... , x,) + L - . Yj + h , 

j=1 aXj 

where hE R[XI, ... , x" YI, ... , y,) and h == 0 (mod (YI, ... , Yr)2). 

Proof Obviously 

, 
f(xi + YI, ... ,x, + y,) = g(XI, ... ,x,) + Lgj(XI, ... ,x,)· Yj 

j=1 (*) 

+ h(XI, ... , x" YI, ... , y,) 

for some polynomials g, gl, ... , g" h with h == 0 (mod (YI, ... , y,)2). Substi
tuting (0, ... ,0) for (YI, ... ,Y,) in (*) yields g(XI, ... ,X,) = f(XI,""X,), 
Derivation of (*) w.r.t. Yj by the chain rule yields 

af ah 
-(XI + YI, ... , x, + y,) = gj(XI, ... , x,) + -(XI, ... , x" YI,···, y,) . 
a~ a~ 

Substituting (0, ... ,0) for (YI, ... , y,) and using the fact that ahjaYj == 0 
(mod (YI, ... , Y,), we get af/aXj = gj. D 

Theorem 3.2.2 (Lifting theorem). Let I be the ideal generated by PI, ... , PI 
in R, fl, ... , fn E R[XI, ... , x,), r ~ 1, and al, ... , a, E R such that 

fi(al, ... , a,) == 0 (mod l) for i = 1, ... , n . 

Let U be the Jacobian matrix of fl, ... , fn evaluated at (ai, ... , a,), i.e., 

U = (uij) i=I ..... 11 , 

J=l.. ... r 

afi 
where Uij = -(ai, ... , a,) . 

aXj 

Assume that U is right-invertible modulo I, i.e., there is an r x n matrix W = 
(Wjt) such that U· W == En (mod l) (En is the n x n identity matrix). 



3.2 p-adic approximation 63 

Then for every tEN there exist air), ... , a?) E R such that 

and 

at == aj (mod I) for 1::::: j ::::: r . 

Proof We proceed by induction on t. For t = 1 the statement is satisfied by 
(I) l-" 1 . aj =ajlOr :::::J:::::r. 

So now let t ~ 1 and assume that the statement of the theorem holds for t. We 
show that it also holds for t + 1. Let ql, ... , qm be the generators of the ideal It 
(a possible choice for the q's are the products p~1 .. , p7' with el + ... +e/ = t). 
By the induction hypothesis there exist Vik E R, i = 1, ... , n, k = 1, ... , m 
such that 

(3.2.1) 

We set 
a~I+1) = a~t) + Bj· l-"or some BEll j j l' j, j = 1, ... , r 

(this guarantees a/+ I) == aj (mod I) and determine the coefficients bjk in Bj 

- "m b. h -f.( (1+1) (1+1) - 0 ( d / 1+1) - L.,k=1 jkqk so t at JI a l ' .•. , ar = rna . 
L t (1) at; ( (t) (1» l-" . 1 . 1 Th b L e uij = aXj a l , ..• , ar lor I = , ... , n, J = , ... , r. en y emma 

3.2.1 

1'.( (r+I) (1+1) _ -f.( (I) B (t) B) 
Jl a l , •.. ,ar -JI a l + I,···,a r + r 

_ (I) (t) r (I) 1+1 
=!i(a l , .•. ,ar )+LUijBj (modI) 

j=1 

m r 

= L(Vik + Lu~?bjdqk for 1::::: i ::::: n . 
k=1 j=1 

So .fi(a~t+I), ... , a;r+l) == 0 (mod Jf+I) if and only if 

r 

Vik + LU«/bjk == 0 (mod I) for i = 1, ... , n, k = 1, ... , m. (3.2.3) 
j=1 

The conditions (3.2.3) determine m systems of linear equations with the common 

coefficient matrix (u~?). But at == aj (mod I), so u~? == uij (mod I). Thus, 



64 Homomorphic images 

in order to solve (3.2.3) it suffices to solve 

r 

Vik + "£Ui)bjk == 0 (mod I) for i = 1, ... , n, k = 1, ... , m. (3.2.4) 
j=1 

Since W = (Wjl) is a right-inverse of U, the solution of (3.2.4) is 

n 

bjk =-"£WjIVlk modI for j=I, ... ,r, k=I, ... ,m. 0 
1=1 

The proof of the lifting theorem is constructive, so we can immediately 
extract an algorithm LIFT for lifting modular solutions of systems of polynomial 
equations. 

Algorithm LIFT(in: (PI, ... , PI), (fl .... , f,,), (aI, ... , ar ), W, t; out: (aI, ... , 
ar»; 
[PI, ... , PI generate an ideal I in R, fl, .. ·, fn E R[XI, ... , xr], al,.·., ar 
E R, such that J;(al, ... , ar ) == 0 (mod I) for i = 1, ... , n, W is an r x n 
matrix over R such that U . W == En (mod I), where U = (ui) with uij 

= ~f (al,.·., ar ) for i = 1, ... , n, j = 1, ... , r, and t is a positive integer; 
J 

the output aI, ... ,ar are elements of R such that fi (aI, ... , ar ) == 0 (mod It) 
for i = 1, ... , n, and aj == aj (mod I) for j = 1, ... , r] 

1. for j = 1 tor doai!) :=aj; 
2. for s = 1 to t - 1 do 

{compute ql, ... , ql/1 E R such that JS = (ql, ... , ql/1); 

compute Vi k E R, i = 1, ... , n. k = I, ... ,m such that 
F ( (S) (s» ,",1/1 l" 1 . 
Ji a l , ... , a r = L..k=1 Vikqk lor I = , ... , n, 

bjk := - ,,£7=1 WjlVlk mod I for j = I, ... , r, k = 1, ... , m; 

D . 1 t d (s+1) (5) + ,",111 b }. or } = 0 r 0 aj := aj L..k=1 jkqk , 

3 l' . - I d - '- (f). . lOr} - to r 0 aj .- aj ,return. 

Example 3.2. I. Let R = Z, and consider the two polynomial equations 

fl (XI, X2) = XIX2 - xi - 10 = 0 , 

h(xI, X2) = x~ - 4XIX2 + XI = 0 . 

As the ideal I we choose I = (3). An initial solution modulo I is al = 1, a2 = 
-1. So as the evaluated Jacobian we get 

U= (
-1 

7 

A right-inverse of U modulo I is 



3.2 p-adic approximation 65 

Let us carry out the algorithm LIFf with these input values. 
(I) (I) 3 For s = 1 we get q I = 3 and a I = 1, a2 = - 1. fl (1, -I) = -4· ,so 

VII = -4. h(l, -I) = 2·3, so V21 = 2. -w· (-4, 2)T == (2, I)T (mod 3), so 
b 2 (2) (2) we get 11= ,b21=landa l =7,a2 =2. 

All the following iterations yield (b ll , b2d = (0,0) and in fact we have 
reached an integral solution (7, 2) of the system of equations. 

Now suppose that we just consider the single equation 

and also start with (a~l), ail)) = (1, -I). As the inverse modulo 3 we take 
W = (-I I)T. With these inputs the algorithm LIFf produces the sequence of 

. (1) (1) (2) (2) (3) (3) modular solutIons (a l ,a2 ) = (1,-1), (a l ,a2 ) = (-2,2), (a l ,a2 ) = 
(-20,20), etc. There are exactly 8 integral solutions of fl (XI, X2) = 0, namely 
(±II, ±I), (±7, ±2), (±7, ±5), (±11, ±1O). Obviously, none of them is ap
proximated by the lifting process. What we get is an approximation of a 3-adic 
solution. However, choosing W = (2 l)T as the right-inverse of the Jacobian, 
and starting from the same initial solution leads to the integral solution (7, 2). 

As we have seen in Example 3.2.1, the algorithm LIFT does not necessarily 
converge to a solution of the system of polynomial equations in R. For R = Z 
and I = (p), p a prime number, we get a so-called p-adic solution. 

A brief exposition of what p-adic numbers are might be helpful. Let p be 
a prime number. For any nonzero integer a, let the order of a w.r.t. p, ordpa, 
be the highest power of p which divides a, i.e., the greatest m such that a == ° 
(mod pill). The function ordp can be extended to rational numbers X = alb by 
setting ordpx := ordpa - ordpb. Using the order function we now define a norm 
1.lp on Q by 

if x i= 0; 

if X = 0. 

1 ·Ip is non-Archimedean. Two Cauchy sequences {Oi}, {bi} of rational numbers 
w.r.t. I. Ip are called equivalent if IOi - bi Ip ----+ ° as i ----+ 00. Now we define 
Qp to be the set of equivalence classes of Cauchy sequences. We define the 
norm I. Ip of an equivalence class 0 to be limi--->oo lai Ip, where {ai} is any 
representative of a. 

Arithmetic operations can be defined on Qp in a natural way, so Qp is a field, 
the field of p-adic numbers. The rational numbers Q can be identified with the 
subfield of Qp consisting of equivalence classes containing a constant Cauchy 
sequence. Qp is complete w.r.t. the norm 1.lp, i.e., every Cauchy sequence has a 
limit. For a thorough introduction to p-adic numbers we refer to Mahler (1973) 
and Koblitz (1977). 



66 Homomorphic images 

p-adic lifting will play an important role in the factorization of polynomials 
with integer coefficients. The special case of the lifting theorem in the context of 
factorization is the Hensel lemma. H. Zassenhaus (1969) proposed a "quadratic 
Hensel construction." This idea can be generalized to the lifting theorem in the 
following way. Analyzing the proof of the lifting theorem we see that Eq. (3.2.2) 
does not only hold modulo [1+1, but in fact modulo /21. So we aim to determine 
ay+ 1) such that 

-r ( (1+1) (1+1») - 0 ( d /21) Jial , ... ,ar = mo . 

This is the case if 

r 
" (I)b -Vik + LUij jk = 0 (mod t) for i=l, ... ,n, k=l, ... ,m. (3.2.5) 
j=1 

The system is solvable if 

u(t) = (ui? ) i,:I': 
/-1.. ... 1 

is invertible modulo /1, i.e., if there is a matrix W(t) such that 

u(t) . W(t) == Ell (mod /1) . (3.2.6) 

u(t) == U (mod /) and U is invertible modulo 1. So there exists an initial 
solution to the system of equations (3.2.6), i.e., a matrix W such that U(t) . W == 
Ell (mod /). The Jacobi matrix of the system (3.2.6) is U. Thus, by the lifting 
theorem there is a matrix W(t) satisfying (3.2.6). 

The algorithm LIFT _Q lifts both the modular solution and the matrix W in a 
quadratic manner, i.e., in every step a solution modulo /1 is lifted to one modulo 
/21. 

Algorithm LIFT_Q(in: (PI, ... , PI), (fl, ... , ill), (al,···, ar), W, t; out: (aI, 
... , ar )); 

[PI, ... , PI generate an ideal/in R, il, ... , ill E R[XI,···, Xr ], al,···, ar E 
R, such that ii(al, ... ,ar ) == 0 (mod /) for i = l, ... ,n, W is an r x n 
matrix over R such that U . W == Ell (mod /), where U = (Uij) with Uij 

af, ( ) C . 1 . 1 d· ... =-a' al,···,ar 10rl= , ... ,n,j= , ... ,r,an tlsapOSltlvemteger; 
Xl 

the output aI, ... , ar are elements of R such that ii (aI, ... , ar ) == 0 (mod /21) 
for i = 1, ... , n, and aj == aj (mod /) for j = I, ... , r] 
1. s:= 0; 

for j = 1 to r do ar := aj; 

W(O):= W; 

2. while s < t do 
{[ determine ideal basis] 



3.3 Fast Fourier transform 

compute ql, ... , qm E R such that [Z' = (ql, ... , qm); 

[lift a~S)] 
J 

compute Vik E R, i = 1, ... , n, k = 1, ... , m such that 
.f' ( (s) (s») ",m l" 1 . 
Ji a l , ... , ar = L..k=1 Vikqk lor I = , ... , n, 
b · ",n (s) l' • 1 k 1 . jk .= - L..I=I wjl Vlk lOr) = , ... , r, = , ... , m, 
l' . 1 d (s+I) (s) ",m b lOr} = to r 0 aj := aj + L..k=1 jkqk; 

[lift W(s)] 
(s+l) ._ at; ( (s+I) (s+I») l' • - 1 . - 1 . u iJ" .- ~ a l ' ... , ar lor I - , ... , n, ) - , ... , r, 

.I 

for k = 1, ... , m compute an n x n matrix Dk over R such that 
U(s+l) . W(s) = E + "'Ill Dkqk' 

II L..k=1 ' 
for k = 1 to m do Zk:= -W(S)Dk; 

W(s+l) := W(s) + L:=I Zkqk; 

[increase exponent] 
s:=s+I}; 

3. for j = 1 to r do aj := ajl); return. 

Example 3.2.2. As in the previous example let R = Z, I = (3), 

W = (-1 1) T and a~O) = 1, aiO) = -1 the initial solution modulo 3. 

67 

Applying the quadratic lifting algorithm LIFT _Q we get the approximation 
(I) (I) (2) (2) (3) (3) (a l ,a2 )=(-2,2),(a l ,a2 )=(-20,20),(a l ,a2 )=(-830,830), ... 

of a 3-adic solution of II = O. 
II (a~3), ai3») = 1377810 == 0 (mod 323 = 6561). 

A quadratic lifting scheme obviously takes fewer lifting steps for reaching 
a certain p-adic approximation. On the other hand, every single lifting step 
requires the lifting of the inverse of the Jacobian matrix. 

Exercises 

1. Define arithmetic operations such that Q!p is a field and the rational numbers 
Q! are a natural sub field of Q!P" 

2. Work out the details in Example 3.2.2. 

3.3 The fast Fourier transform 

The Fourier transform has innumerable applications in science and technology, 
where it is generally used for constructing fast algorithms. In this section we will 
introduce and analyze the discrete Fourier transform, its inverse, and applications 
to convolutions and products. An efficient algorithm for the computation of the 



68 Homomorphic images 

discrete Fourier transform, the fast Fourier transform (FFf), will be developed. 
Finally, we get the currently fastest known multiplication algorithm for integers. 

Throughout this section let K be a computable field and let n = 1 + ... + 1 
(n times) be invertible in K, i.e., char(K)), n. A vector a = (ao, ... , an-I) over 
K determines a polynomial 

n-I 

a(x) = L>kXk . (3.3.1) 
k=O 

This polynomial can also be represented by its values at n different evaluation 
points in K. The discrete Fourier transform of the vector a is exactly such an 
evaluation at certain well-chosen points, which are called Fourier points. 

Definition 3.3.1. An element w in K is a primitive n-th root of unity iff wn = 1 
and wi =j:. 1 for 0 < j < n. 

So, for example, e2rri /n is a primitive n-th root of unity in the field of 
complex numbers. 

Definition 3.3.2. Let w be a pnmitIve n-th root of unity in K. Let A = 
.. T 

(Ai})O::;:i,i<n be the (n xn) matrix with Ai} = Wi}. Let a = (ao, aI, ... , al1 -]) be 
a vector of length n over K. The vector Fw(a) = A . a, whose i-th component 
(0 :::: i < n) is Lt:;'6 akwik, is the discrete Fourier transform (DFT) of a 
(w.r.t. w). 

Obviously the i-th component L~:;'6 akwik of Fw(a) is the evaluation of the 
polynomial in (3.3.1) corresponding to the vector a at x = wi. We can write 

I~_I) (:~ 1 w . =A.a. 

W(Il~1)2 a : 
n-I 

The matrix A is the evaluation of the Vandermonde matrix at w. We call A the 
Vandermonde matrix at w of order n. 

Sometimes we think of the argument a to the Fourier transform as a vector, 
and at other times as a polynomial. We will freely use whatever notion is more 
convenient. Moreover, we allow ourselves to write the vector a sometimes as a 
column vector and at other times as a row vector. 



3.3 Fast Fourier transform 69 

Lemma 3.3.1. Let w be a primitive n-th root of unity in K, and let A be the Van

dermonde matrix at w of order n. Then A is regular and A -I = * (w-iJ)O::::i,i <no 

Proof Let A -I be defined as above. The element in the i-th row and j-th 
column of A . A -I is 

1 111-1 
• " ik -kJ' -wii = - LW w . 

n n k=O 

Obviously Wii = n for 0 :':: i < n. Now let i i= j. Then Wi) = L~:~ w(i-i)k. 

Since 0 <I i - j 1< n, we have wi - i i= 1. Using the summation formula for 
geometric series we get 

(Wi-i),' - 1 

w i - i - 1 

(W")i-i - 1 
----=0. 

w i - i - 1 
o 

Definition 3.3.3. Let n, w, A and a be as in Definition 3.3.2. The vector F;; I (a) 

= A -I . a, whose i -th component (0 :':: i < n) is ~ L~:~ akW -i k, is the inverse 
discrete Fourier transform (iDFT) of a (w.r.t. w). 

In order to speed up the evaluation of the polynomial (3.3.1), we will use 
the fact that the set of Fourier points {wi 1 0 :':: i < n} contains an additive 
inverse of everyone of its elements for properly chosen n. 

Lemma 3.3.2. Let n = 2m, w a primitive n-th root of unity in K. Then 
a. wm +i = -wi for 0:,:: j < m, 
b. w2 is a primitive m-th root of unity. 

Proof a. Since w is an n-th root of unity, we have 

Any solution of x 2 - (wi )2 = (x + wi)(x - wi) must be either wi or -wi. But 
wm+ i i= wi, so we must have wm+ i = -wi. 

b. Clearly w2 is an m-th root of unity. If (w2)i = 1 for some 0 < j < m, 
then wk = 1 for some 0 < k < n, in contradiction to w being primitive. 0 

Theorem 3.3.3. Let n = 2m, w a primitive n-th root of unity in K. With the 
notation 

m-I m-I 

a(e)(y) = L a2iY}' a(o)(y) = L a2J+ lyJ 
i=O }=O 



70 

we can express F{J)(a) as 

a(l) 

a(w) 

a(wm - I ) 

a(wm ) 

a(wm+l) 

a(w2m - l ) 

Homomorphic images 

a(e)(l) + a(o)(1) 

a(e)(w2) + wa(°l(w2) 

a(e) «w2)'1l-1) + wm- I a(o) «w2)m-l) 

a(e)(1) - a(o)(l) 

a(e)(w2) - wa(O) (w2) 

Proof The first m components of F{J)(a) are obvious. For 0 ::: j < m we 
have wm+ j = -wj by Lemma 3.3.2. So a(wm+ j ) = a( -wj ) = a(e)«wj )2) -
w j a(o)«wj )2). D 

From Theorem 3.3.3 and Lemma 3.3.2 (b) we see that F{J)(a) can be evalu
ated very efficiently if n is a power of 2. This observation is the basis for the 
fast Fourier transform. 

Algorithm FFT(in: n,w,a; out: b); 
[the integer n is a power of 2 and invertible in K, w is a primitive n-th root 
of unity in K, a = (ao, ... , an_d T is a vector of length n over K, which is 

also interpreted as a polynomial a(x) = L;l~ri aixi; b is the Fourier transform 
F{J)(a) of a. 
We assume that the powers wi, 0 ::: i < n, are precomputed.] 
1. if n = 1 then {b := a; return}; 
2. m:= n/2; 

a(e) := (a .)._ _ . a(o) := (a· )._ _ . 21 I-O ..... m I, 2/+1 I-O ..... m I, 
3. [recursive calls] 

c(e) := FFT(m, w2, a(e»); 
c(o) := FFT(m, w2, a(o»); 

4. [combination] 
for j := 0 to m - 1 do 

{b· '= c(e) + w j . c(o). 
}'} } , 

b .'= c(e) - w j . c(O)}. m+}.} }' 
return. 

Example 3.3.1. Let K = :£17, n = 8, w = 2. Then n is invertible in K and w is a 
primitive n-th root of unity in K. We compute the Fourier transform of the vector 
a = (2,3,5,1,4,6,1, 2)T by the algorithm FFT. a is decomposed into its even 
and odd parts a(e) = (2,5,4, I)T, a(o) = (3, 1,6, 2)T. Recursive application of 
FFT to 4,4, a(e) yields the vector c(e) = (12, 14,0, 16)T. Recursive application 



3.3 Fast Fourier transform 71 

of FFf to 4, 4, a(a) yields the vector e(a) = (12, 10,6, 1)T. SO in the combination 
step we get b = (7, 0, 7, 7, 0, II, 10, 8) T as the Fourier transform of a. 

Theorem 3.3.4. The number of field operations in the algorithm FFf is ~ n log2 n. 

Proof The time (number of field operations) T(n) of executing FFf on an input 
of length n satisfies the equation 

T(n) = 2T(n/2) + ~n . 

Iterating this formula (log2 n - 1) times gives 

T(n) = 3 (log2 n)2(log2 /1)-1 + nT(1) . 

But T(1) = 0, so we get ~n log2 n as the total number of field operations. D 

For executing FFf over finite fields we need to know whether for a given n 
we can find an appropriate finite field Zp and a primitive n-th root of unity in it. 
Fortunately this is the case. 

Theorem 3.3.5. Zp has a primitive n-th root of unity if and only if n I (p - 1). 

Proof By Lagrange's theorem, the order of a group element divides the order 
of the group. So n must divide the order p - 1 of the multiplicative group Z;. 

Now suppose n I (p - 1). The multiplicative group of Zp is cyclic, so it 
contains a primitive element a. Thus, f3 = a(p-I)/I! has order n in Z;, i.e., f3 is 
a primitive n-th root of unity in Zp. D 

So for n = 2k there is a primitive n-th root of unity in Zp if and only if p 
is of the form 

p = 2kq + 1 . 

The generalized prime number theorem states that for relatively prime integers 
a, b the number of primes less or equal to x in the arithmetic progression a·q +b 
(q = 1,2, ... ) is approximately 

x 
-1 -</J(a) , 
ogx 

where </J is Euler's phi function. As a consequence we get that the number of 
primes p = 2k q + 1 ::: x is approximately 

_x_2k- 1 

logx 



72 Homomorphic images 

For instance, there are approximately 180 primes p = 2kq + I (q odd) with 
exponent k ::: 20 below x = 231 . Any of these primes could be used to compute 
FFTs of size 220. 

Polynomial multiplication and convolution 

There exists a very tight connection between the Fourier transform and the 
evaluation of polynomials. Let 

11-1 
a(x) = Laixi 

i=O 

be a polynomial of degree n - 1. We can represent a by its vector of coefficients 
(ao, ... , an-I), or by its values at n distinct evaluation points xo, ... , Xn-I. 
Computing the coefficient representation of a polynomial from the list of values 
at evaluation points is interpolation. On the other hand, the OFT of the coef
ficient vector is the representation of a as the values at the evaluation points 
wO, w, ... , w n - I . So the inverse OFT is just a particular way of interpolating, 
namely W.r.t. interpolation points which are the powers of a primitive root of 
unity. 

Definition 3.3.4. Let a = (ao, .... an-d, b = (bo . .... bn-d be vectors over K. 
The convolution of a and b, written as a 0 b, is the vector c = (co, ... , c211-d, 

with Ci = L;~ci ajbi _ j , where ak = bk = 0 for k < 0 or k :::: n. 
The positive wrapped convolution of a and b is the vector c = (co, ... , Cn-I) 

. h "i b ,,11-1 
Wit Ci = Lj=Oaj i-j + Lj=i+1 ajbll +i _ j . 

The negative wrapped convolution of a and b is the vector c = (co, ... , cll-d 
. h "i b "II-I b 

Wit Ci = Lj=Oaj i-j - Lj=i+1 aj n+i-j· 

The motivation for considering convolutions comes from the multiplication 
of polynomials. The coefficients of the product of two polynomials of degree 
n - 1 are exactly the components of the convolution of their coefficient vectors. 
On the other hand, if the polynomials are represented as their values at 2n eval
uation points, the representation of their product can be determined by pairwise 
multiplication of the values. 

Theorem 3.3.6 (Convolution theorem). Let w be a primitive 2n-th root of unity 
in K. Let a = (ao . ... , an-I) and b = (bo . ... , bll-d be vectors of length n 
over K, and a = (ao, ... , all-I. 0, ... ,0), b = (bo ..... bll _ l , 0, ... ,0) the cor-
responding vectors of length 2n, where the trailing components have been filled 
with O's. Then a 0 b = F:;;I(F(,y(a) . Fw(b)), where "." means componentwise 
multiplication. 

Proof Obviously the vector c = a 0 b consists of the coefficients of a . b. So 
if we can show that Fw(c) = Fw(a) . Fw(b) then we are done. But this is clear, 



3.3 Fast Fourier transform 73 

since every line is of the form 

where h~) is the evaluation homomorphism W.r.t. uj. o 

Example 3.3.2. Let us suppose that we are given the polynomial a(x) = x + 10 
and we want to compute (x + 10)3. Making use of the convolution theorem 
we represent a as the vector (10, 1. 0, 0), apply the Fourier transform Fw W.r.t. 
some 4th root of unity w, Fw(a) = (ao, aI, a2, (3), raise all the components 
of the transform to the third power, and apply the inverse Fourier transform, 
getting F; I (a6, af, ai, a~) = (1000, 300, 30, I), representing the polynomial 
x 3 + 30x2 + 300x + 1000 = a(x)3. 

Quite clearly this approach will be a slow-down compared to the usual 
method of multiplication. The same is true for higher degree but sparse poly
nomials. However, if the polynomials to be multiplied are of high degree and 
dense, then the Fourier transform might be a feasible alternative. 

The addition of trailing O's can be avoided by using the wrapped convo
lutions. In describing the Schonhage-Strassen multiplication algorithm we will 
make use of the wrapped convolutions. Evaluating two polynomials of degree 
n - 1 at n points, multiplying these values componentwise, and applying the 
inverse transformation, we get exactly the components of the positive wrapped 
convolution. 

Theorem 3.3.7. Let w be a primitive n-th root of unity in K, 1/1 2 = w. Let 
a = (ao, ... , an-I) and b = (bo, ... , bll _ l ) be vectors of length n over K. 
a. The positive wrapped convolution of a and b is F;I (Fw(a) . Fw(b». 
b. Let d = (do, ... , dn-d be the negative wrapped convolution of a and b. Let 

a, band J be defined as (ao, 1/1 a I , •.. , 1/111-1 all _ d, (bo, 1/Ibl, ... , 1/In-1 bn- d, 
and (do, 1/Idl , ... , 1/In- Idll _d. Then J = F;;;I(Fw(a). Fw(b». 

Proof We consider only part (b). Observe that 

P II-I 

dp = L:>J . bp _ j - L aj' bll + p _ j . 
j=O j=p+1 

n-I 
d; = L 1/IP . dp . w ip = 

p=o 



74 Homomorphic images 

n-l p n-l n-l 

= L L1/IP . aj . bp_ j . W ip - L L 1/IP. aj . bn+p- j . W ip 
p=Oj=O p=Oj=p+1 

n-I p n-I n-I 

= L L 1/IP . aj . bp_ j . W ip + L L 1/In+ p . aj . bn+p- j . w1p . (3.3.2) 
p=Oj=O p=Oj=p+1 

On the other hand, let 

i.e., 

n-In-l 

n-I 

a; = L 1/Iq . aq . wiq , 
q=O 

n-I 
b' - '" ,,/ b ,)r i-L'f' . r· cu , 

r=O 

a; . b; = L L 1/Iq+r . aq . br . wi(q+r) 
q=Or=O 

n-I s n-I n-I 

= L L 1/Is . at . bs- t . wis + L L 1/In+s. at . bn+s- t . wls . 
s=OI=O s=Ot=p+ I 

The statement follows from (3.3.2) = (3.3.3). 

(3.3.3) 

o 

Theorem 3.3.8. Let w be a primitive n-th root of unity in K, 1/1 2 = w, 1/In = -1. 
Let a = (ao, ... , an-I) and b = (bo, ... , bn-d be vectors of length n over K. 
The convolution a 0 b as well as the wrapped convolutions of a and b can be 
computed in O(n log n) arithmetic operations. 

Proof Combine Theorems 3.3.4, 3.3.6, and 3.3.7. o 

FFT in the integers modulo m 

With only slight modifications of the proofs, the whole theory of the fast Fourier 
transform can be generalized to commutative rings with identity R, see for in
stance Aho et al. (1974). The complexity bounds remain the same. Fourier trans
forms in rings Zm are particularly important in the fast Schonhage-Strassen in
teger multiplication algorithm. For given nand w, powers of 2, we will need to 
explicitly find a ring Zm in which we can execute the Fourier transform. The 
existence and form of such an m is given by the following theorem. 

Theorem 3.3.9. Let nand w be powers of 2 with positive exponents and let 
m = wn/2 + 1. In Zm there is a multiplicative inverse of nand w is a primitive 
n-th root of unity. 



3.3 Fast Fourier transform 75 

Proof m and n are relatively prime, so n is invertible in Zm. We have wn = 
wn/2 . wn/2 == (-1) . (-1) == 1 mod m. So w is an n-th root of unity in Zm. 
Finally we have to show that wj =j:. 1 for 0 < j < n. For 0 < j < nl2 we 
have 1 < wj < m - 1, so wj =j:. ±l modulo m. For j = nl2 we have wj = -1 
modulo m. For nl2 < j < n we have wj = wn/2wj-n/2 = _wj - n/2 =j:. ±l 
modulo m. 0 

Now let us determine the bit complexity of the Fourier transform in rings 
Zm, m = wn/2 + 1. 

Theorem 3.3.10. Let wand n be powers of 2 and m = wn / 2 + 1. Let a 
(ao, aI, ... , an-I) be a vector over Z and 0 .:::: ai < m for each i. Then the 
DFT of a and the iDFT of a modulo m can be computed in time dominated by 
n2 log n log w. 

Proof We apply the algorithm FFT. The time T(n, w) for executing FFT on 
inputs of size (n, w) is 2 times the time for executing FFTs of size (nI2, ( 2) 
(from step (3» plus 2(nI2) times the time for executing the multiplication by 
w j and the subsequent addition or subtraction in step (4) for computing bj or 
bm+ j. Multiplication by w j is a left-shift, and the result is less than wn . So we 

can write wj . cy) = Zo + ZIWn/2 == ZO - ZI mod m, where 0 .:::: Zi < wn/2, and 
therefore the computation of bj takes time dominated by log m ~ n log w. Thus, 
we get 

T(n,w)::s 2T(~,w2) +n2 10gw. 

Iterating this equation log n times, we get the complexity of the DFT as 

T(n, w) ::s n2 logn logw . 

For computing the iDFT we substitute w- I for w in FFT. Multiplication by 
w- p is the same as multiplication by wn- p . This means that the multiplication in 
step (4) is again a left-shift yielding a result bounded by w(3/2)n. Therefore either 

w- j .cY) == -1 mod m or w- j .cY) = ZO+ZIWn/2 +Z2Wn == zo -ZI +Z2 mod m. 
So the computation of bj takes time dominated by log m ~ n log wand we get 
the same complexity bound as above. The only complication is that now we 
need to multiply the result by 1 In. If n = 2k, then 

2k . 2n logw-k == 2n logw == wn == wn + 2wn/2 + 2 == m . m + 1 == 1 mod m , 

so multiplication by n- I can be computed as a left-shift by n logw-k positions. 
The result is again bounded by w(3/2)n, so its remainder modulo m can be 
computed in time dominated by n log w. Thus, also the time for computing 
iDFT is dominated by n 2 log n log w. 0 



76 Homomorphic images 

The Schonhage-Strassen integer multiplication algorithm 

In Sect. 2.1 we have introduced the Karatsuba algorithm INT _MULTK for multi
plying two integers of length n by partitioning them into integers of length n /2. 
The complexity of INLMULTK is proportional to n 1og2 3. This approach is gen
eralizable and leads to the so-called Schonhage-Strassen integer multiplication 
algorithm (Schonhage and Strassen 1971). 

We represent the inputs as b blocks of I bits each. These b blocks are 
regarded as the coefficients of a polynomial. In order to get the coefficients of 
the product of these polynomials, we evaluate them at suitable points, multiply 
these values, and interpolate. Choosing the n-th roots of unity as evaluation 
points, we can apply the algorithm FFT and the convolution theorem. Recursive 
application of this process leads to a multiplication algorithm for integers of 
length n with complexity n log n log log n. 

For simplifying the analysis we will assume that n is a power of 2. This 
can always be achieved by adding leading O's and the complexity function 
will remain unchanged (only the constant factor is increased). Actually we will 
compute the product of two integers of length n modulo 211 + I. If we want 
the exact product of two integers of length n, we must again add leading O's 
and compute the product of integers of length 2n modulo 2211 + I. Again, the 
complexity function remains unchanged. 

So now let u and v be binary integers in the range 0 :s u, v :s 211 which 
should be multiplied modulo 211 + 1. If either U or v is equal to 211 , we use the 
special symbol -1 to represent it and we treat this situation as an easy special 
case, e.g., u21Z == -u == 21Z + 1 - U mod 21Z + 1. 

Now for n = 2k we set b = 2k/2 for k even and b = 2(k-l )/2 for k odd. 
Furthermore, let I = n / b. Then I ::: band b I I. Both u and v are decomposed 
into b blocks of I bits each. So 

~ 

, bits 

I Uo 

~ 

I bits 
~ 

I bits 

I Vo 

~ 

I bits 

2(b-lll 2' U = Ub-l + ... + Ul + Uo and v = Vb_ 12(b-l l l + ... + Vii + Vo . 

The product of u and v is 

uv = Y2b_ I i 2b- 1)1 + ... + )'Ii + Yo , (3.3.4) 

where 
b-I 

Yi = LUjVi-j, O:s i < 2b . 
j=O 

We assume that Uj = Vj = 0 for j < 0 or j > b - I. The term Y2b-l is 0 and 
is only present for reasons of symmetry. 

The product uv could be computed by application of the convolution the-



3.3 Fast Fourier transform 77 

orem. This would mean that we need 2b multiplications and shifts. However, 
if we use wrapped convolutions, we need only b multiplications. This is the 
reason for computing uv modulo 2n + 1. Because of 2bl + I = 2n + 1 we have 

So (3.3.4) is transformed to 

uv == Wb_12(b-I)1 + ... + wli + Wo mod 2n + 1 , 

where 
Wi = Yi - Yb+i, 0 :::::: i < b . 

Since the product of two binary numbers of length I is less than 221 and since 
Yi and Yb+i are sums of i + I and b - (i + I) of such products, respectively, 
we get the bounds -(b - I - i)221 < Wi < (i + 1)221. So Wi has at most b221 

possible values. If we can compute the Wi'S modulo b221 then we can compute 
uv modulo 2n + I in O(b log(b22/» additional steps by adding the Wi'S after 
appropriate shifts. 

For computing the Wi'S modulo b221 we compute them both modulo band 
modulo 221 + 1. Let w; = Wi mod band w;' = Wi mod (221 + I). b is a power 
of 2 and 221 + 1 is odd, so band 221 + I are relatively prime. b = 2P divides I, 
so it also divides 221 , and therefore we have 221 + I == 1 mod b. As in the proof 
of the Chinese remainder theorem we get 

Wi = (221 + I)«w; - W;') mod b) + w;' , 
and - (b - I - 0221 < Wi < (i + 1)22/. The complexity of computing Wi from 
w; and w;' is 0(1 + 10gb) for each i (O(logb) for w; - w;' mod b, 0(1) for 
the shift by 21 positions, 0(1 + 10gb) for subsequent additions). So in total the 
complexity is O(bl + b 10gb) or O(n). 

The Wi'S are computed modulo b by setting u; = Ui mod b and v; = Vi mod 
b and forming the binary numbers 

u = u~_IOO ... Ou~_200 .. . 0 ... 00 .. . Ou~, 

v = v~_1 00 ... OV~_200 . .. 0 ... 00 ... Ov~ 

of length 3b log b. Every block of O's has the length 2 log b. The computation of 
the product uv by the Karatsuba algorithm takes time 0«3b logb)1.6), i.e., less 
than O(n). uv = ,,~b-I y'2(3Iogb)i where Y~ = ,,~b-I u'v' . Furthermore 

L...,=O I ' I L...J=o j l-j· , 

Y; < 2310gb. So the Yi'S can easily be extracted from the product uv. Then the 
values of the Wi'S modulo b are simply Y; - Y~+i mod b. 

The Wi'S modulo 221 + I are computed via a wrapped convolution. This means 
we have to compute a DFT, multiply the resulting vectors componentwise, and 
compute an iDFT. Let w = 241 / b and m = 221 + 1. By Theorem 3.3.9 b has 



78 Homomorphic images 

a multiplicative inverse in Zm and (J) is a primitive b-th root of unit~. So by 
Theorem 3.3.7 the negative wrapped convolution of [uQ, 1/IuI, ... ,1/1 -IUb_d 
and [vQ, 1/1 VI , ... , 1/Ib-I vb_d, where 1/1 = 221 /b, is of the form 

where Yi = I:J,:J UjVi_j for 0 ::s i ::s 2b -1. Now the Wi'S modulo 221 + 1 can 
be computed by appropriate shifts. 

Algorithm INT_MULTSS(in: u, v, n; out: w); 
[u, v are binary integers of length n, n = 2k for some kEN; 
W is a binary integer such that W = uv mod 2n + 1.] 
O. For small n apply one of the usual multiplication algorithms. 

For big n (n > 3 at least) set b = 2k/2 if k is even and b = 2(k-l)/2 if k is 
odd, and I = nib. 
Let U = I:f,:-J Ui 2li and v = I:f,:-J Vi ii, where 0 ::s Ui, Vi ::s 21 - 1, be the 
representations of u, v in the positional number system with base i. 

1. Call FFf for com~uting Fw[uQ, 1/Iul, ... , 1/Ib-l ub_d modulo 221 + 1 and 
Fw[vQ, 1/1 VI , .•• ,1/1 -IVb_d modulo 221 + 1, where (J) = 241 /b and 1/1 = 221/b. 

2. Apply INT .MULTSS recursively for computing the pairwise products of the 
DFfs of step (1) modulo 221 + 1. The case that one of the components is 221 
is treated as a special case. 

3. Compute the iDFf modulo 221 + 1 of the vector of pairwise products of 
step (2). 
The result is [wQ, 1/1 WI , ... , 1/Ib-1 wb-d modulo 221 + 1, where Wi is the i-th 
component of the negative wrapped convolution of [uQ, UI, ... , ub-d and 
[vQ, VI, ... , Vb-d. 
Compute w;' = Wi mod 221 + 1 by multiplication of 1/I i wi by 1/I-i modulo 
221 + 1. 

4. Compute w; = Wi mod b as follows: 
a. Set u; = Ui mod b and v; = Vi mod b for 0 ::s i < b. 
b. Construct the binary numbers u and v by concatenating the Ui'S and Vi'S 

with blocks of 210g b zeros in between. 
So u = "'~-QI u~2(3Iogb)i and v = "'~-Ql v~2(3Iogb)i. 

L.J,= I L.J,= I 

c. Compute the product uv by the Karatsuba algorithm. 
d. The product u v is ",~b-Q I y~2(3Iog b)i where Y~ = ",~b-Q I u'. v~ .. 

L.J,= I ' I L.J)= ) 1-) 

Set w; = (y; - Y~+i) mod b, for 0 ::s i < b. 
5. Compute the Wi'S as Wi = (221 + 1)«w; - w;') mod b) + w;', where 

-(b - 1 - i)221 < Wi < (i + 1)221. 
6. Set W = I:f,:-J wiii mod 2n + 1. 

Theorem 3.3.11. The complexity of the algorithm INT .MULTSS is O(n log n . 
log log n). 

Proof Let M (k) be the complexity of applying INT .MULTKSS to binary inte-



3.3 Fast Fourier transform 79 

gers of length k. Then by Theorem 3.3.10 the complexity of the steps (1) to (3) 
is 

O(max{b2 . 10gb .log221 /b, b· M(b . log 221/b)}) 

= O(max{bl . 10gb, b· M(2/)}) 

= O(bl . 10gb + b· M(2l)) , 

where the first term in the complexity bound comes from the Fourier transforms 
and the second term from the multiplications of the components. The length of 
u and v in (4) is bounded by 3b . log b, so the multiplication by the Karatsuba 
algorithm takes time O«3b . log b) 1.6). For sufficiently big b we have (3b . 
log b) 1.6 < b2, so that the complexity for step (4) is dominated by the term 
O(b2 10gb) in the complexity bound for (1)-(3). The steps (5) and (6) are of 
complexity O(n) and can be neglected. 

Using the fact that n = bl and b ~ In we get the recursive relation 

M(n) ~ c· n ·logn + b· M(2/) (3.3.5) 

for a constant c and sufficiently big n. Setting M'(n) = M(n)/n, we can trans
form (3.3.5) into 

M'(n) ~ c ·logn + 2M'(2/) 

and furthermore by I ~ 2Jn into 

M'(n) ~ c ·logn + 2M'(4Jn) . 

Now by induction on n we can show that 

M'(n) ~ c' ·logn . log log n for some c' . 

(3.3.6) 

(3.3.7) 

Assume that (3.3.7) hold for all m < n. Then by the induction hypothesis 

M'(n) ~ c ·logn + 2M'(4Jn) 

:s c ·logn + 2· c' . log (4.Jn) .loglog(4Jn) 

= c . log n + 2 . c' . (2 + 1 log n) . log(2 + 1 log n) 

= c . log n + 4 . c' . log( 2 + 1 log n ) + c' . log n . 10g(2 + 1 log n) 
'-v-' '-v-' 

:::: ~ log n for suf-
ficiently big n 

~ c ·logn + 4c' . log ~ + 4c' . log log n 

+ c' ·logn . log ~ + c' ·Iogn . log log n . 

For sufficiently big nand c' the first four terms are dominated by the forth, 
which is negative. So M'(n) ~ c' ·logn ·loglogn. This proves (3.3.7). 



80 Homomorphic images 

Relation (3.3.7) implies 

M(n) :: c' . n ·logn ·loglogn . D 

Example 3.3.3. Let us demonstrate how the algorithm INLMULTSS works by 
applying it to u = 217 and v = 145. We choose n = 16 = 24, i.e., k = 4. 
O. b = 24/2 = 4 and I = nib = 4. We decompose the binary representations 

of u and v into blocks: 

1. ljf = 22.4/4 = 4; w = ljf2 = 16 is a primitive 4th root of unity modulo 28 + 1. 
As the DFT modulo 28 + 1 of [un, ljfuI, ljf2u2' ljf3 U3 ) = [9,52,0,0) we get 
[61,70,214,205). As the DFT modulo 28 + 1 von [va, ljfvI, ljf2v2, ljf3 V3 ) = 
[1,36,0,0) we get [37,63,222,196). 

2. The pairwise product modulo 28 + 1 is p = [201, 41, 220, 88). 
3. Now we have to compute the inverse DFT modulo 28 + 1 of p, i.e., F;; I (p) = 

tFw-1 (p), where w- I = 241. We get F;;I (p) = t[36, 219, 35, 0) = [wo, 

ljfwI, ljf2w2, ljf3 W3 ) mod 28 + 1. So the w;"s are w~ = 9, w;' = 94, w~ = 
117, w~ = O. 

4. a. [u~, u; , u;, u;) = [1, 1, 0, 0), [v~, v;, v;, v~) = [l, 1,0,0). 
b. it = 00 0000 00 0000 01 0000 01 , 

'-v-' '-v-' '-v-' '-v-' 

u; u; u') u~ 

1) = 00 0000 00 0000 01 0000 01 . 
'-v-' '-v-' '-v-' '-v-' 

v; v; vi vb 
c. it 1) = 0 ... 0000001 000010 00000 1. 

'-..-''-..-''-..-' 
y; :vi yb 

d. w~ = yb - y~ mod 4 = 1, 
w; = y; - y~ mod 4 = 2, 
w; = y; - y~ mod 4 = 1, 
w; = y~ - y~ mod 4 = O. 

5. Wo = (28 + 1) . «(1 - 9) mod 4) + 9 = 9, 
WI = (28 + 1) . «2 - 94) mod 4) + 94 = 94, 
W2 = (28 + 1) . «1 - 117) mod 4) + 117 = 117, 
W3 = (28 + 1) . «0 - 0) mod 4) + 0 = O. 

6. Combining these partial results we finally get W = wo2° + w j 24 + w228 + 
w3212 = 31465. 



3.4 Bibliographic notes 

Exercises 

1. Let w be a primitive n-th root of unity in K, and let 11 = 2m. Show that w" 
is a primitive m-th root of unity in K. 

2. Let w be a primitive n-th root of unity in K, and let 11 be even. Show that 
w"/1 = -1. 

3. How could you use the Fourier transform to compute the product of 
x lOOO + I and x lOOO + x over C? How many evaluations points do you need? 

4. Prove Theorem 3.3.7 (a). 

3.4 Bibliographic notes 

81 

The modular approach and the technique of p-adic lifting are treated in Lauer 
(1983). For a way of exploiting sparseness in Hensel lifting we refer to Kaltofen 
(1985b). 

The fast Fourier transform has been discovered by 1. M. Cooley and 1. W. 
Tukey (1965). The discrete Fourier transform has a long history. In Cooley et al. 
(1967) the roots of the FFT are traced back to Runge and Konig (1924). For 
overviews on FFT we refer to Cooley et al. (1969), Aho et al. (1974), or Lipson 
(1981). 



4 Greatest common divisors 
of polynomials 

4.1 Polynomial remainder sequences 

If K is a field, then K[x] is a Euclidean domain, so gcd(f, g) for f, g E K[x] 
can be computed by the Euclidean algorithm. Often, however, we are given 
polynomials f, g over a domain such as Z or K[XI, ... ,xn-Il and we need to 
compute their gcd. 

Throughout this section we let [ be a unique factorization domain (ufd) and 
K the quotient field of [. 

Definition 4.1.1. A univariate polynomial f(x) over the ufd [ is primitive iff 
there is no prime in [ which divides all the coefficients in f(x). 

A key fact concerning primitive polynomials has been established by C. F. 
Gauss. 

Theorem 4.1.1 (Gauss's lemma). Let f, g be primitive polynomials over the 
ufd [. Then also f . g is primitive. 

Proof. Let f(x) = I:::Oaixi, g(x) = I:7=obix i . For an arbitrary prime p in 
[, let j and k be the minimal indices such that p does not divide aj and bk, 
respectively. Then p does not divide the coefficient of xj+k in f . g. D 

Corollary. Gcd's and factorization are basically the same over [ and over K. 
a. If fl' h E /[x] are primitive and g is a gcd of II and h in [[x], then g is 

also a gcd of fl and h in K[x]. 
b. If f E [[x] is primitive and irreducible in /[x], then it is also irreducible in 

K[x]. 

Proof. a. Clearly every common divisor of II and h in /[x] is also a com
mon divisor in K[x]. Now let g' be a common divisor of fl and h in K[x]. 
Eliminating the common denominator of coefficients in g' and making the result 
primitive, we get basically the same divisor. So w.l.o.g. we may assume that g' 
is primitive in /[x]. For some primitive hi, h2 E /[x], ai, a2 E K we can write 
fl = al . hi . g', h = a2 . h2 . g'. Since, by Gauss's lemma, hlg' and h2g' are 
primitive, al and a2 have to be units in [. So g' is also a common divisor of fl 
and h in /[x]. 

b. Suppose f = II· h for some fl' hE K[x]\K. Then for some primitive 



4.1 Polynomial remainder sequences 83 

I{, I~ E I[x] \ 1 and a E K we have I = a . I{ . I~. By Gauss's lemma I{ . I~ 
is also primitive, so a has to be a unit. D 

By this corollary the computation of gcds in I[x] can be reduced to the 
computation of gcds in K[x]. From a complexity point of view, however, this 
reduction is not very efficient, since arithmetic in the quotient field is usually 
much more costly than in the underlying integral domain. In the following we 
will develop methods for working directly in the ufd I. 

Definition 4.1.2. Up to multiplication by units we can decompose every poly
nomial a(x) E I[x] uniquely into 

a(x) = cont(a) . pp(a) , 

where cont(a) Eland pp(a) is a primitive polynomial in I[x]; cont(a) is the 
content of a(x), pp(a) is the primitive part of a(x). 

Definition 4.1.3. Two non-zero polynomials a(x), b(x) E I[x] are similar iff 
there are similarity coefficients a, f3 E I* such that a . a(x) = f3 . b(x). In this 
case we write a (x) ~ b(x). Obviously a (x) ~ b(x) if and only if pp(a) = pp(b). 
~ is an equivalence relation preserving the degree. 

Now we are ready to define what we mean by a polynomial remainder 
sequence. 

Definition 4.1.4. Let k be a natural number greater than 1, and 11,12, ... , Ik+1 
polynomials in /[x]. Then 11,12, ... , Ik+1 is a polynomial remainder sequence 
(prs) iff 

deg(JI) ::: deg(J2) , 

ii #- 0 for 1 :s i :s k and Ik+ I = 0 , 

ii ~ prem(ii-2, ii-I) for 3 :s i :s k + 1 . 

Lemma 4.1.2. Let a, b, a', b' E I[x]*, deg(a) ::: deg(b), and r ~ prem(a, b). 
a. If a ~ a' and b ~ b' then prem(a, b) ~ prem(a', b'). 
b. gcd(a, b) ~ gcd(b, r). 

Proof a. Let aa = a'a', f3b = f3'b', and m = deg(a) , n = deg(b). By Lemma 
2.2.4 

f3 m- n+laprem(a, b) = prem(aa, f3b) 

= prem(a'a', f3'b') = (f3,)m-n+l a 'prem(a', b') . 

b. Clearly a, band b, prem(a, b) have the same primitive divisors, so gcd(a, 
b) ~ gcd(b, prem(a, b», and by part (a) this is similar to gcd(b, r). D 



84 Greatest common divisors 

Algorithm GCD_PRS(in: a, b; out: g); 
[a, b E I[x]*, g = gcd(a. b)] 
1. if deg(a) :::: deg(b) 

then {fl := pp(a); 12 := pp(b)} 
else {fl := pp(b); 12 := pp(a)}; 

2. d:= gcd(cont(a). cont(b»; 
3. compute 13 . .... /k. fk+1 = 0 such that fl. h • ... , fh 0 is a prs; 
4. g:= d . pp(fd; return. 

Therefore, if fl. 12, . " . f", 0 is a prs. then 

gcd(fl, h) :::::: gcd(h, h) :::::: ... :::::: gcd(fk-I, ik) :::::: fk . 

If fl and 12 are primitive, then by Gauss's lemma also their gcd must be 
primitive, i.e., gcd(fl, h) = PP(fk). So the gcd of polynomials over the ufd 1 
can be computed by the algorithm GCD~PRS. 

Actually GCD~PRS is a family of algorithms, depending on how exactly we 
choose the elements of the prs in step (3). Starting from primitive polynomials 
fl' 12, there are various possibilities for this choice. 

In the so-called generalized Euclidean algorithm we simply set 

Ii := prem(fi-2, fi-I) for 3 :s i :s k + 1 . 

This choice, however, leads to an enormous blow-up of coefficients, as can be 
seen in the following example. 

Example 4.1.1. We consider polynomials over Z. Starting from the primitive 
polynomials 

fl = x 8 + x 6 - 3x4 - 3x 3 + 8x 2 + 2x - 5 , 

12 = 3x6 + 5x4 - 4x 2 - 9x + 21 , 

the generalized Euclidean algorithm generates the prs 

13 = -15x4 + 3x2 - 9 , 

f4 = 15795x2 + 30375x - 59535 , 

fs = 1254542875143750x - 1654608338437500 , 

f6 = 12593338795500743100931141992187500 . 

So the gcd of !J and 12 is the primitive part of f6, i.e., 1. 

Although the inputs and the output of the algorithm may have extremely 



4.1 Polynomial remainder sequences 85 

short coefficients, the coefficients in the intermediate results may be enormous. 
In particular, for univariate polynomials over Z the length of the coefficients 
grows exponentially at each step (see Knuth 1981: sect. 4.6.1). This effect of 
intermediate coefficient growth is even more dramatic in the case of multivariate 
polynomials. 

Another possible choice for computing the prs in GCD_PRS is to shorten 
the coefficients as much as possible, i.e., always eliminate the content of the 
intermediate results. 

ii := pp(prem(ji-2, ii-d) . 

We call such a prs a primitive prs. 

Example 4.1.1 (continued). The primitive prs starting from II, h is 

h = 5x4 - x 2 + 3 , 

14 = 13x2 + 25x - 49 , 

Is = 4663x - 6150 , 

16 = 1 , 

Keeping the coefficients always in the shortest form carries a high price. For 
every intermediate result we have to determine its content, which means doing 
a lot of gcd computations in the coefficient domain. 

The goal, therefore, is to keep the coefficients as short as possible without 
actually having to compute a lot of gcds in the coefficient domain. So we set 

where f3i, a factor of cont(prem(ji_2, Ii-d), needs to be determined. The best 
algorithm of this form known is Collins's subresultant prs algorithm (Collins 
1967, Brown and Traub 1971). 

First we need some notation. Let 

III 

a(x) = :Laixi, 
i=O 

II 

b(x) = :Lbixi 
i=O 

be non-constant polynomials in /[x 1 of degree m and n, respectively, where 
m ~ n. 

Let M(a, b) be the Sylvester matrix of a and b, i.e., 



86 Greatest common divisors 

am am-I al aO 0 0 

0 am am-I al aO 0 0 

0 0 am am-I al aO 

M(a, b) = 

bn bn- I bl bo 0 0 

0 bn bn- I b l bo 0 0 

0 0 bn bn- I .. . .. . ... bl bo 

The lines of M(a, b) consist ofthe coefficients of the polynomials xn-Ia(x), ... , 
xa(x), a(x) and xm-Ib(x), ... , xb(x), b(x), i.e., there are n lines of coefficients 
of a and m lines of coefficients of b. The resultant of a and b is the determinant 
of M(a, b). In order to get the subresultants, we delete certain lines and columns 
in M(a, b). 

By M(a, b)i,j we denote the matrix resulting from M(a, b) by deleting 

- the last j rows of coefficients of a, 
- the last j rows of coefficients of b, 
- the last 2j + 1 columns except the (m + n - i - j)-th, 

for 0 :s i :s j :s n - 1. 

Definition 4.1.5. Let a(x), b(x) E J[x]* with m = deg(a) ~ deg(b) = n. The 
determinant of M(a, b) is the resultant of a(x) and b(x). 

For 0 :s j :s n - 1 the polynomial 

j . 
Sj(a, b)(x) = L det(M(a, b)i,j)X1 

i=O 

is the j-th subresultant of a and b. 

Obviously deg(Sj(a, b» :s j. 

Example 4.1.2. Let a (x) = 2x4 + x 2 - 4, b(x) = 3x2 + 2 over the integers. We 
want to compute the first subresultant SI (a, b) of a and b. 

2 0 1 0 -4 0 
0 2 0 1 0 -4 

M(a, b) = 3 0 2 0 0 0 
0 3 0 2 0 0 
0 0 3 0 2 0 
0 0 0 3 0 2 



4.1 Polynomial remainder sequences 87 

Thus we get 

Sl (a, b)(x) = det(M(a, b)l,I)x + det(M(a, b)o,d 

=det(H H) ,x+det(! H 
0030 003 

-4) ~ ~Ox+!o2. 

In the following we will give a relation between the chain of subresultants 
of polynomials a(x), b(x) and the elements of a prs starting from a and b. We 
will use the following notation: for a prs iI, h, ... , it. 0 in [[x], 

ni := deg(fj} for 1 ~ i ~ k (nl::: n2 > ... > nk ::: 0) , 

8i := ni - ni+1 for I ~ i ~ k - 1 . 

Theorem 4.1.3. Let iI, h E [[x]* and iI, h, ... , it. ik+1 = 0 be a prs in 
[[x]. Let ai := 1c(ii_d;-2+1 for 3 ~ i ~ k + 1, and !3i E [ such that !3di 
= prem(ii-2, ii-I) for 3 ~ i ~ k + 1. 

Then for 3 ~ i ~ k we have: 

where 

Sll;_I-I(fI,h)=Yiii , 

Sj(fl, h) = 0 for ni-I - 1 > j > ni , 

Sll; (fl , h) = Oiii , 

Sj (fl, h) = 0 for nk > j ::: 0 , 

Yi = (_1)a; ·1c(fi_l)I-8;-1 . (n (!3t1alt'-1-n;-I+1 ·1c(Ji_d'-2+81-1) , 
1=3 

0i = (_1)r; ·1c(fd;-I-I. (n(!3t1a l)lll-I-n; ·1c(Ji_dl - 2+81-1), 
1=3 

i 

(Ji = L(nl-2 - ni-I + 1)(nl_1 - ni-I + 1) , 
1=3 

i 

Ti = L(nl-2 - ni)(nl-I - ni) . 
1=3 

Proof For a proof of Theorem 4.1.3 we refer to Brown and Traub (1971). See 
also Brown (1978). 0 



88 Greatest common divisors 

In simpler words, Theorem 4.l.3 states that both SI1;_I-I(fI, h) and SI1;(fI, 
h) are similar to Ii. and all the subresultants in between vanish. 

Example 4.1.3. Let us demonstrate the relations stated in Theorem 4.l.3 by 
considering the polynomials 

in !£[xJ. We choose fh = 1, i.e., /3 = prem(fl, h) = 58x + 6. 
The first subresultant of /1, 12 is 

I 

SI(fI, h) = L det(M(fI, h)i,I)x; 
;=0 

= det (~ ~2 ~ ~). x + det (~ 
o 0 3 2 0 

= -58x - 6 = -prem(fl, h) . 

The coefficient of similarity Y3 in Theorem 4.1.3 is 

Y3 = (_I)aJ .3 1- 82 . Cf3)la3)112-112+1 .381 +82 

= (-1)3.30 . (I/27)· 33 = -1. 

Example 4.1.4. Suppose ft, 12, 13, /4, /s, /6 = 0 is a prs in 1[x] with nl = 10, 
n2 = 9, n3 = 6, n4 = 5, ns = 1. Then we must have the following relations 

SI1J_I-1 = S8 ::::::: 13 , 
S7 = 0, 

Sill = S6::::::: 13 , 
SI14_1-1 = Ss::::::: /4, 

SII4 = Ss ::::::: /4 , 
SlIo_I-1 = S4 ::::::: /s , 
S3 = S2 = 0, 

Silo = SI ::::::: /s ' 
So = O. 

So the sequence of subresultants of /1, 12 basically agrees with a prs starting 
from /1, h. Moreover, this particular prs eliminates much of the content of the 
intermediate results without ever having to compute a gcd of coefficients. In 



4.1 Polynomial remainder sequences 89 

fact, there is a very efficient way of determining the sequence of subresultants, 
see Brown (1978). 

Theorem 4.1.4. Let iI, 12, ... , fk+1 be as in Theorem 4.1.3. In order to get 
Yi = I for 3 :::: i :::: k + 1, we have to set f3i as follows: 

f33 = (_1)8 1+1 , 

f3i = (_1)8i - 2+1 ·lc(fi-2)· h;'--~ for i = 4, ... , k + 1 , 

where 

h2 = lc(h)8 1 , 

hi = lcud i - I . h:~ti-I for i = 3, ... , k . 

By choosing the similarity coefficient f3i as in Theorem 4.1.4, we get the 
so-called subresultant prs: 

h = (_1)8 1+1. prem(fl, h) , 
(_1)8i - 2+1 

Ji = 8i -, • prem(fi-2, fi-d for i = 4, ... , k . 
lc(fi-2) . hi-i 

This subresultant prs is computed by the algorithm PRS_SR. 

Algorithm PRS_SR(in: fl' 12; out: F = [fl, 12, ... , ik]); 
[fl, 12 E 1 [x], deg(fl) :::: deg(f2), fl' 12, ... , ik, 0 are the subresultant prs for 
fl,h up to sign] 
1. F:= [f2, fJJ; 

g := 1; h := 1; f' := 12; i := 3; 
2. while f' =f. 0 and deg(f') > 0 do 

{8 := deg(Ji_2) - deg(Ji-d; 
l' := prem(Ji-2, fi-I); 
if l' =f. 0 
then (Ii := f'/(g . h8); F := CONS(Ji, F); 

g := lc(Ji-d; h := h l - 8 . g8; 

i := i + I}}; 
F := INV(F); return. 

Example 4.1.1 (continued). The subresultant prs (up to sign) of fl and 12 com
puted by PRS_SR is 

h = -15x4 + 3x 2 - 9 , 

f4 = 65x 2 + 125x - 245 , 

fs = -9326x + 12300 , 

f6 = 260708 . 



90 Greatest common divisors 

If we apply PRS_SR to univariate polynomials over the integers, we can give 
a bound on the length of the coefficients that could appear. Let /J (x), h(x) E 

Z[x] of degree m and n, respectively, and let the absolute values of all the 
coefficients be bounded by d. We use Hadamard's bound for the determinant of 
a p x p-matrix A = (aU) 

Applying this to the resultant of II and 12 we obtain 

as a bound for the coefficients of the subresultant prs. 
For Z[XI, ... , xr ], n the maximal degree in any variable of 11 and 12, and 

d a bound for the absolute values of all the integer coefficients in II and 12, 
the worst case complexity of PRS_SR is proportional to 

(see Loos 1983). 

Exercises 

1. Prove: If I is a ufd then also I[x] is a ufd. 
2. Write a procedure in Maple (or your favorite computer algebra system) 

implementing the algorithm PRS_SR. 
3. Compute the sequence of subresultants for the polynomials 

I (x) = 3x5 - 2x4 - 18x3 - 6x2 + 15x + 9 , 

g(x) = X4 - 3x3 + xl - 2x - 3 . 

How does this sequence of subresultants compare to a polynomial remainder 
sequence for I and g? 

4. Let K be an algebraically closed field, n a positive integer, H a 
hypersurface in p"n(K), the affine space of dimension n over K. Let 
I E K [x" ... , xn ] \ K be a defining polynomial of H, i.e., 
H = {(a" ... , an) I I(a" ... , an) = OJ. Let I = It lJ ••••• !,mr be the 
factorization of I into irreducible factors. Let I = I (H), i.e., I is the ideal 
of polynomials in K[x" ... , x,,] that vanish on H. 

Show that I = (f, ..... Ir). 
5. Let K be a field, I, g E K[x, y] relatively prime. 

Show that there are only finitely many points (a" a2) E p,,2(K) such that 
I(a" a2) = g(a" a2) = O. 



4.2 A modular gcd algorithm 91 

4.2 A modular gcd algorithm 

For motivation let us once again look at the polynomials in Example 4.1.1, 

II = x 8 + x 6 - 3x4 - 3x3 + 8x2 + 2x - 5 , 

12 = 3x6 + 5x4 - 4x2 - 9x + 21 . 

If II and 12 have a common factor h, then for some ql, q2 we have 

!I = ql . h, 12 = q2 . h . (4.2.1) 

These relations stay valid if we take every coefficient in (4.2.1) modulo 5. But 
modulo 5 we can compute the gcd of II and 12 in a very fast way, since all 
the coefficients that will ever appear are bounded by 5. In fact the gcd of II 
and 12 modulo 5 is 1. By comparing the degrees on both sides of the equations 
in (4.2.1) we see that also over the integers gcdUI, h) = 1. In this section we 
want to generalize this approach and derive a modular algorithm for computing 
the gcd of polynomials over the integers. 

In any modular approach we need a bound for the number of moduli that 
we have to take, more precisely for the product of these moduli. In our case we 
need to know how big the coefficients of the gcd can be, given bounds for the 
coefficients of the inputs. Clearly the coefficients in the gcd can be bigger than 
the coefficients in the inputs, as can be seen from the following example: 

a = x 3 + x 2 - x-I = (x + 1)2(x - 1) , 

b = x4 + x 3 + X + 1 = (x + 1)2(x2 - X + 1) , 

gcd(a, b) = x 2 + 2x + 1 = (x + 1)2 . 

The bound in Theorem 4.2.1 is derived from investigations in Landau (1905), 
Mignotte (1974, 1983). 

Theorem 4.2.1 (Landau-Mignotte bound). Let a(x) = I:7~0 aixi and b(x) = 

I:7=0 bi Xi be polynomials over Z (am =f. 0 =f. bn ) such that b divides a. Then 

Corollary. Let a(x) = I:r=Oaixi and b(x) = I:7=obix i be polynomials over 
Z (am =f. 0 =f. bn ). Every coefficient of the gcd of a and bin Z[x] is bounded in 
absolute value by 

2min(m.n) • gcd(am , bn) . min (-I 1_1 J ta!, _1_ ff;i\ . 
am i=O IbnlV ;;;{i) 



92 Greatest common divisors 

Proof The gcd of a and b is a divisor of both a and b and its degree is bounded 
by the minimum of the degrees of a and b. Furthennore the leading coefficient 
of the gcd divides am and bn and therefore also gcd(am, bn ). 0 

The gcd of a(x) mod p and b(x) mod p may not be the modular image of 
the integer gcd of a and b. An example for this is a(x) = x - 3, b(x) = x + 2. 
The gcd over Z is 1, but modulo 5 a and b are equal and their gcd is x + 2. 
But fortunately these situations are rare. 

So what we want from a prime p is the commutativity of the following dia
gram, where ¢p is the homomorphism from Z[x] to Zp[x] defined as ¢p(f(x)) 
= f(x) mod p. 

Z[x] x Z[x] Zp[x] x Zp[x] 

gcd in Z[x] ,!, ,!, gcd in Zp[x] 

Z[x] 

Lemma 4.2.2. Let a, b E Z[x]*, p a prime number not dividing the leading 
coefficients of both a and b. Let alp) and b(p) be the images of a and b modulo p, 
respectively. Let c = gcd(a, b) over Z. 
a. deg(gcd(a(p) , b(p»)) ::: deg(gcd(a, b)). 
b. If p does not divide the resultant of alc and blc, then gcd(a(p), b(p») 

c mod p. 

Proof a. gcd(a, b) mod p divides both alp) and b(p), so it divides gcd(a(p) , 
b(p»). Therefore deg(gcd(a(p) , b(p»)) ::: deg(gcd(a, b) mod p). But p does not 
divide the leading coefficient of gcd(a, b), so deg(gcd(a, b) mod p) = 
deg(gcd(a, b)). 

b. Let c(p) = c mod p. alc and blc are relatively prime. c(p) is non-zero. 
So 

gcd(a(p) , b(p») = c(p) . gcd(a(pJlc(p) , b(pJlc(p») . 

If gcd(a(p) , b(p») #- c(p), then the gcd of the right-hand side must be nontrivial. 
Therefore res(a(p)lc(p) , b(pJlc(p») = O. The resultant, however, is a sum of 
products of coefficients, so p has to divide res(alc, blc). 0 

Of course, the gcd of polynomials over Zp is detennined only up to multi
plication by non-zero constants. So by "gcd(a(p) , b(p») = c mod p" we actually 
mean "c mod p is a gcd of alp), b(p)." 

From Lemma 4.2.2 we know that there are only finitely many primes p which 
do not divide the leading coefficients of a and b but for which deg(gcd(a(p), 
b(p»)) > deg(gcd(a, b)). When these deg'rees are equal we call p a lucky prime. 

One possibility for computing the gcd of two integer polynomials a and b 
would be to detennine the Landau-Mignotte bound M, choose a prime p ::: 2M 



4.2 A modular gcd algorithm 93 

not dividing the leading coefficients of a and b, compute the gcd c(p) of a and 
b modulo p, center the coefficients of c(p) around 0 (i.e., represent Zp as {k I 
-p12 < k ::::: pI2}), interpret c(p) as an integer polynomial c, and test whether 
c divides a and b in Z[x]. If yes, we have found the gcd of a and b, if no, p 
was an unlucky prime and we choose a different prime. Since there are only 
finitely many unlucky primes, this algorithm terminates and produces the gcd. 
The drawback is that p may be very big and coefficient arithmetic may be costly. 

In the sequel we describe a modular algorithm that chooses several primes, 
computes the gcd modulo these primes, and finally combines these modular gcds 
by an application of the Chinese remainder algorithm. Since in Zp [x] the gcd 
is defined only up to multiplication by constants, we are confronted with the 
so-called leading coefficient problem. The reason for this problem is that over 
the integers the gcd will, in general, have a leading coefficient different from 1, 
whereas over Zp the leading coefficient can be chosen arbitrarily. So before we 
can apply the Chinese remainder algorithm we have to normalize the leading 
coefficient of gcd(a(p) , b(p». Let am, bn be the leading coefficients of a and b, 
respectively. The leading coefficient of the gcd divides the gcd of am and bn . 

Thus, for primitive polynomials we may normalize the leading coefficient of 
gcd(a(p) , b(p» to gcd(am, bn ) mod p and in the end take the primitive part of 
the result. These considerations lead to the following modular gcd algorithm. 

Algorithm GCD_MOD(in: a, b; out: g); 
[a, bE Z[x]* primitive, g = gcd(a, b). 
Integers modulo m are represented as {k I -m12 < k ::::: mI2}.] 
1. d:= gcd(lc(a), lc(b»; 

M := 2· d . (Landau-Mignotte bound for a, b); 
[in fact any other bound for the size of the coefficients can be used] 

2. p:= a new prime not dividing d; 
c(p) := gcd(a(p) , b(p»; [with lc(c(p» = 1] 
g(p) := Cd mod p) . c(p); 

3. if deg(g(p» = 0 then {g := 1; return}; 
P :=p; 
g := g(p); 

4. while P ::::: M do 
{p := a new prime not dividing d; 
c(p) := gcd(a(p) , b(b»; [with lc(c(p» = 1] 
g(p) := (d mod p) . c(p); 
if deg(g(p» < deg(g) then goto (3); 
if deg(g(p» = deg(g) 
then {g := CRA_2(g, g(p), P, p); 

[actually CRA_2 is applied to the coefficients of g and g(p)] 
P := p. p} }; 

5. g:= pp(g); 
if g la and g Ib then return; 
goto (2). 

Usually we do not need as many primes as the Landau-Mignotte bound tells 



94 Greatest common divisors 

us for determining the integer coefficients of the gcd in GCD-.MOD. Whenever g 
remains unchanged for a series of iterations through the "while"-loop, we might 
apply the test in step (5) and exit if the outcome is positive. 

Example 4.2.1. We apply GCD-.MOD for computing the gcd of 

a = 2x6 - 13x5 + 20x4 + 12x3 - 20x2 - 15x - 18 , 

b = 2x6 + x 5 - 14x4 - Ilx3 + 22x2 + 28x + 8 . 

d = 2. The bound in step (I) is 

M = 2.2.26 .2. min(!J1666, ~JI654) '" 10412 . 

As the first prime we choose p = 5. g(S) = (2 mod 5)(x3 + x 2 + x + 1). So 
P = 5 and g = 2x3 + 2x2 + 2x + 2. 

Now we choose p = 7. We get g(7) = 2x4 + 3x3 + 2x + 3. Since the degree 
of g(7) is higher than the degree of the current g, the prime 7 is discarded. 

Now we choose p = 11. We get g(l!) = 2x3 + 5x2 - 3. By an application 
of CRA_2 to the coefficients of g and gO!) modulo 5 and 11, respectively, we 
get g = 2x3 + 27x2 + 22x - 3. P is set to 55. 

Now we choose p = 13. We get g(l3) = 2x2 - 2x - 4. All previous results 
are discarded, we go back to step (3), and we set P = 13, g := 2x2 - 2x - 4. 

Now we choose p = 17. We get g(l7) = 2x2 - 2x - 4. By an application 
of CRk2 to the coefficients of g and g(7) modulo 13 and 17, respectively, we 
get g = 2x2 - 2x - 4. P is set to 221. 

In general, we would have to continue choosing primes. But following the 
suggestion above, we apply the test in step (5) to our partial result and we see 
that pp(g) divides both a and b. Thus, we get gcd(a, b) = x 2 - x - 2. 

The complexity of GCD-.MOD is proportional to m3(logm + L(d»2, where 
m is the maximal degree of a and band d a bound for the absolute values of 
all the coefficients in a and b (see Loos 1983). 

Multivariate polynomials 

We generalize the modular approach for univariate polynomials over Z to mul
tivariate polynomials over Z. So the inputs are elements of Z[Xl, ... , xn-Il[xn], 
where the coefficients are in Z[Xl, ... , xn-Il and the main variable is xn. In this 
method we compute modulo irreducible polynomials p(x) in Z[Xl, ... , xn-Il. 
In fact we use linear polynomials of the form p(x) = Xn-l - r where r E Z. 
So reduction modulo p(x) is simply evaluation at r. 

For a polynomial a E Z[x\, ... , Xn-2][Y][X] and r E Z we let ay- r stand 
for a mod y - r. Obviously the proof of Lemma 4.2.2 can be generalized to this 
situation. 



4.2 A modular gcd algorithm 95 

Lemma 4.2.3. Let a, b E Z[XI, ... ,XIl -2][Y ][x]* and r E Z such that Y - r 
does not divide both lcxCa) and lcx(b). Let e = gcd(a, b). 
a. degx(gcd(a y_r, by-r)) ?: degx(gcd(a, b)). 
b. If Y - r Y resxCale, ble) then gcd(ay _ r, by-r) = e y - r· 

The analogue to the Landau-Mignotte bound is even easier to derive: let e 
be a factor of a in Z[XI, .. . ,Xn-2][Y][X]. Then degy(e) :s degy(a). So we get 
the algorithm GCD~ODm. For computing the gcd of a, b E Z[XI, .. , ,xn ], the 
algorithm is initially called as GCD~ODm(a, b, n, n - 1). 

Algorithm GCD_MODm(in: a, b, n, s; out: g); 
[a, bE Z[XI, ... , xs][xn]*, O:s s < n; g = gcd(a, b).] 
O. if s = 0 then {g := gcd(cont(a), cont(b»GCD_MOD(pp(a), pp(b»; return}; 
1. M:= 1 + min(degxs (a), degx, (b)); 
2. r:= an integer S.t. degx)ax,-r) = degxn(a) or degxn(bx,-r) = degx)b); 

g(r) := GCD~ODm(axs_r, bx,-r, n, S - 1); 
3. m:= 1; 

g := g(r); 
4. while m :s M do 

{r := a new integer S.t. degx)ar,-r) = degxn(a) or degxn(br,-r) 
degxn (b); 
g(r) := GCD~ODm(ax,_r, bx,-r, n, s - I); 
if degxn (g(r» < degxn (g) then goto (3); 
if degxn (g(r» = deg(g) 
then {incorporate g(r) into g by Newton interpolation (see Sect. 3.1); 

m := m + I} }; 
5. if g E Z[XI, ... , xs] [xn] and g la and g Ib then return; 

goto (2). 

Example 4.2.2. We look at an example in Z[x, y]. Let 

a(x, Y) = 2x2 y 3 - xy3 +x3i + 2x4y - x3 y - 6xy + 3y +x5 - 3x2 , 

b(x, y) = 2xy3 - y3 - x 2i +xi - x3 y +4xy - 2y + 2x2 . 

We have 
M = 1 + min (degx (a), degx(b» = 4 . 

The algorithm proceeds as follows: 
r = 1: gcd(ax-I, bx-d = y + 1. 
r = 2: gcd(ax_2, bx-2) = 3y + 4. Now we use Newton interpolation to 

obtain g = (2x - 1)y + (3x - 2). 
r = 3: gcd(ax-3, bx-3) = 5y + 9. Now by Newton interpolation we obtain 

g = (2x - 1) y + x2 and this is the gcd (the algorithm would actually take another 
step ). 

The modular approach is the fastest currently known, both in theory and 



96 Greatest common divisors 

practice. The complexity of GCD_MODm is proportional to m2n+1 (n log m + 
L (d»2, where n is the number of variables, m is the maximal degree of a 
and b, and d a bound for the absolute values of all the integer coefficients in a 
and b (see Loos 1983). 

Exercises 

I. Apply GCD-MOD for computing the gcd of x S - X4 - 3x 2 - 3x + 2 and 
x4 - 2x 3 - 3x2 + 4x + 4 in Z[x J. Use the primes 2,3,5,7, ... 

2. Compute the gcd of the bivariate integer polynomials 

f(x,y)=l+xi+x 3y-xy+x4 -x2 , 

g(x, y) = xi - 2y5 + x 2/_ 2xl + xl + x 2 y 

both by the subresultant algorithm and the modular algorithm. 
3. What is the gcd h of the polynomials f. g in Z[x J? Check whether the 

integer factors of the resultant of f / hand g / h are unlucky primes in the 
modular approach to gcd computation. 

f = x 7 - 3xs - 2X4 + 13x3 - 15x2 + 7x - 1 , 

g = x 6 - 9xs + 18x4 - 13x3 + 2x2 + 2x - I . 

4.3 Computation of resultants 

Since the Oth subresultant of two polynomials is equal to their resultant, we can 
use the algorithm PRS_SR for computing resultants. But, as in the case of gcd 
computations, we can also apply a modular method for computing multivariate 
polynomial resultants. Such an approach is described in Collins (1971). 

Suppose we want to compute the resultant of the two polynomials a, b E 

Z[Xl, ... , x r ] W.r.t the main variable Xr . We reduce a and b modulo various 
primes p to a(p) and b(p), compute restr(a(p), b(p», and use the Chinese re
mainder algorithm for constructing resxr(a, b). For the subproblem of comput
ing resxr(a(p), b(p» over Zp we use evaluation homomorphisms for the variables 
Xl, ... ,Xr-l and subsequent interpolation. Thus, the problem is ultimately re
duced to a resultant computation in Zp[xr ], which can easily be achieved by the 
subresultant prs algorithm. 

Lemma 4.3.1. Let I, J be integral domains, ¢ a homomorphism from I into J. 
The homomorphism from I[x] into J[x] induced by ¢ will also be denoted 
¢, i.e., ¢(L7~o Cixi) = L;:o ¢(Ci)X i . Let a(x), b(x) be polynomials in I[x]. 
If deg(¢(a» = deg(a) and deg(¢(b» = deg(b) - k, then ¢ (resx (a, b» = 
¢ (lc(a»kresxC¢ (a), ¢(b». 

Proof Let M be the Sylvester matrix of a and b, M* the Sylvester matrix of 
a* = ¢(a) and b* = ¢(b). If k = 0, then clearly ¢(resx(a, b» = resxCa*, b*). 



4.3 Computation of resultants 97 

If k > 0 then M* can be obtained from ¢ (M) by deleting its first k rows and 
columns. Since the first k columns of ¢ (M) contain ¢ (lc(a)) on the diagonal 
and are zero below the diagonal, ¢(resxCa, b)) = ¢(det(M)) = det(¢(M)) = 
lc(a)kresxCa*,b*). D 

As in any application of the modular method, we need a bound on the num
ber of required homomorphic images. The bound for the evaluation homomor
phisms is obvious, namely if degxr (a) = m r , degx, (b) = n r , deg',_1 (a) = mr-l, 

degx,_1 (b) = nr-l, then from inspection of the Sylvester matrix we immediately 
see that degxr_l(resr,(a,b)) ::: mrnr-l + nrnlr-l. So if Xr-l is evaluated at 
mrnr-l + nrmr-l + 1 points, the resultant can be reconstructed from the resul
tants of the evaluated polynomials. The method fails if the finite field Zp does 
not contain enough evaluation points. In practice, however, p will be much big
ger than the required number of evaluation points, so this possibility of failure 
is not a practical one and we will ignore it. 

For determining a bound for the integer coefficients in the resultant we use 
the following norm of multivariate polynomials which is inductively defined as 

III 

norm(c(xd) = Ilc(xdlll = Llcil 
i=O 

111 

norm(c(xl, ... ,xr )) = Lnorm(ci) 
i=O 

III 

for c(xd = LCiX( E Z[xJJ , 
i=O 

m 

for C(XI, ... , XI') = LCiX~ 
i=O 

E Z[XI, ... , XI'] . 

For this definition of the norm we have norm(a + b) ::: norm(a) + norm(b), 
norm (a . b) ::: norm(a) . norm(b), and lal ::: norm(a) if a is any integer coeffi
cient in a. 

Lemma 4.3.2. Let a(xI,.'" XI') = L7~oai(xI"'" xr-dx~, b(XI, ... , XI') = 
L7=0 bi (Xl, ... ,xr-dx:' be polynomials in Z[XI, ... ,XI']. Let d = maxO:::i:::m 
norm(ai), e = maxO:::i:::1l norm(bd, a an integer coefficient in resx, (a, b). Then 
lal ::: (m + n)!dnem . 

Proof Each non-zero term of the determinant of the Sylvester matrix, as the 
product of n coefficients of a and nl coefficients of b, has a norm of at most 
dn em. Since there are at most (m + n)! such terms, we have norm (reSt, (a, b)) ::: 
(m + n)!dllem , and hence lal ::: (m + n)!dllem . D 

These considerations lead to Collins's modular algorithm for computing the 
resultant of two multivariate polynomials over the integers. 

Algorithm RESMOD(in: a, b; out: c); 
[a, b E Z[XI, ... , x r ], r :0: 1, a and b have positive degree in XI'; c = res,,(a, 
b).] 



98 Greatest common divisors 

1. m:= degx, (a); n := degx/b); 
d := maXO:::i:::m norm(ai); e := maXO:::i:::1I norm(b i ); 

P := I; C:= 0; B := 2(m + n)!dnelll ; 

2. while P ::::: B do 
{p := a new prime such that degx , (a) degx , (a(p») and degx, (b) 
degx/b(p»); 
c(p) := RES_MODp(a(p) , b(p)); 
C := CRA_2(c, c(p), P, p); 
[for P = I the output is simply c(p), otherwise CRA_2 is actually applied 
to the coefficients of C and c(p)] 
p:=p.p}; 

return. 

The subalgorithm RES_MODp computes multivariate resultants over Zp by 
evaluation homomorphisms. 

Algorithm RES_MODp(in: a, b; out: c); 
[a,b E Zp[XI, ... ,Xr ], r ~ I, a and b have positive degree in Xr ; C 

resx, (a, b).] 
O. if r = I then {c := last element of PRS_SR(a, b); return}; 
1. mr := degx,(a); nr:= degx,(b); mr-I := degxr_1(a); nr-I := degx,_l(b); 

B := mrnr-I + nrmr-I + 1; 
D(xr - d := 1; C(XI, ... , Xr- d := 0; f3 := -I; 

2. while deg(D) ::::: B do 
2.1. {f3:= f3 + I; [if f3 = p stop and report failure] 

if degxr (aXr_1=/l) < degx, (a) or degx, (bX,_I=/l) < degx, (a) then goto 
(2.1); 
C(fl)(XI, ... , Xr -2) := RES_MODp(aX,_I=/l, bX,_I=/l); 
C := (c(/l) (XI, ... , Xr-2) - C(XI, ... , Xr -2, f3))D(f3)-1 D(xr- d + C(XI, 
... , xr-d; [so C is the result of the Newton interpolation] 
D(Xr_l) := (Xr-I - f3)D(xr-d}; 

return. 

The complexity of RES-.MOD is analyzed in Collins (1971) and it turns out 
to be dominated by (m + I )2r+ I (log d (m + 1)) + (m + I )2r (log d (m + 1))2, where 
d is an upper bound for the norms of the inputs a and b and the degrees of a 
and b in any variable are not greater than m. 

Solving systems of algebraic equations by resultants 

Theorem 4.3.3. Let K be an algebraically closed field, let 

111 

a(xI,···, xr ) = Lai(XI, ... , Xr-I)X~, 
i=O 

II 

b(XI, ... , xr ) = Lbi (XI, ... , xr-dx~ 
i=O 

be elements of K[XI, ... , xr ] of positive degrees m and n in Xr , and let C(XI, 



4.3 Computation of resultants 99 

... ,Xr-l) = resXr(a, b). If (aI, ... ,ar ) E K r is a common root of a and b, 
then e(al, ... , ar-l) = 0. Conversely, if e(al, ... , ar-)) = 0, then one of the 
following holds: 
a. am(al, ... , ar-l) = bn(al, ... , ar-d = 0, 
b. for some ar E K, (aI, ... , ar ) is a common root of a and b. 

Proof e = ua+vb, for some u, v E K[XI, ... , xrl. If (al, ... , ar ) is a common 
root of a and b, then the evaluation of both sides of this equation immediately 
yields e(al' ... , ar-l) = 0. 

Now assume e(al, ... , ar-)) = 0. Suppose am(al, ... , ar-)) "# 0, so we 
are not in case (a). Let ¢ be the evaluation homomorphism Xl = aI, ... , Xr-l 
= ar-l. Let k = deg(b) - deg(¢(b». By Lemma 4.3.1 we have ° = e(al, ... , 
ar-l) = ¢(e) = ¢(resxr(a, b» = ¢(am)kresxr(¢(a), ¢(b». Since ¢(am) "# 0, 
we have resxr(¢(a), ¢(b» = 0. Since the leading term in ¢(a) is non-zero, 
¢(a) and ¢(b) must have a common non-constant factor, say d(xr ) (see van 
der Waerden 1970: sect. 5.8). Let ar be a root of din K. Then (al, ... , ar ) is 
a common root of a and b. Analogously we can show that (b) holds if bn(al, 
... ,ar-))"#O. D 

Theorem 4.3.3 suggests a method for determining the solutions of a system of 
algebraic, i.e., polynomial, equations over an algebraically closed field. Suppose, 
for example, that a system of three algebraic equations is given as 

Let, e.g., 

b(x) = resz(resy(al, a2), resy(al, a3» , 

e(y) = resz (resxCal, a2), resxCal, a3» , 

d(z) =resy(resxCal,a2),resx(al,a3». 

In fact, we might compute these resultants in any other order. By Theorem 4.3.3, 
all the roots (aI, a2, (3) of the system satisfy b(al) = e(a2) = d(a3) = 0. So if 
there are finitely many solutions, we can check for all of the candidates whether 
they actually solve the system. 

Unfortunately, there might be solutions of b, e, or d, which cannot be ex
tended to solutions of the original system, as we can see from the following 
example. 

Example 4.3.1. Consider the system of algebraic equations 

al (x, y, z) = 2xy + yz - 3z2 = ° , 
a2(x, y, z) = x2 - xy + i-I = ° , 
a3(X, y, z) = yz + x2 - 2z2 = ° . 



100 Greatest common divisors 

We compute 

b(x) = resz(resy(a\, a3), resy (a2, a3)) 

= x6 (x - l)(x + 1)(l27x4 - 167x2 + 4) , 

c(y) = resz (resx (a\ ,a3), resx (a2, a3)) 

= (y - 1)3(y + 1)\3i - 1)(l27y4 - 216i + 81) . 

. (457i - 486i + 81) , 

d(z) = resy (res¥ (a\ ,a2), resAa\, a3)) 

= 5184z IO (z - 1)(z + 1)(l27z4 - 91z2 + 16) . 

All the solutions of the system, e.g., (1, I, 1), have coordinates which are roots 
of b, c, d. But there is no solution of the system having y-coordinate 1/.J3. So 
not every root of these resultants can be extended to a solution of the system. 

Exercises 

1. Apply algorithm RES~OD for computing the resultant of a (x, y) and 
b(x, y) w.r.t. y 

a(x,y)=xl-x3y-2x2y+xy+2x4 -2x2 , 

b(x, y) = 2x 2l- 4x3y + 4X4 . 

2. Use resultant computations for solving the system of algebraic equations 
II = h = h = 0 over C 

3. Solve over C: 

lI(x,y,z)=2xy-yz+2z, 

hex, y, z) = x 2 + yz - I , 

f3(X, y, z) = xz + yz - 2x . 

II (x, y, z) = xz - xl- 4x 2 - i = 0 , 

hex, y, z) = lz + 2x + ~ = 0, 

hex, y, z) = x 2z + l + ~x = 0 . 

4. According to Theorem 4.3.3 a solution of resxr (a, b) can be extended to 
a common solution of a and b if lex,(a) or lexr(b) is a non-zero constant 
in K. This can be achieved by a suitable change of variables. Work out 
the details of an algorithm for solving systems of algebraic equations by 
resultants along these lines. 



4.4 Squarefree factorization 101 

4.4 Squarefree factorization 

By just computing gcds we can produce a so-called squarefree factorization of 
a polynomial, i.e., a partial solution to the problem of factoring polynomials 
which is to be treated in the next chapter. Throughout this section let K be a 
computable field generated as Q(l), where [ is a ufd. Whenever [ is a ufd, 
then also [[x] is a ufd (see Sect. 4.1, Exercise 1). 

Definition 4.4.1. A polynomial a(xI, ... ,xn ) in /[XI, ... , xn ] is square free iff 
every nontrivial factor b(XI, ... , xn ) of a (i.e., b not similar to a and not a 
constant) occurs with multiplicity exactly 1 in a. 

By Gauss's lemma we know that for primitive polynomials the squarefree 
factorizations in [[x] and K[x] are the same. There is a simple criterion for 
deciding squarefreeness. 

Theorem 4.4.1. Let a(x) be a nonzero polynomial in K[x], where char(K) 
= 0 or K = 'lLp for a prime p. Then a(x) is squarefree if and only if gcd(a(x), 
a'(x)) = 1. (a'(x) is the derivative of a(x).) 

Proof If a(x) is not squarefree, i.e., for some non-constant b(x) we have a(x) 
= b(x)2 . c(x), then 

a'(x) = 2b(x)b'(x)c(x) + b2(x)c'(x) . 

So a(x) and a' (x) have a non-trivial gcd. 
On the other hand, if a(x) is squarefree, i.e., 

n 

a(x) = fl ai(x) , 
i=1 

where the ai (x) are pairwise relatively prime irreducible polynomials, then 

Now it is easy to see that none of the irreducible factors ai (x) is a divisor of 
a' (x). aj (x) divides all the summands of a' (x) except the i -tho This finishes 
the proof for characteristic O. In 'lLp[x], a;(x) cannot vanish, for otherwise we 
could write aj (x) = b(xP) = b(x)P for some b(x), and this would violate our 
assumption of squarefreeness. Thus, gcd(a (x), a' (x)) = 1. D 

The problem of squarefree factorization for a(x) E K[x] consists of deter
mining the squarefree pairwise relatively prime polynomials bl (x), ... ,bs(x), 



102 Greatest common divisors 

such that 
s 

a(x) = n bi(x)i . (4.4.1) 
i=1 

Definition 4.4.2. The representation of a as in (4.4.1) is called the squarefree 
factorization of a. 

In characteristic 0 (e.g., when a(x) E Z[x]), we can proceed as follows. We 
set al (x) := a(x) and a2(x) := gcd(al, a;). Then 

s s 
a2(x) = nbi(x)i-I = nbi(x)i-I 

i=1 i=2 

and 
s 

CI(X):= al(x)/a2(x) = nbi(x) 
i=1 

contains every squarefree factor exactly once. Now we set 

s 
a3(x) := gcd(a2, a;) = n bi (x)i-2 , 

i=3 

s 
C2(X) := a2(x)/a3(x) = nbi(x) . 

i=2 

C2(X) contains every squarefree factor of muliplicity :::: 2 exactly once. So we 
have 

Next we set 

So we have 

s 
a4(x) := gcd(a3, a;) = n bi (x)i-3 , 

i=4 

s 

q(x) := a3(x)/a4(x) = nbi(x) . 
i=3 

b2(X) = C2(X)/Q(x) . 

Iterating this process until Cs+I (x) = 1, we ultimately get the desired squarefree 
factorization of a (x). This process for computing a squarefree factorization is 
summarized in SQFRJiACTOR. 

Algorithm SQFRJ'ACTOR(in: a; out: F); 
[a is a primitive polynomial in Z[x], 
F = [b l (x), ... , bs(x)] is the list of squarefree factors of a.] 
1. F:= [ ]; 

al :=a; 



4.4 Squarefree factorization 

a2 := gcd(a] , aD; 
c] := aJ/a2; 
a3 := gcd(a2, a;); 
C2 := a2/a3; 
F := CONS(C]/C2, F); 

2. while C2 #- 1 do 
{a2 := a3; a3 := gcd(a3, a;); 
C] := C2; C2 := a2/a3; 
F := CONS(CJ/C2, F)}; 

F := INV(F); return. 

103 

If the polynomial a(x) is in Zp[x], the situation is slightly more complicated. 
First we determine 

d(x) = gcd(a(x), a'ex»~ . 

If d(x) = 1, then a(x) is squarefree and we can set a] (x) = a(x) and stop. 
If d(x) #- I and d(x) #- a(x), then d(x) is a proper factor of a(x) and we can 
carry out the process of squarefree factorization both for d (x) and a (x) / d (x). 
Finally, if d(x) = a(x), then we must have a'ex) = 0, i.e., a(x) must contain 
only terms whose exponents are a multiple of p. So we can write a(x) = 
b(xP) = b(x)P for some b(x), and the problem is reduced to the squarefree 
factorization of b(x). 

An algorithm for squarefree factorization in Zp[x] along these lines is pre
sented in Akritas (1989), namely PSQFFF. 

Theorem 4.4.1 can be generalized to multivariate polynomials. For a proof 
we refer to the Exercises. 

Theorem 4.4.2. Let a(x], ... , X/l) E K[x], ... , X/l] and char(K) = 0. Then a 
is squarefree if and only if gcd(a, 3a/3x], ... , 3a/3xn ) = 1. 

Squarefree factorization is only a first step in the complete factorization of 
a polynomial. However, it is relatively inexpensive and it is a prerequisite of 
many factorization algorithms. 

Exercises 

1. Apply SQFRYACTOR to the polynomial a(x) = x 7 + x 6 - x 5 - x4 - x 3 -

x 2 + X + lover the integers. 
2. Prove Theorem 4.4.2. 
3. Based on Theorem 4.4.1, derive an algorithm for squarefree factorization in 

Zp[x], p a prime. 
4. Let p(x) = 112x4 + 58x 3 - 31x2 + 107x - 66. What are the squarefree 

factorizations of p(x) modulo 3 and II, respectively? 



104 Greatest common divisors 

4.5 Squarefree partial fraction decomposition 

Definition 4.5.1. Let p(x)/q(x) be a proper rational function over the field K, 
i.e., p, q E K[x], gcd(p, q) = 1, and deg(p) < deg(q). Let q = ql . qi··· qf 
be the squarefree factorization of q. Let a I (x), ... , ak (x) E K [x] be such that 

p(x) _ ~ ai(x) 
-- L.... -- with deg(ai) < deg(qf) for 1 ::: i ::: k . 
q(x) - i=1 qi(x)i 

(4.5.1) 

Then the right-hand side of (4.5.1) is called the incomplete squarefree partial 
fraction decomposition (ispfd) of p / q. 

Let bij(x) E K[x], 1 ::: j ::: i ::: k, be such that 

p(x) = t t bij(x) 
q(x) i=lj=lqi(X)} 

with deg(bij) < deg(qi) for 1 ::: j ::: i ::: n . 

(4.5.2) 

Then the right-hand side of (4.5.2) is called the (complete) square free partial 
fraction decomposition (spfd) of p / q. 

Both the incomplete and the complete squarefree partial fraction decompo
sition of a proper rational function are uniquely determined. For any proper 
rational function p / q the ispfd can be computed by the following algorithm. 

Algorithm ISPFD(in: p, q; out: D); 
[p / q is a proper rational function in K (x), 

D = [[ai, qd, ... , [ak, qk]] is the ispfd of p/q, i.e., p/q = L7=1 (ai!qf) with 
deg(ai) < deg(qf) for 1 ::: i ::: k.] 
1. [ql, ... , qk] := SQFRY'ACTOR(q); 
2. Co:= p; do := q; i := 1; 
3. while i < k do 

{di := di-I!qf; 
deteI1l1ine Ci, ai such that deg(ci) < deg(di), deg(ai) < deg(qf), and 
Ci· q; +ai· di = ci-!l; 

ak := Ck-I; return. 

Theorem 4.5.1. The algorithm ISPFD is correct. 

Proof Immediately before execution of the body of the "while" statement for i, 
the relation 

(4.5.3) 

holds, as can easily be seen by induction on i. 



4.6 Integration of rational functions 105 

The polynomials Ci and ai in step (3) can be computed by application of the 
corollary to Theorem 3.1.2. D 

Once we have the incomplete spfd we can rather easily get the complete 
spfd by successive division. Namely if ai = s . qi + t, then 

Example 4.5.1. Consider the proper rational function 

p(x) 4x8 - 3x7 + 25x6 - llx5 + 18x4 - 9x3 + 8x2 - 3x + I 
q(x) 3x9 - 2x8 + 7x7 - 4x6 + 5x5 - 2x4 + x 3 

The squarefree factorization of q (x) is 

Application of ISPFD yields the incomplete spfd 

p(x) 4x -x3 +2x+2 x2-x+l 
-- = + + -----:,-----
q(x) 3x2 - 2x + 1 (x 2 + 1)2 x 3 

By successive division of the numerators by the corresponding qi's we finally 
get the complete spfd 

p(x) 4x -x 3x+2 1 -1 1 
-= +--+ +-+-+-. 
q(x) 3x2 - 2x + 1 x 2 + 1 (x 2 + 1)2 X x 2 x 3 

Exercises 

1. Show the uniqueness of the incomplete and the complete spfd of proper 
rational functions. 

2. Compute the complete spfd of 1/(x4 - 2x3 + 2x - I). 

4.6 Integration of rational functions 

The problem we consider in this section is the integration of rational functions 
with rational coefficients, i.e., to compute 

f p(x) dx , 
q(x) 



106 Greatest common divisors 

where p(x), q(x) E Q[x], gcd(p, q) = 1, and q(x) is monic. We exclude the 
trivial case q = 1. 

From classical calculus we know that this integral can be expressed as 

f p(x) g(x) 
-- dx = -- + CI ·log(x - al) + ... + Cn . log (x - an) , 
q(x) q(x) 

(4.6.1) 

where g(x) E Q[x], al, ... , an are the different roots of q in C, and CI,.··, Cn 
E Q(al, ... , an). This requires factorization of q over C into its linear factors, 
decomposing p / q into its complete partial fraction decomposition, and computa
tion in the potentially extremely high degree algebraic extension Q(al, ... , an). 
Then the solution (4.6.1) is achieved by integration by parts and C. Hermite's 
reduction method. 

However, as we will see in the sequel, complete factorization of the de
nominator can be avoided, resulting in a considerable decrease in computational 
complexity. Instead of factoring q we will only use its squarefree factors. 

First we compute the squarefree factorization of the denominator q, i.e., 

q = II . Il ..... I; , 

where the fi E Q[x] are squarefree, Ir #- 1, gcd(fj, jj) = 1 for i #- j. 
Based on this squarefree factorization we compute the squarefree partial fraction 
decomposition of p / q, i.e., 

p _ + ~~gij 
- - go L.L.-' 
q i=lj=II/ 

= + ~ + g21 + g22 + + ~ + + grr go 2 .•. .•. , 
II h 12 Ir I: 

(4.6.2) 

where go, gij E Q[x], deg(gij) < deg(fi), for all 1 :::: j :::: i :::: r. Integrating go 
is no problem, so let us consider the individual terms in (4.6.2). 

Now let g / r be one of the non-trivial terms in (4.6.2) with n ~ 2, i.e., I is 
squarefree and deg(g) < deg(f). We reduce the computation of 

f g(x) dx 
I(x)n 

to the computation of an integral of the form 

f hex) 
I(x)n-I dx 

where deg(h) < deg(f) . 

This is achieved by a reduction process due to C. Hermite. 
Since I is squarefree, we have gcd(f, I') = 1. By the extended Euclidean 

algorithm E...EUCLID and the corollary to Theorem 3.1.2 compute c, d E Q[x] 



4.6 Integration of rational functions 107 

such that 

g = c· I + d . I' where deg(c), deg(d) < deg(f) . 

By integration by parts we can now reduce 

f ~=fc'I+d.f' =f_c f~ r r r- I + r 
= f I~-I - (n - 1~' r- I + f (n - 1~" r- I 

h 
r , 

d f c + d' /(n - 1) 
= - (n -1). r- I + r- I ' 

where deg(h) < deg(f). 
Now we collect all the rational partial results and the remaining integrals 

and put everything over a common denominator, so that we get polynomials 
g(x), h(x) E Q[x] such that 

f p g f h - = go + 2 r-I + , 
q ,h·I3 ···Ir ~ 

(4.6.3) 

q* 

where deg(g) < deg(q) and deg(h) < deg(q*). 
We could also detennine g and h in (4.6.3) by first choosing undetennined 

coefficients for these polynomials, differentiating (4.6.3), and then solving the 
resulting linear system for the undetennined coefficients. However, the Hennite 
reduction process is usually faster. Let us prove that the decomposition in (4.6.3) 
is unique. 

Lemma 4.6.1. Let p, q, U, v E Q[x], gcd(p, q) = 1, gcd(u, v) = 1, and p/q = 
(u/v)' (so u/v is the integral of p/q). Let w E Q[x] be a squarefree factor 
of q. Then w divides v, and the multiplicity of w in q is strictly greater than 
the multiplicity of w in v. 

Proof Clearly we can restrict ourselves to w being irreducible (otherwise apply 
the lemma for all irreducible factors of w). Now, since 

( ~)' = u'v - uv' 
V v2 

p 

q 

w must divide v. Assume now that v = wrw with gcd(w, w) = 1. We show 
that w r does not divide u'v - u v'. Suppose it does. Since wr divides u'v and 



108 Greatest common divisors 

gcd(w, u) = 1, w r would have to divide v' = rw r - 1 w'w + w r w'. Hence, 
w would have to divide w'w. But this is impossible since w is irreducible. 
Therefore w r +1 must divide the reduced denominator of (ulv)'. 0 

Theorem 4.6.2. The solution g, h to Eq. (4.6.3) is unique. 

Proof Suppose there were two solutions. By subtraction we would get a solution 
for p = 0, 

f °dx=~+f~dx. q q* 

So (g/ij)' = -hlq*. By Lemma 4.6.1, every factor in the denominator of hlq* 
must have multiplicity at least 2. This is impossible, since q* is squarefree. 0 

The integral J hlq* can be computed in the following well-known way: Let 
q*(x) = (x - a)) ... (x - an), where a1,"" an are the distinct roots of q*. 
Then 

f hex) n f Ci n 
-*- dx = L --. dx = LCi log(x - ai) 
q (x) i=l X - a, i=l 

. h(ai) 
wIth Ci = ----;;--( ) , 1:::: i:::: n . 

q ai 

(4.6.4) 

No part of the sum of logarithms in (4.6.4) can be a rational function, as we 
can see from the following theorem in Hardy (1916: p. 14). 

Theorem 4.6.3. Let aI, ... , an be distinct elements of C and C1, ... , Cn E C. 
If L;1=1 Ci log(x - ad is a rational function, then Ci = 0 for all 1 :::: i :::: n. 

Example 4.6.1. Let us integrate xl(x2 - 2) according to (4.6.4). 

f _x_ dx = f 1/2 dx + f 1/2 dx 
x 2 - 2 x - ..fi x + ..fi 

= 1 (log (x - h) + log(x + h)) = 110g(x2 - 2) . 

So obviously we do not always need the full splitting field of q* in order to 
express the integral of hi q*. In fact, whenever we have two logarithms with the 
same constant coefficient, we can combine these logarithms. 

The following theorem, which has been independently discovered by M. 
Rothstein (1976) and B. Trager (1976), answers the question of what is the 
smallest field in which we can express the integral of hi q*. 

Theorem 4.6.4. Let p, q E CQ[x] be relatively prime, q monic and squarefree, 



4.6 Integration of rational functions 109 

and deg(p) < deg(q). Let 

f p n 
- = LCi log Vi , 
q i=1 

(4.6.5) 

where the Ci are distinct non-zero constants and the Vi are monic squarefree 
pairwise relatively prime elements of Q[x]. Then the Ci are the distinct roots of 
the polynomial 

r(c) = resxCp - C . q', q) E Q[c] , 

and 

Vi = gcd(p - Ci' q', q) for I::: i ::: n . 

Proof Let Ui = (n;=1 Vj)/Vi, for 1 ::: i ::: n. Then by differentiation of (4.6.5) 
we get 

n II 

p. n Vi = q . LCiV;Ui . 
i=l i=1 

So q I n7 = 1 Vi and on the other hand each Vi I q V; U i, which implies that each Vi I q . 
Hence, 

II 

and p = LCiV;Ui . 
i=1 

Consequently, for each j, 1 ::: j ::: n, we have 

Vj = gcd(O, Vj) = gcd(p -t,CiV;Ui' Vj) 
1=1 

= gcd(p - CjvjUj, Vj) = gcd(p - Cj t,V;Ui' Vj) 
1=1 

= gcd(p - Cjq', Vj) , 

and for I =j:. j we have 

Thus we conclude that 

Vi = gcd(p - ciq', q) for I ::: i ::: n . (4.6.6) 

Equation (4.6.6) implies that resx(p - ciq', q) = ° for all 1 ::: i ::: n. 

Conversely, if C E Ql and resx(p - cq', q) = 0, then gcd(p - cq', q) = sex) E 

Q[x] with deg(s) > 0. Thus, any irreducible factor t (x) of s (x) divides p - cq' 
= L7=1 CiV;Ui - C L7=1 V;Ui. Since t divides one and only one Vj, we get 



110 Greatest common divisors 

tl(Cj - c)vjUj, which implies that Cj - C = O. Thus, the Cj are exactly the 
distinct roots of r(c). D 

Example 4.6.1 (continued). We apply Theorem 4.6.4. r(c) = resx(p -cq', q) = 
resx(x - c(2x) , x 2 - 2) = -2(2c - 1)2. There is only one root of r(c), namely 
CI = 1/2. We get the argument of the corresponding logarithm as VI = gcd(x
!(2x), x 2 - 2) = x2 - 2. So 

f x I 2 -- dx = - log(x - 2) . 
x 2 - 2 2 

Example 4.6.2. Let us consider integrating the rational function 

p(x) 4x8 - 3x7 + 25x6 - llx5 + 18x4 - 9x3 + 8x2 - 3x + 1 
= 

q(x) 3x9 - 2x8 + 7x7 - 4x6 + 5x5 - 2x4 +x3 

The squarefree factorization of q (x) is 

so the squarefree partial fraction decomposition of p / q is 

p (x) 4x - x 3x + 2 1 -1 1 
-= +--+ +-+-+-. 
q(x) 3x2 -2x+l x 2 +1 (x2 +1)2 x x 2 x 3 

Now let us consider the third term of this decomposition, i.e., we determine 

f 3x +2 dx 
(x 2 + 1)2 . 

By the extended Euclidean algorithm we can write 

3x + 2 = 2· (x2 + 1) + (-x +~). (2x) . 

Integration by parts yields 

f 3x + 2 f 2 f (-x + ~) . (2x) 
--=---::- dx = -- dx + dx 
(x2 +1)2 x 2 +1 (x2 +1)2 

f 2 (-x+~).(-1) f 1 
= --dx+ - --dx 

x2 + 1 x2 + 1 x2 + 1 

x-2. f 1 ___ 2+ --dx 
- x 2 + 1 x 2 + 1 . 



4.7 Bibliographic notes 

The remaining integral is purely logarithmic, namely 

f 1 i i 
-2-- dx = - ·log(1 - ix) - - . log(1 + ix) = arctan(x) . 
x + 1 2 2 

Exercises 

1. Prove the statement (4.6.4). 
2. Integrate 8x/(x4 - 2) both by the classical formula given in (4.6.4) and 

according to Theorem 4.6.4. What is the smallest extension of Ql over which 
the integral can be expressed? 

3. Let Ci be one of the constants appearing in Theorem 4.6.4. Do the 
conjugates of Ci also appear? If so, what do the corresponding Vi look like? 

4. Use a computer algebra system to finish the computation of Example 4.6.2. 

4.7 Bibliographic notes 

111 

Like for many other topics of computer algebra, D. E. Knuth (1981) provides an 
excellent exposition of problems and analyses in gcd computation. The modular 
method is presented in Brown (1971). See also Moses and Yun (1973) and Char 
et al. (1989). For polynomial gcds with algebraic number coefficients we refer 
to Langemyr and McCallum (1989), Smedley (1989), and Encarnacion (1994). 
In Kaltofen (1988) gcds are computed for polynomials represented by straight
line programs. Possible implementations resulting from Hermite's method of 
integration of rational functions are discussed in Tobey (1967). Horowitz (1971) 
contains a detailed analysis of algorithms for squarefree partial fraction de
composition. Recently integration of rational functions has been reexamined in 
Lazard and Rioboo (1990). 



5 Factorization 
of polynomials 

5.1 Factorization over finite fields 

Similar to what we have done for the computation of gcds of polynomials, 
we will reduce the computation of the factors of an integral polynomial to the 
computation of the factors of the polynomial modulo a prime number. So we 
have to investigate this problem first, i.e., we consider the problem of factoring 
a polynomial a(x) E Zp[x], p a prime number. W.l.o.g. we may assume that 
lc(a) = 1. 

In the sequel we describe E. R. Berlekamp' s (1968) algorithm for factoring 
squarefree univariate polynomials in Zp[x]. Throughout this section let a(x) be 
a squarefree polynomial of degree n in Zp[x], p a prime number, having the 
following factorization into irreducible factors 

r 
a(x) = TIai(X) . 

i=] 

By Theorem 3.1.11, for every choice of S], ••• ,Sr E Zp there exists a uniquely 
determined polynomial v(x) E Zp[x] such that 

v(x) == Si mod ai(x) for 1 ::: i ::: r, and 

deg(v) < deg(a]) + ... + deg(ar ) = n . 
(5.1.1) 

In (5.1.1) it is essential that a is squarefree, i.e., the ai's are relatively prime. 

Lemma 5.1.1. For every ai, aj, i =I- j, there exist S], •.• ,Sr E Zp such that the 
corresponding solution v(x) of (5.1.1) generates a factorization b . e of a with 
ailb and aj Ie. 

Proof If r = 1 there is nothing to prove. So assume r :::: 2. Choose Si =I- Sj and 
the other Sk'S arbitrary. Let v be the corresponding solution of (5.1.1). Then 

ai(x) I gcd(a(x), v(x) - Si) and aj(x) Y gcd(a(x), v(x) - Si) . 0 

So we could solve the factorization problem over Zp, if we could get a 
complete overview of the solutions v(x) of (5.1.1) for all the choices of S], ••• , 

Sr E Zp. Fortunately this can be achieved by linear algebra methods. 



5.1 Finite fields 113 

If v(x) satisfies (5.1.1), then 

V(x)P == sf = Si == v(x) mod ai(x) for I :::: i :::: r . 

So we have 
v(x)P == v(x) mod a(x) and deg(v) < n . (5.1.2) 

Every solution of (5.1.1) for some SI, ... , Sr solves (5.1.2). 
But what about the converse of this implication? Is every solution of (5.1.2) 

also a solution of (5.1.1) for some SI, ... , sr? From the fact that GF(p) is the 
splitting field of x P - x, we get that 

v(x)P - v(x) = (v(x) - O)(v(x) - 1) ... (v(x) - (p - 1» . 

So if v(x) satisfies (5.1.2), then a(x) divides v(x)P - v(x) and therefore every 
irreducible factor ai (x) must divide one of the factors v(x) - S of v(x)P - v(x). 
Thus, every solution of (5.1.2) is also a solution of (5.1.1) for some SI, ... , Sr. 
In particular, there are exactly pr solutions of (5.1.2). 

By Fermat's little theorem and Theorem 2.5.2 the solutions of (5.1.2) consti
tute a vector space over 7lp • So we can get a complete overview of the solutions 
of (5.1.2), if we can compute a basis for this vector space. 

Let the (n x n)-matrix Q(a) over 7lp , 

( 
qo.o 

Q(a) = Q = : 

qn-I,O 

be defined by 

x Pk == qk,n_lxn- 1 + ... + qk,1x + qk,O mod a(x) for 0:::: k :::: n - 1 . 

That is, the entries in the k-th row of Q are the coefficients of rem(x Pk , a(x». 
Using the representation of v(x) = Vn_IX n- 1 + ... + Vo as the vector (vo, ... , 
Vn-I), we have 

v·Q=v {=::} 

n-I n-I n-I n-I 
v(x) = L VjX j = L L Vk . qk,jX j == L VkXPk = v(x P) = v(x)P mod a(x) . 

j=O j=O k=O k=O 

We summarize all these results in the following theorem. 

Theorem 5.1.2. With the notation used above, a polynomial v(x) = Vn_IXn- 1 

+ ... + VIX + Vo in 7lp [x] solves (5.1.2) if and only if the vector (vo, ... , Vn-I) 
is in the null-space of the matrix Q - I (I the identity matrix of dimension n), 
i.e., v . (Q - /) = (0, ... ,0). 



114 Factorization 

Now we are ready to fonnulate Bedekamp's algorithm for factoring square
free univariate polynomials in Zp [x). 

Algorithm FACTOR_B(in: a, p; out: F); 
[p is a prime number, a is a squarefree polynomial in Zp[x], 
F is the list of prime factors of a.) 
1. fonn the (n x n)-matrix Q over Zp' where the k-th line (qk,O, . , . , qk,n-d 

of Q satisfies 
rem(x Pk , a(x» = qk,n_IXn- 1 + ... + qk,O, for 0::::: k ::::: n - 1; 

2. by column operations transfonn the matrix Q - I into (e.g., lower-right) 
triangular fonn; 
from the triangular form read off the rank n - r of the matrix Q - I; 
[There are exactly r linearly independent solutions v[1], ... , v[r] of v . (Q 
-l) = O. 
Let v[l] be the trivial solution (1,0, ... ,0). 
So (after interpretation of vectors as polynomials) there are pr solutions tl . 
v[l] + ... + tr • v[r] of (5.1.2), and therefore r irreducible factors of a(x).) 

3. if r = 1, then a(x) is irreducible and we set F := [a); 
otherwise, compute gcd(a(x), v[2](x) - s) for s E Zp and put the factors of 
a found in this way into the list F; 
as long as F contains fewer than r factors, choose the next v[k](x), k = 3, 
... , r, and compute gcd(f(x), v[k](x) - s) for f in F; 
add the factors found in this way to F; 
[ultimately, F will contain all the factors of a(x») 
return. 

Example 5.1.1. Let us use FACTOR-B for factoring the polynomial 

in Z3[X). First we have to check for squarefreeness. a'(x) = 2x4 + X + 1, so 
gcd(a, a') = 1 in Z3[X) and therefore a(x) is squarefree. 

The rows of the (5 x 5)-matrix Q are the coefficients of xO, x 3, x 6 , x 9 , xl2 
modulo a(x). So 

(
1 0 0 0 0) 00010 

Q= 0 1 2 1 2 
o 1 1 2 2 
2 0 2 1 1 

Q - I can be transfonned into the triangular fonn 

(

0 0 
o 0 
o 0 
o 0 
1 0 

n ~). 
1 1 2 
000 



5.2 Integers 115 

We read off r = 2, i.e., there are 2 irreducible factors of a(x). The null-space 
of Q - I is spanned by 

V[l] = (1,0,0,0,0) and v[2] = (0,0,2,1,0) . 

Now we get the factors by appropriate gcd computations: 

gcd(a(x), v[2](x) + 2) = x 2 + X + 2 , 

gcd(a(x), v[2](x) + 1) = x 3 + 2x2 + 1 . 

The basic operations in FACTOR_B are the setting up and solution of a 
system of linear equations and the gcd computations for determining the actual 
factors. The complexity of FACTOR-B is proportional to n3 + prn2, where n is 
the degree of the polynomial (compare Knuth 1981: sect. 4.6.2). 

Exercises 

1. Why does the polynomial input a(x) to the Berlekamp algorithm have to 
be squarefree? What happens with Lemma 5.1.1 if a(x) is not squarefree? 
Produce an example of a non-squarefree polynomial which is not factored 
by the Berlekamp algorithm. 

2. Apply the process of squarefree factorization and Berlekamp's algorithm for 
factoring a (x) = X 7 + 4x6 + 2x 5 + 4x 3 + 3x 2 + 4x + 2 modulo 5. 

3. How many factors does u(x) = X4 + 1 have in Zp[x], p a prime? (Hint: 
Consider the cases p = 2, p = 8k + 1, p = 8k + 3, p = 8k + 5, p = 8k + 7 
separately.) How many factors does u(x) have in Z[x]? 

4. Write a Maple procedure for implementing FACTOR~. 

5.2 Factorization over the integers 

Before developing algorithms for actually producing a factorization of a re
ducible polynomial, we might want to decide whether a given polynomial is in 
fact irreducible. A powerful criterion for irreducibility is due to Eisenstein, a 
proof can be found, for instance, in van der Waerden (1970). 

Theorem 5.2.1 (Eisenstein's irreducibility criterion). Let R be a ufd and f(x) 
= anxn +an_lXn- 1 + ... +alx +ao a primitive polynomial of positive degree n 
in R[x]. If there is an irreducible element p of R such that 

p ,Yan, plai for all i < n, and p2,Yao , 

or 

p ,Yao, plai for all i > 0, and p2,Yan , 

then f(x) is irreducible in R[x]. 



116 Factorization 

Univariate polynomials 

According to the corollary to Gauss's lemma (Theorem 4.1.1) factorizations 
of univariate integral polynomials are essentially the same in Z[x] and Q[x]. 
For reasons of efficiency we concentrate on the case of integral polynomials. 
The factorization of integers is a much harder problem than the factorization 
of polynomials. For this reason we do not intend to factor the content of inte
gral polynomials. Throughout this section we assume that the polynomial to be 
factored is a primitive non-constant polynomial. 

The problem of factoring a primitive univariate integral polynomial a(x) 
consists in finding pairwise relatively prime irreducible polynomials ai (x) and 
positive integers m; such that 

r 
a(x) = TI a; (x)l1l; 

;=] 

As for polynomials over finite fields we will first compute a squarefree factor
ization of a(x). By application of SQFR_FACTOR our factorization problem is 
reduced to the problem of factoring a primitive squarefree polynomial. So from 
now on let us assume that a (x) is primitive and squarefree. 

As in the case of polynomial gcds we would like to use the fast factorization 
algorithm modulo a prime p. However, the approach of choosing several primes 
and combining the results by the Chinese remainder algorithm does not work for 
factorization. We do not know which of the factors modulo the different primes 
correspond to each other. So we choose a different approach. The problem of 
factorization over Z is reduced to factorization modulo p and a subsequent 
lifting of the result to a factorization modulo pk (compare Sect. 3.2). If k is 
high enough, the integer factors can be constructed. 

Theorem 5.2.2 (Hensel lemma). Let p be a prime number and a(x), al (x), ... , 
ar(x) E Z[x]. Let (al mod p), ... , (ar mod p) be pairwise relatively prime in 
Zp[x] and a(x) == al (x) ..... ar(x) mod p. Then for every natural number k 
there are polynomials a~k)(x), ... , a?) (x) E Z[x] such that 

and 

Proof. Let R = Z[x], I = (p) and 

!I = XI .•••. Xr - a(x) E R[XI, ... , xr ] . 

Then 
II (aI, ... , ar ) == 0 mod I . 



5.2 Integers 117 

The Jacobian matrix of II evaluated at aI, ... , ar is 

U = (UII '" Ulr), where 

all r 
Ulj = -(aI, ... ,ar ) = TI ai for l:s j:s r. 

aX) i=l. 
Hi 

Since the elements of U are relatively prime modulo p, there is a matrix V in 
wxl such that UV == 1 mod p. Thus, all the requirements of the lifting theorem 
(Theorem 3.2.2) are satisfied and the statement is proved. D 

As we have seen in Sect. 3.2, the result of the lifting process is by no means 
unique. So we want to choose a particular path in the lifting process which will 
allow us to reconstruct the factors over Z from the factors modulo p. 

Lemma 5.2.3. Let a(x) E Z[x] be primitive and squarefree. Let p be a prime 
number not dividing lc(a). Let (/I (x), ... , ar(x) E 2p[x] be pairwise relatively 
prime such that a == al .... ·ar mod p and lc(a]) = lc(a) mod p, lc(a2) = ... = 
lc(ar ) = I. Then for every natural number k there are polynomials a ~k) (x), ... , 

aY)(x) E Zpdx] with lc(a~k» = lc(a) mod pk, lc(aY» = ... = lc(a,(k» = 1 
such that 

and 

a;k) (x) == ai(x) mod p for 1 :s i :s r . 

Proof We proceed by induction on k. For k = I we can obviously choose a;l) 
= ai and all the requirements are satisfied. 

So now assume that the a?) satisfy the requirements. That is, for some 

d(x) E Zp[x] we have 

r 

a - TIa?) == pkd mod pHI. 
i=1 

We replace the leading coefficient of a~k) by (lc(a) mod pHI). Then for some 
d(x) E Zp[x] we have 

where deg(d) < deg(a). We will determine bi(X) E Zp[xJ with deg(bi) < 
deg(ai) such that 



118 Factorization 

U sing this ansatz, we get 

a - .n aiHI) == a - .n a?) -l (tbi . n aj) mod pHI 
1=1 1=1 1=1 J=LJ#1 
~ '-.-' 

pkd =:~ 

So the a;H I), s will constitute a factorization modulo pH I if and only if 

r 

d == '£bi . ai mod p . 
i=1 

A solution is guaranteed by an appropriate generalization of Theorem 3.1.2 and 
the corollary. See Sect. 3.1, Exercise 11 and algorithm LIN_COMB below. D 

The following algorithm LIN_COMB (based on Wang 1979) will be used as 
a subalgorithm in the lifting process. 

Algorithm LIN_COMB(in: [ai, ... ,ar ]; out: [b l , ... ,br ]); 

[ai E K[x] (K a field) pairwise relatively prime; 
bi E K[x], deg(bi ) < deg(ai) and I = '£;=1 biai, where ai = nj=I,}#i aj] 
1. d:= 1; I := 0; 

for j = 2 to r do a;:= n~=jak; 
2. while i < r - I do 

{i:=i+l; 
compute u, v such that d = uai + va;+I' 
deg(u) < deg(a;+I)' deg(v) < deg(ai) 
[corollary to Theorem 3.1.2]; 
bi:=v;d:=u}; 

3. br := d; 
return. 

We summarize these algorithmic ideas in LIFT J<ACTORS. 

Algorithm LIFT_FACTORS(in: a, [al,"" ar], p, K; out: F); 
[a is a primitive squarefree polynomial in Z[x], p is a prime number not dividing 
lc(a) and S.t. (a mod p) is squarefree in Zp[x], 
al, ... , ar E Zp[x] pairwise relatively prime, lc(at} = lc(a) mod p, lc(a2) = 
... = lc(ar ) = 1, and a == al .. , .. ar mod p, KEN; 
F = [al,"" ar ], ai E ZpK[x], such that a == al ..... ar mod pK, lc(ad = 

lc(a) mod pK, lc(a2) = ... = lc(ar ) = 1, and ai == ai mod p.] 
1. by an application of LIN_COMB to [al,"" ar ] compute Vi E Zp[X] S.t. 

deg(vi) < deg(ai) and I == '£~=I Viai mod p, where ai = nj=L}#i aj; 
(Sect. 3.1, Exercise 11) 

2. for i = 1 to r do ai := ai; 
k:= I; 



5.2 Integers 

3. while k < K do 
{replace lc(al) by (lc(a) mod pk+I); 

d := (a - n;=1 ai mod pk+I); 

d := d/pk; 
for i = 1 to r do 

{bi := rem(dvi, ai); 
ai := ai + pkbd; 

k:=k+l}; 
4. F:= [aI, ... , ar ]; 

return. 

119 

As for the general lifting algorithm LIFT there is also a quadratic lifting 
scheme for LIFT -.FACTORS. The interested reader is referred to Wang (1979). 

Now we put all the subalgorithms together and we get the Berlekamp-Hensel 
algorithm FACTOR~H for factoring primitive univariate squarefree polynomials 
over the integers. 

Algorithm FACTOR_BR(in: a; out: F); 
[a is a primitive squarefree polynomial in Z[x]; F = [a), ... , ar], where a), 
... , ar are primitive irreducible polynomials in Z[x] such that a = a) ..... ar .] 
1. choose a prime number p such that p 'ylc(a) and a is squarefree modulo p 

(i.e., p does not divide the discriminant of a); 
2. [U), ... , us] := FACTOR_B(a, p); 

normalize the Ui'S such that lc(u)) = lc(a) modp and lc(u2) = = 
lc(us) = 1; 

3. determine a natural number B which bounds the absolute value of any coeffi
cient in a factor of a over the integers (for instance, use the Landau-Mignotte 
bound, Theorem 4.2.1); 
K := min{k E N I pk ~ 2Ilc(a)IB}; 

4. [v), ... , vs ] := LIFT-.FACTORS(a, [U), ... , us], p, K); 
5. [combine factors] 

a :=a; 
C := {2, ... , s}; [v) will be included in the last factor] 
i:= 0; 
m :=0; 
while m < ICI do 

{m:= m + 1; 
for all {i), ... , im } ~ C do 

{ [integers modulo pK are centered around 0, i.e., the representation of 
,?-pK is {q I _pK /2 < q ::'S pK /2}] 
b := (lc(a) . Vi, ..... Vi", mod pK), interpreted as a polynomial over the 
integers; 
b:= pp(b); 
if bla 
then 

{i := i + 1; 



120 

aj :=b; 
a := alb; 
c := C \ {iI, ... , im } 

} } }; 
i := i + 1; 
aj :=a; 

Factorization 

6. F:= [ai, ... , ad; 
return. 

Step (5) is necessary, because irreducible factors over the integers might 
factor further modulo a prime p. In fact, there are irreducible polynomials over 
the integers which factor modulo every prime number. An example of this is 
x4 + 1 (see Sect. 5.1, Exercise 3). 

The complexity of FACTOR_BH would be polynomial in the size of the 
input except for step (5). Since in step (5), in the worst case, we have to 
consider all possible combinations of factors modulo p, this might lead to a 
combinatorial explosion, rendering the algorithm FACTOR_BH exponential in 
the size of the input. Nevertheless, in practical examples the combinations of 
factors does not present an insurmountable problem. Basically all the major 
computer algebra systems employ some variant of FACTOR_BH as the standard 
factoring algorithm for polynomials over the integers. 

Example 5.2.1. We want to factor the primitive squarefree integral polynomial 

We use FACTOR_BH in the process. A suitable prime is 5, a(x) stays squarefree 
modulo 5. 

By an application of the Berlekamp algorithm FACTOR_B, a(x) is factored 
modulo 5 into 

a(x) == (x - 2) . (x 2 - 2)· (x 2 + 2)· (x 2 - X + 2) mod 5 . 
~ '-v--' '-v--' --..-

Uz 

By an application of LIFT -FACTORS we lift this factorization to a factorization 
modulo 25, getting 

a(x) == (6x + 3)· (x 2 - 7)· (x 2 + 7) . (x 2 + 9x - 8) mod 25 . 
~ '-v--' '-v--' '-.--' 

Vz 

The Landau-Mignotte bound for a is rather big. Let us assume that by some 
additional insight we know that K = 2 is good enough for constructing the 
integral factors. Now we have to try combinations of factors modulo 25 to get 
the factors over the integers. So we set a := a and C := {2, 3, 4}. Testing the 



5.2 Integers 121 

factors V2, V3, V4 we see that only V4 yields a factor over the integers: 

al (x) := pp(lc(a) . V4 mod 25) = 3x2 + 2x + 1 . 

So now a := a/al = 2x5 + x4 + 2x + 1. The combination of V2 and V3 yields 
the factor 

a2(X) := pp(1c(a) . V2 . V3 mod 25) = x4 + 1 . 

We set a := a/a2 = 2x + 1. Now C has become empty, and the last factor is 

a3(x) := a(x) = 2x + 1 . 

FACTORBH returns F = [ai, a2, a3], i.e., the factorization 

a(x) = (3x2 + 2x + 1) . (x4 + 1) . (2x + 1) . 

Multivariate polynomials 

L. Kronecker (1882) describes a method for reducing the factorization of a mul
tivariate polynomial over a unique factorization domain [ to the factorization 
of a univariate polynomial over [. This reduction is achieved by a mapping of 
the form 

d dn- l 
h(xI, ... ,xn)~h(y,y , ... ,y ), 

for d E No Clearly Sd is a homomorphism. Sd can be inverted for those poly
nomials h, for which the maximal degree in any of the variables is less than d. 
So by S;;I let us denote the additive mapping from [[Y]j{ydn ) to /[XI, ... , x n ] 

satisfying 
S-I( a) al an 

d cy =CXI "'Xn • 

where al + a2d + ... + andn- I is the representation of a in the positional num
ber system with radix d. 

Lemma 5.2.4. Let f E [[XI •...• xn], d > maxl::'Oi:'On degx; (f), g a factor 
of f. Then there are irreducible factors gl • ...• gs of Sd (f) such that g = 
S;;I(fli=1 gj). 

Proof No factor of f can have a degree higher than the respective degree of 
f in any variable. Let f = g . h. Then 

Sd(f) = Sd(g)· Sd(h) = (fIgj) . Sd(h) 
J=I 

for some irreducible gl • ... , gs E I [y]. So 



122 Factorization 

g = 5;;1 (5d(g» = 5;;1 en gj) . 
J=I 

D 

This lemma immediately leads to Kronecker's factorization algorithm for 
multivariate polynomials. 

Algorithm FACTOR_K(in: f; out: F); 
[f E /[XI, ... , xn ]; 

F = [fl, ... , fs], where fl' ... , 15 are the irreducible factors of f·] 
1. [compute degree bound] 

d : = (max l.::oi.::on degXj (f» + 1; 
2. [reduce to univariate case] 

factor 5d(f) into irreducibles gl, ... ,gs in /[y]; 
3. [recover multivariate factors by combination] 

F := [ ]; C := {I, ... ,s}; i := 0; 
while C # 0 do 

{i := i + 1; 
for all gjl ' ... ,gjj such that ik E C do 

{g := 5;;1 (gh ..... gjJ; 
if glf 
then {F:= CONS(g, F); C:= C \ {jl, ... , Jd; f:= fig} 
} 

}; 
return. 

The complexity of FACTOR_K depends on how fast polynomials in I [y] can 
be factored. In any case, the factor combination in step (3) makes the algorithm 
exponential in the degree of the input f. 

When we are dealing with multivariate polynomials over the integers, we 
need not use the quite time consuming Kronecker algorithm, but we can instead 
use evaluation homomorphisms to construct a lifting approach. 

By application of Theorem 4.4.2 the problem can be reduced to the factor
ization of squarefree polynomials. By gcd computations we extract the primitive 
part w.r.t. the main variable X n . So now let 

be a primitive squarefree polynomial in Z[XI, ... , xn]. We choose an evaluation 
point (al, ... , an-I> E zn-I which preserves the degree and squarefreeness, 
factor the univariate polynomial 

and finally lift this factorization modulo the prime ideal 



5.2 Integers 123 

to a factorization moludo pt for high enough t. For a complete formulation we 
refer to Wang and Rothschild (1975), Wang (1978), and Musser (1976). 

Example 5.2.2 (from Kaltofen 1983). Let us factor the squarefree integral poly
nomial 

f(x], X2, x) = x 3 + ((Xl + 2)X2 + 2Xl + 1)x2 + 
+ ((Xl + 2)xi + (x~ + 2xI + l)x2 + 2x? + xdx + 
+ (Xl + 1)x? + (Xl + 1)xi + (xi + X?)X2 + xi + x? . 

Step 1. First we choose an evaluation point that preserves the degree and 
squarefreeness and has as many zero components as possible. 
(Xl, X2) = (0,0): f(O, 0, x) = x 3 + x 2 is not squarefree, but 
(Xl, X2) = (1,0): f(1, 0, x) = x 3 + 3x2 + 3x + 2 is squarefree. 

By the change of variables Xl = W + 1, X2 = Z we move the evaluation 
point to the origin, 

few + 1, z, x) = x 3 + 3x2 + 3x + 2 + 
+ w3 + (2x + 4)w2 + (2x2 + 5x + 5)w + 
+ (w + 2)Z3 + ((x + 1)w + (3x + 2))Z2 + 
+ (w3 + (x + 4)w2 + (x2 + 4x + 5)w + (3x2 + 4x + 2)z . 

By fi) (x) we denote the coefficient of w j Zi in f. 
Step 2. Factor foo (i.e., f evaluated at (w, z) = (0,0») in Z[x]. We get 

x 3 + 3x2 + 3x + 2 = (x + 2) (x 2 + X + 1) . 
~~ 

goo hoo 

Step 3. Compute degree bounds for wand z in factors of 

few + 1, z, x) = g(w, z, x)h(w, z, x) , 

i.e., degw(g), degw(h) ::: 3, and degz(g), degz(h) ::: 3. 
Step 4. Lift goo and hoo to highest degrees in wand z. We use the ansatz 

g(w, z, x) = goo(x) + gOI (x)w + g02(X)W2 + g03(X)W 3 + 
+ (glO(X) + gIl (x)w + g\2Cx)w2 + g13(x)w3)z + 

2· 3 2 + (g20(X) + g2l (x)w + g22(X)W + g23(X)W )z + 
+ (g30(X) + g3l (x)w + g32(X)W2 + g33(X)w3)Z3 , 

and analogously for hew, z, x). First we lift to a factorization of few + 1, 0, x): 



124 Factorization 

a formal multiplication of g and h leads to the equations 

fOI = gOl hOO + gOOhOI , 

f02 = gOOh02 + gOl hOI + g02hoo , 

f03 = gOOh03 + g01 h02 + g02hOI + g03hoo . 

These equations can be solved by a modification of the extended Euclidean 
algorithm, yielding 

f(w + 1,0, x) = «x + 2) + 1 . w) «x2 + x + 1) + (x + 2)w + w2) . 

Now we lift to a factorization of f (w + 1, Z, x): again by the extended Euclidean 
algorithm we successively solve 

flO = gooh 10 + glOhOO , 

fll - gOlhlO - glOhOl = gOOhll + gllhoo , 

120 - glOh 10 = gOOh20 + g20hoo . 

All the other equations have 0 as their left-hand sides. 
We get the factor candidates 

f(w + 1, Z, x) = «x + 2) + w + (2 + w)z), 

. «x2 + x + 1) + (x + 2)w + w2 + XZ + Z2) , 

which are the actual factors. By resubstituting w = Xl - 1, Z = X2 we get the 
factorization 

Exercises 

1. Let a(x) = 5x3 + 9x2 - 146x - 120 E Z[x]. Lift the factorization 

a(x) == (2x + l)(x + l)x mod 3 

to a factorization modulo 27. Is the result a factorization over the integers? 
2. Modify LIFf ..FACTORS to produce a quadratic lifting algorithm. 
3. Apply FACTOR_13H for factoring the integral polynomial 

a(x) = 2x6 - 6x5 - 101x4 + 302x3 + 148x2 - 392x - 49. 

As the prime use 5. All the coefficients of factors of a are bounded in 
absolute value by 12. 



5.3 Polynomial-time factorization algorithm 125 

5.3 A polynomial-time factorization algorithm over the integers 

In previous sections we have dealt with the Berlekamp-Hensel algorithm for 
factoring univariate and multivariate polynomials over Z. While this algorithm 
yields a factorization in reasonable time in most cases, it suffers from an ex
ponential worst case complexity. For a long time it was an open problem in 
computer algebra whether the factorization of a polynomial f could be achieved 
in time polynomial in the size of f. A. K. Lenstra et al. (1982) introduced an 
algorithm which is able to factor univariate polynomials over Z in polynomial 
time in the size of the input. Simultaneously E. Kaltofen (1982, 1985a) showed 
that the problem of factoring multivariate polynomials can be reduced to the 
problem of factoring univariate polynomials by an algorithm that takes time 
polynomial in the size of the input. These two results taken together provide a 
polynomial-time factorization algorithm for multivariate polynomials over Z. 

In this section we describe the approach of A. K. Lenstra et al. Their factor
ization algorithm relates the factors of a polynomial f to a certain lattice in IRm 

and determines a reduced basis for this lattice. From this basis the factors of f 
can be determined. 

Lattices 

From a vector space basis bl, ... , bn for IRn an orthogonal basis br, ... , b~ can 
be computed by the Gram-Schmidt orthogonalization process. Let < ., . > de
note the inner product of two vectors in IRn and let II . II denote the Euclidean 
length of a vector in IRn; so lIall2 = < a, a >. In the Gram-Schmidt orthogo
nalization process the vectors b7 and the real numbers JLij, 1 :::: j < i :::: n, are 
inductively defined by the formulas 

i-I 

b7 = bi - LJLijbj , 
j=1 

JLij = < bi, bj > IIIbjl12 . 

(5.3.1) 

Definition 5.3.1. Let n be a positive integer and bl, ... , bn E IRn linearly inde
pendent vectors over R The set 

L = tZbi = {taibi I ai, ... ,an E Z} 
1=1 1=1 

is called the lattice spanned by bl , ... , bn . We say that bl, ... , bn form a basis 
of the lattice L. An arbitrary subset M of IRn is a lattice iff there are bl, ... , bn 

such that M is the lattice spanned by bl, ... , bn . n is called the rank of the 
lattice. If L is the lattice spanned by b l , ••. , bn in IRn, then the determinant 
det(L) of L is defined as 

det(L) = Idet(bl, ... ,bn)l, 



126 Factorization 

where the bi'S are written as column vectors. The determinant is independent 
of the particular basis of the lattice (see, for instance, Cassels 1971). A basis 
b l , ••• , bn for a lattice L satisfying 

IILij I :::: 1/2 for 1:::: j < i :::: n 

and 

where b7 and ILi} are defined as in (5.3.1), is a reduced basis. 

Observe (Exercise 2) that if bl , .•. ,bn are a reduced basis for a lattice in 
]Rn, then 

Theorem 5.3.1. Let bl, ... ,bn be a reduced basis for a lattice L in ]Rn and let 
bT, ... , b~ be the orthogonal basis produced by the Gram-Schmidt orthogonal
ization process. Then we have 
a. lib} 112 :::: 2i - 1 . IIb7112 for 1 :::: j :::: i :::: n, 
b. Ilb1112:::: 2n - 1 • Ilx 112 for every x E L \ {O}, 
c. if XI, ... ,Xt E L are linearly independent, then max {II b111 2, ... , II bt 112} :::: 

2n- 1 • max{llxI1I 2, ... , IIXt 112}. 

Proof. A proof of this proposition can be found in Lenstra et al. (1982). 0 

The algorithm BASIS-REDUCTION transforms an arbitrary basis for a lattice 
L into a reduced basis, as described in Lenstra et al. (1982). 

Algorithm BASIS_REDUCTION(in: al, ... , an; out: bl, ... , bn ); 

[al,"" an is a basis for a lattice L in ]Rn; b l , .•. , bn is a reduced basis for L] 

Subalgorithm REDUCE(in: k, I); 
if IILkti > 1/2 
then {r := integer nearest to ILkl; 

bk := bk - r· bl; 
for j = 1 to 1 - 1 do ILk} := ILk} - r . ILl}; 
ILkl := ILkl - r}; 

return. 

Subalgorithm UPDATE(in: k); 
IL := ILkk-l; B := Bk + IL2 Bk-I; ILk k-I := ILBk-I/ B; 
Bk := Bk-IBk/ B; Bk-I := B; 
(bk-I, bk) := (bb bk-I); 
for j = 1 to k - 2 do (ILk-I), ILk}):= (ILk), ILk-I}); 



5.3 Polynomial-time factorization algorithm 

for i = k + 1 to n do 
(f.Lik-I,f.Lik):= (f.Lik-If.Lkk-1 +f.Lik(1-f.Lf.Lkk-I), f.Lik-1 -f.Lf.Lik); 

return. 

1. [Gram-Schmidt orthogonalization] 
for i = 1 to n do 

{b '- a . b* '- a . i·- i, i·- ;, 
for j = 1 to i-I do 

{f.Lij := < bi, bj >/ Bj ; 
b* '- b* /I b*}' i .- i -I""ij j , 

Bi := Ilb7112}; 
2. [reduction] 

k :=2; 
while k ::::: n do 

{I := k - 1; 
REDUCE(k, I); 
if Bk < (~ - f.L~k_I)Bk-1 

2.1. then {UPDATE(k); 
if k > 2 then k := k - I} 

2.2. else {for I = k - 2 downto 1 do REDUCE(k, I); 
k:= k + I}} 

return. 

127 

Example 5.3.1. We apply the algorithm BASIS-REDUCTION to the basis al = 
(1,2,1), a2 = (0,1,1), a3 = (1,0,1) in JR.3. In step (1) the basis b l ,b2,b3 is 
initialized to a I, a2, a3 and the Gram-Schmidt orthogonalization process yields 
the orthogonal basis bT = (1,2,1), bi = (-1,0, 1), b; = (~, -~, ~), the 

transformation coefficients f.L21 = 1, f.L31 = t, f.L32 = 0, and the (squares of the) 

norms BI = 6, B2 = 1, B3 = !. 
In step (2) we set k = 2 and go to the top of the "while" loop. I is set 

to 1. REDUCE(2, 1) does nothing. B2 < (~ - f.L~I)BI' so the "then" branch is 

executed. UPDATE(2) interchanges bl and b2, and reassigns BI := 2, B2 := ~, 
f.L21 := ~, f.L31 := 1, f.L32 := t· We return to the top of the "while" loop, 
k = 2. I is set to 1. REDUCE(2, 1) now results in the reassignments b2 := 
b2 - bl = (1,1,0), f.L21 := 1· B2 ~ d - f.L~I)BI' so the "else" branch is 
executed, yielding k = 3. We return to the top of the "while" loop, k = 3. I is 
set to 2. REDUCE(3, 2) does nothing. B3 ~ (~ - f.L~2)B2' so the "else" branch 
is executed. REDUCE(3, 1) does nothing, and k is set to 4. We return to the top 
of the "while" loop. Now k > 3, so the algorithm terminates with the reduced 
basis b l = (0, 1, 1), b2 = (1, 1,0), b3 = (1,0, 1). 

Theorem 5.3.2. The algorithm BASIS-REDUCTION is correct. 

Proof a. Partial correctness: Initially the basis bl, ... ,bn is set to ai, ... , an, 



128 Factorization 

a basis for the lattice L. In step (1) orthogonal vectors bf, ... , b~ and correspond
ing coefficients fLij are computed, so that (5.3.1) holds. During the algorithm 
the bi ' s are changed several times, but they always form a basis for the lattice 
L and the fLij'S, bi's are changed accordingly so that (5.3.1) remains valid. 
Actually, after step (1) it is not necessary to store the values of the bts, but it 
suffices to keep track of the numbers Bi = IIb7112. 

We show that whenever the "while" loop in step (2) is entered, the following 
invariant holds: 

IfLij I ::: ~ for 1 ::: j < i < k 

and 

(5.3.2) 

So when the algorithm terminates, i.e., k = n + 1, we have that bl, ... , bn is a 
reduced basis for the lattice L generated by the input basis a I, ... , an. 

Invariant (5.3.2) obviously holds when the "while" loop is entered for the 
first time, since for k = 2 the condition (5.3.2) is empty. k will always be in 
the range 2 ::: k ::: n + 1 during the execution of the algorithm. 

Suppose that we come to the top of the "while" loop, k ::: n, and the invariant 
(5.3.2) holds. First the variables are changed by the subalgorithm REDUCE such 
that IfLkk-11 ::: ~. Next we check whether IIbZ + fLkk-Ibk-11I2 < *llbZ_1 1I 2. 

(Notice that IIbZ + fLkk-IbZ_ 11I 2 = IIbZII 2 + fL~k_IllbZ_11I2, since the vectors 
bZ_1 and bZ are orthogonal.) If this is the case, bk and bk-I are interchanged 
by UPDATE and all the other bi'S are left unchanged. The Bi'S and fLij'S are 
updated accordingly. Then k is replaced by k - 1. Now (5.3.2) holds. If the 
condition does not hold, we first achieve IfLkj I ::: ~ for 1 ::: j ::: k - 1. This is 
done by the subalgorithm REDUCE. Then we replace k by k + 1. Now (5.3.2) 
holds. 

The details in the correctness proofs of the subalgorithms are left to the 
reader and can partially be found in Lenstra et al. (1982). 

b. Termination: Let 

do = 1. By Exercise 3, di = n~=, IIbjll2 E JR+. Let D = n7':} di . In step (2.1) 

Bk-I = IIbZ_1 1I 2 is replaced by Bk + fL~k-1 Bk-I, which is less than *Bk-I. So 
Bk-I is reduced by a factor of *. But the numbers di are bounded from below 
by a positive real bound that depends only on the lattice L (see Lenstra et al. 
1982). So there is also a positive real bound for D and hence an upper bound 
for the number of times that (2.1) is executed. The number of times that (2.2) 
is executed can be at most n - 1 more than the number of times that (2.1) is 
executed. So the algorithm BASIS~EDUCTION terminates. 0 



5.3 Polynomial-time factorization algorithm 129 

In Lenstra et al. (1982) a detailed complexity analysis of BASIS-REDUC
TION is given. We just quote the result, their proposition 1.26. 

Theorem 5.3.3. Let L C zn be a lattice with basis a), ... , an, and let B E JR., 
B :::: 2, be such that Ilai 112 ::: B for 1 ::: i ::: n. Then the number of arith
metic operations needed by BASIS-REDUCTION for the input a), ... ,an is 
O(n4 log B), and the integers on which these operations are performed each 
have length O(n log B). 

So if we use classical multiplication, the complexity of BASIS-REDUCTION 
is O(n6 (log B)3), which can be reduced to O(n5+E (log B)2+E), for every E > 0, 
by fast multiplication techniques. 

Factors and lattices 

Throughout this section let p be a prime number, k a positive integer, f a 
primitive, squarefree polynomial of degree n, n > 0, in Z[x], and h a monic 
polynomial of degree t, ° < t ::: n, in Zpk[x], such that 

h divides (f mod pk) in Zpk[X] , 

(h mod p) is irreducible in Zp[x] , 

(f mod p) is squarefree in Zp[x] . 

(S.3.3) 

(S.3.4) 

(S.3.S) 

Theorem 5.3.4. a. There is a uniquely determined irreducible factor ho of f in 
Z[x], up to sign, such that (h mod p) divides (ho mod p). 

b. Further, if g divides f in Z[x], then the following are equivalent: 
i. (h mod p) divides (g mod p) in Zp[x], 
ii. h divides (g mod pk) in Zpk [x], 
iii. ho divides g in Z[x]. 

Proof. a. Let f = n:=o hi be the factorization of f in Z[x]. So (h mod p) 
divides one of the factors (hi mod p), say (ho mod p). The uniqueness of ho 
follows from (S.3.S). 

b. Obviously (ii) ====} (i) and (iii) ====} (i). 
Now we prove (i) ====} (iii): assume (i). Because of (S.3.S) (h mod p) does 

not divide (f / g mod p) in Zp [x]. So also (ho mod p) does not divide (f / g 
mod p) in Zp[x] and furthermore hoY fig E Z[x]. Therefore, ho must be a 
factor of g in Z[x]. 

Finally we prove (i) ====} (ii): (h mod p) and (f / g mod p) are relatively 
prime in Zp[x], so for certain r, S E Zp[x] we have 

r . h + s . (f / g) == 1 (mod p) . 



130 Factorization 

By the lifting theorem (Theorem 3.2.2) we get r', s' E Zpdx] such that 

r' . h + s' . (fIg) == I (mod l) , 
or 

r' . (g mod pk) . h + s' . f == g (mod pk) . 

But h divides the left-hand side of this congruence, so we have that h divides 
g modulo pk. 0 

Corollary. h divides (ho mod pk) in Zpk[X]. 

Proof Follows from (ii) for g = ho. o 

In the sequel we denote by ho the polynomial in Theorem 5.3.4. Observe 
that ho is a primitive polynomial since f is primitive. 

The set of polynomials in lR[x] of degree not greater than m, for mEN, is a 
vector space over lR isomorphic to lRm+ 1. The isomorphism is given by viewing 
a polynomial as its coefficient vector, i.e., by identifying 

m 

Laixi with (ao, ... , am) . 
i=O 

The length IlfII = JL~=oal of a polynomial f = L~=Oaixi equals the Eu
clidean length II (ao, ... ,am)ll of the corresponding vector. 

In the following we let m be an integer greater or equal to t. We let Lm,h 
be the set of polynomials of degree not greater than m in Z[x] that are divisible 
by h modulo pk, i.e., 

Lm,h = {g E Z[x] I deg(g) .::: m and hl(g mod pk) in Zpk[X]} . 

By the above isomorphism Lm,h is a lattice in lRm+1 and it is spanned by the 
basis 

Theorem 5.3.5. Let b E Lm,h satisfy pkl > II film . lib lin . Then ho divides b in 
Z[x], and in particular gcd(f, b) #- 1. 

Proof We may assume b #- O. Let s = deg(b), g = gcd(f, b) in Z[x], and 
t = deg(g). Observe that 0 .::: t .::: s .::: m. In order to show that ho divides b, it 
suffices to show that ho divides g, which by Theorem 5.3.4 (b) is equivalent to 

(h mod p) divides (g mod p) in Zp[x] . (5.3.6) 



5.3 Polynomial-time factorization algorithm 131 

Assume that (5.3.6) does not hold. Then (h mod p) divides (fIg mod p). Con
sider the set of polynomials 

M = P .. f + /Lb I)"., /L E Z[x], deg()".) < s - t, deg(/L) < n - t} . 

Let 
, {n+s-t-I i I n+s-t-I i } 

M = L ai x L aix EM, 
i=t i=O 

i.e., M' is the projection of M onto its last coordinates. 
As shown in Lenstra et al. (1982), the projections of 

{Xi flO :'S i < s - t} u {x j b I 0 :'S j < n - t} 

on M' are linearly independent. They also span M' as a lattice in lRn+s- 2t , so 
M' is a lattice of rank n + s - 2t. From Hadamard's inequality we obtain 

det(M') :'S IIfll s- t . Ilbll n- t :'S Ilfll m . Ilbll n < pkl . (5.3.7) 

Let bf, bt+l, ... ,bn+s-t-I be a basis of M' with deg(bj ) = j (Exercise 4). 
Observe that t + 1 - 1 :'S n + s - t - 1, since g divides band (h mod p) divides 
(fIg mod p). The leading coefficients of bf, bt+l, ... ,bt+l-I are divisible by 
pk (Exercise 5). So 

In+s-t-I I 
det(M') = n lc(bi ) ~ pkl , 

l=t 

a contradiction to (5.3.7). 
Therefore, (5.3.6) must hold, which completes the proof. D 

Lemma 5.3.6. Let q(x) = bo + blx + ... + blX1 E Z[x] be a divisor of p(x) E 

Z[x]. 
a. Ibi I :'S (D II p II for 0 :'S i :'S I. 

b. Ilqll:'S el)I/21Ipll. 

Proof a. Theorem 2 in Mignotte (1974). 
b. By (a) we get 

Vandermonde's equation 

t (r) ( s ) _ (r + s) 
k=O k n - k n 



132 Factorization 

applied to s = r = n = 1 yields 

(21) 1/2 
Ilqll::: I . Ilpll . o 

Theorem 5.3.7. Let bl, ... , bm+1 be a reduced basis for Lm,h, and let 

II > 2mn/2. e=r/2 
. 1l/llm+n . (5.3.8) 

a. deg(ho)::: m if and only if IIblll < \I pkl / II I 11 m • 

b. Assume that there exists an index j E {I, ... , m + I} for which 

(5.3.9) 

Let t be the largest such j. Then deg(ho) = m + 1 - t, ho = gcd(bl , ... , bt ) 

and (5.3.9) holds for all j with 1 ::: j ::: t. 

Proof a. "¢=": If IIblll is bounded in this way, then by Theorem 5.3.5 ho 
divides b l , and since deg(bl) ::: m we get deg(ho)"::: m. 

"===}": If deg(ho) ::: m then ho E Lm,h. So by Theorem 5.3.1 (b) and Lemma 
5.3.6 (b) 

(
2 ) 1/2 

Ilblll ::: 2m/2 . IIholl ::: 2m/2. = . 11111 . 

Using (5.3.8) we get the desired bound for Ilblll. 
b. Let 

J = {j I 1 ::: j ::: m + 1 and j satisfies (5.3.9)} . 

By Theorem 5.3.5 for every j E J the polynomial ho divides bj . So ho divides 
hI for 

hI = gcd({bj I j E J}) . 

Each bj , j E J, is divisible by h I and has degree not greater than m, so it 
belongs to the lattice 

Z· hI + Z· hI . X + ... + Z· hI . xm-deg(hd 

of rank m + 1 - deg(hd. Moreover, the bj's are linearly independent, so 

IJI ::: m + 1 - deg(hl) . (5.3.10) 



5.3 Polynomial-time factorization algorithm 133 

As in (a) we show that 

(
2 ) 1/2 

Ilho . xi II = IIhOII:::::: . III II for all i ~ ° . 
For i E {O, 1, ... ,m - deg(ho)} we have ho . xi E Lm,h' So from Theorem 
5.3.1 (c) we obtain 

(
2 ) 1/2 

Ilbj II ::::: 2m/ 2 .: ·11111 

for 1 ::::: j ::::: m + 1 - deg(ho). So by (5.3.8) 

{l, ... , m + 1 - deg(ho)} ~ J . 

But ho divides hi, so from (5.3.10) and (5.3.11) we obtain that 

deg(ho) = deg(hl) = m + 1 - t , 

J = {I, ... , t} , 

hi = a . ho for some a E Z . 

Furthermore, we get deg(ho) ::::: m by (a), so ho E Lm,h. 

(5.3.11) 

ho is primitive, so for proving that ho is equal to hi, up to sign, it suffices 
to show that h I also is primitive. Let j be an arbitrary element of J. ho divides 
pp(bj ). Since ho E Lm,h, also pp(bj ) E Lm,h. But bj belongs to a basis for Lm,h. 
So bj must be primitive, and hence also the factor h I of bj must be primitive. 
So ho = ±hl. 0 

The factorization algorithm 

Before we describe the Lenstra-Lenstra-Lovasz factorization algorithm, we start 
with two subalgorithms. 

Algorithm LLL_SUBALGl(in: I, p, k, h, m; out: ho); 
[f E Z[x] a primitive, squarefree polynomial, 
p a prime number not dividing lc(f) and such that (f mod p) is squarefree, 
k a positive integer, 
h a polynomial in Zpk[X] such that lc(h) = 1, h divides (f mod pk), (h mod p) 

is irreducible in Zp[x], 

m an integer greater or equal to deg(h), such that pkdeg(h) > 2mn/ 2 . e:t/2 . 

IIJllm+n ; 

ho is the irreducible factor of I for which (h mod p) divides (ho mod p), if 
this factor has degree::::: m, ho = error otherwise.] 
1. n:= deg(f); l := deg(h); 
2. (b l , •.. , bm+ I) := BASIS-REDUCTION (pk x O, ... , pk xl-I, hxo, ... , 

hxm - l ); 



134 

3. if Ilblll ~ 1 pkl fllfll m 
then ho := error 
else {t:= largest integer such that IIblll < 1pklfllIllm; 

ho := gcd(bl , ... , bl)}; 
return. 

Theorem 5.3.8. a. Algorithm LLLSUBALG 1 is correct. 

Factorization 

b. The number of arithmetic operations needed by algorithm LLLSUBALG 1 
is O(m4 k log p), and the integers on which these operations are performed each 
have length O(m k log p). 

Proof. a. bl, ... , bm+1 form a reduced basis for the lattice Lm,h. If Ilblll > 
1pk1 fllfll m, then by Theorem 5.3.7 (a) deg(ho) > m, so "error" is the correct 
answer. Otherwise by Theorem 5.3.7 (b) ho = gcd(bl , .. " bl), where t is the 
greatest index such that II bl II < vi pkl f II III til • 

b. Every vector a in the initial basis for LtII,h is bounded by lIal1 2 ::: 1 + 
I . p2k =: B, From I ::: n and the input condition for m we see that m is 
dominated by k log p. Since log I < I ::: m we get log B is dominated by 
k log p. Application of Theorem 5.3,3 yields the desired bounds for step (2). 

In step (3) we need to compute the greatest common divisor of bl, . , . , bl . 

Every coefficient c in bj , 1 ::: j ::: t, is bounded by vi pkl f II f II m, so log c < 
k log p. If we use the subresultant gcd algorithm, every coefficient in the compu
tation of gcd(bl , b2) is bounded by m k log p + m log m "-' m k log p (see Knuth 
1981: sect. 4.6.1 (26». By the Landau-Mignotte bound the coefficients in the 
gcd are of size O(2t11 IIblll), so their length is dominated by m + log B "-' log B. 
The same bounds hold for all the successive gcd computations. One gcd compu
tation takes O(m2) arithmetic operations. We need at most m gcd computations, 
so the number of arithmetic operations for all of them is dominated by m3• 0 

Algorithm LLL_SUBALG2(in: f, p, h; out: ho); 
[J E Z[x] a primitive, squarefree polynomial, 
p a prime number not dividing lc(f) and such that (f mod p) is squarefree, 
h an irreducible polynomial in Zp[x] such that lc(h) = 1 and h divides (f 
mod p); 
ho is the irreducible factor of f for which h divides (ho mod p).] 
1. n:= deg(f); I := deg(h); 

if I = n then {ho := f; return}; 
[Now I < n.] n/2 

2. k:= least positive integer such that pkl > 2(n-l)n/2 . e~-=-/)) . II I11 2n-l; 
[hI!, hi] := LIFLFACTORS(f, [(ff h mod p), h], p, k); 
[hi E Zpk[X] is congruent to h modulo p, lc(h) = 1 and hi divides (f 
mod pk).] 

3. u:= greatest integer such that I ::: (n - 1) f2u ; 

while u > 0 do 



5.3 Polynomial-time factorization algorithm 

{m:= L(n - 1)/2uJ; 
ho := LLLSUBALGI(j, p, k, h', m); 
if ho "# error then return; 
u := u - I}; 

4. ho:= I; 
return. 

Theorem 5.3.9. a. Algorithm LLLSUBALG2 is correct. 

135 

b. Let mo be the degree of the result ho. Then the number of arithmetic 
o~erations needed by algorithm LLLSUBALG2 is O(mo(n5 + n4 log II!II + 
n log p», and the integers on which these operations are performed each have 
length O(n3 + n2 log 11111 + n log p). 

Proof a. If I = n then I is irreducible in Zp[x], so it is irreducible over the 
integers. After executing step (2) we have 

I == h'· h" (modpk) , 

where (h' mod p) = hand lc(h') = 1. Now let m be such that I :=:: m :=:: n - 1. 
m satisfies the input condition of LLLSUBALG I. So if the irreducible factor ho 
of I corresponding to h' has degree not greater than m, then LLLSUBALG I 
will compute it. If LLLSUBALG I returns "error" for all values of m, then there 
is no proper factor corresponding to h', so the result is ho = I. 

b. Since k is the least positive integer satisfying the condition in step (2), 
we have 

(
2( 1»)11/2 

pk-I :=:: p(k-I)l :=:: 2(11-1)11/2 . nn ~ 1 .11111 211 - 1 . 

Using the fact that 

(
2(n - 1»)11/2 11/2 

log n _ 1 :=:: log (22(11-1)) = (n - l)n log2 , 

we see that 

k log p = (k - 1) log p + log p :::::: n2 + n log II I II + log p . 

Let m 1 be the largest value of m considered in LLLSUBALG2. Since we start 
with small values of m and stop as soon as m is greater than the degree of ho, 
it follows that m 1 < 2mo. All the other values of m are of the form L ";1 J, L ~I J, 
... , L ~ul J. SO if we sum over all these values of m we get 



136 Factorization 

( I)U+I 
ml ml 2 - I l: m ~ ---;; + ... + - + m I = mi' I ~ 2m I < 4mo . 

m considered 2 2 (2) - I 
in LLLSUBALG2 

Therefore, l:m4 ~ (l:m)4 = O(m6)' Applying Theorem 5.3.8 (b) we de
duce that the number of arithmetic operations needed for executing step (3) is 
dominated by 

m6k log p :s m6(n2 + n log IIfll + log p) 

:s mo(n5 + n4 log Ilfll + n3 10g p) 

and that the integers on which these operations are performed each have length 
dominated by 

The same bounds hold for the Hensel lifting in step (2). D 

Now we are ready to combine all these sub algorithms and get the factoriza
tion algorithm FACTOR-LLL. 

Algorithm FACTOR_LLL(in: f; out: F); 
[f E Z[x] a primitive, squarefree polynomial of positive degree; 
F = [fl,"" fs], the Ii's are the distinct irreducible factors of fin Z[x].] 
1. n:= deg(j); 

R := res(j, f'); [R =f:. 0, since f is squarefree] 
2. p:= smallest prime not dividing R; 

[so (j mod p) has degree n and is squarefree in Zp[x]] 
pfactors := FACTOR.-B(j, p); 

3. ~:= []; 
f:=f; 
while deg(j) > 0 do 

{h := FIRST(Pfactors); 
h := hjlc(h); 
ho := LLLSUBALG2(j, p, h); 
[ho is the irreducible factor of j for which h divides (ho mod p)] 
~ := GONS(ho, F); 
f:= f jho; 
for g E pfactors do 

if g divides (ho mod p) 
then remove g from pfactors; 

4. return. 

Theorem 5.3.10. a. Algorithm FACTOR-LLL is correct. 



5.3 Polynomial-time factorization algorithm 137 

b. The number of arithmetic operations needed by algorithm FACTOR-ILL 
is O(n6 +n5 log 11111), and the integers on which these operations are performed 
each have length O(n3 + n2 log IIfII). 

Proof a. Since p y res(j, 1'), deg(j mod p) = n and I is squarefree mod
ulo p. So the Berlekamp factorization algorithm can be applied to I and p, and 
it computes the list of irreducible factors of I modulo p. The correctness of 
FACTOR-LLL now follows immediately from the correctness of LLLSUBALG2. 

b. p is the least prime not dividing res(j, 1'). So by Hardy and Wright 
(1979: sect. 22.2), there is a positive bound A such that p = 2 or 

fl q :::: Ires(j, I') I . 
q<p,q prime 

By Hadamard's inequality 

Ires(j, 1')1 :::: nn . I1I1I 2n - 1 • 

Therefore, 

p < (n log n + (2n - 1) log II I II) / A 

or p = 2. Therefore the terms involving log p in Theorem 5.3.9 are absorbed 
by the other terms. 

The algorithm FACTOR-B needs O(n3 + prn2) arithmetic operations, where 
r is the actual number of factors. Substituting the bound for p and using r :::: n, 
we get that the number of arithmetic operations for the application of FACTOR-B 
is dominated by n410g n + n410g II I II. 

The number of arithmetic operations needed in the execution of LLLSUB
ALG2 in step (3) is dominated by mo(n5 + n410g II ill), where mo is the degree 
of the factor ho corresponding to h. Lemma 5.3.6 implies that log II ill ::S n + 
log II I II· All the degrees of the irreducible factors of I add up to n, so the 
number of arithmetic operations needed in step (3) is ::S n6 + n5 10g II fII. 

By Theorem 5.3.9 the integers considered in FACTOR-LLL are of length 
O(n3 + n2 10g IIfII). D 

Corollary. If classical algorithms for the arithmetic operations are used then 
the complexity of FACTOR-LLL is O(n12 + n9 (log IIfII)3). If fast algorithms 
(see Sect. 2.1) are used then the complexity of FACTOR-LLL is O(n9+€ + 
n H€ (log II fII)2+€). 

Example 5.3.2. We want to demonstrate how the algorithm FACTOR-LLL fac
tors the polynomial 

1= x4 - 3x + 1 

over the integers. As the prime in step (2) we choose p = 5. Modulo 5 the 



138 Factorization 

polynomial factors into 

f == (x + 1) . (X 3 - X 2 + X + 1) (mod 5) . 

In step (3) we have to find the factors over the integers corresponding to these 
factors modulo 5. 

So, for instance, we call LLLSUBALG2 with f, p = 5, h = x 3 - x 2 + 
X + 1. The least positive integer k such that 53k > 26 (~) 211 f117 is k = 4. 
By an application of LIFT -FACTORS we lift the factorization modulo 5 to a 
factorization modulo 54 

hi 

In step (3) u = 0 and LLLSUBALG2 immediately returns the result ho = f. 
So we have detected that f is irreducible over the integers. 

Just for demonstration purposes we also apply LLLSUBALG2 to the ar
guments f, p = 5, h = x + 1. In this case k = 12, and we have to lift the 
factorization to a factorization modulo 512 

f == ,(x + 46966736), . 
v 

hi 

. (x 3 - 46966736x2 + 22915571x - 42196259) (mod 512 ) • 

In step (3) u = 1, and LLLSUBALG1 is called with the arguments f, p = 5, 
k = 12, h = hi, m = 1. BASIS-REDUCTION(5 12 , X + 46966736) yields the 
reduced basis b l = (-10212, -6217), b2 = (6781, -19779). At this point 
IIblll > V'5 12/lIfII, so ho is set to "error." Next LLLSUBALG1 is called with 
f, p, k as before and m = 3. Again the result is "error." So LLLSUBALG2 
returns ho = f as the only factor of f over the integers. 

Example 5.3.3. Let us also consider an example, where FACTOR..LLL really 
detects a factor of the given polynomial. Let 

As the prime p we choose 41. Modulo 41 we get the factorization 

f == (x - 9) . (x + 9) . (x 2 + X + 1) (mod 41) . 
'-.--' 

h 



5.3 Polynomial-time factorization algorithm 139 

In LLLSUBALG2 this factorization is lifted to a factorization modulo 41 5, 

f == ,(x + 46464143), . 
hi 

. (x 3 - 46464142x2 - 46464142x - 46464143) (mod415). 

Let us only consider the value m = 3 as the bound for the degree of the 
irreducible factor. Application of BASIS..REDUCTION to the basis 

yields the reduced basis 

(1,0,1,0,0), 

(-5237, -2476,5238,0,0) , 

(1238, -10475, -1238,0,0) , 

(-1107107, -522435,1103118,1,0) , 

(51440777964301,24274494548205,-51255432497874,0,1) . 

Only the first element in the reduced basis satisfies the condition in step (3) of 
LLLSUBALG 1, so we get 

After removing the two factors that divide ho modulo 41, we are left with only 
one factor, and the factorization 

f = (x2 + 1) . (x2 + X + 1) 

has been computed. 

Exercises 

1. Show that det(L), L a lattice in ~n, is independent of the basis. 
2. Prove: If bl , .•. ,bn are a reduced basis for a lattice in ~n, then 

IIb7112 ~ ! IIb7_d12 for 1 < i ~ n. 
3. Let bJ, ... ,bn be a basis for a lattice in ~n, bT, ... , bZ the orthogonal basis 

produced by the Gram-Schmidt process, and d; = 1« bj , bl > )1:"j,/:"iI for 

1 ~ i ~ n. Then d; = n~=1 IIbjll2 for 1 ~ i ~ n. 
4. Let b l , .•. ,bn E zn be a basis for a lattice L in ~n. Then L has a basis 

CI, ... ,Cn E zn such that C = (CI, ... ,cn) (the c;' s written as columns) is 
an upper triangular matrix. 

5. By the notation of Theorem 5.3.5 show that every polynomial q E M with 
deg(q) < t +1 is divisible by pk. 



140 Factorization 

6. Compute a reduced basis for the lattice L],h, h = x + 46966736 in Example 
5.3.2. 

7. Apply the algorithm FACTOR-I..LL for computing the irreducible factors of 
the integral polynomial X4 - 1. 

5.4 Factorization over algebraic extension fields 

We describe an algorithm that has been presented in van der Waerden (1970) 
and slightly improved by B. Trager (1976). For further reading we refer to Wang 
(1976). 

Let K be a computable field of characteristic 0 such that there is an algorithm 
for factoring polynomials in K[x]. Let a be algebraic over K with minimal 
polynomial p(y) of degree n. Throughout this section we call K the ground 
field and K (a) the extension field. Often we will write a polynomial I (x) E 
K(a)[x] as I(x, a) to indicate the occurrence of a in the coefficients. Let 
a = ai, a2, ... ,an be the roots of p(y) in a splitting field of p over K. By ¢j, 
1 ::s j ::s n, we denote the canonical field isomorphism that takes a into aj, i.e., 

a f----+ aj 

a f----+ a for all a E K . 

¢j can be extended to ¢j: K(a)[x] ---+ K(aj)[x] by letting it act on the coef
ficients. 

We will reduce the problem of factorization in K (a) [x] to factorization in 
K[x]. This reduction will be achieved by associating agE K[x] with the given 
IE K(a)[x] such that the factors of I are in a computable 1-1 correspondence 
with the factors of g, i.e., 

I E K(a)[x] ~ g E K[x] 

I-I 
factors of I ~ factors of g . 

A candidate for such a function is the norm, which maps an element in the 
extension field to the product of all its conjugates over K. This product is an 
element of K. 

norm[K(a)/Kj: K(a) ---+ K 

fJ f----+ TI fJ' , 
f3'~f3 

where fJ' "" fJ means that fJ' is conjugate to fJ relative to K (a) over K. That 
is, if fJ = q(a) is the normal representation of fJ in K(a) (compare Sect. 2.4), 
then 

n 

norm[K(a)/K](fJ) = TI q(a;) . 
;=1 



5.4 Algebraic extension fields 141 

If the field extension is clear from the context, we write just norm(·) instead of 
norm[K(a)/K] (.). Since the norm is symmetric in the ai's, by the fundamental 
theorem on symmetric functions it can be expressed in terms of the coefficients 
of P and thus lies in K. The norm can be generalized from K(a) to K(a)[x] 
by defining the norm of a polynomial hex, a) to be n7=1 hex, ad, which can 
be computed as 

norm(h(x, a» = resy(h(x, y), p(y» . 

Clearly the norm can be generalized to multivariate polynomials. One important 
property of the norm is multiplicativity, i.e., 

norm(f . g) = norm(f) . norm (g) . (5.4.1) 

Theorem 5.4.1. If I(x, a) is irreducible over K(a), then norm(f) = h(x)j for 
some irreducible h E K[x] and some j E N. 

Proof Assume norm(f) = g(x)h(x) and g, h are relatively prime. For 1 S i 
S n let hex) = I(x, ai). Clearly I = II divides norm(f) = n fi. So, since I 
is irreducible, Ilg or Ilh. W.l.o.g.let us assume that Ilh, i.e., hex) = II (x, a) . 

hex, a). Then hex) = (Pi(h) = ¢j(fl)¢j(h) = jjh(x, aj). Therefore, jjlh for 
1 S j S n. Since g and h are relatively prime, this implies that gcd(jj, g) = 1 
for 1 S j S n. Thus, gcd(norm(f), g) = 1, i.e., g = 1. D 

The previous theorem yields a method for finding minimal polynomials for 
elements f3 E K(a). Let f3 = q(a), b(x) = norm(x - (3) = norm(x - q(a». 
x - f3lb(x), so b(f3) = O. Therefore the minimal polynomial P{3(x) has to be 
one of the irreducible factors of b(x). By Theorem 5.4.1, b(x) = p{3(x)i for 
some j E N. So Pf3 (x) can be determined by squarefree factorization of b(x). 

K (a)[x] is a Euclidean domain, so by successive application of the Euclidean 
algorithm the problem of factoring in K (a)[ x] can be reduced to the problem 
of factoring squarefree polynomials in K(a)[x] (see Sect. 4.4). From now on 
let us assume that I(x, a) E K(a)[x] is squarefree. 

Theorem 5.4.2. Let I(x, a) E K(a)[x] be such that F(x) = norm(f) is 
squarefree. Let F(x) = n;=l Gi(X) be the irreducible factorization of F(x). 
Then n;=l gi(X, a), where gi(X, a) = gcd(f, Gi ) over K(a), is the irreducible 
factorization of I(x, a) over K(a). 

Proof The statement follows from 
a. every gi divides I, 
b. every irreducible factor of I divides one of the gi's, 
c. the gi'S are relatively prime, and 
d. every gi is irreducible. 



142 Factorization 

Ad (a): This is obvious from gi = gcd(f, Gd. 
Ad (b): Let v(x, a) be an irreducible factor of f over K(a). By Theo

rem 5.4.1, norm(v) = w(x)k for some irreducible w(x) E K[x]. vlf implies 
norm(v)lnorm(f). Since norm(f) is squarefree, norm(v) is irreducible and must 
be one of the Gi'S. So vlgi(X, a). 

Ad (c): Suppose the irreducible factor v of f divides both gi and gj for i 
=I j. Then the irreducible polynomial norm(v) divides both norm(Gi) = G7 
and norm ( G j) = G'j. This would mean that G i and G j have a common factor. 

Ad (d): Clearly every gi is squarefree. Assume that VI (x, a) and V2(X, a) are 
distinct irreducible factors of f and that both of them divide gi = gcd(f, Gd. 
vIIGi implies norm(vl)lnorm(Gi) = Gi(x)n. Because of the squarefreeness of 
norm(f), we must have norm(vl) = Gi. Similarly we get norm(v2) = Gi. But 
(VI· v2)lf implies norm(vi . V2) Gi(x)2Inorm(f), in contradiction to the 
squarefreeness of norm(f). D 

So we can solve our factorization problem over K (a), if we can show that 
we can restrict our problem to the situation in which norm(f) is squarefree. 
The following lemmata and theorem will guarantee exactly that. 

Lemma 5.4.3. If f(x) is a squarefree polynomial in K[x], then there are only 
finitely many s E K for which norm(f (x - sa)) is not squarefree. 

Proof Let 131, ... , 13m be the distinct roots of f. Then the roots of f (x - saj) 
are f3i + saj, 1 ~ i ~ m. Thus, the roots of G(x) = norm(f(x - saj)) = 
n~=1 f(x -sak) are f3i +sak for 1 ~ i ~ m, 1 ~ k ~ n. G can have a multiple 
root only if 

where k =I I. There are only finitely many such values. D 

Lemma 5.4.4. If f(x, a) is a squarefree polynomial in K(a)[x], then there 
exists a squarefree polynomial g(x) E K[x] such that fig. 

Proof Let G(x) = norm(f(x, a)) = n gi(x)i be the squarefree factorization 
of the norm of f. Since f is squarefree, fig := n gi (x). D 

Theorem 5.4.5. For any squarefree polynomial f(x, a) E K(a)[x] there are 
only finitely many s E K for which norm(f (x - sa)) is not squarefree. 

Proof Let g(x) be as in Lemma 5.4.4. By Lemma 5.4.3 there are only finitely 
many s E K for which norm(g(x - sa)) is not squarefree. But fig implies 
norm(f(x - sa))lnorm(g(x - sa)). If norm(f(x - sa)) is not squarefree, then 
neither is norm(g(x - sa)). D 



5.4 Algebraic extension fields 

Algorithm SQFR_NORM(in: 1; out: g, s, N); 
[f E K(a)[x] squarefree; sEN, g(x) = I(x - sa), 
N(x) = norm(g(x, a» is squarefree.] 
1. s:= 0; g(x, a) := I(x, a); 
2. N(x):= resy(g(x, y), p(y»; 
3. while deg(gcd(N(x), N'(x») =j:. 0 do 

{s := s + 1; 
g(x, a) := g(x - a, a); 
N(x) := resy(g(x, y), p(y))}; 

return. 

143 

So over a field of characteristic 0 we can always find a transformation of 
the form I(x - sa), sEN, such that norm(f(x - sa» is squarefree. These 
considerations give rise to an algorithm for computing a linear change of variable 
which transforms 1 to a polynomial with squarefree norm. 

Now we are ready to present an algorithm for factoring polynomials over 
the extension field. 

Algorithm FACTOR_ALG(in: 1; out: F); 
[f E K (a)[x] squarefree; F = [fl, ... , Ir], where 11, ... , Ir are the irreducible 
factors of lover K(a).] 
1. [g, s, N] := SQFR~ORM(f); 
2. L: = list of irreducible factors of N (x) over K; 
3. if LENGTH(L) = 1 then return([f]); 
4. F:= [ ]; 

for each H(x) in L do 
{hex, a) := gcd(H(x), g(x, a»; 
g(x, a) := g(x, a)/ hex, a); 
F := CONS(h(x + sa, a), F)}; 

return. 

Example 5.4.1. We apply the factorization algorithm FACTOR_ALG to the do
main Ql( -V2)[x], i.e., K = Q, a a root of p(y) = y3 - 2. Let us factor the 
polynomial 

I(x, a) =x4 +ax3 -2x -2a. 

I (x, a) is squarefree. First we have to transform I to a polynomial g with 
squarefree norm. The norm of I itself is 

norm(f) = resy(f(x, y), p(y» = _(x3 - 2)3(x3 + 2) , 

i.e., it is not squarefree. The transformation x r-+ x - a does not work, but 
x r-+ x - 2a does: 

g(x, a) := I(x - 2a, a) = x4 - 7ax 3 + 18a2x 2 - 42x + 18a , 

N(x) = norm(g) = xl2 - 56x 9 + 216x6 - 6048x3 + 11664 , 



144 Factorization 

and N (x) is squarefree. The factorization of N (x) is 

N(x) = (x 3 - 2)(x3 - 54)(x6 + 108) . 

Computing the gcd of all the factors of N(x) with g(x, a) gives us the factor
ization of g(x, a): 

g(x, a) = (x - a)(x - 3a)(x2 - 3ax + 3(2) , 

which can be transformed by x 1--+ X + 2a to the factorization 

f(x, a) = (x + a)(x - a)(x2 + ax + ( 2) . 

Computation of primite elements for multiple field extensions 

Over a field K of characteristic 0 every algebraic extension field K (a) is sep
arable, i.e., a is a root of multiplicity 1 of its minimal polynomial. So every 
multiple algebraic extension 

can be expressed as a simple algebraic extension, i.e., 

for some y algebraic over K. Such a y is called a primitive element for the field 
extension. We will describe how to compute such primitive elements. Clearly it 
suffices to find primitive elements for double field extensions 

K C K(a) C K(a, 13) , 

where p(a) = 0 for some irreducible p(x) E K[x] and q(f3, a) = 0 for some 
irreducible q(x, a) E K(a)[x]. Let n = deg(p) and m = deg(q). 

Theorem 5.4.6. If N(x) = norm[K(a)/K](q(X, a)) is squarefree, then K(a, 13) = 
K(f3), and N(x) is the minimal polynomial for 13 over K. 

Proof Let al, ... , an be the roots of p(x), and f3i1, ... , f3im the roots of q(x, 
ai). norm[K(a)/K](q) = fl7=1 q(x, ai), so if this norm is squarefree, then all 
the f3ij must be different. So for every 13 in {f3ij I 1 :::: i :::: n, 1 :::: j :::: m} 
there is a uniquely determined a in {ai, ... ,an} such that q(f3, a) = O. Thus, 
gcd(q(f3, x), p(x)) must be linear, 

gcd(q(f3, x), p(x)) = x - r(f3) for some r(y) E K[y] , 

and therefore a = r(f3). So K (a, 13) = K (13). 



5.4 Algebraic extension fields 145 

f3 is a root of N(x) = norm[K(a)/K] (q). By Theorem 5.4.1, and the square-
freeness of N(x), N(x) must be the minimal polynomial for f3 over K. D 

Algorithm PRIMITIVE_ELEMENT(in: p, q; out: N, A, B); 
[p and q are the minimal polynomials for a and f3, respectively, as above; N(x) 
is the minimal polynomial of y over K such that K(a, f3) = K(y), A and B 
are the normal representations of a and f3 in K(y), respectively.] 
1. [g, s, N] := SQFR..NORM(q(x, a)); 
2. A:= solution of the linear equation gcd(g(y, x), p(x)) = 0 in K(y), where 

N(y) = 0; 
3. B:=y-sA; 

return. 

Example 5.4.2. Let us compute a primitive element y for the multiple extension 
Q(,J2, J3), i.e., for Q(a, f3), where a is a root of p(x) = x 2 - 2 and f3 is a 
root of q(x, a) = q(x) = x 2 - 3. 

The norm of q is not squarefree, in fact norm[<Q(J2)/<Q](q) = (x 2 - 3)2. So 
we need a linear transformation of the form x t-+ x - sa, and in fact s = 1 
works. 

g(x, a) := q(x - a, a) = x 2 - 2ax - I , 

N(x) = norm[<Q(J2)/<Q] (g(x, a)) 

= (x2 - 2ax - l)(x2 + 2ax - 1) = x4 - lOx2 + 1 . 

N (x) is irreducible. Let y be a root of N (x). So y = f3 + a. We get the 
representation of a in K (y) as the solution of the linear equation 

gcd(g(y, x), p(x)) = gcd( -2yx + (y2 - 1), x 2 - 2) 

= x + !(_y3 + 9y) = 0, 

i.e., a = A(y) = !(y3 - 9y). Finally f3 = B(y) = y - A(y) = _!(y3 -lIy). 

Exercises 

1. Prove: Let p(y) be the minimal polynomial for a over the field K. Then 
norm[K(a)/K] (h(x, a» and resy(h(x, y), p(y» agree up to a non-zero 
multiplicative constant. 

2. Factor f(x) = x 5 + a 2x 4 + (a + 1)x3 + (a 2 + a - l)x 2 + a 2x + a 2 over 
Q(a), where a 3 - a + 1 = O. 



146 Factorization 

5.5 Factorization over an algebraically closed field 

Whereas we have already considered the problem of factoring univariate poly
nomials over a given algebraic extension, i.e., f(x) E K(a)[x], and factoring 
multivariate polynomials over K (a) can be achieved by methods similar to the 
ones for integral polynomials (see Sect. 5.2), we now want to give an algorith
mic approach to finding factors of bivariate polynomials over an algebraically 
closed field. Observe that factoring univariate polynomials over an algebraically 
closed field really amounts to factorization in finite extensions of the field of 
definition. 

~et K, the field of definition, be a computable field of characteristic 0 and 
let K be the algebraic closure of K. Then the problem is 
given: f(x, y) E K[x, y], 

find: an irreducible factor g(x, y) of f (x, y) in K [x, y]. 

Definition 5.5.1. If f E K[x, y] has no non-trivial factor in K[x, y], then f 
is called absolutely irreducible. A factorization over K is called an absolute 
factorization. 

Clearly every factorization of f (x, y) E K [x, y] can be expressed in some 
algebraic extension K (y) of the field of definition K. Our problem now is to 
find the appropriate y and then factor f in K(y)[x, y]. 

B. Trager (1984) and E. Kaltofen (1985c) describe two different ways of 
finding such factors. Duval (1991) gives a geometrical method for factoring over 
an algebraically closed field. In Bajaj et al. (1993) a factorization algorithm for 
C[x, y] is described. The first polynomial time algorithm for factoring over <C 
seems to have been given by Chistov and Grigoryev (1983). 

We will limit ourselves to describing Kaltofen's algorithm. W.l.o.g. we may 
assume that the input polynomial f (x, y) is squarefree. We will view f as a 
polynomial in the main variable y. The basic idea is the following. We consider 
the algebraic curve C in the affine plane K x K = A.2(K) defined by the 
polynomial equation f (x, y) = O. The factors of f over K correspond exactly 
to the irreducible components of C in A.,2(K). Now choose a E K such that 
f(a, y) is squarefree and of degree n = degy(f). This means that the line 
L : x = a is not a tangent or asymptote of C and that none of the intersections 
of C and L are singularities of C. Now if fJ is a root of f(a, y), then P = (a, fJ) is 
a simple point on C. So there is a uniquely determined irreducible component of 
C passing through P. Our goal is to compute the polynomial g(x, y) E K[x, y] 
defining this component. g will be an irreducible factor of f. See Fig. 8. 

Before we start the actual factorization process, we normalize f in the fol
lowing way: 

1. Clearly if conty(f) (as a polynomial in x) is non-constant then this content 
is a factor of f. So let us assume that conty(f) = 1. 

2. Check whether f (x, y) is squarefree, i.e., gcd(f, ~~) = 1. Otherwise deter
mine a squarefree factor and proceed with this factor. 



5.5 Algebraically closed field 

y 

r+~~-+--~~o+-~~~~~~~+-~~X 

-2 -1 a b 2 3 

-1 
f(a,y) squarefree 
f(b,y) not squarefree 

3. Make 1 monic in y by replacing 1 by the monic polynomial 

j(x, y) = lcy(f)deg,.(f)-I . I(x, lc)'~f)) . 

147 

Fig. 8 

The factor structure is preserved by this transformation. In fact, if g (x, y) is 
a factor of j(x, y) then PPv(g(x, lcv(f)y» is a factor of I. 

4. Find an integer a in the range la I ~ degx (f) degy (f) such that 1 (a, y) is 
squarefree. Replace 1 by I(x + a, y), i.e., change the coordinate system 
such that now 1(0, y) is squarefree (no singularities and vertical tangents or 
asymptotes at x = 0). Such an integer must exist because of Lemma 5.5.1. 

Lemma 5.5.1. Let I(x, y) E K[x, y] be monic of degree n in y and squarefree. 
Then there exists a E Z with la I ::: degx (f) . n such that 1 (a, y) is squarefree. 

Proof Let m = degx(f). Since 1 is squarefree, its discriminant 

al 
D(x) = resv(l, -) . ay 

is different from 0. degx(D) ::: (2n - 1)m. So D(x) cannot vanish on all the 
integer values -m . n, ... , 0, ... , m . n. D 

Now we are prepared to describe the algorithm for finding a factor of I. 

Algorithm FIND_ALG_FACTOR(in: I; out: p, g); 
[f(x, y) E K[x, y] monic in y, 1(0, y) squarefree; 
p E K[z] minimal polynomial for {3 over K, g(x, y) E K({3)[x, y], and g an 
irreducible factor of 1 in K(8)[x, y].] 



148 

1. [find point P = (0, f3) on the curve C defined by f] 
p(z) := irreducible factor of 1(0, z) of least degree in K[z]; 
[let f3 be a root of p(z)] 

Factorization 

2. [compute a power series approximation of the branch of C through P in 
K(f3)[[y)) ] 
m := degx(f); n := degy(f); k := (2n - 1) . m; 
determine (by linear algebra over K (f3» aI, ... ,ak E K (f3) such that 
I(x, f3 + alX + ... + akxk) == ° mod xk+l; 
y:= f3 +alx + ... +akxk; 

3. [find the minimal polynomial for Y in K (f3)[x, y]] 
for i = 1 to n - 1 do 

{try to solve the equation 
yi + Ui-l (x)yi-l + ... + Ul (x)Y + uo(x) == ° mod xk+l (5.5.1) 

for polynomials Uj(x) E K(f3)[x] with deg(uj) ::: m 
(this leads to a linear system over K(f3) for the coefficients of the uj's); 
if a solution to (5.5.1) exists 
then {g := yi + ui_lyi-l + ... + UlY + uo; 

retum(p, g)}}; 
4. [no factor has been found] 

retum(z, f). 

We do not present a correctness proof of the algorithm FIND-ALG-.FACTOR 
but rather refer to theorem 2 in Kaltofen (1985a) and theorem 2 in Kaltofen 
(1985c). In particular, the correctness of FIND-ALG-.FACTOR implies the fol
lowing theorem. 

Theorem 5.5.2. Let I(x, y) E K[x, y] be monic in y such that 1(0, y) is 
squarefree. Let f3 be algebraic over K such that 1(0, f3) = 0. Then 1 is abso
lutely irreducible if and only if 1 is irreducible in K (f3)[x, y]. 

In fact, J. R. Sendra (pers. comm.) has observed that if the curve C defined 
by the polynomial I(x, y) over the field K has enough points in the affine plane 
over K, then irreducibility of lover K already means absolute irreducibility 
of I. 

Theorem 5.5.3. Let I(x, y) E K[x, y] be irreducible over K. If the curve 
defined by 1 has infinitely many points Pi = (Pi, qi), i E N, in K2, then 1 is 
absolutely irreducible. 

Proof For the same reason as in the proof of Lemma 5.5.1, possibly after 
an affine change of coordinates, I(pi, y) will be squarefree for some i E N. 
So, after another change of coordinates moving Pi to (0, 0) we will have 
1(0, y) squarefree. Now the irreducible factor p(z) constructed in step (1) of 
FIND-ALG-.FACTOR is linear, in fact p(z) = z. The statement now follows 
from Theorem 5.5.2. D 



5.5 Algebraically closed field 149 

Example 5.5.1. Let us find a factor of 

h (x, y) = X 2 + i 
in C[x, y). h is primitive w.r.t. y, squarefree and monic. h(O, y) = y2 is not 
squarefree, but h (1, y) = y2 + 1 is. So let us replace h by 

f(x, y) = h(x + 1, y) = i + x2 + 2x + 1 . 

Now we are prepared for an application of the algorithm FIND-ALG-FACTOR. 
In step (1) p(z) = Z2 + 1, e.g., f3 = R = i. 
In step (2) we set m = 2, n = 2, k = 6, and we determine a), ... , a6 E Ql(i) 

such that we have 

This leads to the linear system 

i . a) + 1 = 0, 

2i . a2 + ai + 1 = 0 , 

i . a3 + a)a2 = 0 , 

2i . a4 + a)a3 + ai = 0 , 

i . a5 + a) a4 + a2a3 = 0 , 

2i . a6 + 2a) a5 + 2a2a4 + a~ = 0 , 

which has the solution (a), ... ,a6) = (i, 0, 0, 0, 0, 0). So Y = i + i . x. 
In step (3) we look for the polynomial of smallest degree having Y as a 

root. In fact, in our example we only have to try polynomials of degree 1. The 
solution of 

Y + uo(x) = (i +i ·x) +uo(x) == 0 modx7 

is uo(x) = -i . x - i, and this gives rise to the factor 

g(x, y) = y + uo(x) = y - ix - i 

of fin Ql(i)[x, y) C C[x, y). Inverting the linear change we get the factor 

g(x - 1, y) = y - ix 

of h(x, y) = (y - ix)(y + ix). 

The algorithm FIND-ALG-FACTOR lends itself to recursive application, 
leading to an algorithm for absolute factorization. However, if we start with 



150 Factorization 

a polynomial over Z (or Q), we will soon introduce high degree algebraic ex
tensions, which make the factorization costly. 

Exercises 

I. Transform f (x, y) = x2 y2 - 4x y2 + 4 y2 + x 2 into a polynomial suited as 
input to FIND~LGYACTOR. 

2. Determine the absolute factorization of the integral polynomial f (x, y) 
= l + x4y2 + 2x 2y + 1. 

5.6 Bibliographic notes 

Alternatives to the Berlekamp algorithm for factoring polynomials over finite 
fields are described in Cantor and Zassenhaus (1981), Shoup (1991), Nieder
reiter and Gottfert (1993). Methods for testing irreducibility are discussed in 
Kaltofen (1985c, 1987). For factorization over algebraic number fields we refer 
also to Landau (1985). Absolute factorization is considered in Dvornicich and 
Traverso (1987), Heintz and Sieveking (1981). The lattice reduction algorithm 
is reconsidered in Pohst (1987), see also Pohst and Zassenhaus (1989). For a 
different approach to polynomial-time factorization, see Yokoyama et al. (1994). 
For further results on Hensel factorization, see Zassenhaus (1975, 1978, 1985). 
A good overview of problems and algorithms in factorization of polynomials 
can be found in Kaltofen (1983, 1986, 1992) and Sharpe (1987). 



6 Decomposition 
of polynomials 

6.1 A polynomial. time algorithm for decomposition 

The first polynomial time algorithms for decomposition of polynomials have 
been presented by Gutierrez et al. (1988) and practically at the same time by D. 
Kozen and S. Landau (1989). We follow the approach of Kozen and Landau. 

The problem to be considered is to decide whether a given polynomial f(x) 
can be written as the functional composition of other polynomials, i.e., whether 

f(x) = g(h(x)) = (g 0 h)(x) 

for some polynomials g, h. We assume all the polynomials to have coefficients 
in a computable field K. 

Decompositions of polynomials are interesting, e.g., for the solution of poly
nomial equations. If f = go h, we can find the roots of f by solving for the 
roots a of g and then for the roots of h - a. 

In factoring polynomials we have to identify factorizations that differ only by 
a constant. A similar restriction has to be enforced in decomposing polynomials, 
since for every a E K* the linear polynomials 

1~I)(x) = ax + b and 1(2)(x) = ~(x - b) 
a a 

are inverses of each other under composition. Thus, every polynomial admits a 
trivial decomposition of the form 

f(x) = l~)) 0 I;;) 0 f(x) . 

Definition 6.1.1. Let f(x) E K[x] be monic and of degree> 1. A (functional) 
decomposition of f is a sequence g), ... , gk of polynomials in K [x] such that 

The gi are called the components of the decomposition of f. If all decomposi
tions of f are trivial, i.e., all but one of the components are linear, then f is 
called indecomposable. A complete decomposition is one in which all compo
nents are of degree > 1 and indecomposable. 



152 Decomposition 

Obviously it is sufficient to decompose monic polynomials. If f (x) admits 
a decomposition f = go h and c = lc(h), then also f = g' 0 h', where g'(x) 
= g(c· x) and h'(x) = h(x)/c. So it suffices to search for decompositions into 
monic components. For a similar reason we can assume that h(O) = 0, i.e., the 
constant coefficient of h is O. 

Complete decompositions are not unique, even if we disregard trivial de
compositions. Further ambiguities in decomposition are 

and (6.1.1) 

Tn 0 Tm = Tm 0 Tn for m, n EN, 

where Tn(x) is the n-th Chebyshev polynomial (To(x) = 1, TI(x) = x, Tn(x) 
= 2xTn_1 (x) - Tn-2(X) for n > 1). However, J. F. Ritt (1922) has shown that 
these are the only ambiguities. 

Theorem 6.1.1. A monic polynomial f(x) E K[x], deg(f) > 1, has a unique 
complete decomposition up to trivial decompositions and the ambiguities (6.1.1), 
provided char(K) = 0 or char(K) > deg(f). 

Now let f(x) E K[x], deg(f) = n, be the monic polynomial that we want 
to decompose. Let n = r . s be a non-trivial factorization of the degree of f. 
Then we want to decide whether f can be decomposed into polynomials g and 
h of degrees rand s, respectively, and if so compute such a decomposition. 

f rs + rs-I + + =X ars-IX ... ao, 

g = xr + br_Ixr - 1 + ... + bo , (6.1.2) 

h = XS + Cs_IXs- 1 + ... + CIX . 

Let fh, ... ,fJr be the (not necessarily different) roots of g in an algebraic ex
tension of K. So 

and therefore 

r 
g(x) = f1 (x - fJ;) , 

;=1 

r 
f(x) = g(h(x)) = f1 (h(x) - fJ;) . 

;=1 

Lemma 6.1.2. Let fl' h, g E K[x] be monic. If fl and h agree on their first 
k coefficients, then so do !I g and hg. 

Proof Exercise 1. o 



6.1 Polynomial-time algorithm 153 

Lemma 6.1.3. Let j, h be as in (6.1.2). hr(x) and j(x) agree on their first s 
coefficients. 

Proof h (x) and h (x) - fh agree on their first s coefficients. We write this as 
hex) "'s hex) - fJI. So by Lemma 6.1.2 also 

h2 "'s h(h - fJd "'s (h - fJ2)(h - fJd . 

Proceeding in this way, we finally arrive at 

r 
hr "'s n (h - fJ;) = j . o 

;=1 

Now let qk(X) be the initial segment of length k + I of h, i.e., 

() s s-I s-k qkX =X +Cs-IX + ... +Cs-kX , (6.1.3) 

for 0 ::'S k ::'S s. Obviously qo = x S, qs = qs-I = hand qk = qk-I + Cs_k Xs - k 

for 1 ::'S k ::'S s. 

Lemma 6.1.4. Let h, qk be as in (6.1.2) and (6.1.3). hr(x) and qkCx) agree on 
their first k + 1 coefficients. 

Proof h "'HI qk. The statement follows by r - 1 applications of Lemma 6.1.2. 
o 

Lemma 6.1.4 provides a recursive method for determining the coefficients 
of h. Suppose the first coefficients Cs-I, ... , Cs-k+ I of h are known and we 
want to determine Cs-k. 1 ::'S k ::'S s - 1. The (k + l)-st coefficient of qk is the 
coefficient of x rs - k, and by Lemmas 6.1.3 and 6.1.4 it is equal to ars-k. the 
(k + 1)-st coefficient of j. Furthermore, 

qkCx) = (qk-I (x) + Cs_kXs-kr 

r () s-k r-I () O( rS-2k) = qk-I X + r . Cs-kX . qk-I X + X . 

Thus, ars-k = dk + r . Cs-k. where dk is the coefficient of x rs - k in qk-I and 

r . Cs-k is the coefficient of x rs - k in r . Cs-k . x s- k . qr=:. Now we can compute 
the next coefficient in h as 

Cs-k = 
r 

Once the coefficients of h are determined, the coefficients of g have to satisfy 
a system of linear equations. If this system is solvable, we get a candidate for 



154 Decomposition 

a decomposition of f. Otherwise, f cannot be decomposed into polynomials 
of degree rand s, respectively. We still have to check the candidate, since the 
decomposition problem involves rs equations, but there are only r+s unknowns. 
We summarize this derivation in the following algorithm. 

Algorithm DECOMPOSE(in: f, s; out: [g, h] or "no decomposition"); 
[f(x) E K[x], sl deg(f); g, h E K[x] such that deg(h) = sand f = go h 
if such a decomposition exists, otherwise the message "no decomposition" is 
returned.] 
1. n:= deg(f); r := n/s; 
2. for i := 0 to r do q~ := xis; 

3. [determine candidate for h] 
for k := 1 to s - 1 do 

{dk := coeff(qk_!' n - k); 
Cs-k := ~(c;oeff(f, n - k) - dd; 
calculate c1-k for 0 :s j :s r; 
for j := 0 t9 r 40 . . 

q J := "J (!)ci . xi(s-k) . qJ-1 }. 
k L...l=O I s-k k-! ' 

h := qs-!; 
4. [determine candidate for g] . 

A := the (r+ I) x (r+ I)-matrix, where Ai) = coeff(hi , is) = coeff(qL!, is); 
a := (ao, as, ... , ars)T, where ai = coeff(f, i); 
if A . b = a is unsolvable 
then return("no decomposition") 
else {(bo, ... , br)T := solution of A . b = a; 

g := brxr + ... + bo}; 
5. [consistency check] 

iff=goh 
then return ([g , h]) 
else return("no decomposition"). 

Theorem 6.1.5. The number of arithmetic operations in DECOMPOSE is 
O(n2r), where n = deg(f) and r = n/s. 

Proof The calculation of h in step (3) takes O(n2r) operations. The matrix A 
in step (4) is triangular with all diagonal elements 1. So we can compute the 
candidate for g by O(r2) operations. 0 

In fact, as shown in Kozen and Landau (1989), using interpolation this 
complexity bound can be improved to n2, provided that K contains at least 
n + 1 elements. 

Example 6.1.1. Let us try to decompose the polynomial 



6.1 Polynomial-time algorithm 155 

in Q[x] into components g and h of degrees 2 and 3, respectively. So n = 6 
and r = 2, s = 3. 

In step (2) we determine 

Now we successively determine longer initial segments of h in step (3). 

k = 1: dl = coeff(q6. 5) = 0, 

C2 = 4 (coeff(j. 5) - dl) = 0 . 

q?(x) = 1, qf(x)=x3 , qf=x6 

k = 2: d2 = coeff(qf. 4) = 0 • 

Cl = 4 (coeff(j, 4) - d2) = 3 • 

qg(x) = I. qi(x) = x 3 + 3x, qi = x 6 + 6x4 + 9x2 . 

Our candidate for h therefore is h(x) = q2(X) = x 3 + 3x. 
The linear system for g in step (4) is trivial 

so the candidate for g is g(x) = b2X2 + b1x + bo = x2 + X - 5. 
Indeed, the consistency check in step (5) works, and we get the decomposi

tion 

f(x) = g(h(x)) • 

where 

g(x)=x2+x-5 and h(x)=x3 +3x. 

By inspection of the execution of DECOMPOSE on this example we notice, 
that the linear and quadratic coefficients of f have never been used. So we get 
the same candidates for hand g by starting from, e.g., the polynomial 

In this case, however, the consistency check does not work, and we find that j 
cannot be decomposed into components of degrees 2 and 3, respectively. 

Exercises 

1. Prove Lemma 6.1.2. 



156 Decomposition 

2. Decompose the rational polynomial f (x) = x 8 - 4x 7 + 6x 6 - 4x5 + 3x4 -

4x 3 + 3x 2 - X + 2 into components g, h of degrees 4 and 2, respectively. 

6.2 Bibliographic notes 

One of the first investigations of the decomposition problem can be found in 
Ritt (1922). In Barton and Zippel (1985) the decomposition problem is reduced 
to factorization of polynomials, but the resulting algorithm is exponential in 
the degree of the input f. More or less at the same time as by Kozen and 
Landau (1989) another polynomial-time algorithm for decomposition was pro
posed by Gutierrez et al. (1988). A very thorough analysis of the dependence 
on the particular ground field K can be found in von zur Gathen (1990a, b). 
Meanwhile, there are also decomposition algorithms for rational functions, e.g., 
Zippel (1991), Gutierrez and Recio (1992). Related topics are investigated in 
WeiB (1992). See also Alagar and Thanh (1985), Brackx et al. (1989), Lidl 
(1985), von zur Gathen et al. (1987). 



7 Linear algebra -
solving linear systems 

7.1 Bareiss's algorithm 

Systems of linear equations over a field K can be solved by various methods, 
e.g., by Gaussian elimination or Cramer's rule. But if we start with a system 
over the integers, we will immediately introduce rational numbers, whose arith
metic operations are clearly more costly than the corresponding operations on 
integers. So for the same reason as in the computation of gcds of polynomials or 
factorization of polynomials, we are interested in a method for solving systems 
of linear equations which avoids computation with rational numbers as much 
as possible. Such a method for fraction free Gaussian elimination is Bareiss's 
algorithm, as described in Bareiss (1968). 

Integer preserving Gaussian elimination 

Let us first remind ourselves of the process of Gaussian elimination for solving 
systems of linear equations. Let I be an integral domain, K = QU) its quotient 
field. We assume that we are given a system of linear equations with coefficient 
matrix A and right-hand side b over I, i.e., for some n E N, A = (aijh~i,j~n 

E I:, b = (b l , ... ,bn)T E In, and we have to solve 

A·x =b. (7.1.1) 

The solutions x = (XI, ..• , Xn) T are to be found over K. The system (7.1.1) 
will have a unique solution if and only if A is non-singular, i.e., det(A) "# 0. 
Let A = (A, b) denote the extended coefficient matrix of the system. We will 
also write ai,n+1 for bi, 1 .::: i .::: n. 

The integer preserving Gaussian elimination algorithm proceeds in n - I 
steps, determining matrices A = A[O], A[I], .•. , A[n-I], such that all these ex
tended matrices have the same solutions. In step (k) we start from a matrix of 
the form A[k-I], such that art-I] "# 0, and by elementary linear row operations 
we transform A[k-I] into a matrix A[k], where 



158 Linear algebra 

[k-I] 
all 0 0 lk-IJ 

a lk 
lk-IJ 

a ln 
lk-IJ 

al,n+l 

0 [k-l] 
a 22 

[k-l] 
a 2k 

[k-IJ 
a 2n 

[k-l] 
a 2.n+ 1 

0 0 
A[k-l] = 

0 0 [k-IJ 
ak-l,k-l 

[k-l) 
a k - l .k 

fk-IJ 
ak-l,n 

[k-l) 
ak-l,n+l 

0 0 0 
[k-l] 

akk 
[k-IJ 

ak,n 
[k-l] 

ak,n+l 

0 0 0 
[k-l] 

a nk 
[k-l) 

ann 
[k-l] 

an,n+l 

[k] 
all 0 0 

[k] 
a l .k+ l 

[k] 
a ln 

[k] 
al,n+l 

0 [kJ 
a 22 

[k] 
a 2.k+1 

[k] 
a 2n 

[k] 
a 2,n+1 

0 0 
A[k] = 0 0 [k] 

a kk 
[k] 

ak,k+l 
[kJ 

a k .n 
[kJ 

ak,n+l 

0 0 0 [kJ 
ak+l,k+l 

[kJ 
ak+l,n 

[k) 
ak+l,n+l 

0 0 0 
[k] 

a n.k+ l 
[k] 

ann 
[k] 

an,n+l 

We might have to do pivoting if al~l,k+l = O. In the transformation from 
A [k-l] to A [k] the row k remains unchanged. For all the other elements, i.e., for 
1 ::: j ::: n + 1, i E {I, ... , k - 1, k + 1, ... , n}, the transformation formula 

[k-IJ lk-IJ 
[k) . [k-l] [k-l] [k-l] [k-l] akk a kj 

aij .= akk . aij - a ik . a kj = [k-l] [k-l] 
a ik aij 

(7.l.2) 

is applied, i.e., we get the i -th row in A [k I by multiplying the i -th row in A [k-l] 

by alt- l ] and subtracting a;Z-IJ times the k-th row of A [k-I]. 

From the matrix A[n-l] the solution can be read off immediately, namely 
[n-l]/ [n-I] 

Xi = ai,n+l a ii . 

If the coefficient matrix A is singular we can still proceed as above, but the 
diagonalization process will stop after k < n - 1 steps. Then (7.1.1) is solvable 
if and only if 

~] ~] 
a k+ l .n+ l = ... = an,n+l = 0 . 

A basis for the solutions of the homogeneous system as well as a particular so
lution of the inhomogeneous system can now obviously be read off from A [k]. 

The problem with Gaussian elimination is that the elements of the interme-



7.1 Bareiss' s algorithm 159 

diate matrices grow considerably. For instance, if I = Z and B is a bound for 
the absolute values of the elements in ,4, then Bk+l is a bound for the absolute 
values of A [k]. Of course we could always divide the elements in row i by their 
gcd. However, this involves a considerable number of gcd computations. The 
method of Bareiss provides guaranteed factors without having to do additional 
operations. 

Bareiss's modification of Gaussian elimination 

By analyzing the minors and subdeterminants of the matrix ,4 it is possible to 
identify divisors of rows in the elimination process without actually having to 
compute gcds of the corresponding elements. This observation is the basic new 
idea in the method of Bareiss. We will only describe one of the various possible 
approaches discussed in Bareiss (1968). 

We start out with a slight change of notation. Let A, b, ,4, n be as above, 
i.e., we are interested in solving the system (7.1.1). Let 

[0] c 
aij = aij lor 1 ::: i ::: n, 1::: j ::: n + 1 

For k = I, ... , n - 1, k < i ::: n, k < j ::: n + 1, we define 

all al2 alk alj 
a2l a22 a2k a2j 

ark] := 
lJ 

akl ak2 akk akj 

ail ai2 aik aij 

i.e., af;] is the k-th minor of A bordered by a row and a column. For these 
sub determinants we have Sylvester's identity. 

Theorem 7.1.1 (Sylvester's identity). Let A be a matrix in I; such that the k-th 
minor of A is non-zero. Then 

lk] 
ak+l.k+ l 

Ik] 
ak+l .n 

[kJ [k] 
a n .k+l ann 

Proof Let All be the upper left submatrix of A with k rows and columns. By 
our assumption IAlll =1= O. For some matrices Al2, A21, A22 we can write A in 
block form as 

A = (All 
A21 

Al2) = (All 
A22 A2l 



160 Linear algebra 

So 

(7.1.3) 

and therefore 

(7.1.4) 

because the determinant on the right-hand side is of order n - k. Now if we let 
a, b be the vectors such that 

and apply (7.1.3) to each a}Jl, we obtain 

Since I A III = art- Il , (7.1.4) takes the form 

[kl 
an.k+1 

for k < i, j :::; n . 

lkl 
ak+l,n 

[kl 
ann 

D 

Corollary. Let A, k be as in the theorem. Let lEN such that 0 < I < k and 
the l-th minor of A is non-zero. Then for i, j (k < i, j :::; n) we have 

III 
al+l.l+1 

[11 
a l + l .k 

[11 
al+l,j 

[kl 
aij = 

( [l-Ilr-I III III III 
all ak.l+1 akk akj 

III III [11 
a i .I+ 1 a ik aij 

Dij 

. ([l-Il)k-I' d" fthd . D I.e., all IS a IVIsor 0 e etermmant ij. 

Proof aJJl is a determinant of size k + 1, so we can apply the theorem with 



7.1 Bareiss's algorithm 

minor of size I, leading to 

[k] ([I-ll)k-I 
aij . all = 

[I] 
al+l.l+1 

[I] 
ak.l+ I 

[I] 
ai,l+1 

[I] 
al+l,k 

[I] 
akk 

[I] 
a ik 

161 

[I] 
al+l,j 

[I] 
a kj 

o 

aV] 
IJ 

In particular, for I = k - 1 the statement in the corollary reduces to 

[k-I] [k-I] 
[k] a kk a kj 

aij = [k-2] [k-I] [k-I] 
ak-I,k-I a ik aij 

(7.1.5) 

If we let 
[-I] 1 aoo = , d [0] l-' 1 .. an aij = aij lor ::: I, ) ::: n , (7,1.6) 

then (7.1.5) is basically the same as the transformation formula (7.1.2), only that 
now we know a factor of the determinant and we divide it out. In fact, (7.1.5) also 
holds for 1 ::: j < k, i.e., we can diagonalize the coefficient matrix of the linear 
system in this way. As in Gaussian elimination we might have to do pivoting to 
keep the elements of the diagonal non-zero. Again we can consider the extended 
coefficient matrix A and proceed as in the Gaussian elimination process. 

Example 7.1.1. Let us demonstrate these ideas by solving the linear system 

The elimination according to the Gauss process (7.1.2) and the Bareiss process 
(7.1.5), (7.1.6) create the following transformations: 

Gauss 

3 -5 7 1 

2 -1 4 3 

5 5 6 

-2 0 3 7 

Bareiss 

3 -5 7 1 

2 -1 4 3 

5 5 6 

-2 0 3 7 

[-I] 1 aoo = 

[0] 
all = 3 



162 Linear algebra 

3 -5 7 3 -5 7 

A[l] : 0 7 -2 7 0 7 -2 7 

0 20 8 17 2 0 20 8 17 2 

o -10 23 23 5 o -10 23 23 5 

21 0 39 42 12 7 0 13 14 4 

A[2] : 0 7 -2 7 o 7 -2 7 

0 0 96 -21 -6 o 0 32 -7 -2 

0 0 141 231 45 o 0 47 77 15 

2016 0 0 4851 1386 32 0 0 77 22 

A13] : 0 672 0 630 84 o 32 0 30 4 

0 0 96 -21 -6 0 o 32 -7 -2 

0 0 o 25137 5166 0 0 o 399 82 

50676192 0 0 0 9779616 

A[4] : 0 16892064 0 0 -1143072 

0 0 2413152 0 -42336 

0 0 0 25137 5166 

399 0 0 0 77 

0 399 0 0 -27 

0 0 399 0 -7 

0 0 0 399 82 

So the solution is x = (1/399) . (77, -27, - 7, 82). 

Exercises 

1. Let A be a square matrix of size n over Z. Prove that the statement of 
Theorem 7.1.1 holds also if the k -th minor of A is zero. 

2. Apply Bareiss's algorithm to solve the system 

3. Why does (7.1.5) also hold for 1 :::: j :::: k? 

[1] 
a22 = 7 

12] a33 = 32 

[3] 
a44 = 399 

D 



7.2 Hankel matrices 163 

7.2 Hankel matrices 

In this section we consider special systems of linear equations, so-called Hankel 
(or Toeplitz) systems, which have many interesting applications, e.g., to Pade 
approximation or to problems in signal processing. However, we will only be 
concerned with the application of Hankel systems to problems in computer 
algebra. These Hankel or Toeplitz systems (and the corresponding matrices) are 
generated by linear recurrence relations, which can be exploited for speeding up 
the solution of the corresponding linear systems. In our description of Hankel 
matrices we will mainly follow the approach taken by Sendra and Llovet (1989; 
1992a, b), Sendra (1990a, b). The classical results on Hankel matrices can be 
found in books on linear algebra and theory of matrices such as Gantmacher 
(1977) or Heinig and Rost (1984). 

Throughout this section let 1 be a ufd and K = QU) its quotient field. 

Definition 7.2.1. Let D = (ddiEN be a sequence of elements of I. The infinite 
Hankel matrix generated by D is 

where 

hij = di+j-I for i, j EN. 

The finite Hankel matrix of order n (E N) generated by D, Hn (D), is the n x n 
principal submatrix of Hoo , i.e., 

dl d2 
d2 d3 

Hn(D) = d3 

A (finite or infinite) Hankel matrix is a (finite or infinite) Hankel matrix H 
generated by some sequence Dover I. 

Since only the first 2n - 1 elements of a sequence D are necessary for 
specifying a Hankel matrix of order n, we sometimes speak of the n x n Hankel 
matrix generated by a finite sequence (dl, ... , d2n-d. 

Definition 7.2.2. Let H be an infinite Hankel matrix, and Hm its m x m principal 
submatrix. If Hm is non-singular, then the m-thfundamental vector w(m,H) E K m 

of H is the solution of the linear system 



164 Linear algebra 

When H is clear from the context, we drop it from the index of w(m,H) and 
write simply w(m). 

H is called proper iff it has finite rank. 

In abuse of notation, we allow ourselves to write (x, a) for the vector (XI, 

••• , Xm, a) if x = (XI, ... , xm). In particular, we will use this notation in con
nection with fundamental vectors. 

Lemma 7.2.1. Let Hn be generated by (dl , ... , d2n-I), Hp (p < n) a regular 
principal submatrix of Hn, w(p) the p-th fundamental vector, and q such that 
p < q ~ n. Then the following statements are equivalent: 
a. (w(p) , -1). (d;, ... ,d;+p)T = 0 for p < i < q, and (w(p) , -1). (dq, ... , 

dq+p)T "# 0, 
b. det(H;) = 0 for p < i < q and det(Hq)"# O. 

Proof (a) ===> (b): Let (}j = (w(p), -1)· (dj , ... ,dj+p)T for 0 < j ~ 2q -

p - 1. Since w(p) is the fundamental vector of Hp , we have (}j = 0 for 1 ~ j 
~ p. So if p + 1 < q then the (p + l)-st row of Hq_1 is a linear combination 
of the first p rows of Hq_l, and therefore det(Hi ) = 0 for p < i < q. 

Suppose A I , .•. ,Aq E K such that 

(A I, ... , Aq) . Hq = (0, ... ,0) . 

Then for every i, 1 ~ i ~ q - p, we have 

So from (}I = 
Therefore, 

= (}q_1 = 0 and (}q "# 0 we get Ap+1 

(AI, ... , Ap) . Hp = (0, ... ,0) 

... = Aq = O. 

and this implies AI = ... = Ap = 0 because Hp is nonsingular. Thus, the rows 
of Hq are linearly independent, i.e., det(Hq) "# O. 

(b) ===> (a): This is left to the reader. 0 

Theorem 7.2.2. Let H = Hoo(D), where D = (di )iEN. Then the following are 
equivalent: 
a. H is proper of rank r (r > 0), 
b. there exist al, ... , ar E K such that dj = aldj - r + ... + ardj-I for j > r, 

and r is the smallest integer with this property, 
c. det(Hr)"# 0 and det(Hi ) = 0 for i > r. 



7.2 Hankel matrices 165 

Proof (a) ===> (b): Let rank(H) = r < 00. Then for some integer p, 0 < p :::: r, 
the first p columns of H are linearly independent over K but the (p + 1 )-st 
column depends linearly on the previous ones. That is, for some aI, ... , ap E K 
we have 

or, in other words, the linear recurrence relation 

p 

dj = Laidj-p-I+i for j > p 
i=1 

holds. From this and the Hankel structure of H one deduces that every column 
of H is a linear combination of the first p columns. So every submatrix of order 
greater than p is singular and hence p must be equal to the rank of H. 

(b) ===> (c): Every minor of order greater than r must vanish. In particular, 
det(Hi) = 0 for i > r. On the other hand, let p :::: r be the greatest integer such 
that det(Hp) =f. 0, and let w(p) be the p-th fundamental vector of H. Then, by 
Lemma 7.2.1, we must have (w(p), -1) . (di , ... ,di+p)T = 0 for i > O. But r 
is the smallest integer with this property, so p = r and therefore det( Hr) =f. O. 

(c) ===> (a): Let w(r) be the r-th fundamental vector. Then, because of 
det(Hi) = 0 for i > r and Lemma 7.2.1 we have (w(r), -1) . (di , ... , di+r)T 
= 0 for i > O. Hence, every column of H is a linear combination of the first r 
columns. Furthermore, since det( Hr) =f. 0, H is proper of rank r. 0 

Definition 7.2.3. Let H be an infinite Hankel matrix. If rank(H) = r < 00, then 
w(r.H) = w(H) is called the fundamental vector of H. 

If the infinite Hankel matrix H is proper of rank r, the fundamental vector 
w(H) is the vector (a I, ... , ar ) of Theorem 7.2.2 (b). On the other hand, by 
Theorem 7.2.2 (b) we know that all the entries dj of the generating sequence V 
= (dj)jEN are determined by the fundamental vector w(H) and the first r entries. 
So all the information on H is already contained in its r x (r + 1) principal 
submatrix and also in Hr+ I. 

Theorem 7.2.3. Let V = (d l , ••• , d2n -]) be a finite sequence over I. Let Hn 
be the finite Hankel matrix of order n generated by V. 
a. The sequence of fundamental vectors of Hn , its determinant and its rank can 

be computed in O(n2) arithmetic operations in I. 
b. Let I = Z[XI, ... ,xr ], D the maximal degree in any variable of the di's 

and L the maximum norm of the di's. The complexity of computing the 
determinant and the rank of Hn is O((nr+3 Dr +nr+1 Dr+I)(logn)(log2 L». 



166 Linear algebra 

Proof See Semira (l990a) and Sendra and Llovet (l992b). Modular methods 
are used in the proof of (b). D 

Solutions of Hankel linear systems and determination of signatures can be 
achieved with algorithms of similar complexity. 

7.3 Application of Hankel matrices to polynomial problems 

Proper Hankel matrices may be put in a 1-1 correspondence with proper rational 
functions. This relation provides the basis for the application to polynomial 
problems. Again we assume that I is a ufd and K its quotient field. 

Theorem 7.3.1. Let H be the infinite Hankel matrix generated by 1) = (dj)iEN, 
di E K. Then H is proper if and only if there exists a rational function R (x) = 
g(x)lf(x) in K(x), f, g relatively prime, deg(g) < deg(J) (i.e., R(x) is proper), 
which has the power series expansion 

R(x) = ",,£dix-i . 
iEN 

Furthermore, if H is proper then rank(H) = deg(J). 

Proof If rank(H) = r < 00, by Theorem 7.2.2 there exist ai, ... , ar E K such 
that dj = ""£~=I aidj-r-I+i for j > r. Then the polynomials defining R = glf 
are 

f() r r-I 
X = X - arx - ... - al , 

g(x) = d1xr- 1 + (d2 - dlar)Xr- 2 + ... + (dr - dr-Iar - ... - dla2) . 

Conversely, let R = glf, deg(J) = n, f = fnxn + ... + fo. So 

By equating coefficients of like powers of x on both sides of this equation we 
obtain 

( fo fn-I) 
dj = - fn dj - n + ... + Tn dj - I for j > n . 

Furthermore, if one assumes that there exist ai, ... ,as E K, s < n, that satisfy 
dj = ""£:=1 aidj-s-1+i for j > s, then one has 

(X S _ asxs- I _ ... _ al) g(x) 
f(x) 

= dlxs- I + (d2 - asdl )xs- 2 + ... + (ds - asds-I - ... - a2dl) . 



7.3 Application of Hankel matrices 167 

So, since g and f are relatively prime, f(x) must divide XS -asxs- I - ... -aI, 
which is impossible because s < n. Thus, by Theorem 7.2.2, rank(H) = deg(j). 

D 

Corollary. If R(x) = g(x)/f(x), gcd(f, g) = 1, deg(g) < deg(j), is a proper 
rational function and f (x) = frxr + ... + fa, then the Hankel matrix H as
sociated with R is defined by (di )iEN, where R(x) = LiEN dix-i , and the 
fundamental vector w(H) of H is (- folfr,"" - fr-Ilfr). Conversely, if the 
proper Hankel matrix H is of rank r and generated by (di)iEN, then R(x) can 
be expressed as 

where (aI, ... , ar) is the fundamental vector of H. 
So there exists a bijection 

between the set Rp of proper rational functions over K and the set 'Hp of proper 
Hankel matrices over K. 

Example 7.3.1. Let V = (di ) = (1,1,1,6,21, ... ) generate a proper Hankel 
matrix H of rank 3 over Z with fundamental vector w = (aI, a2, a3) = (1,2,3), 
I.e., 

The corresponding rational function is 

R(x) = g(x) 
f(x) 

1 I) 1 6 . 
6 21 

dlX 2 + (d2 - dla3)X + (d3 - d2a3 - dla2) 

x 3 - a3x2 - a2X - al 

x 2 - 2x - 4 
= ------c,..----

x 3 - 3x2 - 2x - 1 

On the other hand, starting from R(x) and expanding it we get 

i.e., 

g(x) = (Ldix- i ) . f(x) , 
lEN 

(x 2 - 2x - 4) = (x- I + x-2 + x-3 + 6x-4 + 21x-5 + ... ) . 
. (x 3 - 3x2 - 2x - 1) , 



168 Linear algebra 

and the fundamental vector 

(aI, a2, a3) = (-10113, - 11113, - hlh) = (1,2,3) . 

In fact, 

x S • g(x) = (x4 + x 3 + x 2 + 6x + 21) . I(x) + (76x2 + 48x + 21) , 

so we get the generating sequence of H3 as the coefficients of this quotient. 

Definition 7.2.3. If Hand R are as in Theorem 7.3.1, then R is called the 
rational function associated with H, and conversely H is called the proper 
Hankel matrix associated with R. 

The bijection cp: Rp ---+ 1tp is the basis for various applications of Hankel 
matrix computations to solving problems for polynomials. 

If I, g E K[x] and no restriction on degrees is imposed on I and g, we can 
still associate a proper Hankel matrix H with gil by letting H be generated by 
(di)iEN, where 

g(x) = tbixi + ,£dix-i , 
I(x) i=O iEN 

i.e., by the asymptotic part of the expansion, or by the expansion of rem(g, f) II. 
As in Example 7.3.1 we can compute the generating sequence (dl, ... , d2n-l) 

for the Hankel matrix associated with the proper rational function gil as the 
coefficients of quot(x2n- 1 • g, f), where n = deg(J). 

Computation of resultants 

Theorem 7.3.2. a. Let I, g E K[x], deg(g) = m ~ deg(J) = n, 0 < n, and let 
In = le(J). Then 

resAI, g) = (-1) 11(11;3) +m(n+l) g+m det(Hn) , 

where Hn is the n x n principal submatrix of cp(g(x)II(x)). 
b. Let I, g E /[x] and m, n, In as above. Then 

where H; is the n x n principal submatrix of cp(J;:+mg(x)II(x)). 

Proof a. Let I(x) = In fl7=1 (x - Q!i), g(x) = gm flj=1 (x - (3j), and C the 

companion matrix of i = (1/le(J))I(x), i.e. C = (cij) E K nxn with Ci+li = 1 
for 1 ~ i < n, Cin = -ai-I for 1 ~ i ~ n, and all other entries are 0, where 



7.3 Application of Hankel matrices 

j = xn + an_IXn- 1 + ... + ao. Then, by Exercise 1, we have 

II(II+J) 111 II 

= (_I)-2-+nl11+l11j,-;l1g:~TI TI(ai -{3j) 
j=1 i=1 

11(11+3) 

= (_1)-2-+ 11111+111 f,-;n-mresx(j, g) . 

b. This extension is not difficult and is left to the reader. 

So we get the following algorithm for computing resultants. 

Algorithm RES_R(in: j, g; out: r); 
[j, g E /[x], deg(g) S deg(f), 0 < deg(j); r = resx(j, g).] 
1. n:= deg(j); m := deg(g); 
2. H::= n x n principal submatrix of rp(lc(j)I1+m g/ f); 
3. D:= det(H:); 
4. if D = 0 

then r := 0 
11(11+3) (I) 1 else r := (-1) -----y-+m 11+ le(f)( -11)(11+1/1) D; 

return. 

169 

o 

From the complexity bounds in the previous section we immediately get a 
complexity bound for RES_H. 

Theorem 7.3.3. The number of arithmetic operations in RES_H is dominated 
by n2, where n = deg(f). 

Computation of greatest common divisors 

Definition 7.3.1. Let j, g E /[x], deg(g) S deg(f) = n, j =j:. O. Let H 
rp(g/f), and let 0 = no < nl < ... < nl(S n) be the indices of principal 
submatrices Hni of H such that det(HI1 ) =j:. 0 for 1 SiS t. Let the ni-th 
fundamental vector be w(ni) = (ai I, ... , ai l1i) for lSi Stand let 

() 1 d () 11- 11--1 Pno X = an Pni X = X I - ai niX I - ••• - ai 1 for lSi St. 

The polynomial Hankel sequence of j and g is the sequence of polynomials 
Pno(x), ... , Pnt(x). 

Theorem 7.3.4. Let j, g E K[x], m = deg(g) S deg(j) = n, 0 < n. Let H = 
rp(g/f) and let H be generated by the sequence (di)iEN· Let Pno(x), ... , Pnt(x) 
be the polynomial Hankel sequence of j and g, Pl1 t-1 (x) = bl1t_lxnt-1 + ... +bo, 
a = le(j)· (bo, ... , bnt_I)· (dnt , ... , dl1t+nt_I)T, do = le(g)/lc(j) if m = nand 



170 

do = 0 otherwise. Then 

f(x) = le(f) . Pnt (x) . gcd(f, g) 

(where gcd(f, g) is assumed to be monic) and the polynomials 

I 
v(x) = - Pnt-l (x), 

a 

satisfy the Bezout equality 

1 nt-l j .. 
u(x) = -- "Lbj "LdixJ- 1 

a j=O i=O 

u(x)f(x) + v(x)g(x) = gcd(f, g) . 

Linear algebra 

The proof of this theorem can be found in Sendra and Llovet (1992a). So 
we get the following algorithm for solving the extended gcd problem. 

Algorithm EGCD_H(in: f, g; out: h, u, v); 
[j, g E K[x], deg(g) ~ deg(f), 0 < deg(f); 
h = gcd(f, g), u, v E K[x], such that h = u . f + v . g.] 
1. n:= deg(f); m := deg(g); 
2. Hn := n x n principal submatrix of q;(g/f) generated by (d;)iEN; 
3. determine the polynomial Hankel sequence Pno' ... , Pnt of f and g from Hn; 
4. a:= le(f) . (bo, ... , bnt_1 ) • (dnt , ... , dnt+nt_l)T, 

where Pnt-l (x) = bnt_lxnt-l + ... + bo; 
5. v:= ~ Pnt-l (x); . 

u '= _1 "~t-l b. "J d'x j - i . . a ~J=O J ~,=O I , 

h := quot(f, le(f) . Pnt); 
return. 

Theorem 7.3.5. The number of arithmetic operations in EGCDJI is dominated 
by n2, where n = deg(f). 

Exercises 

1. Let f, g E [[x], deg(g) .:s deg(f) = n, 0 < n. Let Hn and Mn be the n x n 
principal submatrices of rp(g/f) and rp(l/f), respectively, and let C be the 
companion matrix of j(x) = -1 I-f(x). Then 

C(f) 

Hn = Mn . g(C) . 

2. Show that the sequence (d l , ... , d2n - l ) generating the n x n principal 
submatrix of rp(g/f) in the corollary to Theorem 7.3.1 can be computed by 
dividing a properly scaled g by f, i.e., 

quot(X2n- 1 . g, f) = d 1x 2n - 2 + ... + d2n-l . 



7.3 Application of Hankel matrices 

3. Compute the finite Hankel matrix and the fundamental vector associated 
with 

x 2 + 3x + 2 
R(x) = 3 2 . 

X -x -x-2 

7.4 Bibliographic notes 

171 

An efficient algorithm for solving sparse linear systems over a finite field was 
designed by D. Wiedemann (1986). 

In the computation of polynomial gcd by Hankel matrices one can use ideas 
similar to subresultants for bounding the coefficients (Gemignani 1994). Several 
variants of resultants can also be computed by Hankel methods (Hong and 
Sendra 1996). Moreover, Hankel matrices can be employed for computing Pade 
approximations (Brent et al. 1980), determining the number of real roots of 
polynomials (Gantmacher 1977, Heinig and Rost 1984, Llovet et al. 1992) and 
for factorization of polynomials. Issues of parallel computation are considered 
in Bini and Pan (1993). 



8 The method 
of Grabner bases 

8.1 Reduction relations 

Many of the properties that are important for Grabner bases can be developed in 
the frame of binary relations on arbitrary sets, so-called reduction relations (Huet 
1980). The theory of reduction relations forms a common basis for the theory 
of Grabner bases, word problems in finitely presented groups, term rewriting 
systems, and lambda calculus. 

Definition B.1.1. Let M be a set and ---+ a binary relation on M, i.e., ---+S; 
M x M. We call ---+ a reduction relation on M. Instead of (a, b) E---+ we 
usually write a ---+ b and say that a reduces to b. 

Given reduction relations ---+ and ---+' on M, we define operations on 
M x M for constructing new reduction relations. 

---+ 0 ---+' (or just ---+ ---+ '), the composition of ---+ and ---+', is the 
reduction relation defined as a ---+ ---+' b iff there exists acE M such that 
a ---+ c ---+' b; 
---+ -I (or just +--), the inverse relation of ---+, is the reduction relation 
defined as a +-- b iff b ---+ a; 
---+sym (or just +---+), the symmetric closure of ---+, is the reduction relation 
defined as ---+ U +--, i.e., a +---+ b iff a ---+ b or a +-- b; 

- ---+i, the i-th power of ---+, is the reduction relation defined inductively 
for i E No as 
---+0 := id (identity relation on M), i.e., a ---+0 b iff a = b, and 
---+i := ---+ ---+i-I for i ~ l. 
So a ---+i b if and only if there exist co, ... ,Ci such that a = Co ---+ 
CI ---+ ... ---+ Ci = b. In this case we say that a reduces to b in i steps; 
---+ + := U~I ---+i, the transitive closure of ---+; 

- ---+ * := U~o ---+i, the reflexive-transitive closure of ---+; 
+---+ * is the reflexive-transitive-symmetric closure of ---+. 

In the sequel we will always assume that the set M is recursively enumerable 
and the reduction relation ---+ is recursive, i.e., for given x, y E M we can 
decide whether x ---+ y. 

+---+* is an equivalence relation on M and MI+--->' is the set of equivalence 
classes modulo +---+ *. One of the main problems in connection with reduction 
relations is to decide +---+*, i.e., to determine for a, bE M whether a +---+* b; 
or, in other words, whether a and b belong to the same equivalence class. We 
call this problem the equivalence problem for the reduction relation ---+. 



8.1 Reduction relations 173 

Example 8.1.1. a. One well known version of the equivalence problem is the 
word problem for groups. A free presentation of a group is a set X of generators 
together with a set R of words (strings) in the generators, called relators. Words 
are formed by concatenating symbols x or x-I for x E X. Such a presentation is 
usually written as (XIR) and it denotes the group F(X) modulo (R), F(X)/(R), 
where F(X) is the free group generated by X and (R) is the smallest normal 
subgroup of F(X) which contains R. In more concrete terms, we think of (XIR) 
as the group obtained from F(X) by forcing all words in R to be equal to the 
identity together with all consequences of these equations. 

For example, consider the group 

The first relator tells us that we can replace am by 1 if m is even and by a 
if m is odd. Similarly for powers of b. The third relator tells us that a and b 
commute so that we can collect all powers of a and then all powers of b in a 
word. Thus, every element of G is equal to one of 

1,a,b,ab 

and it can be shown that these are distinct. 
The word problem for freely presented groups is: 

given: a presentation (XIR) and words u, v E F(X); 
? 

decide: u == v in (XIR). 
Actually this definition looks as though the problem were about the presen

tation of the group rather than the group itself. But, in fact, if we insist that 
the presentations considered must be effectively given, i.e., both X and R are 
recursively enumerable, then the decidability is independent of the presentation. 
It is not very hard to show that the problem is undecidable in general. It is much 
harder to show that the same is true even if we consider only finite presentations, 
i.e., both X and R are finite sets. 

b. Another example is from polynomial ideal theory and it will lead us to 
the introduction of Grobner bases. Consider the polynomial ring K[XI, ... , xn], 
K a field, and let 1 = (p I, ... , Pm) be the ideal generated by PI, ... ,Pm in 
K[XI, ... , xn]. The main problem in polynomial ideal theory according to van 
der Waerden is: 
given: generators PI,.'" Pm for an ideal I in K[XI, ... , xn], and polynomials 
f, g E K[XI, ... , xn], 
decide: whether f == g (mod I), or equivalently, whether f and g represent 
the same element of the factor ring K [XI, ... , xn ]/ [. 

Later we will introduce a reduction relation ----+ such that +------+ * = == [, so again 
the problem is to decide the equivalence problem of a reduction relation. 

Let us introduce some more useful notations for abbreviating our arguments 
about reduction relations. 



174 Grobner bases 

Definition 8.1.2. 
- x ---+ means x is reducible, i.e., x ---+ y for some y; 

~ -----> means x is irreducible or in normal form w.r.t. ---+. We omit mention
ing the reduction relation if it is clear from the context; 
x {, y means that x and y have a common successor, i.e., x ---+ Z +-- Y 
for some z; 
x t y means that x and y have a common predecessor, i.e., x +-- Z ---+ Y 
for some z; 
x is a ---+ -normal form of y iff y ---+ * ~. 

In the sequel we will always assume that we can decide whether x E M is 
reducible and if so compute a y such that x ---+ y. Based on these assumptions 
about the decidability of the reduction relation we will establish that the equiv
alence problem for ---+ can be decided if ---+ has two basic properties, namely 
the Church-Rosser property and the termination property. 

Definition 8.1.3. a. ---+ is Noetherian or has the termination property iff every 
reduction sequence terminates, i.e., there is no infinite sequence Xl, x2, ... in M 
such that Xl ---+ X2 ---+ .... 

b. ---+ is Church-Rosser or has the Church-Rosser property iff a ~ * b 
implies a {,* b. 

Whenever a set M is equipped with a Noetherian relation ---+ we can apply 
the principle of Noetherian induction for proving that a predicate P holds for 
all x EM: 

if for all x E M 

[for all y E M: (x ---+ y) ===} P(y)] ===} P(x) 

then 

for all x E M: P(x) . 

A correctness proof of this principle can be found in (Cohn 1974). 

Theorem 8.1.1. Let ---+ be Noetherian and Church-Rosser. Then the equiva
lence problem for ---+ is decidable. 

Proof Let x, y E M. Let X, y be normal forms of x, y, respectively (by Noethe
rianity every sequence of reductions leads to a normal form after finitely many 
steps). Obviously x ~* y if and only if x ~* y. By the Church-Rosser 
property x ~* y if and only if x {,* y. Since x and yare irreducible, x {,* y 
if and only if x = y. 

Summarizing we have x ~ * y if and only if x = y. 0 

Theorem 8.1.1 cannot be reversed, i.e., the equivalence problem for ---+ 
could be decidable although ---+ is not Noetherian or ---+ is not Church-Rosser. 



8.1 Reduction relations 175 

Example 8.1.2. a. Let M = Nand ---+ = {(n, n + 1) In EN}. Obviously the 
equivalence problem for ---+ is decidable, but ---+ is not Noetherian. 

b. Let M = {a, b, c} and ---+= {(a, b), (a, c)}. So 

a 
e 

/' \. 
be ec 

Obviously the equivalence problem for ---+ is decidable, but ---+ is not Church
Rosser. 

So if ---+ is Noetherian and Church-Rosser then we have a canonical sim
plifier for M/+---+*, i.e., a function which for every equivalence class computes 
a unique representative in that equivalence class. For x E M any normal form 
of x can be taken as the simplified form of x, since all these normal forms are 
equal. 

Example 8.1.3. a. Let H be the commutative semigroup generated by a, b, c, 
I, s modulo the relations 

as = c2 s, bs = cs, s = I . (E) 

Consider the reduction relation ---+ given by 

s ---+ I, cl ---+ bl, b2 I ---+ al 

and if u ---+ v then ut ---+ vt for all words u, v, t. 
---+ is Church-Rosser and Noetherian and +---+* = =(E). SO, for example, 

we can discover that a3bc/3 =(E) a2b41s2 by computing the normal forms of 
both words, which tum out to be equal. 

b. Let I be the ideal in Q[x, y] generated by 

Let ---+ be defined on Q[x, y] in such a way that every occurrence of x 3 or 
x 2y can be replaced by x 2• Then ---+ is Church-Rosser and Noetherian. Thus, 
we can decide whether I == g (mod l) for arbitrary I, g E Q[x, y], i.e., we 
can compute in Q[x, y]/ I. 

Checking whether the Church-Rosser property and the Noetherian property 
are satisfied for a given reduction relation is not an easy task. Fortunately, in 
the situation of polynomial ideals Noetherianity is always satisfied as we will 
see later. Our goal now is to reduce the problem of checking the Church-Rosser 
property to checking simpler properties. 



176 Grobner bases 

Definition B.1.4. a. ----+ is confluent iff x t* y implies x .J..* y, or graphically 
every diamond of the following form can be completed: 

b. ----+ is locally confluent iff x t y implies x .J..* y, or graphically every 
diamond of the following form can be completed: 

u 

)/" ""-
x y 

~ ~ 
v 

Theorem 8.1.2. a. ----+ is Church-Rosser if and only if ----+ is confluent. 
b. (Newman lemma) Let ----+ be Noetherian. Then ----+ is confluent if and 

only if ----+ is locally confluent. 

Proof a. If ----+ is Church-Rosser then it is obviously confluent. So let us 
assume that ----+ is confluent. Suppose that x +-----+* y in n steps, i.e., x +-----+n y. 
We use induction on n. The case n = 0 is immediate. For n > 0 there are two 
possible situations: 

x 
and 

x 

for some z. In the first case by the induction hypothesis there is a u such that 

x 

and in the second case by the induction hypothesis and by confluence there are 
u, v such that 

z +-----+ n -\ y 
~ indo ~ 

x conti. U 

~ ~ 
v 

In either case x .J..* y. 



8.1 Reduction relations 177 

b. Confluence obviously implies local confluence. So assume that ---+ is 
locally confluent. We use Noetherian induction on the Noetherian ordering ---+. 
The induction hypothesis is 

"for all z with Zo ---+ z and for all x', y' with x' +--- * z ---+ * y' 
we have x' ..1.-* y'." 

Now assume that x +---* zo ---+* y. The cases x = zo, y = Zo are obvious. So 
consider 

x+---* XI +--- Zo ---+ YI ---+ * Y . 

By local confluence and the induction hypothesis there are u, v, W such that 

Zo 
/' \. 

XI loc.contl. YI 

*/' \.* */' 
X ind.hyp. 

>. -< 
v 

u 
ind.hyp. 

-< 
W 

D 

If we drop the requirement of Noetherianity in Theorem 8.1.2 (b) then the 
statement does not hold any more, as can be seen from the counterexample 

Definition 8.1.5. Let ---+ be a reduction relation on the set M and > a par
tial ordering on M. Let x, y, Z E M. X and yare connected (w.r.t. ---+) below 
(w.r.t. » Z iff there are WI, •.• , Wn E M such that X = WI ~ ... ~ Wn 

= y and Wi < Z for all 1 :s: i :s: n. We use the notation x ~«z) y. 

Theorem 8.1.3 (Refined Newman lemma). Let ---+ be a reduction relation on 
M and> a partial Noetherian ordering on M such that ---+ ~ >. Then ---+ is 
confluent if and only if for all x, y, z in M: 

x+---z---+y implies 



178 Grobner bases 

Proof Confluence obviously implies connectedness. So now let us assume that 
the connectedness property holds. We use Noetherian induction on > with the 
induction hypothesis 

for all x, y, z: if z < Z and x+---* z ---+ * y then x -J..* y . (IH 1) 

Now consider the situation x+---* Z ---+ * y. If x = z or y = z then we are 
done. Otherwise we have 

X+---* XI +--- Z ---+ YI ---+ * Y . 

By the assumption of connectedness there are U I, ... , Un < Z such that 

XI = UI ~ ... ~ Un = YI . 

We use induction on n to show that for all n and all UI, .•. , Un E M: 

if UI ~ ••. ~ Un and Ui < Z for all 1 SiS n , 

then UI -J..* Un . 

The case n = 1 is clear. So we formulate induction hypothesis 2: 

(8.1.1) holds for some fixed n . 

(8.1.1) 

(IH 2) 

For the induction step let U I, ... , Un+ I E M such that Ui < z for 1 SiS n + 1 
and UI ~ ... ~ Un+l. We distinguish two cases in which the existence of 
a common successor v to UI and Un+1 can be shown by the following diagrams: 

Un+1 

UI ~ ... ~ Un UI ~ ... ~ Un 

'\. 
~ (IH2) ~ ~ (IH 2) ~ U n+! 

(IH 1) 

v vI ~ 
~ 

V 

This proves (8.1.1). The proof of the theorem can now be completed by the 
diagram 



8.2 Polynomial reduction 

Z 

/ ~ 

Xl = UI ~ ~ Un = YI 

-l-* ~ (8.1.1) 4 -l-* 

-l-* ~ 4 -l-* 

-l-* (IH 1) WI (IH 1) -l-* 

-l-* -l-* 
X 4 Y 

~ 4 4 
V 4 
~ 4 
~ 4 

W 

Exercises 

1. If the reduction relation ---+ on the set M is Noetherian, does that mean 
that R(x) = {y I x ---+ y} is finite for every x? 

2. Give another example of a locally confluent reduction relation which is not 
confluent. 

8.2 Polynomial reduction and Grobner bases 

179 

D 

The theory of Grobner bases was developed by B. Buchberger (1965, 1970, 
1985b). Grobner bases are very special and useful bases for polynomial ide
als. The Buchberger algorithm for constructing Grobner bases is at the same 
time a generalization of Euclid's gcd algorithm and of Gauss's triangularization 
algorithm for linear systems. 

Let R be a commutative ring with 1 and R[X] = R[XI, ... , xn] the polyno
mial ring in n indeterminates over R. If F is any subset of R[X] we write (F) 
or ideal(F) for the ideal generated by Fin R[X]. By [X] we denote the monoid 
( d 1 · l' . ) f d i I in . 1 0 0 . un er mu tIp lcatlOn a power pro ucts XI .•• Xn III XI, .•• , X n · = XI ••. Xn IS 

the unit element in the monoid [X]. lcm(s, t) denotes the least common multiple 
of the power products s, t. 

Commutative rings with 1 in which the basis condition holds, i.e., in which 
every ideal has a finite basis, are usually called Noetherian rings. This notation 
is motivated by the following lemma. 



180 Grobner bases 

Lemma 8.2.1. In a Noetherian ring there are no infinitely ascending chains of 
ideals. 

Theorem 8.2.2 (Hilbert's basis theorem). If R is a Noetherian ring then also 
the univariate polynomial ring R[x] is Noetherian. 

Proof See van der Waerden (1970: chap. 15). D 

Hilbert's basis theorem implies that the multivariate polynomial ring K[X] 
is Noetherian, if K is a field. So every ideal I in K[X] has a finite basis, and 
if we are able to effectively compute with finite bases then we are dealing with 
all the ideals in K [Xl 

Before we can define the reduction relation on the polynomial ring, we 
have to introduce an ordering of the power products with respect to which the 
reduction relation should be decreasing. 

Definition 8.2.1. Let < be an ordering on [X] that is compatible with the monoid 
structure, i.e., 
a. I =x? .. x~ < t for all t E [X]\ {I}, and 
b. s < t ===} su < tu for all s, t, u E [X]. 
We call such an ordering < on [X] an admissible ordering. 

Example 8.2.1. We give some examples of frequently used admissible orderings 
on [X]. 

a. The lexicographic ordering with xJT(l) > X JT (2) > ... > xJT(n), rr a permu-
. f {I } i I ill il ill 'ff h . k {I } tatIOn 0 , ... , n : Xl .. . Xn <lex.JT Xl .. ,Xn I t ere eXIsts a E , ... , n 

such that for all I < k iJT(1) = jJT(/) and iJT(k) < jJT(k)' 
If rr = id, we get the usual lexicographic ordering <lex. 

b. The graduated lexicographic ordering W.r.t. the permutation rr and the 
weight function w: {I, ... , n} -+ JR.+: for s = X;I ... X~I, t = X{I ... x~1l we 
define s <glex,JT,w t iff 

(t w(k)ik < t w(k)A) or 
k=l k=l 

(
nil ) L w(k)ik = L w(k)A and s <lex,JT t . 

k=l k=l 

We get the usual graduated lexicographic ordering <glex by setting rr = id and 
w = Iconst. 

c. The graduated reverse lexicographic ordering: we define s <grlex tiff 

deg(s) < deg(t) or 

(deg(s) = deg(t) and t <lex,JT S; where rr(j) = n - j + 1) . 



8.2 Polynomial reduction 181 

d. The product ordering W.r.t. i E {I, ... , n -I} and the admissible orderings 
<) on X) = [x), ... , xil and <2 on X2 = [Xi+), ... , XII]: for s = S)S2, t = t)t2, 
where s), t) EX), s2, t2 E X2, we define 5 <prod.i.<).<2 tiff 

A complete classification of admissible orderings is given in Robbiano (1985, 
1986). 

Lemma 8.2.3. Let < be an admissible ordering on [X]. 
a. If s, t E [X] and s divides t then s ::: t. 
b. < (or actually» is Noetherian, and consequently every subset of [X] has 

a smallest element. 

Proof a. For some u we have su = t. By the admissibility of <, s = Is ::: 
us = t. 

b. Let 5) > S2 > ... be a sequence of decreasing elements in [X]. Let K be 
any field. So the sequence of ideals (Sl) c (51, S2) C ... in K[X] is increasing. 
But K[X] is Noetherian, thus the sequence has to be finite. 0 

Throughout this chapter let R be a commutative ring with I, K a field, X a 
set of variables, and < an admissible ordering on [X]. 

Definition 8.2.2. Let 5 be a power product in [X], f a non-zero polynomial in 
R[X], F a subset of R[X]. 

By coeff(f, s) we denote the coefficient of s in f. 
lpp(f) := max<{t E [X] I coeff(f, t) =I=- O} (leading power product of j), 
le(f) := coeff(f, lpp(f» (leading coefficient of j), 
in(j) := le(f)lpp(j) (initial of j), 
red(f) := f - in (f) (reductum of j), 
Ipp(F) := (lpp(f) I f E F \ (O}}, 
le(F) := (le(f) I f E F \ (O}}, 
in(F) := (in(f) I f E F \ (O}}, 
red(F) := (red(f) I f E F \ (O}}. 

If I is an ideal in R[X], then leU) U {O} is an ideal in R. However, in(F) 
U {O} in general is not an ideal in R[X]. 

Definition 8.2.3. Any admissible ordering < on [X] induces a partial ordering 
« on R[X], the induced ordering, in the following way: 
f «g iff f = 0 and g =I=- 0 or 

f =I=- 0, g =I=- 0 and lpp(f) < lpp(g) or 
f =I=- 0, g =I=- 0, lpp(f) = lpp(g) and red(f) « red(g). 

Lemma 8.2.4. « (or actually») is a Noetherian partial ordering on R[X]. 



182 Grobner bases 

One of the central notions of the theory of Grabner bases is the concept of 
polynomial reduction. 

Definition 8.2.4. Let f, g, h E K[X], F ~ K[X]. We say that g reduces to h 
w. r. t. f (g --+ f h) iff there are power products s, t E [X] such that s has a 
non-vanishing coefficient c in g (coeff(g, s) = c '# 0), s = lpp(f) . t, and 

c 
h=g---·t·f· 

le(f) 

If we want to indicate which power product and coefficient are used in the 
reduction, we write 

g --+ f,b,t h, 
c 

where b = --. 
le(f) 

We say that g reduces to h w.r.t. F (g --+ F h) iff there is f E F such that 
g --+f h. 

Example 8.2.2. Let F = { ... , f = XIX3 +XIX2 - 2X3, ... } in Q[XI, X2, X3], and 
g = x~ + 2XIX2X3 + 2X2 - 1. Let < be the graduated lexicographic ordering 
with XI < X2 < X3. 

Then g --+ F x~ - 2xlxi + 4X2X3 + 2X2 - I =: h, and in fact g --+ f,2,X2 h. 

As an immediate consequence of this definition we get that the reduction 
relation --+ is (nearly) compatible with the operations in the polynomial ring. 
Moreover, the reflexive-transitive-symmetric closure of the reduction relation 
--+ F is equal to the congruence modulo the ideal generated by F. The proofs 
are not difficult and are left to the reader. 

Lemma 8.2.5. Let a E K*, s E [X], F ~ K[X], gl, g2, hE K[X]. 
a. --+F~», 

b. --+ F is Noetherian, 
c. if gl --+ F g2 then a . s . gl --+ Fa· s . g2, 
d. if gl --+ F g2 then gl + h ..(..} g2 + h. 

Theorem 8.2.6. Let F ~ K[X]. The ideal congruence modulo (F) equals the 
reflexive-transitive-symmetric closure of --+ F, i.e., =(F) = +------+}. 

So the congruence =(F) can be decided if --+ F has the Church-Rosser 
property. Of course, this is not the case for an arbitrary set F. Such distinguished 
sets (bases for polynomial ideals) are called Grabner bases. In the literature 
sometimes the terms "standard basis" or "canonical basis" are used. 

Definition 8.2.5. A subset F of K [X] is a Grabner basis (for (F)) iff --+ F is 
Church-Rosser. 



8.3 Computation 183 

A Grabner basis of an ideal 1 in K [X] is by no means uniquely defined. In 
fact, whenever F is a Grabner basis for 1 and f E I, then also F U {f} is a 
Grabner basis for I. 

Exercises 

1. Prove Lemma 8.2.4. 
2. Prove Lemma 8.2.5. 
3. Prove Theorem 8.2.6. 

8.3 Computation of Grobner bases 

For testing whether a given basis F of an ideal 1 is a Grabner basis it suf
fices to test for local confluence of the reduction relation ~ F. This, however, 
does not yield a decision procedure, since there are infinitely many situations 
f t F g. However, Buchberger (1965) has been able to reduce this test for local 
confluence to just testing a finite number of situations f t F g. For that purpose 
he has introduced the notion of subtraction polynomials, or S-polynomials for 
short. 

Definition 8.3.1. Let f, g E K[X]*, t = lem(lpp(j), lpp(g)). Then 

( It 1 t ) 
cp(j, g) = t - le(j) . lpp(j) . f, t - le(g) . lpp(g) . g 

is the critical pair of f and g. The difference of the elements of cp(j, g) is the 
S-polynomial spol(j, g) of f and g. 

If cp(j, g) = (h 1, h2) then we can depict the situation graphically in the 
following way: 

lem(lpp(f),lpp(g)) 

• 

The critical pairs of elements of F describe exactly the essential branchings of 
the reduction relation ~ F. 

Theorem 8.3.1 (Buchberger's theorem). Let F be a subset of K[X]. 
a. F is a Grabner basis if and only if g1 -.!.-} g2 for all critical pairs (g1, g2) of 

elements of F. 
b. F is a Grabner basis if and only if spol(j, g) ~} 0 for all f, g E F. 



184 Grabner bases 

Proof a. Obviously, if F is a Grabner basis then gl -J..-} g2 for all critical pairs 
(gl, g2) of F. 

On the other hand, assume that gl -J..-} g2 for all critical pairs (gl, g2). By 
the refined Newman lemma (Theorem 8.1.3) it suffices to show h I ~ h«h)h2 

for all h, hI, h2 such that hI ~F h -----+F h2. 
Let S I , S2 be the power products that are eliminated in the reductions of h to 

hI and h2, respectively. That is, there are polynomials fl, 12 E F, coefficients 
CI = coeff(h, SI) #- 0, C2 = coeff(h, S2) #- 0, and power products tl, t2 such that 

We distinguish two cases, depending on whether or not SI = S2. 
Case SI #- S2: w.l.o.g. assume SI > S2. Let a = coeff(-(cl/lc(fd)tJ/l, S2). 

Then coeff(h I, S2) = C2 + a and therefore 

On the other hand, 

Thus, hI ~}(<<h) h2, in fact hI -J..-} h2. 

Case Sl = S2: let S = SI = S2, C = coeff(h, s) and hi = h - cs. So for some 
power product t we have s = t . lcm(lpp(fd, lpp(h)), and hI = hi + C . t . gl, 
h2 = hi + c . t . g2, where (gl, g2) = cP(fI, h). By assumption gl -J..-} g2, i.e., 
there are PI, ... , Pk and ql, ... , q, such that 

So, by Lemma 8.2.5 (c), 

Applying Lemma 8.2.5 (d) we get 

hI = hi + ctPI -J..-} ... -J..-} hi + ctPk 

= hi + ctq, -J..-} ... -J..-} hi + ctql = h2 . 



8.3 Computation 185 

All the intermediate polynomials in these reductions are less than h w.r.t. «. 
Thus, hI +---+h«)h2. 

b. Every S-polynomial is congruent to 0 modulo (F). So by Theorem 8.2.6 
spol(j, g) +---+~ O. If F is a Grabner basis, this implies spol(j, g) ---+~ O. 

On the other hand, assume that spol(j, g) ---+ ~ 0 for all f, g E F. We use 
the same notation as in (a). In fact, the whole proof is analogous to the one 
for (a), except for the case SI = S2 = s. So for hI = hi + ctgl +--F h ---+F 

hi + ctg2 = h2 we have to show hI +---+~(<<h) h2. 
gl - g2 is the S-polynomial of f\, h E F, so by the assumption g\ - g2 

---+~ O. By Lemma 8.2.5 also h\ - h2 = ct(g\ - g2) ---+~ 0, i.e., for some 
PI, ... , Pk we have 

Again by Lemma 8.2.5 we get 

D 

Buchberger's theorem suggests an algorithm for checking whether a given 
finite basis is a Grabner basis: reduce all the S-polynomials to normal forms and 
check whether they are all O. In fact, by a simple extension we get an algorithm 
for constructing Grabner bases. 

Algorithm GROBNER_B(in: F; out: G); 
[Buchberger algorithm for computing a Grabner basis. F is a finite subset of 
K[X]*; G is a finite subset of K[X]*, such that (G) = (F) and G is a Grabner 
basis.] 
1. G:= F; 

C := {{g\, g2} I g\, g2 E G, g\ i= g2}; 
2. while not all pairs {g\, g2} E C are marked do 

{choose an unmarked pair {g\, g2}; 
mark {g\, g2}; 
h := normal form of spol(g\, g2) w.r.t. ---+G; 
if h i= 0 
then {C := C U {{g, h} I g E G}; 

G:=GU{h}}; 
}; 

return. 

Every polynomial h constructed in GROBNER-B is in (F), so (G) = (F) 
throughout GROBNER-B. Thus, by Theorem 8.3.1 GROBNER_B yields a correct 
result if it stops. The termination of GROBNER_B is a consequence of Dickson's 
lemma (Dickson 1913) which implies that in [X] there is no infinite chain of 
elements S\, S2, ... such that Si f Sj for all 1 .::: i < j. The leading power products 



186 Grabner bases 

of the polynomials added to the basis form such a sequence in [X], so this 
sequence must be finite. 

Theorem 8.3.2 (Dickson's lemma). Every A S; [X] contains a finite subset B, 
such that every tEA is a multiple of some s E B. 

Proof We proceed by induction on the number of variables n, where X = 
{XI, ... , xn }. For n = 1 the statement obviously holds. So let us assume that 
n > 1. We choose any element to E A, say 

Now for any i E {1, ... , n}, j E {O, ... , ed we consider the set of power 
products 

Ai.j = {t I tEA and degx/t) = j} . 
Let 

A;,j = {tlx; It E Ai,j} , 

The variable Xi does not occur in the elements of A' , any more, By the induction 
I.J 

hypothesis, there exist finite subsets B' , S; A' , such that every power product 
I.J I.J 

in A'l' J' is a multiple of some power product in B'. We define , I.J 

Bi,j = {t 'x; I t E B;,j} , 

Now every element of A is a multiple of some element of the finite set 

B = {to} U UBi. j S; A , 
i.j 

o 

The termination of GROBNER_B also follows from Hilbert's basis theo
rem applied to the initial ideals of the sets G constructed in the course of the 
algorithm, i.e., (in(G)). See Exercise 4. 

The algorithm GROBNER_B provides a constructive proof of the following 
theorem. 

Theorem 8.3.3. Every ideal I in K[X] has a Grabner basis, 

Example 8.3.1. Let F = {fl, 12}' with II = x 2i + y - 1, 12 = x 2y + x. We 
compute a Grabner basis of (F) in Q[x, y] w,r.t. the graduated lexicographic 
ordering with x < y. The following describes one way in which the algorithm 
GROBNERJ3 could execute (recall that there is a free choice of pairs in the 
loop): 
1. spol(/!, h) = II - y12 = -xy + y - 1 =: 13 is irreducible, so G := {fl, 

12,h}, 
2, spol(12, h) = 12 + xh = xy ----+/3 Y - 1 =: 14, so G := {fl, 12, 13, i4}. 
3, spol(h, 14) = 13 +xI4 = Y -x -1 ----+/4 -x =: Is, so G := {fl, .. ·, Is}. 



8.3 Computation 187 

All the other S-polynomials now reduce to 0, so GROBNER-B terminates with 

G = {x2i + y - 1, x 2y + x, -xy + y - 1, y - 1, -x} . 

In addition to the original definition and the ones given in Theorem 8.3.1, 
there are many other characterizations of Grabner bases. We list only a few of 
them. 

Theorem 8.3.4. Let I be an ideal in K[X], F ~ K[x], and (F) = I. Then the 
following are equivalent. 
a. F is a Grabner basis for I. 
b. f ----+F 0 for every f E I. 
c. f ----+ F for every f E I \ {OJ. 
d. For all gEl, h E K[X]: if g ----+F 11 then h = O. 
e. For all g, hI, h2 E K[X]: if g ----+F hI and g ----+F h2 then hI = h2. 
f. (in(F)} = (in(l)}. - -

Proof The equivalence of (a), (b), (c), (d), (e) is left to the reader. 
Suppose F satisfies (c). Then every non-zero g in I can be reduced, so 

in(g) E (in(F)}. Thus (c) implies (t). On the other hand, suppose that F satis
fies (t). Let gEl \ {OJ. Then in(g) E (in(F)}, so g ----+ F. Thus, (t) implies (c). 

D 

The Grabner basis G computed in Example 8.3.1 is much too complicated. 
In fact, {y - 1, x} is a Grabner basis for the ideal. There is a general procedure 
for simplifying Grabner bases. 

Theorem 8.3.5. Let G be a Grabner basis for an ideal I in K[X]. Let g, h E G 
and g i= h. 
a. Iflpp(g)llpp(h) then G' = G \ {h} is also a Grabner basis for I. 
b. If h ----+g h' then G' = (G \ {h}) U {h'} is also a Grabner basis for I. 

Proof a. Certainly (G') ~ I. For f E I we have f ----+a 0, but in fact we 
have f ----+ a' 0, because whenever we could reduce by h we can instead reduce 
by g. 

b. (G') = (G). If lpp(h) is reduced then the result follows from (a). Other-
wise (in(G')} = (in(G)} = (in(l)}. D 

Observe that the elimination of basis polynomials described in Theorem 
8.3.5 (a) is only possible if G is a Grabner basis. In particular, we are not 
allowed to do this during a Grabner basis computation. Based on Theorem 
8.3.5 we can show that every ideal has a unique Grabner basis after suitable 
pruning and normalization. 

Definition 8.3.2. Let G be a Grabner basis in K[X]. 
- G is minimal iff lpp(g) Y lpp(h) for all g, h E G with g i= h. 



188 Grabner bases 

G is reduced iff for all g, h E G with g i- h we cannot reduce h by g. 
- G is normed iff lc(g) = 1 for all g E G. 

From Theorem 8.3.5 we obviously get an algorithm for transforming any 
Grabner basis for an ideal I into a normed reduced Grabner basis for I. No 
matter from which Grabner basis of I we start and which path we take in 
this transformation process, we always reach the same uniquely defined normed 
reduced Grabner basis of I. 

Theorem 8.3.6. Every ideal in K [X] has a unique finite normed reduced Grab
ner basis. 

Proof The existence of such a basis follows from Theorem 8.3.5. Now suppose 
that G and G' are two such normed reduced Grabner bases for the ideal I. Let 

So g] -----')0 ~, 0, in particular lpp(gj) can be reduced by some polynomial in 
G', w.l.o.g. let g~ be this polynomial, i.e., Ipp(g;)Ilpp(gj). Also g~ -----')o~ 0 and 
therefore lpp(gk) Ilpp(g~) for some k. Since G is reduced, this is possible only 
for k = 1, i.e., lpp(gj) = lpp(g~). Proceeding in this way we obtain m = m' 
and lpp(gi) = lpp(g;) for all 1 :::: i :::: m (possibly after reordering the elements 
of G'). 

Now consider any gi. We have gi -----')o~. O. Suppose gi i- g;. The only way 
to eliminate lpp(gi) is to use g;. But gi - g; i- 0 and none of the power products 
in gi - g; can be reduced modulo G'. So gi cannot be reduced to 0 by G', which 
is a contradiction. Hence, gi = g; for all 1 :::: i :::: m. 0 

Observe that the normed reduced Grabner basis of an ideal I depends, of 
course, on the admissible ordering <. Different orderings can give rise to dif
ferent Grabner bases. However, if we decompose the set of all admissible or
derings into sets which induce the same normed reduced Grabner basis of a 
fixed ideal I, then this decomposition is finite. This leads to the consideration 
of universal Grabner bases. A universal Grabner basis for I is a basis for I 
which is a Grabner basis w.r.t. any admissible ordering of the power products. 
See Mora and Robbiano (1988) and Weispfenning (1989). 

If we have a Grabner basis G for an ideal I, then we can compute in the 
vector space K[X]/I over K. The irreducible power products (with coefficient 1) 
modulo G form a basis of K[X]jI. We get that dim(K[X]/I) is the number of 
irreducible power products modulo G. Thus, this number is independent of the 
particular admissible ordering. 

Example 8.3.2. Let I = (x 3y - 2y2 - 1, x 2y2 + X + y) in Ql[x, y]. Let < be 
the graduated lexicographic ordering with x > y. Then the normed reduced 
Grabner basis of I has leading power products x4, x 3 y, x 2 y2, y3. So there are 
9 irreducible power products. 

If < is the lexicographic ordering with x > y, then the normed reduced 



8.4 Applications 189 

Grabner basis of I has leading power products x and y9. So again there are 9 
irreducible power products. 

In fact, dim(Q[x, Y]/ I) = 9. 

Exercises 

1. Complete the proof of Theorem 8.3.4. 
2. Compute the normed reduced Grobner basis w.r.t. the lexicographic ordering 

with x < y for the ideal generated by II = xi + x 2 + x, h = x 2y + x in 
Z3[X, y]. 

3. Compute the normed reduced Grobner basis G for the ideal 

in iQl[x, y, z] w.r.t. the lexicographic ordering with x < y < z. What is 
dimiQl[x, y, z]jl? 

4. Prove the termination of GROBNER-B by Hilbert's basis theorem applied 
to the initial ideals of the bases G, i.e., (in( G)), generated in the course 
of the algorithm. Observe that these initial ideals are homogeneous, i.e., 
they are generated by a homogeneous basis and with every polynomial 
1= Id + id-I + ... + 10 they also contain every form f; of I, where every 
power product occurring in f; has degree i. 

8.4 Applications of Grobner bases 

Computation in the vector space of polynomials modulo an ideal 

The ring K [X] / I of polynomials modulo the ideal I is a vector space over K. 
A Grabner basis G provides a basis for this vector space. 

Theorem 8.4.1. The irreducible power products modulo G, viewed as polyno
mials with coefficient 1, form a basis for the vector space K[X]/I over K. 

Proof Let B be the set of irreducible power products modulo G, viewed as 
polynomials with coefficient 1. Clearly B generates K [Xli I, since every poly
nomial can be reduced to a linear combination of elements of B with coefficients 
in K. Moreover, B is linearly independent, because any nontrivial linear combi
nation of elements of B is irreducible modulo G and therefore different from 0 
in K[X]/I. 0 

Ideal membership 

By definition Grabner bases solve the ideal membership problem for polynomial 
ideals, i.e., 
given: f, fl, ... , fm E K[X], 
decide: f E (fl, ... , fm). 



190 Grabner bases 

Let G be a Grabner basis for I = (fl, ... , 1m). Then I E I if and only if the 
normal form of I modulo G is O. 

Example 8.4.1 Suppose that we know the polynomial relations (axioms) 

4z - 4xl- 16x2 - I = 0 , 

2lz + 4x + I = 0, 

2x2z + 2l + x = 0 

between the quantities x, y, z, and we want to decide whether the additional 
relation (hypothesis) 

g(x, y) = 4xy4 + 16x2l + l + 8x + 2 = 0 

follows from them, i.e., whether we can write g as a linear combination of the 
axioms or, in other words, whether g is in the ideal I generated by the axioms. 

Trying to reduce the hypothesis g W.r.t. the given axioms does not result in a 
reduction to O. But we can compute a Grabner basis for I W.r.t. the lexicographic 
ordering with x < y < z, e.g., G = {gl, g2, g3} where 

gl = 32x7 - 216x6 + 34x4 - 12x3 - x 2 + 30x + 8 , 

g2 = 2745l- 112x6 - 812x5 + 10592x4 - 6lx3 - 812x2 + 988x + 2, 

g3 = 4z - 4xl- 16x2 - I . 

Now g --+'G 0, i.e., g(x, y) = 0 follows from the axioms. 

Radical membership 

Sometimes, especially in applications in geometry, we are not so much interested 
in the ideal membership problem but in the radical membership problem, i.e., 
given: I, II, ... , 1m E K [X), 
decide: IE radical«(fl,"" 1m}). 

The radical of an ideal I is the ideal containing all those polynomials I, 
some power of which is contained in I. So I E radical(l) {:=:> rEI for some 
n E N. Geometrically I E radical ( (II, ... ,1m}) means that the hypersurface 
defined by I contains all the points in the variety (algebraic set) defined by II, 
···,Im' 

The following extremely important theorem relates the radical of an ideal I 
to the set of common roots V (l) of the polynomials contained in I. 

Theorem 8.4.2 (Hilbert's Nullstellensatz). Let I be an ideal in K[X), where 
K is an algebraically closed field. Then radical(l) consists of exactly those 
polynomials in K[X) which vanish on all the common roots of I. 



8.4 Applications 191 

Proof A proof of Hilbert's Nullstellensatz can be found in any introductory 
book on commutative algebra and algebraic geometry, e.g., in Cox et al. (1992). 

o 

By an application of Hilbert's Nullstellensatz we get that I E radical ( (fl, 
... ,1m)) if and only if I vanishes at every common root of II, ... , 1m if and 
only if the system II = ... 1m = z . I - I = 0 has no solution, where z is a 
new variable. That is, 

IE radical((fl, ... , 1m)) ¢=::> 1 E (II,···, j;1l' z· 1- 1) . 

So the radical membership problem is reduced to the ideal membership problem. 

Equality of ideals 

We want to decide whether two given ideals are equal, i.e., we want to solve 
the ideal equality problem: 
given: 11, ... ,lm,gl, ... ,gk E K[X], 
decide: (fl, ... , 1m) = (gl, ... , gk). 
~ --.--

[ j 

Choose any admissible ordering. Let G [, G j be the normed reduced Grab
ner bases of I and J, respectively. Then by Theorem 8.3.6 I = J if and only 
if G[ = G j . 

Solution of algebraic equations 

We consider a system of equations 

1m (XI, ... , XII) = 0 , 

(8.4.1 ) 

where II, ... , 1m E K[X]. The system (8.4.1) is called a system of polynomial 
o! alg_ebraic equations. First let us decide whether (8.4.1) has any solutions in 
K II, K being the algebraic closure of K. Let I = (fl, ... , j;1l). The following 
theorem has first been proved in Buchberger (1970). 

Theorem 8.4.3. Let G be a normed Grabner basis of I. (8.4.1) is un sol vable 
in KII if and only if 1 E G. 

Proof If 1 E G then 1 E (G) = I, so every solution of (8.4.1) is also a solution 
of 1 = O. So there can be no solution. 

On the other hand, assume that (8.4.1) is unsolvable. Then the polynomial 1 
vanishes on every common root of (8.4.1). So by Hilbert's Nullstellensatz I E 



192 Grabner bases 

radical(I) and therefore also 1 E I. Since G is a normed Grabner basis of I, 
we must have 1 ----+c O. This is only possible if 1 E G. D 

Now suppose that (8.4.1) is solvable. We want to determine whether there 
are finitely or infinitely many solutions of (8.4.1) or, in other words, whether or 
not the ideal I is O-dimensional. 

Theorem 8.4.4. Let G be a Grabner basis of I. Then (8.4.1) has finitely many 
solutions (i.e., I is O-dimensional) if and only if for every i, 1 ::: i ::: n, there 
is a polynomial gi E G such that IpP(gi) is a pure power of Xi. Moreover, if 
I is O-dimensional then the number of zeros of I (counted with multiplicity) is 
equal to dim(K [Xli I)' 

Proof. I is O-dimensional if and only if K[X]/l has finite vector space dimen
sion over K and in this case the number of solutions and the vector space 
dimension agree (see, e.g., Grabner 1949). By Theorem 8.4.1 that is the case if 
and only if the number of irreducible power products modulo G is finite, i.e., 
for every variable Xi there is a pure power of it in Ipp(G). D 

The role of the Grabner basis algorithm GROBNER-B in solving systems 
of algebraic equations is the same as that of Gaussian elimination in solving 
systems of linear equations, namely to triangularize the system, or carry out the 
elimination process. The crucial observation, first stated in Trinks (1978), is the 
elimination property of Grabner bases. It states that if G is a Grabner basis of I 
w.r.t. the lexicographic ordering with Xl < ... < Xn , then the i-th elimination 
ideal of I, i.e., I n K[Xl, ... , x;], is generated by those polynomials in G that 
depend only on the variables Xl, ... , Xi. 

Theorem 8.4.5 (Elimination property of Grabner bases). Let G be a Grabner 
basis of I W.r.t. the lexicographic ordering Xl < ... < Xn • Then 

In K[Xl, ... , Xi] = (G n K[Xl,"., X;]) , 

where the ideal on the right-hand side is generated over the ring K [Xl, ... , X;]. 

Proof. Obviously the right-hand side is contained in the left-hand side. 
On the other hand, let f E InK [Xl, ... , Xi]. Then f ----+ ~ O. All the 

polynomials in this reduction depend only on the variables Xl, ... , Xi. So we 
get a representation of f as a linear combination L h j gj, where gj E G n K [Xl, 

... , X;] and hj E K[Xl, ... , Xi]. D 

Theorem 8.4.5 can clearly be generalized to product orderings, without 
changing anything in the proof. 



8.4 Applications 

Example 8.4.2. Consider the system of equations fl = h = 13 = 0, where 

4xz - 4xi - 16x2 - I = 0 , 

2iz + 4x + I = 0, 

2x2z + 2i + x = 0, 

193 

are polynomials in Q[x, y, z]. We are looking for solutions of this system of 
algebraic equations in Q3, where Q is the field of algebraic numbers. 

Let < be the lexicographic ordering with x < y < z. The algorithm GROB
NER-B applied to F = {fl, h, h} yields (after reducing the result) the reduced 
Grobner basis G = {gl, g2, g3}, where 

gl = 65z + 64x4 - 432x3 + 168x2 - 354x + 104 , 

g2 = 26i - 16x4 + 108x3 - 16x2 + 17x , 

g3 = 32x5 - 216x4 + 64x3 - 42x2 + 32x + 5 . 

By Theorem 8.4.3 the system is solvable. Furthermore, by Theorem 8.4.4, the 
system has finitely many solutions. The Grobner basis G yields an equivalent 
triangular system in which the variables are completely separated. So we can 
get solutions by solving the univariate polynomial g3 and propagating the partial 
solutions upwards to solutions of the full system. The univariate polynomial g3 
is irreducible over Q, and the solutions are 

(a, ± ~.JaJI6a3 - 108a2 + 16a - 17 , 

-~(64a4 - 432a3 + 168a2 - 354a + 104») , 
65 

where a is a root of g3. We can also determine a numerical approximation of a 
solution from G, e.g., 

(-0.1284722871, 0.3211444930, -2.356700326) . 

Example 8.4.3. The same method can be applied to algebraic equations with 
symbolic coefficients. For example consider the system fl = h = 13 = f4 = 0, 
where 

fl = X4 +b - d , 

h = X4 + X3 + X2 + XI - a - e - d , 

13 = X3 X4 + XIX4 + X2X3 - ad - ae - cd , 

f4 = XIX3X4 - aed 

are polynomials in the variables XI, X2, X3, X4 containing the parameters a, b, 
e, d, i.e., fl, ... , 14 E Q(a, b, e, d)[XI, ... , X4]. Let < be the lexicographic 



194 Grabner bases 

ordering with XI < X2 < X3 < X4. The normed reduced Grabner basis of (fl, 
... , !4) is G = {gl, ... , g4}, where 

gl = X4 + b - d , 

b2 - 2bd + d 2 7 
g2 = X3 - Xl -

aed 

abc + abd - aed - ad2 + bed - ed2 
--------------XI - a - e - d , 

aed 

b2 - 2bd + d 2 2 abc + abd - ad2 + bed - ed2 
g3 = X2 + X I + X I - b + d , 

aed aed 

ae + ad + cd a 2ed + ae2d + aed2 a 2e2d 2 
g - x3 + x2 + X + -------:::-

4 - I b _ d I (b _ d)2 I (b _ d)3 

Thus, the system has finitely many solutions. A particular root of g4 is -ad / 
(b - d), which can be continued to the solution 

( _ ~ ab + b2 - bd e -b + d) . 
b-d' b-d " 

Every minimal Grabner basis G of a O-dimensional ideal I W.r.t. the lexi
cographic ordering with XI < ... < Xn has the form 

gl.l (x]) E K[xtJ , 

g2,l (XI, X2), ... , g2.k2 (XI, X2) E K [XI, X2] , 

B. Roider (1986), M. Kalkbrener (1987) and P. Gianni (1987) have proved that 
if b = (bl' ... , bl _ l ) E KI - I is a solution of gl.l = ... = gl-!.kl-l = 0, then 
for some index j, I ::": j ::": kl' we have 

letl (gl.j) (b) =J:. 0 (leading coefficient W.r.t. the variable XI) and 

gl,j (b, x{) = gcd(gl, I (b, XI), ... , gl,kl (b, XI)) . 

This implies that every partial solution b can be continued to a solution of the 
full system. 

In fact, for a O-dimensional ideal I in regular position a very strong struc
ture theorem has been derived by Gianni and Mora (1987). I is in regular 
position W.r.t. the variable XI, if al =J:. bl for any two different zeros (aI, ... , 
an), (b l , ... , bn) of I. Clearly it is very likely that an arbitrary O-dimensional 



8.4 Applications 195 

ideal is in regular position w.r.t. XI. Otherwise, nearly every linear change of 
coordinates will make the ideal regular. 

Theorem 8.4.6 (Shape lemma). Let / be a radical O-dimensional ideal in K[X], 
regular in XI. Then there are gl (xI>, ... , gn (xI> E K[xil such that gl is square
free, deg(gj) < deg(gl) for i > 1 and the normed reduced Grabner basis F for 
/ w.r.t. the lexicographic ordering < with XI < ... < Xn is of the form 

On the other hand, if the normed reduced Grabner basis for / w.r.t. < is of this 
form, then / is a radical O-dimensional ideal. 

Proof Since / is in regular position, the first coordinates of zeros of / are all 
different, say all, ... ,aim. Then the squarefree polynomial gl (xI> = f1r=1 (XI -
ali) is in / n K[xil and so it has to be in F. Since by Theorem 8.4.4 m is the 
dimension of K[X]jl, the normed reduced Grabner basis for / has to have the 
specified form. 

To prove the converse, let all, ... , aim be the zeros of gl (xd. Then the 
zeros of / are {(ali, g2(ali), ... , gn(ali) Ii = 1, ... , m}. D 

For a further discussion ofthe Shape lemma we refer to Becker et al. (1994). 

Linear equations over K[X] 

For given polynomials II, ... , 15, I in K [X] we consider the linear equation 

Ilzl + ... + 15z5 = I , (8.4.2) 

or the corresponding homogeneous equation 

II Z I + ... + Is Z5 = 0 . (8.4.3) 

Let F be the vector (fl, ... , Is). The general solution of (8.4.2) and (8.4.3) is 
to be sought in K [Xy. The solutions of (8.4.3) form a module over the ring 
K[X], a submodule of K[XY over K[X]. 

Definition 8.4./. Any solution of (8.4.3) is called a syzygy of the sequence of 
polynomials II, ... , Is. The module of all solutions of (8.4.3) is the module 01 
syzygies Syz(F) of F = (fl, ... , 15). 

It turns out that if the coefficients of this equation are a Grabner basis, then 
we can immediately write down a generating set (basis) for the module Syz(F). 
The general case will be reduced to this one. 

Theorem 8.4.7. If the elements of F = (fl, ... , Is) are a Grabner basis, then 
S is a basis for Syz(F), where S is defined as follows. 



196 Grobner bases 

For 1 ::: i ::: s let ei = (0, ... , 0, 1, 0, ... , 0) be the i -th unit vector and for 
1 ::: i < j ::: s let 

t = lcm(lpp(fi), Ipp(li» , 

1 t 1 t 
p"---'--

IJ - lc(fi) lpp(fi)' 
q"---' 

IJ - lc(li) Ipp(Ii)' 

and ki~' ... ,kfj be the polynomials extracted from a reduction of spol(fi, Ii) 
to 0, such that 

s 

spol(fi, Ii) = Pi} fi - qi} Ii = Lkfj It . 
[=1 

Then 

S = {Pij . ei - % . ej - (kij , ... , kfj) I 1 ::: i < j ::: s} . 
\ I 

Proof Obviously every element of S is a syzygy of F, since every S-polynomial 
reduces to 0. 

On the other hand, let Z = (ZI, ... ,zs) =F (0, ... ,0) be an arbitrary non
trivial syzygy of F. Let P be the highest power product occurring in 

flzl + '" + fszs = ° , 
i.e., 

P = max{t E [X] I coeff(fi . Zi, t) =F 0 for some i} 
< 

and let i I < ... < im be those indices such that lpp(fij . Zij) = p. We have 
m ::: 2. Suppose that m > 2. By subtracting a suitable multiple of Sik_l,ik from z, 
we can reduce the number of positions in Z that contribute to the highest power 
product P in (*). Iterating this process k - 2 times, we finally reach a situation, 
where only two positions iI, i2 in the syzygy contribute to the power product p. 
Now the highest power product in (*) can be decreased by subtracting a suitable 
multiple of Sil,iz' Since < is Noetherian, this process terminates, leading to an 
expression of Z as a linear combination of elements of S. D 

Now that we are able to solve homogeneous linear equations in which the 
coefficients are a Grabner basis, let us see how we can transform the general 
case to this one. 

Theorem 8.4.8. Let F = (fl, ... , fs)T be a vector of polynomials in K[X] 
and let the elements of G = (gl, ... , gm)T be a Grabner basis for (fl, ... , fs). 
We view F and G as column vectors. Let the r rows of the matrix R be a basis 
for Syz( G) and let the matrices A, B be such that G = A . F and F = B . G. 



8.4 Applications 197 

Then the rows of Q are a basis for Syz(F), where 

Proof Let b], ... ,bs+r be polynomials, b = (b], ... , bs+r ). 

(b· Q). F 

= ((b], ... , bs )· (Is - B· A) + (bs+], ... , bs+r )· R· A)· F 

= (b], ... , bs )· (F -~) + (bs+] , ... , bs+r )· R· ~ = 0. 

=F =G 

So every linear combination of the rows of Q is a syzygy of F. 
On the other hand, let H = (h], ... , hs ) be a syzygy of F. Then H . B is 

a syzygy of G. So for some H' we can write H . B = H' . R, and therefore 
H· B· A = H'· R· A. Thus, 

H = H . (Is - B . A) + H' . R . A = (H, H') . Q , 

i.e., H is a linear combination of the rows of Q. o 

What we still need is a particular solution of the inhomogeneous equation 
(8.4.2). Let G = (g], ... , gm) be a Grabner basis for (F) and let A be the trans
formation matrix such that G = A . F (G and F viewed as column vectors). 
Then a particular solution of (8.4.2) exists if and only if f E (F) = (G). If 
the reduction of f to normal form modulo G yields f' =f. 0, then (8.4.2) is un
solvable. Otherwise we can extract from this reduction polynomials hi], ... , h~, 
such that 

So H = (hi], ... , h~) . A is a particular solution of (8.4.2). 
Of course, once we are able to solve single linear equations over K [X], 

we can also solve systems of linear equations by dealing with the equations 
recursively. An algorithm along these lines is presented in Winkler (1986). 
However, it is also possible to extend the concept of Grabner bases from ideals 
to modules (see Furukawa et al. 1986, Mora and Moller 1986) and solve a 
whole system of linear equations by a single computation of a Grabner basis 
for a submodule of K [xy . 

Example 8.4.4. Consider the linear equation 

( 2 2 1 xz - xy - 4x --
4 

1 
iz + 2x +-

2 
F 

(Z]) 
~~ = ° , 



198 Grabner bases 

where the coefficients are in Q[x, y, z]. A basis for the syzygies can be computed 
as the rows of a matrix Q according to Theorem 8.4.8. QT may contain for 
instance the syzygy 

( 
2xl + 4x 2i + 2x 3l + 4i - 2x4 - 8x 3 - 2x2 - 8x5 ) 

-8x3l- 4x5l- 4xv2 - 3x 2 - 19x4 - l6x6 

l + 17x2l + l6x4l + 4x 3i + 4xi + 8x4 + 2x3 + 8x2 + 2x 

In fact, using the concept of Grabner bases for modules, we get the following 
basis for Syz(F): 

Effective ideal theoretic operations 

In commutative algebra and algebraic geometry there is a strong correspondence 
between radical polynomial ideals and algebraic sets, the sets of zeros of such 
ideals over the algebraic closure of the field of coefficients. For any ideal I 
in K[Xl,"" xn] we denote by V(I) the set of all points in An(K), the n
dimensional affine space over the algebraic closure of K, which are common 
zeros of all the polynomials in I. Such sets V (I) are called algebraic sets. On 
the other hand, for any subset V of All (K) we denote by I (V) the ideal of all 
polynomials vanishing on V. Then for radical ideals I and algebraic sets V the 
functions V (.) and I (-) are inverses of each other, i.e., 

V(I(V»=V and I(V(I»=I. 

This correspondence extends to operations on ideals and algebraic sets in the 
following way: 

ideal 

I+J 
I· J, In J 

I:J 

algebraic set 
v(I)nV(1) 

V(I)UV(1) 

V (I) - V (1) = V (I) - V (1) (Zariski closure 
of the difference) 



8.4 Applications 199 

See, for instance, Cox et al. (1992: chap. 4). So we can effectively compute inter
section, union, and difference of varieties if we can carry out the corresponding 
operations on ideals. 

Definition 8.4.2. Let /, J be ideals in K[X]. 
- The sum / + J of / and J is defined as / + J = {f + g I fE/, g E J}. 
- The product / . J of / and J is defined as / . J = ({f. g I f E /, g E J}}. 
- The quotient / : J of / and J is defined as / : J = {f If· g E / for all g 

E J}. 

Theorem 8.4.9. Let / = (fl, ... , fr} and J = (gl, ... , gs} be ideals in K[X]. 
a. / + J = (fl, ... , fr, g I, ... , gv}. 
b. /. J = (j;gj I 1 ::::: i ::::: r, 1 ::::: j ::::: s}. 
c. / n J = «(t} . / + (1 - t} . J) n K[X], where f is a new variable. 
d. /: J = nj=I(I: (gj}) and 

/ : (g} = (hl/g, ... , hm/g}, where / n (g} = (hI, ... , hm}. 

Proof (a) and (b) are easily seen. 
c. Let fE/ n J. Then ff E (t} . / and (l - f)f E (f - I} . J. Therefore 

f = ff + (1 - t)f E (t} . / + (1 - t} . J. 
On the other hand, let f E «(f} . / + (1 - f} . J) n K[X]. So f = g(X, t) + 

heX, t), where g E (t}/ and h E (1 - f}J. In particular, heX, t) is a linear 
combination ofthe basis elements (l-f)gl, ... , (l-f)gs of (l-f} J. Evaluating 
f at 0 we get 

f = g(X, 0) + heX, 0) = heX, 0) E J . 

Similarly, by evaluating f at I we get f = g(X, 1) E /. 

d. hE/ : J if and only if hg E / for all g E J if and only if hgj E / for 
all 1 ::::: j ::::: s if and only if hE/ : (gj} for all 1 ::::: j ::::: s. 

If f E (hl/g, ... ,hm/g} and a E (g} thenaf E (hI, ... ,hm} = /n(g} c /, 
i.e., fE/ : (g}. Conversely, suppose fE/ : (g}. Then fg E / n (g}. So fg 
= 'Lbkhk for some bk E K[X]. Thus, 

f = 'Lbk· ( hk/g ) E (hl/g, ... , hm/g} . 
'-v-' 

polynomial 

D 

So all these operations can be carried out effectively by operations on the 
bases of the ideals. In particular the intersection can be computed by Theorem 
8.4.5. 

We always have / . J C / n J. However, / n J could be strictly larger 
than / . J. For example, if / = J = (x, y}, then / . J = (x 2 , xy, i} and 
/ n J = / = J = (x, y}. Both / . J and / n J correspond to the same variety. 
Since a basis for / . J is more easily computed, why should we bother with 
/ n J? The reason is that the intersection behaves much better with respect to 
the operation of taking radicals (recall that it is really the radical ideals that 



200 Grabner bases 

uniquely correspond to algebraic sets). Whereas the product of radical ideals in 
general fails to be radical (consider I . /), the intersection of radical ideals is 
always radical. 

Theorem 8.4.10. Let I, J be ideals in K[X]. Then "fi(lJ = v'I n 4 (v'I 
means the radical of /). 

Proof If I E "fi(lJ, then 1m E I n J for some integer m > 0. So I E v'I 
and I E 4. 

On the other hand, if I E v'I n 4 then for some integers m, p > ° we 
have 1m E I and IP E J. Thus, Im+p E In J, i.e., I E ~. 0 

Example 8.4.5. Consider the ideals 

II = (2x4 - 3x2y + i- 2y3 + l) , 

h= (x,i-4), 

h=(x,i-2y} , 

I4=(x,i+2y} . 

The coefficients are all integers, but we consider them as defining algebraic sets 
in the affine plane over <C. In fact, V (I I) is the tacnode curve (compare Sect. 1.1), 
V(h) = {(O, 2), (0, -2)}, V(h) = {(O, 2), (0, O)}, V(/4) = {(O, 0), (0, -2)}. 

First, let us compute the ideal Is defining the union of the tacnode and the 
2 points in V(h). Is is the intersection of II and h i.e., 

Is = II n 12 = «(z}II + (1 - z}h) n Q[FI, n.] 

= (-4i + 8y3 - 31 + 12x2y - 8x4 - 2i + i - 3x2l + 2ix4, 

xi- 2xl + xl- 3x3y + 2x 5) . 

Now let us compute the ideal h defining V (/5) - V (h), i.e., the Zariski 
closure of V (/5) \ V (h), i.e., the smallest algebraic set containing V (/5) \ V (h). 

16 = Is: h = (/5: (x)) n (/5: (i- 2y}) 

= (2x 4 - 3x2 Y + i - 2y3 + l) n 

(i - 3l + 2i - 3x2i + 2yx4 - 6x 2y + 4x4, 

2x5 - 3x3y + xi - 2xl + xl) 

= (i - 3y3 + 2i - 3x2i + 2yx4 - 6x 2y + 4x4, 

2x5 - 3x 3y +xi - 2xl +xl) . 

V(h) is the tacnode plus the point (0, -2). 



8.5 Speed-ups 201 

Finally, let us compute the ideal h defining V (h) - V (/4), i.e., the Zariski 
closure of V(h) \ V(/4). 

h = h : 14 = (h : (x) n (h : (i + 2y) 

= (2x 4 - 3x2y + i - 2i + i) n (2x 4 - 3x2y + i - 2y3 + i) 
=h. 

So we get back the ideal h defining the tacnode curve. 

Exercises 

1. Determine the singularities of the curve defined by I (x, y) 
x 6 + 3x4y2 - 4x2y2 + 3x2l + i = 0 in the projective plane ]p>2(C). 

2. Let I be a O-dimensional prime ideal in K[X]. What is the shape of a 
Grobner basis for I w.r.t. a lexicographic ordering? 

3. Let PI, ... , Pr E /Ii,. n (K), the affine space of dimension n over the field K. 
Construct polynomials (separator polynomials) II, ... , Ir E K[XI, ... ,xn] 
such that 

{ 
0 for i =1= j, 

fi(Pj )= Ie· . 
lor I = J. 

4. Let I be the ideal in Q[x, y, z] generated by G = {gl, g2, g3}, where 

gl = Z + X4 - 2x + I , 

g2 = y2 + x 2 - 2 , 

g3 = x5 - 6x3 + x2 - 1 . 

a. Is G a Grobner basis w.r.t. the lexicographic term ordering with 
x < y < z? 

b. How many solutions does the system of equations gl = g2 = g3 = 0 
have? 

c. Give a basis for the vector space Q[x, y, Z]/I over Q. 

8.5 Speed-ups and complexity considerations 

Speeding up Buchberger's algorithm 

In Example 8.3.1 there were 10 S-polynomials to be checked for reducibility 
to O. But in order to arrive at the Grobner basis we actually considered only 3 of 
them! This naturally leads to the question whether there are criteria for detecting 
such unnecessary S-polynomials which do not lead to new basis polynomials. 
Two of the best known criteria are the product criterion and the chain criterion. 

Theorem 8.5.1. Let G be a set of polynomials in K[X], and g), g2 E G. If 
lpp(g) ·lpp(g2) = lcm(lpp(g), IpP(g2» then spol(g) , g2) ---+'G O. 



202 Grabner bases 

The proof of this fact is easy and is left to the reader. From Theorem 
8.5.1 one immediately gets the product criterion, which says that in step (2) of 
GROBNERJ3 the S-polynomial of gl, g2 can be discarded without reducing it 
to normal form if lpp(gl) ·lpp(g2) = lcm(lpp(gl), Ipp(g2)). 

The following theorem has been derived in Buchberger (1979). 

Theorem 8.5.2. Let G be a set of polynomials in K[X]. G is a Grabner 
basis if and only if for all gl, g2 E G there are hi, ... ,hk E G such that 
gl = hi, hk = g2, lcm(lpp(hd, ... , lpp(hk)) divides lcm(lpp(gd, Ipp(g2)), and 
spol(h i , hi+l) ----+~ 0 for all 1 ::: i ::: k. 

From Theorem 8.5.2 one immediately gets the chain criterion, which says 
that in step (2) of GROBNER_B the S-polynomial of gl, g2 can be discarded 
without reducing it to normal form if there are hi, ... ,hk as in Theorem 8.5.2. 
Since testing for long chains might be costly, one often applies the chain criterion 
only for short chains, i.e., k = 3. 

Example 8.5.1 (Example 8.3.1 continued). After having added the polynomials 
/3,/4,15 to the basis, all the other S-polynomials can be discarded by applica
tions of the product criterion and the chain criterion. 

Complexity of Grabner basis computations 

Already G. Hermann (1926) gives a double exponential upper bound for the 
degrees of polynomials in the basis of the module of syzygies for II, ... , 1m. 
For the special case of 2 variables the degrees of polynomials in a Grabner basis 
can be bounded linearly in the degree of polynomials in the starting basis (Buch
berger 1983a), and by a single exponential bound for the case of 3 variables 
(Winkler 1984b). 

Let D(n, d) be minimal with the property that for any finite set of polyno-
mials II, ... ,1m in K[x), ... ,xn], where each Ii has degree at most d, there 
is a Grabner basis for (/), ... , 1m} such that each polynomial in the basis has 
degree bounded by D(n, d). Yap (1991) proves a lower bound for D(n, d), 

namely D(n, d) ::: d 2k , where k "-' nl2 and n, d sufficiently large. 
Collecting various results on upper bounds for D(n, d), Lazard (1992) shows 

that D(n, d) ::: d i , where I = (log3jlog4)n + O(logn). 
For O-dimensional ideals Lakshman (1990) has been able to show that an 

upper bound for the complexity of constructing a Grobner basis is polynomial 
in d n . 

8.6 Bibliographic notes 

An excellent introduction to problems in polynomial ideal theory is contained in 
Hilbert (1890). G. Hermann's (1926) complexity analysis is based on this paper. 

Hironaka (1964) introduced standard bases for ideals of power series, which 
have basically the same properties as Grobner bases. Hironaka's notion of stan-



8.6 Bibliographic notes 203 

dard bases, however, is non-constructive. Becker (1990, 1993) is able to provide 
algorithms for some problems in the theory of standard bases. 

There are various generalizations of the concept of Grobner basis to different 
domains, e.g., to reduction rings (Buchberger 1983b, Stifter 1987, 1991, 1993), 
to polynomials over the integers (Pauer and Pfeifhofer 1988), to polynomials 
over Euclidean domains (Kandri-Rody and Kapur 1984), or to Grobner bases 
for modules over K[X] (Galligo 1979, Mora and Moller 1986, Furukawa et al. 
1986). 

p-Adic approximations of Grobner bases over the rational numbers have 
been investigated by Winkler (1988a), Pauer (1992), Grabe (1993). 

The idea of computing syzygies by Grobner bases was developed by Za
charias (1978). On the other hand, syzygies can be employed for computing 
Grobner bases (Moller 1988). 

Linear algebra methods for transforming a Grobner basis for a O-dimensional 
ideal to a Grobner basis for the same ideal but a different ordering were devel
oped by Faugere et al. (1993). 

Ideas very similar to those in the theory of Grobner bases appear also in 
the constructive approach to equational reasoning over first order terms, i.e., 
the Knuth-Bendix (1967) procedure for completing term-rewriting systems. The 
relation between these algorithms and procedures is investigated in Le Chenadec 
(1986), Winkler (1984a), Btindgen (1991). Improvements such as criteria for 
unnecessary S-polynomials can be adapted to the term-rewriting case (Winkler 
and Buchberger 1983). 

Grobner bases can be used for solving many more ideal theoretic problems, 
e.g., primary decomposition of polynomial ideals (Lazard 1985, Gianni et al. 
1988), implicitization of parametric curves or surfaces (Arnon and Sederberg 
1984, Kalkbrener 1991), computation of the dimension of algebraic sets (Kredel 
and Weispfenning 1988, Kalkbrener and Sturmfels 1992), computing in multiple 
algebraic extensions (Wall 1993), computation of the Hilbert function (Bayer and 
Stillman 1992). Another application of Grobner bases is for geometry theorem 
proving (Kapur 1986; Kutzler and Stifter 1986a, b; Winkler 1988c, 1990, 1992). 
Further examples of solutions of systems of algebraic equations by Grobner 
bases are given in Boge et al. (1986). Other applications are described in Winkler 
et al. (1985). 

Results on the complexity of constructing Grobner bases are reported in 
Mayr and Meyer (1982), Giusti (1984), Moller and Mora (1984), Bayer and 
Stillman (1988), Lakshman and Lazard (1990), Heintz and Morgenstern (1993). 

Introductions to the theory of Grobner bases are available in Buchberger 
(1985b), Cox et al. (1992), Becker and Weispfenning (1993), Mishra (1993), 
Adams and Loustaunau (1994). 



9 Quantifier elimination 
in real closed fields 

9.1 The problem of quantifier elimination 

Many interesting problems of the geometry over the real numbers can be stated 
as systems of polynomial equations, inequations, and inequalities, usually with 
some structure of quantification. For instance, in Sect. 1.1 the piano movers 
problem in robotics has been mentioned. There are many other application areas, 
e.g., stability conditions for difference schemes. Quantifier elimination provides 
an approach to solving such polynomial problems over the real numbers. 

In the sequel we collect a few definitions and facts about real fields as a basis 
for talking about Collins's quantifier elimination algorithm. These definitions and 
theorems can be found in van der Waerden (1970). 

Definition 9.1.1. A field K is ordered with ordering >, iff 
a. for every a E K exactly one of the relations a = 0, a > 0, -a > 0 is valid, 

and 
b. if a > 0 and b > 0 then a + b > 0 and a . b > O. 

If we let a > b :<===} a - b > 0, then the relation >E K2 satisfies the usual 
order axioms of transitivity and anti-symmetry. In an ordered field a sum of 
squares is always nonnegative, 

n 

LX; ::: 0 , 
;=1 

and it can be zero only if all the summands are zero. In particular, 1 = 12 is 
always positive, and for all n E N, 

n = 1 + ... + 1 = 12 + ... + 12 > 0 . 
'-v-' '-v--' 

n times n times 

So the characteristic of an ordered field is O. 

Example 9.1.1. Examples of ordered fields are Q, lR, and the field of real alge
braic numbers with the usual ordering. 

Another example of a real field is lR(x), the field of rational functions over 
R To see this we let lR be ordered as usual and we let x be positive but smaller 
than any positive real number. Now if p(x) = anxn + an_IXn- 1 + ... + akxk 



9.1 The problem of quantifier elimination 205 

is a polynomial with ak =I- 0, then we let p(x) > 0 if and only if ak > O. A 
rational function p(x)lq(x) is positive if and only if p(x)q(x) > O. This is 
indeed an ordering on lR(x) satisfying the conditions (a) and (b). In fact, this 
ordering is a non-archimedean ordering, since x is positive but strictly less than 
any lin, n EN. 

C cannot be ordered, since 1 = 12 , -1 = i 2, and not both of them can be 
positive. 

Definition 9.1.2. A field K is (formally) real iff -1 is not a sum of squares. 

A real field always has characteristic 0, because in a field of characteristic 
p > 0 we have -1 = (p - 1).12. 

Definition 9.1.3. A real closed field K is a real field which does not admit any 
real algebraic extension, i.e., if K' is an algebraic extension of K for a real field 
K', then K = K'. 

Example 9.1.2. lR and the field of real algebraic numbers are real closed fields. 
On the other hand, Q is not real closed, since Q(../2) is a proper algebraic 
extension of Q to a real field. 

Every real closed field can be ordered in one and only one way. Every 
positive element of a real closed field K has a square root. Furthermore, over 
K every polynomial of odd degree has at least one root. Conversely, if in an 
ordered field K every positive element has a square root and every polynomial 
of odd degree has a root, then K is a real closed field. 

In the following we are interested in deciding formulas containing polyno
mial equations, inequations, and inequalities over real closed fields. For this 
purpose we introduce the formal setting of the elementary theory of real closed 
fields. 

Definition 9.1.4. The elementary theory of real closed fields (ETRCF) is the first
order theory with the constants 0 and 1, function symbols +, -, ., predicate 
symbols =, >, :::, <, ::::, =I- (elementary algebra), and an axiom system consisting 
of the field axioms, the order axioms 

(Ya)(Yb)[a > 0/\ b > 0 ====} a + b > 0] 

(Ya)(Yb)[a > 0/\ b > 0 ====} a . b > 0] 

and axioms that guarantee roots of certain polynomials 

(Ya)(3b)[a = b2 V -a = b2] 

for every n ::: 1: (Yao)(Yal) ... (Ya2n)(3b)[ao + alb + ... + 
+ a2nb2n + b2n+1 = 0] . 



206 Quantifier elimination 

Models of the elementary theory of real closed fields are exactly the real 
closed fields, as can be seen from the remark after Example 9.1.2. In this theory 
we can have polynomials as constituents of atomic formulas, and the coefficients 
of these polynomials have to be integers. 

The principle of Tarski (see Seidenberg 1954) states: 

Every formula q, of elementary algebra that is valid in one model of the 
elementary theory of real closed fields is valid in every model of this theory. 

So in order to decide such a formula q, for an arbitrary model, it suffices to 
decide it for IR. 

Definition 9.1.5. A standard atomic formula is an expression of the form p ,....., 0, 
where p is a (multivariate) integral polynomial and,....., is a predicate symbol in 
ETRCF. A standard formula is a formula in ETRCF in which the atomic formu
las are all standard atomic formulas. A standard prenex formula is a standard 
formula in prenex form, i.e., a sequence of quantifiers followed by a quantifier 
free standard formula. 

The problem of quantifier elimination for ETRCF 

The problem of quantifier elimination for ETRCF can be stated in the following 
way: 

For a given standard prenex formula q, find a standard quantifier-free formula 
1/1 such that q, is equivalent to 1/1. 

A. Tarski (1951) gave a quantifier elimination algorithm for transforming 
any formula q, of the theory of real closed fields into an equivalent formula that 
contains no quantifiers, i.e., for solving the problem of quantifier elimination 
for ETRCF. He also showed how to decide whether a formula q,', which does 
not contain quantifiers and variables, is true. Also other approaches have been 
suggested, e.g., in Seidenberg (1954) and Cohen (1969). Most of them, however, 
suffer from a prohibitively high complexity. In particular, even if one fixes the 
number of variables r in the formula q" they have a computing time that is 
exponential in both m, the number of polynomials occurring in q" and n, the 
maximum degree of these polynomials. A real breakthrough was achieved in 
1973 by G. E. Collins with his cad algorithm, published in Collins (1975). 

9.2 Cylindrical algebraic decomposition 

In describing Collins's cad algorithm we will not prove any results, rather we re
fer the reader to Collins (1975), Arnon et al. (1984a), and Arnon and Buchberger 
(1988) for background information. 

The basic idea is to divide up the r-dimensional Euclidean space IRr , where 



9.2 Cylindrical algebraic decomposition 207 

r is the number of variables occurring in the given formula <P, into patches for 
which the validity of <P can be checked by simply inspecting particular points. 

Definition 9.2.1. A nonempty connected subset of JRr is called a region. A 
decomposition D of a subset X of JRr is a finite collection D = (DI, ... , D/1) 
of disjoint regions whose union is X. An element of a decomposition is called 
a cell of the decomposition. A sample point for a cell of a decomposition is a 
point belonging to that cell. A sample of a decomposition D = (DI, ... , D/1) 
is a tuple s = (Sl, ... , s/1) such that Si E Di for I ::s i ::s fl. 

Let A be a set of integral polynomials in r variables. A decomposition D 
of JRr is A-invariant iff every polynomial pEA is sign-invariant on every cell 
of D, i.e., is either positive, negative, or zero on the whole cell. 

If A is a set of integral polynomials, the decomposition D is A-invariant, 
and s is a sample for D, then the sign of a particular polynomial pEA on a 
particular cell C in D can be determined by evaluating p at the sample point 
corresponding to C. Exact computation is essential. 

Definition 9.2.2. A standard quantifier-free formula <P (XI, ... , xr) containing 
just the free variables XI, ... , Xr is a defining Iormula for the subset X of 
JRr iff X is the set of points in JRr satisfying <p. A standard definition of the 
decomposition D = (DI, ... , D/1) is a sequence (<PI, ... , <P/1) such that, for 
1 ::s i ::s fl, <Pi is a standard quantifier-free defining formula for Di· 

The validity of a standard formula <P can be effectively decided once we 
have a {<p }-invariant decomposition of the appropriate space, which is algebraic, 
i.e., the cells of the decomposition are defined by polynomial equations or in
equalities, and also the corresponding sample points are algebraic. Furthermore, 
it is also convenient to construct such a decomposition recursively, starting from 
a decomposition of the real line. For this purpose Collins introduced the notion 
of a cylindrical algebraic equation. 

Definition 9.2.3. The cylinder over a region R, written Z(R), is R x JR. A section 
of Z(R) is a set S of points (al, ... ,ar,I(al, ... ,ar)), where (al, ... ,ar) 
ranges over R, and I is a continuous real-valued function on R. So S is the graph 
of I and it is also called the I -section of Z (R). A sector of Z (R) is a set T of 
points (aI, ... , ar, b), where (aI, ... , ar) ranges over R and II (aI, ... , ar) < 
b < h(al, ... , ar) for continuous, real-valued functions II < h on R. The 
constant functions II = -00 and h = +00 are allowed. T is also called the 
(fl, h)-sector of Z(R). 

Continuous, real-valued functions II < ... < Ib k ::: 0, defined on a 
region R, together with 10 = -00 and Ik+1 = +00, naturally determine a de
composition of Z(R) consisting of the (Ii, .fi+d-sectors of Z(R) for ° ::s i ::s k, 
and the Ii -sections of Z (R) for 1 ::s i ::s k. Such a decomposition is called the 
stack over R determined by the functions II, ... , Ik. 

A decomposition D of JRr is cylindrical if either 
a. r = 1, and D = (DI, ... , D2v+]), where J} = ° and DI = JR, or J} > 0 



208 Quantifier elimination 

and there exist real numbers al < a2 < ... < a v such that DI = (-00, ad, 
D2i = {ad for 1 ::::: i ::::: v, D 2i + 1 = (ai, ai+]) for 1 ::::: i < V, D2v+1 = (a v, (0); 
or 

b. r > 1, and there is a cylindrical decomposition D' = (DI, ... , D/1) of 
lRr~1 such that D = (Dl,l, ... , DI.2vl+I, ... , D/1.I, ... , D/1, 2vl'+d and for each 
1 ::::: i ::::: fL the decomposition (Di.l,"" Di,2 vi+]) is a stack over Di . D' is 
unique and is called the induced cylindrical decomposition of lRr~l. If D is 
determined by algebraic functions fl' ... , fko then it is a cylindrical algebraic 
decomposition (cad). 

A sample s = (SI, ... , s/1) of a cad D = (DI, ... , D/1) is algebraic in case 
each Si is an algebraic point. The sample S is cylindrical if either (1) r = 1 
or (2) r > 1 and there is a cylindrical sample s' = (S], ... , s/1) of a cad 
D' of lRr~1 such that S = (SI,I, ... , SI, 2v l+I, ... , S/1,I, ... , s/1, 2vl'+]) and the 
first r - 1 coordinates of Si.} are, respectively, the coordinates of Si, for all 
1 ::::: i ::::: fL, 1 ::::: j ::::: 2Vi + l. A sample that is both cylindrical and algebraic is 
called a cylindrical algebraic sample (cas). 

Example 9.2.1. Let al < a2 < a3 be the three different real roots of the poly
nomial f(x) = lOx 3 - 20x2 + lOx - l. al ~ 0.13, a2 ~ 0.59, a3 ~ l.28, see 
Fig. 9. So if we let DI = (-00, al), D2 = {al}, D3 = (aI, a2), D4 = {a2}, 
Ds = (a2, a3), D6 = {a3}, D7 = (a3, (0), then D = (DI, ... , D7) is a cylindri
cal algebraic decomposition of lR I. Let fl (x) and h (x) denote the greater and 
the smaller solutions, respectively, of the algebraic equation x 2 + l = (3/2)2 
in the cylinder over D3. Let hex) and f4(X) denote the greater and the smaller 
solutions, respectively, of the algebraic equation x 2+ l = (3/2)2 in the cylinder 
over Ds. Then fl' h determine a stack (D3,1, D3,2, D3.3, D3,4, D3,S) over D3, 
and similarly 13, f4 determine a stack (Ds, I, DS,2, DS,3, DS.4, Ds,s) over Ds· 

~l 

y 
2 

~l 

~2 

Fig. 9 

DIX~ 
X 

2 ~l 

y 
2 D2X~ 

D D4X~ D6X~ 
3,~ 

D3,4 

D 3,3 DS,3 D7X~ 

0 
x 

1 2 

~l DS,2 

D 3,2 

D3 ; Ds,i 

~2 

Fig. 10 



9.2 Cylindrical algebraic decomposition 

So a possible cylindrical algebraic decomposition of JR.2 is 

D = (DI X JR. , 

D2 X JR. , 

D3.1,· .. , D3.5 , 

D4 X JR. , 

D 5. 1, ... , D5.5 , 

D6 X JR. , 

D7 x JR.) . 

As a cylindrical algebraic sample of D we can take for instance 

s = ((-1,0) , 

(al,O) , 

0/2, -3/2), 0/2, -V2), 0/2,0),0/2, V2)' 0/2, 3/2) , 

(a2,0) , 

(1, -3/2), (1, -J"S/2), (1,0), (I, J"S/2), (1,3/2) , 

(a3,0) , 

(2,0» . 

209 

See Fig. 10. For instance, </>5,3 == f (x) < 0 /\ x > 1/2 /\ x 2 + l < (3/2)2 is a 
defining formula for the cell D5,3. 

The top-level algorithm for solving the quantifier elimination problem by 
cylindrical algebraic decomposition is given in QE. 

Algorithm QE(in: </>*; out: 1/1*); 
[</>* == (Qk+IXk+l) ... (Qrxr )</>(XI, ... , x r ) is a standard prenex formula, where 
o :::: k :::: r, Qi is either V or :3 for all k + 1 :::: i :::: r, and </> is quantifier-free. 
1/1* is a standard quantifier-free formula equivalent to </>*.] 
l. from </>* extract k and the set A of distinct nonzero polynomials occurring 

in </>; 
2. apply the algorithm CAD for cylindrical algebraic decomposition to A and k, 

obtaining s, a cas for an A -invariant cad D of JR.r, and 1/1, a standard definition 
of the cad D' of JR.k induced by D if k > 0 or ( ) if k = 0; 

3. construct 1/1* from 1/1 and s by evaluating the polynomials in A at the sample 
points in s; 
return. 

Step (2) of QE needs some further description. The algorithm for computing 
a cylindrical algebraic decomposition, given the input A = (al,"" am) and k, 
proceeds in three phases: the projection phase, the base phase, and the extension 



210 Quantifier elimination 

phase. In the projection phase, if r ~ 2, a set A(r-I) = proj(A) (projection of A) 
of polynomials in r - I variables is computed, such that 

(E) for every proj(A)-invariant cad D' of IRr - 1 there is an A-invariant cad D of 
IRr that induces D', i.e., D' can be extended to a cad of IRr. 

This projection process is applied to proj(A) recursively until univariate poly
nomials are reached, i.e., we successively determine sets A (r) = A, A (r-I), ... , 
A (I) of polynomials in r, r -I, ... , I variables, respectively. In the base phase we 
determine an A (1) -invariant cad of IR I. Finally, in the extension phase, an A (i)_ 

invariant cad D(i) is extended to an A(i+I)-invariant cad D(i+I) for I :s i < r. 

Let us take a closer look at the projection process. We treat only the case 
r = 2, i.e., we start out with polynomials in 2 variables, say in Z[x, y]. Using 
the algorithms developed in previous chapters, we can assume that the elements 
of A = A (2) are all squarefree and relatively prime. Observe that an { ... , /1 . 

12· .. /m, ., .J-invariant cad is also { ... , /1 . /l··· 1::, ... J-invariant, and an 
{ ... , /1, 12, g, .. . }-invariant cad is also { ... , /1' g, 12· g, .. . }-invariant. 

Theorem 9.2.1. Let A = {al, ... , am} be a set of squarefree and relatively 
prime polynomials in Z[x, y]. Then the set 

proj(A) = {lc,,(ai) II :s i :s m} U 

{discr,,(ai) I I :s i :s m} U 

{res,,(ai,aj) 11:s i < j:s m} 

of univariate polynomials in Z[x] satisfies the condition (E), i.e., is a suitable 
projection. 

Proof Let B := proj(A). Let D be a B-invariant cad of IRI. (E) will be satisfied 
if we can show that for each I-dimensional cell C of D 
a. each polynomial ai has a constant number of real roots over C, and 
b. in the cylinder over C the curves given by the real roots of the polynomials 

in A do not intersect. 
Let C = (aj' aj+d be such a I-dimensional cell of D (aj could be -00 

and aJ+ I could be +00). There are only two possibilities for the number of real 
roots of ai changing over C, namely a real root could go to infinity, i.e., ai has 
a pole at some Xo in (ai, ai+d, or a pair of real roots could become complex. 
For ai (x, y) to have a pole at xo, the leading coefficient of ai must vanish at xo, 
i.e., lc,,(ai)(xo) = O. But lc,,(ai) E proj(A), so there can be no root of lc,,(ai) 
inside· C. If a pair of real roots of ai (x, y) vanishes over C, there must· be a 
point Xo in C over which ai (xo, y) has a multiple root. But any such Xo is a 
root of discr" (ad, so there can be no such point inside C. Thus, (a) is satisfied. 

If two curves given by real roots of polynomials ai, aj E A would inter
sect over C, then these curves could be given by different roots of the same 
polynomial, i.e., i = j, or by roots of different polynomials. In the first case 
there would be a root of discry (ai) inside C, which has been already excluded 



9.2 Cylindrical algebraic decomposition 211 

by the reasoning above. In the second case, ai(XQ, y) and aj(xQ, y) would have 
a nontrivial gcd. So there would be a root of res." (ai, aj) inside C, which is 
impossible because all the resultants of polynomials in A are in B. Thus, also 
(b) is satisfied. D 

The size of the set of polynomials as well as the coefficients of these poly
nomials grow considerably in the projection step. In the general case (n > 2) 
the computation of projections is even more complicated, involving certain sub
resultant coefficients of the polynomials in A. For the details we refer to Collins 
(1975) and Arnon et al. (1984a). Improvements of the projection operation are 
described in McCallum (1988, 1993) and Hong (1990). 

Now we can give an outline of the algorithm for computing cads. 

Algorithm CAD(in: A, k; out: s, 1/J); 
[A c Z[Xl, ... , xr ] (finite), 0 :::=: k :::=: r; 
s is a cas for some A-invariant cad D of ]Rr, and 1/J is a standard definition of 
the cad D* of]Rk induced by D if k > 0, and 1/J = ( ) if k = 0.] 
1. [r = 1] If r > 1 then go to (2); 

isolate the real roots aI, ... ,all of the irreducible factors of the nonzero 
elements of A; 
construct a cas s for an A-invariant cad D; 
if k = 0 then set 1/J := ( ); 
otherwise, if n = 0, set 1/J := "0 = 0"; 
otherwise use the signs of the polynomials in A in the cells of D to construct 
a standard definition 1/J of D (this might require an "augmented projection") 
and 
return; 

2. [r > 1] if k = r then set k' := k - 1, otherwise set k' := k; 
call CAD recursively with the input proj(A) and k', obtaining outputs s' 
and 1/J'; 
1 t' (' ')' (' '). e s = sl' ... ,sp ,Sj= Sj.l, ... ,Sj.r~I' 

construct a cas S for an A-invariant cad D of]Rr by isolating the real roots 
of a(sj.l"'" sj.r~l' xr ) for every a E A and I :::=: j :::=: p; 
if k < r then set 1/J := 1/J', otherwise use the real roots of the derivations of 
the polynomials a (s)' l' ... ,s' ~ l' X r ) to extend 1/J' to a standard definition . ).r 
1/J of D; 
return. 

Example 9.2.2. We apply the algorithm QE to the formula 

¢* == (3y) (x2 + i - 4 < 0 /\ i - 2x + 2 < 0) , 

i.e., we determine a quantifier-free formula 1/J* in x which is equivalent to ¢*. 



212 Quantifier elimination 

In step (1) we set k = 1 and A = {yZ + x 2 - 4, yZ- 2x + 2}. In step (2) 
the algorithm CAD is called with the inputs 

A = {i + x 2 - 4, i - 2x + 2}, k = 1 . 
'-v--' ~ 

The number of variables in A is 2, so step (2) of CAD is executed. Computing 
proj(A) according to Theorem 9.2.1 we get 

proj(A) = {I, 4x2 - 16, -8x + 8, (_x 2 - 2x + 6)2} . 

W.l.o.g. we can make the polynomials in the projection squarefree and relatively 
prime. We can also scale them and eliminate constants. This results in the 
simplified projection set 

B = proj(A) = {x 2 + 2x - 6, x 2 - 4, x-I} . 
~ '-v-"' ~ 

So CAD is called recursively with the inputs Band 1. Now r = 1, i.e., we are 
in the base phase, and the real roots of the polynomials in Bare 

-I - -/7 < -2 < 1 < -I + -/7 < 2. 

A cas for a B-invariant cad of JR.I is 

t = (-4, -1 - -/7, -3, -2,0,1,3/2, -1 + -/7, 9/5, 2, 3) 

and a standard definition of this cad is 

1jf == ( b l > 0 !\ b2 > 0 !\ b3 < 0, 
bl < 0 !\ b2 > 0 !\ b3 < 0, 
bl < 0 !\ b2 < 0 !\ h < 0, 
bl < 0 !\ b2 < 0 !\ b3 > 0, 
b l > 0 !\ b2 < 0 !\ b3 > 0, 
bl > 0 !\ hz > 0 !\ b3 > 0 ) . 

That finishes the recursive call of CAD. 

bl = 0 !\ b2 > 0 !\ b3 < 0, 
bl < 0 !\ b2 = 0 !\ b3 < 0, 
b l < 0 !\ b2 < O!\ h = 0, 
b l = 0 !\ b2 < 0 !\ b3 > 0, 
bl > 0 !\ b2 = 0 !\ b3 > 0, 

The extension of t to a cas for an A-invariant cad of JR.2 yields 



9.2 Cylindrical algebraic decomposition 

s = ( (-4,0) , 

(-1 - J7, 0) , 

(-3,0) , 

(-2, -1), (-2,0), (-2,1) , 

(0, -3), (0, -2), (0,0), (0,2), (0,3) , 

(1, -2), (1, -v'3), (1, -1), (1,0), (1,1), (1, v'3), (1,2) , 

(3/2, -2), (3/2, -J7 /2), (3/2, -6/5), (3/2, -1), (3/2, 0) , 

(3/2,1), (3/2,6/5), (3/2, J7/2), (3/2,2) , 

(-1 + J7, -2), (-1 + J7, -a), (-1 + J7, 0), (-1 + J7, a) , 

(-1 + J7, 2) , 

(9/5, -2), (9/5, -fJ), (9/5, -1), (9/5, -v'I9/5), (9/5,0) , 

(9/5, v'I9/5), (9/5,1), (9/5, fJ), (9/5,2) , 

(2, -2), (2, -J2), (2, -1), (2,0), (2, 1), (2, J2), (2,2) , 

(3, -3), (3, -2), (3,0), (3,2), (3,3) ) , 

213 

where a = ..fiJ.j7 - 2, fJ = 2..fi/-/5 (see Fig. 11). Further, k < r, so 1/f does 
not have to be extended. That finishes the call of CAD. 

In step (3) of QE the polynomials in A are evaluated at the sample points 
in s. 'Only the cylinders over the cells defined by 1/f7, 1/f8, and 1/f9 contain sample 
points that satisfy Q] < 0 and Q2 < O. Thus, a standard quantifier-free formula 
equivalent to ¢* is 

1/f * == 1/f7 V 1/f8 V 1/f9 . 

In Fig. 11 the set of zeros of the polynomials in A is shown, the sample 

y 
4 

2 

~~~~_~2~~~O~~~~~~4X 

~2 
~ Fig. 11 



214 Quantifier elimination 

points for JR 1 are indicated as lines parallel to the y-axis and the sample points 
for JR2 as dots. 

As is obvious from the above example, efficiency can be gained by combin
ing neighboring cells, in which the polynomials involved have the same signs, 
into clusters of adjacent cells. Only One sample point is necessary for the whole 
cluster. 

In Collins (1975) a complexity analysis of the quantifier elimination algo
rithm based On cylindrical algebraic decomposition is given. The complexity 
turns out to be 

2 22r+8 2'+6 d3 
(n) m a , 

where m is the number of polynomials occurring in the input formula ¢*, n is 
the maximum degree of these polynomials, d is the maximum length of any 
integer coefficient of these polynomials, and a is the number of occurrences of 
atomic formulas in ¢*. 

9.3 Bibliographic notes 

For a thorough introduction to the theory of real algebraic geometry and semi al
gebraic sets we refer to Bochnak et al. (1987). An introduction to Collins's CAD 
algorithm can be found in Collins (1976), Arnon et al. (1984a), Hong (1993) and 
Mishra (1993). Collins (1996) includes an account of the historical development 
of cylindrical algebraic decomposition for quantifier elimination. 

For adjacency and clustering of cells in decompositions we refer to Arnon 
et al. (1984b) and Arnon (1988). A further practical speed-up of the CAD algo
rithm is reported in Collins and Hong (1991). The complexity of deciding the 
theory of real closed fields is investigated in Davenport and Heintz (1988) and 
Renegar (1992a-c). 

Some recent developments are contained in Caviness and Johnson (1996) 
and Jacob et al. (1994). 



10 Indefinite summation 

10.1 Gosper's algorithm 

The problem of indefinite summation is very similar to the problem of indefi
nite integration, in fact, we can somehow think of it as a discrete analogon to 
the integration problem. Whereas in integration we start out with a continuous 
function f(x) and want to determine another function g(x) such that 

J f(x) dx = g(x) and therefore jb f(x) dx = g(b) - g(a) , 

in indefinite summation we are given a sequence (a" )nEN and we want to deter
mine another sequence (sn )nEf'1o (in which the function symbol L is eliminated) 
such that any partial sum of the corresponding series can be expressed as 

nI' 

t a" = sm2 - Sill [ -I . 
11=1111 

Of course we expect that the existence of algorithmic solutions for this indefinite 
summation problem will depend crucially on the class of functions that we take 
as input and possible output. 

A hypergeometricfunction fez) is a function from C to C that can be written 
as 

for some ai, bj E C. aii denotes the rising factorial of length n, i.e., 

an = a(a + 1)··· (a + n - 1) . 

The class of hypergeometric functions includes most of the commonly used 
special functions, e.g., exponentials, logarithms, trigonometric functions, Bessel 
functions, etc. Hypergeometric functions have the nice property that the quotient 
of successive terms fnlfn-I is a rational function in the index n. Conversely, 
up to normalization, any rational function in n can be written in this form. This 
fact gives rise to the notion of hypergeometric sequences. 



216 Indefinite summation 

Definition 10.1.1. Let K be a field of characteristic O. A sequence (an)No of 
elements of K is hypergeometric iff the quotient of successive elements of the 
sequence can be expressed as a rational function of the index n, i.e., there are 
polynomials u(x), v(x) E K[x] such that 

an u(n) 
for all n EN. 

an-l v(n) 

R. W. Gosper (1978) presented an algorithmic solution of the summation prob
lem for the class of hypergeometric sequences, i.e., both (an)nEN and (Sn)nENo 
are hypergeometric in n. We will describe Gosper's algorithm. 

So let us assume that we are given a hypergeometric sequence (an)nEN over 
the computable field K of characteristic O. We want to determine a hypergeo
metric sequence (Sn)nENo over K such that 

m 

Lan = Sm - So for all m E No . 
n=l 

Clearly such an (Sn)nENo is determined only up to an additive constant. If 
(Sn)nENo exists, then it must have a very particular structure. 

Lemma 10.1.1. Every rational function u(n)/v(n) over K can be written in the 
form 

u(n) p(n) . q(n) 

v(n) p(n - 1) . r(n) 

where p, q, r are polynomials in n satisfying the condition 

gcd(q(n), r(n + j» = 1 for all j E No . (10.1.1) 

Proof We determine p, q, r by a recursive process of finitely many steps. Ini
tially set 

p(n) := 1, q(n) := u(n), r(n) := v(n) . 

Let R(j) = resn(q(n), r(n + j». The condition (10.1.1) is violated for j* 
E No if and only if R(j*) = O. If R(j) has no roots in No then the process 
terminates and we have p, q, r of the desired form. Otherwise let j* be a root 
of R(j) in No. We redefine p, q, r according to the formula 

g(n) := gcd(q(n), r(n + j*» , 

j*-l q(n) 
p(n) := p(n) fl g(n - k), q(n):=-, 

k=O g(n) 

r(n) 
r(n):= --

g(n - j*) 

It is easy to see that the new p, q, r are again a representation of the given 



10.1 Gosper's algorithm 217 

rational function, i.e., 
u(n) p(n) . q(n) 

v(n) p(n - 1) . r(n) 

The process terminates because in every step the degree of q is decreased. 0 

Example 10.1.1. Let us represent the rational function 

n2 - 1 
a(n) = n2 + 2n 

as in the theorem. Initially we let 

p(n) = 1, q(n) = n2 - 1, r(n) = n2 + 2n . 

resn(q(n), r(n + j)) = resn(n2 - 1, n2 + (2j + 2)n + / + 2j) = / + 4j3 + 
2/ - 4j - 3. The only non-negative integral root of the resultant is j* = 1. So 
in the first iteration we get 

g(n) = gcd(q(n), r(n + 1)) = n + 1 , 

p(n) = 1 . (n + 1) = n + 1 , 

q(n) = (n2 - 1)/(n + 1) = n - 1 , 

r(n) = (n2 + 2n)/n = n + 2 . 

Now resn(q(n), r(n + j)) = j + 3. This resultant has no non-negative integral 
root, so the process terminates. 

Definition 10.1.2. If a(n)/b(n) is a rational function over K and p(n), q(n), r(n) 
are as in Lemma 10.1.1, then we call (p, q, r) a regular representation of a/b. 

Theorem 10.1.2. Let (an)nEN be a hypergeometric sequence over K and (p, q, r) 
a regular representation of an / an -I. If 

n 

(Sn)nENo' where Sn = Lam, 
i=1 

is hypergeometric, then 

q(n + 1) 
Sn = ·an · f(n) 

p(n) 

for a polynomial f(n) satisfying the condition 

p(n) = q(n + 1) . f(n) - r(n) . f(n - 1) . (10.1.2) 



218 Indefinite summation 

Proof Assume (Sn)nENo to be hypergeometric. Obviously we have 

an = Sn - Sn-I for all n EN. 

Let 
pen) 

fen) '- S 
.- n' q(n + 1) . an 

Substituting (10.1.3) in (10.1.4) we get 

pen) pen) 
fen) = q(n + 1) Sn - Sn-I q(n + 1) . 1 - ~ 

SII 

(10.1.3) 

(10.1.4) 

So we see that fen) is certainly a rational function in n. Substituting an appro
priate version of (10.1.4) in (10.1.3) we derive 

q(n + 1) q(n) 
an = . an . fen) - . an-I' fen - 1) . 

pen) pen - 1) 

Multiplying this by p(n)/an and using the fact that (p, q, r) is a regular repre
sentation of an/an-I, we get 

pen) = q(n + 1) . fen) - r(n) . fen - 1) , 

i.e., the rational function f (n) satisfies the condition (10.1.2). What remains to 
be shown is that f(x) is really a polynomial. This is proved in Lemma 10.1.3. 

D 

Lemma 10.1.3. With the notation of Theorem 10.1.2, the rational function f (n) 
is a polynomial. 

Proof Suppose 

c(n) 
fen) = den) with deg(d) > 0 and gcd(c(n), den)) = 1 . 

Then (10.1.2) can be written as 

den) . den - 1) . pen) = c(n) . den - 1) . q(n + 1) 

- den) . c(n - 1) . r(n) . 

Let j be the greatest integer such that 

gcd(d(n), den + j)) = g(n) =1= 1 . 

(10.1.5) 

(10.1.6) 



10.1 Gosper's algorithm 219 

Clearly j exists and is non-negative. So 

gcd(d(n - 1), den + j» = 1 (10.1.7) 

and because of g(n)ld(n + j) 

gcd(d(n - 1), g(n» = 1 . (10.1.8) 

Substitution of n - j - 1 for n in (10.1.6) yields 

gcd(d(n - j - 1), den - 1)) = g(n - j - 1) i= 1 . (10.1.9) 

Substitution of n - j for n in (10.1.7) yields gcd(d(n - j - 1), d(n» = 1, 
and since g(n - j - 1)ld(n - j - 1) we get 

gcd(g(n - j - 1), den)) = 1 . (10.1.10) 

Now let us divide (10.1.5) by both g(n) and g(n - j -1). Because of (10.1.6) 
g(n) divides den), and because of (10.1.8) and the fact that c and d are relatively 
prime we have that g(n) does not divide den - 1) and c(n). Therefore, g(n)1 
q(n + 1) and consequently 

g(n - 1)lq(n) . (10.1.11) 

Similarly, using (10.1.9) and (10.1.10) we derive g(n - j - 1)lr(n) and conse
quently 

g(n - 1)lr(n + j) . (10.1.12) 

So j is a non-negative integer such that g(n - 1)1 gcd(q(n), r(n + j», and 
therefore 

gcd(q(n), r(n + j)) i= 1 , 

in contradiction to (p, q, r) being a regular representation of an/an-I. Thus, the 
denominator den) must be constant. D 

The only remaining problem in the determination of Sn is to find a polynomial 
solution I(n) of Eq. (10.1.2). Obviously we could decide the existence of I 
and also, provided I exists, compute such an I by a system of linear equations 
on its coefficients, if we had a degree bound for the solutions of (10.1.2). 

Theorem 10.1.4. Let (p, q, r) be a regular representation of an/an-I. Let /+ := 
deg(q(n+ 1)+r(n», /- := degiq(n+ 1)-r(n». Then the degree of any solution 
of (10.1.2) is not greater than k, where 
a. for Z+ :::: Z-: 

k = deg(p(n)) - deg(q(n + 1) - r(n», 
b. for /+ > /-: 

k = max{ko, deg(p(n) - deg(q(n)) + I}, if 



220 Indefinite summation 

ko = (-I+coeff(q, 1+) - coeff(q, 1+ - 1) + coeff(r, 1+ - l))/coeff(q, 1+) 
E Z, and 

k = deg(p(n)) - deg(q(n)) + 1, otherwise. 

Proof Let us replace (10.1.2) by the equivalent condition 

f(n) + f(n - 1) 
p(n) = (q(n + 1) - r(n)) . 2 

+ (q(n + 1) + r(n)) . f(n) - f(n - 1) . 
2 

We have (assuming the notation deg(O) = -1) the relation 

deg(j(n) + f(n - 1)) = 1 + deg(j(n) - f(n - 1)) . 

(10.1.2') 

a. Assume deg(q(n + 1) + r(n)) ::: deg(q(n + 1) - r(n)) =: I. Sup Rose k 
is the degree of a solution f of (10.1.2'), i.e., f(n) = qnk + O(nk- ), and 
f(n - 1) = qnk + O(nk- l ), where q #- O. From (10.1.2') we get 

p(n) = (q(n + 1) - r(n)) . (qnk + O(nk- l )) + (q(n + 1) + r(n)) . O(nk- l ) , 

and therefore 
p(n) = c· qnk+1 + O(nk+I-I) , 

where c = 1c(q(n + 1) - r(n)). By comparison of the degrees of both sides of 
this equation we get k = deg(p(n)) -I. 

b. Assume 1 := 1+ = deg(q(n + 1) + r(n)) > deg(q(n + 1) - r(n)) = 1-. 
In this case deg(q(n)) = deg(r(n)) = I, so q(n) = qlnl + O(nl- l ) and r(n) = 
rlnl + O(nl - l ), where ql = rl #- O. We set 

and therefore 

Substituting this into (10.1.2') we get 

p(n) = (q(n + 1) - r(n)) . (qnk + O(nk- I )) 

+ (q(n + 1) + r(n)) . (~qnk-l + O(nk- 2)) 

= (ql(n + 1)1 + ql_1 (n + 1)/-1 - rlnl - rl_Inl - 1 + O(nl- 2)) . 

. (qnk + O(nk- I )) 

+ (qlnl + rlnl + O(nl- I )) . (~cknk-l + O(nk- 2)) 



10.1 Gosper's algorithm 

= (qlnl + qllnl - 1 + ql_lnl - 1 - rlnl - rl_lnl- 1 + O(nl - 2») . 

. (qnk + O(nk- I») 

+ (qln l +rlnl + O(nl - I»). (~qnk-I + O(nk- 2») 

= (qll + ql_1 - rz-I + ~(ql + rl») . qnk+I - 1 + O(nk+I-2) . 
, I 

L(k) 

Let ko be the root of the linear equation L(k) = 0, i.e., 

So we get the bound 

k = {maX{ko, deg(p(n» -l + I} 
deg(p(n» -l + 1 

if ko E Z, 
otherwise. 

221 

o 

Combining all these facts we have an algorithm for computing (Sn)nENo such 
that 

n 

Lai = Sn - So for all n EN. 
i=l 

We get the sequence of partial sums after normalizing to (sn - SO)nENo' Now 
we are ready for stating Gosper's algorithm for summation of hypergeometric 
sequences. 

Algorithm SUM_G(in: (an)nEN; out: (Sn)nENo, FLAG); 
[(an)nEN is a hypergeometric sequence over K; 
if the sequence of partial sums is hypergeometric then FLAG = "hypergeometric" 
and Sn = L7=1 ai for n E No, and if the sequence of partial sums is not 
hypergeometric then FLAG = "not hypergeometric".] 
1. FLAG:= "hypergeometric"; 
2. if an == ° then {sn := 0; return}; 
3. [regular representation] 

p(n) := 1; q(n) := numerator of an/an-I; r(n) := denominator of an/an-I; 
while resn(q(n), r(n + j) has a non-negative integral root do 

{j* := a non-negative integral root of resn(q(n), r(n + j); 
g(n) := gcd(q(n), r(n + j*»; 

'. I p(n) := p(n) f1f=~ g(n - k); q(n) := q(n)/g(n); r(n) .- r(n)/g(n 
- j*)}; 

4. [degree bound for f] 
l+ := deg(q(n + 1) + r(n»; l- := deg(q(n + 1) - r(n»; 
if l+ ::: [-
then k := deg(p(n» -l-
else {ko := (-[+ ql+ - ql+-I + '/+-1) / ql+; 



222 

ifkoEZ 
then k := max{ko, deg(p(n» -1+ + I} 
else k := deg(p(n)) -1+ + I }; 

if k < 0 then {FLAG := "not hypergeometric"; return}; 
5. [determination of f] 

Indefinite summation 

determine a polynomial f (n) satisfying p (n) = q (n + 1) f (n) - r (n) f (n - 1) 
and of degree::::: k by solving a system of linear equations over K for the 
indeterminate coefficients of fen) = Cknk + ... + co; 

6. [combination of partial results] 
s~ := q(n + 1) . an' f(n)/p(n); 
S . s' s'· n·= n - 0' 
return. 

Example 10.1.1 (continued). We want to solve the summation problem for the 
series 

(Xl 1 

L 2 2 
n=1 n + n 

'-v-" 
all 

over (Q. (n+ 1, n-l, n+2) is a regular representation of an/an-I. 1+ = 1,1- = 0, 
ko = 2. So as a bound for fen) = qnk + ... + Co we get k = 2. Now we have 
to determine C2, C1, Co such that 

The corresponding linear system in C2, CI, Co has the solutions 

Co =)., 
5 +6), 

C1 =-4-' 
3 +2), 

C2=--
4 

for any). i= O. So we get (for). = 0) 

3n2 + 5n 
fen) = 4 

Therefore the sequence of partial sums is hypergeometric and in fact 

n 1 3n2 + 5n 

Sn = i~ n 2 + 2n = 4(n2 + 3n + 2) . 

Example 10.1.2. We want to solve the summation problem for the series 

(Xl 

Ln· xn (i.e., an = n . xn) 
n=1 

over Q(x). an/an-I = n . x/en - 1) is a rational function in n, so the sequence 



10.1 Gosper's algorithm 223 

(an)nEN is hypergeometric. In step (3) of SUM_G we start with the representation 
pen) = 1, q(n) = n·x, r(n) = n-1. j* = 1 is a root of resn (q(n), r(n+ j». The 
updating process yields the regular representation pen) = n, q(n) = x, r(n) = 1. 
The degrees 1+ and 1- in step (4) are equal, so we get the degree bound k = 1. 
Comparing coefficients of like powers in 

we get 

1 
Cl=--, 

x-I C2 = (x - 1)2' i.e., 
1 1 

fen) = x-I n - (x - 1)2 

Setting s~ := x . (n . xn) . f(n)/n = (1/(x - 1)2) . (n· x n+2 - (n + 1) . xn+l) 
and normalizing to Sn := s~ - sb, we finally arrive at the formula 

n n n . x n+2 - (n + 1) . xn+l + X 
Sn = L:n . x = ----~-~----

;=1 (x - 1)2 

for the partial sum. 

Exercises 

1. Apply Gosper's algorithm for solving the summation problem for the series 

00 nj':: b/ + cj + d 
L nn b·2 . 
n=] j=]:J + C:J + C 

all 

2. Are there hypergeometric solutions for the following summation problems? 
"n ·22i a. L..d=] I 

b "n .. , 
. L..d=] I . l. 

c. L~=] (IIi!) 
d "n ., 

• L...i=] I. 

3. What is a good way of determining whether the resultant in step (3) of 
SUM_G has an integral root, and in fact finding one if it exists? 

10.2 Bibliographic notes 

Approaches to the summation problem are discussed in Lafon (1983) and in 
Graham et al. (1994). An extension of Gosper's approach is described in Karr 
(1985). Recently Zeilberger (1990, 1991; Wilf and Zeilberger 1992) has greatly 
advanced the field with his method of creative telescoping based on holonomic 
systems. Results in this direction are also reported in Paule (1993, 1994). For 
an overview of these recent developments we refer to Paule and Strehl (1994). 



11 Parametrization 
of algebraic curves 

11.1 Plane algebraic curves 

Algebraic geometry is the study of geometric objects defined as the zeros of 
polynomial equations. So it is not surprising that many of the techniques in 
algebraic geometry become computationally feasible once we have algorithmic 
solutions for the relevant problems in commutative algebra, i.e., the algebra 
of polynomial rings. We take a look at one particular problem in algebraic 
geometry, the rational parametrization of algebraic curves. For an introduction 
to algebraic curves we refer to Walker (1950) or Fulton (1969). 

Throughout this chapter let K be an algebraically closed field of character
istic O. 

Definition 11.1.1. For any field F, the n-dimensional affine space over F is 
defined as 

An(F) := F n = {(al, ... , an) I ai E F} . 

A 2 (F) is the affine plane over F. 
An affine plane algebraic curve C in A2(F) is the set of zeros of a polynomial 

f(x, y) E F[x, y], i.e., 

f is called a defining polynomial of the curve C. The curve C has degree d, iff 
d is the degree of a defining polynomial of C with smallest degree. The curve 
C is irreducible iff it has an absolutely irreducible polynomial f defining it. 

Obviously a particular curve C can be defined by many different polynomials, 
e.g., the circle is defined by x 2 + y2 - 1, but also by (x2 + y2 - 1)2. Two 
polynomials define the same curve if and only if they have the same squarefree 
factors. So the circle is, of course, a curve of degree 2. In fact, w.l.o.g. we can 
always assume that a defining polynomial is squarefree. 

The problem with affine space is that, for instance, although curves of de
grees m and n, respectively, generally intersect in m . n points (unless they 
have a common component), this might not be true for particular examples. For 
example, two parallel lines do not intersect, a hyperbola does not intersect its 
asymptotic lines. This problem is resolved by considering the curves in pro
jective space. We consider the homogenization f*(x, y, z) of the polynomial 



11.1 Plane algebraic curves 225 

I(x, y) of degree d, i.e., if 

I(x, y) = Id(X, y) + Id-I(X, y) + ... + lo(x, y) , 

where the fi's are forms of degree i, respectively (i.e., all the terms occurring 
in Ii are of the same degree and deg(fi) = i), then 

/*(x, y, z) = /d(x, y) + /d-I (x, y) . z + ... + lo(x, y) . Zd . 

/* is a homogeneous polynomial. For all a E K* we have f*(a, b, c) = 0 {::::::} 
f*(aa, ab, ac) = 0, and I(a, b) = 0 {::::::} f*(a, b, 1) = O. I(a, b, 0) = 
/d(a, b) = 0 means that there is a zero of I "at infinity" in the direction (a, b). 
By adding these "points at infinity" to affine space we get the corresponding 
projective space. 

Definition 11.1.2. For any field F, the n-dimensional projective space over F 
is defined as 

JID"(F) := {(al : '" : an+l) I (ai, ... , an+l) E Fn+1 \ {(O, ... , O)}} , 

where (al : ... : an+I> = {(aal, ... , aan+d I a E F*}. So a point in jp'n(F) 
has many representations as an (n + I)-tuple, since (al : ... : an+d and (aal : 
... : aan+d, for any a E F*, denote the same point P. (al : '" : an+l) are 
homogeneous coordinates for P. jp'2 (F) is the projective plane over F. 

A projective plane algebraic curve C in jp'2(F) is the set of zeros of a 
homogeneous polynomial I(x, y, z) E F[x, y, z], i.e., 

I is called a defining polynomial of the curve C. 

We write simply A2 or jp'2 for A2(K) or jp'2(K), respectively. Whenever 
we have a curve C in A2 defined by a polynomial I(x, y), we can associate 
with it the curve C* in jp'2 defined by f*(x, y, z). Any affine point (a, b) of 
C corresponds to a point (a : b : 1) of C*, and in addition to these points 
C* contains only finitely many points "at infinity," namely with coordinates 
(a : b : 0). These are the zeros of fd, the form of highest degree in f. 

In jp'2 Bezout's theorem holds, which states that if f, g E K [x, y, z] are 
relatively prime homogeneous polynomials, i.e., the projective curves C and 
1) defined by f and g, respectively, do not have a common component, then 
C and 1) have exactly deg(f) . deg(g) projective points in common, counting 
multiplicities. 

Definition 11.1.3. a. Let C be a curve in A2 defined by the polynomial f(x, y). 
Let P = (a, b) be a point on C. P is a simple point on C iff ~~ (P) =F 0 or 



226 Parametrization of algebraic curves 

*(P) =j:. O. In this case the tangent to C at P is uniquely determined as 

af af 
-(P) . (x - a) + -(P) . (y - b) = 0 . 
ax ay 

If P is not simple, i.e., both partial derivatives vanish at P, then P is called 
a multiple point or singularity on C. Let m be such that for all i + j < m the 

partial derivative :~~~~ vanishes at P, but at least one of the partial derivatives 
of order m does not vanish at P. Then m is called the multiplicity of P on C, 
or, in other words, P is an m-fold point on C. In this case the polynomial 

1 am f . . L ~. i . (P)· (x - a)l . (y - b)J 
i+j=ml.J. axayJ 

(11.1.1) 

factors completely into linear factors, the tangents of C at P. An m-fold point 
P on C is ordinary iff all the m linear factors of (11.1.1) are different, i.e., all 
the tangents are different. 

b. Let C be a curve in JPl2 defined by the homogeneous polynomial f (x, y, z). 
Let P = (a : b : c) be a point on C. W.l.o.g. let c = 1 (for the other coordinates 
proceed analogously). P is a simple or multiple point on C depending on whether 
Q = (a, b) is a simple or multiple point on the affine curve defined by f (x, y, 1). 

An irreducible curve has only finitely many singularities. The multiplicity 
of the origin (0, 0) on an affine curve C defined by the polynomial f (x, y) 
is particularly easy to deduce: the multiplicity is the least degree of any term 
occurring in f. The tangents of C at (0, 0) are the factors of the form of least 
degree in f. 

Example 11.1.1. Some plane algebraic curves can be rationally parametrized, 
e.g., the tacnode curve (see Fig. 3) defined by the polynomial 

in A2(C) can be parametrized as 

t3 - 6t2 + 9t - 2 
x (t) = -2t""':'4---16-t73 -+-4-0-t2::----3-2-t -+-9 ' 

t2 - 4t + 4 
y(t) = 2t4 _ 16t3 + 40t2 - 32t + 9 . 

That is, the points on the tacnode curve are exactly the values of (x(t), y(t)) 
for t E C, except for finitely many exceptions. We will see in Sect. 11.2 how 
such a parametrization can be computed. 

Definition 11.1.4. The irreducible affine curve C in A,.2(K) defined by the irre
ducible polynomial f (x, y) is called rational (or parametrizable) iff there are 
rational functions 4>(t), X(t) E K(t) such that 



11.1 Plane algebraic curves 227 

a. for almost all (i.e., for all but a finite number of exceptions) to E K, (</>(to), 
X (to» is a point on C, and 

b. for almost every point (xo, Yo) on C there is a to E K such that (xo, Yo) = 

(</>(to), X (to». 
In this case (</>, X) are called a (rational) parametrization of C. 

The irreducible projective curve C in jp'2(K) defined by the irreducible poly
nomial f (x, y, z) is called rational (or parametrizable) iff there are rational 
functions </>(t), x(t), 1/I(t) E K(t) such that 
a'. for almost all to E K, (</>(to) : X (to) : 1/I(to» is a point on C, and 
b'. for almost every point (xo : Yo : zo) on C there is a to E K such that 

(xo : Yo : zo) = (</>(to) : X (to) : 1/1 (to))· 
In this case (</>, x, 1/1) are called a (rational) parametrization of C. 

Example 11.1.2. An example of a curve which is not rational over C is the 
curve C1, defined by x 3 + y3 = l. Suppose </> = p(t)/r(t), X = q(t)/r(t) is a 
parametrization of C1, where gcd(p, q, r) = l. Then 

Differentiating this equation by t we get 

So p2, q2, r2 are a solution of the system of linear equations with coefficient 
matrix 

(
p q 

p' q' 
-r) , . 
-r 

Gaussian elimination reduces this coefficient matrix to 

o q'r-qr') 

qp'-q'p r'p-rp' 

So 
p2 : q2 : r2 = qr' - rq' : rp' - pr' : pq' - qp' . 

Since p, q, r are relatively prime, this proportionality implies 

Suppose deg(p) :::: deg(q), deg(r). Then the first divisibility implies 2deg(p) 
::: deg(q) +deg(r) -1, a contradiction. Similarly we see that deg(q) :::: deg(p), 
deg(r) and deg(r) :::: deg(p), deg(q) are impossible. Thus, there can be no 
parametrization of C I. 

The rationality problem for an affine curve is equivalent to the rationality 
problem for the associated projective curve. 



228 Parametrization of algebraic curves 

Lemma 11.1.1. Let C be an irreducible affine curve and C* its corresponding 
projective curve. Then C is rational if and only if C* is rational. A parametrization 
of C can be computed from a parametrization of C* and vice versa. 

Proof Let 

x*(t) = VI (t) , 
vz(t) 

1/I*(t) = WI (t) 
wz(t) 

be a parametrization of C*, i.e., f*(l/J*(t), X*(t), 1/I*(t)) = 0, where f(x, y) is a 
defining polynomial of C. Observe that WI (t) =j:. 0, since the curve C* can have 
only finitely many points at infinity. Hence, 

l/J(t) = UI (t)wz(t) , 
UZ(t)WI (t) 

is a parametrization of the affine curve C. 

VI (t)wz(t) 
X(t)=--

VZ(t)WI (t) 

Conversely, a rational parametrization of C can always be extended to a 
parametrization of C* by setting the z-coordinate to 1. D 

A good measure for the complexity of an algebraic curve is the genus of the 
curve. It turns out that exactly the curves of genus 0 are rational. In defining the 
genus and also later in computing a parametrization, we treat only the case in 
which all the singular points of the curve are ordinary. For an algebraic treatment 
of the non-ordinary case we refer to Sendra and Winkler (1991). 

Definition 11.1.5. Let C be an irreducible curve of degree d in ]pz(K) with 
singular points PI, ... , Pn , having the multiplicities rl, ... , r n , respectively. Let 
all these singular points be ordinary points. Then the genus of C is defined as 

n 
genus(C) = H (d - l)(d - 2) - 2:.r; (r; - 1)] . 

;=1 

The genus of an irreducible affine curve is the genus of the associated projective 
curve (if all the singularities are ordinary). 

The genus of C, genus(C), is a nonnegative integer for any irreducible curve 
C. In fact, (d - l)(d - 2) is a bound for 2:.7=1 r;(r; - 1) for any irreducible 
curve. The curves of genus 0 are those curves, which achieve the theoretically 
highest possible count of singularities. These, moreover, are exactly the curves 
which can be parametrized. A proof of this fact can be found in Walker (1950: 
theorem 5.1). So, irreducible conics (curves of degree 2) are rational, and an 
irreducible cubic (curve of degree 3) is rational if and only if it has a double 
point. This, again, shows that the curve in Example 11.1.2 is not rational. 



11.1 Plane algebraic curves 229 

Theorem 11.1.2. An algebraic curve C (having only ordinary singularities) is 
rationally parametrizable if and only if genus(C) = O. 

A projective curve C of degree d is defined by a polynomial of the form 

f(x, y, z) = 
. . k L aijkX' yJ Z . 

i,j,kENo 
i+j+k=d 

(11.1.2) 

C is uniquely determined by the coefficients aijk. and on the other hand the 
coefficients, up to a common factor, determine uniquely the curve C, if we 
distinguish curves having different multiplicities of their respective components, 
i.e., if we assume that, e.g., xy2 and x 2y define different curves. We can identify 
a curve with its defining polynomial (up to a constant factor), i.e., we can view 
the (d + l)(d + 2) /2 coefficients in (11.1.2) as projective coordinates of the curve 
f(x, y, z). Collecting all curves of degree d satisfying an equation of the form 
(11.1.2) we get a projective space pNd, where Nd = (d+li(d+2) - 1 = d(di3). 

Definition 11.1.6. Let pNd be the projective space of curves of degree d as 
introduced above. A linear subspace pn of pNd is called a linear system (of 
curves) of degree d. Such a linear system is determined by m + 1 linearly 
independent curves fo, fl' ... , fm in the system, i.e., every other curve in the 
system is of the form 

m 

LAi!;(X, y, z) . 
i=O 

Let P E p2 be such that all partial derivations of order < r vanish at P, for any 
curve in the linear system pn. Then we call P a base point of multiplicity r of 
the linear system pn . 

Linear systems of curves are often created by specifying base points for 
them. So we might consider the linear subsystem L of pNd having the points 
PI, ... , Ps as base points of multiplicities rl, ... , r s, respectively. A base point 
of multiplicity r implies r(rt 1) linear conditions on the coefficients in the system. 

Example 11.1.3. Let us determine the linear system i of curves of degree 2, 
having 0 = (0 : 0 : 1) as a base point of multiplicity 2, and P = (0 : 1 : 1) as 
a base point of multiplicity 1. 

The full space of curves of degree 2 is 

i.e., an arbitrary such curve has the equation 



230 Parametrization of algebraic curves 

The base point requirements lead to the following linear equations 

a6 = 0 (from f(O) = 0) , 

a4 = 0 (from ~{ ( 0) = 0) , 

a5=0 (from ~~(O)=O), 

a2+a5+a6=0 (fromf(P)=O). 

So L consists of all quadratic curves of the form 

i.e., every curve in L decomposes into the line x = 0 and an arbitrary line 
through the origin. 

Exercises 

1. Can the result of Example 11.1.2 be generalized to xn + yn = 1 and an 
arbitrary algebraically closed field K? Or, if not, for which n and K is the 
corresponding curve irrational? 

2. Can a projective curve have infinitely many points at infinity? What does 
this mean for a defining polynomial? 

3. What is the genus of the affine curve defined by 

f(x, y) = (x 2 +4y + l)2 - 16(x2 + i) ? 

4. Give a linearly independent basis for the system i of Example 11.1.3. 

11.2 A parametrization algorithm 

For this section we assume that K is a computable field of characteristic 0, we 
call it the field of definition. K denotes the algebraic closure of K. The defining 
polynomial of the curve C that we want to parametrize will have coefficients 
in K. The curve C itself, however, is considered to be a curve over K. In 
the parametrization process we might have to extend K algebraically. We w~ll 
ultimately construct a parametrization (if one exists) over some field K (y) ~ K, 
where y is algebraic over K. Of course, we will be interested in keeping the 
degree of y as low as possible. 

Points on algebraic curves occur only in full conjugacy classes. If we choose 
all the points in such a conjugacy class as base points of a linear system, then 
we need no algebraic extension of K for expressing the equation of the linear 
system. 



11.2 A parametrization algorithm 231 

Lemma 11.2.1. Let f(x, y, z) be a homogeneous polynomial in K[x, y, z] 
defining an algebraic curve C in p2(K). Let (a\ (a) : a2(a) : a3(a» be a 
point of multiplicity r on C, a algebraic over K with minimal polynomial 
p(t), and aI, a2, a3 E K[t]. Then for every conjugate {3 of a, also the point 
(a\ ((3) : a2({3) : a3({3» is a point of multiplicity r of C. 

Proof Let g(x, y, z) be a derivative of f(x, y, z) of order i, 0 ::: i < r. Then 
g(a\ (a), a2(a), a3(a)) = 0 if and only if g(a\ ((3), a2({3), a3({3)) = O. So also 
(a\ ((3) : a2({3) : a3({3» is a point of multiplicity r on C. 0 

Definition 11.2.1. If p(t) E K[t] is irreducible and aI, a2, a3 E K[t] with 
p y gcd(a\, a2, a3), then we call 

{ (al (a) : a2(a) : a3(a)) I p(a) = O} 

a family of conjugate algebraic points. 

Lemma 11.2.2. Let L be a linear system of curves of degree d, defined over K. 
Let Pa. = {(al(a): a2(a): a3(a) I p(a) = O} be a family of conjugate algebraic 
points. Then also the subsystem i of L, having all the points in Pa. as base 
points of multiplicity r, is defined over K. 

Proof The linear system L is defined by a polynomial h with some indetermined 
coefficients tj, 

h( ) " m'l m'2 d-m'l-m'2 x,y,z = L-CjtjX /. y /. Z /. /', 
j 

where the Cj' s are in K. We restrict L to the subsystem i having all the points 
in Pa. as base points of multiplicity I by requiring 

h(aj) = 0 for all (3 conjugate to a , 

where h(t) = h(al (t), a2(t), a3(t)). This, however, means that h must be divis
ible by the minimal polynomial p(t), i.e., 

rem(h(t), p(t» = 0 , 

leading to linear conditions on the indeterminate coefficients tj of L. So the 
resulting subsystem i will be defined over K. 

The same idea applies to base points of higher multiplicity. We only have 
to use derivatives of h instead of h. 0 

A parametrization of a curve C is a generic point of C, i.e., of the ideal 
I = (f), where f is a defining polynomial of least degree for C (see van der 



232 Parametrization of algebraic curves 

Waerden 1970). Only prime ideals have a generic point, so only irreducible 
curves can be parametrizable. 

The simplest case of a parametrizable curve C is an irreducible curve of 
degree d having a point P of multiplicity d - 1. Of course, this must be a 
rational point and there can be no other singularity of C. W.l.o.g. we can assume 
that P is the origin 0 = (0,0). Otherwise P can be moved to the origin by a 
linear change of coordinates. Now we consider lines through the origin, i.e., the 
linear system L 1 of curves of degree 1 having 0 as a point of multiplicity 1. 
The equation for L 1 is 

y = tx, 

for an undetermined coefficient t. Intersecting C with an element of L 1 we 
get, of course, the origin as an intersection point of multiplicity d - 1. By Be
zout's theorem, we must (in general) get exactly one more intersection point P 
depending rationally on the value of t. On the other hand, every point on the 
curve C can be constructed in this way. So the coordinates of P are rational 
functions in t, 

These rational functions are a parametrization of the curve C. We give a more 
precise statement in the following lemma. 

Lemma 11.2.3. Let C be an irreducible affine curve of degree d defined by the 
polynomial f(x, y) = fd(X, y) + ... + fo(x, y), having a (d - I)-fold point at 
the origin. Then C is rational and a rational parametrization is 

x(t) = _ !d-l (1, t) 
!d(1,t) , 

!d-l(1,t) 
y(t) = -t· fd(1, t) 

Proof Since the origin is a (d - I)-fold point of C, the defining polynomial f 
is of the form f(x, y) = fd(X, y) + !d-l (x, y), where !d and !d-l are no~
vanishing forms of degree d and d - 1, respectively. Thus, for every to E K, 
with the exception of the roots of !d(1, to), the polynomial f vanishes on the 
point 

On the other hand, for every point (xo, Yo) on C such that Xo =1= 0 and Yo =1= 0 
one has 

d-l( Yo Yo ) Xo XO' fd(1, -) + fd-l(1, -) = 0, 
Xo Xo 

d-l (XO xo) Yo Yo' !d(-, 1) + !d-l(-, 1) = O. 
Yo Yo 



11.2 A parametrization algorithm 

Thus, since Xo #- 0, Yo #- 0, we get 

!d-I (1, l!l.) 
xo = - .. (1 l!l.) , 

Jd 'xo 

Xo 

YO = - .. (:!Q 1) = 
Jd YO' 

/d-I (:!Q, 1) 
Yo 

233 

YO /d-I (1, ~) 

Xo !d(1, ~) 

Therefore the point (xo, YO) is generated by the value yo/ Xo of the parameter t. 
The number of intersections of C and the axes is finite. That concludes the proof. 

o 

Example 11.2.1. Let CI be the affine curve defined by !I(X, y). See Fig. 12. 

!I (x, y) = x 3 + x 2 - i . 
CI has a double point at the origin 0 = (0,0). Intersecting CI by the line y = tx, 
we get the additional intersection point (t2 - 1, t 3 - t). So 

x(t) = (2 - 1, y(t) = t 3 - t 

is a parametrization of CI. 

Rational cubics can always be parametrized in this way. In general, a pa
rametrizable curve will not have this nice property of being parametrizable by 
lines. What we can do in the general situation is to determine a linear system 
of curves L d - 2 of degree d - 2 (or some other suitable degree), having every 
r-fold singularity of C as a base point of multiplicity r - 1. This linear system 
is called the system of adjoint curves or adjoints of C. Then we know that the 
number of intersections of C and a general element of L d- 2 will be 

d(d - 2) = L mp(mp - 1) + (d - 2) , 
PEe , 

=(d-l)(d-2) 

y 

0.5 

Fig. 12 



234 Parametrization of algebraic curves 

where m p denotes the multiplicity of P on the curve C. If we fix d - 3 simple 
points on C and make them base points of multiplicity 1 on L d-2, then there will 
be exactly 1 other intersection point of C and a general element of L d - 2 depend
ing rationally on t. This "free" intersection point will give us a parametrization 
of C as in the case of parametrization by lines. 

Example 11.2.2. Let C2 be the affine curve defined by h(x, y). See Fig. 13. 

C2 has a double point at the origin (0,0) as the only affine singularity. But 
if we move to the associated projective curve q defined by the homogeneous 
polynomial 

we see that the singularities of q are 

o = (0 : 0 : 1), PI,2 = (1 : ±i : 0) . 

PI,2 is a family of conjugate algebraic points on q. All of these singularities 
have multiplicity 2, so the genus of q is 0, i.e., it can be parametrized. We also 
know that the affine curve C2 is parametrizable, from Lemma 11.1.1. 

In order to achieve a parametrization, we need a simple point on Ci. In
tersecting q by the line x = 0, we get of course the origin as a multiple 
intersection point. The other intersection point is 

Q = (0 : -8 : 1) . 

So now we construct the system L 2 of curves of degree 2, having 0, PI,2 and 
Q as base points of multiplicity 1. The full system of curves of degree 2 is of 

y 
2 

-10 Fig. 13 



11.2 A parametrization algorithm 235 

the form 
alx2 + a2i + a3Z2 + a4XY + aSxz + a6YZ 

for arbitrary coefficients ai, ... ,a6. Requiring that 0 be a base point leads to 
the linear equation 

a3 = O. 

We apply Lemma 11.2.2 for making Pl,2 base points of L2. This leads to the 
equations 

a4 = 0, 

al - a2 = 0 . 

Finally, to make Q a base point we have to satisfy 

This leaves exactly 2 parameters unspecified, say al and as. Since curves are 
defined uniquely by polynomials only up to a nonzero constant factor, we can set 
one of these parameters to 1. Thus, the system L 2 depends on 1 free parameter 
al = t, and its defining equation is 

hex, y, Z, t) = tx2 + ti + xz + 8tyz . 

The affine version L~ of L 2 is defined by 

ha(x, y, t) = tx2 + ti + x + 8ty . 

Now we determine the free intersection point of L~ and C2. The non-constant 
factors of resxCh(x, y), ha(x, y, t) are 

y2 , 

y +8, 

(256t 4 + 32t2 + l)y + (2048t 4 - 128t2 ) . 

The first two factors correspond to the affine base points of the linear system 
L 2, and the third one determines the y-coordinate of the free intersection point 
depending rationally on t. 

Similarly, the non-constant factors of resy (f2(x, y), ha(x, y, t» are 

The first factor corresponds to the affine base points of the linear system L 2, 

and the second one determines the x-coordinate of the free intersection point 
depending rationally on t. 



236 Parametrization of algebraic curves 

So we have found a rational parametrization of C2 , namely 

-1024t3 

x(t) = 256t4 + 32t2 + 1 ' 

- 2048t4 + 128t2 

yet) = 256t4 + 32t2 + 1 

In the previous example we were lucky enough to find a rational simple 
point on the curve, allowing us to determine a rational parametrization over the 
field of definition Q. In fact, there are methods for determining whether a curve 
of genus 0 has rational simple points, and if so find one. We cannot go into more 
details here, but we refer the reader to Sendra and Winkler (1994). Of course, 
we can easily find a simple point on the curve having coordinates in a quadratic 
algebraic extension of Q. We simply intersect C2 by an arbitrary line through 
the origin. Using such a point, we would ultimately get a parametrization of C2 
having coefficients in the respective quadratic extension of Q. 

From the work of Noether (1884) and Hilbert and Hurwitz (1890) we know 
that it is possible to parametrize any curve C of genus 0 over the field of defini
tion K, if deg(C) is odd, and over some quadratic extension of K, if deg(C) is 
even. An algorithm which actually achieves this optimal field of parametrization 
is presented in Sendra and Winkler (1994). Moreover, if the field of definition 
is Q, we can also decide if the curve can be parametrized over JR, and if so, 
compute a parametrization over JR. Space curves can be handled by projecting 
them to a plane along a suitable axis (Garrity and Warren 1989), parametrizing 
the plane curve, and inverting the projection. 

Exercises 

1. Let POI be a family of conjugate algebraic points on the projective curve C. 
Prove that all the points in the family have the same multiplicity on C. 

2. Which parametrization of C2 do you get if you use the point Q2 as a base 
point for L 2 in Example 11.2.2? 

11.3 Bibliographic notes 

A computational method for curve parametrization is described in Abhyankar 
and Bajaj (1988). However, the question of algebraic extension of the field 
of definition is not addressed. Schicho (1992) investigates more general linear 
systems for parametrization. 

Sederberg (1986) gives an algorithm for transforming any rational parame
trization into a proper one, traversing the curve only once, roughly speaking. 

An alternat~ve method for parametrization, based on computing a generating 
element p of K (x)[y ]/ (f), the function field of the curve, is presented in van 
Hoeij (1994). 



Solutions 
of selected exercises 

Section 1.3 
1. By inspection. deg(p . q) = deg(p) + deg(q), for non-zero polynomials. 
2. a. Suppose (a + b..;=5)(e + d..;=5) = (ae - 5bd) + (eb + ad)..;=5 = 0 and both 

factors are non-zero. Clearly e = 0 is impossible. From the integral part of the 
equation we get a = 5bd/e. Substituting this into the coefficient of ..;=5, we get 
e2 = -5d2, which is impossible. 

b. For a = a + b..;=5 define the norm N(a) of a by N(a) = lal2 = a2 + 5b2• N 
is multiplicative and non-negative for all a E R. The units ±1 of R are exactly 
the elements of norm 1. Now 

9 = 3 ·3 = (2 + ..;=5) . (2 - ..;=5), 
6 = 2 . 3 = (2 + ..;=5) . (l - ..;=5). 

All these factors are irreducible, since there are no elements of norm 2 or 3. 

Section 2.1 
1. a. Obviously LfJ(a) = LfJ( -a). So let us assume that a > O. LfJ(a) = n if and only 

if f3 n- 1 :s a < f3 n. The statement follows immediately from this relation. 
b. For a > 0 we have logfJ a = logy a .logfJ y. Let e be a positive constant such that 

for all integers a, 1 :s a < y, LfJ(a) :s e· Ly(a). There are only finitely many 
such a, so such a constant obviously exists. Let d := 2 max (logfJ y, 1). Then for 
y :s a 

LfJ(a) = Llogya ·logfJ y J + 1 :s ~ . (logy a + 1) 

:s d . logy a :s d . (Llogy aJ + 1) = d . Ly(a) . 

So for e := max(e, d) we have LfJ(a) :s e· Ly(a) for all a. 
2. We assume an algorithm SIGN for determining the sign of a single digit. We consider 

the following algorithm: 

Algorithm INT_SIGN(in: a (in modified representation); out: sign(a»; 
1. if a = [ ] then {s := 0; return}; 
2. d:= 0; a' := a; 

while d = 0 do {d := FlRST(a'); a' := REST(a')}; 
s := SIGN(d); return. 

For 1 :s k < n there are 2(f3 - 1)2 f3 n- k- 1 integers in lEn, i.e., of length n, for which 
exactly k digits have to be examined. There are 2(f3 - 1) integers in lEn for which 
all n digits have to be examined. Zn has 2(f3 - 1)f3n-1 elements. 



238 Solutions 

Let A denote the constant time for executing step (l), and B the constant time 
for executing one loop in step (2). Then 

tI;'LSIGN(n) = LaEZn tINLSIGN(a)/IZnl = A+B(n,8-n+I+L~:: k(,8_l),8-k) < 

A + B(L~I k,8-k+I). By the quotient criterion this series converges to some c E IR+, 
so we have ti'NLSIGN (n) < A + c B ~ 1. 

3. Determine whether lal :s Ibl. This can be done in average time proportional to 
min(L(a), L(b)). If lal = Ibl then return o. Otherwise suppose, w.l.o.g., that lal < 
Ibl. So sign(a + b) = sign(b). Subtract the digits of a from the digits of b, as in 
the classical subtraction algorithm until a is exhausted. The carry propagation can 
be analyzed analogously to INLSUMI. 

5. Assume that,8 = 2. A similar reasoning applies for,8 :::: 2. ~f(n) :s L~=llogai = 
log(07=1 ai) :s g(n) :s 2(L07=1 a;j) :s 2 L~=I (Lloga;j + 1) = 2· fen). 

6. Algorithm INLDIVPS(in: a, b; out: q, r); 
[a, b are positive integers; q = quot(a, b), r = rem(a, b). We neglect signs in 
,8-representations. ] 
1. m:= L(a); n := L(b); q := [ ]; r := a; 

if m < n then return; 
2. [normalization] 

d := L,8/(bn- 1 + l)J; 
a' := a . d; b' := b . d; 

3. [decompose a' into leading part a" and rest a"'] 
a" := a'; a'" := [ ]; 
for i = 1 to m - n do {c := FIRST(a"); a" := REST(a"); alii := CONS(c, a"')}; 

4. [determination of digits qm-n, ... , qo] 

for j = 0 to m - n do ([set a;' = 0 for L(a") < i + 1] 
4.1. [guess] q* := min(,8 - 1, L(a~,8 + a~_I)/b~_IJ); 
4.2. [correction] while INLDIFF(a", q*b') < 0 do q* := q* - 1; 
4.3. [record digit and continue] q := CONS(q*, q); a" := INLDIFF(a", q*b'); 

if j < m - n 
then {c := FIRST(a"'); a'" := REST(a"'); a" := CONS(c, a")}}; 

5. [prepare output] q' := INV(q); 
if FIRST(q') = 0 then q := lNV(REST(q')); 
r := a" /d; return. 

9. An application of the Euclidean algorithm is characterized by the sequence of 
quotients it produces. Let a, b be integers with a(fJ) = [+, ao, ... , am-d, b(fJ) = 
[+, bo, ... , bn-d, with m :::: n. Set a(fJ) = [+, an-I, ... , am-d, b(fJ) = [+, bn- I + 1], 
a(!J) = [+, an-I + 1, ... , am-d, b'(fJ) = [+, bn-d. According to Exercise 8, apply 
INLGCDEE for computing the sequence of quotients both for a', b' and for a", b", 
as long as they agree. When a difference is noted, the exact numbers in the remain
der sequences are reconstructed from the sequence of quotients and the cofactors, 
and the process starts anew. 

Section 2.2 
1. 0(1 . (d + l)n). 

2. O(llog2 3 . (d + 1)2n), if we use the Karatsuba algorithm for the multiplication of 
integer coefficients. 



Solutions 239 

5. The precomputation in step (2) takes m - n ring operations. The computation of a' 
in the i-th iteration takes O(deg(m + I - i» operations. So the overall complexity 
is O«m - n + l)(m + n». 

6. Pnxn + Pn_IXn- 1 + Pn_2Xn-2 + ... + Po: x -a = Pnxn-I + (Pna + Pn_I)Xn- 2 + ... 
-Pnxn + Pn axn- I 

(Pna + Pn_I)Xn- 1 + Pn_2Xn - 2 + ... 
-(Pna + Pn_I)Xn- 1 + (Pn a + Pn_l)axn- 2 

«Pna + Pn-I)a + Pn_2)Xn 2 + ... 

( ... (Pn a + Pn-I)a + .. . )a + Po . 
Similarly for division by x 2 - a 2• 

Section 2.3 
4. In roughly 25% of the cases the result of (ad+bd)/bd can be simplified. In general, 

the length almost doubles. 

Section 2.5 
3. f3 = 2£13 + a, f33 = 2£1 2 + 2£1, f39 = 2£12, b27 = £13 + 2£12, f381 = 2£13 + £1= f3. So 

mp(x) = ni=o(x - f3pi) = x4 + x 2 + X + 1. 

Section 3.1 
2. Let / be an ideal in D. If / = {O} we are done. Otherwise let g E / be such that 

deg(g) is minimal in /*. Now let a be an arbitrary element of /*. Write a = q g + r 
according to the division property. Because of the minimality of g, r = O. So every 
element of / is a multiple of g, i.e., / = (g). 

3. The existence of factorization into finitely many irreducibles of every non-unit el
ement a in D follows from Exercise 1. If a = b . c for b, c non-units, we have 
deg(b), deg(c) < deg(a). So by induction on the degree we get the existence of a 
factorization of a. 

We still have to prove uniqueness. Suppose a = al ... an = b l ... bm for non
units ai, bj . We proceed by induction on n. If n = I then a I is irreducible, so m 
must be 1 and al = b l . For n > I we use the fact that (*) in a principal ideal 
domain every irreducible element is prime, i.e., if an irreducible element P divides 
a product q . r it must divide either q or r. By Exercise 2 the Euclidean domain D 
is a principal ideal domain. So al must divide one of the b/s, w.l.o.g. bl = E . al 
for a unit E. Substituting this factorization for bl and cancelling al we get a2 ... an 
= (Eb2) • b3 ··· bm . These factorizations must be identical (up to reordering and 
associates) by the induction hypothesis. 

Proof of (*): In a principal ideal domain (p) is maximal, for if (p) C (q) and 
(p) i= (q), then P = q . r for a non-unit r, which is impossible. So F := D((p) is 
a field. Now if piq . r, then q . r = 0 in F, therefore q = 0 or r = 0 in F, and 
therefore piq or pir. 

4. Let the norm function N on Z[i] be defined as N(a + bi) = a2 + b2• We let 
N be the degree function on Z[i). Observe that N(£1f3) = N(£1)N(f3), so that for 
a, f3 i= 0 we have N(£1f3) :::: N(£1). Now consider a, f3 E Z[i] with f3 i= O. Let 
A, J.L E Q such that £1f3- 1 = A + J.Li. Each rational number is within ! of an 



240 Solutions 

integer, so for some AI, III E Z and A2, 112 E Q with IA21, 11121:::: ! we can write 
A = Al + A2, 11 = III + 112· Now ex = (AI + 11 I i)fJ + (A2 + 1l2i)fJ· Setting Al + Illi 
= y, (A2 + 1l2i)fJ = 1'}, we get ex = yfJ + 1'}. 1'} = ex - yfJ E Z[iJ, and N(1'}) 
:::: (~ + ~)NCB) < N(fJ). So y, 1'} are the quotient and remainder of ex, fJ. 

We apply the technique from above. 

5 - 8i 

7 + 3i 

(5-8i)(7-3i) 1171 
------=---1. 
(7 + 3i)(7 - 3i) 58 58 

The Gaussian integer nearest to this is -i, so quot(5 - 8i, 7 + 3i) = -i, and we 
get 5 - 8i = -i(7 + 3i) + (2 - i) as the result of the first division. Next we divide 
7 + 3i by 2 - i in C to get ¥ + ¥ i. The Gaussian integer nearest to this is 2 + 3i, 
so the result of the second division is 7 + 3i = (2 + 3i)(2 - i) - i. Here we can 
stop, because the last remainder -i is a unit, i.e., the gcd of 5 - 8i and 7 + 3i is 
trivial. 

5. Applying E~UCLID to f and g, we get 

1 = (l/13)(-x + 3)·f + (ljl3)(x2 - 5x + 7)·g . 
~ 

u 

So h = u' . f + v' . g, where u' = rem(h . u, g) (l/13)(l2x + 3) and v' 
h . v + quot(h . u, g) . f = (l/13)(x2 + 8x - 6). 

6. rex) = 5x4 + 10x3 + 7x2 - 5x - 4. 
8. For simplicity let us assume that n is a power of 2, i.e., n = 2k. Then there will 

be k = 10g2 n levels of recursion. Working our way up from the bottom, at level 
k + 1 - i we have to solve 2k- i CRP2' s on integers of size i, so the complexity of 
this level is proportional to i2 . 2k-i. So we get the complexity bound 

9. We only have to demonstrate that 1 E I + II n ... n In. Choose Uk E I, Vk E h such 
that Uk + Vk = 1, for all 1 :::: k :::: n. Then 

n n 

1 = IT (Uk + Vk) = LUk IT (Ui + Vi) + VI ... Vn E I + II n ... n In . 
k=1 k=1 i# 

10. We consider the canonical homomorphism 1> from R to ITJ=I R j1j with kernel 
II n ... n In. It remains to show that 1> is surjective, i.e., for arbitrary elements 
rl, ... , r n E R we have to show that there exists an r E R satisfying 

r == ri mod Ii for 1:::: i :::: n . 

Everything is trivial if n = 1. For n :::: 2 let us assume that we have an element 
r' E R satisfying 

r' == ri mod Ii for 1:::: i :::: n - 1 



Solutions 241 

By Exercise 9 we have In + n;~11 I j = R. So there is c E n;~: I j such that 
1 - c E In. Hence, r = r' + c(rn - r') solves our problem. 

11. By relative primeness, there are ii I, ... , iir such that 1 = L~=I (iii nS=I.Ni aj). Let 

Ui := (ciii mod ai). Obviously d = L~=I (Ui nS=l.j;6i aj) is of degree less than n 

and satisfies d == c mod ai for 1 ::::: i ::::: r. So d == c mod n~=1 ai and therefore 
c=d. 

Section 3.3 
4. Analogous to convolution theorem in Aho et al. (1974). 

Section 4.1 
1. By application of Gauss's lemma. 
2. Maple program for PRS_SR: 

prs_sr := proc(f1,f2,x) 

# (1) 

# (2) 

local F,g,h,fp,i,delta,result; 

result:=[f1,f2]; 
F[1]:=f1; F[2] :=f2; 
g:=l; h:=l; fp:=f2; i:= 3; 

while (fp<>O and degree(fp,x»O) 
do 
delta:=degree(F[i-2],x) - degree(F[i-1] ,x); 
fp := prem(F[i-2],F[i-1],x); 
if fp<>O 
then F[i]:=simplify(fp/(g*h-delta)); 

fi; 

result:=[op(result),F[i]]; 
g:= lcoeff(F[i-1] ,x); 
h:=h-(l-delta)*g-delta; 
i:=i+1 

od; 
RETURN (result) 
end; 

4. Obviously fT=1 Ji E I. So we have to show that every gEl is divisible by each 
Ji, 1 ::::: i ::::: r. Suppose for some i the factor Ji does not divide g. W.l.o.g. (perhaps 
after renaming the variables) we can assume that Ji is primitive w.r.t. Xn and we 
can write Ji as 

Ii = atX~ + ... + alxn + ao , 

where aj E K[xI, ... ,xn_Il, t > 0, and at i= O. Let g = gl(XI, ... ,Xn-I)· 

g2(XI, ... , xn), where g2 is primitive W.r.t. Xn. By Gauss's lemma Ii and g2 are also 
relatively prime in K(XI, ... , Xn-I)[Xn]. So there are polynomials hI, h2 E K[XI, 

... , xn] and dE K[XI,"" xn-Il, d i= 0, such that 

Let (CI, ... , Cn-I) be a point in An-I(K) such that 



242 Solutions 

Now let Cn E K such that li(CI, ... , cn) = O. Then (CI, ... , cn) E H and therefore 
g2(CI, ... , cn) = O. But this is a contradiction to d(cI, ... , Cn-I) =1= O. 

5. By Gauss's lemma I and g are also relatively prime in K(x)[y]. So there are 
a, b E K[x, y] and d E K[x] such that d = al + bg. Let (aI, a2) be such that 
I(al, a2) = g(al, a2) = O. So d(al) = O. But d has only finitely many roots, i.e., 
there are only finitely many possible values for the x-coordinate of common roots 
of I and g. By the same argument there are only finitely many possible values for 
the y-coordinates of common roots of I and g. 

Section 4.2 
2. Calling PRS_SR with main variable y we get the result 

11=1, h=g, 

13 = (_x2 + 2x)l + (_x 3 + 2x2)l + (xs - 4x4 + 3x3 + 4x2 - 4x)y + 
+ x 6 - 4xs + 3x4 + 4x3 _ 4x2 , 

14 = -x4l + (-x 10 + 6x9 - lOx 8 - 4x7 + 23x6 - llxs - 12x4 + 8x3)y

- xll + 6x lO - lOx9 - 4x8 + 23x7 - lOx6 - 12xs + 8x4 , 

Is = (X 17 - lOx 16 + 36x lS - 40x l4 - 74x l3 + 228x l2 - 84xll - 312x lO + 
+ 32lx9 + 117x8 - 280x7 + 49x6 + 80xs - 32x4)y + 
+ Xl8 _ lOX l7 + 36x l6 - 40x lS - 74x l4 + 228x l3 - 84x l2 - 312xll + 
+ 32lx lO + 117x9 - 280x8 + 49x7 + 80x6 - 32xs . 

The primitive part of Is is y + x and this is the gcd. 
Now let us apply GCD..MODm. Choosing x = 0 as the evaluation point, we get 

the gcd yS. x = 1 yields the gcd l + y. So 0 was a bad evaluation point, and it 
is discarded. x = 2 yields the gcd y + 2. So 1 was a bad evaluation point, and it 
is discarded. x = 3 yields the gcd y + 3. Interpolation gives us the gcd candidate 
y + x, which is correct. 

3. h = x2 - 2x + 1. res(f, g) = -(37)(1619). The gcd modulo both these factors has 
degree 3, so both of them are unlucky. 

Section 4.3 
1. resy(a, b) = 4x 8 (2x4 - 4x3 + 4x + 2). 
2. resy(resz(/J, h), resz(fI, h» = _4x2(2x s - 8x4 -16x3 -4x2 + 14x -4), but there 

is no solution with x-coordinate o. 
3. resy(resz(/J, h), resz(fl, 13» = 2;6x6. rex), and resy(resz(fl, h), resz(h. 13» = 

Id24X4(4x + 1)2. rex), where rex) = 32xS - 216x4 + 64x3 - 42x2 + 32x + 5. But 
there is no solution with x-coordinate o. The other roots of rex) actually lead to 
solutions of the whole system. 

4. Let t = deg(a). So a = at + ... + ao, where ai is a homogeneous polynomial 
of degree i, i.e., every term in ai is of degree i. Now there exist CI, ... , Cr E K 
such that Cr =1= 0 and at (CI, ... , cr ) =1= 0 (if K is infinite). Now we let a := a(xI 

+ CIX" ... , Xr-I + Cr_IX" crxr )' and b := b(xI + CIX" ... , Xr-I + Cr-IXr , crxr ). 
Then for every (al, ... , ar) E K r we have that (al, ... , ar) is a common root of 



Solutions 243 

a and h iff (al + Cia" ... , ar-I + Cr-Iar , crar ) is a common root of a and b, and 
(ai, ... , a r ) is a common root of a and b iff (al - ~ar, ... , ar-I - Cr-l a" -ci a r ) c, c, r 

is a common root of a and h. Furthermore, it can be easily seen that deg(a) = t 
and lc(a)xr = at(ch ... , cr ). 

Section 4.4 
1. a(x) = (x2 + l)(x _1)2(x + 1)3. 

2. See Cox et al. (1992: p. 180). 
3. See Akritas (1989: p.295). 
4. p(x) == (x2 + 2x)(x + I? mod 3, and p(x) is squarefree modulo 11. 

Section 4.5 
1. See Horowitz (1969). 
2. ql =x+ l,q2 = l,q3 =x -1, al = -1/8,a2 = l,a3 = (l/8)(x2 -4x +7). 

Section 4.6 
1. q*'(ai) = nUi(ai -aj). The partial fraction decomposition of h/q* is 

!:.- = ~h(ai)/q*'(ai) 
* L.. ' q i=1 X - ai 

as can be seen by putting the right-hand side over the common denominator q* and 
comparing the numerators at the n different values ai, ... , an. 

2. x4 - 2 = (x - ~)(x + ~)(x - i ~)(x + i ~), and Ci = (8x/(x4 - 2)')la i' i.e., 

CI = C2 = ../2, C3 = C4 = -../2. So 

! ~ dx = h(log(x - V2) + log(x + V2» -
x -2 

- h(log(x - i V2) + log (x + i V2» 
= h log(x2 - h) - h log(x2 + h) . 

Now let us compute the integral according to Theorem 4.6.4. r(c) = resA8x -
c(x4 - 2)" x4 - 2) = -2048(c2 - 2)2. Hence, CI = ../2, C2 = -../2. Furthermore 
VI = gcd(8x - ../2(4x3), x4 - 2) = x 2 - ../2 in Ql(../2)[x], and V2 = x 2 +../2. 

3. Yes. Let Ci = Cil. The conjugates Ci2' ... , Cik of Ci are also roots of r(c), in fact 

n~=1 (c - Ci) E Ql[c] is an irreducible factor of r(c). The corresponding Vij is 
obtained from Vi by applying the automorphism Ci H- Cij. 

4. The complete result is 

! p(x) 2../2 6x - 2 
-- dx = ~ log(3x2 - 2x + 1) - ~ log(x2 + 1) + - arctan ( ~) + 
q~) 3 2v2 

4x3 - 4x2 + 2x - 1 
+ log(x) + arctan (x ) + 2X4 + 2X2 



244 Solutions 

Section 5.1 
2. x 2 + X + 1 occurs with multiplicity 2 in a. The complete factorization of a is 

(x 2 + X + 1)2(x2 + 3x + 3)(x + 4). 
3. 4 factors modulo 2 and modulo 8k+ 1,2 factors in the other cases. u(x) is irreducible 

over the integers. 

Section 5.2 
1. Yes, it is. a(x) = (5x + 4)(x - 5)(x + 6). 
3. By the Berlekamp algorithm 

a(x) == (2x 2 + 4x + 3)· (x 2 + 2)· (x + 2)· (x + 3) mod 5 . 
~ ~ '-..-' '-..-' 

UI 

By an application of LIFT YACTORS we get 

a(x) == (2x 2 - llx + 3) . (x 2 - lOx - 8) . (x + 7) . (x - 7) mod 25 . 
, ~ '-..-' '-..-' 

VI V3 

Factor combinations yield 

a(x) = (2x 4 - 6x 3 - 3x 2 + 8x + l)(x + 7)(x - 7) . 

Section 5.3 
2. Ilb*112 + /1 2 . Ilb* 112> 211b* 112 so 1 /""'11-1 1-1 - 4 1-1 ' 

IIb7112::: ~lIb7~11I-117i~llIb;~1112::: ~lIb;~1112 - !llb;~11I2 = 11Ib;~11I2. 
3. By induction on i. Clearly d l = Ilbrl12. Let M(i) = ((bj , b/)I:Oj.l:Oi. By elementary 

column operations (adding columns to the last one) M(i) can be transformed into 

M(i)= 

M (i) 
il 

M(i) 
ii-l 

o 

o 

So by the induction hypothesis and expansion of the determinant of M(i) W.r.t. the 
i-th row we get d i = IM(i)1 = IM(i)1 = 1M(i~I)1 . IIb;11 2 = n~=1 IIbj112. 

We show how to transform M(l) into M(l) just for the case i = 3. bl = br, 
b2 = b~ + 1121br, b3 = bj + 1131br + 1132b~. Multiplying the first column in M(3) 
by (-1131 + 11211132) and the second column by -1132 and adding the results to the 
third column, we get M(3). 

4. See Lenstra et al. (1982). 
5. See Lenstra et al. (1982). 
6. BASIS~EDUCTION is called with al = (5 12 ,0), a2 = (46966736,1). n = 2. 

The "while"-loop is entered with k = 2, I = l. After execution of (2.1) we have 
b l = (46966736, 1), b2 = (5 12 ,0). REDUCE changes b2 to (9306945, -5) and after 



Solutions 245 

execution of (2.1) we have b l = (9306945, -5), b2 = (46966736, 1). REDUCE 
changes b2 to (432011,26) and after execution of (2.1) we have bl = (432011,26), 
b2 = (9306945, -5). REDUCE changes b2 to (-197297, -577) and after execution 
of (2.1) we have b l = (-197297, -577), b2 = (432011,26). REDUCE changes b2 
to (37417, -1128) and after execution of (2.1) we have b l = (37417, -1128), b2 = 
(-197297, -577). REDUCE changes b2 to (-10212, -6217) and after execution 
of (2.1) we have bl = (-10212, -6217), b2 = (37417, -1128). REDUCE changes 
b2 to (6781, -19779) and now (2.2) is executed. k is set to 3, the computation 
terminates and the output is b l = (-10212, -6217), b2 = (6781, -19779). 

Section 5.4 
1. Let aI, ... ,an be the roots of p, and 131, ... , 13m the roots of h. Then 

n m 
p(x) = bn n (x - a;), hex, a) = hm n (x - 13;) . 

;=1 ;=1 

According to van der Waerden (1970: sect. 5.9) 

" resy(h(x, y), p(y» = (-l)"mb: nh(x, a;) 
--,.- ;=1 

constant '-,-' 
nonn 

So in fact, if p is monic, then the norm and the resultant agree up to the sign. 
2. We compute the factorization with the help of Maple V.2. In fact, the call eva

la(Factor(f)) would produce the factorization. But we want to see the partial 
results. 

p := x3 - x + 1 
> alias(al=RootOf(p»: 
> f := x-5+al-2*x-4+(al+1)*x-3+(al-2+al-1)*x-2+al-2 x+al-2; 

f := x5 + x3 al + x2 a12 + a12 x4 + x2 al _ x2 + a12 x + x3 + a12 

> evala(Factor(f»; 

(x2 + a12 x + 1) (x3 + al x + a12) 
> py:=subs(x=y,p): 
> op(factor(resultant(subs(al=y,f).py.y»); 

x9 + 2 x6 - x5 + 3 x4 + x + 1. x6 + 2 x5 + 4 x4 + 5 x3 + 4 x2 + 2 x + 1 
> n1:="[l]: n2:=""[2]: 
> evala(Gcd(n1.f»; 

x3 + al x + a12 
> evala(Gcd(n2.f»; 

Section 5.5 
1. f is not monic as a polynomial in y. So we replace f by 

j = (x 2 - 4x + 4)· f(x, 2 y ) = l + x4 - 4x3 + 4x2 • 
x -4x +4 



246 

In fact, g = iy + x 2 - 2x is a factor of j, so 

~ i(x2_4x+4)y+x2_2x 
ppig(x, lcy(f)y)) = = ixy - 2iy + x 

x-2 

is a factor of f. 
j (0, y) is not squarefree, but j (1, y) is. 

2. f(x, y) = (y2 - ix2y - i)(y2 + ix2y + i). 

Section 6.1 
1. Let 

fl = CkXn+k + ... + CIXn+1 + anxn + ... + ao , 

h = CkXm+k + ... + CIXm+1 + bmxm + ... + bo , 

g = d1x l + ... + do . 

Solutions 

Let Ci = 0 for i > k. For 1 S j S k (i.e., the highest exponents in fIg) the 
coefficient of x n+l+j in fIg is 

which is also the coefficient of x m+l+j in hg. 
2. g(x) = X4 + 2X2 + X + 2 and h(x) = x 2 - x. 

Section 7.1 
2. The extended coefficient matrix A [4] turns out to be 

57 0 0 0 57 

A [4] = o 57 0 0 57 

o 0 57 0 57 

o 0 0 57 57 

so the solution is x = (1, 1, 1, 1). 

Section 7.3 
1. Let g(x) = gmxm + ... + go, and let M~k) be the n x n principal submatrix of 

rp(xk / f). Then we see that M;;I . M~k) = Ck for 0 S k S m. Furthermore, Hn = 
gmM~m) + ... + goM~O). Therefore, M;;I . Hn = g(C). 

2. R(x) = g(x)/f(x) if and only if f· (X 2n- 1 R) = x 2n - 1 . g. 

Section S.l 
1. No. Let M = N x N, (m, n) ~ (m', n') {::=} m > m' or m = m' and n > n'. 



Solutions 247 

2. • +-- • -----+ • -----+ • 

• +-- • -----+ • -----+ • 

• +-- • -----+ • -----+ • 

Or see Huet (1980). 

Section 8.2 
1. We have to show that every sequence II » h » ... is finite. This is achieved by 

Noetherian induction on lpp(fl) w.r.t. >. 
2. (a), (b), (c) are obvious. d. Let s be the power product in gl that is reduced, i.e., 

s = U ·lpp(f) for some U E [X], I E F. If coeff(s, h) = 0 then gl +h -+ F g2 +h 
by the same polynomial I. If coeff(s, h) = -coeff(s, gl) then g2 + h -+ F gl + h 
by I. Otherwise gl + h -+F g +-F g2 + h by I, where g = gl + h - (coeff(s, 
gl + h)/lc(f» . U . I = g2 + h - (coeff(s, g2 + h)/lc(f» . U . I· 

3. +---+~ is the smallest equivalence relation containing -+F. If g -+F h then 
by the definition of the reduction relation, g - h E (F), i.e., g =(F) h. Because 
-+ F S; +---+ ~ and =(F) is an equivalence relation we have +---+ ~ S; =(F). 

On the other hand, let g =(F) h, i.e., g = h + I:J=I Cj . Uj . /j for Cj E K, 
Uj E [X], /j E F. If we can show g +---+~ h for the case m = 1, then the statement 
follows by induction on m. II -+ F O. So by Lemma 8.2.5 g = h + CI . U I . II t ~ h 
and therefore g +---+ ~ h. 

Section 8.3 
1. (a) ====> (b): I =(F) 0, so by Theorem 8.2.6 I +---+~ 0, and by the Church-Rosser 

property of -+ F we get I -+ ~ O. 
(b) ====> (c): Obvious. 
(c) ====> (a): Let g +---+~ hand g, it normal forms of g, h w.r.t. -+F, respectively. 

By Theorem 8.2.6 g - it E I. So, since g - it is irreducible, g = it. 
Clearly (a) implies (d) and (d) implies (b). 

2. SPOI(fI, h) = 2xy + x 3 + x 2 is irreducible and leads to a new basis element 
13 = xy + 2x3 + 2x2. spol(f2, h) = x4 + x 3 + x is irreducible and is added to the 
basis as 14. All the other S-polynomials are reducible to O. So {II, h. h 14} is a 
Grobner basis for the ideal. II can be reduced to 0 w.r.t. the other basis polynomials, 
so it is cancelled from the basis. Also h is cancelled for the same reason. {h, 14} 

is the normed reduced Grobner basis for the ideal. 
3. G = {z + X4 - 2x + 1, l + x2 - 2, x5 - 6x 3 + x 2 - I}. dimlQl[x, y, Z]/I = 10. 

Section 8.4 
1. The projective curve is defined by the homogenization of I(x, y), Le.,j(x, y, z) = 

x6+3x4y2_4x2y2Z2+3x2y4+y6 = O. The singularities (a: b : c) with C = 1 are the 
solutions of the system of equations I(x, y) = «(}fI(}x)(x, y) = «(}fI(}y)(x, y) = O. 
A Grobner basis for the corresponding ideal w.r.t. the lexicographic ordering is 



248 Solutions 

{x, y}, so the only solution is (0: 0 : 1). Similarly we dehomogenize j w.r.t. to y 
and x, getting the singularities (±i : 1 : 0) at infinity. 

2. From the Shape lemma we know that the normed reduced Grobner basis w.r.t. the 
lexicographic ordering will have the shape {gl (Xl), X2 - g2(XI), ... , Xn - gn(XI)} if 
I is regular in Xl. Since I is prime, the polynomial gl must be irreducible. 

3. For 1 SiS r let Ii = (Xl - ail, ... , Xn - ain) where Pi = (ail, ... , ain), i.e., Ii is 
the ideal of all polynomials vanishing on Pi. Now we set Ji = nNi Ij , i.e., Ji is 
the ideal of all polynomials vanishing on PI, ... , Pi-I, Pi+l , ... , Pro There must be 
an element Ji in the basis of Ji which does not vanish on Pi. After an appropriate 
scaling, this is the i -th separator polynomial. 

Section 10.1 
1. pen) = 1, q(n) = ben - 1)2 + e(n - 1) + d, r(n) = bn2 + en + e is a regular 

representation of an/an-I. The bound for the degree of f turns out to be O. The 
solution of the corresponding linear system is f = l/(d - e). Thus, 

Section 11.1 

1 - nil bj2+cj+d 

Sn = S~ _ Sb = ___ 1_=_I....:.b:c..j2....:.+-'-'Cl....:.· +....:.c 

e-d 

1. The result holds for n > 2 and n not a divisor of the characteristic of K. 
2. Yes, if the line at infinity z = 0 is a component of the curve, i.e., zlf(x, y, z). 
3. The corresponding projective curve is defined by j*(X, y, z) = (X2 + 4yz + yZ)2_ 

16(x2 + y2)Z2, having double points (0: 0: 1), (1 : ±i : 0) in jp'2(C). So the genus 
is O. 

4. x2, xy. 



References 

Abhyankar, S. S., Bajaj, C. L. (1988): Automatic parametrization of rational curves and 
surfaces III: algebraic plane curves. Comput. Aided Geom. Des. 5: 309-321. 

Adams, W. W., Loustaunau, P. (1994): An introduction to Grabner bases. AMS, Provi
dence, RI (Graduate studies in mathematics, vol. 3) 

Aho, A. V., Hopcroft, 1. E., Ullman, J. D. (1974): The design and analysis of computer 
algorithms. Addison-Wesley, Reading, MA. 

Akritas, A. G. (1989): Elements of computer algebra with applications. Wiley, New York. 
Alagar, V. S., Thanh, M. (1985): Fast polynomial decomposition algorithms. In: Cavi

ness, B. F. (ed.): EUROCAL '85. Proceedings, vol. 2. Springer, Berlin Heidelberg 
New York Tokyo, pp. 150-153 (Lecture notes in computer science, vol. 204). 

Arnon, D. S. (1988): A cluster-based cylindrical algebraic decomposition algorithm. 
J. Symb. Comput. 5: 189-212. 

Arnon, D. S., Buchberger, B. (eds.) (1988): Algorithms in real algebraic geometry. 
J. Symb. Comput. 5 no. 1-2. 

Arnon, D. S., Sederberg, T. W. (1984): Implicit equations for a parametric surface by 
Groebner basis. In: Golden, V. E. (ed.): Proceedings of the 1984 MACSYMA Users' 
Conference. General Electric, Schenectady, NY, pp. 431-436. 

Arnon, D. S., Collins, G. E., McCallum, S. (1984a): Cylindrical algebraic decomposition 
I: the basic algorithm. SIAM 1. Comput. 13: 865-877. 

Arnon, D. S., Collins, G. E., McCallum, S. (1984b): Cylindrical algebraic decomposition 
II: an adjacency algorithm for the plane. SIAM J. Comput. 13: 878-889. 

Bajaj, c., Canny, J., Garrity, T., Warren, J. (1993): Factoring rational polynomials over 
the complex numbers. SIAM J. Comput. 22: 318-331. 

Bareiss, E. H. (1968): Sylvester's identity and multistep integer-preserving Gaussian 
elimination. Math. Comput. 22: 565-578. 

Barton, D. R., Zippel, R. E. (1985): Polynomial decomposition algorithms. J. Symb. 
Comput. 1: 159-168. 

Bayer, D., Stillman, M. (1988): On the complexity of computing syzygies. 1. Symb. 
Comput. 6: 135-147. 

Bayer, D., Stillman, M. (1992): Computation of Hilbert functions. J. Symb. Comput. 
14: 31-50. 

Becker, E., Marinari, M. G., Mora, T., Traverso, C. (1994): The shape of the Shape 
lemma. In: von zur Gathen, J., Giesbrecht, M. (eds.): Proceedings of the International 
Symposium on Symbolic and Algebraic Computation. Association for Computing 
Machinery, New York, pp. 129-133. 

Becker, T. (1990): Standard bases and some computations in rings of power series. 
J. Symb. Comput. 10: 165-178. 



250 References 

Becker, T. (1993): Standard bases in power series rings: uniqueness and superfluous 
critical pairs. J. Symb. Comput. 15: 251-265. 

Becker, T., Weispfenning, V. (1993): Grobner bases - a computational approach to 
commutative algebra. Springer, Berlin New York Heidelberg Tokyo (Graduate texts 
in mathematics, vol. 141). 

Berlekamp, E. R. (1968): Algebraic coding theory. McGraw-Hill, New York. 
Bini, D., Pan, V. (1993): Parallel computations with Toeplitz-like and Hankel-like ma

trices. In: Bronstein, M. (ed.): Proceedings of the International Symposium on Sym
bolic and Algebraic Computation. Association for Computing Machinery, New York, 
pp. 193-200. 

Bobrow, D. G. (ed.) (1968): IFIP Working Conference on Symbol Manipulation Lan
guages and Techniques. North-Holland, Amsterdam. 

Bochnak, J., Coste, M., Roy, M.-F. (1987): Geometrie algebrique reelle. Springer, Berlin 
Heidelberg New York Tokyo. 

Boge, W., Gebauer, R., Kredel, H. (1986): Some examples of solving systems of alge
braic equations by calculating Groebner bases. J. Symb. Comput. 2: 83-98. 

Book, R. V. (ed.) (1986): Studies in complexity theory. Pitman, London. 
Boyle, A., Caviness, B. F. (1990): Future directions for research in symbolic computa

tion. SIAM, Philadelphia. 
Brackx, F., Constales, D., Ronveaux, A., Serras, H. (1989): On the harmonic and mono

genic decomposition of polynomials. J. Symb. Comput. 8: 297-304. 
Brent, R. P., Gustavson, F. G., Yun, D. Y. Y. (1980): Fast solution of Toep1itz system 

of equations and computation of Pade approximants. J. Algorithms 1: 259-295. 
Bronstein, M. (ed.) (1993): Proceedings of the International Symposium on Symbolic 

and Algebraic Computation. Association for Computing Machinery, New York. 
Brown, W. S. (1971): On Euclid's algorithm and the computation of polynomial greatest 

common divisors. J. ACM 18: 478-504. 
Brown, W. S. (1978): The subresultant PRS algorithm. ACM Trans. Math. Software 4: 

237-249. 
Brown, W. S., Traub, J. F. (1971): On Euclid's algorithm and the theory of subresultants. 

1. ACM 18: 505-514. 
Buchberger, B. (1965): Ein Algorithmus zum Auffinden der Basiselemente des Rest

klassenringes nach einem nulldimensionalen Polynomideal. Ph. D. dissertation, Uni
versity of Innsbruck, Innsbruck, Austria. 

Buchberger, B. (1970): Ein algorithmisches Kriterium fUr die Losbarkeit eines algebrai
schen Gleichungssystems. Aequ. Math. 4: 374-383. 

Buchberger, B. (1979): A criterion for detecting unnecessary reductions in the con
struction of Grobner-bases. In: Ng, W. (ed.): Symbolic and algebraic computation. 
Springer, Berlin Heidelberg New York, pp. 3-21 (Lecture notes in computer science, 
vol. 72). 

Buchberger, B. (1983a): A note on the complexity of constructing Grobner-bases. In: van 
Hu1zen, J. A. (ed.): Computer algebra. EUROCAL '83. Springer, Berlin Heidelberg 
New York Tokyo, pp. 137-145 

Buchberger, B. (1983b): A critical-pair/completion algorithm in reduction rings. In: 
Borger, E., Hasenjager, G., ROdding, D. (eds.): Proceedings Logic and Machines: 
Decision Problems and Complexity. Springer, Berlin Heidelberg New York Tokyo, 
pp. 137-161 (Lecture notes in computer science, vol. 171). 



References 251 

Buchberger, B. (ed.) (1985a): EUROCAL '85, proceedings, vol. 1. Springer, Berlin Hei
delberg New York Tokyo (Lecture notes in computer science, vol. 203). 

Buchberger, B. (1985b): Grabner-bases: an algorithmic method in polynomial ideal 
theory. In: Bose, N. K. (ed.): Multidimensional systems theory. Reidel, Dordrecht, 
pp. 184-232. 

Buchberger, B., Collins, G. E., Loos, R. (eds.) (1983): Computer algebra, symbolic and 
algebraic computation, 2nd edn. Springer, Wien New York 

Buchberger, B., Collins, G. E., Encarnacion, M., Hong, H., Johnson, J., Krandick, W., 
Loos, R., Mandache, A., Neubacher, A., Vielhaber, H. (1993): SACLIB 1.1 user's 
guide. Techn. Rep. RISC Linz 93-19. 

Biindgen, R. (1991): Tenn completion versus algebraic completion. Ph. D. dissertation, 
University of Tiibingen, Tiibingen, Federal Republic of Gennany. 

Calmet, J. (ed.) (1982): Computer algebra. EUROCAM '82. Springer, Berlin Heidelberg 
New York (Lecture notes in computer science, vol. 144). 

Calmet, J. (ed.) (1986): Algebraic algorithms and error-correcting codes. Springer, Berlin 
Heidelberg New York Tokyo (Lecture notes in computer science, vol. 229). 

Cannon, J. J. (1984): An introduction to the group theory language Cayley. In: Atkinson, 
M. D. (ed.). Computational group theory. Academic Press, London, pp. 145-183. 

Cantor, D. G., Zassenhaus, H. (1981): A new algorithm for factoring polynomials over 
finite fields. Math. Comput. 36: 587-592. 

Cassels, J. W. S. (1971): An introduction to the geometry of numbers. Springer, Berlin 
Heidelberg New York. 

Caviness, B. F. (1970): On canonical fonns and simplification. J. ACM 17: 385-396. 
Caviness, B. F. (ed.) (1985): EUROCAL '85, proceedings, vol. 2. Springer, Berlin Hei

delberg New York Tokyo (Lecture notes in computer science, vol. 204). 
Caviness, B. F. (1986): Computer algebra: past and future. J. Symb. Comput. 2: 217-

236. 
Caviness, B. F., Collins, G. E. (1976): Algorithms for Gaussian integer arithmetic. In: 

Jenks, R. D. (ed.): Proceedings of the ACM Symposium on Symbolic and Algebraic 
Computation. Association for Computing Machinery, New York, pp. 36-45. 

Caviness, B. F., Fateman, R. J. (1976): Simplification of radical expressions. In: Jenks, 
R. D. (ed.): Proceedings of the ACM Symposium on Symbolic and Algebraic Com
putation. Association for Computing Machinery, New York, pp. 329-338. 

Caviness, B. F., Johnson, J. R. (eds.) (1996): Quantifier elimination and cylindrical al
gebraic decomposition. Springer, Wien New York (forthcoming). 

Char, B. W. (ed.) (1986): Proceedings of the 1986 Symposium on Symbolic and Al
gebraic Computation (SYMSAC '86). Association for Computing Machinery, New 
York. 

Char, B. W., Geddes, K. 0., Gonnet, G. H. (1989): GCDHEU: heuristic polynomial GCD 
algorithm based on integer GCD computation. J. Symb. Comput. 7: 31-48. 

Char, B. W., Geddes, K. 0., Gonnet, G. H., Leong, B. L., Monagan, M. B., Watt, S. M. 
(199la): Maple V library reference manual. Springer, Berlin Heidelberg New York 
Tokyo. 

Char, B. W., Geddes, K. 0., Gonnet, G. H., Leong, B. L., Monagan, M. B., Watt, S. M. 
(199lb): Maple V language reference manual. Springer, Berlin Heidelberg New York 
Tokyo. 

Char, B. W., Geddes, K. 0., Gonnet, G. H., Leong, B. L., Monagan, M. B., Watt, S. M. 



252 References 

(1992): First leaves: a tutorial introduction to Maple V. Springer, Berlin Heidelberg 
New York Tokyo. 

Chistov, A. L., Grigoryev, D. Y. (1983): Subexponential-time solving systems of alge
braic equations I. LOMI preprint E-9-83, Steklov Institute, Leningrad (St. Peters
burg). 

Chudnovsky, D. V., Jenks, R. D. (eds.) (1990): Computers in mathematics. Marcel Dek
ker, New York (Lecture notes in pure and applied mathematics, vol. 125). 

Cohen, A. M. (ed.) (1991): The SCAFI papers - proceedings of the 1991 Seminar on 
Studies in Computer Algebra for Industry. CAN Expertise Centre, Amsterdam. 

Cohen, A. M., van Gastel, L. J. (1995): Computer algebra in industry 2. Proceedings of 
SCAFI II, CAN Expertise Centre, Amsterdam, November 1992. Wiley, Chichester. 

Cohen, G., Mora, T., Moreno, O. (eds.) (1993): Applied algebra, algebraic algorithms 
and error-correcting codes. Springer, Berlin Heidelberg New York Tokyo (Lecture 
notes in computer science, vol. 637). 

Cohen, H. (1993): A course in computational algebraic number theory. Springer, Berlin 
Heidelberg New York Tokyo (Graduate texts in mathematics, vol. 138). 

Cohen, P. J. (1969): Decision procedures for real and p-adic fields. Comm. Pure Appl. 
Math. 22: 131-151. 

Cohn, P. M. (1974): Algebra. Wiley, New York. 
Collins, G. E. (1967): Subresultants and reduced polynomial remainder sequences. J. 

ACM 14: 128-142. 
Collins, G. E. (1971): The calculation of multivariate polynomial resultants. J. ACM 19: 

515-532. 
Collins, G. E. (1973): Computer algebra of polynomials and rational functions. Am. 

Math. M. 80: 725-755. 
Collins, G. E. (1975): Quantifier elimination for real closed fields by cylindrical alge

braic decomposition. In: Brakhage, H. (ed.): Automata theory and formal languages. 
Springer, Berlin Heidelberg New York Tokyo, pp. 134-183 (Lecture notes in com
puter science, vol. 33). 

Collins, G. E. (1976): Quantifier elimination for real closed fields by cylindrical algebraic 
decomposition - a synopsis. ACM SIGSAM Bull. lOll: 10-12. 

Collins, G. E. (1980): ALDES/SAC-2 now available. ACM SIGSAM Bull. 1412 (2): 19. 
Collins, G. E. (1996): Quantifier elimination by cylindrical algebraic decomposition. In: 

Caviness, B. F., Johnson, J. R. (eds.): Quantifier elimination and cylindrical algebraic 
decomposition. Springer, Wien New York (forthcoming). 

Collins, G. E., Hong, H. (1991): Partial cylindrical algebraic decomposition for quantifier 
elimination. J. Symb. Comput. 12: 299-328. 

Collins, G. E., Musser, D. R. (1977): Analysis of the Pope-Stein division algorithm. Inf. 
Process. Lett. 6: 151-155. 

Collins, G. E., Mignotte, M., Winkler, F. (1983): Arithmetic in basic algebraic domains. 
In: Buchberger, B., Collins, G. E., Loos, R. (eds.): Computer algebra, symbolic and 
algebraic computation, 2nd edn. Springer, Wien New York, pp. 189-220. 

Cooley, J. M., Tukey, J. W. (1965): An algorithm for the machine calculation of complex 
Fourier series. Math. Comput. 19: 297-301. 

Cooley, J. M., Lewis, P. A. W., Welch, P. D. (1967): History of the fast Fourier trans
form. Proc. IEEE 55: 1675-1677. 



References 253 

Cooley, 1. M., Lewis, P. A. W., Welch, P. D. (1969): The fast Fourier transform and its 
applications. IEEE Trans. Educ. 12: 27-34. 

Cox, D., Little, 1., O'Shea, D. (1992): Ideals, varieties, and algorithms. Springer, Berlin 
Heidelberg New York Tokyo. 

Davenport, J. H. (ed.) (1989): EUROCAL '87. Springer, Berlin Heidelberg New York 
Tokyo (Lecture notes in computer science, vol. 378). 

Davenport, J. H., Heintz, J. (1988): Real quantifier elimination is doubly exponential. 
1. Symb. Comput. 5: 29-35. 

Davenport, J. H., Siret, Y., Tournier, E. (1988): Computer algebra, systems and algo
rithms for algebraic computation. Academic Press, London. 

Davis, P. J., Hersh, R. (1981): The mathematical experience. Birkhauser, Boston. 

Della Dora, J., Fitch, J. (1989): Computer algebra and parallelism. Academic Press, 
London. 

Dickson, L. E. (1913): Finiteness of the odd perfect and primitive abundant numbers 
with n distinct prime factors. Am. J. Math. 35: 413-426. 

Duval, D. (1991): Absolute factorization of polynomials: a geometric approach. SIAM 
J. Comput. 20: 1-21. 

Dvornicich, R., Traverso, C. (1987): Newton symmetric functions and the arithmetic of 
algebraically closed fields. In: Huguet, L., Poli, A. (eds.): Applied algebra, algebraic 
algorithms and error-correcting codes. Springer, Berlin Heidelberg New York Tokyo, 
pp. 216-224 (Lecture notes in computer science, vol. 356). 

Encarnacion, M.1. (1994): On a modular algorithm for computing GCDs of polyno
mials over algebraic number fields. In: von zur Gathen, J., Giesbrecht, M. (eds.): 
Proceedings of the International Symposium on Symbolic and Algebraic Computa
tion. Association for Computing Machinery, New York, pp. 58-65. 

Fateman, R. J. (1972): Essays in algebraic simplification. Ph. D. thesis, Project MAC, 
MIT, Cambridge, MA. 

Fateman, R. J. (ed.) (1977): MACSYMA Users' Conference. MIT Press, Cambridge, 
MA. 

Faugere, J. c., Gianni, P., Lazard, D., Mora, T. (1993): Efficient computation of zero
dimensional Grabner bases by change of ordering. 1. Symb. Comput. 16: 377-399. 

Fitch, J. (ed.) (1984): EUROSAM 84. Springer, Berlin Heidelberg New York Tokyo 
(Lecture notes in computer science, vol. 174). 

Fitch, 1. P. (1985): Solving algebraic problems with REDUCE. J. Symb. Comput. I: 
211-227. 

Floyd, R. W. (ed.) (1966): Proceedings Association for Computing Machinery Sympo
sium on Symbolic and Algebraic Manipulation (SYMSAM '66). Commun. ACM 9: 
547-643. 

Freeman, T. S., Imirzian, G. M., Kaltofen, E. (1986): A system for manipulating polyno
mials given by straight-line programs. Techn. Rep. 86-15, Department of Computer 
Science, Rensselaer Polytechnic Institute, Troy, New York. 

Fulton, W. (1969): Algebraic curves. Benjamin/Cummings, Menlo Park, CA. 

Furukawa, A., Sasaki, T., Kobayashi, H. (1986): Grabner basis of a module over K[x], 
... ,xnl and polynomial solutions of a system of linear equations. In: Char, B. W. 
(ed.): Proceedings of the 1986 Symposium on Symbolic and Algebraic Computation 
(SYMSAC '86). Association for Computing Machinery, New York, pp. 222-224. 



254 References 

Galligo, A. (1979): Theoreme de division et stabilite en geometrie analytique locale. 
Ann. Inst. Fourier 29: 107-184. 

Gantmacher, F. R (1977): Theory of matrices, vol. I, II. Chelsea, New York. 
Garrity, T., Warren, J. (1989): On computing the intersection of a pair of algebraic 

surfaces. Comput. Aided Geom. Des. 6: 137-153. 
Geddes, K. 0., Czapor, S. R, Labahn, G. (1992): Algorithms for computer algebra. 

Kluwer, Boston. 
Gemignani, L. (1994): Solving Hankel systems over the integers. 1. Symb. Comput. 18: 

573-584. 
Gianni, P. (1987): Properties of Grabner bases under specializations. In: Davenport, 

1. H. (ed.): EUROCAL '87. Springer, Berlin Heidelberg New York Tokyo, pp. 293-
297 (Lecture notes in computer science, vol. 378). 

Gianni, P. (ed.) (1989): Symbolic and algebraic computation. Springer, Berlin Heidel
berg New York Tokyo (Lecture notes in computer science, vol. 358). 

Gianni, P., Mora, T. (1987): Algebraic solution of systems of polynomial equations 
using Groebner bases. In: Huguet, L., Poli, A. (eds.): Applied algebra, algebraic al
gorithms and error-correcting codes. Springer, Berlin Heidelberg New York Tokyo, 
pp. 247-257 (Lecture notes in computer science, vol. 356). 

Gianni, P., Trager, B., Zacharias, G. (1988): Grabner bases and primary decomposition 
of polynomial ideals. J. Symb. Comput. 6: 149-167. 

Giusti, M. (1984): Some effectivity problems in polynomial ideal theory. In: Fitch, J. 
(ed.): EUROSAM 84. Springer, Berlin Heidelberg New York Tokyo, pp. 159-171 
(Lecture notes in computer science, vol. 174). 

Gonnet, G. H. (ed.) (1989): Proceedings of the ACM-SIGSAM 1989 International Sym
posium on Symbolic and Algebraic Computation (ISSAC '89). Association for Com
puting Machinery, New York. 

Gonnet, G. H., Gruntz, D. W. (1993): Algebraic manipulation: systems. In: Ralston, 
A., Reilly, E. D. (eds): Encyclopedia of computer science, 3rd edn. Van Nostrand 
Reinhold, New York. 

Gosper, R W. (1978): Decision procedure for indefinite hypergeometric summation. 
Proc. Natl. Acad. Sci. USA 75: 40-42. 

Grabe, H.-G. (1993): On lucky primes. J. Symb. Comput. 15: 199-209. 
Graham, R. L., Knuth, D. E., Patashnik, O. (1994): Concrete mathematics, a foundation 

for computer science, 2nd edn. Addison-Wesley, Reading. 
Grabner, W. (1949): Moderne algebraische Geometrie. Springer, Wien Innsbruck. 
Grossman, R (1989): Symbolic computation, applications to scientific computing. SIAM, 

Philadelphia. 
Gutierrez, J., Recio, T. (1992): A practical implementation of two rational function 

decomposition algorithms. In: Wang, P. S. (ed.): Proceedings of the International 
Symposium on Symbolic and Algebraic Computation. Association for Computing 
Machinery, New York, pp. 152-157. 

Gutierrez, 1., Recio, T., Ruiz de Velasco, C. (1988): A polynomial decomposition algo
rithm of almost quadratic complexity. In: Mora, T. (ed.): Applied algebra, algebraic 
algorithms and error-correcting codes. Springer, Berlin Heidelberg New York Tokyo, 
pp. 471-476 (Lecture notes in computer science, vol. 357). 

Hardy, G. H. (1916): The integration of functions of a single variable, 2nd edn. Cam
bridge University Press, Cambridge. 



References 255 

Hardy, G. H., Wright, E. M. (1979): An introduction to the theory of numbers, 5th edn. 
Oxford University Press, Oxford. 

Harper, D., Wooff, C., Hodgkinson, D. (1991): A guide to computer algebra systems. 
Wiley, Chichester. 

Heck, A. (1993): Introduction to Maple. Springer, Berlin Heidelberg New York Tokyo. 
Hehl, F. W., Winkelmann, Y., Meyer, H. (1992): Computer-Algebra, ein Kompaktkurs 

tiber die Anwendung von REDUCE. Springer, New York Berlin Heidelberg Tokyo. 
Heindel, L. E. (1971): Integer arithmetic algorithms for polynomial real zero determi

nation. J. ACM 18: 533-548. 
Heinig, G., Rost, K. (1984): Algebraic methods for Toeplitz-like matrices and operators. 

Birkhauser, Basel. 
Heintz, J., Morgenstern, J. (1993): On the intrinsic complexity of elimination theory. 

J. Complex. 9: 471-498. 
Heintz, 1., Sieveking, M. (1981): Absolute primality of polynomials is decidable in ran

dom polynomial time in the number of variables. In: Even, S., Kariv, O. (eds.): Au
tomata, languages and programming. Springer, Berlin Heidelberg New York, pp. 16-
28 (Lecture notes in computer science, vol. 115). 

Henrici, P. (1956): A subroutine for computations with rational numbers. J. ACM 3: 
6-9. 

Hermann, G. (1926): Die Frage der endlich vielen Schritte in der Theorie der Polynom
ideale. Math. Ann. 95: 736-788. 

Hilbert, D. (1890): Uber die Theorie der algebraischen Formen. Math. Ann. 36: 473-534. 
Hilbert, D., Hurwitz, A. (1890): Uber die Diophantischen Gleichungen vom Geschlecht 

Null. Acta Math. 14: 217-224. 
Hironaka, H. (1964): Resolution of singularities on an algebraic variety over a field of 

characteristic zero: I, II. Ann. Math. 79: 109-326. 
Hong, H. (1990): An improvement of the projection operator in cylindrical algebraic 

decomposition. In: Watanabe, S., Nagata, M. (eds.): Proceedings of the International 
Symposium on Symbolic and Algebraic Computation (ISSAC '90). Association for 
Computing Machinery, New York, pp. 261-264. 

Hong, H. (ed.) (1993): Computational quantifier elimination. Comput. J. 36 no. 5. 
Hong, H., Sendra, J. R. (1996): Computation of variant resultants. In: Caviness, B. F., 

Johnson, J. R. (eds.): Quantifier elimination and cylindrical algebraic decomposition. 
Springer, Wien New York (forthcoming). 

Horowitz, E. (1969): Algorithms for symbolic integration of rational functions. Ph. D. 
thesis, University of Wisconsin, Madison, Wisconsin. 

Horowitz, E. (1971): Algorithms for partial fraction decomposition and rational func
tion integration. In: Petrick, S. R. (ed.): Proceedings of the ACM Symposium on 
Symbolic and Algebraic Manipulation (SYMSAM '71). Association for Computing 
Machinery, New York, pp. 441-457. 

Horowitz, E., Sahni, S. (1976): Fundamentals of data structures. Computer Science 
Press, Potomac, MD. 

Huet, G. (1980): Confluent reductions: abstract properties and applications to term re
writing systems. J. ACM 27: 797-821. 

Huguet, L., Poli, A. (eds.) (1989): Applied algebra, algebraic algorithms and error
correcting codes. Springer, Berlin Heidelberg New York Tokyo (Lecture notes in 
computer science, vol. 356). 



256 References 

Jacob, W. B., Lam, T.-Y., Robson, R. O. (eds.) (1994): Recent advances in real algebraic 
geometry and quadratic forms. AMS, Providence, RI (Contemporary mathematics, 
vol. 155). 

JanSen, R. (ed.) (1987): Trends in computer algebra. Springer, Berlin Heidelberg New 
York Tokyo (Lecture notes in computer science, vol. 296). 

Jebelean, T. (1993): An algorithm for exact division. J. Symb. Comput. 15: 169-180. 
Jenks, R. D. (ed.) (1974): Proceedings of EUROSAM '74. ACM SIGSAM Bull. 8 no. 3. 
Jenks, R. D. (ed.) (1976): Proceedings of the ACM Symposium on Symbolic and Alge-

braic Computation. Association for Computing Machinery, New York. 
Jenks, R. D., Sutor, R. S. (1992): Axiom - the scientific computation system. Springer, 

Berlin Heidelberg New York Tokyo. 
Kalkbrener, M. (1987): Solving systems of algebraic equations by using Grabner bases. 

In: Davenport, J. H. (ed.): EUROCAL '87. Springer, Berlin Heidelberg New York 
Tokyo, pp. 282-292 (Lecture notes in computer science, vol. 378). 

Kalkbrener, M. (1991): Three contributions to elimination theory. Ph. D. dissertation, 
Johannes Kepler University Linz, Linz, Austria. 

Kalkbrener, M., Sturmfels, B. (1995): Initial complexes of prime ideals. Adv. Math. 
116: 365-376. 

Kaltofen, E. (1982): On the complexity of factoring polynomials with integer coeffi
cients. Ph. D. thesis, Rensselaer Polytechnic Institute, Troy, New York. 

Kaltofen, E. (1983): Factorization of polynomials. In: Buchberger, B., Collins, G. E., 
Loos, R. (eds.): Computer algebra, symbolic and algebraic computation, 2nd edn. 
Springer, Wien New York, pp. 95-113. 

Kaltofen, E. (1985a): Polynomial-time reductions from multivariate to bi- and univariate 
integral polynomial factorization. SIAM J. Comput. 14: 469-489. 

Kaltofen, E. (1985b): Sparse Hensel lifting. Techn. Rep. 85-12, Rensselaer Polytechnic 
Institute, Depertment of Computer Science, Troy, New York. 

Kaltofen, E. (1985c): Fast parallel irreducibility testing. 1. Symb. Comput. 1: 57-67. 
Kaltofen, E. (1986): Polynomial factorization 1982-1986. In: Chudnovsky, D. Y., Jenks, 

R. D. (eds.): Computers in mathematics. Marcel Dekker, New York, pp.285-309 
(Lecture notes in pure and applied mathematics, vol. 125). 

Kaltofen, E. (1987): Deterministic irreducibility testing of polynomials over large finite 
fields. J. Symb. Comput. 4: 77-82. 

Kaltofen, E. (1988): Greatest common divisors of polynomials given by straight-line 
programs. J. ACM 35: 231-264. 

Kaltofen, E. (ed.) (1990): Computational algebraic complexity. Academic Press, London. 
Kaltofen, E. (1992): Polynomial factorization 1987-1991. In: Simon, I. (ed.): LATIN '92. 

Springer, Berlin Heidelberg New York Tokyo, pp. 294-313 (Lecture notes in com
puter science, vol. 583). 

Kaltofen, E., Watt, S. M. (eds.) (1989): Computers and mathematics. Springer, Berlin 
Heidelberg New York Tokyo. 

Kaminski, M. (1987): A linear time algorithm for residue computation and a fast algo
rithm for division with a sparse divisor. J. ACM 34: 968-984. 

Kaminski, M., Bshouty, N. H. (1989): Multiplicative complexity of polynomial multi
plication over finite fields. J. ACM 36: 150-170. 

Kandri-Rody, A., Kapur, D. (1984): Algorithms for computing Grabner bases of polyno
mial ideals over various Euclidean rings. In: Fitch, 1. (ed.): EUROSAM 84. Springer, 



References 257 

Berlin Heidelberg New York Tokyo, pp. 195-206 (Lecture notes in computer science, 
vol. 174). 

Kapur, D. (1986): Using Grobner bases to reason about geometry problems. 1. Symb. 
Comput. 2: 399-408. 

Karatsuba, A., Of man, Yu. (1962): Multiplication of multidigit numbers on automata. 
Soviet Phys. Dokl. 7: 595-596. [Dokl. Akad. Nauk USSR 145: 293-294 (1962), in 
Russian]. 

Karian, Z. A. (ed.) (1992): Symbolic computation in undergraduate mathematics educa
tion. Math. Assoc. Amer. Notes 24. 

Karr, M. (1985): Theory of summation in finite terms. 1. Symb. Comput. 1: 303-315. 
Knuth, D. E. (1973): The art of computer programming, vol. 1, fundamental algorithms, 

2nd edn. Addison-Wesley, Reading, MA. 
Knuth, D. E. (1981): The art of computer programming, vol. 2, seminumerical algo

rithms, 2nd edn. Addison-Wesley, Reading, MA. 
Knuth, D. E., Bendix, P. B. (1967): Simple word problems in universal algebras. In: 

Leech, J. (ed.): Computational problems in abstract algebra. Pergamon, Oxford, 
pp.263-297. 

Koblitz, N. (1977): p-adic numbers, p-adic analysis, and zeta-functions. Springer, New 
York Berlin Heidelberg. 

Koepf, W. (1992): Power series in computer algebra. 1. Symb. Comput. 13: 581--603. 
Kovacic, 1. 1. (1986): An algorithm for solving second order linear homogeneous dif

ferential equations. 1. Symb. Comput. 2: 3-43. 
Kozen, D., Landau, S. (1989): Polynomial decomposition algorithms. 1. Symb. Comput. 

7: 445-456. 
Kredel, H., Weispfenning, V. (1988): Computing dimension and independent sets for 

polynomial ideals. J. Symb. Comput. 6: 231-248. 
Kronecker, L. (1882): Grundziige einer arithmetischen Theorie der algebraischen Gro

Ben. 1. Reine Angew. Math. 92: 1-122. 
Kutzler, B., Stifter, S. (1986a): Automated geometry theorem proving using Buchber

ger's algorithm. In: Char, B. W. (ed.): Proceedings of the 1986 Symposium on 
Symbolic and Algebraic Computation. Association for Computing Machinery, New 
York, pp. 209-214. 

Kutzler, B., Stifter, S. (1986b): On the application of Buchberger's algorithm to auto
mated geometry theorem proving. 1. Symb. Comput. 2: 389-397. 

Kutzler, B., Wall, B., Winkler, F. (1992): Mathematische Expertensysteme - prakti
sches Arbeiten mit den Computer-Algebra-Systemen MACSYMA, Mathematica und 
DERIVE. Expert Verlag, Ehningen bei Boblingen. 

Lafon, 1. C. (1983): Summation in finite terms. In: Buchberger, B., Collins, G. E., Loos, 
R. (eds.): Computer algebra, symbolic and algebraic computation, 2nd edn. Springer, 
Wien New York, pp. 71-77. 

Lakshman, Y. N. (1991): A single exponential bound on the complexity of computing 
Grobner bases of zero dimensional ideals. In: Mora, T., Traverso, C. (eds.): Effec
tive methods in algebraic geometry. Birkhauser, Boston, pp. 227-234 (Progress in 
mathematics, vol. 94). 

Lakshman, Y. N., Lazard, D. (1991): On the complexity of zero-dimensional algebraic 
systems. In: Mora, T., Traverso, C. (eds.): Effective methods in algebraic geometry. 
Birkhauser, Boston, pp. 217-225 (Progress in mathematics, vol. 94). 



258 References 

Landau, E. (1905): Sur quelques theoremes de M. Petrovitch relatifs aux zeros des 
fonctions analytiques. Bull. Soc. Math. France 33: 251-261. 

Landau, S. (1985): Factoring polynomials over algebraic number fields. SIAM 1. Com
put. 14: 184--195. 

Lang, S. (1984): Algebra, 2nd edn. Addison-Wesley, Reading, MA. 
Langemyr, L., McCallum, S. (1989): The computation of polynomial greatest common 

divisors over an algebraic number field. J. Symb. Comput. 8: 429-448. 
Lauer, M. (1983): Computing by homomorphic images. In: Buchberger, B., Collins, 

G. E., Loos, R. (eds.): Computer algebra, symbolic and algebraic computation, 2nd 
edn. Springer, Wien New York, pp. 139-168. 

Lazard, D. (1985): Ideal bases and primary decomposition: case of two variables. 
J. Symb. Comput. I: 261-270. 

Lazard, D. (1992): A note on upper bounds for ideal-theoretic problems. 1. Symb. 
Comput. 13: 231-233. 

Lazard, D., Rioboo, R (1990): Integration of rational functions: rational computation 
of the logarithmic part. J. Symb. Comput. 9: 113-115. 

Le Chenadec, P. (1986): Canonical forms in finitely presented algebras. Pitman, London. 
Leech, J. (ed.) (1970): Computational Problems in Abstract Algebra, Proceedings of the 

conference held at Oxford in 1967. Pergamon, Oxford. 
Lehmer, D. H. (1938): Euclid's algorithm for large numbers. Amer. Math. M. 45: 227-

233. 
Lenstra, A. K., Lenstra, H. W. Jr., Lovasz, L. (1982): Factoring polynomials with rational 

coefficients. Math. Ann. 261: 515-534. 
Levelt, A. H. M. (ed.) (1995): Proceedings of the International Symposium on Symbolic 

and Algebraic Computation (ISSAC '95). Association for Computing Machinery, 
New York. 

Lewis, V. E. (ed.) (1979): MACSYMA Users' Conference, Proceedings of the conference 
held at Washington, D.C. MIT, Cambridge, MA. 

Lidl, R. (1985): On decomposable and commuting polynomials. In: Caviness, B. F. 
(ed.): EUROCAL '85. Springer, Berlin Heidelberg New York Tokyo, pp. 148-149 
(Lecture notes in computer science, vol. 204). 

Lidl, R, Niederreiter, H. (1983): Finite fields. Addison-Wesley, Reading, MA. 
Lidl, R, Pilz, G. (1984): Applied abstract algebra. Springer, Berlin Heidelberg New York 

Tokyo. 
Lipson, J. D. (1981): Elements of algebra and algebraic computing. Addison-Wesley, 

Reading, MA. 
Llovet, J., Sendra, J. R (1989): Hankel matrices and polynomials. In: Huguet, L., Poli, A. 

(eds.): Applied algebra, algebraic algorithms, and error-correcting codes. Springer, 
Berlin Heidelberg New York Tokyo, pp. 321-333 (Lecture notes in computer science, 
vol. 356). 

Llovet, J., Sendra, J. R, Martinez, R (1992): An algorithm for computing the number 
of real roots using Hankel forms. Linear Algebra Appl. 179: 228-234. 

Loos, R (1983): Generalized polynomial remainder sequences. In: Buchberger, B., 
Collins, G. E., Loos, R (eds.): Computer algebra, symbolic and algebraic com
putation, 2nd edn. Springer, Wien New York, pp. 115-137. 

MacCallum, M., Wright, F. (eds.) (1991): Algebraic computing with Reduce. Clarendon, 
Oxford. 



References 259 

Maeder, R. (1991): Programming in Mathematica, 2nd edn. Addison-Wesley, Redwood 
City, CA. 

MacLane, S., Birkhoff, G. (1979): Algebra, 2nd edn. Macmillan, New York. 
Mahler, K. (1973): Introduction to p-adic numbers and their functions. Cambridge Uni

versity Press, Cambridge. 
Mattson, H. F., Mora, T. (eds.) (1991): Applied algebra, algebraic algorithms, and error

correcting codes. Discr. Appl. Math. 3 no. 1-3. 
Mattson, H. F., Mora, T., Rao, T. R. N. (eds.) (1991): Applied algebra, algebraic al

gorithms and error-correcting codes. Springer, Berlin Heidelberg New York Tokyo 
(Lecture notes in computer science, vol. 539). 

Mayr, E. W., Meyer, A. R. (1982): The complexity of the word problem for commutative 
semigroups and polynomial ideals. Adv. Math. 46: 305-329. 

McCallum, S. (1988): An improved projection operation for cylindrical algebraic de
composition of three-dimensional space. J. Symb. Comput. 5: 141-161. 

McCallum, S. (1996): An improved projection operation for cylindrical algebraic de
composition. In: Caviness, B. F., Johnson, J. R. (eds.): Quantifier elimination and 
cylindrical algebraic decomposition. Springer, Wien New York (forthcoming). 

McCarthy, J., et al. (1962): LISP 1.5 programmer's manual. MIT Press, Cambridge, MA. 
Mignotte, M. (1974): An inequality about factors of polynomials. Math. Comput. 28: 

1153-1157. 
Mignotte, M. (1983): Some useful bounds. In: Buchberger, B., Collins, G. E., Loos, R. 

(eds.): Computer algebra, symbolic and algebraic computation, 2nd edn. Springer, 
Wien New York, pp. 259-263. 

Mignotte, M. (1992): Mathematics for computer algebra. Springer, New York Berlin 
Heidelberg Tokyo. 

Miola, A. (ed.) (1993): Design and implementation of symbolic computation systems. 
Springer, New York Berlin Heidelberg Tokyo (Lecture notes in computer science, 
vol. 722). 

Mishra, B. (1993): Algorithmic algebra. Springer, New York Berlin Heidelberg Tokyo. 
Moller, H. M. (1988): On the construction of Grobner bases using syzygies. J. Symb. 

Comput. 6: 345-359. 
Moller, H. M., Mora, F. (1984): Upper and lower bounds for the degree of Groebner 

bases. In: Fitch, J. P. (ed.): EUROSAM '84. Springer, Berlin Heidelberg New York 
Tokyo, pp. 172-183 (Lecture notes in computer science, vol. 174). 

Mora, T. (ed.) (1989): Applied algebra, algebraic algorithms and error-correcting codes. 
Springer, Berlin Heidelberg New York Tokyo (Lecture notes in computer science, 
vol. 357). 

Mora, F., Moller, H. M. (1986): New constructive methods in classical ideal theory. J. 
Algebra 100: 138-178. 

Mora, T., Robbiano, L. (1988): The Grobner fan of an ideal. J. Symb. Comput. 6: 
183-208. 

Mora, T., Traverso, C. (eds.) (1991): Effective methods in algebraic geometry. Birkhiiu
ser, Boston (Progress in mathematics, vol. 94). 

Moses, J. (197la): Algebraic simplification: a guide for the perplexed. Commun. ACM 
14: 527-537. 

Moses, J. (197lb): Symbolic integration: the stormy decade. Commun. ACM 14: 548-
560. 



260 References 

Moses, J., Yun, D. Y. Y. (1973): The EZ GCD algorithm. In: Proceedings Associa
tion for Computing Machinery National Conference, August 1973. Association for 
Computing Machinery, New York, pp. 159-166. 

Musser, D. R. (1976): Multivariate polynomial factorization. J. ACM 22: 291-308. 
Newell, A., Shaw, J. C., Simon, H. A. (1957): Empirical explorations of the logic theory 

machine. In: Proceedings 1957 Western Joint Computer Conference, pp. 218-230. 
Ng, W. (ed.) (1979): Symbolic and algebraic computation. Springer, Berlin Heidelberg 

New York (Lecture notes in computer science, vol. 72). 
Niederreiter, H., Gattfert, R. (1993): Factorization of polynomials over finite fields and 

characteristic sequences. 1. Symb. Comput. 16: 401-412. 
Noether, M. (1884): Rationale Ausfiihrung der Operationen in der Theorie der algebrai

schen Functionen. Math. Ann. 23: 311-358. 
Pauer, F. (1992): On lucky ideals for Grabner basis computations. 1. Symb. Comput. 

14: 471-482. 
Pauer, F., Pfeifhofer, M. (1988): The theory of Grabner bases. Enseign. Math. 34: 

215-232. 
Paule, P. (1993): Greatest factorial factorization and symbolic summation I. Techn. Rep. 

RISC Linz 93-02. 
Paule, P. (1994): Short and easy computer proofs of the Rogers-Ramanujan identities 

and of identities of similar type. Electronic 1. Combin. I: RIO. 
Paule, P., Strehl, V. (1995): Symbolic symmation - some recent developments. In: 

Fleischer, J., Grabmeier, J., Hehl, F., Kuechlin, W. (eds.): Computer algebra in sci
ence and engineering, algorithms, systems, applications. World Scientific, Singapore, 
pp. 138-162. 

Pavelle, R. (ed.) (1985): Applications of computer algebra. Kluwer, Boston. 
Pavelle, R., Wang, P. S. (1985): MACSYMA from F to G. J. Symb. Comput. 1: 69-100. 
Pavelle, R., Rothstein, M., Fitch, J. (1981): Computer algebra. Sci. Am. 245/6: 102-113. 
Petrick, S. R. (ed.) (1971): Proceedings of the ACM Symposium on Symbolic and Al-

gebraic Manipulation (SYMSAM '71). Association for Computing Machinery, New 
York. 

Pohst, M. (1987): A modification of the LLL reduction algorithm. J. Symb. Comput. 4: 
123-127. 

Pohst, M., Zassenhaus, H. (1989): Algorithmic algebraic number theory. Cambridge 
University Press, Cambridge. 

Pope, D. A., Stein, M. L. (1960): Multiple precision arithmetic. Commun. ACM 3: 652-
654. 

Rand, R. H. (1984): Computer algebra in applied mathematics: an introduction to MAC
SYMA. Pitman, London. 

Rand, R. H., Armbruster, D. (1987): Perturbation methods, bifurcation theory and com
puter algebra. Springer, Berlin Heidelberg New York Tokyo. 

Rayna, G. (1987): REDUCE: software for algebraic compuation. Springer, Berlin Hei
delberg New York Tokyo. 

Renegar, J. (I 992a): On the computational complexity and geometry of the first-order 
theory of the reals. Part I: introduction. Preliminaries. The geometry of semi
algebraic sets. The decision problem for the existential theory of the reals. J. Symb. 
Comput. 13: 255-299. 

Renegar, J. (1 992b): On the computational complexity and geometry of the first-order 



References 261 

theory of the reals. Part II: the general decision problem. Preliminaries for quantifier 
elimination. 1. Symb. Comput. 13: 301-327. 

Renegar, 1. (1992c): On the computational complexity and geometry of the first-order 
theory of the reals. Part III: quantifier elimination. 1. Symb. Comput. 13: 329-352. 

Rich, A., Rich, 1., Stoutemyer, D. (1988): Derive, a mathematical assistant. Soft Ware
house, Honolulu, HI. 

Ritt, 1. F. (1922): Prime and composite polynomials. Trans. Amer. Math. Soc. 23: 51-66. 
Robbiano, L. (1985): Term orderings on the polynomial ring. In: Caviness, B. F. (ed.): 

EUROCAL '85. Springer, Berlin Heidelberg New York Tokyo, pp. 513-517 (Lecture 
notes in computer science, vol. 204). 

Robbiano, L. (1986): On the theory of graded structures. 1. Symb. Comput. 2: 139-170. 
Rolletschek, H. (1991): Computer algebra. Techn. Rep. RISC Linz 91-07. 
Rothstein, M. (1976): Aspects of symbolic integration and simplification of exponential 

and primitive functions. Ph. D. thesis, University of Wisconsin, Madison, WI. 
Runge, c., Konig, H. (1924): Vorlesungen tiber numerisches Rechnen. Springer, Berlin 

[Courant, R., et al. (eds.): Die Grundlehren der mathematischen Wissenschaften, 
vol. 11]. 

Sakata, S. (ed.) (1991): Applied algebra, algebraic algorithms and error-correcting codes. 
Springer, Berlin Heidelberg New York Tokyo (Lecture notes in computer science, 
vol. 508). 

Schicho, 1. (1992): On the choice of pencils in the parametrization of curves. 1. Symb. 
Comput. 14: 557-576. 

Schonhage, A., Strassen, V. (1971): Schnelle Multiplikation gro8er Zahlen. Computing 
7: 281-292. 

Schwarz, 1. T., Sharir, M. (1983): On the "piano movers" problem. II. General techniques 
for computing topological properties of real algebraic manifolds. Adv. Appl. Math. 
4: 298-351. 

Sederberg, T. W. (1986): Improperly parametrized rational curves. Comput. Aided 
Geom. Des. 3: 67-75. 

Seidenberg, A. (1954): A new decision method for elementary algebra and geometry. 
Ann. Math. 60: 365-374. 

Sendra, 1. R. (1990a): Algoritmos simb6licos de Hankel en algebra computacional. 
Ph. D. thesis, Universidad de Alcala de Henares, Madrid, Spain. 

Sendra, 1. R. (1990b): Hankel matrices and computer algebra. ACM SIGSAM Bull. 24/3: 
17-26. 

Sendra, 1. R., Llovet, 1. (1992a): An extended polynomial GCD algorithm using Hankel 
matrices. 1. Symb. Comput. 13: 25-39. 

Sendra, 1. R., Llovet, 1. (1992b): Rank of a Hankel matrix over Z[Xl, ... ,xr ]. 1. Appl. 
Algebra Appl. Algorithms Error Correct. Codes 3: 245-256. 

Sendra, 1. R., Winkler, F. (1991): Symbolic parametrization of curves. 1. Symb. Comput. 
12: 607-631. 

Sendra, 1. R., Winkler, F. (1994): Optimal parametrization of algebraic curves. Techn. 
Rep. RISC Linz 94-65. 

Sharpe, D. (1987): Rings and factorization. Cambridge University Press, Cambridge. 
Shirkov, D. V., Rostovtsev, V. A., Gerdt, V. P. (1991): Computer algebra in physical 

research. World Scientific, Singapore. 
Shoup, V. (1991): A fast deterministic algorithm for factoring polynomials over finite 



262 References 

fields of small characteristic. In: Watt, S. M. (ed.): Proceedings of the 1991 In
ternational Symposium on Symbolic and Algebraic Computation. Association for 
Computing Machinery, New York, pp. 14--21. 

Simon, B. (1990): Four computer mathematical environments. Notices Amer. Math. 
Soc. 37: 861-868. 

Singer, M. F. (1981): Liouvillian solutions of n-th order homogeneous linear differential 
equations. Am. J. Math. 103: 661--682. 

Smedley, T. J. (1989): A new modular algorithm for computation of algebraic number 
polynomials Gcds. In: Gonnet, G. H. (ed.): Proceedings of the ACM-SIGSAM 1989 
International Symposium on Symbolic and Algebraic Computation. Association for 
Computing Machinery, New York, pp. 91-94. 

Stifter, S. (1987): A generalization of reduction rings. J. Symb. Comput. 4: 351-364. 
Stifter, S. (1991): The reduction ring property is hereditary. J. Algebra 140: 399-414. 
Stifter, S. (1993): Grabner bases of modules over reduction rings. J. Algebra 159: 54-63. 
Strassen, V. (1972): Berechnung und Programm. I. Acta Inf. 1: 320-335. 
Tarski, A. (1951): A decision method for elementary algebra and geometry. University 

of California Press, Berkeley, CA. 
Tobey, R. G. (1967): Algorithms for anti-differentiation of rational functions. Ph. D. 

thesis, Harvard University, Cambridge, MA. 
Trager, B. M. (1976): Algebraic factoring and rational function integration. In: Jenks, 

R. D. (ed.): Proceedings of the ACM Symposium on Symbolic and Algebraic Com
putation. Association for Computing Machinery, New York, pp. 219-226. 

Trager, B. M. (1984): Integration of algebraic functions. Ph. D. thesis, MIT, Cam
bridge, MA. 

Trinks, W. (1978): Uber B. Buchbergers Verfahren, Systeme algebraischer Gleichungen 
zu lOsen. J. Number Theory 10: 475-488. 

van der Waerden, B. L. (1970): Algebra I, II. Ungar, New York. 
van Hoeij, M. (1994): Computing parametrizations of rational algebraic curves. In: von 

zur Gathen, J., Giesbrecht, M. (eds.): Proceedings of the International Symposium 
on Symbolic and Algebraic Computation. Association for Computing Machinery, 
New York, pp. 187-190. 

van Hulzen, J. A. (ed.) (1983): Computer algebra. Springer, Berlin Heidelberg New York 
Tokyo (Lecture notes in computer science, vol. 162). 

von zur Gathen, J. (1987): Feasible arithmetic computations: Valiant's hypothesis. J. 
Symb. Comput. 4: 137-172. 

von zur Gathen, 1. (1990a): Functional decomposition of polynomials: the tame case. 
J. Symb. Comput. 9: 281-299. 

von zur Gathen, J. (1990b): Functional decomposition of polynomials: the wild case. 
J. Symb. Comput. 10: 437-452. 

von zur Gathen, J., Giesbrecht, M. (eds.) (1994): Proceedings of the International Sym
posium on Symbolic and Algebraic Computation (ISSAC '94). Association for Com
puting Machinery, New York. 

von zur Gathen, J., Kozen, D., Landau, S. (1987): Functional decomposition of polyno
mials. In: Proceedings of the 28th Annual IEEE Symposium Foundations of Com
puter Science, Los Angeles, CA, pp. 127-131. 

Walker, R. J. (1950): Algebraic curves. Princeton University Press, Princeton. 



References 263 

Wall, B. (1993): Symbolic computation with algebraic sets. Ph. D. dissertation, Johannes 
Kepler University Linz, Linz, Austria. 

Wang, P. S. (1976): Factoring multivariate polynomials over algebraic number fields. 
Math. Comput. 30: 324-336. 

Wang, P. S. (1978): An improved multivariate polynomial factoring algorithm. Math. 
Comput. 32: 1215-1231. 

Wang, P. S. (1979): Parallel p-adic constructions in the univariate polynomial factoring 
algorithm. In: Lewis, V. E. (ed.): 1979 Macsyma Users' Conference. MIT Laboratory 
for Computer Science, Cambridge, MA. 

Wang, P. S. (ed.) (1981): Proceedings of the ACM Symposium on Symbolic and Al
gebraic Computation (SYMSAC '81). Association for Computing Machinery, New 
York. 

Wang, P. S. (ed.) (1992): Proceedings of the International Symposium on Symbolic 
and Algebraic Computation (ISSAC '92). Association for Computing Machinery, 
New York. 

Wang, P. S., Rothschild, L. P. (1975): Factoring multivariate polynomials over the inte
gers. Math. Comput. 29: 935-950. 

Watanabe, S., Nagata, M. (eds.) (1990): Proceedings of the International Symposium 
on Symbolic and Algebraic Computation (ISSAC '90). Association for Computing 
Machinery, New York. 

Watt, S. M. (ed.) (1991): Proceedings of the 1991 International Symposium on Symbolic 
and Algebraic Computation (ISSAC '91). Association for Computing Machinery, 
New York. 

Weispfenning, V. (1989): Constructing universal Grabner bases. In: Huguet, L., Poli, A. 
(eds.): Applied algebra, algebraic algorithms, and error-correcting codes. Springer, 
Berlin Heidelberg New York Tokyo, pp. 408-417 (Lecture notes in computer science, 
vol. 356). 

WeiB, J. (1992): Homogeneous decomposition of polynomials. In: Wang, P. S. (ed.): Pro
ceedings of the International Symposium on Symbolic and Algebraic Computation. 
Association for Computing Machinery, New York, pp. 146-151. 

Wiedemann, D. (1986): Solving sparse linear equations over finite fields. IEEE Trans. 
Inf. Theory 32: 54-62. 

Wilf, H. S., Zeilberger, D. (1992): An algorithmic proof theory for hypergeometric 
(ordinary and "q") multisumlintegral identities. Invent. Math. 108: 575-633. 

Winkler, F. (1984a): The Church-Rosser property in computer algebra and special the
orem proving: an investigation of critical-pair/completion algorithms. Ph. D. disser
tation, Johannes Kepler University Linz, Linz, Austria. 

Winkler, F. (1 984b): On the complexity of the Grabner-bases algorithm over K [x, y, zJ. 
In: Fitch, J. (ed.): EUROSAM 84. Springer, Berlin Heidelberg New York Tokyo, 
pp. 184-194 (Lecture notes in computer science, vol. 174). 

Winkler, F. (1987): Computer algebra. In: Meyers, R. A. (ed.): Encyclopedia of physical 
science and technology, vol. 3. Academic Press, London, pp. 330-356. 

Winkler, F. (1988a): A p-adic approach to the computation of Grabner bases. J. Symb. 
Comput. 6: 287-304. 

Winkler, F. (l988b): Computer Algebra I (Algebraische Grundalgorithmen). Techn. Rep. 
RISC 88-88. 

Winkler, F. (1989): A geometrical decision algorithm based on the Grabner bases al-



264 References 

gorithm. In: Gianni, P. (ed.): Symbolic and algebraic computation. Springer, Berlin 
Heidelberg New York Tokyo, pp. 356-363 (Lecture notes in computer science, vol. 
358). 

Winkler, F. (1990a): Solution of equations I: polynomial ideals and Grobner bases. In: 
Chudnovsky, D. V., Jenks, R. D. (eds.): Computers in mathematics. Marcel Dekker, 
New York, pp. 383-407 (Lecture notes in pure and applied mathematics, vol. 125). 

Winkler, F. (1990b): Grobner bases in geometry theorem proving and simplest degen
eracy conditions. Math. Pannonica 1: 15-32. 

Winkler, F. (1992): Automated theorem proving in nonlinear geometry. In: Hoffmann, C. 
(ed.): Issues in robotics and nonlinear geometry. Jai Press, Greenwich, pp. 183-197 
(Advances in computing research, vol. 6). 

Winkler, F. (1993): Computer algebra. In: Ralston, A., Reilly, E. D. (eds.): Encyclopedia 
of computer science, 3rd edn. Van Nostrand Reinhold, New York, pp. 227-231. 

Winkler, F., Buchberger, B. (1983): A criterion for eliminating unnecessary reductions in 
the Knuth-Bendix algorithm. In: Demetrovics, 1., Katona, G., Salomaa, A. (eds.): 
Colloquia Mathematica Societatis Janos Bolyai 42. Algebra, Combinatorics and 
Logic in Computer Science, vol. 2. North-Holland, Amsterdam, pp. 849-869. 

Winkler, F., Buchberger, B., Lichtenberger, F., Rolletschek, H. (1985): Algorithm 628 
- an algorithm for constructing canonical bases of polynomial ideals. ACM Trans. 
Math. Software 11: 66--78. 

Wolfram, S. (1991): Mathematica - a system for doing mathematics by computer, 2nd 
edn. Addison-Wesley, Reading, MA. 

Yap, C. K. (1991): A new lower bound construction for commutative Thue systems with 
applications. J. Symb. Comput. 12: 1-27. 

Yokoyama, K., Noro, M., Takeshima, T. (1994): Multi-modular approach to polynomial
time factorization of bivariate integral polynomials. J. Symb. Comput. 17: 545-563. 

Yun, D. Y. Y. (ed.) (1980): Short Course: Computer Algebra - Symbolic Mathematical 
Computation. Workshop held in Ann Arbor, Michigan. AMS Notices, June 1980. 

Zacharias, G. (1978): Generalized Grobner bases in commutative polynomial rings. 
Bachelor's thesis, MIT, Cambridge, Massachusetts. 

Zassenhaus, H. (1969): On Hensel factorization, I. J. Number Theory 1: 291-311. 
Zassenhaus, H. (1975): On Hensel factorization II. Symp. Math. 15: 499-513. 
Zassenhaus, H. (1978): A remark on the Hensel factorization method. Math. Comput. 

32: 287-292. 
Zassenhaus, H. (1985): On polynomial factorization. Rocky Mountains J. Math. 15: 

657-665. 
Zariski, 0., Samuel, P. (1958): Commutative algebra, vol. 1. Springer, Berlin Gottingen 

Heidelberg. 
Zeilberger, D. (1990): A holonomic systems approach to special function identities. 

J. Comput. Appl. Math. 32: 321-368. 
Zeilberger, D. (1991): The method of creative telescoping. J. Symb. Comput. 11: 195-

204. 
Zippel, R. (1991): Rational function decomposition. In: Watt, S. M. (ed.): Proceedings 

of the 1991 International Symposium on Symbolic and Algebraic Computation. 
Association for Computing Machinery, New York, pp. 1-6. 

Zippel, R. (1993): Effective polynomial computation. Kluwer, Boston. 



Subject index 

Absolute factorization 146 
Absolutely irreducible 146 
Address field 20 
Adjoint curve 233 
Admissible ordering 180 
Affine 

curve 224 
plane 224 
space 224 

Algebraic 18 
curve 224 
degree 18 
equation 98, 191 
extension 18, 45, 140 
set 198 

Algorithm 
Bareiss's 157 
BASIS-REDUCTION 126 
Berlekamp-Hensel, FACTOR_BH 

119 
Berlekamp's, FACTOR~ 112, 114 
CAD 211 
Chinese remainder, CRA2, CRAJl 

55 
Chinese remainder, preconditioned, 

CRAJ>C 57 
DECOMPOSE 154 
DIGIT _SUM 27 
EGCDJI 170 
Euclidean, extended, E-EUCLID 46, 

52 
Euclidean, extended, INT _GCDEE 

36 
Euclidean, generalized 84 
Euclidean, INT _GCDE 34 
FACTOR~LG 143 
fast Fourier transform, FFT 70 

FIND~LG-FACTOR 147 
GCD.MOD 93 
GCD.MODm 95 
GCDJ>RS 84 
Gosper's, SUM_G 221 
GR6BNER~ 185 
Henrici, QF .MULTH, QF _SUMH 

43 f 
INT~BS 29 
INT-DIFF 29 
INT-DIV 32 
INT -DIVPS 238 
INT .MULTC 29 
INT~EG 29 
INT _SIGN 27, 237 
INT_SUM 29 
INT_SUMC 27 
INLSUMI 27 
INLSUM2 29 
ISPFD 104 
Karatsuba, INT .MULTK 30 
Kronecker's factorization, 

FACTOR_K 122 
Lenstra-Lenstra-Lovasz, 

FACTORLLL 125, 136 
LIFT 64 
LIFT -FACTORS 118 
LIFT_Q 66 
LIN_COMB 118 
LLLSUBALG 1 133 
LLLSUBALG2 134 
MI.MULT 47 
MLSUM 47 
POL-DIVK 40 
POL-DIVP 41 
Pope-Stein 33 
PRIMITIVE-ELEMENT 145 



266 

Algorithm 
PRS_SR 89 
QE 209 
QF_SUMC 44 
RESJI 169 
RES.MOD 97 
RES.MODp 98 
Schonhage-Strassen, INT .MULTSS 

76, 78 
SQFR-FACTOR 102 
SQFR-.NORM 143 
subresultant prs 85 

Algorithmic language 22 
Associate 15 
Available space list 20 

Base point 229 
Basis 15, 26, 125 
Basis condition 179 
Berlekamp, E. R. 112 
Bezout cofactors 52 
Bezout equality 52 
Bezout's theorem 225 
Buchberger, B. 179 
Buchberger's theorem 183 

Cannon, J. 8 
Canonical 

simplification 7 
simplifier 175 

Chain criterion 201 
Characteristic 15 
Chebyshev polynomial 152 
Chinese remainder problem 54 

abstract 56 
Chinese remainder theorem 55 
Church-Rosser property 174 
Closure 

reflexive 172 
reflexive-transitive 172 
reflexive-transitive-symmetric 172 
symmetric 172 
transitive 172 

Codominant 23 
Coefficient 17 
Collins, G. E. 8, 85, 97, 204 
Common predecessor 174 

Subject index 

Common successor 174 
Companion matrix 168 
Complete decomposition 151 
Complexity 23 
Component 151 
Composition 172 
Computing time 23 
Confluent 176 

locally 176 
Congruent 15,47 
Conjugate algebraic points 231 
Connected below 177 
Content 83 
Conversion 33 
Convolution 72 
Convolution theorem 72 
Cooley, J. M. 81 
Critical pair 183 
Cy linder 207 
Cylindrical algebraic decomposition 

208 
Cylindrical algebraic sample 208 
Cylindrical decomposition 207 

induced 208 

Decomposition 151,207 
cell of 207 

Decomposition of polynomials 151 
Defining polynomial 224 
Degree 17,224 
Degree function 51 
Dickson's lemma 186 
Digit 26 
Discriminant 18 
Divide 15 
Domain 16 
Dominate 23 
Dynamic array 22 

Eisenstein's irreducibility criterion 115 
Elementary algebra 205 
Elementary theory of real closed fields 

205 
Elimination property 192 
Elimination theory 7 
Equivalence problem 172 
Euclid 34 



Subject index 

Euclidean domain 16, 51 
Euclidean remainder sequence 34 
Evaluation 42 

Factorization 112 
Fermat's little theorem 48 
Field 16 

algebraic extension 18, 45, 140 
computable 16 
finite 47 
of definition 230 
ordered 204 
p-adic number 65 
quotient 16, 43 
real 205 
real closed 205 

Formula 
defining 207 
standard 206 

Fourier transform 67 
discrete 68 
inverse 69 

Free presentation 173 
Freshman's dream 48 
Fundamental vector 163, 165 

Galois field 48 
Gauss, C. F. 82 
Gaussian elimination 157 
Gauss's lemma 82 
Gcd computation 82, 169 
Geddes, K. O. 9 
Generating set 15 
Generator 173 
Genus 228 
Geometric theorem proving 4 
Gonnet, G. H. 9 
Gosper, R. W. 216 
Gram-Schmidt orthogonalization 

process 125 
Greatest common divisor 16, 34, 82 
Grabner basis 182 

elimination property of 192 
minimal 187 
normed 188 
reduced 188 

Group 14 

Hankel matrix 163 
proper 164 

267 

rational function associated with 168 
Hankel sequence 169 
Hearn, A. 8 
Henrici, P. 43 
Hensel lemma 116 
Hermann, G. 202 
Hermite, C. 106 
Hermite reduction process 106 f 
Hilbert, D. 236 
Hilbert's basis theorem 180 
Hilbert's Nullstellensatz 190 
Hilbert's 10th problem 8 
Homogeneous coordinates 225 
Homogenization 224 
Homomorphism 15 
Homer's rule 33,42 
Hurwitz, A. 236 
Hypergeometric function 215 
Hypergeometric sequence 216 

Ideal 15 
basis for 15 
congruent modulo 15 
finitely generated 15 
generating set for 15 
initial 189 
maximal 15 
primary 15 
prime 15 
principal 15 
product 199 
proper 15 
quotient 199 
radical 15 
sum 199 
O-dimensional 192 

Ideal equality problem 191 
Ideal membership problem 189 
Identity element 14 
Indecomposable 151 
Information field 20 
Initial 181 
Initial ideal 189 
Integer 26 

length of 26 



268 

Integral domain 16 
Integration of rational functions 105 
Interpolation problem 60 
Invariant 207 
Inverse relation 172 
Irreducible 16, 174,224 
Isomorphic 15 
Isomorphism 15 

Jacobian matrix 62 
Jenks, R. D. 9 

Kahrimanian, H. G. 8 
Kaltofen, E. 125, 146 
Karatsuba, A. 30 
Karatsuba method 30, 39 
Knuth, D. E. 111 
Kozen, D. 151 
Kronecker, L. 121 

Lagrange, J. L. 54 
Lame, G. 34 
Landau, S. 151 
Landau-Mignotte bound 91 
Language 

LISP 8,22 
PASCAL 23 

Lattice 125 
determinant of 125 
rank of 125 
reduced basis 126 

Leading coefficient 17, 181 
Leading coefficient problem 93 
Leading power product 181 
Leading term 17 
Lehmer, D. H. 37 
Length 26 
Lenstra, A. K. 125 
Lenstra, H. W. Jr. 125 
Lifting theorem 62 
Linear system of curves 229 
Liouvillian solution 7 
List 20 

available space 20 
cell 20 
empty 20 

Lovasz, L. 125 

Lowest terms 43 
Lucky prime 92 

McCarthy, J. 8,22 

Subject index 

Main problem in polynomial ideal 
theory 173 

Minimal polynomial 18,48 
Modular method 60 
Monic 17 
Monoid 14 
Moses, J. 8 
Multiple point 226 
Multiplicity 226 

Newman lemma 176 
refined 177 

Newton, I. 54 
Newton interpolation algorithm 60 
Noether, M. 236 
Noetherian 174, 179 
Noetherian induction 174 
Norm 17, 140 
Normal form 174 
Normal representation 45 
Numbers, set 

complex 13 
natural 13 
rational 13 
real 13 
integers 13 

Ofman, Yu. 30 
Operation, list 

APPEND 20 
CONS 20 
DEL 20 
EMPTY 20 
FIRST 20 
INIT 20 
INV 20 
LENGTH 20 
REST 20 
SHIFT 20 

Order 18, 23, 65 
Ordering 

admissible 180 
induced 181 



Subject index 

lexicographic 180 
graduated lexicographic 180 
graduated reverse lexicographic 180 
product 181 

Ordinary point 226 

p-adic approximation 61 
p-adic numbers 65 
Parametrizable curve 226 
Parametrization 227 
Partial fraction decomposition 104 
Piano movers problem 3 
Pointer field 20 
Polynomial 17,37 

defining 224, 225 
monic 17 
primitive 82 
quotient 39 
remainder 39 
representation of 37 

Polynomial remainder sequence 83 
primitive 85 
subresultant 89 

Positional number system 26 
basis of 26 
radix of 26 

Power of reduction relation 172 
Power product 179 
Power series 18 
Prime 16 
Primitive 82 
Primitive element 46, 48, 144 
Primitive part 83 
Principal ideal domain 16 
Principle of Tarski 206 
Product criterion 201 
Program systems 

AIdes 8 
Axiom 9 
Cayley 8 
Derive 9 
Macsyma 8 
Magma 8 
Maple 9 
Mathematica 9 
muMath 9 
PM 8 

Reduce 8 
SAC 8 
SACLIB 8 
Scratchpad 9 

Projection 210 
Projective 

curve 225 
plane 225 
space 225 

Proper rational function 104 
Proportional 23 
Pseudoquotient 41 
Pseudoremainder 41 

Quantifier elimination 206 
Quotient 32, 39, 51 
Quotient field 16, 43 

Radical 15 
Radical membership problem 190 
Radix 26 
Random access machine 20, 22 
Rational curve 226 
Reducesto 172,182 
Reducible 174 
Reduction relation 172 
Reductum 181 
Region 207 
Regular position 194 
Regular representation 217 
Relatively prime 16 
Relator 173 
Remainder 32, 39, 51 
Representation 

dense 37 
distributive 37 
recursive 37 
sparse 37 

Residue class 47 
Resultant 18, 86, 96, 168 
Ring 14 

commutative 14 
Noetherian 179 
with identity 14 

Ritt, J. F. 152 
Rothstein, M. 108 
Root of unity 68 

269 



270 

Sample 207 
Sample point 207 
Section 207 
Sector 207 
Semigroup 13 
Semira, J. R. 148, 163 
Shape lemma 195 
Similar 83 
Similarity coefficient 83 
Simple point 225 
Singularity 226 
S-polynomial 183 

unnecessary 201 
Squarefree 10 1 
Squarefree factorization 102 
Stack 207 
Standard definition 207 
Stoutemeyer, D. 9 
Straight-line program 22 
Subresultant 86 
Sylvester's identity 159 
Sylvester matrix 18, 85 
Syzygy 195 

Tacnode 4 
Tangent 226 
Tarski, A. 206 
Taylor expansion 62 
Termination property 174 
Toeplitz matrix 163 
Trade-off point 24 
Trager, B. 108, 140, 146 
Tukey, J. W. 81 

Subject index 

Unique factorization domain 16 
Unit 15 

Vandermonde matrix 68 

Wolfram, S. M. 9 
Word problem 173 

Zariski closure 198 
Zassenhaus, H. 66 
Zero-dimensional 192 
Zero divisor 16 



Texts and Monographs in Symbolic Computation 

Wen-tsiin Wu 

Mechanical Theorem Proving in Geometries 

Basic Principles 

Translated from the Chinese by Xiaofan Jin and Dongming Wang 

1994. 120 figures. XIV, 288 pages. 

Soft cover DM 98,-, tiS 686,-. ISBN 3-211-82506-1 

This book is a translation of Professor Wu's seminal Chinese book of 1984 on Automated 
Geometric Theorem Proving. The translation was done by his former student Dongming 
Wang jointly with Xiaofan Jin so that authenticity is guaranteed. Meanwhile, automated 
geometric theorem proving based on Wu's method of characteristic sets has become one of 
the fundamental, practically successful, methods in this area that has drastically en
hanced the scope of what is computationally tractable in automated theorem proving. 
This book is a source book for students and researchers who want to study both the intu
itive first ideas behind the method and the formal details together with many examples. 

Bernd Sturmfels 

Algorithms in Invariant Theory 

1993. 5 figures. VII, 197 pages. 

Soft cover DM 59,-, tiS 415,-. ISBN 3-211-82445-6 

J. Kung and G.-C. Rota, in their 1984 paper, write: "Like the Arabian phoenix rising out 
of its ashes, the theory of invariants, pronounced dead at the tum of the century, is once 
again at the forefront of mathematics." 
The book of Sturmfels is both an easy-to-read textbook for invariant theory and a chal
lenging research monograph that introduces a new approach to the algorithmic side of 
invariant theory. The Groebner bases method is the main tool by which the central prob
lems in invariant theory become amenable to algorithmic solutions. Students will find the 
book an easy introduction to this "classical and new" area of mathematics. Researchers 
in mathematics, symbolic computation, and computer science will get access to a wealth 
of research ideas, hints for applications, outlines and details of algorithms, worked out 
examples, and research problems. 

~ SpringerWienNewYork 

P.O.Box89. A-1201 \\tien. !"Iiell' YOrK.:\'Y 10010, 175 t'iflh A~enue 

Heidelberger Plalz 3. D-14197 Berlin. Tokyo 113.3-13. Hongo 3"<{'home. Bunkyo-ku 



Texts and Monographs in Symbolic Computation 

.foehen Pfalzgraf. Dongming Wang (ed~.) 

Automated Practical Reasoning 

Algebraic Approaches 

With a Foreword by Jim Cunningham 

1995. 23 figures. XI, 223 pages. 

Soft cover OM 98,-, oS 686,-. ISBN 3-211-82600-9 

This book presents a collection of articles on the general framework of mechanizing 
deduction in the logics of practical reasoning. Topics treated are novel approaches in the 
field of constructive algebraic methods (theory and algorithms) to handle geometric 
reasoning problems, especially in robotics and automated geometry theorem proving; 
constructive algebraic geometry of curves and surfaces showing some new interesting 
aspects; implementational issues concerning the use of computer algebra systems to deal 
with such algebraic methods. 
Besides work on nonmonotonic logic and a proposed approach for a unified treatment of 
critical pair completion procedures, a new semantical modeling approach based on the 
concept of fibered structures is discussed; an application to cooperating robots is demon
strated. 

In preparation: 

Alfonso !\fiola. Marco Temperini (eds.) 

Advances in the Design of Symbolic Computation 

Approx. 250 pages. ISBN 3-211-82844-3 

Norbert Kajler (cd.) 

Human Interaction in Symbolic Computation 

Approx. 250 pages. ISBN 3-211-82843-5 

~ SpringerWienNewYork 

P.O. Box 89, A-1201 Wien. \t'w 'roll. \Y 10010. 175 Fifth \If'nut' 

Heidelbe~r Plat~ 3, D-14197 Bf'rlin. Tok~o 113. 3·13. HonIl03-f'homt'. Bunkyo-ku 



SpringerMathematics 

Collegium Logicum 

Annals of the Kurt Codel Society 

Volume 2 

1996. 3 figures. VII, 137 pages. 

Soft cover DM 64,-, oS 450,

ISBN 3-211-82796-X 

Contents: H. de Nivelle: Resolution Games and Non-Liftable Resolution Orderings. -
M. Kerber, M. Kohlhase: A Tableau Calculus for Partial Functions. - G. Salzer: MUltlog: 
an Expert System for Multiple-valued Logics. - J. Krajicek: A Fundamental Problem of 
Mathematical Logic. - P. Pudlak: On the Lengths of Proofs of Consistency. - A. Carbone: 
The Craig Interpolation Theorem for Schematic Systems. - LA. Stewart: The Role of 
Monotonicity in Descriptive Complexity Theory. - R. Freund, L. Staiger: Numbers 
Defined by Turing Machines. 

Volume 1 

1995. 2 figures. VII, 122 pages. 
Soft cover DM 64,-, oS 450,

ISBN 3-211-82646-7 

Contents: P. Vihan: The Last Months of Gerhard Gentzen in Prague. - F.A. Rodriguez
Consuegra: Some Issues on Godel's Unpublished Philosophical Manuscripts. -
D.O. Spalt: Vollstandigkeit als Ziel historischer Explikation. Eine Fallstudie. - E. 
Engeler: Existenz und Negation in Mathematik und Logik. - w.I. Gutjahr: Paradoxien der 
Prognose und der Evaluation: Eine fixpunkttheoretische Analyse. - R. Hahnle: Automat
ed Deduction and Integer Programming. - M. Baaz, A. Leitsch: Methods of Functional 
Extension. 

~ SpringerWienNewYork 

P.O.Box89, A-120\ "'iell- :"jew York. 1'\):' 10010. 175 fifth Avenu .. 

Heiddberger Platz 3,0-14197 Berlin. Tok~'o 113 •. 3-\.3. Hongo 3-chome, Runkyo-ku 



SpringerComputerkultur 

Bernhard Dotzler (Hrsg.) 

Babbages Rechen-Automate 

Ausgewahlte Schriften 

1996.22 Abbildungen, 1 Frontispiz. VIII, 502 Seiten. 

Broschiert OM 89,-, 05 625,-. ISBN 3-211-82640-8 

Computerkultur, Band 6 

Charles Babbage, 1791 geboren in Walworth, gestorben 
in London 1871. Die liste seiner Beitrage zur Vermehrung 
des mensch lichen Wissens scheint endlos: von der 
Magenpumpe bis zur Statistik biblischer Wunder. Doch 
nicht erst die folgende oder unsere Zeit vergaB seinen 
Wunder(un)glauben wie seine vielen Miszellen zu Mensch 
und Welt, um ihm stattdessen die eine und einzige Rolle 
als Pionier der Computerpioniere auf den Grabstein zu 
schreiben. 
"Babbages Rechen-Automate" vereinigt jene Schriften, 
die erlauben, sich ein detailliertes und vollstandiges Bild 
seiner Rechenmaschinenerfindungen zu machen. Zwar 
blieben die (von rudimentaren Versuchskonstruktionen 
abgesehen) Entwurfe auf dem Papier, aber sie enthielten 
doch bereits aile wesentlichen Elemente eines Compu
ters. Nur informiert durch die hier erstmals in so umfas
sender Form in deutscher Sprache vorliegenden Schriften 
kann man einen ihrer vorgeblichen Meilensteine in seinen 
tatsachlichen Konturen erkennen. 

~ SpringerWienNewYork 
P.D.Box 89, A-1201 Wien. New York, NY 10010, 175 Fifth Avenue 

Heidelberger Platz 3, 0-14197 Berlin. Tokyo 113, 3-13. Hongo 3-chome. Bunkyo-ku 



Springer-Verlag 
and the Environment 

WE AT SPRINGER-VERLAG FIRMLY BELIEVE THAT AN 

international science publisher has a special obliga
tion to the environment, and our corporate policies 
consistently reflect this conviction. 

WE ALSO EXPECT OUR BUSINESS PARTNERS- PRINTERS, 

paper mills, packaging manufacturers, etc. - to commit 
themselves to using environmentally friendly mate
rials and production processes. 

THE PAPER IN THIS BOOK IS MADE FROM NO-CHLORINE 

pulp and is acid free, in conformance with inter
national standards for paper permanency. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
    /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
    /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
    /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
    /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
    /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
    /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




