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Notes to Readers
This version was created on November 19, 2003.
I welcome and appreciate all comments, criticisms, and suggestions.
Some relevant points:

1. Chapter 12 is a work in progress. The index does not include Chapter
12.

2. I provide references for most of the nontrivial Facts. If you happen to
know of additional relevant references, please let me know.

3. A few nontrivial facts lack a reference mainly because I have lost track of
the original reference. I would like to find a reference or at least verify the
correctness of the following facts:

Fact 5.9.25
Fact 9.8.26

4. About 60 problems are included. These problems concern extensions of
known results or gaps in the literature. If you should know of any relevant
literature (or solutions!), please advise.

5. A few more topics may be added such as: matrix pencils, matrices with
block-tridiagonal or block-companion structure, and series (Fer-Magnus-
Wei) representations of solutions of the matrix equation X (¢) = A(t) X (¢).

6. Please note errors of any kind.

7. Please feel free to suggest any additional facts or augmentations of exist-
ing facts.
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Special Symbols

General Notation

us 3.14159 - --
e 2.71828 - --
= equals by definition
n n!
(m) m!(n—m)!
la] largest integer less than or equal to a
0ij 1ifi=j, 0if i # 5 (Kronecker delta)
log logarithm with base e
sign « lifa>0,-1ifa<0,0ifa=0

sinh x, cosh x

Sem — ), 3e o)

Chapter 1

0 set (p. 2)

{ }m multiset (p. 2)

I} empty set (p. 2)

€ is an element of (p. 2)

4 is not an element of (p. 2)

N intersection (p. 2)

U union (p. 2)

8~ complement of 8§ (p. 2)

8\&' {xre8: x¢ 8} for sets 8,8 (p. 2)

- is a subset of (p. 2)

- is a proper subset of (p. 2)

fr X—Y f is a function with domain X and
codomain Y (p. 4)

) inverse image of 8 (p. 4)

feg composition of functions f and g (p. 4)
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Z integers (p. 13)

N nonnegative integers (p. 13)

P positive integers (p. 13)

R real numbers (p. 13)

C complex numbers (p. 13)

F R or C (p. 13)

J V=1 (p. 13)

z complex conjugate of z € C (p. 13)

Re z real part of z € C (p. 13)

Im z imaginary part of z € C (p. 13)

|z absolute value of z € C (p. 13)

CLHP closed left half plane in C (p. 14)

OLHP open left half plane in C (p. 14)

CRHP closed right half plane in C (p. 14)

ORHP open right half plane in C (p. 14)

JR imaginary numbers (p. 14)

R™ R (real column vectors) (p. 14)

cr C™*! (complex column vectors) (p. 14)

Fm R™ or C" (p. 14)

() ith component of x € F" (p. 14)

T>>y z(;) >y for all i (z —y is nonnegative)
(p. 14)

x>>y T(;) > y() for all i (v —y is positive)
(p. 14)

Rxm n x m real matrices (p. 15)

Ccrxm n X m complex matrices (p. 15)

[Frxm R™™ or C™*™ (p. 15)

row;(A) ith row of A (p. 15)

col;(A) ith column of A (p. 15)



[A, B]
ad4(X)
Xy

Onxm, 0
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€in, €
Eijnxm, Eij
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AT
tr A
Z

A
Re A
ImA
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(i,7) entry of A (p. 15)

A(%]) Z B(z,]) for all ’L7j (A — Bis
nonnegative) (p. 16)

A(’L,_]) > B(z,j) for all ’L,j (A — Bis
positive) (p. 16)

matrix obtained from A € F™*™ by
replacing col;(A) with b € F™ or row;(A)
with b € FY>™ (p. 16)

largest diagonal entry of A € F"*" having
real diagonal entries (p. 16)

ith largest diagonal entry of A € F»*"™
having real diagonal entries (p. 16)

smallest diagonal entry of A € F™**"

having real diagonal entries (p. 16)
commutator AB — BA (p. 18)

adjoint operator [A4, X] (p. 18)

cross product of vectors x,y € R? (p. 18)
n X m zero matrix (p. 18)

n X n identity matrix (p. 19)

col;(I,,) (p- 19)

eme}?m (p. 20)

n X m ones matrix (p. 20)

n X n reverse identity matrix [ 0 1 ]
(p. 20) ! 0
transpose of A (p. 22)

trace of A (p. 22)

complex conjugate of Z € C"*™ (p. 23)
ar conjugate transpose of A (p. 23)
real part of A € F™ ™ (p. 23)
imaginary part of A € F™*™ (p. 23)
{(Z: Ze8yor{Z: Z €8} (p. 23)
TA™T reverse transpose of A (p. 24)



Ai

cod
cone 8
coco 8
span 8§
aft §
dim &
dcone 8
gL
R(A)
N(A)
rank A
def A
AL

AR

A1
AT
A—*
det A
Ay

7.7]

AA

Chapter 3

diag(a, ..., an)

revdiag(ay, ..., an)

Ny, N
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IA*] reverse conjugate transpose of A

(p- 24)

convex hull of § (p. 25)
conical hull of 8 (p. 25)

convex conical hull of 8§ (p. 25)
span of 8§ (p. 25)
affine hull of 8§ (p. 25)

dimension of 8§ (p. 26)
dual cone of § (p. 26)

orthogonal complement of § (p. 26)
range of A (p. 29)

null space of A (p. 29)

rank of A (p. 31)

defect of A (p. 31)

left inverse of A (p. 34)

right inverse of A (p. 34)

inverse of A (p. 37)

(ATY™ (p. 38)

(A")" (p. 38)
determinant of A (p. 38)

submatrix of A obtained by deleting
row;(A) and col;(A) (p. 41)

adjugate of A (p. 41)

(p- 79)

(p- 79)

n X n standard nilpotent matrix (p. 78)
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JQ?’LaJ

glF(n)a pl(C(n)a SlF(n)y
u(n), su(n), so(n), sp(n),
affp(n), ser(n), transg(n)

GLr(n), PLy(n), SLr(n),
U(n), O(n), U(n,m),
O(n,m), SU(n), SO(n),
Sp(n), Affp(n), SEr(n),
Transp(n)

Chapter 4
F[s]

degp

mroots(p)
roots(p)
mp(A)

anm[s]

Ay 0
block-diagonal matrix o ,

0 Ag

where A; € F™"*™i (p. 79)

[ 6] (0 81)

Lie algebras (p. 83)

groups (p. 84)

polynomials with coefficients in F (p. 111)
degree of p € F[s] (p. 111)

multiset of roots of p € F[s] (p. 112)

set of roots of p € F[s] (p. 112)

multiplicity of A as a root of p € F[s]
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matrix polynomials with coefficients in F)
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eigenvalues (p. 120)
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real eigenvalues (p. 120)
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amy(\) algebraic multiplicity of A € spec(A)
(p. 120)
spec(A) spectrum of A (p. 120)
mspec(A) multispectrum of A (p. 120)
gmy () geometric multiplicity of A € spec(A)
(p. 125)
spabs(A) spectral abscissa of A (p. 126)
sprad(A) spectral radius of A (p. 126)
In(A) inertia of A (p. 126)
v_(A),1n(A),v4(A) number of eigenvalues of A counting

algebraic multiplicity having negative,
zero, and positive real part, respectively

(p. 126)
1A minimal polynomial of A (p. 127)
F(s) rational functions with coefficients in F
(p. 129)
reldeg g relative degree of g € F(s) (p. 129)
Fr>m(s) n X m matrices with entries in F(s) (p. 129)
rank G rank of G € F(s) (p. 129)
B(p,q) Bezout matrix of p,q € F[s] (p. 132, Fact
4.8.6)
H(g) Hankel matrix of g € F(s) (p. 134, Fact
4.8.7)
Chapter 5
C(p) companion matrix for monic polynomial p
(p. 152)
Hi(q) I x 1 or 21 x 2] hypercompanion matrix
(p. 156)
d1(q) I x 1 or 2l x 2] real Jordan matrix (p. 158)
sig(A) signature of A, that is, v (A) — v_(A)

(p- 164)
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indg()
ind A

Omin(A) £ on(A)

V(AL .y An)

circ(ag, ..., ap-1)

Chapter 6

A+
D|A
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A#
Chapter 7

vec A

&
Pn,m
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matrix2 November 19, 2003

index of A with respect to A (p. 165)
index of A, that is, ind4(0) (p. 165)

complementary idempotent matrix or
projector I — A corresponding to the
idempotent matrix or projector A (p. 167)
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ij=1
rank A 1/p
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maxie(1,...m}llcoli(A)[[1 (p. 317)

-----

row norm || Al|se 0o =
maxie{l,...,n}||T0W1(A)H1 (p. 317)

induced lower bound of A (p. 319)



61]7?(‘4)

- [lo

Chapter 10

B.(z)
Se(z)
int 8
cl8
intg: 8
clg' &
bd 8
bds: 8
vcone D

D f(zo0;§)

8f(ﬂUO)

210)

f'(@)
df(xo)

f¥()

Chapter 11

e/ or exp(A)

8s(A)

matrix2 November 19, 2003

Holder-induced lower bound of A (p. 320)
dual norm (p. 326, Fact 9.7.8)

open ball of radius ¢ centered at x (p. 355)
sphere of radius € centered at x (p. 355)
interior of 8§ (p. 355)

closure of 8§ (p. 355)

interior of 8 relative to 8’ (p. 355)

closure of 8 relative to 8’ (p. 356)
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at zo (p. 359)

Frechet derivative of f at = (p. 360)

f'(zo) (p- 360)
kth Frechet derivative of f at x (p. 361)
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Conventions, Notation, and Terminology
When a word is defined, it is italicized.

The definition of a word, phrase, or symbol should always be understood as
an “if and only if” statement, although for brevity “only if” is omitted. The
symbol £ means equal by definition.

Analogous statements are written in parallel using the following style: If n
is (even, odd), then n + 1 is (odd, even).

1,7, k,l,m,n always denote integers. Hence, k£ > 1 denotes a positive integer,
and the limit limy_,., A* is taken over positive integers.

The prefix “non” means “not” in the words nonempty, nonzero, non-real,
nonnegative, nonunique, nonsingular, nonpositive, nonconstant, and non-
normal. In some traditional usage, “non” may mean “not necessarily.”

“Increasing” and “decreasing” indicate strict change for a change in the ar-
gument. The word “strict” is superfluous and thus is omitted. Nonincreasing
means nowhere increasing, while nondecreasing means nowhere decreasing.

Multisets can have repeated elements so that {z},, and {x, z}, are different.
Multisets help account for repeated eigenvalues. The listed elements «, 3,
of the conventional set {a, 3,7} are not necessarily distinct.

81 C 89 means that 8; is a proper subset of 8o, that is, 81 C 85 and 81 # 8.
81 C 89 means that either 81 C 89 or 81 = So. This notation is consistent
with < and < for real numbers.

1/00 £ 0.
0£1.
A% £ T for all square matrices A. In particular, 0%,, = I,. With this

convention, it is possible to write
o0
: 1
o=
Z 11—«
1=0

for all -1 < a < 1. Of course, lim, .o+ 0° = 0, lim, o+ 2° = 1, and
liml‘*)O‘F =1

v/ —1 is always denoted by dotless 7. Although 7 is traditional in mathemat-
ics, this notation is common in electrical engineering.
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The imaginary numbers are jR. Hence, 0 is both a real number and an
imaginary number.

s always represents a complex scalar.

For the scalar ordering “<”, if x < y, then < y if and only if x # y. For a
vector or matrix ordering, x < y and = # y do not imply that < y.

Operations denoted by superscripts are applied before operations repre-
sented by preceding operators. For example, tr (A4 B)? means tr [(A + B)Q]
and cl 8~ means cl(8™). This convention simplifies many formulas.

“Vector” means column vector. A vector is a matrix with one column.

Sets have elements, vectors have components, and matrices have entries.
This terminology is traditional and has no mathematical consequence.

Ai ) is the scalar (i,7) entry of A. A; ; or A;; denotes a block or submatrix
of A.

All matrices have nonnegative integral dimensions. If at least one of the
dimensions of a matrix is zero, then the matrix is empty.

The entries of a submatrix A of a matrix A are the entries of A lying in
specified rows and columns. A is a block of A if A is a submatrix of A
whose entries are entries of adjacent rows and columns of A. Every matrix
is both a submatrix and block of itself.

The determinant of a submatrix is a subdeterminant. (Some books use
“minor.”) The determinant of a matrix is also a subdeterminant of the
matrix.

The dimension of the null space of a matrix is its defect. Some books use
“nullity.”

A block of a square matrix is diagonally located if the block is square and the
diagonal entries of the block are also diagonal entries of the matrix; other-
wise, the block is off-diagonally located. This terminology avoids confusion
with a “diagonal block,” which is block that is also a a square, diagonal
submatrix.

F denotes either R or C consistently in every result. For example, in Theorem
5.6.3, the three appearances of “F” can be read as either all “C” or all “R.”

If F = R, then A becomes A, A* becomes AT, “Hermitian” becomes “sym-
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metric,” “unitary” becomes “orthogonal,” “unitarily” becomes “orthogo-
nally,” and “congruence” becomes “T-congruence.” A square complex ma-
trix A is symmetric if AT = A and orthogonal if ATA = I.

The adjugate of A € F™*" is denoted by A”. The traditional notation is
adjA. AA is used in [523)].

The diagonal entries of a matrix A € F™*™ all of whose diagonal entries are
real are ordered as dpax(A4) = di(A) > da(A) > -+ > dpin(A) = du(A).

The eigenvalues of a matrix A € F*"*™ all of whose eigenvalues are real are
ordered as Apax(A4) = Mi(A) > Xa(A) > -+ > Anin(4) = M(A).

For A € F" " amy(A) is the number of copies of A in the multispectrum
of A, gm,(\) is the number of Jordan blocks of A associated with A, and
ind4(A) is the size of the largest Jordan block of A associated with .

An n x m matrix has exactly min{n, m} singular values, exactly rank A of
which are positive.

The min{n, m} singular values of a matrix A € F"*"™ are ordered as oyax(A)
2 51(A) > g9(A) > - > Omin{n,m}(A). If n = m, then omin(A) 2 o,.(A).
The notation opin(A) is defined only for square matrices.

Nonnegative-semidefinite and positive-definite matrices are Hermitian.

A matrix that can be diagonalized by a similarity transformation is diag-
onalizable and thus semisimple since all of its eigenvalues are semisimple.
If the matrix is real and all of its eigenvalues are real, then the matrix is
diagonalizable over R.

An idempotent matrix A € F™"*" satisfies A> = A, while a projector is a
Hermitian, idempotent matrix. Some books use “projector” for idempotent
and “orthogonal projector” for projector. A reflector is a Hermitian, invo-
lutory matrix. A projector is a normal matrix whose eigenvalues are 1 or 0,
while a reflector is a normal matrix whose eigenvalues are 1 or —1.

An elementary matrix is a nonsingular matrix formed by adding an outer-
product matrix to the identity matrix. An elementary reflector is a reflec-
tor exactly one of whose eigenvalues is —1. An elementary projector is a
projector exactly one of whose eigenvalues is 0. Elementary reflectors are
elementary matrices. However, elementary projectors are not elementary
matrices since elementary projectors are singular.

The rank of a matrix polynomial or rational transfer function P is the max-
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imum rank of P(s) over C. Some books call this “normal rank.” We denote

this quantity by rank P as distinct from rank P(s), which denotes the rank
of the matrix P(s), where s € C.

The symbol @ denotes the Kronecker sum. (Some books use @ to denote
the direct sum of matrices.)

The Holder norms for vectors and matrices are denoted by || ||,. The matrix

norm induced by || - ||, on the domain and || - ||, on the codomain is denoted
by || - [lp.q-
The Schatten norms for matrices are denoted by || - ||5p, and the Frobenius

norm is denoted by ||-||r. Hence, ||-|lso0 = ||*[/2,2 = Omax(:) and || |lo2 = || ||F-
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Preface

The idea for this book began with the realization that at the heart
of the solution to many problems in science, mathematics, and engineering
often lies a “matrix fact,” that is, an identity, inequality, or property of
matrices that is crucial to the solution of the problem. Although there are
numerous excellent books on linear algebra and matrix theory, no one book
contains all or even most of the vast number of matrix facts that appear
throughout the mathematical, scientific, and engineering literature. This
book is an attempt to organize many of these facts into a reference source
for users of matrix theory in diverse applications areas.

Matrix mathematics, which can be viewed as a significant extension of
scalar mathematics, provides powerful tools for analyzing physical problems
in science and engineering. Discretization of partial differential equations
by means of finite differencing and finite elements yields linear algebraic or
differential equations whose matrix structure reflects the nature of physical
solutions [530]. Multivariate probability theory and statistical analysis use
matrix methods to represent probability distributions, to compute moments,
and to perform linear regression for data analysis [215, 249, 269, 387, 503].
The study of linear differential equations [281] depends heavily on matrix
analysis, while linear systems theory and control theory are matrix-intensive
areas of engineering [31,62,66,141,161,213,306,345,352,382,463,493,510,556,
572,615,632]. In addition, matrices are widely used in rigid body mechanics
[11,344,399,432,449,562], structural dynamics [350,409,467], fluid dynamics
[137,200,595], circuit theory [13], queuing and stochastic systems [265,436],
graph theory [202], signal processing [569], statistical mechanics [7,69,574],
demography [329], optics [226], and number theory [339].

In all applications involving matrices, computational techniques are
essential for obtaining numerical solutions. The development of efficient
and reliable algorithms for matrix computations is therefore an important
area of research that has been extensively developed [44, 136,169, 236, 280,
297,309, 521, 522, 524, 554, 573, 596, 600, 601]. To facilitate the solution of
matrix problems, entire computer packages have been developed using the
language of matrices. However, this book is concerned with the analytical
properties of matrices rather than their computational aspects.

This book encompasses a broad range of fundamental questions in
matrix theory, which, in many cases can be viewed as extensions of related
questions in scalar mathematics. A few such questions are:
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What are the basic properties of matrices? How can matrices be
characterized, classified, and quantified?

How can a matrix be decomposed into simpler matrices? A
matrix decomposition may involve addition, multiplication,
and partition. Decomposing a matrix into its fundamental
components provides insight into its algebraic and geometric
properties. For example, the polar decomposition states that
every square matrix can be written as the product of a rotation
and a dilation analogous to the polar representation of a complex
number.

Given a pair of matrices having certain properties, what can
be inferred about the sum, product, and concatenation of these
matrices? In particular, if a matrix has a given property, to
what extent does that property change or remain unchanged
if the matrix is perturbed by another matrix of a certain type
by means of addition, multiplication, or concatenation? For
example, if a matrix is nonsingular, how large can an additive
perturbation to that matrix be without the sum becoming
singular?

How can properties of a matrix be determined by means of
simple operations? For example, how can the location of the
eigenvalues of a matrix be estimated directly in terms of the
entries of the matrix?

To what extent do matrices satisfy the formal properties of
the real numbers? For example, while 0 < a < b implies that
a” < b" for real numbers a, b and a positive integer r, when does
0 < A< Bimply A" < B" for nonnegative-semidefinite matrices
A and B and with the nonnegative-semidefinite ordering?

Questions of these types have occupied matrix theorists for at least
a century, with motivation from diverse applications. The existing scope
and depth of knowledge are enormous. Taken together, this body of knowl-
edge provides a powerful framework for developing and analyzing models for
scientific and engineering applications.

This book is intended to be useful for at least four groups of readers.
Since linear algebra is a standard course in the mathematical sciences and
engineering, graduate students in these fields can use this book to expand
the scope of their linear algebra text. For instructors, many of the Facts
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can be used as exercises to augment standard material in matrix courses.
For researchers in the mathematical sciences, including statistics, physics,
and engineering, this book can be used as a general reference on matrix
theory. Finally, for users of matrices in the applied sciences, this book will
provide access to a large body of results in matrix theory. By collecting
these results in a single source, it is my hope that this book will prove to
be convenient and useful for a broad range of applications. The material
in this book is thus intended to complement the large number of classical
and modern texts and reference works on linear algebra and matrix theory
(2,214, 222,223,229, 244, 285,383,391, 395, 423,440, 444, 466, 492,509, 530].

After a review of mathematical preliminaries in Chapter 1, fundamen-
tal properties of matrices are described in Chapter 2. Chapter 3 summarizes
the major classes of matrices and various matrix transformations. In Chap-
ter 4 we turn to polynomial and rational matrices whose basic properties
are essential for understanding the structure of constant matrices. Chapter
5 is concerned with various decompositions of matrices including the Jor-
dan, Schur, and singular value decompositions. Chapter 6 provides a brief
treatment of generalized inverses, while Chapter 7 describes the Kronecker
and Schur product operations. Chapter 8 is concerned with the properties
of nonnegative-semidefinite matrices. A detailed treatment of vector and
matrix norms is given in Chapter 9, while formulas for matrix derivatives
are given in Chapter 10. Next, Chapter 11 focuses on the matrix exponen-
tial and stability theory, which are central to the study of linear differential
equations. In Chapter 12 we apply matrix theory to the analysis of linear
systems, their state space realizations, and their transfer function represen-
tation. This chapter also includes a discussion of the matrix Riccati equation
of control theory.

Each chapter provides a core of results with, in many cases, complete
proofs. Sections at the end of each chapter provide a collection of Facts
organized to correspond to the order of topics in the chapter. These Facts
include corollaries and special cases of results presented in the chapter, as
well as related results that go beyond the results of the chapter. In a few
cases the Facts include open problems, illuminating remarks, and hints re-
garding proofs. The Facts are intended to provide the reader with a useful
reference collection of matrix results as well as a gateway to the matrix
theory literature.

The literature on matrix theory is enormous and includes numerous
excellent textbooks and monographs as well as innumerable papers. The
material in this book has been drawn from many sources, and these appear
in the reference list. An attempt has been made to give appropriate credit
wherever possible. However, there are surely omissions in this regard, and I
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regret all such oversights.

The author is indebted to many individuals who, over the years, pro-
vided helpful suggestions as well as material for this book.
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Chapter One

Preliminaries

In this chapter we review some basic terminology and results con-
cerning logic, sets, functions, and related concepts. This material is used
throughout the book.

1.1 Logic and Sets

Let A and B be conditions. The negation of A is (not A), the both of
A and B is (A and B), and the either of A and B is (A or B).

Let A and B be conditions. The implication or statement “if A is
satisfied, then B is satisfied” or, equivalently, “A implies B,” is written as
A = B, while A <= B is equivalent to [(A = B) and (A <= B)]. Of
course, A <= B means B — A.

Suppose A <= B. Then, A is satisfied if and only if B is satisfied. By
convention, the implication A = B (the “only if” part) is necessity, while
B = A (the “if” part) is sufficiency. The converse of A=— B is B — A.

The statement A = B is equivalent to its contrapositive (not B) = (not
A).

A theorem is a significant result, while a proposition is less signifi-
cant. The primary role of a lemma is to support the proof of a theorem
or proposition. Finally, a corollary is a direct consequence of a theorem or
proposition.

Suppose that A’ = A = B = B’. Then, A’ = B’ is a corollary
of A— B.

Let A, B, and C' be conditions, and assume that A = B. Then,
A = B is a strengthening of (A and C) = B. If, in addition, A = C,
then the statement (A and C') = B has redundant assumptions.



matrix2 November 19, 2003

2 CHAPTER 1

Let X £ {z,y, z} be a set. Then,
reX (1.1.1)
means that x is an element of X. If w is not an element of X, then we write
w ¢ X. (1.1.2)
The set with no elements, denoted by @, is the empty set. If X # &, then

X is monempty.

A set cannot have repeated elements. For example, {z,z} = {z}.
However, a multiset is a collection of elements that allows for repetition.
The multiset consisting of two copies of x is written as {x,z},,. However,
we do not assume that the listed elements x, y of the conventional set {z,y}
are distinct.

There are two basic types of mathematical statements involving quan-
tifiers. An existential statement is of the form
there exists « € X such that condition Z is satisfied, (1.1.3)
while a universal statement has the structure
condition Z is satisfied for all z € X. (1.1.4)
Let X and Y be sets. The intersection of X and Y is the set of common
elements of X and Y given by
XNY2{r: zcXandzcyY}={zcX: zcyY} (1.1.5)
={zreY ze€X}=YnX,

while the set of elements in either X or Y (the union of X and Y) is

:X:Uljé{.%: zeXorzxzeyY}=YUX. (1.1.7)
The complement of X relative to Y is
WX E{zeY: z¢X} (1.1.8)
If Y is specified, then the complement of X is
X~ £ Y\X. (1.1.9)

If € X implies that € Y, then X is contained in Y (X is a subset of Y),

which is written as
XCy. (1.1.10)

The statement X =Y is equivalent to the validity of both X C Y and Y C X.
If X €Y and X # Y, then X is a proper subset of Y and we write X C Y.
The sets X and Y are disjoint ift XN'Y = . A partition of X is a collection
of pairwise disjoint subsets of X whose union is equal to X.
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The operations “N”,“U”, and “\” and the relations “C” and “C” ex-
tend directly to multisets. For example,

{z,2}m U{z}m = {z,2,2}m. (1.1.11)

By ignoring repetitions, a multiset can be converted to a set, while a set can
be viewed as a multiset with distinct elements.

1.2 Relations and Functions

The Cartesian product X1 X - -- x X, of sets Xq,...,X, is the set con-
sisting of ordered elements of the form (z1,...,z,), where z; € X; for all
i=1,...,n. A relation R on a set X is a subset of X x X. For convenience,
(x1,2) € R is denoted by z1 < 9, whereas z1 £ z9 denotes (z1,z2) ¢ R.

Definition 1.2.1. Let R be a relation on X. Then, the following ter-
minology is defined:
i) R is reflezive if < x for all z € X.
1) R is antisymmetric if x1 < x9 and x9 < x1 imply that z1 = xs.

)

i11) R is symmetric if x1 < xo implies that xo < 7.

iv) R is transitive if 1 < x9 and xo < xg imply that z; < x3.
)

v) R is pairwise connected if x1,x9 € X implies that either 21 < x5 or
To < T7.

vi) Ris a partial ordering if it is reflexive, antisymmetric, and transitive.
vii) R is a total ordering if it is a pairwise connected partial ordering.
viit) R is an equivalence relation if it is reflexive, symmetric, and transi-

tive.

For an equivalence relation R, z1 < x5 is denoted by x1 = 2, whereas
r1 # x9 denotes x f 9. If R is an equivalence relation and = € X, then the
subset {y € X: y =z} of X is the equivalence class of x induced by R.

Theorem 1.2.2. Let R be an equivalence relation on a set X. Then,
the collection of equivalence classes of X induced by R is a partition of X.
Conversely, given a partition of X, the relation R defined by

(z,y) € R <= = and y belong to the same partition subset of X (1.2.1)
is an equivalence relation.

Proof. For z € X, let 8, denote the equivalence class of x induced by
R. Clearly, X = U,cySz- It remains to be shown that if z,y € X, then
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either 8, = §, or 8,N 8, = &. Hence, let z,y € X, and suppose that S, and
§, are not disjoint so that there exists z € 8§, N 8,. Thus, (z,2) € R and
(z,y) € R. Now, let w € 8;. Then, (w,z) € R, (z,2) € R, and (z,y) € R
imply that (w,y) € R. Hence, w € §,, which implies that 8§, C §,. By a
similar argument, 8, C 8,. Consequently, 8, = §,. Finally, the proof of the
second statement is immediate. O

Let X and Y be sets. Then, a function f that maps X into Y is a
rule f: X — Y that assigns a unique element f(x) (the image of x) of Y to
every element = in X. Equivalently, a function f: X +— Y can be viewed as
a subset F of X x Y such that, for all x € X, there exists y € Y such that
(z,y) € F and, if (z1,y1) € F, (22,92) € F, and 1 = x2, then y; = y2. In
this case, F = graph(f) £ {(z, f(z)): = € X}. The set X is the domain of f,
while the set Y is the codomain of f. For X1 C X, it is convenient to define
f(X1) 2 {f(x): = € X1}. The set f(X), which is denoted by R(f), is the
range of f. If, in addition, Z is a set and g: Y — Z, then ge f: X +— Z (the
composition of g and f) is the function (g e f)(z) = g(f(z)). If z1,29 € X
and f(x1) = f(x2) implies that x1 = x9, then f is one-to-one; if R(f) =Y,
then f is onto. The function Ix: X — X defined by I (x) £ x for all z € X
is the identity on X.

Let f: X — Y. Then, f is left invertible if there exists a function
g: Y — X (a left inverse of f) such that g e f = Iy, whereas f is right
invertible if there exists a function h: Y — X (a right inverse of f) such that
f eh = 1Iy. In addition, the function f: X +— Y is invertible if there exists
ft: Y X (the inverse of f) such that f'e f =TIy and fe f! = Iy. The
inverse image f~1(8) of 8§ C Y is defined by
A8 £ {zecX: f(x) €8} (1.2.2)
Theorem 1.2.3. Let X and Y be sets, and let f: X — Y. Then, the
following statements hold:
i) f is left invertible if and only if f is one-to-one.
it) f is right invertible if and only if f is onto.
Furthermore, the following statements are equivalent:
iit) f is invertible.
iv) f has a unique inverse.
v is one-to-one and onto.
vl

is left invertible and right invertible.

)
) [
) [
)

vit) f has a unique left inverse.
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viit) f has a unique right inverse.

Proof. To prove i), suppose that f is left invertible with left inverse
g: Y — X. Furthermore, suppose that z1,z9 € X satisfy f(z1) = f(x2).
Then, z1 = g(f(z1)) = g(f(z2)) = z2, which shows that f is one-to-one.
Conversely, suppose that f is one-to-one so that, for all y € R(f), there
exists a unique z € X such that f(x) = y. Hence, define the function
g: Y X by g(y) £z for all y = f(z) € R(f) and by g(y) arbitrary for all
y € Y\R(f). Consequently, g(f(x)) = z for all z € X, which shows that g is
a left inverse of f.

To prove i), suppose that f is right invertible with right inverse
g: Y +— X. Then, for all y € Y, it follows that f(g(y)) = y, which shows
that f is onto. Conversely, suppose that f is onto so that, for all y € Y,
there exists at least one x € X such that f(z) = y. Selecting one such z
arbitrarily, define g: Y — X by g(y) £ x. Consequently, f(g(y)) = y for all
y € Y, which shows that g is a right inverse of f. O

1.3 Facts on Logic, Sets, and Functions

Fact1.3.1. Let A and B be conditions. Then, the following statements
hold:
i) (Aor B) <= (not A= B).
A = B) <= (not A or B).
not (A or B)] <= (not A and not B).

not (A = B)] <= (A and not B).

(
it) (
i)

v)

[
) |
Fact 1.3.2. The following statements are equivalent:
i) A= (B or ().

it) (A and not B) = C.

Fact 1.3.3. The following statements are equivalent:
i) A<= B.
i1) (A or not B) and [not (A and not B)].
Fact 1.3.4. Let A,B,C be subsets of a set X. Then, the following
identities hold:
i) ANA=AUA=A.
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it) (AUB)Y =A~NB"™.
iit) AYUBY = (ANB)™.
i) [A\(ANB)]UB =AUB.
v) (AUBN\NANB)=ANBY)UA~NB).
vi) AN(BUC)=(ANB)U(ANC).
vii) AU(BNEC) =(AUB)N(AUC).
) \C = (A\C) N (B\C)
) \C = (A\C) U (B\C)
AUB™) =A.
ANUB)H(AUBN) =ANa3.

viii) (ANB .

ir) (AUB
z) (AUB
zi) (AUB

Akt
U (

~— — ~— “—

Fact 1.3.5. Let (z1,y1), (z2,y2) € RxR. Then, the relation (z1,y1) <
(22,y2) defined by x1 < x9 and y1 < yo is a partial ordering.

Fact 1.3.6. Let f: X +— Y be invertible. Then,
(="

Fact 1.3.7. Let f: X — Y and g: Y — Z, and assume that f and g
are invertible. Then, g e f is invertible and

(gef)t=f"eg

Fact 1.3.8. Let X be a set, and let X denote the class of subsets of
X. Then, “C” and “C” are transitive relations on X, and “C” is a partial
ordering on X.

1.4 Facts on Scalar Inequalities

Fact 1.4.1. Let x be a positive number. Then,
<ar+1—a, 0<a<l,
:L,a
>ar+1—a, a<0ora>1.

Fact 1.4.2. Let z and y be nonnegative numbers, and let a € [0, 1].

Then,
2y T < az+ (1 - a)y.

(Remark: See Fact 8.12.12 and Fact 8.12.13.)
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Fact 1.4.3. Let x and y be real numbers, and let « € [0, 1]. Then,
ety < e® 4 (1 — a)e?.

(Proof: Replace x and y by e” and €Y, respectively, in Fact 1.4.2.) (Re-
mark: This inequality is a convexity condition. See Definition 8.5.11 for the
convexity of matrix-valued functions.)

Fact 1.4.4. Let x be a positive number. Then,
11—t <logzx <x—1.

Furthermore, equality holds if and only if x = 1.

Fact 1.4.5. Let = and y be nonnegative numbers, and let p, g € [1, 00)
satisfy 1/p + 1/q = 1. Then,
zy < — + —.
p q

(Remark: This result is Young’s inequality. A matrix version is given by
Fact 9.12.19.)

Fact 1.4.6. Let z and y be positive numbers, and let 0 < p < ¢q. Then,
P 4 yP a4yl
(zy)p/2 = (xy)a/?
(Remark: This inequality is a monotonicity property. See Fact 8.7.27.)

Fact 1.4.7. Let z and y be distinct positive numbers, and let p and ¢
be real numbers such that p < ¢. Then,

aP + P 1/p 27+ o1 1/q
(=) < (%)

(Proof: See [375].) (Remark: This result is a power mean inequality. Letting
g = 1 and p — 0 yields the arithmetic-mean-geometric-mean inequality

VTY < 3z +y).)

Fact 1.4.8. Let x and y be distinct positive numbers, let 1/3 < p <
1 < g. Then,

Jiy < —Y << 2y> < 2y< 2y .

logy — logx

(Proof: See [375].) (Remark: These inequalities are a refinement of the
arithmetic-mean-geometric-mean inequality. Additional inequalities in n
variables and related references are given in [619].)



matrix2 November 19, 2003

8 CHAPTER 1
Fact 1.4.9. Let z1,...,x, be nonnegative numbers. Then,
n 1/n n
i=1 i=1
Furthermore, equality holds if and only if 21 = 29 = --- = z,,. (Remark:

This result is the arithmetic-mean-geometric-mean inequality. Several proofs
are given in [119]. Bounds for the difference between these quantities are
given in [12,132,558].)

Fact 1.4.10. Let x1,...,x, be nonnegative real numbers, let p be a
real number, and define
n 1/n
<H xz) ) b= Oa
M, 2 i=1

n 1/p
() o0

Now, let p, ¢ be real numbers such that p < q. Then,

M, < M,.
Furthermore, p < ¢ and at least two of the numbers z1, ..., x, are distinct
if and only if

M, < M,.

(Proof: See [117, p. 210] and [395, p. 105].) (Remark: If p and ¢ are nonzero

and p < ¢, then,
n 1/p a1/ n 1/q
>a) (s
<i—1 )

i=1
which is a reverse form of Fact 1.4.13. (Remark: This result is a power mean

inequality. My < M is the arithmetic-mean-geometric-mean inequality
given by Fact 1.4.9.)

Fact1.4.11. Let x1,...,x, be nonnegative numbers, and let ay, ..., ay,
be nonnegative numbers such that """ ; a; = 1. Then,

n n

Oy
HCEi < E o, T;.
i=1 i=1

Furthermore, equality holds if and only if 29 = 29 = -+ = z,. (Re-
mark: This result is the weighted arithmetic-mean geometric-mean inequal-
ity.) (Proof: Since f(z) = —logz is convex, it follows that log [ [, «¢"

K3
Yo oglogx; < logd o osxi.  To prove the second statement, define
A

f: [0,00)" — [0,00) by f(p1,... pn) = D iq cipi — [[1— u5*. Note that
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flpy...yp) =0 for all uw > 0. If zy,...,z, minimizes f, then Of/Ou;(x1, ...,

xp) =0 for all i =1,...,n, which implies that 1 =29 = -+ = x,.)
Fact 1.4.12. Let x1,...,x, be nonnegative numbers. Then,
n 1/n n 1/n
1+ (H xz> < [H(l + ;)
i=1 i=1
Furthermore, equality holds if and only if 21 = 29 = -+ = x,,. (Proof: Use

Fact 1.4.9.) (Remark: This inequality is used to prove Corollary 8.4.15.)

Fact 1.4.13. Let xy,...,z, be nonnegative real numbers, and let p, ¢
be real numbers such that p < ¢. Then,

n 1/q n 1/p
(e
=1 =1

Furthermore, the inequality is strict if and only if p < ¢ and at least two
of the numbers z1,...,x, are nonzero. (Proof: See Proposition 9.1.5.) (Re-
mark: This result is a power sum inequality or Jensen’s inequality. See [117,
p. 213]. The result implies that the Holder norm is a monotonic function of
the exponent.)

Fact 1.4.14. Let 0 < z1 < -+ < x,, and let og,...,a, > 0 satisfy

>0 = 1. Then,
n n 2
o (14 zp)
oy 2 < )

i=1
(Remark: This result is the Kantorovich inequality. See Fact 8.10.5 and
[378].)

Fact 1.4.15. Let x1,...,7, and y1,...,y, be nonnegative numbers.

Then,
S < (zﬁ) (z y) |
=1 =1 =1

Furthermore, equality holds if and only if [ T+ Tp ]T and [ Y1 * Yn
are linearly dependent. (Remark: This result is the Cauchy-Schwarz inequal-

ity.)

]T

Fact 1.4.16. Let z1,...,z, and ¥1,...,¥y, be nonnegative numbers,
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and let o € [0,1]. Then,

n n asn I-a
St < (3a) (o)
i=1 i=1 i=1
Now, let p,q € [1,00] satisfy 1/p + 1/qg = 1. Then, equivalently,

1/q

n n p/ n
Z il < (Z 56f> (Z yf)
i=1 i=1 i=1
p

Furthermore, equality holds if and only if [ af --- 2}, ]T and [ yi -+ yi
are linearly dependent. (Remark: This result is Holder’s inequality.) (Re-
mark: Note the relationship between the conjugate parameters p,q and the
barycentric coordinates o, 1 — . See Fact 8.15.23.)

]T

Fact 1.4.17. Let x1,...,x, and yi,...,y, be nonnegative numbers.
Then,

(@i +ui)?

=1 n l/p n 1/p
§<2x€> +(Zy§’) , p>1.
=1

=1

n 1/p n 1/p
n 1p 2(.25”?) +<. yf) » O<psl
[ i=1 =1
7

Furthermore, equality holds if and only if either p = 1 or [ Ty oo Xp ]T and

[ Y1 - Yn ]T are linearly dependent. (Remark: This result is Minkowski’s
inequality.)

Fact 1.4.18. Let z be a complex scalar with complex conjugate Z, real
part Re z, and imaginary part Im z. Then, the following statements hold:
i) |Rez| < |z|.
i) If 2 # 0, then 27! =7 /|2|2.
i) If z # 0, then Re 27! = (Re 2)/|z|*.
If || = 1, then 27! = Z.
If Rez # 0, then Rez! # 0 |2| = /(Rez)/(Rez1).

|22 = |2|% = 2z

21

w
v
(%3

vii) 22 + 72 + 4(Im 2)? = 2|2|2.

viid) 22 + 2% + 2|2|2 = 4(Re 2)2.

(29

)
)
)
)
)
)
)
)

|22 4+ 22| < 2|22

) |e?| < el*l.
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Now, let z; and z3 be complex scalars. Then, the following statements
hold:

z) |2122| = [21]|22]-

zi) |21+ 22| < [z1] + |22

zii) |21+ 22| = |2z1]+ | 22| if and only if there exists a > 0 such that either
21 = (k29 Or 29 = (zq.

(Remark: Matrix analogues of some of these results are given in [548].)

1.5 Notes

Most of the preliminary material in this chapter can be found in [434].
A related treatment of mathematical preliminaries is given in [484]. Refer-
ence works on inequalities include [70,117-119, 149,395,400, 424].
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Chapter Two

Basic Matrix Properties

In this chapter we provide a detailed treatment of the basic proper-
ties of matrices such as range, null space, rank, and invertibility. We also
consider properties of convex sets, cones, and subspaces.

2.1 Matrix Algebra

The symbols Z, N, and P denote the sets of integers, nonnegative
integers, and positive integers, respectively. The symbols R and C denote
the real and complex number fields, respectively, whose elements are scalars.
Since R is a proper subset of C, we state many results for C. In other cases,
it is either desirable to treat R and C separately or simply not to make a
distinction. To do this efficiently, we use the symbol F to consistently denote
either R or C.

Let x € C. Then, z = y+ jz, where y, 2 € R and ) £ \/—1. Define the
complex conjugate T of x by

T2y — 2 (2.1.1)
and the real and imaginary parts Rex and Im x of = by
Rex £ i(z+7) =y (2.1.2)
and
Imz 2 2%(:10 —T) ==z (2.1.3)

Furthermore, the absolute value |x| of z is defined by

|z £ Va2 + g2, (2.1.4)

The closed left half plane (CLHP), open left half plane (OLHP), closed right
half plane (CRHP), and open right half plane (ORHP) are the subsets of C
defined by
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CLHP £ {s € C: Res <0}, (2.1.5)
OLHP 2 {s € C: Res < 0}, (2.1.6)
CRHP 2 {s € C: Res > 0}, (2.1.7)
ORHP 2 {s € C: Res > 0}. (2.1.8)
The imaginary numbers are represented by jR. Note that 0 is both a real

number and an imaginary number.

The set F™ consists of vectors x of the form

Z(1)
x = : ) (2.1.9)
L(n)
where z(y), ..., %) € F are the components of x. Hence, the elements of F"

are column vectors. Since F' = IF, it follows that every scalar is also a vector.
If x € R™ and every component of x is nonnegative, then z is nonnegative,
which is written as x >> 0. If x € R™ and every component of x is positive,
then x is positive, which is written as x >> 0. If x,y € R", then © >> y
means that x —y >> 0, while x >> y means that x —y >> 0.

Definition 2.1.1. Let z,y € R", and assume that z(;) > --- > z(y)
and y(1) > -+ > Y(n). Then, the following terminology is defined:

i) y weakly magjorizes x if, for all k =1,... n,
k k
Dz <) v (2.1.10)
=1 =1

i) y strongly majorizes z if y weakly majorizes x and
n n
270 = DY (2.1.11)
i=1 i=1

Now, assume that x and y are nonnegative. Then, the following terminology
is defined:

ii1) y weakly log magorizes x if, for all k =1,... n,
k

k
[Tzo < Tvo- (2.1.12)

i=1 i=1

i) y strongly log majorizes x if y weakly log majorizes x and

[[ @ = [Tvo- (2.1.13)
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If « € F and « € F*, then az € F" is given by
a:c(l)
ar = : . (2.1.14)
ax(n)

If z,y € F", then x and y are linearly dependent if there exists o € F such
that either £ = ay or y = ax. Linear dependence for a set of two or more
vectors is defined in Section 2.3. Furthermore, vectors add component by
component, that is, if x,y € F”, then

L) Y

Ty = : . (2.1.15)
L T(n) T Y(n)

Thus, if a, 8 € F, then the linear combination ax + By is given by

ax(1y + By

ar + Py = (2.1.16)

| Ay + BYm)

The vectors z1, ...,z € F" placed side by side form the matriz
A [z o ay ], (2.1.17)

which has n rows and m columns. The components of the vectors x1,..., 2y,
are the entries of A. We write A € F™*™ and say that A has size n X m.
Since F* = F™*! it follows that every vector is also a matrix. Note that
F1*1 = F! = F. If n = m, then n is the order of A, and A is square. The
ith row of A and the jth column of A are denoted by row;(A) and col;(A),
respectively. Hence,

rowq(A)
A= : = [ coly(4) -+ colp(A) ]. (2.1.18)
rowy,(A)

The entry z;;) of A in both the ith row of A and the jth column of A is
denoted by A(; ;). Therefore, z € F" can be written as

Z(1) Z(11)
L(n) L(n,1)
Let A € F™*™ For b € F", the matrix obtained from A by replacing

col;(A) with b is denoted by ‘
Al (2.1.20)
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Likewise, for b € F!*™ the matrix obtained from A by replacing row;(A)
with b is denoted by (2.1.20).

Let A € R™™. If every entry of A is nonnegative, then A is nonnega-
tive, which is written as A >> 0. If A € R™ and every entry of x is positive,
then z is positive, which is written as A >> 0. If A,B € R™ ™,  then
A >> B means that A — B >> 0, while A >> B means that A — B >> 0.

Let A € F™™ and let [ 2 min{n, m}. Then, the entries Aiz for all
i=1,...,land Ay for all i # j are the diagonal entries and off-diagonal
entries of A, respectively. Moreover, for all ¢ = 1,...,] — 1, the entries
Agi i1y and Ay 4) are the superdiagonal entries and subdiagonal entries of
A, respectively. In addition, the entries A(; ;1) for all i =1,... 1 are the
reverse-diagonal entries of A. If the diagonal entries A 1),..., Ay of A
are real, then dpin(A) and dyax(A) denote the smallest and largest diagonal
entries of A, respectively, and the diagonal entries of A are relabeled from
largest to smallest as

Amax(A) 2 di(A) > - > dpin(A) £ di(A). (2.1.21)

Partitioned matrices are of the form

: (2.1.22)

where, for all ¢ =1,...,k and j = 1,...,[, the block A;; of A is a matrix of
size n; x mj. If n; = m; and the diagonal entries of A;; lie on the diagonal
of A, then the square matrix A;; is a diagonally located block; otherwise, A;;
is an off-diagonally located block.

Matrices of the same size add entry by entry, that is, if A, B € F**™,
then, for all i = 1,...,n and j = 1,...,m, (A+ B)u; = Auy) + Bij)-
Furthermore, for all ¢ = 1,...,nand j = 1,...,m, (aA)(m-) = ad ) for
all a € F so that (ad + BB)(; ;) = ad(j) + BBy for all o, € F. If
A, B € F™™ then A and B are linearly dependent if there exists a € F
such that either A = aB or B = aA.

Let A € F™™ and x € F™. Then, the matrix-vector product Ax is
defined by
rowy(A)z
Az = : : (2.1.23)

row,,(A)x
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It can be seen that Az is a linear combination of the columns of A, that is,
m
Az =) x(j)coli(A). (2.1.24)
i=1
The matrix A can be associated with the function f: F™ — F™ defined by

f(z) & Az for all 2 € F™. The function f: F™ — F" is linear since, for all
o, € Fand x,y € F™, it follows that

flax + By) = aAz + SAy. (2.1.25)
The function f: F™ — F" defined by
flx) & Az + 2, (2.1.26)

where z € F"| is affine.

Theorem 2.1.2. Let A € F**™ and B € F™*!, and define f: F™ — F»
and g: F' — F™ by f(z) & Az and g(y) £ By. Furthermore, define the
composition h = f e g: F!+— F". Then, for all y € R,

h(y) = (AB)y, (2.1.27)
where, forall i =1,...,nand j =1,...,l, AB € F**! is defined by

(AB) (i ) = ZA(i,k)B(k,j)- (2.1.28)
k=1

Let A € F**™ and B € F™*!. Then, AB € F"*! is the product of A
and B. The matrices A and B are conformable, and the product (2.1.28)
defines matriz multiplication.

Let A € F"*™ and B € F™*!. Then, AB can be written as

rowi(A)B
AB = [ Acoly(B) --- Acoly(B) | = : : (2.1.29)
row,(A)B
Thus, foralli=1,...,nand j=1,...,1,
(AB) ;) = row;(A)col;(B), (2.1.30)
colj(AB) = Acol;(B), (2.1.31)
row;(AB) = row;(A)B. (2.1.32)

As a special case, note that if x € F1*" and y € F* = F**! then the scalar
xzy € F is given by

Ty = Z T(1,0)Y(5)- (2.1.33)
i=1



matrix2 November 19, 2003

18 CHAPTER 2

For conformable matrices A, B, C, the associative and distributive
identities

(AB)C = A(BC), (2.1.34)
A(B+C)=AB+ AC, (2.1.35)
(A+ B)C = AC + BC (2.1.36)

are valid. Hence, we write ABC for (AB)C and A(BC).

Let A, B € F"*". Then, the commutator [A, B] € F"*" of A and B is
the matrix

[A, B] £ AB — BA. (2.1.37)
The adjoint operator ads: F™*" — F"*" is defined by
ada(X) £ [4, X]. (2.1.38)

Let x,y € R3. Then, the cross product x x y € R3 of x and y is defined

L | T@YE) T @)Y
T Xy= T(3)Y1) — TMY(@3) . (2.1.39)
Tm¥e) ~—T@Y0)

Multiplication of partitioned matrices is analogous to matrix multi-
plication with scalar entries. For example, for matrices with conformable
blocks,

[4 B]{g}ZACHLBD, (2.1.40)
[2]0—[22], (2.1.41)
[g][cm:[gg gg] (2.1.42)

[ AE+BG AF + BH

[é gHg Z]_[CEJrDG CF+DH] (2.1.43)

The n x m zero matriz, all of whose entries are zero, is written as
Opxm- If the dimensions are unambiguous, then we write just 0. Let z € F™
and A € F™*™, Then, the zero matrix satisfies

kam.%' = Ok, (2.1.44)
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Another special matrix is the empty matriz. For n € N, the 0 x n
empty matrix, which is written as Ogxy, has zero rows and n columns, while
the n x 0 empty matrix, which is written as 0,xp, has n rows and zero
columns. For A € F™*™ where n,m € N, the empty matrix satisfies the
multiplication rules

OoxnA = Ooxm (2.1.47)
and
AOmXO = 0n><0- (2148)
Although empty matrices have no entries, it is useful to define the product
0nx000xm = Onxm- (2.1.49)
Also, we define R
In £ Iy £ 0gxo. (2.1.50)

For n,m € N, we define FO*™ £ {0y}, F™0 £ {0,,4}, and FO & FOx1,
The empty matrix can be viewed as a useful device for matrices just as 0 is
for real numbers and & is for sets.

The n x n identity matriz, which has ones on the diagonal and zeros
elsewhere, is denoted by I, or just I. Let z € F" and A € F™*™. Then, the
identity matrix satisfies

Lix=x (2.1.51)

and
Al, = I,A = A. (2.1.52)

Let A € F"*"_ Then, A2 £ AA and, for all k € P, AF 2 AAF1. We
use the convention A% 2 I even if A is the zero matrix. If k € N, then

ART 2 <A’f>T = (A7) (2.1.53)

and b o (A’“)k _ (A (2.1.54)

The vector e;, € R", or just e;, has 1 as its ith component and zeros
elsewhere. Thus,

ein = coli(1y,). (2.1.55)
Let A € F™*™. Then, efA = row;(A) and Ae; = col;(A). Furthermore, the
(7,7) entry of A can be written as

TAT
A A

i) = efAej = e;A e (2.1.56)

The n x m matrix F; jn,xm € R™™, or just E;;, has 1 as its (4, j)
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entry and zeros elsewhere. Thus,
Ei jmxm = €in€) - (2.1.57)
Note that E;1,x1 = €, and

n
In=Ei1+-+En,= Z eiel. (2.1.58)
=1

Finally, the n x m ones matriz, all of whose entries are 1, is written as 1, xm
or just 1. Thus,

n,m
lnxm = Z Ei,j,nxm- (2159)
2,7=1
Note that
n 1
Luxi =Y ein=| (2.1.60)
i=1 1
and
1n><m = 1n><111><m‘ (2161)

The n x n reverse identity matriz, which has ones on the reverse diag-
onal and zeros elsewhere, is denoted by I, or just I. Left multiplication of
A € "™ by I, reverses the rows of A, while right multiplication of A by
I, reverses the columns of A.

2.2 Transpose and Inner Product

A fundamental vector and matrix operation is the transpose. If x € F",
then the transpose z* of x is defined to be the row vector

' &2 [ wqy o wm) | € PP (2.2.1)
Similarly, if = [ Ty o T(1p) ] € F1*" then
Z(1,1)
zt = : c Fxl, (2.2.2)
L(1n)

Let 2,y € F*. Then, 2Ty € F is a scalar, and

aTy = (:BTy)T =ylz = Z T Y(i)- (2.2.3)
i=1
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Note that n
ol = Zxa) (2.2.4)
i=1
Lemma 2.2.1. Let € R. Then, 2Tz = 0 if and only if 2 = 0.

Let 2,y € R™. Then, 27y € R is the inner product of  and y. Fur-
thermore, z is orthogonal to y if 2Ty = 0.

Let £ € C*. Then, z = y + jz, where y,z € R". Therefore, the
transpose z© of x is given by

l =yt 4 52T (2.2.5)
The complex conjugate T of x is defined by
T2y -z, (2.2.6)
while the complex conjugate transpose x* of x is defined by
e 27l =yl — 92T (2.2.7)

The vectors y and z are the real and imaginary parts Rexz and Imz of =z,
respectively, which are denoted by

Rex £ 3(z+7) =y (2.2.8)
and
Imz £ 5 (z —7) = 2. (2.2.9)
Note that
ve =3 Tare = Yl = v + 28 (2.2.10)
=1 =1 i=1

If w,z € C", then w'z = zTw.

Lemma 2.2.2. Let x € C". Then, z*xr = 0 if and only if x = 0.

Let x,y € C™. Then, z*y € C is the inner product of x and y, which
is given by

x*y = ZE(Z)y(l) (2.2.11)
=1

Furthermore, x is orthogonal to y if x*y = 0.
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Let A € F™*™. Then, the transpose AT € F*" of A is defined by

[coly(A)]*
AT 2 [ [rowy(A)]T -+ frow,(A)]T | = : . (2.212)
[col(A)]*

that is, col;(A") = [row;(A)]" for all i = 1,...,n and row; (A1) = [col;(A)]"

for all = 1,...,m. Hence, (AT)(Z‘,]‘) = A and (AT)T = A. If B e Fmx!,
then
(AB)T = BT, (2.2.13)
In particular, if x € F*, then
(Az)T = 2TAT, (2.2.14)
while if, in addition, y € F”, then y™Ax is a scalar and
y Az = (yTA:E)T = 1Ay (2.2.15)
If B € F™*™ then, for all a, 3 € F,
(A + BB)" = aA” + pB". (2.2.16)

Let € F™ and y € F". Then, the matrix zy® € F»*™ is the outer
product of z and y. The outer product zy"' is nonzero if and only if both =
and y are nonzero.

The trace of a square matrix A € F"*" denoted by tr A, is defined to
be the sum of its diagonal entries, that is,

trALY " Ag. (2.2.17)
=1
Note that
trA=trAT. (2.2.18)

Let A € F"*™ and B € F"™*". Then, AB and BA are square,

tr AB =tr BA =tr ATBT = tr BUT = Y~ A(; 5B, (2.2.19)
i,j=1
and nm
T _ Ty 2
trAAT =tr AT = > AY . (2.2.20)
i,j=1

Furthermore, if n = m, then, for all o, 5 € I,

tr(aA + B) = atr A+ Str B. (2.2.21)
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Lemma 2.2.3. Let A € R™*™. Then, tr A" = 0 if and only if A = 0.

Let A,B € R™™. Then, the inner product of A and B is tr ATB.
Furthermore, A is orthogonal to B if tr ATB = 0.

Let C € C™"*™. Then, C = A + 3B, where A, B € R™"*™. Therefore,
the transpose C'T of C is given by

ot = AT 4 ,B". (2.2.22)
The complex conjugate C of C' is
C = A—)B, (2.2.23)
while the complex conjugate transpose C* of C' is
cr 20" = AT BT (2.2.24)
Note that C' = C' if and only if B = 0, and that
("' =C=(Cc*) =C. (2.2.25)

The matrices A and B are the real and imaginary parts ReC' and Im C' of
C, respectively, which are denoted by

ReC £ 1(C+C) = 4, (2.2.26)
and —
ImC = 5 (C-C) =B (2.2.27)
If C' is square, then
trC =trA+ tr B. (2.2.28)
If § C C™™ ™, then _ N
§£ {A: Aes}. (2.2.29)
If § is a multiset with elements in C™*™, then
§={A4: Aes8} . (2.2.30)

Lemma 2.2.4. Let A € C"*™. Then, tr A*A = 0 if and only if A = 0.

Let A,B € C™"™. Then, the inner product of A and B is tr A*B.
Furthermore, A is orthogonal to B if tr A*B = 0.

If A, B € C"™™, then, for all o, 3 € C,
(aA + BB)* = aA* + 3B*, (2.2.31)
while, if A € C**™ and B € C™*!, then
AB=AB (2.2.32)
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and
(AB)* = BA*.
In particular, if A € C"*™ and x € C™, then
(Ax)* = 24",

while if, in addition, y € C", then
YAz = (yiaz)t = ATy
and T T
(yAz)" = (yAz) = (yTAE) = r'A"y.
For A € F™*"™ define the reverse transpose of A by
AT 2] AT,
and the reverse complex conjugate transpose of A by
A* & [, A,

For example,

In general,

and

Note that if B € F™*!, then
(AB)* = B#A*

and . .
(AB)" = B™AT.

2.3 Convex Sets, Cones, and Subspaces

CHAPTER 2

(2.2.33)

(2.2.34)

(2.2.35)

(2.2.36)

(2.2.37)

(2.2.38)

(2.2.39)

(2.2.40)

(2.2.41)

(2.2.42)

(2.2.43)

Let § C F*. If a € F, then a8 £ {az: = € 8} and, if y € F*, then
y+8={y+a ze8} Wewrite =8 for (—1)S. The set 8 is symmetric
if § = —8§, that is, z € 8 if and only if —z € 8. For 81,89 C F" define

81+82§{x+y: x € 81and y € 89}.

If x,y € F" and « € [0, 1], then ax + (1 — a)y is a conver combination
of x and y with barycentric coordinates o and 1 —a. 8§ C F" is convez if, for
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all z,y € §, every convex combination of z and y is an element of 8.

Let 8 C F™. Then, 8 is a cone if, for all z € § and all @ > 0, the vector
ax is an element of 8. Now, assume that 8 is a cone. Then, 8 is pointed
if 0 € 8, while 8 is one-sided if x,—x € 8§ implies that x = 0. Hence, 8§ is
one-sided if and only if § " —8 C {0}. Finally, 8 is a convex cone if it is
convex.

Let 8 C F™ be nonempty. Then, S is a subspace if, for all x,y € § and
a, 3 € F, the vector ax+y is an element of 8. Note that if {x1,...,z,.} C F",
then the set {>_;_; asz;: au,...,a, € F} is a subspace. In addition, 8 is an
affine subspace if there exists z € F™ such that 8§ + z is a subspace. Affine
subspaces 81,89 C ™ are parallel if there exists z € F” such that S1+2z = So.
If 8 is an affine subspace, then there exists a unique subspace parallel to 8.
Trivially, the empty set is a convex cone, although it is neither a subspace
nor an affine subspace. All of these definitions also apply to subsets of F™*™,

Let 8§ € F". The conver hull of 8, denoted by co 8, is the smallest
convex set containing 8. Hence, co 8 is the intersection of all convex subsets
of F™ that contain 8. The conical hull of 8, denoted by cone 8, is the smallest
cone in F" containing 8, while the convex conical hull of §, denoted by coco 8,
is the smallest convex cone in F” containing S. If 8§ has a finite number of
elements, then co 8 is a polytope and coco is a polyhedral convex cone. The
span of 8, denoted by span 8, is the smallest subspace in F" containing 8,
while, if 8§ is nonempty, then the affine hull of 8, denoted by aff S, is the
smallest affine subspace in F" containing 8. Note that 8 is convex if and
only if 8§ = co 8, while similar statements hold for cone S, coco 8, span 8, and
aff 8. Trivially, co@ = coned = cocod = &, whereas, viewing & C F",
it follows that span@ = {0,x1}. We define aff @ £ {0,x1}. All of these
definitions also apply to subsets of F"»*™.

Let x1,...,z, € F". Then, x,...,z, are linearly independent if
af, ..., € Fand

T
> i =0, (2.3.1)
=1

imply that o = g = -+ = a,, = 0. Clearly, z1,..., 2, is linearly inde-
pendent if and only if Z71, ..., T, are linearly independent. If x,...,z, are
not linearly independent, then z1,...,x, are linearly dependent. Note that

{Onx1} is linearly dependent.

Let 8§ C F™. If § is a subspace not equal to {0,,x1}, then there exist
x1,...,x, € F"such that x1, ..., z, are linearly independent over F and such
that span{xy,...,x,} = 8. The set of vectors {x1,...,x,} is a basis for 8.
The positive integer r, which is the dimension of the subspace 8, is uniquely
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defined. The dimension of 8§ = {0,,x1} is defined to be zero since span @ =
{0nx1}. The dimension of an arbitrary set 8§ C F", denoted by dim 8, is the

dimension of the subspace parallel to aff 8. We define dim @ £ —oc.
The following result is the dimension theorem.

Theorem 2.3.1. Let 81,82 C F" be subspaces. Then,
dim(81 4 82) + dim(81 N 82) = dim 81 + dim S,. (2.3.2)

Proof. See [262, p. 227]. O

Let 81,82 C F™ be subspaces. Then, 81 and S; are complementary if
81N82 = {0} and 8;+82 = F™. In this case, we say that 8; is complementary
to 89, or vice versa.

Corollary 2.3.2. Let 81,82 C F™ be subspaces. Then, 81, 85 are com-
plementary if and only if 8§11 8y = {0} and

Let 8 C F” be nonempty. Then, the orthogonal complement 8+ of § is

defined by
St &£ {z cF™: z*y =0 forallyc8}. (2.3.4)

The orthogonal complement 8+ of § is a subspace even if § is not.

Let y € F™ be nonzero. Then, the subspace {y}l, whose dimension is
n —1, is a hyperplane. Furthermore, § is an affine hyperplane if there exists
z € F™ such that § + z is a hyperplane. The set {z € F": Rez*y <0} is a
closed half space, while the set {x € F": Rex*y < 0} is an open half space.
Finally, 8 is an affine (closed, open) half space if there exists z € F™ such
that 8 + z is a (closed, open) half space.

Let 8 C F™. Then,
dcone 8 = {z € F": Rez*y <0 for all y € 8} (2.3.5)
is the dual cone of 8. Note that dconeS is a pointed convex cone and that

dcone & = dcone cone 8 = dcone coco S.

Let 81,89 C F™ be subspaces. Then, 8 and Sy are orthogonally com-
plementary if §1 and S5 are complementary and x*y = 0 for all x € §; and
y € So.

Proposition 2.3.3.  Let 81,82 C F"™ be subspaces. Then, 81 and 89 are
orthogonally complementary if and only if §; = S5
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For the next result, note that “C” indicates proper inclusion.
Lemma 2.3.4. Let 81,82 C F" be subspaces such that 81 C 83. Then,

81 C 8 if and only if dim 87 < dim 83. Equivalently, 8 = 85 if and only if

dim 81 = dim 82.

The following result provides constructive characterizations of co S,
cone 8, coco 3, spand, and aff S.

Theorem 2.3.5. Let § C R"™ be nonempty. Then,

k k
co8 = U {Zaz-:ci: a; >0, z; €8, and Zaz- = 1} (2.3.6)

ke Li=1 i=1
n+1 n+1
= {Z oz o >0, z; €8, and Zai = 1} , (2.3.7)
i=1 i=1
cone8 = {ax: x € § and a > 0}, (2.3.8)
k k
coco S = U {Z oz o >0, x; €8, and Zai > 0} (2.3.9)
ke Li=1 i=1
n n
= {Z oyxis o >0, T, €8, and Z%’ > 0} , (2.3.10)
i=1 i=1
k
span 8§ = U {Z o o € Rand x; € 8} (2.3.11)
kep Li=1
n
= {Z o o € R and z; € 8} , (2.3.12)
i=1

k k
aff § = U {Z ori: o €R, x; €8, and Zai = 1} (2.3.13)

keP (i=1 i=1

n+1 n+1
= {Z oz o €ER, x; €8, and Zai = 1} ) (2.3.14)

= = (2.3.15)
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Now, let § € C™. Then,

k k
co8 = U {Z oz o >0, ¢, €8, and Zai = 1} (2.3.16)

keP li=1 i=1
2n+1 2n+1
= { Z oxis o >0, T €8, and Z o = 1} , (2.3.17)
i=1 i=1
cone8 = {ax: x € § and a > 0}, (2.3.18)

k k
coco 8 = U {Z oris o >0, x; €8, and Zai > O} (2.3.19)

keP (i=1 =1

2n 2n
= {Z oxi: o >0, x; €8, and Zai > 0} , (2.3.20)

i=1 i=1

k
span 8§ = U {Z a;zi: o € Cand x; € S} (2.3.21)

keP (i=1

= {Z oz o; € Cand x; € S} , (2.3.22)

=1

k k
aff § = U {Z ori: o €Cox; €8, and Zai = 1} (2.3.23)

keP (i=1 i=1

n+1 n+1
= {Z ari: o € C ox; €8, and Zoq = 1} . (2.3.24)

i=1 i=1

Proof. Result (2.3.6) is immediate, while (2.3.7) is proved in [357,
p. 17]. Furthermore, (2.3.8) is immediate. Next, note that, since coco8 =
cocone 8, it follows that (2.3.6) and (2.3.8) imply (2.3.10) with n replaced
by n + 1. However, every element of coco8 lies in the convex hull of n + 1
points one of which is the origin. It thus follows that we can set z,41 = 0,
which yields (2.3.10). Similar arguments yield (2.3.12). Finally, note that all
vectors of the form z1+ 3(xy — 1), where 1,29 € 8 and € R, are elements
of aff 8. Forming the convex hull of these vectors yields (2.3.14). g

The following result shows that cones can be used to induce relations
on F™.

Proposition 2.3.6. Let 8§ C F™ be a cone and, for z,y € F*, let © < y
denote the relation y — x € 8. Then, the following statements hold:
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1) “<” is reflexive if and only if § is a pointed cone.

1) “<” is antisymmetric if and only if S is a one-sided cone.

i11) “<” is symmetric if and only if § is a symmetric cone.
iv) “<” is transitive if and only if § is a convex cone.

Proof. The proofs of i), i1) and iii) are immediate. To prove iv),
suppose that “<” is transitive, and let z,y € 8§ so that 0 < az < az+(1—a)y
for all @ € [0,1]. Hence, ax + (1 — a)y € 8 for all a € [0,1], and thus 8§
is convex. Conversely, suppose that § is a convex cone, and assume that
r <yand y <z Then, y—2 € § and z —y € & imply that z —z =

2[2(y —z) + £(2 — y)] € 8. Hence, z < z, and thus “<” is transitive. O

2.4 Range and Null Space

Two important features of a matrix A € F"*™ are its range and null

space, denoted by R(A) and N(A), respectively. The range of A is defined
by
R(A) & {Az: z € F™}. (2.4.1)

Note that R(0,,x0) = {Onx1} and R(0pxm) = {0ox1}. Letting a; denote (i),
it can be seen that

R(A) = {i OéiCOIi(A): a1,y ..., € ]F} s (242)
=1

which shows that R(A) is a subspace of F". It thus follows from Theorem

2.3.5 that
R(A) = span{coli(A4),...,col,(A)}. (2.4.3)

By viewing A as a function from F™ into F", we can also write R(A) = AF™.

The null space of A € F™*™ is defined by
N(A) £ {x € F™: Az = 0}. (2.4.4)
Note that N(0,x0) = F¥ = {0gx1} and N(0pxm) = F™. Equivalently,
N(A) = {a: eF™: zTrow;(A)]" =0foralli=1,..., n} (2.4.5)

- {[rowl(A)]T, o [rown(A)]T}l, (2.4.6)

which shows that N(A) is a subspace of . Note that if @ € F is nonzero,
then R(aA) = R(A) and N(aA) = N(A). Finally, if F = C, then R(A) and
R(A) are not necessarily identical. For example, let A = [7].
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Let A € F™*", and let § C F™ be a subspace. Then, 8 is an invariant
subspace of A if AS C 8. Note that AR(A) C AF™ = R(A) and AN(A) =
{0,} € N(A). Hence, R(A) and N(A) are invariant subspaces of A.

If A e F™™ and B € F™*!, then it is easy to see that

R(AB) = AR(B). (2.4.7)

Hence, the following result is not surprising.

Lemma 2.4.1. Let A € F**™ B e F™*! and C € FF*". Then,
R(AB) C R(A) (2.4.8)
and

N(A) C N(CA). (2.4.9)

Proof. Since R(B) C F™, it follows that R(AB) = AR(B) C AF™ =
R(A). Furthermore, y € N(A) implies that Ay = 0, and thus CAy =0. O

Corollary 2.4.2. Let A € F™*", and let k € P. Then,
R(A’“) C R(A) (2.4.10)

and

N(A) C N(Ak>. (2.4.11)

Although R(AB) C R(A) for arbitrary conformable matrices A, B, we
now show that equality holds in the special case B = A*. This result, along
with others, is the subject of the following basic theorem.

Theorem 2.4.3. Let A € F™"*™. Then, the following identities hold:
i) R(A)L =N(A*).
it) R(A) = R(AA*).
iii) N(A) = N(A4A*A).

Proof. To prove ), we first show that R(A)+ C N(A*). Let x € R(A)*.
Then, z*z = 0 for all z € R(A). Hence, x*Ay = 0 for all y € R™. Equiva-
lently, y*A*x = 0 for all y € R™. Letting y = A*x, it follows that +*AA*z = 0.
Now, Lemma 2.2.2 implies that A*x = 0. Thus, x € N(A*). Conversely, let
us show that N(A*) C R(A)*. Letting x € N(A*), it follows that A*x = 0,
and, hence, yA*x = 0 for all y € R™. Equivalently, z*Ay = 0 for all y € R™.
Hence, 2*z = 0 for all z € R(A). Thus, z € R(A)*, which proves 7).

To prove ii), note that Lemma 2.4.1 with B = A* implies that R(AA*)
C R(A). To show that R(A) C R(AA*), let x € R(A), and suppose that
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x & R(AA*). Then, it follows from Proposition 2.3.3 that x = x; + z2,
where 71 € R(AA*) and 22 € R(AA*)* with x5 # 0. Thus, 2344 = 0 for
all y € R", and setting y = 2 yields 254A*r, = 0. Hence, Lemma 2.2.2
implies that A*ry = 0, so that, by i), o € N(A*) = R(A)*+. Since z € R(A),
it follows that 0 = x5z = x5z + x322. However, z5z1 = 0 so that 25z = 0
and x5 = 0, which is a contradiction. This proves ii).

To prove iii), note that i) with A replaced by A* implies that R(A*A)+
= R(A*)*. Furthermore, replacing A by A* in i) yields R(A*)t = N(A).
Hence, N(A) = R(A*A)Lt. Now, i) with A replaced by A*A implies that
R(A*A)L = N(A*A). Hence, N(A) = N(A*A), which proves iii). O

Result i) of Theorem 2.4.3 can be written equivalently as

N(A)L = R(4Y), (2.4.12)
N(A) = R(A", (2.4.13)
N(AH)T = R(A), (2.4.14)
while replacing A by A* in 1) and i) of Theorem 2.4.3 yields
R(A*) = R(A™A), (2.4.15)
N(A*) = N(AAY). (2.4.16)
Using ) of Theorem 2.4.3 and (2.4.15) it follows that
R(AAA) = AR(A™A) = AR(A*) = R(AA") = R(A). (2.4.17)

Letting A £ [ 1 9 ] shows that R(A) and fR(AAT) are generally
different.

2.5 Rank and Defect

The rank of A € F™**™ is defined by
rank A £ dim R(A). (2.5.1)

It can be seen that the rank of A is equal to the number of linearly in-
dependent columns of A. Hence, rank A = rank A, rank AT = rank A*,
rank A < m, and rank AT< n. If rank A = m, then A has full column rank,
while if rank AT = n, then A has full row rank. If A has either full column
rank or full row rank, then A has full rank. Finally, the defect of A is

def A £ dimN(A). (2.5.2)

The following result follows from Theorem 2.4.3.
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Corollary 2.5.1. Let A € F"*™. Then, the following identities hold:
i) rank A* 4 def A = m.
ii) rank A = rank AA*.
iii) def A = def A*A.
Proof. It follows from (2.4.12) and Proposition 2.3.2 that rank A* =

dim R(A*) = dimN(A)t = m — dimN(A) = m — def A, which proves ).
Results i) and 1) follow from of i) and #i4) of Theorem 2.4.3. O

Replacing A by A* in Corollary 2.5.1 yields

rank A + def A" = n, (2.5.3)
rank A* = rank A™A, (2.5.4)
def A* = def AA". (2.5.5)
Furthermore, note that o
def A=def A (2.5.6)
and
def AT = def A*. (2.5.7)

Lemma 2.5.2. Let A € F**™ and B € F™*!. Then,
rank AB < min{rank A, rank B}. (2.5.8)

Proof. Since, by Lemma 2.4.1, R(AB) C R(A), it follows that rank AB
< rank A. Next, suppose that rank B < rank AB. Let {y1,...,y,} C F" be
a basis for R(AB), where r = rank AB, and, since y; € AR(B) for all
i=1,...,7r let x; € R(B) be such that y; = Az; for alli =1,...,r. Since

rank B < r, it follows that x1,...,z, are linearly dependent. Hence, there
exist ay,...,a, € F, not all zero, such that >, ; a;z; = 0, which implies
that Y, osAx; = >0 aiy; = 0. Thus, vy, ...,y are linearly dependent,
which is a contradiction. O

Corollary 2.5.3. Let A € F"*™. Then,

rank A = rank A* (2.5.9)
and
def A =def A*+m —n. (2.5.10)
If, in addition, n = m, then
def A = def A™. (2.5.11)

Proof. It follows from (2.5.8) with B = A* that rank AA* < rank A*.
Furthermore, i) of Corollary 2.5.1 implies that rank A = rank AA*. Hence,
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rank A < rank A*. Interchanging A and A* and repeating this argument
yields rank A* < rank A. Hence, rank A = rank A*. Next, using ) of
Corollary 2.5.1, (2.5.9), and (2.5.3) it follows that def A = m — rank A* =
m —rank A = m — (n — def A*), which proves (2.5.10). O

Corollary 2.5.4. Let A € F™*™. Then,
rank A < min{m,n}. (2.5.12)

Proof. By definition, rank A < m, while it follows from (2.5.9) that
rank A = rank A* < n. O

The fundamental theorem of linear algebra is given by (2.5.13) in the
following result.

Corollary 2.5.5. Let A € F"*™. Then,

rank A +def A=m (2.5.13)

and
rank A = rank A™A. (2.5.14)
Proof. The result (2.5.13) follows from i) of Corollary 2.5.1 and (2.5.9),
while (2.5.14) follows from (2.5.4) and (2.5.9). O

Corollary 2.5.6. Let A € F**™ and k € P. Then,

rank A* < rank A (2.5.15)

and
def A < def A", (2.5.16)

Proposition 2.5.7. Let A € F"*". If rank A%> = rank A, then rank A*
= rank A for all k € P. Equivalently, if def A% = def A, then def A¥ = def A
for all k € P.

Proof. Since rank A*> = rank A and R(A4?) C R(A), it follows from
Lemma 2.3.4 that R(A?) = R(A). Hence, R(A?) = AR(A?) = AR(A) =
R(A2). Thus, rank A3 = rank A. Similar arguments yield rank A¥ = rank A
for all k € P. O

We now prove Sylvester’s inequality, which provides a lower bound for
the rank of the product of two matrices.

Proposition 2.5.8. Let A € F**™ and B € F™*!. Then,
rank A 4+ rank B < m + rank AB. (2.5.17)
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Proof. Using (2.5.8) it follows that

rankA—l—rankBgrank_g 1;1]
— AH—AB 0]
10 I B I
§rank- gB ?]
grank[—AB O]+rank[B I]
=rank AB + m.

Combining (2.5.8) with (2.5.17) yields the following result.

Corollary 2.5.9. Let A € F**™ and B € F"™*!. Then,
rank A + rank B — m < rank AB < min{rank A, rank B}.

2.6 Invertibility

CHAPTER 2

(2.5.18)

Let A € F»*™  Then, A is left invertible if there exists A" € Fmxn
such that AYA = I,,,, while A is right invertible if there exists AR € Fmxn
such that AAR = I,,. These definitions are consistent with the definitions
of left and right invertibility given in Chapter 1 applied to the function

f: F™— F" given by f(x) = Ax.

Theorem 2.6.1. Let A € F"*™. Then, the following statements are

equivalent:
i) A is left invertible.
it) A is one-to-one.
ii1)
iv) rank A = m.
v) A has full column rank.
The following statements are also equivalent:
vi) A is right invertible.
vii) A is onto.
) def A =m —n.

V111

ir) rank A = n.
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z) A has full row rank.
Note that A is left invertible if and only if A* is right invertible.

The following result shows that the rank and defect of a matrix are
not affected by either left multiplication by a left invertible matrix or right
multiplication by a right invertible matrix.

Proposition 2.6.2. Let A € F™*™ and let C' € F*¥*™ be left invertible
and B € F™*! be right invertible. Then,

rank A = rank CA = rank AB (2.6.1)

and
def A = def CA = def AB+m — L. (2.6.2)

Proof. Let C be a left inverse of C. Using both inequalities in (2.5.18)
and the fact that rank A < n, it follows that

rank A = rank A + rank C*C — n < rank C*CA < rank CA < rank A,

which implies that rank A = rank CA. A similar argument implies that
rank A = rank AB. Next, (2.5.13) and (2.6.1) imply that m —def A = m —
def CA = [ — def AB, which yields (2.6.2). O

In general, left and right inverses are not unique. For example, the
matrix A = [9] is left invertible and has left inverses [ 0 1 Jand [ 1 1 ].
In spite of this nonuniqueness, however, left inverses are useful for solving
equations of the form Ax = b, where A € F**™ z € F™ and b € F". If A
is left invertible, then one can formally (but not rigorously) solve Az = b
by noting that x = A"Az = AYb, where A¥ € R™*" is a left inverse of
A. However, it is necessary to determine beforehand whether or not there
actually exists a vector z satisfying Az = b. For example, if A = [9]
and b = [}], then A is left invertible but there does not exist z satisfying
Ax = b. The following result addresses the various possibilities that can
arise. One interesting feature of this result is that if there exists a solution
to Ax = b and A is left invertible, then the solution is unique even if A
does not have a unique left inverse. For this result, [ A b ] denotes the
n X (m + 1) partitioned matrix formed from A and b. Note that rank A <
rank[ A b ] < m 4+ 1, while rank A = rank[ A b ] is equivalent to b €
R(A).

Theorem 2.6.3. Let A € F"™ and b € F". Then, the following
statements hold:

i) There does not exist x € F™ satisfying Az = b if and only if
rank A < rank[ A b ]
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it) There exists a unique x € F™ satisfying Az = b if and only if
rank A = rank[ A b } = m. In this case, if A¥ € F™*" is a left
inverse of A, then the solution is given by x = Alb.

ii1) There exist infinitely many x € F™ satisfying Az = b if and only
if rank A = rank[ A b ] < m. In this case, let £ € F'™ satisfy
Az = b. Then, the set of solutions of Az = b is given by & + N(A).

iv) Assume that rank A = n. Then, there exists at least one x € F™
satisfying Az = b. Furthermore, if AR € F™*" is a right inverse of
A, then x = ARb satisfies Az = b. If n = m, then z = ARb is the
unique solution of Ax = b. If n < m and & € F" satisfies Az = b,
then the set of solutions of Az = b is given by & + N(A).

Proof. To prove i) note that rank A < rank [ A b | is equivalent to
the fact that b cannot be represented as a linear combination of columns of
A, that is, Ax = b does not have a solution x € F™. To prove i), suppose
that rank A = rank[ A b ] = m so that, by i), Az = b has a solution
x € F™. If & € F™ satisfies AZ = b, then A(z — &) = 0. Since rank A = m,
it follows from Theorem 2.6.1 that A has a left inverse A € F™*"  Hence,
r — & = AVA(z — &) = 0, which proves that Az = b has a unique solution.
Conversely, suppose that rank A = rank [ A b ] = m and there exist z,Z €
F™ where z # &, such that Az = b and AZ = b. Then, A(z — &) = 0, which
implies that def A > 1. Therefore, rank A = m — def A < m — 1, which is a
contradiction. This proves the first statement of 7). Assuming Ax = b has
a unique solution z € F™, multiplying by A" yields z = A"b. To prove iii)
note that it follows from ) that Az = b has at least one solution & € F™.
Hence, z € F™ is a solution of Az = b if and only if A(z — ) = 0, or,
equivalently, x € & 4+ N(A). To prove iv) note that since rank A = n, it
follows that rank A =rank [ A b | and thus either i) or ii) applies. O

The set of solutions x € F™ to Ax = b is explicitly characterized by
Proposition 6.1.7.

Let A € F*»*™. Then, A is nonsingular if there exists B € F™*"
the inverse of A, such that AB = I, and BA = I, that is, B is both
a left and right inverse for A. It follows from Theorem 2.6.1 that if A is
nonsingular, then rank A = m and rank A = n so that m = n. Hence, only
square matrices can be nonsingular. Furthermore, the inverse B € F"*™
of A € F™*"™ is unique since, if C' € F*"*™ is a left inverse of A, then C =
Cl, = CAB = I,B = B, while if D € F™*" is a right inverse of A, then
D = 1,D = BAD = BI, = B. The following result follows from similar
arguments and Theorem 2.6.1. This result can be viewed as a specialization
of Theorem 1.2.3 to the function f: F" — F", where f(z) = Ax.
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Corollary 2.6.4. Let A € F"*™. Then, the following statements are
equivalent:
i) A is nonsingular.
71) A has a unique inverse.

1747) A is one-to-one.

7v) A is onto.

v
vi) A is right invertible.
vii) A has a unique left inverse.

viti) A has a unique right inverse.

)
)
)
) A is left invertible.
)
)
)
)

i) rank A = n.

z) def A = 0.

Let A € F™*" be nonsingular. Then, the inverse of A, denoted by A,
is a unique n X n matrix with entries in F. If A is not nonsingular, then A
is singular.

The following result is a specialization of Theorem 2.6.3 to the case
n=m.

Corollary 2.6.5. Let A € F™*" and b € F". Then, the following
statements hold:

i) A is nonsingular if and only if there exists a unique z € F" satisfying
Az = b. In this case, x = A7'b.

i1) A is singular and rank A = rank [ A b ] if and only if there exist
infinitely many x € R" satisfying Ax = b. In this case, let £ € F™
satisfy AZ = b. Then, the set of solutions of Ax = b is given by
T+ N(A).

Proposition 2.6.6. Let A € F™*". Then, the following statements are
equivalent:
i) A is nonsingular.
ii) A is nonsingular.
i47) AT is nonsingular.
iv) A* is nonsingular.

In this case,
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(A7t = AT, (2.6.3)

(A7) = (4, (2.6.4)

(A= (AT (2.6.5)

Proof. Since AA™' = I, it follows that (A_l)*A* = I. Hence, (A_1)>k
(AL,

o

We thus use A1 to denote (AT)_1 or (A™ )T and A™* to denote (A*)7!
or (A’l)* .

Proposition 2.6.7. Let A, B € F"*™ be nonsingular. Then,

(AB)™ = B4 (2.6.6)
(AB)T = A7'B7T, (2.6.7)
(AB)™* = A*B™*. (2.6.8)

Proof. Note that ABB™'A™! = AIA™! = I, which shows that B~'4~!
is the inverse of AB. Similarly, (AB)*A™*B™* = BA"A™*B~* = B*IB™* = I,
which shows that A™*B~* is the inverse of (AB)*. O

For a nonsingular matrix A € F*"*" and r € Z we write

AT E AT = (AT, (2.6.9)
ATT2 U T =AY =@ = (A7), (2.6.10)
AT A (AN = (A7) = (A7) = (A" (2.6.11)

For example, A=2* = (A7*)2.

2.7 Determinants

One of the most important quantities associated with a square matrix
is its determinant. In this section we develop some basic results pertaining
to the determinant of a matrix.

The determinant of A € F™*™ is defined by

n
det A = Z(_1>NUHA(7Z,U(7L))’ (271)

o i=1
where the sum is taken over all n permutations o = (¢(1),...,0(n)) of the
column indices 1,...,n, and where N, is the minimal number of pairwise

transpositions needed to transform o(1),...,0(n) to 1,...,n. The following
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result is an immediate consequence of this definition.

Proposition 2.7.1. Let A € F™*™. Then,

det AT = det A, (2.7.2)
det A = det A4, (2.7.3)
det A* = det A, (2.7.4)
and, for all o € FF,
det A = a""det A. (2.7.5)
If, in addition, B € F"™*" and C' € F™*™_ then
det [ o } _ (det A)(det C). (2.7.6)

The following observations are immediate consequences of the defini-
tion of the determinant.

Proposition 2.7.2. Let A, B € F™*™. Then, the following statements
hold:

i) If all of the off-diagonal entries of A are zero, then
i=1
In particular, det I, = 1.
i1) If A has a row or column consisting entirely of zeros, then det A = 0.
i11) If A has two identical rows or two identical columns, then det A = 0.
i) f z € F* and i € {1,...,n}, then
det (A + zel) = det A + det (A & x) . (2.7.8)
v) If z € FY*" and i € {1,...,n}, then
det(A + e;x) = det A + det (A & x) (2.7.9)

vi) If B is identical to A except that, for somei € {1,...,n} and a € F,
colj(B) = acol;(A) or row;(B) = arow;(A), then det B = adet A.

vii) If B is formed from A by interchanging two rows or two columns of
A, then det B = — det A.

vigi) If B is formed from A by adding a multiple of a (row, column) of A
to another (row, column) of A, then det B = det A.
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Statements vi)-viii) correspond, respectively, to multiplying the matrix
A on the left or right by matrices of the form

L1 O 0
I+ (a— l)Ei,i = 0 « 0 , (2.7.10)
0 0 I,
L4 O 0 0 0
0 O 0 1 0
I, + Ei,j + Ej,i — Ei,i — EjJ = 0 O Ij—z‘—l 0 0 , (2.7.11)
0 1 0 0 0
0 0 0 0 I,
where i # j, and
L1 O 0 0 0
0 1 0 16} 0
L, + BE; j = 0 0 L4 O 0 , (2.7.12)
0 O 0 1 0

0 0 0 0 I

where 5 € F and 7 # j. The matrices shown in (2.7.11) and (2.7.12) illustrate
the case i < j. Since I +(a—1)E;; = I+ (a—1)ejer, I+ E; j+ Ej; — Ei; —
Ejj=1—(e;—¢;)(e;—ej)and I + BE; j = I + ﬁeie?, it follows that all of
these matrices are of the form I — zyT. If a # 0 and i # j, then these are
elementary matrices (see Definition 3.1.2).

Proposition 2.7.3. Let A, B € F™"*". Then,
det AB = det BA = (det A)(det B). (2.7.13)

Proof. First note the identity
A 0 I A —AB 0 I 0 0 I
[I B]:[O IH 0 IHB IHI 0]'
The first and third matrices on the right-hand side of this identity add
multiples of rows and columns of [_6‘3 (I)] to other rows and columns of
—AB ?] As already noted, these operations do not affect the determinant
of [_’(‘)‘B ?] In addition, the fourth matrix on the right-hand side of this
identity interchanges n pairs of columns of [ % 4]. Using (2.7.5), (2.7.6) and
the fact that every interchange of a pair of columns of [g, ‘?] entails a factor
of —1, it thus follows that (det A)(det B) = det [4 %] = (=1)"det [ 55 9] =
(—=1)"det(—AB) = det AB. O

Corollary 2.7.4. Let A € F™*™ be nonsingular. Then, det A # 0 and
det A™ = (det A)7L. (2.7.14)
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Proof. Since AA™ = I,,, it follows that det AA™ = (det A)(det A™)
1. Hence, det A # 0. In addition, det A™' = 1/det A.

oo

Let A € F"*™. Then, a submatriz of A is formed by deleting rows
and columns of A. By convention, A is a submatrix of A. If A is a parti-
tioned matrix, then every block of A is a submatrix of A. A block is thus a
submatrix whose entries are entries of adjacent rows and adjacent columns.
The determinant of a square submatrix of A is a subdeterminant of A. By
convention, the determinant of A is a subdeterminant of A.

Let A € F*»*", If like-numbered rows and columns of A are deleted,
then the resulting square submatrix of A is a principal submatriz of A. If, in
particular, rows and columns j+1,...,n of A are deleted, then the resulting
j X j submatrix of A is a leading principal submatriz of A. Every diagonally
located block is a principal submatrix. Finally, the determinant of a j x j
(principal, leading principal) submatrix of A is a j x j (principal, leading
principal) subdeterminant of A.

Let A € F"*". Then, the cofactor of A j), denoted by Ay j, is the
(n —1) x (n —1) submatrix of A obtained by deleting the ith row and jth
column of A. The following result provides a cofactor expansion of det A.

Proposition 2.7.5. Let A € F*»*™. Then, for alli =1,...,n,

det A = Z 1)7TFA(; pydet Ap ). (2.7.15)

Furthermore, for all 4,5 = 1,...,n such that j # i,
n
0="> (1) det A . (2.7.16)
k=1

Proof. Identity (2.7.15) is an equivalent recursive form of the definition
det A, while the right-hand side of (2.7.16) is equal to det B, where B is
obtained from A by replacing row;(A) by row;(A). As already noted, det B =
0. ]

Let A € F™*". To simplify (2.7.15) and (2.7.16) it is useful to define
the adjugate of A, denoted by A € F*™*™ where, for all i,j =1,...,n,

(AA)(”) 2 (—1)""det Apj - (2.7.17)
Then, (2.7.15) and (2.7.16) imply that, for all i = 1,...,n,
A A
(44 )m‘) = (4 A)W) =det A (2.7.18)
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and, for all 4,7 = 1,...,n such that j # 1,

A A
(AA%), = (4%4), =0 (2.7.19)
Thus,
AAN = AP = (det A)L (2.7.20)
Consequently, if det A # 0, then
A7l = (det A)7UA, (2.7.21)

The following result provides the converse of Corollary 2.7.4 by using (2.7.21)
to explicitly construct A~! in terms of (n —1) x (n —1) subdeterminants of

A.

Corollary 2.7.6. Let A € F™*™. Then, A is nonsingular if and only if
det A # 0. In this case, for all i,5 = 1,...,n, the (i,j) entry of A1 is given

by det A
-1 _ (_qyits 2 Al
(A )(m') (—1) oA (2.7.22)

Finally, the following result uses the nonsingularity of submatrices to
characterize the rank of a matrix.

Proposition 2.7.7. Let A € F**™_ Then, rank A is the largest order
of all nonsingular submatrices of A.

2.8 Properties of Partitioned Matrices

Partitioned matrices were used to state or prove several results in this
chapter including Proposition 2.5.8, Theorem 2.6.3, Proposition 2.7.1, and
Proposition 2.7.3. In this section we give several useful identities involving
partitioned matrices.

Proposition 2.8.1. Let A;; € F**™ for alli = 1,...,k and j =
1,...,1. Then,

Ay o Ay ]t AL - AR
: : : =1 : (2.8.1)
A - Ap AT ... AT
and * * "
A - Ay Ay o Al
: — | ] (2.8.2)

Apr - Ap Ay o Ay
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If, in addition, k =1 and n; = m; for all ¢ = 1,...,m, then
A - A k
A oo A i=1
and
A A Ay, i
0 A Ay,
det ' o | =] et Au. (2.8.4)
. : o
0 0 A |

Lemma 2.8.2. Let B € F"*™ and C' € F™*™, Then,

-1
I B I -B
B .
and i
I 0 I 0
IR 25
Let A € F™*™ and D € F"™*™ be nonsingular. Then,
Aol T4t o
S e
Proposition 2.8.3. Let A € F*™*" B € F»*™ C e F>*" and D €
™ and assume that A is nonsingular. Then,
A Bl [ I 0][A 0 I A'B (2.8.8)
C D| |CA I 0 D-CA'B||0 I o
and 4 B
rank [ c D ] =n +rank(D — CA™'B). (2.8.9)
If, furthermore, [ = m, then
det { é g ] = (det A) det(D — CA™'B). (2.8.10)

Proposition 2.8.4. Let A € F**™ B ¢ F**l ¢ € F*™ and D €
F*! and assume that D is nonsingular. Then,

[A B}_[I BDlHA—Bplc O][DllC (])_] 25.11)

¢ D 0 I 0 D
and
rank A B | +rank(A — BD7'C) (2.8.12)
c D . 8.
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If, furthermore, n = m, then

A B -
det [ c D } = (det D) det(A — BD™'C). (2.8.13)
Corollary 2.8.5. Let A € F"*™ and B € F™*". Then,
det [ _I% ;4 } = det(I, + AB) = det(I,, + BA). (2.8.14)

Hence, I,, + AB is nonsingular if and only if I,, + BA is nonsingular.

Lemma 2.8.6. Let A € F*"*" B e F"*™ (C € F™*" and D € F"™*™,
If A and D are nonsingular, then

(det A)det(D — CA™'B) = (det D)det(A — BD™'C), (2.8.15)
and thus D — CA™'B is nonsingular if and only if A— BD'C is nonsingular.

Proposition 2.8.7. Let A € F»*" B € F»*™ C € F™*" and D €
Fm>m 1f A and D — CA™'B are nonsingular, then

5]

A+ A7B(D — CA7'B)'CA™Y —A7B(D — CAT'B)

—(D - cA'B) A (D—ca'B)™
(2.8.16)
If D and A — BD7'C are nonsingular, then
A B
C D
(A-BD™C)™ —(A— BD™'C)'BD™!
~-D'C(A-BD'C)" D'+ D'C(A-BD'C)'BD!
(2.8.17)
If A, D, and D — CA™'B are nonsingular, then A — BD~'C' is nonsingular
and
A B!
C D
(A-BD'C)"  —(A-BDC)'BD™
_ . (28.18)

—(D - cA™'B) AT (D —ca™'B)™

The following result is the matriz inversion lemma.
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Corollary 2.8.8. Let A € F"*" B € F»™*™ (C € F™" and D €
Fmxm If A, D — CA™'B, and D are nonsingular, then, A — BD7!C is non-
singular and

(A-BD'C) " = A+ A'B(D - CA'B) 'CATL, (2.8.19)
If A and I — CA™'B are nonsingular, then A — BC' is nonsingular and
(A= BC) ' = A + A'B(I—cA™'B) ca™. (2.8.20)
If D — CB, and D are nonsingular, then, I, — BD~'C is nonsingular and
(I, —BD'C) ' = I, + B(D - CB)"'C. (2.8.21)
If I — CB is nonsingular, then I — BC' is nonsingular and
(I-BO)'=I1+B(I-CB)'C. (2.8.22)

Corollary 2.8.9. Let A,B,C,D € F™", If A, B, C — DB™'A, and
D — CA™'B are nonsingular, then
[ A B r - ! A7 — (C-DBU)'cA! (C— DB

¢ D —(D-ca'BY'ca?  (D-ca'B)"

(2.8.23)
If A, C, B— AC™'D, and D — CA™'B are nonsingular, then
4 g1t | A'—AB(B-ACTD) —A'B(D-CATB)
[ ¢ D } - [ (B - AC'D)™! (D - cA'B)™
(2.8.24)

If A, B, C, B— AC™'D, and D — CA™'B are nonsingular, then C — DB7'A is

nonsingular and

4 Bl | A'—AaB(B-AcTD) (C-DBA)T
[ ¢ D ] - (B—AC'D)" (D—cAB)”
(2.8.25)
If B, D, A— BD'C, and C — DB™'A are nonsingular, then
4 51! (A-BD™C)™ (C - DBA)™
[ ¢ D } B [ —D'C(A-BD'C)" D' — DTC(C — DBA)

(2.8.26)
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If C, D, A— BD7'C, and B — AC™'D are nonsingular, then

4 g1t | (A-BDO)"  —(4A-BDC)'BD
& n) -
(2.8.27)

If B, C, D, A— BD7'C, and C — DB™'A are nonsingular, then B — AC~'D
is nonsingular and

[ A B }—1 (A-BD7'C)™ (C — DB'A)
¢ D (B—AC'D)™ D' — DlC(C — DBA)™

(B—AC™D)" D' —(B-AC™'D) 'BD™

(2.8.28)

Finally, if A, B, C, D, A— BD7'C, and B — AC™'D, are nonsingular, then
C — DB7'A and D — CA™'B are nonsingular and

[ é g }—1 | (- BD7'C) (C - DB™A)"

Corollary 2.8.10. Let A, B € F"*", and assume that A and I — A™'B
are nonsingular. Then, A — B is nonsingular and

(B-Ac-'D)" (D-caB) (2529

(A—B)y'=A' 4+ A'B(I-A'B) AL, (2.8.30)
If, in addition, B is nonsingular, then
(A=By'=Al+ A (B —A) A (2.8.31)

2.9 Facts on Cones, Convex Hulls, and Subspaces

Fact 2.9.1. Let § C F™. Then, the following statements hold:
i) coco8 = co cone§ = cone co .
i) 81+ = span§ = coco(S U —8).

aff 8

iti) § € co8 C (aff SN cocos) C {COCOS

} C span 8.

iv) 8§ C (co8Ncone8) C {08858} C coco 8 C span 8.

v) dconedcone § = coco 8.
(Proof: See [79, p. 52] for the proof of v). Note that “pointed” in [79] means

one-sided.)

Fact 2.9.2. Let S C F"™ and A € F™*™. If § is convex, then AS is
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convex. Conversely, if A is left invertible and AS is convex, then § is convex.

Fact 2.9.3. Let § C F™. Then, 8§ is an affine hyperplane if and only if
there exist a nonzero vector z € F" and « € R such that § = {z: Rez*y =
a}. Furthermore, 8 is an affine closed half space if and only if there exist
a nonzero vector z € F” and a € R such that § = {# € F": Rez*y < a}.
Finally, § is an affine open half space if and only if there exist a nonzero
vector x € F” and a € R such that 8§ = {x € F": Rez*y < a}. (Proof: Let
z € F" satisfy 2%y = a. Then, {z: 2*y = a} = {y}* + 2.)

Fact 2.9.4. Let 81,82 C F™ be (cones, convex sets, convex cones,
subspaces). Then, so are 81N 82 and 81 + Sa.
Fact 2.9.5. Let 81,85 C F" be pointed convex cones. Then,
CO(SlLJ 82) = 81+ S9.
Fact 2.9.6. Let 81,89 C F™ be subspaces. Then, 81U 85 is a subspace
if and only if either 81 C 82 or 85 C 8;.
Fact 2.9.7. Let 81,82 C F™ be subspaces. Then,
span(81U 82) = 81+ 89.
Fact 2.9.8. Let 81,82 C F" be subspaces. Then, 8§, C 85 if and only if
85 C 8i. Furthermore, §; C 8 if and only if 85 C 8. (Remark: 8; C 8o
denotes proper inclusion.)
Fact 2.9.9. Let 81,85 C F"™. Then,
SN Sy C (814 82)*.
(Problem: Determine necessary and sufficient conditions under which equal-
ity holds.)
Fact 2.9.10. Let 81,82 C F” be subspaces. Then,
(81N 82)* =81+ 83
and

(814 82)F = 81N 8.

Fact 2.9.11. Let 81,892 C F™ be subspaces. Then, 81,82 are com-
plementary if and only if 81,85 are complementary. (Remark: See Fact
3.5.15.)

Fact2.9.12. Let 8y,...,8; C F" be subspaces having the same dimen-
sion. Then, there exists a subspace 8 C F" such that, for all i =1,...,k, 8
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and 8; are complementary. (Proof: See [261, pp. 78, 79, 259, 260].)

Fact 2.9.13. Let 81,82 C F” be subspaces. Then,
dim(81 N 82) < min{dim 81, dim 82}
dim 8,
<
~ | dim 85
< max{dim 8;,dim 83}

< dim(Sl + 82)
< min{dim 8; + dim 82, n}.

2.10 Facts on Range, Null Space, Rank, and Defect

Fact 2.10.1. Let n,m,k € P. Then, rankl,x, = 1 and 1%, =
nkillnxn.

Fact 2.10.2. Let A € F*"*" k € P, and [ € N. Then, the following
identities hold:
) fR[(AA*)’“} - Jz[(AA*)’A]
i) N[(A*A)k] - N[A(A*A)l]
iii) rank (AA*)F = rank (AA4*)4.
i) def (A*A)F = def A(A*A).

Fact 2.10.3. Let A, B € F™*", and assume there exists a € F such
that oA + B is nonsingular. Then, N(A) N N(B) = {0}. (Remark: The

converse is not true. Let A = [19] and B = [1].)
Fact 2.10.4. Let A, B € F™*™. Then,
N(A) NN(B) = N(A) " N(A + B) = N(A + B) " N(B).

Fact 2.10.5. Let A, B € F™*™. Then,
|rank A — rank B| < rank(A + B) < rank A + rank B.
If, in addition, rank B < k, then
(rank A) — k < rank(A + B) < (rank A) + k.

Fact 2.10.6. Let A, B € F™*™ and assume that A*B = 0 and BA* =

0. Then,
rank(A + B) = rank A + rank B.
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(Remark: This result is due to Hestenes. See [148].) (Proof: Use Fact
2.10.15 and Proposition 6.1.6.)

Fact 2.10.7. Let A = [} 9] and B £ [}]. Then, rank AB = 1 and
rank BA = 0.

Fact 2.10.8. Let A € F™™ and B € F™*!. Then, the following
statements hold:

i) rank AB + def A = dim[N(A4) + R(B)].
it) rank AB 4 dim[N(A) N R(B)] = rank B.
i11) def AB +rank A + dim[N(A4) + R(B)] =1+ m.
iv) def AB = def B + dim[N(A) N R(B)].
(Remark: rank B —rank AB = dim[N(A)NR(B)] < dimN(A) = m —rank A
yields (2.5.17).)
Fact 2.10.9. Let A € F**™ and B € F™*!. Then,
max{def A+ —m,def B} < def AB < def A + def B.
If, in addition, m = [, then
max{def A, def B} < def AB.
(Remark: The first inequality is Sylvester’s law of nullity.)
Fact 2.10.10. Let 8§ C F™, and let A € F®*™. Then, the following
statements hold:
i) rank A + dim 8 —m < dim A8 < min{rank A4, dim §}.
i1) dim(AS) + dim(N(A) N §) = dim 8.
i11) If A is left invertible, then dim AS = dim 8.
(Proof: For i), see [484, p. 413].)

Fact 2.10.11. Let A € F™™ and B € F'*™. Then, N(A4) C N(B) if
and only if there exists A € F” such that B = NA.

Fact 2.10.12. Let A € F™*™ and b € F™. Then, there exists x € F"
satisfying Az = b if and only if b*\ = 0 for all A € N(A*). (Proof: Assume
that A*\ = 0 implies that b*A = 0. Then, N(A*) C R(b*). Hence, b € R(b) C
R(4).)

Fact 2.10.13. Let A € F™*™ and B € F**™. Then, N(B) C N(A) if
and only if there exists C' € F**! such that A = CB. Now, let A € F»*™
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and B € F**!. Then, R(A) C R(B) if and only if there exists C' € F*™
such that A = BC.

Fact 2.10.14. Let A, B € F**™ and let C' € F™*! be right invertible.
If R(A) C R(B), then R(AC) C R(BC). Furthermore, R(A) = R(B) if and
only if R(AC) = R(BC).

Fact 2.10.15. Let A, B € F™**™_ and assume that A*B = 0 and BA* =

0. Then,
rank(A + B) = rank A + rank B

if and only if there exists C € F™*™ such that ACA = A, CB = 0, and
BC = 0. (Proof: See [148].)

Fact 2.10.16. Let A € F*™*™ and B € F™*!. Then, rank AB = rank A
if and only if R(AB) = R(A). (Proof: If R(AB) C R(A) (note proper
inclusion), then rank AB < rank A.)

Fact 2.10.17. Let A € F**™, B € F™*! and C € F™**. If rank AB =
rank B, then rank ABC' = rank BC. (Proof: rank BT™AT = rank BT implies
that R(CTBIAT) = R(CTBT).)

Fact 2.10.18. Let A € F™*™. Then, rank A = 1 if and only if there
exist 2 € F™ and y € F™ such that z # 0, y # 0, and A = zy". In this case,
tr A = y'lz.

Fact 2.10.19. Let x,y € F". Then,

rank(xyT—i— yacT) <2
Furthermore, rank(acyT—i— yxT) = 1 if and only if there exists @ € F such
that z = ay # 0.
Fact 2.10.20. Let A € F*"*™ gz € F", and y € F™. Then,
(rank A) — 1 < rank(A + xyT) < (rank A) + 1.
In addition, the following statements hold:
i) rank(A + zy") = (rank A) — 1 if and only if there exist & € F™ and

§ € F" such that §TA% # 0, z = — (§"A%) 'A%, and y = AT).

i) If there exists & € F™ such that + = A# and #Ty # —1, then

rank (A + xyT) = rank A.

iti) If xy # 0, A*x = 0, and Ay = 0, then rank(A + zy") = (rank A) +

1.

(Proof: To prove ), note that A 4+ zy' = A(I—I—xyT) and I + xy! is
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nonsingular. To prove iii) use Fact 2.10.21. See [297, p. 33] and [144].)

Fact 2.10.21. Let A € F™*™ B ¢ ¥ C ¢ F>*" D ¢ F™*! and
assume that D is nonsingular. Then,

rank(A — BD_lC) = rank A — rank BD~'C
if and only if there exist X € F™*! and Y € F™*™ such that B = AX,
C =YA, and D = YAX. (Proof: See [144].)
Fact 2.10.22. Let A € F"*™ and B € F"*!. Then,
R([ A B])=R(A)+R(B).
Fact 2.10.23. Let A € F**™ and B € F"*!. Then,
R(A) = R(B)

if and only if
rank A = rank B = rank [ A B ] .

Fact 2.10.24. Let A € F**™ and B € F**!. Then,
rank A + rank B =rank [ A B | 4+ dim[R(A) NR(B)]

and
def [ A B | =def A+ def B + dim[R(A) N R(B)].
Hence,
max{rank A4,rank B} <rank [ A B | <rank A + rank B
and

def A+def B<def| A B | <min{l+ def A,m + def B}.
If, in addition, A*B = 0, then
rank [ A B ] =rank A + rank B

and
def[ A B ] = def A + def B.

(Proof: Use Fact 2.9.13. Assume A*B = 0. Then,
A* AA 0
rank[A B}:rank[B*}[A B]:[O B*B}
= rank A"A + rank B*B = rank A + rank B.)
Fact 2.10.25. Let A € F**™ and B € F**™. Then,

max{rank A, rank B} < rank [ g ] < rank A 4 rank B
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and
def A —rank B < def [ g ] < min{def A, def B}.

If, in addition, AB* = 0, then

rank [ A

B } =rank A + rank B

and 4
def [ B } = def A — rank B.

(Proof: Use Fact 2.10.24 and Fact 2.9.13.)

Fact 2.10.26. Let A, B € F"*™. Then,

max{rank A, rank B} rank [ A B |

A < rank A + rank B
rank(A + B) rank [ B ]

and

def[ A B ] m + min{def A, def B}
def A+ def B < <

def[é]—km def(A+ B)+m

(Proof: rank(A+ B) =rank [ A B | [{] <rank[ A B ], and rank(A4 +
B)=rank [ I I][4] <rank[Z4].)

Fact 2.10.27. Let A € F**™ B € F**F and C € F**™. Then,

rankA+rankB:rank[é g]grank{é ](5)}}

and

0 A 0 A
rankA—&—rankB:rank[B 0]§rank[3 C’]

Fact 2.10.28. Let A € F**™ B e F™*! and C € F**. Then,

0 AB

rank AB + rank BC < rank [ BC B

] = rank B + rank ABC.

Consequently,

rank AB + rank BC' — rank B < rank ABC.

(Remark: This result is Frobenius’ inequality.) (Proof: Use Fact 2.10.27

and [ A8 = [E4] [P 2] 1EY]) (Remark: See [398] for the case of
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equality.)

Fact 2.10.29. Let A, B € F"*™. Then,

A 0 A B
rank[A B]—i—rank{B}grank A A 0
B 0 B

= rank A + rank B + rank(A + B).

(Proof: Use Frobenius’ inequality with A = CT £ [ I I ] and with B
replaced by [6‘ Jg] )

Fact 2.10.30. Let A € F»*™_ and let B € F¥*! be a submatrix of A.

Then,
k+1—rank B <n -+ m —rank A.

(Proof: See [57].)

2.11 Facts on ldentities

Fact 2.11.1. Let A € F?*2, assume that tr A + 2v/det A # 0, and
define B € F?X2 by

B2 (trA + 2@)_1/2@ + MI).

Then, B2 = A. (Proof: See [261, pp. 84, 266, 267].)
Fact 2.11.2. [ Z

Fact 2.11.3. Let A € F™™ and B € F**. Then, AE; B =
col;(A)row;(B).
Fact 2.11.4. Let A € F**™ B € F™*! and C € F*". Then,

tr ABC = Z row;(A)Bcol;(C).

i=1

Fact 2.11.5. Let A € F*»*™. Then, Az = 0 for all z € F™ if and only
if A=0.

Fact 2.11.6. Let z,y € F". Then, z*r = y*y and Imz*y = 0 if and
only if x — y is orthogonal to x + y.

Fact 2.11.7. Let x,y € R™. Then, 2T = yy' if and only if either
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r=yorxr=-—Y.

Fact 2.11.8. Let =,y € R™. Then, zy" = yaT if and only if z and y
are linearly dependent.

Fact 2.11.9. Let 2,y € R™. Then, 2y’ = —y2T if and only if either
z=0ory=0. (Proof: If 24y # 0 and y(;) # 0, then x(;) = y;) = 0 and
0 # 26)y() # ()Y = 0-)

Fact 2.11.10. Let z,y € R™. Then, yz' + zy" = yTyz2" if and only
if either x =0 or y = %yTyas.

Fact 2.11.11. Let x,y € F". Then,
(xy")" = (y'o) ay”.

Fact 2.11.12. Let y € F" and x € F™. Then, there exists a matrix
A € F™"*™ guch that y = Az if and only if either y = 0 or x # 0. If y = 0,
then one such matrix is A = 0. If x # 0, then one such matrix is

A = (z¥z) ya*.
(Remark: See Fact 3.4.33.)
Fact 2.11.13. Let A € F"*™. Then, A = 0 if and only if tr AA* = 0.

Fact 2.11.14. Let A, B € F™", and define A = [44] and B £
[73 _B] . Then,
vy AB = BA = 0.

Fact 2.11.15. Let A € F™*™ and k € P. Then,
Re tr A2 < tr ARAR* < tr (AA*)k.

(Remark: To prove the left-hand inequality consider tr (A — AF*)(AF* — AF).
For the right-hand inequality when k = 2, consider tr (AA* — A*4)2.)

Fact 2.11.16. Let A € F"*". Then, trA* = 0 for all k = 1,...,n
if and only if A" = 0. (Proof: For sufficiency, Fact 4.10.2 implies that
spec(A) = {0}, and thus the Jordan form of A is a block-diagonal matrix
each of whose diagonally located blocks is a standard nilpotent matrix. For
necessity, see [629, p. 112].)

Fact 2.11.17. Let A € F™ " and assume that tr A = 0. If A2 = A,
then A =0. If A* = A, where k > 4 and 2 < n < p, where p is the smallest
prime divisor of k£ —1, then A = 0. (Proof: See [152].)
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Fact 2.11.18. Let A, B € F™"*"™, and assume that AB = 0. Then, for
all k € P,

tr (A + B)* = tr A* + tr B¥.
Fact 2.11.19. Let A, B € F™*™. Then, the following statements hold:
) AB+BA=1[(A+B)’—(A-B)?].
i) (A+ B)(A— B) = A? - B? - [A,B)].
i) ( )(A—l—B) A% - B?+ (A, B].
) A2~ B2 = L[(A+ B)(A - B)+ (A B)(A+ B)].

7

Fact 2.11.20. Let A, B € F**™ and k € P. Then,
k-1 ' ‘
AP — BF =" Al(A- B)BF
=0

Fact 2.11.21. Let « € R and A € R™"™. Then, the matrix equation
aA 4+ AT = 0 has a nonzero solution A if and only if & = 1 or a = —1.

2.12 Facts on Determinants
Fact2.12.1. det [ ] = (—1)"™.
Fact 2.12.2. det I, = (—1)l"/2 = (—1)n(n-1)/2,
Fact 2.12.3. det(I,, + alyxn) = 1 + an.

Fact2.12.4. Let A e F"™*" z,y € F", and a € F. Then,

I 0||A 0 I At
A1 T A1 ‘ , detA#0
[Ax] _yA 1 Oa—yAx__O 1
T =9 . -
yooa I A [ A-AayT 0 I 0
1.7 7a7é0
0 1 0 a ay- 1

(Remark: See Fact 6.4.24.)

Fact 2.12.5. Let A € F"*" z,y € F", and a € F. Then,

det [ ﬁ 2 } = a(det A) — yTA? .
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Hence,

(det A) (a — yTA_lz:), det A # 0,

A x
det [ g ] = adet(A — Afla;’yT), a # 0,
—yTAh g, a=0.
In particular,
dot A Az |
oy Uz | T

Finally,

—1

det(A—l—xyT) =det A + y™A*z = — det [ ;}F o ] .

(Remark: See Fact 2.12.6 and Fact 2.13.3.)

Fact 2.12.6. Let A € R™" b€ R", and a € R. Then,

A b

det [ g ] = a(det A) — bTAMD.

In particular,
(det A)(a — bTA'D), det A #0,
A
det[ 5T 2] = adet(A— *1bbT), a # 0,
—bTAAD, a=0.
(Remark: This identity is a specialization of Fact 2.12.5.)

Fact 2.12.7. Let A € F"*". Then,

rank[ﬁ ﬁ} :rank[ A _AA ] = rank A,

rank [ 7AA ﬁ ] = 2rank A,

A A A —-A
det[AA]:det{_A A]_O’
A A n
det[ A A } = 2"(det A)?

(Remark: See Fact 2.12.8.)

Fact 2.12.8. Let a,b,c,d € F, let A € F**", and define A £

CHAPTER 2

[e4 dal-
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Then,
rank A = <rank [ a b ])rankA
c d

det A = (ad — be)"(det A)?.
(Remark: See Fact 2.12.7.) (Proof: See Proposition 7.1.11 and Fact 7.4.20.)

and

Fact2.12.9. Let A€ F™™ B ecF™<" and m <n. Then, det AB = 0.

Fact 2.12.10. Let A € F*™*™ B € F"™*" and n < m. Then, det AB
is equal to the sum of all (T’Z) products of pairs of subdeterminants of A
and B formed by choosing n columns of A and the corresponding n rows
of B. (Remark: This identity is the Binet-Cauchy formula, which yields
Proposition 2.7.1 in the case n = m.)

Fact 2.12.11. Let A € F™*" be nonsingular, and let b € F”. Then,
the solution x € F" of Ax = b is given by

_m@ég_
det A

det(4 &)
L det A i
(Proof: Note that A(I<i a:) = A< b. Since det <I<Z— :E) = x(;), it follows

that (det A)z(;y = det (A & b) .) (Remark: This identity is Cramer’s rule.)

Fact 2.12.12. Let A € F™*™ be right invertible, and let b € F™. Then,
a solution x € F™ of Az = b is given by

= det (4= )47 — det[(4 L 0) 4] |

det(AA*)
for all i =1,...,m. (Proof: See [349].)

Fact 2.12.13. Let A, B,C, D be conformable matrices with entries in
F. Then,

ERARERI

C-CA D-CB

I B
0 I

)
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A AB
det[c D ]:(detA)det(D—CB),
A Bl [T 0]|A B-AB |[] B
CA D| |C I 0 D-CB 0o I |’
A B
det [ cA D } = (det A)det(D — CB),
A BD] [I B]|A-BC 0 I 0
C D | |0 I C—DC D c I\’
A BD
det[c D ]:det(A—BC)detD,
A Bl [I B A—-BC B-BD I 0
e nl=lot]|"s T |let)
A B
det [ DC D ] = det(A — BC)det D.

(Remark: See Fact 6.4.24.)

Fact2.12.14. Let Ay, Ay, By, By € F™*™, and define A £ [ 4! 4] and
B =[5 5] Then,

4
rank { g i } = Z;rankC’i,

where C1 £ A+ Ag+Bi+ By, Cy 2 Aj+Ay—B1— By, C3 = Aj— Ay+By— B,
and Cy £ A; — Ay — By + Bs. If, in addition, n = m, then

4
A B
det [ B A } :1:[1det0i.
(Proof: See [551].) (Remark: See Fact 3.11.3.)

Fact 2.12.15. Let A, B,C, D € F™", and assume that rank [A B] =
n. Then,
det A det B

detC detD

det
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Fact2.12.16. Let A, B,C,D € F™*". Then,
det(DA — CB), AB = BA,
det(AD — CB), AC = CA,
} " )det(AD — BC), DC =D,
det(DA — BC), DB = BD.

(Remark: These identities are Schur’s formulas. See [66, p. 11].) (Proof: If
A is nonsingular, then

A B
det[c D

det [ é, g ] = (det A)det(D — CA™'B) = det(DA — CA'BA)
= det(DA — CB).
Alternatively, note the identity
A B A 0 I BA™!
[C D]: C DA-cB||o0 4t

If A is singular, then replace A by A + eI and use continuity.) (Problem:
Find a direct proof for the case in which A is singular.)

Fact 2.12.17. Let A, B,C, D € F"*". Then,

det(DA™ — CBT), ABT = BAT,
det(A™D — C'B), ATC = "4,
det(ADT — BCT), DCT = cDY,
ot { A B } | Jdet (DA - B0), DB = B™D,
¢ D (~1)r2kBdet(ADT + BCT), ABT = —BAT,
(—1)renkAdet (ATD 4+ CTB), ATC = —C"4,
(—1)rankCdet(ADT 4+ BCT), DCT = —CDT,
(—1)rank Pdet (DAT + BCT), D'B = —BD.

(Proof: If A is nonsingular and ABT = BA", then

A B

det{c D

} = (det A)det(D — CA™'B)

= det(DA" — CA'BAT) = det(DA" — CB").

If A is singular, then a continuity argument can be used with B symmetrized
by means of pre- and post-multiplication if necessary. If A is nonsingular
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and ABT = —BAT, then ABT is skew symmetric, B has even rank, and
det [A B] = det (DA™ + CBT). See [393,587].)

Fact 2.12.18. Let A, B,C, D € F"". Then,

det [ é g ]2
((det(A? + BC)det(CB + D?), AB = —BD or CA = —DC,
(—1)"det(AC + BA)det(CD + DB), AD = —B? or C? = —DA,
(—1)"det(AB + BD)det(CA + DC), A% = -BC or CB = —-D?
= det(AD + B?)det(C? + DA), AC = ~BA or CD = —DB,
det(AA™ + BBT)det(CC™ + DDT), AC™ = —-BD™ or CA™ = ~DB",
(—1)"det(AB"™ + BAT)det(CD™ + DCT), AD™ = —BC™ or CB™ = —DA",
| [det(ADT + BCT)]?, ABT = —BA or CD™ = —DC.

(Proof: Form [ég]Q, [AB][92], etc.)

Fact 2.12.19. Let A € F**™ and B € F"*!. Then,

det(A*A) det[B*B — B*A(A*A)A*B], rank A = m,
AA  A'B
B*A B*B

det = ¢ det(B*B) det[A*A — A*B(B*B)'B*A], rank B =,

0, n<m+l.

Fact 2.12.20. Let A € F"*", and assume that either A ;) = 0 for all
i,J such that i +j <n+1or A;; = 0 for all 7, j such that i + 7 > n + 1.
Then,

det A = (—1)l"/?) HA(i,ani)-
i=1

(Remark: A is lower reverse triangular.)
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Fact 2.12.21. Define A € R"*™ by

10
001 - 0
q2l000 000
000 -+ 0 1
100 -~ 0 0

Then,
det A = (—1)”+1.

Fact 2.12.22. Let ay,...,a, € F. Then,

[ 14+a1  ay - an,
a1 1+ay - a s
det | D=ty
. . . . i=1
i a1 as 1+an-

Fact 2.12.23. Let ay,...,a, € F be nonzero. Then,

[ 1ta 1 ... 1
ai
1+(l2
Wl o o e
: : ) : H?:l az
1t+a,
L1 Lo =

Fact 2.12.24. Let a,b,c1,...,¢, €F, define A € F**™ by

1 a a
Co2 a
A2 b b ¢ o oa |,
L b b b - ey

and let p(z) = (c1— x)(ca — x) - -+ (¢, — x) and pi(z) = p(x)/(c; — x) for all
i=1,...,n. Then,

bp(a) — ap(h)
b4 b#a,

det A = -
a Y pi(a) + capn(a), b=a.
=1
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In particular,

a b b
b
det | 0 b a " b | =(a—0)" a4 (n—1)}
bbb o oa

and
det(al, + blyxpn) = a" Ya + bn).

(Remark: See Fact 4.10.11.) (Remark: The matrix al, + bl,x, arises in
combinatorics. See [114,116].)

Fact 2.12.25. Let A, B € F**", and define A € Fk"¥kn by

A B B - B
B A B --- B
A=| B B A . B
_B B B - A_
Then,
det A =[det(A — B)]* 'det[A + (k —1)B].
If £ =2, then
det [ 4 ] — det[(A + B)(A - B)] = det(A2 — B2 — [A, B]).

(Proof: See [238].)

Fact 2.12.26. Define the tridiagonal matrix A € F"*" by

fa+b ab 0 0 0
1 a+b ab --- 0 0
. 0 1 a+b . 0 0
A=
0 0 0 . oa+b  ab
) 0 0 1 a+b |
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Then,
(n+1)a™, a=0b,
det A = g1 _ it
, aF#b.
a—>

(Proof: See [339, pp. 401, 621].)

2.13 Facts on Adjugates and Inverses

Fact 2.13.1. Let x,y € F". Then,
(I+ :cyT)A =(1+y2)I —ay"

and
det (I + :L‘yT) = det (I + ya:T) =142ty =1+y'z.

If, in addition, zTy # —1, then
(I+ a:yT)_l =I—(1+ xTy)_lxyT.
Fact 2.13.2. Let A € F"*™ be nonsingular, and let z,y € F". Then,
det(A+zy') = (1 +y"A'z) det A

and A
(A+ xyT) =(1+ yTA_lfv) (det A)T — AtayT.

Furthermore, det (A + :pyT) # 0 if and only if yTA™'2 # —1. In this case,
(A+ :CyT)_l A - (1+ yTA_lx)_lA_lxyTA_l.
(Remark: This identity is the Sherman-Morrison- Woodbury formula.)

Fact 2.13.3. Let A € F™*" be nonsingular, let 2,y € F", let a € F,
and assume that y A2 # a. Then,

(a — yTA_la:)A_l + Alpy™A Ay

A = _1_ 1
y' a o —yA

—yTA™ 1
1 [(a — yTA_lx)I + A_la:yT]AA —Alx
" adet A — yTAAL _yTaA 1

-1
(Problem: Find an expression for [yf% ﬁ] in the case det A = 0 and
yTAAL # 0. See Fact 2.12.5.)
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Fact 2.13.4. Let A € F™*™. Then, the following statements hold:
i) (A) = A%,

)
ii) (AT)" = (4M)",
i) (A)* = (A"
w) If a € F, then (ad)? = o AN
)
)
)

v) det A = (det A)"7L,

d
(AAYA = (det A)"2A.
d

V1

vig) det (AA) = (det A)(»—17,

Fact 2.13.5. Let A € F"*". Then,
det(A + Loxn) — det A = 15,441 =3 det (A & 1m).
i=1

(Proof: See [99].) (Remark: See Fact 2.12.5, Fact 2.13.8, and Fact 10.8.13.)

Fact 2.13.6. Let A € F™*", and assume that A is singular. Then,
R(A) T N(AY).

Hence,
rank A < def AN

and
rank A + rank A* < n.

Furthermore, if n > 2, then R(A) = N(A?) if and only if rank A = n — 1.
Fact 2.13.7. Let A € F™*™ and n > 2. Then, the following statements
hold:
i) rank A* = n if and only if rank A = n.
i) rank A* = 1 if and only if rank A = n — 1.
iii) A* =0 if and only if rank A < n — 1.
(Proof: See [466, p. 12].) (Remark: See Fact 4.10.3.)

Fact 2.13.8. Let A, B € F"*". Then,
(AAB)(M) = det (A & colj(B)>.
(Remark: See Fact 10.8.13.)

Fact 2.13.9. Let A, B € F™*". Then, the following statements hold:
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i) (AB)A = BAAA,
it) If B is nonsingular, then (BAB’l)A = BAAB™.
iti) If AB = BA, then A°B = BA®, AB* = B, and AAB* = B4,

Fact 2.13.10. Let A, B,C,D € F**" and ABCD = I. Then, ABCD
= DABC = CDAB = BCDA.

Fact 2.13.11. Let A= [25] € F?*2, where ad — bc # 0. Then,

A_lz(ad—bc)_l[ d _b}

—C a

Q@ Qe
> oo
S0

Furthermore, if A =

eg) # 0, then

] € 33 and 8 = a(ei— fh) —b(di — fg) +c(dh —

ei — fh  —(bi —ch) bf —ce
AV =g —(di- fg) ai—cg —(af — cd)
ah —eg —(ah—bg) ae—bd
Fact2.13.12. Let A, B € F™*™ and assume that A+ B is nonsingular.
Then,

A(A+ B B=B(A+B)y"A=A—- AA+B)A=B-B(A+ B)B.

Fact 2.13.13. Let A, B € F™*" be nonsingular. Then,
A+ Bl=AYA+B)B

Furthermore, A~ + B~! is nonsingular if and only if A + B is nonsingular.
In this case,

(A'+B ) =A4A+B)'B
=B(A+B) A
=A-AA+B)™A
=B—-B(A+B)'B.

Fact 2.13.14. Let A, B € F"*™ be nonsingular, and assume that A— B
is nonsingular. Then,

(A1—B ' =A-AA-B)A

Fact 2.13.15. Let A € F™*™ and B € F™*™ and assume that I + AB
is nonsingular. Then, I + BA is nonsingular and

(I, + AB)™A = A(I,, + BA)™.
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(Remark: This result is the push-through identity.) Furthermore,
(I+AB)'=1—(I+AB)AB.

Fact2.13.16. Let A, B € F™*™ and assume that I+ BA is nonsingular.

Then,
(I+AB) =1—- A(I +BA)™B.

Fact 2.13.17. Let A € F™*", and assume that A and A + I are non-
singular. Then,

A+ D+ (A + ) =(A+ D A+ D) A=1T.

Fact 2.13.18. Let A € F"*™. Then,
(I+ AA™Y™ =T — A(I + AA)74",

Fact 2.13.19. Let A € F™*" be nonsingular, let B € F**™ let C €
F™*" and assume that A + BC and I + CA™'B are nonsingular. Then,

(A+BC)'B=A"B(I+CA™'B)".

Fact 2.13.20. Let A, B € F"*" and assume that B is nonsingular.

Then,
A=B[I+BYA-B)].

Fact 2.13.21. Let A, B € F"*", and assume that A and A + B are
nonsingular. Then, for all £ € N,

k
(A+ By =3 A (-BAY) + (~A7B) (A + B)!
=0

k .
=S A (=BAY) + AN (-BAY T (14 BAT
1=0

Fact 2.13.22. Let A, B € F™*™ and a € F, and assume that A, B,
aA™ + (1 —a)B7!, and aB + (1 — a)A are nonsingular. Then,
aA+(1—a)B—[ad™ +(1- oz)Bil]i1

=a(l—a)(A— B)aB + (1 — o)A (A - B).

Fact 2.13.23. Let A € F™*™. If rank A = m, then (A*A)74* is a left
inverse of A. If rank A = n, then A*(AA*)~! is a right inverse of A. (Remark:
See Fact 3.4.19, Fact 3.4.20, and Fact 3.5.3.) (Problem: If rank A = n and
b € R™, then, for every solution z € R™ of Ax = b, does there exist a right
inverse AR of A such that = = ARb?)
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Fact 2.13.24. Let A € F"*™, and assume that rank A = m. Then,
AV € FmXn s g left inverse of A if and only if there exists B € F™*™ such
that BA is nonsingular and

At = (BA)B.
(Proof: For necessity, let B = A%.)

Fact 2.13.25. Let A € F"*™ and B € F"*!, and assume that A and
B are right invertible. Then, AB is right invertible. If, in addition, AR is
a right inverse of A and BY® is a right inverse of B, then BRAR is a right
inverse of AB.

Fact 2.13.26. Let A € F**™ and B € F™*!, and assume that A and
B are left invertible. Then, AB is left invertible. If, in addition, A" is a left
inverse of A and BY is a left inverse of B, then B4 is a left inverse of AB.

Fact 2.13.27. Let A € F"*", B ¢ F™*™ (C € F™*" and D € F™*™,
and assume that A and D are nonsingular. Then,

A B -1 Al —Alpp! T
[ 0 D } B 0 D1
and
A o0 1! AL 0
[ ¢ D } | -plcat D!
Fact 2.13.28. Let A € F*"*" B € F™*™ and C' € F™*™, Then,
0 A C B nm
det [ B C ] = det [ A 0 ] = (—1)""(det A)(det B).
If, in addition, A and B are nonsingular, then
0 A -1 _B—l CA—I B—l
[ B C ] a A 0
and
c B1° 0 A7l
[ A0 ] | B! —Blcat!

Fact 2.13.29. Let A € F**" B € F»*™_ and C € F™ ™, and assume

that C' is nonsingular. Then,
[ A B} A-BCBT B
BT C |~ 0 C

I 0
cBT 1|’
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If, in addition, A — BC7'BT is nonsingular, then { ;r g } is nonsingular
and

(A - BCcBT)™ —(A - BC™'BY)'BC!
~C'B"(A- BC'B")" C'BT(A- BC'BT)'BC 4 ¢

Fact 2.13.30. Let A, B € F™*". Then,

det| L ] — det(I — AB) = det(I — BA).

If det(I — BA) # 0, then
7 41t [I+AI-BA™B —A(I - BA)!
BT | —(I-BAB (I — BA)™

(I - AB)™! —(I - AB)™A
—-B(I-AB)™? I+B(I-AB™

Fact 2.13.31. Let A, B € F™". Then,

Bl AT Ats ] )

Therefore,

rank [ g i } = rank(A + B) 4+ rank(A — B).
Now, assume that n = m. Then,
A B]
det [ B 4 | =det[(A+B)(A-B)] = det(A* — B* — [A, B]).

If, in addition, A + B and A — B are nonsingular, then
[A g1t [(A+B*'+(A-B)" (A+B)'—(4-B)"
B A ] -

|l (A+B ' - (A-By! (A+By'4(A-B)!

Fact 2.13.32. Let A £ [} £], where 4 € F*™*™ B € F™", and

Ome
C € F™*" and assume that CA is nonsingular. Furthermore, define P £
A(CA)™'C and P, £ I — P. then A is nonsingular if and only if P+ P, BP|
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is nonsingular. In this case,

(CA)™{(C — CBD) —(CA)'CB(A — DBA)(CA)™

D (A — DBA)(CA)™
where D £ (P + P,BP,)"'P,. (Proof: See [263].)

Fact 2.13.33. Let A € F™™ and B € F**("=™) and assume that
[ A B ] is nonsingular and A*B = 0. Then,
(A*A)~1A*

(A B =
(B*B)—IB*

(Remark: See Fact 6.4.14.) (Problem: Find an expression for [ A B ]_1

without assuming A*B = 0.)

Fact 2.13.34. Let M = [4 B] € Fntm)x(n+m) he nonsingular, where
A€ F™ and D € F™™ and let [4 B/] £ M~!, where A’ € F™" and
D' € ™™, Then,

det A
det D' =
¢ det M
and do 47— det D
~det M’
Consequently, A is nonsingular if and only if D’ is nonsingular, and D is

nonsingular if and only if A" is nonsingular. (Proof: Use M[é gj] = [é 9] .
See [506].) (Remark: This identity is a special case of Jacobi’s identity.

See [287, p. 21].) (Remark: See Fact 3.6.7.)

Fact 2.13.35. Let A ¢ F**™ B e F**! and C € F™*!. Then,
1

I, A Bl I, —A AC-B
0o I, C =10 I, —C
0 0 I 0 0 I

I3
=

Fact 2.13.36. Let A € F"*" be nonsingular, and define Ay
Furthermore, for all k =1,...,n, let

o = $tr AAy_y,
and, forall k =1,...,n—1, let
A = AAp 1 — agl.

Then,
Al = LAn_l.

Qn

(Remark: This result is due to Frame. See [74, p. 99].)
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Fact 2.13.37. Let A € F™*" be nonsingular and define {B;}3°; by
Biy1 = 2B; — BiAB;,
where By € F"*" satisfies sprad(I — BgpA) < 1. Then,
B, — A7

as i — o0o. (Proof: See [64, p. 167].) (Remark: This sequence is a Newton-
Raphson algorithm.) (Remark: See Fact 6.3.18 for the case in which A is
singular or not square.)

Fact 2.13.38. Let A € F™*" be nonsingular. Then, A + A™* is non-
singular. (Proof: Note that AA* 4 I is positive definite.)

Fact 2.13.39. Let A € F™*" be nonsingular. Then, X = A~! is the
unique matrix satisfying

I X
(Remark: See Fact 6.3.13 and Fact 6.5.5.) (Proof: See [203].)

rank [ A1 ] = rank A.

2.14 Facts on Commutators

Fact 2.14.1. Let A, B € F?*2. Then,
[A, B)? = tr[A, B)’L.
(Remark: See [211,212].)
Fact 2.14.2. Let A,B € F™*" and assume that [A, B] = 0. Then,
[Ak,Bl] =0 for all k£, € N.
Fact 2.14.3. Let A, B,C € F"*™, Then, the following identities hold:
i) [A, Al =0.
) [A,B] =[-A,—B] = —[B, Al.
iit) [A,B+C]=1[A,B]+[A,C].
iv) [aA, B] = [A,aB] = a[A, B] for all « € F.
v) [A,[B,C]] + [B,[A,C]] + [C, [A, B]] = 0.
)
)
)

(4]

[A
vi) [A,B]t =[BT, AY] = — [A%, BY].
vii) tr[A, B] = 0.

viii) tr AF[A, B] = tr B¥[A, B] = 0 for all k € P.
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ir) [[A,B],B — A] =[[B, A],A— B].
z) [A,[A, B]] = —[4, B, A]].
(Remark: v) is the Jacobi identity.)

Fact 2.14.4. Let A, B € F"*™. Then, for all X € F"*",
ad[a,p) = [ada, adg],

that is,
adpa,p)(X) = ada[adp(X)] — adplada(X)]

or

[[AvB]?X] = [A7 [B’ XH - [Bv [AvXH'

Fact 2.14.5. Let A € F™*" and, for all X € F"*"  define

ada(X), k=1,
adfl(X) £ -
ady lada(X)], k>2.

Then, for all X € F™*" and for all k > 1,
and
, k
d5(X) =) (—D)F ) Alx AR
i) =30 ()

(Remark: The proof of Proposition 11.4.8 is based on g(etadA etadB), where

g(z) = (log 2)/(2—1). See [496, p. 35].) (Remark: See Fact 11.11.4.) (Proof:
For the last identity, see [466, pp. 176, 207].)

Fact 2.14.6. Let A, B € F"*", and assume that [A, B] = A. Then, A
is singular. (Proof: If A is nonsingular, then tr B = tr ABA™! = tr B + n.)

Fact 2.14.7. Let A, B € R™" be such that AB = BA. Then, there
exists C' € R™ " such that A% + B? = C2. (Proof: See [180].) (Remark: The
result applies to real matrices only.)

2.15 Facts on Complex Matrices
Fact 2.15.1. Let a,b € R. Then, [_abZ] is a representation of the

complex number a+ 7b that preserves addition, multiplication and inversion
of complex numbers. In particular, if a® + b? # 0, then

-1 a —b

o b1 [t
b a T b _a
a2+b2 a2+b2
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and L a b
T2+ e

(Remark: [ % b1 is a rotation-dilation. See Fact 3.11.1.)

(a+gb)

Fact 2.15.2. Let v,w € R. Then,
v o wl_ 1 1 vdgw 0 J4[1 1]
—w v | V2|7 =y 0 v—w | V2| g3 —j

-1
voow 1 v o—w
[—w v} _1/2—|-w2|:w 1/]

(Remark: See Fact 2.15.1.)

and

Fact 2.15.3. Let A, B € R™"™. Then,
A B] I T ][A+mB 0 I~y
—B A | 2| —jI 0 A— B I gl
I gl A—)B 0 I gl
— -1 0 A+ B - =1
| I 0 A+ B B I 0
gl T 0 A— B —I I

rank(A + jB) = rank(A — )B) = irank [ _AB lj ] .

D=

and

Now, assume that n = m. Then,

A B

det[_B A

} = det(A + yB) det(A — yB)

= |det(A + 3B)|?
= det[A® + B® + j(AB — BA)]
>0

and

mspec([ _AB i }) = mspec(A + 3B) Umspec(A — 3B).

If A is nonsingular, then

B

A _
det[ ‘B 4 ] = det(A® + ABA™'B).
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If AB = BA, then

A B

det[B A

} = det(A* + B?).
(Proof: If A is nonsingular, then use
A B| | A0 I A7'B
-B A| |0 A||-4A'B I

I AB
A7'B 1

(Remark: See Fact 4.10.18 and [37,551].)

and

det [ - ] = det |+ (47B"] .

Fact 2.15.4. Let A,B € R™™ and C,D € R™ . Then, [ 4 §],

[_% g] , and [724 BJ:L%) ﬁig} are representations of the complex matrices

A+ 9B, C + 3D, and their sum that preserve addition.

Fact 2.15.5. Let A,B € R™™ and C,D € R™! Then, [ 4 5],

[_% g] , and [724A65f BDC) ‘zgfgg} are representations of the complex ma-

trices A 4+ 3B, C + 3D, and their product that preserve multiplication.

Fact 2.15.6. Let A, B € R™™ ™. Then, [_AB E] is a representation
of the complex matrix A + 3B that preserves addition, multiplication, and
inversion of complex matrices. In particular, A 4+ 3B is nonsingular if and
only if [_AB E] is nonsingular. Furthermore, if A is nonsingular, then A+ B
is nonsingular if and only if A + BA™'B is nonsingular. In this case,

{ A B ]—1 (A+BA'B)'  —A'B(A+BA'B)
-b 4 A7B(A+BAB)"  (A+BAB)™

(A+ By = (A+ BA'B) " — JA'B(A+ BA'B)™ .
Finally, assume that B is nonsingular. Then, A 4+ 3B is nonsingular if and
only if B 4+ AB™'A is nonsingular. In this case,

{ A B ]1 BTA(B+ABA)"  —(B+ABA)"!
-B A| ~

(B+AB74)" B U(B+AB4)™
(A+ By = BA(B+AB'A) " — j(B+ ABA) .

and

and

(Problem: Consider the case in which A and B are singular.)
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Fact 2.15.7. Let A € F"*". Then,
det (I + AA) > 0.
(Proof: See [181].)

Fact 2.15.8. Let A, B € F**". Then,

A B
det[_g Z]EO.

If, in addition, A is nonsingular, then

A B

PE— — —1 -1
det[_B A] det A|det (I + ATBAB).

(Proof: See [628].)

Fact 2.15.9. Let A,B € R™", and define C € R>*2" by C &
Ci1 Ciz
Aay) B .

Cfl , where C;; & {7&(;;) 527;] for all ¢,7 =1,...,n. Then,

det C' = |det(A + 1B)|>.
(Proof: Note that
A B
C=AQL+B®Jy=Pon(lb®A+2@B)Pyn=Pon| “ 5 4 |Pan

See [109].)

2.16 Facts on Geometry

Fact 2.16.1. The points z, v, 2 € R? lie on one line if and only if

x Yy z|
det[1 1 1}—0.

The points z,y, z € R3 lie on one line if and only if

det[z y z]=0.

Fact 2.16.2. Let 8§ C R? denote the triangle with vertices [§],[3!],
[32] € R2. Then,
det [ rLor2 ] ‘ .

area(8) = 3 " v

Fact 2.16.3. Let 8§ C R? denote the polygon with vertices [§!], ..

1 °
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[57] € R? arranged in counterclockwise order. Then,

area(8) = Zdet [ zi Z ] + Sdet { ij g;’ } +

+ Sdet Tn—tl Tnod det Tno T
Yn—1 Yn Yn WY1
(Remark: The polygon need not be convex, where “counterclockwise” is

determined with respect to the inside of the polygon. See [529].)

Fact 2.16.4. Let 8 C R? denote the triangle with vertices z,, z € R3.
Then,

area(8) = 3/[(y — 2) x (z — 2)|T[(y — 2) x (= — ).

Fact 2.16.5. Let 8 C R? denote the tetrahedron with vertices z, y, z, w
€ R3. Then,

volume(8) = %!(:U —w)T[(y — w) x (2 — w)]| -

Fact 2.16.6. Let § C R? denote the parallelepiped with vertices z, y, 2,
y+z—zw,w+y—z,w+z—x,w+z+y—2x € R3 Then,
volume(8) = |(w —2)T[(y —z) x (z — x)” .

Fact 2.16.7. Let A € R™*™, assume that rank A = m, and let § C R"
denote the parallelepiped in R™ generated by the columns of A. Then,

volume(8) = [det (ATA)] V2
If, in addition, m = n, then

volume(8) = |det A|.

Fact 2.16.8. Let S C R™ and A € R™*"™. Then,
volume(AS) = |det A|volume(8).
(Remark: See [416, p. 468].)

2.17 Notes

The theory of determinants is discussed in [430,560,574]. The empty
matrix is discussed in [435] and [484]. Convexity is the subject of [80,103,
185,357,485,565,591]. Convex optimization theory is the subject of [79]. Our
development of rank properties is based on [398]. Theorem 2.6.3 is based
on [440]. The term “subdeterminant” is used in [456] and is equivalent to
minor. The notation A® for adjugate is used in [523]. Numerous papers on
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basic topics in matrix theory and linear algebra are collected in [129,130]. A
geometric interpretation of N(A), R(A), N(AT), and R(AT) is given in [531].
Some reflections on matrix theory are given in [536,549].
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Chapter Three

Matrix Classes and Transformations

This chapter presents definitions of various types of matrices as well
as transformations needed to analyze matrices.

3.1 Matrix Classes

In this section we categorize various types of matrices based upon their
algebraic and structural properties.

The following definition introduces various types of square matrices.

Definition 3.1.1. For A € F™"*™ define the following types of matrices:
i) Ais group invertible if R(A) = R(A?).

)
ii) A is range Hermitian if R(A) = R(A*).
iti) A is range symmetric if R(A) = R(AT).
i) Ais Hermitian if A = A*.
v) A is symmetric if A= AT,
)
)
)

vi) A is skew Hermitian if A = —A*.

vii) A is skew symmetric if A = —AT.

vitg) A is normal if AA* = A*A.

ir) A is nonnegative semidefinite (A > 0) if A is Hermitian and z*Az >
0 for all x € F”.

z) A is nonpositive semidefinite (A < 0) if —A is nonnegative semidef-
inite.

zi) A is positive definite (A > 0) if A is Hermitian and x*Az > 0 for all

x € F" such that x # 0.

zii) A is negative definite (A < 0) if —A is positive definite.
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ziii) A is semidissipative if A 4+ A* is nonpositive semidefinite.
ziv) A is dissipative if A+ A* is negative definite.
zv) A is unitary if A*A = L.
zvi) A is orthogonal if AT = 1.
zvii) A is a projector if A is Hermitian and idempotent.
zviit) A is a reflector if A is Hermitian and unitary.

zir) A is an elementary projector if there exists nonzero x € F" such

that A = I — (z*z) lza*.

zz) Alis an elementm"y reﬂector if there exists nonzero z € F" such that
A=1T-2xz) wx*

zzi) A is an elementary matriz if there exist x,y € F™ such that A =
I —2y" and 2Ty # 1.

xxii) A is involutory if A% = I.

A is skew involutory if A2 = —1I.

A is idempotent if A? = A.

)
xTiit)
TLV)
zrv) A is tripotent if A3 = A.
zrvi) A is nilpotent if there exists k € P such that AF = 0.
)
)

zzvit) A is reverse Hermitian if A = A*.

A is reverse symmetric if A = AT.

zziz) A is a permutation matriz if every row of A and every column of A
possesses one 1 and zeros otherwise.

Let A € F™*™ be Hermitian. Then, the function f: F" — R defined
by
f(z) & x*Ax (3.1.1)

is a quadratic form.

The n x n standard nilpotent matriz, which has ones on the superdiag-
onal and zeros elsewhere, is denoted by N, or just N. We define N; £ 0 and
No £ 09xo-

The following definition considers matrices that are not necessarily
square.

Definition 3.1.2. For A € F™*™ define the following types of matrices:

i) A is semicontractive if I, — AA* is nonnegative semidefinite.
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1) A is contractive if I, — AA* is positive definite.
i) A is left inner if A*A = I,.
w) A is right inner if AA* = I,.

A is centrosymmetric if A = anfm.

)
)
)
v) A is centrohermitian if A = I,AL,.
i)
)

vig) A is an outer product if there exist x € F” and y € F™ such that
A=yl

The following definition introduces various types of structured matri-
ces.

Definition 3.1.3. For A € F™™ with | £ min{n, m} define the follow-
ing types of matrices:
i) Ais diagonal if Ay ;) = 0 for all i # j. If n = m, then
A= diag(A(Ll), e 7A(n,n)) .
ii) A is tridiagonal if A(; j) = 0 for all |i — j] > 1.
i) A is reverse diagonal if A ;) = 0 for all i +j # [+ 1. If n = m,
then
A= revdiag(A(Ln), cee 7A(n,1)) .
i) Ais (upper triangular, strictly upper triangular) if A(; ;y = 0 for all
(i >j,i> 7).
v) Ais (lower triangular, strictly lower triangular) if A(; jy = 0 for all
(i <j,i<j)
vi) Ais (upper Hessenberg, lower Hessenberg) if Ay ;) = 0 for all (i >
j+lLi<ji+1).
vii) A'is Toeplitz if A jy = Ay for all k —i =1 — j, that is,
b ¢

a
d a b
A=
e d «a
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viid) A is Hankel if A jy = Aqy) for all i + j = k + 1, that is,

a b ¢
b d

A =
c d e

ir) A is block diagonal if
Ay 0
A= = diag(Ay,..., A,),
0 Ay,

where A; € F"*™ foralli=1,...,k.

x) A is upper block triangular if

A A - A
a=| U Awo A
0 0 - Ay

where A;; € F"*™ for alli,j =1,...,k.

zi) A is lower block triangular if

Ay 0 - 0
Ay Ay o 0

A= : : . : )
Apr Ag o A

where A;; € F"*™ for alli,j =1,...,k.
zii) A is block Toeplitz if A(; jy = Ay for all k —i =1 — j, that is,

A Ax Az
Ay A1 As

A5 A4 A1

where A; € Fnixm™i,
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ziii) A is block Hankel if A jy = Ay for all i + j = k + 1, that is,

A1 A2 A3
A2 Ag A4 o
A= o

As Ay As

where A; € Fnixmi,

Define the matrix .J,, € R**2" (or just J) by

A 0 I,
Jon & [ L0 ] . (3.1.2)
In particular,
=] 01 (3.1.3)
2 = 1 0 |- A

The following definition introduces various types of real matrices.

Definition 3.1.4. For A € R™*™ define the following types of matrices:

i) A is nonnegative (A >> 0) if A; ;) > 0 for all 4 = 1,...,n and
j=1....,m.

ii) A is positive (A >> 0) if Ay ;) > 0foralli =1,...,n and j =
1,...,m.

For A € R?™*2" define the following types of real matrices:
i) A is Hamiltonian if J7ATT = —A.
i) A is symplectic if A is nonsingular and J AT = AL,
Proposition 3.1.5. Let A € F*»*™. Then, the following statements
hold:
i) If A is Hermitian or skew Hermitian, then A is normal.
i1) If A is nonsingular or normal, then A is range Hermitian.

i17) If A is range Hermitian, idempotent, or tripotent, then A is group
invertible.

iv) If A is a reflector, then A is tripotent.

v) If A is a permutation matrix, then A is orthogonal.

Proof. 1) is immediate. To prove ii) note that if A is nonsingular, then
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R(A) = R(A*) = F", and thus A is range Hermitian. If A is normal, then
it follows from Theorem 2.4.3 that R(A) = R(AA*) = R(A™A) = R(A"),
which proves that A is range Hermitian. To prove iii) note that if A is range
Hermitian, then R(A) = R(AA*) = AR(A*) = AR(A) = R(A?), while, if A
is idempotent, then R(A) = R(A?). If A is tripotent, then R(A) = R(43) =
A2R(A) C R(A?) = AR(A) C R(A). Hence, R(A) = R(A?). O

3.2 Matrix Transformations
A variety of transformations can be employed for analyzing matrices.
Definition 3.2.1. Let A, B € F*"*™. Then, the following terminology
is defined:

i) A and B are left equivalent if there exists a nonsingular matrix
S7 € F™*™ guch that A = S1B.

it) A and B are right equivalent if there exists a nonsingular matrix
Sy € F™*™ guch that A = BSs.

ii1) A and B are biequivalent if there exist nonsingular matrices S €
F*" and Sy € F™*™ such that A = S1BS,.

iv) A and B are unitarily left equivalent if there exists a unitary matrix
S1 € F™*"™ guch that A = S1B.

v) A and B are unitarily right equivalent if there exists a unitary matrix
Sy € F™*™ guch that A = BSs.

vi) A and B are unitarily biequivalent if there exist unitary matrices
S € F"*™ and Sy € F™*™ such that A = S1BSs.
Definition 3.2.2. Let A, B € F"*™. Then, the following terminology
is defined:

i) A and B are similar if there exists a nonsingular matrix S € F"*"
such that A = SBS™L.

it) A and B are congruent if there exists a nonsingular matrix S € F"*"
such that A = SBS*.

iii) A and B are T-congruent if there exists a nonsingular matrix S €
F"*" such that A = SBST.

iv) A and B are unitarily similar if there exists a unitary matrix S €
F"*" such that A = SBS* = SBS™!.

The following results summarize some matrix properties that are pre-
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served under left equivalence, right equivalence, biequivalence, similarity,

congruence, and unitary similarity.
Proposition 3.2.3. Let A, B € F"*™. If A and B are similar, then the
following statements hold:
i) A and B are biequivalent.

i1) tr A =tr B.

i11) det A = det B.
iv) AF and B* are similar for all k € P.

)

)

v) A¥* and B** are similar for all k € P.

A is nonsingular if and only if B is; in this case, A~* and B~* are
similar for all k& € P.

V1

vii) A is (group invertible, involutory, skew involutory, idempotent, tri-
potent, nilpotent) if and only if B is.

If A and B are congruent, then the following statements hold:
viit) A and B are biequivalent.
ir) A* and B* are congruent.

1) A is nonsingular if and only if B is; in this case, A~ and B~! are
congruent.

zi) Ais (range Hermitian, group invertible, Hermitian, skew Hermitian,
nonnegative semidefinite, positive definite) if and only if B is.

If A and B are unitarily similar, then the following statements hold:
zii) A and B are similar.
ziit) A and B are congruent.

ziv) A is (range Hermitian, group invertible, normal, Hermitian, skew
Hermitian, nonnegative semidefinite, positive definite, orthogonal,
involutory, skew involutory, idempotent, tripotent, nilpotent) if and
only if B is.

Definition 3.2.4. Let 8§ C F"*™. Then, 8 is a Lie algebra if the follow-
ing conditions are satisfied:

i) 8 is a subspace.

ii) If A,B € 8, then [A, B] € 8.

Proposition 3.2.5. The following sets are Lie algebras:
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i) glp(n) & FP,

i) ple(n) = {A € C™": tr A € R}.

iii) slp(n) 2 {A € T tr A = 0}.

w) u(n) £ {A € C™": A is skew Hermitian}.

v) su(n) 2 {A € C"": A is skew Hermitian and tr A = 0}.

vi) so(n) £ {A € R™™: A is skew symmetric}.

vii) sp(n) £ {A € R?"*2"; A is Hamiltonian}.

viii) affg(n) 2 {[61 8} A€ gla(n), beIE‘"}.

([8 8] aconocc}
{[g‘o] A € so(n beR”}.

o o) 2 {0 8 ]: vewr)

Definition 3.2.6. Let 8§ C F"*™. Then, § is a group if the following
conditions are satisfied:

(1>

ix) sec(n)

(1>

oo O

z) ser(n)

o o

i) If A € 8, then A is nonsingular.
i) If A€ §, then A~! € 8.
ii) It A, B € S, then AB € 8,

Note that if § C F"*™ is a group, then I, € 8.

The following result lists several classical groups that are of importance
in physics and engineering. In particular, O(1,3) is the Lorentz group, see,
for example, [505, p. 126] or [496, p. 16].

Proposition 3.2.7. The following sets are groups:
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vi) U(n,m) & {AeCltmx(ntm). Atdiag(I,,—I,)A = diag(L,,—In)}.
vii) O(n,m) =2 {A e RO+mx(ntm). ATdiag (I, —1,,) A = diag(L,,— L)}
) )2 {AcU(n): detA=1}.
) )2 {A€O0(n): detA=1}.
{A € R?"2"; A is symplectic}.

viii) SU(n
i) SO(n
z) Sp(n)

%) Aﬂy(n)é{[ Ab ]: A € GLg(n), beIF"}.

(1>

0 1

i) SEC(n)é{[g1 ll’] A € SU(n), be(C"}.

ziii) SEg(n) £ {[‘g ll’ ]: A € SO(n), beR"}.

zi) TransF(n)é{[é z{] beIF"}.

The following result shows that groups can be used to define equiva-
lence relations on F**™,

Proposition 3.2.8. Let 81 C R™*™ and 89 C R™*™ be groups. Then,
the relation R defined on F™*™ by
(A, B) € R <= there exist S; € §; and Sz € 83 such that A = S1BSs

is an equivalence relation.

3.3 Facts on Range-Hermitian and Group-Invertible
Matrices

Fact 3.3.1. Let A € F™*". Then, A is range Hermitian if and only if
N(A) = N(A*).

Fact 3.3.2. Let A, B € F"*" be range Hermitian. Then,

rank AB = rank BA.

(Proof: See [52].)

Fact 3.3.3. Let A € F"*™. Then, the following statements are equiv-
alent:

i) A is group invertible.

i1) A* is group invertible.
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and A? are right equivalent.
viii) rank A = rank A2

iz) def A = def A2

)
)
v)
)
)
)

Fact 3.3.4. Let A € F™*". If A is range Hermitian, then A is group
invertible.

Fact 3.3.5. Let A, B € F™"*", and assume that A is dissipative and B
is range Hermitian. Then, ind B = ind AB. (Proof: See [87].)

3.4 Facts on Hermitian and Skew-Hermitian Matrices

Fact 3.4.1. Let A € F™™, Then, AAT € F**" and ATA € F™*™ are
symmetric.

Fact 3.4.2. Let A € F"*" let k € P, and assume that A is Hermitian.
Then, R(A) = iR(Ak) and N(A) = N(Ak).
Fact 3.4.3. Let A € R™*™. Then, the following statements hold:
i) Az =0 for all x € R™ if and only if A is skew symmetric.

i) A is symmetric and zTAz = 0 for all z € R™ if and only if A = 0.

Fact 3.4.4. Let A € C"*™. Then, the following statements hold:
i) x*Ax is real for all x € C" if and only if A is Hermitian.
i1) x*Ax is imaginary for all x € C" if and only if A is skew Hermitian.

iii) x*Axz = 0 for all x € C" if and only if A = 0.

Fact 3.4.5. Let A € C"*™. Then, the following statements hold:
i) A is skew Hermitian if and only if A4 is Hermitian.
i1) A is Hermitian if and only if yA is skew Hermitian.

iit) A is Hermitian if and only if Re A is symmetric and Im A is skew
symmetric.
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iv) A is skew Hermitian if and only if Re A is skew symmetric and Im A
is symmetric.

v) A is nonnegative semidefinite if and only if Re A is nonnegative
semidefinite.

vi) A is positive definite if and only if Re A is positive definite.

Fact 3.4.6. Let A € F"*™. Then, the following statements hold:

i) If A is (Hermitian, nonnegative semidefinite, positive definite), then
so is AA.

) If A is skew Hermitian and n is odd, then A* is Hermitian.

) If A is skew Hermitian and n is even, then A* is skew Hermitian.
iv) If A is normal, then so is A®.

)

If A is diagonal, then so is A®, and, for all i = 1,...,n,

A
(A )(i,z') - HA(J'J)‘
i=1
JFi
(Proof: Use Fact 2.13.9.) (Remark: See Fact 5.11.2.)

Fact 3.4.7. Let A € F™*™, assume that n is even, let x € F™, and let

a € F. Then,
det(A + azx™) = det A.

(Proof: Use Fact 2.13.2 and Fact 3.4.6.)
Fact 3.4.8. Let A € F"*™. Then, the following statements are equiv-
alent:
i) A is Hermitian.

iM) A? = A*A.

i) tr A2 = tr A*A.
(Proof: Use the Schur decomposition Theorem 5.4.1. See [347].) (Problem:
If AA*"A = A*A% then does it follow that A is normal?)

Fact 3.4.9. Let A € R™*" be skew symmetric, and let o > 0. Then,
—A? is nonnegative semidefinite, det A > 0, and det(al + A) > 0. If, in
addition, n is odd, then det A = 0.

Fact 3.4.10. Let A € F**™ be skew Hermitian. If n is even, then
det A > 0. If n is odd, then det A is imaginary. (Proof: The first statement
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follows from Proposition 5.5.25.)

Fact 3.4.11. Let x,y € F™ and define
AL [ Ty ] .

Then,
xy* —yrt = A A",

Furthermore, zy* — yx* is skew Hermitian and has rank 0 or 2.

Fact 3.4.12. Let x,y € F". Then, the following statements hold:
i) xy" is idempotent if and only if either 2y = 0 or 2Ty = 1.

i) 2y’ is Hermitian if and only if there exists o € R such that either
Y = QT or * = Q.

Fact 3.4.13. Let z,y € F”, and define A £ I—xzy". Then, the following
statements hold:

i) det A=1—2aly.
i) A is nonsingular if and only if 2Ty # 1.

i13) A is nonsingular if and only if A is elementary.

)
)
i) rank A =n —1 if and only if 2Ty = 1.
v) A is Hermitian if and only if there exists o € R such that either
Y= QT Or & = Q.
1) AT is nonnegative semidefinite if and only if A is Hermitian and
iy < 1.

vii) A is positive definite if and only if A is Hermitian and 2Ty < 1.
viii) A is idempotent if and only if either zy™ = 0 or 2Ty = 1.
iz) A is orthogonal if and only if either z = 0 or y = %yTya:.
7) A is involutory if and only if 2Ty = 2.

xi) A is a projector if and only if either y = 0 or x = z*zy.

)
zii) A is a reflector if and only if either y = 0 or 2z = z*zy.
)

ziii) A is an elementary projector if and only if z # 0 and y = (z*z) 2.

ziv) A is an elementary reflector if and only if z # 0 and y = 2(z*z) 2.

(Remark: See Fact 3.5.9.)

Fact 3.4.14. Let z,y € F™" satisfy 2Ty # 1. Then, I — zy" is
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nonsingular and

B S S
(I J:y) =1 :cTy—lxy'

(Remark: The inverse of an elementary matrix is an elementary matrix.)

Fact 3.4.15. Let A € F™™*" be Hermitian. Then, det A is real.

Fact 3.4.16. Let A € F™*" be Hermitian. Then,
(tr A)? < (rank A) tr A%,

Furthermore, equality holds if and only if there exists @ € R such that
A? = @A. (Remark: See Fact 5.9.27.)

Fact 3.4.17. Let A € R™ ", and assume that A is skew symmetric.
Then, tr A = 0. If, in addition, B € R™*" is symmetric, then tr AB = 0.

Fact 3.4.18. Let A € F™*", and assume that A is skew Hermitian.
Then, Retr A = 0. If, in addition, B € F"*" is Hermitian, then Retr AB =
0.

Fact 3.4.19. Let A € F"*™. Then, A*A is nonnegative semidefinite.
Furthermore, A*A is positive definite if and only if A is left invertible. In

this case, A" defined by
AR & (AA) A

is a left inverse of A. (Remark: See Fact 2.13.23, Fact 3.4.20, and Fact
3.5.3.)

Fact 3.4.20. Let A € F™*™. Then, AA* is nonnegative semidefinite.
Furthermore, AA* is positive definite if and only if A is right invertible. In

this case, AR defined by
AR AN A*(AA*)—I

is a right inverse of A. (Remark: See Fact 2.13.23, Fact 3.5.3, and Fact
3.4.19.)

Fact 3.4.21. Let A € F™™. Then, A4, AA*, A+ A*, and [ 4] are

Hermitian, and [_OA “(1” and A — A* are skew Hermitian.

Fact 3.4.22. Let A € F"*™. Then, there exist a unique Hermitian
matrix B € F™*" and a unique skew-Hermitian matrix C' € F™*™ such that
A = B + C. Specifically, if A = B+ jé’, where B,C € R™*"_ then B and C
are given by

B=4(A+ A7) = §(B+B) +3(C - CT)
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and O = JA— A7) = §(B~BY) 4 3(C+ ).

Furthermore, A is normal if and only if BC = CB. (Remark: See Fact
11.10.7.)

Fact 3.4.23. Let A € F"*". Then, there exist unique Hermitian ma-
trices B, C' € C™*" such that A = B+ jC. Specifically, if A = B + 3C, where
B,C € R™ "™ then B and C are given by

B =§(A+47) = §(B+ BT) +,5(C - C7)

and

C=LiA-a)= %(é+éT) —g%(B - BT).

Furthermore, A is normal if and only if BC' = CB. (Remark: This result is
the Cartesian decomposition.)

Fact 3.4.24. Let z,y,z,w € R3, and define

N
C(:C) = $(3) 0 —33‘(1)
—T) () 0

Then, the following statements hold:
i) xxy=Cl(x)y.
i) © Xz =C(z)r =0.
) xy=—(yxz)=Clr)y=-Cly.
w) If x x y #0, then N[(z x y)T] =R([ = y ]).
) Cla x ) = ClC(@)y) = [C(x), Cy)] = ya™ — zy".
vi) C*(z) =zt — (22 L
)
)
)

191
v

vii) If 2%z =1, then C3(z) = —C(x).
vit)) If 2z =1, then Cl(z x y) x 2] = (I — zz")y.
ir) det[ 2y 2z ] =(zxy)z=a(yx2).
D) @xy)exy)=det[z y zxy].
zi) (zxy) x 2z = (z%2)y — (y"2)z.
i) @ (3 2) = (&3)y - (&)=
)
)

X (y X 2)

zii)) (z x )Tz x y) = 2 wyly — (xTy)2.

ziv) \/(z x y)T(x x y) = \/2TryTysin 6, where 6 is the angle between



matrix2 November 19, 2003

MATRIX CLASSES AND TRANSFORMATIONS 91
and y.

2 xTw
Yz yTw |

) (z x y) (2 x w) = 22y"w — 27wy > = det [

avi) (xxy)x(zxw) =zt (yxw)z—2 (yx2)w = 2T (z xw)y—yT (z xw)z.
wit) X [y x (z x w)] = (yTw)(z x 2) — (yT2)(z x w).
wviti) @ X [y x (y x x)] =y x [z x (y x 2)] = (y'z)(z x y).

ziz) If A € R¥3, then AT(Ax x Ay) = (det A)(z x y).

zx) If A € R3*3 is orthogonal and det A = 1, then A(z x y) = Az x Ay.
(Proof: Using iz), efAT(Azx Ay) =det [ Az Ay Ae; | = (det A)ef(zxy)
for all i = 1,2, 3, which proves zvii).) (Remark: See [177,447,508,539].)

Fact 3.4.25. Let A, B € R? be skew symmetric. Then,
tr AB® = i(tr AB)(tr B?)

and
tr A3B3 = 1(tr AQ)(trAB)(tr Bg) + %(tr AS)(tr Bg).

(Proof: See [37].)
Fact 3.4.26. Let A, B € F*"*™, If either A and B are Hermitian or
A and B are skew Hermitian, then [A, B] is skew Hermitian. Furthermore,

if A is Hermitian and B is skew Hermitian, or vice versa, then [A, B] is
Hermitian.

Fact 3.4.27. Let A € F™"*"™, Then, the following statements are equiv-
alent:
i) trA=0

i1) There exist B,C € F™*™ such that A is Hermitian, tr B = 0, and
A=[B,C].

(Proof: See [221] and Fact 5.7.18. If all of the diagonal entries of A are zero,
then let B £ diag(1,...,n), C; ;) =0, and, for i # j, C(; j) = A /(i — j).-
See [626, p. 110]. See also [466, p. 172].)

Fact 3.4.28. Let A € F"*™. Then, the following statements are equiv-
alent:
i) A is Hermitian and tr A = 0.
ii) There exists a nonsingular matrix B € F"*" such that A = [B, B*].

i17) There exist a Hermitian matrix B € F™*" and a skew-Hermitian
matrix C' € F™*" such that A = [B, C]|
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iv) There exist a skew-Hermitian matrix B € F"*™ and a Hermitian
matrix C' € F™*" such that A = [B, C|

(Proof: See [542] and [221].)

Fact 3.4.29. Let A € F™»*™, Then, the following statements are equiv-
alent:

i) A is skew Hermitian and tr A = 0.
i1) There exists a nonsingular matrix B € F"*" such that A = [)B, B*].

iii) If A € C"*™ is skew Hermitian, then there exist Hermitian matrices
B,C € F"*" such that A = [B,C].

(Proof: See [221] or use Fact 3.4.28.)

Fact 3.4.30. Let A € F"*"  and assume that A is skew symmetric.
Then, there exist symmetric matrices B,C € F"*" such that A = [B, C].
(Proof: Use Fact 5.13.22. See [466, pp. 83, 89].) (Remark: All matrices can
be complex.)

Fact 3.4.31. Let A € F"*", and assume that [A, [A, A*]] = 0. Then,
A is normal. (Remark: See [626, p. 32].)

Fact 3.4.32. Let A € F"*™ and k € P. If A is (normal, Hermitian,
unitary, involutory, nonnegative semidefinite, positive definite, idempotent,
nilpotent), then so is A*. If A is (skew Hermitian, skew involutory), then
so is A%*+1 If A is Hermitian, then A?* is nonnegative semidefinite. If A is
tripotent, then so is A3,

Fact 3.4.33. Let x,y € F", and assume that x # 0. Then, there exists
a Hermitian matrix A € F"*™ such that y = Az if and only if x*y is real.
One such matrix is

A= (z*z) yx* + xy* — 2*yI].
(Remark: See Fact 2.11.12.)

Fact 3.4.34. Let x,y € F", and assume that z # 0. Then, there exists
a positive-definite matrix A € F™*" such that y = Az if and only if z*y is
real and positive. One such matrix is

A =T+ (z*y)yy* — (x¥z) za*.
(Proof: To show that A is positive definite, note that the elementary pro-
jector I — (x*z)~za* is nonnegative semidefinite and rank[l — (z*z) tzz*] =
n —1. Since (z*y)lyy* is nonnegative semidefinite, it follows that N(A) C
N[I — (z*r)'wx*]. Next, since z*y > 0, it follows that y*z # 0 and y # 0,
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and thus z ¢ N(A). Consequently, N(A) C N[I — (z*z)"'zz*] (note proper
inclusion), and thus def A < 1. Hence, A is nonsingular.)

Fact 3.4.35. Let z,y € F™. Then, there exists a skew-Hermitian ma-
trix A € F™*™ guch that y = Az if and only if either y = 0 or = # 0 and
¥y = 0. If x # 0 and 2*y = 0, then one such matrix is

A = (%) Nyz* — 2y™).
(Proof: See [376].)
Fact 3.4.36. Let A € R™*" be positive definite. Then,
{z eR™ 2™z <1}

is an ellipsoid.

Fact 3.4.37. Let z,y, z € F” satisfy 2*x = y*y = 2*2 = 1. Then,
V1= ey < V1 —Ja2? + V1 - [y
Furthermore, if A, B € F™*" are unitary, then
Vi- i aBP <\1-|teaP +\1-|LtuBf
(Proof: See [580].)

3.5 Facts on Projectors and ldempotent Matrices

Fact 3.5.1. Let A € F™*" be a projector, and let z € F". Then,
x € R(A) if and only if z = Ax.

Fact 3.5.2. Let A, B € F™*" be projectors, and assume that R(A) =
R(B). Then, A = B.

Fact 3.5.3. Let A € F*™ ™ If rank A = m, then B = A(A*A)7'A* is
a projector and rank B = m. If rank A = n, then B = A*(AA*) 4 is a
projector and rank B = n. (Remark: See Fact 2.13.23, Fact 3.4.19, and Fact
3.4.20.)

Fact 3.5.4. Let A € F"*". Then, A is a projector if and only if
A= A*A.

Fact 3.5.5. Let A € F™*™ and assume that A is a projector. Then,
A is nonnegative semidefinite.

Fact 3.5.6. Let € F™ be nonzero and define the elementary projector
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A2 T — (z*z)'zz*. Then, the following statements hold:
i) rank A =n —1.

i1) N(A) = span{z}.

i) R(A) = {x}+.

i) 2A — I is the elementary reflector I — 2(z*r) lwa*.
(Remark: If y € F”, then Ay is the projection of y on {z}*.

Fact 3.5.7. Let A € F™"*™. Then, A is an elementary reflector if and

only if A is a reflector and tr A = n — 2. Furthermore, A is an elementary

projector if and only if A is a projector and tr A = n — 1. (Proof: See
Proposition 5.5.25.)

Fact 3.5.8. Let n > 1, and let § C F" be a hyperplane. Then, there
exists a unique elementary projector A € F"*" such that R(A) = § and

N(A) = 8+ Furthermore, if 2 € F” is nonzero and 8§ = {z}*, then A =
I — (z*z)'zz*. (Remark: See Proposition 5.5.4.)

Fact 3.5.9. Let A € F"*". Then, A is a projector and rank A =n —1
if and only if there exists nonzero € N(A) such that
A=1T1— (z%c) wx*
In this case, it follows that, for all y € F™,

(y'z)?
e

Yy — yAy =

Furthermore, for y € F", the following statements are equivalent:

i) YAy = y*y.
i) y*r = 0.
iit) Ay =y.

(Remark: See Fact 3.4.13.)

Fact 3.5.10. Let A € F™*™ be a projector, and let z € F". Then,
T Ax < x*z.
Furthermore, the following statements are equivalent:
i) v*Ax = z'r.
i) Ax = x.

iii) © € R(A).
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Fact 3.5.11. Let A € F™*", and assume that A is idempotent. Then,
A is a projector if and only if, for all x € F", 2*Ax < x*zx. (Proof: See [466, p.
105].)
Fact 3.5.12. Let A € F™*". Then,
N(A) CR(I - A)

and
R(A) CTN(I - A).

Furthermore, the following statements are equivalent:
i) A is idempotent.
it) N(A) = R(I — A).
i11) R(A) =N(I — A).
(Proof: See [269, p. 146].)

Fact 3.5.13. Let A € F"*". Then, A is idempotent and rank A = 1 if
and only if there exist z,y € F" such that y'z = 1 and A = ay7.

_Fact3.5.14. Let A € F**", and assume that A is idempotent. Then,
AT A, and A* are idempotent.

Fact 3.5.15. Let 81,82 C F" be complementary subspaces, and let
A € F™™ be the idempotent matrix associated with 8y, 8. Then, AT is the
idempotent matrix associated with 83, 8. (Remark: See Fact 2.9.11.)

Fact 3.5.16. Let A € F*»*™. Then, A is idempotent if and only if
rank A + rank(f — A) = n.

Fact 3.5.17. Let A, B € R™" be idempotent and define A| £ 7T — A
and B| = I — B. Then, the following identities hold:
) (A-B)?+ (A, - B)?=1.

i) [A,B] = [B, A1] = [By, A] = [AL, By].
i) A— B=AB, — A, B.
)

)

]

iv) AB| +BA| = AB/A+ A BA,.
v) A[A,B] =[A,B]A,.
vi) B|A, B] = [A, B|B..

(Proof: See [439].)

Fact 3.5.18. Let A € F™" and a € F, where o # 0. Then, the
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matrices

A A A a4 A oA
A A all-A) I—-A |’ —aA —A
are, respectively, normal, idempotent, and nilpotent.

Fact 3.5.19. Let A, B € R™ ™. Then, the following statements hold:

i) Assume that A> = —A. Then, B 2 I + A + A? satisfies B* = I,
Bl'=I-A+A* B3-B*+B-1=0,and A= 4B-B3).
Furthermore, I 4+ A2 is idempotent.

i) Assume that B* = I. Then, A £ $(B — B™') satisfies B®> = —B.
Furthermore, i([ +B+ B?+ B3) is idempotent.

i) Assume that B3 — B2+ B — I =0. Then, A = (B — B?) satisfies
A3 =—Aand B=1+ A+ A2

(Remark: The geometrical interpretation of these results is discussed in
[197].)

Fact 3.5.20. Let A € ™, If AL € F™*" ig a left inverse of A, then
AA is idempotent and rank A¥ = rank A. Furthermore, if AR € F™*" is a
right inverse of A, then A4 is idempotent and rank A® = rank A.

Fact 3.5.21. Let A € F™*™ and B € F™*™ and assume that AB is
nonsingular. Then, B(AB)™4 is idempotent.

Fact 3.5.22. Let A, B € F™*" be idempotent. Then, A + B is idem-
potent if and only if AB = BA = 0. (Proof: AB + BA = 0 implies
AB + ABA = ABA + BA = 0, which implies that AB — BA = 0 and
hence AB = 0. See [262, p. 250].)

Fact 3.5.23. If A, B € F™*" are idempotent and AB = 0, then A +
B — BA is idempotent and C' £ A — B is tripotent. Conversely, if C' € F"*"
is tripotent, then A £ %(C2 + C) and B 2 %(Cz — C’) are idempotent and
satisfy C = A — B and AB = BA = 0. (Proof: See [407, p. 114].)

Fact 3.5.24. Let A € F™*" be nonsingular and idempotent. Then,
A=1,.

Fact 3.5.25. Let A € F™*" be idempotent. Then, so is A| = I — A,
and, furthermore, AA, = A|A=0.

Fact 3.5.26. Let A € F"*™ be idempotent. Then,
det(I 4+ A) = 24
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and . )

Fact 3.5.27. If A € F"*" is idempotent, then B £ 24 — I is invo-
lutory, while if B € F™*™ is involutory, then A £ %(B + I) is idempotent.
Furthermore, if A € F™ ™ is a projector, then B £ 24 — I is a reflector,
while if B € F"*" is a reflector, then A £ %(B + I) is a projector.

Fact 3.5.28. Let A € F™"*™, and assume that A satisfies two out of the
three properties (Hermitian, idempotent, A+ A* = 2AA*). Then, A satisfies
the remaining property. (Proof: If A is idempotent and 2AA* = A + A*,
then (24— 1)t =241 = (2A* —I)"!. Hence, A is Hermitian.) (Remark:
These matrices are the projectors.) (Remark: The condition A+ A* = 2AA*
is considered in Fact 3.5.29.) (Remark: See Fact 3.7.1 and Fact 3.7.5.)

Fact 3.5.29. If B € F™*" is unitary and skew Hermitian, then A £
$(B + 1) satisfies
A4+ AT =2AA"
Conversely, if A € F**™ satisfies this equation, then B £ 24 — I is unitary.
(Remark: See Fact 3.5.28.) (Remark: This equation has normal solutions
such that B £ 24 —1I is not skew Hermitian, for example, A = 1/3+7v/2/3.)
(Problem: Characterize all normal and nonnormal solutions.)

3.6 Facts on Unitary Matrices

Fact 3.6.1. Let A € F™*" be unitary. Then, the following statements
hold:

) U=U"

W) Ut =0 "'=T"
W) U=U"T=0U ".
w) U* =U"!

Fact 3.6.2. Let A € F"*™ be unitary. Then,

—n < Retrd <n,
—n <ImtrA <mn,

and
[tr A| < n.

Fact 3.6.3. Let z,y € F", and let A € F"*" be unitary. Then, z*y = 0
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if and only if (Az)*Ay = 0.

Fact 3.6.4. Let A € F™*™ If A is (left inner, right inner), then A is
(left invertible, right invertible) and A* is a (left inverse, right inverse).

Fact 3.6.5. Let A € R™ "™ be a permutation matrix. Then, A is
orthogonal.

Fact 3.6.6. Let A € C"*" be unitary. Then, |det A| = 1.

Fact 3.6.7. Let M £ [A8] ¢ F(ntm)x(n+m) he unitary. Then,
det A = (det M )det D.
(Proof: Let [é g} £ A7! and take the determinant of A[é ?)] =[49].
See [3] or [506].) (Remark: See Fact 2.13.34.)

Fact 3.6.8. Let A € F"*", and assume that A is Hermitian, skew
Hermitian, or unitary. Then, A is normal.

Fact3.6.9. Let A € F™*" and assume that A is block diagonal. Then,
A is (normal, Hermitian, unitary) if and only if every diagonally located
block has the same property.

Fact 3.6.10. Let A € F™*" be nonsingular. Then, A is normal if and
only if A7'A* is unitary.

Fact 3.6.11. Let A € F™ "™ be nonsingular and assume that A is
(normal, Hermitian, skew Hermitian, unitary). Then, so is AL

Fact 3.6.12. Let A,B € R™". Then, A + 3B is (Hermitian, skew
Hermitian, unitary) if and only if [_AB Jj} is (symmetric, skew symmetric,
orthogonal).

Fact 3.6.13. Let A € F™ " be semicontractive. Then, B € F?"x2"

defined by
B2 A (I — AA¥)1/2
RV VAL — A

is unitary. (Remark: See [216, p. 180].)

Fact 3.6.14. Let 6 € R, and define the orthogonal matrix

A(G)é[ cos 0 sin@].

—sinf@ cos6
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Now, let 61,602 € R. Then,
A(01)A(02) = A(61+ 65).
Consequently,
cos(01+ 02) = (cos 61) cos By — (sin 61) sin o,
sin(fy + 62) = (cos 01)sin by + (sin 0y) cos 0.

Furthermore,

SO(2) = {A(0): 0 € R}.
(Remark: See Proposition 3.2.7 and Fact 11.9.3.)

Fact 3.6.15. Let z,y,2 € R?. If z is rotated according to the right
hand rule through an angle # € R about y, then the resulting vector & € R?
is given by

.| cosf® —sinb Y(1)(1 — cos 0) + y(2)sin 6
= sin®  cosf |” Y(2)(1 — cos0) + y(1ysind |’
If z is reflected across the line passing through 0 and z and parallel to the

line passing through 0 and y, then the resulting vector & € R? is given by

2 (4 — %) — 1) — 2zv0)¥0e)

—2(@) (y?l) ~ Yy — 1) — 22)Y(1)Y(2)

(Remark: These affine planar transformations are used in computer graph-
ics. See [210,464].)

r—+

[ Yy~ Yy 290)Ye)
e Y — Y

Fact 3.6.16. Let z,y € R3, and assume that y'y = 1. If x is rotated
according to the right hand rule through an angle § € R about the line
passing through 0 and y, then the resulting vector & € R3 is given by

T=x4 (sinf)(y x x) + (1 —cos )y x (y x z)].

(Proof: See [10].)

Fact 3.6.17. Let x,y € R™. Then, there exists an orthogonal matrix
A € R™™ such that y = Az if and only if 272 = yTy. (Remark: One such
matrix is given by a product of n plane rotations given by Fact 5.13.13. An-
other is given by the product of elementary reflectors given by Fact 5.13.12.
See Fact 11.9.9 and Fact 3.7.3.) (Problem: Extend this result to C.)

Fact 3.6.18. Let A € F™*™ be unitary, and let x € F"™ be such that
z*r =1 and Ax = —z. Then, the following statements hold:
i) det(A+1)=0.

i1) A+ 2zx* is unitary.
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i) A= (A+2z2*)(I, — 2z2*) = (I, — 2z2™)(A + 2z27).
iv) det(A + 2zz*) = —det A.

Fact 3.6.19. Let A € R3*3. Then, A is an orthogonal matrix if and
only if there exist real numbers a, b, ¢, d, not all zero, such that

. a?+b*—c2—d? 2(bc + da) 2(bd — ca)
A=" 2(bc — da) a? = +c*—d? 2(cd + ba) )
2(bd + ca) 2(cd — ba) a2 —b* -2+ d?

where a £ a® + b + ¢ + d?. (Remark: This result is due to Rodrigues.)

Fact 3.6.20. Let A € R™", and assume that A is orthogonal. Then,
either det A =1 or det A = —1.

Fact 3.6.21. Let A € F"*" and assume that A is involutory. Then,
either det A =1 or det A = —1.

Fact 3.6.22. Let A € F™*™ be unitary. Then, %[’3 *AA] is also uni-
tary.

Fact 3.6.23. If A € F™*" is Hermitian, then I 4 7A is nonsingular and
B = (A —gI)(A+ 7I)7" is unitary and B — I is nonsingular. Conversely, if
B € F™ ™ is unitary and B — I is nonsingular, then A £ (I + B)(I — B)™" is
Hermitian. (Proof: See [216, pp. 168, 169].) (Remark: (A — 3I)(A+ 7I)~! is
the Cayley transform of A. See Fact 3.6.24, Fact 3.6.25, Fact 3.9.8, and Fact
8.7.18, and Fact 11.15.9.) (Remark: The linear fractional transformation
f(s) £ (s — 7)(s + ) maps the upper half plane of C onto the unit disk in
C, and the real line onto the unit circle in C.)

Fact 3.6.24. If A € F"*™ is skew Hermitian, then I+ A is nonsingular,
B2 (I—-A)I+ A" =T+ A NI - A) is unitary, and |det B] = 1.
Conversely, if B € F™" is unitary and I + B is nonsingular, then A £
(I+B) (I — B) is skew Hermitian. Furthermore, if B is unitary, then there
exist A € C and a skew-Hermitian matrix A € F"*" such that |A\| = 1 and

B £ (I — A)(I + A)™'. (Proof: See [289, p. 440] and [216, p. 184].)

Fact 3.6.25. If A € R™*"™ is skew symmetric, then I+ A is nonsingular,
B2 (I -A)I+ A = (I + A7(I - A) is orthogonal, and I 4 B is
nonsingular. Equivalently, if A € R™*" is skew symmetric, then there exists
an orthogonal matrix B € R™ " such that I + B is nonsingular and A =
(I + B)™Y(I — B). Conversely, if B € R™ " is orthogonal and I + B is
nonsingular, then det B =1 and A £ (I + B)"'(I — B) is skew symmetric.
Equivalently, if B € R™*" is orthogonal and I+ B is nonsingular, then there
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exists a skew-symmetric matrix A € R"*" such that B = (I — A)(I + A)~.

Fact 3.6.26. Let A € R™*"™ be orthogonal. Then, there exist a skew-
symmetric matrix B € R™" and a diagonal matrix C € R"*™, each of
whose diagonal entries is either 1 or —1, such that

A=C(I-B)(I+B)™.
(Proof: See [466, p. 101].) (Remark: This result is due to Hsu.)

3.7 Facts on Reflectors

Fact 3.7.1. Let A € F™*" and assume that A satisfies two out of the
three properties (Hermitian, unitary, involutory). Then, A also satisfies the

remaining property. (Remark: These matrices are the reflectors.) (Remark:
See Fact 3.5.28 and Fact 3.7.5.)

Fact 3.7.2. Let x € F™ be nonzero and define the elementary reflector
A2 T —2(z*z)'wx*. Then, the following statements hold:

i) det A= —1.

If y € F", then Ay is the reflection of y across {z}+.

) $(A+1I) is the elementary projector I — (z*z) ' zz*.

Fact 3.7.3. Let x,y € F™. Then, there exists a unique elementary
reflector A € F"*" such that y = Ax if and only if x*y is real and x*z = y*y.
If x # y, then A is given by

A=T-2(z—y)" (= —y)] (z—y(z—y"

(Remark: This result is the reflection theorem. See [229, pp. 16-18] and [484,
p. 357]. See Fact 3.6.17 and Fact 11.9.9.)

Fact 3.7.4. Let n > 1, and let § C F™ be a hyperplane. Then, there
exists a unique elementary reflector A € F™*™ such that, for all y = y1+y2 €
F", where y; € 8§ and yo = S+, it follows that Ay = y; — yo. Furthermore, if
§ = {z}+, then A = I — 2(z*z) lwx*.

Fact 3.7.5. Let A € F"*", and assume that A satisfies two out of
the three properties (skew Hermitian, unitary, skew involutory). Then, A
also satisfies the remaining property. In particular, J, satisfies all three
properties. In addition, A% is a reflector. (Problem: Does every reflector

have a skew-Hermitian, unitary square root?) (Remark: See Fact 3.5.28 and
Fact 3.7.1.)
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Fact 3.7.6. Let A € F"*™. Then, A is a reflector if and only if A =
AA*+A*—I. (Proof: This condition is equivalent to A = $(A+1)(A*+1)—1.)

3.8 Facts on Nilpotent Matrices

Fact 3.8.1. Let A,B € F™*" and assume that A and B are upper
triangular. Then,
[A,B]" =0.

Hence, [A, B] is nilpotent. (Remark: See [211,212].)

Fact 3.8.2. Let A, B € F™*" and assume that [A, [A, B]] = 0. Then,
[A, B] is nilpotent. (Remark: This result is due to Jacobson. See [207]
or [287, p. 98].)

Fact 3.8.3. Let A, B € F™*" and assume that [A, B2] = B. Then, B
is nilpotent. (Proof: See [493].)

Fact 3.8.4. Let A € R™ ™. Then, rank A* is a nonincreasing function
of k € P. Furthermore, if there exists k € {1,...,n} such that rank AF1 =
rank A¥, then rank A' = rank A* for all [ > k. Finally, if A is nilpotent and
Al £ 0, then rank AF*! < rank AF for all k =1,...,1.

Fact 3.8.5. Let n € Pand k € {0,...,n}. Then, rank N*¥ =n — k.

Fact 3.8.6. Let A € F"*™, Then, A is nilpotent and rank A = 1 if and
only if there exist nonzero z,y € F” such that y'z = 0 and A = 2y7T.

Fact 3.8.7. Let A € R™*™ be nilpotent and assume that A*¥ = 0, where
k € P. Then,

det(I — A) =1
and =
(I—A'=> A
=0

Fact 3.8.8. Let A € F and n,k € P. Then,

U CU A R o
A, + N,)" =
neom NI+ (llf))\k—an bt (n’jl)Ak—nJrlNg—l, k>n-—1,
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that is, for k > n —1,

P AT (BN (A S
T 1 o o7k R e s kb
0 - 0 A S D) (E)A
0o 0 X1
Lo 0 - 0 x| 0 0 AF (BNt

L 0 0 0 NP i

Fact 3.8.9. Let A,B € F™", and assume that A is nilpotent and
AB = BA. Then, det(A + B) = det B. (Proof: Use Fact 5.8.6.)

Fact 3.8.10. Let A, B € R™ "™ be nilpotent and assume that AB =
BA. Then, A+ B is nilpotent. (Proof: If A¥ = B! = 0, then (A+B)**! =0.)

Fact 3.8.11. Let A € F™*". Then, A is nilpotent if and only if, for all
k=1,...,n, tr A¥ = 0. (Proof: See [466, p. 103].)

3.9 Facts on Hamiltonian and Symplectic Matrices

Fact 3.9.1. J, is skew symmetric, skew involutory, and Hamiltonian,
I, is symplectic, and I, is a symmetric permutation matrix.

Fact 3.9.2. Let A € R?™*2" be symplectic. Then, det A = 1. Further-
more, A € R?*? is symplectic if and only if det A = 1, that is, SLg(2) =
Sp(1). (Proof: See [45, p. 27] or [505, p. 128].)

Fact 3.9.3. Let A € R?™*27_ If A is Hamiltonian and nonsingular,
then A~ is Hamiltonian. Now let B € R?"*2"_ If A and B are Hamiltonian,
the A + B is Hamiltonian.

Fact 3.9.4. Let A € R?"*2", Then, A is Hamiltonian if and only if
JA = (JA)T. Furthermore, A is symplectic if and only if ATJA = J.

Fact 3.9.5. Let A € R?>"*?" be Hamiltonian, and let S € R?"*?" be
symplectic. Then, SAS™! is Hamiltonian.

Fact 3.9.6. Let A € R?"%2", Then, A is skew symmetric and Hamil-
tonian if and only if there exist a skew-symmetric matrix A € R™*™ and a
symmetric matrix B € R"*" such that A = [7AB f} .
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Fact 3.9.7. Let A € R?"*2" he skew symmetric. Then, there exists a
nonsingular matrix S € R?"*2" guch that STAS = J,. (Proof: See [45, p.
231].)

Fact3.9.8. If A € R?"*27 js Hamiltonian and A+ is nonsingular, then

£ (A—I)(A+1I)"" is symplectic and I — B is nonsingular. Conversely, if

B € R?"*2" js symplectic and I — B is nonsingular, then A = (I+B)(I—B)™
is Hamiltonian. (Remark: See Fact 3.6.23, Fact 3.6.24, and Fact 3.6.25.)

3.10 Facts on Groups

Fact 3.10.1. The following subsets of R are groups:
i) {z € R: = #0}.
i) {x € R: = > 0}.
iit) {x € R: x # 0 and x is rational}.

v) {—1,1}.
vi) {1}.

Fact 3.10.2. The following subsets of F**™ are Lie algebras:

)
)
)
i) {x € R: x>0 and z is rational}.
)
)

i) ut(n) = {A € glg(n): A is upper triangular}.
i) sut(n) = {A € glg(n): A is strictly upper triangular}.
i11) {Opxn}-
Fact 3.10.3. The following subsets of F™*" are groups:
T(n) £ {A € GLg(n): A is upper triangular}.

) U
i) UTy(n) = {A € UT(n): AgGgy >0foralli=1,...,n}.
i) UT11(n) £ {A € UT(n): Ayy ==+1foralli=1,...,n}.
i) SUT(n) £ {A € UT(n): Ay =1foralli=1,...,n}.

v) {I.}.

(Remark: The matrices in UTy(n) are unipotent. See Fact 5.13.6.)

Fact 3.10.4. Let § C F"*", and assume that 8 is a group. Then,
{AT: A€ 8} and {A: A€ 8} are groups.
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3.11 Facts on Quaternions

Fact 3.11.1. Define Qq, Q2, Q3 € C**2 by
Qo = b, Qlé[_ol é},Qzé[é 0 ],Qsé{ 0 _0‘7]
Then, the following statements hold:
i) Qi =Qoand QF = —Q; for all i = 1,2, 3.
) Q2 =Qo and Q7 = —Q for all i = 1,2,3.
i) Q:Q; = —Q;Q; forall 1 <i < j <3.
w) Q1Q2 = Q3, Q2Q3 = Q1, and Q3Q1 = Q2.
v) {£Qo, £Q1, £Q2,£Q3} is a group.
For 32 [ fo fi B2 fs] €R* define

1

3
QB £ BiQi.
=0
Then,
Q(AQ(B) = 58I

and

det Q(8) = "B

Hence, if 318 = 1, then Q(/3) is unitary. Furthermore, the complex matrices
Qo, Q1,Q2,Q3, and Q(B) have the real representations

Qo = 1y, Q1=[J2 0]7

0 J
0 0 1 0 0 0 0 -1
00 0 -1 0 0 -1 0
Q=1 100 ol B=lo1 0o o]l
010 0 1 0 0 0
Bo B1 P2 —B3
| =B Bo B3 —f2
Ap) = —B2 B3 Po B
B3 B2 =B Bo
Hence,
Q(3)QY(B) = 8L
and

det 9(3) = (8B’

(Remark: Qo, @1, Q2, Q3 represent the quaternions 1,1, 7, k. See Fact 3.11.3.
The quaternion group v) is isomorphic to SU(2).) (Remark: Matrices with
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quaternion entries and 4 X 4 matrix representations are considered in [38,
109,248,627]. For applications of quaternions, see [11,250,344].) (Remark:
Q(B) has the form [ 5 ], where A and IB are rotation-dilations. See Fact
2.15.1.)

Fact 3.11.2. Let A € C?*2. Then, A is unitary if and only if there
exist # € R and § € R?* such that A = e?%Q(3), where Q(3) is defined in
Fact 3.11.1. (Proof: See [484, p. 228].)

Fact 3.11.3. Let Ag, Ay, Ag, Az € R™™™ let 1, 3, k satisfy

=2 =k=-1,

y=k=-n
Jk=1=—ky,
ki = 3= —ik,

and let A £ Ag 4+ 1A; + 245 + kAs. Then,

Ay —A —Ay —As
A Ay —A; A,
Ay As Ay —A
Ay —Ay A A

= Udiag(A, A, A, AT,

where
I 7 T B 7 |

—l I kI —jl
—I =kl I
—kI i = 1

a1
U_Q

(Proof: See [551].) (Remark: k is not an integer here. 1,7,k are the unit
quaternions. This identity uses a similarity transformation to construct a
real representation of quaternions. See Fact 2.12.14.)

3.12 Facts on Miscellaneous Types of Matrices

Fact 3.12.1. Let A € F"*™. Then, A is centrosymmetric if and only
if AT = AT, Furthermore, A is centrohermitian if and only if A* = A*,

Fact 3.12.2. Let A € F»*™ and B € F™*. If A and B are both
(centrohermitian, centrosymmetric), then so is AB.

Fact 3.12.3. Let A € F"*™. Then, A is (semicontractive, contractive)
if and only if A* is.

Fact 3.12.4. Let A € F"*" and assume that A is dissipative. Then,
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A is nonsingular. (Proof: Suppose that A is singular, and let z € N(A).
Then, z*(A 4+ A*)z = 0.) (Remark: If A+ A* is nonsingular, then A is not
necessarily nonsingular. Let A = [J{].)

Fact 3.12.5. Let A € R™*"™ be tridiagonal with positive diagonal en-
tries, and assume that, for all ¢ = 2,...,n,
Agiiny Ay < glcos 7)) 7 Aa n A1)
Then, det A > 0. (Proof: See [312].)

Fact 3.12.6. Let A € F™*" be Toeplitz. Then, A is reverse symmetric.

Fact 3.12.7. Let A € F™*"™, Then, A is Toeplitz if and only if there
exist ag,...,a, € F and b1,...,b, € F such that

n n
A= "uNT+) ail;.
=1 =0

Fact 3.12.8. Let A € F"*" let k € P, and assume that A is (lower
triangular, strictly lower triangular, upper triangular, strictly upper trian-
gular). Then, so is A*. If, in addition, A is Toeplitz, then so is A*. (Remark:
See Fact 11.10.1.)

Fact 3.12.9. Let A € F"*™. Then, the following statements hold:

i) If A is Toeplitz, then JA and AI are Hankel.

i) A is Toeplitz if and only if TAI is Toeplitz.

(%

)

i1) If A is Hankel, then IA and Al are Toeplitz.
)
)

A is Hankel if and only if JAT is Hankel.
Fact 3.12.10. Let A € F™*", assume that A is Hankel, and consider
the following conditions:
i) A is Hermitian.

i1) A is real.

i11) A is symmetric.
Then, i) = ii) = iii).
Fact 3.12.11. Let A € F™*™ be a partitioned matrix, each of whose

blocks is a k x k (circulant, Hankel, Toeplitz) matrix. Then, A is similar to
a block-(circulant, Hankel, Toeplitz) matrix. (Proof: See [60].)

Fact 3.12.12. For all 4,j = 1,...,n, define A € R™™ by A ; =
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1/(i 4+ j —1). Then, A is Hankel and

[112!-- - (n —1)!*

det A = .
¢ 121 (2n — 1)

Furthermore, for all 4,5 = 1,...,n, A~! has integer entries given by

_ L +i—1\/n+j—1\[i+j—2)
AN = (1)t —p(" .
(A7) gy = D™+ )< n—j )\ n-1 i—1
Finally, for large n, )

det A ~ 2727,

(Remark: A is the Hilbert matriz, which is a Cauchy matrix. See [280, pp.
513], Fact 1.4.8, Fact 3.12.13, and Fact 8.7.29.)

Fact 3.12.13. Let ai,...,ap,b1,...,b, € R, assume that a; +b; # 0
for all 4,5 = 1,...,n, and, for all 4,57 = 1,...,n, define A € R"™" by
A ) £ 1/(a; + bj). Then, A is Hankel and

IT (a; = ai)(®; — b))

det A = =I<=1
H (ai + bj)
1<i,j<n
Now, assume that aq,...,a, are distinct and by,...,0b, are distinct. Then,
A is nonsingular and
I (aj + be)(ar + bs)
( _1) _ 1<k<n
GO a4+ b)) I (ag —an) T (05— w)
1<k<n 1<k<n
k) k£

Furthermore,
n

LA I = ) (ai + by).

i=1
(Remark: A is a Cauchy matriz. See [280, p. 515], Fact 8.7.23, and Fact
1.4.8.)
Fact 3.12.14. Let A € R™™ be tripotent. Then,
rank A = rank A% = tr A2,

Fact 3.12.15. Let A € F™*™. Then, A is nonsingular and tripotent if
and only if A is involutory.
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Fact 3.12.16. Let A € F"*™. Then, A is involutory if and only if
(A+D)(A-1I)=0.

Fact3.12.17. A € R™* " and assume that A is skew involutory. Then,
n is even.

Fact 3.12.18. Let z,y € R", and assume that ) > - > z(,) and
Y1) = = Y(n)- Then, there exists a doubly stochastic matrix A € R"*"
such that y = Az if and only if y strongly majorizes z. (Remark: The matrix
A is doubly stochastic if it is nonnegative, 11xp A = 11xn, and Al,x1 = 1yx1-
This result is the Hardy-Littlewood-Polya theorem. See [93, p. 33], [287, p.
197], and [400, p. 22].)

3.13 Notes

In the literature on generalized inverses, range Hermitian matrices
are traditionally called EP matrices. Elementary reflectors are traditionally
called Householder matrices or Householder reflections.

Left equivalence, right equivalence, and biequivalence are treated in
[484]. Each of the groups defined in Proposition 3.2.7 is actually a Lie
group. Elementary treatments of Lie algebras and Lie groups are given in
[36,45,157,196,227,299,455], while an advanced treatment appears in [571].
Some additional groups of structured matrices are given in [386].

Applications of the matrix inversion lemma are discussed in [256]. The
terminology “idempotent” and “projector” is not standardized in the liter-
ature. Some writers use “projector” or “oblique projector” for idempotent,
and “orthogonal projector” for projector. Centrosymmetric and centroher-
mitian matrices are discussed in [359,590]. Several characterizations of nor-
mal and almost normal matrices are given in [186,188,246]. Symplectic and
Hamiltonian matrices are discussed in [354].
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Chapter Four

Matrix Polynomials and Rational
Transfer Functions

In this chapter we consider matrices whose entries are polynomials or
rational functions. The decomposition of polynomial matrices in terms of
the Smith form provides the foundation for developing canonical forms in
Chapter 4. In this chapter we also present some basic properties of eigenval-
ues and eigenvectors as well as the minimal and characteristic polynomials
of a square matrix. Finally, we consider the extension of the Smith form to
the Smith-McMillan form for rational transfer functions.

4.1 Polynomials

A function p: C +— C of the form

p(s) = Brs® + Beors" '+ + Bis + Bo, (4.1.1)

where k € N and g, ..., 0 € F, is a polynomial. The set of polynomials is
denoted by F[s]. If the leading coefficient §j € F is nonzero, then the degree
of p, denoted by degp, is k. If, in addition, 8y = 1, then p is monic. If
k = 0, then p is constant. The degree of a nonzero constant polynomial is
zero, while the degree of the zero polynomial is defined to be —oc.

Let p1 and p2 be polynomials. Then,

deg p1p2 = deg p1 + degpa. (4.1.2)

If p1 = 0 or po = 0, then deg p1ps = degp1+degps = —oo. If py is a nonzero
constant, then degps = 0 and thus deg p1ps = degp;. Furthermore,

deg(p1 + p2) < max{degp;,degps}. (4.1.3)

Therefore, deg(p; + p2) = max{degp1,degp2} if and only if either degp; #

degps or p1 = pa = 0 or degp; = degps # —o0 and L [pi(s) + pa(s)] # 0,
where k = degp; = deg po.
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Let p € F[s] be a polynomial of degree k > 1. Then, it follows from
the fundamental theorem of algebra that p has k possibly repeated complex
roots A, ..., A so that p can be factored as

k
p(s) = B] [ (s = M), (4.1.4)
i=1

where § € F. The multiplicity of a root A € C of p is denoted by my(\). If A
is not a root of p, then my(\) = 0. The multiset consisting of the roots of p
including multiplicity is mroots(p) = {\, ... Ak }m, while the set of roots of
p ignoring multiplicity is roots(p) = {\, ... N}, where S0 my(\;) = k. If
F = R, then the multiplicity of a non-real root J); is equal to the multiplicity
of its complex conjugate );. Hence, mroots(p) is self conjugate, that is,
mroots(p) = mroots(p).

Let p € F[s]. If p(—s) = p(s) for all s € C, then p is even, while, if
p(—s) = —p(s) for all s € C, then p is odd. If p is either odd or even, then
mroots(p) = —mroots(p). If p € R[s] and there exists ¢ € R[s| such that
p(s) = q(s)q(—s) for all s € C, then p has a spectral factorization. If p has
a spectral factorization, then p is even.

Proposition 4.1.1. Let p € R[s]. Then, the following statements are
equivalent:
i) p has a spectral factorization.
i) p is even and every imaginary root of p has even multiplicity.
ii1) p is even and p(yw) > 0 for all w € R.

Proof. The equivalence of %) and i) is immediate. To prove 1) = i)
note that, for all w € R,

p(w) = q(yw)q(—jw) = [q(yw)* > 0.

Conversely, to prove iii) = i) write p = p1p2, where all of the roots of p; are
imaginary and none of the roots of ps are imaginary. Now, let z be a root of
po. Then, —z, Z, and —Z are also roots of po with the same multiplicity as z.
Hence, there exists a polynomial pag € R[s| such that pa(s) = pao(s)p20(—$)
for all s € C.

Next, write pi(s) = Hle (32 _1_%2)%’ where 0 < w1 < -+ < wg and
m; = m,, (jw;). Let w;, denote the smallest element of the set {wi,...,wy}

such that m; is odd. Then, it follows that pi(jw) = []F_, (w2 —wH)™ <0
for all w € (wj,,wi,+1), where w1 = oco. However, note that pi(jw) =
p(yw)/p2(3w) = p(yw)/|p20(yw)|? > 0 for all w € R, which is a contradiction.

Therefore, m; is even for all ¢ = 1,...,k, and thus pi(s) = pio(s)p10(—3)
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for all s € C, where pio(s) = [[_, (82+wz-2)mi/2. Consequently, p(s)
p10(8)p20(8)p1o(—s)pao(—s) for all s € C.

ol

The following division algorithm is essential to the study of polynomi-
als.

Lemma 4.1.2. Let p1,p2 € F[s], and assume that ps is not the zero
polynomial. Then, there exist unique polynomials ¢, € F[s] such that

degr < degpo and
pP1=qp2 + 1. (4.1.5)

Proof. First note that if degp; < degps, then ¢ = 0 and r = p;.
Hence, assume that degp; = n > m = deg ps and write pi(s) = Bps" + -+ +
Bo and pa(s) = yms™ + -+ + . If n = 1, then (4.1.5) is satisfied with
q(s) = Bi/y1 and r(s) = Po — B170/71. Now, suppose that n = 2. Then,
p1(s) = pi(s) — (B2/vm)s> ™pa(s) has degree 1. Applying (4.1.5) with p;
replaced by p1, it follows that there exist g1, 71 € F[s] such that p1 = qip2+7r1
and such that degr; < degps. It thus follows that pi(s) = qi(s)p2(s)+ri(s)+
(B2/vm)s* "pa(s) = q(s)p2(s)+7(s), where q(s) = qu(s)+(B2/vm)s" ™ and
r = 11, which verifies (4.1.5). Similar arguments apply to successively larger
values of n.

To prove uniqueness, suppose there exist polynomials ¢ and 7 such
that deg 7 < deg p2 and p; = Gpa + 7. Then, it follows that (¢ —q)ps = —7.
Next, note that deg(r — 7) < degps. If § # ¢, then degpy < deg[(§ — q)p2]
so that deg(r — 7) < deg[(§ — q)p2], which is a contradiction. Thus, ¢ = ¢,
and, hence, r = 7. O

In Lemma 4.1.2, g is the quotient of p; and po, while r is the remainder.
If degp; < degps, then (4.1.5) is satisfied with ¢ = 0 and r = p; so that
degr < degpo. Furthermore, if ps is a nonzero constant so that degps = 0,
then Lemma 4.1.2 implies that ¢ = p1/p2 and r = 0, in which case —oo =
degr < degpy = 0. Finally, if pa(s) = s — a, where a € F, then r is
constant and thus r(s) = pi(«). In general, if r = 0, then py divides p1, or,
equivalently, p1 is a multiple of po.

If a polynomial p3 € F[s] divides two polynomials pq,ps € F[s], then
ps is a common divisor of p; and ps. Given polynomials pi, ps € F[s], there
exists a unique monic polynomial ps € F[s], the greatest common divisor
of p1 and po, such that ps is a common divisor of p; and p2 and such that
every common divisor of p; and po divides p3. In addition, there exist
polynomials g1, g2 € F[s] such that the greatest common divisor ps of p; and
pe is given by ps = q1p1+ gapa. See [456, p. 113], for proofs of these results.
Finally, p; and pg are coprime if their greatest common divisor is p3 = 1,
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while a polynomial p € Fls| is irreducible if there do not exist nonconstant
polynomials pi,p2 € F[s] such that p = p1py. For example, if F = R, then
p(s) = 52 + s + 1 is irreducible.

If a polynomial p3 € F[s] is a multiple of two polynomials p1, ps € F[s],
then p3 is a common multiple of p1 and ps. Given nonzero polynomials pq
and po, there exists (see [456, p. 113]) a unique monic polynomial p3 € F[s],
called the least common multiple of p1 and po, that is a common multiple of
p1 and po and that divides every common multiple of p; and po.

The polynomial p € F[s] given by (4.1.1) can be evaluated with a
square matrix argument A € F™*" by defining

p(A) & BrAF + B AP o BLA+ Bol. (4.1.6)

4.2 Matrix Polynomials

The set F"*™[s] of matriz polynomials consists of matrix functions
P: C+— C™™ all of whose entries are elements of F[s]. A matrix polynomial
P € F"*™[s] can thus be written as

P(s) = s"By, + s*'By_1 + - + sBi + By, (4.2.1)

where By, ..., By € F"*™_If By is nonzero, then the degree of P, denoted
by deg P, is k, while if P = 0, then deg P = —oc0. If n = m and By, is
nonsingular, then P is reqular, while if By, = I, then P is monic.

The following result, which generalizes Lemma 4.1.2, provides a divi-
sion algorithm for matrix polynomials.

Lemma 4.2.1. Let Py, P, € F"*"[s], where P; is regular. Then, there
exist unique matrix polynomials Q, R,Q, R € F"*"[s] such that degR <
deg P>, deg R < deg P,

P=QP,+R (4.2.2)
and A
P =PQ+R. (4.2.3)
Proof. See [456, pp. 134-135] or [230, p. 90]. O
If R =0, then P right divides Py, while if R = 0, then P, left divides
Py.

Let the matrix polynomial P € F"*™[s] be given by (4.2.1). Then,
P can be evaluated with a square matrix argument in two different ways,
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either from the right or from the left. For A € C™*" define

Pr(A) & BA* 4+ By A" ... 4 ByA + By, (4.2.4)
while, for A € C"*", define
PL(A) 2 A*B, + A*1B,_ +--- + AB, + B. (4.2.5)

If n = m, then Pr(A) and Pr(A) can be evaluated for all A € F"*"
but are generally different.

The following result is useful.

Lemma4.2.2. Let Q,Q € Fm>"[s] and A € F™*". Furthermore, define

P, P € F™"[s] by P(s) £ Q(s)(s] — A) and P(s) £ (sI — A)Q(s). Then,
Pr(A) =0 and P(A) =0.

Let p € F[s] be given by (4.1.1) and define P(s) £ p(s)I,, = s*61,, +
s*B, 1L, + - 4+ sBu, + Bol, € Fr*nls]. For A € C™*™ it follows that
p(A) = P(A) = Pr(A) = PL(A4).

The following result specializes Lemma 4.2.1 to the case of matrix
polynomial divisors of degree 1.

Corollary 4.2.3. Let P € F"*"[s] and A € F™*™. Then, there exist
unique matrix polynomials @, @ € F™"*"[s] and unique matrices R, R € F"*"
such that

P(s)=Q(s)(sl — A) + R, (4.2.6)

and

P(s) = (sI — A)Q(s) + R. (4.2.7)
Furthermore, R = Pg(A) and R = P,(A).

Proof. In Lemma 4.2.1 set Py = P and P5(s) = s — A. Since deg P» =
1, it follows that deg R = deg R = 0 and thus R and R are constant. Finally,
the last statement follows from Lemma 4.2.2. O

Definition 4.2.4. Let P € F"*™[s]. Then, the rank of P is the non-
negative integer

rank P = max rank P(s). (4.2.8)

seC

Let P € F"*"[s]. Then, P(s) € C™*" for all s € C. Furthermore,
det P is a polynomial in s, that is, det P € F[s].



matrix2 November 19, 2003

116 CHAPTER 4

Definition 4.2.5. Let P € F"*"[s]. Then, P is nonsingular if det P is
not the zero polynomial; otherwise, P is singular.

Proposition 4.2.6. Let P € F"*"[s], and assume that P is regular.
Then, P is nonsingular.

Let P € F™*"[s]. If P is nonsingular, then the inverse P! of P can be
constructed according to (2.7.21). In general, the entries of P~ are rational
functions of s (see Definition 4.7.1). For example, if P(s) = [$3 ¢t} ], then

sl

P7l(s) = %{ 5172 7 |- In certain cases P! is also a matrix polynomial.
T 51 e

For example, if P(s) = [52+ss_1 lerl]’ then P~!(s) = [—sgj;—l—l ;1] :

The following result is an extension of Proposition 2.7.7 from constant
to matrix polynomials.

Proposition 4.2.7. Let P € F"*™[s]. Then, rank P is the order of the
largest nonsingular matrix polynomial that is a submatrix of P.

Proof. For all s € C it follows from Proposition 2.7.7 that rank P(s)
is the order of the largest nonsingular submatrix of P(s). Now, let so € C
be such that rank P(sg) = rank P. Then, P(s¢) has a nonsingular subma-
trix of maximal order rank P. Therefore, P has a nonsingular submatrix
polynomial of maximal order rank P. O

A matrix polynomial can be transformed by performing elementary
row and column operations of the following types:
i) Multiply a row or a column by a nonzero constant.
it) Interchange two rows or two columns.

iii) Add a polynomial multiple of one (row, column) to another (row,
column).

These operations correspond to left multiplication or right multiplication by
the elementary matrices

L1 0 O
L+ (a-1)E;; = 0 a O , (4.2.9)
0 0 I,
where a € F is nonzero,

L1 O 0 0 0

0 O 0 1 0
I, +FE;+FE;—FE,;—FE;= 0 0 L4 0 O . (4.2.10)

0 1 0 0 0

0 0 0 0 I
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where i # j, and as well as the elementary matriz polynomial

iy O 0 0 O
0 1 0 p 0
I, —I—pEiJ‘ = 0 0 Ij—i—l 0 0 s (4211)
0 0 0 1 0
0 0 0 0 I,

where ¢ # j and p € F[s]. The matrices shown in (4.2.10) and (4.2.11) il-
lustrate the case i < j. Applying these operations sequentially corresponds
to forming products of elementary matrices and elementary matrix polyno-
mials. Note that the elementary matrix polynomial I + pFE; ; is nonsingular
and that (I +pE; ;)™ = I —pE; ; so that the inverse of an elementary matrix
polynomial is an elementary matrix polynomial.

4.3 The Smith Decomposition and Similarity
Invariants

Definition 4.3.1. Let P € F"*"[s]. Then, P is unimodular if P is the
product of elementary matrices and elementary matrix polynomials.

The following result provides a canonical form, known as the Smith
form, for matrix polynomials under unimodular transformation.

Theorem 4.3.2. Let P € F**™[s], and let = rank P. Then, there
exist unimodular matrices S; € F"*"[s] and Sa € F"*™[s] and monic poly-
nomials py, ..., p, € F[s] such that p; divides p;;1 for alli =1,...,7—1 and
such that

n
P=25 Ss. (4.3.1)
br
O(n—r)x(m—r)
Furthermore, for all i = 1,...,r, p; is uniquely determined by
Ai=p1--pi, (4.3.2)

where A; is the greatest common divisor of all i x i subdeterminants of P.

Proof. The result is obtained by sequentially applying elementary row
and column operations to P. For details, see [321, pp. 390-392] or [456, pp.
125-128]. Ul

Corollary 4.3.3. Let P € R"*"[s] be unimodular. Then, the Smith
form of P is the identity.



matrix2 November 19, 2003

118 CHAPTER 4

Definition 4.3.4. The monic polynomials py, ..., p, € F[s] of the Smith
form of P € F™*"[s] are the invariant polynomials of P.

Proposition 4.3.5. Let P € F"*"[s]. Then, P is unimodular if and
only if det P is a nonzero constant.

Proof. Necessity is immediate since every elementary matrix and ev-
ery elementary matrix polynomial has a constant nonzero determinant. To
prove sufficiency, note that, since det P is a nonzero constant, it follows from
Theorem 4.3.2 that every invariant polynomial of P is also a nonzero con-
stant. Consequently, P is a product of elementary matrices and elementary
matrix polynomials and thus is unimodular. O

Proposition 4.3.6. Let P € F"*"[s]. Then, the following statements
are equivalent:

i) P is unimodular.
i) P is nonsingular, and P! is a matrix polynomial.

i) P is nonsingular, and P! is unimodular.

Proof. To prove i) = ii) suppose that P is unimodular. Then, it
follows from Proposition 4.3.5 that det P is a nonzero constant. Therefore,
P is nonsingular. Furthermore, since P is a matrix polynomial, it follows
that P~' = (det P)™'P* is a matrix polynomial. To prove i) == iii) sup-
pose that P is nonsingular and P! is a matrix polynomial so that det P~
is a polynomial. Since det P is a nonzero constant and det P~! = 1/det P,
it follows that det P! is also a nonzero constant. Thus, Proposition 4.3.5
implies that P! is unimodular. Finally, to prove %) = 1), suppose that P
is nonsingular and P! is unimodular. Then, since det P! is a nonzero con-
stant, it follows that det P = 1/det P~! is a nonzero constant. Proposition
4.3.5 thus implies that P is unimodular. O

Proposition 4.3.7. Let Ay, By, As, By € F™*" where A, is nonsingu-
lar, and define the matrix polynomials Py, P, € F"*"[s] by Py(s) £ sA;+ By
and Py(s) £ sAg 4+ By. Then, P; and P, have the same invariant polynomi-

als if and only if there exist nonsingular matrices S, .52 € F™*™ such that
PQ = SlPng.

Proof. The sufficiency result is immediate. To prove necessity, note
that it follows from Theorem 4.3.2 that there exist unimodular matrices
Ty, T € F"*"[s] such that P, = ToP/T;. Now, since P, is regular, it follows
from Lemma 4.2.1 that there exist matrix polynomials Q,Q € Fm>"[s] and
constant matrices R, R € F"™" such that Ti=QP,+ Rand T, = PQQ +R.
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Next, we have
P, =TPT)

= (PRQ + R)PT}

= RPTi + PQT,'Py

= RP(QP; + R) + PQTy ‘P

= RP\R + (Ir — PQ)PIQP2 + QT Py

= RPIR + T,PQP + Py (—QPQ + QT3 ) P,

= RPR+ P(T7'Q - QPQ + QT3 ) P,
Since P, is regular and has degree 1, it follows that if TTlQ — QP1Q+QT;1 is
not zero, then deg P, (Tl_ Q- 0PQ + QTQ_ 1) P, > 2. However, since P, and
RP,R have deAgree less than two, it follows that Tl_lQ - QPQ + QTQ_I =0.
Hence, P, = RP|R.

Next, to show that R and R are nonsingular, note that, for all s € C,
Py(s) = RPi(s)R = sRAR + RBIR,

which implies that Ay = 514152, where S7 = R and So = R. Since A is

nonsingular, it follows that S; and Sy are nonsingular. O

Definition 4.3.8. Let A € F"*™. Then, the invariant polynomials of
sl — A are the similarity invariants of A.

The following result provides necessary and sufficient conditions for
two matrices to be similar.

Theorem 4.3.9. Let A, B € F"*", Then, A and B are similar if and
only if they have the same similarity invariants.

Proof. To prove necessity, assume that A and B are similar. Then,
the matrices sI — A and sI — B have the same Smith form and thus the
same similarity invariants. To prove sufficiency, it follows from Proposition
4.3.7 that there exist nonsingular matrices S, Sy € F™*™ such that sT — A =
Si(sI — B)Sa. Thus, S; = S, ", and, hence, A = S1BS;". O

4.4 Eigenvalues

Let A € F*"*". Then, the matrix polynomial sI — A € F"*"[s] is monic
and has degree 1.
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Definition 4.4.1. Let A € F"*". Then, the characteristic polynomial
of A is the polynomial x4 € F[s] given by

xA(s) £ det(sI — A). (4.4.1)

Proposition 4.4.2. Let A € F"*". Then, x4 is monic and deg x4 = n.

Let A € F™*" and write the characteristic polynomial of A as

xa(s) = 8" + Bnas™ ™ + -+ + Bis + So, (4.4.2)
where Oy, ..., 0h—1 € F. The eigenvalues of A are the n possibly repeated
roots Ay, ..., A\, € C of x4, that is, the solutions of the characteristic equa-
tion

xa(s) =0. (4.4.3)

It is often convenient to denote the eigenvalues of A by N(A),...,
An(A) or just Ap,...,\,. This notation may be ambiguous, however, since
it does not uniquely specify which eigenvalue is denoted by A;. If, however,
every eigenvalue of A is real, then we employ the notational convention

AN > > Ay, (4.4.4)
and we define
Amax(A) 2 M, Amin(A4) 2 M. (4.4.5)

Definition 4.4.3. Let A € F™*". The algebraic multiplicity of an eigen-
value A of A, denoted by amyu()), is the algebraic multiplicity of A as a root

of x4, that is,
amy(\) £ my,,(A). (4.4.6)

The multiset consisting of the eigenvalues of A including their algebraic
multiplicity, denoted by mspec(A), is the multispectrum of A, that is,

mspec(A) 2 mroots(xa). (4.4.7)
Ignoring algebraic multiplicity, spec(A) denotes the spectrum of A, that is,
spec(A) £ roots(x4)- (4.4.8)

If X ¢ spec(A), then X ¢ roots(x ), and thus amy(A) = m, ,(A) = 0.

Let A € F™*™ and mroots(xa) = {M, ..., An}m- Then,

xa(s) = [J(s = M) (4.4.9)
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If F = R, then x 4(s) has real coefficients, and thus the eigenvalues of A occur
in complex conjugate pairs, that is, mroots(x4) = mroots(x4). Now, let
spec(A) = {\,..., A\ }, and, for all i = 1,...,7, let n; denote the algebraic
multiplicity of A;. Then,
T
xa(s) = H(s — )" (4.4.10)

=1

The following result gives some basic properties of the spectrum of a
matrix.

Proposition 4.4.4. Let A, B € F"*". Then, the following statements

XAT = XA-
X-4 = (—1)"xa.
mspec(A") = mspec(A).

mspec(A*) = mspec(A).

)
)
)

iv) mspec(Z) = mspec(A).
)
) 0 € spec(A) if and only if det A = 0.
)

If either k € N or A is nonsingular and k € Z, then
mspec <Ak> = {)\k: A€ mspec(A)}m. (4.4.11)
If @ € F, then mspec(al + A) = a + mspec(A).
If o € F, then mspec(aA) = amspec(A).
z) If A= A* then spec(A) C R.
zi) If A and B are similar, then x4 = xp and mspec(A) = mspec(B).

Proof. To prove i) note that det(sI — AT) = det[(sI — A)"] = det(s]
— A). To prove ii) note that y_4 = det(s] + A) = (—1)"det(—sI — A) =
(—1)"x a(—s). Next, i) follows from 7). Next, ) follows from det(sI — A) =
det(sl — A) = det(sl — A), while v) follows from i) and ). Next, vi)
follows from the fact that x4(0) = (—1)"det A. To prove vii) note that, if
A € spec(A) and x € C" is an eigenvector of A associated with )\, then A%r =
A(Ax) = A(A\z) = Mz = Mz, Similarly, if A is nonsingular, then Az = \z
implies that A~'z = X'z, and thus A=%z = X%z. Next, if A € spec(A) and
a € F, then det[(a + \)I — (ol + A)] = det(AI — A) = 0, which implies that
a+ A\ € spec(al + A) and thus proves vii). If A € spec(A4) and « € F, then
det(aX] — aA) = a™det(A] — A) = 0, which implies that e\ € spec(aA),
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which proves iz). To prove z), assume A = A* let A € spec(A), and let
x € C" be an eigenvector of A associated with A\. Then, A = z*Ax/z*z,
which is real. Finally, the proof of zi) is immediate. O]

The following result characterizes the coefficients of x 4 in terms of the
eigenvalues of A.

Proposition 4.4.5. Let A € F"*" let mspec(A) = {\,..., An}m, and,
forallt =1,...,n, let v; denote the sum of all ¢ x4 principal subdeterminants
of A. Then, for alli=1,. n—1,

=> N (4.4.12)

where the summation in (4.4.12) is taken over all multisubsets of mspec(A)
having ¢ elements. Furthermore, for all ¢ = 0,...,n —1, the coefficient 3; of
s" in (4.4.2) is given by

Bi = ()" i (4.4.13)

In particular, .
Poa=—trA=-> "X\, (4.4.14)

=1
Bz = 3[(tr A)? — tr A%] = "X\, (4.4.15)
Pr=(—1)"Ttr AN = (=) NN (4.4.16)
Bo = (—1)"det A = (=1)" [\ (4.4.17)

=1

Proof. The expression for ~; given by (4.4.12) follows from the factored
form of x a(s) given by (4.4.9), while the expression for 3; given by (4.4.13)
follows by examining the cofactor expansion (2.7.15) of det(s] — A). For
details, see [416, p. 495]. Equation (4.4.14) follows from (4.4.13) and the
fact that the (n—1) x (n—1) principal subdeterminants of A are the diagonal
entries A(; ;). Using

n n 2
Y X = (Z/\z) = 2> A,
=1 =1

and (4.4.14) yields (4.4.15). Next, if A is nonsingular, then x4-1(s) =
(—s)"(det A™)xa(1/s). Using (4.4.2) with s replaced by 1/s and (4.4.14),
it follows that tr A~ = (—1)""*(det A™') 81, and, hence, (4.4.16) is satisfied.

Using continuity for the case in which A is singular yields (4.4.16) for ar-
bitrary A. Finally, 5o = x4(0) = det(0/ — A) = (—1)"det A, which verifies
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(4.4.17). O

From the definition the adjugate of a matrix it follows that (sI —A)* €
F™>"[s] is a monic matrix polynomial of degree n —1 of the form

(sT — AN = "+ 5" 2B, o+ -+ sB; + By, (4.4.18)

where By, B1,...,Bp_o € F"*". Since (sI — A)A is regular it follows from
Proposition 4.2.6 that (sI — A)? is a nonsingular polynomial matrix.

The next result is the Cayley-Hamilton theorem, which shows that
every matrix is a “root” of its characteristic polynomial.

Theorem 4.4.6. Let A € F™*". Then,
xA(A) =0. (4.4.19)

Proof. Define P,Q € F™"*"[s] by P(s) = xa(s)I and Q(s) = (s —A)A.
Then, (4.7.2) implies that P(s) = Q(s)(sI —A). It thus follows from Lemma
4.2.2 that Pr(A) = 0. Furthermore, ya(A4) = P(A) = Pr(A). Hence,
xa(A) = 0. O

In the notation of (4.4.10), it thus follows from Theorem 4.4.6 that
[T = 4™ =o. (4.4.20)

=1
Lemma 4.4.7. Let A € F"*™. Then,

%x als) =tr[(sT — )] = "det(sI — Ay ). (4.4.21)
i=1

Proof. It follows from (4.4.16) that f-ya(s)|,_, = 1= (—1)"'tr A%
Hence,

d d d
&XA(S) =3 det[(s + 2)I — A] L =3 det[z] — (—sI + A)] L

D" [(—sI + AR = tr[(sT — A)N]. 0

The following result, known as Leverrier’s algorithm, provides a re-
cursive formula for the coefficients (g, ..., 8,-1 of x4 and By, ..., By_o of
(sI — A)A.

Proposition 4.4.8. Let A € F™*" let x4 be given by (4.4.2), and let
(sI — A) be given by (4.4.18). Then, B,_1,...,3 and B,_o,..., By are
given by
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ﬁk: ﬁtI‘A‘Bk’ k:n_]-u"'707 (4422)
By =ABi+(kl, k=n-1,...,1, (4.4.23)

where B,,_1 = 1.

Proof. Since (sl — A)(sI — A)* = xa(s)1, it follows that
S+ " (Bp_g — A) + 5" XBy_3— AB,_3) 4+ -+ s(By — AB;) — ABy
= (8" + Bp1s" 4+ Pis + Bo) L.
Equating coefficients of powers of s yields (4.4.23) along with —ABy = Gyl

Taking the trace of this last identity yields Gy = —% tr ABy, which confirms
(4.4.22) for k = 0. Next, using (4.4.21) and (4.4.18), it follows that

n

d - _ -
£XA(S) = };kﬂksk = Z(tr By_1)s* 1,

k=1

where B,_1 £ I, and (8, = 1. Equating powers of s, it follows that kG =
tr By for all k =1,...,n. Now, (4.4.23) implies that kG = tr(ABy + SiI)
for all k =1,...,n —1, which implies (4.4.22). O

Proposition 4.4.9. Let A € F™*™ and B € F™*™ and assume that
m < n. Then,

xaB(s) = s"""xpa(s). (4.4.24)
Consequently,
mspec(AB) = mspec(BA) U{0,...,0}n, (4.4.25)
where the multiset {0,...,0},, contains n — m zeros.

Proof. First note that
0m><m 0m><n — Im _B BA Omxn Im B
A AB On><m In A On><n On><m In ’

which shows that [0’"’“" 0’"*"] and [iA %’”::} are similar. It thus follows

A AB
from i) of Proposition 4.4.4 that s"xap(s) = s"xBa(s), which implies
(4.4.24). Finally, (4.4.25) follows immediately from (4.4.24). O

If n = m, then Proposition 4.4.9 specializes to the following result.

Corollary 4.4.10. Let A, B € F™"*", Then,
XAB = XBA- (4.4.26)

Consequently,
mspec(AB) = mspec(BA). (4.4.27)
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4.5 Eigenvectors

Let A € F"*" and let A € C be an eigenvalue of A. Then, xa(\) =
det(AI—A) = 0, and thus AI— A € C"*" is singular. Furthermore, N(AI—A)
is a nontrivial subspace of C", that is, def(A\l — A) > 0. If z € N(A\ — A),
that is, Ax = Az, and x # 0, then x is an eigenvector of A associated with A.

Note that if A and A are real, then there exists a real eigenvector associated
with A.

Definition 4.5.1. The geometric multiplicity of A € spec(A), denoted
by gmy()), is the number of linearly independent eigenvectors associated
with A, that is,

gmy(A) £ def(\ — A). (4.5.1)

By convention, if A ¢ spec(A), then gmy(\) = 0.
The spectral properties of normal matrices deserve special attention.

Lemma 4.5.2. Let A € F"*" be normal, let A € spec(A), and let
x € C" be an eigenvector of A associated with A. Then, z is an eigenvector
of A* associated with A € spec(A*).

Proof. Since A € spec(A), iii) of Proposition 4.4.4 implies that X €
spec(A*). Next, note that, since Az = Az, 24* = Az*, and AA* = A*A, it
follows that

(A% — Ap)*(A*z — M) = 2AA* T — A\r*Ax — \x*A%r + A\a'x
= 2'AAx — M\\z*r — Mz + Mo’z
= M\z*z — \a*z = 0.
Hence, A%z = \z. O

Proposition 4.5.3. Let A € F™*". Then, eigenvectors associated with
distinct eigenvalues of A are linearly independent. If, in addition, A is
normal, then these eigenvectors are mutually orthogonal.

Proof. Let A\, A2 € spec(A) be distinct with associated eigenvectors
x1,z2 € C". Suppose that x; and xo are linearly dependent, that is,
r1 = axg, where @« € C and a # 0. Then, Az = Mzr1 = Maxe, but
also Ary = Aaxs = algwe. Hence, a(M — \2)xze = 0, which contradicts
a # 0. Since pairwise linearly independence does not imply the linear in-
dependence of larger sets, next, let A, Aa, A3 € spec(A) be distinct with
associated eigenvectors x1,x2,x3 € C™. Suppose that x1, 9, z3 are linearly
dependent. In this case, there exist ai,a2,a3 € C, not all zero, such that
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a1x1 + asxo + agrs = 0. If a; = 0, then aszs + azzs = 0. But Ay # A3
implies that xo and x3 are linearly independent, which in turn implies that
as = 0 and az = 0. Since a1, ao, ag are not all zero, it follows that a; # 0.
Therefore, 21 = axg + Bz, where o 2 —ag/a; and 3 £ —as/a; are not both
zero. Thus, Az = A(azg + fr3) = aAxs + [fAxs = adaxs + SAszs. But,
Az = Mz = M(axg + fxs) = ahzs + fAxs. Subtracting these relations
yields 0 = a(M — A2)xa + B(M — A3)zs. Since zo and z3 are linearly inde-
pendent, it follows that a(A — A2) = 0 and B(M — A3) = 0. Since « and
are not both zero, it follows that Ay = A9 or A\ = A3, which contradicts the
assumption that A, Ao, A3 are distinct. The same arguments apply to sets
of four or more eigenvectors.

Now, suppose that A is normal and let A, Ay € spec(A) be distinct
eigenvalues with associated eigenvectors zi,xo € C". Then, by Lemma
4.5.2, Axy = Mz1 implies that A*r; = Ma;p. Consequently, 734 = \z?,
which implies that z7Azy = Mzjre. Furthermore, xjAxy = Aaxjze. It thus
follows that 0 = (A — A2)xjza. Hence, A\; # A2 implies that zjzs = 0. O

If A € R™™ is symmetric, then Lemma 4.5.2 is not needed and the
proof of Proposition 4.5.3 is simpler. In this case, it follows from z) of
Proposition 4.4.4 that A;, A2 € spec(A) are real and thus associated eigen-
vectors 1 € N(MI — A) and x2 € N(\I — A) can be chosen to be real.
Hence, Az; = Mz1 and Azs = Asxs imply that xrzfol = /\1:52Tx1 and
(erfog = Aga:;fxg. Since a:?Axg = mgATxl = a:;fol and x?xg = a:QTxl, it
follows that (A — )\g)xlTxg = 0. Since A\ # Ao, it follows that xrfazg =0.

We define the spectral abscissa of A € F*"*™ by

spabs(A) £ max{Re\: ) € spec(A)} (4.5.2)
and the spectral radius of A € F™*" by
sprad(A) = max{|\|: A € spec(A)}. (4.5.3)

Let A € F"*". Then, v_(A),v(A), and v;(A) denote the number of
eigenvalues of A counting algebraic multiplicity having, respectively, nega-
tive, zero, and positive real part. Define the inertia of A by

v_(A)
In(A) £ | v(A) (4.5.4)
v4(A)
Note that spabs(A) < 0 if and only if v_(A4) = n.
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4.6 Minimal Polynomial

As we showed in Theorem 4.4.6, every square matrix A € F™*" is a
root of its characteristic polynomial. However, there may be polynomials of
degree less than n having A as a root. In fact, the following result shows
that there exists a unique monic polynomial that has A as a root and that
divides all polynomials that have A as a root.

Theorem 4.6.1. Let A € F™*". Then, there exists a unique monic
polynomial p4 € F[s] of minimal degree such that pua(A) = 0. Furthermore,
deg g < m, and py divides every polynomial p € F[s| satisfying p(A) = 0.

Proof. Since x4(A) = 0 and deg x4 = n, it follows that there exists a
minimal positive integer ng < n such that there exists a monic polynomial
po € F[s] satisfying pg(A) = 0 and deg pg = ng. Let p € F[s] satisfy p(A4) = 0.
Then, by Lemma 4.1.2, there exist ¢, € F[s] such that p = gpy + r and
degr < degpy. However, p(A) = po(A) = 0 implies that r(A) = 0. If r # 0,
then r can be normalized to obtain a monic polynomial of degree less than
ng, which contradicts the definition ng. Hence, r = 0, which implies that pg
divides p. This proves existence.

Now, suppose there exist two monic polynomials pg, pp € F[s] of degree
no and such that po(A) = po(A) = 0. By the previous argument, py divides
Po, and vice versa. Therefore, py is a constant multiple of pg. Since pg and
P are both monic, it follows that py = pg. This proves uniqueness. Denote
this polynomial by p4. O

The monic polynomial py of least order having A as a root is the
manimal polynomial of A.

The following result relates the characteristic and minimal polynomials
of A € F"*" to the similarity invariants of A. Note that rank(s/ — A) = n,
so that A has n similarity invariants pi,...,p, € F[s]. In this case, (4.3.1)

becomes
pi(s)

sI — A= 8(s) Sa(s), (4.6.1)
pn(s)
where S7,S5y € F"*"[s] are unimodular and p; divides p;4; for all i =

1,...,n—1.

Proposition 4.6.2. Let A € F*"*" and let py,...,p, € F[s] be the
similarity invariants of A, where p; divides p;y1 for all 4 = 1,...,n — 1.
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Then,
n
xa=]][r (4.6.2)
i=1
and
HA = Dn. (4.6.3)

Proof. Using Theorem 4.3.2 and (4.6.1) it follows that

xa(s) =det(sI — A) = [det S1(s)] [det Sa(s)] Hpi(s).
i=1
Since S7 and S5 are unimodular and x4 and py,...,p, are monic, it follows

that [det Si(s)][det Sa(s)] = 1, which proves (4.6.2).

To prove (4.6.3), first note that it follows from Theorem 4.3.2 that
XA = Ap_1pn, where A, _; € F[s] is the greatest common divisor of all
(n —1) x (n —1) subdeterminants of s/ — A. Since the (n —1) x (n —1)
subdeterminants of sI — A are the entries of +(sI — A)?, it follows that
A, divides every entry of (sI — A)*. Hence, there exists a polynomial
matrix P € F"*"[s] such that (sI — A)* = A,,_1(s)P(s). Furthermore, since
(sI — A)A(sI — A) = xa(s)1, it follows that A, _1(s)P(s)(sI — A) = xa(s)I =
Ap_1(8)pn(s)I, and thus P(s)(sI — A) = pp(s)l. Lemma 4.2.2 now implies
that p,(A4) = 0.

Since p,(A) = 0, it follows from Theorem 4.6.1 that s divides p,.
Hence, let g € F[s] be the monic polynomial satisfying p, = qua. Further-
more, since pa(A) = 0, it follows from Corollary 4.2.3 that there exists a
polynomial matrix @ € F"*"[s] such that pa(s)I = Q(s)(sI — A). Thus,
P(s)(sI —A) = pp(s)I = q(s)pa(s)I = q(s)Q(s)(sI — A), which implies that
P = gq@Q. Thus, g divides every entry of P. However, since P was obtained
by dividing (s — A)* by the greatest common divisor of all of its entries,
it follows that the greatest common divisor of the entries of P is 1. Hence,
q = 1, which implies that p, = 4, which proves (4.6.3). O

Proposition 4.6.2 shows that p4 divides x 4, which is also a consequence
of Theorem 4.4.6 and Theorem 4.6.1. Proposition 4.6.2 also shows that
pa = xa if and only if p; = -+ = p,—1 = 1, that is, if and only if p, = x4
is the only nonconstant similarity invariant of A. Note that, in general, it
follows from (4.6.2) that >, degp; = n.

Finally, note that the similarity invariants of the n x n identity matrix
I, are given by pi(s) = s—1foralli=1,...,n. Thus, x7,(s) = (s—1)" and
pr,(s) = s —1.

Proposition 4.6.3. Let A € F"*" and assume that A and B are
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similar. Then,
A = UB. (4.6.4)

4.7 Rational Transfer Functions and the
Smith-McMillan Decomposition

We now turn our attention to rational functions.

Definition 4.7.1. The set F(s) of rational functions consists of func-
tions g: C\8 — C, where g(s) = p(s)/q(s), p,q € F[s] are coprime, g # 0,
and § £ roots(gq). The rational function g is strictly proper, proper, exactly
proper, improper, respectively, if degp < degq, degp < degq, degp = degq,
degp > degq. The relative degree of g, denoted by reldeg g, is deg ¢ — deg p.
Finally, the roots of p are the zeros of g, while the roots of the denominator
q are the poles of g.

Definition 4.7.2. The set F"*"™(s) of rational transfer functions con-
sists of matrices whose entries are elements of F(s). The rational transfer
function G € F"*™(s) is strictly proper if every entry of G is strictly proper,
proper if every entry of G is proper, exactly proper if every entry of G is
proper and at least one entry of G is exactly proper, and improper if at least
one entry of G is improper. The relative degree of G € F"*™(s), denoted by
reldeg G, is defined by

reldeg G £ ‘7111111’1 reldeg G ; ;- (4.7.1)
i
By writing (sl — A)™! as
1
sl — Ay = sl — A)A, 4.7.2
(o1 = A = — (s = 4) (@72

it follows from (4.4.18) that (sI — A)™! is a strictly proper rational transfer
function. In fact, for all i =1,... n,

reldeg [(s] — A)_l] =n-—1, (4.7.3)

(i,)
and thus
reldeg (sI — A)' =n — 1. (4.7.4)

The following result provides a canonical form, known as the Smith-
McMillan form, for rational transfer functions under unimodular transfor-
mation. The following definition is an extension of Definition 4.2.4 for matrix
polynomials.
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Definition 4.7.3. Let G € F"*™(s), and let § be as defined in Defini-
tion 4.7.2. Then, the rank of GG is the nonnegative integer

rank G £ max rank G(s). (4.7.5)

seC\8

Theorem 4.7.4. Let G € F™*™(s) and let » = rankG. Then, there
exist unimodular matrices S; € F"*"[s] and Sy € F"*™[s] and monic poly-
nomials p1,...,pr,q1,...,q¢ € F[s] such that p; and ¢; are coprime for all
i =1,...,r, p; divides pjy1 for all ¢ = 1,...,r —1, ¢;4+1 divides ¢; for all
t=1,...,r—1, and

pl/Ql

G =S5 Ss. (4.7.6)
pr/Qr
O(nfr)x(mfr)

Proof. Let n;;/d;; denote the (i,j) entry of G, where n;;,d;; € Fls]
are coprime, and let d € F[s] denote the least common multiple of d;; for
alli=1,...,n,and j = 1,...,m. From Theorem 4.3.2 it follows that the
polynomial matrix dG has a Smith form diag(pi,...,pr, 0,...,0), where
P1y- .., Dr € F[s] and p; divides p;4; for alli = 1,...,r —1. Now, divide this
Smith form by d and express every rational function p;/d in coprime form
pi/q; so that p; divides p;q for all i =1,...,7 —1 and g;4+1 divides ¢; for all
i=1,...,r—1. 0

Let g1,...,9, € F"(s). Then, gi,...,g, are linearly independent if
ai,...,ap € Fls] and )", ajg; = 0 imply that oy = --- =, = 0. It can
be seen that this definition is unchanged if o, ..., a, € F(s).

Proposition 4.7.5. Let G € F"*™(s). Then, rank G is equal to the
number of linearly independent columns of G.

As a special case, Proposition 4.7.5 applies to polynomial matrices
G € F"™g].

Definition 4.7.6. Let G € F"*™(s), let r £ rank G, and let py,...,p,,
q1,---,q € F[s] be given by Theorem 4.7.4. Then, the McMillan degree
of G is Y _;_, degg;. Furthermore, the poles of G are the roots of ¢, the
transmission zeros of G are the roots of p,, and the blocking zeros of G are
the roots of p;.
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4.8 Facts on Polynomials

Fact 4.8.1. Let p € R[s] be monic and define ¢(s) = s"p(1/s), where
n 2 degp. If 0 ¢ roots(p), then deg(q) = n and

mroots(q) = {1/\: X € mroots(p) }m.
If 0 € roots(p) with multiplicity r, then deg(q) = n — r and
mroots(q) = {1/A\: A # 0 and A € mroots(p) }m.
(Remark: See Fact 11.13.3 and Fact 11.13.4.)

Fact 4.8.2. Let p € F™ be given by
p(s) =" + Bpas™ + -+ Bis + Po,
let 8, = 1, let mroots(p) = {A1,..., Ay }tm, and define py, ..., i, by
pi SN+ N
Then, for all k =1,...,n,
kBn—k + 11 Bn—k+1 + p2Bn—t+2 + - piBn = 0.

That is,
[ n o w2 w3 pa o pin
0 n—1 p1 p2 p3 -+ fin1 Bo
&)
. | =0
N S, t. S, t. S, N ﬂn—l
o 0 - 0 2 m p By,
0 0 - 0 0 1 o |

Consequently, 51, ..., O,—1 are uniquely determined by u1, ..., u,. In par-
ticular,
Bn-1=—p1
and )
Br-2 = 5[pT — pal.

1

2
(Proof: See [287, p. 44] and [419, p. 9].) (Remark: These equations are
Newton’s identities.)

Fact 4.8.3. Let p,q € F[s] be monic. Then, p and ¢ are coprime if and
only if their least common multiple is pq.

Fact 4.8.4. Let p,q € F[s], where p(s) = aps™ + -+ + a1s + ap, q(s) =
+ -+« + bi1s + by, degp = n, and deggq = m. Furthermore, define the

by s™
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Toeplitz matrices [p]™) € F™*(+m) and [¢M) € Frx(tm) by

ap Qp-1 - ai a O 0 --- O
[p](m) é 0 an Ap_1 --- aj ag 0 .. 0

and
bm bma - by b O 0 --- 0

[q](n)é 0 by bpa - by bp 0 - 0

Then, p and g are coprime if and only if

[p)™
det [ )" ] -

(Proof: See [202, p. 162] or [466, pp. 187-191].) (Remark: [#] is the
Sylvester matriz, and det [] is the resultant of p and ¢.) (Remark: The

form [[[Z]]iff} appears in [466, pp. 187-191]. The result is given in [202, p.

162] in terms of [I}[@]{(’;}}f and in [633, p. 85] in terms of Hﬂ;::)} )

Fact 4.8.5. Let p1,...,p, € F[s], and let d € F[s] be the greatest

common divisor of py,...,p,. Then, there exist ¢i,...,q, € F[s] such that
n
d=>qpi.
i=1
In addition, p,...,p, are coprime if and only if there exist ¢q1, ..., g, € F[s]
such that

n
1= Z qiPi-
i1

(Proof: See [216, p. 16].) (Remark: The polynomial d is given by the Bezout
equation.)

Fact 4.8.6. Let p,q € F[s], where p(s) = ans™ + -+ + a1s + ap and

q(s) = bys™ + - - + bys + by, and define [p](™), [¢]™) € F**?" as in Fact 4.8.4.
Furthermore, define

()™ A A

R(p,q) £ [ o L5

-5 2|

where Ay, Ag, By, By € F™*" and define p(s) = s"p(—s) and §(s) = s"q(—s).
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Then,
A Ay ]| BI(NT) p(N)
[ B B } - [ g(NT) q(N) ] ’
A1B1 = B1A;,
AzBy = ByAs,

A1By + AoBy = B1As + BoA;.

I 0 )[4 4] [4 A,
—B1 A1 Bl BQ o 0 AlBQ—BlAQ ’

*BQ A2 A1 A2 o AgBlfBgAl 0
0 I B, By | B By |’

Therefore,

and
det R(p, q) == det(A132 - B1A2) == det(BgAl — AgBl).

Now, define B(p,q) € F™"*™ by
B(p,q) 2 (AiBs — B14s)1.
Then, the following statements hold:
i) For all s,5 € C,

1 T
p)ad) —apE) = (-9 ;| Bwa)|
Sn—l §n—1

i) B(p,q) = (B2A1—AsB1)I = I(ATBY — BAT) = I(BTAY — ATBY).
) |det B(p,q)| = |det R(p, q)| = |det ¢[C(p)]].
v)

(%

vii) B(p,q) = —B(q.p).
Now, assume that degq < degp = n and p is monic. Then, the following
statements hold:

B(p, q) and B(p, q) are symmetric.
B(p, q) is a linear function of (p, q).

viit) def B(p, q) is equal to the degree of the greatest common divisor of
p and q.

iz) p and g are coprime if and only if B(p, q) is nonsingular.
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z) If B(p,q) is nonsingular, then [B(p, ¢)]~* is Hankel. In fact,
[B(p,q)]™ = H(a/p),
where a,b € F[s] satisfy the Bezout equation ag + bp = 1.
zi) If ¢ = q1q2, where ¢1, g2 € F[s], then
B(p,q) = B(p,q1)a2[C(p)] = a1[C"(»)] B(p, ¢2)-
zii) B(p,q) = B(p,q)C(p) = C"(p)B(p; q)-

ziii) B(p,q) = B(p,1)q[C(p)] = q[CT(p)]B(p,1), where B(p,1) is the
Hankel matrix

[y as -+ apoq 1]
as as . 1 0
Ap—1 1 .- 0 0
|1 o .- 0 0]
In particular, for n = 3 and ¢(s) = s, it follows that
—a 0 0 ar a 1 0 1 0
0 a2 1 [=]a 1 O 0 0 1
0 1 0 1 0 0 —ap —aip —ag
SE?:’U) A1 AQ . 0 ) I B(p, q) 0 I 0
By By | | AJT BoAG? 0 I||A A |

zv) If p has distinct roots Ay, ..., Ay, then
VIO ..o M)B0, )V (M, - .., M) = diaglg(M)p' (M), - - ., (AP ()]

(Proof: See [202, pp. 164-167], [273], and [216, pp. 200-207]. To prove ii),
note that Ay, Ag, By, By are square and Toeplitz, and thus reverse symmetric,
that is, A; = Af. See Fact 3.12.6.) (Remark: B(p,q) is a Bezout matrix.
See [65,298], [466, p. 189], [566], and Fact 5.13.22.) (Remark: ziii) is the
Barnett factorization. See [59,566]. The definition of B(p, q) and ii) are the
Gohberg-Semencul formulas. See [216, p. 206].) (Remark: It follows from
continuity that the determinant expressions are valid if A; or Bs is singular.
See Fact 2.12.16.) (Remark: The inverse of a Hankel matrix is a Bezout
matrix. See [202, p. 174].)

Fact4.8.7. Let p,q € F[s], assume that ¢ is monic, and degp < degq =
n. Furthermore, define g € F(s) by

OE )
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Finally, define the Hankel matrix

g1 g2 0 Gn-1 9n
92 93 - 9o Gt
H(g) =2 | :
Gn-1  Gn - G2m-3 Gan—2
L 9n  Gn+1 " G2n—2 G2n—1

Then, the following statements hold:
i) p and q are coprime if and only if H(g) is nonsingular.

i4) If p and ¢ are coprime, then [H(g)]™ = B(q,a), where a,b € F|s]
satisfy the Bezout equation ap + bg = 1.

) Blq,p) = B(q,1)H(9)B(g,1).
) Blg
v) InB(q,p) =In H(g).

vi) det H(g) = det B(q, p).
(Proof: See [216, pp. 215-221].)

1) B
B(q,p) and H(g) are congruent.

Fact 4.8.8. Let p € R[s], and define g € F(s) by g £ ¢//g. Then, the
following statements hold:

i) The number of distinct roots of ¢ is rank B(q, ¢).
q has n distinct roots if and only if B(q,¢’) is nonsingular.
The number of distinct real roots of ¢ is sig B(q, ).

)
)
iv) ¢ has n distinct, real roots if and only if B(q,¢’) is positive definite.
) The number of distinct complex roots of ¢ is 2v_[B(q, ¢')].

)

vi) ¢ has n distinct, complex roots if and only if n is even and v_[B(q,q’)]
=n/2.

vii) ¢ has n real roots if and only if B(q, ¢') is nonnegative semidefinite.

(Proof: See [216, p. 252].) (Remark: ¢/(s) = (d/ds)q(s).)

Fact 4.8.9. Let q € F[s|, where ¢(s) = > I, b;s’, and define

bn
coeff(¢q) & | :
bo
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Now, let p € F[s], where p(s) = > ;a;s’. Then,
coeff(pq) = Acoeff(q),

where A € F22*(+1) ig the Toeplitz matrix

[ an 0 o --- 0 7
apn-1 a, 0 --- 0
A: aO al DY DY an
O ag Ap—1
. 0 0 -+ a a1 |

In particular, if n = 3, then

ag 0 0
a a 0
A— 1 a2
ap a1 a2
0 ay a1

Fact 4.8.10. Let \j,...,\, € C be distinct and, for all ¢ = 1,...

define n \
(o) & SINRAY
Pils) = H Ai = A
J=1
J#
Then, for all: =1,...,n,
17 sza
i(Aj) =
p( J) {O, i # .

(Remark: This identity is the Lagrange interpolation formula.)

7n’

Fact 4.8.11. Let A € F"*" and assume that det(/ + A) # 0. Then,
there exists a polynomial p of degree less than or equal to n — 1 such that

(I+A)" = p(A).

Fact 4.8.12. indexPfaffian!skew-symmetric matrix!Fact 4.8.12Let A €
R™ " be skew symmetric and let the components of x4 € R™"1)/2 he
the entries A(; ;) for all ¢ > j. Then, there exists a polynomial function

p: R*"D/2 , R such that, for all @ € R and z € R*"~1/2,
plazx) = o"/?p(x)

and
det A = p*(x4).



matrix2 November 19, 2003

MATRIX POLYNOMIALS AND RATIONAL TRANSFER FUNCTIONS 137

In particular,

0
and
0 a b ¢
—a 0 d e | _ 2
det b o—d 0 f = (af — be + cd)*.
—c —e —f 0

(Proof: See [356, p. 224] and [466, pp. 125-127].) (Remark: The polynomial
p is the Pfaffian, and this result is Pfaff’s theorem.)

Fact 4.8.13. Let G € F"*™(s), and let G(; jy = ny;/d;j, where n;; €
F[s] and d;; € F[s] are coprime for all 4 = 1,...,n and j = 1,...,m
Then, ¢; given by the Smith-McMillan form is the least common multiple
of d117 d12, ce ,dnm.

Fact 4.8.14. Let G € F"*™(s), assume that rankG = m, and let
A € C, where A is not a pole of G. Then, A is a transmission zero of G if

and only if there exists u € C™ such that G(A\)u = 0. Furthermore, if G is
square, then X is a transmission zero of G if and only if det G(A) = 0.

4.9 Facts on the Characteristic and Minimal
Polynomials

Fact4.9.1. Let A = [‘; Z] € R?*2, Then, the following identities hold:

i) mspec(A) = {%[a +d=+ \/m} }m

= {%[trAi V(tr A)2 —4detA” .

m

i1) xa(s) = s% — (tr A)s + det A.
det A = 1[(tr A)? — tr A?].

)

i)

i) (sI — AN =sl+A— (tr A)L
)
)
)t

v) A7h = (det A)7H(tr A)T — A].
AA = (tr A)T — A.
tr A7 = tr A/det A.

V1

)

Fact 4.9.2. Let A, B € F?*2, Then,
AB+ BA — (tr A)B — (tr B)A + [(tr A)(tr B) — tr AB]I = 0.



matrix2 November 19, 2003

138 CHAPTER 4

Furthermore,
det(A+ B) —det A — det B = (tr A)(tr B) — tr(AB).

(Proof: Apply the Cayley-Hamilton theorem to A 4+ xB, differentiate with
respect to x, and set x = 0. For the second identity, evaluate the Cayley-
Hamilton theorem with A + B. See [211,212,364,483] or [505, p. 37].)

Fact 4.9.3. Let A € R3*3. Then, the following identities hold:

i) xa(s) = 8% — (tr A)s®> + (tr A)s — det A.
i) tr A% = T[(tr A)? — tr 4%].
iii) det A = Ltr A> — L(tr A)tr A2 + L(tr A)>.
) (sI —A)A = s2[+s[A— (tr A)I]+ A% — (tr A) A+ 3 [(tr A)? — tr A?] L.

Fact 4.9.4. Let A, B,C € F3*3. Then,
ST [ABC — (tr A)BC + (1 &) (tr B)C' — (ix AB)C']
—[(tr A)(tr B)tr C' — (tr A)tr BC' — (tr B)tr CA — (tr C)tr AB + tr ABC
+ tr CBA]I =0,

where the sum is taken over all six permutations A’, B, C" of A, B,C. (Re-
mark: This identity is the polarized Cayley-Hamilton theorem. See [37,364,
483].)

Fact 4.9.5. Let A € F™", and let ya(s) = s" + 318" + -+ + fo.
Then,
AA _ (_1)n—1(An—1 + ﬁnflAn_2 NN ﬁll)

Furthermore,
tr AN = (1) N (0) = (~1)" 5.

(Proof: Use A~'xa(A) = 0. The second identity follows from (4.4.16) or
Lemma 4.4.7.)

Fact 4.9.6. Let A € F™*™ be nonsingular, and let xa(s) = s" +
Brn—18""t+ -+ By. Then,

Xa(s) = o (=9)"xa(1/)

= 5"+ (61/80)s" " + -+ (Ba1/Bo)s + 1/fo-
(Remark: See Fact 5.12.2.)

Fact 4.9.7. Let A € F™"*", and assume that either A and —A are
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similar or AT and —A are similar. Then,

xa(s) = (=1)"xa(=s).
Furthermore, if n is even, then x4 is even, whereas, if n is odd, then x4 is
odd.

Fact 4.9.8. Let A € F™*". Then, for all s € C,

(sI — A)™ = xa(s)(s] — A) me

where .
xA(8) = 8"+ Bpas" " + -+ Bis + Bo
and, for all ¢ = 0,...,n — 1, the polynomial XZ] is defined by
X[/ZE(S) 2" Buaas™ T T o+ B
Note that

x&’f Us) = 5+ Bu_1, X[X](S) =1,
[d]

and that, for all ¢ = 0,...,n — 1 and with X[g} £ y 4, the polynomials XA

satisfy the recursion ] -
sxa(8) = x4(s) = Bi.
(Proof: See [615, p. 31].)

Fact 4.9.9. Let A € R"*" be skew symmetric. If n is even, then x4
is even, whereas, if n is odd, then x4 is odd.

Fact 4.9.10. Let A € F™*". Then, x4 is even for all of the matrices
Agiven by [ %41, [4 %], and [§ _9%.].

Fact4.9.11. Let A, B € F"*", and define A £ [ § 4]. Then, x.a(s) =
XAB(SQ) = XBA(52). Consequently, x4 is even. (Proof: Use Fact 2.12.16
and Proposition 4.4.9.)

Fact 4.9.12. Let z,y,z,w € F*, and define A £ zy" and B £ zyT +
zw?'. Then,
xA(s) = s”fl(s — :I:Ty)
and
n—2 [82

xB(s) =s — (:ﬁTy + sz)s + o TyzTw — yszTw] .

(Remark: See Fact 5.9.8.)
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Fact 4.9.13. Let z,y, z,w € F*7!, and define A € F**" by
N 1 LUT
A= [ y 2w’ } '
Then,
xA(s) = s”_3[83 — (1 + sz) s2+ (sz — :cTy)s +wlzaly — o

(Proof: See [176].)

Ty wTy] .

Fact 4.9.14. Let A € R?**?" be Hamiltonian. Then, x4 is even.

Fact4.9.15. Let A, B,C € R™" and define A £ [ 5:]. If Band C
are symmetric, then A is Hamiltonian. If B and C are skew symmetric, then
XA is even, but A is not necessarily Hamiltonian. (Proof: For the second
result replace J, by [ I(l Ig ] )

Fact 4.9.16. Let A € R™™", R € R™", and B € R™ ™ and define
A€ R2n><2n by
aalA BBT
| R AT

Then,
Ya(s) = (1) a(8)xa(—s) det [I + BY(=sI — AT 'R(sT — A)'B] .

(Remark: If R is symmetric, then A is Hamiltonian, and it can be seen
directly that x 4 is even.) If, in addition, R is nonnegative semidefinite, then
(—1)"x 4 has a spectral factorization. (Proof: Using (2.8.10) and (2.8.14) it
follows that, for all s ¢ +spec(A),

xa(s) = det(sI — A)det[sI + AT — R(sI — A)_IBBT]
= (—1)"ya(s)xa(—s) det [I — BY(sT + A") 'R(sI — A)_lB} .

To prove the second statement, note that, for w € R such that jw & spec(A),
it follows that

xa(w) = (=1)"xa(gw)xa(Jw) det [I + BT(ij — A)7T"R(ywl — A)le]

and thus (—1)"x4(yw) > 0. By continuity, this inequality holds for all
w € R. Now, Proposition 4.1.1 implies that (—1)"x4 has a spectral fac-

torization.) (Remark: Not all Hamiltonian matrices have this property.
0 010

Consider [_01 99 (1)} , which has spectrum {7, —2,v/37, —v/33}.)
0 -300
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4.10 Facts on the Spectrum

Fact 4.10.1. Let A € F**", let p € F[s], and define B £ p(A). Then,
B is nonsingular if and only if spec(A) Nroots(p) = @.

Fact 4.10.2. Let A € F™*" and B € F™*™, If tr A* = tr B* for all
ke {1,...,max{m,n}}, then A and B have the same nonzero eigenvalues
with the same algebraic multiplicity. Now, assume that n = m. Then,
tr A¥ = tr B* for all k € {1,...,n} if and only if mspec(A) = mspec(B).
(Proof: Use Newton’s identities. See Fact 4.8.2.) (Remark: This result
yields Proposition 4.4.9 since tr (AB)* = tr (BA)¥ for all k € P and for all
matrices A and B that are not square.) (Remark: Setting B = 0y, yields
necessity in Fact 2.11.16.)

Fact 4.10.3. Let A € F"*" and let mspec(A) = {Ai,..., A\n}m. Then,

det A det A
{ e)\l e in }m, rank A = n,

. Ay _ n
mbpec(A ) N {ZdetA[m-},O,...,O} , rankA=n—1,
=1 m

{0,...,0}m, rank A <n —1.
(Remark: See Fact 2.13.7 and Fact 5.9.19.)

Fact 4.10.4. Let a,b,c,d,w € R, and define the skew-symmetric ma-
trix A € R¥4 by

0 w a b

A | —w O c d
A= —a —c 0 w
b —d —w 0

Then, )
det A = [w? — (ad — be)]”.

Furthermore, A has a repeated eigenvalue if and only if either i) A is sin-

gular or it) a = —d and b = ¢. In case i), A has the repeated eigenvalue
0, while in case ii), A has the repeated eigenvalues jvw? + a? + b? and
—Vw? +a? + b2

Fact 4.10.5. Let A € F"*", and let p € F[s]. Then, ua divides p if
and only if spec(A) C roots(p) and, for all X € spec(A), inda(A) < my(A).

Fact 4.10.6. Let A € F" " let mspec(A) = {A,..., An}m, and let

p € F[s]. Then,
mspec[p(A)] = {p(M), ..., p(An) tm-
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Furthermore, roots(p) N spec(A) = @ if and only if p(A) is nonsingular.
Finally, a4 divides p if and only if p(A) = 0.

Fact4.10.7. Let Ay € F™*", A5 € F*"*™ and Ay € F™*™ and define
Ac F(ntm)x(n+m) by
42 [ A1 A ]

0 A

Then,
XA = XA XA-

Now, write

0 Ak |
where B, € F™*™ for all £ € N. Then,

0 B

A) =
x4(4) { 0 xa,(A2) ]

and .

Xa,(A4) = [ XAz(()Al) %2 } :

where Bl, By € Fxm, Therefore,

el < R( | |) €M)

and ) R
X A,(A1)B1+ Baxa,(Az2) = 0.

Hence, xa(4) = xa,(A)xa,(A) = xa,(A)xa,(4) = 0.

Fact 4.10.8. Let A; € F™*" Aj5 € F™*™ and Ay € F™X™ assume
that spec(Aj) Nspec(Ay) = @, and define A € Flrtm)x (n+m) py

a | A1 A
A_[ : Ag].

Furthermore, let u1, uo € F[s] be such that

HA = H1H2,
roots(u1) = spec(A4;),
roots(pz) = spec(As).

Now, write
Ak By,

A =
0 Af

9
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where By € F™"*™ for all k € N. Then,
0 B
A) =
il 4) [ 0 p(A2) }

and .

where By, By € F"*™_ Therefore,

wa ] %[ | | ) €M)

and R .
p2(A1)B1 + Bapi(As

Hence, pa(A) = pi(A)pa(A) = pa(A)pui(A) =

Fact4.10.9. Let Ay, Ay, A3, Ay, By, Bo € F™", and define A € F4nx4n

o =

by
A B 0 0
A1 0 A 0 0
A= 0 0 A3 0
0 0 By Ay
Then,
4
mspec(A) = U mspec(A;)
i=1

Fact 4.10.10. Let A € F™*™ and B € F™*"™ and assume that m < n.

Then,
mspec(l, + AB) = mspec(I,, + BA)U{1,...,1}n.

Fact 4.10.11. Let a,b € F, and define the Toeplitz matrix A € F**"

by i -
a b b -~ b
b a b -+ b
A2 b b )
(bbb - a
Then,
mspec(A) ={a+ (n—1)b,a—0,...,a — b}y
and

A2 +CL1A+CL()I =0,
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where a; £ —2a+ (2—n)b and ag £ a®+ (n—2)ab+ (1 —n)b?. Furthermore,
if A is nonsingular, then

1 b
I, Lnxn-
0" T aatbm—1 ™
(Remark: See Fact 2.12.24.)

Al =

Fact 4.10.12. Let A € F"*". Then,

=1 j=1,7#1

(Remark: This result is the Gershgorin circle theorem. See [115] for a proof
and related results.)

Fact 4.10.13. Let A € F"*". Then,

n

spec(A)C U AeC: ’)\ — A(Z,Z)H)‘ — A(j,j)‘ SZ |A(z,k)| Z ’A(j7k)|
2,7=1 k=1 k=1
¥ ki K]

(Remark: The inclusion region is the ovals of Cassini. The result is due to
Brauer. See [287, p. 380].)

Fact 4.10.14. Let A € F™*", and assume that, for alli =1,...,n,

n
D 1Ayl < 1Al
=L

Then, A is nonsingular. (Proof: Apply the Gershgorin circle theorem.)
(Remark: This result is the diagonal dominance theorem and A is diagonally
dominant. See [500] for a history of this result.) (Remark: For related
results, see [189,428,470].) (Problem: Determine a lower bound for |det A|
in terms of the difference between these quantities.)

Fact 4.10.15. Let A € F™", and, for j = 1,...,n, define b, =
ZIL:1|A(Z,])’ Then,

n

> " 1Agl/bj < rank A,

j=1
(Proof: See [466, p. 67].) (Remark: See Fact 4.10.14.)

Fact 4.10.16. Let A;,..., A, € F™ " be normal and let A € co{4;,
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..., Ay}, Then,
spec(A)C co U spec(4;).

1=1,...,r

(Proof: See [584].)

Fact 4.10.17. Let A € F™*" and define the numerical range of A by
O(A) £ {z*Az: x € C" and z*r = 1}.
Then, ©(A) is a closed, convex subset of C. Furthermore,
cospec(A) € O(A) C cofvi+ gpr, v1+ Jin, Vn + Jpi1, Vn + Jin b,

where
vy = Amax(%(A"i_A*))a Un = )\mm(%(A“‘A*))y

H1 = Amaux(z%(AA - A*)>, Hn = )\mm(%](A - A*)> .
If, in addition, A is normal, then
©(A) = cospec(A).
)

Conversely, if n < 4 and O(A) = cospec(A), then A is normal. (Proof:
See [252] or [289, pp. 11, 52].) (Remark: ©(A) is called the field of values
in [289, p. 5].)

Fact4.10.18. Let A, B € R™". Then,

mspec({ _1315, ﬁ ]) = mspec(A + 3B) Umspec(A — 3B).

(Remark: See Fact 2.15.3.)

Fact4.10.19. Let A € F™*™ be nonsingular and assume that sprad(/—
A) < 1. Then,

[e.o]

AT =) (1 - AR

k=0

4.11 Facts on Nonnegative Matrices

Fact 4.11.1. Let A € R™ "™, where n > 1, and assume that A is
nonnegative. Then, the following statements hold:

i) sprad(A) is an eigenvalue of A.
it) There exists a nonnegative vector x € R" such that Az = sprad(A)z.
Furthermore, the following statements are equivalent:

i) (I + A)"! is positive.
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iv) There do not exist k¥ > 0 and a permutation matrix S € R"*" such

that
B C ]

SAST =
[ Opx(n-k)y D

v) No eigenvector of A has a zero component.

vi) A has exactly one nonnegative eigenvector whose components sum
to 1, and this eigenvector is positive.

A is irreducible if iii)-vi) are satisfied. If A is irreducible, then the following
statements hold:

vii) sprad(A) > 0.
viii) sprad(A) is a simple eigenvalue of A.
iz) There exists a positive vector z € R™ such that Az = sprad(A)z.
z) A has exactly one positive eigenvector whose components sum to 1.

zi) Assume that {A1, ..., \g}m = {A € mspec(A4): |A| = sprad(A4) }m.
Then, Aq,..., A, are distinct, and

A et = {2 R sprad(A): i =1,... k).

Furthermore,

2my/k

mspec(A) = e mspec(A).

zit) If at least one diagonal entry of A is positive, then sprad(A) is the
only eigenvalue of A whose absolute value is sprad(A).

In addition, the following statements are equivalent:

ziii) There exists k& > 0 such that A* is positive.

ziv) A is irreducible and |A| < sprad(A) for all A € spec(A)\{sprad(A4)}.
zv) A" ~27+2 i positive.

A is primitive if zii)-ziv) are satisfied. (Example: [{ }] is irreducible but not
primitive.) Finally, assume that A is irreducible and let € R™ be positive
and satisfy Az = sprad(A)xz. Then, for all positive xg € R", there exists a
positive real number v such that

lem (A xo — [sprad(A)]%) =0.

(Remark: For an arbitrary positive initial condition, the state of the dif-
ference equation zp,1 = Axy approaches a distribution that is identical to
the distribution of the eigenvector associated with the positive eigenvalue
of maximum absolute value. In demography, this eigenvector is interpreted
as the stable age distribution. See [329, pp. 47, 63].) (Proof: See [7, pp.
45-49], [81, pp. 26-28, 32, 55|, [287, pp. 507-511], and [202].) (Remark:
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This result is the Perron-Frobenius theorem.) (Remark: See Fact 11.14.18.)
(Remark: Statement zv) is due to Wielandt. See [466, p. 157].)

Fact 4.11.2. Let A = [11]. Then, ya(s) = s — s — 1 and spec(A4) =
{a, B}, where a £ £(1++/5) and 8 £ 1(1 — V/5) satisfy
a—1=1/, g—1=1/5.

Furthermore, [{] is an eigenvector of A associated with «. Now, for k > 0,
consider the difference equation

Th+1 = Axk.

Then, for all £ > 0,
z, = Afzg
and
Th42(1) = Tht1(1) T Th(1)-
Furthermore, if x( is positive, then
x
lim —) =

k—o0 Tk(2)

In particular, if zg = [1], then, for all k > 0,

| Fkao
k= [ Fr } ’

where F} £ F, £ 1 and, for all k£ > 1, F}, satisfies
Fiy2 = Fq1 + Fy.

Furthermore,
Ak — Fryw Fy
F, Fpq |’

On the other hand, if zg = [3], then, for all k& > 0,

| Lgg2
Tk = [ Ly ] ’

where L1 £ 1, Ly 2 3, and, for all k > 1, L;, satisfies
Liyo = L1 + Lg.

Furthermore, P I
lim DA+l _ Bkt

(Proof: Use the last statement of Fact 4.11.1.) (Remark: Fj is the kth
Fibonacci number, Ly, is the kth Lucas number, and « is the golden mean.
See [339, pp. 6-8, 239-241, 362, 363].)
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Fact 4.11.3. Consider the nonnegative companion matrix A € R"*"
defined by

0 1 0 0 0
0 0 1 0 0
4o 0 0 0 0 0
0 0 o --- 0 1
| I/n 1/n 1/m -+ 1/n 1/n |

Then, A is irreducible, 1 is a simple eigenvalue of A with associated eigen-
vector 1px1, and |A| < 1 for all A € spec(A)\{1}. Furthermore, if z € R",
then

2 n
—_— 1T
n(n+1) ; (—1)
(Proof: See [261, pp. 82, 83, 263-266].) (Remark: The result also follows
from Fact 4.11.1.)

lim AFy =

1n><1-
k—oo

Fact 4.11.4. Let A € R™"™ and b € R™. Then, the following state-
ments are equivalent:

i) If x € R™ and Az >> 0, then b’z > 0.

ii) There exists y € R™ such that y >> 0 and ATy = b.
Equivalently, exactly one of the following two statements is satisfied:

i) There exists € R™ such that Az >> 0 and bl < 0.

i) There exists y € R™ such that y >> 0 and ATy = b.
(Proof: See [68, p. 47].) (Remark: This result is Farkas’ theorem.)

Fact4.11.5. Let A € R™*™. Then, the following statements are equiv-

alent:

i) There exists z € R™ such that Az >> 0.

i) If y € R™ is nonzero and y >> 0, then A%y # 0.
Equivalently, exactly one of the following two statements is satisfied:

i) There exists z € R™ such that Az >> 0.

i) There exists nonzero y € R” such that y >> 0 and ATy = 0.
(Proof: See [68, p. 47].) (Remark: This result is Gordan’s theorem.)

Fact4.11.6. Let A € C" ", and define [A| € R™*" by |A]; ;) £ |AG

J)
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forall 2,7 =1,...,n. Then,
sprad(A) < sprad(|A]).
(Proof: See [416, p. 619].)

Fact 4.11.7. Let A, B € R™*", where 0 << A << B. Then,
sprad(A) < sprad(B).
If, in addition, B # A and A + B is irreducible, then
sprad(A) < sprad(B).
(Proof: See [74, p. 27].)

Fact 4.11.8. Let A € R™", assume that A >> 0, and let A €
spec(A)\{sprad(A)}. Then,

Amax - Amin
|A| S msprad(A),
where
Anmax £ maX{A(i,j)Z t,5=1,... ,n}
and

Amin £ min{A(i’j)f ,7=1,... ,n} .
(Remark: This result is Hopf’s theorem.)

Fact 4.11.9. Let A € R™*™, assume that A is nonnegative and primi-
tive, and let x,y € R™, where z > 0 and y > 0 satisfy Az = sprad(A)z and
ATy = sprad(A)y. Then,

1 K3
li — A =y
50 [sprad(A) ] Y

(Proof: See [287, p. 516].)

4.12 Notes

Much of the development in this chapter is based upon [456]. Addi-
tional discussions of the Smith and Smith-McMillan forms are given in [321]
and [632]. The proofs of Lemma 4.4.7 and Leverrier’s algorithm Proposition
4.4.8 are based on [484, p. 432, 433], where it is called the Souriau-Frame
algorithm. Alternative proofs of Leverrier’s algorithm are given in [63,296].
The proof of Theorem 4.6.1 is based on [287]. Polynomial-based approaches
to linear algebra are given in [120,216], while polynomial matrices and ra-
tional transfer functions are studied in [230,572].
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Chapter Five

Matrix Decompositions

In this chapter we present several matrix decompositions, namely,
the Smith, multi-companion, hypercompanion, Jordan, Schur, and singu-
lar value decompositions.

5.1 Smith Form

Our first decomposition involves rectangular matrices subject to a
biequivalence transformation. This result is the specialization of the Smith
decomposition given by Theorem 4.3.2 to constant matrices.

Theorem 5.1.1. Let A € F™™ and r £ rank A. Then, there exist
nonsingular matrices S; € F**™ and Sy € F™*™ such that

I, 07‘><(m—7“)

A=5; S,. (5.1.1)

O(nfr) X7 O(nfr) X (m—r)

Corollary 5.1.2. Let A, B € F*»*™, Then, A and B are biequivalent
if and only if A and B have the same Smith form.

Proposition 5.1.3. Let A, B € F™*™. Then, the following statements
hold:
i) A and B are left equivalent if and only if N(A4) = N(B).
i1) A and B are right equivalent if and only R(A) = R(B).
i11) A and B are biequivalent if and only if rank A = rank B.
Proof. The proof of necessity is immediate in 7)-ii7). Sufficiency in

iii) follows from Corollary 5.1.2. For sufficiency in i) and i), see [484, pp.
179-181]. O
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For the monic polynomial p(s) = 8™ + 3, 18" 1 + -+ + 15 + By € F[s]

of degree n > 1, the companion matriz C(p)

defined to be

0
0
0

0
—Bo

—B1

— B2

c Fnxn
0 0

0 0

0 0

0 1
_Bn—Z _Bn—l ]

associated with p is

(5.2.1)

If n =1, then p(s) = s+ [y and C(p) = —Fy. Furthermore, if n = 0 and
p = 1, then we define C(p) £ Ogxo. Note that if n > 1, then tr C(p) = —fp_1
and det C'(p) = (-1)" By = (—1)"p(0).

It is easy to see that the characteristic polynomial of the companion
matrix C(p) is p. For example, let n = 3 so that

0 1 0
Cp)=| 0 0 1 (5.2.2)
—Bo —B1 —B2
and thus
s -1 0
sI-C(p)=1 0 s -1 (5.2.3)
Bo B1 s+

Adding s times the second column and s? times the third column to the first
column leaves the determinant of sI — C'(p) unchanged and yields

0 —1 0
0o s -1 |, (5.2.4)
p(s) B1 s+

Hence, x¢(p) = p- I n =0 and p = 1, then we define x¢ () = X000 = 1. The
following result shows that companion matrices have the same characteristic
and minimal polynomials.

Proposition 5.2.1. Let p € F[s]| be a monic polynomial having degree
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n. Then, there exist unimodular matrices Sy, S € F"*™[s] such that

I O(pn_
sl —C(p) = 51(s) S EAP) (5.2.5)
01><(n—1) p(3>
Furthermore,
Xc@p)(8) = po)(s) = p(s). (5.2.6)

Proof. Since xc(p) = p, it follows that rank[s/ —C(p)] = n. Next, since
det([s] — C(p)]in1) = (1), it follows that A,y = 1, where A, is the
greatest common divisor (which is monic by definition) of all (n—1) x (n—1)
subdeterminants of sI — C(p). Furthermore, since A;_; divides A; for all

i=2,...,n—1, it follows that Ay = --- = A,_5 = 1. Consequently, p; =
+++ = pp1 = 1. Since, by Proposition 4.6.2, xc() = [liz;pi = pn and
He(p) = P, it follows that xco) = peop) = p- -

Next, we consider block-diagonal matrices all of whose diagonally lo-
cated blocks are companion matrices.

Lemma 5.2.2. Let py,...,pn € F[s] be monic polynomials such that
p; divides pj1 foralli =1,...,n—1 and n = ) ;" , degp;. Furthermore,
define C £ diag[C(p1),...,C(ps)] € F™*™. Then, there exist unimodular
matrices S, Sy € F"*"[s] such that

pi(s) 0
sI — C = 54(s) Sa(s). (5.2.7)
0 Pn(S)

Proof. Letting k; = degp;, Proposition 5.2.1 implies that the Smith
form of sly, — C(p;) is Opxo if ki = 0 and diag(l,—1,p;) if ki > 1. By
combining these Smith forms it follows that there exist unimodular matrices
Si, 82 € F"*™[s] such that

sly, — C(p1)
sl —C =
sly, — C(pn)
pi(s) 0
= Si(s) Sa(s).
0 pn(s)
Since p; divides p;41 for all ¢ = 1,...,n —1, it follows that this diagonal
matrix is the Smith form of sl — C. U

The following result uses Lemma 5.2.2 to construct a canonical form,
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known as the multi-companion form, for square matrices under a similarity
transformation.

Theorem 5.2.3. Let A € F"*"  and let py,...,p, € F[s] denote the

similarity invariants of A, where p; divides p;11 foralli =1,...,n—1. Then,
there exists a nonsingular matrix S € F®*™ such that
C(p1)
A=S s, (5.2.8)
C(pn)

Proof. Lemma 5.2.2 implies that the n x n matrix sI — C, where
C = diag[C(p1), ..., C(pn)], has the Smith form diag(py, ..., p,). Now, since
sl — A has the same similarity invariants as C, it follows from Theorem 4.3.9
that A and C are similar. O

Corollary 5.2.4. Let A € F™". Then, uqs = x4 if and only if A is
similar to C(xa4).

Proof. Suppose that g4 = xa. Then, it follows from Proposition 4.6.2
that p, = 1 forall¢ =1,...,n —1 and p, = x4 is the only nonconstant
similarity invariant of A. Thus, C(p;) = Ogxo for alli =1,...,n —1, and it
follows from Theorem 5.2.3 that A is similar to C'(x4). The converse can be
verified directly. O

Corollary 5.2.5. Let A € F"*™ be a companion matrix. Then, u4q =
XA-

Proof. The result is an immediate consequence of Corollary 5.2.5.
Alternatively, if p is monic with degree n —1, then [p(A)] ) = 1. O

Note that if A = I,,, then the similarity invariants of A are p;(s) = s—1
foralli=1,...,n. Thus, C(p;) =1 for alli=1,...,n, as expected.

Corollary 5.2.6. Let A, B € F"*". Then, the following statements are
equivalent:
i) A and B are similar.
i1) A and B have the same similarity invariants.
iit) A and B have the same multi-companion form.
The multi-companion form given by Theorem 5.2.3 provides a canon-

ical form for A in terms of a block-diagonal matrix of companion matri-
ces. As will be seen, however, the multi-companion form is only one such
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decomposition. The goal of the remainder of this section is to obtain an
additional canonical form by applying a similarity transformation to the
multi-companion form.

To begin, note that if A; is similar to B; for all ¢ = 1,...,r, then
diag(Ay,..., Ay) is similar to diag(By,...,B,). Therefore, it follows from
Corollary 5.2.6 that, if sI — A; and sI — B; have the same Smith form for
all i = 1,...,r, then sI — diag(As,...,A4,) and sl — diag(Bj,...,B,) have
the same Smith form. The following lemma is needed.

Lemma 5.2.7. Let A = diag(Aj, Ag), where A; € F"*" for i = 1, 2.
Then, p4 is the least common multiple of 4, and p4,. In particular, if 4,
and p4, are coprime, then pgq = pa, pa,.

Proof. Since pa(A) = 0, it follows that pa(A;) = 0 and pa(As2) = 0.
Therefore, Theorem 4.1.5 implies that @4, and pa, both divide py. Con-
sequently, the least common multiple g of p4, and w4, also divides pg4.
Since ¢(A;) = 0 and ¢(A2) = 0, it follows that g(A) = 0. Therefore, 14
divides ¢q. Hence, ¢ = pa4. If, in addition, pa, and pa, are coprime, then
HA = LA, HA, - 0

Proposition 5.2.8. Let p € F[s] be a monic polynomial of positive
degree n, and let p = py - - - p,, where py, ..., p, € F[s] are monic and pairwise
coprime polynomials. Then, the matrices C(p) and diag[C(p1),...,C(py)]
are similar.

Proof. Let ps = po---pr and C 2 diag[C(p1),C(p2)]. Since p; and
g2 are coprime, it follows from Lemma 5.2.7 that us = po(p,)o(p,)- Fur-

thermore, X = Xc(p)XC(5,) = M- Hence, Corollary 5.2.4 implies that Cis

similar to C(x). However, x4 = p1---pr = p, so that C is similar to C(p).
If r > 2, then the same argument can be used to decompose C(p2) to show
that C(p) is similar to diag[C(p1),...,C(pr)]. O

Proposition 5.2.8 can be used to decompose every companion block of
a multi-companion form into smaller companion matrices. This procedure
can be carried out for every companion block whose characteristic poly-
nomial has coprime factors. For example, suppose that A € R19X10 hag
the similarity invariants p;(s) = 1 for all i = 1,...,7, ps(s) = (s + 1),
po(s) = (s 4+ 1)%(s + 2), and p1o(s) = (s + 1)%(s + 2)(s> + 3), so that, by
Theorem 5.2.3 the multi-companion form of A is diag[C(ps), C(p9), C(p10)],
where C(ps) € R?*2, C(pg) € R3*3, and C(p1g) € R>*>. According to
Proposition 5.2.8, the companion matrices C(pg) and C(p1p) can be fur-
ther decomposed. For example, C(pg) is similar to diag[C(pg 1), C(p9,2)].
where pg1(s) = (s + 1)? and pg2(s) = s + 2 are coprime. Furthermore,
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C(p10) is similar to four different diagonal matrices, three of which have
two companion blocks while the fourth has three companion blocks. Since
ps(s) = (s + 1)% does not have nonconstant coprime factors, however, it fol-
lows that the companion matrix C(pg) cannot be decomposed into smaller
companion matrices.

The largest number of companion blocks achievable by similarity trans-
formation is obtained by factoring every similarity invariant into elementary
divisors, which are powers of irreducible polynomials that are nonconstant,
monic, and pairwise coprime. In the above example, this factorization is
given by po(s) = po,1(s)po2(s), where pg1(s) = (s + 1)* and pga(s) = s + 2,
and by p1o = P10,1P10,2P10,3, Where pig1(s) = (s + 1)%, pio2(s) = s + 2, and
p103(s) = s? + 3. The elementary divisors of A are thus (s + 1)2, (s + 1)2,
5+2, (s+1)2, s+2, and s+ 3, which yields six companion blocks. Viewing
A € C™™ we can further factor p1g3(s) = (s+v/3)(s—7v/3), which yields a
total of seven companion blocks. From Proposition 5.2.8 and Theorem 5.2.3
we obtain the elementary multi-companion form, which provides another
canonical form for A.

Theorem 5.2.9. Let A € F™*" and let ¢!*,...,¢" € F[s] be the ele-
mentary divisors of A, where [y, ...,[l, € P. Then, there exists a nonsingular
matrix S € F™*™ such that

c(a)

A=8 St (5.2.9)

5.3 Hypercompanion Form and Jordan Form

In this section we present an alternative form of the companion blocks
of the elementary multi-companion form (5.2.9). To do this we define the
hypercompanion matriz H;(q) associated with the elementary divisor ¢! €
F[s], where | € P, as follows. For ¢q(s) = s — A\ € C[s|, define the [ x [
Toeplitz hypercompanion matrix

A 1 0 0 07
0 X 1 0 0
Hi(q) = A+ Ny = o . o , (5.3.1)
00 0 - 10
0 0 O Al
L0 0 O 0 A
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while, for g(s) = s — 15 — By € R[s], define the 2 x 2[ real, tridiagonal
hypercompanion matrix

P }
Bo B 1 0
0O O 1
Hi(q) = fo ?1 '1 ' . (5.3.2)
0 .0 1
L Bo 1

The following result shows that the hypercompanion matrix 3(q) is
similar to the companion matrix C(¢') associated with the elementary divi-
sor ¢' of 3;(q).

Lemma 5.3.1. Let [ € P, and let ¢(s) = s — X\ € CJ[s] or ¢(s) =
52 — B1s — By € R[s]. Then, ¢ is the only elementary divisor of H;(q), and
Hy(g) is similar to C(q).

Proof. Let k denote the order of 3(q). Then, xsq) = ¢" and
det([sI — Ci(q)]k1)) = (—1)*~1. Hence, as in the proof of Proposition 5.2.1,
it follows that xg(,q) = Hg(q)- Corollary 5.2.4 now implies that 3((q) is
similar to C' (ql). U

Proposition 5.2.8 and Lemma 5.3.1 yield the following canonical form,
which is known as the hypercompanion form.

Theorem 5.3.2. Let A € F™*" and let ¢!,...,¢" € F[s] be the ele-

mentary divisors of A, where [y, ...,[l, € P. Then, there exists a nonsingular
matrix S € F»*™ such that
j{h(ql)
A=S St (5.3.3)
j—clh(Qh)

Next, consider Theorem 5.3.3 with F = C. In this case, every ele-
mentary divisor qi is of the form (s — \;)%, where \; € C. Furthermore,
S € C™ " and the hypercompanion form (5.3.4) is a block-diagonal matrix
all of whose diagonally located blocks are of the form (5.3.1). The hypercom-
panion form (5.3.4) with every diagonally located block of the form (5.3.1)
is the Jordan form given by the following result.

Theorem 5.3.3. Let A € F*»*™, and let qlll,...,qz’” € CJ[s] be the
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elementary divisors of A, where ly,...,l, € P and q1,...,q, € C[s] are
linear. Then, there exists a nonsingular matrix S € C™*"™ such that
Hi(q1)
A=S St (5.3.4)
U-Clh(qh>

Corollary 5.3.4. Let p € F[s], let Ay,..., A\, denote the distinct roots
of p, and, fori =1,...,r, let [; £ m,(A;) and p;(s) £ 5 — ). Then, C(p) is
similar to diag[H;,(p1), - .., Hi(pr)].

To illustrate the structure of the Jordan form, let I; = 3 and ¢;(s) =
s — i, where \; € C. Then, 3 (¢;) is the 3 x 3 matrix

Ao 10
Hi(q:) = Nils + N3 = 0 N 1 (5.3.5)
0 0 XN

so that mspec[H;,(g:)] = {Ni; Mi, \itm- If H;,(gi) is the only diagonally lo-
cated block of the Jordan form associated with the eigenvalue A;, then the
algebraic multiplicity of A; is equal to 3 while its geometric multiplicity is
equal to 1.

Now, consider Theorem 5.3.3 with F = R. In this case, every elemen-
tary divisor ¢ is either of the form (s— \;)" or of the form (5% — (135 — Bo;)",
where [y;, f1; € R. Furthermore, S € R™*™ and the hypercompanion form
(5.3.4) is a block-diagonal matrix whose diagonally located blocks are real
matrices of the form (5.3.1) or (5.3.2). In this case, (5.3.4) is the real hyper-
companion form.

Applying an additional real similarity transformation to each diago-
nally located block of the real hypercompanion form yields the real Jordan
form. To do this, define the real Jordan matriz §;(q) for | € P as follows. For
q(s) = s — X € F[s] define J;(¢q) = H;(q), while if ¢(s) = s> — B1s — By € F[s]
is irreducible with a nonreal root A = v + jw, then define the 2] x 2] upper-
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Hessenberg matrix

v w1 0 1

—w v 0 1 0

v w 1
Bila) £ ! (5.3.6)

1 0
0 1
0 Vo ow
L —w V_

Theorem 5.3.5. Let A € R™ "™, and let qlll,...,qibh € R[s], where

l1,...,ln € P are the elementary divisors of A. Then, there exists a nonsin-
gular matrix S € R™*" such that
Hll(ql) 0
A=S5 st (5.3.7)
0 8lh(Qh)

Proof. It need only be shown that J;(¢) and H;(q) are similar in the
case that ¢(s) = s — 15 — fp is an irreducible quadratic. Let A\ = v + jw
denote a root of ¢ so that 3; = 2v and By = —(v? + w?). Then,

wo-[ ][ 2] % 7] [l ]

The transformation matrix S = [} 2] is not unique; an alternative choice is
S =0 ,24u2]. Similarly,

0O 1 0 O v w 1 0
1 0 —w v 0 1 _ _
Hala) = ﬁoo ﬁol 0 1 |=% 0 0 v ow |5 =R
0 0 ﬁo ﬁl 0 0 —w v
where

w v w v

al 0 V2 + w? w Vw4

§= 0 0 —2wv 202 U

0 0 —2w(v? + w?) 0

Finally, we relate the real Jordan form (5.3.7) to the Jordan form
(5.3.4) by showing that every diagonally located block of the form (5.3.6)
is similar to a pair of Jordan blocks of the form (5.3.1). For example, if
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q(s) = 52 — 2us + 1% + w? with roots A = v + jw and A\ = v — jw, then

| v w|_ |1 1 A 0 ER R
gﬁ(g)_[—w l/:|_\/§|:j —j]_O AVl 1o | (5.3.8)
while
v w 1 0 A 1 0 0
| ~w v 0 1| 0 X 00 2
H@=1 9 o , ow|[=% 00 x1]|%" (5.3.9)
0 0 —w v 0 0 0 A
where
10 1 0
130 — 0
S_ﬁ 01 0 1 (5.3.10)
072 0 —3
and
1 —y 0 0
_ 1170 0 1 —y
St=— 5.3.11
0 0 1

Example 5.3.6. Let A, B € R*** and C € C*** be given by

0O 1 0 o0
0O 0 1 0
A= 0 0 o 1|° (5.3.12)
-16 0 -8 0
0 1 0 O
-4 0 1 O
B = 0o 0 0 1| (5.3.13)
0 0 -4 0
and
271 0 0
10 29 0 0
C=|y 0 —3 1 (5.3.14)

00 0 -2

Then, A is in companion form, B is in real hypercompanion form, and C' is
in Jordan form. Furthermore, A, B, and C are similar.



matrix2 November 19, 2003

MATRIX DECOMPOSITIONS 161

Example 5.3.7. Let A, B € R6%6 and C € C%*%6 be given by

0 1 0 0 0 0]
0 0 1 0 0 0
0 0 0 1 0 0
A=1 0 0 o0 o 1 o (5.3.15)
0o 0 0 0 0 1
| —27 54 —63 44 -21 6 |
[0 1 0 0 0 0]
-3 2 1 0 0 0
00 01 0 0
B=| 0 0 392 1 ol (5.3.16)
00 0 0 0 1
0 0 0 0 -3 2|
and
(1492 1 0 0 0 0
0 1+ V2 1 0 0 0
0 0 1+ 92 0 0 0
C =
0 0 0 1— /2 1 0
0 0 0 0 1— /2 1
L0 0 0 0 0 1— V2 |
(5.3.17)

Then, A is in companion form, B is in real hypercompanion form, and C' is
in Jordan form. Furthermore, A, B, and C are similar.

The next result shows that every matrix is similar to its transpose
by means of a symmetric similarity transformation. This result is due to
Frobenius.

Corollary 5.3.8. Let A € F"*". Then, there exists a symmetric non-
singular matrix S € F"*" such that A = SATS™!.

Proof. Tt follows from Theorem 5.3.3 that there exists a nonsingular
matrix S € C"™ " such that A = SBS™!, where B = diag(By, ..., B,) is the
Jordan form of A and B; € C"*™ for all ¢ = 1,...,r. Now, define the

symmetric nonsingular matrix S £ SIST, where I £ diag (—fn“ e ,fn) is

symmetric and involutory. Furthermore, note that meJm = B;F for all ¢
=1,...,7 so that IBI = BT and thus IB"I = B. Hence, it follows that

SATst = g8 TRT8Te~1 — §718TS-TBTSTS- 1181
= SIBTIS™ = 8BS~! = A.
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If A is real, then a similar argument based on the real Jordan form shows
that S can be chosen to be real. O

Corollary 5.3.9. Let A € F"*™. Then, there exist symmetric matrices
S1, 89 € F™*™ such that Ss is nonsingular and A = 5155.

Proof. From Corollary 5.3.8 it follows that there exists a symmetric,
nonsingular matrix S € F™ " such that A = SATS™!. Now, let S; = SAT
and Sy = S~!. Note that S, is symmetric and nonsingular. Furthermore,
ST = AS = SAT = S;, which shows that S; is symmetric. O

Note that Corollary 5.3.9 follows from Corollary 5.3.8. If A = 5159,
where Sy, S2 are symmetric and S> is nonsingular, then A = S5 1655155 =
Sy ATS,.

5.4 Schur Form

Next, we consider a decomposition involving a unitary transformation
and an upper triangular matrix called the Schur form.

Theorem 5.4.1. Let A € C™*". Then, there exists a unitary matrix
S € C™™ and an upper triangular matrix B € C™"*™ such that

A = SBS*. (5.4.1)

Proof. Let M € C be an eigenvalue of A with associated eigenvector
x € C" chosen such that z*z = 1. Furthermore, let S £ [ x S ] e Ccnxn
be unitary, where Sy € Cx(n=1) gatisfies 5'115’1 = I,_; and 2*$; = 015 (n—1)-
Then, Sie1 = = and

COll(Sl_lASl) = SI_IAI‘ = )\151_1.1‘ = )\161.

Consequently,
A 4

A=5 S

On—ny)x1 A1
where C; € CY*(»1) and 4; € CDx(—1) Next, let Spg € C=D*(n=1) pe

a unitary matrix such that

Ap = S Saa s
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where Cy € C1*("=2) and Ay € C("=2)%(n=2)  Hence,

A Cii Cro
A=85| 0 X Cy [S5'S,
0 0 As

where Cy| = [ Ci1 Cho ], Cip € C,and Sy 2 [[13520] is unitary. Pro-
ceeding in a similar manner yields (5.4.1) with S 2 6159+ S,_1, where
S1,...,8,_1 € C™™ are unitary. O

It can be seen that the diagonal entries of B are the eigenvalues of A.

As with the real Jordan form, there exists a real Schur form.

Corollary 5.4.2. Let A € R™", and let mspec(A) = {A,..., A\ }m U
{vi+ jwi,v1 — Jwi, ...,V + Jwi, v — Jwi pm, where N, ..., A\ € R and, for all
i=1,...,l, yj,w; € R and w; # 0. Then, there exists an orthogonal matrix

S € R™"™ such that
A= SBST, (5.4.2)

where B is upper block triangular and the diagonally located blocks By, . . .,
B, € Rand By,...,B; € R?*2 of B are B; 2 [\;] for all i = 1,...,r and
B &[0 Y foralli=1,...,1

Corollary 5.4.3. Let A € R™*" and assume that A has real spectrum.
Then, there exist an orthogonal matrix S € R™*" and an upper triangular
matrix B € R™ "™ such that

A= SBST. (5.4.3)

The Schur decomposition reveals the structure of range-Hermitian ma-
trices and thus, as a special case, normal matrices.

Corollary 5.4.4. Let A € F™*"™. Then, A is range Hermitian if and
only if there exist a unitary matrix S € F"*" and a nonsingular matrix
B € F™*" where r £ rank A, such that

A:S[g 8}5 (5.4.4)

In addition, A is normal if and only if there exist a unitary matrix S € C**™
and a diagonal matrix B € C™*™ such that

A = SBS*. (5.4.5)

Proof. Suppose that A is range Hermitian and let A = SBS*, where

B is the real Schur form of A and S € F"*"™ is unitary. Assume A is
singular and choose S such that B; ;) = B(j11,j4+1) = -+ = B(n) = 0 and
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such that all other diagonal entries of B are nonzero. Thus, row,(B) = 0,
which implies that e, ¢ R(B). Since A is range Hermitian, it follows that
R(B) = R(B*) so that e, ¢ R(B*). Thus, col,(B) = row,(B*) = 0. If,
in addition, B,_1,-1) = 0, then col,1(B) = 0. Repeating this argument
shows that B has the form [§ 8], where B is nonsingular.

Now, suppose that A is normal and let A = SBS*, where B € C"*"
is upper triangular and S € C™*" is unitary. Since A is normal, it fol-
lows that AA* = A", which implies that BB* = B*B. Since B is upper
triangular, it follows that (B*B),1) = B1,1)B(1,1), whereas (BB*)( 1) =
rowi(B)[rowi(B)]* = > BB,y Since (B*B)(1,1) = (BB*) 1), it fol-
lows that B ;) =0 for all i = 2,...,n. Continuing in a similar fashion row
by row, it follows that B is diagonal. O

Corollary 5.4.5. Let A € F"*™ be Hermitian. Then, there exist a
unitary matrix S € F"*" and a diagonal matrix B € R™*" such that

A = SBS*. (5.4.6)

If, in addition, A is (nonnegative semidefinite, positive definite), then the
diagonal entries of B are (nonnegative, positive).

Proof. It follows from Corollary 5.4.4 that there exists a unitary ma-
trix S € F™"*" and a diagonal matrix B € F"*" such that A = SBS*. If A
is nonnegative semidefinite, then z*Az > 0 for all x € F". Choosing = = Se;
it follows that B(;; = elBe; = elS*ASe; > 0 for all i = 1,...,n. If A is
positive definite, then B; ;) > 0 for alli=1,...,n. O

Proposition 5.4.6. Let A € F"*" be Hermitian. Then, there exists a
nonsingular matrix S € F"*" such that

1, (4 0 0
A=S 0 Oug(A) xvo(A) 0 S*. (5.4.7)
0 0 Ly,
Furthermore,
rank A = v (A) +v_(A4). (5.4.8)

Let A € F*™ be Hermitian. Then, the quantity
sig(A) 2 vy (A) —v_(A) (5.4.9)

is the signature of A.

Proof. Since A is Hermitian, it follows from Corollary 5.4.5 that there
exist a unitary matrix S € F"*" and a diagonal matrix B € R™" such
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that A = SBS* Choose S to order the diagonal entries of B such that
B = diag(Bs,0, —Bs), where the diagonal matrices By, Bs are both positive
definite. Now, define B £ diag(By, I, By). Then, B = BY2DBY2, where
D = dia‘g(Il/_(A)’OZIQ(A)XVQ(A)? *Iy+(A)). Consequently, A= SBl/QDél/Qg*.

O

Corollary 5.4.7. Let A, B € F"*" be Hermitian. Then, A and B are
congruent if and only if In(A) = In(B).

In Proposition 4.5.3 it was shown that eigenvectors associated with a
collection of distinct eigenvalues of a normal matrix are mutually orthogonal.
Thus, a normal matrix will have at least as many mutually orthogonal eigen-
vectors as it has distinct eigenvalues. The next result, which is an immediate
consequence of Corollary 5.4.4, shows that every n X n normal matrix ac-
tually has n mutually orthogonal eigenvectors. In fact, the converse is also
true.

Corollary 5.4.8. Let A € C™"*™. Then, A is normal if and only if A

has n mutually orthogonal eigenvectors.

There is also a real normal form, which is analogous to the real Schur
form.

Corollary 5.4.9. Let A € R™ " be range symmetric. Then, there exist
an orthogonal matrix S € R™*" and a nonsingular matrix B € R™™" where
A
r = rank A, such that

_ ol B 0 qr
A_S[ 0 0 ]s . (5.4.10)

In addition, assume that A is normal and let mspec(A4) = {M\,..., A} U
{v1+ jwi,v1— gwr, ...,V + Jwi, v; — Jwi tm, where Aj, ..., A, € R and, for all
i=1,...,1, y;,w; € R and w; # 0. Then, there exists an orthogonal matrix
S € R™™ such that

A= SBST, (5.411)
where B 2 diag(Bl,...,BT,B1,~--,BZ)7 B; £ [\] foralli=1,...,r and
B; & [, S foralli=1,...,1

5.5 Eigenstructure Properties

Definition 5.5.1. Let A € F™*", and let A € C. Then, the index of A
with respect to A, denoted by ind4(\), is the smallest nonnegative integer k

such that
R[(AI . A)ﬂ - :R[(A[ . A)’f“} . (5.5.1)
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Furthermore, the index of A, denoted by ind A, is the smallest nonnegative
integer k such that

R(Ak> - ﬂz(A’f“), (5.5.2)
that is, ind A = inda(0).
Note that \ € spec(A) if and only if indg(A) = 0. Hence, 0 & spec(A)

if and only if ind A = ind4(0) = 0. Hence, A is nonsingular if and only if
ind A = 0.

Proposition 5.5.2. Let A € F*"*" and let A\ € C. Then, ind4(\) is
the smallest nonnegative integer k such that

rank{()\l - A)k} = rank [()J - A)k'H} . (5.5.3)
Furthermore, ind A is the smallest nonnegative integer k£ such that

rank (Ak) = rank <Ak+1) . (5.5.4)

Proof. Corollary 2.4.2 implies that R[(AI — A)*] C R[(A] — A)*1].
Now, Lemma 2.3.4 implies that R[(AI — A)*] = R[(AI — A)**1] if and only
if rank [(A] — A)*] = rank[(A] — A)*H1]. O

Proposition 5.5.3. Let A € F"*" and let A € spec(A4). Then, the
following statements hold:

i) indg()) is the order of the largest Jordan block of A associated with
A

i1) gmy(A) is equal to the number of Jordan blocks of A associated with

Proposition 5.5.4. Let 8§ C F” be a subspace. Then, there exists a
unique projector A € F"*™ such that § = R(A). Furthermore, x € § if and
only if x = Ax.

Proof. See [416, p. 386]. O

For a subspace 8§ C F", the matrix A € F"*™ given by Proposition
5.5.4 is the projector onto 8.
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Let A € F™*™ be an idempotent matrix. Then, the complementary
idempotent matriz defined by
AL 2T A (5.5.5)

is also idempotent. If A is a projector, then A, is the complementary pro-
jector.

Proposition 5.5.5. Let 8§ C F™ be a subspace and let A € F™**" be
the projector onto 8. Then, A is the projector onto 8. Furthermore,

R(A)L =N(A) =R(A)). (5.5.6)

Proposition 5.5.6. Let A € F"*" and let k be a positive integer.
Then, ind A < k if and only if R(Ak) and N(Ak) are complementary sub-
spaces.

Corollary 5.5.7. Let A € F™*™. Then, A is group invertible if and
only if R(A) and N(A) are complementary subspaces.

Proposition 5.5.8. Let A € F**" and let 81,82 C F™ be complemen-
tary subspaces. Then, there exists a unique idempotent matrix A € F**"
such that R(A) = 8; and N(A) = S3. Furthermore, R(A;) = 8 and
N(AL) = 8.

Proof. See [82, p. 118] or [416, p. 386]. O

For complementary subspaces 81,82 C F", the unique idempotent ma-
trix A € F™*™ given by Proposition 5.5.8 is the idempotent matrixz onto
81 =R(A) along So = N(A).

Proposition 5.5.9. Let A € F"*" and let r £ rank A. Then, A is
group invertible if and only if there exist B € F"*" and C' € F"*" such that
rank B = rank C' = r. Furthermore, the idempotent matrix P £ B(CB)™'C
is the idempotent matrix onto R(A) along N(A).

Proof. See [416, p. 634]. O

An alternative expression for the idempotent matrix onto R(A) along
N(A) is given by Proposition 6.2.2.

Definition 5.5.10. Let A € F™*", and let A € spec(A). Then, the
following terminology is defined:
i) A is simple if amy(X\) = 1.

i1) A is simple if every eigenvalue of A is simple.
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ii1) A is cyclic if gmy(N\) = 1.
iv) A is cyclic if every eigenvalue of A is cyclic.

v) A is derogatory if gmy(A) > 1.

vig) A is semisimple if gmy(N\) = ama(A).

)
)
)
vi) A is derogatory if A has at least one derogatory eigenvalue.
)
viii) A is semisimple if every eigenvalue of A is semisimple.

)

ir) X is defective if gmy(N) < amy(N).
z) Ais defective if A has at least one defective eigenvalue.

xi) A is diagonalizable over C if A is semisimple.

)
) A € R™™ is diagonalizable over R if A is semisimple and every
eigenvalue of A is real.

T

Proposition 5.5.11. Let A € F"*" and A € spec(4). Then, A is
simple if and only if A is cyclic and semisimple.

Proposition 5.5.12. Let A € F"*" and let \ € spec(A). Then,
def [(AI - A)indAW] = amy(N). (5.5.7)

Theorem 5.3.3 yields the following result, which shows that the sub-
spaces N[(AI — A)*], where A € spec(4) and k = ind4()), provide a de-
composition of F”.

Proposition 5.5.13. Let A € F™*™, let spec(A) = {\,..., A}, and,
forall i =1,...,r, let k; 2 inda()\;). Then, the following statements hold:

i) N[\ — A) I NN[(AI = A)] = {0} for all 4,5 = 1,...,7 such
that ¢ #£ j.

it) Soi_y N[(Ad — AP ] =F".
Proposition 5.5.14. Let A € F"*" and let A € spec(A4). Then, the
following statements are equivalent:
i) A is semisimple.
it) def(A — A) = def[(/\I — A)2] .
iti) N(AM — A) = N[(M — A)?].
i) inda(A) = 1.

Proof. To prove that ¢) implies i7), suppose that A is semisimple so
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that gm,y(A) = amy(A\) and thus def(A] — A) = amy(A). Then, it follows
from Proposition 5.5.12 that def[(A] — A)¥] = ams()), where k £ inda()).
Therefore, it follows from Corollary 2.5.6 that amy(\) = def(A — A) <
def [(AI — A)?] < def[(A] — A)*] = amy(A), which implies that def(A] —
A) = def [(M — A)?].

To prove that ) implies 4ii), note that it follows from Corollary 2.5.6
that N(AI — A) € N[(M — A)?]. Since, by ii), these subspaces have equal
dimension, it follows from Lemma 2.3.4 that these subspaces are equal.
Conversely, i) implies 7).

Finally, iv) is equivalent to the fact that every Jordan block of A asso-
ciated with A has order 1, which is equivalent to the fact that the geometric
multiplicity of A is equal to the algebraic multiplicity of A, that is, that A is
semisimple. O

Corollary 5.5.15. Let A € F"*™. Then, A is group invertible if and
only if ind A < 1.

Proposition 5.5.16. Suppose A, B € F"*™ are similar. Then, the
following statements hold:
i) mspec(A) = mspec(DB).
i1) For all X € spec(A), gmy(N\) = gmp(N).

Proposition 5.5.17. Let A € F"*". Then, A is semisimple if and only
if A is similar to a normal matrix.

The following result is an extension of Corollary 5.3.9.
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Proposition 5.5.18. Let A € F"*". Then, the following statements
are equivalent:

i) A is diagonalizable over R.

i7) There exists a positive-definite matrix S € F"*" such that A =
SA*S—L,

iit) There exist a Hermitian matrix S; € F"*™ and a positive-definite
matrix Sy € F**" such that A = 5195.

Proof. To prove that 4) implies i), let nonsingular S € F™*" be such
that A = SBS™!, where B € R™ " is diagonal. Then, B = S7'4S =
. . aa A N\ A . |
$AS . Hence, A = SBS™ = §(SAS~)51 = (597)a(857) = 54757,
where S £ S$S* is positive definite. To show that ) implies iii), note
that A = SA*S™! = 5,95, where S; £ S4* and S5 = S~L. Since ST =
(SA*)" = AS* = AS = SA* = Sy, it follows that Sy is Hermitian. Fur-
thermore, since S is positive definite, it follows that S, and hence Ss,
is also positive definite. Finally, to prove that i) implies i), note that

A= 515 = 5’2_1/2<S§/2515’§/2) 5’21/2. Since 521/25’1521/2 is Hermitian, it follows

from Corollary 5.4.5 that S%/ 28135/ % is diagonalizable over R. Consequently,
A is diagonalizable over R. O

If a matrix is block triangular, then the following result shows that
its eigenvalues and their algebraic multiplicity are determined by the diag-
onally located blocks. If, in addition, the matrix is block diagonal, then the
geometric multiplicities of its eigenvalues are determined by the diagonally
located blocks.

Proposition 5.5.19. Let A € F™*™ be either upper block triangular
or lower block triangular with diagonally located blocks Ajq, ..., Ay, Where
Ay € FXMi for all 4 =1,...,7. Then,

ama() = Y amy,(N). (5.5.8)
i=1
Hence, .
mspec(A) = U mspec(A;;). (5.5.9)
i=1

Now, assume that A is block diagonal. Then,

gmy(N) = ngA“(/\)~ (5.5.10)
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Proposition 5.5.20. Let A € F"*™, let spec(A) = {\1,..., A}, and
let k; £ indg()\;) for all i = 1,...,r. Then,

pa(s) = JJ(s = xo)* (5.5.11)

and -
degpa =Y ki (5.5.12)
=1

Furthermore, the following statements are equivalent:
i) pA = XA-
i1) A is cyclic.
i11) For all A € spec(A), the Jordan form of A contains exactly one block

associated with \.

Proof. Let A = SBS™!, where B = diag(By,..., B,,) denotes the
Jordan form of A given by (5.3.4). Let \; € spec(A), and let B; be a Jordan
block associated with A;. Then, the order of Bj is less than or equal to k;.
Consequently, (B; — M)k = 0.

Next, let p(s) denote the right-hand side of (5.5.11). Thus,

p(A) = f[(A — A\ =S8 f[(B -~ AZ-I)’“]S‘1
i=1

=1

= Sdlag (H(Bl — )\,LI)k’, RN H(Bnh — )\ZI)]“)S_I =0.

i=1 =1

Therefore, it follows from Theorem 4.6.1 that pa divides p. Furthermore,
note that if k; is replaced by k; < k;, then p(A) # 0. Hence, p is the minimal
polynomial of A. The equivalence of 7) and i) is now immediate, while the
equivalence of ¢) and #) follows from Theorem 5.3.5. O

Example 5.5.21. The matrix [ 1} }] is normal but is neither symmet-
ric nor skew symmetric, while the matrix [—01 [1)} is normal but is neither

symmetric nor semisimple with real eigenvalues.

Example 5.5.22. The matrices [3 ]|
over R but not normal, while the matrix [
neither normal nor diagonalizable over R.

and [}1] are diagonalizable
:% H is diagonalizable but is

Example 5.5.23. The product of the Hermitian matrices [4 2] and
[% ,12] has has no real eigenvalues.
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Example 5.5.24. The matrices [§ 9] and | % §] are similar, whereas
[$9] and [ % 3] have the same spectrum but are not similar.

Proposition 5.5.25. Let A € F"*". Then, the following statements
hold:
i) A is singular if and only if 0 € spec(A).

it) A is group invertible if and only if either A is nonsingular or 0 €
spec(A) is semisimple.

iii) A is Hermitian if and only if A is normal and spec(A) C R.
iv) A is skew Hermitian if and only if A is normal and spec(A4) C jR.

v) A is nonnegative semidefinite if and only if A is normal and spec(A)
C [0, 00).

vi) A is positive definite if and only if A is normal and spec(4) C (0, c0).

vii) A is unitary if and only if A is normal and spec(A) C {A € C: |\| =
1}.

vigi) A is involutory if and only if A is semisimple and spec(A4) C {—1,1}.

ir) A is skew involutory if and only if A is semisimple and spec(A) C
{=2.1}

z) Aisidempotent if and only if A is semisimple and spec(A4) C {0,1}.

zi) Ais tripotent if and only if A is semisimple and spec(A) C{—1,0,1}.
zii) A is nilpotent if and only if spec(A) = {0}.
ziit) A is a projector if and only if A is normal and spec(A) = {0, 1}.
ziv) A is a reflector if and only if A is normal and spec(A) = {—1,1}.

)

zv) Ais an elementary projector if and only if A is normal and mspec(A)

=1{0,1,...,1}m.
zvi) A is an elementary reflector if and only if A is normal and mspec(A)
={-1,1,...,1}m.

zvii) A is an elementary matrix if and only if A is normal and mspec(A) =
{a,1,...,1}n, where a # 0.

If, furthermore, A € R?"%2?" then the following statements hold:
zviig) If A is Hamiltonian, then mspec(A) = — mspec(A).
iz) If A is symplectic, then mspec(A) = {1/A: A € mspec(A) }p.
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5.6 Singular Value Decomposition

The third matrix decomposition that we consider is the singular value
decomposition. Unlike the Jordan and Schur decompositions, the singular
value decomposition applies to matrices that are not necessarily square. Let
A € F"*™ where A # 0, and consider the nonnegative-semidefinite matri-
ces AA* € F™*™ and A*A € F"™* ™. It follows from Proposition 4.4.9 that
AA* and A*A have the same nonzero eigenvalues with the same algebraic
multiplicities. Since AA* and A*A are nonnegative semidefinite, it follows
that they have the same positive eigenvalues with the same algebraic multi-
plicities. Furthermore, since AA* is Hermitian, it follows that the number
of positive eigenvalues of AA* (or A*A) counting algebraic multiplicity is
equal to the rank of AA* (or A*A). Since rank A = rank AA* = rank A*A,
it ;chus follows that AA* and A*A both have r positive eigenvalues, where
r = rank A.

Definition 5.6.1. Let A € F"*™. Then, the singular values of A are
the min{n, m} nonnegative numbers o1(4), ..., Ominfnm}(A), where, for all
i=1,...,min{n,m},

(A2, 0 <m,

gi(A) = A2, e (5.6.1)

Let A € F**™_ Then,

o1(A) > -+ > Ominfn,m} (A) = 0. (5.6.2)
If A#0, then
o1(A) > - > 0p(A) > 0r11(A) = -+ = Opingn,m) (4) = 0, (5.6.3)
where 7 £ rank A. For convenience, define
Gnax(4) 2 1(A), (5.6.4)
and, if n = m,
Omin(A) £ 0,(A). (5.6.5)
Note that
Omax(Onxn) = Omin(Onxn) = 0, (5.6.6)
and, for all i = 1,..., min{n,m},
0i(A) = 0;(A*) = 0;(A) = a3(A"). (5.6.7)

Proposition 5.6.2. Let A € F™*™ where A # 0. Then, the following
statements are equivalent:

i) rank A = n.
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i) on(A) > 0.

The following statements are also equivalent:
iii) rank A = m.
i) om(A) > 0.

Now, assume that n = m. Then, the following statements are also equiva-
lent:

v) A is nonsingular.

Vi) Omin(A) > 0.
We now state the singular value decomposition.

Theorem 5.6.3. Let A € F™™ where A # 0, let r £ rank A, and
define B £ diag[o1(A),...,0.(A)]. Then, there exist unitary matrices S; €
F"*" and Sy € F™*™ guch that

B 0% (m—r)

A=5 Ss. (5.6.8)

O(n—r) Xr O(n—r) X (m—r)

Proof. For convenience, assume r < min{n,m}, since otherwise the
zero matrices become empty matrices. By Corollary 5.4.5 there exists a
unitary matrix U € F"*" such that

* BZ 0 *

AA —U[ 0 0 }U.

Partition U = [ U U; ], where Uy € F™ " and Uy € F™ (") Since

U*U = I, it follows that UjU; = I, and UyU = [ I 0px(n—r) ] . Now,
define V; £ A*U;B~! € F™*" and note that

B? 0

Vi'Vi= BT'UJAA*U\B™" = B_lUl*U[ 0 0

]U*UlB_l =1,.

Next, note that, since UsU = [ 0(y,—y)xr In—r |, it follows that
BZ
0

However, since R(A) = R(AA*), it follows that UA = 0. Finally, let V5 €
Fmx(m=r) he such that V £ [ Vi W ] € F™>™ ig unitary. Hence, we have

UsAA* = [ 0 I][ 8](]*:0.

B 0],. B o[V \ -
U[o O]V =0 UQ][O OHV}]:UlBVI:UlBB UA

= UWUIA = (DU} + UsU3)A = UUMA = A,
which yields (5.6.8) with S; = U and Sy = V*. O
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An immediate corollary of the singular value decomposition is the polar
decomposition.

Corollary 5.6.4. Let A € F"*". Then, there exists a nonnegative-
semidefinite matrix M € F"*" and a unitary matrix S € F"*" such that

A= MS. (5.6.9)

Proof. It follows from the singular value decomposition that there
exist unitary matrices S1,.52 € F™*™ and a diagonal positive-definite matrix
B € F"*", where r £ rank A, such that A = Sl[lg 8]52. Hence,

B 0

Azsl[ 0 0

]5;5152 — MS,

where M £ Sl[g 8]5}* is nonnegative semidefinite and S £ 6,5, is unitary.
O

Proposition 5.6.5. Let A € F"*™_let r £ rank A, and define the
Hermitian matrix A £ [94]€ F(ntm)x(n+m) Then, rank A = 2r, and the
2r nonzero eigenvalues of A are the r positive singular values of A and their
negatives.

Proof. Since x4 (s) = s*I — A*A, it follows that
mspec(A)N\{0,...,0}m = {01(4), —01(4),...,0-(4), —0-(A) }mn. O

5.7 Facts on Matrix Transformations Involving One
Matrix

Fact5.7.1. Let A € F™*", and assume that spec(A) = {1}. Then, A*
is similar to A for all k € P.

Fact 5.7.2. Let A € F™*™ be normal. Then, the Schur form of A is
equal to the Jordan form of A.

Fact 5.7.3. Let A € R™ ™. Then, there exists an orthogonal matrix
S € R™ " such that —1 ¢ spec(S) and SAST is diagonal. (Proof: See [466, p.
101].) (Remark: This result is due to Hsu.)

Fact 5.7.4. Let A € F"*" and assume there exists a nonsingular
matrix S € F™*" such that S™'AS is upper triangular. Then, for all
r=1,...,n, fR(S [IO]) is an invariant subspace of A. (Remark: Analogous
results hold for lower triangular matrices and for block-triangular matrices.)
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Fact 5.7.5. Let A € F"*". Then, [é_OA] and [91‘6‘] are unitarily

similar. (Proof: Use the unitary transformation LH 1)

V2
Fact 5.7.6. Let A € F™*™. Then, there exists a unitary matrix S €
F™*™ such that S*AS has equal diagonal entries. (Remark: The diagonal
entries are equal to (1/n) tr A.) (Proof: See [206] or [466, p. 78]. This result
is due to Parker. See [221].)

Fact 5.7.7. Let A € R™™ "™, and assume that A is not of the form
al, where a € R. Then, A is similar to a matrix with diagonal entries
0,...,0,tr A. (Proof: See [466, p. 77].) (Remark: This result is due to
Gibson.)

Fact 5.7.8. Let A € R™ "™, and assume that A is not zero. Then,
A is similar to a matrix all of whose diagonal entries are nonzero. (Proof:
See [466, p. 79].) (Remark: This result is due to Marcus and Purves.)

Fact 5.7.9. Let A € F"*" be Hermitian, let S € F™ " and as-
sume that rank S = n. Then, v, (SAST) = v, (A4) and v_(SAST) = v_(A).
(Proof: See [216, p. 194].)

Fact5.7.10. Let A € F"*™ be symmetric. Then, there exists a unitary

matrix S € F™"*™ such that
A = SBST,

where

B £ diag[oi(A), ..., 0,(A)].

(Proof: See [287, p. 207].) (Remark: A is symmetric, complex, and T-
congruent to B.)

Fact 5.7.11. Let A € F"*™. Then, there exists a nonsingular matrix
S € F™*™ and a skew-Hermitian matrix B € F®*™ such that

I, (At 0 0
A=S5 0 OUO(A+A*)><V0(A+A*) 0 + B|S*.
0 0 =1, (Atav)

(Proof: Write A = %(A + A*) + %(A — A*) and apply Proposition 5.4.6 to
1 *
3(A+47).)

Fact 5.7.12. Let A € F™*"_ and let r = rank A. Then, A is group
invertible if and only if there exist a nonsingular matrix B € F"*" and a
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nonsingular matrix S € R™*" such that
A= s[ oo } s,

Fact 5.7.13. Let A € F™*™ be normal. Then, there exists a nonsingu-
lar matrix S € F"*™ such that

AT = S48~

and such that § = ST and S7! = S. (Remark: If F = R, then S is a re-
flector.) (Proof: For F = C, let A = UBU*, where U is unitary and B is
diagonal. Then, AT = SAS, where S 2 UU'. For F = R, use the real nor-
mal form and let S £ UIUT, where U is orthogonal and I £ diag(l,...,1).)

Fact 5.7.14. Let A € F" ™ be nonsingular. Then, there exists an
involutory matrix S € F™*" such that
AT = SAST.
(Remark: AT, not A*.) (Proof: See [240].)

Fact 5.7.15. Let n € P. Then,

S| 2 0 ]ST, n even,

L 0 —in/2
=9 T- wp 000
S| o 1 0 |ST, nodd,
\ L 0 0 In/2
where
v i
Ly /2 n/2 n even
\/5_ In/2 In/Q ]
S & - .
In/? 0 - n/2
% 0 V2 0 ., nodd.
L In/2 0 In/2
Therefore,
. {-1,1,...,=1,1}p, n even,
mspec([n> =
{1,-1,1,...,—1,1};n, n odd.

(Remark: See [590].)
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Fact 5.7.16. Let A € F*"*" be unitary and let m < n/2. Then, there
exist unitary matrices U,V € F™*™ such that

r =X 0
A=U|¥ I o |V
0 0 In—2m

where ', X € R™*™ are diagonal and nonnegative semidefinite and satisfy
I+ 52 = I,
(Proof: See [525, p. 37].) (Remark: This result is the CS decomposition.)

~ Fact5.7.17. Let A € C"*". Then, there exists B € R"*" such that
AA and B? are similar. (Proof: See [180].)

Fact5.7.18. Let A € F™»*™, Then, the following statements are equiv-
alent:

i) trA=0.
i) There exist B,C € F"*" such that A = [B, C].
ii1) A is unitarily similar to a matrix whose diagonal entries are zero.

(Remark: This result is Shoda’s theorem. See [4,220,325,333] or [258, p.
146].)

5.8 Facts on Matrix Transformations Involving Two
or More Matrices

Fact 5.8.1. Let A, B € F"*™_ Then, A and B are in the same equiv-
alence class of F"*™ induced by equivalence if and only if A and B are
equivalent to [6 8]. Now, let n = m. Then, A and B are in the same equiv-
alence class of F™*™ induced by (similarity, unitary similarity) if and only if
A and B have the same (Jordan, Schur) form.

Fact 5.8.2. Left equivalence, right equivalence, biequivalence, unitary
left equivalence, unitary right equivalence, and unitary biequivalence are
equivalence relations on F"*™. Similarity, congruence, and unitary similar-
ity are equivalence relations on F™**",

Fact5.8.3. Let A, B € F™™*" be normal and assume that A and B are
similar. Then, A and B are unitarily similar. (Proof: Since A and B are
similar, it follows that mspec(A) = mspec(B). Since A and B are normal,
it follows that they are unitarily similar to the same diagonal matrix.)
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Fact 5.8.4. Let A, B € F™*", and assume that either A or B is non-
singular. Then, AB and BA are similar. (Proof: If A is nonsingular, then
AB = A(BA)A™)

Fact 5.8.5. Let A, B € R™ " be projectors. Then, AB and BA are
unitarily similar. (Remark: This result is due to Dixmier. See [474].)

Fact 5.8.6. Let 8 C F™*™ and assume that AB = BA for all A, B € 8.
Then, there exists a unitary matrix S € F**" such that, for all A € §, SAS*
is upper triangular. (Proof: See [287, p. 81] and [473].) (Remark: See Fact
8.11.5.)

Fact 5.8.7. Let 8§ C F™*" and assume that every matrix A € § is
normal. Then, AB = BA for all A, B € § if and only if there exists a unitary
matrix S € F™*™ such that, for all A € §, SAS* is diagonal. (Remark: See
Fact 8.11.2 and [287, pp. 103, 172].)

Fact 5.8.8. Let § € F™ ", and assume that every matrix A € § is
diagonalizable over F. Then, AB = BA for all A, B € § if and only if there
exists a nonsingular matrix S € F"X" such that, for all A € 8§, SAS™! is
diagonal. (Proof: See [287, p. 52].)

Fact 5.8.9. Let A, B € F*»*™. Then, the following statements hold:

i) The matrices A and B are unitarily left equivalent if and only if
A*A = B*B.

i1) The matrices A and B are unitarily right equivalent if and only if
AA* = BB*.

i17) The matrices A and B are unitarily biequivalent if and only if A
and B have the same singular values with the same multiplicity.

(Proof: See [293] and [484, pp. 372, 373].) (Remark: In [293] A and B
need not be the same size.) (Remark: The singular value decomposition
provides a canonical form under unitary biequivalence in analogy with the
Smith form under biequivalence.) (Remark: Note that AA* = BB* implies
R(A) = R(B), which implies that right equivalence, which is an alternative
proof of the immediate fact that unitary right equivalence implies right
equivalence.)

Fact 5.8.10. Let A, B € F™*", Then, the following statements hold:

i) A*A = B*B if and only if there exists a unitary matrix S € F**"
such that A = SB.

it) A*”A < B*B if and only if there exists S € F"*" such that A = SB
and S*S < I.
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ii1) A*B+ B*A = 0 if and only if there exists a unitary matrix S € F"*"
such that (I — S)A= (I +S5)B.

iv) A'B + B¥A > 0 if and only if there exists S € F"*" such that
(I-S)A=(I+S)Band S*S <.

(Proof: See [476].) (Remark: Statements i) and iv) follow from 4) and i)
by replacing A and B with A — B and A + B, respectively.)

Fact 5.8.11. Let A € F**" B € F™*™ and C € F*"*™. Then, there
exists X € F"*™ satisfying

AX+XB+C=0
if and only if the matrices

A 0 A C

0 —-B |’ 0 —-B
are similar. (Proof: See [353, pp. 422-424] or [466, pp. 194-195|. For
necessity, the similarity transformation is given by [ ¥].) (Remark: AX +

XB + C =0 is Sylvester’s equation. See Proposition 7.2.4 and Proposition
11.7.3.) (Remark: This result is due to Roth.)

Fact 5.8.12. Let A € F™*", B € F™*™ and C € F*"*™. Then, there
exist X,Y € F™*™ gatisfying

AX+YB+C=0

if and only if
0

rank[gl _B]:mnk[g1 _CB].

(Proof: See [466, pp. 194-195].) (Remark: AX +YB + C = 0 is a gener-
alization of Sylvester’s equation. See Fact 5.8.11.) (Remark: This result is
due to Roth.)

5.9 Facts on Eigenvalues and Singular Values
Involving One Matrix

Fact5.9.1. Let A € F**" let a € F, and assume that A?> = aA. Then,
spec(A) C {0, a}.

Fact5.9.2. Let A € F"*" be Hermitian and let & € R. Then, A?> = a4
if and only if spec(A) C {0, a}. (Remark: See Fact 3.4.16.)
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Fact 5.9.3. Let A € F"*" be Hermitian. Then,
spabs(A) = Apax(A),
sprad(A) = omax(A) = max{|Amin(A4)|, Amax(A4)},

and
spabs(A) = Apax(A).

If, in addition, A is nonnegative semidefinite, then

sprad(A) = omax(A) = spabs(A) = Apax(A).

Fact 5.9.4. Let A € F"*™ be skew Hermitian. Then, the eigenvalues
of A are imaginary. (Proof: Let A\ € spec(A). Since 0 < AA* = —A2, it
follows that —A\2? > 0 and thus A2 < 0.)

Fact 5.9.5. Let A € F™»*™ assume that every eigenvalue of A is real,
and assume that exactly r eigenvalues of A, including algebraic multiplicity,
are nonzero. Then,

(tr A)? < rtr A%,
Furthermore, equality holds if and only if the nonzero eigenvalues of A are
equal. (Remark: For arbitrary A € F™*™ with r nonzero eigenvalues, it is
not generally true that |tr A|? < r|tr A%|. For example, consider mspec(A) =

{1) 1)]7 _j}m')

Fact5.9.6. Let A € R™*", and let mspec(A) = {\,..., \p}m. Then,

n

> (ReX)(Im X;) =0

i=1
and n n
trA” =) "(ReA;)” = (ImA)%.
i=1 i=1
Fact 5.9.7. Let ay,...,a, > 0, and define the symmetric matrix A €
R™™ by A; ) £ a; + aj for all 4,5 =1,...,n. Then,
rank A = 2,
spec(A4) = ,
and

Amin(4) <0 <trA =2 Z @i < Amax(A).
=1
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(Proof: A = alyyy, + lyxia’, where a £ [ a1 -+ ap ]T) (Remark: See
Fact 8.7.25.)

Fact 5.9.8. Let x,y € R™. Then,
mspec(zy’ + yxT) = {xTy + VaTeyTy, 2ty — /xTxyTy, 0, . .. ,0} ,

2Ty + aTzyly, 2Ty >0,
‘:va -/ :vacyTy(, Ty <0,

sprad(zyT + yxT) = 2Ty + /2 TryTy.
(Problem: Extend this result to C and zy® + zw". See Fact 4.9.12.)

sprad(myT + yxT) =

and

Fact 5.9.9. Let A € F"*", and let mspec(A) = {A1,..., A\n}m. Then,
mspec(Afl) = {)\1_1, A }m’

mspec[( + A7 ={(@+ M) L+ X))

mspec[([ + A)Z] = {(1 +M)%. ., (1 + )\n)Q}m,
mspec[A(L + A)7 ] ={ M1+ M) A1+ M)

Fact 5.9.10. Let x € F" and y € F™. Then,

O'max(l'y*) =V T ry*y.

If, in addition, m = n, then
mspec(zy”) = {z"y,0,...,0},
mspec(] +zy*) = {1+ 2"y, 1,...,1},
sprad(zy”) = |27y,
spabs(zy*) = max{0, Rex*y}.
Fact 5.9.11. Let A € F"*" and rank A = 1. Then,
Omax(A) = Omin(A) = (tr AA*)Y2,
Fact 5.9.12. Let x,y € F", and assume that z*y # 0. Then,

Omax [(x*y)_lxy*} > 1.
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Fact5.9.13. Let A € F"*", and let mspec(A4) = {1, -, Ap}m, where
AL, ..., Ay are ordered such that [\ | > -+ > |A,|. Then, forallk =1,...,n,

k k
[Tl < I Teia)
i=1 i=1
with equality for k& = n, that is,
|det A] = J[Ixil = [ oi(4).
i=1 i=1

Hence, for all k =1,...,n,

[ < TNl
i=k i=k

(Proof: See [93, p. 43], [289, p. 171], or [625, p. 19].) (Remark: This result
is due to Weyl.) (Remark: See Fact 8.14.16 and Fact 9.11.16.)

Fact 5.9.14. Let 8y, ..., Bn-1 € R, define A € F*"*™ by

[0 1 0 0 0 i
0 0 1 0 0
N 0 0 0 0 0
A= ,
0 0 0 0 1
| 6o —B1 —B2 -+ —Bn2 —Baa ]

and define @ 2 14 Y27 2. Then,

al<A>=\/§(a+M),

o3(A) = -+ = o1 (A) = 1,

on(A) = \/%<a— \/M)

(Proof: See [326,334] or [280, p. 523].)

Fact5.9.15. Let 3 € C. Then,

Umax<|: (1) 21ﬁ :|) = |6|+ \% 1+’B‘2
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and

Umin([é 21ﬁ D = V1+[8P2 -8

(Proof: See [370].) (Remark: Inequalities involving the singular values of
block-triangular matrices are given in [370].)

Fact 5.9.16. Let A € F"*™. Then,

I 24
Jmax( |: 0o I :|> = UmaX(A) +v1+ Umax(A)
(Proof: See [280, p. 116].)
Fact 5.9.17. Let A € F™*™ and let » = rank A. Then, for all : =
1,...,r,
0i(AAY) = g;(A*A) = o2 (A).

In particular,

Umax(AA*) = maX(A)
and, if n = m, then

Umln(AA*) = mm(A)‘
Furthermore, for all : =1,...,r,

oi(AAMA) = 63(A).
Fact5.9.18. Let A € F"*". Then, omax(A) < 1 if and only if A"A < I.

Fact 5.9.19. Let A € F**", Then, foralli=1,...,n,

= 1[I &4
j=
j#n+1—i
(Proof: See Fact 4.10.3 and [466, p. 149].)

Fact 5.9.20. Let A € F*"*". Then, 01(A) = 0,(A) if and only if there
exist A € F and a unitary matrix B € F"*" such that A = AB. (Proof:
See [466, pp. 149, 165].)

Fact 5.9.21. Let A € R™*", and let A\ € spec(A). Then, the following
inequalities hold:
7') Umin(A) < |A| < Umax(A)-
i) Amin[3(A+ AT)] <Re A < Amax[3(4 + AT)].

1
2
i) Amin| 35(A = AT)| < TmA < Ao 35(4 = A7)
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(Remark: 14) is Browne’s theorem, ii) is Bendixson’s theorem, and iii) is

Hirsch’s theorem. See [395, pp. 140-144]. See Fact 9.10.6.)

Fact 5.9.22. Let A € R™*", where n > 2, be the tridiagonal matrix

[ b1 C1 0 0 0
ai by o 0 0
4 0 ao b3 0 0
0 0 0 bn,1 Cnp—1
0 0 0 an-1  bn |
and assume that a;c; > 0 for all ¢ = 1,...,n —1. Then, A is simple and

every eigenvalue of A is real. (Proof: SAS™' is symmetric, where S £
diag(dy, ..., dy), di 2 1, and diy1 2 (cifa;)"?d; for all i = 1,...,n —1. For
a proof of the fact that A is simple, see [202, p. 198].)

Fact 5.9.23. Let A € R™" be the tridiagonal matrix

0 1 0
n—1 0 2 0
0 n—2 0
AL
0 n—2 0
0 2 0 n—1
i 0 1 0 |
Then, .
XA(S):H[S—(n—i—l—Zi)].
i=1
Hence,
n—1,—(n—-1),...,1,—1}, n even,
ety | (n—1) }
{n—-1,—-(n-1),...,2,-2,0}, n odd.

(Proof: See [537].)
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Fact 5.9.24. Let A € R™*", where n > 1, be the tridiagonal matrix

rd ¢ 0 -+ 0 07
a b ¢ -+ 0 O
e 0 ea b . 0 O
0 0 O b ¢
L0 0 O a b |

and assume that ab > 0. Then,
spec(A) = {b+ Vaccos|ir/(n+1)]: i=1,...,n}.
(Remark: See [280, p. 522].)

Fact 5.9.25. Let aq,...,a, € R" be linearly independent and, for all
1=1,...,n, define .
A, 2T - (a?ai) aia;f.
Then,
O‘max(AnAnfl T Al) < L

Fact 5.9.26. Let A € R™™ ™ and assume that A has real eigenvalues.
Then,

Amin(A) < Ttr A — (/1 [tr A2 — L(tr A)?]
< LA+ /[t 42— LAY
< Amax(4)
<itrd+ \/”7*1 [tr A2 — L(tr A)?].

Furthermore, for all i = 1,...,n,

Mi(A) — T Al < /2L [ 42 — L(tr A)2].
(Proof: See [610].)

Fact 5.9.27. Let A € R"*" and assume that » = rank A > 2. If
rtr A% < (tr A)?, then

(tr A)? — tr A2

sprad(A) > T =1)
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If (tr A)? < rtr A% then

trA rtr A2 — (tr A)2
sprad(A) > | . |+\/ 7‘2(r(1) ) .

If rank A = 2, then equality holds in both cases. Finally, if A is skew

symmetric, then
3
> —
sprad(A) > ”r(r 7 IlA|lr

Fact 5.9.28. Let A € F"*". Then,
spabs(A4) < FAmax(A4 + A").

Furthermore, equality holds if and only if A is normal. (Proof: See zii) and
ziv) of Fact 9.10.8.)

(Proof: See [295].)

5.10 Facts on Eigenvalues and Singular Values
Involving Two or More Matrices

Fact 5.10.1. Let A, B € F™*" be normal. Then,

mlnReZ)\ ) <Retr AB < maxReZ)\ Ao(i)(B),
i=1

where “max” and “min” are taken over all permutations o of the eigenvalues
of B. If, in addition, A and B are Hermitian, then

Z)\ <trAB<Z)\ Xi(B).

=1
(Proof: See [392].) (Remark: See Proposition 8.4.13 and Fact 8.12.14.)

Fact5.10.2. Let A, B € R™*" assume that B is symmetric, and define
$(A+ AT). Then,
/\mm(C)tr B—)\min(B) [n)\mm(C’) —tr A]
<tr AB < Apax(C)tr B — Apax(B) [nAmax(C) — tr A].

(Proof: See [195].) (Remark: See Fact 5.10.1, Proposition 8.4.13, and Fact
8.12.14. Extensions are given in [451].)

C 2
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Fact 5.10.3. Let A, B € F"*™. Then,
tr AB| <) " 0i(A)i(B).
i=1

(Proof: See [466, p. 148].) (Remark: This result is due to Mirsky.)

Fact 5.10.4. Let A, B € R"*"™ and assume that AB = BA. Then,

sprad(AB) < sprad(A) sprad(B),
sprad(A + B) < sprad(A) + sprad(DB).

(Remark: If AB # BA, then both of these inequalities may be violated.
Consider A = [J}] and B=[99].)

Fact 5.10.5. Let M € R"*" be positive definite, let C, K € R"*" be
nonnegative semidefinite, and consider the equation

Mi+ Cq+ Kq=0.

Then, z(t) = [ggg }, satisfies #(t) = Ax(t), where A is the 2r x 2r matrix

A8 0 I
| -MTK —Mlo |
Furthermore, det K
e
det A =
¢ det M
and

rank A = r + rank K.
Hence, A is nonsingular if and only if K is positive definite. In this case,
e [ ~K7'C -K'M ]
I 0

Finally, let A € C. Then, X € spec(A) if and only if det(\*M +\C + K) = 0.
(Remark: M, C, K are mass, damping, and stiffness matrices. See [85].)

Fact 5.10.6. Let M,C,K € R"™ ", and assume that M is positive
definite and C' and K are nonnegative semidefinite. Furthermore, let A € C
satisfy det(A\2M + AC + K) = 0. Then, Re A < 0. Furthermore, if C and K
are positive definite, then Re A < 0.

Fact 5.10.7. Let A, B € R™ "™ be nonnegative semidefinite. Then,
every eigenvalue A of [_OA 6”] satisfies Re A = 0. (Proof: Square this ma-
trix.) (Problem: What happens if A and B have different dimensions?)
In addition, let C' € R™*"™ be (nonnegative semidefinite, positive definite).
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Then, every eigenvalue of [ % ] satisfies (Re A < 0, Re A < 0). (Problem:

Consider also [:g _AC] and [:g _AC].)

5.11 Facts on Matrix Eigenstructure

Fact 5.11.1. Let A € F™". Then, R(4) = R(A?) if and only if
indA <1.

Fact 5.11.2. Let A € F"*", and assume that A is diagonalizable.
Then, are A%, A*, A, and AT are diagonalizable. If, in addition, A is
nonsingular, then A~ is diagonalizable. (Proof: See Fact 2.13.9 and Fact
3.4.6.)

Fact 5.11.3. Let A € F™"*" be diagonalizable over F with eigenvalues
M, -5 A, and let B 2 diag(N, ..., \,). If, for all i = 1,...,n, z; € F?
is an eigenvector of A associated with )\;, then A = SBS™!, where S £
[ Tl Ty ] Conversely, if S € F™ " is nonsingular and A = SBS™!,
then, for all i = 1,...,n, col;(S) is an associated eigenvector.

Fact 5.11.4. Let A € F™*" let S € F"*" assume that S is nonsin-
gular, let A € C, and assume that row;(S™!4S) = Aei. Then, \ € spec(4),
and coly(S) is an associated eigenvector.

Fact5.11.5. Let A € F™"*™. Then, A is cyclic if and only if there exists
x € F™ such that [ r Az - A"z ] is nonsingular.

Fact5.11.6. Let A € R™*™. Then, A is cyclic and diagonalizable over
R if and only if A is simple.

Fact5.11.7. Let A = revdiag(ay,...,a,) € R™*". Then, A is semisim-
ple if and only if, for all ¢ = 1,...,n, a; and a,41—; are either both zero or
both nonzero. (Proof: See [258, p. 116], [328], or [466, pp. 68, 86].)

Fact5.11.8. Let A € F™"*™. The A has at least m real eigenvalues and
m associated linearly independent eigenvectors if and only if there exists a
nonsingular matrix S € F"*™ such that AS = SA*. (Proof: See [466, pp.
68, 86].) (Remark: See Proposition 5.5.18.) (Remark: This result is due to
Drazin and Haynsworth.)

Fact5.11.9. Let A € F"*" be normal and let mspec(A) ={\, ..., A\n}m.
Then, there exist x1,...,z, € C" such that 2jxr; = §;; for all 4,7 =1,...,n
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and

n
=1

Fact5.11.10. Let Ae F"*" assume that A is normal, and let mspec(A)
={A,..., A\n}m. Then, the singular values of A are |\i|,...,|\,|.

Fact5.11.11. Let A € F™*" be idempotent. Then, A is diagonalizable
over R, spec(A) C {0,1}, and tr A = rank A.

Fact 5.11.12. Let A € F"*™ be either involutory or skew involutory.
Then, A is semisimple.

Fact 5.11.13. Let A € R™ "™ be involutory. Then, A is diagonalizable
over R.

Fact5.11.14. Let A € F"*" be semisimple and assume that A3 = A2
Then, A is idempotent.

Fact 5.11.15. Let A € F"*" and let spec(A) = {0, \,..., A }. Then,
A is group invertible if and only if rank A = >""_, ama(\;).

Fact5.11.16. Let A € F"*™. Then, every matrix B € F"*" satisfying
AB = BA is a polynomial in A if and only if A is cyclic.

Fact 5.11.17. Let A, B € C™*" and assume that AB = BA. Then,
there exists a nonzero vector z € C" that is an eigenvector of both A and
B. (Proof: See [287, p. 51].)

Fact5.11.18. Let A, B € F"*™. Then, the following statements hold:

i) If A and B are Hermitian, then AB is Hermitian if and only if
AB = BA.

i) If A is normal and AB = BA, then A*B = BA*.

iit) If B is Hermitian and AB = BA, then A*B = BA*.

iv) If A and B are normal and AB = BA, then AB is normal.
v) If A, B, and AB are normal, then BA is normal.

vi) If A and B are normal and either A or B has the property that dis-
tinct eigenvalues have unequal absolute values, then AB is normal
if and only if AB = BA.

vii) If A and B are normal, either A or B is nonnegative semidefinite,
and AB is normal, then AB is normal if and only if AB = BA.
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(Proof: See [154,597], [259, p- 157], [262, p- 157], and [466, p- 102].)

Fact 5.11.19. Let A, B,C € F"" and assume that A and B are
normal and AC = CB. Then, A*C = CB*. (Proof: Consider [4 %] and
[86] in i) of Fact 5.11.18. See [259, p. 104] or [262, p. 321].) (Remark:
This result is the Putnam-Fuglede theorem.)

Fact5.11.20. Let A, B € R™*" be skew symmetric. Then, there exists
an orthogonal matrix S € R™*" such that

On—t)x(n—1) A2
—Al, Az

A=2S8 ST

and
Bi1 Bia

T
- B12 0l><l

T

9

B=S

where | 2 |n/2]. Consequently,
mspec(AB) = mspec(—AlzBE) U mspec(—A};Blg),

and thus every nonzero eigenvalue of AB has even algebraic multiplicity.
(Proof: See [13].)

Fact 5.11.21. Let A, B € R"™™™ be skew symmetric. If n is even,
then there exists a monic polynomial p of degree n/2 such that yap(s) =
p?(s) and p(AB) = 0. If n is odd, then there exists a monic polynomial
p(s) of degree (n —1)/2 such that xap(s) = sp’(s) and ABp(AB) = 0.
Consequently, if n is (even, odd), then x 4p is (even, odd) and (every, every
nonzero) eigenvalue of AB has even algebraic multiplicity and geometric
multiplicity of at least 2. (Proof: See [183,241].)

Fact5.11.22. Let A, B € F"*™ be projectors. Then, spec(AB) C [0, 1]
and spec(A— B) C [—1,1]. (Proof: See [19] or [466, p. 147].) (Remark: The
first result is due to Afriat.)

Fact 5.11.23. Let ¢(t) denote the displacement of a mass m > 0 con-
nected to a spring k£ > 0 and dashpot ¢ > 0 and subject to a force f(t).
Then, q(t) satisfies

m(t) +cq(t) + kq(t) = f(t)
or

k
—q
m

()= f0)

Now, define the natural frequency w, = \/k/m and, if k > 0, the damping

() + () +
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ratio ¢ £ ¢/2v/km to obtain

. . 1

Q(t) + 2wnd(t) + wig(t) = —f(2).

If k = 0, then set w, = 0, and Cw, = ¢/2m. Next, define z1(t) £ ¢(t) and
x2(t) £ ¢(t) so that this equation can be written as

8112 8] Lo
0 1
—w? —2(w,

The eigenvalues of the companion matrix A, = [ } are given by

{_Cwn — JwWd, _Cwn +jwd}m7 0 S g S 17

{(=¢ = VT =Dun, (¢ + V@ =T}, ¢>1,

where wq £ wpy/1 — (2 is the damped natural frequency. The matrix A, has
repeated eigenvalues in exactly two cases, namely,

{{an}ma Wn = 07

{_wna _wn}m7 C =1

In both of these cases the matrix A, is defective. In the case w, = 0,
the matrix A is also in Jordan form, while in the case {( = 1, it follows
that A, = SA;S~!, where S £ [_1 81} and Aj is the Jordan form matrix

Wn

Ay & [78’“ _}U} If A. is not defective, that is, if wy, # 0 and ¢ # 1, then
the Jordan form Aj of A. is given by

[ —(Cwn + Jwq 0 ]

mspec(A¢) =

mspec(A.) =

0<C<1,w £0,
0 —Cwn — Jwa =¢ n ¥

i <_<_\/C2_1)Wn 0
0 (~¢+VE=T)wn
In the case 0 < ¢ < 1 and wy, # 0, define the real normal form

An A2 |: _Cwn wd :| ]

—wq —Cwn

&
>

, ¢(>1,wy #0.

The matrices A¢, Ay, and A, are related by the similarity transformations

A. = S14557 = S9A,S,1, Ay = S3A,857,
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where
1 1 —Cwn —Jwg —1
5, A Cospt=L " ,
—Cwn + Jwg  —Cwn — Jwy 2w | (wn—gwg 1
1 1 0 _ wq 0
S, L = , Syt = 7
2 wd[—ﬁwn Wd} 2 [Cwn 1]
1 [1 — 1 [ 1 1 ]
P , S =w, )
3 2wd |: 1 3 :| 3 d 7 -7
In the case ( > 1 and wy, # 0, the matrices A. and Aj are related by
Ac = S4A38,",
where
1 1 —Cwpn —Jwq  —1
Sy 2 . Sit=-L .
—Cwn +Jwg  —Cwn — Jwq 2wq Cwn — Jwd 1

Finally, define the energy coordinates matrix

N

—wy  —2(wy

Then, A, = S5A4.55", where

s5é\/§[1/6un H

5.12 Facts on Companion, Vandermonde, and
Circulant Matrices

Fact5.12.1. Let p € F[s], where p(s) = 8" + 3,-18" "' + - - + By, and

~—_

define Cy(p), C:(p), Ci(p), C\(p) € F™*™ by
[0 1 o - 0 0
0 0 1 0 0
0 0 0 0 0
Ch(p) £ . : . . ) ;
0 0 0 0 1
| —Bo —B1 P2 -+ —Pn2 —Bna |
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[0 0 0 0 —05
1 0 0 0 -5
0 1 0 0 —fB
Cr(p) =
0 _ﬁn72
(00 0 - 1 —B |
i _ﬁnfl ﬁnf2 : _52 _ﬂl
1 0 0 0
Cy(p) =
0 0 .0 0
0
L 0 0 1
[ — B, 1 0 0 0
—Bp_a 0 0 0 0
Ci(p) £ : :
—B2 0 0 1
—B 0 0 0 1
—By 0 0 0
Then, - -
Ci(p) = Cy(p), Cilp) = Cy (p),
Ci(p) = ICyw(p)I, Ci(p) = IC(p)1,
Ci(p) = CL(p), Ci(p) = CX(p),
and
XCb(p) = XCr(p) = XCt(p) = XCl(p) =D
Furthermore, )
Cr(p) = SCy(p)S™
and

Ci(p) = SCi(p)S~"

CHAPTER 5
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where S, S e Frxn

and

are the Hankel matrices

B B Pn-1 1
B2 B 1 0
S 2 : :
8,4 1 0 0
L 1 0 u
[0 0 0 1
0 0 1 OGha
SIsi=| : R
0 1 B3 Do
L 1 Bn B P

195

(Remark: (Cy(p), Ci(p), Ci(p), Ci(p)) are the (bottom, right, top, left) com-
panion matrices. See [64, p. 282] and [321, p. 659].) (Remark: S = B(p, 1),
where B(p,1) is a Bezout matrix. See Fact 4.8.6.)

Fact 5.12.2. Let p € F[s], where p(s) = s + B, 15" + -+ + Bo,
assume that Gy # 0, and let

(1>

Cv(p)

Then,

Colp) = Cu(p)

where fi(s) = 3,'s

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 1

| B0 =B B2 —Bn—2 —Bna |

[ —51/Bo —Bn—2/B0 —Bn-/Bo —1/6o ]
1 0 0 0
0 1 0 0
0 0 1 0 |

"p(1/s). (Remark: See Fact 4.9.6.)

Fact 5.12.3. Let A,..., A\, € F, and define the Vandermonde matrix



matrix2 November 19, 2003

196 CHAPTER 5

V(AL ..., An) € FPX by

1 1 1
A Ao - A
V(AL An) 2 N A
1y+evyAn) = . .
)&3 )\% )\%

R

Then,
det V(Ar,..., An) = [T = Ap)-
>]

Thus, V(Ay,. .., Ay) is nonsingular if and only if A, ..., A, are distinct. (Re-
mark: This result yields Proposition 4.5.3. Let z1, ..., 2 be eigenvectors of
V(A1, ..., An) associated with distinct eigenvalues Aj, ..., A of V(A1, ..., Ay).
Assume aixy + -+ - + agwg, = 0 so that Vi, ..., \)(aqzy + - - + apag) =
N+ +ogp Nz, = 0foralli =0,1,...,k—1. Let X £ [21 -+ ap | €
Fr*k and D £ diag(ay,...,ox). Then, XDVT(\y, ..., \x) = 0, which
implies that XD = 0. Hence, a;z; = 0 for all ¢« = 1,...,k, and thus
alzagz'”:akzo.)

Fact5.12.4. Let A\i,..., A\, € F and, for i =1,...,n, define

pi(s) = [](s = ).

j=1
J#i
Furthermore, define A € F™*™ by
pi(0) Fp0) o il 0)
AL
n—1
| pal0) FPL(0) oo el M) |

Then,
diag[pi(s),...,pn(s)] = AV (s, ..., s).

(Proof: See [202, p. 159].)

Fact 5.12.5. Let p € F[s], where p(s) = s + 3, 18" ' +- - - + 15 + fo,
and assume that p has distinct roots Aj, ..., A, € C. Then,

Cp) =V, ..., A)diag(M, .., M) V(- ).

Fact 5.12.6. Let A € F"*™. Then, A is cyclic if and only if A is
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similar to a companion matrix. (Proof: The result follows from Corollary

5.3.4. Alternatively, let spec(A) = {\,...,\.} and A = SBS™!, where
S € C™ " is nonsingular and B = diag(By, ..., B;) is the Jordan form of A,

where, forall: =1,...,r, B; € C™*™ and A, ..., \; are the diagonal entries
of B;. Now, define R € C™*" by R & [ Ry -+ R, ] € C™" where, for
alli=1,...,r, R; € C"™™ is the matrix
1 0 e 0 i
Ai 1 e 0
RN )
- —1\ yn— -1\ \n—n;
L Xz'l ' (n1 )XZ 2. (:,.,—1)/\? " d
Then, since A, ..., A, are distinct, it follows that R is nonsingular. Further-
more, C = RBR™! is in companion form and thus A = SR'CRS. If n; = 1
for all i = 1,...,r, then R is a Vandermonde matrix. See Fact 5.12.3 and
Fact 5.12.5.)
Fact5.12.7. Let ag,...,a,—1 € F, and define circ(ag, . . ., ap—1) € F**"
by _ -
ao ai az -+ Gp-2 Qap-1
an—1 ao a -+ Gp-3 Qan-2
. A An—2 Gp-1 Gy - Qp_4 Gp-3
circ(ag, .. .,an-1) =
a9 as ay . ao al
| a1 az a3z -+ Ap-1 GO

A matrix of this form is circulant. Furthermore, define the primary circulant

01 0 - 0 0
00 1 . 0 0
P 2 cire(0,1,0,...,002 |V 0 0 00
00 0 . 0 1
1.0 0 -~ 0 0

Finally, define p(s) £ a,_15" "'+ - -+ais+ag. Then, the following statements
hold:

i) circ(ag,...,an—1) = p(P).
it) If A, B € F™*™ are circulant, then A and B commute and AB is
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circulant.
i11) If A is circulant, then A* is circulant.

iw) If A is circulant and k > 0, then AF is circulant.

vi) A € F™*" ig circulant if and only if A = PAPT.

)
)
v) If A is nonsingular and circulant, then A= is circulant.
)
vii) P is an orthogonal matrix, and P" = I,.

) P

Vits C(p), where p € F[s] is defined by p(s) = s" — 1.

ix) If A € F™*™ is circulant, then A is reverse symmetric, Toeplitz, and
normal.

z) A € F™™ is normal if and only if A is unitarily similar to a normal

matrix.

Next, let 8 £ €2/ and define the Fourier matriz S € C* ™ by

11 11
N o 62 ... gt
Sén_1/2V(1,9,...,9"_1):ﬁ 1 62 ¢t ... g2
_1 anl 9n72 0 |

Then, the following statements hold:
i) S is symmetric and unitary.
i) St =1I,.
ii1) spec(S) ={1,—-1,3, —3}.
)

iw) ReS and Im S are symmetric, commute, and satisfy (ReS)?

(Im )2 = I,.
v) SPS™! = diag(1,6,...,6" ).
vi) Scirc(ag, . .., an-1)S™" = diag[p(1),p(8),...,p(6" )]
vii) mspec|circe(ag, ..., an1)] = {p(1),p(8),p(6?),...,p(60" )}, -
viii) spec(P) = {1,0,6%,...,6"'}.

(Proof: See [7, pp. 81-98], [163, p. 81], and [629, pp. 106-110].) (Remark:
Circulant matrices play an important role in digital signal processing, specif-
ically, in the efficient implementation of the fast Fourier transform. See [415,
pp. 356-380] and [569, pp. 206, 207].) (Remark: If a real Toeplitz matrix
is normal, then it must be either symmetric, skew-symmetric, circulant, or
skew circulant. See [34] and the references therein.)
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5.13 Facts on Matrix Factorizations

Fact 5.13.1. Let A € F"*". Then, A is normal if and only if there
exists a unitary matrix S € F"*™ such that A* = AS. (Proof: See [466, pp.
102, 113].)

Fact 5.13.2. Let A € F"™*™ and B € F"*". Then, there exist C €
F™*™ and D € F™*™ such that A = CD and B = DC if and only if the
following statements hold:

i) The Jordan blocks associated with nonzero eigenvalues are identical

in A and B.
i1) Let ny > ng > -+ > n, denote the sizes of the Jordan blocks of A
associated with 0 € spec(A), and let my > mg > -+ > m, denote

the sizes of the Jordan blocks of B associated with 0 € spec(B),
where n; = 0 or m; = 0 as needed. Then, |n; — m;| < 1 for all
i=1,...,r.

(Proof: See [315].) (Remark: See Fact 5.13.3.)

Fact 5.13.3. Let A, B € F"*™ be nonsingular. Then, A and B are
similar if and only if there exist nonsingular matrices C, D € F"*™ such that
A =CD and B = DC. (Proof: Sufficiency follows from Fact 5.8.4. Necessity
is a special case of Fact 5.13.2.)

Fact 5.13.4. Let A, B € F™*" be nonsingular. Then, det A = det B
if and only if there exist nonsingular matrices C, D, E € R™*" such that
A = CDE and B = EDC. (Remark: This result is due to Shoda and
Taussky-Todd. See [110].)

Fact 5.13.5. Let A € F™"*™, Then, there exist B,C' € F"*" such that
B is unitary, C' is upper triangular, and A = BC. If, in addition, A is nonsin-
gular, then there exist unique B, C' € F™"*™ such that B is unitary, C'is upper
triangular with positive diagonal entries, and A = BC. (Proof: See [287, p.
112] or [484, p. 362].) (Remark: This result is the QR decomposition. The
orthogonal matrix B is constructed as a product of elementary reflectors.)

Fact5.13.6. Let A € F™*™ and assume that rank A = m. Then, there
a unique matrix B € F™™ and a matrix C € F™*™ guch that B*B = I,
C' is upper triangular with positive diagonal entries, and A = BC. (Proof:
See [287, p. 15] or [484, p. 206].) (Remark: C' € UT,(n). See Fact 3.10.3.)
(Remark: This result is Gram-Schmidt orthonormalization.)

Fact 5.13.7. Let A € F"*" let r £ rank A, and assume that the first
r leading principal subdeterminants of A are nonzero. Then, there exist
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B,C € F™™ such that B is lower triangular, C' is upper triangular, and
A = BC. Either B or C can be chosen to be nonsingular. Furthermore,
both B and C' are nonsingular if and only if A is nonsingular. (Proof:
See [287, p. 160].) (Remark: This result is the LU decomposition.)

Fact 5.13.8. Let A € F*™*", and let = rank A. Then, A is range
Hermitian if and only if there exist a nonsingular matrix S € F"*™ and a
nonsingular matrix B € F"*" such that

B 0 |«
A=S [ 0 0 ]S .
(Remark: S need not be unitary for sufficiency. See Corollary 5.4.4.) (Proof:

Use the QR decomposition Fact 5.13.5 to let S £ SR, where S is unitary
and R is upper triangular.)

Fact 5.13.9. Let A € F™*™. Then, A is nonsingular if and only if A
is the product of elementary matrices. (Problem: How many factors are
needed?)

Fact5.13.10. Let A € F**™ be a projector, and let r = rank A. Then,

there exist nonzero x1,...,x,—, € F" such that xjz; = 0 for all 7 # j and
such that
n—r
A= H (I — (2fz;) "]
i=1

(Remark: Every projector is the product of mutually orthogonal elementary
projectors.) (Proof: A is unitarily similar to diag(1,...,1,0,...,0), which
can be written as the product of elementary projectors.)

Fact5.13.11. Let A € F™*™. Then, A is a reflector if and only if there
exist m < m nonzero vectors 1, ..., T, € F" such that zjz; = 0 for all 7 # j
and such that

A= H [I- 2($:l‘1)_11‘1$:<] .
=1

In this case, m is the algebraic multiplicity of —1 € spec(A). (Remark:
Every reflector is the product of mutually orthogonal elementary reflectors.)
(Proof: A is unitarily similar to diag(+1,...,+1), which can be written as
the product of elementary reflectors.)

Fact 5.13.12. Let A € F™*". Then, A is unitary if and only if there
exist nonzero vectors x1, ..., T, € F"™ such that

A= H (I —2(xfz;) 'wial].
i=1
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(Remark: Every unitary matrix is the product of elementary reflectors. This
factorization is a result of Cartan and Dieudonne. See [45, p. 24] and
[498,564]. The minimal number of factors is unsettled; see Fact 3.7.3. See
Fact 3.6.17.)

Fact 5.13.13. Let A € R™", where n > 2. Then, A is orthogonal if
and only if there exist 61,...,6, € R and j1,...,jn, k1,..., kn € {1,...,n}
such that

A = sign(det A) [ [ P(6:, i, ki),
=1
where
P(0,j,k) & I, + [(cos0) — 1)(Ejj + Ep) + (sin0)(Ejx — Ey ;).

(Remark: P(6,7,k) is a plane or Givens rotation. See Fact 3.6.17.) (Prob-
lem: Generalize this result to C"*".)

Fact 5.13.14. Let A € F"*". Then, A>A = A*A? if and only if there
exist a projector B € F"*"™ and a Hermitian matrix C' € F"*™ such that

A = BC. (Proof: See [474].)

Fact 5.13.15. Let A € R"*". Then, |det A| = 1 if and only if A is the
product of n+ 2 or fewer involutory matrices that have exactly one negative
eigenvalue. In addition, the following statements hold:

i) If n =2, then 3 or fewer factors are needed.

it) If A # ol for all & € R and det A = (—1)", then n or fewer factors
are needed.

iii) If det A = (—1)"*1, then n + 1 or fewer factors are needed.

(Proof: See [133,472].) (Remark: The minimal number of factors for unitary
A is given in [182].)

Fact 5.13.16. Let A € F"*", and define 79 £ n and 7, = rank A* for
all k =1,2,.... Then, there exists B € C"*" such that A = B? if and only
if the sequence {ry — ry41}52, does not contain two successive occurrences
of the same odd integer and, if 7o — r1 is odd, then rg + ro > 1 + 271. Now,
assume that A € R"*". Then, there exists B € R™*" such that A = B? if
and only if the above condition holds and, for every negative eigenvalue A\ of
A and for every positive integer k, the Jordan form of A has an even number
of k x k blocks associated with A. (Proof: See [289, p. 472].) (Remark: See
Fact 11.14.31.) (Remark: For all [ > 2, A = N; does not have a complex
square root.) (Remark: Uniqueness is discussed in [314]. mth roots are
considered in [468].)
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Fact 5.13.17. Let A € C™*" be group invertible. Then, there exists
B € C™" such that A = B2

Fact 5.13.18. Let A € F"*" be nonsingular and define {FP,}32, C
Fom and {Qx}52, C F™" by

POéA7 QOéL

and, for k € P,
P 24P+ Q)Y),
Qr+1 = 2(Qr+ PY).
Then,
B2 lim Py
k—o00

exists and satisfies B2 = A. Furthermore,
lim Q, = A%
k—o00

(Proof: See [170,277].) (Remark: This sequence is a modified Newton-
Raphson algorithm based on the matriz sign function. See [327].) (Remark:
See Fact 8.7.20.)

Fact 5.13.19. Let A € C™ ™ be nonsingular. Then, there exist a
semisimple matrix S; € C"*" and a nilpotent matrix Sy € C™*™ such that
5189 = 5357 and A = S1(I+S2). (Proof: The result follows from the Jordan
decomposition.)

Fact 5.13.20. Let A € F"*" be nonnegative semidefinite and let r £
rank A. Then, there exists B € F"*" such that A = BB*.

Fact 5.13.21. Let A € F™*" and let k € P. Then, there exists a
unique matrix B € F"*™ such that
A= B(B*B)*.
(Proof: See [461].)
Fact 5.13.22. Let A € F™*". Then, there exist symmetric matrices

B,C € F™ " one of which is singular, such that A = BC. (Proof: See [466, p.
82].) (Remark: Note that

Bi P2 1 0 1 0 —By 0 0
Bo 1 0 0 0 1 = 0 B 1
1 0 0 —Bo —f1 —o 0 1 0

and use Theorem 5.2.3.) (Remark: This result is due to Frobenius. The
identity is a Bezout matriz factorization; see Fact 4.8.6. See [104,105,260].)
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(Remark: Symmetric, not Hermitian.)

Fact 5.13.23. Let A € C™*™. Then, det A is real if and only if A is
the product of four Hermitian matrices. Furthermore, four is the smallest
number of factors in general. (Proof: See [618].)

Fact 5.13.24. Let A € R"*™. Then, the following statements hold:

i) A is the product of two nonnegative-semidefinite matrices if and
only if A is similar to a nonnegative-semidefinite matrix.

i1) If Aisnilpotent, then A is the product of three nonnegative-semidef-
inite matrices.

i17) If A is singular, then A is the product of four nonnegative-semidef-
inite matrices.

iv) det A > 0 and A # ol for all @ < 0 if and only if A is the product
of four positive-definite matrices.

v) det A > 0 if and only if A is the product of five positive-definite
matrices.

(Proof: [48,260,617,618].) (Remark: See [618] for factorizations of complex
matrices and operators.) (Example:

B BRI EE AL
Fact 5.13.25. Let A € R™*". Then, the following statements hold:
i) A = BC, where B € 8" and C € N", if and only if A? is diagonal-
izable over R and spec(A) C [0, 00).
it1) A = BC, where B € S™ and C € P", if and only if A is diagonaliz-
able over R.

i11) A = BC, where B,C € N™, if and only if A = DE, where D € N"
and E € P™.

iv) A = BC, where B € N" and C' € P", if and only if A is diagonal-
izable over R and spec(A) C [0, 00).
v) A= BC, where B,C € P", if and only if A is diagonalizable over R
and spec(A) C [0, 00).
(Proof: See [286,614,617].)
Fact 5.13.26. Let A € R™*" be singular and assume that A is not a

2 x 2 nilpotent matrix. Then, there exist nilpotent matrices B,C' € R™*™
such that A = BC' and rank A = rank B = rank A. (Proof: See [616].)
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Fact5.13.27. Let A € R™*" be nonsingular. Then, A is similar to A~
if and only if A is the product of two involutory matrices. If, in addition,
A is orthogonal, then A is the product of two reflectors. (Proof: See [53,
179,612,613] or [466, p. 108].) (Problem: Construct these reflectors for
A=[ oty me] )

Fact 5.13.28. Let A € R™*"™. Then, |det A| =1 if and only if A is the
product of four or fewer involutory matrices. (Proof: [54,253,517].)

Fact5.13.29. Let A € R™*". Then, A is the identity or singular if and
only if A is the product of n or fewer idempotent matrices. Furthermore,
rank(A — I) < kdef(A), where k € N, if and only if A is the product of k
idempotent matrices. (Proof: See [55].) (Problem: Explicitly construct the

two factors when rank A = 1 and A is not idempotent. Example: [20] =

[6olli6]")

Fact 5.13.30. Let A € R™*" where n > 2. Then, A is the product of
two commutators. (Proof: See [618].)

Fact 5.13.31. Let A € R™*" and assume that det A = 1. Then, there
exist nonsingular matrices B,C' € R"*" such that A = BCB'C. (Proof:
See [507].) (Remark: The product is a multiplicative commutator. This
result is due to Shoda.)

Fact5.13.32. Let A € R™*" be orthogonal and assume that det A = 1.
Then, there exist reflectors B, C € R™" such that A = BCB~'C~!. (Proof:
See [544].)

Fact 5.13.33. Let A € F™*™ be nonsingular. Then, there exists an
involutory matrix B € F"*" and a symmetric matrix C' € F"*™ such that
A = BC. (Proof: See [240].)

Fact 5.13.34. Let A € F™*", and assume that n is even. Then, the
following statements are equivalent:
i) A is the product of two skew-symmetric matrices.
i1) Every elementary divisor of A has even algebraic multiplicity.
iii) There exists B € F*/2*"/2 such that A is similar to [5 §].
(Remark: In 7) the factors are skew symmetric even when A is complex.)

(Proof: See [241,618].)

Fact 5.13.35. Let A € R™™"™ be skew symmetric. If n = 4,8,12...,
then A is the product of five or fewer skew-symmetric matrices. If n =
6,10,14, ..., then A is the product of seven or fewer skew-symmetric matri-
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ces. (Proof: See [348].)

Fact 5.13.36. Let A € F"*". Then, there exist a symmetric matrix
B € F™ " and a skew-symmetric matrix C' € F™*" such that A = BC'if and
only if A is similar to —A. (Proof: See [487].)

Fact 5.13.37. Let A € F*™*™_ and let r £ rank A. Then, there exist
B € F"" and C € R"™™ such that A = BC. Furthermore, rank B =
rank C' = r.

Fact 5.13.38. Let A € F*»*™ where n < m. Then, there exist
M € F"*" and S € F"*™ such that M is nonnegative semidefinite, S
satisfies SS* = I,, and A = MS. Furthermore, M is given uniquely by
M = (AA*)l/ 2 If, in addition, rank A = n, then S is given uniquely by
S = (AA*)71/2A.

Fact 5.13.39. Let A € F™"*™ where m < n. Then, there exist M €
Fmx™ and S € F™™ such that M is nonnegative semidefinite, S satisfies
S*S = I, and A = SM. Furthermore, M is given uniquely by M = (A*A)l/Q.
If, in addition, rank A = m, then S is given uniquely by S = A(A*4)~1/2.

Fact 5.13.40. Let A € F™*™ be nonsingular. Then, these exist unique
matrices M, S € F™*"™ such that A = MS, M is nonnegative semidefinite,
and S is unitary. Furthermore, S is given uniquely by S = (A4A4*)~/24. In
addition, A is nonsingular if and only if M is unique. In this case, M is
given by M = (AA*)Y/2.

Fact 5.13.41. Let M, My € F™*™ be positive definite, let S1,Sy €
F™*™ be unitary, and assume that MS; = SoMy. Then, S; = So. (Proof:

Let A = M;Sy = SyMy. Then, Sy = (SoM2S5) "/ *SoMy = S,.)

Fact 5.13.42. Let A € F™*™ be nonsingular and let M,S € F*"*™ be
such that A = MS, M is nonnegative semidefinite, and S is unitary. Then,
A is normal if and only if MS = SM. (Proof: See [287, p. 414].)

5.14 Notes

It is sometimes useful to define block-companion form matrices in
which the scalars are replaced by matrix blocks [231]. The companion form
illustrates but one connection between matrices and polynomials. Addi-
tional connections are given by the comrade form, Leslie form, Schwarz
form, Routh form, confederate form, and congenial form. See [61,64] and
Fact 11.14.23 and Fact 11.14.24 for the Schwarz and Routh forms.
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The multi-companion form and the elementary multi-companion form
are generally know as rational canonical forms, while the multi-companion
form is traditionally called the Frobenius canonical form [66]. The derivation
of the Jordan form by means of the elementary multi-companion form and
the hypercompanion form follows [456]. Corollary 5.3.8, Corollary 5.3.9,
and Proposition 5.5.18 are given in [104,105, 534,535, 538]. Corollary 5.3.9
is due to Frobenius. Canonical forms for congruence transformations are
given in [360, 548].



matrix2 November 19, 2003

Chapter Six

Generalized Inverses

Generalized inverses provide a useful extension of the matrix inverse
to singular matrices and to rectangular matrices that are neither left nor
right invertible.

6.1 Moore-Penrose Generalized Inverse

Let A € F™*™, If A is nonzero, then, by the singular value decom-
position Theorem 5.6.3, there exist orthogonal matrices S; € F™*" and
Sy € F™m*™ gyuch that

B 0
A—S1[ 0 0 }Sg, (6.1.1)
where B £ diag[oy(A),...,0.(A)], r £ rank A, and o1(A) > o3(A) > --- >
0,(A) > 0 are the positive singular values of A. In (6.1.1), some of the bor-
dering zero matrices may be empty. Then, the (Moore-Penrose) generalized
inverse A* of A is the m x n matrix

1
At 2 5;[ P ]5{. (6.1.2)

If A = Opxm, then AT £ 0,4, while if m = n and det A # 0, then
At = A7!. In general, it is helpful to remember that AT and A* are the
same size. It is easy to verify that AT satisfies

AATA = A, (6.1.3)
ATAAT = AT, (6.1.4)
(AAT)* = AAT, (6.1.5)
(ATA)* = ATA. (6.1.6)

Hence, for all A € F™*™ there exists a matrix X € F"™*" gatisfying the four
conditions



matrix2 November 19, 2003

208 CHAPTER 6
AXA=A, (6.1.7)

XAX = X, (6.1.8)

(AX)* = AX, (6.1.9)

(XA)* = XA. (6.1.10)

We now show that X is uniquely defined by (6.1.7)-(6.1.10).

Theorem 6.1.1. Let A € F**™. Then, X = AT is the unique matrix
X € F™*™ satistying (6.1.7)-(6.1.10).

Proof. Suppose there exists X € F™*" satisfying (6.1.7)-(6.1.10).
Then,

X = XAX = X(AX)* = XX*A* = X X*(AATA)* = X X AATA*
= X(AX)*(AAT)* = XAXAAT = XAAT = (XA)AT = A*X*AT
= (AATAPXHAT = AATAX AT = (ATA)*(XA)AT
= ATAXAAT = ATAAT = AT, O

Given A € F™™ X € F™*" is a (1)-inverse of A if (6.1.7) holds, a
(1,2)-inverse of A if (6.1.7) and (6.1.8) hold, etc.

Proposition 6.1.2. Let A € F™*™ and assume that A is right invert-
ible. Then, X € F™*™ ig a right inverse of A if and only if X is a (1)-inverse
of A. Furthermore, every right inverse (or, equivalently, every (1)-inverse)
of A is also a (2,3)-inverse of A.

Proof. Suppose that AX = I, that is, X € F™*"™ is a right inverse of
A. Then, AXA = A, which implies that X is a (1)-inverse of A. Conversely,
let X be a (1)-inverse of A, that is, AXA = A. Then, letting X e Fmxn
denote a right inverse of A, it follows that AX = AXAX = AX = I,.
Hence, X is a right inverse of A. Finally, if X is a right inverse of A, then
it is also a (2,3)-inverse of A. O

Proposition 6.1.3. Let A € F"*™_ and assume that A is left invertible.
Then, X € F™*" is a left inverse of A if and only if X is a (1)-inverse of A.
Furthermore, every left inverse (or, equivalently, every (1)-inverse) of A is
also a (2,4)-inverse of A.

It can now be seen that A% is a particular (right, left) inverse when A
is (right, left) invertible.

Corollary 6.1.4. Let A € F»*™_ If A is right invertible, then AT is
a right inverse of A. Furthermore, if A is left invertible, then A" is a left
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inverse of A.

The following result provides an explicit expression for AT when A is
right or left invertible. It is helpful to note that A is (right, left) invertible
if and only if (AA*, A*A) is positive definite.

Proposition 6.1.5. Let A € F"*™. If A is right invertible, then

AT = A*(AA)L (6.1.11)
If A is left invertible, then
AT = (AA) A%, (6.1.12)

Proof. The result follows by verifying (6.1.7)-(6.1.10) with X = AT,
U

Proposition 6.1.6. Let A € F"*™. Then, the following statements
hold:
= 0 if and only if AT = 0.
)t = A

i1) (A
AT =Ar,

i) A

)

i)

i) (AT)" = (A")T = AT,

W) (AT = (4F)" £ A+
) R(A) = R(AAT) = R(AA") = N(I — AA™).
)
)
)

(%

R
R(A%) = R(AA) = R(A®) = R(A*A).

N(A) = N(ATA) = N(A*A) = R(I — ATA).

i) N(A*) =N(AT) = N(AAT) = R(I — AAT).

z) AAT is the projector onto R(A).

zi) AYA is the projector onto R(A*).

zii) I — AYA is the projector onto N(A).

ziii) I — AA™T is the projector onto N(A*).

)z € R(A) if and only if x = AATx.

) rank A = rank AT = rank AAT = rank ATA = tr AAT = tr ATA.
)

)

)

V1l

Vi1l

TV
TV
zvi) (AA)T = ATAT*,
zvir) (AA*)T = ATHAT.
AAY = A(AA) A,

TV
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riz) ATA = A*(AA*)TA.

1) A= AAA*T = A*TA*A.

zz1) A* = AMAAT = ATAA*.

zxii) AT = A*(AA*)T = (A*A)TA*.

zziig) AT = (AA*)TA = A(A*A)T.

zziv) A = A(AA)TAA = AAA(AA)T.

zzv) A = AA*(AA*)TA = (AA*)TAA*A.

zzvi) If S; € F™*™ and Sy € F™*™ are unitary, then (S145)" = S5 ATST.
)

zzvii) If A is (normal, Hermitian, nonnegative semidefinite, positive defi-
nite), then so is A™.

zzviii) A is range Hermitian if and only if AAT = A™A.

Theorem 2.6.3 showed that the equation Az = b, where A € F"*™
and b € F”, has a solution x € F" if and only if rank A = rank [ A b ]
In particular, Az = b has a unique solution x € F'™ if and only if rank A =
rank [ A b ] = m, while Az = b has infinitely many solutions if and only

if rank A = rank [ A b ] < m. We are now prepared to characterize these
nonunique solutions.

Proposition 6.1.7. Let A € F"*™ and b € F™. Then, the following
statements are equivalent:
i) There exists x € F™ satisfying Ax = b.
it) rank A =rank [ A b ].
iii) be R(A).
i) AATH =b.
Now, assume that i)-iv) are satisfied. Then, the following statements hold:

v) If x € F™ satisfies Ax = b, then

r=ATb+ (I — ATA)z. (6.1.13)
vi) For all y € F™, x € F"™ given by
r=ATb+ (I - ATA)y (6.1.14)

satisfies Ax = b.

vii) Let © € F™ be given by (6.1.14), where y € F™. Then, y = 0
minimizes z*z.

viii) Assume rank A = m. Then, there exists a unique x € F™ satisfying
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Az = b given by = Atb. If, in addition, A € F*™ is a left
inverse of A, then A¥b = Ath.

ir) Assume rank A = n, and let AR € F™*" be a right inverse of A.
Then, x = ARb satisfies Az = b.

Proof. The equivalence of 7)-iii) is immediate. To prove the equiv-
alence of iv), note that if there exists x € F" satisfying Ax = b, then
b= Ax = AATAx = AA'b. Conversely, if b = AA'bH, then x = ATh satisfies
Az =b.

Now, suppose that i)-iv) are satisfied. To prove v) let x € F™ satisfy
Ax = bsothat ATAx = A*b. Hence, v = x+ATb—ATAz = ATb+(1—-ATA)x.
To prove vi) let y € F™, and let * € F™ be given by (6.1.14). Then,
Ax = AATH = b. To prove vii) let y € F™, and let € F" be given by
(6.1.14). Then, z*z = b*AT*ATb + y*(I — ATA)y. Therefore, z*r is minimized
by y = 0. To prove wiii) suppose that rank A = m. Then, A is left invertible,
and it follows from Corollary 6.1.4 that AT is a left inverse of A. Hence,
it follows from (6.1.13) that x = ATb is the unique solution to Az = b. In
addition, z = A"b. To prove iz) let x = ARb and note that AARb =b. [

Definition 6.1.8. Let A € F**™ B ¢ F**! C € F¥*™ and D e FkF*!,
and define A £ A B e Ft+k)x(m+l)  Then, the Schur complement

C D
D|A of D with respect to A is defined by

DIA& A— BD™C. (6.1.15)
Likewise, the Schur complement A|A of A with respect to A is defined by
AJA & D - CA'B. (6.1.16)

6.2 Drazin Generalized Inverse

We now introduce a different type of generalized inverse, which applies
only to square matrices but which is more useful in certain applications. Let
A € F™»*™ Then, A has a decomposition

0]l
A—S[ ; Jz]s , (6.2.1)

where § € F™*™ is nonsingular, J; € F"™*™ is nonsingular, and Jo €
F(n=m)x(n=m) ig nilpotent. Then, the Drazin generalized inverse AP of A is
the matrix

-1
AP & 5[ J(l) 8 ]Sl. (6.2.2)
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Let A € F*»*™, Then, it follows from Definition 5.5.1 that ind A =
inda(0). If A is nonsingular, then ind A = 0, whereas ind A = 1 if and only
if A is singular and the zero eigenvalue of A is semisimple. In particular,
ind 0, = 1. Note that ind A is the size of the largest Jordan block of A
associated with the zero eigenvalue of A.

It can be seen that AP satisfies

APAAP = AP, (6.2.3)
AAP = APA, (6.2.4)
ARHIAD — gk (6.2.5)

where k = ind A. Hence, for all A € F™*" such that ind A = k there exists
a matrix X € F™*" satisfying the three conditions

XAX = X, (6.2.6)
AX = XA, (6.2.7)
ARFIX = AR, (6.2.8)

We now show that X is uniquely defined by (6.2.6)-(6.2.8).

Theorem 6.2.1. Let A € F"*" and let k =2 ind A. Then, X = AP is
the unique matrix X € F"*" satisfying (6.2.6)-(6.2.8).

Proof. Let X € F"*" satisfy (6.2.6)-(6.2.8). If k¥ = 0, then it fol-
lows from (6.2.8) that X = A~'. Hence, let A = S[‘Q }2]5*1, where
k=indA > 1, § € F™™" is nonsingular, J; € F™*™ is nonsingular, and

Jo € F(n—m)x(n=m) ig pilpotent. Now, let X 2 5718 = [;((1 );2} be parti-

tioned conformably with S~AS = [ 9]. Since, by (6.2.7), AX = XA, it
follows that Jle = lel, J1X12 :AX12J2, Jngl = XglJl, aAnd JQXQ = XQJQ.
Since J§ = 0, it follows that JX19J5™ = 0, and thus Xj2J5' = 0. By
repeating this argument, it follows that AJ1X12J2 =0, and tbus XioJo =0,
which implies that J1X72 = 0 and thus Xio = 0. Similarly, X5; = 0, so that

X = [)gl )g ] Now, (6.2.8) implies that J{H'l)g'l = JF and hence X; = J
Next, (6.2.6) implies that X0 o Xo = Xo, which, together with Jo Xy = XQJQ,
yields X22J2 = X5. Consequently, 0 = X;Jéc = X2J§_1 and thus, by repeat-

ing this argument, X5 = 0. Therefore, AP = S[ng 8} S = S[)gl 8} S =

SXS1=Xx. O

Let A € F™*" and assume that ind A < 1 so that A is group invertible.
In this case, the Drazin inverse AP is denoted by A#, which is the group
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generalized inverse of A. Therefore, A# satisfies

ATAAT = A7, (6.2.9)
AA" = A%A, (6.2.10)
AATA = A, (6.2.11)
while A% is the unique matrix X € F™*" satisfying
XAX = X, (6.2.12)
AX = XA, (6.2.13)
AXA = A. (6.2.14)

Proposition 6.2.2. Let A € F™*™ and assume that A is group invert-
ible. Then, the following statements hold:

= 0 if and only if A% = 0.
i) (AF)* = A.

1

) A
)
i) If A is idempotent, then A% = A.
iv) AA7 and A7A are idempotent.
v) (AT)F = (4#)T.
) rank A = rank A% = rank AA" = rank A%A.
) R(A) = R(AAT) = N(I — AA?) = R(AAT) = N(I — AA™).
viil) N(A) = N(AA?) = R(I — AA?) = N(ATA) = R(I — A*A).
iz) AA* is the idempotent matrix onto R(A) along N(A).

V1

V1l

An alternative expression for the idempotent matrix onto R(A) along
N(A) is given by Proposition 5.5.9.

6.3 Facts on the Moore-Penrose Generalized Inverse
Involving One Matrix
Fact 6.3.1. Let A € F™*™ and assume that rank A = 1. Then,
At = (tr AA*) A"
Consequently, if x € F™* and y € F" are nonzero, then
()" = (z"zy'y) "y,
Fact 6.3.2. Let A € F™*™, and assume that rank A = m. Then,
(AA*)T = A(AA) 724"
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Fact 6.3.3. Let A € F"*™, Then,
At =1im A*(AA* + o)™ = lim (A*A + ol ) A",
al0 al0

Fact6.3.4. Let A € F™*™ let x44-(s) = Sn—l-ﬁnflsn_l + -+ P15+ Po,
and let n — k denote the smallest integer in {0,...,n — 1} such that 8y # 0.
Then,

A = =B A (AAYET 4 By (AAYEE e B ]
(Proof: See [168].)

Fact 6.3.5. Let A € F™*" and assume that A is Hermitian. Then,
InA=InA".

Fact 6.3.6. Let A € F"*" be a projector. Then, AT = A.

Fact 6.3.7. Let A € F"*". Then, A" = A if and only if A is tripotent
and A? is Hermitian.
Fact 6.3.8. Let A € F"*" and assume that A is idempotent. Then,
A A+ (T -A)IT-A)T =1
(Proof: N(A) =R(I — ATA) =R(I — A) = R[(I — A)(I — A1)].)

Fact 6.3.9. Let A € F™*" and assume that A is idempotent. Then,
AATA = ATA

and
AATA* = AAT.

(Proof: Note that A*A"A is a projector and R(A*ATA) = R(A*) = R(ATA).)
Fact 6.3.10. Let A € F™*" and assume that A is idempotent. Then,
A+ A* — I is nonsingular, and
(A+A* — Iy = AAT + ATA - 1.
(Proof: Use Fact 6.3.9.) (Remark: See [416, p. 457] for a geometric inter-
pretation of this identity.)

Fact 6.3.11. Let A € F*™*" and let r 2 rank A. Then, AT = A* if
and only if 01(A) = 0,(A) = 1.

Fact 6.3.12. Let A € F"*"™ where A # 0, and let r £ rank A. Then,
for all i = 1,..., 7, the singular values of AT are given by

Gi(AT) = 071y_(A).
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In particular,
0r(A) = 1/omax(AT).

If, in addition, A € F™*" and A is nonsingular, then

Umin(A) = 1/Umax (A_l) .

Fact 6.3.13. Let A € F**™, Then, X = A" is the unique matrix
satisfying
A AAT
ATA X

(Remark: See Fact 2.13.39 and Fact 6.5.5.) (Proof: See [203].)

rank [ ] = rank A.

Fact 6.3.14. Let A € F™*™ be centrohermitian. Then, A" is centro-
hermitian. (Proof: See [359].)

Fact 6.3.15. Let A € F"*". Then, the following statements are equiv-
alent:
i) A% = AA*A.
i1) A is the product of two projectors.
iii) A= A(AT)?A.
(Remark: This result is due to Crimmins. See [474].)
Fact 6.3.16. Let A € F"*". Then,
AT =41 + ATA)TAT (T + AAT)T.
(Proof: Use Fact 6.4.20 with B = A.)

Fact 6.3.17. Let A € F™*" be unitary. Then,

k—1
lim 1> A'=T—(A-I)(A-1D)".
=0

k—o0

(Remark: IT—(A—1T)(A—1I)" is the projector onto {z: Az =z} =N(A-1).)
(Remark: This result is the ergodic theorem.) (Proof: Use Fact 11.15.12 and
Fact 11.15.14 and note that (A — I)* = (A — I)*. See [258, p. 185].)
Fact 6.3.18. Let A € F"*™, and define {B;};°, by
Bji1 £ 2B; — B;AB;,
where By £ aA* and o € (0,2/02,.(A)). Then,

71— 00
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(Proof: See [64, p. 259] or [124, p. 250]. This result is due to Ben-Israel.)
(Remark: This sequence is a Newton-Raphson algorithm.) (Remark: By
satisfies sprad(/ — BpA) < 1.) (Remark: For the case in which A is square

and nonsingular, see Fact 2.13.37.) (Problem: Does convergence hold for all
By € F™*™ satisfying sprad(l — BpA) < 17)

6.4 Facts on the Moore-Penrose Generalized Inverse
Involving Two or More Matrices

Fact 6.4.1. Let A € F**™ and B € F"*!. Then, AB = 0 if and only
if BtAt = 0.

Fact 6.4.2. Let A € F**™ and B € F**!. Then, A*B = 0 if and only
if A*B = 0.
Fact 6.4.3. Let A € F"*™ and B € F™*!. Then,
(AB)" = BfA],
where By = AYAB and A; £ AB;B; . That is,
(AB)T = (ATAB)T[AB(A*AB)*]™.
(Proof: See [6, p. 55].) (Remark: This result is due to Cline.)

Fact 6.4.4. Let A € F"*™ and B € F™*!. Then,
(AB)" = B*A*t
if and only if R(BB*A*) C R(A*) and R(AAB) C R(B). (Proof: See [6, p.
53].) (Remark: This result is due to Greville.)
Fact 6.4.5. Let A € F"*" and B € F"™*™  and assume that rank A =
rank B = r. Then,
(AB)" = B'AT = BX(BB*)}(A*4)™4*.

Fact 6.4.6. Let A, B € F"*" be range Hermitian. If (AB)" = ATB™*,
then AB is range Hermitian. (Proof: See [268].) (Remark: See Fact 8.9.10.)

Fact 6.4.7. Let A € F"*™ and B € F™*!, and assume that rank B =
m. Then,

AB(AB)T = AAT.

Fact 6.4.8. Let A € F™"*™ let B € F™*" gatisfy BAA* = A*, and let
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C € F™*" gatisfy A*AC' = A*. Then,
AT = BAC.
(Proof: See [6, p. 36].) (Remark: This result is due to Decell.)
Fact 6.4.9. Let A € F™*™. Then, there exists B € F"*™ satisfying

BAB = B if and only if there exist projectors C' € F™"*" and D € F™*™
such that B = (CAD)*. (Proof: See [245].)

Fact 6.4.10. Let A € F™*™. Then, A is idempotent if and only if there
exist projectors B,C € F"*" such that A = (BC)". (Proof: Let A =1 in
Fact 6.4.9.) (Remark: See [247].)

Fact 6.4.11. Let A €¢ F»*™ B e F**!, C € F**™ D € F**!. Then,

rank [ A B ] =rank A + rank(B — AA*B)
= rank B + rank (A - BB+A),

rank [ é ] =rank A + rank(C’ — CA+A)

=rank C + rank(A — AC+C),

A B
rank[c 0

] =rank B +rank C + rank[([n — BB+)A(Im — C+C')].

Now, define A £ [é g] . Then,
rank A = rank A + rank X + rankY
+rank[ (I, — YY) (D|A) (I, - X*X)],

where X £ B— AATB and Y £ C — CATA. Consequently,

rank A + rank(D|A) < rank A.
Furthermore, if AAT™B = B and CATA = C, then

rank A + rank(D|A) = rank A.
Finally, if n = m and A is nonsingular, then

rank A + rank(D — CAle) < rank A.

(Proof: See [128,398].) (Remark: With certain restrictions the generalized
inverses can be replaced by (1)-inverses.) (Remark: See Proposition 2.8.3.)
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Fact 6.4.12. Let A, B € F**", Then,

rank [ g /Il ] :rankA—i—rank[ B I—A*A ]
A
= rank [ I _ BB+ ] + rank B
=rank A + rank B + rank[([ - BB+) (I — A+A)]
=n +rank AB.

Hence, the following statements hold:
i) rank AB = rank A+rank B—n if and only if (/—BB™)(I—AA) = 0.
it) rank AB =rank A if and only if [ B I — A"A | is right invertible.
iit) rank AB = rank B if and only if [17g3+] is left invertible.
(Proof: See [398].) (Remark: The generalized inverses can be replaced by

arbitrary (1)-inverses.)

Fact 6.4.13. Let A € F"*™ and b € F". Then,

(A b]+:[A+[IC_bC]]7

where
(b— AATH)T, b+ AATDH,

L
€= b (AA*)T
1+ b*(AA*)*Tb’
(Proof: See [6, p. 44], [202, p. 270], or [505, p. 148].) (Remark: This result
is due to Greville.)

b= AATD.

Fact 6.4.14. Let A € F**™ and B € F»*., Then,
AT — AYB(CT+ D
Ct+D
where
C=(I-AAYB
and

D2 (I-CTC)[I[+(I-CTC)B*(AA*)™B(I — CTC)|'B*(AA*)* (I — BCT).
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Furthermore,
[ A*(AA* + BB*)™!
( ) , rank [ A B } =n,
i B*(AA* + BB*)*1
- 71 -
A*A A*B A*
[ ] BA BB 5 | rank { A B } m+1,
i A* *\—1 _ 1
(A7)~ (I - BE) , rank A =n,
E
where

E 2 [I + B (AA*)'B] B (AA") ™.

(Proof: See [147] or [387, p. 14].) (Remark: If [ A B | is square and
nonsingular and A*B = 0, then the second expression yields Fact 2.13.33.)

Fact6.4.15. Let A € F™"*™ be nonnegative semidefinite, let B € F**™
and define

~[ A B
e[ p o)
Then,
N Ct —-CTYBDTB*C* CTBD™
AT = ;
(CTBD*)* DDt — D+
where
C £ A+ BB*, D & BTC™C.

(Proof: See [388, p. 58].) (Remark: Representations for the generalized
inverse of a partitioned matrix are given in [47,57,76,121,124, 266,301,414,
415,417, 418,478, 489, 550, 593].)

Fact 6.4.16. Let A € F"*" be Hermitian, let b € F", and define
S £ ] — AYA. Then,

(A+bb*)*
[1 — (b"Sb)7Sbb* | AT[I — (b*Sb)~'bb*S| + (b*Sb)~25bb*S,  Sb # 0,
= QAT — (14 bAtb)ATbbAT, 1+ 04T # 0,
[I — (b A*Tb) AT AT AT [T — (b*A%Tb)ATbb*AT], b*ATb = 0.

(Proof: See [421].) (Remark: Expressions for (4 4+ BB*)*, where B € F"*!,
are given in [421].)
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Fact 6.4.17. Let A € F"*™ be nonnegative semidefinite, let C' € F"*™
be positive definite, and let B € F*"*™. Then,
(A+ BCB*)* = A* — ATB(C™' + B'A™B) ' BA*
if and only if
AATB = B.
(Proof: See [442].) (Remark: AATB = B is equivalent to R(B) C R(A).)

Fact 6.4.18. Let A, B € F™*™ and assume that A*B = 0 and BA* =

0. Then,
(A+B)t = AT+ B*.

(Proof: Use Fact 2.10.6 and Fact 6.4.19. See [148].) (Remark: This result
is due to Penrose.)

Fact 6.4.19. Let A,B € F™™ and assume that rank(4 + B) =
rank A 4+ rank B. Then,

(A+B)" = -C*'B)AT(I - BC")+C™,
where C' 2 (I — AAT)B(I — A*A). (Proof: See [148].)

Fact 6.4.20. Let A, B € F*™*™. Then,
(A+ B)" = (I + ATB)T (AT + ATBA)(I + BAT)*

if and only if AAYB = B = BA'A. Furthermore, if n = m and A is
nonsingular, then

(A+By* = (I+A'B) (At + A BAY) (T +BA™) .

(Proof: See [148].) (Remark: If A and A + B are nonsingular, then the last
statement yields (A + B)™ = (A + B) (A + B)(A + B)™ for which the
assumption that A is nonsingular is superfluous.)

Fact 6.4.21. Let A € F**™ B ¢ F** and C € F"*¥. Then, there
exists X € F™*! satisfying AXB = C if and only if AATCB*B = C.
Furthermore, X satisfies AXB = C if and only if there exists ¥ € F™*!
such that

X = ATCB* +Y — ATAYBB*.
Finally, if Y = 0, then tr X*X is minimized. (Proof: Use Proposition 6.1.7.
See [388, p. 37] and, for Hermitian solutions, see [330].)

Fact 6.4.22. Let A € F"*™ and assume that rank A = m. Then,
Al € FX7 g a left inverse of A if and only if there exists B € F™*™ such

that
AY = AT 4 B(I — AAT).
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(Proof: Use Fact 6.4.16 with A =C = I,,,.)

Fact 6.4.23. Let A € F"™ and assume that rank A = n. Then,
AR ¢ Fmxn ig a right inverse of A if and only if there exists B € F™*" such

that
AR = AT 4 (I - AMA)B.

(Proof: Use Fact 6.4.21 with B = C = I,,.)
Fact 6.4.24. Let A € F"*" x,y € F", and a € F, and assume that
x € R(A). Then,
[ Az } B { I o} A 0
y'oa y'o1 yT —y™A a—yTATx

(Remark: See Fact 2.12.4 and Fact 2.12.13 and note that x = AATz.)
(Problem: Obtain a factorization for the case z ¢ R(A).)

0 1

[[ A*x].

Fact 6.4.25. Let A € F**™ and B € F**!. Then,
AA B*A

det [ BA BB

} = det(A™A)det[B*(I — AAT)B]
— det(B'B)det[A*(I — BBT)A].

Fact 6.4.26. Let A € F"*", B € "™ (C € F™*" and D € F™*"™,
assume that either rank [ A B ] = rank A or rank [é} =rank A, and let
A~ be a (1)-inverse of A. Then,

A B
C D

(Proof: See [64, p. 266].)

det [ ] = (det A)det(D — CA™B).

Fact 6.4.27. Let A, B € F™*™ be projectors. Then,
lim A(BA)* = 24(A+ B)'B.

k—o0

Furthermore, 2A(A + B)' B is the projector onto R(A) N R(B). (Proof:
See [20].) (Remark: See Fact 6.4.28 and Fact 8.9.9.)
Fact 6.4.28. Let A € R™™ and B € R™*!. Then,
R(A) NR(B) = RIAAT(AAT + BBY)TBBT].
(Remark: See Theorem 2.3.1, and Fact 8.9.9.)

Fact 6.4.29. Let A € R™™ and B € R™!. Then, R(A) C R(B) if
and only if BBTA = A. (Proof: See [6, p. 35].)
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Fact 6.4.30. Let A € R™™ and B € R"™*!. Then,
rank AAT(AA" + BBT)"BB" =rank A + rank B —rank [ A B |.
(Proof: Use Fact 6.4.28, Fact 2.10.26, and Fact 2.10.22.)

Fact 6.4.31. Let A € F™™ and b € F", and define f(z) = (Az —
b)*(Az — b), where € F™. Then, x minimizes f if and only if there exists

y € F™ such that
r=Ab+ (I — ATA)y.

In this case,
f(z) =b"(I — AAT)D.

Finally, f has a unique minimizer if and only if A is left invertible. (Remark:
The minimization of f is the least squares problem. See [6,100].)
Fact 6.4.32. Let A € F"*™ B e F™! and define
f(X) 2 u[(AX — B)(AX - B)],
where X € F™*!. Then, X = A*B minimizes f. (Problem: Determine all
minimizers.) (Problem: Consider f(X) = tr[(AX — B)*C(AX — B)], where
C € ™" is positive definite.)
Fact 6.4.33. Let A € F**™ and B € F**™, and define
F(X) & tr[(XA = B)(XA - B)],
where X € F**". Then, X = BAT minimizes f.

Fact 6.4.34. Let A, B € F™*™ and define
f(X) £ tr[(AX - B)"(AX - B)],

where X € F™*™ ig unitary. Then, X = $1S5 minimizes f, where Sl[fg 8]52
is the singular value decomposition of A*B. (Proof: See [64, p. 224].)

Fact 6.4.35. Let A = [g‘; fllz} € Flrtm)x(ntm) g ¢ pltm)xl o ¢

Fix(ntm) D e FiX! and A £ [élB)], and assume that A and A are
nonsingular. Then,

AlA = (AnlA)|(AnlA).
(Proof: See [466, pp. 18, 19].) (Remark: This result is due to Haynsworth.)
(Problem: Is the result true if either A or Aj; is singular?)



matrix2 November 19, 2003

GENERALIZED INVERSES 223

6.5 Facts on the Drazin and Group Generalized
Inverses

Fact 6.5.1. Let A € F"*". Then, AAP is idempotent.
Fact 6.5.2. Let A € F"*". Then, A = AP if and only if A is tripotent.
Fact 6.5.3. Let A € F™*". Then,
(A*)D _ (AD)* ]
Fact 6.5.4. Let A € F"*", and let r € P. Then,
(4P)" = (4")P.
Fact 6.5.5. Let A € F»*". Then, X = AP is the unique matrix
satisfying
A AAP
APA X
(Remark: See Fact 2.13.39 and Fact 6.3.13.) (Proof: See [631].)

rank [ ] =rank A.

Fact 6.5.6. Let A, B € F"*", and assume that AB = BA. Then,

(AB)P = B™AP,
APB = BAP,
ABP = B™4.

Fact 6.5.7. Let A € F"*", and assume that ind A = rank A = 1.
Then, .
A% = (tr A%)” A

Consequently, if x,y € F" satisfy 2™y # 0, then
(2y")" = () Zay”.

# — n_2].n><n.

In particular, 17,

Fact 6.5.8. Let A € F"*™. Then, the following statements are equiv-
alent:
) A is range Hermitian.
) ATA = AAT.
ii5) AT = AP,
)
)

1
1
iv) ind A <1 and AT = A#.

v) ind A <1 and (A1)? = (A2)+.
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vi) There exists a nonsingular matrix B € F**" such that A = A*B.

(Proof: To prove i) = vi) use Corollary 5.4.4 and B = S[Bgo*BO ﬂ S*)

Fact 6.5.9. Let A € F"*™. Then, A is group invertible if and only if
limg0(A + o)A exists. In this case,

lim (A + ol )7A = AA*,

6.6 Notes

The proof of the uniqueness of A" is given in [388]. Most of the
results given in this chapter can be found in [124]. Reverse order laws for
the generalized inverse of a product are discussed in [592]. Additional books
on generalized inverses include [78,106,477]. Generalized inverses are widely
used in least squares methods; see [102,124,355]. Applications to singular
differential equations are considered in [123]. Historical remarks are given

in [77].
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Chapter Seven

Kronecker and Schur Algebra

In this chapter we introduce Kronecker matrix algebra, which is useful
for analyzing linear matrix equations.

7.1 Kronecker Product

For A € F™*™ define the vec operator as
coli(A)
vec A £ : e (7.1.1)
coly(A)

which is the column vector of size nm x 1 obtained by stacking the columns
of A. We recover A from vec A by writing

A = vec ! (vec A) (7.1.2)

Proposition 7.1.1. Let A € F"*™ and B € F"™*". Then,
tr AB = (vec AT)TvecB = (vec BT)Tvec A. (7.1.3)

Proof. Note that

tr AB = Z e;ABe; = Z row;( A)col;(B)

i=1 i=1
= Z [coli(AT)]Tcoli(B)
= coly(B)
= [ colrlf(AT) colE(AT) ] :
col,(B)
= (Vec AT)Tvec B. O

Next, we introduce the Kronecker product.



matrix2 November 19, 2003

226 CHAPTER 7

Definition 7.1.2. Let A € F»*™ and B € F***. Then, the Kronecker

product A® B € FX™mk of A is the partitioned matrix
A(171)B A(172)B et A(l’m)B
A®B 2 : : (7.1.4)

Unlike matrix multiplication, the Kronecker product A ® B does not
entail a restriction on either the size of A or the size of B.

The following results are immediate consequences of the definition of
the Kronecker product.

Proposition 7.1.3. Let a € F, A € F**™ and B € F"*k. Then,

A®(aB) = (aA)® B = a(A® B), (7.1.5)
A®B=A®B, (7.1.6)
(Ao B)T = AT@ BT, (7.1.7)
(A® B)* = A*® B*. (7.1.8)

Proposition 7.1.4.  Let A, B € F"*™ and C € F'**. Then,
(A+B)@C=A®C+B®C (7.1.9)

and

C®(A+B)=C®A+C®B. (7.1.10)

Proposition 7.1.5. Let A € F**™ B ¢ F>** and C € F7*¢. Then,
A®(B®C)=(A®B)®C. (7.1.11)

Hence, we write AQ BRC for A® (B®C) and (A® B)® C.

The next result illustrates an important form of compatibility between
matrix multiplication and the Kronecker product.

~ Proposition 7.1.6. Let A € F**™, B € F**, C € F™, and D €
F**i and assume that mj = lk. Then,

(A2 B)(C® D) = AC ® BD. (7.1.12)
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Proof. Note that the ij block of (A® B)(C ® D) is given by
CapnDh
(A@B)(C@D)iy=[ AanB - AimB]

Next, we consider the inverse of a Kronecker product.

Proposition 7.1.7. Suppose A € F"*™ and B € F"™*™ are nonsingu-
lar. Then,

(AeB) ' =A"1e B (7.1.13)
Proof. Note that
(A@B) (A'®@B™) = AA"' @ BB = I, @ Iy, = I, O
Proposition 7.1.8. Let x € F" and y € F™. Then,
wyt =@yt =yToa (7.1.14)
and
vecxyl =y (7.1.15)

The following result concerns the vec of the product of three matrices.

Proposition 7.1.9. Let A €¢ F**™ B e F™*! and C € F**. Then,
vec(ABC) = (C"® A)vec B. (7.1.16)

Proof. Using (7.1.12) and (7.1.15), it follows that

! !
vec ABC = vec Z Acoly(B)elC = Z vec [Acoli(B) (C’Tei)T]
i=1 i=1

! l
=Y [C"ei] ® [Acoly(B)] = (C"® A)) " ¢; ® coly(B)
=1 i=1
!
= (C’T® A) Z vec [coli(B)eiT] = (CT® A)vec B. O
i=1

The following result concerns eigenvalues and eigenvectors of the Kro-
necker product of two matrices.
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Proposition 7.1.10. Let A € F™*" and B € F"*™. Then,

mspec(A® B) = {Au: A € mspec(A), p € mspec(B) . (7.1.17)
If, in addition, z € C" is an eigenvector of A associated with A € spec(A)
and y € C™" is an eigenvector of B associated with u € spec(B), then z ®y
is an eigenvector of A ® B associated with Ap.

Proof. Using (7.1.12), we have
(A@B)(z®y) = (Az) @ (By) = (Ar)® (py) = Au(z @y). 0

Proposition 7.1.10 shows that mspec(A® B) = mspec(B ® A). Conse-
quently, it follows that det(A® B) = det(B® A) and tr(A® B) = tr(B® A).
The following results are generalizations of these identities.

Proposition 7.1.11. Let A € F"*" and B € F"*™. Then,

det(A® B) = det(B® A) = (det A)™(det B)". (7.1.18)

Proof. Let mspec(A) = {\, ..., \n}m and mspec(B) = {u1, ..., hm}m-
Then, Proposition 7.1.10 implies that

det(A® B) = HAM: Y 0 U e R N
j=1 J=1

ij=1
= (A A)" (1 )" = (det A)™(det B)"™. O

Proposition 7.1.12. Let A € F™*" and B € F"*™. Then,
tr(A® B) =tr(B® A) = (tr A)(tr B). (7.1.19)

Proof. Note that
=[Aqy) + -+ Al tr B = (tr A)(tr B). 0

Next, define the Kronecker permutation matrix P, ,, € F"™*™" by

n,m
Pom 2> Eijnxm ® Ejimxn. (7.1.20)
ij=1
Proposition 7.1.13. Let A € F"*™. Then,
vec AT = P, ,vec A. (7.1.21)
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7.2 Kronecker Sum and Linear Matrix Equations

Next, we define the Kronecker sum of two square matrices.
Definition 7.2.1. Let A € F™*™ and B € F™*"™. Then, the Kronecker
sum A@® B € FPmXM of A and B is
A®B2ARL,+1,®B. (7.2.1)

Proposition 7.2.2. Let A € F**", B € F*™_ and C € F'*!. Then,
A®(BaC)=(AaB)aC. (7.2.2)

Hence, we write A@ B@® C for A® (B®C) and (A® B) @ C.

In Proposition 7.1.10 it was shown that if A € spec(A) and u €
spec(B), then Ay € spec(A ® B). Next, we present an analogous result
involving Kronecker sums.

Proposition 7.2.3. Let A € F"*™ and B € F™*™. Then,

mspec(A @ B) = {\+ u: X € mspec(A), pu € mspec(B)}m. (7.2.3)

Now, let z € C™ be an eigenvector of A associated with A € spec(A), and
let y € C™ be an eigenvector of B associated with u € spec(B). Then, x®vy
is an eigenvector of A @ B associated with A + u.

Proof. Note that

(Ae B)(z®y) = (A® In)(r®y) + (I, ® B)(r®y)
= (Az®y) + (x® By) = Az ®y) + (x @ uy)
=AMz ®@y)+pe@y) =A+p)(z@y). O

The next result concerns the existence and uniqueness of solutions to
Sylvester’s equation. See Fact 5.8.11 and Proposition 11.7.3.

Proposition 7.2.4. Let A € F*", B € F™*™_and C € F"™*™. Then,

X € F™"*™ gatisfies
AX+XB+C=0 (7.2.4)

if and only if X satisfies
(BT® A)vec X + vecC = 0. (7.2.5)

Consequently, BT @ A is nonsingular if and only if there exists a unique
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matrix X € F"*"™ satisfying (7.2.4). In this case, X is given by
X =— Vec_l[(BTGB A)_lvec C} . (7.2.6)

Furthermore, BY® A is singular and rank BT@ A = rank [ BT@ A vecC ]
if and only if there exist infinitely many matrices X € F™ "™ sgatisfying
(7.4.15). Then, the set of solutions of (7.2.4) is given by X + N(BT@ A).

Proof. Note that (7.2.4) is equivalent to

0 =vec(AXI + IXB) +vecC = (I®@ A)vec X + (B*® I)vec X + vecC
=B*@I+1®A)vecX +vecC = (B*® A) vec X + vecC,

which yields (7.2.5). The remaining results follow from Corollary 2.6.5. [

7.3 Schur Product

An alternative form of vector and matrix multiplication is given by the
Schur product. If A € F"*™ and B € F"*™ then Ao B € F"*™ is defined
by

(Ao B)ig) = Ay B

ig)s (7.3.1)

that is, Ao B is formed by means of entry-by-entry multiplication. For
matrices A, B,C € F"*™ the commutative, associative, and distributive
identities

AoB=BoA, (7.3.2)
Ao(BoC(C)=(AoB)oC, (7.3.3)
Ao(B+C)=AoB+ AoC (7.3.4)

are valid. For a real scalar a > 0 and A € F™™ the Schur power A1} is
defined by
(), & G 539
0.

Thus, A2} = Ao A. Note that A% = 1,,,,,,, while & < 0 is allowed if A has
no zero entries. Finally, for all A € F"*™,

Aolywm = lyxmo A = A. (7.3.6)
Proposition 7.3.1. Let A, € F®*™. Then, AoB is a submatrix of AQ B
consisting of rows row;(A®B), row,+2(ARB), rowa, +3(ARB), . .., row,: (A®

B) and columns col;(A®B), col,,+2(ARDB), coloy,+3(ARB), . .., coly2(ARB).
If, in addition, n = m, then Ao B is a principal submatrix of A® B.

Proof. See [394] or [289, p. 304]. O
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7.4 Facts on the Kronecker Product

Fact 7.4.1. Let z,y € F". Then,
rRy=(zx1IL,)y = (I,y)z.

Fact 7.4.2. Let A € F"*™ and B € F™*™ be (diagonal, upper trian-
gular, lower triangular). Then, so is A ® B.
Fact 7.4.3. Let A e F™*" B € F™*™ and [ € P. Then,
(A9 B)' = Al® B.

Fact 7.4.4. Let A € F™*™, Then,
vec A = (I, ® A) vec I, = (AT®In)vec I,.

Fact 7.4.5. Let A € F**™ and B € F™*!. Then,
vec AB = (I; ® A)vec B = (B'® A)vec I, = Z col;(BT) @ col;(A).
=1
Fact 7.4.6. Let A € F**™ B e F™*! and C € F**". Then,
tr ABC = (vec A)T(B® I)vecCT.

Fact 7.4.7. Let A, B,C € F™"*", where C is symmetric. Then,
(vec C)T(A® B)vec C = (vec C)T(B® A)vec C.

Fact 7.4.8. Let A € F»*™ B ¢ F™*l C € F>** and D e Fkxn,
Then,

tr ABCD = (vec A)T(B® DT)vecCT.
Fact 7.4.9. Let A € F**™ B e F™*! and k € P. Then,
(AB)®k — A®kR®k
where A®* 2 A® A®---® A, with A appearing k times.

Fact 7.4.10. Let A € F**". Then,
(A A)? = A0 A% + 24 A.

Fact 7.4.11. Let A,C € F*™™ and B, D € F*¥_and assume that A is
(left equivalent, right equivalent, biequivalent) to C and B is (left equivalent,
right equivalent, biequivalent) to D. Then, A ® B is (left equivalent, right
equivalent, biequivalent) to C'® D.
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Fact 7.4.12. Let A, B,C,D € F™*™ and assume that A is (similar,
congruent, unitarily similar) to C' and B is (similar, congruent, unitarily
similar) to D. Then, A® B is (similar, congruent, unitarily similar) to C®D.

Fact 7.4.13. Let Ay, ..., A, € F"*" be (Hermitian, nonnegative semi-
definite, positive definite, range Hermitian, normal, semisimple, group in-
vertible). Then, sois A1 ® - ® A,.

Fact 7.4.14. Let Ay, ..., A; € F™*" be skew Hermitian. If [ is (even,
odd), then 4; ® ---® A; is (Hermitian, skew Hermitian).

Fact 7.4.15. Let Ay, ..., A; € F™*" be (Hermitian, nonnegative semi-
definite, positive definite, skew Hermitian). Then, so is A1 @ --- @ A;.

Fact 7.4.16. Let A;; € F"*™ for all ¢ =1,...,kand j = 1,...,L
Then,

A Ay oo A1 ®B Ay»p®B
A1 Ap - | @gB=| An1®B A»n®B

Fact 7.4.17. Let = € F*, and let A; € F"*™ for all i = 1,...,l. Then,
a:®[A1 Al]:[:U@Al £U®Al].

Fact 7.4.18. Let A € F"*" be (range Hermitian, normal). Then, so is
A A

Fact 7.4.19. Let A € F™*"™ and B € F™*™. Then, the eigenvalues
of Zf”;:l’l 7i;A' @ BI are of the form Zf”;:l’l Yi;ANu?, where A € spec(A)
and p € spec(B) and an associated eigenvector is given by x ® y, where
x € F" is an eigenvector of A associated with A € spec(A) and y € F" is an
eigenvector of B associated with p € spec(B). (Remark: This result is due to
Stephanos.) (Proof: Let Az = Az and By = py. Then, v;;(A'®@B7)(z®y) =
Yi; N (z @ y). See [217], [353, p. 411], or [384, p. 83].)

Fact 7.4.20. Let A € F**™ and B € F**. Then,

rank(A ® B) = (rank A)(rank B).

(Proof: Use the singular value decomposition of A® B.) (Remark: See Fact
8.15.9.)

Fact 7.4.21. Let A € F"*™ and B € F** and assume that nl = mk
and n # m. Then, A® B is singular. (Proof: See [289, p. 250].)
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Fact 7.4.22. Let A € F"™ and B € F™*™. Then, the algebraic
multiplicity of the zero eigenvalue of A ® B is greater than or equal to
|n —m|min{n, m}. (Proof: See [289, p. 249].)

Fact 7.4.23. Let A € F**" B € F"™*™ and let v € spec(A ® B).
Then,
ng/x Jgmp(p) < gmapp(y) < amagp(y ZamA amp (),
where both sums are taken over all A € spec(A) and p € spec(B) such that
Ap=".

Fact 7.4.24. Let A € F**", B € F"™*™ and let v € spec(A ® B).
Then, indagp(y) < 1 if and only if indg(A) < 1 and indg(p) < 1 for all
A € spec(A) and p € spec(B) such that Ay = .

Fact 7.4.25. Let A € F"*" and B € F™*™. Then,
ind A ® B = max{ind A, ind B}.

Fact 7.4.26. Let A € F"*" B € F"™*™ and let v € spec(A @ B).
Then,

> ema(Negmp(p) < gmagp(y) < amagp(y) = Y ama(X)amp(p),

where both sums are taken over all A € Spec(A) and p € spec(B) such that
A p=r.

Fact 7.4.27. Let A € F™*", B € F"™*"™ and let v € spec(A & B).
Then, indagp(y) < 1 if and only if indg(A) < 1 and indg(p) < 1 for all
A € spec(A) and p € spec(B) such that A + = ~.

Fact 7.4.28. Let A € F"*™ and B € F"™*™ where B is nonnegative
semidefinite, and let mspec(B) = {1, ..., A }m. Then,

det(A @ B) = [ [ det(\I + A).
i=1
(Proof: See [419, p. 40].) (Remark: Expressions for det(A® B+ C ® D) are
given in [419].) (Problem: Weaken the assumption that B is nonnegative
semidefinite.)

Fact 7.4.29. The Kronecker permutation matrix has the following
properties:
i) Py m is a permutation matrix.

it) Py = Prn.
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iii) Py m is orthogonal.
W) PpmPmn = Inm.
v) P = Iy and P, = I,.
vi) If z € F"” and y € F™, then
Pn,m(y®$) =r®yY.
vii) Tf A € F™™, then

Pn,l(Il ®A) = (A®Il)ijl.
viii) If A € F*™*™ and B € F**, then
Pn,l(A®B)Pm,k =B®RA

and
vec(A® B) = (I, ® Py p ® I1)[(vec A) ® (vec B)].

ir) If A e F™™ and B € F™*", then
tr AB = tr[P, n(A® B)].
Fact 7.4.30. Let A € F"*" B € F™*™ and C € F™*™, and assume
that det(BT@ A) # 0. Then, X € F**™ satisfies
A’X +2AXB+ XB*+C =0

if and only if
X =-— Vec_l[(BTEB A)_zvec C’} .

Fact 7.4.31. Let A € F"*™ and B € F'**. Then,
(A B)" = At BT,

Fact 7.4.32. Let A € F"*™ and let k € P satisfy 1 < k < min{n,m}.
Furthermore, define the kth compound A® to be the (Z) X (Z}) matrix whose
entries are k x k subdeterminants of A, ordered lexicographically. (Example:
For n = k = 3, subsets of the rows and columns of A are chosen in the order
(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),....) Specifically, (A(’f))(ij) is the
k x k subdeterminant of A corresponding to the ith selection of k rows of
A and the jth selection of k£ columns of A. Then, the following statements

hold:
i) [A®]" = [aT)®.
i) det A® = (det A)(1),

i) If n =m and A is nonsingular, then [A(k)]_l = [Afl](k) :
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w) If B € F™! then (AB)*) = AKBK),

Now, assume that n = m, let mspec(A) = {M,..., \p}m, and, for i =
0,...,k, define A% by

(A + 3[)(k’) — 3124(’“70) + Sk’_lA(kvl) + -4 SA(kak_l) + A(k’»k’)
Then,
mspec [A(Q’l)} ={N+XN: i, i=1,...,n,9<j}m,
mspec(A(2)> = (NN =1, mi <)

and
mspec([A(Q’l)}2 — 4A(2)> = {()\Z — Aj)2: hLi=1,...,ni< j}m.

(Proof: See [202, pp. 142-155] and [466, p. 124].) (Remark: (A2D)?—44®)
is the discriminant of A. The discriminant of A is singular if and only
if A has a repeated eigenvalue.) (Remark: The compound operation is
related to the bialternate product since mspec(2A4 - 1) = mspec(A(Q’l)) and

mspec(A-A) = mspec(A(Q)). See [217,239], [319, pp. 313-320], and [384, pp.
84, 85].) (Problem: Express A - B in terms of compounds.)

7.5 Facts on the Schur Product

Fact 7.5.1. Let x,y,z € F". Then,
T(

J:T(yoz) =z (zoy) :yT(xoz).

Fact 7.5.2. Let w,y € F" and z, 2z € F". Then,
(wz)o(yz") = (woy)(zo2)T.
Fact 7.5.3. Let A € F*" and d € F". Then,
diag(d)A = Aodlixn.

Fact 7.5.4. Let A € F*»*™, Dy € F"*", and Dy € F™*™, where D;
and Dy are diagonal. Then,

(D1A) o (BD3) = D1(Ao B)Ds.

Fact 7.5.5. Let A € F"*™ and B € F***. Then,
rank(A o B) < rank(A ® B) = (rank A)(rank B).
(Proof: Use Proposition 7.3.1.) (Remark: See Fact 8.15.9.)
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Fact 7.5.6. Let A, B € F"*™. Then,
tr[(AoB)(AoB)T] = tr[(AoA)(BoB)T] .
Fact 7.5.7. Let A€ F"*™ B e F™*" q € F™, and b € F". Then,
tr [A (B o abT)] = bT(A o BT) a.
Fact 7.5.8. Let A, B € F**™ and C € F™*". Then,
Io [A(BTOC')] =Io[(AoB)C]=1Io0 [(AOC'T)BT} .

e AT )] = ul(A0 B)C] = tr[(A0 CT)BT]

Fact 7.5.9. Let z € R™, A € R™™, and define 4 € R" by

xA(l,l) . ,l,A(l,m)
(1) (m)
& : ,
A, An,m)
x 7 o« e e x
(1) (m)

where every entry is assumed to exist. Then, the following statements hold:
*(1)
1) If a € R, then a” [ : ]
= ( ){ 1} a®(m)
If y € R™, then (zoy)d = 24 oy,

If B e R**™, then 418 = x4 0 2B,

"
19

1w
If Be Rlxn then ( )B = B4,

vi) If a € R, then (a®)4 = a®.

vii) If ALY € R™*" is a left inverse of A and y = 2, then z = y*

)
)
)
) 1
v)
)
)
viid) If A € R™ ™ is nonsingular and y = 24, then 2 = y4~
i) Define f(z) = 2. Then, f'(z) = diag(z?)A diag(x{_l}).

(Remark: These operations arise in modeling chemical reaction kinetics.
See [365].)

Fact 7.5.10. Let A € R™*™ be nonsingular. Then,

(Ao A M) w1 = 1y

and
11><n(14 o A_T) = lixn-
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(Proof: See [316].)

Fact 7.5.11. Let A € R™*™, and assume that A >> 0. Then,
sprad {(A o AT){I/Q}] < sprad(A) < sprad[%(A + AT)].
(Proof: See [502].)

Fact 7.5.12. Let A;,..., A, € R"" and aq,...,a, € R, where 4; >>
Oforalli=1,...,r, >0foralli=1,...,r,and > . ;o > 1. Then,

sprad (Afal} 0--:0 AiO‘T}) < ﬁ[sprad(Ai)]ai .
i=1

In particular, let A € R™*™ be such that A >> 0. Then, for all o > 1,
sprad(A{a}) < [sprad(A)]*

and, for all o <1,
[sprad(A)]* < sprad (A{O‘}).

Furthermore,
sprad <A{1/2} o AT{1/2}> < sprad(A)

and
[sprad(Ao A)]1/2 < sprad(A).

If, in addition, B € R™*" is such that B >> 0, then
sprad(Ao B) < [sprad(Ao A)sprad(Bo B)]1/2 < sprad(A) sprad(B)

and

sprad(A{1/2} oB{1/2}) < +/sprad(A) sprad(B).
If, in addition, A >> 0 and B >> 0, then
sprad(A o B) < sprad(A) sprad(B).
(Proof: See [187,322].)

7.6 Notes

A history of the Kronecker product is given in [275]. Kronecker matrix
algebra is discussed in [111,242,276,388,412,518,575]. Applications to signal
processing are considered in [479].

The fact that the Schur product is a principal submatrix of the Kro-
necker product is noted in [394]. A variation of Kronecker matrix algebra
for symmetric matrices can be developed in terms of the half-vectorization
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operator “vech” and associated elimination and duplication matrices [276,
387,559].

Generalizations of the Schur and Kronecker products, known as the
block-Kronecker, Khatri-Rao, and Tracy-Singh products, are discussed in
[292, 303, 338, 377]. Another related operation is the bialternate product,
which is a variation of the compound operation discussed in Fact 7.4.32.
See [217,239], [319, pp. 313-320], and [384, pp. 84, 85]. The Schur product
is also called the Hadamard product.
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Chapter Eight

Nonnegative-Semidefinite Matrices

In this chapter we focus on nonnegative-semidefinite and positive-
definite matrices. These matrices arise in a variety of applications, such
as covariance analysis in signal processing and controllability analysis in
linear system theory, and they have many special properties.

8.1 Nonnegative-Semidefinite and Positive-Definite
Orderings

Let A € F"*™ be a Hermitian matrix. As shown in Corollary 5.4.5, A
is unitarily similar to a real diagonal matrix whose diagonal entries are the

eigenvalues of A. We denote these eigenvalues by A, ..., \, or, for clarity,
by M(A), ..., A\n(A). As in Chapter 3, we employ the convention
A=Ay > > A, (8.1.1)

and, for convenience, we define
Amax(4) £ M1, Amin(4) £ A, (8.1.2)

Then, A is nonnegative semidefinite if and only if A\pin(A4) > 0, while A is
positive definite if and only if A\pin(A4) > 0.

For convenience, let H", N, and P denote, respectively, the Her-
mitian, nonnegative-semidefinite, and positive-definite matrices in F?*™,
Hence, P* C N™ C H". If A € N", then we write A > 0, while if A € P",
then we write A > 0. If A, B € H", then A — B € N" is possible even if
neither A nor B is nonnegative semidefinite. In this case, we write A > B
or B < A. Similarly, A— B € P" is denoted by A > B or B < A. This
notation is consistent with the case n = 1, where H! = R, N! = [0, c0), and
Pl = (0,0).

Note that, since 0 € N™, it follows that N™ is a pointed cone. Fur-
thermore, if A,—A € N", then z*Az = 0 for all x € F", which implies that
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A = 0. Hence, N" is a one-sided cone. Finally, N and P" are convex cones
since, if A, B € N", then oA + B € N” for all a, 3 > 0 and likewise for
P". The following result shows that the relation “<” is a partial ordering
on H".

Proposition 8.1.1. The relation “<” is reflexive, antisymmetric, and
transitive on H", that is, if A, B,C' € H", then the following statements
hold:

i) A< A.
it) If A< B and B < A, then A = B.
iit) If A< B and B < C, then A < C.
Proof. Since N is a pointed, one-sided, and convex cone, it follows

from Proposition 2.3.6 that the relation “<” is reflexive, antisymmetric, and
transitive. ]

Additional properties of “<” and “<” are given by the following result.
Proposition 8.1.2. Let A, B,C,D € H". Then, the following state-
ments hold:
i) If A >0, then @A > 0 for all @ > 0, and oA < 0 for all a < 0.
If A> 0, then a4 > 0 for all @ > 0, and oA < 0 for all o < 0.
If A>0and B >0, then aA + B > 0 for all «, 3 > 0.
If A>0and B >0, then A+ B > 0.
A2 >0.
A? > 0 if and only if det A # 0.
vit) If A< B and B < C, then A < C.
If A< Band B < C, then A < C.
IfA<Band C <D, then A+C < B+ D.
z) f A< Band C < D, then A+ C < B+ D.
Furthermore, let S € F™*™. Then, the following statements hold:
zi) If A < B, then SAS* < SBS*.
zii) If A < B and rank S = m, then SAS* < SBS*.
ziig) If SAS* < SBS* and rank S = n, then A < B.
ziv) If SAS* < SBS* and rank S = n, then m =n and A < B.

1

(143

W

<
S

<
=D

viLe

1

~
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Proof. Results ¢) — zi) are immediate. To prove zii) note that A < B
implies that (B — A)Y/2 is positive definite. Thus, rank S(4 — B)Y/? = m,
which implies that S(A — B)S* is positive definite. To prove ziii) note that,
since rank S = n, it follows that S has a left inverse S” € F**™, Thus, i)
implies that A = S4SAS*S™* < SLSBS*S™* = B. To prove ziv), note that,
since S(B — A)S* is positive definite, it follows that rank S = m. Hence,
m = n and S is nonsingular. Thus, zii) implies that A = S7ISAS*S™* <
S~ISBS*S—* = B. O

The following result is an immediate consequence of Corollary 5.4.7.

Corollary 8.1.3. Let A, B € H" and assume that A and B are con-
gruent. Then, A is nonnegative semidefinite if and only if B is nonnegative
semidefinite. Furthermore, A is positive definite if and only if B is positive
definite.

Lemma 8.1.4. Let A € P". If A < I, then A~' > I. Furthermore, if
A < I then A7 > I

Proof. Since A < I, it follows from xi) of Proposition 8.1.2 that I =
AV24A7Y2 < ATV2[AY2 = A1 Similarly, A < I implies that [ =
ATVPAATYZ < ATVRIATY2 = A7L O

Proposition 8.1.5. Let A, B € H" be both positive definite or both
negative definite. If A < B, then B! < A7!. If, in addition, A < B, then
Bt <A™

8.2 Submatrices

We first consider some identities involving a partitioned nonnegative-
semi-definite matrix.

Lemma8.2.1. Let A= | 12| € N"*™. Then,

Ayg = A1 Al A, (8.2.1)
Ay = A1p A9y A, (8.2.2)

Proof. Since A > 0, it follows from Corollary 5.4.5 that A = BB*,
where B = [g;] e FOtm)xr and r £ rank A. Thus, A = BB}, Ajp =
B1B3, and Ay = ByBj. Since Aj; is Hermitian, it follows that AJfl is
also Hermitian. Next, defining S £ B; — B1Bj(B1B7)" By, it follows that
S5S5* = 0 and thus tr S5* = 0. Hence, Lemma 2.2.3 implies that S = 0, and
thus Bl = BlBT(BlBT)+B1 Consequently, BlB>2k == BlBT(BlBT)+BlB2, that
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is, Ao = A11AIF1A12. The second result is analogous. O

Corollary 8.2.2. Let A — [ an j}g} € N"*™. Then, the following
statements hold:

i) R(A12) € R(An).
it) R(A7p) € R(Az2).

ii1) rank[ A1 App ] = rank Ay;.
)

w rank[ 12 A22 ] = rank A22.

Proof. Results i) and i) follow from (8.2.1) and (8.2.2), while 7) and

iv) are consequences of i) and ii). O
Next, if (8.2.1) holds, then the partitioned matrix A = [ﬁi; 1‘3;2} can
be factored as
[ An A ] _ I 0] An 0 I A7 A | (8.2.3)
| Ay Ao | A AT T 0 Anld r |0 v
while if (8.2.2) holds, then
[ A A | [T ApAg, ][ Anl4 0 I 0] (8.2.4)
| Aly A | 0 I 0 Ago ALAL, T o
where
Ap1|A = Agy — A5 AT Ars (8.2.5)
and
Ago|A = Ay — A1 AL AL, (8.2.6)

Hence, it follows from Lemma 8.2.1 that, if A is nonnegative semidefinite,
then (8.2.3) and (8.2.4) are valid, and, furthermore, the Schur complements
Aj1|A and Agg| A are both nonnegative semidefinite. Consequently, we have
the following result.

Proposition 8.2.3. Let A 2 [A“ i ] € H"t™. Then, the following

statements are equivalent:
i) A>0.
it) Ajp >0, A12 = A11A1+1A12, and AEABAH < Ags.
iii) Agg >0, Ajp = A12A2 Ay, and AjpAj, ATy < Apy.
The following statements are also equivalent:
iv) A > 0.
v) A1 >0 and A5, A7 A12 < Aogo.
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Ui) Ay > 0 and AlgAgéAﬁiz < Aq1.

The following result follows from (2.8.16) and (2.8.17).

Proposition 8.2.4. Let A £ [t 42| € P, Then,

) ALt + AT A (An|A) AL AT — A A (An]A)
Al = (8.2.7)
—(An|A)A5, A (Ap|A)™
and
. (Ap|A)! —(Aga| A) A1 A5
Al = . (8.2.8)
— A Ay (A  A)1 A Ay (Aza| A) A12 Az, + A |
where
Ap1|A = Agy — A AT A (8.2.9)
and .
Agp|A = Ay — A AZLAL,. (8.2.10)

Now, let A™' = [gi gzz} Then,

By|A™ = A (8.2.11)

and

Boo|A™ = A7l (8.2.12)

Lemma 8.2.5. Let A € F™" b € F", and a € R. Then, B = [ ?]
is nonnegative semidefinite if and only if A is nonnegative semidefinite, b =
AATH, and b*A1b < a. Furthermore, B is positive definite if and only if A is

positive definite and b*4A7'b < a. In this case,
det B = (det A)(a — b*A7"b). (8.2.13)

For the following result note that a matrix is a principal submatrix of
itself and the determinant of a matrix is also a principal subdeterminant.

Proposition 8.2.6. Let A € H". Then, the following statements are

equivalent:
i) A is nonnegative semidefinite.
11) Every principal submatrix of A is nonnegative semidefinite.

)
i11) Every principal subdeterminant of A is nonnegative.
)

w) For all i = 1,...,n, the sum of all 7 x 7 principal subdeterminants
of A is nonnegative.
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Proof. To prove i) = ii), let A € F™*m he the principal submatrix
of A obtained from A by retaining rows and columns i1,...,%,. Then,
A = STAS, where S £ [ €, - € ] € R™™. Now, let & € F". Since A
is nonnegative semidefinite, it follows that P4z = #*STAS: > 0, and thus
A is nonnegative semidefinite.

Next, the implications i) = iii) = ) are immediate. To prove )
= 1), note that it follows from Proposition 4.4.5 that

n n n
xas) =Y Bis' =D ()" pis’ = (<1)"Y mi(—s)',  (8.2.14)
i=0 i=0 i=0
where, for all i = 1,...,n, ~; is the sum of all ¢ x ¢ principal subdetermi-

nants of A, and 3, = v = 1. By assumption, 7; > 0 for all i = 1,...,n.
Now, suppose that there exists A € spec(A) such that A < 0. Then,
0= (—1)"xa(A) = > g ¥m—i(—=A)" > 0, which is a contradiction. O

Proposition 8.2.7. Let A € H". Then, the following statements are
equivalent:

i) A is positive definite.

1) Every principal submatrix of A is positive definite.

i11) Every principal subdeterminant of A is positive.

iv) Every leading principal submatrix of A is positive definite.

)
)
v)
v) Every leading principal subdeterminant of A is positive.

Proof. To prove i) = ii), let A € F™*™ and S be as in the proof
of Proposition 8.2.6 and let & be nonzero so that SZ is nonzero. Since A is
positive definite, it follows that #*A% = #*STAS% > 0 and hence A is positive
definite.

Next, the implications i) = ) = i) = v) and ) = W) =
v) are immediate. To prove v) = 1), suppose that the leading principal
submatrix A; € F¥*? has positive determinant for alli = 1,...,n,. The result
is true for n = 1. For n > 2, we show that if A; is positive definite, then so is

Airq. Writing A; 11 = [f Z }, it follows from Lemma 8.2.5 that det A; 11 =
(det Ai)(ai — b;"Ai_lbi) > 0 and hence a; — b;"Ai_lbi = det A;11/det A; > 0.
Lemma 8.2.5 now implies that A;;1 is positive definite. Using this argument
for all ¢ = 2,...,n implies that A is positive definite. O

The example A = [8 _01} shows that every principal subdeterminant
of A, rather than just the leading principal subdeterminants of A, must be
checked to determine whether A is nonnegative semidefinite. A less obvious
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example is A = H i (ﬂ, whose eigenvalues are 0, 1 + \/g, and 1 — /3. In

this case, the principal subdeterminant det A} = det 1 (1)] < 0.

Corollary 8.2.8. Let A € N™. Then, every diagonally located square
submatrix of A is nonnegative semidefinite. If, in addition, A is positive
definite, then every diagonally located square submatrix of A is positive
definite.

8.3 Simultaneous Diagonalization

This section considers the simultaneous diagonalization of a pair of
matrices A, B € H". There are two types of simultaneous diagonalization.
Cogredient diagonalization involves a nonsingular matrix S € F"*" such
that SAS* and SBS* are both diagonal, whereas contragredient diagonal-
ization involves finding a nonsingular matrix S € F"*" such that SAS* and
S~*BS~! are both diagonal. Both types of simultaneous transformation in-
volve only congruence transformations. We begin by assuming that one of
the matrices is positive definite, in which case the results are quite simple
to prove. Our first result involves cogredient diagonalization.

Theorem 8.3.1. Let A, B € H" and assume that A is positive definite.
Then, there exists a nonsingular matrix S € F*"*" such that SAS* = I and
SBS* is diagonal.

Proof. Setting S; = A~'/2 it follows that S1AS] = 1. Now, since 51BS}
is Hermitian, it follows from Corollary 5.4.5 that there exists a unitary
matrix Sz € F"*" such that SBS* = 525185755 is diagonal, where S =
S257. Finally, SAS* = 595145755 = S21S5 = L O

An analogous result holds for contragedient diagonalization.

Theorem 8.3.2. Let A, B € H", and assume that A is positive definite.
Then, there exists a nonsingular matrix S € F*"*" such that SAS* = I and
S—*BS~! is diagonal.

Proof. Setting S; = A™%? it follows that $1AS] = I. Since S; *BS;"
is Hermitian, it follows that there exists a unitary matrix Sy € F™*™ such
that ST*BS™t = Sy %9 BS; 'S, = S5(S;*BS; ) S; is diagonal, where S =
S251. Finally, SAS* = 535145755 = 52155 = 1. O

Corollary 8.3.3. Let A, B € P". Then, there exists a nonsingular
matrix S € F"*" such that SAS* and S~*BS~! are equal and diagonal.
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Proof. By Theorem 8.3.2 there exists a nonsingular matrix S; € F"*"

such that S1AS] = I and B; = Sl_*BSl_1 is diagonal. Defining S £ 311/451
yields SAS* = S~*BS~1 = B}/%, O

The transformation .S of Corollary 8.3.3 is a balancing transformation.

Next, we weaken the requirement in Theorem 8.3.1 and Theorem 8.3.2
that A be positive definite by assuming only that A is nonnegative semidef-
inite. In this case, however, we assume that B is also nonnegative semidefi-
nite.

Theorem 8.3.4. Let A, B € N". Then, there exists a nonsingular
matrix S € F**" such that SAS* = [[ §] and SBS* is diagonal.

Proof. Let the nonsingular matrix S; € F"*" be such that S1AS] =
[é 8]» and similarly partition S1BS] = [gi; g;z], which is nonnegative

semidefinite. Letting Sy £ [é _BII?B;?} it follows from Lemma 8.2.1 that

o +
S,51BSisy — | P~ BBaBn 0
0 Bas
Next, let U; and Uy be unitary matrices such that Uy(B1 — BlQB;QBTQ)Uik
and UpBgoUj are diagonal. Then, defining S3 £ [%1 [92] and S £ 535551,
it follows that SAS* = [[ 9] and SBS* = 5355518575555 is diagonal. [

Theorem 8.3.5. Let A,B € N". Then, there exists a nonsingular
matrix S € F"*" such that SAS* = [} 9] and S™*BS™! is diagonal.

Proof. Let S; € F"*™ be a nonsingular matrix such that S1AS] =
[§9], and similarly partition S]*BSy = [23 ggj }, which is nonnegative
semidefinite. Letting Sy £ [(I) 1131'1[}312]7 it follows that
B 0

0 By — BiyBiiBi2 |-
Now, let U; and Uz be unitary matrices such that U;B11U; and Us(Baa —
B{QBfrlBlg)UZ* are diagonal. Then, defining S5 £ [[{)1 (?2] and S £ 535,54,

it follows that SAS* = [[9] and STBS™' = S;7%S,%S; *BS; 'S5 'S5 is
diagonal. u

Sy*ST*BSTIS, = [

Corollary 8.3.6. Let A, B € N". Then, AB is semisimple, and every
eigenvalue of AB is nonnegative. If, in addition, A and B are positive
definite, then every eigenvalue of AB is positive.
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Proof. It follows from Theorem 8.3.5 that there exists a nonsingular
matrix S € R™*" such that A; = SAS* and B; = S™*BS™! are diagonal
with nonnegative diagonal entries. Hence, AB = S™'A4;B,S is semisimple
and has nonnegative eigenvalues. O

A more direct approach to showing that AB has nonnegative eigenval-
ues is to use Corollary 4.4.10 and note that \;(AB) = /\i(Bl/QABl/Q) > 0.

Corollary 8.3.7. Let A, B € N" and assume that rank A = rank B =
rank AB. Then, there exists a nonsingular matrix S € F"*™ such that
SAS* = S™*BS~! and such that SAS* is diagonal.

Proof. By Theorem 8.3.5 there exists a nonsingular matrix S € F**"

such that S1AS57 = [IO 8], where r £ rank A, and such that B; = S;*BSy! is

diagonal. Hence, AB = 51—1[16 8]B151. Since rank A = rank B = rank AB =

r, it follows that By = [%1 8}, where By € F'™™" is positive diagonal. Hence,
STBST! = [Eg) 3] Now, define Sy 2 [Bé“ ﬂ and S 2 S5S1. Then,

SAS" = $,9148185 = | P 0| = S3STBSTISy! = SBS . O

8.4 Eigenvalue Inequalities

Next, we turn our attention to inequalities involving eigenvalues. We
begin with a series of lemmas.

Lemma 8.4.1. Let A € H" and let 8 € R. Then, the following state-
ments hold:
i) BI < Aif and only if 8 < Apin(A).
) BI < A if and only if 8 < Amin(A4).
i11) A < BI if and only if Apax(A4) < 5.
w) A < BIif and only if Apax(A) < 6.

1

Proof. To prove i) assume that I < A, and let S € F"*™ be a
unitary matrix such that B = SAS* is diagonal. Then, I < B, which
yields < Apin(B) = Amin(A). Conversely, let S € F"*™ be a unitary
matrix such that B = SAS* is diagonal. Since the diagonal entries of B
are the eigenvalues of A, it follows that Apmin(A)I < B, which implies that
BT < Amin(A)I < S*BS = A. Results i), ii) and v) are proved in a similar
manner. [l
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Corollary 8.4.2. Let A € H". Then,
Amin(A)] < A < A\pax(A)L (8.4.1)

Proof. The result follows from 7) and ) of Lemma 8.4.1 with § =
Amin(4) and 8 = Apax(A), respectively. 0

Lemma 8.4.3. Let A € H". Then,

A
Amin(A) = min —— (8.4.2)
zeF?\{0} T*x
and
A
Amax(A) = max 7 (8.4.3)

z€F\{0} T*T

Proof. It follows from (8.4.1) that Apmin(A) < z*Ax/x*z for all nonzero
x € F". Letting € F” be an eigenvector of A associated with Apin(A), it
follows that this lower bound is attained. This proves (8.4.2). An analogous
argument yields (8.4.3). O

The following result is the Cauchy interlacing theorem.

Lemma8.4.4. Let A € H"” and let Ag be an (n—1) x (n—1) principal
submatrix of A. Then, for alli=1,...,n —1,

Ais(A) < Ni(Ap) < M(A). (8.4.4)

Proof. Suppose that the chain of inequalities (8.4.4) does not hold.
In particular, first suppose that the right-most inequality in (8.4.4) that
is not true is \i(Ap) < Ai(A), so that \(A) < Ai(Ap). Choose ¢ such
that A\;(A) < § < A\i(Ap) and such that § is not an eigenvalue of Ag. If
i = 1, then A — 41 is negative definite, while if ¢ > 2, then M\(A4) < 0 <
Ai(Ap) < Ai—1(Ap) < Ai—1(A), so that A — I has i —1 positive eigenvalues.
Thus, v4 (A — 6I) = i — 1. Furthermore, since § < X;j(Ap), it follows that
V+(A0 - (5[) Z 1.

Now, assume for convenience that the rows and columns of A are
ordered so that Ay is the (n —1) x (n —1) leading principal submatrix of A.

Thus, A = [’gf ﬂ , where 8 € F*! and v € F. Next, note the identity

A—6I (8.4.5)

I 0 Ao — 61 0 I (Ay—dI'B
B (Ao — 81 1 0  y—6-pA—sD)"8 |0 1 ’

where Ag — d1 is nonsingular since § was chosen to not be an eigenvalue of
Ap. Since the right-hand side of this identity involves a congruence trans-
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formation and, since vy (Ag — dI) > 4, it follows from Corollary 5.4.7 that
v (A — 1) > i. However, this contradicts the fact that v, (A — ) =i —1.

Finally, suppose that the right-most inequality in (8.4.4) that is not
true is Aj+1(A4) < ANi(Ap), so that Aj(Ag) < Ai+1(A4). Choose § such that
Ai(Ap) < 6 < Ai+1(A) and such that § is not an eigenvalue of Ay. Then, it
follows that vy (A—dI) > i+1 and vy (Ag—06I) = i—1. Using the congruence
transformation as in the previous case, it follows that v4 (A —4dI) <4, which
contradicts the fact that vy (A —6I) > i+ 1. O

The following result is the inclusion principle.

Theorem 8.4.5. Let A € H” and let Ay € H* be a k x k principal
submatrix of A. Then, for alli=1,... k,

Aisnoi(A) < Ai(Ag) < Mi(A). (8.4.6)

Proof. If Kk = n —1, then the result is given by Lemma 8.4.4. Hence,
let kK =n—2, and let A; denote an (n—1) x (n—1) principal submatrix of A
such that the (n—2) x (n—2) principal submatrix A of A is also a principal
submatrix of A;. Therefore, Lemma 8.4.4 implies that A\, (A) < A,—1(A1) <
o < A2(Ar) € A2(4) < M(A1) < M(A) and Ap—q(Ar) < Aa(Ag) < --- <
A2(Ap) < A2(A1) < M(Ap) < M(A1). Combining these inequalities yields
Air2(A) < Xi(Ag) < N(A) for all ¢ = 1,...,n — 2, while proceeding in a
similar manner with & < n — 2 yields (8.4.6). O

Corollary 8.4.6. Let A € H" and let Ay € HF be a k x k principal
submatrix of A. Then,
Amin(fél) S )\min(AO) S )\max(AO) S AmaX(A) (847)
and
Amin(Ag) < Ak(A). (8.4.8)
Corollary 8.4.7. Let A € H"”. Then,
)\min(A) S dmin(A) S dmax(A) S Amax(A)- (849)

Lemma 8.4.8. Let A, B € H", and assume that A < B and mspec(A)
= mspec(B). Then, A = B.

Proof. Let a > 0 be such that 0 <A121 < B, where /AlAé A+al and B2
B + al. Note that mspec(A) = mspec(B) and thus det A = det B. Next, it
follows that I < A~Y/2BA=1/2. Hence, it follows from 4) of Lemma 8.4.1 that

)\min(A_l/ 2BAY/ 2) > 1. Furthermore, det(A_l/ 2BA-Y 2) = det B/detA =
1, which implies that )\i(fl_l/ 2BAY/ 2y =1forali=1,...,n. Hence,
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A7V2BAY2 = T and thus A = B. Hence, A = B. O
The following result is the monotonicity theorem or Weyl’s inequality.

Theorem 8.4.9. Let A, B € H”, and assume that A < B. Then, for
alli=1,...,n,

Ai(A) < A\i(B). (8.4.10)
If A # B, then there exists i € {1,...,n} such that
)\1(14) < )\1(B) (8.4.11)

If A< B, then (8.4.11) holds for alli =1,... n.

Proof. Since A < B, it follows from Corollary 8.4.2 that Apin(A)I <
A < B < Amax(B)I. Hence, by 4ii) and 4) of Lemma 8.4.1 it follows that
Amin(A4) < Amin(B) and Apax(A) < Apax(B). Next, let § € F" " be a
unitary matrix such that SAS* = diag[M(A),..., A\ (A4)]. Furthermore, for
2 <i<n-1,let Ay = diag[M(A), ..., A(A)] and By denote the i x i leading
principal submatrices of SAS* and SBS*, respectively. Since A < B, it
follows that Ayp < By, which implies that Apin(Ao) < Amin(Bo). It now

follows from (8.4.8) that
Ai(A) = Amin(Ao) < Amin(Bo) < Ai(SBS™) = \i(B),

which proves (8.4.10). If A # B, then it follows from Lemma 8.4.8 that
mspec(A) # mspec(B) and thus there exists i € {1,...,n} such that (8.4.11)
holds. If A < B, then Apin(Ao) < Amin(Bo), which implies that (8.4.11) holds
foralli=1,...,n. O

Corollary 8.4.10. Let A, B € H". Then, the following statements
hold:
If A< B, then tr A < tr B.
If A< B and trA=trB, then A = B.

i)
)
iii) If A < B, then tr A < tr B.
iv) If 0 < A < B, then 0 < det A < det B.
v) If 0 < A < B, then 0 < det A < det B.
vi) If 0 < A < B and det A = det B, then A = B.

Proof. Statements i), iii), i), v) follow from Theorem 8.4.9. To prove
it) note that, since A < B and tr A = tr B, it follows from Theorem 8.4.9

that mspec(A) = mspec(B). Now, Lemma 8.4.8 implies that A = B. A
similar argument yields vi). O
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The following result, which is a generalization of Theorem 8.4.9, is due
to Weyl.

Theorem 8.4.11. Let A, B€ H". If i +j > n+ 1, then

Xi(A) + Xi(B) < Aitj—n(A+ B). (8.4.12)
Ifi4+ 7 <n-+1, then
Aitj—1(A+ B) < N(A) + X\i(B). (8.4.13)
In particular, for all i =1,...,n,
Ai(A) + Amin(B) < Mi(A + B) < Ai(A) + Amax(B), (8.4.14)

Amin(A) + Amin(B) < Amin(A + B) < Anin(A) + Amax(B),  (8.4.15)
Amax(A) + Amin(B) < Amax(A + B) < Amax(A) + Amax(B).  (8.4.16)

Proof. See [287, p. 182]. O

Lemma 8.4.12. Let A,B,C € H". If A < B and C is nonnegative
semidefinite, then

tr AC < tr BC. (8.4.17)
If A < B and C is positive definite, then
tr AC < tr BC. (8.4.18)

Proof. Since C1/24CY2 < CV/2BC'/?, it follows from i) of Corollary
8.4.10 that
tr AC' = tr CY?ACY? < tr C'?BCY? = 1 BC.

Result (8.4.18) follows from i) of Corollary 8.4.10 in a similar fashion. [
Proposition 8.4.13. Let A, B € F"*" and assume that B is nonneg-
ative semidefinite. Then,
FAmin(A + A*)tr B < tr AB < FAnax(A + A*)tr B. (8.4.19)
If, in addition, A is Hermitian, then

Amin(A) tr B < tr AB < Apax(A) tr B. (8.4.20)

Proof. It follows from Corollary 8.4.2 that Amin(A+A4*)I < L(A+A%),
while Lemma 8.4.12 implies that %)\min(A—kA*) tr B = tr %)\min(A—l—A*)IB <
tr %(A + A*)B = tr AB, which proves the left-hand inequality of (8.4.19).
Similarly, the right-hand inequality holds. U

Proposition 8.4.14. Let A,B € P", and assume that det B = 1.
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Then,
(det A)/" < Lty AB. (8.4.21)

Furthermore, equality holds if and only if B = (det A)Y/"4~1,

Proof. Using the arithmetic-mean-geometric-mean inequality given by
Fact 1.4.9 it follows that

n 1/n
(det A)V/7 = (det Bl/%4Bl/2)1/n - [H )\i(Bl/QABl/2>
=1

< %iAi(Bl/QABW) — lr AB,

Equality holds if and only if there exists 3 > 0 such that BY/2ABY2 = jI.
In this case, § = (det A)Y/™ and B = (det A)/"A~" O

The following corollary of Proposition 8.4.14 is Minkowski’s determi-
nant theorem.

Corollary 8.4.15. Let A, B € N™. Then,
det A + det B < |(det A)Y/™ + (det B)l/n]" <det(A+B).  (8.4.22)

If B =0 or det(A+ B) = 0, then both inequalities become identities.
If there exists o > 0 such that B = «aA, then the right-hand inequality
becomes an identity. Conversely, if A+ B is positive definite and the right-
hand inequality holds as an identity, then there exists a > 0 such that either
B = aA or A = aB. Finally, if A is positive definite and both inequalities
hold as identities, then B = 0.

Proof. The left-hand inequality is immediate. To prove the right-hand
inequality, note that it follows from Proposition 8.4.14 that

(det A)Y/™ + (det B)Y/™ < Ltr [A[det(A + B) YA+ B)ﬂ
+ L [B[det(A + B)Y™(A + B)—l}
— [det(A + B)]Y/™.
If B=0 or det(A+ B) = 0, then both inequalities become identities, while
if there exists a > 0 such that B = aA, then
[(det AV 4 (det B)l/n]" — (1+a)det A = det[(1 + a)A].

Now, suppose that A + B is positive definite and the right-hand inequality
holds as an identity. Then, either A or B is positive definite. Hence, suppose
that A is positive definite. Multiplying the identity (det A)Y/" 4 (det B)Y/" =
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[det(A 4+ B)]Y™ by (det A)~Y™ yields

1+ (det AV2BAY 2)1/ "t [det (I + AT2BAY 2)} v

Letting Ai, ..., A\, denote the eigenvalues of A~/2BA/2 it follows that 1 +
A A)Y™ = [(14 M) - (1 + A)]Y™ Tt now follows from Fact 1.4.12
that \y = --- = \,. Now, suppose that A is positive definite and both
inequalities hold as identities. Then, it follows that 1 + det A~Y/2BA~1/2 =
det(1+ A_l/QBA_l/z), which implies that 14+ X -+ - Ay = (14+X) -+ - (14 A\y),
where A, ..., A\, are the eigenvalues of A~Y/2BA=Y/2. Consequently, B = 0.

Finally, suppose that A is positive definite and both inequalities hold
as identities. Since det A > 0, it follows from the left-hand identity that
det B = 0. Hence, the right-hand identity implies that det A = det(A + B).
Since A < A+ B, it follows from v) of Corollary 8.4.10 that B = 0. O

8.5 Matrix Inequalities

Lemma 8.5.1. Let A,B € H" and assume that 0 < A < B. Then,
R(A) C R(B).

Proof. Let z € N(B). Then, z*Bx = 0 and thus z*Az = 0, which
implies Az = 0. Hence, N(B) C N(A) and thus N(A)* € N(B)*. Since
A and B are Hermitian, it follows from Theorem 2.4.3 that R(A) = N(A)+
and R(B) = N(B)*. Hence, R(A) C R(B). O

The following result is the Douglas-Fillmore- Williams lemma.

Theorem 8.5.2. Let A € F*™*™ and B € F"*!. Then, the following
statements are equivalent:

i) There exists a matrix C' € FX™ such that A = BC.
it) There exists a > 0 such that AA* < aBB*.
i11) R(A) C R(B).

Proof. First we prove that ) implies i7). Since A = BC, it follows
that AA* = BCC*B*. Since CC* < Apax(CC*)I it follows that AA* <
aBB*, where a = A\pax(CC*). To prove that i) implies ii), first note
that Lemma 8.5.1 implies that R(AA*) C R(aBB*) = R(BB*). Since,
by Theorem 2.4.3, R(AA*) = R(A) and R(BB*) = R(B), it follows that
R(A) C R(B). Finally, to prove that i) implies i), use Theorem 5.6.3
to write B = 51[18 8]52, where S; € F»*" and Sy € F*! are unitary and

D € R™*" is diagonal with positive diagonal entries, where r = rank B. Since
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R(S7A) C R(S;B) and S{B = [59]5,, it follows that SfA = [4], where
A; € ™™, Consequently,

A D 0 D1 o A
e Il R e e A I R

where € £ 555" §][4] € B, 0

Proposition 8.5.3. Let {A4;}2, C N” satisfy 0 < A; < A; for all
i < j, and assume that there exists B € N" satisfying A; < B for all i € P.
Then, A £ lim; . A4; exists and satisfies 0 < A < B.

Proof. Let k € {1,...,n}. Then, the sequence {A;q k) }52; is nonde-
creasing and bounded from above. Hence, Ay g £ lim; oo Ajk) exists.
Now, let k,l € {1,...,n}, where k # [. Since A; < A; for all i < j, it follows
that (ex + ;) Ai(ex +e1) < (ex +e1)"Aj(ex + €;), which implies that A; ) —
Aj(k,l) < %[Aj(k,k) - Az(k,k) + AJ(U) - Ai(l,l)] . Alternatively, replacing erpte;
by er—ep yields Ay —Aigy < 5[ Ajwa) — Aiter) + A — Aiqy] - Thus,
Aiky) — Ajkgy — 0 as 4,5 — oo, which implies that Ay £ limj_ oo Aik)
exists. Hence, A 2 lim;_,oo A; exists. Since A; < B for alli = 1,2,..., it
follows that A < B. O

Let A = SBS* € F"*™ be Hermitian, where S € F"*" is unitary, B €
R™™ is diagonal, spec(A) C D, and D C R. Furthermore, let f: D +— R.
Then, we define f(A4) € H" by

f(A) £ Sf(B)S*, (8.5.1)

where [f(B)] () = f(Bi,y)- In particular, suppose that A is nonnega-
tive semidefinite. Then, for all » > 0 (not necessarily an integer), A" =
SB"S* is nonnegative semidefinite, where, for all i = 1,...,n, (B"); =
(BW))T . Note that A% £ I. In particular, A2 = SBY/2S8* is a nonnegative-
semidefinite square root of A since AY/24'/2 = SBY/28%*SB1/28* = SBS* = A.
Hence, if C' € F*»*™ then C*C is nonnegative semidefinite, and we define
(C) & tr (CFC)Y2. (8.5.2)
If A is positive definite, then A" is positive definite for all » € R, and,
if r # 0, then (A")Y"= A. If, in addition, A is positive definite, then
log A = S(log B)S* € H", where (log B)(; ;) = log By

L

If 0 < A < B, then it does not necessarily follow that A? < B2.
Consider A £ [} 2] and B £ [29]. However, the following result, known as
Furuta’s inequality, is valid.

Proposition 8.5.4. Let A,B € N", and assume that 0 < A < B.



matrix2 November 19, 2003

NONNEGATIVE-SEMIDEFINITE MATRICES 255

Furthermore, let p, ¢, € Rsatisfy p > 0,¢ > 1,7 > 0, and p+2r < (1427)q.
Then,

AP/ < (ATBPAT)Va (8.5.3)
and

(BAPBT)Ya < Bpr+2nifa, (8.5.4)
Proof. See [218]. O
Corollary 8.5.5. Let A, B € N", and assume that 0 < A < B. Then,
A2 < (AB%)? (8.5.5)

and 12
(BA’B) ' < B*. (8.5.6)
Proof. In Proposition 8.5.4 set r =1, p =2, and ¢ = 2. U

Corollary 8.5.6. Let A, B,C € N™, and assume that 0 < A < C < B.

Then,

1/2 12

(CcA*C)"" < C?< (CB*C) (8.5.7)

Proof. The result follows directly from Corollary 8.5.5. See also [583].
U

The following result provides representations for A", where r € [0,1).

Proposition 8.5.7. Let A € P" and r € (0,1). Then,

o
: r—+1
AT = (cos %”)H Smr”/[ﬁ T — (A+al) " | de (8.5.8)
i X
and o
AT = Smm/ (A + 2l Yz da. (8.5.9)

0

Proof. Let ¢t > 0. As shown in [90], [93, p. 143],

x r+1 r
x x T

/ — dx = ‘7r (tr—cos—ﬂ>.
14+ t+x sin rmw 2

0

Solving for ¢" and replacing t by A yields (8.5.8). Likewise, it follows from
[633, p. 448, formula 589] that

* r—1 T
te' t'm
/ dr = — .
t+x sin rmw

0
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Replacing t by A yields (8.5.9). O
The following result is the Lowner-Heinz inequality.

Corollary 8.5.8. Let A,B € N™, assume that 0 < A < B, and let
r € [0,1]. Then, A" < B". If, in addition, A < B and r € (0,1], then
A" < B".

Proof. Let 0 < A < B, and let r € (0,1). In Proposition 8.5.4, replace
p,q,7 with r,1,0. The first result now follows from (8.5.3). Alternatively, it
follows from (8.5.8) of Proposition 8.5.7 that

Br— A =M TW/[(A +al)™ — (B +al) 2" da.
T
0

Since A < B, it follows from Proposition 8.1.5 that, for all x > 0, (B +
xl)™ < (A + xl)™'. Hence, A" < B". By continuity, the result holds for
A,B € N" and r € [0,1]. In the case A < B, it follows from Proposition
8.1.5 that, for all z > 0, (B + )™ < (A +2I)™!, so that A” < B".

Alternatively, it follows from (8.5.9) of Proposition 8.5.7 that

o0

Br— A = 2T / [(A+ 2l A — (B + ) "'Bla" " da.
0
Since A < B, it follows that, for all z > 0, (B + 2I)™'B < (A + zI)™'A.
Hence, A" < B". For yet another proof, see [625, p. 2]. O

Many of the results already given involve functions that are nonde-
creasing or increasing on suitable sets of matrices.

Definition 8.5.9. Let D C H", and let ¢: D — H™. The function
¢ is nondecreasing if ¢(A) < ¢(B) for all A;B € D such that A < B,
it is increasing if it is nondecreasing and ¢(A) < ¢(B) for all A,B € D
such that A < B, and it is strongly increasing if it is nondecreasing and
»(A) < ¢(B) for all A, B € D such that A < B and A # B. The function ¢
is (nonincreasing, decreasing, strongly decreasing) if —¢ is (nondecreasing,
increasing, strongly increasing).

Proposition 8.5.10. The following functions are nondecreasing:
i) ¢: H" — H" defined by ¢(A) & BAB*, where B € F"™*™,
i) ¢: H" — R defined by ¢(A) £ tr AB, where B € N™.
iii) ¢: N7 N defined by ¢(A) 2 Ag|A, where A 2 [ﬁg g‘;g].



matrix2 November 19, 2003

NONNEGATIVE-SEMIDEFINITE MATRICES 257

The following functions are increasing;:

H" — R defined by ¢(A) = \(A), where i € {1,...,n}.

w

) ¢
v) ¢: N™ = N defined by ¢(A) £ A", where 7 € [0, 1].
vi) ¢: N" — N" defined by ¢(A) £ A2
vii) ¢: P" +— —P" defined by ¢(A) & —A~", where r € [0, 1].
viid) ¢: P" — —P" defined by ¢(A) & —
ir) ¢: P — —P" defined by ¢(A) & —A7/2,
z) ¢: —P"— P" defined by ¢(A) £ (—A)~", where r € [0,1].
zi) ¢: —P™ — P" defined by ¢(A4) £ —A~L.
zii) ¢: —P" — P™ defined by ¢(A) & —A~1/2,
ziii) ¢: H™ +— H™ defined by ¢(A) £ BAB*, where B € F™ " and

rank B = m.

ziv) ¢: P P™ defined by ¢(A) £ Aga|A, where A = [ﬁi QZ}
zv) ¢: PP P" defined by ¢(A) £ —(A22|A) . where A2 [AE fxii}

avi) ¢: P — H™ defined by ¢(A) £ log A.
The following functions are strongly increasing;:

avii) ¢: H" — [0,00) defined by ¢(A) £ tr BAB*, where B € F™ " and
rank B = m.

zviii) ¢: H" — R defined by ¢(A) £ tr AB, where B € P",
ziz) ¢: N [0,00) defined by ¢(A) £ det A.

Proof. For the proof of iii), see [369]. O

Finally, we consider convex functions defined with respect to matrix
inequalities.

Definition 8.5.11. Let D C F"*™ be a convex set and let ¢: D +— HP.

The function ¢ is convex if
dladi+ (1 — a)As] < ap(dr) + (1 - a)p(As) (8.5.10)
for all a € [0, 1] and A, A2 € D. The function ¢ is concave if —¢ is convex.

Lemma 8.5.12. Let D C F™™ and § C H? be convex sets, and let
¢1: D 8 and ¢o: 8§ — HY. Then, the following statements hold:
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i) If ¢ is convex and ¢9 is nondecreasing and convex, then ¢
¢1: D — H? is convex.

it) If ¢1 is concave and ¢9 is nonincreasing and convex, then ¢y e
¢1: D — HY is convex.

iii) If 8 is symmetric, ¢a(—A) = —@2(A) for all A € §, ¢; is concave,
and ¢o is nonincreasing and concave, then ¢o @ ¢1: D — HY is
convex.

iv) If 8 is symmetric, ¢o(—A) = —po(A) for all A € 8§, ¢y is convex, and
¢9 is nondecreasing and concave, then ¢o @ ¢1: D — HY is convex.

Proof. To prove i) and 1), let o € [0,1] and A;, Ay € D. In both cases
it follows that

p2(d1[ads + (1 — a)As]) < gofadi(Ar) + (1 — a)¢1(As2)]
< ada[¢1(A1)] + (1 — a)po[di(A2)].
Statements 4ii) and iv) follow from ) and i), respectively. O
Proposition 8.5.13. The following functions are convex:
) ¢: N™ — N” defined by ¢(A) £ A", where r € [1,2].
) ¢: N™ i N" defined by ¢(A4) £ A2
) ¢: P" — P™ defined by ¢(A)
) ¢: P" s P" defined by ¢(A4) £ AL,
v) ¢: P"™— P" defined by ¢(A) —1/2
) &
) ¢
) ¢

£ A", where 7 € [0,1].

1>
IL

IID

: N"+— —N" defined by ¢(A)
: N"+— —N" defined by ¢(A)

", where r € [0,1].

(1>

A2,

N” — H™ defined by ¢(A) £ yBAB*, where v € R and B €

ir) ¢: N" > N™ defined by ¢(A) £ BA'B*, where B € F™ " and
€ [1,2].

2) ¢ P" > N™ defined by ¢(A) £ BA"B*, where B € F™*" and
r € [0,1].

zi) ¢: N™— —N™ defined by ¢(A) £ —BA'B*, where B € F™*" and
r € [0,1].

zii) ¢: P™ — —P™ defined by ¢(A) & —(BA"B*)P, where B € F"*"
has rankm and r,p € [0, 1].
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ziii) ¢: F™™ - N™ defined by ¢(A) & ABA*, where B € N™,
ziv) ¢: P x F™X" s N™ defined by ¢(A, B) & BA™B*.
2v) ¢: N N defined by ¢p(A) £ —Ag|A, where A £ [ﬁi ﬁ;z]

i) ¢: P P defined by ¢(A) £ (Ag|A)™, where A2 [ﬁi s }

zvii) ¢: P™ — (0,00) defined by ¢(A) £ tr A", where r > 0.

wiii) ¢: P" + (—00,0) defined by ¢(A) & — (tr A7), where r,p €
[0,1].

zir) ¢ N" x N™ — (—00,0] defined by ¢(4,B) £ —tr (A" + B")"",
where r € [0, 1].
1) ¢ N™ x N" i [0, 00) defined by ¢(A, B) 2 tr (A2 + B2)"/?.

zzi) ¢: N x N™ — R defined by ¢(A, B) = —tr A”XBPX*, where
XelF™™m rp>0,and r+p < 1.

zrii) ¢: N™ = (—00,0) defined by ¢(A) & —tr AAXAPX*, where X €
Frxnpp>0,and r+p < 1.

zrii)) ¢: PP xP™xF™*" i R defined by ¢(A, B, X) £ (tr APXB7"X*)?,
where 7,p >0, r+p<1,and ¢> (2—r—p)"

zziv) ¢: P"xF"™ — [0, 00) defined by (A4, X) £ tr APXA"X*, where
r,p>0and r+p< 1.

zzv) ¢ P x FPX" i [0,00) defined by ¢(A) £ tr APXA"X*, where
r,p € [0,1] and X € F"*".

¢: P" — R defined by ¢(A) £ tr([4", X][A'"", X]), where X € H".
¢: P™ — H™ defined by ¢(A) £ Alog A.
¢: N™\{0} — R defined by ¢(A) = —logtr A", where 7 € [0, 1].
¢: P" x P" — (0,00) defined by ¢(A, B) £ tr[A(log A — log B)].
zzz) ¢: N™ — (—o0,0] defined by ¢(A) £ —(det A)1/™.
¢: P" - R defined by ¢(A) £ —log det A.
¢: P — (0,00) defined by ¢(A) £ det A7,
¢
T

N” x N™ — —N"" defined by ¢(A, B) £ —A"® B'™", where
€ [0,1].

zzziv) ¢: N™ x N” — —N" defined by ¢(A,B) & —A"oB'"", where
r e [0,1].
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zzzv) ¢: H" — R defined by ¢(A) £ Zle)\i(A), where k € {1,...,n}.
zzzvi) ¢: H" — R defined by ¢(A4) & =31, Mi(A), where k € {1,...,n}.

Proof. Statements ¢) and ii:) are proved in [23] and [93, p. 123].
Let « € [0, 1] for the remainder of the proof.

To prove ) directly, let A;, A2 € H". Since

a(l —a) = (a _ a2)1/2 [(1 —a)—(1- a)2]1/2 7

it follows that

0< [(a 04— [(1—a) - (1) 1/%42}2

= (a— a2)A% +[1-a)—(1- a)Q]A% —a(l —a)(AjAg + A Ay).

Hence,
[@A; + (1 — ) A]? < aA? + (1 — ) A3,

which shows that ¢(A) = A? is convex.

To prove ) directly, let A;, A € P". Then, [All_ i] and [AI? XJ

are nonnegative semidefinite, and thus

AN T AT
0‘[ I A1]+(1—a)[ I AJ
[ adT + (1 - )4yt I
- I OéAl + (1 - Oé)AQ

is nonnegative semidefinite. It now follows from Proposition 8.2.3 that [aA;+
(1 —a)Ag]™! < aA + (1 — a)A3", which shows that ¢(A) = A~ is convex.

To prove v) directly, note that ¢(A) = A2 = ¢y[pi(A)], where
Pp1(A) & AY2 and ¢y(B) £ B~'. It follows from wvii) that ¢, is concave,
while it follows from 7v) that ¢9 is convex. Furthermore, viii) of Proposition

8.5.10 implies that ¢9 is nonincreasing. It thus follows from i) of Lemma
8.5.12 that ¢(A) = A2 is convex.

To prove vi), let A € P™ and note that ¢(4) = —A" = ¢a[p1(A)],
where ¢1(A) £ A" and ¢(B) & —B~'. It follows from ii) that ¢; is
convex, while it follows from iv) that ¢9 is concave. Furthermore, viii) of
Proposition 8.5.10 implies that ¢o is nondecreasing. It thus follows from iv)
of Lemma 8.5.12 that ¢(A) = A" is convex on P". Continuity implies that
»(A) = A" is convex on N".
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To prove vii) directly, let Aj, Ay € N™. Then,
0<a(l —a) (A%/z - A12/2>2,
which is equivalent to
04141/2 +(1- a)Aé/Q]Qg aA;+ (1 — a)As.
Using v1) of Proposition 8.5.10 yields
aAY? + (1 - a)AY? < [ad;+ (1 — a) Ay Y2,
Finally, multiplying by —1 shows that ¢(A) = —AY? is convex.

The proof of viii) is immediate. Statements iz), x), xi) follow from 7),
iii), and vi), respectively.

To prove zii), note that ¢p(A) = — (BATB*) ¥ = ¢o[p1(A)], where
$1(A) = —BA™"B* and ¢2(C) = C7P. Statement z) implies that ¢; is
concave, while 77) implies that ¢ is convex. Furthermore, vii) of Proposition
8.5.10 implies that ¢9 is nonincreasing. It thus follows from i) of Lemma
8.5.12 that ¢(A) = —(BA™"B*) ? is convex.

To prove wiii), let Ay, Ag € F"*™ and let B € N". Then,
0<a(l—a)(A— A2)B(A; — Ay)*
= aA1BA] + (1 — o) A3 BAS — [aA1 + (1 — a) Ag) Bla A1 + (1 — a) Ag]*.
Thus,
[@A; + (1 — a)Ag] BlaA; + (1 — a) As]* < aA1BAT + (1 — a) A3 BAS,
which shows that ¢(A) = ABA* is convex.

To prove ziv), let A1, As € P™ and By, By € F™*™. Then, it follows
from Proposition 8.2.3 that [B “?51;13 i fi] and [B 2’25;13 2 fﬂ are nonnegative
semidefinite and thus
BAT'B: By

B: A

By Ay'Bs By
By A

o

+(1—a)

aB1AT'Bf 4+ (1 — a)BaAy'Bs  aBy+ (1 — o) By
aBf 4+ (1 —«)Bj aAi+ (1 —a)As
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is nonnegative semidefinite. It thus follows from Proposition 8.2.3 that
[aB;1+ (1 — a)Ba][ad; + (1 — a)Ag] [aB; + (1 — ) ByJ*
< aBiA]'Bf + (1 — a) B2 Ay 'B3,
which shows that ¢(A, B) = BA™B* is convex.

All Al
To prove zv), let A £ [AIQ A;] e P"t" and B & [gg g;z] c pntm,
Then, it follows from ziv) with Ay, By, Aa, B replaced by Agg, A2, Baa, Bi2,
respectively, that

[OzAlZ + (1 — O[)B]_QHO[AQQ + (1 — a)BQQ]_l[OéA]_Q + (1 — Oz)Blz]*
< adip A5 Aty + (1 — @) Bi2Byy Bl
Hence,
—[O&Agg—i—(l — Oz)BQQH[CVA + (1 — Oz)B]

= [aAz + (1 — a)Bia][edas + (1 — ) Bao] ad1z + (1 — o) Byal*
- [OéAll —+ (1 — O[)Bll]

< a(A1245 A7, — Air) + (1 — @) (B12By BYy, — Bin)
= a(—Axl|A) + (1 — a)(—Bx2|B),

A

which shows that ¢(A) = —Ags| A is convex. By continuity, the result holds
for A € N*+™,

To prove zvi), note that ¢(A) = (Agz|A)™ = do[d1(A)], where ¢1(A) =
Ago|A and ¢9(B) = B, It follows from xv) that ¢; is concave, while it
follows from iv) that ¢2 is convex. Furthermore, viii) of Proposition 8.5.10

implies that ¢o is nonincreasing. It thus follows from Lemma 8.5.12 that
P(A) £ (Ap|A)™ is convex.

Result zvid) is given in by Theorem 9 of [372].

To prove zwiii), note that ¢(A) = —(tr A7")P = ¢o[¢p1(A)], where
$1(A) = tr A" and ¢o(B) = —B~P. Statement 74) implies that ¢; is convex
and that ¢ is concave. Furthermore, vii) of Proposition 8.5.10 implies

that ¢ is nondecreasing. It thus follows from iv) of Lemma 8.5.12 that
$(A) = —(tr A7")7P is convex.

Results ziz) and xz) are proved in [126].
Results zzi)—zzv) are given by Corollary 1.1, Theorem 1, Corollary 2.1,

Theorem 2, and Theorem 8, respectively, of [126]. A proof of zzi) in the case
p=1—ris given in [93, p. 273].
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Result xzvi) is proved in [126] and [93, p. 274].
Result zzvii) is given in [93, p. 123].

To prove zwiii), note that ¢(A) = —logtr A" = ¢o[p1(A)], where
$1(A) = tr A" and ¢2(x) = —logx. Statement vi) implies that ¢; is con-
cave. Furthermore, ¢ is convex and nonincreasing. It thus follows from i7)
of Lemma 8.5.12 that ¢(A) = —logtr A" is convex.

Result zziz) is given in [93, p. 275].

To prove zzz), let A, Ay € N"™. From Corollary 8.4.15 it follows
that (det A1)Y/™ + (det Ag)/™ < [det(A; + A2)]Y/™. Replacing A; and A,
by aA; and (1 — «)Ag, respectively, and multiplying by —1 shows that
P(A) = —(det A)Y/™ is convex.

To prove zzzi), note that ¢(A) = —nlog[(det A)Y/"] = ¢o[p1(A)],
where ¢1(A) = (det A)Y/™ and ¢y(z) = —nlogz. It follows from ziz) that

¢1 is concave. Since ¢9 is nonincreasing and convex, it follows from i) of
Lemma 8.5.12 that ¢(A) = —logdet A is convex.

To prove zxzii), note that ¢(A) = det A1 = ¢o[p1(A)], where ¢1(A) =
logdet A~ and ¢o(x) = e®. It follows from zz) that ¢; is convex. Since
¢2 is nondecreasing and convex, it follows from i) of Lemma 8.5.12 that
#(A) = det A7! is convex.

Next, zzziii) is given in [93, p. 273] and [625, p. 9]. Statement zzziv)
is given in [625, p. 9].

Finally, zzzv) is given in [400, p. 478]. Statement zzzvi) follows im-
mediately from zzzv). O

The following result is a corollary of zv) of Proposition 8.5.13 for the
caseaw = 1/2. Versions of this result appear in [128,272,369] and [466, p.
152].

22

Corollary 8.5.14. Let A 2 |42 42| € Ftm ana B 2 [ B f2| €
F7t™ and assume that A and B are nonnegative semidefinite. Then,

AnlA+ Bn|B < (A1 + Bn)|(A+ B).

The following corollary of xzzv) gives a strong majorization condition
for the eigenvalues of a pair of Hermitian matrices.
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Corollary 8.5.15. Let A,B € H". Then, for all k =1,...,n,

k k
> XA+ B) <) [N(A) + Mi(B)] (8.5.11)
=1 =1
with equality for k = n.
Proof. See [93, p. 69], [289, p. 201], or [400, p. 478]. O

8.6 Facts on Range and Rank

Fact8.6.1. Let A, B € F"*™ be nonnegative semidefinite. Then, there
exists a > 0 such that A < aB if and only if R(A) C R(B). In this case,
rank A < rank B. (Proof: Use Theorem 8.5.2 and Corollary 8.5.8.)

Fact 8.6.2. Let A, B € F™*™, and assume that A is nonnegative semi-
definite and B is either nonnegative semidefinite or skew Hermitian. Then,
the following identities hold:

i) N(A+ B) =N(A) NN(B).
ii) R(A+ B) =R(A) + R(B).
(Proof: Use [(N(A) NN(B)]* = R(A) + R(B).)
Fact 8.6.3. Let A € F™*" and assume that A + A* > 0. Then, the
following identities hold:
i) N(A) =NA+ A*)NN(A — A%).
ii) R(A) =R(A+ A*) + R(A — A).
iti) rank A =rank [ A+ A* A—A*].

Fact 8.6.4. Let A, B € F"*™ be nonnegative semidefinite. Then,
rank [ A B | =rank(A + B)

and

rank [ A =rank A + rank(A + B).

-
(Proof: Using Fact 8.6.2,
R([ A B)) :m([ A B {ED = R(A2 + B2) = R(A%) + R(B?)

= R(A) + R(B) = R(A + B).
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Alternatively, it follows from Fact 6.4.11 that
rank [A B]=rank [ A+ B B]
= rank(A + B) +rank[B — (A + B)(A + B)" B].
Next, note that
rank[B — (A + B)(A + B)*B] = rank<B1/2 [I - (A+B)(A+ B)"] 31/2)
< rank(BY?[1 - BB*]B/?) = 0.

For the second result use Theorem 8.3.4 to simultaneously diagonalize A
and B.)

8.7 Facts on Identities and Inequalities Involving
One Matrix

Fact 8.7.1. Let A € F"*" be nonnegative semidefinite, and assume
that there exists i € {1,...,n} such that A ; = 0. Then, row;(A) = 0 and
col;(A) = 0.

Fact8.7.2. Let A € F"*" be nonnegative semidefinite. Then, A(;; >
0foralli=1,...,n, and \A(m-)]z < A iyAg, ) foralli,j=1,...,n.

Fact 8.7.3. Let A € F™*". Then, A > 0 if and only if A > —A.
Fact 8.7.4. Let A € F™*" be Hermitian. Then, A% > 0.

Fact 8.7.5. Let A € F"*" be skew Hermitian. Then, A% < 0.
Fact 8.7.6. Let A € F™*™. Then,

(A4 A2 >0
and
(A—A"2 <.
Fact 8.7.7. Let A € F"*™. Then,
A2 4 A% < AA* 4 AA.
Equality holds if and only if A = A*.
Fact 8.7.8. Let A € F™*", and let o > 0. Then,
A+ A" <al + a7 44"
Equality holds if and only if A = al.
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Fact 8.7.9. Let A € F™*™ be positive definite. Then,
2l <A+ A
Equality holds if and only if A = I.

Fact 8.7.10. Let A € F™*" be Hermitian. Then, A% < A if and only
ifO<A<LI

Fact 8.7.11. Let A € F"*" be Hermitian. Then, af + A > 0 if and
only if & > —Apin(A4). Furthermore,
A+ A+ 41 >0.

Fact 8.7.12. Let A € F"*™. Then, AA* < I, if and only if AA < I,,,.

Fact 8.7.13. Let A € F"*"™, and assume that either AA* < A*A or
AA < AA*. Then, A is normal. (Proof: Use the Schur decomposition.)

Fact 8.7.14. Let A € F™*" be a projector. Then,
0<ALLI

Fact 8.7.15. Let A € F"*™, Then,
(AA")2A = A(A*A)V/2

Fact 8.7.16. Let A € F™™ and assume that A*A is nonsingular.
Then,
(AA")/2 = A(AA) 71247,

Fact 8.7.17. Let A € F"*" be nonsingular. Then, (AA*)™"/?4 is uni-
tary.

Fact 8.7.18. Let A € F™"*™, Then, A is positive definite if and only if
I + A is nonsingular and the matrices I — B and I + B are positive definite,
where B = (I + A)™H(I — A). (Proof: See [191].) (Remark: For additional
results on the Cayley transform, see Fact 3.6.23, Fact 3.6.24, Fact 3.6.25,
Fact 3.9.8, and Fact 11.15.9.)

Fact 8.7.19. Let A € F™*™ be nonnegative semidefinite and let k € P.
Then, there exists a unique nonnegative-semidefinite matrix B € F**"™ such
that B*¥ = A. (Proof: See [287, p. 405].) (Problem: Find a direct proof of
uniqueness for k£ = 2 and extend to nonintegral powers.)

Fact 8.7.20. Let A € R™ "™ be positive definite, assume that A < I,
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and define {By,}22, by By £ 0 and
Byt1 £ By + 3(A - B}).
Then,
lim By, = AY2.
k—oo

(Proof: See [74, p. 181].) (Remark: See Fact 5.13.18.)

Fact 8.7.21. Let A € R™ " be nonsingular and define {B;}72, by
A
By = A and
Biyr 2 3(By+ BT).

Then,
lim By = (44T)"A,

(Remark: The limit is unitary. See Fact 8.7.17. See [64, p. 224].)

Fact 8.7.22. Let 0 < a1 < -+ < ay, and define A € R™™ by
A j) £ min{q;, aj;} forall 4,5 =1,...,n. Then, A is nonnegative semidefi-
nite. (Problem: Determine rank A. When is A positive definite?) (Remark:
When o; =i for alli =1,...,n, the matrix A is a covariance matrix arising
in the theory of Brownian motion.)

Fact 8.7.23. Let A,..., Ay € C be such that ReA; < 0 for all ¢ =
1,...,n,and, for all 5,5 = 1,...,n, define A € C"*" by

-1
Ay 2 —.
(4,9) )\2 +)‘]
Then, A is nonnegative semidefinite. (Proof: Note that A = 2B o (1,,x, —

- _ 1 _ Qu+DH(u+D
0){ 1}, where B(Z,]) = m and C(ZJ) = m Then, note that

B is nonnegative semidefinite and that (1,5, — C)1™1 = 1,0, + O+ C +
C13} 4 ... Alternatively, A satisfies a Lyapunov equation with coefficient
diag(N, ..., An). See [289, p. 348].) (Remark: A is a Cauchy matrix. See
Fact 3.12.13 and Fact 8.7.29.)

Fact 8.7.24. Let ay,...,a, > 0 and p € R, assume that either a,...,
ay, are positive or p is positive, and, for all ¢,5 = 1,...,n, define A € R™*"
by

L

A(i,j) = (aiaj)p.
Then, A is nonnegative semidefinite. (Proof: A = a{P}a{P}T where a £

[a1 - an ]T)

Fact 8.7.25. Let a1,...,a, > 0,let a > 0, and, for all 4,5 =1,...,n,
define A € R™*" by



matrix2 November 19, 2003

268 CHAPTER 8
SNV S

2 (a; + aj)a'

Then, A is nonnegative semidefinite. (Proof: See [462].) (Remark: See Fact
5.9.7.)

A

Fact 8.7.26. Let ai,...,a, > 0, let r € [—1,1], and, for all i,j =
1,...,n, define A € R"*" by

al +a’
Auy = ——
’ a; + aj
Then, A is nonnegative semidefinite. (Proof: See [625, p. 74].)

Fact 8.7.27. Let ay,...,a, > 0, let ¢ > 0, let p € [—q, g|, and, for all
i,j=1,...,n, define A € R"*™ by
5 % T4
(4.3) a§+a;1-'

Then, A is nonnegative semidefinite. (Proof: In Fact 8.7.26, replace a; by
1/a;, and let = p/q. See [405] for the case ¢ > p > 0.) (Remark: The case
qg = 1 and p = 0 yields a Cauchy matrix. In the case n = 2, A > 0 yields
Fact 1.4.6.) (Problem: When is A positive definite?)

Fact 8.7.28. Let ay,...,a, > 0, let p € [-1,1] and g € (—2,2], and,
foralli,7=1,...,n, define A € R"*" by

P P
A ai—l-aj

Aig) =

2 2"
a; + qaia; + aj

Then, A is nonnegative semidefinite. (Proof: See [624] or [625, p. 76].)

Fact8.7.29. Let ay,...,an,b1,...,b, € R be positive and, for all 4, j =
1,...,n, define the Cauchy matrix A € R"*" by A, j 2 1/(a; + b;). Then,
A is nonnegative semidefinite. If, in addition, a; < --- < a, are distinct
and by < --- < b, are distinct, then A is positive definite. In particular,
the Hilbert matrix is positive definite. (Remark: See Fact 3.12.12 and Fact
3.12.13.) (Problem: Extend this result to complex entries and generalize
Fact 8.7.23.)

Fact 8.7.30. Let A € F"*" be Hermitian, assume that Ag;; > 0 for
alli =1,...,n, and assume that, for all i,j =1,...,n,

Al < wtry/AanAg)-
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Then, A is positive definite. (Proof: Note that
n—1 n ' * LA ii A i
x*Ax:ZZ[;C(z)} n—1 4 *(4,3) (4,9)
i=1 j=iq1l "0 A¢

1

(Remark: This result is due to Roup.)

Fact 8.7.31. Let ag,...,a, > 0, and define the tridiagonal matrix
A € R™™™ by

oo + o —Q 0 0 cee 0

—Qq a1+ o —Q9 0 0

AL 0 -y Qazxt+az3 —az - 0
0 0 0 0 - aptan

Then, A is positive definite. (Proof: For k = 2,...,n, the k x k leading

principal subdeterminant of A is given by {Zf:o a; 1] apag -+ ag. See [66, p.

115].) (Remark: A a stiffness matrix arising in structural analysis.)

Fact8.7.32. Let x1,...,z, € F", and define A € F"*" by A(; ; = rix;

forall 4,7 =1,...,n, and B £ [ Ty oo Ty ] Then, A = B*B. Conse-
quently, A is nonnegative semidefinite and rank A = rank B. Conversely, let
A € F™*" be nonnegative semidefinite. Then, there exist z1,...,z, € F*
such that A = B*B, where B = [ 1 -+ Tp ] (Proof: The converse is an

immediate consequence of Corollary 5.4.5.) (Remark: A is the Gram matriz
of xy,...,zp.)

Fact 8.7.33. Let A € F™*™ be nonnegative semidefinite. Then, there
exists B € F"*™ such that B is upper triangular, B has nonnegative diagonal
entries, and A = BB*. If, in addition, A is positive definite, then B is unique
and has positive diagonal entries. (Remark: This result is the Cholesky
decomposition.)

Fact 8.7.34. Let z € F". Then,

zx* < x¥xl.

Fact 8.7.35. Let A € F"*™, and assume that rank A = m. Then,
0< AAA) A" < I

Fact 8.7.36. Let A € F™*™ be positive definite. Then,
Py P Gt T

-~ af af 4o ’
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where & 2 Apax(A) and 3 2 A\pin(A). (Proof: See [401].)

Fact 8.7.37. Let A = [1‘21: ﬁ;i} € F™*™ be Hermitian, assume that
Ass is nonsingular, and let S £ [ I —AlgAE% ] Then,
Apy — A Ap Ay = SAS*.

If, in addition, A is (nonnegative semidefinite, positive definite), then so is
—1 px*

Fact 8.7.38. Let A € F™*"™, and define
Lol @aaye g
- A (A*A)1/2

Then, A is nonnegative semidefinite.

Fact 8.7.39. Let A € F"*" be nonnegative semidefinite. Then, [ﬁ f‘]

and [f‘A _AA] are nonnegative semidefinite. Furthermore, if [%f ] € F2x2

. . . . . A BA . . a
is nonnegative semidefinite, then so is [g A A}‘ Finally, if A and [5 v} are

positive definite, then [gﬁ Eﬁ] is positive definite. (Proof: Use Fact 7.4.13.)

Fact8.7.40. Let Ay, Ara, Ay € F™", assume that | 42t 42 | € F2rxen

is nonnegative semidefinite, and assume that [g p } € F?*2 is nonnegative

B
oAy A1

semidefinite. Then, [— . ] is nonnegative semidefinite. If, in addition
51412 YAz ’ )

[fﬁ; j;;} is positive definite and a, 8 > 0, then [gj fﬁ” is positive def-
12

.. . oA fA12 | a A A

inite. (Proof: Note that [BAE ’YAzz} = ({B 7} ® 1an> ) [Ai A;i} and use

Fact 8.15.6 and Fact 7.4.13.) (Problem: Extend this result to nonsquare
Alz.)

Fact 8.7.41. Let [ﬁi; ﬁ;g] € F?*2" he nonnegative semidefinite,
where Ajqp, Agg € F**". Then,

—A1 — Ago < Ajg + Ajy < Aj1 + Ao,
If, in addition, [fﬁ; ﬁ;ﬂ is positive definite, then

—A1 — Aoy < Ajg + A>|1<2 < Aj1q + Aogs.
(Proof: Consider S| 4 422 | ST, where 2 [ 1 I ]and S2[1 —I])



matrix2 November 19, 2003

NONNEGATIVE-SEMIDEFINITE MATRICES 271

Fact 8.7.42. Let A, B € F™*"™ be Hermitian. Then, —A < B < A if
and only if [g ﬁ] is nonnegative semidefinite. Furthermore, —4A < B < A

if and only if [4 B] is positive definite.

Fact8.7.43. Let A € R"*" be positive definite, let § C {1,...,n}, and
let Afg) denote the principal submatrix of A obtained by deleting row;(A)
and col;(A) for all ¢ € 8. Then,

-1 ]
(Aig) " < (A7)
(Proof: See [287, p. 474].) (Remark: Generalizations of this result are given
in [143].)
Fact 8.7.44. Let A € F™*™ be positive definite. Then,
n+logdet A < n(det A)V/™ <trA < (ntr A2)1/2,
with equality if and only if A = 1.

Ay o A
: ] , where A;; € F™*" for all ¢, =
A =0 A

1,...,k, and assume that A is positive definite. Furthermore, define A
Apn v A

Fact 8.7.45. Let A =

AN

, where flij = l1xn,Aijln,x1 is the sum of the entries of A;;

Alk e Akk
for all i,5 = 1,...,k. Then, A is positive definite. (Proof: A = BABT,
where the entries of B € R"*"™ are zeros and ones. See [22].)

8.8 Facts on Identities and Inequalities Involving
Two or More Matrices

Fact 8.8.1. Let A, B € F"*" be positive definite. Then,
(A 4+ BN = A4+ BB

Fact 8.8.2. Let A € F™*™ be positive semidefinite, let A € F**™ be
Hermitian, and assume that A + B is nonsingular. Then,

(A+B)' +(A+B)'B(A+ Bl <AL,
If, in addition, B is nonsingular, the inequality is strict. (Proof: The in-

equality is equivalent to BA™'B > 0. See [443].)

Fact 8.8.3. Let A € F"™ and B € F™*™ and assume that B is
nonnegative semidefinite. Then, ABA* = 0 if and only if AB = 0.
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Fact 8.8.4. Let A, B € F™*™ be nonnegative semidefinite. Then, AB
is nonnegative semidefinite if and only if AB is normal.

Fact 8.8.5. Let A, B € F"*" be Hermitian and assume that either 7) A
and B are nonnegative semidefinite or i) either A or B is positive definite.
Then, AB is group invertible. (Proof: Use Theorem 8.3.2 and Theorem
8.3.5.)

Fact 8.8.6. Let A, B € F"*™ be Hermitian and assume that A and
AB+ BA are positive definite. Then, B is positive definite. (Proof: See [356,
p. 120] or [599]. Alternatively, the result follows from Corollary 11.7.4.)

Fact 8.8.7. Let A, B € F"*" be Hermitian and assume that A < B.
Then, A(Z,z) S B(Z,l) for all 1 = 1, ceey N

Fact 8.8.8. Let A € F™"*™ be positive definite and let B € F"*" be
nonnegative semidefinite. Then, B < A if and only if BA™'B < B.

Fact 8.8.9. Let A, B,C,D € F"*™ be nonnegative semidefinite, and
assume that 0 < D < C and BCB < ADA. Then, B < A. (Proof:
See [40,134].)

Fact 8.8.10. Let A, B € F™*™ be nonnegative semidefinite and assume
that 0 < A < B. Then,

(44 34" < (B4 02) .
(Proof: See [425].)

Fact 8.8.11. Let A € F™*™ be nonnegative semidefinite and let B €
F*". Then, BAB* is positive definite if and only if B (A + AQ)B* is positive
definite. (Proof: Diagonalize A using a unitary transformation and note
that BAY? and B A+ A2)1/ ? have the same rank.)

Fact 8.8.12. Let A € F"*™ and B € F"*!, and assume that rank B =

[. Then,
0 < A*B(B*B)"'BA < A*A.

If, in particular, m =1 = 1, then
|A*B|> < A*"AB*B.
(Remark: This result is the Cauchy-Schwarz inequality. See Fact 8.13.13.)

Fact 8.8.13. Let A € F™*" be positive definite and let B € F™*"™,
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where rank B = m. Then,
0 < B*(BAB*)'B< A™

and A™! — B*(BAB*)™'B is nonnegative semidefinite and has rank n — m.
(Proof: T — AY2B*(BAB*)"'BAY/? is a projector.)

Fact 8.8.14. Let Ay,..., Ar € F™" be nonnegative semidefinite and
let p,q € R satisfy 1 < p < q. Then,

k 1/p k 1/q
<%ZA§’> <<%ZA?) -
i=1 i=1

Fact 8.8.15. Let A,B € F™*"™ be Hermitian. Then, there exists a
Hermitian matrix C' € F"*" that is a least upper bound for A and B in the
sense that A < C, B < C, and, if D € F"*" is a Hermitian matrix satisfying
A < D and B < D, then C < D. (Proof: First consider the case in which
A and B are both nonnegative semidefinite.) (Problem: Generalize to three
or more matrices.)

(Proof: See [90].)

Fact 8.8.16. Let A, B € F™*™ be nonnegative semidefinite, and let
p,q € R satisfy p > ¢ > 0. Then,

[1(A7 + BN < [L(ar + BP)] 7.

Furthermore,

(A, B) 2 lim [1(4" + B")]""

1
T—00 2

exists and satisfies

A< u(A,B), B<u(AB).
(Proof: See [75].) (Problem: If A < C and B < C, then does it follow that
w(A, B) < C? See [27,323].)

Fact8.8.17. Let [ é“* g] € F™*™ be nonnegative semidefinite, where C
is positive definite, and let D be positive definite. Then, [AEP g] is positive

definite.

Fact 8.8.18. Let A, B € F" " and assume that C,D € F" "™ are
positive definite. Then,
(A+B)(C+ D)"Y (A+ B)* < AC™'A* + BD'B*.
(Proof: Form the Schur complement of A + B with respect to the nonneg-

ative-semidefinite matrices [AC A" A] + [ BDSB" B]. See [272,373] or [466,
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p. 151].) (Remark: Replacing A, B,C, D by aBj, (1 — a)Ba, a4y, (1 — a)As
yields ziv) of Proposition 8.5.13.)

Fact8.8.19. Let A, B € F™*" be positive definite, let C € F**" satisfy
B = C*C, and let « € [0, 1]. Then,

C*CTACTC < aA+ (1 - a)B.

If, in addition, o € (0, 1), then equality holds if and only if A = B. (Proof:
See [413].)

Fact 8.8.20. Let A, B € F™*" be positive definite. Then,
A1/2(A_1/QBA_1/2>1/2AU2 _ A(A_IB)1/2
= (A+ B)[(A+ B)4(A + B)y'B]?,

where (A_lB)I/ ? has positive eigenvalues and satisfies [(A_IB)V 2]2 = A7'B.
Denote the above quantity by A#B. Then,

A#B = B#A,
247 + BN ' < A#B < L(A+B),
(A#B)B™'(A#B) = A7,

A A#B
[A#B B }20'

Furthermore, if X € H™ and [ )/é )Bf] is nonnegative semidefinite, then X <
A#B. Finally, if a € [0, 1], then

[eA™ + (1-a)B] ' < Al/z(A’WBA*l/Q)l_aAl/z <aA+(1-a)B,
or, equivalently,

A+ (1 - )B] < A72(472BA ) A2 <0 1 (1 )BT
Hence,
trjad + (1 - a)B ™ <tr [A‘1<A‘1/QBA‘1/2>Q1] <tr[ad™ 4+ (1-a)BY).

(Proof: See [553].) (Remark: These inequalities improve iv) of Proposition
8.5.13. Alternative means and their differences are considered in [8]. A#DB
is the geometric mean of A and B. A related mean is defined in [205].)
(Problem: Does [ { %] > 0 imply that —(A#B) < X < A#B?) (Remark:
A geometric mean for an arbitrary number of positive-definite matrices is
given in [28].)
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Fact 8.8.21. Let {z;}32; C R™ be such that ) .2 x; exists, and let
{A;}2, € N” be such that A; < A;4q for all i € P and lim; .o tr A; = 0o
Then,

k
lim (tr A)™)  A;z; = 0.
i (6 407D i =0
If, in addition A; is positive definite for all i € P and {Amax(A4:)/Amin(4i) }52,
is bounded, then

lim A, ZAZEZ—O

k—oo

(Proof: See [16].) (Remark: These identities are matrix versions of the
Kronecker lemma.)

8.9 Facts on Generalized Inverses

Fact 8.9.1. Let A € F™*™ be nonnegative semidefinite. Then, the
following statements hold:

i) At = AP = A% > 0.
ii) rank A = rank A™T.

i) (Al/ 2) (A*)l/ 2
) A2 = (A+)1/2 — (A+)1/2A.
v) AAT = A1/2(A1/2)

1w

Fact 8.9.2. Let A, B € F™*" be nonnegative semidefinite. Then,
A= (A+ B)(A+ B)™A.

Fact 8.9.3. Let A, B € F™*™ be nonnegative semidefinite. Then, 4 <
B if and only if R(A) C R(B) and sprad(B*A) < 1. (Proof: See [520].)

Fact 8.9.4. Let A, B € R™*"™ be nonnegative semidefinite, and assume
that A < B. Then, the following statements are equivalent:
i) BT< A*.
it) R(A) = R(B).
i11) rank A = rank B.
Furthermore, the following statements are equivalent:

iv) At < BT,
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v) A2 = AB.
(Proof: See [267,420].)

Fact 8.9.5. Let A, B € F™*™ be nonnegative semidefinite and assume

that A < B. Then,
0< AAT < BB™.

If, in addition, rank A = rank B, then
AAY = BB™.
Fact 8.9.6. Let A, B € F™*™ be nonnegative semidefinite and assume
that A < B. Then,
0<ABA< A< A+ B[(I - AAY)B(I - AAY)]"B < B.
(Proof: See [267].)

Fact 8.9.7. Let A, B € F™*™ be nonnegative semidefinite. Then,
spec[(A + B)+A} C [0,1].
(Proof: Let C be positive definite and satisfy B < C. Then, (A + C)~'/2C
(A+ C)7'/2 < I. The result now follows from Fact 8.9.8.)
Fact 8.9.8. Let A, B,C € F™*"™ be nonnegative semidefinite and as-
sume that B < C. Then, for alli =1,...,n,
Ni[(A+ B)TB] < \[(A+O)*Cl.

Consequently,
tr[(A+ B)*B] < tr[(A+ C)C].

(Proof: See [579].) (Remark: See Fact 8.9.7.)

Fact 8.9.9. Let A, B € F"*™ be nonnegative semidefinite and define
A:B 2 A(A+ B)'B.

Then,
A:B=B-B(A+B)"A=A—- A(A+ B)'B = B:A,

R(A:B) = R(A) N R(B),

for all a, 8 > 0,
(a™'4):(87'B) < aA + BB,

A:B > X for all nonnegative-semidefinite matrices X € F™*" such that
A+B A
A A-X

>0

— )
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and ¢: N™ x N™ — —N" defined by ¢(A4, B) £ —A: B is convex. If A and
B are projectors, then
A:B= (A" +BH"

and 2(A:B) is the projector onto R(A) NR(B). If A+ B is positive definite,
then
A:B=A(A+B)'B.

If A and B are positive definite, then
A:B= (A" + B
Let C, D € F™*™ be nonnegative semidefinite. Then,
(A:B):C=A:(B:C)

and
A:C+B:D<(A+B):(C+ D).

(Proof: See [17,18,21,340], [477, p. 189], and [625, p. 9].) (Remark: A:B
is the parallel sum of A and B.) (Remark: See Fact 6.4.27 and Fact 6.4.28.)

Fact 8.9.10. Let A, B € F"*™ be nonnegative semidefinite. If (AB)"
= BYA'", then AB is range Hermitian. Furthermore, the following state-
ments are equivalent:

i) AB is range Hermitian.
i4) (AB)” = BTAT.
iii) (AB)t = BTAT.
(Proof: See [408].) (Remark: See Fact 6.4.6.)
Fact 8.9.11. Let A € F™*™ and C € F"™*™ be nonnegative semidef-

inite, let B € F™™_ and define X £ A1tY/2BC*Y2. Then, the following
statements are equivalent:

i) [ 4 EB] is nonnegative semidefinite.
i) AAYB = B and X*X < I,
iti) BC*C = B and X*X < I,.
w) B = AY2XCY? and X*X < I,.

(Remark: This result provides an explicit expression for X given in [625, p.
15].)
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8.10 Facts on ldentities and Inequalities Involving
Quadratic Forms

Fact 8.10.1. Let z,y € F". Then, xa* < yy* if and only if there exists
a € F such that |o| € [0,1] and = = ay.

Fact8.10.2. Let z,y € F". Then, zy*+yz* > 0 if and only = and y are
linearly dependent. (Proof: Evaluate the product of the nonzero eigenvalues
of zy* + yz* and use the Cauchy-Schwarz inequality |z*y|? < z*zy*y.)

Fact 8.10.3. Let A € F™" be positive definite, and let z,y € F".

Then,
2Rez*y < z*dx + y*A~ly

(Proof: (Al/Qx - A_l/Qy)*(Al/Q:L" — A_l/Qy) >0.)

Fact 8.10.4. Let A € F"*™ be positive definite, and let =,y € F".

Then, ) .
[z*y[* < (z"Az) (y"AMy).

(Proof: Use Fact 8.8.12 with A replaced by A2z and B replaced by A=/2y.)

Fact 8.10.5. Let A € F™*" be positive definite and let x € F". Then,

2
(z%z)? < (z*Az) (:U*A_I:L‘) < %(z*xﬂ,
where o £ Amin(A) and g = Amax(4). (Remark: The second inequality is
the Kantorovich inequality. See Fact 1.4.14 and [9]. See also [378].)

Fact 8.10.6. Let A € F™*™ be positive definite, let y € F", let a > 0,
and define f: F" R by f(x) = |z*y|2. Then,

o -1
To =/ a1 A"y
V yA~ly

minimizes f(z) subject to z*Az < . Furthermore, f(z¢) = ay*4A~'y. (Proof:
See [14].)

Fact8.10.7. Let A € F™*™ be nonnegative semidefinite and let x € F"™.
Then, )
(z°A%)" < (z*Az) (2°A%r)
and
(z*Az)? < (z*z) (:L'*AQZ')

Fact 8.10.8. Let A, B € R™, and assume that A is Hermitian is B is
positive definite. Then,
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*Ax
Apax (AB~1) = AER: det(A—AB)=0}= min ——2
( ) max{) € et ) =0} a:e%}}\%o}x*Bx

(Proof: Use Lemma 8.4.3.)

Fact 8.10.9. Let A, B € F™"*™, and assume that A is positive definite
and B is nonnegative semidefinite. Then,

4(z*z)(2*Br) < (z*Ax)?
for all nonzero z € R™ if and only if there exists a > 0 such that
ol +a'B < A.

In this case, 4B < A% and hence 2BY? < A. (Proof: Sufficiency follows
from ax*r + o '*Bx < x*Ax. Necessity follows from Fact 8.10.10. The last
result follows from (A — 2al)? > 0 or 2BY? < ol + o"'B.)

Fact 8.10.10. Let A, B,C € F™*™ be nonnegative semidefinite and

assume that
4(z*Cr)(x*Bz) < (z*Az)?

for all nonzero x € R™. Then, there exists a > 0 such that
aC +a'B < A.
(Proof: See [457].)
Fact 8.10.11. Let A, B € F™*" where A is Hermitian and B is non-
negative semidefinite. Then, 2"z < 0 for all z € F" such that Bz = 0 and
x # 0 if and only if there exists o > 0 such that A < aB. (Proof: Suppose

that for every o > 0 there exists © # 0 such that z*Ax > ax*Bx. Now,
Bz = 0 implies that x*Ax > 0.)

Fact 8.10.12. Let A, B € F™*" be Hermitian and linearly indepen-
dent. Then, the following statements are equivalent:
i) There exist a, 3 € R such that a4 + BB is positive definite.
ii) Either z*Az > 0 for all z € {y € F™: y*By = 0} or z*Az < 0 for all
x € {yeF": y*By=0}.
Now, assume that F = R and n > 3. Then, the following statement is
equivalent to 4) and ii):
i) {xr € R": z'Ax = 2"Bx = 0} = {0}.
(Remark: The equivalence of i) and i) is Finsler’s lemma. A history of this
result is given in [563].)
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Fact 8.10.13. Let A € R™*"™ be positive definite. Then,

. n/2
/e‘r AT oy = il .
vdet A

R~

Fact 8.10.14. Let A,B € R™ " be positive definite and, for k¥ =
0,1,2,3, define

1 k _l TA—1
J é—/JUTB;U e 2T AT 4y,
g (277)"/2\/detAR ( )
Then,
J0 = 17
Ji=tr AB,

Jy = (tr AB)* + 2tr (AB)?,
J3 = (tr AB)® + 6(tr AB) [tr (AB)?] + 8tr (AB)®.

(Proof: See [419, p. 80].) (Remark: These identities are Lancaster’s formu-
las.)

Fact 8.10.15. Let A € R™ "™ be positive definite, let B € R™"*", let
a,b e R” and let a, 3 € R. Then,

/(ZL‘TBIE + le' + B)e—(zTAaz-i-a,T:v—i-a) dz

Rn
n/2
T 1, TA-1
= —12 + tr A_lB — bTA_la + lG/TA_lBA_la €Za A a—oé'
2\/detA[ B+ u(A7B) 2 ]

(Proof: See [269, p. 322].)

Fact 8.10.16. Let A € R™ "™ be symmetric, let b € R™ and a € R, and
define f: R™ +— R by f(z) £ 2TAz + b™z + a. Then, f is convex if and only
if A is nonnegative semidefinite, while f is strictly convex if and only if A is
positive definite. (Remark: Strictly convexr means that f(axi+ (1 —a)xs) <
af(z1) + (1 — a)f(ze) for all @ € (0,1) and for all 1, z2 € R™ such that
x1 # x2.) Furthermore, f has a minimizer if and only if b € R(A). The point
zo € R™ is a minimizer of f if and only if z¢ satisfies 2zJA + bT = 0. The
minimum of f is given by f(z¢) = ¢ — 2§ Ax. Furthermore, if A is positive
definite, then xg = —%Aﬁlb is the unique minimizer of f, and the minimum
of f is given by f(zg) = c— %bTA*Ib.
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8.11 Facts on Matrix Transformations

Fact 8.11.1. Let A € F™*™, Then, AA* and A*A are unitarily similar.

Fact 8.11.2. Let A, B € F™*™ be Hermitian, and assume that A is
nonsingular. Then, the following statements are equivalent:

i) There exists a unitary matrix S € F"*" such that SAS* and SBS*
are diagonal.

i1) AB = BA.
ii5) A'B is Hermitian.

(Proof: See [287, p. 229].) (Remark: The equivalence of i) and i) is given
by Fact 5.8.7.)

Fact 8.11.3. Let A, B € F™*™ be Hermitian, and assume that A is
nonsingular. Then, there exists a nonsingular matrix S € F™*" such that
SAS* and SBS* are diagonal if and only if A™'B is diagonalizable over R.
(Proof: See [287, p. 229] or [466, p. 95].)

Fact 8.11.4. Let A, B € F™*™ be symmetric, and assume that A is
nonsingular. Then, there exists a nonsingular matrix S € F™*" such that
SAST and SBST are diagonal if and only if A™'B is diagonalizable. (Proof:
See [287, p. 229] and [563].) (Remark: A and B are complex symmetric.)

Fact 8.11.5. Let A, B € F"*" and assume that {z € F": z*Az =
x*Bx = 0} = {0}. Then, there exists a nonsingular matrix S € F"*" such
that SAS* and SBS* are upper triangular. (Proof: See [466, p. 96].) (Re-
mark: See Fact 8.11.6 and Fact 5.8.6.)

Fact 8.11.6. Let A, B € F"*" be Hermitian, and assume that {z €
F": 2*Ax = x*Bx = 0} = {0}. Then, there exists a nonsingular matrix
S € F™"™ such that SAS* and SBS* are diagonal. (Proof: The result
follows from Fact 8.11.6. See [389] or [466, p. 96].)

Fact 8.11.7. Let A,B € R™ ™ be symmetric and nonsingular, and
assume there exist o, 8 € R such that aA + BB is positive definite. Then,
there exists a nonsingular matrix S € R™ " such that SAST and SBST are
diagonal. (Remark: This result is due to Weierstrass. See [563].) (Remark:
Suppose that B is positive definite. Then, by necessity of Fact 8.11.3, it
follows that A~'B is diagonalizable over R. This proves #ii) = i) of Propo-
sition 5.5.18.)

Fact 8.11.8. Let A € F™*". Then, A is diagonalizable over F with
(nonnegative, positive) eigenvalues if and only if there exist (nonnegative-
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semidefinite, positive-definite) matrices B,C € F"*" such that A = BC.
(Proof: To prove sufficiency, use Theorem 8.3.5 and note that A = S~!
- (SBS™) (S‘*CS‘l)S.)

8.12 Facts on the Trace

Fact 8.12.1. Let A, B € F**™, and assume that A and B are both
Hermitian or both skew Hermitian. Then, tr AB is real.

Fact 8.12.2. Let A, B € F™*" be Hermitian, and assume that —A <
B < A. Then,
tr B% < tr A%.

(Proof: 0 < tr[(A — B)(A + B)] = tr A% — tr B2, See [555].)

Fact 8.12.3. Let A, B € F™*"™ be nonnegative semidefinite.
AB =0 if and only if tr AB = 0.

Then,
Fact 8.12.4. Let A, B € F"*" be nonnegative semidefinite, and let
p,q > 1 satisfy 1/p+ 1/q = 1. Then,

tr AB < (tr AP)YP(tr B9)14 .

Furthermore, equality holds if and only if A?~! and B are linearly dependent.
(Remark: This result is a matrix version of Holder’s inequality.)

Fact 8.12.5. Let A, B € F™*" and let k € N. Then,
|tr (AB)*| < tr (A"ABB*)* < tr(A*A)*(BB*)*.
(Proof: See [622].)

Fact 8.12.6. Let A, B € F™*" be Hermitian, and let & € P. Then,

tr A2]€B2k)
ltr (AB)?*| < tr (A%B%) < {

(tr A2B2)k'
(Proof: See [622].)

Fact 8.12.7. Let A, B € F"*™ be nonnegative semidefinite. Then,

1/27?
tr AB < [tr <A1/23A1/2> / } < (trA)(trB) < 1(tr A+ tr B)?,
(Remark: Note that

fr (A1/2BA1/2>1/ o zn: N2(4B)
=1
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and
1/2 1/2
tr AB = tr AY2BAY? = tr[(Al/QBAl/Q)/ (A1/2BA1/2>/ ] .

The second inequality follows from Proposition 9.3.6 with p =¢=2, r =1,
and A and B replaced by AY/? and BY/2))

Fact 8.12.8. Let A, B € F™*" be nonnegative semidefinite, and let
p > 0and r > 1. Then,

tr (A1/2BA1/2)” < tr (AT/QBTAT/Q)p.
In particular, )
tr (412BAY2)" < tr (AB%)"

and
tr AB < tr (AB%)Y2.

(Proof: Use Fact 8.14.6 and Fact 8.14.7.) (Remark: This inequality is due
to Araki. See [33] and [93, p. 258].) (Problem: Compare the upper bounds

1/212
tr AB < [tr (A1/2BA1/2) ]

and 12

tr AB < tr (ABQA) J)

Fact 8.12.9. Let A, B € F"*" be nonnegative semidefinite, and let

k,m € P, where m > k. Then,
tr (AkBk>m < tr (A"B™)F.
In particular,
tr (AB)™ < tr A"B™.
If, in addition, m is even, then
tr (AB)™ < tr (AQBQ)m/2 < tr A"B™.

(Proof: Use Fact 8.14.6 and Fact 8.14.7.) (Remark: The result tr (AB)™ <
tr A™B™ is the Lieb-Thirring inequality. See [93, p. 279]. The inequality

tr (AB)™ < tr (42B2)™” follows from Fact 8.12.8. See [622].) (Problem:
Compare the upper bounds

1/272
tr AB < [tr (A1/23A1/2)/ ]

and 12

tr AB < tr (ABQA) )
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Fact 8.12.10. Let A, B € F™*" be nonnegative semidefinite, and let
p >1 > 0. Then,

[tr (Al/QBAI/ 2)p] o [tr (Al/ 2BA1/2)T/ "

In particular,
12 tr (AB%)"?
[tr (a2pat/2) ] <trAB < -
[tr (A1/QBA1/2)1/2]
(Proof: The result follows from the power sum inequality Fact 1.4.13. See
[159].)

Fact 8.12.11. Let A, B € F™*™ be nonnegative semidefinite, assume

that A < B, and let p,q > 0. Then,
tr APBY < tr BPT4,

If, in addition, A and B are positive definite, then this inequality holds for
all p, ¢ € R satisfying ¢ > —1 and p + ¢ > 0. (Proof: See [107].)

Fact 8.12.12. Let A, B € F"*" be nonnegative semidefinite, and let
a € [0,1]. Then,

tr A°B1 < (tr A)%(tr B)' ™ < tr[ad + (1 — a)B].

Furthermore, the first inequality is an equality if and only if A and B are
linearly dependent, while the second inequality is an equality if and only if
A = B. (Remark: See Fact 1.4.2 and Fact 8.12.13.)

Fact 8.12.13. Let A, B € F"*" be positive definite, and let a € [0, 1].
Then,
tr A7B < (tr A7) (tr B_l)l_a <trlad™ + (1 - a)B™]
and
tr[ad + (1 — a)B] ™ < (tr A7) (tr B_l)lia <trlad™ +(1-a)B™].
(Remark: The lower inequalities refine the convexity of ¢(A) = tr A~L. See
Fact 1.4.2 and Fact 8.12.12.) (Problem: Compare this result to Fact 8.8.20.)

Fact 8.12.14. Let A, B € F™*™ and assume that B is nonnegative
semidefinite. Then,
|tr AB| < Omax(A)tr B.
(Proof: Use Proposition 8.4.13 and omax(A + A*) < 20max(A).) (Remark:
See Fact 5.10.1.)
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Fact 8.12.15. Let A, B € F™*" be nonnegative semidefinite, and let
p > 1. Then,
[tr(AP + BP)YP < [tr (A + B)]"P < (tr AP)YP 4 (tr BP)VP

(Proof: See [107].) (Remark: The first inequality is the McCarthy inequality.
The second inequality is a special case of the triangle inequality for the norm
| - llop and a matrix version of Minkowski’s inequality.)

Fact8.12.16. Let A, B € F™*" assume that B is nonnegative semidef-
inite, and assume that A*A < B. Then,
trA <tr BY/2,
(Proof: S [\i| < 0 0i(A) = tr (A*A)Y2 < tr B2, See [71].)

Fact8.12.17. Let A = | 4 42| € Fr+m>(mm) be Hermitian. Then,
A is nonnegative semidefinite if and only if

1/2
tr BAY, < tr (A} "BAxn BAL) /

for all B € F™*™. (Proof: See [71].)

22

Fact 8.12.18. Let A = [’22 Q”} e Ftm)x(n+m) he nonnegative
semidefinite. Then,
tr AT2A12 S (tr An)(tr Azg).

(Proof: See [454].)

Fact 8.12.19. Let A, B € F™*" be positive definite. Then,
tr(A — B) < tr[A(log A — log B)]

and
(logtr A —logtr B)tr A < tr[A(log A — log B)].
(Proof: See [93, p. 281] and [69].) (Remark: The second inequality is

equivalent to the thermodynamic inequality. See Fact 11.11.22.) (Remark:
tr[A(log A — log B)] is the relative entropy of Umegaki.)

8.13 Facts on the Determinant

Fact 8.13.1. Let A € F™*" be such that A + A* is positive definite.

Then,
det 2(A + A*) < |det A|.
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Furthermore, equality holds if and only if A is Hermitian. (Remark: This
result is the Ostrowski- Taussky inequality.)

Fact 8.13.2. Let A, B € F"*™ and assume that A is positive definite

and B is Hermitian. Then,
det A < |det(A + yB)].

Furthermore, equality holds if and only if B = 0. (Proof: See [466, pp. 146,
163].)

Fact 8.13.3. Let A, B € F™*" assume that A and B are positive
definite, and assume that B < A. Then,

det A+ ndet B < det(A + B).

(Proof: See [466, pp. 154, 166].)

Fact 8.13.4. Let A € F™*" be such that %(A—A*) is positive definite.

Then,
B2 [Y(A+ 4] A4+ an)]

is unitary. (Proof: See [194].) (Remark: A is strictly dissipative if QLJ(A—A*)
is positive definite. A is strictly dissipative if and only if —jA is dissipative.
See [192,193].) (Remark: A~'A* is similar to a unitary matrix. See Fact
3.6.10.)

Fact 8.13.5. Let A € R™ ™ be such that A 4+ AT is positive definite.
Then,

[det 1(A+ AT)] [A(A+ AT)] 7' < (det 4) [A(A + 47T)].
Furthermore,
[det 1(A+AT)] [3(A+AT)] 7 < (det A)[3(A + A7T)]
if and only if rank(A — AT) > 4. Finally, if n > 4 and A— A" is nonsingular,
then
(det A)[L(A™ + AT)] < [det A — det 2(A — AT)][L(A+ AT)] .

(Proof: See [193,310].) (Remark: This result does not hold for complex
matrices.) (Problem: If A+ A" is nonnegative semidefinite, does it follow

that [L(A+ AT)]* < L(AA 4 4AT)?)

Fact 8.13.6. Let A, B € F™*", assume that B is Hermitian, and as-
sume that A*BA < A + A*. Then, det A # 0.

Fact 8.13.7. Let A, B € F™*" be positive definite and let a € [0, 1].
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Then,
(det A)*(det B)' ™ < det[aAd + (1 — a)B].

Furthermore, equality holds if and only if A = B. (Remark: This result is
due to Bergstrom.)
Fact 8.13.8. Let A, B € F™"*™ assume that A and B are nonnegative
semidefinite, assume that 0 < A < B, and let a € [0,1]. Then,
det[@A + (1 — ) B] < adet A + (1 — a)det B.
(Proof: See [588].)

Fact 8.13.9. Let A, B € F™"*", and assume that A and B are positive
definite. Then,

det A n det B - det(A + B)
det A[Ll] det B[l,l] o det(A[Ll] + B[l,l]) .
(Proof: See [466, p. 145].)

Fact 8.13.10. Let Aq,..., Ar € F™*™ be nonnegative semidefinite, and
let A1,..., A\ € C. Then,

k k
=1 =1
(Proof: See [466, p. 144].)

Fact 8.13.11. Let A, B,C € R™", let D £ A + 3B, and assume that
CB + BTCT < D + D*. Then, det A # 0.

Fact 8.13.12. Let A, B € F™"*" assume that A and B are nonnegative
semidefinite, and let m € P. Then,
n'/™(det AB)Y™ < (tr A"B™)Y/™.
(Proof: See [159].) (Remark: Assuming det B = 1 and setting m = 1 yields
Proposition 8.4.14.)
Fact 8.13.13. Let A, B € F"*™. Then,
|det AB*|* < (det AA*)(det BB*).
(Proof: Apply Fact 8.13.23 to [44. 457 ].) (Remark: See Fact 8.8.12.)
Fact 8.13.14. Let A € F™**™ be positive definite and let B € F™*™
where rank B = m. Then,

(det BB*)? < (det BAB*)det BA™'B*.
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(Proof: Use Fact 8.8.13.)

Fact 8.13.15. Let A € F**™m B ¢ F*Xl O € F™ " and D € Fxn,

Then,
|det(AC + BD)|? < det(AA* + BB*)det(C*C + D'D).

(Proof: Use SS* >0, where S = [ 4 5.].)

Fact 8.13.16. Let A, B € F"*™. Then,
|det(I + AB*)|? < det(I + AA*)det(I + BB*).
(Proof: Specialize Fact 8.13.15.)
Fact 8.13.17. Let A, B € F™*", assume that A+ A* > 0 and B+B* >
0, and let & > 0. Then,
mspec(al + AB) N (—o0,0] = @.

Hence,
det(ad + AB) > 0.

(Proof: See [254].) (Remark: Equivalently, —A is dissipative and —B is
semidissipative.) (Problem: Find a positive lower bound for det(al + AB)
in terms of o, A, and B.)

Fact 8.13.18. Let A, B € F**™. Then,

I+A4A4 (A+B | _[I A |[I B ],
A+B I+BB* | |B I ||A I |~

and
(A+ B)*(I + BB*) YA+ B) < I + A*A.

If, in addition, n = m, then
|det(A + B)|? < det(I + A*A)det(I + BB*).
(Proof: See [630].)
Fact 8.13.19. Let A, B € F"*™, Then, there exist unitary matrices
S1, 89 € ™™ gsuch that
I+ (A+ B) < Si(I + (A)2S5(I + (B))S3(I + (A))"/?S5.

Therefore,
det(I + (A+ B)) < det(I + (A))det(I + (B)).

(Proof: See [24,545].) (Remark: This result is due to Seiler and Simon.)
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Fact 8.13.20. Let A, B € F"*™ and assume that I — A*A and I — B*B
are positive definite. Then,

(I —AA) (I -B4A)™

(I—AB)! (1-pB) |=0

I —B*B<(I—BA)I-AA)I - AB),
0 < det(I — A*A)det(I — B*B) < [det(I — A*B)]%.

(Remark: These results are Hua’s inequalities. See [24].)

Fact 8.13.21. Let A € F™*". Then,
n n 1/2
|det A| < H Z|,4(Z-J)|2
i=1\j=1

Furthermore, equality holds if and only if AA* is diagonal. (Remark: Re-
place A with AA* in Fact 8.14.5.)

Fact8.13.22. Let A = | 4! 42| € Fmtm)x(+m) e positive definite.
Then,
det A = (det All) det (A22 — ATQAl_lAlg)
< (det All) det Ago

n+m
=1
If, in addition, n = m, then
0< (det An)det Aoy — ]det A12‘2 <detA < (det Au)det Aogo.

(Proof: Since 0 < Af,Aj{A1p < Agg, it follows that |det Ajp|?/det Aj; <
det Agy. Use Fact 8.13.23. Also, see [466, p. 142].) (Remark: det A <
(det Ay1)det Agg is Fischer’s inequality.)

A11 e Alk
Fact 8.13.23. Let A = Doete be nonnegative semidefinite,
AT oo Ay
where A;; € F"*" for all ¢,5 = 1,..., k. Then,

det A11 <o+ det Alk
det : : : < detA

det A, -+ det Ay
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and
tI‘AH cee tI‘Alk

> 0.

tr Alk cee AT Akk
(Remark: The matrix whose (i, j) entry is det A;; is a determinantal com-
pression of A. See [165,166,454,543].)

8.14 Facts on Eigenvalues and Singular Values

Fact 8.14.1. Let A € F"*™. Then,
min{n,m}

tr(d) = Y ai(A).

=1
Fact 8.14.2. Let A € F™"*", Then, foralli=1,...,n,
IX[3(A+ AY)]| < oi(A).

Hence,
[tr A] < tr (A).

(Proof: See [289, p. 151] or [516].)

Fact 8.14.3. Let A € F"*", and let mspec(A) = {\, - , Ap }m, where
ALy ..., Ay are ordered such that |[A| > - > |Ay|. fr>00rr € Rand A

is nonsingular, then, for all k =1,...,n,
k k
ST of(A).
i=1 i=1
In particular, for all k =1,...,n,
k k
Sl <D a4
i=1 i=1
Hence,

[t Al <D [N <) ai(A) = tr (A).
=1 =1

Furthermore, for all kK =1,...,n,

k k
DNl < > aA).
i=1 i=1
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Hence,

n n n
[t A% <D TN <) D 0i(A%) = tr (A7) <) 0(A) = tr A,
i=1 i=1 i=1

(Proof: The result follows from Fact 8.16.5 and Fact 5.9.13. See [93, p.
42], [289, p. 176], or [625, p. 19]. See Fact 9.11.15 for the inequality
tr (A%) = tr (A2’542)1/2 < tr A*A.) Finally,

n

D NP =trAd

i=1
if and only if A is normal. (Proof: See [466, p. 146].) (Remark: > 1 [A]? <
tr A*A is Schur’s inequality. See Fact 9.10.2.) (Problem: Determine when
equality holds for the remaining inequalities.)

Fact 8.14.4. Let A € F"*™ be Hermitian. Then, for all k =1,...,n,

k k
S di(4) < 3 M(A)
=1 i=1

with equality for k = n, that is,

n

trA = zn:di(A) = X(A).
=1

i=1

Hence, for all k =1,...,n,

D A(A) < di(A).
i=k i=k

(Proof: See [93, p. 35], [287, p. 193], or [625, p. 18].) (Remark: This result
is Schur’s theorem.)

Fact 8.14.5. Let A € F™*" be nonnegative semidefinite. Then, for all
k=1,...,n,

In particular, .
i=1
Now, assume that A is positive definite. Then, equality holds if and only if

A is diagonal. (Proof: See [287, p. 200], [625, p. 18], and [287, p. 477].)
(Remark: The case k = n is Hadamard’s inequality.)
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Fact 8.14.6. Let A, B € F"*™ be nonnegative semidefinite. If p > 1,
then

Z N(A)N _, (B) < tr (AB)P < tr APBP < znj X(A)N(B).
i=1
If 0 <p <1, then
Z N(A)N_, (B) < tr APBP < tr (AB)P < zn: N(A)NY(B).
i=1
Now, suppose that A and B are positive definite. If p < —1, then
Z N(A)N_; 1(B) < tr (AB)P < tr APBP < znj N(A)N(B).
i=1
If —1 <p<0 then
Z N(A)N_, (B) < tr APBP < tr (AB)P < f: N(A)NY(B).
i=1
(Proof: See [578]. See also [122,358,374,581].) (Remark: See Fact 8.12.8.
See Fact 8.12.5 for the indefinite case.)

Fact 8.14.7. Let A, B € F™*" be nonnegative semidefinite, and let

p > 1 > 0. Then, [ 1

)\1/1’( APBP) ... \/Parpr) }
weakly log majorizes and thus weakly majorizes
[ sy ) |.
(Proof: See [93, p. 257] or [625, p. 20] and Fact 8.16.5.)
Fact 8.14.8. Let A, B € F™*" be nonnegative semidefinite. Then,
Amax (4 + B) < max{Amax(A), Amax(B)} + Amax (4Y/28Y/2)
(Proof: See [335].)

Fact 8.14.9. Let A, B € F™*" be nonnegative semidefinite. Then,
Amax (4 + B)

< P (4) + Anax(B) + 1/ Panax (4) = Arma (B)2 + 432, aX(Al/zBl/z)].

(Proof: See [337].)
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Fact 8.14.10. Let f: R — R be convex, and let A,B € F**™ be

Hermitian. Then, for all « € [0, 1],

[ aMf(A) + (1 =) f(B) - adaf(A)+ (1 —a)\f(B) ]

weakly majorizes

[ Mf(@A+(1—a)B) - Af(aA+(1—a)B)].

If, in addition, f is either nonincreasing or nondecreasing, then, for all ¢ =

1,...,n,
Nif(aA+ (1 —a)B) < aXif(A)+ (1 — o)\ f(B).

(Proof: See [42].)

Fact 8.14.11. Let A, B € F"*™ be nonnegative semidefinite. If r €

[0,1], then

[ MA"+B") - A(AT+ B") ]
weakly majorizes

[ M[(A+B)T] - N[(A+B)T] ],
and, foralli=1,...,n,

217"\ [(A+ B)'] < N(A” + B").

If » > 1, then

[ M[(A+B)T] - M[(A+B)7] |
weakly majorizes

[ MA"+B") - M(A"+B") ] ,
and, foralli=1,...,n,

N(A” 4+ B") <27\ [(A + B)"].
(Proof: The result follows from Fact 8.14.10. See [29,41,42].)

Fact 8.14.12. Let A € F™*" be Hermitian and let S € R*¥*" satisfy

SS* = Ix. Then, for alli =1,... k,
Aitn—k(A) < N(SAS™) < N\i(A).
3 tl
Consequently, i i
D Nign—k(A) < tr SAS* <> A(A)
i=1 i=1

and

k k
[[ien—r(A) < det SAS* < T]Ni(A).
=1 =1
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(Proof: See [287, p. 190].) (Remark: This result is the Poincare separation
theorem.)

Fact 8.14.13. Let A € F™*™ be Hermitian. Then, for all k =1,...,n,

Z A\i = min{tr S*AS: S € F*** and S*S = I,,}.
i=n+1—1

(Proof: See [289, p. 191].) (Remark: This result is the minimum principle.)

Fact8.14.14. Let A € F™*". Then, [
if and only if opax(A) < 1. Furthermore,
only if omax(A) < 1. (Proof: Note that

o)=L o e e 7D

Fact 8.14.15. Let [ﬁg ﬁ“ﬂ € Fntm)x(n+m) he nonnegative semidef-

2

f{* ‘?] is nonnegative semidefinite
[ f{* ‘}‘] is positive definite if and

inite. Then, )
O‘maX(Am) < O-max(All)o'max(A22)-

(Proof: Use Age > A*{QAJlrlAlg > 0, factor AJlr1 = MM*, where M has full
column rank, and recall that oiax(SS*) = 07,.(9).) (Problem: Consider
alternative norms.)

Fact 8.14.16. Let A, B € F™*™ be nonnegative semidefinite. Then,
forall k=1,...,n,

k k k
[[2AB) < [[oi(AB) < [[X(A)Ai(B)
i=1 i=1 i=1
with equality for £ = n. Furthermore, for all k =1,...,n,
[[2(A)X(B) < [[oi(AB) < [[M(AB).
i=k i=k i=k
(Proof: Use Fact 5.9.13 and Fact 9.11.16.)
Fact 8.14.17. Let A, B € F™*" be positive definite. If ¢ > 1, then
Thax(AB) < Omax(A'B?).

If p>q >0, then . .
oW (ATBY) < o[l (APBP).

(Proof: See [219].)
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8.15 Facts on the Schur and Kronecker Products

Fact 8.15.1. Let A € F™*™ be nonnegative semidefinite, and assume

that every entry of A is nonzero. Then, A1} is nonnegative semidefinite if
and only if rank A = 1. (Proof: See [363].)

Fact 8.15.2. Let A € F™*" be nonnegative semidefinite and let k € P.
If r € [0, 1], then .
(AR < (A{k}> _
If r € [1,2], then ;
<A{k}) < (AR
If A is positive definite and r € [0, 1], then
(A{k})""g (4™,
(Proof: See [625, p. 8].)
Fact 8.15.3. Let A € F"*™ be nonnegative semidefinite. Then,
(IoA)? <i(IoA®>+AcA)<IoA
Now, assume that A is positive definite. Then,
2
(Aoa™)! <1< (4204 2) < L(14+ A0A™) < Aoa™,
(AoA)yt<AloA™,

and
1le spec(A oA_l).

Define #(A) £ Ao A~ and, for all k& € P, define
Pk 4) £ @[qﬁ(k)(A)} ,

where ¢(V(A) £ @(A). Then, for all k € P,
dF(A) > T
and

lim ®*)(A) = I.

k—o0

(Proof: See [201,316,577] and [287, p. 475].) (Remark: The convergence
result also holds if A is an H-matrix [316]. Ao A™! is the relative gain array.)

Fact8.15.4. Let A2 | 4t 42| € Fntmx(vim) and g 2 [Bn Be] e

ptm)x(ntm) - and assume that A and B are nonnegative semidefinite.
Then,
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(A11|A) (@] (Bll‘B) S (AllyA) o BQQ S (All OBH)KAOB).
(Proof: See [369].)

Fact 8.15.5. Let A € F™*" be nonnegative semidefinite and assume
that I,, 0o A = I,,. Then,

det A < Apin(Ao A).
(Proof: See [589].)
Fact8.15.6. Let A, B € F™"*™ and assume that A and B are nonnega-
tive semidefinite. Then, Ao B is nonnegative semidefinite. If, in addition, B
is positive definite and all of the diagonal entries of A are positive, then AoB
is positive definite. (Proof: By Fact 7.4.13, A ® B is nonnegative semidefi-
nite, and the Schur product Ao B is a principal submatrix of the Kronecker

product. If A is positive definite, use Fact 8.15.12 to obtain det(AoB) > 0.)
(Remark: The first result is Schur’s theorem.)

Fact 8.15.7. Let A € F™*" and assume that A is positive definite.
Then, there exist positive-definite matrices B, C' € F™*™ such that A = BoC.
(Remark: See [466, pp. 154, 166].) (Remark: This result is due to Djokovic.)

Fact 8.15.8. Let A € F™*" be positive definite and let B € F"*" be
nonnegative semidefinite. Then,

(LixnA™1,1) B < Ao B.
(Proof: See [204].)
Fact 8.15.9. Let A € F™*™ be positive definite and let B € F"*" be
nonnegative semidefinite. Then,
rank B < rank(Ao B) < rank(A® B) = (rank A)(rank B).
(Remark: See Fact 7.4.20, Fact 7.5.5, and Fact 8.15.8.) (Remark: The first
inequality is due to Djokovic. See [466, pp. 154, 166].)

Fact 8.15.10. Let A, B € F™*" be nonnegative semidefinite. If p > 1,

then
tr (Ao B)P < tr AP o BP.

If 0 <p<1, then
tr AP o BP < tr (Ao B)P.

Now, assume that A and B are positive definite. If p < 0, then
tr (Ao B)P < tr AP o BP.
(Proof: See [581].)
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Fact 8.15.11. Let A, B € F™*" be nonnegative semidefinite. Then,
forall k=1,...,n,

[[r (B H <[Jr4B) < H)\Q A#B) < [[Xi(AoB).
i=k i=k i=k i=k i=k
Consequently,
Amin(AB)I < Ao B
and

det AB = [det(A#DB)]? < det(Ao B).
(Proof: See [25,201], [625, p. 21], and Fact 8.14.16.)

Fact 8.15.12. Let A, B € F™*" be nonnegative semidefinite. Then,

det AB < (H A(m-)) det B < det(Ao B).
i=1

If, in addition, A and B are positive definite, then the right-hand inequality

is an equality if and only if B is diagonal. (Proof: See [397].) (Remark:

The left-hand inequality follows from Hadamard’s inequality Fact 8.14.5.

The right-hand inequality is Oppenheim’s inequality.) (Problem: Compare

(ITiZ; Aip)det B and [det(A#B)]%.)

Fact 8.15.13. Let Ay, Ao, By, Bo € F"*™ be nonnegative semidefinite,
and assume that 0 < A; < By and 0 < Ay < By. Then,
0<A®A < B1®B;

and
OSAloAQ SBloBQ.

(Proof: See [23].) (Problem: Under which conditions are these inequalities
strict?)

Fact 8.15.14. Let Ay, ..., A, By,..., By € F"*" be nonnegative semi-
definite. Then,

(A1+B1)®- @A+ Br) S A1® - QA + B1® -+ ® By.

(Proof: See [412, p. 143].)

Fact 8.15.15. Let Ay, Ay, B1, Bo € F™*™ be nonnegative semidefinite,
assume that 0 < A; < By and 0 < Ay < By, and let a € [0, 1]. Then,

[OéAl—i- (1 — Oé)Bl] X [OzAQ + (1 — O[)BQ] < Oé(A1®A2) + (1 — Oz)(Bl(X)BQ).

(Proof: See [588].)
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Fact 8.15.16. Let A, B € F"*" be Hermitian. Then, for all i =
1,....,n,

A(A)An(B) < Nignz—n(A® B) < A\(Ao B) < N(A® B) < M(A)M(DB).
(Proof: The result follows from Proposition 7.3.1 and Theorem 8.4.5. For
A, B nonnegative semidefinite, the result is given in [394].)

Fact 8.15.17. Let A, B € F™*" be nonnegative semidefinite, assume
that 0 < A < B, and let k£ € P. Then,
Ak} < plk},
(Proof: 0 < (B —A)o(B+ A) implies Ac A < BoB.)
Fact 8.15.18. Let A, B € F™*™ be nonnegative semidefinite. If r €

[0,1], then
A"oB" < (AoB)".

If r € [1,2], then
(AoB)" < A"oB".

If A and B are positive definite and r € [0, 1], then
(AoB)™" < A" 0B

Therefore,
(AoB)? < A%0 B,
AoB < (420 B2)/?,
AY20BY2 < (A0 B)Y2,
Furthermore,

A2oB?—Y(B-a)T< (A40B)’ < %[AQOBQ v (AB){Q}} < A20 B2

and

/2 _ a+

" 2Vap

AoB < (Ao B?) Ao B,
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where a £ Anmin(A ® B) and 3 £ Amax(A ® B). Hence,
2 2
AoB — i(ﬁ_ \/5) < (A1/2oBl/2)
{2}
%[Ao B+ (42B12) }
AoB
(A2 o BQ)
a+ 0

2\ af
(Proof: See [23,427,577], [287, p. 475], and [625, p. §].)

IN

IN

1/2

IN

IN

Ao B.

Fact 8.15.19. Let A, B € F™*" be nonnegative semidefinite and let
p,q € [1,00) be such that p < g. Then,
(APo Bp)l/p < (A9 OBq)l/q '

(Proof: Since p/q < 1, it follows from Fact 8.15.18 that AP o B? = (A7)0
(A7)P/1 < (A9 0 B?)P/1. Then, use Corollary 8.5.8 with p replaced by 1/p.
See [625, p. 8].)

Fact 8.15.20. Let A, B € F™" be positive definite and let p,q be
nonzero integers such that p < g. Then,

(Apon)l/p < (Aqqu)l/q.

In particular,

and, for all p € P,
AoB < (Apon)l/p,

AP o BYP < (Ao B)YP.

Furthermore,

2
(AoB)t<AtoB? < la+B)7
4o
where o £ Apin(A® B) and 8 = A\pax(A® B). (Proof: See [427].) (Problem:

Consider real numbers p < ¢ < —1 to unify this result with Fact 8.15.19.)

(AoB)™,

Fact 8.15.21. Let A, B € F™*" be positive definite. Then,
Io(log A+ logB) <log(AoB).
(Proof: See [23,625].) (Remark: See Fact 11.11.20.)
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Fact 8.15.22. Let A, B € F™"*™ be positive definite, and let C, D €
F™*"_ Then,
(CoD)(AoB)(CoD)* <(CA'C*o(DB™'D¥).

In particular,
(AoB)y ' < AtoB™

and

(C'oD)(CoD)* < (CC*)o(DD).

(Proof: Form the Schur complement Ags. of the Schur product of the
nonnegative-semidefinite matrices [C c ACIC ] and [ D DB 1D ] See [396,582]
or [625, p. 13].)

Fact 8.15.23. Let A, B € F™*" be nonnegative semidefinite, and let
p,q € (1,00) satisfy 1/p 4+ 1/g = 1. Then,
(A0 B) + (C'o D) < (A" + C7)7 o (BT 4 D)1/,

(Proof: Use zziv) of Proposition 8.5.13 with » = 1/p. See [625, p. 10].)
(Remark: Note the relationship between the conjugate parameters p,q and
the barycentric coordinates o, 1 — a. See Fact 1.4.16.)

Fact 8.15.24. Let A, B € F"*™. Then,
(Ao B)(AoB)* < 3(AA* 0o BB* + AB* o BA*) < AA* o BB*.
(Proof: See [291,577].)

8.16 Facts on Majorization

Fact 8.16.1. Let z,y € R", where z(y) > -+ > z(,) and yq) > -+ >
Y(n), assume that y strongly majorizes z, let f: [min{x(,),ym)} yu)l —
R, and assume that f is convex. Then, [ f(yw) -~ f(ym)) ]T weakly

majorizes | f(z()) -+ fl@m)) ]T. (Proof: See [93, p. 42], [289, p. 173],
or [400, p. 116].)

Fact 8.16.2. Let z,y € R", where z(;) > -+ > z(,) > 0 and y(1) >
2> Y(ny = 0, assume that y strongly log majorizes z, let f: [0,00) — R,

=

and assume that g(z) 2 f(e?) is convex. Then, [ fy) - fyw) |
weakly majorizes [ f(za)) -+ flzg) ]T. (Proof: Apply Fact 8.16.1.)

Fact 8.16.3. Let z,y € R", where (1) > -+ > z(,) and y(;) >
Y(n), assume that y weakly majorizes z, let f: [min{z,), ym)}, y) ] —

eﬁw

and assume that f is convex and increasing. Then, [ f(yq1)) - f(ym)) |
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weakly majorizes | f(z()) -+ f(@(m)) ]T. (Proof: See [93, p. 42], [289, p.
173], or [400, p. 116].)

Fact 8.16.4. Let z,y € R", where z(;) > -+ > 2(,) > 0 and y(1) >
0 > Ym) = 0, assume that y log majorizes z, let f: [0,00) — R, and assume
that g(z) £ f(e?) is convex and increasing. Then, [ fway) - fym) ]T
weakly majorizes [ f(zq)) -+ flzm) ]T. (Proof: Use Fact 8.16.3.)

Fact 8.16.5. Let z,y € R", where z(;) > -+ > 2(,) > 0 and y(1) >
2 Ym) = 0, and assume that y weakly log majorizes z. Then, y weakly
majorizes x. (Proof: Use Fact 8.16.3 with f(t) = e'. See [625, p. 19].)

Fact 8.16.6. Let =,y € R™, where Ty =2 Ty =0 and Yy =
o+ 2 Yy = 0, assume that y weakly majorizes x, let p € [1,00), and let
r > 0. Then, forallk=1,...,n,

k " k "
()= ()

1/
(Proof: Use Fact 8.16.3. See [400, p. 96].) (Remark: ¢(z) = <Zf:1 x’()i)> :

is a symmetric gauge function.)

8.17 Notes

The ordering A < B is traditionally called the Loewner ordering.
Proposition 8.2.3 is given in [5] and [342] with extensions in [71]. The proof
of Proposition 8.2.6 is based on [113, p. 120], as suggested in [533]. The
proof given in [222, p. 307] is incomplete.

Theorem 8.3.4 is due to Newcomb [437].

Proposition 8.4.13 is given in [284,429]. Special cases such as Fact
8.12.14 appear in numerous papers.

The proofs of Lemma 8.4.4 and Theorem 8.4.5 are based on [525].
Theorem 8.4.9 can also be obtained as a corollary of the Fischer minimax
theorem given in [287,400], which provides a geometric characterization of
the eigenvalues of a symmetric matrix. Theorem 8.3.5 appears in [477, p.
121]. Theorem 8.5.2 is given in [21]. Additional inequalities appear in [422].

Functions that are nondecreasing on P™ are characterized by the the-
ory of monotone matriz functions [93,184]. See [425] for a summary of the
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principal results.

The literative on convex maps is extensive. Result ziv) of Proposition
8.5.13 is due to Lieb and Ruskai [373]. Result zzi) is the Lieb concavity
theorem [372]. Result zxwiii) is due to Ando. Results xzzzv) and zzzvi) are
due to Fan. Some extensions to strict convexity are considered in [400]. See
also [23,411,431].

Products of positive-definite matrices are studied in [48-51,617]. Al-
ternative orderings for nonnegative-semidefinite matrices are considered in

(46, 267).

Essays on the legacy of Issai Schur appear in [318].
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Chapter Nine

Norms

Norms are used to quantify vectors and norms, and they play a basic
role in convergence analysis. This chapter introduces vector and matrix
norms and their numerous properties.

9.1 Vector Norms

For a € F, let |a| denote the absolute value of a. For z € F™ and
A € F"*™  every component of x and every entry of A can be replaced by
its absolute value to obtain |z| € R” and |A| € R"*™ defined by

)4y £ |z )l (9.1.1)

foralli=1,...,n and
1Al g = 1A )] (9.1.2)
forallt=1,...,nand j = 1,...,m. For many applications it is useful to

have a scalar measure of the magnitude of x or A. Norms provide such
measures.
Definition 9.1.1. A norm || - || on F™ is a function || - ||: F" +— R that
satisfies the following conditions:
i) ||z]| > 0 for all z € F".
it) ||z|| = 0 if and only if z = 0.

)
i11) ||ax| = |a|||z| for all « € F and x € F".
w) |z +yll < llzll + |ly]l for all z,y € F".

Condition i) is the triangle inequality.

A norm || - || on F™ is monotone if |z| << |y| implies that ||z|| < ||y||
for all x,y € F", while || - || is absolute if |||x||| = ||z|| for all z € F™.
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Proposition 9.1.2. Let || - || be a norm on F™. Then, || -|| is monotone
if and only if || - || is absolute.

Proof. First, suppose that || - || is monotone. Let x € F", and define
y £ |z|. Then, |y| = |z| and thus |y| << |z| and |y| << |z|. Hence, ||z| <
lyll and [ly| < [l[|, which implies that |[z[| = ||y[|. Thus, |[lz][| = [ly[| = [l=[,
which proves that || - || is absolute.

Conversely, suppose that || - || is absolute and, for convenience, let

n = 2. Now, let z,3y € F? be such that |x| << |y|. Then, there exist
ay,az € [0,1] and 601,602 € R such that Ty = aiejeiy(i) for ¢ = 1,2. Since
|| - || is absolute, it follows that

_ )

Il { aze™y(a) ]H
|
|

2|y ()l @2y (2|

_ %(1—@1)[ _‘y(l)‘|]+%<1_al)[ |y(1)\ }4_@1[ \3/(1)\ ]H
ho-osal| [ 52]
@2ly(2)l

1 _ [ Y| } [ v ]H

= [lyll-

Thus, || - || is monotone. O

As we shall see, there are many different norms. A useful class of
norms consists of the Holder norms defined by

n 1/p
(Z!fﬂ(i)lp) Cl<pen
2 )\5

max X(; = OQ.
ie{l,.,.,n}| OL

(9.1.3)

[

These norms depend on Minkowski’s inequality given by the following result.
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Lemma 9.1.3. Let p € [1,00], and let ,y € F". Then,

Iz +yllp < llzllp + llyllp- (9-1.4)

If p = 1, then equality holds if and only if, for all ¢ = 1,...,n, there exists
a; > 0 such that either ;) = iy or yu) = aiz). If p € (1,00), then
equality holds if and only if there exists > 0 such that either x = ay or
Yy = ax.

Proof. See [70,395] and Fact 1.4.17. O
Proposition 9.1.4. Let p € [1,00]. Then, || - |/, is a norm on F".

Forp=1,

lzlli = o) (9.1.5)
i=1

is the absolute sum norm; for p = 2,

n 1/2
[z]l2 = (le(z')\2> = V' (9.1.6)
i=1

is the Buclidean norm; and, for p = oo,

||| e |z03) (9.1.7)

is the infinity norm.

Proposition 9.1.5. Let 1 <p < ¢ < 00, and let x € F"™. Then,
[zlloo < llzllg < llzllp < 21 (9.1.8)

Assume, in addition, that 1 < p < g < co. Then, x has at least two nonzero
components if and only if

[2lloo < llzllq < ll2llp <l (9.1.9)

Proof. If either p = ¢ or x = 0 or x has exactly one nonzero compo-
nent, then ||z||; = ||z||,. Hence, to prove both (9.1.8) and (9.1.9) it suffices
to prove (9.1.9) in the case that 1 < p < ¢ < oo and z has at least two
nonzero components. Thus, let n > 2, let € F™ have at least two nonzero
components, and define f: [1,00) — [0,00) by f(3) £ ||z||5. Hence,

F18 = 3ll=l5 7> 7,
i=1
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where, for alli=1,...,n,
LB |25]°(log |25y —log ||z]lg), @@ # 0,
Z 07 CC(Z) = 0.
If 2; # 0, then log |z(;| < log||z||g. It thus follows that f/(8) < 0, which
implies that f is decreasing on [1,00). Hence, (9.1.9) holds. O

The following result is Holder’s inequality. For this result we interpret
1/o00 = 0.

Proposition 9.1.6. Let p,q € [0,00] satisfy 1/p + 1/g = 1, and let
x,y € F*. Then,
2"y < [|@(lpllyllq- (9.1.10)

Furthermore, equality holds if and only if |2*y| = |z|*|y| and

|z o |yl = llyllocl], p=1,
|z|{PYand|y[19} are linearly dependent, 1 < p < oo, (9.1.11)
[z[o |yl = [lz][eoyl, p = oo.

Proof. See [117, p. 127], [287, pp. 534-536], and Fact 1.4.16. O

The case p = ¢ = 2 is the Cauchy-Schwarz inequality.

Corollary 9.1.7. Let x,y € F™. Then,
[z%y| < [lzll2lyll2- (9.1.12)

Furthermore, equality holds if and only if  and y are linearly dependent.

Proof. Assume y # 0, and define M £ [ VI (yy) Y%y ] Since
M*M = [y;%{l ﬂ is nonnegative semidefinite, it follows from %) of Proposi-

tion 8.2.3 that yy* < y*yl. Therefore, x*yy*x < x*ry*y, which is equivalent
to (9.1.12).

Now, suppose that x and y are linearly dependent. Then, there exists
B € F such that either x = By or y = [Bx. In both cases it follows that
lz*y| = ||z|l2]lyll2. Conversely, define f: F" x F" — [0,00) by f(u,v) =
wuv*y — |p*v|?. Now, suppose that f(x,y) = 0 so that (z,y) minimizes f.
Then, it follows that f,(x,y) = 0, which implies that y*yx = y*zy. Hence,
x and y are linearly dependent. O

The norms || - || and || - ||" on F™ are equivalent if there exist a, 5 > 0



matrix2 November 19, 2003

NORMS 307

