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Preface to the Instructor

You are probably about to teach a course that will give students
their second exposure to linear algebra. During their first brush with
the subject, your students probably worked with Euclidean spaces and
matrices. In contrast, this course will emphasize abstract vector spaces
and linear maps.

The audacious title of this book deserves an explanation. Almost
all linear algebra books use determinants to prove that every linear op-
erator on a finite-dimensional complex vector space has an eigenvalue.
Determinants are difficult, nonintuitive, and often defined without mo-
tivation. To prove the theorem about existence of eigenvalues on com-
plex vector spaces, most books must define determinants, prove that a
linear map is not invertible if and only if its determinant equals 0, and
then define the characteristic polynomial. This tortuous (torturous?)
path gives students little feeling for why eigenvalues must exist.

In contrast, the simple determinant-free proofs presented here of-
fer more insight. Once determinants have been banished to the end
of the book, a new route opens to the main goal of linear algebra—
understanding the structure of linear operators.

This book starts at the beginning of the subject, with no prerequi-
sites other than the usual demand for suitable mathematical maturity.
Even if your students have already seen some of the material in the
first few chapters, they may be unaccustomed to working exercises of
the type presented here, most of which require an understanding of
proofs.

• Vector spaces are defined in Chapter 1, and their basic properties
are developed.

• Linear independence, span, basis, and dimension are defined in
Chapter 2, which presents the basic theory of finite-dimensional
vector spaces.

ix



x Preface to the Instructor

• Linear maps are introduced in Chapter 3. The key result here
is that for a linear map T , the dimension of the null space of T
plus the dimension of the range of T equals the dimension of the
domain of T .

• The part of the theory of polynomials that will be needed to un-
derstand linear operators is presented in Chapter 4. If you take
class time going through the proofs in this chapter (which con-
tains no linear algebra), then you probably will not have time to
cover some important aspects of linear algebra. Your students
will already be familiar with the theorems about polynomials in
this chapter, so you can ask them to read the statements of the
results but not the proofs. The curious students will read some
of the proofs anyway, which is why they are included in the text.

• The idea of studying a linear operator by restricting it to small
subspaces leads in Chapter 5 to eigenvectors. The highlight of the
chapter is a simple proof that on complex vector spaces, eigenval-
ues always exist. This result is then used to show that each linear
operator on a complex vector space has an upper-triangular ma-
trix with respect to some basis. Similar techniques are used to
show that every linear operator on a real vector space has an in-
variant subspace of dimension 1 or 2. This result is used to prove
that every linear operator on an odd-dimensional real vector space
has an eigenvalue. All this is done without defining determinants
or characteristic polynomials!

• Inner-product spaces are defined in Chapter 6, and their basic
properties are developed along with standard tools such as ortho-
normal bases, the Gram-Schmidt procedure, and adjoints. This
chapter also shows how orthogonal projections can be used to
solve certain minimization problems.

• The spectral theorem, which characterizes the linear operators for
which there exists an orthonormal basis consisting of eigenvec-
tors, is the highlight of Chapter 7. The work in earlier chapters
pays off here with especially simple proofs. This chapter also
deals with positive operators, linear isometries, the polar decom-
position, and the singular-value decomposition.
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• The minimal polynomial, characteristic polynomial, and general-
ized eigenvectors are introduced in Chapter 8. The main achieve-
ment of this chapter is the description of a linear operator on
a complex vector space in terms of its generalized eigenvectors.
This description enables one to prove almost all the results usu-
ally proved using Jordan form. For example, these tools are used
to prove that every invertible linear operator on a complex vector
space has a square root. The chapter concludes with a proof that
every linear operator on a complex vector space can be put into
Jordan form.

• Linear operators on real vector spaces occupy center stage in
Chapter 9. Here two-dimensional invariant subspaces make up
for the possible lack of eigenvalues, leading to results analogous
to those obtained on complex vector spaces.

• The trace and determinant are defined in Chapter 10 in terms
of the characteristic polynomial (defined earlier without determi-
nants). On complex vector spaces, these definitions can be re-
stated: the trace is the sum of the eigenvalues and the determi-
nant is the product of the eigenvalues (both counting multiplic-
ity). These easy-to-remember definitions would not be possible
with the traditional approach to eigenvalues because that method
uses determinants to prove that eigenvalues exist. The standard
theorems about determinants now become much clearer. The po-
lar decomposition and the characterization of self-adjoint opera-
tors are used to derive the change of variables formula for multi-
variable integrals in a fashion that makes the appearance of the
determinant there seem natural.

This book usually develops linear algebra simultaneously for real
and complex vector spaces by letting F denote either the real or the
complex numbers. Abstract fields could be used instead, but to do so
would introduce extra abstraction without leading to any new linear al-
gebra. Another reason for restricting attention to the real and complex
numbers is that polynomials can then be thought of as genuine func-
tions instead of the more formal objects needed for polynomials with
coefficients in finite fields. Finally, even if the beginning part of the the-
ory were developed with arbitrary fields, inner-product spaces would
push consideration back to just real and complex vector spaces.



xii Preface to the Instructor

Even in a book as short as this one, you cannot expect to cover every-
thing. Going through the first eight chapters is an ambitious goal for a
one-semester course. If you must reach Chapter 10, then I suggest cov-
ering Chapters 1, 2, and 4 quickly (students may have seen this material
in earlier courses) and skipping Chapter 9 (in which case you should
discuss trace and determinants only on complex vector spaces).

A goal more important than teaching any particular set of theorems
is to develop in students the ability to understand and manipulate the
objects of linear algebra. Mathematics can be learned only by doing;
fortunately, linear algebra has many good homework problems. When
teaching this course, I usually assign two or three of the exercises each
class, due the next class. Going over the homework might take up a
third or even half of a typical class.

A solutions manual for all the exercises is available (without charge)
only to instructors who are using this book as a textbook. To obtain
the solutions manual, instructors should send an e-mail request to me
(or contact Springer if I am no longer around).

Please check my web site for a list of errata (which I hope will be
empty or almost empty) and other information about this book.

I would greatly appreciate hearing about any errors in this book,
even minor ones. I welcome your suggestions for improvements, even
tiny ones. Please feel free to contact me.

Have fun!

Sheldon Axler
Mathematics Department
San Francisco State University
San Francisco, CA 94132, USA

e-mail: axler@math.sfsu.edu
www home page: http://math.sfsu.edu/axler



Preface to the Student

You are probably about to begin your second exposure to linear al-
gebra. Unlike your first brush with the subject, which probably empha-
sized Euclidean spaces and matrices, we will focus on abstract vector
spaces and linear maps. These terms will be defined later, so don’t
worry if you don’t know what they mean. This book starts from the be-
ginning of the subject, assuming no knowledge of linear algebra. The
key point is that you are about to immerse yourself in serious math-
ematics, with an emphasis on your attaining a deep understanding of
the definitions, theorems, and proofs.

You cannot expect to read mathematics the way you read a novel. If
you zip through a page in less than an hour, you are probably going too
fast. When you encounter the phrase “as you should verify”, you should
indeed do the verification, which will usually require some writing on
your part. When steps are left out, you need to supply the missing
pieces. You should ponder and internalize each definition. For each
theorem, you should seek examples to show why each hypothesis is
necessary.

Please check my web site for a list of errata (which I hope will be
empty or almost empty) and other information about this book.

I would greatly appreciate hearing about any errors in this book,
even minor ones. I welcome your suggestions for improvements, even
tiny ones.

Have fun!

Sheldon Axler
Mathematics Department
San Francisco State University
San Francisco, CA 94132, USA

e-mail: axler@math.sfsu.edu
www home page: http://math.sfsu.edu/axler
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Chapter 1

Vector Spaces

Linear algebra is the study of linear maps on finite-dimensional vec-
tor spaces. Eventually we will learn what all these terms mean. In this
chapter we will define vector spaces and discuss their elementary prop-
erties.

In some areas of mathematics, including linear algebra, better the-
orems and more insight emerge if complex numbers are investigated
along with real numbers. Thus we begin by introducing the complex
numbers and their basic properties.

✽
1



2 Chapter 1. Vector Spaces

Complex Numbers

You should already be familiar with the basic properties of the set R
of real numbers. Complex numbers were invented so that we can take
square roots of negative numbers. The key idea is to assume we have
a square root of −1, denoted i, and manipulate it using the usual rulesThe symbol i was first

used to denote
√−1 by

the Swiss

mathematician

Leonhard Euler in 1777.

of arithmetic. Formally, a complex number is an ordered pair (a, b),
where a,b ∈ R , but we will write this as a+ bi. The set of all complex
numbers is denoted by C:

C = {a+ bi : a,b ∈ R}.
If a ∈ R , we identify a+ 0i with the real number a. Thus we can think
of R as a subset of C.

Addition and multiplication on C are defined by

(a+ bi)+ (c + di) = (a+ c)+ (b + d)i,
(a+ bi)(c + di) = (ac − bd)+ (ad+ bc)i;

here a,b, c, d ∈ R . Using multiplication as defined above, you should
verify that i2 = −1. Do not memorize the formula for the product
of two complex numbers; you can always rederive it by recalling that
i2 = −1 and then using the usual rules of arithmetic.

You should verify, using the familiar properties of the real num-
bers, that addition and multiplication on C satisfy the following prop-
erties:

commutativity
w + z = z +w and wz = zw for all w,z ∈ C;

associativity
(z1 + z2) + z3 = z1 + (z2 + z3) and (z1z2)z3 = z1(z2z3) for all
z1, z2, z3 ∈ C;

identities
z + 0 = z and z1 = z for all z ∈ C;

additive inverse
for every z ∈ C, there exists a unique w ∈ C such that z+w = 0;

multiplicative inverse
for every z ∈ C with z �= 0, there exists a unique w ∈ C such that
zw = 1;
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distributive property
λ(w + z) = λw + λz for all λ,w, z ∈ C.

For z ∈ C, we let −z denote the additive inverse of z. Thus −z is
the unique complex number such that

z + (−z) = 0.

Subtraction on C is defined by

w − z = w + (−z)

for w,z ∈ C.
For z ∈ C with z �= 0, we let 1/z denote the multiplicative inverse

of z. Thus 1/z is the unique complex number such that

z(1/z) = 1.

Division on C is defined by

w/z = w(1/z)

for w,z ∈ C with z �= 0.
So that we can conveniently make definitions and prove theorems

that apply to both real and complex numbers, we adopt the following
notation:

The letter F is used

because R and C are

examples of what are

called fields. In this

book we will not need

to deal with fields other

than R or C. Many of

the definitions,

theorems, and proofs

in linear algebra that

work for both R and C

also work without

change if an arbitrary

field replaces R or C.

Throughout this book,
F stands for either R or C.

Thus if we prove a theorem involving F, we will know that it holds when
F is replaced with R and when F is replaced with C. Elements of F are
called scalars. The word “scalar”, which means number, is often used
when we want to emphasize that an object is a number, as opposed to
a vector (vectors will be defined soon).

For z ∈ F and m a positive integer, we define zm to denote the
product of z with itself m times:

zm = z · · · · · z
︸ ︷︷ ︸

m times

.

Clearly (zm)n = zmn and (wz)m = wmzm for all w,z ∈ F and all
positive integers m,n.



4 Chapter 1. Vector Spaces

Definition of Vector Space

Before defining what a vector space is, let’s look at two important
examples. The vector space R2, which you can think of as a plane,
consists of all ordered pairs of real numbers:

R2 = {(x,y) : x,y ∈ R}.

The vector space R3, which you can think of as ordinary space, consists
of all ordered triples of real numbers:

R3 = {(x,y, z) : x,y, z ∈ R}.

To generalize R2 and R3 to higher dimensions, we first need to dis-
cuss the concept of lists. Suppose n is a nonnegative integer. A list of
length n is an ordered collection of n objects (which might be num-
bers, other lists, or more abstract entities) separated by commas and
surrounded by parentheses. A list of length n looks like this:Many mathematicians

call a list of length n an

n-tuple. (x1, . . . , xn).

Thus a list of length 2 is an ordered pair and a list of length 3 is an
ordered triple. For j ∈ {1, . . . , n}, we say that xj is the jth coordinate
of the list above. Thus x1 is called the first coordinate, x2 is called the
second coordinate, and so on.

Sometimes we will use the word list without specifying its length.
Remember, however, that by definition each list has a finite length that
is a nonnegative integer, so that an object that looks like

(x1, x2, . . . ),

which might be said to have infinite length, is not a list. A list of length
0 looks like this: (). We consider such an object to be a list so that
some of our theorems will not have trivial exceptions.

Two lists are equal if and only if they have the same length and
the same coordinates in the same order. In other words, (x1, . . . , xm)
equals (y1, . . . , yn) if and only if m = n and x1 = y1, . . . , xm = ym.

Lists differ from sets in two ways: in lists, order matters and repeti-
tions are allowed, whereas in sets, order and repetitions are irrelevant.
For example, the lists (3,5) and (5,3) are not equal, but the sets {3,5}
and {5,3} are equal. The lists (4,4) and (4,4,4) are not equal (they
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do not have the same length), though the sets {4,4} and {4,4,4} both
equal the set {4}.

To define the higher-dimensional analogues of R2 and R3, we will
simply replace R with F (which equals R or C) and replace the 2 or 3
with an arbitrary positive integer. Specifically, fix a positive integer n
for the rest of this section. We define Fn to be the set of all lists of
length n consisting of elements of F:

Fn = {(x1, . . . , xn) : xj ∈ F for j = 1, . . . , n}.

For example, if F = R and n equals 2 or 3, then this definition of Fn

agrees with our previous notions of R2 and R3. As another example,
C4 is the set of all lists of four complex numbers:

C4 = {(z1, z2, z3, z4) : z1, z2, z3, z4 ∈ C}.

Ifn ≥ 4, we cannot easily visualize Rn as a physical object. The same For an amusing

account of how R3

would be perceived by

a creature living in R2,

read Flatland: A

Romance of Many

Dimensions, by Edwin

A. Abbott. This novel,

published in 1884, can

help creatures living in

three-dimensional

space, such as

ourselves, imagine a

physical space of four

or more dimensions.

problem arises if we work with complex numbers: C1 can be thought
of as a plane, but for n ≥ 2, the human brain cannot provide geometric
models of Cn. However, even if n is large, we can perform algebraic
manipulations in Fn as easily as in R2 or R3. For example, addition is
defined on Fn by adding corresponding coordinates:

1.1 (x1, . . . , xn)+ (y1, . . . , yn) = (x1 +y1, . . . , xn +yn).

Often the mathematics of Fn becomes cleaner if we use a single
entity to denote an list of n numbers, without explicitly writing the
coordinates. Thus the commutative property of addition on Fn should
be expressed as

x +y = y + x
for all x,y ∈ Fn, rather than the more cumbersome

(x1, . . . , xn)+ (y1, . . . , yn) = (y1, . . . , yn)+ (x1, . . . , xn)

for all x1, . . . , xn,y1, . . . , yn ∈ F (even though the latter formulation
is needed to prove commutativity). If a single letter is used to denote
an element of Fn, then the same letter, with appropriate subscripts,
is often used when coordinates must be displayed. For example, if
x ∈ Fn, then letting x equal (x1, . . . , xn) is good notation. Even better,
work with just x and avoid explicit coordinates, if possible.
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We let 0 denote the list of length n all of whose coordinates are 0:

0 = (0, . . . ,0).

Note that we are using the symbol 0 in two different ways—on the
left side of the equation above, 0 denotes a list of length n, whereas
on the right side, each 0 denotes a number. This potentially confusing
practice actually causes no problems because the context always makes
clear what is intended. For example, consider the statement that 0 is
an additive identity for Fn:

x + 0 = x

for all x ∈ Fn. Here 0 must be a list because we have not defined the
sum of an element of Fn (namely, x) and the number 0.

A picture can often aid our intuition. We will draw pictures de-
picting R2 because we can easily sketch this space on two-dimensional
surfaces such as paper and blackboards. A typical element of R2 is a
point x = (x1, x2). Sometimes we think of x not as a point but as an
arrow starting at the origin and ending at (x1, x2), as in the picture
below. When we think of x as an arrow, we refer to it as a vector .

x -axis1

x -axis2

(x , x )
21

x

Elements of R2 can be thought of as points or as vectors.

The coordinate axes and the explicit coordinates unnecessarily clut-
ter the picture above, and often you will gain better understanding by
dispensing with them and just thinking of the vector, as in the next
picture.
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x

0
A vector

Whenever we use pictures in R2 or use the somewhat vague lan-
guage of points and vectors, remember that these are just aids to our
understanding, not substitutes for the actual mathematics that we will
develop. Though we cannot draw good pictures in high-dimensional
spaces, the elements of these spaces are as rigorously defined as ele-
ments of R2. For example, (2,−3,17, π,

√
2) is an element of R5, and we

may casually refer to it as a point in R5 or a vector in R5 without wor-
rying about whether the geometry of R5 has any physical meaning.

Recall that we defined the sum of two elements of Fn to be the ele- Mathematical models

of the economy often

have thousands of

variables, say

x1, . . . , x5000, which

means that we must

operate in R5000. Such

a space cannot be dealt

with geometrically, but

the algebraic approach

works well. That’s why

our subject is called

linear algebra.

ment of Fn obtained by adding corresponding coordinates; see 1.1. In
the special case of R2, addition has a simple geometric interpretation.
Suppose we have two vectors x and y in R2 that we want to add, as in
the left side of the picture below. Move the vector y parallel to itself so
that its initial point coincides with the end point of the vector x. The
sum x + y then equals the vector whose initial point equals the ini-
tial point of x and whose end point equals the end point of the moved
vector y , as in the right side of the picture below.

y

x + y

y

x

0

x

0

The sum of two vectors

Our treatment of the vectory in the picture above illustrates a standard
philosophy when we think of vectors in R2 as arrows: we can move an
arrow parallel to itself (not changing its length or direction) and still
think of it as the same vector.
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Having dealt with addition in Fn, we now turn to multiplication. We
could define a multiplication on Fn in a similar fashion, starting with
two elements of Fn and getting another element of Fn by multiplying
corresponding coordinates. Experience shows that this definition is not
useful for our purposes. Another type of multiplication, called scalar
multiplication, will be central to our subject. Specifically, we need to
define what it means to multiply an element of Fn by an element of F.
We make the obvious definition, performing the multiplication in each
coordinate:

a(x1, . . . , xn) = (ax1, . . . , axn);

here a ∈ F and (x1, . . . , xn) ∈ Fn.
Scalar multiplication has a nice geometric interpretation in R2. IfIn scalar multiplication,

we multiply together a

scalar and a vector,

getting a vector. You

may be familiar with

the dot product in R2

or R3, in which we

multiply together two

vectors and obtain a

scalar. Generalizations

of the dot product will

become important

when we study inner

products in Chapter 6.

You may also be

familiar with the cross

product in R3, in which

we multiply together

two vectors and obtain

another vector. No

useful generalization of

this type of

multiplication exists in

higher dimensions.

a is a positive number and x is a vector in R2, then ax is the vector
that points in the same direction as x and whose length is a times the
length of x. In other words, to get ax, we shrink or stretch x by a
factor of a, depending upon whether a < 1 or a > 1. The next picture
illustrates this point.

x
(1/2)x

(3/2)x

Multiplication by positive scalars

If a is a negative number and x is a vector in R2, then ax is the vector
that points in the opposite direction as x and whose length is |a| times
the length of x, as illustrated in the next picture.

x

(−1/2)x

(−3/2)x

Multiplication by negative scalars
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The motivation for the definition of a vector space comes from the
important properties possessed by addition and scalar multiplication
on Fn. Specifically, addition on Fn is commutative and associative and
has an identity, namely, 0. Every element has an additive inverse. Scalar
multiplication on Fn is associative, and scalar multiplication by 1 acts
as a multiplicative identity should. Finally, addition and scalar multi-
plication on Fn are connected by distributive properties.

We will define a vector space to be a set V along with an addition
and a scalar multiplication on V that satisfy the properties discussed
in the previous paragraph. By an addition on V we mean a function
that assigns an element u + v ∈ V to each pair of elements u,v ∈ V .
By a scalar multiplication on V we mean a function that assigns an
element av ∈ V to each a ∈ F and each v ∈ V .

Now we are ready to give the formal definition of a vector space.
A vector space is a set V along with an addition on V and a scalar
multiplication on V such that the following properties hold:

commutativity
u+ v = v +u for all u,v ∈ V ;

associativity
(u+v)+w = u+ (v+w) and (ab)v = a(bv) for all u,v,w ∈ V
and all a,b ∈ F;

additive identity
there exists an element 0 ∈ V such that v + 0 = v for all v ∈ V ;

additive inverse
for every v ∈ V , there exists w ∈ V such that v +w = 0;

multiplicative identity
1v = v for all v ∈ V ;

distributive properties
a(u+v) = au+av and (a+ b)u = au+ bu for all a,b ∈ F and
all u,v ∈ V .

The scalar multiplication in a vector space depends upon F. Thus
when we need to be precise, we will say that V is a vector space over F
instead of saying simply that V is a vector space. For example, Rn is
a vector space over R , and Cn is a vector space over C. Frequently, a
vector space over R is called a real vector space and a vector space over
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C is called a complex vector space. Usually the choice of F is either
obvious from the context or irrelevant, and thus we often assume that
F is lurking in the background without specifically mentioning it.

Elements of a vector space are called vectors or points. This geo-
metric language sometimes aids our intuition.

Not surprisingly, Fn is a vector space over F, as you should verify.
Of course, this example motivated our definition of vector space.

For another example, consider F∞, which is defined to be the set ofThe simplest vector

space contains only

one point. In other

words, {0} is a vector

space, though not a

very interesting one.

all sequences of elements of F:

F∞ = {(x1, x2, . . . ) : xj ∈ F for j = 1,2, . . . }.
Addition and scalar multiplication on F∞ are defined as expected:

(x1, x2, . . . )+ (y1, y2, . . . ) = (x1 +y1, x2 +y2, . . . ),

a(x1, x2, . . . ) = (ax1, ax2, . . . ).

With these definitions, F∞ becomes a vector space over F, as you should
verify. The additive identity in this vector space is the sequence con-
sisting of all 0’s.

Our next example of a vector space involves polynomials. A function
p : F → F is called a polynomial with coefficients in F if there exist
a0, . . . , am ∈ F such that

p(z) = a0 + a1z + a2z2 + · · · + amzm

for all z ∈ F. We define P(F) to be the set of all polynomials withThough Fn is our

crucial example of a

vector space, not all

vector spaces consist

of lists. For example,

the elements of P(F)
consist of functions on

F, not lists. In general,

a vector space is an

abstract entity whose

elements might be lists,

functions, or weird

objects.

coefficients in F. Addition on P(F) is defined as you would expect: if
p,q ∈ P(F), then p + q is the polynomial defined by

(p + q)(z) = p(z)+ q(z)
for z ∈ F. For example, if p is the polynomial defined by p(z) = 2z+z3

and q is the polynomial defined by q(z) = 7 + 4z, then p + q is the
polynomial defined by (p + q)(z) = 7+ 6z + z3. Scalar multiplication
on P(F) also has the obvious definition: if a ∈ F and p ∈ P(F), then
ap is the polynomial defined by

(ap)(z) = ap(z)
for z ∈ F. With these definitions of addition and scalar multiplication,
P(F) is a vector space, as you should verify. The additive identity in
this vector space is the polynomial all of whose coefficients equal 0.

Soon we will see further examples of vector spaces, but first we need
to develop some of the elementary properties of vector spaces.
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Properties of Vector Spaces

The definition of a vector space requires that it have an additive
identity. The proposition below states that this identity is unique.

1.2 Proposition: A vector space has a unique additive identity.

Proof: Suppose 0 and 0′ are both additive identities for some vec-
tor space V . Then

0′ = 0′ + 0 = 0,

where the first equality holds because 0 is an additive identity and the
second equality holds because 0′ is an additive identity. Thus 0′ = 0,
proving that V has only one additive identity. The symbol means

“end of the proof”.

Each element v in a vector space has an additive inverse, an element
w in the vector space such that v+w = 0. The next proposition shows
that each element in a vector space has only one additive inverse.

1.3 Proposition: Every element in a vector space has a unique
additive inverse.

Proof: Suppose V is a vector space. Let v ∈ V . Suppose that w
and w′ are additive inverses of v . Then

w = w + 0 = w + (v +w′) = (w + v)+w′ = 0+w′ = w′.

Thus w = w′, as desired.

Because additive inverses are unique, we can let −v denote the ad-
ditive inverse of a vector v . We define w − v to mean w + (−v).

Almost all the results in this book will involve some vector space.
To avoid being distracted by having to restate frequently something
such as “Assume that V is a vector space”, we now make the necessary
declaration once and for all:

Let’s agree that for the rest of the book
V will denote a vector space over F.
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Because of associativity, we can dispense with parentheses when
dealing with additions involving more than two elements in a vector
space. For example, we can writeu+v+w without parentheses because
the two possible interpretations of that expression, namely, (u+v)+w
and u+ (v +w), are equal. We first use this familiar convention of not
using parentheses in the next proof. In the next proposition, 0 denotes
a scalar (the number 0 ∈ F) on the left side of the equation and a vector
(the additive identity of V ) on the right side of the equation.

1.4 Proposition: 0v = 0 for every v ∈ V .Note that 1.4 and 1.5

assert something about

scalar multiplication

and the additive

identity of V . The only

part of the definition of

a vector space that

connects scalar

multiplication and

vector addition is the

distributive property.

Thus the distributive

property must be used

in the proofs.

Proof: For v ∈ V , we have

0v = (0+ 0)v = 0v + 0v.

Adding the additive inverse of 0v to both sides of the equation above
gives 0 = 0v , as desired.

In the next proposition, 0 denotes the additive identity of V . Though
their proofs are similar, 1.4 and 1.5 are not identical. More precisely,
1.4 states that the product of the scalar 0 and any vector equals the
vector 0, whereas 1.5 states that the product of any scalar and the
vector 0 equals the vector 0.

1.5 Proposition: a0 = 0 for every a ∈ F.

Proof: For a ∈ F, we have

a0 = a(0+ 0) = a0+ a0.

Adding the additive inverse of a0 to both sides of the equation above
gives 0 = a0, as desired.

Now we show that if an element of V is multiplied by the scalar −1,
then the result is the additive inverse of the element of V .

1.6 Proposition: (−1)v = −v for every v ∈ V .

Proof: For v ∈ V , we have

v + (−1)v = 1v + (−1)v = (1+ (−1)
)

v = 0v = 0.

This equation says that (−1)v , when added to v , gives 0. Thus (−1)v
must be the additive inverse of v , as desired.



Subspaces 13

Subspaces

A subset U of V is called a subspace of V if U is also a vector space Some mathematicians

use the term linear

subspace, which means

the same as subspace.

(using the same addition and scalar multiplication as on V ). For exam-
ple,

{(x1, x2,0) : x1, x2 ∈ F}
is a subspace of F3.

If U is a subset of V , then to check that U is a subspace of V we
need only check that U satisfies the following:

additive identity
0 ∈ U

closed under addition
u,v ∈ U implies u+ v ∈ U ;

closed under scalar multiplication
a ∈ F and u ∈ U implies au ∈ U .

The first condition insures that the additive identity of V is in U . The Clearly {0} is the

smallest subspace of V
and V itself is the

largest subspace of V .

The empty set is not a

subspace of V because

a subspace must be a

vector space and a

vector space must

contain at least one

element, namely, an

additive identity.

second condition insures that addition makes sense on U . The third
condition insures that scalar multiplication makes sense onU . To show
that U is a vector space, the other parts of the definition of a vector
space do not need to be checked because they are automatically satis-
fied. For example, the associative and commutative properties of addi-
tion automatically hold on U because they hold on the larger space V .
As another example, if the third condition above holds and u ∈ U , then
−u (which equals (−1)u by 1.6) is also in U , and hence every element
of U has an additive inverse in U .

The three conditions above usually enable us to determine quickly
whether a given subset of V is a subspace of V . For example, if b ∈ F,
then

{(x1, x2, x3, x4) ∈ F4 : x3 = 5x4 + b}
is a subspace of F4 if and only if b = 0, as you should verify. As another
example, you should verify that

{p ∈ P(F) : p(3) = 0}
is a subspace of P(F).

The subspaces of R2 are precisely {0}, R2, and all lines in R2 through
the origin. The subspaces of R3 are precisely {0}, R3, all lines in R3
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through the origin, and all planes in R3 through the origin. To prove
that all these objects are indeed subspaces is easy—the hard part is to
show that they are the only subspaces of R2 or R3. That task will be
easier after we introduce some additional tools in the next chapter.

Sums and Direct Sums

In later chapters, we will find that the notions of vector space sums
and direct sums are useful. We define these concepts here.

Suppose U1, . . . , Um are subspaces of V . The sum of U1, . . . , Um,When dealing with

vector spaces, we are

usually interested only

in subspaces, as

opposed to arbitrary

subsets. The union of

subspaces is rarely a

subspace (see

Exercise 9 in this

chapter), which is why

we usually work with

sums rather than

unions.

denoted U1 + · · · +Um, is defined to be the set of all possible sums of
elements of U1, . . . , Um. More precisely,

U1 + · · · +Um = {u1 + · · · +um : u1 ∈ U1, . . . , um ∈ Um}.

You should verify that if U1, . . . , Um are subspaces of V , then the sum
U1 + · · · +Um is a subspace of V .

Let’s look at some examples of sums of subspaces. Suppose U is the
set of all elements of F3 whose second and third coordinates equal 0,
and W is the set of all elements of F3 whose first and third coordinates
equal 0:

U = {(x,0,0) ∈ F3 : x ∈ F} and W = {(0, y,0) ∈ F3 : y ∈ F}.

Then

Sums of subspaces in

the theory of vector

spaces are analogous to

unions of subsets in set

theory. Given two

subspaces of a vector

space, the smallest

subspace containing

them is their sum.

Analogously, given two

subsets of a set, the

smallest subset

containing them is

their union.

1.7 U +W = {(x,y,0) : x,y ∈ F},

as you should verify.
As another example, suppose U is as above and W is the set of all

elements of F3 whose first and second coordinates equal each other
and whose third coordinate equals 0:

W = {(y,y,0) ∈ F3 : y ∈ F}.

Then U +W is also given by 1.7, as you should verify.
Suppose U1, . . . , Um are subspaces of V . Clearly U1, . . . , Um are all

contained in U1 + · · · + Um (to see this, consider sums u1 + · · · +um
where all except one of the u’s are 0). Conversely, any subspace of V
containing U1, . . . , Um must contain U1 + · · ·+Um (because subspaces
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must contain all finite sums of their elements). Thus U1 + · · · + Um is
the smallest subspace of V containing U1, . . . , Um.

Suppose U1, . . . , Um are subspaces of V such that V = U1+· · ·+Um.
Thus every element of V can be written in the form

u1 + · · · +um,

where each uj ∈ Uj . We will be especially interested in cases where
each vector in V can be uniquely represented in the form above. This
situation is so important that we give it a special name: direct sum.
Specifically, we say that V is the direct sum of subspaces U1, . . . , Um,
written V = U1⊕· · ·⊕Um, if each element of V can be written uniquely The symbol ⊕,

consisting of a plus

sign inside a circle, is

used to denote direct

sums as a reminder

that we are dealing with

a special type of sum of

subspaces—each

element in the direct

sum can be represented

only one way as a sum

of elements from the

specified subspaces.

as a sum u1 + · · · +um, where each uj ∈ Uj .
Let’s look at some examples of direct sums. Suppose U is the sub-

space of F3 consisting of those vectors whose last coordinate equals 0,
andW is the subspace of F3 consisting of those vectors whose first two
coordinates equal 0:

U = {(x,y,0) ∈ F3 : x,y ∈ F} and W = {(0,0, z) ∈ F3 : z ∈ F}.

Then F3 = U ⊕W , as you should verify.
As another example, suppose Uj is the subspace of Fn consisting

of those vectors whose coordinates are all 0, except possibly in the jth

slot (for example, U2 = {(0, x,0, . . . ,0) ∈ Fn : x ∈ F}). Then

Fn = U1 ⊕ · · · ⊕Un,

as you should verify.
As a final example, consider the vector spaceP(F) of all polynomials

with coefficients in F. Let Ue denote the subspace of P(F) consisting
of all polynomials p of the form

p(z) = a0 + a2z2 + · · · + a2mz2m,

and let Uo denote the subspace of P(F) consisting of all polynomials p
of the form

p(z) = a1z + a3z3 + · · · + a2m+1z2m+1;

here m is a nonnegative integer and a0, . . . , a2m+1 ∈ F (the notations
Ue andUo should remind you of even and odd powers of z). You should
verify that
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P(F) = Ue ⊕Uo.
Sometimes nonexamples add to our understanding as much as ex-

amples. Consider the following three subspaces of F3:

U1 = {(x,y,0) ∈ F3 : x,y ∈ F};
U2 = {(0,0, z) ∈ F3 : z ∈ F};
U3 = {(0, y,y) ∈ F3 : y ∈ F}.

Clearly F3 = U1+U2+U3 because an arbitrary vector (x,y, z) ∈ F3 can
be written as

(x,y, z) = (x,y,0)+ (0,0, z)+ (0,0,0),

where the first vector on the right side is in U1, the second vector is
in U2, and the third vector is in U3. However, F3 does not equal the
direct sum of U1, U2, U3 because the vector (0,0,0) can be written in
two different ways as a sumu1+u2+u3, with eachuj ∈ Uj . Specifically,
we have

(0,0,0) = (0,1,0)+ (0,0,1)+ (0,−1,−1)

and, of course,

(0,0,0) = (0,0,0)+ (0,0,0)+ (0,0,0),

where the first vector on the right side of each equation above is in U1,
the second vector is in U2, and the third vector is in U3.

In the example above, we showed that something is not a direct sum
by showing that 0 does not have a unique representation as a sum of
appropriate vectors. The definition of direct sum requires that every
vector in the space have a unique representation as an appropriate sum.
Suppose we have a collection of subspaces whose sum equals the whole
space. The next proposition shows that when deciding whether this
collection of subspaces is a direct sum, we need only consider whether
0 can be uniquely written as an appropriate sum.

1.8 Proposition: Suppose that U1, . . . , Un are subspaces of V . Then
V = U1 ⊕ · · · ⊕Un if and only if both the following conditions hold:

(a) V = U1 + · · · +Un;

(b) the only way to write 0 as a sum u1 + · · · + un, where each
uj ∈ Uj , is by taking all the uj ’s equal to 0.
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Proof: First suppose that V = U1 ⊕ · · · ⊕ Un. Clearly (a) holds
(because of how sum and direct sum are defined). To prove (b), suppose
that u1 ∈ U1, . . . , un ∈ Un and

0 = u1 + · · · +un.

Then each uj must be 0 (this follows from the uniqueness part of the
definition of direct sum because 0 = 0+· · ·+0 and 0 ∈ U1, . . . ,0 ∈ Un),
proving (b).

Now suppose that (a) and (b) hold. Let v ∈ V . By (a), we can write

v = u1 + · · · +un
for some u1 ∈ U1, . . . , un ∈ Un. To show that this representation is
unique, suppose that we also have

v = v1 + · · · + vn,

where v1 ∈ U1, . . . , vn ∈ Un. Subtracting these two equations, we have

0 = (u1 − v1)+ · · · + (un − vn).

Clearly u1 − v1 ∈ U1, . . . , un − vn ∈ Un, so the equation above and (b)
imply that each uj − vj = 0. Thus u1 = v1, . . . , un = vn, as desired.

The next proposition gives a simple condition for testing which pairs Sums of subspaces are

analogous to unions of

subsets. Similarly,

direct sums of

subspaces are

analogous to disjoint

unions of subsets. No

two subspaces of a

vector space can be

disjoint because both

must contain 0. So

disjointness is

replaced, at least in the

case of two subspaces,

with the requirement

that the intersection

equals {0}.

of subspaces give a direct sum. Note that this proposition deals only
with the case of two subspaces. When asking about a possible direct
sum with more than two subspaces, it is not enough to test that any
two of the subspaces intersect only at 0. To see this, consider the
nonexample presented just before 1.8. In that nonexample, we had
F3 = U1 + U2 + U3, but F3 did not equal the direct sum of U1, U2, U3.
However, in that nonexample, we haveU1∩U2 = U1∩U3 = U2∩U3 = {0}
(as you should verify). The next proposition shows that with just two
subspaces we get a nice necessary and sufficient condition for a direct
sum.

1.9 Proposition: Suppose that U and W are subspaces of V . Then
V = U ⊕W if and only if V = U +W and U ∩W = {0}.

Proof: First suppose that V = U ⊕ W . Then V = U + W (by the
definition of direct sum). Also, if v ∈ U ∩W , then 0 = v + (−v), where
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v ∈ U and −v ∈ W . By the unique representation of 0 as the sum of a
vector in U and a vector in W , we must have v = 0. Thus U ∩W = {0},
completing the proof in one direction.

To prove the other direction, now suppose that V = U + W and
U ∩W = {0}. To prove that V = U ⊕W , suppose that

0 = u+w,

where u ∈ U and w ∈ W . To complete the proof, we need only show
that u = w = 0 (by 1.8). The equation above implies that u = −w ∈ W .
Thus u ∈ U ∩W , and hence u = 0. This, along with equation above,
implies that w = 0, completing the proof.
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Exercises

1. Suppose a and b are real numbers, not both 0. Find real numbers
c and d such that

1/(a+ bi) = c + di.

2. Show that
−1+√3i

2

is a cube root of 1 (meaning that its cube equals 1).

3. Prove that −(−v) = v for every v ∈ V .

4. Prove that if a ∈ F, v ∈ V , and av = 0, then a = 0 or v = 0.

5. For each of the following subsets of F3, determine whether it is
a subspace of F3:

(a) {(x1, x2, x3) ∈ F3 : x1 + 2x2 + 3x3 = 0};
(b) {(x1, x2, x3) ∈ F3 : x1 + 2x2 + 3x3 = 4};
(c) {(x1, x2, x3) ∈ F3 : x1x2x3 = 0};
(d) {(x1, x2, x3) ∈ F3 : x1 = 5x3}.

6. Give an example of a nonempty subset U of R2 such that U is
closed under addition and under taking additive inverses (mean-
ing −u ∈ U whenever u ∈ U ), but U is not a subspace of R2.

7. Give an example of a nonempty subset U of R2 such that U is
closed under scalar multiplication, but U is not a subspace of R2.

8. Prove that the intersection of any collection of subspaces of V is
a subspace of V .

9. Prove that the union of two subspaces of V is a subspace of V if
and only if one of the subspaces is contained in the other.

10. Suppose that U is a subspace of V . What is U +U?

11. Is the operation of addition on the subspaces of V commutative?
Associative? (In other words, if U1, U2, U3 are subspaces of V , is
U1 +U2 = U2 +U1? Is (U1 +U2)+U3 = U1 + (U2 +U3)?)
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12. Does the operation of addition on the subspaces of V have an
additive identity? Which subspaces have additive inverses?

13. Prove or give a counterexample: if U1, U2,W are subspaces of V
such that

U1 +W = U2 +W,
then U1 = U2.

14. Suppose U is the subspace of P(F) consisting of all polynomials
p of the form

p(z) = az2 + bz5,

where a,b ∈ F. Find a subspace W of P(F) such that P(F) =
U ⊕W .

15. Prove or give a counterexample: if U1, U2,W are subspaces of V
such that

V = U1 ⊕W and V = U2 ⊕W,
then U1 = U2.



Chapter 2

Finite-Dimensional
Vector Spaces

In the last chapter we learned about vector spaces. Linear algebra
focuses not on arbitrary vector spaces, but on finite-dimensional vector
spaces, which we introduce in this chapter. Here we will deal with the
key concepts associated with these spaces: span, linear independence,
basis, and dimension.

Let’s review our standing assumptions:

Recall that F denotes R or C.
Recall also that V is a vector space over F.

✽ ✽
21
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Span and Linear Independence

A linear combination of a list (v1, . . . , vm) of vectors in V is a vector
of the form

2.1 a1v1 + · · · + amvm,

where a1, . . . , am ∈ F. The set of all linear combinations of (v1, . . . , vm)
is called the span of (v1, . . . , vm), denoted span(v1, . . . , vm). In otherSome mathematicians

use the term linear

span, which means the

same as span.

words,

span(v1, . . . , vm) = {a1v1 + · · · + amvm : a1, . . . , am ∈ F}.

As an example of these concepts, suppose V = F3. The vector
(7,2,9) is a linear combination of

(

(2,1,3), (1,0,1)
)

because

(7,2,9) = 2(2,1,3)+ 3(1,0,1).

Thus (7,2,9) ∈ span
(

(2,1,3), (1,0,1)
)

.
You should verify that the span of any list of vectors in V is a sub-

space of V . To be consistent, we declare that the span of the empty list
() equals {0} (recall that the empty set is not a subspace of V ).

If (v1, . . . , vm) is a list of vectors in V , then each vj is a linear com-
bination of (v1, . . . , vm) (to show this, set aj = 1 and let the other a’s
in 2.1 equal 0). Thus span(v1, . . . , vm) contains each vj . Conversely,
because subspaces are closed under scalar multiplication and addition,
every subspace of V containing each vj must contain span(v1, . . . , vm).
Thus the span of a list of vectors in V is the smallest subspace of V
containing all the vectors in the list.

If span(v1, . . . , vm) equals V , we say that (v1, . . . , vm) spans V . A
vector space is called finite dimensional if some list of vectors in itRecall that by

definition every list has

finite length.

spans the space. For example, Fn is finite dimensional because

(

(1,0, . . . ,0), (0,1,0, . . . ,0), . . . , (0, . . . ,0,1)
)

spans Fn, as you should verify.
Before giving the next example of a finite-dimensional vector space,

we need to define the degree of a polynomial. A polynomial p ∈ P(F)
is said to have degree m if there exist scalars a0, a1, . . . , am ∈ F with
am �= 0 such that

2.2 p(z) = a0 + a1z + · · · + amzm
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for all z ∈ F. The polynomial that is identically 0 is said to have de-
gree −∞.

For m a nonnegative integer, let Pm(F) denote the set of all poly-
nomials with coefficients in F and degree at most m. You should ver-
ify that Pm(F) is a subspace of P(F); hence Pm(F) is a vector space.
This vector space is finite dimensional because it is spanned by the list
(1, z, . . . , zm); here we are slightly abusing notation by letting zk denote
a function (so z is a dummy variable).

A vector space that is not finite dimensional is called infinite di- Infinite-dimensional

vector spaces, which

we will not mention

much anymore, are the

center of attention in

the branch of

mathematics called

functional analysis.

Functional analysis

uses tools from both

analysis and algebra.

mensional . For example, P(F) is infinite dimensional. To prove this,
consider any list of elements of P(F). Letm denote the highest degree
of any of the polynomials in the list under consideration (recall that by
definition a list has finite length). Then every polynomial in the span of
this list must have degree at most m. Thus our list cannot span P(F).
Because no list spans P(F), this vector space is infinite dimensional.

The vector space F∞, consisting of all sequences of elements of F,
is also infinite dimensional, though this is a bit harder to prove. You
should be able to give a proof by using some of the tools we will soon
develop.

Suppose v1, . . . , vm ∈ V and v ∈ span(v1, . . . , vm). By the definition
of span, there exist a1, . . . , am ∈ F such that

v = a1v1 + · · · + amvm.
Consider the question of whether the choice of a’s in the equation
above is unique. Suppose â1, . . . , âm is another set of scalars such that

v = â1v1 + · · · + âmvm.
Subtracting the last two equations, we have

0 = (a1 − â1)v1 + · · · + (am − âm)vm.
Thus we have written 0 as a linear combination of (v1, . . . , vm). If the
only way to do this is the obvious way (using 0 for all scalars), then
each aj − âj equals 0, which means that each aj equals âj (and thus
the choice of a’s was indeed unique). This situation is so important
that we give it a special name—linear independence—which we now
define.

A list (v1, . . . , vm) of vectors in V is called linearly independent if
the only choice of a1, . . . , am ∈ F that makes a1v1+· · ·+amvm equal
0 is a1 = · · · = am = 0. For example,



24 Chapter 2. Finite-Dimensional Vector Spaces

(

(1,0,0,0), (0,1,0,0), (0,0,1,0)
)

is linearly independent in F4, as you should verify. The reasoning in the
previous paragraph shows that (v1, . . . , vm) is linearly independent if
and only if each vector in span(v1, . . . , vm) has only one representation
as a linear combination of (v1, . . . , vm).

For another example of a linearly independent list, fix a nonnegativeMost linear algebra

texts define linearly

independent sets

instead of linearly

independent lists. With

that definition, the set

{(0,1), (0,1), (1,0)} is

linearly independent in

F2 because it equals the

set {(0,1), (1,0)}. With

our definition, the list
(

(0,1), (0,1), (1,0)
)

is

not linearly

independent (because 1

times the first vector

plus −1 times the

second vector plus 0

times the third vector

equals 0). By dealing

with lists instead of

sets, we will avoid

some problems

associated with the

usual approach.

integerm. Then (1, z, . . . , zm) is linearly independent inP(F). To verify
this, suppose that a0, a1, . . . , am ∈ F are such that

2.3 a0 + a1z + · · · + amzm = 0

for every z ∈ F. If at least one of the coefficients a0, a1, . . . , am were
nonzero, then 2.3 could be satisfied by at mostm distinct values of z (if
you are unfamiliar with this fact, just believe it for now; we will prove
it in Chapter 4); this contradiction shows that all the coefficients in 2.3
equal 0. Hence (1, z, . . . , zm) is linearly independent, as claimed.

A list of vectors in V is called linearly dependent if it is not lin-
early independent. In other words, a list (v1, . . . , vm) of vectors in V
is linearly dependent if there exist a1, . . . , am ∈ F, not all 0, such that
a1v1 + · · · + amvm = 0. For example,

(

(2,3,1), (1,−1,2), (7,3,8)
)

is
linearly dependent in F3 because

2(2,3,1)+ 3(1,−1,2)+ (−1)(7,3,8) = (0,0,0).
As another example, any list of vectors containing the 0 vector is lin-
early dependent (why?).

You should verify that a list (v) of length 1 is linearly independent if
and only if v �= 0. You should also verify that a list of length 2 is linearly
independent if and only if neither vector is a scalar multiple of the
other. Caution: a list of length three or more may be linearly dependent
even though no vector in the list is a scalar multiple of any other vector
in the list, as shown by the example in the previous paragraph.

If some vectors are removed from a linearly independent list, the
remaining list is also linearly independent, as you should verify. To
allow this to remain true even if we remove all the vectors, we declare
the empty list () to be linearly independent.

The lemma below will often be useful. It states that given a linearly
dependent list of vectors, with the first vector not zero, one of the
vectors is in the span of the previous ones and furthermore we can
throw out that vector without changing the span of the original list.
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2.4 Linear Dependence Lemma: If (v1, . . . , vm) is linearly depen-
dent in V and v1 �= 0, then there exists j ∈ {2, . . . ,m} such that the
following hold:

(a) vj ∈ span(v1, . . . , vj−1);

(b) if the jth term is removed from (v1, . . . , vm), the span of the
remaining list equals span(v1, . . . , vm).

Proof: Suppose (v1, . . . , vm) is linearly dependent in V and v1 �= 0.
Then there exist a1, . . . , am ∈ F, not all 0, such that

a1v1 + · · · + amvm = 0.

Not all of a2, a3, . . . , am can be 0 (because v1 �= 0). Let j be the largest
element of {2, . . . ,m} such that aj �= 0. Then

2.5 vj = −a1

aj
v1 − · · · − aj−1

aj
vj−1,

proving (a).
To prove (b), suppose that u ∈ span(v1, . . . , vm). Then there exist

c1, . . . , cm ∈ F such that

u = c1v1 + · · · + cmvm.

In the equation above, we can replace vj with the right side of 2.5,
which shows that u is in the span of the list obtained by removing the
jth term from (v1, . . . , vm). Thus (b) holds.

Now we come to a key result. It says that linearly independent lists
are never longer than spanning lists.

2.6 Theorem: In a finite-dimensional vector space, the length of Suppose that for each

positive integer m,

there exists a linearly

independent list of m
vectors in V . Then this

theorem implies that V
is infinite dimensional.

every linearly independent list of vectors is less than or equal to the
length of every spanning list of vectors.

Proof: Suppose that (u1, . . . , um) is linearly independent in V and
that (w1, . . . ,wn) spans V . We need to prove that m ≤ n. We do so
through the multistep process described below; note that in each step
we add one of the u’s and remove one of the w’s.
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Step 1
The list (w1, . . . ,wn) spans V , and thus adjoining any vector to it
produces a linearly dependent list. In particular, the list

(u1,w1, . . . ,wn)

is linearly dependent. Thus by the linear dependence lemma (2.4),
we can remove one of the w’s so that the list B (of length n)
consisting of u1 and the remaining w’s spans V .

Step j
The list B (of lengthn) from step j−1 spans V , and thus adjoining
any vector to it produces a linearly dependent list. In particular,
the list of length (n+ 1) obtained by adjoining uj to B, placing it
just after u1, . . . , uj−1, is linearly dependent. By the linear depen-
dence lemma (2.4), one of the vectors in this list is in the span of
the previous ones, and because (u1, . . . , uj) is linearly indepen-
dent, this vector must be one of the w’s, not one of the u’s. We
can remove that w from B so that the new list B (of length n)
consisting of u1, . . . , uj and the remaining w’s spans V .

After step m, we have added all the u’s and the process stops. If at
any step we added a u and had no more w’s to remove, then we would
have a contradiction. Thus there must be at least as manyw’s as u’s.

Our intuition tells us that any vector space contained in a finite-
dimensional vector space should also be finite dimensional. We now
prove that this intuition is correct.

2.7 Proposition: Every subspace of a finite-dimensional vector
space is finite dimensional.

Proof: Suppose V is finite dimensional and U is a subspace of V .
We need to prove that U is finite dimensional. We do this through the
following multistep construction.

Step 1
If U = {0}, then U is finite dimensional and we are done. If U �=
{0}, then choose a nonzero vector v1 ∈ U .

Step j
If U = span(v1, . . . , vj−1), then U is finite dimensional and we are



Bases 27

done. If U �= span(v1, . . . , vj−1), then choose a vector vj ∈ U such
that

vj ∉ span(v1, . . . , vj−1).

After each step, as long as the process continues, we have constructed
a list of vectors such that no vector in this list is in the span of the
previous vectors. Thus after each step we have constructed a linearly
independent list, by the linear dependence lemma (2.4). This linearly
independent list cannot be longer than any spanning list of V (by 2.6),
and thus the process must eventually terminate, which means that U
is finite dimensional.

Bases

A basis of V is a list of vectors in V that is linearly independent and
spans V . For example,

(

(1,0, . . . ,0), (0,1,0, . . . ,0), . . . , (0, . . . ,0,1)
)

is a basis of Fn, called the standard basis of Fn. In addition to the
standard basis, Fn has many other bases. For example,

(

(1,2), (3,5)
)

is a basis of F2. The list
(

(1,2)
)

is linearly independent but is not a
basis of F2 because it does not span F2. The list

(

(1,2), (3,5), (4,7)
)

spans F2 but is not a basis because it is not linearly independent. As
another example, (1, z, . . . , zm) is a basis of Pm(F).

The next proposition helps explain why bases are useful.

2.8 Proposition: A list (v1, . . . , vn) of vectors in V is a basis of V
if and only if every v ∈ V can be written uniquely in the form

2.9 v = a1v1 + · · · + anvn,

where a1, . . . , an ∈ F.

Proof: First suppose that (v1, . . . , vn) is a basis of V . Let v ∈ V . This proof is

essentially a repetition

of the ideas that led us

to the definition of

linear independence.

Because (v1, . . . , vn) spans V , there exist a1, . . . , an ∈ F such that 2.9
holds. To show that the representation in 2.9 is unique, suppose that
b1, . . . , bn are scalars so that we also have

v = b1v1 + · · · + bnvn.
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Subtracting the last equation from 2.9, we get

0 = (a1 − b1)v1 + · · · + (an − bn)vn.

This implies that each aj−bj = 0 (because (v1, . . . , vn) is linearly inde-
pendent) and hence a1 = b1, . . . , an = bn. We have the desired unique-
ness, completing the proof in one direction.

For the other direction, suppose that every v ∈ V can be written
uniquely in the form given by 2.9. Clearly this implies that (v1, . . . , vn)
spans V . To show that (v1, . . . , vn) is linearly independent, suppose
that a1, . . . , an ∈ F are such that

0 = a1v1 + · · · + anvn.

The uniqueness of the representation 2.9 (with v = 0) implies that
a1 = · · · = an = 0. Thus (v1, . . . , vn) is linearly independent and
hence is a basis of V .

A spanning list in a vector space may not be a basis because it is not
linearly independent. Our next result says that given any spanning list,
some of the vectors in it can be discarded so that the remaining list is
linearly independent and still spans the vector space.

2.10 Theorem: Every spanning list in a vector space can be reduced
to a basis of the vector space.

Proof: Suppose (v1, . . . , vn) spans V . We want to remove some
of the vectors from (v1, . . . , vn) so that the remaining vectors form a
basis of V . We do this through the multistep process described below.
Start with B = (v1, . . . , vn).

Step 1
If v1 = 0, delete v1 from B. If v1 �= 0, leave B unchanged.

Step j
If vj is in span(v1, . . . , vj−1), delete vj from B. If vj is not in
span(v1, . . . , vj−1), leave B unchanged.

Stop the process after step n, getting a list B. This list B spans V
because our original list spanned B and we have discarded only vectors
that were already in the span of the previous vectors. The process
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insures that no vector in B is in the span of the previous ones. Thus B
is linearly independent, by the linear dependence lemma (2.4). Hence
B is a basis of V .

Consider the list

(

(1,2), (3,6), (4,7), (5,9)
)

,

which spans F2. To make sure that you understand the last proof, you
should verify that the process in the proof produces

(

(1,2), (4,7)
)

, a
basis of F2, when applied to the list above.

Our next result, an easy corollary of the last theorem, tells us that
every finite-dimensional vector space has a basis.

2.11 Corollary: Every finite-dimensional vector space has a basis.

Proof: By definition, a finite-dimensional vector space has a span-
ning list. The previous theorem tells us that any spanning list can be
reduced to a basis.

We have crafted our definitions so that the finite-dimensional vector
space {0} is not a counterexample to the corollary above. In particular,
the empty list () is a basis of the vector space {0} because this list has
been defined to be linearly independent and to have span {0}.

Our next theorem is in some sense a dual of 2.10, which said that
every spanning list can be reduced to a basis. Now we show that given
any linearly independent list, we can adjoin some additional vectors so
that the extended list is still linearly independent but also spans the
space.

2.12 Theorem: Every linearly independent list of vectors in a finite- This theorem can be

used to give another

proof of the previous

corollary. Specifically,

suppose V is finite

dimensional. This

theorem implies that

the empty list () can be

extended to a basis

of V . In particular, V
has a basis.

dimensional vector space can be extended to a basis of the vector space.

Proof: Suppose V is finite dimensional and (v1, . . . , vm) is linearly
independent in V . We want to extend (v1, . . . , vm) to a basis of V . We
do this through the multistep process described below. First we let
(w1, . . . ,wn) be any list of vectors in V that spans V .

Step 1
If w1 is in the span of (v1, . . . , vm), let B = (v1, . . . , vm). If w1 is
not in the span of (v1, . . . , vm), let B = (v1, . . . , vm,w1).
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Step j
If wj is in the span of B, leave B unchanged. If wj is not in the
span of B, extend B by adjoining wj to it.

After each step, B is still linearly independent because otherwise the
linear dependence lemma (2.4) would give a contradiction (recall that
(v1, . . . , vm) is linearly independent and anywj that is adjoined to B is
not in the span of the previous vectors in B). After step n, the span of
B includes all the w’s. Thus the B obtained after step n spans V and
hence is a basis of V .

As a nice application of the theorem above, we now show that ev-
ery subspace of a finite-dimensional vector space can be paired with
another subspace to form a direct sum of the whole space.

2.13 Proposition: Suppose V is finite dimensional and U is a sub-Using the same basic

ideas but considerably

more advanced tools,

this proposition can be

proved without the

hypothesis that V is

finite dimensional.

space of V . Then there is a subspace W of V such that V = U ⊕W .

Proof: Because V is finite dimensional, so is U (see 2.7). Thus
there is a basis (u1, . . . , um) of U (see 2.11). Of course (u1, . . . , um)
is a linearly independent list of vectors in V , and thus it can be ex-
tended to a basis (u1, . . . , um,w1, . . . ,wn) of V (see 2.12). Let W =
span(w1, . . . ,wn).

To prove that V = U ⊕W , we need to show that

V = U +W and U ∩W = {0};

see 1.9. To prove the first equation, suppose that v ∈ V . Then,
because the list (u1, . . . , um,w1, . . . ,wn) spans V , there exist scalars
a1, . . . , am,b1, . . . , bn ∈ F such that

v = a1u1 + · · · + amum
︸ ︷︷ ︸

u

+b1w1 + · · · + bnwn
︸ ︷︷ ︸

w

.

In other words, we have v = u+w, whereu ∈ U andw ∈ W are defined
as above. Thus v ∈ U +W , completing the proof that V = U +W .

To show that U ∩W = {0}, suppose v ∈ U ∩W . Then there exist
scalars a1, . . . , am,b1, . . . , bn ∈ F such that

v = a1u1 + · · · + amum = b1w1 + · · · + bnwn.

Thus
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a1u1 + · · · + amum − b1w1 − · · · − bnwn = 0.

Because (u1, . . . , um,w1, . . . ,wn) is linearly independent, this implies
that a1 = · · · = am = b1 = · · · = bn = 0. Thus v = 0, completing the
proof that U ∩W = {0}.

Dimension

Though we have been discussing finite-dimensional vector spaces,
we have not yet defined the dimension of such an object. How should
dimension be defined? A reasonable definition should force the dimen-
sion of Fn to equal n. Notice that the basis

(

(1,0, . . . ,0), (0,1,0, . . . ,0), . . . , (0, . . . ,0,1)
)

has length n. Thus we are tempted to define the dimension as the
length of a basis. However, a finite-dimensional vector space in general
has many different bases, and our attempted definition makes sense
only if all bases in a given vector space have the same length. Fortu-
nately that turns out to be the case, as we now show.

2.14 Theorem: Any two bases of a finite-dimensional vector space
have the same length.

Proof: Suppose V is finite dimensional. Let B1 and B2 be any two
bases of V . Then B1 is linearly independent in V and B2 spans V , so the
length of B1 is at most the length of B2 (by 2.6). Interchanging the roles
of B1 and B2, we also see that the length of B2 is at most the length
of B1. Thus the length of B1 must equal the length of B2, as desired.

Now that we know that any two bases of a finite-dimensional vector
space have the same length, we can formally define the dimension of
such spaces. The dimension of a finite-dimensional vector space is
defined to be the length of any basis of the vector space. The dimension
of V (if V is finite dimensional) is denoted by dimV . As examples, note
that dim Fn = n and dimPm(F) =m+ 1.

Every subspace of a finite-dimensional vector space is finite dimen-
sional (by 2.7) and so has a dimension. The next result gives the ex-
pected inequality about the dimension of a subspace.
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2.15 Proposition: If V is finite dimensional and U is a subspace
of V , then dimU ≤ dimV .

Proof: Suppose that V is finite dimensional and U is a subspace
of V . Any basis of U is a linearly independent list of vectors in V and
thus can be extended to a basis of V (by 2.12). Hence the length of a
basis of U is less than or equal to the length of a basis of V .

To check that a list of vectors in V is a basis of V , we must, accordingThe real vector space

R2 has dimension 2;

the complex vector

space C has

dimension 1. As sets,

R2 can be identified

with C (and addition is

the same on both

spaces, as is scalar

multiplication by real

numbers). Thus when

we talk about the

dimension of a vector

space, the role played

by the choice of F

cannot be neglected.

to the definition, show that the list in question satisfies two properties:
it must be linearly independent and it must span V . The next two
results show that if the list in question has the right length, then we
need only check that it satisfies one of the required two properties.
We begin by proving that every spanning list with the right length is a
basis.

2.16 Proposition: If V is finite dimensional, then every spanning
list of vectors in V with length dimV is a basis of V .

Proof: Suppose dimV = n and (v1, . . . , vn) spans V . The list
(v1, . . . , vn) can be reduced to a basis of V (by 2.10). However, every
basis of V has length n, so in this case the reduction must be the trivial
one, meaning that no elements are deleted from (v1, . . . , vn). In other
words, (v1, . . . , vn) is a basis of V , as desired.

Now we prove that linear independence alone is enough to ensure
that a list with the right length is a basis.

2.17 Proposition: If V is finite dimensional, then every linearly
independent list of vectors in V with length dimV is a basis of V .

Proof: Suppose dimV = n and (v1, . . . , vn) is linearly independent
inV . The list (v1, . . . , vn) can be extended to a basis ofV (by 2.12). How-
ever, every basis of V has lengthn, so in this case the extension must be
the trivial one, meaning that no elements are adjoined to (v1, . . . , vn).
In other words, (v1, . . . , vn) is a basis of V , as desired.

As an example of how the last proposition can be applied, consider
the list

(

(5,7), (4,3)
)

. This list of two vectors in F2 is obviously linearly
independent (because neither vector is a scalar multiple of the other).
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Because F2 has dimension 2, the last proposition implies that this lin-
early independent list of length 2 is a basis of F2 (we do not need to
bother checking that it spans F2).

The next theorem gives a formula for the dimension of the sum of
two subspaces of a finite-dimensional vector space.

2.18 Theorem: If U1 and U2 are subspaces of a finite-dimensional This formula for the

dimension of the sum

of two subspaces is

analogous to a familiar

counting formula: the

number of elements in

the union of two finite

sets equals the number

of elements in the first

set, plus the number of

elements in the second

set, minus the number

of elements in the

intersection of the two

sets.

vector space, then

dim(U1 +U2) = dimU1 + dimU2 − dim(U1 ∩U2).

Proof: Let (u1, . . . , um) be a basis of U1∩U2; thus dim(U1∩U2) =
m. Because (u1, . . . , um) is a basis of U1∩U2, it is linearly independent
inU1 and hence can be extended to a basis (u1, . . . , um,v1, . . . , vj) ofU1

(by 2.12). Thus dimU1 = m + j. Also extend (u1, . . . , um) to a basis
(u1, . . . , um,w1, . . . ,wk) of U2; thus dimU2 =m+ k.

We will show that (u1, . . . , um,v1, . . . , vj,w1, . . . ,wk) is a basis of
U1 +U2. This will complete the proof because then we will have

dim(U1 +U2) =m+ j + k
= (m+ j)+ (m+ k)−m
= dimU1 + dimU2 − dim(U1 ∩U2).

Clearly span(u1, . . . , um,v1, . . . , vj,w1, . . . ,wk) contains U1 and U2

and hence contains U1 + U2. So to show that this list is a basis of
U1 + U2 we need only show that it is linearly independent. To prove
this, suppose

a1u1 + · · · + amum + b1v1 + · · · + bjvj + c1w1 + · · · + ckwk = 0,

where all the a’s, b’s, and c’s are scalars. We need to prove that all the
a’s, b’s, and c’s equal 0. The equation above can be rewritten as

c1w1 + · · · + ckwk = −a1u1 − · · · − amum − b1v1 − · · · − bjvj,

which shows that c1w1+· · ·+ckwk ∈ U1. All thew’s are in U2, so this
implies that c1w1 + · · · + ckwk ∈ U1 ∩ U2. Because (u1, . . . , um) is a
basis of U1 ∩U2, we can write

c1w1 + · · · + ckwk = d1u1 + · · · + dmum



34 Chapter 2. Finite-Dimensional Vector Spaces

for some choice of scalars d1, . . . , dm. But (u1, . . . , um,w1, . . . ,wk)
is linearly independent, so the last equation implies that all the c’s
(and d’s) equal 0. Thus our original equation involving the a’s, b’s, and
c’s becomes

a1u1 + · · · + amum + b1v1 + · · · + bjvj = 0.

This equation implies that all the a’s and b’s are 0 because the list
(u1, . . . , um,v1, . . . , vj) is linearly independent. We now know that all
the a’s, b’s, and c’s equal 0, as desired.

The next proposition shows that dimension meshes well with direct
sums. This result will be useful in later chapters.

2.19 Proposition: Suppose V is finite dimensional and U1, . . . , UmRecall that direct sum

is analogous to disjoint

union. Thus 2.19 is

analogous to the

statement that if a

finite set B is written as

A1 ∪ · · · ∪Am and the

sum of the number of

elements in the A’s

equals the number of

elements in B, then the

union is a disjoint

union.

are subspaces of V such that

2.20 V = U1 + · · · +Um
and

2.21 dimV = dimU1 + · · · + dimUm.

Then V = U1 ⊕ · · · ⊕Um.

Proof: Choose a basis for each Uj . Put these bases together in
one list, forming a list that spans V (by 2.20) and has length dimV
(by 2.21). Thus this list is a basis of V (by 2.16), and in particular it is
linearly independent.

Now suppose that u1 ∈ U1, . . . , um ∈ Um are such that

0 = u1 + · · · +um.

We can write each uj as a linear combination of the basis vectors (cho-
sen above) of Uj . Substituting these linear combinations into the ex-
pression above, we have written 0 as a linear combination of the basis
ofV constructed above. Thus all the scalars used in this linear combina-
tion must be 0. Thus each uj = 0, which proves that V = U1⊕· · ·⊕Um
(by 1.8).
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Exercises

1. Prove that if (v1, . . . , vn) spans V , then so does the list

(v1 − v2, v2 − v3, . . . , vn−1 − vn,vn)
obtained by subtracting from each vector (except the last one)
the following vector.

2. Prove that if (v1, . . . , vn) is linearly independent in V , then so is
the list

(v1 − v2, v2 − v3, . . . , vn−1 − vn,vn)
obtained by subtracting from each vector (except the last one)
the following vector.

3. Suppose (v1, . . . , vn) is linearly independent in V and w ∈ V .
Prove that if (v1 + w, . . . , vn + w) is linearly dependent, then
w ∈ span(v1, . . . , vn).

4. Supposem is a positive integer. Is the set consisting of 0 and all
polynomials with coefficients in F and with degree equal to m a
subspace of P(F)?

5. Prove that F∞ is infinite dimensional.

6. Prove that the real vector space consisting of all continuous real-
valued functions on the interval [0,1] is infinite dimensional.

7. Prove that V is infinite dimensional if and only if there is a se-
quence v1, v2, . . . of vectors in V such that (v1, . . . , vn) is linearly
independent for every positive integer n.

8. Let U be the subspace of R5 defined by

U = {(x1, x2, x3, x4, x5) ∈ R5 : x1 = 3x2 and x3 = 7x4}.
Find a basis of U .

9. Prove or disprove: there exists a basis (p0, p1, p2, p3) of P3(F)
such that none of the polynomials p0, p1, p2, p3 has degree 2.

10. Suppose that V is finite dimensional, with dimV = n. Prove that
there exist one-dimensional subspaces U1, . . . , Un of V such that

V = U1 ⊕ · · · ⊕Un.
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11. Suppose that V is finite dimensional and U is a subspace of V
such that dimU = dimV . Prove that U = V .

12. Suppose that p0, p1, . . . , pm are polynomials in Pm(F) such that
pj(2) = 0 for each j. Prove that (p0, p1, . . . , pm) is not linearly
independent in Pm(F).

13. Suppose U and W are subspaces of R8 such that dimU = 3,
dimW = 5, and U +W = R8. Prove that U ∩W = {0}.

14. Suppose thatU andW are both five-dimensional subspaces of R9.
Prove that U ∩W �= {0}.

15. You might guess, by analogy with the formula for the number
of elements in the union of three subsets of a finite set, that
if U1, U2, U3 are subspaces of a finite-dimensional vector space,
then

dim(U1 +U2 +U3)

=dimU1 + dimU2 + dimU3

− dim(U1 ∩U2)− dim(U1 ∩U3)− dim(U2 ∩U3)

+ dim(U1 ∩U2 ∩U3).

Prove this or give a counterexample.

16. Prove that if V is finite dimensional andU1, . . . , Um are subspaces
of V , then

dim(U1 + · · · +Um) ≤ dimU1 + · · · + dimUm.

17. Suppose V is finite dimensional. Prove that if U1, . . . , Um are
subspaces of V such that V = U1 ⊕ · · · ⊕Um, then

dimV = dimU1 + · · · + dimUm.

This exercise deepens the analogy between direct sums of sub-
spaces and disjoint unions of subsets. Specifically, compare this
exercise to the following obvious statement: if a finite set is writ-
ten as a disjoint union of subsets, then the number of elements in
the set equals the sum of the number of elements in the disjoint
subsets.



Chapter 3

Linear Maps

So far our attention has focused on vector spaces. No one gets ex-
cited about vector spaces. The interesting part of linear algebra is the
subject to which we now turn—linear maps.

Let’s review our standing assumptions:

Recall that F denotes R or C.
Recall also that V is a vector space over F.

In this chapter we will frequently need another vector space in ad-
dition to V . We will call this additional vector space W :

Let’s agree that for the rest of this chapter
W will denote a vector space over F.

✽ ✽ ✽
37
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Definitions and Examples

A linear map from V toW is a function T : V → W with the followingSome mathematicians

use the term linear

transformation, which

means the same as

linear map.

properties:

additivity
T(u+ v) = Tu+ Tv for all u,v ∈ V ;

homogeneity
T(av) = a(Tv) for all a ∈ F and all v ∈ V .

Note that for linear maps we often use the notation Tv as well as the
more standard functional notation T(v).

The set of all linear maps from V to W is denoted L(V ,W). Let’s
look at some examples of linear maps. Make sure you verify that each
of the functions defined below is indeed a linear map:

zero
In addition to its other uses, we let the symbol 0 denote the func-
tion that takes each element of some vector space to the additive
identity of another vector space. To be specific, 0 ∈ L(V ,W) is
defined by

0v = 0.

Note that the 0 on the left side of the equation above is a function
from V to W , whereas the 0 on the right side is the additive iden-
tity in W . As usual, the context should allow you to distinguish
between the many uses of the symbol 0.

identity
The identity map, denoted I, is the function on some vector space
that takes each element to itself. To be specific, I ∈ L(V , V) is
defined by

Iv = v.

differentiation
Define T ∈ L(P(R),P(R)) by

Tp = p′.
The assertion that this function is a linear map is another way of
stating a basic result about differentiation: (f +g)′ = f ′ +g′ and
(af)′ = af ′ whenever f , g are differentiable and a is a constant.
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integration
Define T ∈ L(P(R),R) by

Tp =
∫ 1

0
p(x)dx.

The assertion that this function is linear is another way of stating
a basic result about integration: the integral of the sum of two
functions equals the sum of the integrals, and the integral of a
constant times a function equals the constant times the integral
of the function.

multiplication by x2

Define T ∈ L(P(R),P(R)) by Though linear maps are

pervasive throughout

mathematics, they are

not as ubiquitous as

imagined by some

confused students who

seem to think that cos

is a linear map from R

to R when they write

“identities” such as

cos 2x = 2 cosx and

cos(x +y) =
cosx + cosy .

(Tp)(x) = x2p(x)

for x ∈ R .

backward shift
Recall that F∞ denotes the vector space of all sequences of ele-
ments of F. Define T ∈ L(F∞,F∞) by

T(x1, x2, x3, . . . ) = (x2, x3, . . . ).

from Fn to Fm

Define T ∈ L(R3,R2) by

T(x,y, z) = (2x −y + 3z,7x + 5y − 6z).

More generally, let m and n be positive integers, let aj,k ∈ F for
j = 1, . . . ,m and k = 1, . . . , n, and define T ∈ L(Fn,Fm) by

T(x1, . . . , xn) = (a1,1x1+· · ·+a1,nxn, . . . , am,1x1+· · ·+am,nxn).

Later we will see that every linear map from Fn to Fm is of this
form.

Suppose (v1, . . . , vn) is a basis of V and T : V → W is linear. If v ∈ V ,
then we can write v in the form

v = a1v1 + · · · + anvn.

The linearity of T implies that
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Tv = a1Tv1 + · · · + anTvn.

In particular, the values of Tv1, . . . , Tvn determine the values of T on
arbitrary vectors in V .

Linear maps can be constructed that take on arbitrary values on a
basis. Specifically, given a basis (v1, . . . , vn) of V and any choice of
vectors w1, . . . ,wn ∈ W , we can construct a linear map T : V → W such
that Tvj = wj for j = 1, . . . , n. There is no choice of how to do this—we
must define T by

T(a1v1 + · · · + anvn) = a1w1 + · · · + anwn,

where a1, . . . , an are arbitrary elements of F. Because (v1, . . . , vn) is a
basis of V , the equation above does indeed define a function T from V
toW . You should verify that the function T defined above is linear and
that Tvj = wj for j = 1, . . . , n.

Now we will make L(V ,W) into a vector space by defining addition
and scalar multiplication on it. For S, T ∈ L(V ,W), define a function
S + T ∈ L(V ,W) in the usual manner of adding functions:

(S + T)v = Sv + Tv

for v ∈ V . You should verify that S + T is indeed a linear map from V
to W whenever S, T ∈ L(V ,W). For a ∈ F and T ∈ L(V ,W), define a
function aT ∈ L(V ,W) in the usual manner of multiplying a function
by a scalar:

(aT)v = a(Tv)
for v ∈ V . You should verify thataT is indeed a linear map from V toW
whenever a ∈ F and T ∈ L(V ,W). With the operations we have just
defined, L(V ,W) becomes a vector space (as you should verify). Note
that the additive identity of L(V ,W) is the zero linear map defined
earlier in this section.

Usually it makes no sense to multiply together two elements of a
vector space, but for some pairs of linear maps a useful product exists.
We will need a third vector space, so suppose U is a vector space over F.
If T ∈ L(U,V) and S ∈ L(V ,W), then we define ST ∈ L(U,W) by

(ST)(v) = S(Tv)

for v ∈ U . In other words, ST is just the usual composition S ◦T of two
functions, but when both functions are linear, most mathematicians
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write ST instead of S ◦ T . You should verify that ST is indeed a linear
map from U to W whenever T ∈ L(U,V) and S ∈ L(V ,W). Note that
ST is defined only when T maps into the domain of S. We often call
ST the product of S and T . You should verify that it has most of the
usual properties expected of a product:

associativity
(T1T2)T3 = T1(T2T3)whenever T1, T2, and T3 are linear maps such
that the products make sense (meaning that T3 must map into the
domain of T2, and T2 must map into the domain of T1).

identity
TI = T and IT = T whenever T ∈ L(V ,W) (note that in the first
equation I is the identity map on V , and in the second equation I
is the identity map on W ).

distributive properties
(S1 + S2)T = S1T + S2T and S(T1 + T2) = ST1 + ST2 whenever
T , T1, T2 ∈ L(U,V) and S, S1, S2 ∈ L(V ,W).

Multiplication of linear maps is not commutative. In other words, it
is not necessarily true that ST = TS, even if both sides of the equation
make sense. For example, if T ∈ L(P(R),P(R)) is the differentiation
map defined earlier in this section and S ∈ L(P(R),P(R)) is the mul-
tiplication by x2 map defined earlier in this section, then

((ST)p)(x) = x2p′(x) but ((TS)p)(x) = x2p′(x)+ 2xp(x).

In other words, multiplying by x2 and then differentiating is not the
same as differentiating and then multiplying by x2.

Null Spaces and Ranges

For T ∈ L(V ,W), the null space of T , denoted nullT , is the subset Some mathematicians

use the term kernel

instead of null space.

of V consisting of those vectors that T maps to 0:

nullT = {v ∈ V : Tv = 0}.

Let’s look at a few examples from the previous section. In the dif-
ferentiation example, we defined T ∈ L(P(R),P(R)) by Tp = p′. The
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only functions whose derivative equals the zero function are the con-
stant functions, so in this case the null space of T equals the set of
constant functions.

In the multiplication by x2 example, we defined T ∈ L(P(R),P(R))
by (Tp)(x) = x2p(x). The only polynomial p such that x2p(x) = 0
for all x ∈ R is the 0 polynomial. Thus in this case we have

nullT = {0}.

In the backward shift example, we defined T ∈ L(F∞,F∞) by

T(x1, x2, x3, . . . ) = (x2, x3, . . . ).

Clearly T(x1, x2, x3, . . . ) equals 0 if and only if x2, x3, . . . are all 0. Thus
in this case we have

nullT = {(a,0,0, . . . ) : a ∈ F}.

The next proposition shows that the null space of any linear map is
a subspace of the domain. In particular, 0 is in the null space of every
linear map.

3.1 Proposition: If T ∈ L(V ,W), then nullT is a subspace of V .

Proof: Suppose T ∈ L(V ,W). By additivity, we have

T(0) = T(0+ 0) = T(0)+ T(0),

which implies that T(0) = 0. Thus 0 ∈ nullT .
If u,v ∈ nullT , then

T(u+ v) = Tu+ Tv = 0+ 0 = 0,

and hence u+ v ∈ nullT . Thus nullT is closed under addition.
If u ∈ nullT and a ∈ F, then

T(au) = aTu = a0 = 0,

and hence au ∈ nullT . Thus nullT is closed under scalar multiplica-
tion.

We have shown that nullT contains 0 and is closed under addition
and scalar multiplication. Thus nullT is a subspace of V .
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A linear map T : V → W is called injective if whenever u,v ∈ V Many mathematicians

use the term

one-to-one, which

means the same as

injective.

and Tu = Tv , we have u = v . The next proposition says that we
can check whether a linear map is injective by checking whether 0 is
the only vector that gets mapped to 0. As a simple application of this
proposition, we see that of the three linear maps whose null spaces we
computed earlier in this section (differentiation, multiplication by x2,
and backward shift), only multiplication by x2 is injective.

3.2 Proposition: Let T ∈ L(V ,W). Then T is injective if and only
if nullT = {0}.

Proof: First suppose that T is injective. We want to prove that
nullT = {0}. We already know that {0} ⊂ nullT (by 3.1). To prove the
inclusion in the other direction, suppose v ∈ nullT . Then

T(v) = 0 = T(0).
Because T is injective, the equation above implies that v = 0. Thus
nullT = {0}, as desired.

To prove the implication in the other direction, now suppose that
nullT = {0}. We want to prove that T is injective. To do this, suppose
u,v ∈ V and Tu = Tv . Then

0 = Tu− Tv = T(u− v).
Thus u − v is in nullT , which equals {0}. Hence u − v = 0, which
implies that u = v . Hence T is injective, as desired.

For T ∈ L(V ,W), the range of T , denoted rangeT , is the subset of Some mathematicians

use the word image,

which means the same

as range.

W consisting of those vectors that are of the form Tv for some v ∈ V :

rangeT = {Tv : v ∈ V}.
For example, if T ∈ L(P(R),P(R)) is the differentiation map defined by
Tp = p′, then rangeT = P(R) because for every polynomial q ∈ P(R)
there exists a polynomial p ∈ P(R) such that p′ = q.

As another example, if T ∈ L(P(R),P(R)) is the linear map of
multiplication by x2 defined by (Tp)(x) = x2p(x), then the range
of T is the set of polynomials of the form a2x2 + · · · + amxm, where
a2, . . . , am ∈ R .

The next proposition shows that the range of any linear map is a
subspace of the target space.
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3.3 Proposition: If T ∈ L(V ,W), then rangeT is a subspace of W .

Proof: Suppose T ∈ L(V ,W). Then T(0) = 0 (by 3.1), which im-
plies that 0 ∈ rangeT .

If w1,w2 ∈ rangeT , then there exist v1, v2 ∈ V such that Tv1 = w1

and Tv2 = w2. Thus

T(v1 + v2) = Tv1 + Tv2 = w1 +w2,

and hencew1+w2 ∈ rangeT . Thus rangeT is closed under addition.
Ifw ∈ rangeT and a ∈ F, then there exists v ∈ V such that Tv = w.

Thus

T(av) = aTv = aw,
and hence aw ∈ rangeT . Thus rangeT is closed under scalar multipli-
cation.

We have shown that rangeT contains 0 and is closed under addition
and scalar multiplication. Thus rangeT is a subspace of W .

A linear map T : V → W is called surjective if its range equals W .Many mathematicians

use the term onto,

which means the same

as surjective.

For example, the differentiation map T ∈ L(P(R),P(R)) defined by
Tp = p′ is surjective because its range equals P(R). As another exam-
ple, the linear map T ∈ L(P(R),P(R)) defined by (Tp)(x) = x2p(x) is
not surjective because its range does not equal P(R). As a final exam-
ple, you should verify that the backward shift T ∈ L(F∞,F∞) defined
by

T(x1, x2, x3, . . . ) = (x2, x3, . . . )

is surjective.
Whether a linear map is surjective can depend upon what we are

thinking of as the target space. For example, fix a positive integer m.
The differentiation map T ∈ L(Pm(R),Pm(R)) defined by Tp = p′

is not surjective because the polynomial xm is not in the range of T .
However, the differentiation map T ∈ L(Pm(R),Pm−1(R)) defined by
Tp = p′ is surjective because its range equals Pm−1(R), which is now
the target space.

The next theorem, which is the key result in this chapter, states that
the dimension of the null space plus the dimension of the range of a
linear map on a finite-dimensional vector space equals the dimension
of the domain.
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3.4 Theorem: If V is finite dimensional and T ∈ L(V ,W), then
rangeT is a finite-dimensional subspace of W and

dimV = dim nullT + dim rangeT .

Proof: Suppose that V is a finite-dimensional vector space and
T ∈ L(V ,W). Let (u1, . . . , um) be a basis of nullT ; thus dim nullT =m.
The linearly independent list (u1, . . . , um) can be extended to a ba-
sis (u1, . . . , um,w1, . . . ,wn) of V (by 2.12). Thus dimV = m + n,
and to complete the proof, we need only show that rangeT is finite
dimensional and dim rangeT = n. We will do this by proving that
(Tw1, . . . , Twn) is a basis of rangeT .

Let v ∈ V . Because (u1, . . . , um,w1, . . . ,wn) spans V , we can write

v = a1u1 + · · · + amum + b1w1 + · · · + bnwn,

where thea’s and b’s are in F. Applying T to both sides of this equation,
we get

Tv = b1Tw1 + · · · + bnTwn,
where the terms of the form Tuj disappeared because eachuj ∈ nullT .
The last equation implies that (Tw1, . . . , Twn) spans rangeT . In par-
ticular, rangeT is finite dimensional.

To show that (Tw1, . . . , Twn) is linearly independent, suppose that
c1, . . . , cn ∈ F and

c1Tw1 + · · · + cnTwn = 0.

Then
T(c1w1 + · · · + cnwn) = 0,

and hence
c1w1 + · · · + cnwn ∈ nullT .

Because (u1, . . . , um) spans nullT , we can write

c1w1 + · · · + cnwn = d1u1 + · · · + dmum,

where the d’s are in F. This equation implies that all the c’s (and d’s)
are 0 (because (u1, . . . , um,w1, . . . ,wn) is linearly independent). Thus
(Tw1, . . . , Twn) is linearly independent and hence is a basis for rangeT ,
as desired.
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Now we can show that no linear map from a finite-dimensional vec-
tor space to a “smaller” vector space can be injective, where “smaller”
is measured by dimension.

3.5 Corollary: If V and W are finite-dimensional vector spaces such
that dimV > dimW , then no linear map from V to W is injective.

Proof: Suppose V andW are finite-dimensional vector spaces such
that dimV > dimW . Let T ∈ L(V ,W). Then

dim nullT = dimV − dim rangeT

≥ dimV − dimW

> 0,

where the equality above comes from 3.4. We have just shown that
dim nullT > 0. This means that nullT must contain vectors other
than 0. Thus T is not injective (by 3.2).

The next corollary, which is in some sense dual to the previous corol-
lary, shows that no linear map from a finite-dimensional vector space
to a “bigger” vector space can be surjective, where “bigger” is measured
by dimension.

3.6 Corollary: If V and W are finite-dimensional vector spaces such
that dimV < dimW , then no linear map from V to W is surjective.

Proof: Suppose V andW are finite-dimensional vector spaces such
that dimV < dimW . Let T ∈ L(V ,W). Then

dim rangeT = dimV − dim nullT

≤ dimV

< dimW,

where the equality above comes from 3.4. We have just shown that
dim rangeT < dimW . This means that rangeT cannot equal W . Thus
T is not surjective.

The last two corollaries have important consequences in the theory
of linear equations. To see this, fix positive integers m and n, and let
aj,k ∈ F for j = 1, . . . ,m and k = 1, . . . , n. Define T : Fn → Fm by
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T(x1, . . . , xn) =
(

n
∑

k=1

a1,kxk, . . . ,
n
∑

k=1

am,kxk
)

.

Now consider the equation Tx = 0 (where x ∈ Fn and the 0 here is
the additive identity in Fm, namely, the list of length m consisting of
all 0’s). Letting x = (x1, . . . , xn), we can rewrite the equation Tx = 0
as a system of homogeneous equations: Homogeneous, in this

context, means that the

constant term on the

right side of each

equation equals 0.

n
∑

k=1

a1,kxk = 0

...
n
∑

k=1

am,kxk = 0.

We think of the a’s as known; we are interested in solutions for the
variables x1, . . . , xn. Thus we have m equations and n variables. Obvi-
ously x1 = · · · = xn = 0 is a solution; the key question here is whether
any other solutions exist. In other words, we want to know if nullT is
strictly bigger than {0}. This happens precisely when T is not injective
(by 3.2). From 3.5 we see that T is not injective if n > m. Conclusion:
a homogeneous system of linear equations in which there are more
variables than equations must have nonzero solutions.

With T as in the previous paragraph, now consider the equation
Tx = c, where c = (c1, . . . , cm) ∈ Fm. We can rewrite the equation
Tx = c as a system of inhomogeneous equations:

These results about

homogeneous systems

with more variables

than equations and

inhomogeneous

systems with more

equations than

variables are often

proved using Gaussian

elimination. The

abstract approach

taken here leads to

cleaner proofs.

n
∑

k=1

a1,kxk = c1

...
n
∑

k=1

am,kxk = cm.

As before, we think of the a’s as known. The key question here is
whether for every choice of the constant terms c1, . . . , cm ∈ F, there
exists at least one solution for the variables x1, . . . , xn. In other words,
we want to know whether rangeT equals Fm. From 3.6 we see that T
is not surjective if n < m. Conclusion: an inhomogeneous system of
linear equations in which there are more equations than variables has
no solution for some choice of the constant terms.
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The Matrix of a Linear Map

We have seen that if (v1, . . . , vn) is a basis of V and T : V → W is
linear, then the values of Tv1, . . . , Tvn determine the values of T on
arbitrary vectors in V . In this section we will see how matrices are used
as an efficient method of recording the values of the Tvj ’s in terms of
a basis of W .

Let m and n denote positive integers. An m-by-n matrix is a rect-
angular array with m rows and n columns that looks like this:

3.7









a1,1 . . . a1,n
...

...
am,1 . . . am,n








.

Note that the first index refers to the row number and the second in-
dex refers to the column number. Thus a3,2 refers to the entry in the
third row, second column of the matrix above. We will usually consider
matrices whose entries are elements of F.

Let T ∈ L(V ,W). Suppose that (v1, . . . , vn) is a basis of V and
(w1, . . . ,wm) is a basis of W . For each k = 1, . . . , n, we can write Tvk
uniquely as a linear combination of the w’s:

3.8 Tvk = a1,kw1 + · · · + am,kwm,

where aj,k ∈ F for j = 1, . . . ,m. The scalars aj,k completely determine
the linear map T because a linear map is determined by its values on
a basis. The m-by-n matrix 3.7 formed by the a’s is called the matrix
of T with respect to the bases (v1, . . . , vn) and (w1, . . . ,wm); we denote
it by

M(

T , (v1, . . . , vn), (w1, . . . ,wm)
)

.

If the bases (v1, . . . , vn) and (w1, . . . ,wm) are clear from the context
(for example, if only one set of bases is in sight), we write just M(T)
instead of M(

T , (v1, . . . , vn), (w1, . . . ,wm)
)

.

As an aid to remembering how M(T) is constructed from T , you
might write the basis vectors v1, . . . , vn for the domain across the top
and the basis vectors w1, . . . ,wm for the target space along the left, as
follows:
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v1 . . . vk . . . vn
w1
...
wm









a1,k
...

am,k









Note that in the matrix above only the kth column is displayed (and thus With respect to any

choice of bases, the

matrix of the 0 linear

map (the linear map

that takes every vector

to 0) consists of all 0’s.

the second index of each displayed a is k). The kth column of M(T)
consists of the scalars needed to write Tvk as a linear combination of
thew’s. Thus the picture above should remind you that Tvk is retrieved
from the matrix M(T) by multiplying each entry in the kth column by
the corresponding w from the left column, and then adding up the
resulting vectors.

If T is a linear map from Fn to Fm, then unless stated otherwise you
should assume that the bases in question are the standard ones (where
the kth basis vector is 1 in the kth slot and 0 in all the other slots). If
you think of elements of Fm as columns of m numbers, then you can
think of the kth column of M(T) as T applied to the kth basis vector.
For example, if T ∈ L(F2,F3) is defined by

T(x,y) = (x + 3y,2x + 5y,7x + 9y),

then T(1,0) = (1,2,7) and T(0,1) = (3,5,9), so the matrix of T (with
respect to the standard bases) is the 3-by-2 matrix







1 3
2 5
7 9





 .

Suppose we have bases (v1, . . . , vn) of V and (w1, . . . ,wm) of W .
Thus for each linear map from V to W , we can talk about its matrix
(with respect to these bases, of course). Is the matrix of the sum of two
linear maps equal to the sum of the matrices of the two maps?

Right now this question does not make sense because, though we
have defined the sum of two linear maps, we have not defined the sum
of two matrices. Fortunately the obvious definition of the sum of two
matrices has the right properties. Specifically, we define addition of
matrices of the same size by adding corresponding entries in the ma-
trices:
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







a1,1 . . . a1,n
...

...
am,1 . . . am,n








+









b1,1 . . . b1,n
...

...
bm,1 . . . bm,n









=









a1,1 + b1,1 . . . a1,n + b1,n
...

...
am,1 + bm,1 . . . am,n + bm,n








.

You should verify that with this definition of matrix addition,

3.9 M(T + S) =M(T)+M(S)

whenever T , S ∈ L(V ,W).
Still assuming that we have some bases in mind, is the matrix of a

scalar times a linear map equal to the scalar times the matrix of the
linear map? Again the question does not make sense because we have
not defined scalar multiplication on matrices. Fortunately the obvious
definition again has the right properties. Specifically, we define the
product of a scalar and a matrix by multiplying each entry in the matrix
by the scalar:

c









a1,1 . . . a1,n
...

...
am,1 . . . am,n








=









ca1,1 . . . ca1,n
...

...
cam,1 . . . cam,n








.

You should verify that with this definition of scalar multiplication on
matrices,

3.10 M(cT) = cM(T)

whenever c ∈ F and T ∈ L(V ,W).
Because addition and scalar multiplication have now been defined

for matrices, you should not be surprised that a vector space is about
to appear. We need only a bit of notation so that this new vector space
has a name. The set of allm-by-nmatrices with entries in F is denoted
by Mat(m,n,F). You should verify that with addition and scalar mul-
tiplication defined as above, Mat(m,n,F) is a vector space. Note that
the additive identity in Mat(m,n,F) is the m-by-n matrix all of whose
entries equal 0.

Suppose (v1, . . . , vn) is a basis of V and (w1, . . . ,wm) is a basis ofW .
Suppose also that we have another vector space U and that (u1, . . . , up)
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is a basis of U . Consider linear maps S : U → V and T : V → W . The
composition TS is a linear map from U to W . How can M(TS) be
computed from M(T) and M(S)? The nicest solution to this question
would be to have the following pretty relationship:

3.11 M(TS) =M(T)M(S).
So far, however, the right side of this equation does not make sense
because we have not yet defined the product of two matrices. We will
choose a definition of matrix multiplication that forces the equation
above to hold. Let’s see how to do this.

Let

M(T) =









a1,1 . . . a1,n
...

...
am,1 . . . am,n








and M(S) =









b1,1 . . . b1,p
...

...
bn,1 . . . bn,p








.

For k ∈ {1, . . . , p}, we have

TSuk = T(
n
∑

r=1

br,kvr )

=
n
∑

r=1

br,kTvr

=
n
∑

r=1

br,k
m
∑

j=1

aj,rwj

=
m
∑

j=1

(
n
∑

r=1

aj,rbr,k)wj.

Thus M(TS) is the m-by-p matrix whose entry in row j, column k
equals

∑n
r=1 aj,rbr,k.

Now it’s clear how to define matrix multiplication so that 3.11 holds. You probably learned

this definition of matrix

multiplication in an

earlier course, although

you may not have seen

this motivation for it.

Namely, if A is an m-by-n matrix with entries aj,k and B is an n-by-p
matrix with entries bj,k, then AB is defined to be the m-by-p matrix
whose entry in row j, column k, equals

n
∑

r=1

aj,rbr,k.

In other words, the entry in row j, column k, of AB is computed by
taking row j of A and column k of B, multiplying together correspond-
ing entries, and then summing. Note that we define the product of two
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matrices only when the number of columns of the first matrix equals
the number of rows of the second matrix.

As an example of matrix multiplication, here we multiply togetherYou should find an

example to show that

matrix multiplication is

not commutative. In

other words, AB is not

necessarily equal to BA,

even when both are

defined.

a 3-by-2 matrix and a 2-by-4 matrix, obtaining a 3-by-4 matrix:






1 2
3 4
5 6







[

6 5 4 3
2 1 0 −1

]

=






10 7 4 1
26 19 12 5
42 31 20 9





 .

Suppose (v1, . . . , vn) is a basis of V . Ifv ∈ V , then there exist unique
scalars b1, . . . , bn such that

3.12 v = b1v1 + · · · + bnvn.
The matrix of v , denoted M(v), is the n-by-1 matrix defined by

3.13 M(v) =









b1
...
bn








.

Usually the basis is obvious from the context, but when the basis needs
to be displayed explicitly use the notation M(

v, (v1, . . . , vn)
)

instead
of M(v).

For example, the matrix of a vector x ∈ Fn with respect to the stan-
dard basis is obtained by writing the coordinates of x as the entries in
an n-by-1 matrix. In other words, if x = (x1, . . . , xn) ∈ Fn, then

M(x) =









x1
...
xn








.

The next proposition shows how the notions of the matrix of a linear
map, the matrix of a vector, and matrix multiplication fit together. In
this proposition M(Tv) is the matrix of the vector Tv with respect to
the basis (w1, . . . ,wm) and M(v) is the matrix of the vector v with re-
spect to the basis (v1, . . . , vn), whereasM(T) is the matrix of the linear
map T with respect to the bases (v1, . . . , vn) and (w1, . . . ,wm).

3.14 Proposition: Suppose T ∈ L(V ,W) and (v1, . . . , vn) is a basis
of V and (w1, . . . ,wm) is a basis of W . Then

M(Tv) =M(T)M(v)
for every v ∈ V .
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Proof: Let

3.15 M(T) =









a1,1 . . . a1,n
...

...
am,1 . . . am,n








.

This means, we recall, that

3.16 Tvk =
m
∑

j=1

aj,kwj

for each k. Let v be an arbitrary vector in V , which we can write in the
form 3.12. Thus M(v) is given by 3.13. Now

Tv = b1Tv1 + · · · + bnTvn

= b1

m
∑

j=1

aj,1wj + · · · + bn
m
∑

j=1

aj,nwj

=
m
∑

j=1

(aj,1b1 + · · · + aj,nbn)wj,

where the first equality comes from 3.12 and the second equality comes
from 3.16. The last equation shows that M(Tv), the m-by-1 matrix of
the vector Tv with respect to the basis (w1, . . . ,wm), is given by the
equation

M(Tv) =









a1,1b1 + · · · + a1,nbn
...

am,1b1 + · · · + am,nbn








.

This formula, along with the formulas 3.15 and 3.13 and the definition
of matrix multiplication, shows that M(Tv) =M(T)M(v).

Invertibility

A linear map T ∈ L(V ,W) is called invertible if there exists a linear
map S ∈ L(W,V) such that ST equals the identity map on V and TS
equals the identity map on W . A linear map S ∈ L(W,V) satisfying
ST = I and TS = I is called an inverse of T (note that the first I is the
identity map on V and the second I is the identity map on W ).

If S and S′ are inverses of T , then
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S = SI = S(TS′) = (ST)S′ = IS′ = S′,
so S = S′. In other words, if T is invertible, then it has a unique
inverse, which we denote by T−1. Rephrasing all this once more, if
T ∈ L(V ,W) is invertible, then T−1 is the unique element of L(W,V)
such that T−1T = I and TT−1 = I. The following proposition charac-
terizes the invertible linear maps.

3.17 Proposition: A linear map is invertible if and only if it is injec-
tive and surjective.

Proof: Suppose T ∈ L(V ,W). We need to show that T is invertible
if and only if it is injective and surjective.

First suppose that T is invertible. To show that T is injective, sup-
pose that u,v ∈ V and Tu = Tv . Then

u = T−1(Tu) = T−1(Tv) = v,
so u = v . Hence T is injective.

We are still assuming that T is invertible. Now we want to prove
that T is surjective. To do this, let w ∈ W . Then w = T(T−1w), which
shows that w is in the range of T . Thus rangeT = W , and hence T is
surjective, completing this direction of the proof.

Now suppose that T is injective and surjective. We want to prove
that T is invertible. For each w ∈ W , define Sw to be the unique ele-
ment of V such that T(Sw) = w (the existence and uniqueness of such
an element follow from the surjectivity and injectivity of T ). Clearly
TS equals the identity map on W . To prove that ST equals the identity
map on V , let v ∈ V . Then

T(STv) = (TS)(Tv) = I(Tv) = Tv.
This equation implies that STv = v (because T is injective), and thus
ST equals the identity map on V . To complete the proof, we need to
show that S is linear. To do this, let w1, w2 ∈ W . Then

T(Sw1 + Sw2) = T(Sw1)+ T(Sw2) = w1 +w2.

Thus Sw1+Sw2 is the unique element of V that T maps tow1+w2. By
the definition of S, this implies that S(w1 +w2) = Sw1 + Sw2. Hence
S satisfies the additive property required for linearity. The proof of
homogeneity is similar. Specifically, if w ∈ W and a ∈ F, then
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T(aSw) = aT(Sw) = aw.

Thus aSw is the unique element of V that T maps to aw. By the
definition of S, this implies that S(aw) = aSw. Hence S is linear, as
desired.

Two vector spaces are called isomorphic if there is an invertible The Greek word isos

means equal; the Greek

word morph means

shape. Thus

isomorphic literally

means equal shape.

linear map from one vector space onto the other one. As abstract vector
spaces, two isomorphic spaces have the same properties. From this
viewpoint, you can think of an invertible linear map as a relabeling of
the elements of a vector space.

If two vector spaces are isomorphic and one of them is finite dimen-
sional, then so is the other one. To see this, suppose that V and W
are isomorphic and that T ∈ L(V ,W) is an invertible linear map. If V
is finite dimensional, then so is W (by 3.4). The same reasoning, with
T replaced with T−1 ∈ L(W,V), shows that if W is finite dimensional,
then so is V . Actually much more is true, as the following theorem
shows.

3.18 Theorem: Two finite-dimensional vector spaces are isomorphic
if and only if they have the same dimension.

Proof: First suppose V and W are isomorphic finite-dimensional
vector spaces. Thus there exists an invertible linear map T from V
ontoW . Because T is invertible, we have nullT = {0} and rangeT = W .
Thus dim nullT = 0 and dim rangeT = dimW . The formula

dimV = dim nullT + dim rangeT

(see 3.4) thus becomes the equation dimV = dimW , completing the
proof in one direction.

To prove the other direction, suppose V and W are finite-dimen-
sional vector spaces with the same dimension. Let (v1, . . . , vn) be a
basis of V and (w1, . . . ,wn) be a basis of W . Let T be the linear map
from V to W defined by

T(a1v1 + · · · + anvn) = a1w1 + · · · + anwn.

Then T is surjective because (w1, . . . ,wn) spans W , and T is injective
because (w1, . . . ,wn) is linearly independent. Because T is injective and
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surjective, it is invertible (see 3.17), and hence V andW are isomorphic,
as desired.

The last theorem implies that every finite-dimensional vector spaceBecause every

finite-dimensional

vector space is

isomorphic to some Fn,

why bother with

abstract vector spaces?

To answer this

question, note that an

investigation of Fn

would soon lead to

vector spaces that do

not equal Fn. For

example, we would

encounter the null

space and range of

linear maps, the set of

matrices Mat(n,n,F),
and the polynomials

Pn(F). Though each of

these vector spaces is

isomorphic to some

Fm, thinking of them

that way often adds

complexity but no new

insight.

is isomorphic to some Fn. Specifically, ifV is a finite-dimensional vector
space and dimV = n, then V and Fn are isomorphic.

If (v1, . . . , vn) is a basis of V and (w1, . . . ,wm) is a basis of W , then
for each T ∈ L(V ,W), we have a matrix M(T) ∈ Mat(m,n,F). In other
words, once bases have been fixed for V andW , M becomes a function
from L(V ,W) to Mat(m,n,F). Notice that 3.9 and 3.10 show that M is
a linear map. This linear map is actually invertible, as we now show.

3.19 Proposition: Suppose that (v1, . . . , vn) is a basis of V and
(w1, . . . ,wm) is a basis of W . Then M is an invertible linear map be-
tween L(V ,W) and Mat(m,n,F).

Proof: We have already noted that M is linear, so we need only
prove that M is injective and surjective (by 3.17). Both are easy. Let’s
begin with injectivity. If T ∈ L(V ,W) and M(T) = 0, then Tvk = 0
for k = 1, . . . , n. Because (v1, . . . , vn) is a basis of V , this implies that
T = 0. Thus M is injective (by 3.2).

To prove that M is surjective, let

A =









a1,1 . . . a1,n
...

...
am,1 . . . am,n









be a matrix in Mat(m,n,F). Let T be the linear map from V to W such
that

Tvk =
m
∑

j=1

aj,kwj

for k = 1, . . . , n. Obviously M(T) equals A, and so the range of M
equals Mat(m,n,F), as desired.

An obvious basis of Mat(m,n,F) consists of thosem-by-nmatrices
that have 0 in all entries except for a 1 in one entry. There aremn such
matrices, so the dimension of Mat(m,n,F) equals mn.

Now we can determine the dimension of the vector space of linear
maps from one finite-dimensional vector space to another.
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3.20 Proposition: If V and W are finite dimensional, then L(V ,W)
is finite dimensional and

dimL(V ,W) = (dimV)(dimW).

Proof: This follows from the equation dim Mat(m,n,F) = mn,
3.18, and 3.19.

A linear map from a vector space to itself is called an operator . If The deepest and most

important parts of

linear algebra, as well

as most of the rest of

this book, deal with

operators.

we want to specify the vector space, we say that a linear map T : V → V
is an operator on V . Because we are so often interested in linear maps
from a vector space into itself, we use the notation L(V) to denote the
set of all operators on V . In other words, L(V) = L(V , V).

Recall from 3.17 that a linear map is invertible if it is injective and
surjective. For a linear map of a vector space into itself, you might
wonder whether injectivity alone, or surjectivity alone, is enough to
imply invertibility. On infinite-dimensional vector spaces neither con-
dition alone implies invertibility. We can see this from some examples
we have already considered. The multiplication by x2 operator (from
P(R) to itself) is injective but not surjective. The backward shift (from
F∞ to itself) is surjective but not injective. In view of these examples,
the next theorem is remarkable—it states that for maps from a finite-
dimensional vector space to itself, either injectivity or surjectivity alone
implies the other condition.

3.21 Theorem: Suppose V is finite dimensional. If T ∈ L(V), then
the following are equivalent:

(a) T is invertible;

(b) T is injective;

(c) T is surjective.

Proof: Suppose T ∈ L(V). Clearly (a) implies (b).
Now suppose (b) holds, so that T is injective. Thus nullT = {0}

(by 3.2). From 3.4 we have

dim rangeT = dimV − dim nullT

= dimV,

which implies that rangeT equals V (see Exercise 11 in Chapter 2). Thus
T is surjective. Hence (b) implies (c).
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Now suppose (c) holds, so that T is surjective. Thus rangeT = V .
From 3.4 we have

dim nullT = dimV − dim rangeT

= 0,

which implies that nullT equals {0}. Thus T is injective (by 3.2), and
so T is invertible (we already knew that T was surjective). Hence (c)
implies (a), completing the proof.
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Exercises

1. Show that every linear map from a one-dimensional vector space
to itself is multiplication by some scalar. More precisely, prove
that if dimV = 1 and T ∈ L(V , V), then there exists a ∈ F such
that Tv = av for all v ∈ V .

2. Give an example of a function f : R2 → R such that Exercise 2 shows that

homogeneity alone is

not enough to imply

that a function is a

linear map. Additivity

alone is also not

enough to imply that a

function is a linear

map, although the

proof of this involves

advanced tools that are

beyond the scope of

this book.

f(av) = af(v)

for all a ∈ R and all v ∈ R2 but f is not linear.

3. Suppose that V is finite dimensional. Prove that any linear map
on a subspace of V can be extended to a linear map on V . In
other words, show that if U is a subspace of V and S ∈ L(U,W),
then there exists T ∈ L(V ,W) such that Tu = Su for all u ∈ U .

4. Suppose that T is a linear map from V to F. Prove that if u ∈ V
is not in nullT , then

V = nullT ⊕ {au : a ∈ F}.

5. Suppose that T ∈ L(V ,W) is injective and (v1, . . . , vn) is linearly
independent in V . Prove that (Tv1, . . . , Tvn) is linearly indepen-
dent in W .

6. Prove that if S1, . . . , Sn are injective linear maps such that S1 . . . Sn
makes sense, then S1 . . . Sn is injective.

7. Prove that if (v1, . . . , vn) spans V and T ∈ L(V ,W) is surjective,
then (Tv1, . . . , Tvn) spans W .

8. Suppose that V is finite dimensional and that T ∈ L(V ,W). Prove
that there exists a subspace U of V such that U ∩ nullT = {0}
and rangeT = {Tu : u ∈ U}.

9. Prove that if T is a linear map from F4 to F2 such that

nullT = {(x1, x2, x3, x4) ∈ F4 : x1 = 5x2 and x3 = 7x4},

then T is surjective.
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10. Prove that there does not exist a linear map from F5 to F2 whose
null space equals

{(x1, x2, x3, x4, x5) ∈ F5 : x1 = 3x2 and x3 = x4 = x5}.

11. Prove that if there exists a linear map on V whose null space and
range are both finite dimensional, then V is finite dimensional.

12. Suppose that V and W are both finite dimensional. Prove that
there exists a surjective linear map from V onto W if and only if
dimW ≤ dimV .

13. Suppose that V and W are finite dimensional and that U is a
subspace of V . Prove that there exists T ∈ L(V ,W) such that
nullT = U if and only if dimU ≥ dimV − dimW .

14. Suppose that W is finite dimensional and T ∈ L(V ,W). Prove
that T is injective if and only if there exists S ∈ L(W,V) such
that ST is the identity map on V .

15. Suppose that V is finite dimensional and T ∈ L(V ,W). Prove
that T is surjective if and only if there exists S ∈ L(W,V) such
that TS is the identity map on W .

16. Suppose that U and V are finite-dimensional vector spaces and
that S ∈ L(V ,W), T ∈ L(U,V). Prove that

dim null ST ≤ dim null S + dim nullT .

17. Prove that the distributive property holds for matrix addition
and matrix multiplication. In other words, suppose A, B, and C
are matrices whose sizes are such that A(B + C) makes sense.
Prove that AB +AC makes sense and that A(B + C) = AB +AC .

18. Prove that matrix multiplication is associative. In other words,
suppose A, B, and C are matrices whose sizes are such that
(AB)C makes sense. Prove that A(BC) makes sense and that
(AB)C = A(BC).
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19. Suppose T ∈ L(Fn,Fm) and that This exercise shows

that T has the form

promised on page 39.

M(T) =









a1,1 . . . a1,n
...

...
am,1 . . . am,n








,

where we are using the standard bases. Prove that

T(x1, . . . , xn) = (a1,1x1+· · ·+a1,nxn, . . . , am,1x1+· · ·+am,nxn)

for every (x1, . . . , xn) ∈ Fn.

20. Suppose (v1, . . . , vn) is a basis of V . Prove that the function
T : V → Mat(n,1,F) defined by

Tv =M(v)

is an invertible linear map of V onto Mat(n,1,F); here M(v) is
the matrix of v ∈ V with respect to the basis (v1, . . . , vn).

21. Prove that every linear map from Mat(n,1,F) to Mat(m,1,F) is
given by a matrix multiplication. In other words, prove that if
T ∈ L(Mat(n,1,F),Mat(m,1,F)), then there exists an m-by-n
matrix A such that TB = AB for every B ∈ Mat(n,1,F).

22. Suppose that V is finite dimensional and S, T ∈ L(V). Prove that
ST is invertible if and only if both S and T are invertible.

23. Suppose that V is finite dimensional and S, T ∈ L(V). Prove that
ST = I if and only if TS = I.

24. Suppose that V is finite dimensional and T ∈ L(V). Prove that
T is a scalar multiple of the identity if and only if ST = TS for
every S ∈ L(V).

25. Prove that if V is finite dimensional with dimV > 1, then the set
of noninvertible operators on V is not a subspace of L(V).

Administrator
ferret
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26. Suppose n is a positive integer and ai,j ∈ F for i, j = 1, . . . , n.
Prove that the following are equivalent:

(a) The trivial solution x1 = · · · = xn = 0 is the only solution
to the homogeneous system of equations

n
∑

k=1

a1,kxk = 0

...
n
∑

k=1

an,kxk = 0.

(b) For every c1, . . . , cn ∈ F, there exists a solution to the sys-
tem of equations

n
∑

k=1

a1,kxk = c1

...
n
∑

k=1

an,kxk = cn.

Note that here we have the same number of equations as vari-
ables.



Chapter 4

Polynomials

This short chapter contains no linear algebra. It does contain the
background material on polynomials that we will need in our study
of linear maps from a vector space to itself. Many of the results in
this chapter will already be familiar to you from other courses; they
are included here for completeness. Because this chapter is not about
linear algebra, your instructor may go through it rapidly. You may not
be asked to scrutinize all the proofs. Make sure, however, that you
at least read and understand the statements of all the results in this
chapter—they will be used in the rest of the book.

Recall that F denotes R or C.

✽
✽ ✽ ✽

63
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Degree

Recall that a function p : F → F is called a polynomial with coeffi-
cients in F if there exist a0, . . . , am ∈ F such that

p(z) = a0 + a1z + a2z2 + · · · + amzm

for all z ∈ F. If p can be written in the form above with am �= 0, then we
say that p has degree m. If all the coefficients a0, . . . , am equal 0, then
we say thatp has degree−∞. For all we know at this stage, a polynomialWhen necessary, use

the obvious arithmetic

with −∞. For example,

−∞ <m and

−∞+m = −∞ for

every integer m. The 0

polynomial is declared

to have degree −∞ so

that exceptions are not

needed for various

reasonable results. For

example, the degree of

pq equals the degree of

p plus the degree of q
even if p = 0.

may have more than one degree because we have not yet proved that
the coefficients in the equation above are uniquely determined by the
function p.

Recall that P(F) denotes the vector space of all polynomials with
coefficients in F and that Pm(F) is the subspace of P(F) consisting of
the polynomials with coefficients in F and degree at mostm. A number
λ ∈ F is called a root of a polynomial p ∈ P(F) if

p(λ) = 0.

Roots play a crucial role in the study of polynomials. We begin by
showing that λ is a root of p if and only if p is a polynomial multiple
of z − λ.

4.1 Proposition: Suppose p ∈ P(F) is a polynomial with degree
m ≥ 1. Let λ ∈ F. Then λ is a root of p if and only if there is a
polynomial q ∈ P(F) with degree m− 1 such that

4.2 p(z) = (z − λ)q(z)

for all z ∈ F.

Proof: One direction is obvious. Namely, suppose there is a poly-
nomial q ∈ P(F) such that 4.2 holds. Then

p(λ) = (λ− λ)q(λ) = 0,

and hence λ is a root of p, as desired.
To prove the other direction, suppose that λ ∈ F is a root of p. Let

a0, . . . , am ∈ F be such that am �= 0 and

p(z) = a0 + a1z + a2z2 + · · · + amzm
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for all z ∈ F. Because p(λ) = 0, we have

0 = a0 + a1λ+ a2λ2 + · · · + amλm.

Subtracting the last two equations, we get

p(z) = a1(z − λ)+ a2(z2 − λ2)+ · · · + am(zm − λm)

for all z ∈ F. For each j = 2, . . . ,m, we can write

zj − λj = (z − λ)qj−1(z)

for all z ∈ F, where qj−1 is a polynomial with degree j−1 (specifically,
take qj−1(z) = zj−1 + zj−2λ+ · · · + zλj−2 + λj−1). Thus

p(z) = (z − λ) (a1 + a2q2(z)+ · · · + amqm−1(z))
︸ ︷︷ ︸

q(z)

for all z ∈ F. Clearly q is a polynomial with degree m−1, as desired.

Now we can prove that polynomials do not have too many roots.

4.3 Corollary: Suppose p ∈ P(F) is a polynomial with degreem ≥ 0.
Then p has at most m distinct roots in F.

Proof: If m = 0, then p(z) = a0 �= 0 and so p has no roots. If
m = 1, then p(z) = a0 + a1z, with a1 �= 0, and p has exactly one
root, namely, −a0/a1. Now suppose m > 1. We use induction on m,
assuming that every polynomial with degree m− 1 has at most m− 1
distinct roots. If p has no roots in F, then we are done. If p has a root
λ ∈ F, then by 4.1 there is a polynomial q with degree m− 1 such that

p(z) = (z − λ)q(z)

for all z ∈ F. The equation above shows that if p(z) = 0, then either
z = λ or q(z) = 0. In other words, the roots of p consist of λ and the
roots of q. By our induction hypothesis, q has at most m − 1 distinct
roots in F. Thus p has at most m distinct roots in F.

The next result states that if a polynomial is identically 0, then all
its coefficients must be 0.
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4.4 Corollary: Suppose a0, . . . , am ∈ F. If

a0 + a1z + a2z2 + · · · + amzm = 0

for all z ∈ F, then a0 = · · · = am = 0.

Proof: Suppose a0+a1z+a2z2+· · ·+amzm equals 0 for all z ∈ F.
By 4.3, no nonnegative integer can be the degree of this polynomial.
Thus all the coefficients equal 0.

The corollary above implies that (1, z, . . . , zm) is linearly indepen-
dent inP(F) for every nonnegative integerm. We had noted this earlier
(in Chapter 2), but now we have a complete proof. This linear indepen-
dence implies that each polynomial can be represented in only one way
as a linear combination of functions of the form zj . In particular, the
degree of a polynomial is unique.

If p and q are nonnegative integers, with p �= 0, then there exist
nonnegative integers s and r such that

q = sp + r .
and r < p. Think of dividing q by p, getting s with remainder r . Our
next task is to prove an analogous result for polynomials.

Let degp denote the degree of a polynomial p. The next result is
often called the division algorithm, though as stated here it is not really
an algorithm, just a useful lemma.

4.5 Division Algorithm: Suppose p,q ∈ P(F), with p �= 0. ThenThink of 4.6 as giving

the remainder r when

q is divided by p.

there exist polynomials s, r ∈ P(F) such that

4.6 q = sp + r
and deg r < degp.

Proof: Choose s ∈ P(F) such that q − sp has degree as small as
possible. Let r = q − sp. Thus 4.6 holds, and all that remains is to
show that deg r < degp. Suppose that deg r ≥ degp. If c ∈ F and j is
a nonnegative integer, then

q − (s + czj)p = r − czjp.
Choose j and c so that the polynomial on the right side of this equation
has degree less than deg r (specifically, take j = deg r −degp and then
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choose c so that the coefficients of zdeg r in r and in czjp are equal).
This contradicts our choice of s as the polynomial that produces the
smallest degree for expressions of the form q − sp, completing the
proof.

Complex Coefficients

So far we have been handling polynomials with complex coefficients
and polynomials with real coefficients simultaneously through our con-
vention that F denotes R or C. Now we will see some differences be-
tween these two cases. In this section we treat polynomials with com-
plex coefficients. In the next section we will use our results about poly-
nomials with complex coefficients to prove corresponding results for
polynomials with real coefficients.

Though this chapter contains no linear algebra, the results so far
have nonetheless been proved using algebra. The next result, though
called the fundamental theorem of algebra, requires analysis for its
proof. The short proof presented here uses tools from complex anal-
ysis. If you have not had a course in complex analysis, this proof will
almost certainly be meaningless to you. In that case, just accept the
fundamental theorem of algebra as something that we need to use but
whose proof requires more advanced tools that you may learn in later
courses.

4.7 Fundamental Theorem of Algebra: Every nonconstant polyno- This is an existence

theorem. The quadratic

formula gives the roots

explicitly for

polynomials of

degree 2. Similar but

more complicated

formulas exist for

polynomials of degree

3 and 4. No such

formulas exist for

polynomials of degree

5 and above.

mial with complex coefficients has a root.

Proof: Let p be a nonconstant polynomial with complex coeffi-
cients. Suppose that p has no roots. Then 1/p is an analytic function
on C. Furthermore, p(z)→∞ as z →∞, which implies that 1/p → 0 as
z →∞. Thus 1/p is a bounded analytic function on C. By Liouville’s the-
orem, any such function must be constant. But if 1/p is constant, then
p is constant, contradicting our assumption that p is nonconstant.

The fundamental theorem of algebra leads to the following factor-
ization result for polynomials with complex coefficients. Note that
in this factorization, the numbers λ1, . . . , λm are precisely the roots
of p, for these are the only values of z for which the right side of 4.9
equals 0.



68 Chapter 4. Polynomials

4.8 Corollary: If p ∈ P(C) is a nonconstant polynomial, then p
has a unique factorization (except for the order of the factors) of the
form

4.9 p(z) = c(z − λ1) . . . (z − λm),

where c, λ1, . . . , λm ∈ C.

Proof: Let p ∈ P(C) and letm denote the degree of p. We will use
induction on m. If m = 1, then clearly the desired factorization exists
and is unique. So assume thatm > 1 and that the desired factorization
exists and is unique for all polynomials of degree m− 1.

First we will show that the desired factorization of p exists. By the
fundamental theorem of algebra (4.7), p has a root λ. By 4.1, there is a
polynomial q with degree m− 1 such that

p(z) = (z − λ)q(z)

for all z ∈ C. Our induction hypothesis implies that q has the desired
factorization, which when plugged into the equation above gives the
desired factorization of p.

Now we turn to the question of uniqueness. Clearly c is uniquely
determined by 4.9—it must equal the coefficient of zm in p. So we need
only show that except for the order, there is only one way to choose
λ1, . . . , λm. If

(z − λ1) . . . (z − λm) = (z − τ1) . . . (z − τm)

for all z ∈ C, then because the left side of the equation above equals 0
when z = λ1, one of the τ ’s on the right side must equal λ1. Relabeling,
we can assume that τ1 = λ1. Now for z �= λ1, we can divide both sides
of the equation above by z − λ1, getting

(z − λ2) . . . (z − λm) = (z − τ2) . . . (z − τm)

for all z ∈ C except possibly z = λ1. Actually the equation above
must hold for all z ∈ C because otherwise by subtracting the right side
from the left side we would get a nonzero polynomial that has infinitely
many roots. The equation above and our induction hypothesis imply
that except for the order, the λ’s are the same as the τ ’s, completing
the proof of the uniqueness.
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Real Coefficients

Before discussing polynomials with real coefficients, we need to
learn a bit more about the complex numbers.

Suppose z = a + bi, where a and b are real numbers. Then a is
called the real part of z, denoted Rez, and b is called the imaginary
part of z, denoted Imz. Thus for every complex number z, we have

z = Rez + (Imz)i.

The complex conjugate of z ∈ C, denoted z̄, is defined by Note that z = z̄ if and

only if z is a real

number.z̄ = Rez − (Imz)i.

For example, 2+ 3i = 2− 3i.
The absolute value of a complex number z, denoted |z|, is defined

by

|z| =
√

(Rez)2 + (Imz)2.

For example, |1 + 2i| = √
5. Note that |z| is always a nonnegative

number.
You should verify that the real and imaginary parts, absolute value,

and complex conjugate have the following properties:

additivity of real part
Re(w + z) = Rew + Rez for all w,z ∈ C;

additivity of imaginary part
Im(w + z) = Imw + Imz for all w,z ∈ C;

sum of z and z̄
z + z̄ = 2 Rez for all z ∈ C;

difference of z and z̄
z − z̄ = 2(Imz)i for all z ∈ C;

product of z and z̄
zz̄ = |z|2 for all z ∈ C;

additivity of complex conjugate
w + z = w̄ + z̄ for all w,z ∈ C;

multiplicativity of complex conjugate
wz = w̄z̄ for all w,z ∈ C;
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conjugate of conjugate
z̄ = z for all z ∈ C;

multiplicativity of absolute value
|wz| = |w| |z| for all w,z ∈ C .

In the next result, we need to think of a polynomial with real coef-
ficients as an element of P(C). This makes sense because every real
number is also a complex number.

4.10 Proposition: Suppose p is a polynomial with real coefficients.A polynomial with real

coefficients may have

no real roots. For

example, the

polynomial 1+ x2 has

no real roots. The

failure of the

fundamental theorem

of algebra for R

accounts for the

differences between

operators on real and

complex vector spaces,

as we will see in later

chapters.

If λ ∈ C is a root of p, then so is λ̄.

Proof: Let
p(z) = a0 + a1z + · · · + amzm,

where a0, . . . , am are real numbers. Suppose λ ∈ C is a root of p. Then

a0 + a1λ+ · · · + amλm = 0.

Take the complex conjugate of both sides of this equation, obtaining

a0 + a1λ̄+ · · · + amλ̄m = 0,

where we have used some of the basic properties of complex conjuga-
tion listed earlier. The equation above shows that λ̄ is a root of p.

We want to prove a factorization theorem for polynomials with real
coefficients. To do this, we begin by characterizing the polynomials
with real coefficients and degree 2 that can be written as the product
of two polynomials with real coefficients and degree 1.

4.11 Proposition: Let α,β ∈ R . Then there is a polynomial factor-Think about the

connection between the

quadratic formula and

this proposition.

ization of the form

4.12 x2 +αx + β = (x − λ1)(x − λ2),

with λ1, λ2 ∈ R , if and only if α2 ≥ 4β.

Proof: Notice that

4.13 x2 +αx + β = (x + α
2
)2 + (β− α

2

4
).
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First suppose that α2 < 4β. Then clearly the right side of the
equation above is positive for every x ∈ R , and hence the polynomial
x2 +αx + β has no real roots. Thus no factorization of the form 4.12,
with λ1, λ2 ∈ R , can exist.

Conversely, now suppose that α2 ≥ 4β. Thus there is a real number
c such that c2 = α2

4 − β. From 4.13, we have

x2 +αx + β = (x + α
2
)2 − c2

= (x + α
2
+ c)(x + α

2
− c),

which gives the desired factorization.

In the following theorem, each term of the form x2+αjx+βj , with
αj2 < 4βj , cannot be factored into the product of two polynomials with
real coefficients and degree 1 (by 4.11). Note that in the factorization
below, the numbers λ1, . . . , λm are precisely the real roots ofp, for these
are the only real values of x for which the right side of the equation
below equals 0.

4.14 Theorem: If p ∈ P(R) is a nonconstant polynomial, then p
has a unique factorization (except for the order of the factors) of the
form

p(x) = c(x − λ1) . . . (x − λm)(x2 +α1x + β1) . . . (x2 +αMx + βM),

where c, λ1, . . . , λm ∈ R and (α1, β1), . . . , (αM,βM) ∈ R2 with αj2 < 4βj Here either m or M
may equal 0.for each j.

Proof: Let p ∈ P(R) be a nonconstant polynomial. We can think
of p as an element of P(C) (because every real number is a complex
number). The idea of the proof is to use the factorization 4.8 of p as a
polynomial with complex coefficients. Complex but nonreal roots of p
come in pairs; see 4.10. Thus if the factorization of p as an element
of P(C) includes terms of the form (x − λ) with λ a nonreal complex
number, then (x − λ̄) is also a term in the factorization. Combining
these two terms, we get a quadratic term of the required form.

The idea sketched in the paragraph above almost provides a proof
of the existence of our desired factorization. However, we need to
be careful about one point. Suppose λ is a nonreal complex number
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and (x − λ) is a term in the factorization of p as an element of P(C).
We are guaranteed by 4.10 that (x − λ̄) also appears as a term in the
factorization, but 4.10 does not state that these two factors appear
the same number of times, as needed to make the idea above work.
However, all is well. We can write

p(x) = (x − λ)(x − λ̄)q(x)
= (x2 − 2(Reλ)x + |λ|2)q(x)

for some polynomial q ∈ P(C) with degree two less than the degree
of p. If we can prove that q has real coefficients, then, by using induc-
tion on the degree of p, we can conclude that (x − λ) appears in the
factorization of p exactly as many times as (x − λ̄).

To prove that q has real coefficients, we solve the equation above
for q, gettingHere we are not

dividing by 0 because

the roots of

x2 − 2(Reλ)x + |λ|2
are λ and λ̄, neither of

which is real.

q(x) = p(x)
x2 − 2(Reλ)x + |λ|2

for all x ∈ R . The equation above implies that q(x) ∈ R for all x ∈ R .
Writing

q(x) = a0 + a1x + · · · + an−2xn−2,

where a0, . . . , an−2 ∈ C, we thus have

0 = Imq(x) = (Ima0)+ (Ima1)x + · · · + (Iman−2)xn−2

for all x ∈ R . This implies that Ima0, . . . , Iman−2 all equal 0 (by 4.4).
Thus all the coefficients of q are real, as desired, and hence the desired
factorization exists.

Now we turn to the question of uniqueness of our factorization. A
factor of p of the form x2+αx+βwithα2 < 4β can be uniquely written
as (x − λ)(x − λ̄) with λ ∈ C. A moment’s thought shows that two
different factorizations of p as an element of P(R) would lead to two
different factorizations of p as an element ofP(C), contradicting 4.8.
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Exercises

1. Suppose m and n are positive integers with m ≤ n. Prove that
there exists a polynomial p ∈ Pn(F) with exactly m distinct
roots.

2. Suppose that z1, . . . , zm+1 are distinct elements of F and that
w1, . . . ,wm+1 ∈ F. Prove that there exists a unique polynomial
p ∈ Pm(F) such that

p(zj) = wj
for j = 1, . . . ,m+ 1.

3. Prove that if p,q ∈ P(F), with p �= 0, then there exist unique
polynomials s, r ∈ P(F) such that

q = sp + r

and deg r < degp. In other words, add a uniqueness statement
to the division algorithm (4.5).

4. Suppose p ∈ P(C) has degree m. Prove that p has m distinct
roots if and only if p and its derivative p′ have no roots in com-
mon.

5. Prove that every polynomial with odd degree and real coefficients
has a real root.



Chapter 5

Eigenvalues and Eigenvectors

In Chapter 3 we studied linear maps from one vector space to an-
other vector space. Now we begin our investigation of linear maps from
a vector space to itself. Their study constitutes the deepest and most
important part of linear algebra. Most of the key results in this area
do not hold for infinite-dimensional vector spaces, so we work only on
finite-dimensional vector spaces. To avoid trivialities we also want to
eliminate the vector space {0} from consideration. Thus we make the
following assumption:

Recall that F denotes R or C.
Let’s agree that for the rest of the book

V will denote a finite-dimensional, nonzero vector space over F.

✽ ✽
✽ ✽ ✽

75
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Invariant Subspaces

In this chapter we develop the tools that will help us understand the
structure of operators. Recall that an operator is a linear map from a
vector space to itself. Recall also that we denote the set of operators
on V by L(V); in other words, L(V) = L(V , V).

Let’s see how we might better understand what an operator looks
like. Suppose T ∈ L(V). If we have a direct sum decomposition

5.1 V = U1 ⊕ · · · ⊕Um,
where each Uj is a proper subspace of V , then to understand the be-
havior of T , we need only understand the behavior of each T |Uj ; here
T |Uj denotes the restriction of T to the smaller domain Uj . Dealing
with T |Uj should be easier than dealing with T because Uj is a smaller
vector space than V . However, if we intend to apply tools useful in the
study of operators (such as taking powers), then we have a problem:
T |Uj may not map Uj into itself; in other words, T |Uj may not be an
operator on Uj . Thus we are led to consider only decompositions of
the form 5.1 where T maps each Uj into itself.

The notion of a subspace that gets mapped into itself is sufficiently
important to deserve a name. Thus, for T ∈ L(V) and U a subspace
of V , we say that U is invariant under T if u ∈ U implies Tu ∈ U .
In other words, U is invariant under T if T |U is an operator on U . For
example, if T is the operator of differentiation on P7(R), then P4(R)
(which is a subspace of P7(R)) is invariant under T because the deriva-
tive of any polynomial of degree at most 4 is also a polynomial with
degree at most 4.

Let’s look at some easy examples of invariant subspaces. SupposeThe most famous

unsolved problem in

functional analysis is

called the invariant

subspace problem. It

deals with invariant

subspaces of operators

on infinite-dimensional

vector spaces.

T ∈ L(V). Clearly {0} is invariant under T . Also, the whole space V is
obviously invariant under T . Must T have any invariant subspaces other
than {0} and V? Later we will see that this question has an affirmative
answer for operators on complex vector spaces with dimension greater
than 1 and also for operators on real vector spaces with dimension
greater than 2.

If T ∈ L(V), then nullT is invariant under T (proof: if u ∈ nullT ,
then Tu = 0, and hence Tu ∈ nullT ). Also, rangeT is invariant under T
(proof: if u ∈ rangeT , then Tu is also in rangeT , by the definition of
range). Although nullT and rangeT are invariant under T , they do not
necessarily provide easy answers to the question about the existence
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of invariant subspaces other than {0} and V because nullT may equal
{0} and rangeT may equal V (this happens when T is invertible).

We will return later to a deeper study of invariant subspaces. Now
we turn to an investigation of the simplest possible nontrivial invariant
subspaces—invariant subspaces with dimension 1.

How does an operator behave on an invariant subspace of dimen-
sion 1? Subspaces of V of dimension 1 are easy to describe. Take any
nonzero vector u ∈ V and let U equal the set of all scalar multiples
of u:

5.2 U = {au : a ∈ F}.

Then U is a one-dimensional subspace of V , and every one-dimensional These subspaces are

loosely connected to

the subject of Herbert

Marcuse’s well-known

book One-Dimensional

Man.

subspace of V is of this form. If u ∈ V and the subspace U defined
by 5.2 is invariant under T ∈ L(V), then Tu must be in U , and hence
there must be a scalar λ ∈ F such that Tu = λu. Conversely, if u
is a nonzero vector in V such that Tu = λu for some λ ∈ F, then the
subspaceU defined by 5.2 is a one-dimensional subspace of V invariant
under T .

The equation

5.3 Tu = λu,

which we have just seen is intimately connected with one-dimensional
invariant subspaces, is important enough that the vectorsu and scalars
λ satisfying it are given special names. Specifically, a scalar λ ∈ F
is called an eigenvalue of T ∈ L(V) if there exists a nonzero vector The regrettable word

eigenvalue is

half-German,

half-English. The

German adjective eigen

means own in the sense

of characterizing some

intrinsic property.

Some mathematicians

use the term

characteristic value

instead of eigenvalue.

u ∈ V such that Tu = λu. We must require u to be nonzero because
with u = 0 every scalar λ ∈ F satisfies 5.3. The comments above show
that T has a one-dimensional invariant subspace if and only if T has
an eigenvalue.

The equation Tu = λu is equivalent to (T − λI)u = 0, so λ is an
eigenvalue of T if and only if T − λI is not injective. By 3.21, λ is an
eigenvalue of T if and only if T −λI is not invertible, and this happens
if and only if T − λI is not surjective.

Suppose T ∈ L(V) and λ ∈ F is an eigenvalue of T . A vector u ∈ V
is called an eigenvector of T (corresponding to λ) if Tu = λu. Because
5.3 is equivalent to (T − λI)u = 0, we see that the set of eigenvectors
of T corresponding to λ equals null(T − λI). In particular, the set of
eigenvectors of T corresponding to λ is a subspace of V .
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Let’s look at some examples of eigenvalues and eigenvectors. IfSome texts define

eigenvectors as we

have, except that 0 is

declared not to be an

eigenvector. With the

definition used here,

the set of eigenvectors

corresponding to a

fixed eigenvalue is a

subspace.

a ∈ F, then aI has only one eigenvalue, namely, a, and every vector is
an eigenvector for this eigenvalue.

For a more complicated example, consider the operator T ∈ L(F2)
defined by

5.4 T(w,z) = (−z,w).

If F = R , then this operator has a nice geometric interpretation: T is
just a counterclockwise rotation by 90◦ about the origin in R2. An
operator has an eigenvalue if and only if there exists a nonzero vector
in its domain that gets sent by the operator to a scalar multiple of itself.
The rotation of a nonzero vector in R2 obviously never equals a scalar
multiple of itself. Conclusion: if F = R , the operator T defined by 5.4
has no eigenvalues. However, if F = C, the story changes. To find
eigenvalues of T , we must find the scalars λ such that

T(w,z) = λ(w,z)

has some solution other than w = z = 0. For T defined by 5.4, the
equation above is equivalent to the simultaneous equations

5.5 −z = λw, w = λz.

Substituting the value forw given by the second equation into the first
equation gives

−z = λ2z.

Now z cannot equal 0 (otherwise 5.5 implies thatw = 0; we are looking
for solutions to 5.5 where (w, z) is not the 0 vector), so the equation
above leads to the equation

−1 = λ2.

The solutions to this equation are λ = i or λ = −i. You should be
able to verify easily that i and −i are eigenvalues of T . Indeed, the
eigenvectors corresponding to the eigenvalue i are the vectors of the
form (w,−wi), withw ∈ C, and the eigenvectors corresponding to the
eigenvalue −i are the vectors of the form (w,wi), with w ∈ C.

Now we show that nonzero eigenvectors corresponding to distinct
eigenvalues are linearly independent.
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5.6 Theorem: Let T ∈ L(V). Suppose λ1, . . . , λm are distinct eigen-
values of T and v1, . . . , vm are corresponding nonzero eigenvectors.
Then (v1, . . . , vm) is linearly independent.

Proof: Suppose (v1, . . . , vm) is linearly dependent. Let k be the
smallest positive integer such that

5.7 vk ∈ span(v1, . . . , vk−1);

the existence of kwith this property follows from the linear dependence
lemma (2.4). Thus there exist a1, . . . , ak−1 ∈ F such that

5.8 vk = a1v1 + · · · + ak−1vk−1.

Apply T to both sides of this equation, getting

λkvk = a1λ1v1 + · · · + ak−1λk−1vk−1.

Multiply both sides of 5.8 by λk and then subtract the equation above,
getting

0 = a1(λk − λ1)v1 + · · · + ak−1(λk − λk−1)vk−1.

Because we chose k to be the smallest positive integer satisfying 5.7,
(v1, . . . , vk−1) is linearly independent. Thus the equation above implies
that all the a’s are 0 (recall that λk is not equal to any of λ1, . . . , λk−1).
However, this means that vk equals 0 (see 5.8), contradicting our hy-
pothesis that all the v ’s are nonzero. Therefore our assumption that
(v1, . . . , vm) is linearly dependent must have been false.

The corollary below states that an operator cannot have more dis-
tinct eigenvalues than the dimension of the vector space on which it
acts.

5.9 Corollary: Each operator on V has at most dimV distinct eigen-
values.

Proof: Let T ∈ L(V). Suppose that λ1, . . . , λm are distinct eigenval-
ues of T . Let v1, . . . , vm be corresponding nonzero eigenvectors. The
last theorem implies that (v1, . . . , vm) is linearly independent. Thus
m ≤ dimV (see 2.6), as desired.
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Polynomials Applied to Operators

The main reason that a richer theory exists for operators (which
map a vector space into itself) than for linear maps is that operators
can be raised to powers. In this section we define that notion and the
key concept of applying a polynomial to an operator.

If T ∈ L(V), then TT makes sense and is also in L(V). We usually
write T 2 instead of TT . More generally, if m is a positive integer, then
Tm is defined by

Tm = T . . . T
︸ ︷︷ ︸

m times

.

For convenience we define T 0 to be the identity operator I on V .
Recall from Chapter 3 that if T is an invertible operator, then the

inverse of T is denoted by T−1. Ifm is a positive integer, then we define
T−m to be (T−1)m.

You should verify that if T is an operator, then

TmTn = Tm+n and (Tm)n = Tmn,

where m and n are allowed to be arbitrary integers if T is invertible
and nonnegative integers if T is not invertible.

If T ∈ L(V) and p ∈ P(F) is a polynomial given by

p(z) = a0 + a1z + a2z2 + · · · + amzm

for z ∈ F, then p(T) is the operator defined by

p(T) = a0I + a1T + a2T 2 + · · · + amTm.

For example, if p is the polynomial defined by p(z) = z2 for z ∈ F, then
p(T) = T 2. This is a new use of the symbol p because we are applying
it to operators, not just elements of F. If we fix an operator T ∈ L(V),
then the function from P(F) to L(V) given by p � p(T) is linear, as
you should verify.

If p and q are polynomials with coefficients in F, then pq is the
polynomial defined by

(pq)(z) = p(z)q(z)

for z ∈ F. You should verify that we have the following nice multiplica-
tive property: if T ∈ L(V), then



Upper-Triangular Matrices 81

(pq)(T) = p(T)q(T)

for all polynomials p and q with coefficients in F. Note that any two
polynomials in T commute, meaning that p(T)q(T) = q(T)p(T), be-
cause

p(T)q(T) = (pq)(T) = (qp)(T) = q(T)p(T).

Upper-Triangular Matrices

Now we come to one of the central results about operators on com-
plex vector spaces.

5.10 Theorem: Every operator on a finite-dimensional, nonzero, Compare the simple

proof of this theorem

given here with the

standard proof using

determinants. With the

standard proof, first

the difficult concept of

determinants must be

defined, then an

operator with 0

determinant must be

shown to be not

invertible, then the

characteristic

polynomial needs to be

defined, and by the

time the proof of this

theorem is reached, no

insight remains about

why it is true.

complex vector space has an eigenvalue.

Proof: Suppose V is a complex vector space with dimension n > 0
and T ∈ L(V). Choose v ∈ V with v �= 0. Then

(v, Tv, T 2v, . . . , Tnv)

cannot be linearly independent because V has dimensionn and we have
n+ 1 vectors. Thus there exist complex numbers a0, . . . , an, not all 0,
such that

0 = a0v + a1Tv + · · · + anTnv.
Let m be the largest index such that am �= 0. Because v �= 0, the
coefficients a1, . . . , am cannot all be 0, so 0 < m ≤ n. Make the a’s
the coefficients of a polynomial, which can be written in factored form
(see 4.8) as

a0 + a1z + · · · + anzn = c(z − λ1) . . . (z − λm),

where c is a nonzero complex number, each λj ∈ C, and the equation
holds for all z ∈ C. We then have

0 = a0v + a1Tv + · · · + anTnv
= (a0I + a1T + · · · + anTn)v
= c(T − λ1I) . . . (T − λmI)v,

which means that T − λjI is not injective for at least one j. In other
words, T has an eigenvalue.
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Recall that in Chapter 3 we discussed the matrix of a linear map
from one vector space to another vector space. This matrix depended
on a choice of a basis for each of the two vector spaces. Now that we are
studying operators, which map a vector space to itself, we need only
one basis. In addition, now our matrices will be square arrays, rather
than the more general rectangular arrays that we considered earlier.
Specifically, let T ∈ L(V). Suppose (v1, . . . , vn) is a basis of V . For
each k = 1, . . . , n, we can write

Tvk = a1,kv1 + · · · + an,kvn,
where aj,k ∈ F for j = 1, . . . , n. The n-by-n matrixThe kth column of the

matrix is formed from

the coefficients used to

write Tvk as a linear

combination of the v ’s.

5.11









a1,1 . . . a1,n
...

...
an,1 . . . an,n









is called the matrix of T with respect to the basis (v1, . . . , vn); we de-
note it by M(

T , (v1, . . . , vn)
)

or just by M(T) if the basis (v1, . . . , vn)
is clear from the context (for example, if only one basis is in sight).

If T is an operator on Fn and no basis is specified, you should assume
that the basis in question is the standard one (where the jth basis vector
is 1 in the jth slot and 0 in all the other slots). You can then think of
the jth column of M(T) as T applied to the jth basis vector.

A central goal of linear algebra is to show that given an operator
T ∈ L(V), there exists a basis of V with respect to which T has a
reasonably simple matrix. To make this vague formulation (“reasonably
simple” is not precise language) a bit more concrete, we might try to
make M(T) have many 0’s.

If V is a complex vector space, then we already know enough to
show that there is a basis of V with respect to which the matrix of T
has 0’s everywhere in the first column, except possibly the first entry.
In other words, there is a basis of V with respect to which the matrix
of T looks like

We often use ∗ to

denote matrix entries

that we do not know

about or that are

irrelevant to the

questions being

discussed.















λ
0 ∗
...
0















;

here the ∗ denotes the entries in all the columns other than the first
column. To prove this, let λ be an eigenvalue of T (one exists by 5.10)
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and let v be a corresponding nonzero eigenvector. Extend (v) to a
basis of V . Then the matrix of T with respect to this basis has the form
above. Soon we will see that we can choose a basis of V with respect to
which the matrix of T has even more 0’s.

The diagonal of a square matrix consists of the entries along the
straight line from the upper left corner to the bottom right corner.
For example, the diagonal of the matrix 5.11 consists of the entries
a1,1, a2,2, . . . , an,n.

A matrix is called upper triangular if all the entries below the di-
agonal equal 0. For example, the 4-by-4 matrix













6 2 7 5
0 6 1 3
0 0 7 9
0 0 0 8













is upper triangular. Typically we represent an upper-triangular matrix
in the form









λ1 ∗
. . .

0 λn








;

the 0 in the matrix above indicates that all entries below the diagonal
in this n-by-nmatrix equal 0. Upper-triangular matrices can be consid-
ered reasonably simple—forn large, ann-by-n upper-triangular matrix
has almost half its entries equal to 0.

The following proposition demonstrates a useful connection be-
tween upper-triangular matrices and invariant subspaces.

5.12 Proposition: Suppose T ∈ L(V) and (v1, . . . , vn) is a basis
of V . Then the following are equivalent:

(a) the matrix of T with respect to (v1, . . . , vn) is upper triangular;

(b) Tvk ∈ span(v1, . . . , vk) for each k = 1, . . . , n;

(c) span(v1, . . . , vk) is invariant under T for each k = 1, . . . , n.

Proof: The equivalence of (a) and (b) follows easily from the def-
initions and a moment’s thought. Obviously (c) implies (b). Thus to
complete the proof, we need only prove that (b) implies (c). So suppose
that (b) holds. Fix k ∈ {1, . . . , n}. From (b), we know that
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Tv1 ∈ span(v1) ⊂ span(v1, . . . , vk);

Tv2 ∈ span(v1, v2) ⊂ span(v1, . . . , vk);
...

Tvk ∈ span(v1, . . . , vk).

Thus if v is a linear combination of (v1, . . . , vk), then

Tv ∈ span(v1, . . . , vk).

In other words, span(v1, . . . , vk) is invariant under T , completing the
proof.

Now we can show that for each operator on a complex vector space,
there is a basis of the vector space with respect to which the matrix
of the operator has only 0’s below the diagonal. In Chapter 8 we will
improve even this result.

5.13 Theorem: Suppose V is a complex vector space and T ∈ L(V).This theorem does not

hold on real vector

spaces because the first

vector in a basis with

respect to which an

operator has an

upper-triangular matrix

must be an eigenvector

of the operator. Thus if

an operator on a real

vector space has no

eigenvalues (we have

seen an example on

R2), then there is no

basis with respect to

which the operator has

an upper-triangular

matrix.

Then T has an upper-triangular matrix with respect to some basis of V .

Proof: We will use induction on the dimension of V . Clearly the
desired result holds if dimV = 1.

Suppose now that dimV > 1 and the desired result holds for all
complex vector spaces whose dimension is less than the dimension
of V . Let λ be any eigenvalue of T (5.10 guarantees that T has an
eigenvalue). Let

U = range(T − λI).
Because T−λI is not surjective (see 3.21), dimU < dimV . Furthermore,
U is invariant under T . To prove this, suppose u ∈ U . Then

Tu = (T − λI)u+ λu.

Obviously (T − λI)u ∈ U (from the definition of U ) and λu ∈ U . Thus
the equation above shows that Tu ∈ U . Hence U is invariant under T ,
as claimed.

Thus T |U is an operator on U . By our induction hypothesis, there
is a basis (u1, . . . , um) of U with respect to which T |U has an upper-
triangular matrix. Thus for each j we have (using 5.12)

5.14 Tuj = (T |U)(uj) ∈ span(u1, . . . , uj).
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Extend (u1, . . . , um) to a basis (u1, . . . , um,v1, . . . , vn) of V . For
each k, we have

Tvk = (T − λI)vk + λvk.
The definition of U shows that (T − λI)vk ∈ U = span(u1, . . . , um).
Thus the equation above shows that

5.15 Tvk ∈ span(u1, . . . , um,v1, . . . , vk).

From 5.14 and 5.15, we conclude (using 5.12) that T has an upper-
triangular matrix with respect to the basis (u1, . . . , um,v1, . . . , vn).

How does one determine from looking at the matrix of an operator
whether the operator is invertible? If we are fortunate enough to have
a basis with respect to which the matrix of the operator is upper tri-
angular, then this problem becomes easy, as the following proposition
shows.

5.16 Proposition: Suppose T ∈ L(V) has an upper-triangular matrix
with respect to some basis of V . Then T is invertible if and only if all
the entries on the diagonal of that upper-triangular matrix are nonzero.

Proof: Suppose (v1, . . . , vn) is a basis of V with respect to which
T has an upper-triangular matrix

5.17 M(

T , (v1, . . . , vn)
) =















λ1 ∗
λ2

. . .

0 λn















.

We need to prove that T is not invertible if and only if one of the λk’s
equals 0.

First we will prove that if one of the λk’s equals 0, then T is not
invertible. If λ1 = 0, then Tv1 = 0 (from 5.17) and hence T is not
invertible, as desired. So suppose that 1 < k ≤ n and λk = 0. Then,
as can be seen from 5.17, T maps each of the vectors v1, . . . , vk−1 into
span(v1, . . . , vk−1). Because λk = 0, the matrix representation 5.17 also
implies that Tvk ∈ span(v1, . . . , vk−1). Thus we can define a linear map

S : span(v1, . . . , vk)→ span(v1, . . . , vk−1)



86 Chapter 5. Eigenvalues and Eigenvectors

by Sv = Tv for v ∈ span(v1, . . . , vk). In other words, S is just T
restricted to span(v1, . . . , vk).

Note that span(v1, . . . , vk) has dimension k and span(v1, . . . , vk−1)
has dimension k− 1 (because (v1, . . . , vn) is linearly independent). Be-
cause span(v1, . . . , vk) has a larger dimension than span(v1, . . . , vk−1),
no linear map from span(v1, . . . , vk) to span(v1, . . . , vk−1) is injective
(see 3.5). Thus there exists a nonzero vector v ∈ span(v1, . . . , vk) such
that Sv = 0. Hence Tv = 0, and thus T is not invertible, as desired.

To prove the other direction, now suppose that T is not invertible.
Thus T is not injective (see 3.21), and hence there exists a nonzero
vector v ∈ V such that Tv = 0. Because (v1, . . . , vn) is a basis of V , we
can write

v = a1v1 + · · · + akvk,
where a1, . . . , ak ∈ F and ak �= 0 (represent v as a linear combination
of (v1, . . . , vn) and then choose k to be the largest index with a nonzero
coefficient). Thus

0 = Tv
0 = T(a1v1 + · · · + akvk)
= (a1Tv1 + · · · + ak−1Tvk−1)+ akTvk.

The last term in parentheses is in span(v1, . . . , vk−1) (because of the
upper-triangular form of 5.17). Thus the last equation shows that
akTvk ∈ span(v1, . . . , vk−1). Multiplying by 1/ak, which is allowed
because ak �= 0, we conclude that Tvk ∈ span(v1, . . . , vk−1). Thus
when Tvk is written as a linear combination of the basis (v1, . . . , vn),
the coefficient of vk will be 0. In other words, λk in 5.17 must be 0,
completing the proof.

Unfortunately no method exists for exactly computing the eigenval-Powerful numeric

techniques exist for

finding good

approximations to the

eigenvalues of an

operator from its

matrix.

ues of a typical operator from its matrix (with respect to an arbitrary
basis). However, if we are fortunate enough to find a basis with re-
spect to which the matrix of the operator is upper triangular, then the
problem of computing the eigenvalues becomes trivial, as the following
proposition shows.

5.18 Proposition: Suppose T ∈ L(V) has an upper-triangular matrix
with respect to some basis of V . Then the eigenvalues of T consist
precisely of the entries on the diagonal of that upper-triangular matrix.
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Proof: Suppose (v1, . . . , vn) is a basis of V with respect to which
T has an upper-triangular matrix

M(

T , (v1, . . . , vn)
) =















λ1 ∗
λ2

. . .

0 λn















.

Let λ ∈ F. Then

M(

T − λI, (v1, . . . , vn)
) =















λ1 − λ ∗
λ2 − λ

. . .

0 λn − λ















.

Hence T − λI is not invertible if and only if λ equals one of the λ′js
(see 5.16). In other words, λ is an eigenvalue of T if and only if λ
equals one of the λ′js, as desired.

Diagonal Matrices

A diagonal matrix is a square matrix that is 0 everywhere except
possibly along the diagonal. For example,







8 0 0
0 2 0
0 0 5







is a diagonal matrix. Obviously every diagonal matrix is upper triangu-
lar, although in general a diagonal matrix has many more 0’s than an
upper-triangular matrix.

An operator T ∈ L(V) has a diagonal matrix








λ1 0
. . .

0 λn









with respect to a basis (v1, . . . , vn) of V if and only

Tv1 = λ1v1

...

Tvn = λnvn;
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this follows immediately from the definition of the matrix of an opera-
tor with respect to a basis. Thus an operator T ∈ L(V) has a diagonal
matrix with respect to some basis of V if and only if V has a basis
consisting of eigenvectors of T .

If an operator has a diagonal matrix with respect to some basis,
then the entries along the diagonal are precisely the eigenvalues of the
operator; this follows from 5.18 (or you may want to find an easier
proof that works only for diagonal matrices).

Unfortunately not every operator has a diagonal matrix with respect
to some basis. This sad state of affairs can arise even on complex vector
spaces. For example, consider T ∈ L(C2) defined by

5.19 T(w,z) = (z,0).

As you should verify, 0 is the only eigenvalue of this operator and
the corresponding set of eigenvectors is the one-dimensional subspace
{(w,0) ∈ C2 : w ∈ C}. Thus there are not enough linearly independent
eigenvectors of T to form a basis of the two-dimensional space C2.
Hence T does not have a diagonal matrix with respect to any basis
of C2.

The next proposition shows that if an operator has as many distinct
eigenvalues as the dimension of its domain, then the operator has a di-
agonal matrix with respect to some operator. However, some operators
with fewer eigenvalues also have diagonal matrices (in other words, the
converse of the next proposition is not true). For example, the operator
T defined on the three-dimensional space F3 by

T(z1, z2, z3) = (4z1,4z2,5z3)

has only two eigenvalues (4 and 5), but this operator has a diagonal
matrix with respect to the standard basis.

5.20 Proposition: If T ∈ L(V) has dimV distinct eigenvalues, thenLater we will find other

conditions that imply

that certain operators

have a diagonal matrix

with respect to some

basis (see 7.9 and 7.13).

T has a diagonal matrix with respect to some basis of V .

Proof: Suppose that T ∈ L(V) has dimV distinct eigenvalues
λ1, . . . , λdimV . For each j, let vj ∈ V be a nonzero eigenvector cor-
responding to the eigenvalue λj . Because nonzero eigenvectors cor-
responding to distinct eigenvalues are linearly independent (see 5.6),
(v1, . . . , vdimV ) is linearly independent. A linearly independent list of
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dimV vectors in V is a basis of V (see 2.17); thus (v1, . . . , vdimV ) is a
basis of V . With respect to this basis consisting of eigenvectors, T has
a diagonal matrix.

We close this section with a proposition giving several conditions
on an operator that are equivalent to its having a diagonal matrix with
respect to some basis.

5.21 Proposition: Suppose T ∈ L(V). Let λ1, . . . , λm denote the For complex vector

spaces, we will extend

this list of equivalences

later (see Exercises 16

and 23 in Chapter 8).

distinct eigenvalues of T . Then the following are equivalent:

(a) T has a diagonal matrix with respect to some basis of V ;

(b) V has a basis consisting of eigenvectors of T ;

(c) there exist one-dimensional subspaces U1, . . . , Un of V , each in-
variant under T , such that

V = U1 ⊕ · · · ⊕Un;

(d) V = null(T − λ1I)⊕ · · · ⊕ null(T − λmI);
(e) dimV = dim null(T − λ1I)+ · · · + dim null(T − λmI).

Proof: We have already shown that (a) and (b) are equivalent.
Suppose that (b) holds; thus V has a basis (v1, . . . , vn) consisting of

eigenvectors of T . For each j, let Uj = span(vj). Obviously each Uj
is a one-dimensional subspace of V that is invariant under T (because
each vj is an eigenvector of T ). Because (v1, . . . , vn) is a basis of V ,
each vector in V can be written uniquely as a linear combination of
(v1, . . . , vn). In other words, each vector in V can be written uniquely
as a sum u1 + · · · +un, where each uj ∈ Uj . Thus V = U1 ⊕ · · · ⊕Un.
Hence (b) implies (c).

Suppose now that (c) holds; thus there are one-dimensional sub-
spaces U1, . . . , Un of V , each invariant under T , such that

V = U1 ⊕ · · · ⊕Un.

For each j, let vj be a nonzero vector in Uj . Then each vj is an eigen-
vector of T . Because each vector in V can be written uniquely as a sum
u1+· · ·+un, where eachuj ∈ Uj (so eachuj is a scalar multiple of vj),
we see that (v1, . . . , vn) is a basis of V . Thus (c) implies (b).



90 Chapter 5. Eigenvalues and Eigenvectors

At this stage of the proof we know that (a), (b), and (c) are all equiv-
alent. We will finish the proof by showing that (b) implies (d), that (d)
implies (e), and that (e) implies (b).

Suppose that (b) holds; thus V has a basis consisting of eigenvectors
of T . Thus every vector in V is a linear combination of eigenvectors
of T . Hence

5.22 V = null(T − λ1I)+ · · · + null(T − λmI).
To show that the sum above is a direct sum, suppose that

0 = u1 + · · · +um,
where each uj ∈ null(T − λjI). Because nonzero eigenvectors corre-
sponding to distinct eigenvalues are linearly independent, this implies
(apply 5.6 to the sum of the nonzero vectors on the right side of the
equation above) that each uj equals 0. This implies (using 1.8) that the
sum in 5.22 is a direct sum, completing the proof that (b) implies (d).

That (d) implies (e) follows immediately from Exercise 17 in Chap-
ter 2.

Finally, suppose that (e) holds; thus

5.23 dimV = dim null(T − λ1I)+ · · · + dim null(T − λmI).
Choose a basis of each null(T − λjI); put all these bases together to
form a list (v1, . . . , vn) of eigenvectors of T , where n = dimV (by 5.23).
To show that this list is linearly independent, suppose

a1v1 + · · · + anvn = 0,

where a1, . . . , an ∈ F. For each j = 1, . . . ,m, let uj denote the sum of
all the terms akvk such that vk ∈ null(T − λjI). Thus each uj is an
eigenvector of T with eigenvalue λj , and

u1 + · · · +um = 0.

Because nonzero eigenvectors corresponding to distinct eigenvalues
are linearly independent, this implies (apply 5.6 to the sum of the
nonzero vectors on the left side of the equation above) that each uj
equals 0. Because each uj is a sum of terms akvk, where the vk’s
were chosen to be a basis of null(T −λjI), this implies that all the ak’s
equal 0. Thus (v1, . . . , vn) is linearly independent and hence is a basis
of V (by 2.17). Thus (e) implies (b), completing the proof.
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Invariant Subspaces on Real Vector Spaces

We know that every operator on a complex vector space has an eigen-
value (see 5.10 for the precise statement). We have also seen an example
showing that the analogous statement is false on real vector spaces. In
other words, an operator on a nonzero real vector space may have no
invariant subspaces of dimension 1. However, we now show that an
invariant subspace of dimension 1 or 2 always exists.

5.24 Theorem: Every operator on a finite-dimensional, nonzero, real
vector space has an invariant subspace of dimension 1 or 2.

Proof: Suppose V is a real vector space with dimension n > 0 and
T ∈ L(V). Choose v ∈ V with v �= 0. Then

(v, Tv, T 2v, . . . , Tnv)

cannot be linearly independent because V has dimensionn and we have
n+ 1 vectors. Thus there exist real numbers a0, . . . , an, not all 0, such
that

0 = a0v + a1Tv + · · · + anTnv.
Make the a’s the coefficients of a polynomial, which can be written in
factored form (see 4.14) as

a0 + a1x + · · · + anxn
= c(x − λ1) . . . (x − λm)(x2 +α1x + β1) . . . (x2 +αMx + βM),

where c is a nonzero real number, each λj , αj , and βj is real,m+M ≥ 1,

Here either m or M
might equal 0.

and the equation holds for all x ∈ R . We then have

0 = a0v + a1Tv + · · · + anTnv
= (a0I + a1T + · · · + anTn)v
= c(T − λ1I) . . . (T − λmI)(T 2 +α1T + β1I) . . . (T 2 +αMT + βMI)v,

which means that T − λjI is not injective for at least one j or that
(T 2 + αjT + βjI) is not injective for at least one j. If T − λjI is not
injective for at least one j, then T has an eigenvalue and hence a one-
dimensional invariant subspace. Let’s consider the other possibility. In
other words, suppose that (T 2+αjT +βjI) is not injective for some j.
Thus there exists a nonzero vector u ∈ V such that
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5.25 T 2u+αjTu+ βju = 0.

We will complete the proof by showing that span(u, Tu), which clearly
has dimension 1 or 2, is invariant under T . To do this, consider a typical
element of span(u, Tu) of the form au+bTu, where a,b ∈ R . Then

T(au+ bTu) = aTu+ bT 2u

= aTu− bαjTu− bβju,

where the last equality comes from solving for T 2u in 5.25. The equa-
tion above shows that T(au+bTu) ∈ span(u, Tu). Thus span(u, Tu)
is invariant under T , as desired.

We will need one new piece of notation for the next proof. Suppose
U and W are subspaces of V with

V = U ⊕W.

Each vector v ∈ V can be written uniquely in the form

v = u+w,

where u ∈ U andw ∈ W . With this representation, define PU,W ∈ L(V)PU,W is often called the

projection onto U with

null space W .

by
PU,Wv = u.

You should verify that PU,Wv = v if and only if v ∈ U . Interchanging
the roles of U and W in the representation above, we have PW,Uv = w.
Thus v = PU,Wv + PW,Uv for every v ∈ V . You should verify that
PU,W 2 = PU,W ; furthermore rangePU,W = U and nullPU,W = W .

We have seen an example of an operator on R2 with no eigenvalues.
The following theorem shows that no such example exists on R3.

5.26 Theorem: Every operator on an odd-dimensional real vector
space has an eigenvalue.

Proof: Suppose V is a real vector space with odd dimension. We
will prove that every operator on V has an eigenvalue by induction (in
steps of size 2) on the dimension of V . To get started, note that the
desired result obviously holds if dimV = 1.

Now suppose that dimV is an odd number greater than 1. Using
induction, we can assume that the desired result holds for all operators
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on all real vector spaces with dimension 2 less than dimV . Suppose
T ∈ L(V). We need to prove that T has an eigenvalue. If it does, we are
done. If not, then by 5.24 there is a two-dimensional subspace U of V
that is invariant under T . Let W be any subspace of V such that

V = U ⊕W ;

2.13 guarantees that such a W exists.
Because W has dimension 2 less than dimV , we would like to apply

our induction hypothesis to T |W . However, W might not be invariant
under T , meaning that T |W might not be an operator on W . We will
compose with the projection PW,U to get an operator onW . Specifically,
define S ∈ L(W) by

Sw = PW,U(Tw)
for w ∈ W . By our induction hypothesis, S has an eigenvalue λ. We
will show that this λ is also an eigenvalue for T .

Let w ∈ W be a nonzero eigenvector for S corresponding to the
eigenvalue λ; thus (S − λI)w = 0. We would be done if w were an
eigenvector for T with eigenvalue λ; unfortunately that need not be
true. So we will look for an eigenvector of T in U + span(w). To do
that, consider a typical vector u + aw in U + span(w), where u ∈ U
and a ∈ R . We have

(T − λI)(u+ aw) = Tu− λu+ a(Tw − λw)
= Tu− λu+ a(PU,W (Tw)+ PW,U(Tw)− λw)
= Tu− λu+ a(PU,W (Tw)+ Sw − λw)
= Tu− λu+ aPU,W (Tw).

Note that on the right side of the last equation, Tu ∈ U (because U
is invariant under T ), λu ∈ U (because u ∈ U ), and aPU,W (Tw) ∈ U
(from the definition of PU,W ). Thus T − λI maps U + span(w) into U .
Because U + span(w) has a larger dimension than U , this means that
(T −λI)|U+span(w) is not injective (see 3.5). In other words, there exists
a nonzero vector v ∈ U + span(w) ⊂ V such that (T − λI)v = 0. Thus
T has an eigenvalue, as desired.
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Exercises

1. Suppose T ∈ L(V). Prove that if U1, . . . , Um are subspaces of V
invariant under T , then U1 + · · · +Um is invariant under T .

2. Suppose T ∈ L(V). Prove that the intersection of any collection
of subspaces of V invariant under T is invariant under T .

3. Prove or give a counterexample: if U is a subspace of V that is
invariant under every operator on V , then U = {0} or U = V .

4. Suppose that S, T ∈ L(V) are such that ST = TS. Prove that
null(T − λI) is invariant under S for every λ ∈ F.

5. Define T ∈ L(F2) by

T(w,z) = (z,w).

Find all eigenvalues and eigenvectors of T .

6. Define T ∈ L(F3) by

T(z1, z2, z3) = (2z2,0,5z3).

Find all eigenvalues and eigenvectors of T .

7. Suppose n is a positive integer and T ∈ L(Fn) is defined by

T(x1, . . . , xn) = (x1 + · · · + xn, . . . , x1 + · · · + xn);

in other words, T is the operator whose matrix (with respect to
the standard basis) consists of all 1’s. Find all eigenvalues and
eigenvectors of T .

8. Find all eigenvalues and eigenvectors of the backward shift op-
erator T ∈ L(F∞) defined by

T(z1, z2, z3, . . . ) = (z2, z3, . . . ).

9. Suppose T ∈ L(V) and dim rangeT = k. Prove that T has at
most k+ 1 distinct eigenvalues.

10. Suppose T ∈ L(V) is invertible and λ ∈ F \ {0}. Prove that λ is
an eigenvalue of T if and only if 1

λ is an eigenvalue of T−1.
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11. Suppose S, T ∈ L(V). Prove that ST and TS have the same eigen-
values.

12. Suppose T ∈ L(V) is such that every vector in V is an eigenvector
of T . Prove that T is a scalar multiple of the identity operator.

13. Suppose T ∈ L(V) is such that every subspace of V with di-
mension dimV − 1 is invariant under T . Prove that T is a scalar
multiple of the identity operator.

14. Suppose S, T ∈ L(V) and S is invertible. Prove that if p ∈ P(F)
is a polynomial, then

p(STS−1) = Sp(T)S−1.

15. Suppose F = C, T ∈ L(V), p ∈ P(C), and a ∈ C. Prove that a is
an eigenvalue of p(T) if and only if a = p(λ) for some eigenvalue
λ of T .

16. Show that the result in the previous exercise does not hold if C
is replaced with R .

17. Suppose V is a complex vector space and T ∈ L(V). Prove
that T has an invariant subspace of dimension j for each j =
1, . . . ,dimV .

18. Give an example of an operator whose matrix with respect to These two exercises

show that 5.16 fails

without the hypothesis

that an upper-

triangular matrix is

under consideration.

some basis contains only 0’s on the diagonal, but the operator is
invertible.

19. Give an example of an operator whose matrix with respect to
some basis contains only nonzero numbers on the diagonal, but
the operator is not invertible.

20. Suppose that T ∈ L(V) has dimV distinct eigenvalues and that
S ∈ L(V) has the same eigenvectors as T (not necessarily with
the same eigenvalues). Prove that ST = TS.

21. Suppose P ∈ L(V) and P2 = P . Prove that V = nullP ⊕ rangeP .

22. Suppose V = U⊕W , where U andW are nonzero subspaces of V .
Find all eigenvalues and eigenvectors of PU,W .
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23. Give an example of an operator T ∈ L(R4) such that T has no
(real) eigenvalues.

24. Suppose V is a real vector space and T ∈ L(V) has no eigenval-
ues. Prove that every subspace of V invariant under T has even
dimension.



Chapter 6

Inner-Product Spaces

In making the definition of a vector space, we generalized the lin-
ear structure (addition and scalar multiplication) of R2 and R3. We
ignored other important features, such as the notions of length and
angle. These ideas are embedded in the concept we now investigate,
inner products.

Recall that F denotes R or C.
Also, V is a finite-dimensional, nonzero vector space over F.

✽
✽ ✽

✽ ✽ ✽
97
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Inner Products

To motivate the concept of inner product, let’s think of vectors in R2

and R3 as arrows with initial point at the origin. The length of a vec-
tor x in R2 or R3 is called the norm of x, denoted ‖x‖. Thus for
x = (x1, x2) ∈ R2, we have ‖x‖ = √x1

2 + x2
2.If we think of vectors

as points instead of

arrows, then ‖x‖
should be interpreted

as the distance from

the point x to the

origin.

x -axis1

x -axis2

(x , x )
21

x

The length of this vector x is
√

x1
2 + x2

2.

Similarly, for x = (x1, x2, x3) ∈ R3, we have ‖x‖ = √x1
2 + x2

2 + x3
2.

Even though we cannot draw pictures in higher dimensions, the gener-
alization to Rn is obvious: we define the norm of x = (x1, . . . , xn) ∈ Rn

by

‖x‖ =
√

x1
2 + · · · + xn2.

The norm is not linear on Rn. To inject linearity into the discussion,
we introduce the dot product. For x,y ∈ Rn, the dot product of x
and y , denoted x ·y , is defined by

x ·y = x1y1 + · · · + xnyn,

where x = (x1, . . . , xn) andy = (y1, . . . , yn). Note that the dot product
of two vectors in Rn is a number, not a vector. Obviously x ·x = ‖x‖2

for all x ∈ Rn. In particular, x · x ≥ 0 for all x ∈ Rn, with equality if
and only if x = 0. Also, if y ∈ Rn is fixed, then clearly the map from Rn

to R that sends x ∈ Rn to x · y is linear. Furthermore, x · y = y · x
for all x,y ∈ Rn.

An inner product is a generalization of the dot product. At this
point you should be tempted to guess that an inner product is defined
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by abstracting the properties of the dot product discussed in the para-
graph above. For real vector spaces, that guess is correct. However,
so that we can make a definition that will be useful for both real and
complex vector spaces, we need to examine the complex case before
making the definition.

Recall that if λ = a + bi, where a,b ∈ R , then the absolute value
of λ is defined by

|λ| =
√

a2 + b2,

the complex conjugate of λ is defined by

λ̄ = a− bi,

and the equation
|λ|2 = λλ̄

connects these two concepts (see page 69 for the definitions and the
basic properties of the absolute value and complex conjugate). For
z = (z1, . . . , zn) ∈ Cn, we define the norm of z by

‖z‖ =
√

|z1|2 + · · · + |zn|2.

The absolute values are needed because we want ‖z‖ to be a nonnega-
tive number. Note that

‖z‖2 = z1z1 + · · · + znzn.

We want to think of ‖z‖2 as the inner product of z with itself, as we
did in Rn. The equation above thus suggests that the inner product of
w = (w1, . . . ,wn) ∈ Cn with z should equal

w1z1 + · · · +wnzn.

If the roles of the w and z were interchanged, the expression above
would be replaced with its complex conjugate. In other words, we
should expect that the inner product of w with z equals the complex
conjugate of the inner product of z with w. With that motivation, we
are now ready to define an inner product on V , which may be a real or
a complex vector space.

An inner product on V is a function that takes each ordered pair
(u,v) of elements of V to a number 〈u,v〉 ∈ F and has the following
properties:
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positivity
〈v,v〉 ≥ 0 for all v ∈ V ;If z is a complex

number, then the

statement z ≥ 0 means

that z is real and

nonnegative.

definiteness
〈v,v〉 = 0 if and only if v = 0;

additivity in first slot
〈u+ v,w〉 = 〈u,w〉 + 〈v,w〉 for all u,v,w ∈ V ;

homogeneity in first slot
〈av,w〉 = a〈v,w〉 for all a ∈ F and all v,w ∈ V ;

conjugate symmetry
〈v,w〉 = 〈w,v〉 for all v,w ∈ V .

Recall that every real number equals its complex conjugate. Thus
if we are dealing with a real vector space, then in the last condition
above we can dispense with the complex conjugate and simply state
that 〈v,w〉 = 〈w,v〉 for all v,w ∈ V .

An inner-product space is a vector space V along with an inner
product on V .

The most important example of an inner-product space is Fn. We
can define an inner product on Fn byIf we are dealing with

Rn rather than Cn, then

again the complex

conjugate can be

ignored.

6.1 〈(w1, . . . ,wn), (z1, . . . , zn)〉 = w1z1 + · · · +wnzn,

as you should verify. This inner product, which provided our motiva-
tion for the definition of an inner product, is called the Euclidean inner
product on Fn. When Fn is referred to as an inner-product space, you
should assume that the inner product is the Euclidean inner product
unless explicitly told otherwise.

There are other inner products on Fn in addition to the Euclidean
inner product. For example, if c1, . . . , cn are positive numbers, then we
can define an inner product on Fn by

〈(w1, . . . ,wn), (z1, . . . , zn)〉 = c1w1z1 + · · · + cnwnzn,

as you should verify. Of course, if all the c’s equal 1, then we get the
Euclidean inner product.

As another example of an inner-product space, consider the vector
space Pm(F) of all polynomials with coefficients in F and degree at
most m. We can define an inner product on Pm(F) by
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6.2 〈p,q〉 =
∫ 1

0
p(x)q(x)dx,

as you should verify. Once again, if F = R , then the complex conjugate
is not needed.

Let’s agree for the rest of this chapter that
V is a finite-dimensional inner-product space over F.

In the definition of an inner product, the conditions of additivity
and homogeneity in the first slot can be combined into a requirement
of linearity in the first slot. More precisely, for each fixed w ∈ V , the
function that takes v to 〈v,w〉 is a linear map from V to F. Because
every linear map takes 0 to 0, we must have

〈0,w〉 = 0

for every w ∈ V . Thus we also have

〈w,0〉 = 0

for every w ∈ V (by the conjugate symmetry property).
In an inner-product space, we have additivity in the second slot as

well as the first slot. Proof:

〈u,v +w〉 = 〈v +w,u〉
= 〈v,u〉 + 〈w,u〉
= 〈v,u〉 + 〈w,u〉
= 〈u,v〉 + 〈u,w〉;

here u,v,w ∈ V .
In an inner-product space, we have conjugate homogeneity in the

second slot, meaning that 〈u,av〉 = ā〈u,v〉 for all scalars a ∈ F.
Proof:

〈u,av〉 = 〈av,u〉
= a〈v,u〉
= ā〈v,u〉
= ā〈u,v〉;

here a ∈ F and u,v ∈ V . Note that in a real vector space, conjugate
homogeneity is the same as homogeneity.
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Norms

For v ∈ V , we define the norm of v , denoted ‖v‖, by

‖v‖ =
√

〈v,v〉.

For example, if (z1, . . . , zn) ∈ Fn (with the Euclidean inner product),
then

‖(z1, . . . , zn)‖ =
√

|z1|2 + · · · + |zn|2.
As another example, if p ∈ Pm(F) (with inner product given by 6.2),
then

‖p‖ =
√

∫ 1

0
|p(x)|2 dx.

Note that ‖v‖ = 0 if and only if v = 0 (because 〈v,v〉 = 0 if and only
if v = 0). Another easy property of the norm is that ‖av‖ = |a| ‖v‖
for all a ∈ F and all v ∈ V . Here’s the proof:

‖av‖2 = 〈av,av〉
= a〈v,av〉
= aā〈v,v〉
= |a|2‖v‖2;

taking square roots now gives the desired equality. This proof illus-
trates a general principle: working with norms squared is usually easier
than working directly with norms.

Two vectors u,v ∈ V are said to be orthogonal if 〈u,v〉 = 0. NoteSome mathematicians

use the term

perpendicular, which

means the same as

orthogonal.

that the order of the vectors does not matter because 〈u,v〉 = 0 if
and only if 〈v,u〉 = 0. Instead of saying that u and v are orthogonal,
sometimes we say that u is orthogonal to v . Clearly 0 is orthogonal
to every vector. Furthermore, 0 is the only vector that is orthogonal to
itself.

For the special case where V = R2, the next theorem is over 2,500The word orthogonal

comes from the Greek

word orthogonios,

which means

right-angled.

years old.

6.3 Pythagorean Theorem: If u, v are orthogonal vectors in V , then

6.4 ‖u+ v‖2 = ‖u‖2 + ‖v‖2.
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Proof: Suppose that u,v are orthogonal vectors in V . Then The proof of the

Pythagorean theorem

shows that 6.4 holds if

and only if

〈u,v〉 + 〈v,u〉, which

equals 2 Re〈u,v〉, is 0.

Thus the converse of

the Pythagorean

theorem holds in real

inner-product spaces.

‖u+ v‖2 = 〈u+ v,u+ v〉
= ‖u‖2 + ‖v‖2 + 〈u,v〉 + 〈v,u〉
= ‖u‖2 + ‖v‖2,

as desired.

Suppose u,v ∈ V . We would like to write u as a scalar multiple of v
plus a vector w orthogonal to v , as suggested in the next picture.

0

u

v

λv

w

An orthogonal decomposition

To discover how to write u as a scalar multiple of v plus a vector or-
thogonal to v , let a ∈ F denote a scalar. Then

u = av + (u− av).
Thus we need to choose a so that v is orthogonal to (u−av). In other
words, we want

0 = 〈u− av,v〉 = 〈u,v〉 − a‖v‖2.

The equation above shows that we should choose a to be 〈u,v〉/‖v‖2

(assume that v �= 0 to avoid division by 0). Making this choice of a, we
can write

6.5 u = 〈u,v〉
‖v‖2

v +
(

u− 〈u,v〉‖v‖2
v
)

.

As you should verify, if v �= 0 then the equation above writes u as a
scalar multiple of v plus a vector orthogonal to v .

The equation above will be used in the proof of the next theorem,
which gives one of the most important inequalities in mathematics.
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6.6 Cauchy-Schwarz Inequality: If u,v ∈ V , thenIn 1821 the French

mathematician

Augustin-Louis Cauchy

showed that this

inequality holds for the

inner product defined

by 6.1. In 1886 the

German mathematician

Herman Schwarz

showed that this

inequality holds for the

inner product defined

by 6.2.

6.7 |〈u,v〉| ≤ ‖u‖‖v‖.
This inequality is an equality if and only if one of u,v is a scalar mul-
tiple of the other.

Proof: Let u,v ∈ V . If v = 0, then both sides of 6.7 equal 0 and
the desired inequality holds. Thus we can assume that v �= 0. Consider
the orthogonal decomposition

u = 〈u,v〉
‖v‖2

v +w,

wherew is orthogonal to v (herew equals the second term on the right
side of 6.5). By the Pythagorean theorem,

‖u‖2 =
∥

∥

∥

∥

〈u,v〉
‖v‖2

v
∥

∥

∥

∥

2

+ ‖w‖2

= |〈u,v〉|2
‖v‖2

+ ‖w‖2

≥ |〈u,v〉|2
‖v‖2

.6.8

Multiplying both sides of this inequality by ‖v‖2 and then taking square
roots gives the Cauchy-Schwarz inequality 6.7.

Looking at the proof of the Cauchy-Schwarz inequality, note that 6.7
is an equality if and only if 6.8 is an equality. Obviously this happens if
and only ifw = 0. Butw = 0 if and only if u is a multiple of v (see 6.5).
Thus the Cauchy-Schwarz inequality is an equality if and only if u is a
scalar multiple of v or v is a scalar multiple of u (or both; the phrasing
has been chosen to cover cases in which either u or v equals 0).

The next result is called the triangle inequality because of its geo-
metric interpretation that the length of any side of a triangle is less
than the sum of the lengths of the other two sides.

v

u

u + v

The triangle inequality
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6.9 Triangle Inequality: If u,v ∈ V , then The triangle inequality

can be used to show

that the shortest path

between two points is a

straight line segment.

6.10 ‖u+ v‖ ≤ ‖u‖ + ‖v‖.

This inequality is an equality if and only if one of u,v is a nonnegative
multiple of the other.

Proof: Let u,v ∈ V . Then

‖u+ v‖2 = 〈u+ v,u+ v〉
= 〈u,u〉 + 〈v,v〉 + 〈u,v〉 + 〈v,u〉
= 〈u,u〉 + 〈v,v〉 + 〈u,v〉 + 〈u,v〉
= ‖u‖2 + ‖v‖2 + 2 Re〈u,v〉
≤ ‖u‖2 + ‖v‖2 + 2|〈u,v〉|6.11

≤ ‖u‖2 + ‖v‖2 + 2‖u‖‖v‖6.12

= (‖u‖ + ‖v‖)2,

where 6.12 follows from the Cauchy-Schwarz inequality (6.6). Taking
square roots of both sides of the inequality above gives the triangle
inequality 6.10.

The proof above shows that the triangle inequality 6.10 is an equality
if and only if we have equality in 6.11 and 6.12. Thus we have equality
in the triangle inequality 6.10 if and only if

6.13 〈u,v〉 = ‖u‖‖v‖.

If one of u,v is a nonnegative multiple of the other, then 6.13 holds, as
you should verify. Conversely, suppose 6.13 holds. Then the condition
for equality in the Cauchy-Schwarz inequality (6.6) implies that one of
u,v must be a scalar multiple of the other. Clearly 6.13 forces the
scalar in question to be nonnegative, as desired.

The next result is called the parallelogram equality because of its
geometric interpretation: in any parallelogram, the sum of the squares
of the lengths of the diagonals equals the sum of the squares of the
lengths of the four sides.
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u + v

u

u −v

u

vv

The parallelogram equality

6.14 Parallelogram Equality: If u,v ∈ V , then

‖u+ v‖2 + ‖u− v‖2 = 2(‖u‖2 + ‖v‖2).

Proof: Let u,v ∈ V . Then

‖u+ v‖2 + ‖u− v‖2 = 〈u+ v,u+ v〉 + 〈u− v,u− v〉
= ‖u‖2 + ‖v‖2 + 〈u,v〉 + 〈v,u〉

+ ‖u‖2 + ‖v‖2 − 〈u,v〉 − 〈v,u〉
= 2(‖u‖2 + ‖v‖2),

as desired.

Orthonormal Bases

A list of vectors is called orthonormal if the vectors in it are pair-
wise orthogonal and each vector has norm 1. In other words, a list
(e1, . . . , em) of vectors in V is orthonormal if 〈ej, ek〉 equals 0 when
j �= k and equals 1 when j = k (for j, k = 1, . . . ,m). For example, the
standard basis in Fn is orthonormal. Orthonormal lists are particularly
easy to work with, as illustrated by the next proposition.

6.15 Proposition: If (e1, . . . , em) is an orthonormal list of vectors
in V , then

‖a1e1 + · · · + amem‖2 = |a1|2 + · · · + |am|2

for all a1, . . . , am ∈ F.

Proof: Because each ej has norm 1, this follows easily from re-
peated applications of the Pythagorean theorem (6.3).

Now we have the following easy but important corollary.
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6.16 Corollary: Every orthonormal list of vectors is linearly inde-
pendent.

Proof: Suppose (e1, . . . , em) is an orthonormal list of vectors in V
and a1, . . . , am ∈ F are such that

a1e1 + · · · + amem = 0.

Then |a1|2 + · · · + |am|2 = 0 (by 6.15), which means that all the aj ’s
are 0, as desired.

An orthonormal basis of V is an orthonormal list of vectors in V
that is also a basis of V . For example, the standard basis is an ortho-
normal basis of Fn. Every orthonormal list of vectors in V with length
dimV is automatically an orthonormal basis of V (proof: by the pre-
vious corollary, any such list must be linearly independent; because it
has the right length, it must be a basis—see 2.17). To illustrate this
principle, consider the following list of four vectors in R4:

(

(1
2 ,

1
2 ,

1
2 ,

1
2), (

1
2 ,

1
2 ,−1

2 ,−1
2), (

1
2 ,−1

2 ,−1
2 ,

1
2), (−1

2 ,
1
2 ,−1

2 ,
1
2)
)

.

The verification that this list is orthonormal is easy (do it!); because we
have an orthonormal list of length four in a four-dimensional vector
space, it must be an orthonormal basis.

In general, given a basis (e1, . . . , en) of V and a vector v ∈ V , we
know that there is some choice of scalars a1, . . . , am such that

v = a1e1 + · · · + anen,

but finding the aj ’s can be difficult. The next theorem shows, however,
that this is easy for an orthonormal basis.

6.17 Theorem: Suppose (e1, . . . , en) is an orthonormal basis of V . The importance of

orthonormal bases

stems mainly from this

theorem.

Then

6.18 v = 〈v, e1〉e1 + · · · + 〈v, en〉en
and

6.19 ‖v‖2 = |〈v, e1〉|2 + · · · + |〈v, en〉|2

for every v ∈ V .
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Proof: Let v ∈ V . Because (e1, . . . , en) is a basis of V , there exist
scalars a1, . . . , an such that

v = a1e1 + · · · + anen.

Take the inner product of both sides of this equation with ej , get-
ting 〈v, ej〉 = aj . Thus 6.18 holds. Clearly 6.19 follows from 6.18
and 6.15.

Now that we understand the usefulness of orthonormal bases, how
do we go about finding them? For example, does Pm(F), with inner
product given by integration on [0,1] (see 6.2), have an orthonormal
basis? As we will see, the next result will lead to answers to these ques-
tions. The algorithm used in the next proof is called the Gram-Schmidt
procedure. It gives a method for turning a linearly independent list intoThe Danish

mathematician Jorgen
Gram (1850–1916) and

the German
mathematician Erhard
Schmidt (1876–1959)

popularized this
algorithm for
constructing

orthonormal lists.

an orthonormal list with the same span as the original list.

6.20 Gram-Schmidt: If (v1, . . . , vm) is a linearly independent list
of vectors in V , then there exists an orthonormal list (e1, . . . , em) of
vectors in V such that

6.21 span(v1, . . . , vj) = span(e1, . . . , ej)

for j = 1, . . . ,m.

Proof: Suppose (v1, . . . , vm) is a linearly independent list of vec-
tors in V . To construct the e’s, start by setting e1 = v1/‖v1‖. This
satisfies 6.21 for j = 1. We will choose e2, . . . , em inductively, as fol-
lows. Suppose j > 1 and an orthornormal list (e1, . . . , ej−1) has been
chosen so that

6.22 span(v1, . . . , vj−1) = span(e1, . . . , ej−1).

Let

6.23 ej = vj − 〈vj, e1〉e1 − · · · − 〈vj, ej−1〉ej−1

‖vj − 〈vj, e1〉e1 − · · · − 〈vj, ej−1〉ej−1‖.

Note that vj ∉ span(v1, . . . , vj−1) (because (v1, . . . , vm) is linearly inde-
pendent) and thus vj ∉ span(e1, . . . , ej−1). Hence we are not dividing
by 0 in the equation above, and so ej is well defined. Dividing a vector
by its norm produces a new vector with norm 1; thus ‖ej‖ = 1.
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Let 1 ≤ k < j. Then

〈ej, ek〉 =
〈

vj − 〈vj, e1〉e1 − · · · − 〈vj, ej−1〉ej−1

‖vj − 〈vj, e1〉e1 − · · · − 〈vj, ej−1〉ej−1‖ , ek
〉

= 〈vj, ek〉 − 〈vj, ek〉
‖vj − 〈vj, e1〉e1 − · · · − 〈vj, ej−1〉ej−1‖

= 0.

Thus (e1, . . . , ej) is an orthonormal list.
From 6.23, we see that vj ∈ span(e1, . . . , ej). Combining this infor-

mation with 6.22 shows that

span(v1, . . . , vj) ⊂ span(e1, . . . , ej).

Both lists above are linearly independent (the v ’s by hypothesis, the e’s
by orthonormality and 6.16). Thus both subspaces above have dimen-
sion j, and hence they must be equal, completing the proof.

Now we can settle the question of the existence of orthonormal
bases.

6.24 Corollary: Every finite-dimensional inner-product space has an Until this corollary,

nothing we had done

with inner-product

spaces required our

standing assumption

that V is finite

dimensional.

orthonormal basis.

Proof: Choose a basis of V . Apply the Gram-Schmidt procedure
(6.20) to it, producing an orthonormal list. This orthonormal list is
linearly independent (by 6.16) and its span equals V . Thus it is an
orthonormal basis of V .

As we will soon see, sometimes we need to know not only that an
orthonormal basis exists, but also that any orthonormal list can be
extended to an orthonormal basis. In the next corollary, the Gram-
Schmidt procedure shows that such an extension is always possible.

6.25 Corollary: Every orthonormal list of vectors in V can be ex-
tended to an orthonormal basis of V .

Proof: Suppose (e1, . . . , em) is an orthonormal list of vectors in V .
Then (e1, . . . , em) is linearly independent (by 6.16), and hence it can be
extended to a basis (e1, . . . , em,v1, . . . , vn) of V (see 2.12). Now apply
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the Gram-Schmidt procedure (6.20) to (e1, . . . , em,v1, . . . , vn), produc-
ing an orthonormal list

6.26 (e1, . . . , em, f1, . . . , fn);

here the Gram-Schmidt procedure leaves the firstm vectors unchanged
because they are already orthonormal. Clearly 6.26 is an orthonormal
basis of V because it is linearly independent (by 6.16) and its span
equals V . Hence we have our extension of (e1, . . . , em) to an orthonor-
mal basis of V .

Recall that a matrix is called upper triangular if all entries below the
diagonal equal 0. In other words, an upper-triangular matrix looks like
this:









∗ ∗
. . .

0 ∗








.

In the last chapter we showed that if V is a complex vector space, then
for each operator on V there is a basis with respect to which the matrix
of the operator is upper triangular (see 5.13). Now that we are dealing
with inner-product spaces, we would like to know when there exists an
orthonormal basis with respect to which we have an upper-triangular
matrix. The next corollary shows that the existence of any basis with
respect to which T has an upper-triangular matrix implies the existence
of an orthonormal basis with this property. This result is true on both
real and complex vector spaces (though on a real vector space, the hy-
pothesis holds only for some operators).

6.27 Corollary: Suppose T ∈ L(V). If T has an upper-triangular
matrix with respect to some basis of V , then T has an upper-triangular
matrix with respect to some orthonormal basis of V .

Proof: Suppose T has an upper-triangular matrix with respect to
some basis (v1, . . . , vn) of V . Thus span(v1, . . . , vj) is invariant under
T for each j = 1, . . . , n (see 5.12).

Apply the Gram-Schmidt procedure to (v1, . . . , vn), producing an
orthonormal basis (e1, . . . , en) of V . Because

span(e1, . . . , ej) = span(v1, . . . , vj)
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for each j (see 6.21), we conclude that span(e1, . . . , ej) is invariant un-
der T for each j = 1, . . . , n. Thus, by 5.12, T has an upper-triangular
matrix with respect to the orthonormal basis (e1, . . . , en).

The next result is an important application of the corollary above.

6.28 Corollary: Suppose V is a complex vector space and T ∈ L(V). This result is

sometimes called

Schur’s theorem. The

German mathematician

Issai Schur published

the first proof of this

result in 1909.

Then T has an upper-triangular matrix with respect to some orthonor-
mal basis of V .

Proof: This follows immediately from 5.13 and 6.27.

Orthogonal Projections and
Minimization Problems

If U is a subset of V , then the orthogonal complement of U , de-
noted U⊥, is the set of all vectors in V that are orthogonal to every
vector in U :

U⊥ = {v ∈ V : 〈v,u〉 = 0 for all u ∈ U}.

You should verify that U⊥ is always a subspace of V , that V⊥ = {0},
and that {0}⊥ = V . Also note that if U1 ⊂ U2, then U⊥1 ⊃ U⊥2 .

Recall that if U1, U2 are subspaces of V , then V is the direct sum of
U1 and U2 (written V = U1 ⊕U2) if each element of V can be written in
exactly one way as a vector in U1 plus a vector in U2. The next theorem
shows that every subspace of an inner-product space leads to a natural
direct sum decomposition of the whole space.

6.29 Theorem: If U is a subspace of V , then

V = U ⊕U⊥.

Proof: Suppose that U is a subspace of V . First we will show that

6.30 V = U +U⊥.

To do this, suppose v ∈ V . Let (e1, . . . , em) be an orthonormal basis
of U . Obviously
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6.31
v = 〈v, e1〉e1 + · · · + 〈v, em〉em

︸ ︷︷ ︸

u

+v − 〈v, e1〉e1 − · · · − 〈v, em〉em
︸ ︷︷ ︸

w

.

Clearly u ∈ U . Because (e1, . . . , em) is an orthonormal list, for each j
we have

〈w,ej〉 = 〈v, ej〉 − 〈v, ej〉
= 0.

Thus w is orthogonal to every vector in span(e1, . . . , em). In other
words, w ∈ U⊥. Thus we have written v = u + w, where u ∈ U
and w ∈ U⊥, completing the proof of 6.30.

If v ∈ U ∩ U⊥, then v (which is in U ) is orthogonal to every vector
in U (including v itself), which implies that 〈v,v〉 = 0, which implies
that v = 0. Thus

6.32 U ∩U⊥ = {0}.

Now 6.30 and 6.32 imply that V = U ⊕U⊥ (see 1.9).

The next corollary is an important consequence of the last theorem.

6.33 Corollary: If U is a subspace of V , then

U = (U⊥)⊥.

Proof: Suppose that U is a subspace of V . First we will show that

6.34 U ⊂ (U⊥)⊥.

To do this, suppose that u ∈ U . Then 〈u,v〉 = 0 for every v ∈ U⊥ (by
the definition of U⊥). Because u is orthogonal to every vector in U⊥,
we have u ∈ (U⊥)⊥, completing the proof of 6.34.

To prove the inclusion in the other direction, suppose v ∈ (U⊥)⊥.
By 6.29, we can write v = u +w, where u ∈ U and w ∈ U⊥. We have
v − u = w ∈ U⊥. Because v ∈ (U⊥)⊥ and u ∈ (U⊥)⊥ (from 6.34), we
have v−u ∈ (U⊥)⊥. Thus v−u ∈ U⊥∩(U⊥)⊥, which implies that v−u
is orthogonal to itself, which implies that v−u = 0, which implies that
v = u, which implies that v ∈ U . Thus (U⊥)⊥ ⊂ U , which along with
6.34 completes the proof.
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Suppose U is a subspace of V . The decomposition V = U⊕U⊥ given
by 6.29 means that each vector v ∈ V can be written uniquely in the
form

v = u+w,
where u ∈ U and w ∈ U⊥. We use this decomposition to define an op-
erator on V , denoted PU , called the orthogonal projection of V onto U .
Forv ∈ V , we define PUv to be the vectoru in the decomposition above.
In the notation introduced in the last chapter, we have PU = PU,U⊥ . You
should verify that PU ∈ L(V) and that it has the following proper-
ties:

• rangePU = U ;

• nullPU = U⊥;

• v − PUv ∈ U⊥ for every v ∈ V ;

• PU2 = PU ;

• ‖PUv‖ ≤ ‖v‖ for every v ∈ V .

Furthermore, from the decomposition 6.31 used in the proof of 6.29
we see that if (e1, . . . , em) is an orthonormal basis of U , then

6.35 PUv = 〈v, e1〉e1 + · · · + 〈v, em〉em
for every v ∈ V .

The following problem often arises: given a subspace U of V and
a point v ∈ V , find a point u ∈ U such that ‖v − u‖ is as small as
possible. The next proposition shows that this minimization problem
is solved by taking u = PUv .

6.36 Proposition: Suppose U is a subspace of V and v ∈ V . Then The remarkable

simplicity of the

solution to this

minimization problem

has led to many

applications of

inner-product spaces

outside of pure

mathematics.

‖v − PUv‖ ≤ ‖v −u‖
for every u ∈ U . Furthermore, if u ∈ U and the inequality above is an
equality, then u = PUv .

Proof: Suppose u ∈ U . Then

‖v − PUv‖2 ≤ ‖v − PUv‖2 + ‖PUv −u‖26.37

= ‖(v − PUv)+ (PUv −u)‖26.38

= ‖v −u‖2,
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where 6.38 comes from the Pythagorean theorem (6.3), which applies
because v−PUv ∈ U⊥ and PUv−u ∈ U . Taking square roots gives the
desired inequality.

Our inequality is an equality if and only if 6.37 is an equality, which
happens if and only if ‖PUv − u‖ = 0, which happens if and only if
u = PUv .

0

v

U

PUv

PUv is the closest point in U to v .

The last proposition is often combined with the formula 6.35 to
compute explicit solutions to minimization problems. As an illustra-
tion of this procedure, consider the problem of finding a polynomial u
with real coefficients and degree at most 5 that on the interval [−π,π]
approximates sinx as well as possible, in the sense that

∫ π

−π
| sinx −u(x)|2 dx

is as small as possible. To solve this problem, let C[−π,π] denote the
real vector space of continuous real-valued functions on [−π,π] with
inner product

6.39 〈f , g〉 =
∫ π

−π
f(x)g(x)dx.

Let v ∈ C[−π,π] be the function defined by v(x) = sinx. Let U
denote the subspace of C[−π,π] consisting of the polynomials with
real coefficients and degree at most 5. Our problem can now be re-
formulated as follows: find u ∈ U such that ‖v − u‖ is as small as
possible.

To compute the solution to our approximation problem, first apply
the Gram-Schmidt procedure (using the inner product given by 6.39)
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to the basis (1, x, x2, x3, x4, x5) of U , producing an orthonormal basis
(e1, e2, e3, e4, e5, e6) of U . Then, again using the inner product given A machine that can

perform integrations is

useful here.

by 6.39, compute PUv using 6.35 (withm = 6). Doing this computation
shows that PUv is the function

6.40 0.987862x − 0.155271x3 + 0.00564312x5,

where the π ’s that appear in the exact answer have been replaced with
a good decimal approximation.

By 6.36, the polynomial above should be about as good an approxi-
mation to sinx on [−π,π] as is possible using polynomials of degree
at most 5. To see how good this approximation is, the picture below
shows the graphs of both sinx and our approximation 6.40 over the
interval [−π,π].

-3 -2 -1 1 2 3

-1

-0.5

0.5

1

Graphs of sinx and its approximation 6.40

Our approximation 6.40 is so accurate that the two graphs are almost
identical—our eyes may see only one graph!

Another well-known approximation to sinx by a polynomial of de-
gree 5 is given by the Taylor polynomial

6.41 x − x
3

3!
+ x

5

5!
.

To see how good this approximation is, the next picture shows the
graphs of both sinx and the Taylor polynomial 6.41 over the interval
[−π,π].
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-3 -2 -1 1 2 3

-1

-0.5

0.5

1

Graphs of sinx and the Taylor polynomial 6.41

The Taylor polynomial is an excellent approximation to sinx for x
near 0. But the picture above shows that for |x| > 2, the Taylor poly-
nomial is not so accurate, especially compared to 6.40. For example,
taking x = 3, our approximation 6.40 estimates sin 3 with an error of
about 0.001, but the Taylor series 6.41 estimates sin 3 with an error of
about 0.4. Thus at x = 3, the error in the Taylor series is hundreds of
times larger than the error given by 6.40. Linear algebra has helped us
discover an approximation to sinx that improves upon what we learned
in calculus!

We derived our approximation 6.40 by using 6.35 and 6.36. Our
standing assumption that V is finite dimensional fails when V equals
C[−π,π], so we need to justify our use of those results in this case.
First, reread the proof of 6.29, which states that if U is a subspace of V ,
then

6.42 V = U ⊕U⊥.
Note that the proof uses the finite dimensionality of U (to get a basisIf we allow V to be

infinite dimensional

and allow U to be an

infinite-dimensional

subspace of V , then

6.42 is not necessarily

true without additional

hypotheses.

of U ) but that it works fine regardless of whether or not V is finite
dimensional. Second, note that the definition and properties of PU (in-
cluding 6.35) require only 6.29 and thus require only that U (but not
necessarily V ) be finite dimensional. Finally, note that the proof of 6.36
does not require the finite dimensionality of V . Conclusion: for v ∈ V
and U a subspace of V , the procedure discussed above for finding the
vectoru ∈ U that makes ‖v−u‖ as small as possible works ifU is finite
dimensional, regardless of whether or not V is finite dimensional. In
the example above U was indeed finite dimensional (we had dimU = 6),
so everything works as expected.
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Linear Functionals and Adjoints

A linear functional on V is a linear map from V to the scalars F.
For example, the function ϕ : F3 → F defined by

6.43 ϕ(z1, z2, z3) = 2z1 − 5z2 + z3

is a linear functional on F3. As another example, consider the inner-
product space P6(R) (here the inner product is multiplication followed
by integration on [0,1]; see 6.2). The function ϕ : P6(R) → R defined
by

6.44 ϕ(p) =
∫ 1

0
p(x)(cosx)dx

is a linear functional on P6(R).
If v ∈ V , then the map that sends u to 〈u,v〉 is a linear functional

on V . The next result shows that every linear functional on V is of this
form. To illustrate this theorem, note that for the linear functional ϕ
defined by 6.43, we can take v = (2,−5,1) ∈ F3. The linear functional
ϕ defined by 6.44 better illustrates the power of the theorem below be-
cause for this linear functional, there is no obvious candidate for v (the
function cosx is not eligible because it is not an element of P6(R)).

6.45 Theorem: Suppose ϕ is a linear functional on V . Then there is
a unique vector v ∈ V such that

ϕ(u) = 〈u,v〉
for every u ∈ V .

Proof: First we show that there exists a vector v ∈ V such that
ϕ(u) = 〈u,v〉 for every u ∈ V . Let (e1, . . . , en) be an orthonormal
basis of V . Then

ϕ(u) =ϕ(〈u, e1〉e1 + · · · + 〈u, en〉en)
= 〈u, e1〉ϕ(e1)+ · · · + 〈u, en〉ϕ(en)
= 〈u,ϕ(e1)e1 + · · · +ϕ(en)en〉

for every u ∈ V , where the first equality comes from 6.17. Thus setting
v =ϕ(e1)e1 + · · · +ϕ(en)en, we have ϕ(u) = 〈u,v〉 for every u ∈ V ,
as desired.



118 Chapter 6. Inner-Product Spaces

Now we prove that only one vector v ∈ V has the desired behavior.
Suppose v1, v2 ∈ V are such that

ϕ(u) = 〈u,v1〉 = 〈u,v2〉

for every u ∈ V . Then

0 = 〈u,v1〉 − 〈u,v2〉 = 〈u,v1 − v2〉

for every u ∈ V . Taking u = v1 − v2 shows that v1 − v2 = 0. In other
words, v1 = v2, completing the proof of the uniqueness part of the
theorem.

In addition to V , we need another finite-dimensional inner-product
space.

Let’s agree that for the rest of this chapter
W is a finite-dimensional, nonzero, inner-product space over F.

Let T ∈ L(V ,W). The adjoint of T , denoted T∗, is the function fromThe word adjoint has

another meaning in

linear algebra. We will

not need the second

meaning, related to

inverses, in this book.

Just in case you

encountered the

second meaning for

adjoint elsewhere, be

warned that the two

meanings for adjoint

are unrelated to one

another.

W to V defined as follows. Fix w ∈ W . Consider the linear functional
on V that maps v ∈ V to 〈Tv,w〉. Let T∗w be the unique vector in V
such that this linear functional is given by taking inner products with
T∗w (6.45 guarantees the existence and uniqueness of a vector in V
with this property). In other words, T∗w is the unique vector in V
such that

〈Tv,w〉 = 〈v,T∗w〉
for all v ∈ V .

Let’s work out an example of how the adjoint is computed. Define
T : R3 → R2 by

T(x1, x2, x3) = (x2 + 3x3,2x1).

Thus T∗ will be a function from R2 to R3. To compute T∗, fix a point
(y1, y2) ∈ R2. Then

〈(x1, x2, x3), T∗(y1, y2)〉 = 〈T(x1, x2, x3), (y1, y2)〉
= 〈(x2 + 3x3,2x1), (y1, y2)〉
= x2y1 + 3x3y1 + 2x1y2

= 〈(x1, x2, x3), (2y2, y1,3y1)〉

for all (x1, x2, x3) ∈ R3. This shows that
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T∗(y1, y2) = (2y2, y1,3y1).

Note that in the example above, T∗ turned out to be not just a func- Adjoints play a crucial

role in the important

results in the next

chapter.

tion from R2 to R3, but a linear map. That is true in general. Specif-
ically, if T ∈ L(V ,W), then T∗ ∈ L(W,V). To prove this, suppose
T ∈ L(V ,W). Let’s begin by checking additivity. Fix w1,w2 ∈ W .
Then

〈Tv,w1 +w2〉 = 〈Tv,w1〉 + 〈Tv,w2〉
= 〈v,T∗w1〉 + 〈v,T∗w2〉
= 〈v,T∗w1 + T∗w2〉,

which shows that T∗w1+T∗w2 plays the role required of T∗(w1+w2).
Because only one vector can behave that way, we must have

T∗w1 + T∗w2 = T∗(w1 +w2).

Now let’s check the homogeneity of T∗. If a ∈ F, then

〈Tv,aw〉 = ā〈Tv,w〉
= ā〈v,T∗w〉
= 〈v,aT∗w〉,

which shows that aT∗w plays the role required of T∗(aw). Because
only one vector can behave that way, we must have

aT∗w = T∗(aw).

Thus T∗ is a linear map, as claimed.
You should verify that the function T � T∗ has the following prop-

erties:

additivity
(S + T)∗ = S∗ + T∗ for all S, T ∈ L(V ,W);

conjugate homogeneity
(aT)∗ = āT∗ for all a ∈ F and T ∈ L(V ,W);

adjoint of adjoint
(T∗)∗ = T for all T ∈ L(V ,W);

identity
I∗ = I, where I is the identity operator on V ;
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products
(ST)∗ = T∗S∗ for all T ∈ L(V ,W) and S ∈ L(W,U) (here U is an
inner-product space over F).

The next result shows the relationship between the null space and
the range of a linear map and its adjoint. The symbol⇐⇒means “if and
only if”; this symbol could also be read to mean “is equivalent to”.

6.46 Proposition: Suppose T ∈ L(V ,W). Then

(a) nullT∗ = (rangeT)⊥;

(b) rangeT∗ = (nullT)⊥;

(c) nullT = (rangeT∗)⊥;

(d) rangeT = (nullT∗)⊥.

Proof: Let’s begin by proving (a). Let w ∈ W . Then

w ∈ nullT∗ ⇐⇒ T∗w = 0

⇐⇒ 〈v,T∗w〉 = 0 for all v ∈ V
⇐⇒ 〈Tv,w〉 = 0 for all v ∈ V
⇐⇒ w ∈ (rangeT)⊥.

Thus nullT∗ = (rangeT)⊥, proving (a).
If we take the orthogonal complement of both sides of (a), we get (d),

where we have used 6.33. Finally, replacing T with T∗ in (a) and (d) gives
(c) and (b).

The conjugate transpose of anm-by-nmatrix is the n-by-mmatrixIf F = R , then the

conjugate transpose of

a matrix is the same as

its transpose, which is

the matrix obtained by

interchanging the rows

and columns.

obtained by interchanging the rows and columns and then taking the
complex conjugate of each entry. For example, the conjugate transpose
of

[

2 3+ 4i 7
6 5 8i

]

is the matrix






2 6
3− 4i 5

7 −8i





 .

The next proposition shows how to compute the matrix of T∗ from
the matrix of T . Caution: the proposition below applies only when
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we are dealing with orthonormal bases—with respect to nonorthonor-
mal bases, the matrix of T∗ does not necessarily equal the conjugate
transpose of the matrix of T .

6.47 Proposition: Suppose T ∈ L(V ,W). If (e1, . . . , en) is an or- The adjoint of a linear

map does not depend

on a choice of basis.

This explains why we

will emphasize adjoints

of linear maps instead

of conjugate

transposes of matrices.

thonormal basis of V and (f1, . . . , fm) is an orthonormal basis of W ,
then

M(

T∗, (f1, . . . , fm), (e1, . . . , en)
)

is the conjugate transpose of

M(

T , (e1, . . . , en), (f1, . . . , fm)
)

.

Proof: Suppose that (e1, . . . , en) is an orthonormal basis of V and
(f1, . . . , fm) is an orthonormal basis ofW . We writeM(T) instead of the
longer expressionM(

T , (e1, . . . , en), (f1, . . . , fm)
)

; we also writeM(T∗)
instead of M(

T∗, (f1, . . . , fm), (e1, . . . , en)
)

.
Recall that we obtain the kth column ofM(T) by writing Tek as a lin-

ear combination of the fj ’s; the scalars used in this linear combination
then become the kth column ofM(T). Because (f1, . . . , fm) is an ortho-
normal basis of W , we know how to write Tek as a linear combination
of the fj ’s (see 6.17):

Tek = 〈Tek, f1〉f1 + · · · + 〈Tek, fm〉fm.

Thus the entry in row j, column k, of M(T) is 〈Tek, fj〉. Replacing T
with T∗ and interchanging the roles played by the e’s and f ’s, we see
that the entry in row j, column k, ofM(T∗) is 〈T∗fk, ej〉, which equals
〈fk, Tej〉, which equals 〈Tej, fk〉, which equals the complex conjugate
of the entry in row k, column j, ofM(T). In other words,M(T∗) equals
the conjugate transpose of M(T).
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Exercises

1. Prove that if x,y are nonzero vectors in R2, then

〈x,y〉 = ‖x‖‖y‖ cosθ,

where θ is the angle between x and y (thinking of x and y as
arrows with initial point at the origin). Hint: draw the triangle
formed by x, y , and x −y ; then use the law of cosines.

2. Suppose u,v ∈ V . Prove that 〈u,v〉 = 0 if and only if

‖u‖ ≤ ‖u+ av‖
for all a ∈ F.

3. Prove that
(
n
∑

j=1

ajbj
)2 ≤

(
n
∑

j=1

jaj2
)(

n
∑

j=1

bj2

j

)

for all real numbers a1, . . . , an and b1, . . . , bn.

4. Suppose u,v ∈ V are such that

‖u‖ = 3, ‖u+ v‖ = 4, ‖u− v‖ = 6.

What number must ‖v‖ equal?

5. Prove or disprove: there is an inner product on R2 such that the
associated norm is given by

‖(x1, x2)‖ = |x1| + |x2|
for all (x1, x2) ∈ R2.

6. Prove that if V is a real inner-product space, then

〈u,v〉 = ‖u+ v‖2 − ‖u− v‖2

4

for all u,v ∈ V .

7. Prove that if V is a complex inner-product space, then

〈u,v〉 = ‖u+ v‖2 − ‖u− v‖2 + ‖u+ iv‖2i− ‖u− iv‖2i
4

for all u,v ∈ V .
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8. A norm on a vector space U is a function ‖ ‖ : U → [0,∞) such
that ‖u‖ = 0 if and only if u = 0, ‖αu‖ = |α|‖u‖ for all α ∈ F
and all u ∈ U , and ‖u+ v‖ ≤ ‖u‖ + ‖v‖ for all u,v ∈ U . Prove
that a norm satisfying the parallelogram equality comes from
an inner product (in other words, show that if ‖ ‖ is a norm
on U satisfying the parallelogram equality, then there is an inner
product 〈 , 〉 on U such that ‖u‖ = 〈u,u〉1/2 for all u ∈ U ).

9. Suppose n is a positive integer. Prove that This orthonormal list is

often used for

modeling periodic

phenomena such as

tides.

( 1√
2π

,
sinx√
π
,
sin 2x√
π

, . . . ,
sinnx√
π

,
cosx√
π
,
cos 2x√
π

, . . . ,
cosnx√

π

)

is an orthonormal list of vectors in C[−π,π], the vector space of
continuous real-valued functions on [−π,π] with inner product

〈f , g〉 =
∫ π

−π
f(x)g(x)dx.

10. On P2(R), consider the inner product given by

〈p,q〉 =
∫ 1

0
p(x)q(x)dx.

Apply the Gram-Schmidt procedure to the basis (1, x, x2) to pro-
duce an orthonormal basis of P2(R).

11. What happens if the Gram-Schmidt procedure is applied to a list
of vectors that is not linearly independent?

12. Suppose V is a real inner-product space and (v1, . . . , vm) is a
linearly independent list of vectors in V . Prove that there exist
exactly 2m orthonormal lists (e1, . . . , em) of vectors in V such
that

span(v1, . . . , vj) = span(e1, . . . , ej)

for all j ∈ {1, . . . ,m}.
13. Suppose (e1, . . . , em) is an orthonormal list of vectors in V . Let

v ∈ V . Prove that

‖v‖2 = |〈v, e1〉|2 + · · · + |〈v, em〉|2

if and only if v ∈ span(e1, . . . , em).
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14. Find an orthonormal basis of P2(R) (with inner product as in
Exercise 10) such that the differentiation operator (the operator
that takes p to p′) on P2(R) has an upper-triangular matrix with
respect to this basis.

15. Suppose U is a subspace of V . Prove that

dimU⊥ = dimV − dimU.

16. Suppose U is a subspace of V . Prove that U⊥ = {0} if and only if
U = V .

17. Prove that if P ∈ L(V) is such that P2 = P and every vector
in nullP is orthogonal to every vector in rangeP , then P is an
orthogonal projection.

18. Prove that if P ∈ L(V) is such that P2 = P and

‖Pv‖ ≤ ‖v‖
for every v ∈ V , then P is an orthogonal projection.

19. Suppose T ∈ L(V) and U is a subspace of V . Prove that U is
invariant under T if and only if PUTPU = TPU .

20. Suppose T ∈ L(V) and U is a subspace of V . Prove that U and
U⊥ are both invariant under T if and only if PUT = TPU .

21. In R4, let
U = span

(

(1,1,0,0), (1,1,1,2)
)

.

Find u ∈ U such that ‖u− (1,2,3,4)‖ is as small as possible.

22. Find p ∈ P3(R) such that p(0) = 0, p′(0) = 0, and
∫ 1

0
|2+ 3x − p(x)|2 dx

is as small as possible.

23. Find p ∈ P5(R) that makes
∫ π

−π
| sinx − p(x)|2 dx

as small as possible. (The polynomial 6.40 is an excellent approx-
imation to the answer to this exercise, but here you are asked to
find the exact solution, which involves powers of π . A computer
that can perform symbolic integration will be useful.)
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24. Find a polynomial q ∈ P2(R) such that

p(
1
2
) =

∫ 1

0
p(x)q(x)dx

for every p ∈ P2(R).

25. Find a polynomial q ∈ P2(R) such that
∫ 1

0
p(x)(cosπx)dx =

∫ 1

0
p(x)q(x)dx

for every p ∈ P2(R).

26. Fix a vector v ∈ V and define T ∈ L(V ,F) by Tu = 〈u,v〉. For
a ∈ F, find a formula for T∗a.

27. Suppose n is a positive integer. Define T ∈ L(Fn) by

T(z1, . . . , zn) = (0, z1, . . . , zn−1).

Find a formula for T∗(z1, . . . , zn).

28. Suppose T ∈ L(V) and λ ∈ F. Prove that λ is an eigenvalue of T
if and only if λ̄ is an eigenvalue of T∗.

29. Suppose T ∈ L(V) and U is a subspace of V . Prove that U is
invariant under T if and only if U⊥ is invariant under T∗.

30. Suppose T ∈ L(V ,W). Prove that

(a) T is injective if and only if T∗ is surjective;

(b) T is surjective if and only if T∗ is injective.

31. Prove that

dim nullT∗ = dim nullT + dimW − dimV

and
dim rangeT∗ = dim rangeT

for every T ∈ L(V ,W).
32. Suppose A is an m-by-n matrix of real numbers. Prove that the

dimension of the span of the columns of A (in Rm) equals the
dimension of the span of the rows of A (in Rn).



Chapter 7

Operators on
Inner-Product Spaces

The deepest results related to inner-product spaces deal with the
subject to which we now turn—operators on inner-product spaces. By
exploiting properties of the adjoint, we will develop a detailed descrip-
tion of several important classes of operators on inner-product spaces.

Recall that F denotes R or C.
Let’s agree that for this chapter

V is a finite-dimensional, nonzero, inner-product space over F.

✽ ✽ ✽
✽ ✽ ✽ ✽

127
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Self-Adjoint and Normal Operators

An operator T ∈ L(V) is called self-adjoint if T = T∗. For example,Instead of self-adjoint,

some mathematicians

use the term Hermitian

(in honor of the French

mathematician Charles

Hermite, who in 1873

published the first

proof that e is not the

root of any polynomial

with integer

coefficients).

if T is the operator on F2 whose matrix (with respect to the standard
basis) is

[

2 b
3 7

]

,

then T is self-adjoint if and only if b = 3 (becauseM(T) =M(T∗) if and
only if b = 3; recall that M(T∗) is the conjugate transpose of M(T)—
see 6.47).

You should verify that the sum of two self-adjoint operators is self-
adjoint and that the product of a real scalar and a self-adjoint operator
is self-adjoint.

A good analogy to keep in mind (especially when F = C) is that
the adjoint on L(V) plays a role similar to complex conjugation on C.
A complex number z is real if and only if z = z̄; thus a self-adjoint
operator (T = T∗) is analogous to a real number. We will see that
this analogy is reflected in some important properties of self-adjoint
operators, beginning with eigenvalues.

7.1 Proposition: Every eigenvalue of a self-adjoint operator is real.If F = R , then by

definition every

eigenvalue is real, so

this proposition is

interesting only when

F = C.

Proof: Suppose T is a self-adjoint operator on V . Let λ be an
eigenvalue of T , and let v be a nonzero vector in V such that Tv = λv .
Then

λ‖v‖2 = 〈λv,v〉
= 〈Tv,v〉
= 〈v,Tv〉
= 〈v,λv〉
= λ̄‖v‖2.

Thus λ = λ̄, which means that λ is real, as desired.

The next proposition is false for real inner-product spaces. As an
example, consider the operator T ∈ L(R2) that is a counterclockwise
rotation of 90◦ around the origin; thus T(x,y) = (−y,x). Obviously
Tv is orthogonal to v for every v ∈ R2, even though T is not 0.
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7.2 Proposition: If V is a complex inner-product space and T is an
operator on V such that

〈Tv,v〉 = 0

for all v ∈ V , then T = 0.

Proof: Suppose V is a complex inner-product space and T ∈ L(V).
Then

〈Tu,w〉 = 〈T(u+w),u+w〉 − 〈T(u−w),u−w〉
4

+ 〈T(u+ iw),u+ iw〉 − 〈T(u− iw),u− iw〉
4

i

for all u,w ∈ V , as can be verified by computing the right side. Note
that each term on the right side is of the form 〈Tv,v〉 for appropriate
v ∈ V . If 〈Tv,v〉 = 0 for allv ∈ V , then the equation above implies that
〈Tu,w〉 = 0 for all u,w ∈ V . This implies that T = 0 (take w = Tu).

The following corollary is false for real inner-product spaces, as
shown by considering any operator on a real inner-product space that
is not self-adjoint.

7.3 Corollary: Let V be a complex inner-product space and let This corollary provides

another example of

how self-adjoint

operators behave like

real numbers.

T ∈ L(V). Then T is self-adjoint if and only if

〈Tv,v〉 ∈ R

for every v ∈ V .

Proof: Let v ∈ V . Then

〈Tv,v〉 − 〈Tv,v〉 = 〈Tv,v〉 − 〈v,Tv〉
= 〈Tv,v〉 − 〈T∗v,v〉
= 〈(T − T∗)v, v〉.

If 〈Tv,v〉 ∈ R for every v ∈ V , then the left side of the equation above
equals 0, so 〈(T − T∗)v, v〉 = 0 for every v ∈ V . This implies that
T − T∗ = 0 (by 7.2), and hence T is self-adjoint.

Conversely, if T is self-adjoint, then the right side of the equation
above equals 0, so 〈Tv,v〉 = 〈Tv,v〉 for every v ∈ V . This implies that
〈Tv,v〉 ∈ R for every v ∈ V , as desired.
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On a real inner-product space V , a nonzero operator T may satisfy
〈Tv,v〉 = 0 for all v ∈ V . However, the next proposition shows that
this cannot happen for a self-adjoint operator.

7.4 Proposition: If T is a self-adjoint operator on V such that

〈Tv,v〉 = 0

for all v ∈ V , then T = 0.

Proof: We have already proved this (without the hypothesis that
T is self-adjoint) when V is a complex inner-product space (see 7.2).
Thus we can assume that V is a real inner-product space and that T is
a self-adjoint operator on V . For u,w ∈ V , we have

7.5 〈Tu,w〉 = 〈T(u+w),u+w〉 − 〈T(u−w),u−w〉
4

;

this is proved by computing the right side, using

〈Tw,u〉 = 〈w,Tu〉
= 〈Tu,w〉,

where the first equality holds because T is self-adjoint and the second
equality holds because we are working on a real inner-product space.
If 〈Tv,v〉 = 0 for all v ∈ V , then 7.5 implies that 〈Tu,w〉 = 0 for all
u,w ∈ V . This implies that T = 0 (take w = Tu).

An operator on an inner-product space is called normal if it com-
mutes with its adjoint; in other words, T ∈ L(V) is normal if

TT∗ = T∗T .
Obviously every self-adjoint operator is normal. For an example of a
normal operator that is not self-adjoint, consider the operator on F2

whose matrix (with respect to the standard basis) is
[

2 −3
3 2

]

.

Clearly this operator is not self-adjoint, but an easy calculation (which
you should do) shows that it is normal.

We will soon see why normal operators are worthy of special at-
tention. The next proposition provides a simple characterization of
normal operators.



Self-Adjoint and Normal Operators 131

7.6 Proposition: An operator T ∈ L(V) is normal if and only if Note that this

proposition implies

that nullT = nullT∗

for every normal

operator T .

‖Tv‖ = ‖T∗v‖

for all v ∈ V .

Proof: Let T ∈ L(V). We will prove both directions of this result
at the same time. Note that

T is normal ⇐⇒ T∗T − TT∗ = 0

⇐⇒ 〈(T∗T − TT∗)v, v〉 = 0 for all v ∈ V
⇐⇒ 〈T∗Tv,v〉 = 〈TT∗v,v〉 for all v ∈ V
⇐⇒ ‖Tv‖2 = ‖T∗v‖2 for all v ∈ V,

where we used 7.4 to establish the second equivalence (note that the
operator T∗T − TT∗ is self-adjoint). The equivalence of the first and
last conditions above gives the desired result.

Compare the next corollary to Exercise 28 in the previous chapter.
That exercise implies that the eigenvalues of the adjoint of any operator
are equal (as a set) to the complex conjugates of the eigenvalues of the
operator. The exercise says nothing about eigenvectors because an
operator and its adjoint may have different eigenvectors. However, the
next corollary implies that a normal operator and its adjoint have the
same eigenvectors.

7.7 Corollary: Suppose T ∈ L(V) is normal. If v ∈ V is an eigen-
vector of T with eigenvalue λ ∈ F, then v is also an eigenvector of T∗

with eigenvalue λ̄.

Proof: Suppose v ∈ V is an eigenvector of T with eigenvalue λ.
Thus (T − λI)v = 0. Because T is normal, so is T − λI, as you should
verify. Using 7.6, we have

0 = ‖(T − λI)v‖ = ‖(T − λI)∗v‖ = ‖(T∗ − λ̄I)v‖,

and hence v is an eigenvector of T∗ with eigenvalue λ̄, as desired.

Because every self-adjoint operator is normal, the next result applies
in particular to self-adjoint operators.
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7.8 Corollary: If T ∈ L(V) is normal, then eigenvectors of T
corresponding to distinct eigenvalues are orthogonal.

Proof: Suppose T ∈ L(V) is normal and α,β are distinct eigen-
values of T , with corresponding eigenvectors u,v . Thus Tu = αu and
Tv = βv . From 7.7 we have T∗v = β̄v . Thus

(α− β)〈u,v〉 = 〈αu,v〉 − 〈u, β̄v〉
= 〈Tu,v〉 − 〈u,T∗v〉
= 0.

Because α �= β, the equation above implies that 〈u,v〉 = 0. Thus u and
v are orthogonal, as desired.

The Spectral Theorem

Recall that a diagonal matrix is a square matrix that is 0 everywhere
except possibly along the diagonal. Recall also that an operator on V
has a diagonal matrix with respect to some basis if and only if there is
a basis of V consisting of eigenvectors of the operator (see 5.21).

The nicest operators on V are those for which there is an ortho-
normal basis of V with respect to which the operator has a diagonal
matrix. These are precisely the operators T ∈ L(V) such that there is
an orthonormal basis of V consisting of eigenvectors of T . Our goal
in this section is to prove the spectral theorem, which characterizes
these operators as the normal operators when F = C and as the self-
adjoint operators when F = R . The spectral theorem is probably the
most useful tool in the study of operators on inner-product spaces.

Because the conclusion of the spectral theorem depends on F, we
will break the spectral theorem into two pieces, called the complex
spectral theorem and the real spectral theorem. As is often the case in
linear algebra, complex vector spaces are easier to deal with than real
vector spaces, so we present the complex spectral theorem first.

As an illustration of the complex spectral theorem, consider the
normal operator T ∈ L(C2) whose matrix (with respect to the standard
basis) is

[

2 −3
3 2

]

.

You should verify that
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(

(i,1)√
2
,
(−i,1)√

2

)

is an orthonormal basis of C2 consisting of eigenvectors of T and that
with respect to this basis, the matrix of T is the diagonal matrix

[

2+ 3i 0
0 2− 3i

]

.

7.9 Complex Spectral Theorem: Suppose that V is a complex Because every

self-adjoint operator is

normal, the complex

spectral theorem

implies that every

self-adjoint operator on

a finite-dimensional

complex inner-product

space has a diagonal

matrix with respect to

some orthonormal

basis.

inner-product space and T ∈ L(V). Then V has an orthonormal basis
consisting of eigenvectors of T if and only if T is normal.

Proof: First suppose that V has an orthonormal basis consisting of
eigenvectors of T . With respect to this basis, T has a diagonal matrix.
The matrix of T∗ (with respect to the same basis) is obtained by taking
the conjugate transpose of the matrix of T ; hence T∗ also has a diag-
onal matrix. Any two diagonal matrices commute; thus T commutes
with T∗, which means that T must be normal, as desired.

To prove the other direction, now suppose that T is normal. There
is an orthonormal basis (e1, . . . , en) of V with respect to which T has
an upper-triangular matrix (by 6.28). Thus we can write

7.10 M(

T , (e1, . . . , en)
) =









a1,1 . . . a1,n
. . .

...
0 an,n








.

We will show that this matrix is actually a diagonal matrix, which means
that (e1, . . . , en) is an orthonormal basis of V consisting of eigenvectors
of T .

We see from the matrix above that

‖Te1‖2 = |a1,1|2

and
‖T∗e1‖2 = |a1,1|2 + |a1,2|2 + · · · + |a1,n|2.

Because T is normal, ‖Te1‖ = ‖T∗e1‖ (see 7.6). Thus the two equations
above imply that all entries in the first row of the matrix in 7.10, except
possibly the first entry a1,1, equal 0.

Now from 7.10 we see that

‖Te2‖2 = |a2,2|2
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(because a1,2 = 0, as we showed in the paragraph above) and

‖T∗e2‖2 = |a2,2|2 + |a2,3|2 + · · · + |a2,n|2.

Because T is normal, ‖Te2‖ = ‖T∗e2‖. Thus the two equations above
imply that all entries in the second row of the matrix in 7.10, except
possibly the diagonal entry a2,2, equal 0.

Continuing in this fashion, we see that all the nondiagonal entries
in the matrix 7.10 equal 0, as desired.

We will need two lemmas for our proof of the real spectral theo-
rem. You could guess that the next lemma is true and even discover its
proof by thinking about quadratic polynomials with real coefficients.
Specifically, suppose α,β ∈ R and α2 < 4β. Let x be a real number.
ThenThis technique of

completing the square

can be used to derive

the quadratic formula.
x2 +αx + β = (x + α

2

)2 + (β− α
2

4

)

> 0.

In particular, x2 + αx + β is an invertible real number (a convoluted
way of saying that it is not 0). Replacing the real number x with a
self-adjoint operator (recall the analogy between real numbers and self-
adjoint operators), we are led to the lemma below.

7.11 Lemma: Suppose T ∈ L(V) is self-adjoint. If α,β ∈ R are such
that α2 < 4β, then

T 2 +αT + βI
is invertible.

Proof: Suppose α,β ∈ R are such that α2 < 4β. Let v be a nonzero
vector in V . Then

〈(T 2 +αT + βI)v,v〉 = 〈T 2v,v〉 +α〈Tv,v〉 + β〈v,v〉
= 〈Tv, Tv〉 +α〈Tv,v〉 + β‖v‖2

≥ ‖Tv‖2 − |α|‖Tv‖‖v‖ + β‖v‖2

= (‖Tv‖ − |α|‖v‖
2

)2 + (β− α
2

4

)‖v‖2

> 0,
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where the first inequality holds by the Cauchy-Schwarz inequality (6.6).
The last inequality implies that (T 2+αT +βI)v �= 0. Thus T 2+αT +βI
is injective, which implies that it is invertible (see 3.21).

We have proved that every operator, self-adjoint or not, on a finite-
dimensional complex vector space has an eigenvalue (see 5.10), so the
next lemma tells us something new only for real inner-product spaces.

7.12 Lemma: Suppose T ∈ L(V) is self-adjoint. Then T has an
eigenvalue.

Proof: As noted above, we can assume that V is a real inner-
product space. Let n = dimV and choose v ∈ V with v �= 0. Then Here we are imitating

the proof that T has an

invariant subspace of

dimension 1 or 2

(see 5.24).

(v, Tv, T 2v, . . . , Tnv)

cannot be linearly independent because V has dimensionn and we have
n+ 1 vectors. Thus there exist real numbers a0, . . . , an, not all 0, such
that

0 = a0v + a1Tv + · · · + anTnv.
Make the a’s the coefficients of a polynomial, which can be written in
factored form (see 4.14) as

a0 + a1x + · · · + anxn
= c(x2 +α1x + β1) . . . (x2 +αMx + βM)(x − λ1) . . . (x − λm),

where c is a nonzero real number, each αj , βj , and λj is real, each
αj2 < 4βj , m +M ≥ 1, and the equation holds for all real x. We then
have

0 = a0v + a1Tv + · · · + anTnv
= (a0I + a1T + · · · + anTn)v
= c(T 2 +α1T + β1I) . . . (T 2 +αMT + βMI)(T − λ1I) . . . (T − λmI)v.

Each T 2 + αjT + βjI is invertible because T is self-adjoint and each
αj2 < 4βj (see 7.11). Recall also that c �= 0. Thus the equation above
implies that

0 = (T − λ1I) . . . (T − λmI)v.
Hence T − λjI is not injective for at least one j. In other words, T has
an eigenvalue.



136 Chapter 7. Operators on Inner-Product Spaces

As an illustration of the real spectral theorem, consider the self-
adjoint operator T on R3 whose matrix (with respect to the standard
basis) is







14 −13 8
−13 14 8

8 8 −7





 .

You should verify that

(

(1,−1,0)√
2

,
(1,1,1)√

3
,
(1,1,−2)√

6

)

is an orthonormal basis of R3 consisting of eigenvectors of T and that
with respect to this basis, the matrix of T is the diagonal matrix







27 0 0
0 9 0
0 0 −15





 .

Combining the complex spectral theorem and the real spectral the-
orem, we conclude that every self-adjoint operator on V has a diagonal
matrix with respect to some orthonormal basis. This statement, which
is the most useful part of the spectral theorem, holds regardless of
whether F = C or F = R .

7.13 Real Spectral Theorem: Suppose that V is a real inner-product
space and T ∈ L(V). Then V has an orthonormal basis consisting of
eigenvectors of T if and only if T is self-adjoint.

Proof: First suppose that V has an orthonormal basis consisting of
eigenvectors of T . With respect to this basis, T has a diagonal matrix.
This matrix equals its conjugate transpose. Hence T = T∗ and so T is
self-adjoint, as desired.

To prove the other direction, now suppose that T is self-adjoint. We
will prove that V has an orthonormal basis consisting of eigenvectors
of T by induction on the dimension of V . To get started, note that our
desired result clearly holds if dimV = 1. Now assume that dimV > 1
and that the desired result holds on vector spaces of smaller dimen-
sion.

The idea of the proof is to take any eigenvector u of T with norm 1,
then adjoin to it an orthonormal basis of eigenvectors of T |{u}⊥ . Now
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for the details, the most important of which is verifying that T |{u}⊥ is
self-adjoint (this allows us to apply our induction hypothesis).

Let λ be any eigenvalue of T (because T is self-adjoint, we know
from the previous lemma that it has an eigenvalue) and let u ∈ V
denote a corresponding eigenvector with ‖u‖ = 1. Let U denote the To get an eigenvector

of norm 1, take any

nonzero eigenvector

and divide it by its

norm.

one-dimensional subspace of V consisting of all scalar multiples of u.
Note that a vector v ∈ V is in U⊥ if and only if 〈u,v〉 = 0.

Suppose v ∈ U⊥. Then because T is self-adjoint, we have

〈u,Tv〉 = 〈Tu,v〉 = 〈λu,v〉 = λ〈u,v〉 = 0,

and hence Tv ∈ U⊥. Thus Tv ∈ U⊥ whenever v ∈ U⊥. In other words,
U⊥ is invariant under T . Thus we can define an operator S ∈ L(U⊥) by
S = T |U⊥ . If v,w ∈ U⊥, then

〈Sv,w〉 = 〈Tv,w〉 = 〈v,Tw〉 = 〈v, Sw〉,
which shows that S is self-adjoint (note that in the middle equality
above we used the self-adjointness of T ). Thus, by our induction hy-
pothesis, there is an orthonormal basis of U⊥ consisting of eigenvec-
tors of S. Clearly every eigenvector of S is an eigenvector of T (because
Sv = Tv for every v ∈ U⊥). Thus adjoining u to an orthonormal basis
of U⊥ consisting of eigenvectors of S gives an orthonormal basis of V
consisting of eigenvectors of T , as desired.

For T ∈ L(V) self-adjoint (or, more generally, T ∈ L(V) normal
when F = C), the corollary below provides the nicest possible decom-
position of V into subspaces invariant under T . On each null(T −λjI),
the operator T is just multiplication by λj .

7.14 Corollary: Suppose that T ∈ L(V) is self-adjoint (or that F = C
and that T ∈ L(V) is normal). Let λ1, . . . , λm denote the distinct eigen-
values of T . Then

V = null(T − λ1I)⊕ · · · ⊕ null(T − λmI).
Furthermore, each vector in each null(T −λjI) is orthogonal to all vec-
tors in the other subspaces of this decomposition.

Proof: The spectral theorem (7.9 and 7.13) implies that V has a
basis consisting of eigenvectors of T . The desired decomposition of V
now follows from 5.21.

The orthogonality statement follows from 7.8.
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Normal Operators on Real
Inner-Product Spaces

The complex spectral theorem (7.9) gives a complete description
of normal operators on complex inner-product spaces. In this section
we will give a complete description of normal operators on real inner-
product spaces. Along the way, we will encounter a proposition (7.18)
and a technique (block diagonal matrices) that are useful for both real
and complex inner-product spaces.

We begin with a description of the operators on a two-dimensional
real inner-product space that are normal but not self-adjoint.

7.15 Lemma: Suppose V is a two-dimensional real inner-product
space and T ∈ L(V). Then the following are equivalent:

(a) T is normal but not self-adjoint;

(b) the matrix of T with respect to every orthonormal basis of V
has the form

[

a −b
b a

]

,

with b �= 0;

(c) the matrix of T with respect to some orthonormal basis of V has
the form

[

a −b
b a

]

,

with b > 0.

Proof: First suppose that (a) holds, so that T is normal but not
self-adjoint. Let (e1, e2) be an orthonormal basis of V . Suppose

7.16 M(

T , (e1, e2)
) =

[

a c
b d

]

.

Then ‖Te1‖2 = a2 + b2 and ‖T∗e1‖2 = a2 + c2. Because T is normal,
‖Te1‖ = ‖T∗e1‖ (see 7.6); thus these equations imply that b2 = c2.
Thus c = b or c = −b. But c �= b because otherwise T would be self-
adjoint, as can be seen from the matrix in 7.16. Hence c = −b, so

7.17 M(

T , (e1, e2)
) =

[

a −b
b d

]

.
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Of course, the matrix of T∗ is the transpose of the matrix above. Use
matrix multiplication to compute the matrices of TT∗ and T∗T (do it
now). Because T is normal, these two matrices must be equal. Equating
the entries in the upper-right corner of the two matrices you computed,
you will discover that bd = ab. Now b �= 0 because otherwise T would
be self-adjoint, as can be seen from the matrix in 7.17. Thus d = a,
completing the proof that (a) implies (b).

Now suppose that (b) holds. We want to prove that (c) holds. Choose
any orthonormal basis (e1, e2) of V . We know that the matrix of T with
respect to this basis has the form given by (b), with b �= 0. If b > 0,
then (c) holds and we have proved that (b) implies (c). If b < 0, then,
as you should verify, the matrix of T with respect to the orthonormal
basis (e1,−e2) equals

[

a b
−b a

]

, where −b > 0; thus in this case we also
see that (b) implies (c).

Now suppose that (c) holds, so that the matrix of T with respect to
some orthonormal basis has the form given in (c) with b > 0. Clearly
the matrix of T is not equal to its transpose (because b �= 0), and hence
T is not self-adjoint. Now use matrix multiplication to verify that the
matrices of TT∗ and T∗T are equal. We conclude that TT∗ = T∗T , and
hence T is normal. Thus (c) implies (a), completing the proof.

As an example of the notation we will use to write a matrix as a
matrix of smaller matrices, consider the matrix

D =

















1 1 2 2 2
1 1 2 2 2
0 0 3 3 3
0 0 3 3 3
0 0 3 3 3

















.

We can write this matrix in the form Often we can

understand a matrix

better by thinking of it

as composed of smaller

matrices. We will use

this technique in the

next proposition and in

later chapters.

D =
[

A B
0 C

]

,

where

A =
[

1 1
1 1

]

, B =
[

2 2 2
2 2 2

]

, C =






3 3 3
3 3 3
3 3 3





 ,

and 0 denotes the 3-by-2 matrix consisting of all 0’s.
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The next result will play a key role in our characterization of the
normal operators on a real inner-product space.

7.18 Proposition: Suppose T ∈ L(V) is normal and U is a subspaceWithout normality, an

easier result also holds:

if T ∈ L(V) and U
invariant under T , then

U⊥ is invariant under

T∗; see Exercise 29 in

Chapter 6.

of V that is invariant under T . Then

(a) U⊥ is invariant under T ;

(b) U is invariant under T∗;

(c) (T |U)∗ = (T∗)|U ;

(d) T |U is a normal operator on U ;

(e) T |U⊥ is a normal operator on U⊥.

Proof: First we will prove (a). Let (e1, . . . , em) be an orthonormal
basis of U . Extend to an orthonormal basis (e1, . . . , em, f1, . . . , fn) of V
(this is possible by 6.25). Because U is invariant under T , each Tej is
a linear combination of (e1, . . . , em). Thus the matrix of T with respect
to the basis (e1, . . . , em, f1, . . . , fn) is of the form

e1 . . . em f1 . . . fn

M(T) =

e1
...
em
f1
...
fn



























A B

0 C



























;

here A denotes an m-by-m matrix, 0 denotes the n-by-m matrix con-
sisting of all 0’s, B denotes an m-by-n matrix, C denotes an n-by-n
matrix, and for convenience the basis has been listed along the top and
left sides of the matrix.

For each j ∈ {1, . . . ,m}, ‖Tej‖2 equals the sum of the squares of the
absolute values of the entries in the jth column of A (see 6.17). Hence

7.19
m
∑

j=1

‖Tej‖2 = the sum of the squares of the absolute
values of the entries of A.

For each j ∈ {1, . . . ,m}, ‖T∗ej‖2 equals the sum of the squares of the
absolute values of the entries in the jth rows of A and B. Hence
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7.20
m
∑

j=1

‖T∗ej‖2 = the sum of the squares of the absolute
values of the entries of A and B.

Because T is normal, ‖Tej‖ = ‖T∗ej‖ for each j (see 7.6); thus

m
∑

j=1

‖Tej‖2 =
m
∑

j=1

‖T∗ej‖2.

This equation, along with 7.19 and 7.20, implies that the sum of the
squares of the absolute values of the entries of B must equal 0. In
other words, B must be the matrix consisting of all 0’s. Thus

e1 . . . em f1 . . . fn

M(T) =

e1
...
em
f1
...
fn



























A 0

0 C



























.7.21

This representation shows that Tfk is in the span of (f1, . . . , fn) for
each k. Because (f1, . . . , fn) is a basis of U⊥, this implies that Tv ∈ U⊥
whenever v ∈ U⊥. In other words, U⊥ is invariant under T , completing
the proof of (a).

To prove (b), note that M(T∗) has a block of 0’s in the lower left
corner (because M(T), as given above, has a block of 0’s in the upper
right corner). In other words, each T∗ej can be written as a linear
combination of (e1, . . . , em). Thus U is invariant under T∗, completing
the proof of (b).

To prove (c), let S = T |U . Fix v ∈ U . Then

〈Su,v〉 = 〈Tu,v〉
= 〈u,T∗v〉

for all u ∈ U . Because T∗v ∈ U (by (b)), the equation above shows that
S∗v = T∗v . In other words, (T |U)∗ = (T∗)|U , completing the proof
of (c).

To prove (d), note that T commutes with T∗ (because T is normal)
and that (T |U)∗ = (T∗)|U (by (c)). Thus T |U commutes with its adjoint
and hence is normal, completing the proof of (d).
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To prove (e), note that in (d) we showed that the restriction of T to
any invariant subspace is normal. However, U⊥ is invariant under T
(by (a)), and hence T |U⊥ is normal.

In proving 7.18 we thought of a matrix as composed of smaller ma-
trices. Now we need to make additional use of that idea. A block diag-
onal matrix is a square matrix of the formThe key step in the

proof of the last

proposition was

showing that M(T) is

an appropriate block

diagonal matrix;

see 7.21.









A1 0
. . .

0 Am








,

where A1, . . . , Am are square matrices lying along the diagonal and all
the other entries of the matrix equal 0. For example, the matrix

7.22 A =

















4 0 0 0 0
0 2 −3 0 0
0 3 2 0 0
0 0 0 1 −7
0 0 0 7 1

















is a block diagonal matrix with

A =






A1 0
A2

0 A3





 ,

where

7.23 A1 =
[

4
]

, A2 =
[

2 −3
3 2

]

, A3 =
[

1 −7
7 1

]

.

If A and B are block diagonal matrices of the form

A =









A1 0
. . .

0 Am








, B =









B1 0
. . .

0 Bm








,

where Aj has the same size as Bj for j = 1, . . . ,m, then AB is a block
diagonal matrix of the form

7.24 AB =









A1B1 0
. . .

0 AmBm








,
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as you should verify. In other words, to multiply together two block
diagonal matrices (with the same size blocks), just multiply together the
corresponding entries on the diagonal, as with diagonal matrices.

A diagonal matrix is a special case of a block diagonal matrix where
each block has size 1-by-1. At the other extreme, every square matrix is Note that if an operator

T has a block diagonal

matrix with respect to

some basis, then the

entry in any 1-by-1

block on the diagonal

of this matrix must be

an eigenvalue of T .

a block diagonal matrix because we can take the first (and only) block
to be the entire matrix. Thus to say that an operator has a block di-
agonal matrix with respect to some basis tells us nothing unless we
know something about the size of the blocks. The smaller the blocks,
the nicer the operator (in the vague sense that the matrix then contains
more 0’s). The nicest situation is to have an orthonormal basis that
gives a diagonal matrix. We have shown that this happens on a com-
plex inner-product space precisely for the normal operators (see 7.9)
and on a real inner-product space precisely for the self-adjoint opera-
tors (see 7.13).

Our next result states that each normal operator on a real inner-
product space comes close to having a diagonal matrix—specifically,
we get a block diagonal matrix with respect to some orthonormal basis,
with each block having size at most 2-by-2. We cannot expect to do bet-
ter than that because on a real inner-product space there exist normal
operators that do not have a diagonal matrix with respect to any basis.
For example, the operator T ∈ L(R2) defined by T(x,y) = (−y,x) is
normal (as you should verify) but has no eigenvalues; thus this partic-
ular T does not have even an upper-triangular matrix with respect to
any basis of R2.

Note that the matrix in 7.22 is the type of matrix promised by the
theorem below. In particular, each block of 7.22 (see 7.23) has size
at most 2-by-2 and each of the 2-by-2 blocks has the required form
(upper left entry equals lower right entry, lower left entry is positive,
and upper right entry equals the negative of lower left entry).

7.25 Theorem: Suppose that V is a real inner-product space and
T ∈ L(V). Then T is normal if and only if there is an orthonormal
basis of V with respect to which T has a block diagonal matrix where
each block is a 1-by-1 matrix or a 2-by-2 matrix of the form

7.26

[

a −b
b a

]

,

with b > 0.
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Proof: To prove the easy direction, first suppose that there is an
orthonormal basis of V such that the matrix of T is a block diagonal
matrix where each block is a 1-by-1 matrix or a 2-by-2 matrix of the
form 7.26. With respect to this basis, the matrix of T commutes with
the matrix of T∗ (which is the conjugate of the matrix of T ), as you
should verify (use formula 7.24 for the product of two block diagonal
matrices). Thus T commutes with T∗, which means that T is normal.

To prove the other direction, now suppose that T is normal. We will
prove our desired result by induction on the dimension of V . To get
started, note that our desired result clearly holds if dimV = 1 (trivially)
or if dimV = 2 (if T is self-adjoint, use the real spectral theorem 7.13;
if T is not self-adjoint, use 7.15).

Now assume that dimV > 2 and that the desired result holds on
vector spaces of smaller dimension. Let U be a subspace of V of di-
mension 1 that is invariant under T if such a subspace exists (in other
words, if T has a nonzero eigenvector, let U be the span of this eigen-
vector). If no such subspace exists, let U be a subspace of V of dimen-
sion 2 that is invariant under T (an invariant subspace of dimension 1
or 2 always exists by 5.24).

If dimU = 1, choose a vector in U with norm 1; this vector willIn a real vector space

with dimension 1, there

are precisely two

vectors with norm 1.

be an orthonormal basis of U , and of course the matrix of T |U is a
1-by-1 matrix. If dimU = 2, then T |U is normal (by 7.18) but not self-
adjoint (otherwise T |U , and hence T , would have a nonzero eigenvector;
see 7.12), and thus we can choose an orthonormal basis of U with re-
spect to which the matrix of T |U has the form 7.26 (see 7.15).

Now U⊥ is invariant under T and T |U⊥ is a normal operator on U⊥

(see 7.18). Thus by our induction hypothesis, there is an orthonormal
basis of U⊥ with respect to which the matrix of T |U⊥ has the desired
form. Adjoining this basis to the basis of U gives an orthonormal basis
of V with respect to which the matrix of T has the desired form.

Positive Operators

An operator T ∈ L(V) is called positive if T is self-adjoint andMany mathematicians

also use the term

positive semidefinite

operator, which means

the same as positive

operator.

〈Tv,v〉 ≥ 0

for all v ∈ V . Note that if V is a complex vector space, then the
condition that T be self-adjoint can be dropped from this definition
(by 7.3).
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You should verify that every orthogonal projection is positive. For
another set of examples, look at the proof of 7.11, where we showed
that if T ∈ L(V) is self-adjoint and α,β ∈ R are such that α2 < 4β,
then T 2 +αT + βI is positive.

An operator S is called a square root of an operator T if S2 = T .
For example, if T ∈ L(F3) is defined by T(z1, z2, z3) = (z3,0,0), then
the operator S ∈ L(F3) defined by S(z1, z2, z3) = (z2, z3,0) is a square
root of T .

The following theorem is the main result about positive operators. The positive operators

correspond, in some

sense, to the numbers

[0,∞), so better

terminology would call

these nonnegative

instead of positive.

However, operator

theorists consistently

call these the positive

operators, so we will

follow that custom.

Note that its characterizations of the positive operators correspond to
characterizations of the nonnegative numbers among C. Specifically,
a complex number z is nonnegative if and only if it has a nonnegative
square root, corresponding to condition (c) below. Also, z is nonnega-
tive if and only if it has a real square root, corresponding to condition
(d) below. Finally, z is nonnegative if and only if there exists a complex
number w such that z = w̄w, corresponding to condition (e) below.

7.27 Theorem: Let T ∈ L(V). Then the following are equivalent:

(a) T is positive;

(b) T is self-adjoint and all the eigenvalues of T are nonnegative;

(c) T has a positive square root;

(d) T has a self-adjoint square root;

(e) there exists an operator S ∈ L(V) such that T = S∗S.

Proof: We will prove that (a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (e) ⇒ (a).
First suppose that (a) holds, so that T is positive. Obviously T is

self-adjoint (by the definition of a positive operator). To prove the other
condition in (b), suppose that λ is an eigenvalue of T . Letv be a nonzero
eigenvector of T corresponding to λ. Then

0≤〈Tv,v〉
= 〈λv,v〉
= λ〈v,v〉,

and thus λ is a nonnegative number. Hence (b) holds.
Now suppose that (b) holds, so that T is self-adjoint and all the eigen-

values of T are nonnegative. By the spectral theorem (7.9 and 7.13),
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there is an orthonormal basis (e1, . . . , en) of V consisting of eigen-
vectors of T . Let λ1, . . . , λn be the eigenvalues of T corresponding to
e1, . . . , en, so that each λj is a nonnegative number. Define S ∈ L(V)
by

Sej =
√

λjej

for j = 1, . . . , n. Then S is a positive operator, as you should verify.
Furthermore, S2ej = λjej = Tej for each j, which implies that S2 = T .
Thus S is a positive square root of T , and hence (c) holds.

Clearly (c) implies (d) (because, by definition, every positive operator
is self-adjoint).

Now suppose that (d) holds, meaning that there exists a self-adjoint
operator S on V such that T = S2. Then T = S∗S (because S∗ = S), and
hence (e) holds.

Finally, suppose that (e) holds. Let S ∈ L(V) be such that T = S∗S.
Then T∗ = (S∗S)∗ = S∗(S∗)∗ = S∗S = T , and hence T is self-adjoint.
To complete the proof that (a) holds, note that

〈Tv,v〉 = 〈S∗Sv,v〉
= 〈Sv, Sv〉
≥0

for every v ∈ V . Thus T is positive.

Each nonnegative number has a unique nonnegative square root.
The next proposition shows that positive operators enjoy a similar
property. Because of this proposition, we can use the notation

√
T

to denote the unique positive square root of a positive operator T , just
as
√
λ denotes the unique nonnegative square root of a nonnegative

number λ.

7.28 Proposition: Every positive operator on V has a unique positiveA positive operator can

have infinitely many

square roots (though

only one of them can

be positive). For

example, the identity

operator on V has

infinitely many square

roots if dimV > 1.

square root.

Proof: Suppose T ∈ L(V) is positive. Let λ1, . . . , λm denote the
distinct eigenvalues of T ; because T is positive, all these numbers are
nonnegative (by 7.27). Because T is self-adjoint, we have

7.29 V = null(T − λ1I)⊕ · · · ⊕ null(T − λmI);

see 7.14.
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Now suppose S ∈ L(V) is a positive square root of T . Suppose α is
an eigenvalue of S. If v ∈ null(S − αI), then Sv = αv , which implies
that

7.30 Tv = S2v = α2v,

so v ∈ null(T − α2I). Thus α2 is an eigenvalue of T , which means
that α2 must equal some λj . In other words, α =

√

λj for some j.
Furthermore, 7.30 implies that

7.31 null(S −
√

λjI) ⊂ null(T − λjI).

In the paragraph above, we showed that the only possible eigenval-
ues for S are

√

λ1, . . . ,
√

λm. Because S is self-adjoint, this implies that

7.32 V = null(S −
√

λ1I)⊕ · · · ⊕ null(S −
√

λmI);

see 7.14. Now 7.29, 7.32, and 7.31 imply that

null(S −
√

λjI) = null(T − λjI)

for each j. In other words, on null(T − λjI), the operator S is just

multiplication by
√

λj . Thus S, the positive square root of T , is uniquely
determined by T .

Isometries

An operator S ∈ L(V) is called an isometry if The Greek word isos

means equal; the Greek

word metron means

measure. Thus

isometry literally

means equal measure.

‖Sv‖ = ‖v‖

for all v ∈ V . In other words, an operator is an isometry if it preserves
norms. For example, λI is an isometry whenever λ ∈ F satisfies |λ| = 1.
More generally, suppose λ1, . . . , λn are scalars with absolute value 1 and
S ∈ L(V) satisfies S(ej) = λjej for some orthonormal basis (e1, . . . , en)
of V . Suppose v ∈ V . Then

7.33 v = 〈v, e1〉e1 + · · · + 〈v, en〉en
and

7.34 ‖v‖2 = |〈v, e1〉|2 + · · · + |〈v, en〉|2,
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where we have used 6.17. Applying S to both sides of 7.33 gives

Sv = 〈v, e1〉Se1 + · · · + 〈v, en〉Sen
= λ1〈v, e1〉e1 + · · · + λn〈v, en〉en.

The last equation, along with the equation |λj| = 1, shows that

7.35 ‖Sv‖2 = |〈v, e1〉|2 + · · · + |〈v, en〉|2.

Comparing 7.34 and 7.35 shows that ‖v‖ = ‖Sv‖. In other words, S is
an isometry.

For another example, let θ ∈ R . Then the operator on R2 of coun-An isometry on a real

inner-product space is

often called an

orthogonal operator.

An isometry on a

complex inner-product

space is often called a

unitary operator. We

will use the term

isometry so that our

results can apply to

both real and complex

inner-product spaces.

terclockwise rotation (centered at the origin) by an angle of θ is an
isometry (you should find the matrix of this operator with respect to
the standard basis of R2).

If S ∈ L(V) is an isometry, then S is injective (because if Sv = 0,
then ‖v‖ = ‖Sv‖ = 0, and hence v = 0). Thus every isometry is
invertible (by 3.21).

The next theorem provides several conditions that are equivalent
to being an isometry. These equivalences have several important in-
terpretations. In particular, the equivalence of (a) and (b) shows that
an isometry preserves inner products. Because (a) implies (d), we see
that if S is an isometry and (e1, . . . , en) is an orthonormal basis of V ,
then the columns of the matrix of S (with respect to this basis) are or-
thonormal; because (e) implies (a), we see that the converse also holds.
Because (a) is equivalent to conditions (i) and (j), we see that in the last
sentence we can replace “columns” with “rows”.

7.36 Theorem: Suppose S ∈ L(V). Then the following are equiva-
lent:

(a) S is an isometry;

(b) 〈Su, Sv〉 = 〈u,v〉 for all u,v ∈ V ;

(c) S∗S = I;
(d) (Se1, . . . , Sen) is orthonormal whenever (e1, . . . , en) is an ortho-

normal list of vectors in V ;

(e) there exists an orthonormal basis (e1, . . . , en) of V such that
(Se1, . . . , Sen) is orthonormal;

(f) S∗ is an isometry;



Isometries 149

(g) 〈S∗u,S∗v〉 = 〈u,v〉 for all u,v ∈ V ;

(h) SS∗ = I;
(i) (S∗e1, . . . , S∗en) is orthonormal whenever (e1, . . . , en) is an or-

thonormal list of vectors in V ;

(j) there exists an orthonormal basis (e1, . . . , en) of V such that
(S∗e1, . . . , S∗en) is orthonormal.

Proof: First suppose that (a) holds. If V is a real inner-product
space, then for every u,v ∈ V we have

〈Su, Sv〉 = (‖Su+ Sv‖2 − ‖Su− Sv‖2)/4

= (‖S(u+ v)‖2 − ‖S(u− v)‖2)/4

= (‖u+ v‖2 − ‖u− v‖2)/4

= 〈u,v〉,

where the first equality comes from Exercise 6 in Chapter 6, the second
equality comes from the linearity of S, the third equality holds because
S is an isometry, and the last equality again comes from Exercise 6 in
Chapter 6. If V is a complex inner-product space, then use Exercise 7
in Chapter 6 instead of Exercise 6 to obtain the same conclusion. In
either case, we see that (a) implies (b).

Now suppose that (b) holds. Then

〈(S∗S − I)u,v〉 = 〈Su, Sv〉 − 〈u,v〉
= 0

for every u,v ∈ V . Taking v = (S∗S − I)u, we see that S∗S − I = 0.
Hence S∗S = I, proving that (b) implies (c).

Now suppose that (c) holds. Suppose (e1, . . . , en) is an orthonormal
list of vectors in V . Then

〈Sej, Sek〉 = 〈S∗Sej, ek〉
= 〈ej, ek〉.

Hence (Se1, . . . , Sen) is orthonormal, proving that (c) implies (d).
Obviously (d) implies (e).
Now suppose (e) holds. Let (e1, . . . , en) be an orthonormal basis of V

such that (Se1, . . . , Sen) is orthonormal. If v ∈ V , then
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‖Sv‖2 = ‖S(〈v, e1〉e1 + · · · + 〈v, en〉en
)‖2

= ‖〈v, e1〉Se1 + · · · + 〈v, en〉Sen‖2

= |〈v, e1〉|2 + · · · + |〈v, en〉|2
= ‖v‖2,

where the first and last equalities come from 6.17. Taking square roots,
we see that S is an isometry, proving that (e) implies (a).

Having shown that (a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (e) ⇒ (a), we know at this
stage that (a) through (e) are all equivalent to each other. Replacing S
with S∗, we see that (f) through (j) are all equivalent to each other. Thus
to complete the proof, we need only show that one of the conditions
in the group (a) through (e) is equivalent to one of the conditions in
the group (f) through (j). The easiest way to connect the two groups of
conditions is to show that (c) is equivalent to (h). In general, of course,
S need not commute with S∗. However, S∗S = I if and only if SS∗ = I;
this is a special case of Exercise 23 in Chapter 3. Thus (c) is equivalent
to (h), completing the proof.

The last theorem shows that every isometry is normal (see (a), (c),
and (h) of 7.36). Thus the characterizations of normal operators can
be used to give complete descriptions of isometries. We do this in the
next two theorems.

7.37 Theorem: Suppose V is a complex inner-product space and
S ∈ L(V). Then S is an isometry if and only if there is an orthonormal
basis of V consisting of eigenvectors of S all of whose corresponding
eigenvalues have absolute value 1.

Proof: We already proved (see the first paragraph of this section)
that if there is an orthonormal basis of V consisting of eigenvectors of S
all of whose eigenvalues have absolute value 1, then S is an isometry.

To prove the other direction, suppose S is an isometry. By the com-
plex spectral theorem (7.9), there is an orthonormal basis (e1, . . . , en)
of V consisting of eigenvectors of S. For j ∈ {1, . . . , n}, let λj be the
eigenvalue corresponding to ej . Then

|λj| = ‖λjej‖ = ‖Sej‖ = ‖ej‖ = 1.

Thus each eigenvalue of S has absolute value 1, completing the proof.
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If θ ∈ R , then the operator on R2 of counterclockwise rotation (cen-
tered at the origin) by an angle of θ has matrix 7.39 with respect to
the standard basis, as you should verify. The next result states that ev-
ery isometry on a real inner-product space is composed of pieces that
look like rotations on two-dimensional subspaces, pieces that equal the
identity operator, and pieces that equal multiplication by −1.

7.38 Theorem: Suppose that V is a real inner-product space and This theorem implies

that an isometry on an

odd-dimensional real

inner-product space

must have 1 or −1 as

an eigenvalue.

S ∈ L(V). Then S is an isometry if and only if there is an orthonormal
basis of V with respect to which S has a block diagonal matrix where
each block on the diagonal is a 1-by-1 matrix containing 1 or −1 or a
2-by-2 matrix of the form

7.39

[

cosθ − sinθ
sinθ cosθ

]

,

with θ ∈ (0, π).

Proof: First suppose that S is an isometry. Because S is normal,
there is an orthonormal basis of V such that with respect to this basis
S has a block diagonal matrix, where each block is a 1-by-1 matrix or a
2-by-2 matrix of the form

7.40

[

a −b
b a

]

,

with b > 0 (see 7.25).
If λ is an entry in a 1-by-1 along the diagonal of the matrix of S (with

respect to the basis mentioned above), then there is a basis vector ej
such that Sej = λej . Because S is an isometry, this implies that |λ| = 1.
Thus λ = 1 or λ = −1 because these are the only real numbers with
absolute value 1.

Now consider a 2-by-2 matrix of the form 7.40 along the diagonal of
the matrix of S. There are basis vectors ej, ej+1 such that

Sej = aej + bej+1.

Thus
1 = ‖ej‖2 = ‖Sej‖2 = a2 + b2.

The equation above, along with the condition b > 0, implies that there
exists a number θ ∈ (0, π) such that a = cosθ and b = sinθ. Thus the
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matrix 7.40 has the required form 7.39, completing the proof in this
direction.

Conversely, now suppose that there is an orthonormal basis of V
with respect to which the matrix of S has the form required by the
theorem. Thus there is a direct sum decomposition

V = U1 ⊕ · · · ⊕Um,
where each Uj is a subspace of V of dimension 1 or 2. Furthermore,
any two vectors belonging to distinct U ’s are orthogonal, and each S|Uj
is an isometry mapping Uj into Uj . If v ∈ V , we can write

v = u1 + · · · +um,
where each uj ∈ Uj . Applying S to the equation above and then taking
norms gives

‖Sv‖2 = ‖Su1 + · · · + Sum‖2

= ‖Su1‖2 + · · · + ‖Sum‖2

= ‖u1‖2 + · · · + ‖um‖2

= ‖v‖2.

Thus S is an isometry, as desired.

Polar and Singular-Value Decompositions

Recall our analogy between C and L(V). Under this analogy, a com-
plex number z corresponds to an operator T , and z̄ corresponds to T∗.
The real numbers correspond to the self-adjoint operators, and the non-
negative numbers correspond to the (badly named) positive operators.
Another distinguished subset of C is the unit circle, which consists of
the complex numbers z such that |z| = 1. The condition |z| = 1 is
equivalent to the condition z̄z = 1. Under our analogy, this would cor-
respond to the condition T∗T = I, which is equivalent to T being an
isometry (see 7.36). In other words, the unit circle in C corresponds to
the isometries.

Continuing with our analogy, note that each complex number z ex-
cept 0 can be written in the form

z =
(

z
|z|
)

|z| =
(

z
|z|
)

√

z̄z,
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where the first factor, namely, z/|z|, is an element of the unit circle. Our
analogy leads us to guess that any operator T ∈ L(V) can be written
as an isometry times

√
T∗T . That guess is indeed correct, as we now

prove.

7.41 Polar Decomposition: If T ∈ L(V), then there exists an isom- If you know a bit of

complex analysis, you

will recognize the

analogy to polar

coordinates for

complex numbers:

every complex number

can be written in the

form eθir , where

θ ∈ [0,2π) and r ≥ 0.

Note that eθi is in the

unit circle,

corresponding to S
being an isometry, and

r is nonnegative,

corresponding to√
T∗T being a positive

operator.

etry S ∈ L(V) such that
T = S√T∗T .

Proof: Suppose T ∈ L(V). If v ∈ V , then

‖Tv‖2 = 〈Tv, Tv〉
= 〈T∗Tv,v〉
= 〈√T∗T√T∗Tv,v〉
= 〈√T∗Tv,√T∗Tv〉
= ‖√T∗Tv‖2.

Thus

7.42 ‖Tv‖ = ‖√T∗Tv‖

for all v ∈ V .
Define a linear map S1 : range

√
T∗T → rangeT by

7.43 S1(
√
T∗Tv) = Tv.

The idea of the proof is to extend S1 to an isometry S ∈ L(V) such that
T = S√T∗T . Now for the details.

First we must check that S1 is well defined. To do this, suppose
v1, v2 ∈ V are such that

√
T∗Tv1 =

√
T∗Tv2. For the definition given

by 7.43 to make sense, we must show that Tv1 = Tv2. However,

‖Tv1 − Tv2‖ = ‖T(v1 − v2)‖
= ‖√T∗T(v1 − v2)‖
= ‖√T∗Tv1 −

√
T∗Tv2‖

= 0,

where the second equality holds by 7.42. The equation above shows
that Tv1 = Tv2, so S1 is indeed well defined. You should verify that S1

is a linear map.
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We see from 7.43 that S1 maps range
√
T∗T onto rangeT . ClearlyIn the rest of the proof

all we are doing is

extending S1 to an

isometry S on all of V .

7.42 and 7.43 imply that ‖S1u‖ = ‖u‖ for all u ∈ range
√
T∗T . In

particular, S1 is injective. Thus from 3.4, applied to S1, we have

dim range
√
T∗T = dim rangeT .

This implies that dim(range
√
T∗T)⊥ = dim(rangeT)⊥ (see Exercise 15

in Chapter 6). Thus orthonormal bases (e1, . . . , em) of (range
√
T∗T)⊥

and (f1, . . . , fm) of (rangeT)⊥ can be chosen; the key point here is that
these two orthonormal bases have the same length. Define a linear map
S2 : (range

√
T∗T)⊥ → (rangeT)⊥ by

S2(a1e1 + · · · + amem) = a1f1 + · · · + amfm.

Obviously ‖S2w‖ = ‖w‖ for all w ∈ (range
√
T∗T)⊥.

Now let S be the operator on V that equals S1 on range
√
T∗T and

equals S2 on (range
√
T∗T)⊥. More precisely, recall that each v ∈ V

can be written uniquely in the form

7.44 v = u+w,

where u ∈ range
√
T∗T and w ∈ (range

√
T∗T)⊥ (see 6.29). For v ∈ V

with decomposition as above, define Sv by

Sv = S1u+ S2w.

For each v ∈ V we have

S(
√
T∗Tv) = S1(

√
T∗Tv) = Tv,

so T = S√T∗T , as desired. All that remains is to show that S is an isom-
etry. However, this follows easily from the two uses of the Pythagorean
theorem: if v ∈ V has decomposition as in 7.44, then

‖Sv‖2 = ‖S1u+ S2w‖2

= ‖S1u‖2 + ‖S2w‖2

= ‖u‖2 + ‖w‖2

= ‖v‖2,

where the second equality above holds because S1u ∈ rangeT and
S2u ∈ (rangeT)⊥.
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The polar decomposition (7.41) states that each operator on V is the
product of an isometry and a positive operator. Thus we can write each
operator on V as the product of two operators, each of which comes
from a class that we have completely described and that we under-
stand reasonably well. The isometries are described by 7.37 and 7.38;
the positive operators (which are all self-adjoint) are described by the
spectral theorem (7.9 and 7.13).

Specifically, suppose T = S
√
T∗T is the polar decomposition of

T ∈ L(V), where S is an isometry. Then there is an orthonormal basis
of V with respect to which S has a diagonal matrix (if F = C) or a block
diagonal matrix with blocks of size at most 2-by-2 (if F = R), and there
is an orthonormal basis of V with respect to which

√
T∗T has a diag-

onal matrix. Warning: there may not exist an orthonormal basis that
simultaneously puts the matrices of both S and

√
T∗T into these nice

forms (diagonal or block diagonal with small blocks). In other words, S
may require one orthonormal basis and

√
T∗T may require a different

orthonormal basis.
Suppose T ∈ L(V). The singular values of T are the eigenvalues

of
√
T∗T , with each eigenvalue λ repeated dim null(

√
T∗T − λI) times.

The singular values of T are all nonnegative because they are the eigen-
values of the positive operator

√
T∗T .

For example, if T ∈ L(F4) is defined by

7.45 T(z1, z2, z3, z4) = (0,3z1,2z2,−3z4),

then T∗T(z1, z2, z3, z4) = (9z1,4z2,0,9z4), as you should verify. Thus
√
T∗T(z1, z2, z3, z4) = (3z1,2z2,0,3z4),

and we see that the eigenvalues of
√
T∗T are 3,2,0. Clearly

dim null(
√
T∗T−3I) = 2, dim null(

√
T∗T−2I) = 1, dim null

√
T∗T = 1.

Hence the singular values of T are 3,3,2,0. In this example −3 and 0
are the only eigenvalues of T , as you should verify.

Each T ∈ L(V) has dimV singular values, as can be seen by applying
the spectral theorem and 5.21 (see especially part (e)) to the positive
(hence self-adjoint) operator

√
T∗T . For example, the operator T de-

fined by 7.45 on the four-dimensional vector space F4 has four singular
values (they are 3,3,2,0), as we saw in the previous paragraph.

The next result shows that every operator on V has a nice descrip-
tion in terms of its singular values and two orthonormal bases of V .
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7.46 Singular-Value Decomposition: Suppose T ∈ L(V) has sin-
gular values s1, . . . , sn. Then there exist orthonormal bases (e1, . . . , en)
and (f1, . . . , fn) of V such that

7.47 Tv = s1〈v, e1〉f1 + · · · + sn〈v, en〉fn
for every v ∈ V .

Proof: By the spectral theorem (also see 7.14) applied to
√
T∗T ,

there is an orthonormal basis (e1, . . . , en) of V such that
√
T∗Tej = sjej

for j = 1, . . . , n. We have

v = 〈v, e1〉e1 + · · · + 〈v, en〉en
for every v ∈ V (see 6.17). Apply

√
T∗T to both sides of this equation,

getting √
T∗Tv = s1〈v, e1〉e1 + · · · + sn〈v, en〉en

for every v ∈ V . By the polar decomposition (see 7.41), there is anThis proof illustrates

the usefulness of the

polar decomposition.

isometry S ∈ L(V) such that T = S√T∗T . Apply S to both sides of the
equation above, getting

Tv = s1〈v, e1〉Se1 + · · · + sn〈v, en〉Sen
for every v ∈ V . For each j, let fj = Sej . Because S is an isometry,
(f1, . . . , fn) is an orthonormal basis of V (see 7.36). The equation above
now becomes

Tv = s1〈v, e1〉f1 + · · · + sn〈v, en〉fn
for every v ∈ V , completing the proof.

When we worked with linear maps from one vector space to a second
vector space, we considered the matrix of a linear map with respect
to a basis for the first vector space and a basis for the second vector
space. When dealing with operators, which are linear maps from a
vector space to itself, we almost always use only one basis, making it
play both roles.

The singular-value decomposition allows us a rare opportunity to
use two different bases for the matrix of an operator. To do this, sup-
pose T ∈ L(V). Let s1, . . . , sn denote the singular values of T , and let
(e1, . . . , en) and (f1, . . . , fn) be orthonormal bases of V such that the
singular-value decomposition 7.47 holds. Then clearly
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M(

T , (e1, . . . , en), (f1, . . . , fn)
) =









s1 0
. . .

0 sn








.

In other words, every operator on V has a diagonal matrix with respect
to some orthonormal bases of V , provided that we are permitted to
use two different bases rather than a single basis as customary when
working with operators.

Singular values and the singular-value decomposition have many ap-
plications (some are given in the exercises), including applications in
computational linear algebra. To compute numeric approximations to
the singular values of an operator T , first compute T∗T and then com-
pute approximations to the eigenvalues of T∗T (good techniques exist
for approximating eigenvalues of positive operators). The nonnegative
square roots of these (approximate) eigenvalues of T∗T will be the (ap-
proximate) singular values of T (as can be seen from the proof of 7.28).
In other words, the singular values of T can be approximated without
computing the square root of T∗T .
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Exercises

1. Make P2(R) into an inner-product space by defining

〈p,q〉 =
∫ 1

0
p(x)q(x)dx.

Define T ∈ L(P2(R)) by T(a0 + a1x + a2x2) = a1x.

(a) Show that T is not self-adjoint.

(b) The matrix of T with respect to the basis (1, x, x2) is






0 0 0
0 1 0
0 0 0





 .

This matrix equals its conjugate transpose, even though T
is not self-adjoint. Explain why this is not a contradiction.

2. Prove or give a counterexample: the product of any two self-
adjoint operators on a finite-dimensional inner-product space is
self-adjoint.

3. (a) Show that if V is a real inner-product space, then the set
of self-adjoint operators on V is a subspace of L(V).

(b) Show that if V is a complex inner-product space, then the
set of self-adjoint operators on V is not a subspace of
L(V).

4. Suppose P ∈ L(V) is such that P2 = P . Prove that P is an orthog-
onal projection if and only if P is self-adjoint.

5. Show that if dimV ≥ 2, then the set of normal operators on V is
not a subspace of L(V).

6. Prove that if T ∈ L(V) is normal, then

rangeT = rangeT∗.

7. Prove that if T ∈ L(V) is normal, then

nullTk = nullT and rangeTk = rangeT

for every positive integer k.
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8. Prove that there does not exist a self-adjoint operator T ∈ L(R3)
such that T(1,2,3) = (0,0,0) and T(2,5,7) = (2,5,7).

9. Prove that a normal operator on a complex inner-product space Exercise 9 strengthens

the analogy (for normal

operators) between

self-adjoint operators

and real numbers.

is self-adjoint if and only if all its eigenvalues are real.

10. Suppose V is a complex inner-product space and T ∈ L(V) is a
normal operator such that T 9 = T 8. Prove that T is self-adjoint
and T 2 = T .

11. Suppose V is a complex inner-product space. Prove that every
normal operator on V has a square root. (An operator S ∈ L(V)
is called a square root of T ∈ L(V) if S2 = T .)

12. Give an example of a real inner-product space V and T ∈ L(V) This exercise shows

that the hypothesis

that T is self-adjoint is

needed in 7.11, even

for real vector spaces.

and real numbers α,β with α2 < 4β such that T 2 + αT + βI is
not invertible.

13. Prove or give a counterexample: every self-adjoint operator on
V has a cube root. (An operator S ∈ L(V) is called a cube root
of T ∈ L(V) if S3 = T .)

14. Suppose T ∈ L(V) is self-adjoint, λ ∈ F, and ε > 0. Prove that if
there exists v ∈ V such that ‖v‖ = 1 and

‖Tv − λv‖ < ε,

then T has an eigenvalue λ′ such that |λ− λ′| < ε.

15. Suppose U is a finite-dimensional real vector space and T ∈
L(U). Prove that U has a basis consisting of eigenvectors of T if
and only if there is an inner product on U that makes T into a
self-adjoint operator.

16. Give an example of an operator T on an inner product space such This exercise shows

that 7.18 can fail

without the hypothesis

that T is normal.

that T has an invariant subspace whose orthogonal complement
is not invariant under T .

17. Prove that the sum of any two positive operators on V is positive.

18. Prove that if T ∈ L(V) is positive, then so is Tk for every positive
integer k.
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19. Suppose that T is a positive operator on V . Prove that T is in-
vertible if and only if

〈Tv,v〉 > 0

for every v ∈ V \ {0}.

20. Prove or disprove: the identity operator on F2 has infinitely many
self-adjoint square roots.

21. Prove or give a counterexample: if S ∈ L(V) and there exists
an orthonormal basis (e1, . . . , en) of V such that ‖Sej‖ = 1 for
each ej , then S is an isometry.

22. Prove that if S ∈ L(R3) is an isometry, then there exists a nonzero
vector x ∈ R3 such that S2x = x.

23. Define T ∈ L(F3) by

T(z1, z2, z3) = (z3,2z1,3z2).

Find (explicitly) an isometry S ∈ L(F3) such that T = S√T∗T .

24. Suppose T ∈ L(V), S ∈ L(V) is an isometry, and R ∈ L(V) is aExercise 24 shows that

if we write T as the

product of an isometry

and a positive operator

(as in the polar

decomposition), then

the positive operator

must equal
√
T∗T .

positive operator such that T = SR. Prove that R = √T∗T .

25. Suppose T ∈ L(V). Prove that T is invertible if and only if there
exists a unique isometry S ∈ L(V) such that T = S√T∗T .

26. Prove that if T ∈ L(V) is self-adjoint, then the singular values
of T equal the absolute values of the eigenvalues of T (repeated
appropriately).

27. Prove or give a counterexample: if T ∈ L(V), then the singular
values of T 2 equal the squares of the singular values of T .

28. Suppose T ∈ L(V). Prove that T is invertible if and only if 0 is
not a singular value of T .

29. Suppose T ∈ L(V). Prove that dim rangeT equals the number of
nonzero singular values of T .

30. Suppose S ∈ L(V). Prove that S is an isometry if and only if all
the singular values of S equal 1.
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31. Suppose T1, T2 ∈ L(V). Prove that T1 and T2 have the same
singular values if and only if there exist isometries S1, S2 ∈ L(V)
such that T1 = S1T2S2.

32. Suppose T ∈ L(V) has singular-value decomposition given by

Tv = s1〈v, e1〉f1 + · · · + sn〈v, en〉fn
for every v ∈ V , where s1, . . . , sn are the singular values of T and
(e1, . . . , en) and (f1, . . . , fn) are orthonormal bases of V .

(a) Prove that

T∗v = s1〈v, f1〉e1 + · · · + sn〈v, fn〉en
for every v ∈ V .

(b) Prove that if T is invertible, then

T−1v = 〈v, f1〉e1

s1
+ · · · + 〈v, fn〉en

sn

for every v ∈ V .

33. Suppose T ∈ L(V). Let ŝ denote the smallest singular value of T ,
and let s denote the largest singular value of T . Prove that

ŝ‖v‖ ≤ ‖Tv‖ ≤ s‖v‖

for every v ∈ V .

34. Suppose T ′, T ′′ ∈ L(V). Let s′ denote the largest singular value
of T ′, let s′′ denote the largest singular value of T ′′, and let s
denote the largest singular value of T ′+T ′′. Prove that s ≤ s′+s′′.



Chapter 8

Operators on
Complex Vector Spaces

In this chapter we delve deeper into the structure of operators on
complex vector spaces. An inner product does not help with this ma-
terial, so we return to the general setting of a finite-dimensional vector
space (as opposed to the more specialized context of an inner-product
space). Thus our assumptions for this chapter are as follows:

Recall that F denotes R or C.
Also, V is a finite-dimensional, nonzero vector space over F.

Some of the results in this chapter are valid on real vector spaces,
so we have not assumed that V is a complex vector space. Most of the
results in this chapter that are proved only for complex vector spaces
have analogous results on real vector spaces that are proved in the next
chapter. We deal with complex vector spaces first because the proofs
on complex vector spaces are often simpler than the analogous proofs
on real vector spaces.

✽ ✽ ✽
✽ ✽ ✽ ✽ ✽
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Generalized Eigenvectors

Unfortunately some operators do not have enough eigenvectors to
lead to a good description. Thus in this section we introduce the con-
cept of generalized eigenvectors, which will play a major role in our
description of the structure of an operator.

To understand why we need more than eigenvectors, let’s examine
the question of describing an operator by decomposing its domain into
invariant subspaces. Fix T ∈ L(V). We seek to describe T by finding a
“nice” direct sum decomposition

8.1 V = U1 ⊕ · · · ⊕Um,
where each Uj is a subspace of V invariant under T . The simplest pos-
sible nonzero invariant subspaces are one-dimensional. A decompo-
sition 8.1 where each Uj is a one-dimensional subspace of V invariant
under T is possible if and only ifV has a basis consisting of eigenvectors
of T (see 5.21). This happens if and only if V has the decomposition

8.2 V = null(T − λ1I)⊕ · · · ⊕ null(T − λmI),
where λ1, . . . , λm are the distinct eigenvalues of T (see 5.21).

In the last chapter we showed that a decomposition of the form
8.2 holds for every self-adjoint operator on an inner-product space
(see 7.14). Sadly, a decomposition of the form 8.2 may not hold for
more general operators, even on a complex vector space. An exam-
ple was given by the operator in 5.19, which does not have enough
eigenvectors for 8.2 to hold. Generalized eigenvectors, which we now
introduce, will remedy this situation. Our main goal in this chapter is
to show that if V is a complex vector space and T ∈ L(V), then

V = null(T − λ1I)dimV ⊕ · · · ⊕ null(T − λmI)dimV ,

where λ1, . . . , λm are the distinct eigenvalues of T (see 8.23).
Suppose T ∈ L(V) and λ is an eigenvalue of T . A vector v ∈ V is

called a generalized eigenvector of T corresponding to λ if

8.3 (T − λI)jv = 0

for some positive integer j. Note that every eigenvector of T is a gen-
eralized eigenvector of T (take j = 1 in the equation above), but the
converse is not true. For example, if T ∈ L(C3) is defined by
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T(z1, z2, z3) = (z2,0, z3),

then T 2(z1, z2,0) = 0 for all z1, z2 ∈ C. Hence every element of C3

whose last coordinate equals 0 is a generalized eigenvector of T . As
you should verify,

C3 = {(z1, z2,0) : z1, z2 ∈ C} ⊕ {(0,0, z3) : z3 ∈ C},

where the first subspace on the right equals the set of generalized eigen-
vectors for this operator corresponding to the eigenvalue 0 and the sec-
ond subspace on the right equals the set of generalized eigenvectors
corresponding to the eigenvalue 1. Later in this chapter we will prove
that a decomposition using generalized eigenvectors exists for every
operator on a complex vector space (see 8.23).

Though j is allowed to be an arbitrary integer in the definition of a Note that we do not

define the concept of a

generalized eigenvalue

because this would not

lead to anything new.

Reason: if (T − λI)j is

not injective for some

positive integer j, then

T − λI is not injective,

and hence λ is an

eigenvalue of T .

generalized eigenvector, we will soon see that every generalized eigen-
vector satisfies an equation of the form 8.3 with j equal to the dimen-
sion of V . To prove this, we now turn to a study of null spaces of
powers of an operator.

Suppose T ∈ L(V) and k is a nonnegative integer. If Tkv = 0, then
Tk+1v = T(Tkv) = T(0) = 0. Thus nullTk ⊂ nullTk+1. In other words,
we have

8.4 {0} = nullT 0 ⊂ nullT 1 ⊂ · · · ⊂ nullTk ⊂ nullTk+1 ⊂ · · · .

The next proposition says that once two consecutive terms in this se-
quence of subspaces are equal, then all later terms in the sequence are
equal.

8.5 Proposition: If T ∈ L(V) and m is a nonnegative integer such
that nullTm = nullTm+1, then

nullT 0 ⊂ nullT 1 ⊂ · · · ⊂ nullTm = nullTm+1 = nullTm+2 = · · · .

Proof: Suppose T ∈ L(V) and m is a nonnegative integer such
that nullTm = nullTm+1. Let k be a positive integer. We want to prove
that

nullTm+k = nullTm+k+1.

We already know that nullTm+k ⊂ nullTm+k+1. To prove the inclusion
in the other direction, suppose that v ∈ nullTm+k+1. Then
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0 = Tm+k+1v = Tm+1(Tkv).

Hence
Tkv ∈ nullTm+1 = nullTm.

Thus 0 = Tm(Tkv) = Tm+kv , which means that v ∈ nullTm+k. This
implies that nullTm+k+1 ⊂ nullTm+k, completing the proof.

The proposition above raises the question of whether there must ex-
ist a nonnegative integer m such that nullTm = nullTm+1. The propo-
sition below shows that this equality holds at least when m equals the
dimension of the vector space on which T operates.

8.6 Proposition: If T ∈ L(V), then

nullT dimV = nullT dimV+1 = nullT dimV+2 = · · · .

Proof: Suppose T ∈ L(V). To get our desired conclusion, we need
only prove that nullT dimV = nullT dimV+1 (by 8.5). Suppose this is not
true. Then, by 8.5, we have

{0} = nullT 0 ⊊ nullT 1 ⊊ · · · ⊊ nullT dimV ⊊ nullT dimV+1,

where the symbol ⊊ means “contained in but not equal to”. At each of
the strict inclusions in the chain above, the dimension must increase by
at least 1. Thus dim nullT dimV+1 ≥ dimV + 1, a contradiction because
a subspace of V cannot have a larger dimension than dimV .

Now we have the promised description of generalized eigenvectors.

8.7 Corollary: Suppose T ∈ L(V) and λ is an eigenvalue of T . ThenThis corollary implies

that the set of

generalized

eigenvectors of

T ∈ L(V)
corresponding to an

eigenvalue λ is a

subspace of V .

the set of generalized eigenvectors of T corresponding to λ equals
null(T − λI)dimV .

Proof: If v ∈ null(T − λI)dimV , then clearly v is a generalized
eigenvector of T corresponding to λ (by the definition of generalized
eigenvector).

Conversely, suppose that v ∈ V is a generalized eigenvector of T
corresponding to λ. Thus there is a positive integer j such that

v ∈ null(T − λI)j.
From 8.5 and 8.6 (with T −λI replacing T ), we get v ∈ null(T −λI)dimV ,
as desired.
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An operator is called nilpotent if some power of it equals 0. For The Latin word nil

means nothing or zero;

the Latin word potent

means power. Thus

nilpotent literally

means zero power.

example, the operator N ∈ L(F4) defined by

N(z1, z2, z3, z4) = (z3, z4,0,0)

is nilpotent because N2 = 0. As another example, the operator of dif-
ferentiation on Pm(R) is nilpotent because the (m+ 1)st derivative of
any polynomial of degree at mostm equals 0. Note that on this space of
dimension m+ 1, we need to raise the nilpotent operator to the power
m + 1 to get 0. The next corollary shows that we never need to use a
power higher than the dimension of the space.

8.8 Corollary: Suppose N ∈ L(V) is nilpotent. Then NdimV = 0.

Proof: Because N is nilpotent, every vector in V is a generalized
eigenvector corresponding to the eigenvalue 0. Thus from 8.7 we see
that nullNdimV = V , as desired.

Having dealt with null spaces of powers of operators, we now turn
our attention to ranges. Suppose T ∈ L(V) and k is a nonnegative
integer. If w ∈ rangeTk+1, then there exists v ∈ V with

w = Tk+1v = Tk(Tv) ∈ rangeTk.

Thus rangeTk+1 ⊂ rangeTk. In other words, we have

These inclusions go in

the opposite direction

from the corresponding

inclusions for null

spaces (8.4).

V = rangeT 0 ⊃ rangeT 1 ⊃ · · · ⊃ rangeTk ⊃ rangeTk+1 ⊃ · · · .
The proposition below shows that the inclusions above become equal-
ities once the power reaches the dimension of V .

8.9 Proposition: If T ∈ L(V), then

rangeT dimV = rangeT dimV+1 = rangeT dimV+2 = · · · .

Proof: We could prove this from scratch, but instead let’s make use
of the corresponding result already proved for null spaces. Suppose
m > dimV . Then

dim rangeTm = dimV − dim nullTm

= dimV − dim nullTdimV

= dim rangeT dimV ,
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where the first and third equalities come from 3.4 and the second equal-
ity comes from 8.6. We already know that rangeT dimV ⊃ rangeTm. We
just showed that dim rangeT dimV = dim rangeTm, so this implies that
rangeT dimV = rangeTm, as desired.

The Characteristic Polynomial

Suppose V is a complex vector space and T ∈ L(V). We know that
V has a basis with respect to which T has an upper-triangular matrix
(see 5.13). In general, this matrix is not unique—V may have many
different bases with respect to which T has an upper-triangular matrix,
and with respect to these different bases we may get different upper-
triangular matrices. However, the diagonal of any such matrix must
contain precisely the eigenvalues of T (see 5.18). Thus if T has dimV
distinct eigenvalues, then each one must appear exactly once on the
diagonal of any upper-triangular matrix of T .

What if T has fewer than dimV distinct eigenvalues, as can easily
happen? Then each eigenvalue must appear at least once on the diag-
onal of any upper-triangular matrix of T , but some of them must be
repeated. Could the number of times that a particular eigenvalue is
repeated depend on which basis of V we choose?

You might guess that a number λ appears on the diagonal of anIf T happens to have a

diagonal matrix A with

respect to some basis,

then λ appears on the

diagonal of A precisely

dim null(T − λI) times,

as you should verify.

upper-triangular matrix of T precisely dim null(T − λI) times. In gen-
eral, this is false. For example, consider the operator on C2 whose
matrix with respect to the standard basis is the upper-triangular matrix

[

5 1
0 5

]

.

For this operator, dim null(T − 5I) = 1 but 5 appears on the diago-
nal twice. Note, however, that dim null(T − 5I)2 = 2 for this oper-
ator. This example illustrates the general situation—a number λ ap-
pears on the diagonal of an upper-triangular matrix of T precisely
dim null(T − λI)dimV times, as we will show in the following theorem.
Because null(T −λI)dimV depends only on T and λ and not on a choice
of basis, this implies that the number of times an eigenvalue is repeated
on the diagonal of an upper-triangular matrix of T is independent of
which particular basis we choose. This result will be our key tool in
analyzing the structure of an operator on a complex vector space.
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8.10 Theorem: Let T ∈ L(V) and λ ∈ F . Then for every basis of V
with respect to which T has an upper-triangular matrix, λ appears on
the diagonal of the matrix of T precisely dim null(T − λI)dimV times.

Proof: We will assume, without loss of generality, that λ = 0 (once
the theorem is proved in this case, the general case is obtained by re-
placing T with T − λI).

For convenience letn = dimV . We will prove this theorem by induc-
tion onn. Clearly the desired result holds ifn = 1. Thus we can assume
that n > 1 and that the desired result holds on spaces of dimension
n− 1.

Suppose (v1, . . . , vn) is a basis of V with respect to which T has an
upper-triangular matrix Recall that an asterisk

is often used in

matrices to denote

entries that we do not

know or care about.
8.11















λ1 ∗
. . .

λn−1

0 λn















.

Let U = span(v1, . . . , vn−1). Clearly U is invariant under T (see 5.12),
and the matrix of T |U with respect to the basis (v1, . . . , vn−1) is

8.12









λ1 ∗
. . .

0 λn−1








.

Thus, by our induction hypothesis, 0 appears on the diagonal of 8.12
dim null(T |U)n−1 times. We know that null(T |U)n−1 = null(T |U)n (be-
cause U has dimension n− 1; see 8.6). Hence

8.13 0 appears on the diagonal of 8.12 dim null(T |U)n times.

The proof breaks into two cases, depending on whether λn = 0. First
consider the case where λn �= 0. We will show that in this case

8.14 nullTn ⊂ U.

Once this has been verified, we will know that nullTn = null(T |U)n, and
hence 8.13 will tell us that 0 appears on the diagonal of 8.11 exactly
dim nullTn times, completing the proof in the case where λn �= 0.

Because M(T) is given by 8.11, we have
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M(Tn) =M(T)n =















λ1
n ∗

. . .

λn−1
n

0 λnn















.

This shows that
Tnvn = u+ λnnvn

for some u ∈ U . To prove 8.14 (still assuming that λn �= 0), suppose
v ∈ nullTn. We can write v in the form

v = ũ+ avn,

where ũ ∈ U and a ∈ F. Thus

0 = Tnv = Tnũ+ aTnvn = Tnũ+ au+ aλnnvn.

Because Tnũ and au are in U and vn ∉ U , this implies that aλnn = 0.
However, λn �= 0, so a = 0. Thus v = ũ ∈ U , completing the proof
of 8.14.

Now consider the case where λn = 0. In this case we will show that

8.15 dim nullTn = dim null(T |U)n + 1,

which along with 8.13 will complete the proof when λn = 0.
Using the formula for the dimension of the sum of two subspaces

(2.18), we have

dim nullTn = dim(U ∩ nullTn)+ dim(U + nullTn)− dimU

= dim null(T |U)n + dim(U + nullTn)− (n− 1).

Suppose we can prove that nullTn contains a vector not in U . Then

n = dimV ≥ dim(U + nullTn) > dimU = n− 1,

which implies that dim(U + nullTn) = n, which when combined with
the formula above for dim nullTn gives 8.15, as desired. Thus to com-
plete the proof, we need only show that nullTn contains a vector not
in U .

Let’s think about how we might find a vector in nullTn that is not
in U . We might try a vector of the form

u− vn,
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where u ∈ U . At least we are guaranteed that any such vector is not
in U . Can we choose u ∈ U such that the vector above is in nullTn?
Let’s compute:

Tn(u− vn) = Tnu− Tnvn.
To make the above vector equal 0, we must choose (if possible) u ∈ U
such that Tnu = Tnvn. We can do this if Tnvn ∈ range(T |U)n. Because
8.11 is the matrix of T with respect to (v1, . . . , vn), we see that Tvn ∈ U
(recall that we are considering the case where λn = 0). Thus

Tnvn = Tn−1(Tvn) ∈ range(T |U)n−1 = range(T |U)n,

where the last equality comes from 8.9. In other words, we can indeed
choose u ∈ U such that u− vn ∈ nullTn, completing the proof.

Suppose T ∈ L(V). The multiplicity of an eigenvalue λ of T is de- Our definition of

multiplicity has a clear

connection with the

geometric behavior

of T . Most texts define

multiplicity in terms of

the multiplicity of the

roots of a certain

polynomial defined by

determinants. These

two definitions turn

out to be equivalent.

fined to be the dimension of the subspace of generalized eigenvectors
corresponding to λ. In other words, the multiplicity of an eigenvalue λ
of T equals dim null(T − λI)dimV . If T has an upper-triangular matrix
with respect to some basis of V (as always happens when F = C), then
the multiplicity of λ is simply the number of times λ appears on the
diagonal of this matrix (by the last theorem).

As an example of multiplicity, consider the operator T ∈ L(F3) de-
fined by

8.16 T(z1, z2, z3) = (0, z1,5z3).

You should verify that 0 is an eigenvalue of T with multiplicity 2, that
5 is an eigenvalue of T with multiplicity 1, and that T has no additional
eigenvalues. As another example, if T ∈ L(F3) is the operator whose
matrix is

8.17







6 7 7
0 6 7
0 0 7





 ,

then 6 is an eigenvalue of T with multiplicity 2 and 7 is an eigenvalue
of T with multiplicity 1 (this follows from the last theorem).

In each of the examples above, the sum of the multiplicities of the
eigenvalues of T equals 3, which is the dimension of the domain of T .
The next proposition shows that this always happens on a complex
vector space.
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8.18 Proposition: If V is a complex vector space and T ∈ L(V), then
the sum of the multiplicities of all the eigenvalues of T equals dimV .

Proof: Suppose V is a complex vector space and T ∈ L(V). Then
there is a basis of V with respect to which the matrix of T is upper
triangular (by 5.13). The multiplicity of λ equals the number of times λ
appears on the diagonal of this matrix (from 8.10). Because the diagonal
of this matrix has length dimV , the sum of the multiplicities of all the
eigenvalues of T must equal dimV .

Suppose V is a complex vector space and T ∈ L(V). Let λ1, . . . , λm
denote the distinct eigenvalues of T . Let dj denote the multiplicity
of λj as an eigenvalue of T . The polynomial

(z − λ1)d1 . . . (z − λm)dm

is called the characteristic polynomial of T . Note that the degree ofMost texts define the

characteristic

polynomial using

determinants. The

approach taken here,

which is considerably

simpler, leads to an

easy proof of the

Cayley-Hamilton

theorem.

the characteristic polynomial of T equals dimV (from 8.18). Obviously
the roots of the characteristic polynomial of T equal the eigenvalues
of T . As an example, the characteristic polynomial of the operator
T ∈ L(C3) defined by 8.16 equals z2(z − 5).

Here is another description of the characteristic polynomial of an
operator on a complex vector space. Suppose V is a complex vector
space and T ∈ L(V). Consider any basis of V with respect to which T
has an upper-triangular matrix of the form

8.19 M(T) =









λ1 ∗
. . .

0 λn








.

Then the characteristic polynomial of T is given by

(z − λ1) . . . (z − λn);

this follows immediately from 8.10. As an example of this procedure,
if T ∈ L(C3) is the operator whose matrix is given by 8.17, then the
characteristic polynomial of T equals (z − 6)2(z − 7).

In the next chapter we will define the characteristic polynomial of
an operator on a real vector space and prove that the next result also
holds for real vector spaces.
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8.20 Cayley-Hamilton Theorem: Suppose that V is a complex vector The English

mathematician Arthur

Cayley published three

mathematics papers

before he completed

his undergraduate

degree in 1842. The

Irish mathematician

William Hamilton was

made a professor in

1827 when he was 22

years old and still an

undergraduate!

space and T ∈ L(V). Let q denote the characteristic polynomial of T .
Then q(T) = 0.

Proof: Suppose (v1, . . . , vn) is a basis of V with respect to which
the matrix of T has the upper-triangular form 8.19. To prove that
q(T) = 0, we need only show that q(T)vj = 0 for j = 1, . . . , n. To
do this, it suffices to show that

8.21 (T − λ1I) . . . (T − λjI)vj = 0

for j = 1, . . . , n.
We will prove 8.21 by induction on j. To get started, suppose j = 1.

BecauseM(

T , (v1, . . . , vn)
)

is given by 8.19, we have Tv1 = λ1v1, giving
8.21 when j = 1.

Now suppose that 1 < j ≤ n and that

0 = (T − λ1I)v1

= (T − λ1I)(T − λ2I)v2

...

= (T − λ1I) . . . (T − λj−1I)vj−1.

Because M(

T , (v1, . . . , vn)
)

is given by 8.19, we see that

(T − λjI)vj ∈ span(v1, . . . , vj−1).

Thus, by our induction hypothesis, (T − λ1I) . . . (T − λj−1I) applied to
(T −λjI)vj gives 0. In other words, 8.21 holds, completing the proof.

Decomposition of an Operator

We saw earlier that the domain of an operator might not decompose
into invariant subspaces consisting of eigenvectors of the operator,
even on a complex vector space. In this section we will see that every
operator on a complex vector space has enough generalized eigenvec-
tors to provide a decomposition.

We observed earlier that if T ∈ L(V), then nullT is invariant un-
der T . Now we show that the null space of any polynomial of T is also
invariant under T .
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8.22 Proposition: If T ∈ L(V) and p ∈ P(F), then nullp(T) is
invariant under T .

Proof: Suppose T ∈ L(V) and p ∈ P(F). Let v ∈ nullp(T). Then
p(T)v = 0. Thus

(p(T))(Tv) = T(p(T)v) = T(0) = 0,

and hence Tv ∈ nullp(T). Thus nullp(T) is invariant under T , as
desired.

The following major structure theorem shows that every operator on
a complex vector space can be thought of as composed of pieces, each
of which is a nilpotent operator plus a scalar multiple of the identity.
Actually we have already done all the hard work, so at this point the
proof is easy.

8.23 Theorem: Suppose V is a complex vector space and T ∈ L(V).
Let λ1, . . . , λm be the distinct eigenvalues of T , and let U1, . . . , Um be
the corresponding subspaces of generalized eigenvectors. Then

(a) V = U1 ⊕ · · · ⊕Um;

(b) each Uj is invariant under T ;

(c) each (T − λjI)|Uj is nilpotent.

Proof: Note that Uj = null(T − λjI)dimV for each j (by 8.7). From
8.22 (with p(z) = (z − λj)dimV ), we get (b). Obviously (c) follows from
the definitions.

To prove (a), recall that the multiplicity of λj as an eigenvalue of T
is defined to be dimUj . The sum of these multiplicities equals dimV
(see 8.18); thus

8.24 dimV = dimU1 + · · · + dimUm.

Let U = U1 + · · · + Um. Clearly U is invariant under T . Thus we can
define S ∈ L(U) by

S = T |U .
Note that S has the same eigenvalues, with the same multiplicities, as T
because all the generalized eigenvectors of T are in U , the domain of S.
Thus applying 8.18 to S, we get
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dimU = dimU1 + · · · + dimUm.

This equation, along with 8.24, shows that dimV = dimU . Because U
is a subspace of V , this implies that V = U . In other words,

V = U1 + · · · +Um.

This equation, along with 8.24, allows us to use 2.19 to conclude that
(a) holds, completing the proof.

As we know, an operator on a complex vector space may not have
enough eigenvectors to form a basis for the domain. The next result
shows that on a complex vector space there are enough generalized
eigenvectors to do this.

8.25 Corollary: Suppose V is a complex vector space and T ∈ L(V).
Then there is a basis of V consisting of generalized eigenvectors of T .

Proof: Choose a basis for each Uj in 8.23. Put all these bases
together to form a basis of V consisting of generalized eigenvectors
of T .

Given an operator T on V , we want to find a basis of V so that the
matrix of T with respect to this basis is as simple as possible, meaning
that the matrix contains many 0’s. We begin by showing that if N is
nilpotent, we can choose a basis of V such that the matrix of N with
respect to this basis has more than half of its entries equal to 0.

8.26 Lemma: Suppose N is a nilpotent operator on V . Then there is If V is complex vector

space, a proof of this

lemma follows easily

from Exercise 6 in this

chapter, 5.13, and 5.18.

But the proof given

here uses simpler ideas

than needed to prove

5.13, and it works for

both real and complex

vector spaces.

a basis of V with respect to which the matrix of N has the form

8.27









0 ∗
. . .

0 0








;

here all entries on and below the diagonal are 0’s.

Proof: First choose a basis of nullN . Then extend this to a basis
of nullN2. Then extend to a basis of nullN3. Continue in this fashion,
eventually getting a basis of V (because nullNm = V for m sufficiently
large).
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Now let’s think about the matrix of N with respect to this basis. The
first column, and perhaps additional columns at the beginning, consists
of all 0’s because the corresponding basis vectors are in nullN . The
next set of columns comes from basis vectors in nullN2. Applying N
to any such vector, we get a vector in nullN ; in other words, we get a
vector that is a linear combination of the previous basis vectors. Thus
all nonzero entries in these columns must lie above the diagonal. The
next set of columns come from basis vectors in nullN3. Applying N
to any such vector, we get a vector in nullN2; in other words, we get a
vector that is a linear combination of the previous basis vectors. Thus,
once again, all nonzero entries in these columns must lie above the
diagonal. Continue in this fashion to complete the proof.

Note that in the next theorem we get many more zeros in the matrix
of T than are needed to make it upper triangular.

8.28 Theorem: Suppose V is a complex vector space and T ∈ L(V).
Let λ1, . . . , λm be the distinct eigenvalues of T . Then there is a basis
of V with respect to which T has a block diagonal matrix of the form









A1 0
. . .

0 Am








,

where each Aj is an upper-triangular matrix of the form

8.29 Aj =









λj ∗
. . .

0 λj








.

Proof: For j = 1, . . . ,m, let Uj denote the subspace of generalized
eigenvectors of T corresponding to λj . Thus (T − λjI)|Uj is nilpotent
(see 8.23(c)). For each j, choose a basis of Uj such that the matrix of
(T − λjI)|Uj with respect to this basis is as in 8.26. Thus the matrix of
T |Uj with respect to this basis will look like 8.29. Putting the bases for
the Uj ’s together gives a basis for V (by 8.23(a)). The matrix of T with
respect to this basis has the desired form.
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Square Roots

Recall that a square root of an operator T ∈ L(V) is an operator
S ∈ L(V) such that S2 = T . As an application of the main structure
theorem from the last section, in this section we will show that every
invertible operator on a complex vector space has a square root.

Every complex number has a square root, but not every operator on
a complex vector space has a square root. An example of an operator
on C3 that has no square root is given in Exercise 4 in this chapter.
The noninvertibility of that particular operator is no accident, as we
will soon see. We begin by showing that the identity plus a nilpotent
operator always has a square root.

8.30 Lemma: Suppose N ∈ L(V) is nilpotent. Then I + N has a
square root.

Proof: Consider the Taylor series for the function
√

1+ x:

Because a1 = 1/2, this

formula shows that

1+ x/2 is a good

estimate for
√

1+ x
when x is small.

8.31
√

1+ x = 1+ a1x + a2x2 + · · · .

We will not find an explicit formula for all the coefficients or worry
about whether the infinite sum converges because we are using this
equation only as motivation, not as a formal part of the proof.

BecauseN is nilpotent,Nm = 0 for some positive integerm. In 8.31,
suppose we replace x with N and 1 with I. Then the infinite sum on
the right side becomes a finite sum (because Nj = 0 for all j ≥m). In
other words, we guess that there is a square root of I +N of the form

I + a1N + a2N2 + · · · + am−1Nm−1.

Having made this guess, we can try to choose a1, a2, . . . , am−1 so that
the operator above has its square equal to I +N . Now

(I+a1N + a2N2 + a3N3 + · · · + am−1Nm−1)2

= I + 2a1N + (2a2 + a1
2)N2 + (2a3 + 2a1a2)N3 + · · ·

+ (2am−1 + terms involving a1, . . . , am−2)Nm−1.

We want the right side of the equation above to equal I + N . Hence
choose a1 so that 2a1 = 1 (thus a1 = 1/2). Next, choose a2 so that
2a2+a1

2 = 0 (thus a2 = −1/8). Then choose a3 so that the coefficient
of N3 on the right side of the equation above equals 0 (thus a3 = 1/16).
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Continue in this fashion for j = 4, . . . ,m − 1, at each step solving for
aj so that the coefficient of Nj on the right side of the equation above
equals 0. Actually we do not care about the explicit formula for the
aj ’s. We need only know that some choice of the aj ’s gives a square
root of I +N .

The previous lemma is valid on real and complex vector spaces.
However, the next result holds only on complex vector spaces.

8.32 Theorem: Suppose V is a complex vector space. If T ∈ L(V)On real vector spaces

there exist invertible

operators that have no

square roots. For

example, the operator

of multiplication by −1

on R has no square

root because no real

number has its square

equal to −1.

is invertible, then T has a square root.

Proof: Suppose T ∈ L(V) is invertible. Let λ1, . . . , λm be the dis-
tinct eigenvalues of T , and let U1, . . . , Um be the corresponding sub-
spaces of generalized eigenvectors. For each j, there exists a nilpotent
operator Nj ∈ L(Uj) such that T |Uj = λjI +Nj (see 8.23(c)). Because T
is invertible, none of the λj ’s equals 0, so we can write

T |Uj = λj
(

I + Nj
λj

)

for each j. Clearly Nj/λj is nilpotent, and so I + Nj/λj has a square
root (by 8.30). Multiplying a square root of the complex number λj by
a square root of I +Nj/λj , we obtain a square root Sj of T |Uj .

A typical vector v ∈ V can be written uniquely in the form

v = u1 + · · · +um,

where each uj ∈ Uj (see 8.23). Using this decomposition, define an
operator S ∈ L(V) by

Sv = S1u1 + · · · + Smum.

You should verify that this operator S is a square root of T , completing
the proof.

By imitating the techniques in this section, you should be able to
prove that if V is a complex vector space and T ∈ L(V) is invertible,
then T has a kth-root for every positive integer k.
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The Minimal Polynomial

As we will soon see, given an operator on a finite-dimensional vec-
tor space, there is a unique monic polynomial of smallest degree that A monic polynomial is

a polynomial whose

highest degree

coefficient equals 1.

For example,

2+ 3z2 + z8 is a monic

polynomial.

when applied to the operator gives 0. This polynomial is called the
minimal polynomial of the operator and is the focus of attention in
this section.

Suppose T ∈ L(V), where dimV = n. Then

(I, T , T 2, . . . , Tn
2
)

cannot be linearly independent inL(V) becauseL(V) has dimensionn2

(see 3.20) and we have n2+1 operators. Letm be the smallest positive
integer such that

8.33 (I, T , T 2, . . . , Tm)

is linearly dependent. The linear dependence lemma (2.4) implies that
one of the operators in the list above is a linear combination of the
previous ones. Because m was chosen to be the smallest positive in-
teger such that 8.33 is linearly dependent, we conclude that Tm is
a linear combination of (I, T , T 2, . . . , Tm−1). Thus there exist scalars
a0, a1, a2, . . . , am−1 ∈ F such that

a0I + a1T + a2T 2 + · · · + am−1Tm−1 + Tm = 0.

The choice of scalars a0, a1, a2, . . . , am−1 ∈ F above is unique because
two different such choices would contradict our choice ofm (subtract-
ing two different equations of the form above, we would have a linearly
dependent list shorter than 8.33). The polynomial

a0 + a1z + a2z2 + · · · + am−1zm−1 + zm

is called the minimal polynomial of T . It is the monic polynomial
p ∈ P(F) of smallest degree such that p(T) = 0.

For example, the minimal polynomial of the identity operator I is
z − 1. The minimal polynomial of the operator on F2 whose matrix
equals

[

4 1
0 5

]

is 20− 9z + z2, as you should verify.
Clearly the degree of the minimal polynomial of each operator on V

is at most (dimV)2. The Cayley-Hamilton theorem (8.20) tells us that
if V is a complex vector space, then the minimal polynomial of each
operator on V has degree at most dimV . This remarkable improvement
also holds on real vector spaces, as we will see in the next chapter.
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A polynomial p ∈ P(F) is said to divide a polynomial q ∈ P(F) if
there exists a polynomial s ∈ P(F) such that q = sp. In other words,
p divides q if we can take the remainder r in 4.6 to be 0. For exam-Note that (z − λ)

divides a polynomial q
if and only if λ is a

root of q. This follows

immediately from 4.1.

ple, the polynomial (1 + 3z)2 divides 5 + 32z + 57z2 + 18z3 because
5 + 32z + 57z2 + 18z3 = (2z + 5)(1 + 3z)2. Obviously every nonzero
constant polynomial divides every polynomial.

The next result completely characterizes the polynomials that when
applied to an operator give the 0 operator.

8.34 Theorem: Let T ∈ L(V) and let q ∈ P(F). Then q(T) = 0 if
and only if the minimal polynomial of T divides q.

Proof: Let p denote the minimal polynomial of T .

First we prove the easy direction. Suppose that p divides q. Thus
there exists a polynomial s ∈ P(F) such that q = sp. We have

q(T) = s(T)p(T) = s(T)0 = 0,

as desired.

To prove the other direction, suppose that q(T) = 0. By the division
algorithm (4.5), there exist polynomials s, r ∈ P(F) such that

8.35 q = sp + r

and deg r < degp. We have

0 = q(T) = s(T)p(T)+ r(T) = r(T).

Because p is the minimal polynomial of T and deg r < degp, the equa-
tion above implies that r = 0. Thus 8.35 becomes the equation q = sp,
and hence p divides q, as desired.

Now we describe the eigenvalues of an operator in terms of its min-
imal polynomial.

8.36 Theorem: Let T ∈ L(V). Then the roots of the minimal poly-
nomial of T are precisely the eigenvalues of T .
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Proof: Let

p(z) = a0 + a1z + a2z2 + · · · + am−1zm−1 + zm

be the minimal polynomial of T .
First suppose that λ ∈ F is a root of p. Then the minimal polynomial

of T can be written in the form

p(z) = (z − λ)q(z),
where q is a monic polynomial with coefficients in F (see 4.1). Because
p(T) = 0, we have

0 = (T − λI)(q(T)v)
for all v ∈ V . Because the degree of q is less than the degree of the
minimal polynomial p, there must exist at least one vector v ∈ V such
that q(T)v �= 0. The equation above thus implies that λ is an eigenvalue
of T , as desired.

To prove the other direction, now suppose that λ ∈ F is an eigen-
value of T . Let v be a nonzero vector in V such that Tv = λv . Repeated
applications of T to both sides of this equation show that Tjv = λjv
for every nonnegative integer j. Thus

0 = p(T)v = (a0 + a1T + a2T 2 + · · · + am−1Tm−1 + Tm)v
= (a0 + a1λ+ a2λ2 + · · · + am−1λm−1 + λm)v
= p(λ)v.

Because v �= 0, the equation above implies that p(λ) = 0, as desired.

Suppose we are given, in concrete form, the matrix (with respect to
some basis) of some operator T ∈ L(V). To find the minimal polyno-
mial of T , consider

(M(I),M(T),M(T)2, . . . ,M(T)m)
for m = 1,2, . . . until this list is linearly dependent. Then find the
scalars a0, a1, a2, . . . , am−1 ∈ F such that You can think of this as

a system of (dimV)2

equations in m
variables

a0, a1, . . . , am−1.

a0M(I)+ a1M(T)+ a2M(T)2 + · · · + am−1M(T)m−1 +M(T)m = 0.

The scalars a0, a1, a2, . . . , am−1,1 will then be the coefficients of the
minimal polynomial of T . All this can be computed using a familiar
process such as Gaussian elimination.
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For example, consider the operator T on C5 whose matrix is given
by

8.37

















0 0 0 0 −3
1 0 0 0 6
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

















.

Because of the large number of 0’s in this matrix, Gaussian elimination
is not needed here. Simply compute powers of M(T) and notice that
there is no linear dependence until the fifth power. Do the computa-
tions and you will see that the minimal polynomial of T equals

8.38 z5 − 6z + 3.

Now what about the eigenvalues of this particular operator? From 8.36,
we see that the eigenvalues of T equal the solutions to the equation

z5 − 6z + 3 = 0.

Unfortunately no solution to this equation can be computed using ra-
tional numbers, arbitrary roots of rational numbers, and the usual rules
of arithmetic (a proof of this would take us considerably beyond linear
algebra). Thus we cannot find an exact expression for any eigenvalues
of T in any familiar form, though numeric techniques can give good ap-
proximations for the eigenvalues of T . The numeric techniques, which
we will not discuss here, show that the eigenvalues for this particular
operator are approximately

−1.67, 0.51, 1.40, −0.12+ 1.59i, −0.12− 1.59i.

Note that the nonreal eigenvalues occur as a pair, with each the complex
conjugate of the other, as expected for the roots of a polynomial with
real coefficients (see 4.10).

Suppose V is a complex vector space and T ∈ L(V). The Cayley-
Hamilton theorem (8.20) and 8.34 imply that the minimal polynomial
of T divides the characteristic polynomial of T . Both these polynomials
are monic. Thus if the minimal polynomial of T has degree dimV , then
it must equal the characteristic polynomial of T . For example, if T is
the operator on C5 whose matrix is given by 8.37, then the character-
istic polynomial of T , as well as the minimal polynomial of T , is given
by 8.38.
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Jordan Form

We know that if V is a complex vector space, then for every T ∈ L(V)
there is a basis of V with respect to which T has a nice upper-triangular
matrix (see 8.28). In this section we will see that we can do even better—
there is a basis of V with respect to which the matrix of T contains zeros
everywhere except possibly on the diagonal and the line directly above
the diagonal.

We begin by describing the nilpotent operators. Consider, for ex-
ample, the nilpotent operator N ∈ L(Fn) defined by

N(z1, . . . , zn) = (0, z1, . . . , zn−1).

If v = (1,0, . . . ,0), then clearly (v,Nv, . . . ,Nn−1v) is a basis of Fn and
(Nn−1v) is a basis of nullN , which has dimension 1.

As another example, consider the nilpotent operator N ∈ L(F5) de-
fined by

8.39 N(z1, z2, z3, z4, z5) = (0, z1, z2,0, z4).

Unlike the nilpotent operator discussed in the previous paragraph, for
this nilpotent operator there does not exist a vector v ∈ F5 such that
(v,Nv,N2v,N3v,N4v) is a basis of F5. However, if v1 = (1,0,0,0,0)
and v2 = (0,0,0,1,0), then (v1, Nv1, N2v1, v2, Nv2) is a basis of F5

and (N2v1, Nv2) is a basis of nullN , which has dimension 2.
Suppose N ∈ L(V) is nilpotent. For each nonzero vector v ∈ V , let

m(v) denote the largest nonnegative integer such thatNm(v)v �= 0. For Obviously m(v)
depends on N as well

as on v , but the choice

of N will be clear from

the context.

example, if N ∈ L(F5) is defined by 8.39, then m(1,0,0,0,0) = 2.
The lemma below shows that every nilpotent operator N ∈ L(V)

behaves similarly to the example defined by 8.39, in the sense that there
is a finite collection of vectors v1, . . . , vk ∈ V such that the nonzero
vectors of the form Njvr form a basis of V ; here r varies from 1 to k
and j varies from 0 to m(vr).

8.40 Lemma: If N ∈ L(V) is nilpotent, then there exist vectors
v1, . . . , vk ∈ V such that

(a) (v1, Nv1, . . . , Nm(v1)v1, . . . , vk,Nvk, . . . ,Nm(vk)vk) is a basis of V ;

(b) (Nm(v1)v1, . . . , Nm(vk)vk) is a basis of nullN .
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Proof: Suppose N is nilpotent. Then N is not injective and thus
dim rangeN < dimV (see 3.21). By induction on the dimension of V ,
we can assume that the lemma holds on all vector spaces of smaller
dimension. Using rangeN in place of V and N|rangeN in place of N , we
thus have vectors u1, . . . , uj ∈ rangeN such that

(i) (u1, Nu1, . . . , Nm(u1)u1, . . . , uj,Nuj, . . . ,Nm(uj)uj) is a basis of
rangeN ;

(ii) (Nm(u1)u1, . . . , Nm(uj)uj) is a basis of nullN ∩ rangeN .

Because each ur ∈ rangeN , we can choose v1, . . . , vj ∈ V such that
Nvr = ur for each r . Note that m(vr) =m(ur)+ 1 for each r .

Let W be a subspace of nullN such thatThe existence of a

subspace W with this

property follows from

2.13.

8.41 nullN = (nullN ∩ rangeN)⊕W

and choose a basis of W , which we will label (vj+1, . . . , vk). Because
vj+1, . . . , vk ∈ nullN , we have m(vj+1) = · · · =m(vk) = 0.

Having constructed v1, . . . , vk, we now need to show that (a) and
(b) hold. We begin by showing that the alleged basis in (a) is linearly
independent. To do this, suppose

8.42 0 =
k
∑

r=1

m(vr )
∑

s=0

ar,sNs(vr ),

where each ar,s ∈ F. Applying N to both sides of the equation above,
we get

0 =
k
∑

r=1

m(vr )
∑

s=0

ar,sNs+1(vr )

=
j
∑

r=1

m(ur )
∑

s=0

ar,sNs(ur ).

The last equation, along with (i), implies that ar,s = 0 for 1 ≤ r ≤ j,
0 ≤ s ≤m(vr)− 1. Thus 8.42 reduces to the equation

0 =a1,m(v1)N
m(v1)v1 + · · · + aj,m(vj)Nm(vj)vj

+ aj+1,0vj+1 + · · · + ak,0vk.
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The terms on the first line on the right are all in nullN ∩ rangeN ; the
terms on the second line are all in W . Thus the last equation and 8.41
imply that

0 = a1,m(v1)N
m(v1)v1 + · · · + aj,m(vj)Nm(vj)vj

= a1,m(v1)N
m(u1)u1 + · · · + aj,m(vj)Nm(uj)uj8.43

and

8.44 0 = aj+1,0vj+1 + · · · + ak,0vk.
Now 8.43 and (ii) imply that a1,m(v1) = · · · = aj,m(vj) = 0. Because
(vj+1, . . . , vk) is a basis of W , 8.44 implies that aj+1,0 = · · · = ak,0 = 0.
Thus all the a’s equal 0, and hence the list of vectors in (a) is linearly
independent.

Clearly (ii) implies that dim(nullN ∩ rangeN) = j. Along with 8.41,
this implies that

8.45 dim nullN = k.
Clearly (i) implies that

dim rangeN =
j
∑

r=0

(m(ur )+ 1)

=
j
∑

r=0

m(vr).8.46

The list of vectors in (a) has length

k
∑

r=0

(m(vr )+ 1) = k+
j
∑

r=0

m(vr)

= dim nullN + dim rangeN

= dimV,

where the second equality comes from 8.45 and 8.46, and the third
equality comes from 3.4. The last equation shows that the list of vectors
in (a) has length dimV ; because this list is linearly independent, it is a
basis of V (see 2.17), completing the proof of (a).

Finally, note that

(Nm(v1)v1, . . . , Nm(vk)vk) = (Nm(u1)u1, . . . , Nm(uj)uj, vj+1, . . . , vk).



186 Chapter 8. Operators on Complex Vector Spaces

Now (ii) and 8.41 show that the last list above is a basis of nullN , com-
pleting the proof of (b).

Suppose T ∈ L(V). A basis of V is called a Jordan basis for T if
with respect to this basis T has a block diagonal matrix









A1 0
. . .

0 Am








,

where each Aj is an upper-triangular matrix of the form

Aj =

















λj 1 0
. . .

. . .

. . . 1
0 λj

















.

In each Aj , the diagonal is filled with some eigenvalue λj of T , the lineTo understand why

each λj must be an

eigenvalue of T ,

see 5.18.

directly above the diagonal is filled with 1’s, and all other entries are 0
(Aj may be just a 1-by-1 block consisting of just some eigenvalue).

Because there exist operators on real vector spaces that have no
eigenvalues, there exist operators on real vector spaces for which there
is no corresponding Jordan basis. Thus the hypothesis that V is a com-
plex vector space is required for the next result, even though the pre-
vious lemma holds on both real and complex vector spaces.

8.47 Theorem: Suppose V is a complex vector space. If T ∈ L(V),The French

mathematician Camille

Jordan first published a

proof of this theorem

in 1870.

then there is a basis of V that is a Jordan basis for T .

Proof: First consider a nilpotent operator N ∈ L(V) and the vec-
tors v1, . . . , vk ∈ V given by 8.40. For each j, note thatN sends the first
vector in the list (Nm(vj)vj, . . . ,Nvj, vj) to 0 and thatN sends each vec-
tor in this list other than the first vector to the previous vector. In other
words, if we reverse the order of the basis given by 8.40(a), then we ob-
tain a basis of V with respect to which N has a block diagonal matrix,
where each matrix on the diagonal has the form

















0 1 0
. . .

. . .

. . . 1
0 0

















.
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Thus the theorem holds for nilpotent operators.
Now suppose T ∈ L(V). Let λ1, . . . , λm be the distinct eigenval-

ues of T , with U1, . . . , Um the corresponding subspaces of generalized
eigenvectors. We have

V = U1 ⊕ · · · ⊕Um,

where each (T − λjI)|Uj is nilpotent (see 8.23). By the previous para-
graph, there is a basis of each Uj that is a Jordan basis for (T −λjI)|Uj .
Putting these bases together gives a basis of V that is a Jordan basis
for T .
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Exercises

1. Define T ∈ L(C2) by

T(w,z) = (z,0).
Find all generalized eigenvectors of T .

2. Define T ∈ L(C2) by

T(w,z) = (−z,w).
Find all generalized eigenvectors of T .

3. Suppose T ∈ L(V), m is a positive integer, and v ∈ V is such
that Tm−1v �= 0 but Tmv = 0. Prove that

(v, Tv, T 2v, . . . , Tm−1v)

is linearly independent.

4. Suppose T ∈ L(C3) is defined by T(z1, z2, z3) = (z2, z3,0). Prove
that T has no square root. More precisely, prove that there does
not exist S ∈ L(C3) such that S2 = T .

5. Suppose S, T ∈ L(V). Prove that if ST is nilpotent, then TS is
nilpotent.

6. Suppose N ∈ L(V) is nilpotent. Prove (without using 8.26) that
0 is the only eigenvalue of N .

7. Suppose V is an inner-product space. Prove that if N ∈ L(V) is
self-adjoint and nilpotent, then N = 0.

8. Suppose N ∈ L(V) is such that nullNdimV−1 �= nullNdimV . Prove
that N is nilpotent and that

dim nullNj = j
for every integer j with 0 ≤ j ≤ dimV .

9. Suppose T ∈ L(V) and m is a nonnegative integer such that

rangeTm = rangeTm+1.

Prove that rangeTk = rangeTm for all k > m.
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10. Prove or give a counterexample: if T ∈ L(V), then

V = nullT ⊕ rangeT .

11. Prove that if T ∈ L(V), then

V = nullTn ⊕ rangeTn,

where n = dimV .

12. Suppose V is a complex vector space, N ∈ L(V), and 0 is the only
eigenvalue of N . Prove that N is nilpotent. Give an example to
show that this is not necessarily true on a real vector space.

13. Suppose that V is a complex vector space with dimV = n and
T ∈ L(V) is such that

nullTn−2 �= nullTn−1.

Prove that T has at most two distinct eigenvalues.

14. Give an example of an operator on C4 whose characteristic poly-
nomial equals (z − 7)2(z − 8)2.

15. Suppose V is a complex vector space. Suppose T ∈ L(V) is such
that 5 and 6 are eigenvalues of T and that T has no other eigen-
values. Prove that

(T − 5I)n−1(T − 6I)n−1 = 0,

where n = dimV .

16. Suppose V is a complex vector space and T ∈ L(V). Prove that For complex vector

spaces, this exercise

adds another

equivalence to the list

given by 5.21.

V has a basis consisting of eigenvectors of T if and only if every
generalized eigenvector of T is an eigenvector of T .

17. Suppose V is an inner-product space and N ∈ L(V) is nilpotent.
Prove that there exists an orthonormal basis of V with respect to
which N has an upper-triangular matrix.

18. Define N ∈ L(F5) by

N(x1, x2, x3, x4, x5) = (2x2,3x3,−x4,4x5,0).

Find a square root of I +N .
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19. Prove that if V is a complex vector space, then every invertible
operator on V has a cube root.

20. Suppose T ∈ L(V) is invertible. Prove that there exists a polyno-
mial p ∈ P(F) such that T−1 = p(T).

21. Give an example of an operator on C3 whose minimal polynomial
equals z2.

22. Give an example of an operator on C4 whose minimal polynomial
equals z(z − 1)2.

23. Suppose V is a complex vector space and T ∈ L(V). Prove thatFor complex vector

spaces, this exercise

adds another

equivalence to the list

given by 5.21.

V has a basis consisting of eigenvectors of T if and only if the
minimal polynomial of T has no repeated roots.

24. Suppose V is an inner-product space. Prove that if T ∈ L(V) is
normal, then the minimal polynomial of T has no repeated roots.

25. Suppose T ∈ L(V) and v ∈ V . Let p be the monic polynomial of
smallest degree such that

p(T)v = 0.

Prove that p divides the minimal polynomial of T .

26. Give an example of an operator on C4 whose characteristic and
minimal polynomials both equal z(z − 1)2(z − 3).

27. Give an example of an operator on C4 whose characteristic poly-
nomial equals z(z − 1)2(z − 3) and whose minimal polynomial
equals z(z − 1)(z − 3).

28. Suppose a0, . . . , an−1 ∈ C. Find the minimal and characteristicThis exercise shows

that every monic

polynomial is the

characteristic

polynomial of some

operator.

polynomials of the operator on Cn whose matrix (with respect to
the standard basis) is



























0 −a0

1 0 −a1

1
. . . −a2

. . .
...

0 −an−2

1 −an−1



























.
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29. Suppose N ∈ L(V) is nilpotent. Prove that the minimal poly-
nomial of N is zm+1, where m is the length of the longest con-
secutive string of 1’s that appears on the line directly above the
diagonal in the matrix ofN with respect to any Jordan basis forN .

30. Suppose V is a complex vector space and T ∈ L(V). Prove that
there does not exist a direct sum decomposition of V into two
proper subspaces invariant under T if and only if the minimal
polynomial of T is of the form (z − λ)dimV for some λ ∈ C.

31. Suppose T ∈ L(V) and (v1, . . . , vn) is a basis of V that is a Jordan
basis for T . Describe the matrix of T with respect to the basis
(vn, . . . , v1) obtained by reversing the order of the v ’s.



Chapter 9

Operators on
Real Vector Spaces

In this chapter we delve deeper into the structure of operators on
real vector spaces. The important results here are somewhat more com-
plex than the analogous results from the last chapter on complex vector
spaces.

Recall that F denotes R or C.
Also, V is a finite-dimensional, nonzero vector space over F.

Some of the new results in this chapter are valid on complex vector
spaces, so we have not assumed that V is a real vector space.

✽ ✽ ✽ ✽
✽ ✽ ✽ ✽ ✽
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Eigenvalues of Square Matrices

We have defined eigenvalues of operators; now we need to extend
that notion to square matrices. Suppose A is an n-by-n matrix with
entries in F. A number λ ∈ F is called an eigenvalue of A if there
exists a nonzero n-by-1 matrix x such that

Ax = λx.

For example, 3 is an eigenvalue of
[

7 8
1 5

]

because

[

7 8
1 5

][

2
−1

]

=
[

6
−3

]

= 3

[

2
−1

]

.

As another example, you should verify that the matrix
[

0 −1
1 0

]

has no
eigenvalues if we are thinking of F as the real numbers (by definition,
an eigenvalue must be in F) and has eigenvalues i and −i if we are
thinking of F as the complex numbers.

We now have two notions of eigenvalue—one for operators and one
for square matrices. As you might expect, these two notions are closely
connected, as we now show.

9.1 Proposition: Suppose T ∈ L(V) and A is the matrix of T with
respect to some basis of V . Then the eigenvalues of T are the same as
the eigenvalues of A.

Proof: Let (v1, . . . , vn) be the basis of V with respect to which T
has matrix A. Let λ ∈ F. We need to show that λ is an eigenvalue of T
if and only if λ is an eigenvalue of A.

First suppose λ is an eigenvalue of T . Let v ∈ V be a nonzero vector
such that Tv = λv . We can write

9.2 v = a1v1 + · · · + anvn,

where a1, . . . , an ∈ F. Let x be the matrix of the vector v with respect
to the basis (v1, . . . , vn). Recall from Chapter 3 that this means

9.3 x =









a1
...
an








.



Block Upper-Triangular Matrices 195

We have

Ax =M(T)M(v) =M(Tv) =M(λv) = λM(v) = λx,
where the second equality comes from 3.14. The equation above shows
that λ is an eigenvalue of A, as desired.

To prove the implication in the other direction, now suppose λ is an
eigenvalue of A. Let x be a nonzero n-by-1 matrix such that Ax = λx.
We can write x in the form 9.3 for some scalars a1, . . . , an ∈ F. Define
v ∈ V by 9.2. Then

M(Tv) =M(T)M(v) = Ax = λx =M(λv).
where the first equality comes from 3.14. The equation above implies
that Tv = λv , and thus λ is an eigenvalue of T , completing the proof.

Because every square matrix is the matrix of some operator, the
proposition above allows us to translate results about eigenvalues of
operators into the language of eigenvalues of square matrices. For
example, every square matrix of complex numbers has an eigenvalue
(from 5.10). As another example, every n-by-n matrix has at most n
distinct eigenvalues (from 5.9).

Block Upper-Triangular Matrices

Earlier we proved that each operator on a complex vector space has
an upper-triangular matrix with respect to some basis (see 5.13). In
this section we will see that we can almost do as well on real vector
spaces.

In the last two chapters we used block diagonal matrices, which
extend the notion of diagonal matrices. Now we will need to use the
corresponding extension of upper-triangular matrices. A block upper-
triangular matrix is a square matrix of the form As usual, we use an

asterisk to denote

entries of the matrix

that play no important

role in the topics under

consideration.









A1 ∗
. . .

0 Am








,

where A1, . . . , Am are square matrices lying along the diagonal, all en-
tries below A1, . . . , Am equal 0, and the ∗ denotes arbitrary entries. For
example, the matrix
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A =

















4 10 11 12 13
0 −3 −3 14 25
0 −3 −3 16 17
0 0 0 5 5
0 0 0 5 5

















is a block upper-triangular matrix with

A =






A1 ∗
A2

0 A3





 ,

where

A1 =
[

4
]

, A2 =
[ −3 −3
−3 −3

]

, A3 =
[

5 5
5 5

]

.

Now we prove that for each operator on a real vector space, we canEvery upper-triangular

matrix is also a block

upper-triangular matrix

with blocks of size

1-by-1 along the

diagonal. At the other

extreme, every square

matrix is a block

upper-triangular matrix

because we can take

the first (and only)

block to be the entire

matrix. Smaller blocks

are better in the sense

that the matrix then

has more 0’s.

find a basis that gives a block upper-triangular matrix with blocks of
size at most 2-by-2 on the diagonal.

9.4 Theorem: Suppose V is a real vector space and T ∈ L(V).
Then there is a basis of V with respect to which T has a block upper-
triangular matrix

9.5









A1 ∗
. . .

0 Am








,

where each Aj is a 1-by-1 matrix or a 2-by-2 matrix with no eigenvalues.

Proof: Clearly the desired result holds if dimV = 1.
Next, consider the case where dimV = 2. If T has an eigenvalue λ,

then let v1 ∈ V be any nonzero eigenvector. Extend (v1) to a basis
(v1, v2) of V . With respect to this basis, T has an upper-triangular
matrix of the form

[

λ a
0 b

]

.

In particular, if T has an eigenvalue, then there is a basis of V with
respect to which T has an upper-triangular matrix. If T has no eigen-
values, then choose any basis (v1, v2) of V . With respect to this basis,
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the matrix of T has no eigenvalues (by 9.1). Thus regardless of whether
T has eigenvalues, we have the desired conclusion when dimV = 2.

Suppose now that dimV > 2 and the desired result holds for all real
vector spaces with smaller dimension. If T has an eigenvalue, let U be a
one-dimensional subspace of V that is invariant under T ; otherwise let
U be a two-dimensional subspace of V that is invariant under T (5.24
guarantees that we can choose U in this fashion). Choose any basis
of U and let A1 denote the matrix of T |U with respect to this basis. If
A1 is a 2-by-2 matrix, then T has no eigenvalues (otherwise we would
have chosen U to be one-dimensional) and thus T |U has no eigenvalues.
Hence if A1 is a 2-by-2 matrix, then A1 has no eigenvalues (see 9.1).

Let W be any subspace of V such that

V = U ⊕W ;

2.13 guarantees that such a W exists. Because W has dimension less
than the dimension of V , we would like to apply our induction hypoth-
esis to T |W . However, W might not be invariant under T , meaning that
T |W might not be an operator on W . We will compose with the pro-
jection PW,U to get an operator on W . Specifically, define S ∈ L(W) Recall that if

v = w +u, where

w ∈ W and u ∈ U ,

then PW,Uv = w.

by
Sw = PW,U(Tw)

for w ∈ W . Note that

Tw = PU,W (Tw)+ PW,U(Tw)
= PU,W (Tw)+ Sw9.6

for every w ∈ W .
By our induction hypothesis, there is a basis of W with respect to

which S has a block upper-triangular matrix of the form









A2 ∗
. . .

0 Am








,

where each Aj is a 1-by-1 matrix or a 2-by-2 matrix with no eigenvalues.
Adjoin this basis of W to the basis of U chosen above, getting a basis
of V . A minute’s thought should convince you (use 9.6) that the matrix
of T with respect to this basis is a block upper-triangular matrix of the
form 9.5, completing the proof.
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The Characteristic Polynomial

For operators on complex vector spaces, we defined characteristic
polynomials and developed their properties by making use of upper-
triangular matrices. In this section we will carry out a similar procedure
for operators on real vector spaces. Instead of upper-triangular matri-
ces, we will have to use the block upper-triangular matrices furnished
by the last theorem.

In the last chapter, we did not define the characteristic polynomial
of a square matrix with complex entries because our emphasis is on
operators rather than on matrices. However, to understand operators
on real vector spaces, we will need to define characteristic polynomials
of 1-by-1 and 2-by-2 matrices with real entries. Then, using block-upper
triangular matrices with blocks of size at most 2-by-2 on the diagonal,
we will be able to define the characteristic polynomial of an operator
on a real vector space.

To motivate the definition of characteristic polynomials of square
matrices, we would like the following to be true (think about the Cayley-
Hamilton theorem; see 8.20): if T ∈ L(V) has matrix A with respect
to some basis of V and q is the characteristic polynomial of A, then
q(T) = 0.

Let’s begin with the trivial case of 1-by-1 matrices. Suppose V is a
real vector space with dimension 1 and T ∈ L(V). If [λ] equals the
matrix of T with respect to some basis of V , then T equals λI. Thus
if we let q be the degree 1 polynomial defined by q(x) = x − λ, then
q(T) = 0. Hence we define the characteristic polynomial of [λ] to be
x − λ.

Now let’s look at 2-by-2 matrices with real entries. Suppose V is a
real vector space with dimension 2 and T ∈ L(V). Suppose

[

a c
b d

]

is the matrix of T with respect to some basis (v1, v2) of V . We seek
a monic polynomial q of degree 2 such that q(T) = 0. If b = 0, then
the matrix above is upper triangular. If in addition we were dealing
with a complex vector space, then we would know that T has charac-
teristic polynomial (z − a)(z − d). Thus a reasonable candidate might
be (x − a)(x − d), where we use x instead of z to emphasize that
now we are working on a real vector space. Let’s see if the polynomial
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(x − a)(x − d), when applied to T , gives 0 even when b �= 0. We have

(T − aI)(T − dI)v1 = (T − dI)(T − aI)v1 = (T − dI)(bv2) = bcv1

and
(T − aI)(T − dI)v2 = (T − aI)(cv1) = bcv2.

Thus (T − aI)(T − dI) is not equal to 0 unless bc = 0. However, the
equations above show that (T − aI)(T − dI) − bcI = 0 (because this
operator equals 0 on a basis, it must equal 0 on V ). Thus if q(x) =
(x − a)(x − d)− bc, then q(T) = 0.

Motivated by the previous paragraph, we define the characteristic
polynomial of a 2-by-2 matrix

[ a c
b d
]

to be (x − a)(x − d) − bc. Here
we are concerned only with matrices with real entries. The next re-
sult shows that we have found the only reasonable definition for the
characteristic polynomial of a 2-by-2 matrix.

9.7 Proposition: Suppose V is a real vector space with dimension 2 Part (b) of this

proposition would be

false without the

hypothesis that T has

no eigenvalues. For

example, define

T ∈ L(R2) by

T(x1, x2) = (0, x2).
Take p(x) = x(x − 2).
Then p is not the

characteristic

polynomial of the

matrix of T with

respect to the standard

basis, but p(T) is not

invertible.

and T ∈ L(V) has no eigenvalues. Let p ∈ P(R) be a monic polynomial
with degree 2. Suppose A is the matrix of T with respect to some basis
of V .

(a) If p equals the characteristic polynomial of A, then p(T) = 0.

(b) If p does not equal the characteristic polynomial of A, then p(T)
is invertible.

Proof: We already proved (a) in our discussion above. To prove (b),
let q denote the characteristic polynomial of A and suppose that p �= q.
We can write p(x) = x2+α1x+β1 and q(x) = x2+α2x+β2 for some
α1, β1, α2, β2 ∈ R . Now

p(T) = p(T)− q(T) = (α1 −α2)T + (β1 − β2)I.

If α1 = α2, then β1 �= β2 (otherwise we would have p = q). Thus if
α1 = α2, then p(T) is a nonzero multiple of the identity and hence is
invertible, as desired. If α1 �= α2, then

p(T) = (α1 −α2)(T − β2 − β1

α1 −α2
I),

which is an invertible operator because T has no eigenvalues. Thus (b)
holds.
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Suppose V is a real vector space with dimension 2 and T ∈ L(V) has
no eigenvalues. The last proposition shows that there is precisely one
monic polynomial with degree 2 that when applied to T gives 0. Thus,
though T may have different matrices with respect to different bases,
each of these matrices must have the same characteristic polynomial.
For example, consider T ∈ L(R2) defined by

9.8 T(x1, x2) = (3x1 + 5x2,−2x1 − x2).

The matrix of T with respect to the standard basis of R2 is

[

3 5
−2 −1

]

.

The characteristic polynomial of this matrix is (x − 3)(x + 1) + 2 · 5,
which equals x2 − 2x + 7. As you should verify, the matrix of T with
respect to the basis

(

(−2,1), (1,2)
)

equals

[

1 −6
1 1

]

.

The characteristic polynomial of this matrix is (x − 1)(x − 1) + 1 · 6,
which equals x2 − 2x + 7, the same result we obtained by using the
standard basis.

When analyzing upper-triangular matrices of an operator T on a
complex vector space V , we found that subspaces of the form

null(T − λI)dimV

played a key role (see 8.10). Those spaces will also play a role in study-
ing operators on real vector spaces, but because we must now consider
block upper-triangular matrices with 2-by-2 blocks, subspaces of the
form

null(T 2 +αT + βI)dimV

will also play a key role. To get started, let’s look at one- and two-
dimensional real vector spaces.

First suppose that V is a one-dimensional real vector space and that
T ∈ L(V). If λ ∈ R , then null(T − λI) equals V if λ is an eigenvalue
of T and {0} otherwise. If α,β ∈ R with α2 < 4β, then
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null(T 2 +αT + βI) = {0}.

(Proof: Because V is one-dimensional, there is a constant λ ∈ R such Recall that α2 < 4β
implies that

x2 +αx + β has no real

roots; see 4.11.

that Tv = λv for all v ∈ V . Thus (T 2 + αT + βI)v = (λ2 + αλ+ β)v .
However, the inequality α2 < 4β implies that λ2+αλ+β �= 0, and thus
null(T 2 +αT + βI) = {0}.)

Now suppose V is a two-dimensional real vector space and T ∈ L(V)
has no eigenvalues. If λ ∈ R , then null(T − λI) equals {0} (because T
has no eigenvalues). If α,β ∈ R with α2 < 4β, then null(T 2 +αT + βI)
equals V if x2 + αx + β is the characteristic polynomial of the matrix
of T with respect to some (or equivalently, every) basis of V and equals
{0} otherwise (by 9.7). Note that for this operator, there is no middle
ground—the null space of T 2+αT +βI is either {0} or the whole space;
it cannot be one-dimensional.

Now suppose that V is a real vector space of any dimension and
T ∈ L(V). We know that V has a basis with respect to which T has
a block upper-triangular matrix with blocks on the diagonal of size at
most 2-by-2 (see 9.4). In general, this matrix is not unique—V may
have many different bases with respect to which T has a block upper-
triangular matrix of this form, and with respect to these different bases
we may get different block upper-triangular matrices.

We encountered a similar situation when dealing with complex vec-
tor spaces and upper-triangular matrices. In that case, though we might
get different upper-triangular matrices with respect to the different
bases, the entries on the diagonal were always the same (though possi-
bly in a different order). Might a similar property hold for real vector
spaces and block upper-triangular matrices? Specifically, is the num-
ber of times a given 2-by-2 matrix appears on the diagonal of a block
upper-triangular matrix of T independent of which basis is chosen?
Unfortunately this question has a negative answer. For example, the
operator T ∈ L(R2) defined by 9.8 has two different 2-by-2 matrices,
as we saw above.

Though the number of times a particular 2-by-2 matrix might appear
on the diagonal of a block upper-triangular matrix of T can depend on
the choice of basis, if we look at characteristic polynomials instead
of the actual matrices, we find that the number of times a particular
characteristic polynomial appears is independent of the choice of basis.
This is the content of the following theorem, which will be our key tool
in analyzing the structure of an operator on a real vector space.
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9.9 Theorem: Suppose V is a real vector space and T ∈ L(V).
Suppose that with respect to some basis of V , the matrix of T is

9.10









A1 ∗
. . .

0 Am








,

where each Aj is a 1-by-1 matrix or a 2-by-2 matrix with no eigenvalues.

(a) If λ ∈ R , then precisely dim null(T − λI)dimV of the matrices
A1, . . . , Am equal the 1-by-1 matrix [λ].

(b) If α,β ∈ R satisfy α2 < 4β, then preciselyThis result implies that

null(T 2 +αT + βI)dimV

must have even

dimension.

dim null(T 2 +αT + βI)dimV

2

of the matrices A1, . . . , Am have characteristic polynomial equal
to x2 +αx + β.

Proof: We will construct one proof that can be used to prove bothThis proof uses the

same ideas as the proof

of the analogous result

on complex vector

spaces (8.10). As usual,

the real case is slightly

more complicated but

requires no new

creativity.

(a) and (b). To do this, let λ,α,β ∈ R with α2 < 4β. Define p ∈ P(R)
by

p(x) =
{

x − λ if we are trying to prove (a);
x2 +αx + β if we are trying to prove (b).

Let d denote the degree of p. Thus d = 1 if we are trying to prove (a)
and d = 2 if we are trying to prove (b).

We will prove this theorem by induction onm, the number of blocks
along the diagonal of 9.10. If m = 1, then dimV = 1 or dimV = 2; the
discussion preceding this theorem then implies that the desired result
holds. Thus we can assume that m > 1 and that the desired result
holds when m is replaced with m− 1.

For convenience let n = dimV . Consider a basis of V with respect
to which T has the block upper-triangular matrix 9.10. Let Uj denote
the span of the basis vectors corresponding to Aj . Thus dimUj = 1
if Aj is a 1-by-1 matrix and dimUj = 2 if Aj is a 2-by-2 matrix. Let
U = U1 + · · · + Um−1. Clearly U is invariant under T and the matrix
of T |U with respect to the obvious basis (obtained from the basis vec-
tors corresponding to A1, . . . , Am−1) is

9.11









A1 ∗
. . .

0 Am−1








.
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Thus, by our induction hypothesis,

9.12
precisely (1/d)dim nullp(T |U)n of the matrices
A1, . . . , Am−1 have characteristic polynomial p.

Actually the induction hypothesis gives 9.12 with exponent dimU in-
stead of n, but then we can replace dimU with n (by 8.6) to get the
statement above.

Suppose um ∈ Um. Let S ∈ L(Um) be the operator whose matrix
(with respect to the basis corresponding to Um) equals Am. In particu-
lar, Sum = PUm,UTum. Now

Tum = PU,UmTum + PUm,UTum
= ∗U + Sum,

where ∗U denotes a vector in U . Note that Sum ∈ Um; thus applying
T to both sides of the equation above gives

T 2um = ∗U + S2um,

where again∗U denotes a vector inU , though perhaps a different vector
than the previous usage of ∗U (the notation ∗U is used when we want
to emphasize that we have a vector in U but we do not care which
particular vector—each time the notation ∗U is used, it may denote a
different vector in U ). The last two equations show that

9.13 p(T)um = ∗U + p(S)um
for some ∗U ∈ U . Note that p(S)um ∈ Um; thus iterating the last
equation gives

9.14 p(T)num = ∗U + p(S)num
for some ∗U ∈ U .

The proof now breaks into two cases. First consider the case where
the characteristic polynomial of Am does not equal p. We will show
that in this case

9.15 nullp(T)n ⊂ U.

Once this has been verified, we will know that

nullp(T)n = nullp(T |U)n,
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and hence 9.12 will tell us that precisely (1/d)dim nullp(T)n of the
matrices A1, . . . , Am have characteristic polynomial p, completing the
proof in the case where the characteristic polynomial of Am does not
equal p.

To prove 9.15 (still assuming that the characteristic polynomial of
Am does not equal p), suppose v ∈ nullp(T)n. We can write v in the
form v = u+um, where u ∈ U and um ∈ Um. Using 9.14, we have

0 = p(T)nv = p(T)nu+ p(T)num = p(T)nu+∗U + p(S)num
for some ∗U ∈ U . Because the vectors p(T)nu and ∗U are in U and
p(S)num ∈ Um, this implies that p(S)num = 0. However, p(S) is in-
vertible (see the discussion preceding this theorem about one- and two-
dimensional subspaces and note that dimUm ≤ 2), so um = 0. Thus
v = u ∈ U , completing the proof of 9.15.

Now consider the case where the characteristic polynomial of Am
equals p. Note that this implies dimUm = d. We will show that

9.16 dim nullp(T)n = dim nullp(T |U)n + d,
which along with 9.12 will complete the proof.

Using the formula for the dimension of the sum of two subspaces
(2.18), we have

dim nullp(T)n = dim(U ∩ nullp(T)n)+ dim(U + nullp(T)n)− dimU

= dim nullp(T |U)n + dim(U + nullp(T)n)− (n− d).
If U +nullp(T)n = V , then dim(U +nullp(T)n) = n, which when com-
bined with the last formula above for dim nullp(T)n would give 9.16,
as desired. Thus we will finish by showing that U + nullp(T)n = V .

To prove that U + nullp(T)n = V , suppose um ∈ Um. Because the
characteristic polynomial of the matrix of S (namely, Am) equals p, we
have p(S) = 0. Thus p(T)um ∈ U (from 9.13). Now

p(T)num = p(T)n−1(p(T)um) ∈ rangep(T |U)n−1 = rangep(T |U)n,
where the last equality comes from 8.9. Thus we can choose u ∈ U
such that p(T)num = p(T |U)nu. Now

p(T)n(um −u) = p(T)num − p(T)nu
= p(T)num − p(T |U)nu
= 0.
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Thus um −u ∈ nullp(T)n, and hence um, which equals u+ (um −u),
is in U + nullp(T)n. In other words, Um ⊂ U + nullp(T)n. Therefore
V = U+Um ⊂ U+nullp(T)n, and henceU+nullp(T)n = V , completing
the proof.

As we saw in the last chapter, the eigenvalues of an operator on a
complex vector space provide the key to analyzing the structure of the
operator. On a real vector space, an operator may have fewer eigen-
values, counting multiplicity, than the dimension of the vector space.
The previous theorem suggests a definition that makes up for this defi-
ciency. We will see that the definition given in the next paragraph helps
make operator theory on real vector spaces resemble operator theory
on complex vector spaces.

Suppose V is a real vector space and T ∈ L(V). An ordered pair
(α,β) of real numbers is called an eigenpair of T if α2 < 4β and Though the word

eigenpair was chosen

to be consistent with

the word eigenvalue,

this terminology is not

in widespread use.

T 2 +αT + βI
is not injective. The previous theorem shows that T can have only
finitely many eigenpairs because each eigenpair corresponds to the
characteristic polynomial of a 2-by-2 matrix on the diagonal of 9.10
and there is room for only finitely many such matrices along that diag-
onal. Guided by 9.9, we define the multiplicity of an eigenpair (α,β)
of T to be

dim null(T 2 +αT + βI)dimV

2
.

From 9.9, we see that the multiplicity of (α,β) equals the number of
times thatx2+αx+β is the characteristic polynomial of a 2-by-2 matrix
on the diagonal of 9.10.

As an example, consider the operator T ∈ L(R3) whose matrix (with
respect to the standard basis) equals







3 −1 −2
3 2 −3
1 2 0





 .

You should verify that (−4,13) is an eigenpair of T with multiplicity 1;
note that T 2 − 4T + 13I is not injective because (−1,0,1) and (1,1,0)
are in its null space. Without doing any calculations, you should verify
that T has no other eigenpairs (use 9.9). You should also verify that 1 is
an eigenvalue of T with multiplicity 1, with corresponding eigenvector
(1,0,1), and that T has no other eigenvalues.



206 Chapter 9. Operators on Real Vector Spaces

In the example above, the sum of the multiplicities of the eigenval-
ues of T plus twice the multiplicities of the eigenpairs of T equals 3,
which is the dimension of the domain of T . The next proposition shows
that this always happens on a real vector space.

9.17 Proposition: If V is a real vector space and T ∈ L(V), thenThis proposition shows

that though an

operator on a real

vector space may have

no eigenvalues, or it

may have no

eigenpairs, it cannot be

lacking in both these

useful objects. It also

shows that an operator

on a real vector space

V can have at most

(dimV)/2 distinct

eigenpairs.

the sum of the multiplicities of all the eigenvalues of T plus the sum
of twice the multiplicities of all the eigenpairs of T equals dimV .

Proof: Suppose V is a real vector space and T ∈ L(V). Then there
is a basis of V with respect to which the matrix of T is as in 9.9. The
multiplicity of an eigenvalue λ equals the number of times the 1-by-1
matrix [λ] appears on the diagonal of this matrix (from 9.9). The multi-
plicity of an eigenpair (α,β) equals the number of times x2+αx+β is
the characteristic polynomial of a 2-by-2 matrix on the diagonal of this
matrix (from 9.9). Because the diagonal of this matrix has length dimV ,
the sum of the multiplicities of all the eigenvalues of T plus the sum of
twice the multiplicities of all the eigenpairs of T must equal dimV .

Suppose V is a real vector space and T ∈ L(V). With respect to
some basis of V , T has a block upper-triangular matrix of the form

9.18









A1 ∗
. . .

0 Am








,

where each Aj is a 1-by-1 matrix or a 2-by-2 matrix with no eigenval-
ues (see 9.4). We define the characteristic polynomial of T to be the
product of the characteristic polynomials of A1, . . . , Am. Explicitly, for
each j, define qj ∈ P(R) by

9.19 qj(x) =
{

x − λ if Aj equals [λ];
(x − a)(x − d)− bc if Aj equals

[ a c
b d
]

.

Then the characteristic polynomial of T isNote that the roots of

the characteristic

polynomial of T equal

the eigenvalues of T , as

was true on complex

vector spaces.

q1(x) . . . qm(x).

Clearly the characteristic polynomial of T has degree dimV . Fur-
thermore, 9.9 insures that the characteristic polynomial of T depends
only on T and not on the choice of a particular basis.
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Now we can prove a result that was promised in the last chapter,
where we proved the analogous theorem (8.20) for operators on com-
plex vector spaces.

9.20 Cayley-Hamilton Theorem: Suppose V is a real vector space
and T ∈ L(V). Let q denote the characteristic polynomial of T . Then
q(T) = 0.

Proof: Choose a basis of V with respect to which T has a block This proof uses the

same ideas as the proof

of the analogous result

on complex vector

spaces (8.20).

upper-triangular matrix of the form 9.18, where each Aj is a 1-by-1
matrix or a 2-by-2 matrix with no eigenvalues. SupposeUj is the one- or
two-dimensional subspace spanned by the basis vectors corresponding
to Aj . Define qj as in 9.19. To prove that q(T) = 0, we need only show
that q(T)|Uj = 0 for j = 1, . . . ,m. To do this, it suffices to show that

9.21 q1(T) . . . qj(T)|Uj = 0

for j = 1, . . . ,m.
We will prove 9.21 by induction on j. To get started, suppose that

j = 1. BecauseM(T) is given by 9.18, we have q1(T)|U1 = 0 (obvious if
dimU1 = 1; from 9.7(a) if dimU1 = 2), giving 9.21 when j = 1.

Now suppose that 1 < j ≤ n and that

0 = q1(T)|U1

0 = q1(T)q2(T)|U2

...

0 = q1(T) . . . qj−1(T)|Uj−1 .

If v ∈ Uj , then from 9.18 we see that

qj(T)v = u+ qj(S)v,
where u ∈ U1 + · · · + Uj−1 and S ∈ L(Uj) has characteristic poly-
nomial qj . Because qj(S) = 0 (obvious if dimUj = 1; from 9.7(a) if
dimUj = 2), the equation above shows that

qj(T)v ∈ U1 + · · · +Uj−1

whenever v ∈ Uj . Thus, by our induction hypothesis, q1(T) . . . qj−1(T)
applied to qj(T)v gives 0 whenever v ∈ Uj . In other words, 9.21 holds,
completing the proof.
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Suppose V is a real vector space and T ∈ L(V). Clearly the Cayley-
Hamilton theorem (9.20) implies that the minimal polynomial of T has
degree at most dimV , as was the case on complex vector spaces. If
the degree of the minimal polynomial of T equals dimV , then, as was
also the case on complex vector spaces, the minimal polynomial of T
must equal the characteristic polynomial of T . This follows from the
Cayley-Hamilton theorem (9.20) and 8.34.

Finally, we can now prove a major structure theorem about oper-
ators on real vector spaces. The theorem below should be compared
to 8.23, the corresponding result on complex vector spaces.

9.22 Theorem: Suppose V is a real vector space and T ∈ L(V). Let
λ1, . . . , λm be the distinct eigenvalues of T , with U1, . . . , Um the corre-
sponding sets of generalized eigenvectors. Let (α1, β1), . . . , (αM,βM)Either m or M

might be 0. be the distinct eigenpairs of T and let Vj = null(T 2 + αjT + βjI)dimV .
Then

(a) V = U1 ⊕ · · · ⊕Um ⊕ V1 ⊕ · · · ⊕ VM ;

(b) each Uj and each Vj is invariant under T ;

(c) each (T − λjI)|Uj and each (T 2 +αjT + βjI)|Vj is nilpotent.

Proof: From 8.22, we get (b). Clearly (c) follows from the defini-This proof uses the

same ideas as the proof

of the analogous result

on complex vector

spaces (8.23).

tions.
To prove (a), recall that dimUj equals the multiplicity of λj as an

eigenvalue of T and dimVj equals twice the multiplicity of (αj, βj) as
an eigenpair of T . Thus

9.23 dimV = dimU1 + · · · + dimUm + dimV1 + · · · + VM ;

this follows from 9.17. Let U = U1 + · · · + Um + V1 + · · · + VM . Note
that U is invariant under T . Thus we can define S ∈ L(U) by

S = T |U .

Note that S has the same eigenvalues, with the same multiplicities, as T
because all the generalized eigenvectors of T are in U , the domain of S.
Similarly, S has the same eigenpairs, with the same multiplicities, as T .
Thus applying 9.17 to S, we get

dimU = dimU1 + · · · + dimUm + dimV1 + · · · + VM.
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This equation, along with 9.23, shows that dimV = dimU . Because U
is a subspace of V , this implies that V = U . In other words,

V = U1 + · · · +Um + V1 + · · · + VM.

This equation, along with 9.23, allows us to use 2.19 to conclude that
(a) holds, completing the proof.
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Exercises

1. Prove that 1 is an eigenvalue of every square matrix with the
property that the sum of the entries in each row equals 1.

2. Consider a 2-by-2 matrix of real numbers

A =
[

a c
b d

]

.

Prove that A has an eigenvalue (in R) if and only if

(a− d)2 + 4bc ≥ 0.

3. Suppose A is a block diagonal matrix

A =









A1 0
. . .

0 Am








,

where each Aj is a square matrix. Prove that the set of eigenval-
ues of A equals the union of the eigenvalues of A1, . . . , Am.

4. Suppose A is a block upper-triangular matrixClearly Exercise 4 is a

stronger statement

than Exercise 3. Even

so, you may want to do

Exercise 3 first because

it is easier than

Exercise 4.

A =









A1 ∗
. . .

0 Am








,

where each Aj is a square matrix. Prove that the set of eigenval-
ues of A equals the union of the eigenvalues of A1, . . . , Am.

5. Suppose V is a real vector space and T ∈ L(V). Supposeα,β ∈ R
are such that T 2 + αT + βI = 0. Prove that T has an eigenvalue
if and only if α2 ≥ 4β.

6. Suppose V is a real inner-product space and T ∈ L(V). Prove
that there is an orthonormal basis of V with respect to which T
has a block upper-triangular matrix









A1 ∗
. . .

0 Am








,

where eachAj is a 1-by-1 matrix or a 2-by-2 matrix with no eigen-
values.
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7. Prove that if T ∈ L(V) and j is a positive integer such that
j ≤ dimV , then T has an invariant subspace whose dimension
equals j − 1 or j.

8. Prove that there does not exist an operator T ∈ L(R7) such that
T 2 + T + I is nilpotent.

9. Give an example of an operator T ∈ L(C7) such that T 2 + T + I
is nilpotent.

10. Suppose V is a real vector space and T ∈ L(V). Supposeα,β ∈ R
are such that α2 < 4β. Prove that

null(T 2 +αT + βI)k

has even dimension for every positive integer k.

11. Suppose V is a real vector space and T ∈ L(V). Supposeα,β ∈ R
are such that α2 < 4β and T 2 +αT + βI is nilpotent. Prove that
dimV is even and

(T 2 +αT + βI)dimV/2 = 0.

12. Prove that if T ∈ L(R3) and 5,7 are eigenvalues of T , then T has
no eigenpairs.

13. Suppose V is a real vector space with dimV = n and T ∈ L(V)
is such that

nullTn−2 �= nullTn−1.

Prove that T has at most two distinct eigenvalues and that T has
no eigenpairs.

14. Suppose V is a vector space with dimension 2 and T ∈ L(V). You do not need to find

the eigenvalues of T to

do this exercise. As

usual unless otherwise

specified, here V may

be a real or complex

vector space.

Prove that if
[

a c
b d

]

is the matrix of T with respect to some basis of V , then the char-
acteristic polynomial of T equals (z − a)(z − d)− bc.

15. Suppose V is a real inner-product space and S ∈ L(V) is an isom-
etry. Prove that if (α,β) is an eigenpair of S, then β = 1.



Chapter 10

Trace and Determinant

Throughout this book our emphasis has been on linear maps and op-
erators rather than on matrices. In this chapter we pay more attention
to matrices as we define and discuss traces and determinants. Deter-
minants appear only at the end of this book because we replaced their
usual applications in linear algebra (the definition of the characteris-
tic polynomial and the proof that operators on complex vector spaces
have eigenvalues) with more natural techniques. The book concludes
with an explanation of the important role played by determinants in
the theory of volume and integration.

Recall that F denotes R or C.
Also, V is a finite-dimensional, nonzero vector space over F.

✽
✽ ✽ ✽ ✽

✽ ✽ ✽ ✽ ✽
213
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Change of Basis

The matrix of an operator T ∈ L(V) depends on a choice of basis
of V . Two different bases of V may give different matrices of T . In this
section we will learn how these matrices are related. This information
will help us find formulas for the trace and determinant of T later in
this chapter.

With respect to any basis of V , the identity operator I ∈ L(V) has a
diagonal matrix









1 0
. . .

0 1








.

This matrix is called the identity matrix and is denoted I. Note that we
use the symbol I to denote the identity operator (on all vector spaces)
and the identity matrix (of all possible sizes). You should always be
able to tell from the context which particular meaning of I is intended.
For example, consider the equation

M(I) = I;

on the left side I denotes the identity operator and on the right side I
denotes the identity matrix.

If A is a square matrix (with entries in F, as usual) with the same
size as I, then AI = IA = A, as you should verify. A square matrix A
is called invertible if there is a square matrix B of the same size suchSome mathematicians

use the terms

nonsingular, which

means the same as

invertible, and

singular, which means

the same as

noninvertible.

that AB = BA = I, and we call B an inverse of A. To prove that A has
at most one inverse, suppose B and B′ are inverses of A. Then

B = BI = B(AB′) = (BA)B′ = IB′ = B′,

and hence B = B′, as desired. Because an inverse is unique, we can use
the notation A−1 to denote the inverse of A (if A is invertible). In other
words, if A is invertible, then A−1 is the unique matrix of the same size
such that AA−1 = A−1A = I.

Recall that when discussing linear maps from one vector space to
another in Chapter 3, we defined the matrix of a linear map with respect
to two bases—one basis for the first vector space and another basis for
the second vector space. When we study operators, which are linear
maps from a vector space to itself, we almost always use the same basis
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for both vector spaces (after all, the two vector spaces in question are
equal). Thus we usually refer to the matrix of an operator with respect
to a basis, meaning that we are using one basis in two capacities. The
next proposition is one of the rare cases where we need to use two
different bases even though we have an operator from a vector space
to itself.

Let’s review how matrix multiplication interacts with multiplication
of linear maps. Suppose that along with V we have two other finite-
dimensional vector spaces, say U and W . Let (u1, . . . , up) be a basis
of U , let (v1, . . . , vn) be a basis of V , and let (w1, . . . ,wm) be a basis
of W . If T ∈ L(U,V) and S ∈ L(V ,W), then ST ∈ L(U,W) and

10.1 M(

ST , (u1, . . . , up), (w1, . . . ,wm)
) =

M(

S, (v1, . . . , vn), (w1, . . . ,wm)
)M(

T , (u1, . . . , up), (v1, . . . , vn)
)

.

The equation above holds because we defined matrix multiplication to
make it true—see 3.11 and the material following it.

The following proposition deals with the matrix of the identity op-
erator when we use two different bases. Note that the kth column of
M(

I, (u1, . . . , un), (v1, . . . , vn)
)

consists of the scalars needed to write
uk as a linear combination of the v ’s. As an example of the proposi-
tion below, consider the bases

(

(4,2), (5,3)
)

and
(

(1,0), (0,1)
)

of F2.
Obviously

M
(

I,
(

(4,2), (5,3)
)

,
(

(1,0), (0,1)
)
)

=
[

4 5
2 3

]

.

The inverse of the matrix above is
[

3/2 −5/2
−1 2

]

, as you should verify. Thus
the proposition below implies that

M
(

I,
(

(1,0), (0,1)
)

,
(

(4,2), (5,3)
)
)

=
[

3/2 −5/2
−1 2

]

.

10.2 Proposition: If (u1, . . . , un) and (v1, . . . , vn) are bases of V ,
then M(

I, (u1, . . . , un), (v1, . . . , vn)
)

is invertible and

M(

I, (u1, . . . , un), (v1, . . . , vn)
)−1 =M(

I, (v1, . . . , vn), (u1, . . . , un)
)

.

Proof: In 10.1, replace U and W with V , replace wj with uj , and
replace S and T with I, getting
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I =M(

I, (v1, . . . , vn), (u1, . . . , un)
)M(

I, (u1, . . . , un), (v1, . . . , vn)
)

.

Now interchange the roles of the u’s and v ’s, getting

I =M(

I, (u1, . . . , un), (v1, . . . , vn)
)M(

I, (v1, . . . , vn), (u1, . . . , un)
)

.

These two equations give the desired result.

Now we can see how the matrix of T changes when we change
bases.

10.3 Theorem: Suppose T ∈ L(V). Let (u1, . . . , un) and (v1, . . . , vn)
be bases of V . Let A =M(

I, (u1, . . . , un), (v1, . . . , vn)
)

. Then

10.4 M(

T , (u1, . . . , un)
) = A−1M(

T , (v1, . . . , vn)
)

A.

Proof: In 10.1, replace U andW with V , replacewj with vj , replace
T with I, and replace S with T , getting

10.5 M(

T , (u1, . . . , un), (v1, . . . , vn)
) =M(

T , (v1, . . . , vn)
)

A.

Again use 10.1, this time replacing U and W with V , replacing wj

with uj , and replacing S with I, getting

M(

T , (u1, . . . , un)
) = A−1M(

T , (u1, . . . , un), (v1, . . . , vn)
)

,

where we have used 10.2. Substituting 10.5 into the equation above
gives 10.4, completing the proof.

Trace

Let’s examine the characteristic polynomial more closely than we
did in the last two chapters. If V is an n-dimensional complex vector
space and T ∈ L(V), then the characteristic polynomial of T equals

(z − λ1) . . . (z − λn),

where λ1, . . . , λn are the eigenvalues of T , repeated according to multi-
plicity. Expanding the polynomial above, we can write the characteristic
polynomial of T in the form

10.6 zn − (λ1 + · · · + λn)zn−1 + · · · + (−1)n(λ1 . . . λn).
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If V is an n-dimensional real vector space and T ∈ L(V), then the
characteristic polynomial of T equals

Here m or M might

equal 0.
(x − λ1) . . . (x − λm)(x2 +α1x + β1) . . . (x2 +αMx + βM),

where λ1, . . . , λm are the eigenvalues of T and (α1, β1), . . . , (αM,βM) are
the eigenpairs of T , each repeated according to multiplicity. Expanding Recall that a pair (α,β)

of real numbers is an

eigenpair of T if

α2 < 4β and

T 2 +αT + βI is not

injective.

the polynomial above, we can write the characteristic polynomial of T
in the form

10.7 xn − (λ1 + · · · + λm −α1 − · · · −αm)xn−1 + . . .
+ (−1)m(λ1 . . . λmβ1 . . . βM).

In this section we will study the coefficient of zn−1 (usually denoted
xn−1 when we are dealing with a real vector space) in the characteristic
polynomial. In the next section we will study the constant term in the
characteristic polynomial.

For T ∈ L(V), the negative of the coefficient of zn−1 (or xn−1 for real
vector spaces) in the characteristic polynomial of T is called the trace Note that traceT

depends only on T and

not on a basis of V
because the

characteristic

polynomial of T does

not depend on a choice

of basis.

of T , denoted traceT . If V is a complex vector space, then 10.6 shows
that traceT equals the sum of the eigenvalues of T , counting multiplic-
ity. If V is a real vector space, then 10.7 shows that traceT equals the
sum of the eigenvalues of T minus the sum of the first coordinates of
the eigenpairs of T , each repeated according to multiplicity.

For example, suppose T ∈ L(C3) is the operator whose matrix is

10.8







3 −1 −2
3 2 −3
1 2 0





 .

Then the eigenvalues of T are 1, 2 + 3i, and 2 − 3i, each with multi-
plicity 1, as you can verify. Computing the sum of the eigenvalues, we
have traceT = 1+ (2+ 3i)+ (2− 3i); in other words, traceT = 5.

As another example, suppose T ∈ L(R3) is the operator whose ma-
trix is also given by 10.8 (note that in the previous paragraph we were
working on a complex vector space; now we are working on a real vec-
tor space). Then 1 is the only eigenvalue of T (it has multiplicity 1)
and (−4,13) is the only eigenpair of T (it has multiplicity 1), as you
should have verified in the last chapter (see page 205). Computing the
sum of the eigenvalues minus the sum of the first coordinates of the
eigenpairs, we have traceT = 1− (−4); in other words, traceT = 5.
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The reason that the operators in the two previous examples have
the same trace will become clear after we find a formula (valid on both
complex and real vector spaces) for computing the trace of an operator
from its matrix.

Most of the rest of this section is devoted to discovering how to cal-
culate traceT from the matrix of T (with respect to an arbitrary basis).
Let’s start with the easiest situation. Suppose V is a complex vector
space, T ∈ L(V), and we choose a basis of V with respect to which
T has an upper-triangular matrix A. Then the eigenvalues of T are
precisely the diagonal entries of A, repeated according to multiplicity
(see 8.10). Thus traceT equals the sum of the diagonal entries of A.
The same formula works for the operator T ∈ L(F3) whose matrix is
given by 10.8 and whose trace equals 5. Could such a simple formula
be true in general?

We begin our investigation by considering T ∈ L(V) where V is a
real vector space. Choose a basis of V with respect to which T has a
block upper-triangular matrixM(T), where each block on the diagonal
is a 1-by-1 matrix containing an eigenvalue of T or a 2-by-2 block with
no eigenvalues (see 9.4 and 9.9). Each entry in a 1-by-1 block on the
diagonal of M(T) is an eigenvalue of T and thus makes a contribution
to traceT . If M(T) has any 2-by-2 blocks on the diagonal, consider a
typical one

[

a c
b d

]

.

The characteristic polynomial of this 2-by-2 matrix is (x−a)(x−d)−bc,
which equals

x2 − (a+ d)x + (ad− bc).
Thus (−a − d,ad − bc) is an eigenpair of T . The negative of the firstYou should carefully

review 9.9 to

understand the

relationship between

eigenpairs and

characteristic

polynomials of 2-by-2

blocks.

coordinate of this eigenpair, namely, a + d, is the contribution of this
block to traceT . Note that a + d is the sum of the entries on the di-
agonal of this block. Thus for any basis of V with respect to which
the matrix of T has the block upper-triangular form required by 9.4
and 9.9, traceT equals the sum of the entries on the diagonal.

At this point you should suspect that traceT equals the sum of
the diagonal entries of the matrix of T with respect to an arbitrary
basis. Remarkably, this turns out to be true. To prove it, let’s de-
fine the trace of a square matrix A, denoted traceA, to be the sum
of the diagonal entries. With this notation, we want to prove that
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traceT = traceM(

T , (v1, . . . , vn)
)

, where (v1, . . . , vn) is an arbitrary
basis of V . We already know this is true if (v1, . . . , vn) is a basis with
respect to which T has an upper-triangular matrix (if V is complex) or
an appropriate block upper-triangular matrix (if V is real). We will need
the following proposition to prove our trace formula for an arbitrary
basis.

10.9 Proposition: If A and B are square matrices of the same size,
then

trace(AB) = trace(BA).

Proof: Suppose

A =









a1,1 . . . a1,n
...

...
an,1 . . . an,n








, B =









b1,1 . . . b1,n
...

...
bn,1 . . . bn,n








.

The jth term on the diagonal of AB equals
n
∑

k=1

aj,kbk,j.

Thus

trace(AB) =
n
∑

j=1

n
∑

k=1

aj,kbk,j

=
n
∑

k=1

n
∑

j=1

bk,jaj,k

=
n
∑

k=1

kth term on the diagonal of BA

= trace(BA),

as desired.

Now we can prove that the sum of the diagonal entries of the matrix
of an operator is independent of the basis with respect to which the
matrix is computed.

10.10 Corollary: Suppose T ∈ L(V). If (u1, . . . , un) and (v1, . . . , vn)
are bases of V , then

traceM(

T , (u1, . . . , un)
) = traceM(

T , (v1, . . . , vn)
)

.
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Proof: Suppose (u1, . . . , un) and (v1, . . . , vn) are bases of V . Let
A =M(

I, (u1, . . . , un), (v1, . . . , vn)
)

. Then

The third equality here

depends on the

associative property of

matrix multiplication.

traceM(

T , (u1, . . . , un)
) = trace

(

A−1(M(

T , (v1, . . . , vn)
)

A
)
)

= trace
(
(M(

T , (v1, . . . , vn)
)

A
)

A−1
)

= traceM(

T , (v1, . . . , vn)
)

,

where the first equality follows from 10.3 and the second equality fol-
lows from 10.9. The third equality completes the proof.

The theorem below states that the trace of an operator equals the
sum of the diagonal entries of the matrix of the operator. This theorem
does not specify a basis because, by the corollary above, the sum of
the diagonal entries of the matrix of an operator is the same for every
choice of basis.

10.11 Theorem: If T ∈ L(V), then traceT = traceM(T).

Proof: Let T ∈ L(V). As noted above, traceM(T) is independent
of which basis of V we choose (by 10.10). Thus to show that

traceT = traceM(T)

for every basis of V , we need only show that the equation above holds
for some basis of V . We already did this (on page 218), choosing a basis
of V with respect to whichM(T) is an upper-triangular matrix (if V is a
complex vector space) or an appropriate block upper-triangular matrix
(if V is a real vector space).

If we know the matrix of an operator on a complex vector space, the
theorem above allows us to find the sum of all the eigenvalues without
finding any of the eigenvalues. For example, consider the operator
on C5 whose matrix is

















0 0 0 0 −3
1 0 0 0 6
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

















.
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No one knows an exact formula for any of the eigenvalues of this op-
erator. However, we do know that the sum of the eigenvalues equals 0
because the sum of the diagonal entries of the matrix above equals 0.

The theorem above also allows us easily to prove some useful prop-
erties about traces of operators by shifting to the language of traces
of matrices, where certain properties have already been proved or are
obvious. We carry out this procedure in the next corollary.

10.12 Corollary: If S, T ∈ L(V), then

trace(ST) = trace(TS) and trace(S + T) = traceS + traceT .

Proof: Suppose S, T ∈ L(V). Choose any basis of V . Then

trace(ST) = traceM(ST)
= trace

(M(S)M(T))

= trace
(M(T)M(S))

= traceM(TS)
= trace(TS),

where the first and last equalities come from 10.11 and the middle
equality comes from 10.9. This completes the proof of the first asser-
tion in the corollary.

To prove the second assertion in the corollary, note that

trace(S + T) = traceM(S + T)
= trace

(M(S)+M(T))

= traceM(S)+ traceM(T)
= traceS + traceT ,

where again the first and last equalities come from 10.11; the third
equality is obvious from the definition of the trace of a matrix. This
completes the proof of the second assertion in the corollary.

The techniques we have developed have the following curious corol-
lary. The generalization of this result to infinite-dimensional vector
spaces has important consequences in quantum theory.
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10.13 Corollary: There do not exist operators S, T ∈ L(V) such thatThe statement of this

corollary does not

involve traces, though

the short proof uses

traces. Whenever

something like this

happens in

mathematics, we can be

sure that a good

definition lurks in the

background.

ST − TS = I.

Proof: Suppose S, T ∈ L(V). Then

trace(ST − TS) = trace(ST)− trace(TS)

= 0,

where the second equality comes from 10.12. Clearly the trace of I
equals dimV , which is not 0. Because ST − TS and I have different
traces, they cannot be equal.

Determinant of an Operator

For T ∈ L(V), we define the determinant of T , denoted detT , toNote that detT
depends only on T and

not on a basis of V
because the

characteristic

polynomial of T does

not depend on a choice

of basis.

be (−1)dimV times the constant term in the characteristic polynomial
of T . The motivation for the factor (−1)dimV in this definition comes
from 10.6.

If V is a complex vector space, then detT equals the product of
the eigenvalues of T , counting multiplicity; this follows immediately
from 10.6. Recall that if V is a complex vector space, then there is
a basis of V with respect to which T has an upper-triangular matrix
(see 5.13); thus detT equals the product of the diagonal entries of this
matrix (see 8.10).

If V is a real vector space, then detT equals the product of the
eigenvalues of T times the product of the second coordinates of the
eigenpairs of T , each repeated according to multiplicity—this follows
from 10.7 and the observation that m = dimV − 2M (in the notation
of 10.7), and hence (−1)m = (−1)dimV .

For example, suppose T ∈ L(C3) is the operator whose matrix is
given by 10.8. As we noted in the last section, the eigenvalues of T are
1, 2+ 3i, and 2− 3i, each with multiplicity 1. Computing the product
of the eigenvalues, we have detT = (1)(2+3i)(2−3i); in other words,
detT = 13.

As another example, suppose T ∈ L(R3) is the operator whose ma-
trix is also given by 10.8 (note that in the previous paragraph we were
working on a complex vector space; now we are working on a real vec-
tor space). Then, as we noted earlier, 1 is the only eigenvalue of T (it
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has multiplicity 1) and (−4,13) is the only eigenpair of T (it has multi-
plicity 1). Computing the product of the eigenvalues times the product
of the second coordinates of the eigenpairs, we have detT = (1)(13);
in other words, detT = 13.

The reason that the operators in the two previous examples have the
same determinant will become clear after we find a formula (valid on
both complex and real vector spaces) for computing the determinant
of an operator from its matrix.

In this section, we will prove some simple but important properties
of determinants. In the next section, we will discover how to calculate
detT from the matrix of T (with respect to an arbitrary basis). We begin
with a crucial result that has an easy proof with our approach.

10.14 Proposition: An operator is invertible if and only if its deter-
minant is nonzero.

Proof: First suppose V is a complex vector space and T ∈ L(V).
The operator T is invertible if and only if 0 is not an eigenvalue of T .
Clearly this happens if and only if the product of the eigenvalues of T
is not 0. Thus T is invertible if and only if detT �= 0, as desired.

Now suppose V is a real vector space and T ∈ L(V). Again, T is
invertible if and only if 0 is not an eigenvalue of T . Using the notation
of 10.7, we have

10.15 detT = λ1 . . . λmβ1 . . . βM,

where the λ’s are the eigenvalues of T and the β’s are the second coor-
dinates of the eigenpairs of T , each repeated according to multiplicity.
For each eigenpair (αj, βj), we have αj2 < 4βj . In particular, each βj
is positive. This implies (see 10.15) that λ1 . . . λm �= 0 if and only if
detT �= 0. Thus T is invertible if and only if detT �= 0, as desired.

If T ∈ L(V) and λ, z ∈ F, then λ is an eigenvalue of T if and only if
z − λ is an eigenvalue of zI − T . This follows from

−(T − λI) = (zI − T)− (z − λ)I.

Raising both sides of this equation to the dimV power and then taking
null spaces of both sides shows that the multiplicity of λ as an eigen-
value of T equals the multiplicity of z − λ as an eigenvalue of zI − T .
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The next lemma gives the analogous result for eigenpairs. We will use
this lemma to show that the characteristic polynomial can be expressed
as a certain determinant.

10.16 Lemma: Suppose V is a real vector space, T ∈ L(V), andReal vector spaces are

harder to deal with

than complex vector

spaces. The first time

you read this chapter,

you may want to

concentrate on the

basic ideas by

considering only

complex vector spaces

and ignoring the

special procedures

needed to deal with

real vector spaces.

α,β,x ∈ R with α2 < 4β. Then (α,β) is an eigenpair of T if and only
if (−2x−α,x2+αx+β) is an eigenpair of xI−T . Furthermore, these
eigenpairs have the same multiplicities.

Proof: First we need to check that (−2x−α,x2+αx+β) satisfies
the inequality required of an eigenpair. We have

(−2x −α)2 = 4x2 + 4αx +α2

< 4x2 + 4αx + 4β

= 4(x2 +αx + β).

Thus (−2x −α,x2 +αx + β) satisfies the required inequality.
Now

T 2 +αT + βI = (xI − T)2 − (2x +α)(xI − T)+ (x2 +αx + β)I,

as you should verify. Thus (α,β) is an eigenpair of T if and only if
(−2x −α,x2 +αx +β) is an eigenpair of xI − T . Furthermore, raising
both sides of the equation above to the dimV power and then taking
null spaces of both sides shows that the multiplicities are equal.

Most textbooks take the theorem below as the definition of the char-
acteristic polynomial. Texts using that approach must spend consider-
ably more time developing the theory of determinants before they get
to interesting linear algebra.

10.17 Theorem: Suppose T ∈ L(V). Then the characteristic poly-
nomial of T equals det(zI − T).

Proof: First suppose V is a complex vector space. Let λ1, . . . , λn
denote the eigenvalues of T , repeated according to multiplicity. Thus
for z ∈ C, the eigenvalues of zI − T are z − λ1, . . . , z − λn, repeated
according to multiplicity. The determinant of zI − T is the product of
these eigenvalues. In other words,

det(zI − T) = (z − λ1) . . . (z − λn).
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The right side of the equation above is, by definition, the characteristic
polynomial of T , completing the proof when V is a complex vector
space.

Now suppose V is a real vector space. Let λ1, . . . , λm denote the
eigenvalues of T and let (α1, β1), . . . , (αM,βM) denote the eigenpairs
of T , each repeated according to multiplicity. Thus for x ∈ R , the
eigenvalues of xI−T are x−λ1, . . . , x−λm and, by 10.16, the eigenpairs
of xI − T are

(−2x −α1, x2 +α1x + β1), . . . , (−2x −αM,x2 +αMx + βM),
each repeated according to multiplicity. Hence

det(xI−T) = (x−λ1) . . . (x−λm)(x2+α1x+β1) . . . (x2+αMx+βM).
The right side of the equation above is, by definition, the characteristic
polynomial of T , completing the proof when V is a real vector space.

Determinant of a Matrix

Most of this section is devoted to discovering how to calculate detT
from the matrix of T (with respect to an arbitrary basis). Let’s start with
the easiest situation. Suppose V is a complex vector space, T ∈ L(V),
and we choose a basis of V with respect to which T has an upper-
triangular matrix. Then, as we noted in the last section, detT equals
the product of the diagonal entries of this matrix. Could such a simple
formula be true in general?

Unfortunately the determinant is more complicated than the trace.
In particular, detT need not equal the product of the diagonal entries
of M(T) with respect to an arbitrary basis. For example, the operator
on F3 whose matrix equals 10.8 has determinant 13, as we saw in the
last section. However, the product of the diagonal entries of that matrix
equals 0.

For each square matrix A, we want to define the determinant of A,
denoted detA, in such a way that detT = detM(T) regardless of which
basis is used to computeM(T). We begin our search for the correct def-
inition of the determinant of a matrix by calculating the determinants
of some special operators.

Let c1, . . . , cn ∈ F be nonzero scalars and let (v1, . . . , vn) be a basis
of V . Consider the operator T ∈ L(V) such that M(

T , (v1, . . . , vn)
)

equals
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10.18



















0 cn
c1 0

c2 0
. . .

. . .

cn−1 0



















;

here all entries of the matrix are 0 except for the upper-right corner
and along the line just below the diagonal. Let’s find the determinant
of T . Note that

(v1, Tv1, T 2v1, . . . , Tn−1v1) = (v1, c1v2, c1c2v3, . . . , c1 . . . cn−1vn).

Thus (v1, Tv1, . . . , Tn−1v1) is linearly independent (the c’s are all non-
zero). Hence if p is a nonzero polynomial with degree at most n − 1,
then p(T)v1 �= 0. In other words, the minimal polynomial of T cannot
have degree less than n. As you should verify, Tnvj = c1 . . . cnvj for
each j, and hence Tn = c1 . . . cnI. Thus zn − c1 . . . cn is the minimal
polynomial of T . Because n = dimV , we see that zn − c1 . . . cn is alsoRecall that if the

minimal polynomial of

an operator T ∈ L(V)
has degree dimV , then

the characteristic

polynomial of T equals

the minimal polynomial

of T . Computing the

minimal polynomial is

often an efficient

method of finding the

characteristic

polynomial.

the characteristic polynomial of T . Multiplying the constant term of
this polynomial by (−1)n, we get

10.19 detT = (−1)n−1c1 . . . cn.

If some cj equals 0, then clearly T is not invertible, so detT = 0 and
the same formula holds. Thus in order to have detT = detM(T), we
will have to make the determinant of 10.18 equal to (−1)n−1c1 . . . cn.
However, we do not yet have enough evidence to make a reasonable
guess about the proper definition of the determinant of an arbitrary
square matrix.

To compute the determinants of a more complicated class of op-
erators, we introduce the notion of permutation. A permutation of
(1, . . . , n) is a list (m1, . . . ,mn) that contains each of the numbers
1, . . . , n exactly once. The set of all permutations of (1, . . . , n) is de-
noted permn. For example, (2,3, . . . , n,1) ∈ permn. You should think
of an element of permn as a rearrangement of the first n integers.

For simplicity we will work with matrices with complex entries (at
this stage we are providing only motivation—formal proofs will come
later). Let c1, . . . , cn ∈ C and let (v1, . . . , vn) be a basis of V , which
we are assuming is a complex vector space. Consider a permutation
(p1, . . . , pn) ∈ permn that can be obtained as follows: break (1, . . . , n)
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into lists of consecutive integers and in each list move the first term to
the end of that list. For example, taking n = 9, the permutation

10.20 (2,3,1,5,6,7,4,9,8)

is obtained from (1,2,3), (4,5,6,7), (8,9) by moving the first term of
each of these lists to the end, producing (2,3,1), (5,6,7,4), (9,8), and
then putting these together to form 10.20. Let T ∈ L(V) be the operator
such that

10.21 Tvk = ckvpk
for k = 1, . . . , n. We want to find a formula for detT . This generalizes
our earlier example because if (p1, . . . , pn) happens to be the permuta-
tion (2,3, . . . , n,1), then the operator T whose matrix equals 10.18 is
the same as the operator T defined by 10.21.

With respect to the basis (v1, . . . , vn), the matrix of the operator T
defined by 10.21 is a block diagonal matrix

A =









A1 0
. . .

0 AM








,

where each block is a square matrix of the form 10.18. The eigenvalues
of T equal the union of the eigenvalues of A1, . . . , AM (see Exercise 3 in
Chapter 9). Recalling that the determinant of an operator on a complex
vector space is the product of the eigenvalues, we see that our definition
of the determinant of a square matrix should force

detA = (detA1) . . . (detAM).

However, we already know how to compute the determinant of eachAj ,
which has the same form as 10.18 (of course with a different value ofn).
Putting all this together, we see that we should have

detA = (−1)n1−1 . . . (−1)nM−1c1 . . . cn,

whereAj has sizenj-by-nj . The number (−1)n1−1 . . . (−1)nM−1 is called
the sign of the permutation (p1, . . . , pn), denoted sign(p1, . . . , pn) (this
is a temporary definition that we will change to an equivalent definition
later, when we define the sign of an arbitrary permutation).
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To put this into a form that does not depend on the particular per-
mutation (p1, . . . , pn), let aj,k denote the entry in row j, column k, ofA;
thus

aj,k =
{

0 if j �= pk;
ck if j = pk.

Then

10.22 detA =
∑

(m1,...,mn)∈permn

(

sign(m1, . . . ,mn)
)

am1,1 . . . amn,n,

because each summand is 0 except the one corresponding to the per-
mutation (p1, . . . , pn).

Consider now an arbitrary matrix A with entry aj,k in row j, col-
umn k. Using the paragraph above as motivation, we guess that detA
should be defined by 10.22. This will turn out to be correct. We can
now dispense with the motivation and begin the more formal approach.
First we will need to define the sign of an arbitrary permutation.

The sign of a permutation (m1, . . . ,mn) is defined to be 1 if theSome texts use the

unnecessarily fancy

term signum, which

means the same

as sign.

number of pairs of integers (j, k) with 1 ≤ j < k ≤ n such that j ap-
pears after k in the list (m1, . . . ,mn) is even and −1 if the number of
such pairs is odd. In other words, the sign of a permutation equals 1 if
the natural order has been changed an even number of times and equals
−1 if the natural order has been changed an odd number of times. For
example, in the permutation (2,3, . . . , n,1) the only pairs (j, k) with
j < k that appear with changed order are (1,2), (1,3), . . . , (1, n); be-
cause we have n − 1 such pairs, the sign of this permutation equals
(−1)n−1 (note that the same quantity appeared in 10.19).

The permutation (2,1,3,4), which is obtained from the permutation
(1,2,3,4) by interchanging the first two entries, has sign −1. The next
lemma shows that interchanging any two entries of any permutation
changes the sign of the permutation.

10.23 Lemma: Interchanging two entries in a permutation multiplies
the sign of the permutation by −1.

Proof: Suppose we have two permutations, where the second per-
mutation is obtained from the first by interchanging two entries. If the
two entries that we interchanged were in their natural order in the first
permutation, then they no longer are in the second permutation, and
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vice versa, for a net change (so far) of 1 or −1 (both odd numbers) in
the number of pairs not in their natural order.

Consider each entry between the two interchanged entries. If an in-
termediate entry was originally in the natural order with respect to the
first interchanged entry, then it no longer is, and vice versa. Similarly,
if an intermediate entry was originally in the natural order with respect
to the second interchanged entry, then it no longer is, and vice versa.
Thus the net change for each intermediate entry in the number of pairs
not in their natural order is 2, 0, or −2 (all even numbers).

For all the other entries, there is no change in the number of pairs
not in their natural order. Thus the total net change in the number of
pairs not in their natural order is an odd number. Thus the sign of the
second permutation equals−1 times the sign of the first permutation.

If A is an n-by-n matrix

10.24 A =









a1,1 . . . a1,n
...

...
an,1 . . . an,n








,

then the determinant of A, denoted detA, is defined by Our motivation for this

definition comes

from 10.22.10.25 detA =
∑

(m1,...,mn)∈permn

(

sign(m1, . . . ,mn)
)

am1,1 . . . amn,n.

For example, if A is the 1-by-1 matrix [a1,1], then detA = a1,1 be-
cause perm 1 has only one element, namely, (1), which has sign 1. For
a more interesting example, consider a typical 2-by-2 matrix. Clearly
perm 2 has only two elements, namely, (1,2), which has sign 1, and
(2,1), which has sign −1. Thus

10.26 det

[

a1,1 a1,2

a2,1 a2,2

]

= a1,1a2,2 − a2,1a1,2.

To make sure you understand this process, you should now find the
formula for the determinant of the 3-by-3 matrix The set perm 3

contains 6 elements. In

general, permn
contains n! elements.

Note that n! rapidly

grows large as n
increases.







a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3







using just the definition given above (do this even if you already know
the answer).
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Let’s compute the determinant of an upper-triangular matrix

A =









a1,1 ∗
. . .

0 an,n








.

The permutation (1,2, . . . , n) has sign 1 and thus contributes a term
of a1,1 . . . an,n to the sum 10.25 defining detA. Any other permutation
(m1, . . . ,mn) ∈ permn contains at least one entry mj with mj > j,
which means that amj,j = 0 (because A is upper triangular). Thus all
the other terms in the sum 10.25 defining detA make no contribu-
tion. Hence detA = a1,1 . . . an,n. In other words, the determinant of an
upper-triangular matrix equals the product of the diagonal entries. In
particular, this means that if V is a complex vector space, T ∈ L(V),
and we choose a basis of V with respect to which M(T) is upper trian-
gular, then detT = detM(T). Our goal is to prove that this holds for
every basis of V , not just bases that give upper-triangular matrices.

Generalizing the computation from the paragraph above, next we
will show that if A is a block upper-triangular matrix

A =









A1 ∗
. . .

0 Am








,

where each Aj is a 1-by-1 or 2-by-2 matrix, then

10.27 detA = (detA1) . . . (detAm).

To prove this, consider an element of permn. If this permutation
moves an index corresponding to a 1-by-1 block on the diagonal any-
place else, then the permutation makes no contribution to the sum
10.25 defining detA (because A is block upper triangular). For a pair
of indices corresponding to a 2-by-2 block on the diagonal, the permu-
tation must either leave these indices fixed or interchange them; oth-
erwise again the permutation makes no contribution to the sum 10.25
defining detA (because A is block upper triangular). These observa-
tions, along with the formula 10.26 for the determinant of a 2-by-2 ma-
trix, lead to 10.27. In particular, if V is a real vector space, T ∈ L(V),
and we choose a basis of V with respect to which M(T) is a block
upper-triangular matrix with 1-by-1 and 2-by-2 blocks on the diagonal
as in 9.9, then detT = detM(T).
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Our goal is to prove that detT = detM(T) for every T ∈ L(V) and An entire book could

be devoted just to

deriving properties of

determinants.

Fortunately we need

only a few of the basic

properties.

every basis of V . To do this, we will need to develop some proper-
ties of determinants of matrices. The lemma below is the first of the
properties we will need.

10.28 Lemma: Suppose A is a square matrix. If B is the matrix
obtained from A by interchanging two columns, then

detA = −detB.

Proof: Suppose A is given by 10.24 and B is obtained from A by
interchanging two columns. Think of the sum 10.25 defining detA and
the corresponding sum defining detB. The same products ofa’s appear
in both sums, though they correspond to different permutations. The
permutation corresponding to a given product of a’s when computing
detB is obtained by interchanging two entries in the corresponding
permutation when computing detA, thus multiplying the sign of the
permutation by −1 (see 10.23). Hence detA = −detB.

If T ∈ L(V) and the matrix of T (with respect to some basis) has two
equal columns, then T is not injective and hence detT = 0. Though
this comment makes the next lemma plausible, it cannot be used in the
proof because we do not yet know that detT = detM(T).

10.29 Lemma: If A is a square matrix that has two equal columns,
then detA = 0.

Proof: Suppose A is a square matrix that has two equal columns.
Interchanging the two equal columns of A gives the original matrix A.
Thus from 10.28 (with B = A), we have detA = −detA, which implies
that detA = 0.

This section is long, so let’s pause for a paragraph. The symbols ✽
that appear on the first page of each chapter are decorations intended
to take up space so that the first section of the chapter can start on the
next page. Chapter 1 has one of these symbols, Chapter 2 has two of
them, and so on. The symbols get smaller with each chapter. What you
may not have noticed is that the sum of the areas of the symbols at the
beginning of each chapter is the same for all chapters. For example, the
diameter of each symbol at the beginning of Chapter 10 equals 1/

√
10

times the diameter of the symbol in Chapter 1.



232 Chapter 10. Trace and Determinant

We need to introduce notation that will allow us to represent a ma-
trix in terms of its columns. If A is an n-by-n matrix

A =









a1,1 . . . a1,n
...

...
an,1 . . . an,n








,

then we can think of the kth column of A as an n-by-1 matrix

ak =









a1,k
...

an,k








.

We will write A in the form

[ a1 . . . an ],

with the understanding that ak denotes the kth column of A. With this
notation, note that aj,k, with two subscripts, denotes an entry of A,
whereas ak, with one subscript, denotes a column of A.

The next lemma shows that a permutation of the columns of a matrix
changes the determinant by a factor of the sign of the permutation.

10.30 Lemma: Suppose A = [ a1 . . . an ] is an n-by-n matrix.Some texts define the

determinant to be the

function defined on the

square matrices that is

linear as a function of

each column separately

and that satisfies 10.30

and det I = 1. To prove

that such a function

exists and that it is

unique takes a

nontrivial amount of

work.

If (m1, . . . ,mn) is a permutation, then

det[ am1 . . . amn ] =
(

sign(m1, . . . ,mn)
)

detA.

Proof: Suppose (m1, . . . ,mn) ∈ permn. We can transform the
matrix [ am1 . . . amn ] into A through a series of steps. In each
step, we interchange two columns and hence multiply the determinant
by −1 (see 10.28). The number of steps needed equals the number
of steps needed to transform the permutation (m1, . . . ,mn) into the
permutation (1, . . . , n) by interchanging two entries in each step. The
proof is completed by noting that the number of such steps is even if
(m1, . . . ,mn) has sign 1, odd if (m1, . . . ,mn) has sign −1 (this follows
from 10.23, along with the observation that the permutation (1, . . . , n)
has sign 1).

Let A = [ a1 . . . an ]. For 1 ≤ k ≤ n, think of all columns of A
except the kth column as fixed. We have
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detA = det[ a1 . . . ak . . . an ],

and we can think of detA as a function of the kth column ak. This
function, which takes ak to the determinant above, is a linear map
from the vector space of n-by-1 matrices with entries in F to F. The
linearity follows easily from 10.25, where each term in the sum contains
precisely one entry from the kth column of A.

Now we are ready to prove one of the key properties about determi-
nants of square matrices. This property will enable us to connect the
determinant of an operator with the determinant of its matrix. Note
that this proof is considerably more complicated than the proof of the
corresponding result about the trace (see 10.9).

10.31 Theorem: If A and B are square matrices of the same size, This theorem was first

proved in 1812 by the

French mathematicians

Jacques Binet and

Augustin-Louis Cauchy.

then
det(AB) = det(BA) = (detA)(detB).

Proof: LetA = [ a1 . . . an ], where eachak is ann-by-1 column
of A. Let

B =









b1,1 . . . b1,n
...

...
bn,1 . . . bn,n








= [ b1 . . . bn ],

where each bk is ann-by-1 column of B. Let ek denote then-by-1 matrix
that equals 1 in the kth row and 0 elsewhere. Note that Aek = ak and
Bek = bk. Furthermore, bk =

∑n
m=1 bm,kem.

First we will prove that det(AB) = (detA)(detB). A moment’s
thought about the definition of matrix multiplication shows that AB =
[ Ab1 . . . Abn ]. Thus

det(AB) = det[ Ab1 . . . Abn ]

= det[ A(
∑n
m1=1 bm1,1em1) . . . A(

∑n
mn=1 bmn,nemn) ]

= det[
∑n
m1=1 bm1,1Aem1 . . .

∑n
mn=1 bmn,nAemn ]

=
n
∑

m1=1

· · ·
n
∑

mn=1

bm1,1 . . . bmn,n det[ Aem1 . . . Aemn ],

where the last equality comes from repeated applications of the linear-
ity of det as a function of one column at a time. In the last sum above,
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all terms in which mj =mk for some j �= k can be ignored because the
determinant of a matrix with two equal columns is 0 (by 10.29). Thus
instead of summing over allm1, . . . ,mn with eachmj taking on values
1, . . . , n, we can sum just over the permutations, where the mj ’s have
distinct values. In other words,

det(AB) =
∑

(m1,...,mn)∈permn
bm1,1 . . . bmn,n det[ Aem1 . . . Aemn ]

=
∑

(m1,...,mn)∈permn
bm1,1 . . . bmn,n

(

sign(m1, . . . ,mn)
)

detA

= (detA)
∑

(m1,...,mn)∈permn

(

sign(m1, . . . ,mn)
)

bm1,1 . . . bmn,n

= (detA)(detB),

where the second equality comes from 10.30.
In the paragraph above, we proved that det(AB) = (detA)(detB).

Interchanging the roles of A and B, we have det(BA) = (detB)(detA).
The last equation can be rewritten as det(BA) = (detA)(detB), com-
pleting the proof.

Now we can prove that the determinant of the matrix of an oper-
ator is independent of the basis with respect to which the matrix is
computed.

10.32 Corollary: Suppose T ∈ L(V). If (u1, . . . , un) and (v1, . . . , vn)
are bases of V , then

detM(

T , (u1, . . . , un)
) = detM(

T , (v1, . . . , vn)
)

.

Proof: Suppose (u1, . . . , un) and (v1, . . . , vn) are bases of V . LetNote the similarity of

this proof to the proof

of the analogous result

about the trace

(see 10.10).

A =M(

I, (u1, . . . , un), (v1, . . . , vn)
)

. Then

detM(

T , (u1, . . . , un)
) = det

(

A−1(M(

T , (v1, . . . , vn)
)

A
)
)

= det
(
(M(

T , (v1, . . . , vn)
)

A
)

A−1
)

= detM(

T , (v1, . . . , vn)
)

,

where the first equality follows from 10.3 and the second equality fol-
lows from 10.31. The third equality completes the proof.
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The theorem below states that the determinant of an operator equals
the determinant of the matrix of the operator. This theorem does not
specify a basis because, by the corollary above, the determinant of the
matrix of an operator is the same for every choice of basis.

10.33 Theorem: If T ∈ L(V), then detT = detM(T).

Proof: Let T ∈ L(V). As noted above, 10.32 implies that detM(T)
is independent of which basis of V we choose. Thus to show that

detT = detM(T)

for every basis of V , we need only show that the equation above holds
for some basis of V . We already did this (on page 230), choosing a basis
of V with respect to whichM(T) is an upper-triangular matrix (if V is a
complex vector space) or an appropriate block upper-triangular matrix
(if V is a real vector space).

If we know the matrix of an operator on a complex vector space, the
theorem above allows us to find the product of all the eigenvalues with-
out finding any of the eigenvalues. For example, consider the operator
on C5 whose matrix is

















0 0 0 0 −3
1 0 0 0 6
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

















.

No one knows an exact formula for any of the eigenvalues of this opera-
tor. However, we do know that the product of the eigenvalues equals−3
because the determinant of the matrix above equals −3.

The theorem above also allows us easily to prove some useful prop-
erties about determinants of operators by shifting to the language of
determinants of matrices, where certain properties have already been
proved or are obvious. We carry out this procedure in the next corol-
lary.

10.34 Corollary: If S, T ∈ L(V), then

det(ST) = det(TS) = (detS)(detT).
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Proof: Suppose S, T ∈ L(V). Choose any basis of V . Then

det(ST) = detM(ST)
= det

(M(S)M(T))

= (detM(S))(detM(T))

= (detS)(detT),

where the first and last equalities come from 10.33 and the third equal-
ity comes from 10.31.

In the paragraph above, we proved that det(ST) = (detS)(detT). In-
terchanging the roles of S and T , we have det(TS) = (detT)(detS). Be-
cause multiplication of elements of F is commutative, the last equation
can be rewritten as det(TS) = (detS)(detT), completing the proof.

Volume

We proved the basic results of linear algebra before introducing de-
terminants in this final chapter. Though determinants have value as a
research tool in more advanced subjects, they play little role in basic
linear algebra (when the subject is done right). Determinants do haveMost applied

mathematicians agree

that determinants

should rarely be used

in serious numeric

calculations.

one important application in undergraduate mathematics, namely, in
computing certain volumes and integrals. In this final section we will
use the linear algebra we have learned to make clear the connection
between determinants and these applications. Thus we will be dealing
with a part of analysis that uses linear algebra.

We begin with some purely linear algebra results that will be use-
ful when investigating volumes. Recall that an isometry on an inner-
product space is an operator that preserves norms. The next result
shows that every isometry has determinant with absolute value 1.

10.35 Proposition: Suppose that V is an inner-product space. If
S ∈ L(V) is an isometry, then |detS| = 1.

Proof: Suppose S ∈ L(V) is an isometry. First consider the case
where V is a complex inner-product space. Then all the eigenvalues of S
have absolute value 1 (by 7.37). Thus the product of the eigenvalues
of S, counting multiplicity, has absolute value one. In other words,
|detS| = 1, as desired.
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Now suppose V is a real inner-product space. Then there is an ortho-
normal basis of V with respect to which S has a block diagonal matrix,
where each block on the diagonal is a 1-by-1 matrix containing 1 or −1
or a 2-by-2 matrix of the form

10.36

[

cosθ − sinθ
sinθ cosθ

]

,

with θ ∈ (0, π) (see 7.38). Note that the constant term of the charac-
teristic polynomial of each matrix of the form 10.36 equals 1 (because
cos2 θ + sin2 θ = 1). Hence the second coordinate of every eigenpair
of S equals 1. Thus the determinant of S is the product of 1’s and−1’s.
In particular, |detS| = 1, as desired.

SupposeV is a real inner-product space and S ∈ L(V) is an isometry.
By the proposition above, the determinant of S equals 1 or −1. Note
that

{v ∈ V : Sv = −v}
is the subspace of V consisting of all eigenvectors of S corresponding
to the eigenvalue −1 (or is the subspace {0} if −1 is not an eigenvalue
of S). Thinking geometrically, we could say that this is the subspace
on which S reverses direction. A careful examination of the proof of
the last proposition shows that detS = 1 if this subspace has even
dimension and detS = −1 if this subspace has odd dimension.

A self-adjoint operator on a real inner-product space has no eigen-
pairs (by 7.11). Thus the determinant of a self-adjoint operator on a
real inner-product space equals the product of its eigenvalues, count-
ing multiplicity (of course, this holds for any operator, self-adjoint or
not, on a complex vector space).

Recall that if V is an inner-product space and T ∈ L(V), then T∗T
is a positive operator and hence has a unique positive square root, de-
noted

√
T∗T (see 7.27 and 7.28). Because

√
T∗T is positive, all its eigen-

values are nonnegative (again, see 7.27), and hence its determinant is
nonnegative. Thus in the corollary below, taking the absolute value of
det

√
T∗T would be superfluous.

10.37 Corollary: Suppose V is an inner-product space. If T ∈ L(V),
then

|detT | = det
√
T∗T .
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Proof: Suppose T ∈ L(V). By the polar decomposition (7.41), thereAnother proof of this

corollary is suggested

in Exercise 24 in this

chapter.

is an isometry S ∈ L(V) such that

T = S√T∗T .

Thus

|detT | = |detS|det
√
T∗T

= det
√
T∗T ,

where the first equality follows from 10.34 and the second equality
follows from 10.35.

Suppose V is a real inner-product space and T ∈ L(V) is invertible.
The detT is either positive or negative. A careful examination of the
proof of the corollary above can help us attach a geometric meaning
to whichever of these possibilities holds. To see this, first apply the
real spectral theorem (7.13) to the positive operator

√
T∗T , getting an

orthonormal basis (e1, . . . , en) of V such that
√
T∗Tej = λjej , where

λ1, . . . , λn are the eigenvalues of
√
T∗T , repeated according to multi-

plicity. Because each λj is positive,
√
T∗T never reverses direction.We are not formally

defining the phrase

“reverses direction”

because these

comments are meant to

be an intuitive aid to

our understanding, not

rigorous mathematics.

Now consider the polar decomposition

T = S√T∗T ,

where S ∈ L(V) is an isometry. Then detT = (detS)(det
√
T∗T). Thus

whether detT is positive or negative depends on whether detS is pos-
itive or negative. As we saw earlier, this depends on whether the space
on which S reverses direction has even or odd dimension. Because
T is the product of S and an operator that never reverses direction
(namely,

√
T∗T ), we can reasonably say that whether detT is positive

or negative depends on whether T reverses vectors an even or an odd
number of times.

Now we turn to the question of volume, where we will consider only
the real inner-product space Rn (with its standard inner product). We
would like to assign to each subset Ω of Rn its n-dimensional volume,
denoted volumeΩ (when n = 2, this is usually called area instead of
volume). We begin with cubes, where we have a good intuitive notion of
volume. The cube in Rn with side length r and vertex (x1, . . . , xn) ∈ Rn

is the set
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{(y1, . . . , yn) ∈ Rn : xj < yj < xj + r for j = 1, . . . , n};

you should verify that when n = 2, this gives a square, and that when
n = 3, it gives a familiar three-dimensional cube. The volume of a cube
in Rn with side length r is defined to be rn. To define the volume of
an arbitrary set Ω ⊂ Rn, the idea is to write Ω as a subset of a union of Readers familiar with

outer measure will

recognize that concept

here.

many small cubes, then add up the volumes of these small cubes. As
we approximate Ω more accurately by unions (perhaps infinite unions)
of small cubes, we get a better estimate of volumeΩ.

Rather than take the trouble to make precise this definition of vol-
ume, we will work only with an intuitive notion of volume. Our purpose
in this book is to understand linear algebra, whereas notions of volume
belong to analysis (though as we will soon see, volume is intimately con-
nected with determinants). Thus for the rest of this section we will rely
on intuitive notions of volume rather than on a rigorous development,
though we shall maintain our usual rigor in the linear algebra parts
of what follows. Everything said here about volume will be correct—
the intuitive reasons given here can be converted into formally correct
proofs using the machinery of analysis.

For T ∈ L(V) and Ω ⊂ Rn, define T(Ω) by

T(Ω) = {Tx : x ∈ Ω}.

Our goal is to find a formula for the volume of T(Ω) in terms of T
and the volume of Ω. First let’s consider a simple example. Suppose
λ1, . . . , λn are positive numbers. Define T ∈ L(Rn) by T(x1, . . . , xn) =
(λ1x1, . . . , λnxn). If Ω is a cube in Rn with side length r , then T(Ω)
is a box in Rn with sides of length λ1r , . . . , λnr . This box has volume
λ1 . . . λnrn, whereas the cube Ω has volume rn. Thus this particular T ,
when applied to a cube, multiplies volumes by a factor of λ1 . . . λn,
which happens to equal detT .

As above, assume that λ1, . . . , λn are positive numbers. Now sup-
pose that (e1, . . . , en) is an orthonormal basis of Rn and T is the op-
erator on Rn that satisfies Tej = λjej for j = 1, . . . , n. In the special
case where (e1, . . . , en) is the standard basis of Rn, this operator is the
same one as defined in the paragraph above. Even for an arbitrary or-
thonormal basis (e1, . . . , en), this operator has the same behavior as
the one in the paragraph above—it multiplies the jth basis vector by
a factor of λj . Thus we can reasonably assume that this operator also
multiplies volumes by a factor of λ1 . . . λn, which again equals detT .
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We need one more ingredient before getting to the main result in
this section. Suppose S ∈ L(Rn) is an isometry. For x,y ∈ Rn, we
have

‖Sx − Sy‖ = ‖S(x −y)‖
= ‖x −y‖.

In other words, S does not change the distance between points. As you
can imagine, this means that S does not change volumes. Specifically,
if Ω ⊂ Rn, then volumeS(Ω) = volumeΩ.

Now we can give our pseudoproof that an operator T ∈ L(Rn)
changes volumes by a factor of |detT |.

10.38 Theorem: If T ∈ L(Rn), then

volumeT(Ω) = |detT |(volumeΩ)

for Ω ⊂ Rn.

Proof: First consider the case where T ∈ L(Rn) is a positive
operator. Let λ1, . . . , λn be the eigenvalues of T , repeated according
to multiplicity. Each of these eigenvalues is a nonnegative number
(see 7.27). By the real spectral theorem (7.13), there is an orthonormal
basis (e1, . . . , en) of V such that Tej = λjej for each j. As discussed
above, this implies that T changes volumes by a factor of detT .

Now suppose T ∈ L(Rn) is an arbitrary operator. By the polar de-
composition (7.41), there is an isometry S ∈ L(V) such that

T = S√T∗T .

If Ω ⊂ Rn, then T(Ω) = S(√T∗T(Ω)). Thus

volumeT(Ω) = volumeS
(√
T∗T(Ω)

)

= volume
√
T∗T(Ω)

= (det
√
T∗T)(volumeΩ)

= |detT |(volumeΩ),

where the second equality holds because volumes are not changed by
the isometry S (as discussed above), the third equality holds by the
previous paragraph (applied to the positive operator

√
T∗T ), and the

fourth equality holds by 10.37.
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The theorem above leads to the appearance of determinants in the
formula for change of variables in multivariable integration. To de-
scribe this, we will again be vague and intuitive. If Ω ⊂ Rn and f is
a real-valued function (not necessarily linear) on Ω, then the integral
of f over Ω, denoted

∫

Ω
f or

∫

Ω
f(x)dx, is defined by breaking Ω into

pieces small enough so that f is almost constant on each piece. On
each piece, multiply the (almost constant) value of f by the volume of
the piece, then add up these numbers for all the pieces, getting an ap-
proximation to the integral that becomes more accurate as we divide
Ω into finer pieces. Actually Ω needs to be a reasonable set (for ex-
ample, open or measurable) and f needs to be a reasonable function
(for example, continuous or measurable), but we will not worry about
those technicalities. Also, notice that the x in

∫

Ω
f(x)dx is a dummy

variable and could be replaced with any other symbol.
Fix a set Ω ⊂ Rn and a function (not necessarily linear) σ : Ω → Rn.

We will use σ to make a change of variables in an integral. Before we
can get to that, we need to define the derivative of σ , a concept that
uses linear algebra. For x ∈ Ω, the derivative of σ at x is an operator If n = 1, then the

derivative in this sense

is the operator on R of

multiplication by the

derivative in the usual

sense of one-variable

calculus.

T ∈ L(Rn) such that

lim
y→0

‖σ(x +y)− σ(x)− Ty‖
‖y‖ = 0.

If an operator T ∈ L(Rn) exists satisfying the equation above, then
σ is said to be differentiable at x. If σ is differentiable at x, then
there is a unique operator T ∈ L(Rn) satisfying the equation above
(we will not prove this). This operator T is denoted σ ′(x). Intuitively,
the idea is that for x fixed and ‖y‖ small, a good approximation to
σ(x+y) is σ(x)+(σ ′(x))(y) (note that σ ′(x) ∈ L(Rn), so this makes
sense). Note that for x fixed the addition of the term σ(x) does not
change volumes. Thus if Γ is a small subset of Ω containing x, then
volumeσ(Γ) is approximately equal to volume

(

σ ′(x)
)

(Γ).
Because σ is a function from Ω to Rn, we can write

σ(x) = (σ1(x), . . . , σn(x)
)

,

where each σj is a function from Ω to R . The partial derivative of σj
with respect to the kth coordinate is denoted Dkσj . Evaluating this
partial derivative at a point x ∈ Ω gives Dkσj(x). If σ is differentiable
at x, then the matrix of σ ′(x) with respect to the standard basis of Rn
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contains Dkσj(x) in row j, column k (we will not prove this). In other
words,

10.39 M(σ ′(x)) =









D1σ1(x) . . . Dnσ1(x)
...

...
D1σn(x) . . . Dnσn(x)








.

Suppose that σ is differentiable at each point of Ω and that σ is
injective on Ω. Let f be a real-valued function defined on σ(Ω). Let
x ∈ Ω and let Γ be a small subset ofΩ containing x. As we noted above,

volumeσ(Γ) ≈ volume
(

σ ′(x)
)

(Γ),

where the symbol ≈means “approximately equal to”. Using 10.38, this
becomes

volumeσ(Γ) ≈ |detσ ′(x)|(volume Γ).

Let y = σ(x). Multiply the left side of the equation above by f(y) and
the right side by f

(

σ(x)
)

(because y = σ(x), these two quantities are
equal), getting

10.40 f(y) volumeσ(Γ) ≈ f (σ(x))|detσ ′(x)|(volume Γ).

Now divide Ω into many small pieces and add the corresponding ver-
sions of 10.40, getting

10.41
∫

σ(Ω)
f (y)dy =

∫

Ω

f
(

σ(x)
)|detσ ′(x)|dx.

This formula was our goal. It is called a change of variables formula
because you can think of y = σ(x) as a change of variables.

The key point when making a change of variables is that the factor
of |detσ ′(x)|must be included, as in the right side of 10.41. We finish
up by illustrating this point with two important examples. When n = 2,
we can use the change of variables induced by polar coordinates. In thisIf you are not familiar

with polar and

spherical coordinates,

skip the remainder of

this section.

case σ is defined by

σ(r , θ) = (r cosθ, r sinθ),

where we have used r , θ as the coordinates instead of x1, x2 for reasons
that will be obvious to everyone familiar with polar coordinates (and
will be a mystery to everyone else). For this choice of σ , the matrix of
partial derivatives corresponding to 10.39 is
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[

cosθ −r sinθ
sinθ r cosθ

]

,

as you should verify. The determinant of the matrix above equals r ,
thus explaining why a factor of r is needed when computing an integral
in polar coordinates.

Finally, when n = 3, we can use the change of variables induced by
spherical coordinates. In this case σ is defined by

σ(ρ,ϕ,θ) = (ρ sinϕ cosθ,ρ sinϕ sinθ,ρ cosϕ),

where we have used ρ,θ,ϕ as the coordinates instead of x1, x2, x3

for reasons that will be obvious to everyone familiar with spherical
coordinates (and will be a mystery to everyone else). For this choice
of σ , the matrix of partial derivatives corresponding to 10.39 is







sinϕ cosθ ρ cosϕ cosθ −ρ sinϕ sinθ
sinϕ sinθ ρ cosϕ sinθ ρ sinϕ cosθ

cosϕ −ρ sinϕ 0





 ,

as you should verify. You should also verify that the determinant of the
matrix above equals ρ2 sinϕ, thus explaining why a factor of ρ2 sinϕ
is needed when computing an integral in spherical coordinates.
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Exercises

1. Suppose T ∈ L(V) and (v1, . . . , vn) is a basis of V . Prove that
M(

T , (v1, . . . , vn)
)

is invertible if and only if T is invertible.

2. Prove that if A and B are square matrices of the same size and
AB = I, then BA = I.

3. Suppose T ∈ L(V) has the same matrix with respect to every ba-
sis of V . Prove that T is a scalar multiple of the identity operator.

4. Suppose that (u1, . . . , un) and (v1, . . . , vn) are bases of V . Let
T ∈ L(V) be the operator such that Tvk = uk for k = 1, . . . , n.
Prove that

M(

T , (v1, . . . , vn)
) =M(

I, (u1, . . . , un), (v1, . . . , vn)
)

.

5. Prove that if B is a square matrix with complex entries, then there
exists an invertible square matrix A with complex entries such
that A−1BA is an upper-triangular matrix.

6. Give an example of a real vector space V and T ∈ L(V) such that
trace(T 2) < 0.

7. Suppose V is a real vector space, T ∈ L(V), and V has a basis
consisting of eigenvectors of T . Prove that trace(T 2) ≥ 0.

8. Suppose V is an inner-product space and v,w ∈ L(V). Define
T ∈ L(V) by Tu = 〈u,v〉w. Find a formula for traceT .

9. Prove that if P ∈ L(V) satisfies P2 = P , then traceP is a nonneg-
ative integer.

10. Prove that if V is an inner-product space and T ∈ L(V), then

traceT∗ = traceT .

11. Suppose V is an inner-product space. Prove that if T ∈ L(V) is
a positive operator and traceT = 0, then T = 0.
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12. Suppose T ∈ L(C3) is the operator whose matrix is






51 −12 −21
60 −40 −28
57 −68 1





 .

Someone tells you (accurately) that −48 and 24 are eigenvalues
of T . Without using a computer or writing anything down, find
the third eigenvalue of T .

13. Prove or give a counterexample: if T ∈ L(V) and c ∈ F, then
trace(cT) = c traceT .

14. Prove or give a counterexample: if S, T ∈ L(V), then trace(ST) =
(traceS)(traceT).

15. Suppose T ∈ L(V). Prove that if trace(ST) = 0 for all S ∈ L(V),
then T = 0.

16. Suppose V is an inner-product space and T ∈ L(V). Prove that
if (e1, . . . , en) is an orthonormal basis of V , then

trace(T∗T) = ‖Te1‖2 + · · · + ‖Ten‖2.

Conclude that the right side of the equation above is independent
of which orthonormal basis (e1, . . . , en) is chosen for V .

17. Suppose V is a complex inner-product space and T ∈ L(V). Let
λ1, . . . , λn be the eigenvalues of T , repeated according to multi-
plicity. Suppose









a1,1 . . . a1,n
...

...
an,1 . . . an,n









is the matrix of T with respect to some orthonormal basis of V .
Prove that

|λ1|2 + · · · + |λn|2 ≤
n
∑

k=1

n
∑

j=1

|aj,k|2.

18. Suppose V is an inner-product space. Prove that

〈S, T〉 = trace(ST∗)

defines an inner product on L(V).
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19. Suppose V is an inner-product space and T ∈ L(V). Prove thatExercise 19 fails on

infinite-dimensional

inner-product spaces,

leading to what are

called hyponormal

operators, which have a

well-developed theory.

if
‖T∗v‖ ≤ ‖Tv‖

for every v ∈ V , then T is normal.

20. Prove or give a counterexample: if T ∈ L(V) and c ∈ F, then
det(cT) = cdimV detT .

21. Prove or give a counterexample: if S, T ∈ L(V), then det(S+T) =
detS + detT .

22. Suppose A is a block upper-triangular matrix

A =









A1 ∗
. . .

0 Am








,

where each Aj along the diagonal is a square matrix. Prove that

detA = (detA1) . . . (detAm).

23. Suppose A is an n-by-n matrix with real entries. Let S ∈ L(Cn)
denote the operator on Cn whose matrix equals A, and let T ∈
L(Rn) denote the operator on Rn whose matrix equals A. Prove
that traceS = traceT and detS = detT .

24. Suppose V is an inner-product space and T ∈ L(V). Prove that

detT∗ = detT .

Use this to prove that |detT | = det
√
T∗T , giving a different

proof than was given in 10.37.

25. Let a,b, c be positive numbers. Find the volume of the ellipsoid

{

(x,y, z) ∈ R3 :
x2

a2
+ y

2

b2
+ z

2

c2
< 1

}

by finding a set Ω ⊂ R3 whose volume you know and an operator
T ∈ L(R3) such that T(Ω) equals the ellipsoid above.
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