November 19, 2003© by the author

Matrix Mathematics
 Theory, Facts, and Formulas with Application to Linear Systems Theory

Dennis S. Bernstein

Notes to Readers

This version was created on November 19, 2003.
I welcome and appreciate all comments, criticisms, and suggestions.
Some relevant points:

1. Chapter 12 is a work in progress. The index does not include Chapter 12.
2. I provide references for most of the nontrivial Facts. If you happen to know of additional relevant references, please let me know.
3. A few nontrivial facts lack a reference mainly because I have lost track of the original reference. I would like to find a reference or at least verify the correctness of the following facts:

Fact 5.9.25

Fact 9.8.26
4. About 60 problems are included. These problems concern extensions of known results or gaps in the literature. If you should know of any relevant literature (or solutions!), please advise.
5. A few more topics may be added such as: matrix pencils, matrices with block-tridiagonal or block-companion structure, and series (Fer-MagnusWei) representations of solutions of the matrix equation $\dot{X}(t)=A(t) X(t)$.
6. Please note errors of any kind.
7. Please feel free to suggest any additional facts or augmentations of existing facts.

Special Symbols

General Notation

π
e

\triangleq

$\binom{n}{m}$
$\lfloor a\rfloor$
$\delta_{i j}$
\log
$\operatorname{sign} \alpha$
$\sinh x, \cosh x$
$3.14159 \ldots$
2.71828 ...
equals by definition
$\frac{n!}{m!(n-m)!}$
largest integer less than or equal to a
1 if $i=j, 0$ if $i \neq j$ (Kronecker delta)
logarithm with base e
1 if $\alpha>0,-1$ if $\alpha<0,0$ if $\alpha=0$
$\frac{1}{2}\left(e^{x}-e^{-x}\right), \frac{1}{2}\left(e^{x}+e^{-x}\right)$
set (p. 2)
multiset (p. 2)
empty set (p. 2)
is an element of (p. 2)
is not an element of (p. 2)
intersection (p. 2)
union (p. 2)
complement of \mathcal{S} (p. 2)
$\left\{x \in \mathcal{S}: x \notin \mathcal{S}^{\prime}\right\}$ for sets $\mathcal{S}, \mathcal{S}^{\prime}(\mathrm{p} .2)$
is a subset of (p. 2)
is a proper subset of (p. 2)
f is a function with domain X and codomain y (p. 4)
inverse image of \mathcal{S} (p. 4)
composition of functions f and g (p. 4)

Chapter 2

\mathbb{Z}	integers (p. 13)
\mathbb{N}	nonnegative integers (p. 13)
\mathbb{P}	positive integers (p.13)
\mathbb{R}	real numbers (p. 13)
\mathbb{C}	complex numbers (p. 13)
F	\mathbb{R} or $\mathbb{C}(\mathrm{p} .13)$
\jmath	$\sqrt{-1}$ (p. 13)
\bar{z}	complex conjugate of $z \in \mathbb{C}$ (p. 13)
$\operatorname{Re} z$	real part of $z \in \mathbb{C}$ (p.13)
$\operatorname{Im} z$	imaginary part of $z \in \mathbb{C}$ (p.13)
$\|z\|$	absolute value of $z \in \mathbb{C}$ (p. 13)
CLHP	closed left half plane in $\mathbb{C}($ p. 14)
OLHP	open left half plane in \mathbb{C} (p.14)
CRHP	closed right half plane in $\mathbb{C}($ p. 14)
ORHP	open right half plane in \mathbb{C} (p. 14)
$\jmath \mathbb{R}$	imaginary numbers (p. 14)
\mathbb{R}^{n}	$\mathbb{R}^{n \times 1}$ (real column vectors) (p. 14)
\mathbb{C}^{n}	$\mathbb{C}^{n \times 1}$ (complex column vectors) (p.14)
\mathbb{F}^{n}	\mathbb{R}^{n} or \mathbb{C}^{n} (p. 14)
$x_{(i)}$	i th component of $x \in \mathbb{F}^{n}$ (p. 14)
$x \geq \geq y$	$x_{(i)} \geq y_{(i)}$ for all $i \quad(x-y$ is nonnegative $)$ (p. 14)
$x \gg y$	$x_{(i)}>y_{(i)}$ for all $i(x-y$ is positive $)$ (p. 14)
$\mathbb{R}^{n \times m}$	$n \times m$ real matrices (p. 15)
$\mathbb{C}^{n \times m}$	$n \times m$ complex matrices (p. 15)
$\mathbb{F}^{n \times m}$	$\mathbb{R}^{n \times m}$ or $\mathbb{C}^{n \times m}$ (p. 15)
$\operatorname{row}_{i}(A)$	i th row of A (p. 15)
$\operatorname{col}_{i}(A)$	i th column of A (p.15)

$A_{(i, j)}$	(i, j) entry of A (p.15)
$A \geq \geq B$	$A_{(i, j)} \geq B_{(i, j)}$ for all $i, j \quad(A-B$ is nonnegative) (p. 16)
$A \gg B$	$A_{(i, j)}>B_{(i, j)}$ for all $i, j(A-B$ is positive) (p. 16)
$A \stackrel{i}{\leftarrow} b$	matrix obtained from $A \in \mathbb{F}^{n \times m}$ by replacing $\operatorname{col}_{i}(A)$ with $b \in \mathbb{F}^{n}$ or $\operatorname{row}_{i}(A)$ with $b \in \mathbb{F}^{1 \times m}$ (p.16)
$\mathrm{d}_{\text {max }}(A) \triangleq \mathrm{d}_{1}(A)$	largest diagonal entry of $A \in \mathbb{F}^{n \times n}$ having real diagonal entries (p. 16)
$\mathrm{d}_{i}(A)$	i th largest diagonal entry of $A \in \mathbb{F}^{n \times n}$ having real diagonal entries (p. 16)
$\mathrm{d}_{\text {min }}(A) \triangleq \mathrm{d}_{n}(A)$	smallest diagonal entry of $A \in \mathbb{F}^{n \times n}$ having real diagonal entries (p. 16)
$[A, B]$	commutator $A B-B A$ (p. 18)
$\operatorname{ad}_{A}(X)$	adjoint operator $[A, X]$ (p. 18)
$x \times y$	cross product of vectors $x, y \in \mathbb{R}^{3}$ (p. 18)
$0_{n \times m}, 0$	$n \times m$ zero matrix (p.18)
I_{n}, I	$n \times n$ identity matrix (p.19)
$e_{i, n}, e_{i}$	$\operatorname{col}_{i}\left(I_{n}\right)($ p. 19)
$E_{i, j, n \times m}, E_{i, j}$	$e_{i, n} e_{j, m}^{\mathrm{T}}$ (p. 20)
$1_{n \times m}, 1$	$n \times m$ ones matrix (p.20)
\hat{I}_{n}, \hat{I}	$n \times n$ reverse identity matrix $\left[\begin{array}{lll}0 & & 1 \\ & \ddots & \\ 1 & & 0\end{array}\right]$
$A^{\text {T }}$	transpose of A (p. 22)
$\operatorname{tr} A$	trace of A (p. 22)
\bar{Z}	complex conjugate of $Z \in \mathbb{C}^{n \times m}$ (p. 23)
A^{*}	\bar{A}^{T} conjugate transpose of A (p.23)
$\operatorname{Re} A$	real part of $A \in \mathbb{F}^{n \times m}$ (p. 23)
$\operatorname{Im} A$	imaginary part of $A \in \mathbb{F}^{n \times m}$ (p.23)
\bar{s}	$\{\bar{Z}: Z \in \mathcal{S}\}$ or $\{\bar{Z}: Z \in \mathcal{S}\}_{\mathrm{m}}$ (p. 23)
$A^{\hat{T}}$	$\hat{I} A^{\mathrm{T}} \hat{I}$ reverse transpose of A (p. 24)

$A^{\hat{*}}$
\cos
cone \mathcal{S}
$\operatorname{coco} S$
span \mathcal{S}
aff S
$\operatorname{dim} \mathcal{S}$
dcone \mathcal{S}
\mathcal{S}^{\perp}
$\mathcal{R}(A)$
$\mathcal{N}(A)$
$\operatorname{rank} A$
$\operatorname{def} A$
A^{L}
A^{R}
A^{-1}
$A^{-\mathrm{T}}$
A^{-*}
$\operatorname{det} A$
$A_{[i, j]}$
A^{A}

Chapter 3
 Chapter

$\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)$
$\operatorname{revdiag}\left(a_{1}, \ldots, a_{n}\right)$
N_{n}, N
$\hat{I} A^{*} \hat{I}$ reverse conjugate transpose of A (p. 24)
convex hull of \mathcal{S} (p. 25)
conical hull of \mathcal{S} (p. 25)
convex conical hull of \mathcal{S} (p.25)
span of $\mathcal{S}($ p. 25)
affine hull of \mathcal{S} (p. 25)
dimension of \mathcal{S} (p. 26)
dual cone of $\mathcal{S}(\mathrm{p} .26)$
orthogonal complement of \mathcal{S} (p. 26)
range of A (p. 29)
null space of A (p. 29)
rank of $A(\mathrm{p} .31)$
defect of A (p. 31)
left inverse of A (p. 34)
right inverse of A (p. 34)
inverse of A (p. 37)
$\left(A^{\mathrm{T}}\right)^{-1}$ (p. 38)
$\left(A^{*}\right)^{-1}$ (p. 38)
determinant of A (p. 38)
submatrix of A obtained by deleting $\operatorname{row}_{i}(A)$ and $\operatorname{col}_{j}(A)$ (p. 41)
adjugate of A (p. 41)
$\left[\begin{array}{ccc}a_{1} & & 0 \\ & \ddots & \\ 0 & & a_{n}\end{array}\right]$ (p. 79)
$\left[\begin{array}{ccc}0 & & a_{1} \\ & \ddots & \\ a_{n} & & 0\end{array}\right]$ (p.79)
$n \times n$ standard nilpotent matrix (p. 78)
$\operatorname{diag}\left(A_{1}, \ldots, A_{k}\right)$
$J_{2 n}, J$
$\mathrm{gl}_{\mathbb{F}}(n), \operatorname{pl}_{\mathbb{C}}(n), \operatorname{sl}_{\mathbb{F}}(n)$, $\mathrm{u}(n), \operatorname{su}(n), \operatorname{so}(n), \operatorname{sp}(n)$, $\operatorname{aff}_{\mathbb{F}}(n), \operatorname{se}_{\mathbb{F}}(n), \operatorname{trans}_{\mathbb{F}}(n)$
$\mathrm{GL}_{\mathbb{F}}(n), \mathrm{PL}_{\mathbb{F}}(n), \mathrm{SL}_{\mathbb{F}}(n)$, $\mathrm{U}(n), \mathrm{O}(n), \mathrm{U}(n, m)$, $\mathrm{O}(n, m), \mathrm{SU}(n), \mathrm{SO}(n)$, $\operatorname{Sp}(n), \operatorname{Aff}_{\mathbb{F}}(n), \mathrm{SE}_{\mathbb{F}}(n)$, $\operatorname{Trans}_{\mathbb{F}}(n)$
block-diagonal matrix $\left[\begin{array}{ccc}A_{1} & & 0 \\ & \ddots & \\ 0 & & A_{k}\end{array}\right]$, where $A_{i} \in \mathbb{F}^{n_{i} \times m_{j}}(\mathrm{p} .79)$

$$
\left[\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right](\text { p. } 81)
$$

Lie algebras (p. 83)
groups (p. 84)

Chapter 4

$\mathbb{F}[s]$
$\operatorname{deg} p$
$\operatorname{mroots}(p)$
$\operatorname{roots}(p)$
$\mathrm{m}_{p}(\lambda)$
$\mathbb{F}^{n \times m}[s]$
rank P
χ_{A}
$\lambda_{\text {max }}(A) \triangleq \lambda_{1}(A)$
$\lambda_{i}(A)$
$\lambda_{\min }(A) \triangleq \lambda_{n}(A)$
polynomials with coefficients in \mathbb{F} (p. 111)
degree of $p \in \mathbb{F}[s]$ (p. 111)
multiset of roots of $p \in \mathbb{F}[s]$ (p. 112)
set of roots of $p \in \mathbb{F}[s]$ (p. 112)
multiplicity of λ as a root of $p \in \mathbb{F}[s]$ (p. 112)
$n \times m$ matrices with entries in $\mathbb{F}[s](n \times m$ matrix polynomials with coefficients in \mathbb{F}) (p. 114)
rank of $P \in \mathbb{F}^{n \times m}[s]($ p. 115)
characteristic polynomial of A (p. 120)
largest eigenvalue of $A \in \mathbb{F}^{n \times n}$ having real eigenvalues (p. 120)
i th largest eigenvalue of $A \in \mathbb{F}^{n \times n}$ having real eigenvalues (p. 120)
smallest eigenvalue of $A \in \mathbb{F}^{n \times n}$ having real eigenvalues
(p. 120)

$\mathrm{am}_{A}(\lambda)$	algebraic multiplicity of $\lambda \in \operatorname{spec}(A)$ (p. 120)
$\operatorname{spec}(A)$	spectrum of A (p. 120)
$\operatorname{mspec}(A)$	multispectrum of A (p. 120)
$\mathrm{gm}_{A}(\lambda)$	geometric multiplicity of $\lambda \in \operatorname{spec}(A)$ (p. 125)
$\operatorname{spabs}(A)$	spectral abscissa of A (p.126)
$\operatorname{sprad}(A)$	spectral radius of A (p. 126)
$\operatorname{In}(A)$	inertia of A (p. 126)
$\nu_{-}(A), \nu_{0}(A), \nu_{+}(A)$	number of eigenvalues of A counting algebraic multiplicity having negative, zero, and positive real part, respectively (p. 126)
μ_{A}	minimal polynomial of A (p. 127)
$\mathbb{F}(s)$	rational functions with coefficients in \mathbb{F} (p. 129)
reldeg g	relative degree of $g \in \mathbb{F}(s)$ (p. 129)
$\mathbb{F}^{n \times m}(s)$	$n \times m$ matrices with entries in $\mathbb{F}(s)(\mathrm{p} .129)$
$\operatorname{rank} G$	rank of $G \in \mathbb{F}(s)$ (p. 129)
$B(p, q)$	Bezout matrix of $p, q \in \mathbb{F}[s]$ (p. 132, Fact 4.8.6)
$H(g)$	Hankel matrix of $g \in \mathbb{F}(s)$ (p. 134, Fact 4.8.7)

Chapter 5

$C(p)$	companion matrix for monic polynomial p (p. 152)
$\mathcal{H}_{l}(q)$	$l \times l$ or $2 l \times 2 l$ hypercompanion matrix (p. 156)
$\mathcal{J}_{l}(q)$	$l \times l$ or $2 l \times 2 l$ real Jordan matrix (p. 158)
$\operatorname{sig}(A)$	signature of A, that is, $\nu_{+}(A)-\nu_{-}(A)$ (p. 164)

$$
\begin{aligned}
& \operatorname{ind}_{A}(\lambda) \\
& \operatorname{ind} A \\
& A_{\perp} \\
& \sigma_{\max }(A) \triangleq \sigma_{1}(A) \\
& \sigma_{i}(A) \\
& \sigma_{\min }(A) \triangleq \sigma_{n}(A) \\
& V\left(\lambda_{1}, \ldots, \lambda_{n}\right) \\
& \operatorname{circ}\left(a_{0}, \ldots, a_{n-1}\right)
\end{aligned}
$$

index of λ with respect to A (p. 165)
index of A, that is, $\operatorname{ind}_{A}(0)$ (p. 165)
complementary idempotent matrix or projector $I-A$ corresponding to the idempotent matrix or projector A (p. 167)
largest singular value of $A \in \mathbb{F}^{n \times m}$ (p. 173)
i th largest singular value of $A \in \mathbb{F}^{n \times m}$ (p. 173)
minimum singular value of $A \in \mathbb{F}^{n \times n}$ (p. 173)

Vandermonde matrix (p. 195, Fact 5.12.1)
circulant matrix of $a_{0}, \ldots, a_{n-1} \in \mathbb{F}$ (p. 197, Fact 5.12.7)

Chapter 6

A^{+}
$D \mid \mathcal{A}$
A^{D}
$A^{\#}$

Chapter 7

vec A
\otimes
$P_{n, m}$
\oplus
$A \circ B$
$A^{\{\alpha\}}$
(Moore-Penrose) generalized inverse of A (p. 207)

Schur complement of D with respect to \mathcal{A} (p. 211)

Drazin generalized inverse of A (p.211)
group generalized inverse of A (p. 213)
vector formed by stacking columns of A (p. 225)

Kronecker product (p. 226)
Kronecker permutation matrix (p. 228)
Kronecker sum (p. 229)
Schur product of A and B (p. 230)
Schur power of $A,\left(A^{\{\alpha\}}\right)_{(i, j)}=\left(A_{(i, j)}\right)^{\alpha}$ (p. 230)

Chapter 8

\mathbf{H}^{n}
\mathbf{N}^{n}
\mathbf{P}^{n}
$A \geq B$
$A>B$
$\langle A\rangle$
$A \# B$
$A: B$
$n \times n$ Hermitian matrices (p. 239)
$n \times n$ nonnegative-semidefinite matrices (p. 239)
$n \times n$ positive-definite matrices (p. 239)
$A-B \in \mathbf{N}^{n}$ (p. 239)
$A-B \in \mathbf{P}^{n}$ (p. 239)
$\left(A^{*} A\right)^{1 / 2}$ (p. 254)
geometric mean of A and B (p. 274, Fact 8.8.20)
parallel sum of A and B (p. 276, Fact 8.9.9)

Chapter 9

$|x|$
$|A|$
$\|x\|_{p}$
$\|A\|_{\mathrm{F}}$
$\|A\|_{p}$
$\|A\|_{\sigma p}$
$\|A\|_{q, p}$
$\|A\|_{\mathrm{col}}$
$\|A\|_{\text {row }}$
$\ell(A)$
absolute value of $x \in \mathbb{F}^{n}$ (p. 303)
absolute value of $A \in \mathbb{F}^{n \times m}$ (p. 303)
Holder norm $\left[\sum_{i=1}^{n}\left|x_{(i)}\right|^{p}\right]^{1 / p}$ (p. 304)
Frobenius norm $\sqrt{\operatorname{tr} A^{*} A}$ (p. 308)
Holder norm $\left[\sum_{i, j=1}^{n, m}\left|A_{(i, j)}\right|^{p}\right]^{1 / p}$ (p. 307)
Schatten norm $\left[\sum_{i=1}^{\operatorname{rank} A} \sigma_{i}^{p}(A)\right]^{1 / p}$ (p. 309)
Holder-induced norm (p. 315)
column norm $\|A\|_{1,1}=$
$\max _{i \in\{1, \ldots, m\}}\left\|\operatorname{col}_{i}(A)\right\|_{1}$ (p. 317)
row norm $\|A\|_{\infty, \infty}=$
$\max _{i \in\{1, \ldots, n\}}\left\|\operatorname{row}_{i}(A)\right\|_{1}$ (p. 317)
induced lower bound of A (p. 319)
$\ell_{q, p}(A)$
$\|\cdot\|_{\mathrm{D}}$

Chapter 10

$\mathbb{B}_{\varepsilon}(x)$
$\mathbb{S}_{\varepsilon}(x)$
int \mathcal{S}
cl S
int $_{8^{\prime}} S$
$\mathrm{cl}_{\mathrm{S}^{\prime}} \mathrm{S}$
bd S
bds, δ
vcone \mathcal{D}
$\mathrm{D}_{+} f\left(x_{0} ; \xi\right)$
$\frac{\partial f\left(x_{0}\right)}{\partial x_{(i)}}$
$f^{\prime}(x)$
$\frac{\mathrm{d} f\left(x_{0}\right)}{\mathrm{d} x_{(i)}}$
$f^{(k)}(x)$

Chapter 11

e^{A} or $\exp (A)$
$\delta_{\mathrm{s}}(A)$
$\mathcal{S}_{\mathrm{u}}(A)$
OUD
CUD

Holder-induced lower bound of A (p. 320) dual norm (p. 326, Fact 9.7.8)
open ball of radius ε centered at x (p. 355)
sphere of radius ε centered at x (p. 355)
interior of \mathcal{S} (p. 355)
closure of \mathcal{S} (p. 355)
interior of \mathcal{S} relative to \mathcal{S}^{\prime} (p. 355)
closure of \mathcal{S} relative to \mathcal{S}^{\prime} (p. 356)
boundary of \mathcal{S} (p. 356)
boundary of \mathcal{S} relative to \mathcal{S}^{\prime} (p. 356)
variational cone of \mathcal{D} (p. 359)
one-sided directional derivative of f at x_{0} in the direction ξ (p. 359)
partial derivative of f with respect to $x_{(i)}$ at x_{0} (p.359)

Frechet derivative of f at x (p. 360)
$f^{\prime}\left(x_{0}\right)$ (p. 360)
k th Frechet derivative of f at x (p. 361)
matrix exponential (p. 372)
asymptotically stable subspace of A (p. 389)
unstable subspace of A (p. 389)
open unit disk in \mathbb{C} (p. 395)
closed unit disk in \mathbb{C} (p. 395)

Chapter 12

\mathcal{L}	Laplace transform (p. 434)
$\mathcal{U}(A, C)$	unobservable subspace of $(A, C)($ p. 436)
$\mathcal{O}(A, C)$	$\left[\begin{array}{c}C A \\ C A \\ \vdots \\ C A^{n-1}\end{array}\right]($ p. 437)
$\mathcal{C}(A, B)$	controllable subspace of $(A, B)($ p. 442 $)$
$\mathcal{K}(A, B)$	$\left[\begin{array}{llll}B & A B & A^{2} B & \cdots\end{array} A^{n-1} B\right]($ p. 443)

Conventions, Notation, and Terminology

When a word is defined, it is italicized.
The definition of a word, phrase, or symbol should always be understood as an "if and only if" statement, although for brevity "only if" is omitted. The symbol \triangleq means equal by definition.

Analogous statements are written in parallel using the following style: If n is (even, odd), then $n+1$ is (odd, even).
i, j, k, l, m, n always denote integers. Hence, $k \geq 1$ denotes a positive integer, and the limit $\lim _{k \rightarrow \infty} A^{k}$ is taken over positive integers.

The prefix "non" means "not" in the words nonempty, nonzero, non-real, nonnegative, nonunique, nonsingular, nonpositive, nonconstant, and nonnormal. In some traditional usage, "non" may mean "not necessarily."
"Increasing" and "decreasing" indicate strict change for a change in the argument. The word "strict" is superfluous and thus is omitted. Nonincreasing means nowhere increasing, while nondecreasing means nowhere decreasing.

Multisets can have repeated elements so that $\{x\}_{\mathrm{m}}$ and $\{x, x\}_{\mathrm{m}}$ are different. Multisets help account for repeated eigenvalues. The listed elements α, β, γ of the conventional set $\{\alpha, \beta, \gamma\}$ are not necessarily distinct.
$\mathcal{S}_{1} \subset \mathcal{S}_{2}$ means that \mathcal{S}_{1} is a proper subset of \mathcal{S}_{2}, that is, $\mathcal{S}_{1} \subseteq \mathcal{S}_{2}$ and $\mathcal{S}_{1} \neq \mathcal{S}_{2}$. $\mathcal{S}_{1} \subseteq \mathcal{S}_{2}$ means that either $\mathcal{S}_{1} \subset \mathcal{S}_{2}$ or $\mathcal{S}_{1}=\mathcal{S}_{2}$. This notation is consistent with $<$ and \leq for real numbers.
$1 / \infty \triangleq 0$.
$0!\triangleq 1$.
$A^{0} \triangleq I$ for all square matrices A. In particular, $0_{n \times n}^{0}=I_{n}$. With this convention, it is possible to write

$$
\sum_{i=0}^{\infty} \alpha^{i}=\frac{1}{1-\alpha}
$$

for all $-1<\alpha<1$. Of course, $\lim _{x \rightarrow 0^{+}} 0^{x}=0, \lim _{x \rightarrow 0^{+}} x^{0}=1$, and $\lim _{x \rightarrow 0^{+}} x^{x}=1$.
$\sqrt{-1}$ is always denoted by dotless \jmath. Although i is traditional in mathematics, this notation is common in electrical engineering.

The imaginary numbers are $\jmath \mathbb{R}$. Hence, 0 is both a real number and an imaginary number.
s always represents a complex scalar.
For the scalar ordering " \leq ", if $x \leq y$, then $x<y$ if and only if $x \neq y$. For a vector or matrix ordering, $x \leq y$ and $x \neq y$ do not imply that $x<y$.

Operations denoted by superscripts are applied before operations represented by preceding operators. For example, $\operatorname{tr}(A+B)^{2}$ means $\operatorname{tr}\left[(A+B)^{2}\right]$ and $\operatorname{cl} \mathcal{S}^{\sim}$ means $\operatorname{cl}\left(\mathcal{S}^{\sim}\right)$. This convention simplifies many formulas.
"Vector" means column vector. A vector is a matrix with one column.

Sets have elements, vectors have components, and matrices have entries. This terminology is traditional and has no mathematical consequence.
$A_{(i, j)}$ is the scalar (i, j) entry of $A . A_{i, j}$ or $A_{i j}$ denotes a block or submatrix of A.

All matrices have nonnegative integral dimensions. If at least one of the dimensions of a matrix is zero, then the matrix is empty.

The entries of a submatrix \hat{A} of a matrix A are the entries of A lying in specified rows and columns. \hat{A} is a block of A if \hat{A} is a submatrix of A whose entries are entries of adjacent rows and columns of A. Every matrix is both a submatrix and block of itself.

The determinant of a submatrix is a subdeterminant. (Some books use "minor.") The determinant of a matrix is also a subdeterminant of the matrix.

The dimension of the null space of a matrix is its defect. Some books use "nullity."

A block of a square matrix is diagonally located if the block is square and the diagonal entries of the block are also diagonal entries of the matrix; otherwise, the block is off-diagonally located. This terminology avoids confusion with a "diagonal block," which is block that is also a a square, diagonal submatrix.
\mathbb{F} denotes either \mathbb{R} or \mathbb{C} consistently in every result. For example, in Theorem 5.6 .3 , the three appearances of " \mathbb{F} " can be read as either all " \mathbb{C} " or all " \mathbb{R}."

If $\mathbb{F}=\mathbb{R}$, then \bar{A} becomes A, A^{*} becomes A^{T}, "Hermitian" becomes "sym-
metric," "unitary" becomes "orthogonal,""unitarily" becomes "orthogonally," and "congruence" becomes "T-congruence." A square complex matrix A is symmetric if $A^{\mathrm{T}}=A$ and orthogonal if $A^{\mathrm{T}} A=I$.

The adjugate of $A \in \mathbb{F}^{n \times n}$ is denoted by A^{A}. The traditional notation is $\operatorname{adj} A . A^{\mathrm{A}}$ is used in [523].

The diagonal entries of a matrix $A \in \mathbb{F}^{n \times n}$ all of whose diagonal entries are real are ordered as $\mathrm{d}_{\max }(A)=\mathrm{d}_{1}(A) \geq \mathrm{d}_{2}(A) \geq \cdots \geq \mathrm{d}_{\text {min }}(A)=\mathrm{d}_{n}(A)$.

The eigenvalues of a matrix $A \in \mathbb{F}^{n \times n}$ all of whose eigenvalues are real are ordered as $\lambda_{\max }(A)=\lambda_{1}(A) \geq \lambda_{2}(A) \geq \cdots \geq \lambda_{\min }(A)=\lambda_{n}(A)$.

For $A \in \mathbb{F}^{n \times n}, \mathrm{am}_{A}(\lambda)$ is the number of copies of λ in the multispectrum of $A, \operatorname{gm}_{A}(\lambda)$ is the number of Jordan blocks of A associated with λ, and $\operatorname{ind}_{A}(\lambda)$ is the size of the largest Jordan block of A associated with λ.

An $n \times m$ matrix has exactly $\min \{n, m\}$ singular values, exactly $\operatorname{rank} A$ of which are positive.

The $\min \{n, m\}$ singular values of a matrix $A \in \mathbb{F}^{n \times m}$ are ordered as $\sigma_{\max }(A)$ $\triangleq \sigma_{1}(A) \geq \sigma_{2}(A) \geq \cdots \geq \sigma_{\min \{n, m\}}(A)$. If $n=m$, then $\sigma_{\min }(A) \triangleq \sigma_{n}(A)$. The notation $\sigma_{\min }(A)$ is defined only for square matrices.

Nonnegative-semidefinite and positive-definite matrices are Hermitian.
A matrix that can be diagonalized by a similarity transformation is diagonalizable and thus semisimple since all of its eigenvalues are semisimple. If the matrix is real and all of its eigenvalues are real, then the matrix is diagonalizable over \mathbb{R}.

An idempotent matrix $A \in \mathbb{F}^{n \times n}$ satisfies $A^{2}=A$, while a projector is a Hermitian, idempotent matrix. Some books use "projector" for idempotent and "orthogonal projector" for projector. A reflector is a Hermitian, involutory matrix. A projector is a normal matrix whose eigenvalues are 1 or 0 , while a reflector is a normal matrix whose eigenvalues are 1 or -1 .

An elementary matrix is a nonsingular matrix formed by adding an outerproduct matrix to the identity matrix. An elementary reflector is a reflector exactly one of whose eigenvalues is -1 . An elementary projector is a projector exactly one of whose eigenvalues is 0 . Elementary reflectors are elementary matrices. However, elementary projectors are not elementary matrices since elementary projectors are singular.

The rank of a matrix polynomial or rational transfer function P is the max-
imum rank of $P(s)$ over \mathbb{C}. Some books call this "normal rank." We denote this quantity by rank P as distinct from $\operatorname{rank} P(s)$, which denotes the rank of the matrix $P(s)$, where $s \in \mathbb{C}$.

The symbol \oplus denotes the Kronecker sum. (Some books use \oplus to denote the direct sum of matrices.)

The Holder norms for vectors and matrices are denoted by $\|\cdot\|_{p}$. The matrix norm induced by $\|\cdot\|_{q}$ on the domain and $\|\cdot\|_{p}$ on the codomain is denoted by $\|\cdot\|_{p, q}$.

The Schatten norms for matrices are denoted by $\|\cdot\|_{\sigma p}$, and the Frobenius norm is denoted by $\|\cdot\|_{\mathrm{F}}$. Hence, $\|\cdot\|_{\sigma \infty}=\|\cdot\|_{2,2}=\sigma_{\max }(\cdot)$ and $\|\cdot\|_{\sigma 2}=\|\cdot\|_{\mathrm{F}}$.

Preface

The idea for this book began with the realization that at the heart of the solution to many problems in science, mathematics, and engineering often lies a "matrix fact," that is, an identity, inequality, or property of matrices that is crucial to the solution of the problem. Although there are numerous excellent books on linear algebra and matrix theory, no one book contains all or even most of the vast number of matrix facts that appear throughout the mathematical, scientific, and engineering literature. This book is an attempt to organize many of these facts into a reference source for users of matrix theory in diverse applications areas.

Matrix mathematics, which can be viewed as a significant extension of scalar mathematics, provides powerful tools for analyzing physical problems in science and engineering. Discretization of partial differential equations by means of finite differencing and finite elements yields linear algebraic or differential equations whose matrix structure reflects the nature of physical solutions [530]. Multivariate probability theory and statistical analysis use matrix methods to represent probability distributions, to compute moments, and to perform linear regression for data analysis [215, 249, 269, 387, 503]. The study of linear differential equations [281] depends heavily on matrix analysis, while linear systems theory and control theory are matrix-intensive areas of engineering [31,62,66,141,161,213,306,345,352,382,463,493,510,556, $572,615,632]$. In addition, matrices are widely used in rigid body mechanics [11,344,399,432,449,562], structural dynamics [350,409,467], fluid dynamics [137,200,595], circuit theory [13], queuing and stochastic systems [265, 436], graph theory [202], signal processing [569], statistical mechanics [7,69,574], demography [329], optics [226], and number theory [339].

In all applications involving matrices, computational techniques are essential for obtaining numerical solutions. The development of efficient and reliable algorithms for matrix computations is therefore an important area of research that has been extensively developed $[44,136,169,236,280$, $297,309,521,522,524,554,573,596,600,601]$. To facilitate the solution of matrix problems, entire computer packages have been developed using the language of matrices. However, this book is concerned with the analytical properties of matrices rather than their computational aspects.

This book encompasses a broad range of fundamental questions in matrix theory, which, in many cases can be viewed as extensions of related questions in scalar mathematics. A few such questions are:

What are the basic properties of matrices? How can matrices be characterized, classified, and quantified?

How can a matrix be decomposed into simpler matrices? A matrix decomposition may involve addition, multiplication, and partition. Decomposing a matrix into its fundamental components provides insight into its algebraic and geometric properties. For example, the polar decomposition states that every square matrix can be written as the product of a rotation and a dilation analogous to the polar representation of a complex number.

Given a pair of matrices having certain properties, what can be inferred about the sum, product, and concatenation of these matrices? In particular, if a matrix has a given property, to what extent does that property change or remain unchanged if the matrix is perturbed by another matrix of a certain type by means of addition, multiplication, or concatenation? For example, if a matrix is nonsingular, how large can an additive perturbation to that matrix be without the sum becoming singular?

How can properties of a matrix be determined by means of simple operations? For example, how can the location of the eigenvalues of a matrix be estimated directly in terms of the entries of the matrix?

To what extent do matrices satisfy the formal properties of the real numbers? For example, while $0 \leq a \leq b$ implies that $a^{r} \leq b^{r}$ for real numbers a, b and a positive integer r, when does $0 \leq A \leq B$ imply $A^{r} \leq B^{r}$ for nonnegative-semidefinite matrices A and B and with the nonnegative-semidefinite ordering?

Questions of these types have occupied matrix theorists for at least a century, with motivation from diverse applications. The existing scope and depth of knowledge are enormous. Taken together, this body of knowledge provides a powerful framework for developing and analyzing models for scientific and engineering applications.

This book is intended to be useful for at least four groups of readers. Since linear algebra is a standard course in the mathematical sciences and engineering, graduate students in these fields can use this book to expand the scope of their linear algebra text. For instructors, many of the Facts
can be used as exercises to augment standard material in matrix courses. For researchers in the mathematical sciences, including statistics, physics, and engineering, this book can be used as a general reference on matrix theory. Finally, for users of matrices in the applied sciences, this book will provide access to a large body of results in matrix theory. By collecting these results in a single source, it is my hope that this book will prove to be convenient and useful for a broad range of applications. The material in this book is thus intended to complement the large number of classical and modern texts and reference works on linear algebra and matrix theory [$2,214,222,223,229,244,285,383,391,395,423,440,444,466,492,509,530]$.

After a review of mathematical preliminaries in Chapter 1, fundamental properties of matrices are described in Chapter 2. Chapter 3 summarizes the major classes of matrices and various matrix transformations. In Chapter 4 we turn to polynomial and rational matrices whose basic properties are essential for understanding the structure of constant matrices. Chapter 5 is concerned with various decompositions of matrices including the Jordan, Schur, and singular value decompositions. Chapter 6 provides a brief treatment of generalized inverses, while Chapter 7 describes the Kronecker and Schur product operations. Chapter 8 is concerned with the properties of nonnegative-semidefinite matrices. A detailed treatment of vector and matrix norms is given in Chapter 9, while formulas for matrix derivatives are given in Chapter 10. Next, Chapter 11 focuses on the matrix exponential and stability theory, which are central to the study of linear differential equations. In Chapter 12 we apply matrix theory to the analysis of linear systems, their state space realizations, and their transfer function representation. This chapter also includes a discussion of the matrix Riccati equation of control theory.

Each chapter provides a core of results with, in many cases, complete proofs. Sections at the end of each chapter provide a collection of Facts organized to correspond to the order of topics in the chapter. These Facts include corollaries and special cases of results presented in the chapter, as well as related results that go beyond the results of the chapter. In a few cases the Facts include open problems, illuminating remarks, and hints regarding proofs. The Facts are intended to provide the reader with a useful reference collection of matrix results as well as a gateway to the matrix theory literature.

The literature on matrix theory is enormous and includes numerous excellent textbooks and monographs as well as innumerable papers. The material in this book has been drawn from many sources, and these appear in the reference list. An attempt has been made to give appropriate credit wherever possible. However, there are surely omissions in this regard, and I
regret all such oversights.
The author is indebted to many individuals who, over the years, provided helpful suggestions as well as material for this book.

Contents

Symbols xii
Conventions, Notation, and Terminology xvi
Preface xX
Chapter 1. Preliminaries 1
1.1 Logic and Sets 1
1.2 Relations and Functions 3
1.3 Facts on Logic, Sets, and Functions 5
1.4 Facts on Scalar Inequalities 6
1.5 Notes 11
Chapter 2. Basic Matrix Properties 13
2.1 Matrix Algebra 13
2.2 Transpose and Inner Product 20
2.3 Convex Sets, Cones, and Subspaces 24
2.4 Range and Null Space 29
2.5 Rank and Defect 31
2.6 Invertibility 34
2.7 Determinants 38
2.8 Properties of Partitioned Matrices 42
2.9 Facts on Cones, Convex Hulls, and Subspaces 46
2.10 Facts on Range, Null Space, Rank, and Defect 48
2.11 Facts on Identities 53
2.12 Facts on Determinants 55
2.13 Facts on Adjugates and Inverses 63
2.14 Facts on Commutators 70
2.15 Facts on Complex Matrices 71
2.16 Facts on Geometry 74
2.17 Notes 75
Chapter 3. Matrix Classes and Transformations 77
3.1 Matrix Classes 77
3.2 Matrix Transformations 82
3.3 Facts on Range-Hermitian and Group-Invertible Matrices 85
3.4 Facts on Hermitian and Skew-Hermitian Matrices 86
3.5 Facts on Projectors and Idempotent Matrices 93
3.6 Facts on Unitary Matrices 97
3.7 Facts on Reflectors 101
3.8 Facts on Nilpotent Matrices 102
3.9 Facts on Hamiltonian and Symplectic Matrices 103
3.10 Facts on Groups 104
3.11 Facts on Quaternions 105
3.12 Facts on Miscellaneous Types of Matrices 106
3.13 Notes 109
Chapter 4. Matrix Polynomials and Rational Transfer Functions 111
4.1 Polynomials 111
4.2 Matrix Polynomials 114
4.3 The Smith Decomposition and Similarity Invariants 117
4.4 Eigenvalues 119
4.5 Eigenvectors 125
4.6 Minimal Polynomial 127
4.7 Rational Transfer Functions and the Smith-McMillan Decomposition 129
4.8 Facts on Polynomials 131
4.9 Facts on the Characteristic and Minimal Polynomials 137
4.10 Facts on the Spectrum 141
4.11 Facts on Nonnegative Matrices 145
4.12 Notes 149
Chapter 5. Matrix Decompositions 151
5.1 Smith Form 151
5.2 Multi-Companion Form 152
5.3 Hypercompanion Form and Jordan Form 156
5.4 Schur Form 162
5.5 Eigenstructure Properties 165
5.6 Singular Value Decomposition 173
5.7 Facts on Matrix Transformations Involving One Matrix 175
5.8 Facts on Matrix Transformations Involving Two or More Matrices 178
5.9 Facts on Eigenvalues and Singular Values Involving One Matrix 180
5.10 Facts on Eigenvalues and Singular Values Involving Two or More Matrices 187
CONTENTS xxiii
5.11 Facts on Matrix Eigenstructure 189
5.12 Facts on Companion, Vandermonde, and Circulant Matrices 193
5.13 Facts on Matrix Factorizations 199
5.14 Notes 205
Chapter 6. Generalized Inverses 207
6.1 Moore-Penrose Generalized Inverse 207
6.2 Drazin Generalized Inverse 211
6.3 Facts on the Moore-Penrose Generalized Inverse Involving One Matrix 213
6.4 Facts on the Moore-Penrose Generalized Inverse Involving Two or More Matrices 216
6.5 Facts on the Drazin and Group Generalized Inverses 223
6.6 Notes 224
Chapter 7. Kronecker and Schur Algebra 225
7.1 Kronecker Product 225
7.2 Kronecker Sum and Linear Matrix Equations 229
7.3 Schur Product 230
7.4 Facts on the Kronecker Product 231
7.5 Facts on the Schur Product 235
7.6 Notes 237
Chapter 8. Nonnegative-Semidefinite Matrices 239
8.1 Nonnegative-Semidefinite and Positive-Definite Orderings 239
8.2 Submatrices 241
8.3 Simultaneous Diagonalization 245
8.4 Eigenvalue Inequalities 247
8.5 Matrix Inequalities 253
8.6 Facts on Range and Rank 264
8.7 Facts on Identities and Inequalities Involving One Matrix 265
8.8 Facts on Identities and Inequalities Involving Two or More Matrices 271
8.9 Facts on Generalized Inverses 275
8.10 Facts on Identities and Inequalities Involving Quadratic Forms 278
8.11 Facts on Matrix Transformations 281
8.12 Facts on the Trace 282
8.13 Facts on the Determinant 285
8.14 Facts on Eigenvalues and Singular Values 290
8.15 Facts on the Schur and Kronecker Products 295
8.16 Facts on Majorization 300
8.17 Notes 301
Chapter 9. Norms 303
9.1 Vector Norms 303
9.2 Matrix Norms 307
9.3 Compatible Norms 310
9.4 Induced Norms 314
9.5 Induced Lower Bound 319
9.6 Singular Value Inequalities 322
9.7 Facts on Vector Norms 324
9.8 Facts on Matrix Norms Involving One Matrix 327
9.9 Facts on Matrix Norms Involving Two or More Matrices 335
9.10 Facts on Matrix Norms and Eigenvalues 342
9.11 Facts on Singular Values Involving One Matrix 345
9.12 Facts on Singular Values Involving Two or More Matrices 348
9.13 Notes 353
Chapter 10. Functions of Matrices and Their Derivatives 355
10.1 Open and Closed Sets 355
10.2 Limits 356
10.3 Continuity 358
10.4 Derivatives 359
10.5 Functions of a Matrix 362
10.6 Matrix Derivatives 363
10.7 Facts on Open, Closed, and Convex Sets 365
10.8 Facts on Functions and Derivatives 368
10.9 Notes 370
Chapter 11. The Matrix Exponential and Stability Theory 371
11.1 Definition of the Matrix Exponential 371
11.2 Structure of the Matrix Exponential 375
11.3 Explicit Expressions 377
11.4 Logarithms 380
11.5 Lyapunov Stability Theory 384
11.6 Linear Stability Theory 386
11.7 The Lyapunov Equation 390
11.8 Discrete-Time Stability Theory 395
11.9 Facts on Matrix Exponential Formulas 397
11.10 Facts on Matrix Exponential Identities Involving One Matrix 400
11.11 Facts on Matrix Exponential Identities Involving Two or More Matrices 403
11.12 Facts on Eigenvalues, Singular Values, and Norms 408
11.13 Facts on Stable Polynomials 410
11.14 Facts on Stable Matrices 412
11.15 Facts on Discrete-Time Stability 419
CONTENTS xxv
11.16 Facts on Subspace Decomposition 423
11.17 Notes 430
Chapter 12. Linear Systems and Control Theory 431
12.1 State Space and Transfer Function Models 431
12.2 Observability 436
12.3 Detectability 440
12.4 Observable Asymptotic Stability 440
12.5 Controllability 442
12.6 Stabilizability 448
12.7 Controllable Asymptotic Stability 450
12.8 Realization Theory 452
12.9 System Zeros 458
$12.10 \quad \mathrm{H}_{2}$ System Norm 460
12.11 Harmonic Steady-State Response 463
12.12 System Interconnections 465
$12.13 \mathrm{H}_{2}$ Standard Problem 467
12.14 Linear-Quadratic Control 469
12.15 Solutions of the Riccati Equation 474
12.16 Hamiltonian-Based Analysis of the Riccati Equation 487
12.17 Facts on Linear System Theory 491
12.18 Notes 498
Bibliography 501
Author Index 539
Index 545

Chapter One

Preliminaries

In this chapter we review some basic terminology and results concerning logic, sets, functions, and related concepts. This material is used throughout the book.

1.1 Logic and Sets

Let A and B be conditions. The negation of A is (not A), the both of A and B is $(A$ and $B)$, and the either of A and B is $(A$ or $B)$.

Let A and B be conditions. The implication or statement "if A is satisfied, then B is satisfied" or, equivalently, " A implies B," is written as $A \Longrightarrow B$, while $A \Longleftrightarrow B$ is equivalent to $[(A \Longrightarrow B)$ and $(A \Longleftarrow B)]$. Of course, $A \Longleftarrow B$ means $B \Longrightarrow A$.

Suppose $A \Longleftrightarrow B$. Then, A is satisfied if and only if B is satisfied. By convention, the implication $A \Longrightarrow B$ (the "only if" part) is necessity, while $B \Longrightarrow A$ (the "if" part) is sufficiency. The converse of $A \Longrightarrow B$ is $B \Longrightarrow A$. The statement $A \Longrightarrow B$ is equivalent to its contrapositive (not $B) \Longrightarrow$ (not A).

A theorem is a significant result, while a proposition is less significant. The primary role of a lemma is to support the proof of a theorem or proposition. Finally, a corollary is a direct consequence of a theorem or proposition.

Suppose that $A^{\prime} \Longrightarrow A \Longrightarrow B \Longrightarrow B^{\prime}$. Then, $A^{\prime} \Longrightarrow B^{\prime}$ is a corollary of $A \Longrightarrow B$.

Let A, B, and C be conditions, and assume that $A \Longrightarrow B$. Then, $A \Longrightarrow B$ is a strengthening of $(A$ and $C) \Longrightarrow B$. If, in addition, $A \Longrightarrow C$, then the statement $(A$ and $C) \Longrightarrow B$ has redundant assumptions.

Let $X \triangleq\{x, y, z\}$ be a set. Then,

$$
\begin{equation*}
x \in X \tag{1.1.1}
\end{equation*}
$$

means that x is an element of \mathcal{X}. If w is not an element of \mathcal{X}, then we write

$$
\begin{equation*}
w \notin X . \tag{1.1.2}
\end{equation*}
$$

The set with no elements, denoted by \varnothing, is the empty set. If $X \neq \varnothing$, then X is nonempty.

A set cannot have repeated elements. For example, $\{x, x\}=\{x\}$. However, a multiset is a collection of elements that allows for repetition. The multiset consisting of two copies of x is written as $\{x, x\}_{\mathrm{m}}$. However, we do not assume that the listed elements x, y of the conventional set $\{x, y\}$ are distinct.

There are two basic types of mathematical statements involving quantifiers. An existential statement is of the form
there exists $x \in \mathcal{X}$ such that condition Z is satisfied,
while a universal statement has the structure

$$
\begin{equation*}
\text { condition } Z \text { is satisfied for all } x \in X \text {. } \tag{1.1.4}
\end{equation*}
$$

Let x and y be sets. The intersection of x and y is the set of common elements of x and y given by

$$
\begin{align*}
X \cap y & \triangleq\{x: x \in X \text { and } x \in \mathcal{Y}\}=\{x \in X: x \in \mathcal{Y}\} \tag{1.1.5}\\
& =\{x \in \mathcal{Y}: x \in \mathcal{X}\}=y \cap X, \tag{1.1.6}
\end{align*}
$$

while the set of elements in either X or y (the union of X and y) is

$$
\begin{equation*}
X \cup y \triangleq\{x: x \in X \text { or } x \in y\}=y \cup X . \tag{1.1.7}
\end{equation*}
$$

The complement of X relative to y is

$$
\begin{equation*}
y \backslash X \triangleq\{x \in y: x \notin X\} . \tag{1.1.8}
\end{equation*}
$$

If y is specified, then the complement of \mathcal{X} is

$$
\begin{equation*}
x^{\sim} \triangleq y \backslash x \tag{1.1.9}
\end{equation*}
$$

If $x \in \mathcal{X}$ implies that $x \in \mathcal{y}$, then \mathcal{X} is contained in y (\mathcal{X} is a subset of y), which is written as

$$
\begin{equation*}
x \subseteq y . \tag{1.1.10}
\end{equation*}
$$

The statement $x=y$ is equivalent to the validity of both $x \subseteq y$ and $y \subseteq x$. If $X \subseteq y$ and $x \neq y$, then x is a proper subset of y and we write $x \subset y$. The sets X and y are disjoint if $X \cap y=\varnothing$. A partition of \mathcal{X} is a collection of pairwise disjoint subsets of \mathcal{X} whose union is equal to \mathcal{X}.

The operations " \cap ", " \cup ", and " \backslash " and the relations " \subset " and " \subseteq " extend directly to multisets. For example,

$$
\begin{equation*}
\{x, x\}_{\mathrm{m}} \cup\{x\}_{\mathrm{m}}=\{x, x, x\}_{\mathrm{m}} . \tag{1.1.11}
\end{equation*}
$$

By ignoring repetitions, a multiset can be converted to a set, while a set can be viewed as a multiset with distinct elements.

1.2 Relations and Functions

The Cartesian product $X_{1} \times \cdots \times X_{n}$ of sets X_{1}, \ldots, X_{n} is the set consisting of ordered elements of the form $\left(x_{1}, \ldots, x_{n}\right)$, where $x_{i} \in X_{i}$ for all $i=1, \ldots, n$. A relation \mathcal{R} on a set \mathcal{X} is a subset of $\mathcal{X} \times \mathcal{X}$. For convenience, $\left(x_{1}, x_{2}\right) \in \mathcal{R}$ is denoted by $x_{1} \leq x_{2}$, whereas $x_{1} \not \leq x_{2}$ denotes $\left(x_{1}, x_{2}\right) \notin \mathcal{R}$.

Definition 1.2.1. Let \mathcal{R} be a relation on X. Then, the following terminology is defined:
i) \mathcal{R} is reflexive if $x \leq x$ for all $x \in \mathcal{X}$.
ii) \mathcal{R} is antisymmetric if $x_{1} \leq x_{2}$ and $x_{2} \leq x_{1}$ imply that $x_{1}=x_{2}$.
iii) \mathcal{R} is symmetric if $x_{1} \leq x_{2}$ implies that $x_{2} \leq x_{1}$.
iv) \mathcal{R} is transitive if $x_{1} \leq x_{2}$ and $x_{2} \leq x_{3}$ imply that $x_{1} \leq x_{3}$.
$v) \mathcal{R}$ is pairwise connected if $x_{1}, x_{2} \in \mathcal{X}$ implies that either $x_{1} \leq x_{2}$ or $x_{2} \leq x_{1}$.
vi) \mathcal{R} is a partial ordering if it is reflexive, antisymmetric, and transitive.
vii) \mathcal{R} is a total ordering if it is a pairwise connected partial ordering.
viii) \mathcal{R} is an equivalence relation if it is reflexive, symmetric, and transitive.

For an equivalence relation $\mathcal{R}, x_{1} \leq x_{2}$ is denoted by $x_{1} \equiv x_{2}$, whereas $x_{1} \not \equiv x_{2}$ denotes $x_{1} \not \leq x_{2}$. If \mathcal{R} is an equivalence relation and $x \in \mathcal{X}$, then the subset $\{y \in X: y \equiv x\}$ of \mathcal{X} is the equivalence class of x induced by \mathcal{R}.

Theorem 1.2.2. Let \mathcal{R} be an equivalence relation on a set X. Then, the collection of equivalence classes of \mathcal{X} induced by \mathcal{R} is a partition of X. Conversely, given a partition of \mathcal{X}, the relation \mathcal{R} defined by

$$
\begin{equation*}
(x, y) \in \mathcal{R} \Longleftrightarrow x \text { and } y \text { belong to the same partition subset of } \mathcal{X} \tag{1.2.1}
\end{equation*}
$$

is an equivalence relation.
Proof. For $x \in \mathcal{X}$, let \mathcal{S}_{x} denote the equivalence class of x induced by \mathcal{R}. Clearly, $\mathcal{X}=\bigcup_{x \in X} \mathcal{S}_{x}$. It remains to be shown that if $x, y \in \mathcal{X}$, then
either $\mathcal{S}_{x}=\mathcal{S}_{y}$ or $\mathcal{S}_{x} \cap \mathcal{S}_{y}=\varnothing$. Hence, let $x, y \in \mathcal{X}$, and suppose that \mathcal{S}_{x} and \mathcal{S}_{y} are not disjoint so that there exists $z \in \mathcal{S}_{x} \cap \mathcal{S}_{y}$. Thus, $(x, z) \in \mathcal{R}$ and $(z, y) \in \mathcal{R}$. Now, let $w \in \mathcal{S}_{x}$. Then, $(w, x) \in \mathcal{R},(x, z) \in \mathcal{R}$, and $(z, y) \in \mathcal{R}$ imply that $(w, y) \in \mathcal{R}$. Hence, $w \in \mathcal{S}_{y}$, which implies that $\mathcal{S}_{x} \subseteq \mathcal{S}_{y}$. By a similar argument, $\mathcal{S}_{y} \subseteq \mathcal{S}_{x}$. Consequently, $\mathcal{S}_{x}=\mathcal{S}_{y}$. Finally, the proof of the second statement is immediate.

Let X and y be sets. Then, a function f that maps X into y is a rule $f: X_{\mapsto} y$ that assigns a unique element $f(x)$ (the image of x) of y to every element x in X. Equivalently, a function $f: X \mapsto y$ can be viewed as a subset \mathcal{F} of $\mathcal{X} \times \mathcal{Y}$ such that, for all $x \in \mathcal{X}$, there exists $y \in \mathcal{Y}$ such that $(x, y) \in \mathcal{F}$ and, if $\left(x_{1}, y_{1}\right) \in \mathcal{F},\left(x_{2}, y_{2}\right) \in \mathcal{F}$, and $x_{1}=x_{2}$, then $y_{1}=y_{2}$. In this case, $\mathcal{F}=\operatorname{graph}(f) \triangleq\{(x, f(x)): x \in X\}$. The set X is the domain of f, while the set y is the codomain of f. For $\mathcal{X}_{1} \subseteq \mathcal{X}$, it is convenient to define $f\left(X_{1}\right) \triangleq\left\{f(x): x \in X_{1}\right\}$. The set $f(\mathcal{X})$, which is denoted by $\mathcal{R}(f)$, is the range of f. If, in addition, z is a set and $g: \quad y_{\mapsto} \mathcal{z}$, then $g \bullet f: X \mapsto z$ (the composition of g and $f)$ is the function $(g \bullet f)(x) \triangleq g(f(x))$. If $x_{1}, x_{2} \in X$ and $f\left(x_{1}\right)=f\left(x_{2}\right)$ implies that $x_{1}=x_{2}$, then f is one-to-one; if $\mathcal{R}(f)=y$, then f is onto. The function $I_{X}: X \mapsto X$ defined by $I_{X}(x) \triangleq x$ for all $x \in X$ is the identity on X.

Let $f: X \mapsto y$. Then, f is left invertible if there exists a function $g: \quad y \mapsto X$ (a left inverse of f) such that $g \bullet f=I x$, whereas f is right invertible if there exists a function $h: y_{\mapsto}$ (a right inverse of f) such that $f \bullet h=I y$. In addition, the function $f: X_{\mapsto} y$ is invertible if there exists $f^{-1}: y \mapsto X$ (the inverse of f) such that $f^{-1} \bullet f=I_{x}$ and $f \bullet f^{-1}=I_{y}$. The inverse image $f^{-1}(\mathcal{S})$ of $\mathcal{S} \subseteq y$ is defined by

$$
\begin{equation*}
f^{-1}(\mathcal{S}) \triangleq\{x \in \mathcal{X}: \quad f(x) \in \mathcal{S}\} \tag{1.2.2}
\end{equation*}
$$

Theorem 1.2.3. Let X and y be sets, and let $f: x \mapsto y$. Then, the following statements hold:
i) f is left invertible if and only if f is one-to-one.
ii) f is right invertible if and only if f is onto.

Furthermore, the following statements are equivalent:
iii) f is invertible.
iv) f has a unique inverse.
v) f is one-to-one and onto.
vi) f is left invertible and right invertible.
vii) f has a unique left inverse.
viii) f has a unique right inverse.

Proof. To prove i), suppose that f is left invertible with left inverse $g: \quad y \mapsto X$. Furthermore, suppose that $x_{1}, x_{2} \in X$ satisfy $f\left(x_{1}\right)=f\left(x_{2}\right)$. Then, $x_{1}=g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right)=x_{2}$, which shows that f is one-to-one. Conversely, suppose that f is one-to-one so that, for all $y \in \mathcal{R}(f)$, there exists a unique $x \in X$ such that $f(x)=y$. Hence, define the function $g: \quad y \mapsto X$ by $g(y) \triangleq x$ for all $y=f(x) \in \mathcal{R}(f)$ and by $g(y)$ arbitrary for all $y \in y \backslash \mathcal{R}(f)$. Consequently, $g(f(x))=x$ for all $x \in \mathcal{X}$, which shows that g is a left inverse of f.

To prove $i i$), suppose that f is right invertible with right inverse $g: \quad y \mapsto X$. Then, for all $y \in \mathcal{y}$, it follows that $f(g(y))=y$, which shows that f is onto. Conversely, suppose that f is onto so that, for all $y \in y$, there exists at least one $x \in X$ such that $f(x)=y$. Selecting one such x arbitrarily, define $g: \quad \mathcal{y} \mapsto x$ by $g(y) \triangleq x$. Consequently, $f(g(y))=y$ for all $y \in \mathcal{Y}$, which shows that g is a right inverse of f.

1.3 Facts on Logic, Sets, and Functions

Fact 1.3.1. Let A and B be conditions. Then, the following statements hold:
i) $(A$ or $B) \Longleftrightarrow($ not $A \Longrightarrow B)$.
ii) $(A \Longrightarrow B) \Longleftrightarrow($ not A or $B)$.
iii) $[\operatorname{not}(A$ or $B)] \Longleftrightarrow(\operatorname{not} A$ and $\operatorname{not} B)$.
iv) $[\operatorname{not}(A \Longrightarrow B)] \Longleftrightarrow(A$ and not $B)$.

Fact 1.3.2. The following statements are equivalent:
i) $A \Longrightarrow(B$ or $C)$.
ii) $(A$ and not $B) \Longrightarrow C$.

Fact 1.3.3. The following statements are equivalent:
i) $A \Longleftrightarrow B$.
ii) $(A$ or not $B)$ and $[$ not $(A$ and not $B)]$.

Fact 1.3.4. Let $\mathcal{A}, \mathcal{B}, \mathcal{C}$ be subsets of a set X. Then, the following identities hold:
i) $\mathcal{A} \cap \mathcal{A}=\mathcal{A} \cup \mathcal{A}=\mathcal{A}$.
ii) $(\mathcal{A} \cup \mathcal{B})^{\sim}=\mathcal{A}^{\sim} \cap \mathcal{B}^{\sim}$.
iii) $\mathcal{A}^{\sim} \cup \mathcal{B}^{\sim}=(\mathcal{A} \cap \mathcal{B})^{\sim}$.
iv) $[\mathcal{A} \backslash(\mathcal{A} \cap \mathcal{B})] \cup \mathcal{B}=\mathcal{A} \cup \mathcal{B}$.
v) $(\mathcal{A} \cup \mathcal{B}) \backslash(\mathcal{A} \cap \mathcal{B})=\left(\mathcal{A} \cap \mathcal{B}^{\sim}\right) \cup\left(\mathcal{A}^{\sim} \cap \mathcal{B}\right)$.
vi) $\mathcal{A} \cap(\mathcal{B} \cup \mathcal{C})=(\mathcal{A} \cap \mathcal{B}) \cup(\mathcal{A} \cap \mathcal{C})$.
vii) $\mathcal{A} \cup(\mathcal{B} \cap \mathcal{C})=(\mathcal{A} \cup \mathcal{B}) \cap(\mathcal{A} \cup \mathcal{C})$.
viii) $(\mathcal{A} \cap \mathcal{B}) \backslash \mathcal{C}=(\mathcal{A} \backslash \mathcal{C}) \cap(\mathcal{B} \backslash \mathcal{C})$.
ix) $(\mathcal{A} \cup \mathcal{B}) \backslash \mathcal{C}=(\mathcal{A} \backslash \mathcal{C}) \cup(\mathcal{B} \backslash \mathcal{C})$.
x) $(\mathcal{A} \cup \mathcal{B}) \cap\left(\mathcal{A} \cup \mathcal{B}^{\sim}\right)=\mathcal{A}$.
xi) $(\mathcal{A} \cup \mathcal{B}) \cap\left(\mathcal{A}^{\sim} \cup \mathcal{B}\right) \cap\left(\mathcal{A} \cup \mathcal{B}^{\sim}\right)=\mathcal{A} \cap \mathcal{B}$.

Fact 1.3.5. Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R} \times \mathbb{R}$. Then, the relation $\left(x_{1}, y_{1}\right) \leq$ $\left(x_{2}, y_{2}\right)$ defined by $x_{1} \leq x_{2}$ and $y_{1} \leq y_{2}$ is a partial ordering.

Fact 1.3.6. Let $f: X \mapsto y$ be invertible. Then,

$$
\left(f^{-1}\right)^{-1}=f
$$

Fact 1.3.7. Let $f: X \mapsto y$ and $g: \mathcal{y} \mapsto z$, and assume that f and g are invertible. Then, $g \bullet f$ is invertible and

$$
(g \bullet f)^{-1}=f^{-1} \bullet g^{-1}
$$

Fact 1.3.8. Let \mathcal{X} be a set, and let \mathfrak{X} denote the class of subsets of \mathcal{X}. Then, " \subset " and " \subseteq " are transitive relations on \mathfrak{X}, and " \subseteq " is a partial ordering on \mathfrak{X}.

1.4 Facts on Scalar Inequalities

Fact 1.4.1. Let x be a positive number. Then,

$$
x^{\alpha} \begin{cases}\leq \alpha x+1-\alpha, & 0 \leq \alpha \leq 1 \\ \geq \alpha x+1-\alpha, & \alpha \leq 0 \text { or } \alpha \geq 1\end{cases}
$$

Fact 1.4.2. Let x and y be nonnegative numbers, and let $\alpha \in[0,1]$. Then,

$$
x^{\alpha} y^{1-\alpha} \leq \alpha x+(1-\alpha) y
$$

(Remark: See Fact 8.12.12 and Fact 8.12.13.)

Fact 1.4.3. Let x and y be real numbers, and let $\alpha \in[0,1]$. Then,

$$
e^{\alpha x+(1-\alpha) y} \leq \alpha e^{x}+(1-\alpha) e^{y}
$$

(Proof: Replace x and y by e^{x} and e^{y}, respectively, in Fact 1.4.2.) (Remark: This inequality is a convexity condition. See Definition 8.5.11 for the convexity of matrix-valued functions.)

Fact 1.4.4. Let x be a positive number. Then,

$$
1-x^{-1} \leq \log x \leq x-1
$$

Furthermore, equality holds if and only if $x=1$.

Fact 1.4.5. Let x and y be nonnegative numbers, and let $p, q \in[1, \infty)$ satisfy $1 / p+1 / q=1$. Then,

$$
x y \leq \frac{x^{p}}{p}+\frac{y^{q}}{q}
$$

(Remark: This result is Young's inequality. A matrix version is given by Fact 9.12.19.)

Fact 1.4.6. Let x and y be positive numbers, and let $0 \leq p \leq q$. Then,

$$
\frac{x^{p}+y^{p}}{(x y)^{p / 2}} \leq \frac{x^{q}+y^{q}}{(x y)^{q / 2}} .
$$

(Remark: This inequality is a monotonicity property. See Fact 8.7.27.)
Fact 1.4.7. Let x and y be distinct positive numbers, and let p and q be real numbers such that $p<q$. Then,

$$
\left(\frac{x^{p}+y^{p}}{2}\right)^{1 / p}<\left(\frac{x^{q}+y^{q}}{2}\right)^{1 / q} .
$$

(Proof: See [375].) (Remark: This result is a power mean inequality. Letting $q=1$ and $p \rightarrow 0$ yields the arithmetic-mean-geometric-mean inequality $\sqrt{x y} \leq \frac{1}{2}(x+y)$.)

Fact 1.4.8. Let x and y be distinct positive numbers, let $1 / 3 \leq p<$ $1<q$. Then,

$$
\sqrt{x y}<\frac{y-x}{\log y-\log x}<\left(\frac{x^{p}+y^{p}}{2}\right)^{1 / p}<\frac{x+y}{2}<\left(\frac{x^{q}+y^{q}}{2}\right)^{1 / q} .
$$

(Proof: See [375].) (Remark: These inequalities are a refinement of the arithmetic-mean-geometric-mean inequality. Additional inequalities in n variables and related references are given in [619].)

Fact 1.4.9. Let x_{1}, \ldots, x_{n} be nonnegative numbers. Then,

$$
\left(\prod_{i=1}^{n} x_{i}\right)^{1 / n} \leq \frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

Furthermore, equality holds if and only if $x_{1}=x_{2}=\cdots=x_{n}$. (Remark: This result is the arithmetic-mean-geometric-mean inequality. Several proofs are given in [119]. Bounds for the difference between these quantities are given in $[12,132,558]$.)

Fact 1.4.10. Let x_{1}, \ldots, x_{n} be nonnegative real numbers, let p be a real number, and define

$$
M_{p} \triangleq \begin{cases}\left(\prod_{i=1}^{n} x_{i}\right)^{1 / n}, & p=0 \\ \left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{p}\right)^{1 / p}, & p \neq 0\end{cases}
$$

Now, let p, q be real numbers such that $p \leq q$. Then,

$$
M_{p} \leq M_{q}
$$

Furthermore, $p<q$ and at least two of the numbers x_{1}, \ldots, x_{n} are distinct if and only if

$$
M_{p}<M_{q}
$$

(Proof: See [117, p. 210] and [395, p. 105].) (Remark: If p and q are nonzero and $p \leq q$, then,

$$
\left(\sum_{i=1}^{n} x_{i}^{p}\right)^{1 / p} \leq\left(\frac{1}{n}\right)^{1 / q-1 / p}\left(\sum_{i=1}^{n} x_{i}^{q}\right)^{1 / q}
$$

which is a reverse form of Fact 1.4.13. (Remark: This result is a power mean inequality. $\quad M_{0} \leq M_{1}$ is the arithmetic-mean-geometric-mean inequality given by Fact 1.4.9.)

Fact 1.4.11. Let x_{1}, \ldots, x_{n} be nonnegative numbers, and let $\alpha_{1}, \ldots, \alpha_{n}$ be nonnegative numbers such that $\sum_{i=1}^{n} \alpha_{i}=1$. Then,

$$
\prod_{i=1}^{n} x_{i}^{\alpha_{i}} \leq \sum_{i=1}^{n} \alpha_{i} x_{i}
$$

Furthermore, equality holds if and only if $x_{1}=x_{2}=\cdots=x_{n}$. (Remark: This result is the weighted arithmetic-mean geometric-mean inequality.) (Proof: Since $f(x)=-\log x$ is convex, it follows that $\log \prod_{i=1}^{n} x_{i}^{\alpha_{i}}=$ $\sum_{i=1}^{n} \alpha_{i} \log x_{i} \leq \log \sum_{i=1}^{n} \alpha_{i} x_{i}$. To prove the second statement, define $f:[0, \infty)^{n} \mapsto[0, \infty)$ by $f\left(\mu_{1}, \ldots, \mu_{n}\right) \triangleq \sum_{i=1}^{n} \alpha_{i} \mu_{i}-\prod_{i=1}^{n} \mu_{i}^{\alpha_{i}}$. Note that
$f(\mu, \ldots, \mu)=0$ for all $\mu \geq 0$. If x_{1}, \ldots, x_{n} minimizes f, then $\partial f / \partial \mu_{i}\left(x_{1}, \ldots\right.$, $\left.x_{n}\right)=0$ for all $i=1, \ldots, n$, which implies that $x_{1}=x_{2}=\cdots=x_{n}$.)

Fact 1.4.12. Let x_{1}, \ldots, x_{n} be nonnegative numbers. Then,

$$
1+\left(\prod_{i=1}^{n} x_{i}\right)^{1 / n} \leq\left[\prod_{i=1}^{n}\left(1+x_{i}\right)\right]^{1 / n}
$$

Furthermore, equality holds if and only if $x_{1}=x_{2}=\cdots=x_{n}$. (Proof: Use Fact 1.4.9.) (Remark: This inequality is used to prove Corollary 8.4.15.)

Fact 1.4.13. Let x_{1}, \ldots, x_{n} be nonnegative real numbers, and let p, q be real numbers such that $p \leq q$. Then,

$$
\left(\sum_{i=1}^{n} x_{i}^{q}\right)^{1 / q} \leq\left(\sum_{i=1}^{n} x_{i}^{p}\right)^{1 / p} .
$$

Furthermore, the inequality is strict if and only if $p<q$ and at least two of the numbers x_{1}, \ldots, x_{n} are nonzero. (Proof: See Proposition 9.1.5.) (Remark: This result is a power sum inequality or Jensen's inequality. See [117, p. 213]. The result implies that the Holder norm is a monotonic function of the exponent.)

Fact 1.4.14. Let $0<x_{1}<\cdots<x_{n}$, and let $\alpha_{1}, \ldots, \alpha_{n} \geq 0$ satisfy $\sum_{i=1}^{n} \alpha_{i}=1$. Then,

$$
\left(\sum_{i=1}^{n} \alpha_{i} x_{i}\right)\left(\sum_{i=1}^{n} \frac{\alpha_{i}}{x_{i}}\right) \leq \frac{\left(x_{1}+x_{n}\right)^{2}}{4 x_{1} x_{n}} .
$$

(Remark: This result is the Kantorovich inequality. See Fact 8.10.5 and [378].)

Fact 1.4.15. Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} be nonnegative numbers. Then,

$$
\sum_{i=1}^{n} x_{i} y_{i} \leq\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2}\left(\sum_{i=1}^{n} y_{i}^{2}\right)^{1 / 2}
$$

Furthermore, equality holds if and only if $\left[\begin{array}{lll}x_{1} & \cdots & x_{n}\end{array}\right]^{\mathrm{T}}$ and $\left[\begin{array}{lll}y_{1} & \cdots & y_{n}\end{array}\right]^{\mathrm{T}}$ are linearly dependent. (Remark: This result is the Cauchy-Schwarz inequality.)

Fact 1.4.16. Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} be nonnegative numbers,
and let $\alpha \in[0,1]$. Then,

$$
\sum_{i=1}^{n} x_{i}^{\alpha} y_{i}^{1-\alpha} \leq\left(\sum_{i=1}^{n} x_{i}\right)^{\alpha}\left(\sum_{i=1}^{n} y_{i}\right)^{1-\alpha}
$$

Now, let $p, q \in[1, \infty]$ satisfy $1 / p+1 / q=1$. Then, equivalently,

$$
\sum_{i=1}^{n} x_{i} y_{i} \leq\left(\sum_{i=1}^{n} x_{i}^{p}\right)^{1 / p}\left(\sum_{i=1}^{n} y_{i}^{q}\right)^{1 / q}
$$

Furthermore, equality holds if and only if $\left[x_{1}^{p} \cdots x_{n}^{p}\right]^{\mathrm{T}}$ and $\left[y_{1}^{q} \cdots y_{n}^{q}\right]^{\mathrm{T}}$ are linearly dependent. (Remark: This result is Holder's inequality.) (Remark: Note the relationship between the conjugate parameters p, q and the barycentric coordinates $\alpha, 1-\alpha$. See Fact 8.15.23.)

Fact 1.4.17. Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} be nonnegative numbers. Then,

$$
\left[\sum_{i=1}^{n}\left(x_{i}+y_{i}\right)^{p}\right]^{1 / p} \begin{cases}\geq\left(\sum_{i=1}^{n} x_{i}^{p}\right)^{1 / p}+\left(\sum_{i=1}^{n} y_{i}^{p}\right)^{1 / p}, & 0<p \leq 1, \\ \leq\left(\sum_{i=1}^{n} x_{i}^{p}\right)^{1 / p}+\left(\sum_{i=1}^{n} y_{i}^{p}\right)^{1 / p}, & p \geq 1 .\end{cases}
$$

Furthermore, equality holds if and only if either $p=1$ or $\left[\begin{array}{lll}x_{1} & \cdots & x_{n}\end{array}\right]^{\mathrm{T}}$ and $\left[\begin{array}{lll}y_{1} & \cdots & y_{n}\end{array}\right]^{\mathrm{T}}$ are linearly dependent. (Remark: This result is Minkowski's inequality.)

Fact 1.4.18. Let z be a complex scalar with complex conjugate \bar{z}, real part $\operatorname{Re} z$, and imaginary part $\operatorname{Im} z$. Then, the following statements hold:
i) $|\operatorname{Re} z| \leq|z|$.
ii) If $z \neq 0$, then $z^{-1}=\bar{z} /|z|^{2}$.
iii) If $z \neq 0$, then $\operatorname{Re} z^{-1}=(\operatorname{Re} z) /|z|^{2}$.
iv) If $|z|=1$, then $z^{-1}=\bar{z}$.
v) If $\operatorname{Re} z \neq 0$, then $\operatorname{Re} z^{-1} \neq 0|z|=\sqrt{(\operatorname{Re} z) /\left(\operatorname{Re} z^{-1}\right)}$.
vi) $\left|z^{2}\right|=|z|^{2}=z \bar{z}$.
vii) $z^{2}+\bar{z}^{2}+4(\operatorname{Im} z)^{2}=2|z|^{2}$.
viii) $z^{2}+\bar{z}^{2}+2|z|^{2}=4(\operatorname{Re} z)^{2}$.
ix) $\left|z^{2}+\bar{z}^{2}\right| \leq 2|z|^{2}$.
x) $\left|e^{z}\right| \leq e^{|z|}$.

Now, let z_{1} and z_{2} be complex scalars. Then, the following statements hold:
x) $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$.
xi) $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$.
xii) $\left|z_{1}+z_{2}\right|=\left|z_{1}\right|+\left|z_{2}\right|$ if and only if there exists $\alpha \geq 0$ such that either $z_{1}=\alpha z_{2}$ or $z_{2}=\alpha z_{1}$.
(Remark: Matrix analogues of some of these results are given in [548].)

1.5 Notes

Most of the preliminary material in this chapter can be found in [434]. A related treatment of mathematical preliminaries is given in [484]. Reference works on inequalities include [70, 117-119, 149, 395, 400, 424].

Chapter Two

Basic Matrix Properties

In this chapter we provide a detailed treatment of the basic properties of matrices such as range, null space, rank, and invertibility. We also consider properties of convex sets, cones, and subspaces.

2.1 Matrix Algebra

The symbols \mathbb{Z}, \mathbb{N}, and \mathbb{P} denote the sets of integers, nonnegative integers, and positive integers, respectively. The symbols \mathbb{R} and \mathbb{C} denote the real and complex number fields, respectively, whose elements are scalars. Since \mathbb{R} is a proper subset of \mathbb{C}, we state many results for \mathbb{C}. In other cases, it is either desirable to treat \mathbb{R} and \mathbb{C} separately or simply not to make a distinction. To do this efficiently, we use the symbol \mathbb{F} to consistently denote either \mathbb{R} or \mathbb{C}.

Let $x \in \mathbb{C}$. Then, $x=y+\jmath z$, where $y, z \in \mathbb{R}$ and $\jmath \triangleq \sqrt{-1}$. Define the complex conjugate \bar{x} of x by

$$
\begin{equation*}
\bar{x} \triangleq y-\jmath z \tag{2.1.1}
\end{equation*}
$$

and the real and imaginary parts $\operatorname{Re} x$ and $\operatorname{Im} x$ of x by

$$
\begin{equation*}
\operatorname{Re} x \triangleq \frac{1}{2}(x+\bar{x})=y \tag{2.1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Im} x \triangleq \frac{1}{2 \jmath}(x-\bar{x})=z \tag{2.1.3}
\end{equation*}
$$

Furthermore, the absolute value $|x|$ of x is defined by

$$
\begin{equation*}
|x| \triangleq \sqrt{x^{2}+y^{2}} \tag{2.1.4}
\end{equation*}
$$

The closed left half plane (CLHP), open left half plane (OLHP), closed right half plane (CRHP), and open right half plane (ORHP) are the subsets of \mathbb{C} defined by

$$
\begin{align*}
& \mathrm{CLHP} \triangleq\{s \in \mathbb{C}: \operatorname{Re} s \leq 0\}, \tag{2.1.5}\\
& \mathrm{OLHP} \triangleq\{s \in \mathbb{C}: \operatorname{Re} s<0\} \tag{2.1.6}\\
& \mathrm{CRHP} \triangleq\{s \in \mathbb{C}: \operatorname{Re} s \geq 0\}, \tag{2.1.7}\\
& \mathrm{ORHP} \triangleq\{s \in \mathbb{C}: \operatorname{Re} s>0\} . \tag{2.1.8}
\end{align*}
$$

The imaginary numbers are represented by $\jmath \mathbb{R}$. Note that 0 is both a real number and an imaginary number.

The set \mathbb{F}^{n} consists of vectors x of the form

$$
x=\left[\begin{array}{c}
x_{(1)} \tag{2.1.9}\\
\vdots \\
x_{(n)}
\end{array}\right],
$$

where $x_{(1)}, \ldots, x_{(n)} \in \mathbb{F}$ are the components of x. Hence, the elements of \mathbb{F}^{n} are column vectors. Since $\mathbb{F}^{1}=\mathbb{F}$, it follows that every scalar is also a vector. If $x \in \mathbb{R}^{n}$ and every component of x is nonnegative, then x is nonnegative, which is written as $x \geq \geq 0$. If $x \in \mathbb{R}^{n}$ and every component of x is positive, then x is positive, which is written as $x \gg 0$. If $x, y \in \mathbb{R}^{n}$, then $x \geq \geq y$ means that $x-y \geq \geq 0$, while $x \gg y$ means that $x-y \gg 0$.

Definition 2.1.1. Let $x, y \in \mathbb{R}^{n}$, and assume that $x_{(1)} \geq \cdots \geq x_{(n)}$ and $y_{(1)} \geq \cdots \geq y_{(n)}$. Then, the following terminology is defined:
i) y weakly majorizes x if, for all $k=1, \ldots, n$,

$$
\begin{equation*}
\sum_{i=1}^{k} x_{(i)} \leq \sum_{i=1}^{k} y_{(i)} . \tag{2.1.10}
\end{equation*}
$$

ii) y strongly majorizes x if y weakly majorizes x and

$$
\begin{equation*}
\sum_{i=1}^{n} x_{(i)}=\sum_{i=1}^{n} y_{(i)} . \tag{2.1.11}
\end{equation*}
$$

Now, assume that x and y are nonnegative. Then, the following terminology is defined:
iii) y weakly log majorizes x if, for all $k=1, \ldots, n$,

$$
\begin{equation*}
\prod_{i=1}^{k} x_{(i)} \leq \prod_{i=1}^{k} y_{(i)} . \tag{2.1.12}
\end{equation*}
$$

iv) y strongly log majorizes x if y weakly \log majorizes x and

$$
\begin{equation*}
\prod_{i=1}^{n} x_{(i)}=\prod_{i=1}^{n} y_{(i)} \tag{2.1.13}
\end{equation*}
$$

If $\alpha \in \mathbb{F}$ and $x \in \mathbb{F}^{n}$, then $\alpha x \in \mathbb{F}^{n}$ is given by

$$
\alpha x=\left[\begin{array}{c}
\alpha x_{(1)} \tag{2.1.14}\\
\vdots \\
\alpha x_{(n)}
\end{array}\right] .
$$

If $x, y \in \mathbb{F}^{n}$, then x and y are linearly dependent if there exists $\alpha \in \mathbb{F}$ such that either $x=\alpha y$ or $y=\alpha x$. Linear dependence for a set of two or more vectors is defined in Section 2.3. Furthermore, vectors add component by component, that is, if $x, y \in \mathbb{F}^{n}$, then

$$
x+y=\left[\begin{array}{c}
x_{(1)}+y_{(1)} \tag{2.1.15}\\
\vdots \\
x_{(n)}+y_{(n)}
\end{array}\right] .
$$

Thus, if $\alpha, \beta \in \mathbb{F}$, then the linear combination $\alpha x+\beta y$ is given by

$$
\alpha x+\beta y=\left[\begin{array}{c}
\alpha x_{(1)}+\beta y_{(1)} \tag{2.1.16}\\
\vdots \\
\alpha x_{(n)}+\beta y_{(n)}
\end{array}\right]
$$

The vectors $x_{1}, \ldots, x_{m} \in \mathbb{F}^{n}$ placed side by side form the matrix

$$
A \triangleq\left[\begin{array}{lll}
x_{1} & \cdots & x_{m} \tag{2.1.17}
\end{array}\right],
$$

which has n rows and m columns. The components of the vectors x_{1}, \ldots, x_{m} are the entries of A. We write $A \in \mathbb{F}^{n \times m}$ and say that A has size $n \times m$. Since $\mathbb{F}^{n}=\mathbb{F}^{n \times 1}$, it follows that every vector is also a matrix. Note that $\mathbb{F}^{1 \times 1}=\mathbb{F}^{1}=\mathbb{F}$. If $n=m$, then n is the order of A, and A is square. The i th row of A and the j th column of A are denoted by $\operatorname{row}_{i}(A)$ and $\operatorname{col}_{j}(A)$, respectively. Hence,

$$
A=\left[\begin{array}{c}
\operatorname{row}_{1}(A) \tag{2.1.18}\\
\vdots \\
\operatorname{row}_{n}(A)
\end{array}\right]=\left[\begin{array}{lll}
\operatorname{col}_{1}(A) & \cdots & \operatorname{col}_{m}(A)
\end{array}\right] .
$$

The entry $x_{j(i)}$ of A in both the i th row of A and the j th column of A is denoted by $A_{(i, j)}$. Therefore, $x \in \mathbb{F}^{n}$ can be written as

$$
x=\left[\begin{array}{c}
x_{(1)} \tag{2.1.19}\\
\vdots \\
x_{(n)}
\end{array}\right]=\left[\begin{array}{c}
x_{(1,1)} \\
\vdots \\
x_{(n, 1)}
\end{array}\right] .
$$

Let $A \in \mathbb{F}^{n \times m}$. For $b \in \mathbb{F}^{n}$, the matrix obtained from A by replacing $\operatorname{col}_{i}(A)$ with b is denoted by

$$
\begin{equation*}
A \stackrel{i}{\leftarrow} b . \tag{2.1.20}
\end{equation*}
$$

Likewise, for $b \in \mathbb{F}^{1 \times m}$, the matrix obtained from A by replacing $\operatorname{row}_{i}(A)$ with b is denoted by (2.1.20).

Let $A \in \mathbb{R}^{n \times m}$. If every entry of A is nonnegative, then A is nonnegative, which is written as $A \geq \geq 0$. If $A \in \mathbb{R}^{n}$ and every entry of x is positive, then x is positive, which is written as $A \gg 0$. If $A, B \in \mathbb{R}^{n \times m}$, then $A \geq \geq B$ means that $A-B \geq \geq 0$, while $A \gg B$ means that $A-B \gg 0$.

Let $A \in \mathbb{F}^{n \times m}$, and let $l \triangleq \min \{n, m\}$. Then, the entries $A_{(i, i)}$ for all $i=1, \ldots, l$ and $A_{(i, j)}$ for all $i \neq j$ are the diagonal entries and off-diagonal entries of A, respectively. Moreover, for all $i=1, \ldots, l-1$, the entries $A_{(i, i+1)}$ and $A_{(i+1, i)}$ are the superdiagonal entries and subdiagonal entries of A, respectively. In addition, the entries $A_{(i, l+1-i)}$ for all $i=1, \ldots, l$ are the reverse-diagonal entries of A. If the diagonal entries $A_{(1,1)}, \ldots, A_{(l, l)}$ of A are real, then $\mathrm{d}_{\min }(A)$ and $\mathrm{d}_{\max }(A)$ denote the smallest and largest diagonal entries of A, respectively, and the diagonal entries of A are relabeled from largest to smallest as

$$
\begin{equation*}
\mathrm{d}_{\max }(A) \triangleq \mathrm{d}_{1}(A) \geq \cdots \geq \mathrm{d}_{\min }(A) \triangleq \mathrm{d}_{l}(A) \tag{2.1.21}
\end{equation*}
$$

Partitioned matrices are of the form

$$
\left[\begin{array}{ccc}
A_{11} & \cdots & A_{1 l} \tag{2.1.22}\\
\vdots & \ddots & \vdots \\
A_{k 1} & \cdots & A_{k l}
\end{array}\right]
$$

where, for all $i=1, \ldots, k$ and $j=1, \ldots, l$, the block $A_{i j}$ of A is a matrix of size $n_{i} \times m_{j}$. If $n_{i}=m_{j}$ and the diagonal entries of $A_{i j}$ lie on the diagonal of A, then the square matrix $A_{i j}$ is a diagonally located block; otherwise, $A_{i j}$ is an off-diagonally located block.

Matrices of the same size add entry by entry, that is, if $A, B \in \mathbb{F}^{n \times m}$, then, for all $i=1, \ldots, n$ and $j=1, \ldots, m,(A+B)_{(i, j)}=A_{(i, j)}+B_{(i, j)}$. Furthermore, for all $i=1, \ldots, n$ and $j=1, \ldots, m,(\alpha A)_{(i, j)}=\alpha A_{(i, j)}$ for all $\alpha \in \mathbb{F}$ so that $(\alpha A+\beta B)_{(i, j)}=\alpha A_{(i, j)}+\beta B_{(i, j)}$ for all $\alpha, \beta \in \mathbb{F}$. If $A, B \in \mathbb{F}^{n \times m}$, then A and B are linearly dependent if there exists $\alpha \in \mathbb{F}$ such that either $A=\alpha B$ or $B=\alpha A$.

Let $A \in \mathbb{F}^{n \times m}$ and $x \in \mathbb{F}^{m}$. Then, the matrix-vector product $A x$ is defined by

$$
A x \triangleq\left[\begin{array}{c}
\operatorname{row}_{1}(A) x \tag{2.1.23}\\
\vdots \\
\operatorname{row}_{n}(A) x
\end{array}\right] .
$$

It can be seen that $A x$ is a linear combination of the columns of A, that is,

$$
\begin{equation*}
A x=\sum_{i=1}^{m} x_{(i)} \operatorname{col}_{i}(A) . \tag{2.1.24}
\end{equation*}
$$

The matrix A can be associated with the function $f: \mathbb{F}^{m} \mapsto \mathbb{F}^{n}$ defined by $f(x) \triangleq A x$ for all $x \in \mathbb{F}^{m}$. The function $f: \mathbb{F}^{m} \mapsto \mathbb{F}^{n}$ is linear since, for all $\alpha, \beta \in \mathbb{F}$ and $x, y \in \mathbb{F}^{m}$, it follows that

$$
\begin{equation*}
f(\alpha x+\beta y)=\alpha A x+\beta A y . \tag{2.1.25}
\end{equation*}
$$

The function $f: \mathbb{F}^{m} \mapsto \mathbb{F}^{n}$ defined by

$$
\begin{equation*}
f(x) \triangleq A x+z, \tag{2.1.26}
\end{equation*}
$$

where $z \in \mathbb{F}^{n}$, is affine.
Theorem 2.1.2. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$, and define $f: \mathbb{F}^{m} \mapsto \mathbb{F}^{n}$ and $g: \mathbb{F}^{l} \mapsto \mathbb{F}^{m}$ by $f(x) \triangleq A x$ and $g(y) \triangleq B y$. Furthermore, define the composition $h \triangleq f \bullet g: \mathbb{F}^{l} \mapsto \mathbb{F}^{n}$. Then, for all $y \in \mathbb{R}^{l}$,

$$
\begin{equation*}
h(y)=(A B) y, \tag{2.1.27}
\end{equation*}
$$

where, for all $i=1, \ldots, n$ and $j=1, \ldots, l, A B \in \mathbb{F}^{n \times l}$ is defined by

$$
\begin{equation*}
(A B)_{(i, j)} \triangleq \sum_{k=1}^{m} A_{(i, k)} B_{(k, j)} . \tag{2.1.28}
\end{equation*}
$$

Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$. Then, $A B \in \mathbb{F}^{n \times l}$ is the product of A and B. The matrices A and B are conformable, and the product (2.1.28) defines matrix multiplication.

Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$. Then, $A B$ can be written as

$$
A B=\left[\begin{array}{lll}
A \operatorname{col}_{1}(B) & \cdots & A \operatorname{col}_{l}(B)
\end{array}\right]=\left[\begin{array}{c}
\operatorname{row}_{1}(A) B \tag{2.1.29}\\
\vdots \\
\operatorname{row}_{n}(A) B
\end{array}\right] .
$$

Thus, for all $i=1, \ldots, n$ and $j=1, \ldots, l$,

$$
\begin{gather*}
(A B)_{(i, j)}=\operatorname{row}_{i}(A) \operatorname{col}_{j}(B), \tag{2.1.30}\\
\operatorname{col}_{j}(A B)=A \operatorname{col}_{j}(B), \tag{2.1.31}\\
\operatorname{row}_{i}(A B)=\operatorname{row}_{i}(A) B . \tag{2.1.32}
\end{gather*}
$$

As a special case, note that if $x \in \mathbb{F}^{1 \times n}$ and $y \in \mathbb{F}^{n}=\mathbb{F}^{n \times 1}$, then the scalar $x y \in \mathbb{F}$ is given by

$$
\begin{equation*}
x y=\sum_{i=1}^{n} x_{(1, i)} y_{(i)} . \tag{2.1.33}
\end{equation*}
$$

For conformable matrices A, B, C, the associative and distributive identities

$$
\begin{align*}
(A B) C & =A(B C) \tag{2.1.34}\\
A(B+C) & =A B+A C \tag{2.1.35}\\
(A+B) C & =A C+B C \tag{2.1.36}
\end{align*}
$$

are valid. Hence, we write $A B C$ for $(A B) C$ and $A(B C)$.
Let $A, B \in \mathbb{F}^{n \times n}$. Then, the commutator $[A, B] \in \mathbb{F}^{n \times n}$ of A and B is the matrix

$$
\begin{equation*}
[A, B] \triangleq A B-B A \tag{2.1.37}
\end{equation*}
$$

The adjoint operator $\operatorname{ad}_{A}: \mathbb{F}^{n \times n} \mapsto \mathbb{F}^{n \times n}$ is defined by

$$
\begin{equation*}
\operatorname{ad}_{A}(X) \triangleq[A, X] \tag{2.1.38}
\end{equation*}
$$

Let $x, y \in \mathbb{R}^{3}$. Then, the cross product $x \times y \in \mathbb{R}^{3}$ of x and y is defined by

$$
x \times y \triangleq\left[\begin{array}{l}
x_{(2)} y_{(3)}-x_{(3)} y_{(2)} \tag{2.1.39}\\
x_{(3)} y_{(1)}-x_{(1)} y_{(3)} \\
x_{(1)} y_{(2)}-x_{(2)} y_{(1)}
\end{array}\right]
$$

Multiplication of partitioned matrices is analogous to matrix multiplication with scalar entries. For example, for matrices with conformable blocks,

$$
\begin{gather*}
{\left[\begin{array}{ll}
A & B
\end{array}\right]\left[\begin{array}{l}
C \\
D
\end{array}\right]=A C+B D} \tag{2.1.40}\\
{\left[\begin{array}{l}
A \\
B
\end{array}\right]\left[\begin{array}{c}
C=\left[\begin{array}{c}
A C \\
B C
\end{array}\right] \\
{\left[\begin{array}{l}
A \\
B
\end{array}\right]\left[\begin{array}{ll}
C & D
\end{array}\right]=\left[\begin{array}{cc}
A C & A D \\
B C & B D
\end{array}\right]} \\
{\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{ll}
E & F \\
G & H
\end{array}\right]=\left[\begin{array}{cc}
A E+B G & A F+B H \\
C E+D G & C F+D H
\end{array}\right]}
\end{array} . . \begin{array}{c}
B F
\end{array}\right]} \tag{2.1.41}
\end{gather*}
$$

The $n \times m$ zero matrix, all of whose entries are zero, is written as $0_{n \times m}$. If the dimensions are unambiguous, then we write just 0 . Let $x \in \mathbb{F}^{m}$ and $A \in \mathbb{F}^{n \times m}$. Then, the zero matrix satisfies

$$
\begin{gather*}
0_{k \times m} x=0_{k}, \tag{2.1.44}\\
A 0_{m \times l}=0_{n \times l}, \tag{2.1.45}\\
0_{k \times n} A=0_{k \times m} . \tag{2.1.46}
\end{gather*}
$$

Another special matrix is the empty matrix. For $n \in \mathbb{N}$, the $0 \times n$ empty matrix, which is written as $0_{0 \times n}$, has zero rows and n columns, while the $n \times 0$ empty matrix, which is written as $0_{n \times 0}$, has n rows and zero columns. For $A \in \mathbb{F}^{n \times m}$, where $n, m \in \mathbb{N}$, the empty matrix satisfies the multiplication rules

$$
\begin{equation*}
0_{0 \times n} A=0_{0 \times m} \tag{2.1.47}
\end{equation*}
$$

and

$$
\begin{equation*}
A 0_{m \times 0}=0_{n \times 0} . \tag{2.1.48}
\end{equation*}
$$

Although empty matrices have no entries, it is useful to define the product

$$
\begin{equation*}
0_{n \times 0} 0_{0 \times m} \triangleq 0_{n \times m} . \tag{2.1.49}
\end{equation*}
$$

Also, we define

$$
\begin{equation*}
I_{0} \triangleq \hat{I}_{0} \triangleq 0_{0 \times 0} . \tag{2.1.50}
\end{equation*}
$$

For $n, m \in \mathbb{N}$, we define $\mathbb{F}^{0 \times m} \triangleq\left\{0_{0 \times m}\right\}, \mathbb{F}^{n \times 0} \triangleq\left\{0_{n \times 0}\right\}$, and $\mathbb{F}^{0} \triangleq \mathbb{F}^{0 \times 1}$. The empty matrix can be viewed as a useful device for matrices just as 0 is for real numbers and \varnothing is for sets.

The $n \times n$ identity matrix, which has ones on the diagonal and zeros elsewhere, is denoted by I_{n} or just I. Let $x \in \mathbb{F}^{n}$ and $A \in \mathbb{F}^{n \times m}$. Then, the identity matrix satisfies

$$
\begin{equation*}
I_{n} x=x \tag{2.1.51}
\end{equation*}
$$

and

$$
\begin{equation*}
A I_{m}=I_{n} A=A . \tag{2.1.52}
\end{equation*}
$$

Let $A \in \mathbb{F}^{n \times n}$. Then, $A^{2} \triangleq A A$ and, for all $k \in \mathbb{P}, A^{k} \triangleq A A^{k-1}$. We use the convention $A^{0} \triangleq I$ even if A is the zero matrix. If $k \in \mathbb{N}$, then

$$
\begin{equation*}
A^{k \mathrm{~T}} \triangleq\left(A^{k}\right)^{\mathrm{T}}=\left(A^{\mathrm{T}}\right)^{k} \tag{2.1.53}
\end{equation*}
$$

and

$$
\begin{equation*}
A^{k *} \triangleq\left(A^{k}\right)^{*}=\left(A^{*}\right)^{k} . \tag{2.1.54}
\end{equation*}
$$

The vector $e_{i, n} \in \mathbb{R}^{n}$, or just e_{i}, has 1 as its i th component and zeros elsewhere. Thus,

$$
\begin{equation*}
e_{i, n}=\operatorname{col}_{i}\left(I_{n}\right) . \tag{2.1.55}
\end{equation*}
$$

Let $A \in \mathbb{F}^{n \times m}$. Then, $e_{i}^{\mathrm{T}} A=\operatorname{row}_{i}(A)$ and $A e_{i}=\operatorname{col}_{i}(A)$. Furthermore, the (i, j) entry of A can be written as

$$
\begin{equation*}
A_{(i, j)}=e_{i}^{\mathrm{T}} A e_{j}=e_{j}^{\mathrm{T}} A^{\mathrm{T}} e_{i} . \tag{2.1.56}
\end{equation*}
$$

The $n \times m$ matrix $E_{i, j, n \times m} \in \mathbb{R}^{n \times m}$, or just $E_{i, j}$, has 1 as its (i, j)
entry and zeros elsewhere. Thus,

$$
\begin{equation*}
E_{i, j, n \times m}=e_{i, n} e_{j, m}^{\mathrm{T}} \tag{2.1.57}
\end{equation*}
$$

Note that $E_{i, 1, n \times 1}=e_{i, n}$ and

$$
\begin{equation*}
I_{n}=E_{1,1}+\cdots+E_{n, n}=\sum_{i=1}^{n} e_{i} e_{i}^{\mathrm{T}} \tag{2.1.58}
\end{equation*}
$$

Finally, the $n \times m$ ones matrix, all of whose entries are 1 , is written as $1_{n \times m}$ or just 1. Thus,

$$
\begin{equation*}
1_{n \times m}=\sum_{i, j=1}^{n, m} E_{i, j, n \times m} \tag{2.1.59}
\end{equation*}
$$

Note that

$$
1_{n \times 1}=\sum_{i=1}^{n} e_{i, n}=\left[\begin{array}{c}
1 \tag{2.1.60}\\
\vdots \\
1
\end{array}\right]
$$

and

$$
\begin{equation*}
1_{n \times m}=1_{n \times 1} 1_{1 \times m} . \tag{2.1.61}
\end{equation*}
$$

The $n \times n$ reverse identity matrix, which has ones on the reverse diagonal and zeros elsewhere, is denoted by \hat{I}_{n} or just \hat{I}. Left multiplication of $A \in \mathbb{F}^{n \times m}$ by \hat{I}_{n} reverses the rows of A, while right multiplication of A by \hat{I}_{m} reverses the columns of A.

2.2 Transpose and Inner Product

A fundamental vector and matrix operation is the transpose. If $x \in \mathbb{F}^{n}$, then the transpose x^{T} of x is defined to be the row vector

$$
x^{T} \triangleq\left[\begin{array}{lll}
x_{(1)} & \cdots & x_{(n)} \tag{2.2.1}
\end{array}\right] \in \mathbb{F}^{1 \times n}
$$

Similarly, if $x=\left[\begin{array}{lll}x_{(1,1)} & \cdots & x_{(1, n)}\end{array}\right] \in \mathbb{F}^{1 \times n}$, then

$$
x^{\mathrm{T}}=\left[\begin{array}{c}
x_{(1,1)} \tag{2.2.2}\\
\vdots \\
x_{(1, n)}
\end{array}\right] \in \mathbb{F}^{n \times 1}
$$

Let $x, y \in \mathbb{F}^{n}$. Then, $x^{\mathrm{T}} y \in \mathbb{F}$ is a scalar, and

$$
\begin{equation*}
x^{\mathrm{T}} y=\left(x^{\mathrm{T}} y\right)^{\mathrm{T}}=y^{\mathrm{T}} x=\sum_{i=1}^{n} x_{(i)} y_{(i)} \tag{2.2.3}
\end{equation*}
$$

Note that

$$
\begin{equation*}
x^{\mathrm{T}} x=\sum_{i=1}^{n} x_{(i)}^{2} \tag{2.2.4}
\end{equation*}
$$

Lemma 2.2.1. Let $x \in \mathbb{R}$. Then, $x^{\mathrm{T}} x=0$ if and only if $x=0$.
Let $x, y \in \mathbb{R}^{n}$. Then, $x^{\mathrm{T}} y \in \mathbb{R}$ is the inner product of x and y. Furthermore, x is orthogonal to y if $x^{\mathrm{T}} y=0$.

Let $x \in \mathbb{C}^{n}$. Then, $x=y+\jmath z$, where $y, z \in \mathbb{R}^{n}$. Therefore, the transpose x^{T} of x is given by

$$
\begin{equation*}
x^{\mathrm{T}}=y^{\mathrm{T}}+\jmath z^{\mathrm{T}} . \tag{2.2.5}
\end{equation*}
$$

The complex conjugate \bar{x} of x is defined by

$$
\begin{equation*}
\bar{x} \triangleq y-\jmath z, \tag{2.2.6}
\end{equation*}
$$

while the complex conjugate transpose x^{*} of x is defined by

$$
\begin{equation*}
x^{*} \triangleq \bar{x}^{\mathrm{T}}=y^{\mathrm{T}}-\jmath z^{\mathrm{T}} . \tag{2.2.7}
\end{equation*}
$$

The vectors y and z are the real and imaginary parts $\operatorname{Re} x$ and $\operatorname{Im} x$ of x, respectively, which are denoted by

$$
\begin{equation*}
\operatorname{Re} x \triangleq \frac{1}{2}(x+\bar{x})=y \tag{2.2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Im} x \triangleq \frac{1}{2 \jmath}(x-\bar{x})=z \tag{2.2.9}
\end{equation*}
$$

Note that

$$
\begin{equation*}
x^{*} x=\sum_{i=1}^{n} \bar{x}_{(i)} x_{(i)}=\sum_{i=1}^{n}\left|x_{(i)}\right|^{2}=\sum_{i=1}^{n}\left[y_{(i)}^{2}+z_{(i)}^{2}\right] . \tag{2.2.10}
\end{equation*}
$$

If $w, x \in \mathbb{C}^{n}$, then $w^{\mathrm{T}} x=x^{\mathrm{T}} w$.
Lemma 2.2.2. Let $x \in \mathbb{C}^{n}$. Then, $x^{*} x=0$ if and only if $x=0$.
Let $x, y \in \mathbb{C}^{n}$. Then, $x^{*} y \in \mathbb{C}$ is the inner product of x and y, which is given by

$$
\begin{equation*}
x^{*} y=\sum_{i=1}^{n} \bar{x}_{(i)} y_{(i)} . \tag{2.2.11}
\end{equation*}
$$

Furthermore, x is orthogonal to y if $x^{*} y=0$.

Let $A \in \mathbb{F}^{n \times m}$. Then, the transpose $A^{\mathrm{T}} \in \mathbb{F}^{m \times n}$ of A is defined by

$$
A^{\mathrm{T}} \triangleq\left[\begin{array}{lll}
{\left[\operatorname{row}_{1}(A)\right]^{\mathrm{T}}} & \ldots & {\left[\operatorname{row}_{n}(A)\right]^{\mathrm{T}}}
\end{array}\right]=\left[\begin{array}{c}
{\left[\operatorname{col}_{1}(A)\right]^{\mathrm{T}}} \tag{2.2.12}\\
\vdots \\
{\left[\operatorname{col}_{m}(A)\right]^{\mathrm{T}}}
\end{array}\right]
$$

that is, $\operatorname{col}_{i}\left(A^{\mathrm{T}}\right)=\left[\operatorname{row}_{i}(A)\right]^{\mathrm{T}}$ for all $i=1, \ldots, n$ and $\operatorname{row}_{i}\left(A^{\mathrm{T}}\right)=\left[\operatorname{col}_{i}(A)\right]^{\mathrm{T}}$ for all $i=1, \ldots, m$. Hence, $\left(A^{\mathrm{T}}\right)_{(i, j)}=A_{(j, i)}$ and $\left(A^{\mathrm{T}}\right)^{\mathrm{T}}=A$. If $B \in \mathbb{F}^{m \times l}$, then

$$
\begin{equation*}
(A B)^{\mathrm{T}}=B^{\mathrm{T}} A^{\mathrm{T}} \tag{2.2.13}
\end{equation*}
$$

In particular, if $x \in \mathbb{F}^{m}$, then

$$
\begin{equation*}
(A x)^{\mathrm{T}}=x^{\mathrm{T}} A^{\mathrm{T}} \tag{2.2.14}
\end{equation*}
$$

while if, in addition, $y \in \mathbb{F}^{n}$, then $y^{\mathrm{T}} A x$ is a scalar and

$$
\begin{equation*}
y^{\mathrm{T}} A x=\left(y^{\mathrm{T}} A x\right)^{\mathrm{T}}=x^{\mathrm{T}} A^{\mathrm{T}} y . \tag{2.2.15}
\end{equation*}
$$

If $B \in \mathbb{F}^{n \times m}$, then, for all $\alpha, \beta \in \mathbb{F}$,

$$
\begin{equation*}
(\alpha A+\beta B)^{\mathrm{T}}=\alpha A^{\mathrm{T}}+\beta B^{\mathrm{T}} \tag{2.2.16}
\end{equation*}
$$

Let $x \in \mathbb{F}^{n}$ and $y \in \mathbb{F}^{n}$. Then, the matrix $x y^{T} \in \mathbb{F}^{n \times m}$ is the outer product of x and y. The outer product $x y^{\mathrm{T}}$ is nonzero if and only if both x and y are nonzero.

The trace of a square matrix $A \in \mathbb{F}^{n \times n}$, denoted by $\operatorname{tr} A$, is defined to be the sum of its diagonal entries, that is,

$$
\begin{equation*}
\operatorname{tr} A \triangleq \sum_{i=1}^{n} A_{(i, i)} \tag{2.2.17}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\operatorname{tr} A=\operatorname{tr} A^{\mathrm{T}} \tag{2.2.18}
\end{equation*}
$$

Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times n}$. Then, $A B$ and $B A$ are square,

$$
\begin{equation*}
\operatorname{tr} A B=\operatorname{tr} B A=\operatorname{tr} A^{\mathrm{T}} B^{\mathrm{T}}=\operatorname{tr} B^{\mathrm{T}} A^{\mathrm{T}}=\sum_{i, j=1}^{n, m} A_{(i, j)} B_{(j, i)} \tag{2.2.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{tr} A A^{\mathrm{T}}=\operatorname{tr} A^{\mathrm{T}} A=\sum_{i, j=1}^{n, m} A_{(i, j)}^{2} \tag{2.2.20}
\end{equation*}
$$

Furthermore, if $n=m$, then, for all $\alpha, \beta \in \mathbb{F}$,

$$
\begin{equation*}
\operatorname{tr}(\alpha A+\beta B)=\alpha \operatorname{tr} A+\beta \operatorname{tr} B \tag{2.2.21}
\end{equation*}
$$

Lemma 2.2.3. Let $A \in \mathbb{R}^{n \times m}$. Then, $\operatorname{tr} A^{\mathrm{T}} A=0$ if and only if $A=0$.
Let $A, B \in \mathbb{R}^{n \times m}$. Then, the inner product of A and B is $\operatorname{tr} A^{\mathrm{T}} B$. Furthermore, A is orthogonal to B if $\operatorname{tr} A^{\mathrm{T}} B=0$.

Let $C \in \mathbb{C}^{n \times m}$. Then, $C=A+\jmath B$, where $A, B \in \mathbb{R}^{n \times m}$. Therefore, the transpose C^{T} of C is given by

$$
\begin{equation*}
C^{\mathrm{T}}=A^{\mathrm{T}}+\jmath B^{\mathrm{T}} . \tag{2.2.22}
\end{equation*}
$$

The complex conjugate \bar{C} of C is

$$
\begin{equation*}
\bar{C} \triangleq A-\jmath B \tag{2.2.23}
\end{equation*}
$$

while the complex conjugate transpose C^{*} of C is

$$
\begin{equation*}
C^{*} \triangleq \bar{C}^{\mathrm{T}}=A^{\mathrm{T}}-\jmath B^{\mathrm{T}} \tag{2.2.24}
\end{equation*}
$$

Note that $\bar{C}=C$ if and only if $B=0$, and that

$$
\begin{equation*}
\left(C^{\mathrm{T}}\right)^{\mathrm{T}}=\overline{\bar{C}}=\left(C^{*}\right)^{*}=C \tag{2.2.25}
\end{equation*}
$$

The matrices A and B are the real and imaginary parts $\operatorname{Re} C$ and $\operatorname{Im} C$ of C, respectively, which are denoted by

$$
\begin{equation*}
\operatorname{Re} C \triangleq \frac{1}{2}(C+\bar{C})=A \tag{2.2.26}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Im} C \triangleq \frac{1}{2 \jmath}(C-\bar{C})=B \tag{2.2.27}
\end{equation*}
$$

If C is square, then

$$
\begin{equation*}
\operatorname{tr} C=\operatorname{tr} A+\jmath \operatorname{tr} B \tag{2.2.28}
\end{equation*}
$$

If $\mathcal{S} \subseteq \mathbb{C}^{n \times m}$, then

$$
\begin{equation*}
\overline{\mathcal{S}} \triangleq\{\bar{A}: \quad A \in \mathcal{S}\} \tag{2.2.29}
\end{equation*}
$$

If \mathcal{S} is a multiset with elements in $\mathbb{C}^{n \times m}$, then

$$
\begin{equation*}
\overline{\mathcal{S}}=\{\bar{A}: \quad A \in \mathcal{S}\}_{\mathrm{m}} . \tag{2.2.30}
\end{equation*}
$$

Lemma 2.2.4. Let $A \in \mathbb{C}^{n \times m}$. Then, $\operatorname{tr} A^{*} A=0$ if and only if $A=0$.
Let $A, B \in \mathbb{C}^{n \times m}$. Then, the inner product of A and B is $\operatorname{tr} A^{*} B$. Furthermore, A is orthogonal to B if $\operatorname{tr} A^{*} B=0$.

If $A, B \in \mathbb{C}^{n \times m}$, then, for all $\alpha, \beta \in \mathbb{C}$,

$$
\begin{equation*}
(\alpha A+\beta B)^{*}=\bar{\alpha} A^{*}+\bar{\beta} B^{*} \tag{2.2.31}
\end{equation*}
$$

while, if $A \in \mathbb{C}^{n \times m}$ and $B \in \mathbb{C}^{m \times l}$, then

$$
\begin{equation*}
\overline{A B}=\bar{A} \bar{B} \tag{2.2.32}
\end{equation*}
$$

and

$$
\begin{equation*}
(A B)^{*}=B^{*} A^{*} \tag{2.2.33}
\end{equation*}
$$

In particular, if $A \in \mathbb{C}^{n \times m}$ and $x \in \mathbb{C}^{m}$, then

$$
\begin{equation*}
(A x)^{*}=x^{*} A^{*} \tag{2.2.34}
\end{equation*}
$$

while if, in addition, $y \in \mathbb{C}^{n}$, then

$$
\begin{equation*}
y^{*} A x=\left(y^{*} A x\right)^{\mathrm{T}}=x^{\mathrm{T}} A^{\mathrm{T}} \bar{y} \tag{2.2.35}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(y^{*} A x\right)^{*}=\left(\overline{y^{*} A x}\right)^{\mathrm{T}}=\left(y^{\mathrm{T}} \bar{A} \bar{x}\right)^{\mathrm{T}}=x^{*} A^{*} y . \tag{2.2.36}
\end{equation*}
$$

For $A \in \mathbb{F}^{n \times m}$ define the reverse transpose of A by

$$
\begin{equation*}
A^{\hat{\mathrm{T}}} \triangleq \hat{I}_{m} A^{\mathrm{T}} \hat{I}_{n} \tag{2.2.37}
\end{equation*}
$$

and the reverse complex conjugate transpose of A by

$$
\begin{equation*}
A^{\hat{*}} \triangleq \hat{I}_{m} A^{*} \hat{I}_{n} \tag{2.2.38}
\end{equation*}
$$

For example,

$$
\left[\begin{array}{lll}
1 & 2 & 3 \tag{2.2.39}\\
4 & 5 & 6
\end{array}\right]^{\hat{\mathrm{T}}}=\left[\begin{array}{ll}
6 & 3 \\
5 & 2 \\
4 & 1
\end{array}\right]
$$

In general,

$$
\begin{equation*}
\left(A^{*}\right)^{\hat{*}}=\left(A^{\hat{*}}\right)^{*}=\left(A^{\mathrm{T}}\right)^{\hat{\mathrm{T}}}=\left(A^{\hat{\mathrm{T}}}\right)^{\mathrm{T}}=\hat{I}_{n} A \hat{I}_{m} \tag{2.2.40}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(A^{\hat{*}}\right)^{\hat{*}}=\left(A^{\hat{\mathrm{T}}}\right)^{\hat{\mathrm{T}}}=A . \tag{2.2.41}
\end{equation*}
$$

Note that if $B \in \mathbb{F}^{m \times l}$, then

$$
\begin{equation*}
(A B)^{\hat{*}}=B^{\hat{*}} A^{\hat{*}} \tag{2.2.42}
\end{equation*}
$$

and

$$
\begin{equation*}
(A B)^{\hat{\mathrm{T}}}=B^{\hat{\mathrm{T}}} A^{\hat{\mathrm{T}}} \tag{2.2.43}
\end{equation*}
$$

2.3 Convex Sets, Cones, and Subspaces

Let $\mathcal{S} \subseteq \mathbb{F}^{n}$. If $\alpha \in \mathbb{F}$, then $\alpha \mathcal{S} \triangleq\{\alpha x: x \in \mathcal{S}\}$ and, if $y \in \mathbb{F}^{n}$, then $y+\mathcal{S}=\{y+x: \quad x \in \mathcal{S}\}$. We write $-\mathcal{S}$ for $(-1) \mathcal{S}$. The set \mathcal{S} is symmetric if $\mathcal{S}=-\mathcal{S}$, that is, $x \in \mathcal{S}$ if and only if $-x \in \mathcal{S}$. For $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{F}^{n}$ define $\mathcal{S}_{1}+\mathcal{S}_{2} \triangleq\left\{x+y: x \in \mathcal{S}_{1}\right.$ and $\left.y \in \mathcal{S}_{2}\right\}$.

If $x, y \in \mathbb{F}^{n}$ and $\alpha \in[0,1]$, then $\alpha x+(1-\alpha) y$ is a convex combination of x and y with barycentric coordinates α and $1-\alpha . \mathcal{S} \subseteq \mathbb{F}^{n}$ is convex if, for
all $x, y \in \mathcal{S}$, every convex combination of x and y is an element of \mathcal{S}.
Let $\mathcal{S} \subseteq \mathbb{F}^{n}$. Then, \mathcal{S} is a cone if, for all $x \in \mathcal{S}$ and all $\alpha>0$, the vector αx is an element of \mathcal{S}. Now, assume that \mathcal{S} is a cone. Then, \mathcal{S} is pointed if $0 \in \mathcal{S}$, while \mathcal{S} is one-sided if $x,-x \in \mathcal{S}$ implies that $x=0$. Hence, \mathcal{S} is one-sided if and only if $\mathcal{S} \cap-\mathcal{S} \subseteq\{0\}$. Finally, \mathcal{S} is a convex cone if it is convex.

Let $\mathcal{S} \subseteq \mathbb{F}^{n}$ be nonempty. Then, \mathcal{S} is a subspace if, for all $x, y \in \mathcal{S}$ and $\alpha, \beta \in \mathbb{F}$, the vector $\alpha x+\beta y$ is an element of \mathcal{S}. Note that if $\left\{x_{1}, \ldots, x_{r}\right\} \subset \mathbb{F}^{n}$, then the set $\left\{\sum_{i=1}^{r} \alpha_{i} x_{i}: \alpha_{1}, \ldots, \alpha_{r} \in \mathbb{F}\right\}$ is a subspace. In addition, \mathcal{S} is an affine subspace if there exists $z \in \mathbb{F}^{n}$ such that $\mathcal{S}+z$ is a subspace. Affine subspaces $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{F}^{n}$ are parallel if there exists $z \in \mathbb{F}^{n}$ such that $\mathcal{S}_{1}+z=\mathcal{S}_{2}$. If \mathcal{S} is an affine subspace, then there exists a unique subspace parallel to \mathcal{S}. Trivially, the empty set is a convex cone, although it is neither a subspace nor an affine subspace. All of these definitions also apply to subsets of $\mathbb{F}^{n \times m}$.

Let $\mathcal{S} \subseteq \mathbb{F}^{n}$. The convex hull of \mathcal{S}, denoted by $\operatorname{co} \mathcal{S}$, is the smallest convex set containing \mathcal{S}. Hence, co \mathcal{S} is the intersection of all convex subsets of \mathbb{F}^{n} that contain \mathcal{S}. The conical hull of \mathcal{S}, denoted by cone \mathcal{S}, is the smallest cone in \mathbb{F}^{n} containing \mathcal{S}, while the convex conical hull of \mathcal{S}, denoted by coco \mathcal{S}, is the smallest convex cone in \mathbb{F}^{n} containing \mathcal{S}. If \mathcal{S} has a finite number of elements, then co δ is a polytope and coco is a polyhedral convex cone. The span of \mathcal{S}, denoted by span \mathcal{S}, is the smallest subspace in \mathbb{F}^{n} containing \mathcal{S}, while, if \mathcal{S} is nonempty, then the affine hull of \mathcal{S}, denoted by aff \mathcal{S}, is the smallest affine subspace in \mathbb{F}^{n} containing \mathcal{S}. Note that \mathcal{S} is convex if and only if $\mathcal{S}=\operatorname{co} \mathcal{S}$, while similar statements hold for cone $\mathcal{S}, \operatorname{coco} \mathcal{S}, \operatorname{span} \mathcal{S}$, and aff \mathcal{S}. Trivially, co $\varnothing=\operatorname{cone} \varnothing=\operatorname{coco} \varnothing=\varnothing$, whereas, viewing $\varnothing \subset \mathbb{F}^{n}$, it follows that $\operatorname{span} \varnothing=\left\{0_{n \times 1}\right\}$. We define aff $\varnothing \triangleq\left\{0_{n \times 1}\right\}$. All of these definitions also apply to subsets of $\mathbb{F}^{n \times m}$.

Let $x_{1}, \ldots, x_{r} \in \mathbb{F}^{n}$. Then, x_{1}, \ldots, x_{r} are linearly independent if $\alpha_{1}, \ldots, \alpha_{r} \in \mathbb{F}$ and

$$
\sum_{i=1}^{r} \alpha_{i} x_{i}=0
$$

imply that $\alpha_{1}=\alpha_{2}=\cdots=\alpha_{r}=0$. Clearly, x_{1}, \ldots, x_{r} is linearly independent if and only if $\overline{x_{1}}, \ldots, \overline{x_{r}}$ are linearly independent. If x_{1}, \ldots, x_{r} are not linearly independent, then x_{1}, \ldots, x_{r} are linearly dependent. Note that $\left\{0_{n \times 1}\right\}$ is linearly dependent.

Let $\mathcal{S} \subseteq \mathbb{F}^{n}$. If \mathcal{S} is a subspace not equal to $\left\{0_{n \times 1}\right\}$, then there exist $x_{1}, \ldots, x_{r} \in \mathbb{F}^{n}$ such that x_{1}, \ldots, x_{r} are linearly independent over \mathbb{F} and such that span $\left\{x_{1}, \ldots, x_{r}\right\}=\mathcal{S}$. The set of vectors $\left\{x_{1}, \ldots, x_{r}\right\}$ is a basis for \mathcal{S}. The positive integer r, which is the dimension of the subspace \mathcal{S}, is uniquely
defined. The dimension of $\mathcal{S}=\left\{0_{n \times 1}\right\}$ is defined to be zero since span $\varnothing=$ $\left\{0_{n \times 1}\right\}$. The dimension of an arbitrary set $\mathcal{S} \subseteq \mathbb{F}^{n}$, denoted by $\operatorname{dim} \mathcal{S}$, is the dimension of the subspace parallel to aff \mathcal{S}. We define $\operatorname{dim} \varnothing \triangleq-\infty$.

The following result is the dimension theorem.
Theorem 2.3.1. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{F}^{n}$ be subspaces. Then,

$$
\begin{equation*}
\operatorname{dim}\left(\mathcal{S}_{1}+\mathcal{S}_{2}\right)+\operatorname{dim}\left(\mathcal{S}_{1} \cap \mathcal{S}_{2}\right)=\operatorname{dim} \mathcal{S}_{1}+\operatorname{dim} \mathcal{S}_{2} \tag{2.3.2}
\end{equation*}
$$

Proof. See [262, p. 227].
Let $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{F}^{n}$ be subspaces. Then, \mathcal{S}_{1} and \mathcal{S}_{2} are complementary if $\mathcal{S}_{1} \cap \mathcal{S}_{2}=\{0\}$ and $\mathcal{S}_{1}+\mathcal{S}_{2}=\mathbb{F}^{n}$. In this case, we say that \mathcal{S}_{1} is complementary to \mathcal{S}_{2}, or vice versa.

Corollary 2.3.2. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{F}^{n}$ be subspaces. Then, $\mathcal{S}_{1}, \mathcal{S}_{2}$ are complementary if and only if $\mathcal{S}_{1} \cap \mathcal{S}_{2}=\{0\}$ and

$$
\begin{equation*}
\operatorname{dim} S_{1}+\operatorname{dim} S_{2}=n \tag{2.3.3}
\end{equation*}
$$

Let $\mathcal{S} \subseteq \mathbb{F}^{n}$ be nonempty. Then, the orthogonal complement \mathcal{S}^{\perp} of \mathcal{S} is defined by

$$
\begin{equation*}
\mathcal{S}^{\perp} \triangleq\left\{x \in \mathbb{F}^{n}: x^{*} y=0 \text { for all } y \in \mathcal{S}\right\} \tag{2.3.4}
\end{equation*}
$$

The orthogonal complement \mathcal{S}^{\perp} of \mathcal{S} is a subspace even if \mathcal{S} is not.
Let $y \in \mathbb{F}^{n}$ be nonzero. Then, the subspace $\{y\}^{\perp}$, whose dimension is $n-1$, is a hyperplane. Furthermore, \mathcal{S} is an affine hyperplane if there exists $z \in \mathbb{F}^{n}$ such that $\mathcal{S}+z$ is a hyperplane. The set $\left\{x \in \mathbb{F}^{n}: \operatorname{Re} x^{*} y \leq 0\right\}$ is a closed half space, while the set $\left\{x \in \mathbb{F}^{n}: \operatorname{Re} x^{*} y<0\right\}$ is an open half space. Finally, \mathcal{S} is an affine (closed, open) half space if there exists $z \in \mathbb{F}^{n}$ such that $\mathcal{S}+z$ is a (closed, open) half space.

Let $\mathcal{S} \subseteq \mathbb{F}^{n}$. Then,

$$
\begin{equation*}
\text { dcone } \mathcal{S} \triangleq\left\{x \in \mathbb{F}^{n}: \quad \operatorname{Re} x^{*} y \leq 0 \text { for all } y \in \mathcal{S}\right\} \tag{2.3.5}
\end{equation*}
$$

is the dual cone of \mathcal{S}. Note that dcone \mathcal{S} is a pointed convex cone and that dcone $\mathcal{S}=$ dcone cone $\mathcal{S}=$ dcone coco \mathcal{S}.

Let $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{F}^{n}$ be subspaces. Then, \mathcal{S}_{1} and \mathcal{S}_{2} are orthogonally complementary if \mathcal{S}_{1} and \mathcal{S}_{2} are complementary and $x^{*} y=0$ for all $x \in \mathcal{S}_{1}$ and $y \in \mathcal{S}_{2}$.

Proposition 2.3.3. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{F}^{n}$ be subspaces. Then, \mathcal{S}_{1} and \mathcal{S}_{2} are orthogonally complementary if and only if $\mathcal{S}_{1}=\mathcal{S}_{2}^{\perp}$.

For the next result, note that " \subset " indicates proper inclusion.
Lemma 2.3.4. Let $\mathcal{S}_{1}, S_{2} \subseteq \mathbb{F}^{n}$ be subspaces such that $\mathcal{S}_{1} \subseteq \delta_{2}$. Then, $\delta_{1} \subset \delta_{2}$ if and only if $\operatorname{dim} S_{1}<\operatorname{dim} \delta_{2}$. Equivalently, $S_{1}=S_{2}$ if and only if $\operatorname{dim} \mathcal{S}_{1}=\operatorname{dim} \mathcal{S}_{2}$.

The following result provides constructive characterizations of co S, cone $\mathcal{S}, \operatorname{coco} \mathcal{S}, \operatorname{span} \mathcal{S}$, and aff \mathcal{S}.

Theorem 2.3.5. Let $\mathcal{S} \subseteq \mathbb{R}^{n}$ be nonempty. Then,

$$
\begin{align*}
\operatorname{co} \mathcal{S} & =\bigcup_{k \in \mathbb{P}}\left\{\sum_{i=1}^{k} \alpha_{i} x_{i}: \alpha_{i} \geq 0, x_{i} \in \mathcal{S}, \text { and } \sum_{i=1}^{k} \alpha_{i}=1\right\} \tag{2.3.6}\\
& =\left\{\sum_{i=1}^{n+1} \alpha_{i} x_{i}: \alpha_{i} \geq 0, x_{i} \in \mathcal{S}, \text { and } \sum_{i=1}^{n+1} \alpha_{i}=1\right\} \tag{2.3.7}
\end{align*}
$$

cone $\mathcal{S}=\{\alpha x: x \in \mathcal{S}$ and $\alpha>0\}$,

$$
\begin{align*}
\operatorname{coco} \mathcal{S} & =\bigcup_{k \in \mathbb{P}}\left\{\sum_{i=1}^{k} \alpha_{i} x_{i}: \quad \alpha_{i} \geq 0, x_{i} \in \mathcal{S}, \text { and } \sum_{i=1}^{k} \alpha_{i}>0\right\} \tag{2.3.9}\\
& =\left\{\sum_{i=1}^{n} \alpha_{i} x_{i}: \alpha_{i} \geq 0, x_{i} \in \mathcal{S}, \text { and } \sum_{i=1}^{n} \alpha_{i}>0\right\}
\end{align*}
$$

$$
\begin{equation*}
\operatorname{span} \mathcal{S}=\bigcup_{k \in \mathbb{P}}\left\{\sum_{i=1}^{k} \alpha_{i} x_{i}: \quad \alpha_{i} \in \mathbb{R} \text { and } x_{i} \in \mathcal{S}\right\} \tag{2.3.11}
\end{equation*}
$$

$$
\begin{equation*}
=\left\{\sum_{i=1}^{n} \alpha_{i} x_{i}: \quad \alpha_{i} \in \mathbb{R} \text { and } x_{i} \in \mathcal{S}\right\}, \tag{2.3.12}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{aff} \mathcal{S}=\bigcup_{k \in \mathbb{P}}\left\{\sum_{i=1}^{k} \alpha_{i} x_{i}: \alpha_{i} \in \mathbb{R}, x_{i} \in \mathcal{S}, \text { and } \sum_{i=1}^{k} \alpha_{i}=1\right\} \tag{2.3.13}
\end{equation*}
$$

$$
\begin{equation*}
=\left\{\sum_{i=1}^{n+1} \alpha_{i} x_{i}: \alpha_{i} \in \mathbb{R}, x_{i} \in \mathcal{S}, \text { and } \sum_{i=1}^{n+1} \alpha_{i}=1\right\} . \tag{2.3.14}
\end{equation*}
$$

Now, let $\mathcal{S} \subseteq \mathbb{C}^{n}$. Then,

$$
\begin{align*}
& \cos =\bigcup_{k \in \mathbb{P}}\left\{\sum_{i=1}^{k} \alpha_{i} x_{i}: \alpha_{i} \geq 0, x_{i} \in \mathcal{S}, \text { and } \sum_{i=1}^{k} \alpha_{i}=1\right\} \tag{2.3.16}\\
& =\left\{\sum_{i=1}^{2 n+1} \alpha_{i} x_{i}: \quad \alpha_{i} \geq 0, x_{i} \in \mathcal{S}, \text { and } \sum_{i=1}^{2 n+1} \alpha_{i}=1\right\} \tag{2.3.17}\\
& \text { cone } \mathcal{S}=\{\alpha x: \quad x \in \mathcal{S} \text { and } \alpha>0\}, \tag{2.3.18}\\
& \operatorname{coco} \mathcal{S}=\bigcup_{k \in \mathbb{P}}\left\{\sum_{i=1}^{k} \alpha_{i} x_{i}: \quad \alpha_{i} \geq 0, x_{i} \in \mathcal{S}, \text { and } \sum_{i=1}^{k} \alpha_{i}>0\right\} \tag{2.3.19}\\
& =\left\{\sum_{i=1}^{2 n} \alpha_{i} x_{i}: \quad \alpha_{i} \geq 0, x_{i} \in \mathcal{S}, \text { and } \sum_{i=1}^{2 n} \alpha_{i}>0\right\} \tag{2.3.20}\\
& \operatorname{span} \mathcal{S}=\bigcup_{k \in \mathbb{P}}\left\{\sum_{i=1}^{k} \alpha_{i} x_{i}: \quad \alpha_{i} \in \mathbb{C} \text { and } x_{i} \in \mathcal{S}\right\} \tag{2.3.21}\\
& =\left\{\sum_{i=1}^{n} \alpha_{i} x_{i}: \quad \alpha_{i} \in \mathbb{C} \text { and } x_{i} \in \mathcal{S}\right\} \text {, } \tag{2.3.22}\\
& \operatorname{aff} \mathcal{S}=\bigcup_{k \in \mathbb{P}}\left\{\sum_{i=1}^{k} \alpha_{i} x_{i}: \quad \alpha_{i} \in \mathbb{C}, x_{i} \in \mathcal{S}, \text { and } \sum_{i=1}^{k} \alpha_{i}=1\right\} \tag{2.3.23}\\
& =\left\{\sum_{i=1}^{n+1} \alpha_{i} x_{i}: \quad \alpha_{i} \in \mathbb{C}, x_{i} \in \mathcal{S}, \text { and } \sum_{i=1}^{n+1} \alpha_{i}=1\right\} \text {. } \tag{2.3.24}
\end{align*}
$$

Proof. Result (2.3.6) is immediate, while (2.3.7) is proved in [357, p. 17]. Furthermore, (2.3.8) is immediate. Next, note that, since coco $\mathcal{S}=$ co cone \mathcal{S}, it follows that (2.3.6) and (2.3.8) imply (2.3.10) with n replaced by $n+1$. However, every element of coco \mathcal{S} lies in the convex hull of $n+1$ points one of which is the origin. It thus follows that we can set $x_{n+1}=0$, which yields (2.3.10). Similar arguments yield (2.3.12). Finally, note that all vectors of the form $x_{1}+\beta\left(x_{2}-x_{1}\right)$, where $x_{1}, x_{2} \in \mathcal{S}$ and $\beta \in \mathbb{R}$, are elements of aff \mathcal{S}. Forming the convex hull of these vectors yields (2.3.14).

The following result shows that cones can be used to induce relations on \mathbb{F}^{n}.

Proposition 2.3.6. Let $\mathcal{S} \subseteq \mathbb{F}^{n}$ be a cone and, for $x, y \in \mathbb{F}^{n}$, let $x \leq y$ denote the relation $y-x \in \mathcal{S}$. Then, the following statements hold:
i) " \leq " is reflexive if and only if \mathcal{S} is a pointed cone.
$i i)$ " \leq " is antisymmetric if and only if \mathcal{S} is a one-sided cone.
iii) " \leq " is symmetric if and only if \mathcal{S} is a symmetric cone.
$i v)$ " \leq " is transitive if and only if \mathcal{S} is a convex cone.
Proof. The proofs of i), $i i$) and $i i i$) are immediate. To prove $i v$), suppose that " \leq " is transitive, and let $x, y \in \mathcal{S}$ so that $0 \leq \alpha x \leq \alpha x+(1-\alpha) y$ for all $\alpha \in[0,1]$. Hence, $\alpha x+(1-\alpha) y \in \mathcal{S}$ for all $\alpha \in[0,1]$, and thus \mathcal{S} is convex. Conversely, suppose that \mathcal{S} is a convex cone, and assume that $x \leq y$ and $y \leq z$. Then, $y-x \in \mathcal{S}$ and $z-y \in \mathcal{S}$ imply that $z-x=$ $2\left[\frac{1}{2}(y-x)+\frac{1}{2}(z-y)\right] \in S$. Hence, $x \leq z$, and thus " \leq " is transitive.

2.4 Range and Null Space

Two important features of a matrix $A \in \mathbb{F}^{n \times m}$ are its range and null space, denoted by $\mathcal{R}(A)$ and $\mathcal{N}(A)$, respectively. The range of A is defined by

$$
\begin{equation*}
\mathcal{R}(A) \triangleq\left\{A x: x \in \mathbb{F}^{m}\right\} . \tag{2.4.1}
\end{equation*}
$$

Note that $\mathcal{R}\left(0_{n \times 0}\right)=\left\{0_{n \times 1}\right\}$ and $\mathcal{R}\left(0_{0 \times m}\right)=\left\{0_{0 \times 1}\right\}$. Letting α_{i} denote $x_{(i)}$, it can be seen that

$$
\begin{equation*}
\mathcal{R}(A)=\left\{\sum_{i=1}^{m} \alpha_{i} \operatorname{col}_{i}(A): \alpha_{1}, \ldots, \alpha_{m} \in \mathbb{F}\right\}, \tag{2.4.2}
\end{equation*}
$$

which shows that $\mathcal{R}(A)$ is a subspace of \mathbb{F}^{n}. It thus follows from Theorem 2.3.5 that

$$
\begin{equation*}
\mathcal{R}(A)=\operatorname{span}\left\{\operatorname{col}_{1}(A), \ldots, \operatorname{col}_{m}(A)\right\} . \tag{2.4.3}
\end{equation*}
$$

By viewing A as a function from \mathbb{F}^{m} into \mathbb{F}^{n}, we can also write $\mathcal{R}(A)=A \mathbb{F}^{m}$.
The null space of $A \in \mathbb{F}^{n \times m}$ is defined by

$$
\begin{equation*}
\mathcal{N}(A) \triangleq\left\{x \in \mathbb{F}^{m}: \quad A x=0\right\} . \tag{2.4.4}
\end{equation*}
$$

Note that $\mathcal{N}\left(0_{n \times 0}\right)=\mathbb{F}^{0}=\left\{0_{0 \times 1}\right\}$ and $\mathcal{N}\left(0_{0 \times m}\right)=\mathbb{F}^{m}$. Equivalently,

$$
\begin{align*}
\mathcal{N}(A) & =\left\{x \in \mathbb{F}^{m}: x^{\mathrm{T}}\left[\operatorname{row}_{i}(A)\right]^{\mathrm{T}}=0 \text { for all } i=1, \ldots, n\right\} \tag{2.4.5}\\
& =\left\{\left[\operatorname{row}_{1}(A)\right]^{\mathrm{T}}, \ldots,\left[\operatorname{row}_{n}(A)\right]^{\mathrm{T}}\right\}^{\perp} \tag{2.4.6}
\end{align*}
$$

which shows that $\mathcal{N}(A)$ is a subspace of \mathbb{F}^{m}. Note that if $\alpha \in \mathbb{F}$ is nonzero, then $\mathcal{R}(\alpha A)=\mathcal{R}(A)$ and $\mathcal{N}(\alpha A)=\mathcal{N}(A)$. Finally, if $\mathbb{F}=\mathbb{C}$, then $\mathcal{R}(A)$ and $\mathcal{R}(\bar{A})$ are not necessarily identical. For example, let $A \triangleq\left[\begin{array}{l}3 \\ 1\end{array}\right]$.

Let $A \in \mathbb{F}^{n \times n}$, and let $\mathcal{S} \subseteq \mathbb{F}^{n}$ be a subspace. Then, \mathcal{S} is an invariant subspace of A if $A \mathcal{S} \subseteq \mathcal{S}$. Note that $A \mathcal{R}(A) \subseteq A \mathbb{F}^{m}=\mathcal{R}(A)$ and $A \mathcal{N}(A)=$ $\left\{0_{n}\right\} \subseteq \mathcal{N}(A)$. Hence, $\mathcal{R}(A)$ and $\mathcal{N}(A)$ are invariant subspaces of A.

If $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$, then it is easy to see that

$$
\begin{equation*}
\mathcal{R}(A B)=A \mathcal{R}(B) \tag{2.4.7}
\end{equation*}
$$

Hence, the following result is not surprising.
Lemma 2.4.1. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{m \times l}$, and $C \in \mathbb{F}^{k \times n}$. Then,

$$
\begin{equation*}
\mathcal{R}(A B) \subseteq \mathcal{R}(A) \tag{2.4.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{N}(A) \subseteq \mathcal{N}(C A) \tag{2.4.9}
\end{equation*}
$$

Proof. Since $\mathcal{R}(B) \subseteq \mathbb{F}^{m}$, it follows that $\mathcal{R}(A B)=A \mathcal{R}(B) \subseteq A \mathbb{F}^{m}=$ $\mathcal{R}(A)$. Furthermore, $y \in \mathcal{N}(A)$ implies that $A y=0$, and thus $C A y=0$.

Corollary 2.4.2. Let $A \in \mathbb{F}^{n \times n}$, and let $k \in \mathbb{P}$. Then,

$$
\begin{equation*}
\mathcal{R}\left(A^{k}\right) \subseteq \mathcal{R}(A) \tag{2.4.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{N}(A) \subseteq \mathcal{N}\left(A^{k}\right) \tag{2.4.11}
\end{equation*}
$$

Although $\mathcal{R}(A B) \subseteq \mathcal{R}(A)$ for arbitrary conformable matrices A, B, we now show that equality holds in the special case $B=A^{*}$. This result, along with others, is the subject of the following basic theorem.

Theorem 2.4.3. Let $A \in \mathbb{F}^{n \times m}$. Then, the following identities hold:
i) $\mathcal{R}(A)^{\perp}=\mathcal{N}\left(A^{*}\right)$.
ii) $\mathcal{R}(A)=\mathcal{R}\left(A A^{*}\right)$.
iii) $\mathcal{N}(A)=\mathcal{N}\left(A^{*} A\right)$.

Proof. To prove i, we first show that $\mathcal{R}(A)^{\perp} \subseteq \mathcal{N}\left(A^{*}\right)$. Let $x \in \mathcal{R}(A)^{\perp}$. Then, $x^{*} z=0$ for all $z \in \mathcal{R}(A)$. Hence, $x^{*} A y=0$ for all $y \in \mathbb{R}^{m}$. Equivalently, $y^{*} A^{*} x=0$ for all $y \in \mathbb{R}^{m}$. Letting $y=A^{*} x$, it follows that $x^{*} A A^{*} x=0$. Now, Lemma 2.2.2 implies that $A^{*} x=0$. Thus, $x \in \mathcal{N}\left(A^{*}\right)$. Conversely, let us show that $\mathcal{N}\left(A^{*}\right) \subseteq \mathcal{R}(A)^{\perp}$. Letting $x \in \mathcal{N}\left(A^{*}\right)$, it follows that $A^{*} x=0$, and, hence, $y^{*} A^{*} x=0$ for all $y \in \mathbb{R}^{m}$. Equivalently, $x^{*} A y=0$ for all $y \in \mathbb{R}^{m}$. Hence, $x^{*} z=0$ for all $z \in \mathcal{R}(A)$. Thus, $x \in \mathcal{R}(A)^{\perp}$, which proves i).

To prove $i i$, note that Lemma 2.4.1 with $B=A^{*}$ implies that $\mathcal{R}\left(A A^{*}\right)$ $\subseteq \mathcal{R}(A)$. To show that $\mathcal{R}(A) \subseteq \mathcal{R}\left(A A^{*}\right)$, let $x \in \mathcal{R}(A)$, and suppose that
$x \notin \mathcal{R}\left(A A^{*}\right)$. Then, it follows from Proposition 2.3.3 that $x=x_{1}+x_{2}$, where $x_{1} \in \mathcal{R}\left(A A^{*}\right)$ and $x_{2} \in \mathcal{R}\left(A A^{*}\right)^{\perp}$ with $x_{2} \neq 0$. Thus, $x_{2}^{*} A A^{*} y=0$ for all $y \in \mathbb{R}^{n}$, and setting $y=x_{2}$ yields $x_{2}^{*} A A^{*} x_{2}=0$. Hence, Lemma 2.2.2 implies that $A^{*} x_{2}=0$, so that, by $\left.i\right), x_{2} \in \mathcal{N}\left(A^{*}\right)=\mathcal{R}(A)^{\perp}$. Since $x \in \mathcal{R}(A)$, it follows that $0=x_{2}^{*} x=x_{2}^{*} x_{1}+x_{2}^{*} x_{2}$. However, $x_{2}^{*} x_{1}=0$ so that $x_{2}^{*} x_{2}=0$ and $x_{2}=0$, which is a contradiction. This proves $\left.i i\right)$.

To prove $i i i$), note that $i i$) with A replaced by A^{*} implies that $\mathcal{R}\left(A^{*} A\right)^{\perp}$ $=\mathcal{R}\left(A^{*}\right)^{\perp}$. Furthermore, replacing A by A^{*} in i) yields $\mathcal{R}\left(A^{*}\right)^{\perp}=\mathcal{N}(A)$. Hence, $\mathcal{N}(A)=\mathcal{R}\left(A^{*} A\right)^{\perp}$. Now, $\left.i\right)$ with A replaced by $A^{*} A$ implies that $\mathcal{R}\left(A^{*} A\right)^{\perp}=\mathcal{N}\left(A^{*} A\right)$. Hence, $\mathcal{N}(A)=\mathcal{N}\left(A^{*} A\right)$, which proves iii).

Result i) of Theorem 2.4 .3 can be written equivalently as

$$
\begin{align*}
& \mathcal{N}(A)^{\perp}=\mathcal{R}\left(A^{*}\right), \tag{2.4.12}\\
& \mathcal{N}(A)=\mathcal{R}\left(A^{*}\right)^{\perp} \tag{2.4.13}\\
& \mathcal{N}\left(A^{*}\right)^{\perp}=\mathcal{R}(A), \tag{2.4.14}
\end{align*}
$$

while replacing A by A^{*} in $i i$) and $\left.i i i\right)$ of Theorem 2.4.3 yields

$$
\begin{array}{r}
\mathcal{R}\left(A^{*}\right)=\mathcal{R}\left(A^{*} A\right), \\
\mathcal{N}\left(A^{*}\right)=\mathcal{N}\left(A A^{*}\right) . \tag{2.4.16}
\end{array}
$$

Using $i i$) of Theorem 2.4.3 and (2.4.15) it follows that

$$
\begin{equation*}
\mathcal{R}\left(A A^{*} A\right)=A \mathcal{R}\left(A^{*} A\right)=A \mathcal{R}\left(A^{*}\right)=\mathcal{R}\left(A A^{*}\right)=\mathcal{R}(A) . \tag{2.4.17}
\end{equation*}
$$

Letting $A \triangleq\left[\begin{array}{ll}1 & \jmath\end{array}\right]$ shows that $\mathcal{R}(A)$ and $\mathcal{R}\left(A A^{\mathrm{T}}\right)$ are generally different.

2.5 Rank and Defect

The rank of $A \in \mathbb{F}^{n \times m}$ is defined by

$$
\begin{equation*}
\operatorname{rank} A \triangleq \operatorname{dim} \mathcal{R}(A) \tag{2.5.1}
\end{equation*}
$$

It can be seen that the rank of A is equal to the number of linearly independent columns of A. Hence, $\operatorname{rank} A=\operatorname{rank} \bar{A}, \operatorname{rank} A^{\mathrm{T}}=\operatorname{rank} A^{*}$, $\operatorname{rank} A \leq m$, and $\operatorname{rank} A^{\mathrm{T}} \leq n$. If $\operatorname{rank} A=m$, then A has full column rank, while if $\operatorname{rank} A^{\mathrm{T}}=n$, then A has full row rank. If A has either full column rank or full row rank, then A has full rank. Finally, the defect of A is

$$
\begin{equation*}
\operatorname{def} A \triangleq \operatorname{dim} \mathcal{N}(A) \tag{2.5.2}
\end{equation*}
$$

The following result follows from Theorem 2.4.3.

Corollary 2.5.1. Let $A \in \mathbb{F}^{n \times m}$. Then, the following identities hold:
i) $\operatorname{rank} A^{*}+\operatorname{def} A=m$.
ii) $\operatorname{rank} A=\operatorname{rank} A A^{*}$.
iii) $\operatorname{def} A=\operatorname{def} A^{*} A$.

Proof. It follows from (2.4.12) and Proposition 2.3.2 that rank $A^{*}=$ $\operatorname{dim} \mathcal{R}\left(A^{*}\right)=\operatorname{dim} \mathcal{N}(A)^{\perp}=m-\operatorname{dim} \mathcal{N}(A)=m-\operatorname{def} A$, which proves i). Results $i i$) and $i i i$) follow from of $i i$) and $i i i$) of Theorem 2.4.3.

Replacing A by A^{*} in Corollary 2.5.1 yields

$$
\begin{gather*}
\operatorname{rank} A+\operatorname{def} A^{*}=n, \tag{2.5.3}\\
\operatorname{rank} A^{*}=\operatorname{rank} A^{*} A, \tag{2.5.4}\\
\operatorname{def} A^{*}=\operatorname{def} A A^{*} . \tag{2.5.5}
\end{gather*}
$$

Furthermore, note that

$$
\begin{equation*}
\operatorname{def} A=\operatorname{def} \bar{A} \tag{2.5.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{def} A^{\mathrm{T}}=\operatorname{def} A^{*} \tag{2.5.7}
\end{equation*}
$$

Lemma 2.5.2. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$. Then,

$$
\begin{equation*}
\operatorname{rank} A B \leq \min \{\operatorname{rank} A, \operatorname{rank} B\} . \tag{2.5.8}
\end{equation*}
$$

Proof. Since, by Lemma 2.4.1, $\mathcal{R}(A B) \subseteq \mathcal{R}(A)$, it follows that rank $A B$ $\leq \operatorname{rank} A$. Next, suppose that $\operatorname{rank} B<\operatorname{rank} A B$. Let $\left\{y_{1}, \ldots, y_{r}\right\} \subset \mathbb{F}^{n}$ be a basis for $\mathcal{R}(A B)$, where $r \triangleq \operatorname{rank} A B$, and, since $y_{i} \in A \mathcal{R}(B)$ for all $i=1, \ldots, r$, let $x_{i} \in \mathcal{R}(B)$ be such that $y_{i}=A x_{i}$ for all $i=1, \ldots, r$. Since rank $B<r$, it follows that x_{1}, \ldots, x_{r} are linearly dependent. Hence, there exist $\alpha_{1}, \ldots, \alpha_{r} \in \mathbb{F}$, not all zero, such that $\sum_{i=1}^{r} \alpha_{i} x_{i}=0$, which implies that $\sum_{i=1}^{r} \alpha_{i} A x_{i}=\sum_{i=1}^{r} \alpha_{i} y_{i}=0$. Thus, y_{1}, \ldots, y_{r} are linearly dependent, which is a contradiction.

Corollary 2.5.3. Let $A \in \mathbb{F}^{n \times m}$. Then,

$$
\begin{equation*}
\operatorname{rank} A=\operatorname{rank} A^{*} \tag{2.5.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{def} A=\operatorname{def} A^{*}+m-n . \tag{2.5.10}
\end{equation*}
$$

If, in addition, $n=m$, then

$$
\begin{equation*}
\operatorname{def} A=\operatorname{def} A^{*} . \tag{2.5.11}
\end{equation*}
$$

Proof. It follows from (2.5.8) with $B=A^{*}$ that $\operatorname{rank} A A^{*} \leq \operatorname{rank} A^{*}$. Furthermore, $i i$) of Corollary 2.5.1 implies that rank $A=\operatorname{rank} A A^{*}$. Hence,
$\operatorname{rank} A \leq \operatorname{rank} A^{*}$. Interchanging A and A^{*} and repeating this argument yields $\operatorname{rank} A^{*} \leq \operatorname{rank} A$. Hence, $\operatorname{rank} A=\operatorname{rank} A^{*}$. Next, using i) of Corollary 2.5.1, (2.5.9), and (2.5.3) it follows that def $A=m-\operatorname{rank} A^{*}=$ $m-\operatorname{rank} A=m-\left(n-\operatorname{def} A^{*}\right)$, which proves (2.5.10).

Corollary 2.5.4. Let $A \in \mathbb{F}^{n \times m}$. Then,

$$
\begin{equation*}
\operatorname{rank} A \leq \min \{m, n\} . \tag{2.5.12}
\end{equation*}
$$

Proof. By definition, rank $A \leq m$, while it follows from (2.5.9) that $\operatorname{rank} A=\operatorname{rank} A^{*} \leq n$.

The fundamental theorem of linear algebra is given by (2.5.13) in the following result.

Corollary 2.5.5. Let $A \in \mathbb{F}^{n \times m}$. Then,

$$
\begin{equation*}
\operatorname{rank} A+\operatorname{def} A=m \tag{2.5.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{rank} A=\operatorname{rank} A^{*} A . \tag{2.5.14}
\end{equation*}
$$

Proof. The result (2.5.13) follows from i) of Corollary 2.5 .1 and (2.5.9), while (2.5.14) follows from (2.5.4) and (2.5.9).

Corollary 2.5.6. Let $A \in \mathbb{F}^{n \times n}$ and $k \in \mathbb{P}$. Then,

$$
\begin{equation*}
\operatorname{rank} A^{k} \leq \operatorname{rank} A \tag{2.5.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{def} A \leq \operatorname{def} A^{k} . \tag{2.5.16}
\end{equation*}
$$

Proposition 2.5.7. Let $A \in \mathbb{F}^{n \times n}$. If $\operatorname{rank} A^{2}=\operatorname{rank} A$, then $\operatorname{rank} A^{k}$ $=\operatorname{rank} A$ for all $k \in \mathbb{P}$. Equivalently, if $\operatorname{def} A^{2}=\operatorname{def} A$, then $\operatorname{def} A^{k}=\operatorname{def} A$ for all $k \in \mathbb{P}$.

Proof. Since $\operatorname{rank} A^{2}=\operatorname{rank} A$ and $\mathcal{R}\left(A^{2}\right) \subseteq \mathcal{R}(A)$, it follows from Lemma 2.3.4 that $\mathcal{R}\left(A^{2}\right)=\mathcal{R}(A)$. Hence, $\mathcal{R}\left(A^{3}\right)=A \mathcal{R}\left(A^{2}\right)=A \mathcal{R}(A)=$ $\mathcal{R}\left(A^{2}\right)$. Thus, $\operatorname{rank} A^{3}=\operatorname{rank} A$. Similar arguments yield $\operatorname{rank} A^{k}=\operatorname{rank} A$ for all $k \in \mathbb{P}$.

We now prove Sylvester's inequality, which provides a lower bound for the rank of the product of two matrices.

Proposition 2.5.8. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$. Then, $\operatorname{rank} A+\operatorname{rank} B \leq m+\operatorname{rank} A B$.

Proof. Using (2.5.8) it follows that

$$
\begin{aligned}
\operatorname{rank} A+\operatorname{rank} B & \leq \operatorname{rank}\left[\begin{array}{cc}
0 & A \\
B & I
\end{array}\right] \\
& =\operatorname{rank}\left[\begin{array}{cc}
I & A \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
-A B & 0 \\
B & I
\end{array}\right] \\
& \leq \operatorname{rank}\left[\begin{array}{cc}
-A B & 0 \\
B & I
\end{array}\right] \\
& \leq \operatorname{rank}\left[\begin{array}{cc}
-A B & 0
\end{array}\right]+\operatorname{rank}\left[\begin{array}{cc}
B & I
\end{array}\right] \\
& =\operatorname{rank} A B+m .
\end{aligned}
$$

Combining (2.5.8) with (2.5.17) yields the following result.
Corollary 2.5.9. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$. Then,

$$
\begin{equation*}
\operatorname{rank} A+\operatorname{rank} B-m \leq \operatorname{rank} A B \leq \min \{\operatorname{rank} A, \operatorname{rank} B\} \tag{2.5.18}
\end{equation*}
$$

2.6 Invertibility

Let $A \in \mathbb{F}^{n \times m}$. Then, A is left invertible if there exists $A^{\mathrm{L}} \in \mathbb{F}^{m \times n}$ such that $A^{\mathrm{L}} A=I_{m}$, while A is right invertible if there exists $A^{\mathrm{R}} \in \mathbb{F}^{m \times n}$ such that $A A^{\mathrm{R}}=I_{n}$. These definitions are consistent with the definitions of left and right invertibility given in Chapter 1 applied to the function $f: \mathbb{F}^{m} \mapsto \mathbb{F}^{n}$ given by $f(x)=A x$.

Theorem 2.6.1. Let $A \in \mathbb{F}^{n \times m}$. Then, the following statements are equivalent:
i) A is left invertible.
ii) A is one-to-one.
iii) $\operatorname{def} A=0$.
iv) $\operatorname{rank} A=m$.
$v) A$ has full column rank.
The following statements are also equivalent:
vi) A is right invertible.
vii) A is onto.
viii) $\operatorname{def} A=m-n$.
$i x) \operatorname{rank} A=n$.
x) A has full row rank.

Note that A is left invertible if and only if A^{*} is right invertible.
The following result shows that the rank and defect of a matrix are not affected by either left multiplication by a left invertible matrix or right multiplication by a right invertible matrix.

Proposition 2.6.2. Let $A \in \mathbb{F}^{n \times m}$, and let $C \in \mathbb{F}^{k \times n}$ be left invertible and $B \in \mathbb{F}^{m \times l}$ be right invertible. Then,

$$
\begin{equation*}
\operatorname{rank} A=\operatorname{rank} C A=\operatorname{rank} A B \tag{2.6.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{def} A=\operatorname{def} C A=\operatorname{def} A B+m-l . \tag{2.6.2}
\end{equation*}
$$

Proof. Let C^{L} be a left inverse of C. Using both inequalities in (2.5.18) and the fact that rank $A \leq n$, it follows that
$\operatorname{rank} A=\operatorname{rank} A+\operatorname{rank} C^{\mathrm{L}} C-n \leq \operatorname{rank} C^{\mathrm{L}} C A \leq \operatorname{rank} C A \leq \operatorname{rank} A$,
which implies that $\operatorname{rank} A=\operatorname{rank} C A$. A similar argument implies that $\operatorname{rank} A=\operatorname{rank} A B$. Next, (2.5.13) and (2.6.1) imply that $m-\operatorname{def} A=m-$ $\operatorname{def} C A=l-\operatorname{def} A B$, which yields (2.6.2).

In general, left and right inverses are not unique. For example, the matrix $A=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ is left invertible and has left inverses $\left[\begin{array}{ll}0 & 1\end{array}\right]$ and $\left[\begin{array}{ll}1 & 1\end{array}\right]$. In spite of this nonuniqueness, however, left inverses are useful for solving equations of the form $A x=b$, where $A \in \mathbb{F}^{n \times m}, x \in \mathbb{F}^{m}$, and $b \in \mathbb{F}^{n}$. If A is left invertible, then one can formally (but not rigorously) solve $A x=b$ by noting that $x=A^{\mathrm{L}} A x=A^{\mathrm{L}} b$, where $A^{\mathrm{L}} \in \mathbb{R}^{m \times n}$ is a left inverse of A. However, it is necessary to determine beforehand whether or not there actually exists a vector x satisfying $A x=b$. For example, if $A=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ and $b=\left[\begin{array}{l}1 \\ 0\end{array}\right]$, then A is left invertible but there does not exist x satisfying $A x=b$. The following result addresses the various possibilities that can arise. One interesting feature of this result is that if there exists a solution to $A x=b$ and A is left invertible, then the solution is unique even if A does not have a unique left inverse. For this result, $\left[\begin{array}{ll}A & b\end{array}\right]$ denotes the $n \times(m+1)$ partitioned matrix formed from A and b. Note that rank $A \leq$ $\operatorname{rank}\left[\begin{array}{ll}A & b\end{array}\right] \leq m+1$, while $\operatorname{rank} A=\operatorname{rank}\left[\begin{array}{ll}A & b\end{array}\right]$ is equivalent to $b \in$ $\mathcal{R}(A)$.

Theorem 2.6.3. Let $A \in \mathbb{F}^{n \times m}$ and $b \in \mathbb{F}^{n}$. Then, the following statements hold:
i) There does not exist $x \in \mathbb{F}^{m}$ satisfying $A x=b$ if and only if $\operatorname{rank} A<\operatorname{rank}\left[\begin{array}{cc}A & b\end{array}\right]$.
ii) There exists a unique $x \in \mathbb{F}^{m}$ satisfying $A x=b$ if and only if $\operatorname{rank} A=\operatorname{rank}\left[\begin{array}{ll}A & b\end{array}\right]=m$. In this case, if $A^{\mathrm{L}} \in \mathbb{F}^{m \times n}$ is a left inverse of A, then the solution is given by $x=A^{\mathrm{L}} b$.
iii) There exist infinitely many $x \in \mathbb{F}^{m}$ satisfying $A x=b$ if and only if $\operatorname{rank} A=\operatorname{rank}\left[\begin{array}{cc}A & b\end{array}\right]<m$. In this case, let $\hat{x} \in \mathbb{F}^{m}$ satisfy $A \hat{x}=b$. Then, the set of solutions of $A x=b$ is given by $\hat{x}+\mathcal{N}(A)$.
$i v)$ Assume that $\operatorname{rank} A=n$. Then, there exists at least one $x \in \mathbb{F}^{m}$ satisfying $A x=b$. Furthermore, if $A^{\mathrm{R}} \in \mathbb{F}^{m \times n}$ is a right inverse of A, then $x=A^{\mathrm{R}} b$ satisfies $A x=b$. If $n=m$, then $x=A^{\mathrm{R}} b$ is the unique solution of $A x=b$. If $n<m$ and $\hat{x} \in \mathbb{F}^{n}$ satisfies $A \hat{x}=b$, then the set of solutions of $A x=b$ is given by $\hat{x}+\mathcal{N}(A)$.

Proof. To prove $i)$ note that $\operatorname{rank} A<\operatorname{rank}\left[\begin{array}{ll}A & b\end{array}\right]$ is equivalent to the fact that b cannot be represented as a linear combination of columns of A, that is, $A x=b$ does not have a solution $x \in \mathbb{F}^{m}$. To prove $\left.i i\right)$, suppose that $\operatorname{rank} A=\operatorname{rank}\left[\begin{array}{ll}A & b\end{array}\right]=m$ so that, by $\left.i\right), A x=b$ has a solution $x \in \mathbb{F}^{m}$. If $\hat{x} \in \mathbb{F}^{m}$ satisfies $A \hat{x}=b$, then $A(x-\hat{x})=0$. Since rank $A=m$, it follows from Theorem 2.6 .1 that A has a left inverse $A^{\mathrm{L}} \in \mathbb{F}^{m \times n}$. Hence, $x-\hat{x}=A^{\mathrm{L}} A(x-\hat{x})=0$, which proves that $A x=b$ has a unique solution. Conversely, suppose that $\operatorname{rank} A=\operatorname{rank}\left[\begin{array}{cc}A & b\end{array}\right]=m$ and there exist $x, \hat{x} \in$ \mathbb{F}^{m}, where $x \neq \hat{x}$, such that $A x=b$ and $A \hat{x}=b$. Then, $A(x-\hat{x})=0$, which implies that $\operatorname{def} A \geq 1$. Therefore, $\operatorname{rank} A=m-\operatorname{def} A \leq m-1$, which is a contradiction. This proves the first statement of $i i$). Assuming $A x=b$ has a unique solution $x \in \mathbb{F}^{m}$, multiplying by A^{L} yields $x=A^{\mathrm{L}} b$. To prove $i i i$) note that it follows from i) that $A x=b$ has at least one solution $\hat{x} \in \mathbb{F}^{m}$. Hence, $x \in \mathbb{F}^{m}$ is a solution of $A x=b$ if and only if $A(x-\hat{x})=0$, or, equivalently, $x \in \hat{x}+\mathcal{N}(A)$. To prove $i v$) note that since rank $A=n$, it follows that $\operatorname{rank} A=\operatorname{rank}\left[\begin{array}{ll}A & b\end{array}\right]$ and thus either $\left.i i\right)$ or $\left.i i i\right)$ applies.

The set of solutions $x \in \mathbb{F}^{m}$ to $A x=b$ is explicitly characterized by Proposition 6.1.7.

Let $A \in \mathbb{F}^{n \times m}$. Then, A is nonsingular if there exists $B \in \mathbb{F}^{m \times n}$, the inverse of A, such that $A B=I_{n}$ and $B A=I_{m}$, that is, B is both a left and right inverse for A. It follows from Theorem 2.6 .1 that if A is nonsingular, then $\operatorname{rank} A=m$ and $\operatorname{rank} A=n$ so that $m=n$. Hence, only square matrices can be nonsingular. Furthermore, the inverse $B \in \mathbb{F}^{n \times n}$ of $A \in \mathbb{F}^{n \times n}$ is unique since, if $C \in \mathbb{F}^{n \times n}$ is a left inverse of A, then $C=$ $C I_{n}=C A B=I_{n} B=B$, while if $D \in \mathbb{F}^{n \times n}$ is a right inverse of A, then $D=I_{n} D=B A D=B I_{n}=B$. The following result follows from similar arguments and Theorem 2.6.1. This result can be viewed as a specialization of Theorem 1.2.3 to the function $f: \mathbb{F}^{n} \mapsto \mathbb{F}^{n}$, where $f(x)=A x$.

Corollary 2.6.4. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) A is nonsingular.
ii) A has a unique inverse.
iii) A is one-to-one.
iv) A is onto.
v) A is left invertible.
vi) A is right invertible.
vii) A has a unique left inverse.
viii) A has a unique right inverse.
ix) $\operatorname{rank} A=n$.
x) $\operatorname{def} A=0$.

Let $A \in \mathbb{F}^{n \times n}$ be nonsingular. Then, the inverse of A, denoted by A^{-1}, is a unique $n \times n$ matrix with entries in \mathbb{F}. If A is not nonsingular, then A is singular.

The following result is a specialization of Theorem 2.6.3 to the case $n=m$.

Corollary 2.6.5. Let $A \in \mathbb{F}^{n \times n}$ and $b \in \mathbb{F}^{n}$. Then, the following statements hold:
i) A is nonsingular if and only if there exists a unique $x \in \mathbb{F}^{n}$ satisfying $A x=b$. In this case, $x=A^{-1} b$.
ii) A is singular and $\operatorname{rank} A=\operatorname{rank}\left[\begin{array}{ll}A & b\end{array}\right]$ if and only if there exist infinitely many $x \in \mathbb{R}^{n}$ satisfying $A x=\vec{b}$. In this case, let $\hat{x} \in \mathbb{F}^{m}$ satisfy $A \hat{x}=b$. Then, the set of solutions of $A x=b$ is given by $\hat{x}+\mathcal{N}(A)$.

Proposition 2.6.6. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) A is nonsingular.
ii) \bar{A} is nonsingular.
iii) A^{T} is nonsingular.
iv) A^{*} is nonsingular.

In this case,

$$
\begin{align*}
(\bar{A})^{-1} & =\overline{A^{-1}} \tag{2.6.3}\\
\left(A^{\mathrm{T}}\right)^{-1} & =\left(A^{-1}\right)^{\mathrm{T}} \tag{2.6.4}\\
\left(A^{*}\right)^{-1} & =\left(A^{-1}\right)^{*} \tag{2.6.5}
\end{align*}
$$

Proof. Since $A A^{-1}=I$, it follows that $\left(A^{-1}\right)^{*} A^{*}=I$. Hence, $\left(A^{-1}\right)^{*}=$ $\left(A^{*}\right)^{-1}$.

We thus use $A^{-\mathrm{T}}$ to denote $\left(A^{\mathrm{T}}\right)^{-1}$ or $\left(A^{-1}\right)^{\mathrm{T}}$ and A^{-*} to denote $\left(A^{*}\right)^{-1}$ or $\left(A^{-1}\right)^{*}$.

Proposition 2.6.7. Let $A, B \in \mathbb{F}^{n \times n}$ be nonsingular. Then,

$$
\begin{align*}
(A B)^{-1} & =B^{-1} A^{-1} \tag{2.6.6}\\
(A B)^{-\mathrm{T}} & =A^{-\mathrm{T}} B^{-\mathrm{T}} \tag{2.6.7}\\
(A B)^{-*} & =A^{-*} B^{-*} \tag{2.6.8}
\end{align*}
$$

Proof. Note that $A B B^{-1} A^{-1}=A I A^{-1}=I$, which shows that $B^{-1} A^{-1}$ is the inverse of $A B$. Similarly, $(A B)^{*} A^{-*} B^{-*}=B^{*} A^{*} A^{-*} B^{-*}=B^{*} I B^{-*}=I$, which shows that $A^{-*} B^{-*}$ is the inverse of $(A B)^{*}$.

For a nonsingular matrix $A \in \mathbb{F}^{n \times n}$ and $r \in \mathbb{Z}$ we write

$$
\begin{gather*}
A^{-r} \triangleq\left(A^{r}\right)^{-1}=\left(A^{-1}\right)^{r}, \tag{2.6.9}\\
A^{-r \mathrm{~T}} \triangleq\left(A^{r}\right)^{-\mathrm{T}}=\left(A^{-\mathrm{T}}\right)^{r}=\left(A^{-r}\right)^{\mathrm{T}}=\left(A^{\mathrm{T}}\right)^{-r} \tag{2.6.10}\\
A^{-r *} \triangleq\left(A^{r}\right)^{-*}=\left(A^{-*}\right)^{r}=\left(A^{-r}\right)^{*}=\left(A^{*}\right)^{-r} \tag{2.6.11}
\end{gather*}
$$

For example, $A^{-2 *}=\left(A^{-*}\right)^{2}$.

2.7 Determinants

One of the most important quantities associated with a square matrix is its determinant. In this section we develop some basic results pertaining to the determinant of a matrix.

The determinant of $A \in \mathbb{F}^{n \times n}$ is defined by

$$
\begin{equation*}
\operatorname{det} A \triangleq \sum_{\sigma}(-1)^{N_{\sigma}} \prod_{i=1}^{n} A_{(i, \sigma(i))}, \tag{2.7.1}
\end{equation*}
$$

where the sum is taken over all n permutations $\sigma=(\sigma(1), \ldots, \sigma(n))$ of the column indices $1, \ldots, n$, and where N_{σ} is the minimal number of pairwise transpositions needed to transform $\sigma(1), \ldots, \sigma(n)$ to $1, \ldots, n$. The following
result is an immediate consequence of this definition.
Proposition 2.7.1. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\begin{array}{r}
\operatorname{det} A^{\mathrm{T}}=\operatorname{det} A, \\
\operatorname{det} \bar{A}=\overline{\operatorname{det} A}, \\
\operatorname{det} A^{*}=\overline{\operatorname{det} A}, \tag{2.7.4}
\end{array}
$$

and, for all $\alpha \in \mathbb{F}$,

$$
\begin{equation*}
\operatorname{det} \alpha A=\alpha^{n} \operatorname{det} A \text {. } \tag{2.7.5}
\end{equation*}
$$

If, in addition, $B \in \mathbb{F}^{m \times n}$ and $C \in \mathbb{F}^{m \times m}$, then

$$
\operatorname{det}\left[\begin{array}{cc}
A & 0 \tag{2.7.6}\\
B & C
\end{array}\right]=(\operatorname{det} A)(\operatorname{det} C) .
$$

The following observations are immediate consequences of the definition of the determinant.

Proposition 2.7.2. Let $A, B \in \mathbb{F}^{n \times n}$. Then, the following statements hold:
i) If all of the off-diagonal entries of A are zero, then

$$
\begin{equation*}
\operatorname{det} A=\prod_{i=1}^{n} A_{(i, i)} . \tag{2.7.7}
\end{equation*}
$$

In particular, $\operatorname{det} I_{n}=1$.
ii) If A has a row or column consisting entirely of zeros, then $\operatorname{det} A=0$.
iii) If A has two identical rows or two identical columns, then $\operatorname{det} A=0$.
iv) If $x \in \mathbb{F}^{n}$ and $i \in\{1, \ldots, n\}$, then

$$
\begin{equation*}
\operatorname{det}\left(A+x e_{i}^{\mathrm{T}}\right)=\operatorname{det} A+\operatorname{det}(A \stackrel{i}{\leftarrow} x) . \tag{2.7.8}
\end{equation*}
$$

$v)$ If $x \in \mathbb{F}^{1 \times n}$ and $i \in\{1, \ldots, n\}$, then

$$
\begin{equation*}
\operatorname{det}\left(A+e_{i} x\right)=\operatorname{det} A+\operatorname{det}(A \stackrel{i}{\leftarrow} x) . \tag{2.7.9}
\end{equation*}
$$

$v i$) If B is identical to A except that, for some $i \in\{1, \ldots, n\}$ and $\alpha \in \mathbb{F}$, $\operatorname{col}_{i}(B)=\alpha \operatorname{col}_{i}(A) \operatorname{or~}_{\operatorname{row}_{i}(B)}\left(\operatorname{row}_{i}(A)\right.$, then det $B=\alpha \operatorname{det} A$.
vii) If B is formed from A by interchanging two rows or two columns of A, then $\operatorname{det} B=-\operatorname{det} A$.
viii) If B is formed from A by adding a multiple of a (row, column) of A to another (row, column) of A, then $\operatorname{det} B=\operatorname{det} A$.

Statements vi)-viii) correspond, respectively, to multiplying the matrix A on the left or right by matrices of the form

$$
\begin{align*}
& I_{n}+(\alpha-1) E_{i, i}=\left[\begin{array}{ccc}
I_{i-1} & 0 & 0 \\
0 & \alpha & 0 \\
0 & 0 & I_{n-i}
\end{array}\right], \tag{2.7.10}\\
& I_{n}+E_{i, j}+E_{j, i}-E_{i, i}-E_{j, j}=\left[\begin{array}{ccccc}
I_{i-1} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & I_{j-i-1} & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & I_{n-j}
\end{array}\right], \tag{2.7.11}
\end{align*}
$$

where $i \neq j$, and

$$
I_{n}+\beta E_{i, j}=\left[\begin{array}{ccccc}
I_{i-1} & 0 & 0 & 0 & 0 \tag{2.7.12}\\
0 & 1 & 0 & \beta & 0 \\
0 & 0 & I_{j-i-1} & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & I_{n-j}
\end{array}\right]
$$

where $\beta \in \mathbb{F}$ and $i \neq j$. The matrices shown in (2.7.11) and (2.7.12) illustrate the case $i<j$. Since $I+(\alpha-1) E_{i, i}=I+(\alpha-1) e_{i} e_{i}^{T}, I+E_{i, j}+E_{j, i}-E_{i, i}-$ $E_{j, j}=I-\left(e_{i}-e_{j}\right)\left(e_{i}-e_{j}\right)^{\mathrm{T}}$, and $I+\beta E_{i, j}=I+\beta e_{i} e_{j}^{\mathrm{T}}$, it follows that all of these matrices are of the form $I-x y^{\mathrm{T}}$. If $\alpha \neq 0$ and $i \neq j$, then these are elementary matrices (see Definition 3.1.2).

Proposition 2.7.3. Let $A, B \in \mathbb{F}^{n \times n}$. Then,

$$
\begin{equation*}
\operatorname{det} A B=\operatorname{det} B A=(\operatorname{det} A)(\operatorname{det} B) \tag{2.7.13}
\end{equation*}
$$

Proof. First note the identity

$$
\left[\begin{array}{cc}
A & 0 \\
I & B
\end{array}\right]=\left[\begin{array}{cc}
I & A \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
-A B & 0 \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
B & I
\end{array}\right]\left[\begin{array}{ll}
0 & I \\
I & 0
\end{array}\right] .
$$

The first and third matrices on the right-hand side of this identity add multiples of rows and columns of $\left[\begin{array}{cc}-A B & 0 \\ 0 & I\end{array}\right]$ to other rows and columns of $\left[\begin{array}{cc}-A B & 0 \\ 0 & I\end{array}\right]$. As already noted, these operations do not affect the determinant of $\left[\begin{array}{cc}-A B & \left.\begin{array}{c}I \\ 0\end{array}\right] \text {. In addition, the fourth matrix on the right-hand side of this }\end{array}\right.$ identity interchanges n pairs of columns of $\left[\begin{array}{cc}0 & A \\ B & I\end{array}\right]$. Using (2.7.5), (2.7.6) and the fact that every interchange of a pair of columns of $\left[\begin{array}{cc}0 & A \\ B & I\end{array}\right]$ entails a factor of -1 , it thus follows that $(\operatorname{det} A)(\operatorname{det} B)=\operatorname{det}\left[\begin{array}{cc}A & 0 \\ I & B\end{array}\right]=(-1)^{n} \operatorname{det}\left[\begin{array}{cc}-A B & 0 \\ 0 & I\end{array}\right]=$ $(-1)^{n} \operatorname{det}(-A B)=\operatorname{det} A B$.

Corollary 2.7.4. Let $A \in \mathbb{F}^{n \times n}$ be nonsingular. Then, $\operatorname{det} A \neq 0$ and

$$
\begin{equation*}
\operatorname{det} A^{-1}=(\operatorname{det} A)^{-1} \tag{2.7.14}
\end{equation*}
$$

Proof. Since $A A^{-1}=I_{n}$, it follows that $\operatorname{det} A A^{-1}=(\operatorname{det} A)\left(\operatorname{det} A^{-1}\right)=$ 1. Hence, $\operatorname{det} A \neq 0$. In addition, $\operatorname{det} A^{-1}=1 / \operatorname{det} A$.

Let $A \in \mathbb{F}^{n \times m}$. Then, a submatrix of A is formed by deleting rows and columns of A. By convention, A is a submatrix of A. If A is a partitioned matrix, then every block of A is a submatrix of A. A block is thus a submatrix whose entries are entries of adjacent rows and adjacent columns. The determinant of a square submatrix of A is a subdeterminant of A. By convention, the determinant of A is a subdeterminant of A.

Let $A \in \mathbb{F}^{n \times n}$. If like-numbered rows and columns of A are deleted, then the resulting square submatrix of A is a principal submatrix of A. If, in particular, rows and columns $j+1, \ldots, n$ of A are deleted, then the resulting $j \times j$ submatrix of A is a leading principal submatrix of A. Every diagonally located block is a principal submatrix. Finally, the determinant of a $j \times j$ (principal, leading principal) submatrix of A is a $j \times j$ (principal, leading principal) subdeterminant of A.

Let $A \in \mathbb{F}^{n \times n}$. Then, the cofactor of $A_{(i, j)}$, denoted by $A_{[i, j]}$, is the $(n-1) \times(n-1)$ submatrix of A obtained by deleting the i th row and j th column of A. The following result provides a cofactor expansion of $\operatorname{det} A$.

Proposition 2.7.5. Let $A \in \mathbb{F}^{n \times n}$. Then, for all $i=1, \ldots, n$,

$$
\begin{equation*}
\operatorname{det} A=\sum_{k=1}^{n}(-1)^{i+k} A_{(i, k)} \operatorname{det} A_{[i, k]} \tag{2.7.15}
\end{equation*}
$$

Furthermore, for all $i, j=1, \ldots, n$ such that $j \neq i$,

$$
\begin{equation*}
0=\sum_{k=1}^{n}(-1)^{i+k} A_{(j, k)} \operatorname{det} A_{[i, k]} \tag{2.7.16}
\end{equation*}
$$

Proof. Identity (2.7.15) is an equivalent recursive form of the definition $\operatorname{det} A$, while the right-hand side of (2.7.16) is equal to $\operatorname{det} B$, where B is obtained from A by replacing $\operatorname{row}_{i}(A)$ by $\operatorname{row}_{j}(A)$. As already noted, $\operatorname{det} B=$ 0 .

Let $A \in \mathbb{F}^{n \times n}$. To simplify (2.7.15) and (2.7.16) it is useful to define the adjugate of A, denoted by $A^{\mathrm{A}} \in \mathbb{F}^{n \times n}$, where, for all $i, j=1, \ldots, n$,

$$
\begin{equation*}
\left(A^{\mathrm{A}}\right)_{(i, j)} \triangleq(-1)^{i+j} \operatorname{det} A_{[j, i]} . \tag{2.7.17}
\end{equation*}
$$

Then, (2.7.15) and (2.7.16) imply that, for all $i=1, \ldots, n$,

$$
\begin{equation*}
\left(A A^{\mathrm{A}}\right)_{(i, i)}=\left(A^{\mathrm{A}} A\right)_{(i, i)}=\operatorname{det} A \tag{2.7.18}
\end{equation*}
$$

and, for all $i, j=1, \ldots, n$ such that $j \neq i$,

$$
\begin{equation*}
\left(A A^{\mathrm{A}}\right)_{(i, j)}=\left(A^{\mathrm{A}} A\right)_{(i, j)}=0 \tag{2.7.19}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
A A^{\mathrm{A}}=A^{\mathrm{A}} A=(\operatorname{det} A) I . \tag{2.7.20}
\end{equation*}
$$

Consequently, if $\operatorname{det} A \neq 0$, then

$$
\begin{equation*}
A^{-1}=(\operatorname{det} A)^{-1} A^{\mathrm{A}} . \tag{2.7.21}
\end{equation*}
$$

The following result provides the converse of Corollary 2.7 .4 by using (2.7.21) to explicitly construct A^{-1} in terms of $(n-1) \times(n-1)$ subdeterminants of A.

Corollary 2.7.6. Let $A \in \mathbb{F}^{n \times n}$. Then, A is nonsingular if and only if $\operatorname{det} A \neq 0$. In this case, for all $i, j=1, \ldots, n$, the (i, j) entry of A^{-1} is given by

$$
\begin{equation*}
\left(A^{-1}\right)_{(i, j)}=(-1)^{i+j} \frac{\operatorname{det} A_{[j, i]}}{\operatorname{det} A} . \tag{2.7.22}
\end{equation*}
$$

Finally, the following result uses the nonsingularity of submatrices to characterize the rank of a matrix.

Proposition 2.7.7. Let $A \in \mathbb{F}^{n \times m}$. Then, $\operatorname{rank} A$ is the largest order of all nonsingular submatrices of A.

2.8 Properties of Partitioned Matrices

Partitioned matrices were used to state or prove several results in this chapter including Proposition 2.5.8, Theorem 2.6.3, Proposition 2.7.1, and Proposition 2.7.3. In this section we give several useful identities involving partitioned matrices.

Proposition 2.8.1. Let $A_{i j} \in \mathbb{F}^{n_{i} \times m_{j}}$ for all $i=1, \ldots, k$ and $j=$ $1, \ldots, l$. Then,

$$
\left[\begin{array}{ccc}
A_{11} & \cdots & A_{1 l} \tag{2.8.1}\\
\vdots & \vdots & \vdots \\
A_{k 1} & \cdots & A_{k l}
\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{ccc}
A_{11}^{\mathrm{T}} & \cdots & A_{k 1}^{\mathrm{T}} \\
\vdots & \vdots & \vdots \\
A_{1 l}^{\mathrm{T}} & \cdots & A_{k l}^{\mathrm{T}}
\end{array}\right]
$$

and

$$
\left[\begin{array}{ccc}
A_{11} & \cdots & A_{1 l} \tag{2.8.2}\\
\vdots & \vdots & \vdots \\
A_{k 1} & \cdots & A_{k l}
\end{array}\right]^{*}=\left[\begin{array}{ccc}
A_{11}^{*} & \cdots & A_{k 1}^{*} \\
\vdots & \vdots & \vdots \\
A_{1 l}^{*} & \cdots & A_{k l}^{*}
\end{array}\right] .
$$

If, in addition, $k=l$ and $n_{i}=m_{i}$ for all $i=1, \ldots, m$, then

$$
\operatorname{tr}\left[\begin{array}{ccc}
A_{11} & \cdots & A_{1 k} \tag{2.8.3}\\
\vdots & \vdots & \vdots \\
A_{k 1} & \cdots & A_{k k}
\end{array}\right]=\sum_{i=1}^{k} \operatorname{tr} A_{i i}
$$

and

$$
\operatorname{det}\left[\begin{array}{cccc}
A_{11} & A_{12} & \cdots & A_{1 k} \tag{2.8.4}\\
0 & A_{22} & \cdots & A_{2 k} \\
\vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & A_{k k}
\end{array}\right]=\prod_{i=1}^{k} \operatorname{det} A_{i i} .
$$

Lemma 2.8.2. Let $B \in \mathbb{F}^{n \times m}$ and $C \in \mathbb{F}^{m \times n}$. Then,

$$
\left[\begin{array}{cc}
I & B \tag{2.8.5}\\
0 & I
\end{array}\right]^{-1}=\left[\begin{array}{cc}
I & -B \\
0 & I
\end{array}\right]
$$

and

$$
\left[\begin{array}{cc}
I & 0 \tag{2.8.6}\\
C & I
\end{array}\right]^{-1}=\left[\begin{array}{cc}
I & 0 \\
-C & I
\end{array}\right] .
$$

Let $A \in \mathbb{F}^{n \times n}$ and $D \in \mathbb{F}^{m \times m}$ be nonsingular. Then,

$$
\left[\begin{array}{cc}
A & 0 \tag{2.8.7}\\
0 & D
\end{array}\right]^{-1}=\left[\begin{array}{cc}
A^{-1} & 0 \\
0 & D^{-1}
\end{array}\right]
$$

Proposition 2.8.3. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{n \times m}, C \in \mathbb{F}^{l \times n}$, and $D \in$ $\mathbb{F}^{l \times m}$, and assume that A is nonsingular. Then,

$$
\left[\begin{array}{cc}
A & B \tag{2.8.8}\\
C & D
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
C A^{-1} & I
\end{array}\right]\left[\begin{array}{cc}
A & 0 \\
0 & D-C A^{-1} B
\end{array}\right]\left[\begin{array}{cc}
I & A^{-1} B \\
0 & I
\end{array}\right]
$$

and

$$
\operatorname{rank}\left[\begin{array}{ll}
A & B \tag{2.8.9}\\
C & D
\end{array}\right]=n+\operatorname{rank}\left(D-C A^{-1} B\right)
$$

If, furthermore, $l=m$, then

$$
\operatorname{det}\left[\begin{array}{ll}
A & B \tag{2.8.10}\\
C & D
\end{array}\right]=(\operatorname{det} A) \operatorname{det}\left(D-C A^{-1} B\right)
$$

Proposition 2.8.4. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{n \times l}, C \in \mathbb{F}^{l \times m}$, and $D \in$ $\mathbb{F}^{l \times l}$, and assume that D is nonsingular. Then,

$$
\left[\begin{array}{cc}
A & B \tag{2.8.11}\\
C & D
\end{array}\right]=\left[\begin{array}{cc}
I & B D^{-1} \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
A-B D^{-1} C & 0 \\
0 & D
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
D^{-1} C & I
\end{array}\right]
$$

and

$$
\operatorname{rank}\left[\begin{array}{cc}
A & B \tag{2.8.12}\\
C & D
\end{array}\right]=l+\operatorname{rank}\left(A-B D^{-1} C\right)
$$

If, furthermore, $n=m$, then

$$
\operatorname{det}\left[\begin{array}{ll}
A & B \tag{2.8.13}\\
C & D
\end{array}\right]=(\operatorname{det} D) \operatorname{det}\left(A-B D^{-1} C\right) .
$$

Corollary 2.8.5. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times n}$. Then,

$$
\operatorname{det}\left[\begin{array}{cc}
I_{n} & A \tag{2.8.14}\\
-B & I_{m}
\end{array}\right]=\operatorname{det}\left(I_{n}+A B\right)=\operatorname{det}\left(I_{m}+B A\right)
$$

Hence, $I_{n}+A B$ is nonsingular if and only if $I_{m}+B A$ is nonsingular.
Lemma 2.8.6. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{n \times m}, C \in \mathbb{F}^{m \times n}$, and $D \in \mathbb{F}^{m \times m}$. If A and D are nonsingular, then

$$
\begin{equation*}
(\operatorname{det} A) \operatorname{det}\left(D-C A^{-1} B\right)=(\operatorname{det} D) \operatorname{det}\left(A-B D^{-1} C\right), \tag{2.8.15}
\end{equation*}
$$

and thus $D-C A^{-1} B$ is nonsingular if and only if $A-B D^{-1} C$ is nonsingular.
Proposition 2.8.7. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{n \times m}, C \in \mathbb{F}^{m \times n}$, and $D \in$ $\mathbb{F}^{m \times m}$. If A and $D-C A^{-1} B$ are nonsingular, then

$$
\begin{align*}
& {\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]^{-1}} \\
& =\left[\begin{array}{cc}
A^{-1}+A^{-1} B\left(D-C A^{-1} B\right)^{-1} C A^{-1} & -A^{-1} B\left(D-C A^{-1} B\right)^{-1} \\
-\left(D-C A^{-1} B\right)^{-1} C A^{-1} & \left(D-C A^{-1} B\right)^{-1}
\end{array}\right] . \tag{2.8.16}
\end{align*}
$$

If D and $A-B D^{-1} C$ are nonsingular, then

$$
\begin{align*}
& {\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]^{-1}} \\
& =\left[\begin{array}{cc}
\left(A-B D^{-1} C\right)^{-1} & -\left(A-B D^{-1} C\right)^{-1} B D^{-1} \\
-D^{-1} C\left(A-B D^{-1} C\right)^{-1} & D^{-1}+D^{-1} C\left(A-B D^{-1} C\right)^{-1} B D^{-1}
\end{array}\right] . \tag{2.8.17}
\end{align*}
$$

If A, D, and $D-C A^{-1} B$ are nonsingular, then $A-B D^{-1} C$ is nonsingular and

$$
\begin{align*}
& {\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]^{-1}} \\
& =\left[\begin{array}{cc}
\left(A-B D^{-1} C\right)^{-1} & -\left(A-B D^{-1} C\right)^{-1} B D^{-1} \\
-\left(D-C A^{-1} B\right)^{-1} C A^{-1} & \left(D-C A^{-1} B\right)^{-1}
\end{array}\right] . \tag{2.8.18}
\end{align*}
$$

The following result is the matrix inversion lemma.

Corollary 2.8.8. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{n \times m}, C \in \mathbb{F}^{m \times n}$, and $D \in$ $\mathbb{F}^{m \times m}$. If $A, D-C A^{-1} B$, and D are nonsingular, then, $A-B D^{-1} C$ is nonsingular and

$$
\begin{equation*}
\left(A-B D^{-1} C\right)^{-1}=A^{-1}+A^{-1} B\left(D-C A^{-1} B\right)^{-1} C A^{-1} . \tag{2.8.19}
\end{equation*}
$$

If A and $I-C A^{-1} B$ are nonsingular, then $A-B C$ is nonsingular and

$$
\begin{equation*}
(A-B C)^{-1}=A^{-1}+A^{-1} B\left(I-C A^{-1} B\right)^{-1} C A^{-1} . \tag{2.8.20}
\end{equation*}
$$

If $D-C B$, and D are nonsingular, then, $I_{n}-B D^{-1} C$ is nonsingular and

$$
\begin{equation*}
\left(I_{n}-B D^{-1} C\right)^{-1}=I_{n}+B(D-C B)^{-1} C . \tag{2.8.21}
\end{equation*}
$$

If $I-C B$ is nonsingular, then $I-B C$ is nonsingular and

$$
\begin{equation*}
(I-B C)^{-1}=I+B(I-C B)^{-1} C \tag{2.8.22}
\end{equation*}
$$

Corollary 2.8.9. Let $A, B, C, D \in \mathbb{F}^{n \times n}$. If $A, B, C-D B^{-1} A$, and $D-C A^{-1} B$ are nonsingular, then

$$
\left[\begin{array}{cc}
A & B \tag{2.8.23}\\
C & D
\end{array}\right]^{-1}=\left[\begin{array}{cc}
A^{-1}-\left(C-D B^{-1} A\right)^{-1} C A^{-1} & \left(C-D B^{-1} A\right)^{-1} \\
-\left(D-C A^{-1} B\right)^{-1} C A^{-1} & \left(D-C A^{-1} B\right)^{-1}
\end{array}\right]
$$

If $A, C, B-A C^{-1} D$, and $D-C A^{-1} B$ are nonsingular, then

$$
\left[\begin{array}{cc}
A & B \tag{2.8.24}\\
C & D
\end{array}\right]^{-1}=\left[\begin{array}{cc}
A^{-1}-A^{-1} B\left(B-A C^{-1} D\right)^{-1} & -A^{-1} B\left(D-C A^{-1} B\right)^{-1} \\
\left(B-A C^{-1} D\right)^{-1} & \left(D-C A^{-1} B\right)^{-1}
\end{array}\right]
$$

If $A, B, C, B-A C^{-1} D$, and $D-C A^{-1} B$ are nonsingular, then $C-D B^{-1} A$ is nonsingular and

$$
\left[\begin{array}{ll}
A & B \tag{2.8.25}\\
C & D
\end{array}\right]^{-1}=\left[\begin{array}{cc}
A^{-1}-A^{-1} B\left(B-A C^{-1} D\right)^{-1} & \left(C-D B^{-1} A\right)^{-1} \\
\left(B-A C^{-1} D\right)^{-1} & \left(D-C A^{-1} B\right)^{-1}
\end{array}\right]
$$

If $B, D, A-B D^{-1} C$, and $C-D B^{-1} A$ are nonsingular, then

$$
\left[\begin{array}{ll}
A & B \tag{2.8.26}\\
C & D
\end{array}\right]^{-1}=\left[\begin{array}{cc}
\left(A-B D^{-1} C\right)^{-1} & \left(C-D B^{-1} A\right)^{-1} \\
-D^{-1} C\left(A-B D^{-1} C\right)^{-1} & D^{-1}-D^{-1} C\left(C-D B^{-1} A\right)^{-1}
\end{array}\right]
$$

If $C, D, A-B D^{-1} C$, and $B-A C^{-1} D$ are nonsingular, then

$$
\left[\begin{array}{ll}
A & B \tag{2.8.27}\\
C & D
\end{array}\right]^{-1}=\left[\begin{array}{cc}
\left(A-B D^{-1} C\right)^{-1} & -\left(A-B D^{-1} C\right)^{-1} B D^{-1} \\
\left(B-A C^{-1} D\right)^{-1} & D^{-1}-\left(B-A C^{-1} D\right)^{-1} B D^{-1}
\end{array}\right] .
$$

If $B, C, D, A-B D^{-1} C$, and $C-D B^{-1} A$ are nonsingular, then $B-A C^{-1} D$ is nonsingular and

$$
\left[\begin{array}{ll}
A & B \tag{2.8.28}\\
C & D
\end{array}\right]^{-1}=\left[\begin{array}{cc}
\left(A-B D^{-1} C\right)^{-1} & \left(C-D B^{-1} A\right) \\
\left(B-A C^{-1} D\right)^{-1} & D^{-1}-D^{-1} C\left(C-D B^{-1} A\right)^{-1}
\end{array}\right]
$$

Finally, if $A, B, C, D, A-B D^{-1} C$, and $B-A C^{-1} D$, are nonsingular, then $C-D B^{-1} A$ and $D-C A^{-1} B$ are nonsingular and

$$
\left[\begin{array}{ll}
A & B \tag{2.8.29}\\
C & D
\end{array}\right]^{-1}=\left[\begin{array}{cc}
\left(A-B D^{-1} C\right)^{-1} & \left(C-D B^{-1} A\right)^{-1} \\
\left(B-A C^{-1} D\right)^{-1} & \left(D-C A^{-1} B\right)^{-1}
\end{array}\right]
$$

Corollary 2.8.10. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and $I-A^{-1} B$ are nonsingular. Then, $A-B$ is nonsingular and

$$
\begin{equation*}
(A-B)^{-1}=A^{-1}+A^{-1} B\left(I-A^{-1} B\right)^{-1} A^{-1} . \tag{2.8.30}
\end{equation*}
$$

If, in addition, B is nonsingular, then

$$
\begin{equation*}
(A-B)^{-1}=A^{-1}+A^{-1}\left(B^{-1}-A^{-1}\right)^{-1} A^{-1} . \tag{2.8.31}
\end{equation*}
$$

2.9 Facts on Cones, Convex Hulls, and Subspaces

Fact 2.9.1. Let $\mathcal{S} \subseteq \mathbb{F}^{n}$. Then, the following statements hold:
i) $\operatorname{coco} \mathcal{S}=$ co cone $\mathcal{S}=$ cone $\cos S$.
ii) $\mathcal{S}^{\perp \perp}=\operatorname{span} \mathcal{S}=\operatorname{coco}(\mathcal{S} \cup-\mathcal{S})$.
iii) $\mathcal{S} \subseteq \operatorname{co} \mathcal{S} \subseteq(\operatorname{aff} \mathcal{S} \cap \operatorname{coco} \mathcal{S}) \subseteq\left\{\begin{array}{c}\operatorname{aff} \mathcal{S} \\ \operatorname{cocos} \mathcal{S}\end{array}\right\} \subseteq \operatorname{span} \mathcal{S}$.
iv) $\mathcal{S} \subseteq(\cos \mathcal{S}$ cone $\mathcal{S}) \subseteq\left\{\begin{array}{c}\cos \mathcal{S} \\ \text { cone } \mathcal{S}\end{array}\right\} \subseteq \operatorname{coco} \mathcal{S} \subseteq \operatorname{span} \mathcal{S}$.
$v)$ dcone dcone $\mathcal{S}=\operatorname{coco} \mathcal{S}$.
(Proof: See [79, p. 52] for the proof of v). Note that "pointed" in [79] means one-sided.)

Fact 2.9.2. Let $\mathcal{S} \subseteq \mathbb{F}^{m}$ and $A \in \mathbb{F}^{n \times m}$. If \mathcal{S} is convex, then $A \mathcal{S}$ is
convex. Conversely, if A is left invertible and $A S$ is convex, then \mathcal{S} is convex.
Fact 2.9.3. Let $\mathcal{S} \subset \mathbb{F}^{n}$. Then, \mathcal{S} is an affine hyperplane if and only if there exist a nonzero vector $x \in \mathbb{F}^{n}$ and $\alpha \in \mathbb{R}$ such that $\mathcal{S}=\left\{x\right.$: $\operatorname{Re} x^{*} y=$ $\alpha\}$. Furthermore, \mathcal{S} is an affine closed half space if and only if there exist a nonzero vector $x \in \mathbb{F}^{n}$ and $\alpha \in \mathbb{R}$ such that $\mathcal{S}=\left\{x \in \mathbb{F}^{n}\right.$: $\left.\operatorname{Re} x^{*} y \leq \alpha\right\}$. Finally, \mathcal{S} is an affine open half space if and only if there exist a nonzero vector $x \in \mathbb{F}^{n}$ and $\alpha \in \mathbb{R}$ such that $\mathcal{S}=\left\{x \in \mathbb{F}^{n}: \operatorname{Re} x^{*} y \leq \alpha\right\}$. (Proof: Let $z \in \mathbb{F}^{n}$ satisfy $z^{*} y=\alpha$. Then, $\left\{x: x^{*} y=\alpha\right\}=\{y\}^{\perp}+z$.)

Fact 2.9.4. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{F}^{n}$ be (cones, convex sets, convex cones, subspaces). Then, so are $\mathcal{S}_{1} \cap \mathcal{S}_{2}$ and $\mathcal{S}_{1}+\mathcal{S}_{2}$.

Fact 2.9.5. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{F}^{n}$ be pointed convex cones. Then,

$$
\operatorname{co}\left(\mathcal{S}_{1} \cup \mathcal{S}_{2}\right)=\mathcal{S}_{1}+\mathcal{S}_{2}
$$

Fact 2.9.6. Let $\delta_{1}, \delta_{2} \subseteq \mathbb{F}^{n}$ be subspaces. Then, $\delta_{1} \cup \delta_{2}$ is a subspace if and only if either $\mathcal{S}_{1} \subseteq \mathcal{S}_{2}$ or $\mathcal{S}_{2} \subseteq \mathcal{S}_{1}$.

Fact 2.9.7. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{F}^{n}$ be subspaces. Then,

$$
\operatorname{span}\left(\mathcal{S}_{1} \cup \mathcal{S}_{2}\right)=\mathcal{S}_{1}+\mathcal{S}_{2} .
$$

Fact 2.9.8. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{F}^{n}$ be subspaces. Then, $\mathcal{S}_{1} \subseteq \mathcal{S}_{2}$ if and only if $\mathcal{S}_{2}^{\perp} \subseteq \mathcal{S}_{1}^{\perp}$. Furthermore, $\mathcal{S}_{1} \subset \mathcal{S}_{2}$ if and only if $\mathcal{S}_{2}^{\perp} \subset \mathcal{S}_{1}^{\perp}$. (Remark: $\mathcal{S}_{1} \subset \mathcal{S}_{2}$ denotes proper inclusion.)

Fact 2.9.9. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{F}^{n}$. Then,

$$
\delta_{1}^{\perp} \cap \delta_{2}^{\perp} \subseteq\left(\delta_{1}+\delta_{2}\right)^{\perp} .
$$

(Problem: Determine necessary and sufficient conditions under which equality holds.)

Fact 2.9.10. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{F}^{n}$ be subspaces. Then,

$$
\left(\delta_{1} \cap \delta_{2}\right)^{\perp}=\delta_{1}^{\perp}+\delta_{2}^{\perp}
$$

and

$$
\left(\delta_{1}+\delta_{2}\right)^{\perp}=\delta_{1}^{\perp} \cap S_{2}^{\perp} .
$$

Fact 2.9.11. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{F}^{n}$ be subspaces. Then, $\mathcal{S}_{1}, \mathcal{S}_{2}$ are complementary if and only if $\mathcal{S}_{1}^{\perp}, \mathcal{S}_{2}^{\perp}$ are complementary. (Remark: See Fact 3.5.15.)

Fact 2.9.12. Let $\mathcal{S}_{1}, \ldots, \mathcal{S}_{k} \subseteq \mathbb{F}^{n}$ be subspaces having the same dimension. Then, there exists a subspace $\hat{\mathcal{S}} \subseteq \mathbb{F}^{n}$ such that, for all $i=1, \ldots, k, \hat{\mathcal{S}}$
and $\hat{\mathcal{S}}_{i}$ are complementary. (Proof: See [261, pp. 78, 79, 259, 260].)
Fact 2.9.13. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{F}^{n}$ be subspaces. Then,

$$
\begin{aligned}
\operatorname{dim}\left(\mathcal{S}_{1} \cap \mathcal{S}_{2}\right) & \leq \min \left\{\operatorname{dim} \mathcal{S}_{1}, \operatorname{dim} \mathcal{S}_{2}\right\} \\
& \leq\left\{\begin{array}{c}
\operatorname{dim} \mathcal{S}_{1} \\
\operatorname{dim} \mathcal{S}_{2}
\end{array}\right\} \\
& \leq \max \left\{\operatorname{dim} \mathcal{S}_{1}, \operatorname{dim} \mathcal{S}_{2}\right\} \\
& \leq \operatorname{dim}\left(\mathcal{S}_{1}+\mathcal{S}_{2}\right) \\
& \leq \min \left\{\operatorname{dim} \mathcal{S}_{1}+\operatorname{dim} \mathcal{S}_{2}, n\right\}
\end{aligned}
$$

2.10 Facts on Range, Null Space, Rank, and Defect

Fact 2.10.1. Let $n, m, k \in \mathbb{P}$. Then, $\operatorname{rank} 1_{n \times m}=1$ and $1_{n \times n}^{k}=$ $n^{k-1} 1_{n \times n}$.

Fact 2.10.2. Let $A \in \mathbb{F}^{n \times n}, k \in \mathbb{P}$, and $l \in \mathbb{N}$. Then, the following identities hold:
i) $\mathcal{R}\left[\left(A A^{*}\right)^{k}\right]=\mathcal{R}\left[\left(A A^{*}\right)^{l} A\right]$.
ii) $\mathcal{N}\left[\left(A^{*} A\right)^{k}\right]=\mathcal{N}\left[A\left(A^{*} A\right)^{l}\right]$.
iii) $\operatorname{rank}\left(A A^{*}\right)^{k}=\operatorname{rank}\left(A A^{*}\right)^{l} A$.
iv) $\operatorname{def}\left(A^{*} A\right)^{k}=\operatorname{def} A\left(A^{*} A\right)^{l}$.

Fact 2.10.3. Let $A, B \in \mathbb{F}^{n \times n}$, and assume there exists $\alpha \in \mathbb{F}$ such that $\alpha A+B$ is nonsingular. Then, $\mathcal{N}(A) \cap \mathcal{N}(B)=\{0\}$. (Remark: The converse is not true. Let $A \triangleq\left[\begin{array}{ll}1 & 0 \\ 2 & 0\end{array}\right]$ and $B \triangleq\left[\begin{array}{ll}0 & 1 \\ 0 & 2\end{array}\right]$.)

Fact 2.10.4. Let $A, B \in \mathbb{F}^{n \times m}$. Then,

$$
\mathcal{N}(A) \cap \mathcal{N}(B)=\mathcal{N}(A) \cap \mathcal{N}(A+B)=\mathcal{N}(A+B) \cap \mathcal{N}(B)
$$

Fact 2.10.5. Let $A, B \in \mathbb{F}^{n \times m}$. Then,

$$
|\operatorname{rank} A-\operatorname{rank} B| \leq \operatorname{rank}(A+B) \leq \operatorname{rank} A+\operatorname{rank} B
$$

If, in addition, $\operatorname{rank} B \leq k$, then

$$
(\operatorname{rank} A)-k \leq \operatorname{rank}(A+B) \leq(\operatorname{rank} A)+k
$$

Fact 2.10.6. Let $A, B \in \mathbb{F}^{n \times m}$, and assume that $A^{*} B=0$ and $B A^{*}=$ 0 . Then,

$$
\operatorname{rank}(A+B)=\operatorname{rank} A+\operatorname{rank} B
$$

(Remark: This result is due to Hestenes. See [148].) (Proof: Use Fact 2.10.15 and Proposition 6.1.6.)

Fact 2.10.7. Let $A \triangleq\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $B \triangleq\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$. Then, $\operatorname{rank} A B=1$ and $\operatorname{rank} B A=0$.

Fact 2.10.8. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$. Then, the following statements hold:
i) $\operatorname{rank} A B+\operatorname{def} A=\operatorname{dim}[\mathcal{N}(A)+\mathcal{R}(B)]$.
ii) $\operatorname{rank} A B+\operatorname{dim}[\mathcal{N}(A) \cap \mathcal{R}(B)]=\operatorname{rank} B$.
iii) $\operatorname{def} A B+\operatorname{rank} A+\operatorname{dim}[\mathcal{N}(A)+\mathcal{R}(B)]=l+m$.
iv) $\operatorname{def} A B=\operatorname{def} B+\operatorname{dim}[\mathcal{N}(A) \cap \mathcal{R}(B)]$.
(Remark: $\operatorname{rank} B-\operatorname{rank} A B=\operatorname{dim}[\mathcal{N}(A) \cap \mathcal{R}(B)] \leq \operatorname{dim} \mathcal{N}(A)=m-\operatorname{rank} A$ yields (2.5.17).)

Fact 2.10.9. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$. Then,

$$
\max \{\operatorname{def} A+l-m, \operatorname{def} B\} \leq \operatorname{def} A B \leq \operatorname{def} A+\operatorname{def} B
$$

If, in addition, $m=l$, then

$$
\max \{\operatorname{def} A, \operatorname{def} B\} \leq \operatorname{def} A B
$$

(Remark: The first inequality is Sylvester's law of nullity.)
Fact 2.10.10. Let $\mathcal{S} \subseteq \mathbb{F}^{m}$, and let $A \in \mathbb{F}^{n \times m}$. Then, the following statements hold:
i) $\operatorname{rank} A+\operatorname{dim} \mathcal{S}-m \leq \operatorname{dim} A \mathcal{S} \leq \min \{\operatorname{rank} A, \operatorname{dim} \mathcal{S}\}$.
ii) $\operatorname{dim}(A S)+\operatorname{dim}(\mathcal{N}(A) \cap \mathcal{S})=\operatorname{dim} \mathcal{S}$.
iii) If A is left invertible, then $\operatorname{dim} A \mathcal{S}=\operatorname{dim} \mathcal{S}$.
(Proof: For $i i$), see [484, p. 413].)
Fact 2.10.11. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{1 \times m}$. Then, $\mathcal{N}(A) \subseteq \mathcal{N}(B)$ if and only if there exists $\lambda \in \mathbb{F}^{n}$ such that $B=\lambda^{*} A$.

Fact 2.10.12. Let $A \in \mathbb{F}^{n \times m}$ and $b \in \mathbb{F}^{n}$. Then, there exists $x \in \mathbb{F}^{n}$ satisfying $A x=b$ if and only if $b^{*} \lambda=0$ for all $\lambda \in \mathcal{N}\left(A^{*}\right)$. (Proof: Assume that $A^{*} \lambda=0$ implies that $b^{*} \lambda=0$. Then, $\mathcal{N}\left(A^{*}\right) \subseteq \mathcal{R}\left(b^{*}\right)$. Hence, $b \in \mathcal{R}(b) \subseteq$ $\mathcal{R}(A)$.)

Fact 2.10.13. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{l \times m}$. Then, $\mathcal{N}(B) \subseteq \mathcal{N}(A)$ if and only if there exists $C \in \mathbb{F}^{n \times l}$ such that $A=C B$. Now, let $A \in \mathbb{F}^{n \times m}$
and $B \in \mathbb{F}^{n \times l}$. Then, $\mathcal{R}(A) \subseteq \mathcal{R}(B)$ if and only if there exists $C \in \mathbb{F}^{l \times m}$ such that $A=B C$.

Fact 2.10.14. Let $A, B \in \mathbb{F}^{n \times m}$, and let $C \in \mathbb{F}^{m \times l}$ be right invertible. If $\mathcal{R}(A) \subseteq \mathcal{R}(B)$, then $\mathcal{R}(A C) \subseteq \mathcal{R}(B C)$. Furthermore, $\mathcal{R}(A)=\mathcal{R}(B)$ if and only if $\mathcal{R}(A C)=\mathcal{R}(B C)$.

Fact 2.10.15. Let $A, B \in \mathbb{F}^{n \times m}$, and assume that $A^{*} B=0$ and $B A^{*}=$ 0 . Then,

$$
\operatorname{rank}(A+B)=\operatorname{rank} A+\operatorname{rank} B
$$

if and only if there exists $C \in \mathbb{F}^{m \times n}$ such that $A C A=A, C B=0$, and $B C=0$. (Proof: See [148].)

Fact 2.10.16. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$. Then, $\operatorname{rank} A B=\operatorname{rank} A$ if and only if $\mathcal{R}(A B)=\mathcal{R}(A)$. (Proof: If $\mathcal{R}(A B) \subset \mathcal{R}(A)$ (note proper inclusion), then $\operatorname{rank} A B<\operatorname{rank} A$.)

Fact 2.10.17. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{m \times l}$, and $C \in \mathbb{F}^{l \times k}$. If $\operatorname{rank} A B=$ $\operatorname{rank} B$, then rank $A B C=\operatorname{rank} B C$. (Proof: $\operatorname{rank} B^{\mathrm{T}} A^{\mathrm{T}}=\operatorname{rank} B^{\mathrm{T}}$ implies that $\mathcal{R}\left(C^{\mathrm{T}} B^{\mathrm{T}} A^{\mathrm{T}}\right)=\mathcal{R}\left(C^{\mathrm{T}} B^{\mathrm{T}}\right)$.)

Fact 2.10.18. Let $A \in \mathbb{F}^{n \times m}$. Then, $\operatorname{rank} A=1$ if and only if there exist $x \in \mathbb{F}^{n}$ and $y \in \mathbb{F}^{m}$ such that $x \neq 0, y \neq 0$, and $A=x y^{T}$. In this case, $\operatorname{tr} A=y^{\mathrm{T}} x$.

Fact 2.10.19. Let $x, y \in \mathbb{F}^{n}$. Then,

$$
\operatorname{rank}\left(x y^{\mathrm{T}}+y x^{\mathrm{T}}\right) \leq 2 .
$$

Furthermore, $\operatorname{rank}\left(x y^{\mathrm{T}}+y x^{\mathrm{T}}\right)=1$ if and only if there exists $\alpha \in \mathbb{F}$ such that $x=\alpha y \neq 0$.

Fact 2.10.20. Let $A \in \mathbb{F}^{n \times m}, x \in \mathbb{F}^{n}$, and $y \in \mathbb{F}^{m}$. Then,

$$
(\operatorname{rank} A)-1 \leq \operatorname{rank}\left(A+x y^{\mathrm{T}}\right) \leq(\operatorname{rank} A)+1 .
$$

In addition, the following statements hold:
i) $\operatorname{rank}\left(A+x y^{\mathrm{T}}\right)=(\operatorname{rank} A)-1$ if and only if there exist $\hat{x} \in \mathbb{F}^{m}$ and $\hat{y} \in \mathbb{F}^{n}$ such that $\hat{y}^{\mathrm{T}} A \hat{x} \neq 0, x=-\left(\hat{y}^{\mathrm{T}} A \hat{x}\right)^{-1} A \hat{x}$, and $y=A^{\mathrm{T}} \hat{y}$.
ii) If there exists $\hat{x} \in \mathbb{F}^{m}$ such that $x=A \hat{x}$ and $\hat{x}^{\mathrm{T}} y \neq-1$, then $\operatorname{rank}\left(A+x y^{\mathrm{T}}\right)=\operatorname{rank} A$.
iii) If $x y^{\mathrm{T}} \neq 0, A^{*} x=0$, and $A \bar{y}=0$, then $\operatorname{rank}\left(A+x y^{\mathrm{T}}\right)=(\operatorname{rank} A)+$ 1.
(Proof: To prove $i i$, note that $A+x y^{\mathrm{T}}=A\left(I+x y^{\mathrm{T}}\right)$ and $I+x y^{\mathrm{T}}$ is
nonsingular. To prove $i i i$) use Fact 2.10.21. See [297, p. 33] and [144].)
Fact 2.10.21. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{n \times l}, C \in \mathbb{F}^{l \times n}, D \in \mathbb{F}^{l \times l}$, and assume that D is nonsingular. Then,

$$
\operatorname{rank}\left(A-B D^{-1} C\right)=\operatorname{rank} A-\operatorname{rank} B D^{-1} C
$$

if and only if there exist $X \in \mathbb{F}^{m \times l}$ and $Y \in \mathbb{F}^{l \times n}$ such that $B=A X$, $C=Y A$, and $D=Y A X$. (Proof: See [144].)

Fact 2.10.22. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{n \times l}$. Then,

$$
\mathcal{R}\left(\left[\begin{array}{ll}
A & B
\end{array}\right]\right)=\mathcal{R}(A)+\mathcal{R}(B) .
$$

Fact 2.10.23. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{n \times l}$. Then,

$$
\mathcal{R}(A)=\mathcal{R}(B)
$$

if and only if

$$
\operatorname{rank} A=\operatorname{rank} B=\operatorname{rank}\left[\begin{array}{ll}
A & B
\end{array}\right] .
$$

Fact 2.10.24. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{n \times l}$. Then,

$$
\operatorname{rank} A+\operatorname{rank} B=\operatorname{rank}\left[\begin{array}{ll}
A & B
\end{array}\right]+\operatorname{dim}[\mathcal{R}(A) \cap \mathcal{R}(B)]
$$

and

$$
\operatorname{def}\left[\begin{array}{ll}
A & B
\end{array}\right]=\operatorname{def} A+\operatorname{def} B+\operatorname{dim}[\mathcal{R}(A) \cap \mathcal{R}(B)] .
$$

Hence,

$$
\max \{\operatorname{rank} A, \operatorname{rank} B\} \leq \operatorname{rank}\left[\begin{array}{ll}
A & B
\end{array}\right] \leq \operatorname{rank} A+\operatorname{rank} B
$$

and

$$
\operatorname{def} A+\operatorname{def} B \leq \operatorname{def}\left[\begin{array}{ll}
A & B
\end{array}\right] \leq \min \{l+\operatorname{def} A, m+\operatorname{def} B\} .
$$

If, in addition, $A^{*} B=0$, then

$$
\operatorname{rank}\left[\begin{array}{cc}
A & B
\end{array}\right]=\operatorname{rank} A+\operatorname{rank} B
$$

and

$$
\operatorname{def}\left[\begin{array}{ll}
A & B
\end{array}\right]=\operatorname{def} A+\operatorname{def} B
$$

(Proof: Use Fact 2.9.13. Assume $A^{*} B=0$. Then,

$$
\begin{aligned}
\operatorname{rank}\left[\begin{array}{ll}
A & B
\end{array}\right] & =\operatorname{rank}\left[\begin{array}{c}
A^{*} \\
B^{*}
\end{array}\right]\left[\begin{array}{cc}
A & B
\end{array}\right]=\left[\begin{array}{cc}
A^{*} A & 0 \\
0 & B^{*} B
\end{array}\right] \\
& \left.=\operatorname{rank} A^{*} A+\operatorname{rank} B^{*} B=\operatorname{rank} A+\operatorname{rank} B .\right)
\end{aligned}
$$

Fact 2.10.25. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{l \times m}$. Then,

$$
\max \{\operatorname{rank} A, \operatorname{rank} B\} \leq \operatorname{rank}\left[\begin{array}{c}
A \\
B
\end{array}\right] \leq \operatorname{rank} A+\operatorname{rank} B
$$

and

$$
\operatorname{def} A-\operatorname{rank} B \leq \operatorname{def}\left[\begin{array}{c}
A \\
B
\end{array}\right] \leq \min \{\operatorname{def} A, \operatorname{def} B\}
$$

If, in addition, $A B^{*}=0$, then

$$
\operatorname{rank}\left[\begin{array}{c}
A \\
B
\end{array}\right]=\operatorname{rank} A+\operatorname{rank} B
$$

and

$$
\operatorname{def}\left[\begin{array}{l}
A \\
B
\end{array}\right]=\operatorname{def} A-\operatorname{rank} B
$$

(Proof: Use Fact 2.10.24 and Fact 2.9.13.)
Fact 2.10.26. Let $A, B \in \mathbb{F}^{n \times m}$. Then,

$$
\left\{\begin{array}{c}
\max \{\operatorname{rank} A, \operatorname{rank} B\} \\
\operatorname{rank}(A+B)
\end{array}\right\} \leq\left\{\begin{array}{c}
\operatorname{rank}\left[\begin{array}{cc}
A & B
\end{array}\right] \\
\operatorname{rank}\left[\begin{array}{c}
A \\
B
\end{array}\right]
\end{array}\right\} \leq \operatorname{rank} A+\operatorname{rank} B
$$

and

$$
\operatorname{def} A+\operatorname{def} B \leq\left\{\begin{array}{c}
\operatorname{def}\left[\begin{array}{ll}
A & B
\end{array}\right] \\
\operatorname{def}\left[\begin{array}{l}
A \\
B
\end{array}\right]+m
\end{array}\right\} \leq\left\{\begin{array}{c}
m+\min \{\operatorname{def} A, \operatorname{def} B\} \\
\operatorname{def}(A+B)+m
\end{array}\right\} .
$$

(Proof: $\operatorname{rank}(A+B)=\operatorname{rank}\left[\begin{array}{cc}A & B\end{array}\right]\left[\begin{array}{l}I \\ I\end{array}\right] \leq \operatorname{rank}\left[\begin{array}{ll}A & B\end{array}\right]$, and $\operatorname{rank}(A+$ $\left.B)=\operatorname{rank}\left[\begin{array}{ll}I & I\end{array}\right]\left[\begin{array}{l}A \\ B\end{array}\right] \leq \operatorname{rank}\left[\begin{array}{l}A \\ B\end{array}\right].\right)$

Fact 2.10.27. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{l \times k}$, and $C \in \mathbb{F}^{l \times m}$. Then,

$$
\operatorname{rank} A+\operatorname{rank} B=\operatorname{rank}\left[\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right] \leq \operatorname{rank}\left[\begin{array}{cc}
A & 0 \\
C & B
\end{array}\right]
$$

and

$$
\operatorname{rank} A+\operatorname{rank} B=\operatorname{rank}\left[\begin{array}{cc}
0 & A \\
B & 0
\end{array}\right] \leq \operatorname{rank}\left[\begin{array}{cc}
0 & A \\
B & C
\end{array}\right]
$$

Fact 2.10.28. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{m \times l}$, and $C \in \mathbb{F}^{l \times k}$. Then, $\operatorname{rank} A B+\operatorname{rank} B C \leq \operatorname{rank}\left[\begin{array}{cc}0 & A B \\ B C & B\end{array}\right]=\operatorname{rank} B+\operatorname{rank} A B C$.
Consequently,
$\operatorname{rank} A B+\operatorname{rank} B C-\operatorname{rank} B \leq \operatorname{rank} A B C$.
(Remark: This result is Frobenius' inequality.) (Proof: Use Fact 2.10.27 and $\left[\begin{array}{cc}0 & A B \\ B C & B\end{array}\right]=\left[\begin{array}{cc}I & A \\ 0 & I\end{array}\right]\left[\begin{array}{cc}-A B C & 0 \\ 0 & B\end{array}\right]\left[\begin{array}{cc}I & 0 \\ C & I\end{array}\right]$.) (Remark: See [398] for the case of
equality.)
Fact 2.10.29. Let $A, B \in \mathbb{F}^{n \times m}$. Then,

$$
\begin{aligned}
\operatorname{rank}\left[\begin{array}{cc}
A & B
\end{array}\right]+\operatorname{rank}\left[\begin{array}{c}
A \\
B
\end{array}\right] & \leq \operatorname{rank}\left[\begin{array}{ccc}
0 & A & B \\
A & A & 0 \\
B & 0 & B
\end{array}\right] \\
& =\operatorname{rank} A+\operatorname{rank} B+\operatorname{rank}(A+B) .
\end{aligned}
$$

(Proof: Use Frobenius' inequality with $A \triangleq C^{\mathrm{T}} \triangleq\left[\begin{array}{ll}I & I\end{array}\right]$ and with B replaced by $\left[\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right]$.)

Fact 2.10.30. Let $A \in \mathbb{F}^{n \times m}$, and let $B \in \mathbb{F}^{k \times l}$ be a submatrix of A. Then,

$$
k+l-\operatorname{rank} B \leq n+m-\operatorname{rank} A .
$$

(Proof: See [57].)

2.11 Facts on Identities

Fact 2.11.1. Let $A \in \mathbb{F}^{2 \times 2}$, assume that $\operatorname{tr} A+2 \sqrt{\operatorname{det} A} \neq 0$, and define $B \in \mathbb{F}^{2 \times 2}$ by

$$
B \triangleq(\operatorname{tr} A+2 \sqrt{\operatorname{det} A})^{-1 / 2}(A+\sqrt{\operatorname{det} A} I)
$$

Then, $B^{2}=A$. (Proof: See [261, pp. 84, 266, 267].)
Fact 2.11.2. $\left[\begin{array}{cc}-\frac{1}{2} & \frac{\sqrt{3}}{3} \\ \frac{-\sqrt{3}}{2} & -\frac{1}{2}\end{array}\right]^{3}=\left[\begin{array}{cc}-1 & -1 \\ 1 & 0\end{array}\right]^{3}=I_{2}$.
Fact 2.11.3. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{l \times k}$. Then, $A E_{i, j, m \times l} B=$ $\operatorname{col}_{i}(A) \operatorname{row}_{j}(B)$.

Fact 2.11.4. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{m \times l}$, and $C \in \mathbb{F}^{l \times n}$. Then,

$$
\operatorname{tr} A B C=\sum_{i=1}^{n} \operatorname{row}_{i}(A) B \operatorname{col}_{i}(C) .
$$

Fact 2.11.5. Let $A \in \mathbb{F}^{n \times m}$. Then, $A x=0$ for all $x \in \mathbb{F}^{m}$ if and only if $A=0$.

Fact 2.11.6. Let $x, y \in \mathbb{F}^{n}$. Then, $x^{*} x=y^{*} y$ and $\operatorname{Im} x^{*} y=0$ if and only if $x-y$ is orthogonal to $x+y$.

Fact 2.11.7. Let $x, y \in \mathbb{R}^{n}$. Then, $x x^{\mathrm{T}}=y y^{\mathrm{T}}$ if and only if either
$x=y$ or $x=-y$.
Fact 2.11.8. Let $x, y \in \mathbb{R}^{n}$. Then, $x y^{\mathrm{T}}=y x^{\mathrm{T}}$ if and only if x and y are linearly dependent.

Fact 2.11.9. Let $x, y \in \mathbb{R}^{n}$. Then, $x y^{T}=-y x^{T}$ if and only if either $x=0$ or $y=0$. (Proof: If $x_{(i)} \neq 0$ and $y_{(j)} \neq 0$, then $x_{(j)}=y_{(i)}=0$ and $0 \neq x_{(i)} y_{(j)} \neq x_{(j)} y_{(i)}=0$.)

Fact 2.11.10. Let $x, y \in \mathbb{R}^{n}$. Then, $y x^{\mathrm{T}}+x y^{\mathrm{T}}=y^{\mathrm{T}} y x x^{\mathrm{T}}$ if and only if either $x=0$ or $y=\frac{1}{2} y^{\mathrm{T}} y x$.

Fact 2.11.11. Let $x, y \in \mathbb{F}^{n}$. Then,

$$
\left(x y^{*}\right)^{r}=\left(y^{*} x\right)^{r-1} x y^{*} .
$$

Fact 2.11.12. Let $y \in \mathbb{F}^{n}$ and $x \in \mathbb{F}^{m}$. Then, there exists a matrix $A \in \mathbb{F}^{n \times m}$ such that $y=A x$ if and only if either $y=0$ or $x \neq 0$. If $y=0$, then one such matrix is $A=0$. If $x \neq 0$, then one such matrix is

$$
A=\left(x^{*} x\right)^{-1} y x^{*}
$$

(Remark: See Fact 3.4.33.)
Fact 2.11.13. Let $A \in \mathbb{F}^{n \times m}$. Then, $A=0$ if and only if $\operatorname{tr} A A^{*}=0$.
Fact 2.11.14. Let $A, B \in \mathbb{F}^{n \times n}$, and define $\mathcal{A} \triangleq\left[\begin{array}{cc}A & A \\ A & A\end{array}\right]$ and $\mathcal{B} \triangleq$ $\left[\begin{array}{cc}B & -B \\ -B & B\end{array}\right]$. Then,

$$
\mathcal{A B}=\mathcal{B} \mathcal{A}=0
$$

Fact 2.11.15. Let $A \in \mathbb{F}^{n \times n}$ and $k \in \mathbb{P}$. Then,

$$
\operatorname{Re} \operatorname{tr} A^{2 k} \leq \operatorname{tr} A^{k} A^{k *} \leq \operatorname{tr}\left(A A^{*}\right)^{k}
$$

(Remark: To prove the left-hand inequality consider $\operatorname{tr}\left(A^{k}-A^{k *}\right)\left(A^{k *}-A^{k}\right)$. For the right-hand inequality when $k=2$, consider $\operatorname{tr}\left(A A^{*}-A^{*} A\right)^{2}$.)

Fact 2.11.16. Let $A \in \mathbb{F}^{n \times n}$. Then, $\operatorname{tr} A^{k}=0$ for all $k=1, \ldots, n$ if and only if $A^{n}=0$. (Proof: For sufficiency, Fact 4.10.2 implies that $\operatorname{spec}(A)=\{0\}$, and thus the Jordan form of A is a block-diagonal matrix each of whose diagonally located blocks is a standard nilpotent matrix. For necessity, see [629, p. 112].)

Fact 2.11.17. Let $A \in \mathbb{F}^{n \times n}$, and assume that $\operatorname{tr} A=0$. If $A^{2}=A$, then $A=0$. If $A^{k}=A$, where $k \geq 4$ and $2 \leq n<p$, where p is the smallest prime divisor of $k-1$, then $A=0$. (Proof: See [152].)

Fact 2.11.18. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that $A B=0$. Then, for all $k \in \mathbb{P}$,

$$
\operatorname{tr}(A+B)^{k}=\operatorname{tr} A^{k}+\operatorname{tr} B^{k} .
$$

Fact 2.11.19. Let $A, B \in \mathbb{F}^{n \times n}$. Then, the following statements hold:
i) $A B+B A=\frac{1}{2}\left[(A+B)^{2}-(A-B)^{2}\right]$.
ii) $(A+B)(A-B)=A^{2}-B^{2}-[A, B]$.
iii) $(A-B)(A+B)=A^{2}-B^{2}+[A, B]$.
iv) $A^{2}-B^{2}=\frac{1}{2}[(A+B)(A-B)+(A-B)(A+B)]$.

Fact 2.11.20. Let $A, B \in \mathbb{F}^{n \times n}$ and $k \in \mathbb{P}$. Then,

$$
A^{k}-B^{k}=\sum_{i=0}^{k-1} A^{i}(A-B) B^{k-1-i} .
$$

Fact 2.11.21. Let $\alpha \in \mathbb{R}$ and $A \in \mathbb{R}^{n \times n}$. Then, the matrix equation $\alpha A+A^{\mathrm{T}}=0$ has a nonzero solution A if and only if $\alpha=1$ or $\alpha=-1$.

2.12 Facts on Determinants

Fact 2.12.1. $\operatorname{det}\left[\begin{array}{cc}0 & I_{n} \\ I_{m} & 0\end{array}\right]=(-1)^{n m}$.
Fact 2.12.2. $\operatorname{det} \hat{I}_{n}=(-1)^{\lfloor n / 2\rfloor}=(-1)^{n(n-1) / 2}$.
Fact 2.12.3. $\operatorname{det}\left(I_{n}+\alpha 1_{n \times n}\right)=1+\alpha n$.
Fact 2.12.4. Let $A \in \mathbb{F}^{n \times n}, x, y \in \mathbb{F}^{n}$, and $a \in \mathbb{F}$. Then,
$\left[\begin{array}{cc}A & x \\ y^{\mathrm{T}} & a\end{array}\right]=\left\{\begin{array}{l}{\left[\begin{array}{cc}I & 0 \\ y^{\mathrm{T}} A^{-1} & 1\end{array}\right]\left[\begin{array}{cc}A & 0 \\ 0 & a-y^{\mathrm{T}} A^{-1} x\end{array}\right]\left[\begin{array}{cc}I & A^{-1} x \\ 0 & 1\end{array}\right],} \\ {\left[\begin{array}{cc}I & A^{-1} x \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}A-A^{-1} x y^{\mathrm{T}} & 0 \\ 0 & a\end{array}\right]\left[\begin{array}{cc}I & 0 \\ a^{-1} y^{\mathrm{T}} & 1\end{array}\right],}\end{array}\right.$
(Remark: See Fact 6.4.24.)
Fact 2.12.5. Let $A \in \mathbb{F}^{n \times n}, x, y \in \mathbb{F}^{n}$, and $a \in \mathbb{F}$. Then,

$$
\operatorname{det}\left[\begin{array}{cc}
A & x \\
y^{\mathrm{T}} & a
\end{array}\right]=a(\operatorname{det} A)-y^{\mathrm{T}} A^{\mathrm{A}} x
$$

Hence,

$$
\operatorname{det}\left[\begin{array}{cc}
A & x \\
y^{\mathrm{T}} & a
\end{array}\right]= \begin{cases}(\operatorname{det} A)\left(a-y^{\mathrm{T}} A^{-1} x\right), & \operatorname{det} A \neq 0 \\
a \operatorname{det}\left(A-A^{-1} x y^{\mathrm{T}}\right), & a \neq 0 \\
-y^{\mathrm{T}} A^{\mathrm{A}} x, & a=0\end{cases}
$$

In particular,

$$
\operatorname{det}\left[\begin{array}{cc}
A & A x \\
y^{\mathrm{T}} A & y^{\mathrm{T}} A x
\end{array}\right]=0
$$

Finally,

$$
\operatorname{det}\left(A+x y^{\mathrm{T}}\right)=\operatorname{det} A+y^{\mathrm{T}} A^{\mathrm{A}} x=-\operatorname{det}\left[\begin{array}{cc}
A & x \\
y^{\mathrm{T}} & -1
\end{array}\right]
$$

(Remark: See Fact 2.12.6 and Fact 2.13.3.)
Fact 2.12.6. Let $A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^{n}$, and $a \in \mathbb{R}$. Then,

$$
\operatorname{det}\left[\begin{array}{cc}
A & b \\
b^{\mathrm{T}} & a
\end{array}\right]=a(\operatorname{det} A)-b^{\mathrm{T}} A^{\mathrm{A}} b
$$

In particular,

$$
\operatorname{det}\left[\begin{array}{cc}
A & b \\
b^{\mathrm{T}} & a
\end{array}\right]= \begin{cases}(\operatorname{det} A)\left(a-b^{\mathrm{T}} A^{-1} b\right), & \operatorname{det} A \neq 0 \\
a \operatorname{det}\left(A-a^{-1} b b^{\mathrm{T}}\right), & a \neq 0 \\
-b^{\mathrm{T}} A^{\mathrm{A}} b, & a=0\end{cases}
$$

(Remark: This identity is a specialization of Fact 2.12.5.)
Fact 2.12.7. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\begin{gathered}
\operatorname{rank}\left[\begin{array}{cc}
A & A \\
A & A
\end{array}\right]=\operatorname{rank}\left[\begin{array}{cc}
A & -A \\
-A & A
\end{array}\right]=\operatorname{rank} A \\
\operatorname{rank}\left[\begin{array}{cc}
A & A \\
-A & A
\end{array}\right]=2 \operatorname{rank} A \\
\operatorname{det}\left[\begin{array}{cc}
A & A \\
A & A
\end{array}\right]=\operatorname{det}\left[\begin{array}{cc}
A & -A \\
-A & A
\end{array}\right]=0 \\
\operatorname{det}\left[\begin{array}{cc}
A & A \\
-A & A
\end{array}\right]=2^{n}(\operatorname{det} A)^{2}
\end{gathered}
$$

(Remark: See Fact 2.12.8.)
Fact 2.12.8. Let $a, b, c, d \in \mathbb{F}$, let $A \in \mathbb{F}^{n \times n}$, and define $\mathcal{A} \triangleq\left[\begin{array}{cc}a A & A A \\ c A & d A\end{array}\right]$.

Then,

$$
\operatorname{rank} \mathcal{A}=\left(\operatorname{rank}\left[\begin{array}{cc}
a & b \\
c & d
\end{array}\right]\right) \operatorname{rank} A
$$

and

$$
\operatorname{det} \mathcal{A}=(a d-b c)^{n}(\operatorname{det} A)^{2}
$$

(Remark: See Fact 2.12.7.) (Proof: See Proposition 7.1.11 and Fact 7.4.20.)
Fact 2.12.9. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{m \times n}$, and $m<n$. Then, $\operatorname{det} A B=0$.
Fact 2.12.10. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{m \times n}$, and $n \leq m$. Then, $\operatorname{det} A B$ is equal to the sum of all $\binom{n}{m}$ products of pairs of subdeterminants of A and B formed by choosing n columns of A and the corresponding n rows of B. (Remark: This identity is the Binet-Cauchy formula, which yields Proposition 2.7.1 in the case $n=m$.)

Fact 2.12.11. Let $A \in \mathbb{F}^{n \times n}$ be nonsingular, and let $b \in \mathbb{F}^{n}$. Then, the solution $x \in \mathbb{F}^{n}$ of $A x=b$ is given by

$$
x=\left[\begin{array}{c}
\frac{\operatorname{det}(A \leftarrow b)}{\operatorname{det} A} \\
\vdots \\
\left.\frac{\operatorname{det}\left(A{ }^{n}\right.}{\leftarrow} b\right) \\
\operatorname{det} A
\end{array}\right] .
$$

(Proof: Note that $A(I \stackrel{i}{\leftarrow} x)=A \stackrel{i}{\leftarrow} b$. Since $\operatorname{det}(I \stackrel{i}{\leftarrow} x)=x_{(i)}$, it follows that $(\operatorname{det} A) x_{(i)}=\operatorname{det}(A \stackrel{i}{\leftarrow} b)$.) (Remark: This identity is Cramer's rule.)

Fact 2.12.12. Let $A \in \mathbb{F}^{n \times m}$ be right invertible, and let $b \in \mathbb{F}^{n}$. Then, a solution $x \in \mathbb{F}^{m}$ of $A x=b$ is given by

$$
x_{(i)}=\frac{\operatorname{det}\left[(A \stackrel{i}{\leftarrow} b) A^{*}\right]-\operatorname{det}\left[(A \stackrel{i}{\leftarrow} 0) A^{*}\right]}{\operatorname{det}\left(A A^{*}\right)}
$$

for all $i=1, \ldots, m$. (Proof: See [349].)
Fact 2.12.13. Let A, B, C, D be conformable matrices with entries in \mathbb{F}. Then,

$$
\left[\begin{array}{cc}
A & A B \\
C & D
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
C & I
\end{array}\right]\left[\begin{array}{cc}
A & 0 \\
C-C A & D-C B
\end{array}\right]\left[\begin{array}{cc}
I & B \\
0 & I
\end{array}\right]
$$

$$
\begin{gathered}
\operatorname{det}\left[\begin{array}{cc}
A & A B \\
C & D
\end{array}\right]=(\operatorname{det} A) \operatorname{det}(D-C B), \\
{\left[\begin{array}{cc}
A & B \\
C A & D
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
C & I
\end{array}\right]\left[\begin{array}{cc}
A & B-A B \\
0 & D-C B
\end{array}\right]\left[\begin{array}{cc}
I & B \\
0 & I
\end{array}\right],} \\
\operatorname{det}\left[\begin{array}{cc}
A & B \\
C A & D
\end{array}\right]=(\operatorname{det} A) \operatorname{det}(D-C B), \\
{\left[\begin{array}{cc}
A & B D \\
C & D
\end{array}\right]=\left[\begin{array}{cc}
I & B \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
A-B C & 0 \\
C-D C & D
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
C & I
\end{array}\right],} \\
\operatorname{det}\left[\begin{array}{cc}
A & B D \\
C & D
\end{array}\right]=\operatorname{det}(A-B C) \operatorname{det} D, \\
{\left[\begin{array}{cc}
A & B \\
D C & D
\end{array}\right]=\left[\begin{array}{cc}
I & B \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
A-B C & B-B D \\
0 & D
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
C & I
\end{array}\right],} \\
\operatorname{det}\left[\begin{array}{cc}
A & B \\
D C & D
\end{array}\right]=\operatorname{det}(A-B C) \operatorname{det} D .
\end{gathered}
$$

(Remark: See Fact 6.4.24.)
Fact 2.12.14. Let $A_{1}, A_{2}, B_{1}, B_{2} \in \mathbb{F}^{n \times m}$, and define $\mathcal{A} \triangleq\left[\begin{array}{cc}A_{1} & A_{2} \\ A_{2} & A_{1}\end{array}\right]$ and $\mathcal{B} \triangleq\left[\begin{array}{cc}B_{1} & r_{2} \\ B_{2} & B_{1}\end{array}\right]$. Then,

$$
\operatorname{rank}\left[\begin{array}{cc}
\mathcal{A} & \mathcal{B} \\
\mathcal{B} & \mathcal{A}
\end{array}\right]=\sum_{i=1}^{4} \operatorname{rank} C_{i},
$$

where $C_{1} \triangleq A_{1}+A_{2}+B_{1}+B_{2}, C_{2} \triangleq A_{1}+A_{2}-B_{1}-B_{2}, C_{3} \triangleq A_{1}-A_{2}+B_{1}-B_{2}$, and $C_{4} \triangleq A_{1}-A_{2}-B_{1}+B_{2}$. If, in addition, $n=m$, then

$$
\operatorname{det}\left[\begin{array}{cc}
\mathcal{A} & \mathcal{B} \\
\mathcal{B} & \mathcal{A}
\end{array}\right]=\prod_{i=1}^{4} \operatorname{det} C_{i} .
$$

(Proof: See [551].) (Remark: See Fact 3.11.3.)
Fact 2.12.15. Let $A, B, C, D \in \mathbb{F}^{n \times n}$, and assume that $\operatorname{rank}\left[\begin{array}{lll}A & B \\ C & D\end{array}\right]=$ n. Then,

$$
\operatorname{det}\left[\begin{array}{ll}
\operatorname{det} A & \operatorname{det} B \\
\operatorname{det} C & \operatorname{det} D
\end{array}\right]=0 .
$$

Fact 2.12.16. Let $A, B, C, D \in \mathbb{F}^{n \times n}$. Then,

$$
\operatorname{det}\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]= \begin{cases}\operatorname{det}(D A-C B), & A B=B A \\
\operatorname{det}(A D-C B), & A C=C A \\
\operatorname{det}(A D-B C), & D C=C D \\
\operatorname{det}(D A-B C), & D B=B D\end{cases}
$$

(Remark: These identities are Schur's formulas. See [66, p. 11].) (Proof: If A is nonsingular, then

$$
\begin{aligned}
\operatorname{det}\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right] & =(\operatorname{det} A) \operatorname{det}\left(D-C A^{-1} B\right)=\operatorname{det}\left(D A-C A^{-1} B A\right) \\
& =\operatorname{det}(D A-C B) .
\end{aligned}
$$

Alternatively, note the identity

$$
\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]=\left[\begin{array}{cc}
A & 0 \\
C & D A-C B
\end{array}\right]\left[\begin{array}{cc}
I & B A^{-1} \\
0 & A^{-1}
\end{array}\right]
$$

If A is singular, then replace A by $A+\varepsilon I$ and use continuity.) (Problem: Find a direct proof for the case in which A is singular.)

Fact 2.12.17. Let $A, B, C, D \in \mathbb{F}^{n \times n}$. Then,

$$
\operatorname{det}\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]= \begin{cases}\operatorname{det}\left(D A^{\mathrm{T}}-C B^{\mathrm{T}}\right), & A B^{\mathrm{T}}=B A^{\mathrm{T}}, \\
\operatorname{det}\left(A^{\mathrm{T}} D-C^{\mathrm{T}} B\right), & A^{\mathrm{T}} C=C^{\mathrm{T}} A, \\
\operatorname{det}\left(A D^{\mathrm{T}}-B C^{\mathrm{T}}\right), & D^{\mathrm{T}}, \\
\operatorname{det}\left(D^{\mathrm{T}} A-B^{\mathrm{T}} C\right), & D^{\mathrm{T}} B=B^{\mathrm{T}} D, \\
(-1)^{\mathrm{rank} B} \operatorname{det}\left(A D^{\mathrm{T}}+B C^{\mathrm{T}}\right), & A B^{\mathrm{T}}=-B A^{\mathrm{T}}, \\
(-1)^{\mathrm{rank} A \operatorname{det}\left(A^{\mathrm{T}} D+C^{\mathrm{T}} B\right),} & A^{\mathrm{T}} C=-C^{\mathrm{T}} A, \\
(-1)^{\mathrm{rank} C} \operatorname{det}\left(A D^{\mathrm{T}}+B C^{\mathrm{T}}\right), & D C^{\mathrm{T}}=-C D^{\mathrm{T}}, \\
(-1)^{\mathrm{rank} D} \operatorname{det}\left(D A^{\mathrm{T}}+B C^{\mathrm{T}}\right), & D^{\mathrm{T}} B=-B^{\mathrm{T}} D .\end{cases}
$$

(Proof: If A is nonsingular and $A B^{\mathrm{T}}=B A^{\mathrm{T}}$, then

$$
\begin{aligned}
\operatorname{det}\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right] & =(\operatorname{det} A) \operatorname{det}\left(D-C A^{-1} B\right) \\
& =\operatorname{det}\left(D A^{\mathrm{T}}-C A^{-1} B A^{\mathrm{T}}\right)=\operatorname{det}\left(D A^{\mathrm{T}}-C B^{\mathrm{T}}\right) .
\end{aligned}
$$

If A is singular, then a continuity argument can be used with B symmetrized by means of pre- and post-multiplication if necessary. If A is nonsingular
and $A B^{\mathrm{T}}=-B A^{\mathrm{T}}$, then $A B^{\mathrm{T}}$ is skew symmetric, B has even rank, and $\operatorname{det}\left[\begin{array}{cc}A & B \\ C & D\end{array}\right]=\operatorname{det}\left(D A^{\mathrm{T}}+C B^{\mathrm{T}}\right)$. See $[393,587]$.)

Fact 2.12.18. Let $A, B, C, D \in \mathbb{F}^{n \times n}$. Then,
$\operatorname{det}\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]^{2}$
$= \begin{cases}\operatorname{det}\left(A^{2}+B C\right) \operatorname{det}\left(C B+D^{2}\right), & A B=-B D \text { or } C A=-D C, \\ (-1)^{n} \operatorname{det}(A C+B A) \operatorname{det}(C D+D B), & A D=-B^{2} \text { or } C^{2}=-D A, \\ (-1)^{n} \operatorname{det}(A B+B D) \operatorname{det}(C A+D C), & A^{2}=-B C \text { or } C B=-D^{2}, \\ \operatorname{det}\left(A D+B^{2}\right) \operatorname{det}\left(C^{2}+D A\right), & A C=-B A \text { or } C D=-D B, \\ \operatorname{det}\left(A A^{\mathrm{T}}+B B^{\mathrm{T}}\right) \operatorname{det}\left(C C^{\mathrm{T}}+D D^{\mathrm{T}}\right), & A C^{\mathrm{T}}=-B D^{\mathrm{T}} \text { or } C A^{\mathrm{T}}=-D B^{\mathrm{T}}, \\ (-1)^{n} \operatorname{det}\left(A B^{\mathrm{T}}+B A^{\mathrm{T}}\right) \operatorname{det}\left(C D^{\mathrm{T}}+D C^{\mathrm{T}}\right), A D^{\mathrm{T}}=-B C^{\mathrm{T}} \text { or } C B^{\mathrm{T}}=-D A^{\mathrm{T}}, \\ {\left[\operatorname{det}\left(A D^{\mathrm{T}}+B C^{\mathrm{T}}\right)\right]^{2},} & A B^{\mathrm{T}}=-B A^{\mathrm{T}} \text { or } C D^{\mathrm{T}}=-D C^{\mathrm{T}} .\end{cases}$
(Proof: Form $\left[\begin{array}{cc}A & B \\ C & D\end{array}\right]^{2},\left[\begin{array}{cc}A & B \\ C & D\end{array}\right]\left[\begin{array}{ll}C & D \\ A & B\end{array}\right]$, etc.)
Fact 2.12.19. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{n \times l}$. Then,
$\operatorname{det}\left[\begin{array}{ll}A^{*} A & A^{*} B \\ B^{*} A & B^{*} B\end{array}\right]= \begin{cases}\operatorname{det}\left(A^{*} A\right) \operatorname{det}\left[B^{*} B-B^{*} A\left(A^{*} A\right)^{-1} A^{*} B\right], & \operatorname{rank} A=m, \\ \operatorname{det}\left(B^{*} B\right) \operatorname{det}\left[A^{*} A-A^{*} B\left(B^{*} B\right)^{-1} B^{*} A\right], & \operatorname{rank} B=l, \\ 0, & n<m+l .\end{cases}$
Fact 2.12.20. Let $A \in \mathbb{F}^{n \times n}$, and assume that either $A_{(i, j)}=0$ for all i, j such that $i+j<n+1$ or $A_{(i, j)}=0$ for all i, j such that $i+j>n+1$. Then,

$$
\operatorname{det} A=(-1)^{\lfloor n / 2\rfloor} \prod_{i=1}^{n} A_{(i, n+1-i)}
$$

(Remark: A is lower reverse triangular.)

Fact 2.12.21. Define $A \in \mathbb{R}^{n \times n}$ by

$$
A \triangleq\left[\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
0 & 0 & 0 & \ddots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
1 & 0 & 0 & \cdots & 0 & 0
\end{array}\right]
$$

Then,

$$
\operatorname{det} A=(-1)^{n+1}
$$

Fact 2.12.22. Let $a_{1}, \ldots, a_{n} \in \mathbb{F}$. Then,

$$
\operatorname{det}\left[\begin{array}{cccc}
1+a_{1} & a_{2} & \cdots & a_{n} \\
a_{1} & 1+a_{2} & \cdots & a_{n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1} & a_{2} & \cdots & 1+a_{n}
\end{array}\right]=1+\sum_{i=1}^{n} a_{i} .
$$

Fact 2.12.23. Let $a_{1}, \ldots, a_{n} \in \mathbb{F}$ be nonzero. Then,

$$
\operatorname{det}\left[\begin{array}{cccc}
\frac{1+a_{1}}{a_{1}} & 1 & \cdots & 1 \\
1 & \frac{1+a_{2}}{a_{2}} & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & \frac{1+a_{n}}{a_{n}}
\end{array}\right]=\frac{1+\sum_{i=1}^{n} a_{i}}{\prod_{i=1}^{n} a_{i}} .
$$

Fact 2.12.24. Let $a, b, c_{1}, \ldots, c_{n} \in \mathbb{F}$, define $A \in \mathbb{F}^{n \times n}$ by

$$
A \triangleq\left[\begin{array}{lllll}
c_{1} & a & a & \cdots & a \\
b & c_{2} & a & \cdots & a \\
b & b & c_{3} & \ddots & a \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
b & b & b & \cdots & c_{n}
\end{array}\right],
$$

and let $p(x)=\left(c_{1}-x\right)\left(c_{2}-x\right) \cdots\left(c_{n}-x\right)$ and $p_{i}(x)=p(x) /\left(c_{i}-x\right)$ for all $i=1, \ldots, n$. Then,

$$
\operatorname{det} A= \begin{cases}\frac{b p(a)-a p(b)}{b-a}, & b \neq a, \\ a \sum_{i=1}^{n-1} p_{i}(a)+c_{n} p_{n}(a), & b=a .\end{cases}
$$

In particular,

$$
\operatorname{det}\left[\begin{array}{ccccc}
a & b & b & \cdots & b \\
b & a & b & \cdots & b \\
b & b & a & \ddots & b \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
b & b & b & \cdots & a
\end{array}\right]=(a-b)^{n-1}[a+(n-1) b]
$$

and

$$
\operatorname{det}\left(a I_{n}+b 1_{n \times n}\right)=a^{n-1}(a+b n)
$$

(Remark: See Fact 4.10.11.) (Remark: The matrix $a I_{n}+b 1_{n \times n}$ arises in combinatorics. See $[114,116]$.)

Fact 2.12.25. Let $A, B \in \mathbb{F}^{n \times n}$, and define $\mathcal{A} \in \mathbb{F}^{k n \times k n}$ by

$$
\mathcal{A} \triangleq\left[\begin{array}{ccccc}
A & B & B & \cdots & B \\
B & A & B & \cdots & B \\
B & B & A & \ddots & B \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
B & B & B & \cdots & A
\end{array}\right]
$$

Then,

$$
\operatorname{det} \mathcal{A}=[\operatorname{det}(A-B)]^{k-1} \operatorname{det}[A+(k-1) B]
$$

If $k=2$, then

$$
\operatorname{det}\left[\begin{array}{ll}
A & B \\
B & A
\end{array}\right]=\operatorname{det}[(A+B)(A-B)]=\operatorname{det}\left(A^{2}-B^{2}-[A, B]\right)
$$

(Proof: See [238].)
Fact 2.12.26. Define the tridiagonal matrix $A \in \mathbb{F}^{n \times n}$ by

$$
A \triangleq\left[\begin{array}{cccccc}
a+b & a b & 0 & \cdots & 0 & 0 \\
1 & a+b & a b & \cdots & 0 & 0 \\
0 & 1 & a+b & \ddots & 0 & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \ddots & a+b & a b \\
0 & 0 & 0 & \cdots & 1 & a+b
\end{array}\right] .
$$

Then,

$$
\operatorname{det} A= \begin{cases}(n+1) a^{n}, & a=b, \\ \frac{a^{n+1}-b^{n+1}}{a-b}, & a \neq b .\end{cases}
$$

(Proof: See [339, pp. 401, 621].)

2.13 Facts on Adjugates and Inverses

Fact 2.13.1. Let $x, y \in \mathbb{F}^{n}$. Then,

$$
\left(I+x y^{\mathrm{T}}\right)^{\mathrm{A}}=\left(1+y^{\mathrm{T}} x\right) I-x y^{\mathrm{T}}
$$

and

$$
\operatorname{det}\left(I+x y^{\mathrm{T}}\right)=\operatorname{det}\left(I+y x^{\mathrm{T}}\right)=1+x^{\mathrm{T}} y=1+y^{\mathrm{T}} x .
$$

If, in addition, $x^{\mathrm{T}} y \neq-1$, then

$$
\left(I+x y^{\mathrm{T}}\right)^{-1}=I-\left(1+x^{\mathrm{T}} y\right)^{-1} x y^{\mathrm{T}} .
$$

Fact 2.13.2. Let $A \in \mathbb{F}^{n \times n}$ be nonsingular, and let $x, y \in \mathbb{F}^{n}$. Then,

$$
\operatorname{det}\left(A+x y^{\mathrm{T}}\right)=\left(1+y^{\mathrm{T}} A^{-1} x\right) \operatorname{det} A
$$

and

$$
\left(A+x y^{\mathrm{T}}\right)^{\mathrm{A}}=\left(1+y^{\mathrm{T}} A^{-1} x\right)(\operatorname{det} A) I-A^{\mathrm{A}} x y^{\mathrm{T}} .
$$

Furthermore, $\operatorname{det}\left(A+x y^{\mathrm{T}}\right) \neq 0$ if and only if $y^{\mathrm{T}} A^{-1} x \neq-1$. In this case,

$$
\left(A+x y^{\mathrm{T}}\right)^{-1}=A^{-1}-\left(1+y^{\mathrm{T}} A^{-1} x\right)^{-1} A^{-1} x y^{\mathrm{T}} A^{-1} .
$$

(Remark: This identity is the Sherman-Morrison-Woodbury formula.)
Fact 2.13.3. Let $A \in \mathbb{F}^{n \times n}$ be nonsingular, let $x, y \in \mathbb{F}^{n}$, let $a \in \mathbb{F}$, and assume that $y^{\mathrm{T}} A^{-1} x \neq a$. Then,

$$
\begin{aligned}
{\left[\begin{array}{cc}
A & x \\
y^{\mathrm{T}} & a
\end{array}\right]^{-1} } & =\frac{1}{a-y^{\mathrm{T}} A^{-1} x}\left[\begin{array}{cc}
\left(a-y^{\mathrm{T}} A^{-1} x\right) A^{-1}+A^{-1} x y^{\mathrm{T}} A^{-1} & -A^{-1} x \\
-y^{\mathrm{T}} A^{-1} & 1
\end{array}\right] \\
& =\frac{1}{a \operatorname{det} A-y^{\mathrm{T}} A^{\mathrm{A}} x}\left[\begin{array}{cc}
{\left[\left(a-y^{\mathrm{T}} A^{-1} x\right) I+A^{-1} x y^{\mathrm{T}}\right] A^{\mathrm{A}}} & -A^{\mathrm{A} x} \\
-y^{\mathrm{T}} A^{\mathrm{A}} & 1
\end{array}\right]
\end{aligned}
$$

(Problem: Find an expression for $\left[\begin{array}{cc}A^{4} & x \\ y^{\mathrm{a}} & a\end{array}\right]^{-1}$ in the case $\operatorname{det} A=0$ and $y^{\mathrm{T}} A^{\mathrm{A}} x \neq 0$. See Fact 2.12.5.)

Fact 2.13.4. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements hold:
i) $(\bar{A})^{\mathrm{A}}=\overline{A^{\mathrm{A}}}$.
ii) $\left(A^{\mathrm{T}}\right)^{\mathrm{A}}=\left(A^{\mathrm{A}}\right)^{\mathrm{T}}$.
iii) $\left(A^{*}\right)^{\mathrm{A}}=\left(A^{\mathrm{A}}\right)^{*}$.
iv) If $\alpha \in \mathbb{F}$, then $(\alpha A)^{\mathrm{A}}=\alpha^{n-1} A^{\mathrm{A}}$.
v) $\operatorname{det} A^{\mathrm{A}}=(\operatorname{det} A)^{n-1}$.
vi) $\left(A^{\mathrm{A}}\right)^{\mathrm{A}}=(\operatorname{det} A)^{n-2} A$.
vii) $\operatorname{det}\left(A^{\mathrm{A}}\right)^{\mathrm{A}}=(\operatorname{det} A)^{(n-1)^{2}}$.

Fact 2.13.5. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\operatorname{det}\left(A+1_{n \times n}\right)-\operatorname{det} A=1_{1 \times n}^{\mathrm{T}} A^{\mathrm{A}} 1=\sum_{i=1}^{n} \operatorname{det}\left(A \stackrel{i}{\leftarrow} 1_{n \times 1}\right) .
$$

(Proof: See [99].) (Remark: See Fact 2.12.5, Fact 2.13.8, and Fact 10.8.13.)
Fact 2.13.6. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is singular. Then,

$$
\mathcal{R}(A) \subseteq \mathcal{N}\left(A^{\mathrm{A}}\right) .
$$

Hence, $\operatorname{rank} A \leq \operatorname{def} A^{\mathrm{A}}$
and

$$
\operatorname{rank} A+\operatorname{rank} A^{\mathrm{A}} \leq n .
$$

Furthermore, if $n \geq 2$, then $\mathcal{R}(A)=\mathcal{N}\left(A^{\mathrm{A}}\right)$ if and only if $\operatorname{rank} A=n-1$.
Fact 2.13.7. Let $A \in \mathbb{F}^{n \times n}$ and $n \geq 2$. Then, the following statements hold:
i) $\operatorname{rank} A^{\mathrm{A}}=n$ if and only if $\operatorname{rank} A=n$.
ii) $\operatorname{rank} A^{\mathrm{A}}=1$ if and only if $\operatorname{rank} A=n-1$.
iii) $A^{\mathrm{A}}=0$ if and only if $\operatorname{rank} A<n-1$.
(Proof: See [466, p. 12].) (Remark: See Fact 4.10.3.)
Fact 2.13.8. Let $A, B \in \mathbb{F}^{n \times n}$. Then,

$$
\left(A^{\mathrm{A}} B\right)_{(i, j)}=\operatorname{det}\left(A \stackrel{i}{\leftarrow} \operatorname{col}_{j}(B)\right) .
$$

(Remark: See Fact 10.8.13.)
Fact 2.13.9. Let $A, B \in \mathbb{F}^{n \times n}$. Then, the following statements hold:
i) $(A B)^{\mathrm{A}}=B^{\mathrm{A}} A^{\mathrm{A}}$.
ii) If B is nonsingular, then $\left(B A B^{-1}\right)^{\mathrm{A}}=B A^{\mathrm{A}} B^{-1}$.
iii) If $A B=B A$, then $A^{\mathrm{A}} B=B A^{\mathrm{A}}, A B^{\mathrm{A}}=B^{\mathrm{A}} A$, and $A^{\mathrm{A}} B^{\mathrm{A}}=B^{\mathrm{A}} A^{\mathrm{A}}$.

Fact 2.13.10. Let $A, B, C, D \in \mathbb{F}^{n \times n}$ and $A B C D=I$. Then, $A B C D$ $=D A B C=C D A B=B C D A$.

Fact 2.13.11. Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \mathbb{F}^{2 \times 2}$, where $a d-b c \neq 0$. Then,

$$
A^{-1}=(a d-b c)^{-1}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Furthermore, if $A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right] \in \mathbb{F}^{3 \times 3}$ and $\beta=a(e i-f h)-b(d i-f g)+c(d h-$ $e g) \neq 0$, then

$$
A^{-1}=\beta^{-1}\left[\begin{array}{ccc}
e i-f h & -(b i-c h) & b f-c e \\
-(d i-f g) & a i-c g & -(a f-c d) \\
a h-e g & -(a h-b g) & a e-b d
\end{array}\right] .
$$

Fact 2.13.12. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that $A+B$ is nonsingular. Then,

$$
A(A+B)^{-1} B=B(A+B)^{-1} A=A-A(A+B)^{-1} A=B-B(A+B)^{-1} B .
$$

Fact 2.13.13. Let $A, B \in \mathbb{F}^{n \times n}$ be nonsingular. Then,

$$
A^{-1}+B^{-1}=A^{-1}(A+B) B^{-1} .
$$

Furthermore, $A^{-1}+B^{-1}$ is nonsingular if and only if $A+B$ is nonsingular. In this case,

$$
\begin{aligned}
\left(A^{-1}+B^{-1}\right)^{-1} & =A(A+B)^{-1} B \\
& =B(A+B)^{-1} A \\
& =A-A(A+B)^{-1} A \\
& =B-B(A+B)^{-1} B .
\end{aligned}
$$

Fact 2.13.14. Let $A, B \in \mathbb{F}^{n \times n}$ be nonsingular, and assume that $A-B$ is nonsingular. Then,

$$
\left(A^{-1}-B^{-1}\right)^{-1}=A-A(A-B)^{-1} A
$$

Fact 2.13.15. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times n}$, and assume that $I+A B$ is nonsingular. Then, $I+B A$ is nonsingular and

$$
\left(I_{n}+A B\right)^{-1} A=A\left(I_{m}+B A\right)^{-1} .
$$

(Remark: This result is the push-through identity.) Furthermore,

$$
(I+A B)^{-1}=I-(I+A B)^{-1} A B
$$

Fact 2.13.16. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that $I+B A$ is nonsingular. Then,

$$
(I+A B)^{-1}=I-A(I+B A)^{-1} B
$$

Fact 2.13.17. Let $A \in \mathbb{F}^{n \times n}$, and assume that A and $A+I$ are nonsingular. Then,

$$
(A+I)^{-1}+\left(A^{-1}+I\right)^{-1}=(A+I)^{-1}+(A+I)^{-1} A=I
$$

Fact 2.13.18. Let $A \in \mathbb{F}^{n \times m}$. Then,

$$
\left(I+A A^{*}\right)^{-1}=I-A\left(I+A^{*} A\right)^{-1} A^{*} .
$$

Fact 2.13.19. Let $A \in \mathbb{F}^{n \times n}$ be nonsingular, let $B \in \mathbb{F}^{n \times m}$, let $C \in$ $\mathbb{F}^{m \times n}$, and assume that $A+B C$ and $I+C A^{-1} B$ are nonsingular. Then,

$$
(A+B C)^{-1} B=A^{-1} B\left(I+C A^{-1} B\right)^{-1} .
$$

Fact 2.13.20. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that B is nonsingular. Then,

$$
A=B\left[I+B^{-1}(A-B)\right] .
$$

Fact 2.13.21. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and $A+B$ are nonsingular. Then, for all $k \in \mathbb{N}$,

$$
\begin{aligned}
(A+B)^{-1} & =\sum_{i=0}^{k} A^{-1}\left(-B A^{-1}\right)^{i}+\left(-A^{-1} B\right)^{k+1}(A+B)^{-1} \\
& =\sum_{i=0}^{k} A^{-1}\left(-B A^{-1}\right)^{i}+A^{-1}\left(-B A^{-1}\right)^{k+1}\left(I+B A^{-1}\right)^{-1} .
\end{aligned}
$$

Fact 2.13.22. Let $A, B \in \mathbb{F}^{n \times n}$ and $\alpha \in \mathbb{F}$, and assume that A, B, $\alpha A^{-1}+(1-\alpha) B^{-1}$, and $\alpha B+(1-\alpha) A$ are nonsingular. Then,

$$
\begin{aligned}
\alpha A+(1-\alpha) B & -\left[\alpha A^{-1}+(1-\alpha) B^{-1}\right]^{-1} \\
& =\alpha(1-\alpha)(A-B)[\alpha B+(1-\alpha) A]^{-1}(A-B) .
\end{aligned}
$$

Fact 2.13.23. Let $A \in \mathbb{F}^{n \times m}$. If $\operatorname{rank} A=m$, then $\left(A^{*} A\right)^{-1} A^{*}$ is a left inverse of A. If rank $A=n$, then $A^{*}\left(A A^{*}\right)^{-1}$ is a right inverse of A. (Remark: See Fact 3.4.19, Fact 3.4.20, and Fact 3.5.3.) (Problem: If $\operatorname{rank} A=n$ and $b \in \mathbb{R}^{n}$, then, for every solution $x \in \mathbb{R}^{m}$ of $A x=b$, does there exist a right inverse A^{R} of A such that $x=A^{\mathrm{R}} b$?)

Fact 2.13.24. Let $A \in \mathbb{F}^{n \times m}$, and assume that $\operatorname{rank} A=m$. Then, $A^{\mathrm{L}} \in \mathbb{F}^{m \times n}$ is a left inverse of A if and only if there exists $B \in \mathbb{F}^{m \times n}$ such that $B A$ is nonsingular and

$$
A^{\mathrm{L}}=(B A)^{-1} B
$$

(Proof: For necessity, let $B=A^{\mathrm{L}}$.)
Fact 2.13.25. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$, and assume that A and B are right invertible. Then, $A B$ is right invertible. If, in addition, A^{R} is a right inverse of A and B^{R} is a right inverse of B, then $B^{\mathrm{R}} A^{\mathrm{R}}$ is a right inverse of $A B$.

Fact 2.13.26. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$, and assume that A and B are left invertible. Then, $A B$ is left invertible. If, in addition, A^{L} is a left inverse of A and B^{L} is a left inverse of B, then $B^{\mathrm{L}} A^{\mathrm{L}}$ is a left inverse of $A B$.

Fact 2.13.27. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{n \times m}, C \in \mathbb{F}^{m \times n}$, and $D \in \mathbb{F}^{m \times m}$, and assume that A and D are nonsingular. Then,

$$
\left[\begin{array}{cc}
A & B \\
0 & D
\end{array}\right]^{-1}=\left[\begin{array}{cc}
A^{-1} & -A^{-1} B D^{-1} \\
0 & D^{-1}
\end{array}\right]
$$

and

$$
\left[\begin{array}{cc}
A & 0 \\
C & D
\end{array}\right]^{-1}=\left[\begin{array}{cc}
A^{-1} & 0 \\
-D^{-1} C A^{-1} & D^{-1}
\end{array}\right]
$$

Fact 2.13.28. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{m \times m}$, and $C \in \mathbb{F}^{m \times n}$. Then,

$$
\operatorname{det}\left[\begin{array}{cc}
0 & A \\
B & C
\end{array}\right]=\operatorname{det}\left[\begin{array}{cc}
C & B \\
A & 0
\end{array}\right]=(-1)^{n m}(\operatorname{det} A)(\operatorname{det} B)
$$

If, in addition, A and B are nonsingular, then

$$
\left[\begin{array}{cc}
0 & A \\
B & C
\end{array}\right]^{-1}=\left[\begin{array}{cc}
-B^{-1} C A^{-1} & B^{-1} \\
A^{-1} & 0
\end{array}\right]
$$

and

$$
\left[\begin{array}{cc}
C & B \\
A & 0
\end{array}\right]^{-1}=\left[\begin{array}{cc}
0 & A^{-1} \\
B^{-1} & -B^{-1} C A^{-1}
\end{array}\right]
$$

Fact 2.13.29. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{n \times m}$, and $C \in \mathbb{F}^{m \times m}$, and assume that C is nonsingular. Then,

$$
\left[\begin{array}{cc}
A & B \\
B^{\mathrm{T}} & C
\end{array}\right]=\left[\begin{array}{cc}
A-B C^{-1} B^{\mathrm{T}} & B \\
0 & C
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
C^{-1} B^{\mathrm{T}} & I
\end{array}\right] .
$$

If, in addition, $A-B C^{-1} B^{\mathrm{T}}$ is nonsingular, then $\left[\begin{array}{cc}A & B \\ B^{\mathrm{T}} & C\end{array}\right]$ is nonsingular and

$$
\begin{aligned}
& {\left[\begin{array}{cc}
A & B \\
B^{\mathrm{T}} & C
\end{array}\right]^{-1}} \\
& =\left[\begin{array}{cc}
\left(A-B C^{-1} B^{\mathrm{T}}\right)^{-1} & -\left(A-B C^{-1} B^{\mathrm{T}}\right)^{-1} B C^{-1} \\
-C^{-1} B^{\mathrm{T}}\left(A-B C^{-1} B^{\mathrm{T}}\right)^{-1} & C^{-1} B^{\mathrm{T}}\left(A-B C^{-1} B^{\mathrm{T}}\right)^{-1} B C^{-1}+C^{-1}
\end{array}\right] .
\end{aligned}
$$

Fact 2.13.30. Let $A, B \in \mathbb{F}^{n \times n}$. Then,

$$
\operatorname{det}\left[\begin{array}{cc}
I & A \\
B & I
\end{array}\right]=\operatorname{det}(I-A B)=\operatorname{det}(I-B A)
$$

If $\operatorname{det}(I-B A) \neq 0$, then

$$
\begin{aligned}
{\left[\begin{array}{cc}
I & A \\
B & I
\end{array}\right]^{-1} } & =\left[\begin{array}{cc}
I+A(I-B A)^{-1} B & -A(I-B A)^{-1} \\
-(I-B A)^{-1} B & (I-B A)^{-1}
\end{array}\right] \\
& =\left[\begin{array}{cc}
(I-A B)^{-1} & -(I-A B)^{-1} A \\
-B(I-A B)^{-1} & I+B(I-A B)^{-1} A
\end{array}\right]
\end{aligned}
$$

Fact 2.13.31. Let $A, B \in \mathbb{F}^{n \times n}$. Then,

$$
\left[\begin{array}{cc}
A & B \\
B & A
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
I & I \\
I & -I
\end{array}\right]\left[\begin{array}{cc}
A+B & 0 \\
0 & A-B
\end{array}\right]\left[\begin{array}{cc}
I & I \\
I & -I
\end{array}\right] .
$$

Therefore,

$$
\operatorname{rank}\left[\begin{array}{cc}
A & B \\
B & A
\end{array}\right]=\operatorname{rank}(A+B)+\operatorname{rank}(A-B)
$$

Now, assume that $n=m$. Then,

$$
\operatorname{det}\left[\begin{array}{ll}
A & B \\
B & A
\end{array}\right]=\operatorname{det}[(A+B)(A-B)]=\operatorname{det}\left(A^{2}-B^{2}-[A, B]\right)
$$

If, in addition, $A+B$ and $A-B$ are nonsingular, then

$$
\left[\begin{array}{ll}
A & B \\
B & A
\end{array}\right]^{-1}=\left[\begin{array}{ll}
(A+B)^{-1}+(A-B)^{-1} & (A+B)^{-1}-(A-B)^{-1} \\
(A+B)^{-1}-(A-B)^{-1} & (A+B)^{-1}+(A-B)^{-1}
\end{array}\right]
$$

Fact 2.13.32. Let $\mathcal{A} \triangleq\left[\begin{array}{cc}A & B \\ 0_{m \times m} & C\end{array}\right]$, where $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{n \times n}$, and $C \in \mathbb{F}^{m \times n}$, and assume that $C A$ is nonsingular. Furthermore, define $P \triangleq$ $A(C A)^{-1} C$ and $P_{\perp} \triangleq I-P$. then \mathcal{A} is nonsingular if and only if $P+P_{\perp} B P_{\perp}$
is nonsingular. In this case,

$$
\mathcal{A}^{-1}=\left[\begin{array}{cc}
(C A)^{-1}(C-C B D) & -(C A)^{-1} C B(A-D B A)(C A)^{-1} \\
D & (A-D B A)(C A)^{-1}
\end{array}\right],
$$

where $D \triangleq\left(P+P_{\perp} B P_{\perp}\right)^{-1} P_{\perp}$. (Proof: See [263].)
Fact 2.13.33. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{n \times(n-m)}$, and assume that $\left[\begin{array}{ll}A & B\end{array}\right]$ is nonsingular and $A^{*} B=0$. Then,

$$
\left[\begin{array}{ll}
A & B
\end{array}\right]^{-1}=\left[\begin{array}{c}
\left(A^{*} A\right)^{-1} A^{*} \\
\left(B^{*} B\right)^{-1} B^{*}
\end{array}\right]
$$

(Remark: See Fact 6.4.14.) (Problem: Find an expression for $\left[\begin{array}{ll}A & B\end{array}\right]^{-1}$ without assuming $A^{*} B=0$.)

Fact 2.13.34. Let $M \triangleq\left[\begin{array}{cc}A & B \\ C & D\end{array}\right] \in \mathbb{F}^{(n+m) \times(n+m)}$ be nonsingular, where $A \in \mathbb{F}^{n \times n}$ and $D \in \mathbb{F}^{m \times m}$, and let $\left[\begin{array}{cc}A^{\prime} & B^{\prime} \\ C^{\prime} & D^{\prime}\end{array}\right] \triangleq M^{-1}$, where $A^{\prime} \in \mathbb{F}^{n \times n}$ and $D^{\prime} \in \mathbb{F}^{m \times m}$. Then,

$$
\operatorname{det} D^{\prime}=\frac{\operatorname{det} A}{\operatorname{det} M}
$$

and

$$
\operatorname{det} A^{\prime}=\frac{\operatorname{det} D}{\operatorname{det} M} .
$$

Consequently, A is nonsingular if and only if D^{\prime} is nonsingular, and D is nonsingular if and only if A^{\prime} is nonsingular. (Proof: Use $M\left[\begin{array}{cc}1 & B^{\prime} \\ 0 & D^{\prime}\end{array}\right]=\left[\begin{array}{cc}A & 0 \\ C & 1\end{array}\right]$. See [506].) (Remark: This identity is a special case of Jacobi's identity. See [287, p. 21].) (Remark: See Fact 3.6.7.)

Fact 2.13.35. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{n \times l}$, and $C \in \mathbb{F}^{m \times l}$. Then,

$$
\left[\begin{array}{ccc}
I_{n} & A & B \\
0 & I_{m} & C \\
0 & 0 & I_{l}
\end{array}\right]^{-1}=\left[\begin{array}{ccc}
I_{n} & -A & A C-B \\
0 & I_{m} & -C \\
0 & 0 & I_{l}
\end{array}\right] .
$$

Fact 2.13.36. Let $A \in \mathbb{F}^{n \times n}$ be nonsingular, and define $A_{0} \triangleq I_{n}$. Furthermore, for all $k=1, \ldots, n$, let

$$
\alpha_{k}=\frac{1}{k} \operatorname{tr} A A_{k-1},
$$

and, for all $k=1, \ldots, n-1$, let

$$
A_{k}=A A_{k-1}-\alpha_{k} I .
$$

Then,

$$
A^{-1}=\frac{1}{\alpha_{n}} A_{n-1} .
$$

(Remark: This result is due to Frame. See [74, p. 99].)

Fact 2.13.37. Let $A \in \mathbb{F}^{n \times n}$ be nonsingular and define $\left\{B_{i}\right\}_{i=1}^{\infty}$ by

$$
B_{i+1} \triangleq 2 B_{i}-B_{i} A B_{i},
$$

where $B_{0} \in \mathbb{F}^{n \times n}$ satisfies $\operatorname{sprad}\left(I-B_{0} A\right)<1$. Then,

$$
B_{i} \rightarrow A^{-1}
$$

as $i \rightarrow \infty$. (Proof: See [64, p. 167].) (Remark: This sequence is a NewtonRaphson algorithm.) (Remark: See Fact 6.3 .18 for the case in which A is singular or not square.)

Fact 2.13.38. Let $A \in \mathbb{F}^{n \times n}$ be nonsingular. Then, $A+A^{-*}$ is nonsingular. (Proof: Note that $A A^{*}+I$ is positive definite.)

Fact 2.13.39. Let $A \in \mathbb{F}^{n \times n}$ be nonsingular. Then, $X=A^{-1}$ is the unique matrix satisfying

$$
\operatorname{rank}\left[\begin{array}{cc}
A & I \\
I & X
\end{array}\right]=\operatorname{rank} A .
$$

(Remark: See Fact 6.3.13 and Fact 6.5.5.) (Proof: See [203].)

2.14 Facts on Commutators

Fact 2.14.1. Let $A, B \in \mathbb{F}^{2 \times 2}$. Then,

$$
[A, B]^{2}=\frac{1}{2} \operatorname{tr}[A, B]^{2} I_{2} .
$$

(Remark: See [211, 212].)
Fact 2.14.2. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that $[A, B]=0$. Then, $\left[A^{k}, B^{l}\right]=0$ for all $k, l \in \mathbb{N}$.

Fact 2.14.3. Let $A, B, C \in \mathbb{F}^{n \times n}$. Then, the following identities hold:
i) $[A, A]=0$.
ii) $[A, B]=[-A,-B]=-[B, A]$.
iii) $[A, B+C]=[A, B]+[A, C]$.
iv) $[\alpha A, B]=[A, \alpha B]=\alpha[A, B]$ for all $\alpha \in \mathbb{F}$.
v) $[A,[B, C]]+[B,[A, C]]+[C,[A, B]]=0$.
vi) $[A, B]^{\mathrm{T}}=\left[B^{\mathrm{T}}, A^{\mathrm{T}}\right]=-\left[A^{\mathrm{T}}, B^{\mathrm{T}}\right]$.
vii) $\operatorname{tr}[A, B]=0$.
viii) $\operatorname{tr} A^{k}[A, B]=\operatorname{tr} B^{k}[A, B]=0$ for all $k \in \mathbb{P}$.
ix) $[[A, B], B-A]=[[B, A], A-B]$.
x) $[A,[A, B]]=-[A,[B, A]]$.
(Remark: v) is the Jacobi identity.)
Fact 2.14.4. Let $A, B \in \mathbb{F}^{n \times n}$. Then, for all $X \in \mathbb{F}^{n \times n}$,

$$
\operatorname{ad}_{[A, B]}=\left[\operatorname{ad}_{A}, \operatorname{ad}_{B}\right],
$$

that is,

$$
\operatorname{ad}_{[A, B]}(X)=\operatorname{ad}_{A}\left[\operatorname{ad}_{B}(X)\right]-\operatorname{ad}_{B}\left[\operatorname{ad}_{A}(X)\right]
$$

or

$$
[[A, B], X]=[A,[B, X]]-[B,[A, X]] .
$$

Fact 2.14.5. Let $A \in \mathbb{F}^{n \times n}$ and, for all $X \in \mathbb{F}^{n \times n}$, define

$$
\operatorname{ad}_{A}^{k}(X) \triangleq \begin{cases}\operatorname{ad}_{A}(X), & k=1 \\ \operatorname{ad}_{A}^{k-1}\left[\operatorname{ad}_{A}(X)\right], & k \geq 2\end{cases}
$$

Then, for all $X \in \mathbb{F}^{n \times n}$ and for all $k \geq 1$,

$$
\operatorname{ad}_{A}^{2}(X)=[A,[A, X]]-[[A, X], A]
$$

and

$$
\operatorname{ad}_{A}^{k}(X)=\sum_{i=0}^{k}(-1)^{k-i}\binom{k}{i} A^{i} X A^{k-i} .
$$

(Remark: The proof of Proposition 11.4.8 is based on $g\left(e^{\operatorname{tad}_{A}} e^{\operatorname{tad}_{B}}\right)$, where $g(z) \triangleq(\log z) /(z-1)$. See [496, p. 35].) (Remark: See Fact 11.11.4.) (Proof: For the last identity, see [466, pp. 176, 207].)

Fact 2.14.6. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that $[A, B]=A$. Then, A is singular. (Proof: If A is nonsingular, then $\operatorname{tr} B=\operatorname{tr} A B A^{-1}=\operatorname{tr} B+n$.)

Fact 2.14.7. Let $A, B \in \mathbb{R}^{n \times n}$ be such that $A B=B A$. Then, there exists $C \in \mathbb{R}^{n \times n}$ such that $A^{2}+B^{2}=C^{2}$. (Proof: See [180].) (Remark: The result applies to real matrices only.)

2.15 Facts on Complex Matrices

Fact 2.15.1. Let $a, b \in \mathbb{R}$. Then, $\left[\begin{array}{cc}a & b \\ -b & a\end{array}\right]$ is a representation of the complex number $a+\jmath b$ that preserves addition, multiplication and inversion of complex numbers. In particular, if $a^{2}+b^{2} \neq 0$, then

$$
\left[\begin{array}{cc}
a & b \\
-b & a
\end{array}\right]^{-1}=\left[\begin{array}{cc}
\frac{a}{a^{2}+b^{2}} & \frac{-b}{a^{2}+b^{2}} \\
\frac{b}{a^{2}+b^{2}} & \frac{a}{a^{2}+b^{2}}
\end{array}\right]
$$

and

$$
(a+\jmath b)^{-1}=\frac{a}{a^{2}+b^{2}}-\jmath \frac{b}{a^{2}+b^{2}} .
$$

(Remark: $\left[\begin{array}{cc}a & b \\ -b & a\end{array}\right]$ is a rotation-dilation. See Fact 3.11.1.)
Fact 2.15.2. Let $\nu, \omega \in \mathbb{R}$. Then,

$$
\left[\begin{array}{cc}
\nu & \omega \\
-\omega & \nu
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
\jmath & -\jmath
\end{array}\right]\left[\begin{array}{cc}
\nu+\jmath \omega & 0 \\
0 & \nu-\jmath \omega
\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
\jmath & -\jmath
\end{array}\right]^{*}
$$

and

$$
\left[\begin{array}{cc}
\nu & \omega \\
-\omega & \nu
\end{array}\right]^{-1}=\frac{1}{\nu^{2}+\omega^{2}}\left[\begin{array}{cc}
\nu & -\omega \\
\omega & \nu
\end{array}\right] .
$$

(Remark: See Fact 2.15.1.)
Fact 2.15.3. Let $A, B \in \mathbb{R}^{n \times m}$. Then,

$$
\begin{aligned}
{\left[\begin{array}{cc}
A & B \\
-B & A
\end{array}\right] } & =\frac{1}{2}\left[\begin{array}{cc}
I & I \\
\jmath I & -\jmath I
\end{array}\right]\left[\begin{array}{cc}
A+\jmath B & 0 \\
0 & A-\jmath B
\end{array}\right]\left[\begin{array}{cc}
I & -\jmath I \\
I & \jmath I
\end{array}\right] \\
& =\frac{1}{2}\left[\begin{array}{cc}
I & \jmath I \\
-\jmath I & -I
\end{array}\right]\left[\begin{array}{cc}
A-\jmath B & 0 \\
0 & A+{ }_{\jmath} B
\end{array}\right]\left[\begin{array}{cc}
I & \jmath I \\
-\jmath I & -I
\end{array}\right] \\
& =\left[\begin{array}{cc}
I & 0 \\
\jmath I & I
\end{array}\right]\left[\begin{array}{cc}
A+{ }_{\jmath} B & B \\
0 & A-\jmath B
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
-\jmath I & I
\end{array}\right]
\end{aligned}
$$

and

$$
\operatorname{rank}(A+\jmath B)=\operatorname{rank}(A-\jmath B)=\frac{1}{2} \operatorname{rank}\left[\begin{array}{cc}
A & B \\
-B & A
\end{array}\right] .
$$

Now, assume that $n=m$. Then,

$$
\begin{aligned}
\operatorname{det}\left[\begin{array}{cc}
A & B \\
-B & A
\end{array}\right] & =\operatorname{det}(A+\jmath B) \operatorname{det}(A-\jmath B) \\
& =|\operatorname{det}(A+\jmath B)|^{2} \\
& =\operatorname{det}\left[A^{2}+B^{2}+\jmath(A B-B A)\right] \\
& \geq 0
\end{aligned}
$$

and

$$
\operatorname{mspec}\left(\left[\begin{array}{cc}
A & B \\
-B & A
\end{array}\right]\right)=\operatorname{mspec}\left(A+{ }_{\jmath} B\right) \cup \operatorname{mspec}\left(A-{ }_{\jmath} B\right) .
$$

If A is nonsingular, then

$$
\operatorname{det}\left[\begin{array}{cc}
A & B \\
-B & A
\end{array}\right]=\operatorname{det}\left(A^{2}+A B A^{-1} B\right)
$$

If $A B=B A$, then

$$
\operatorname{det}\left[\begin{array}{cc}
A & B \\
-B & A
\end{array}\right]=\operatorname{det}\left(A^{2}+B^{2}\right) .
$$

(Proof: If A is nonsingular, then use

$$
\left[\begin{array}{cc}
A & B \\
-B & A
\end{array}\right]=\left[\begin{array}{cc}
A & 0 \\
0 & A
\end{array}\right]\left[\begin{array}{cc}
I & A^{-1} B \\
-A^{-1} B & I
\end{array}\right]
$$

and

$$
\operatorname{det}\left[\begin{array}{cc}
I & A^{-1} B \\
-A^{-1} B & I
\end{array}\right]=\operatorname{det}\left[I+\left(A^{-1} B\right)^{2}\right] .
$$

(Remark: See Fact 4.10.18 and [37,551].)
Fact 2.15.4. Let $A, B \in \mathbb{R}^{n \times m}$ and $C, D \in \mathbb{R}^{m \times l}$. Then, $\left[\begin{array}{cc}A & B \\ -B & A\end{array}\right]$, $\left[\begin{array}{cc}C & D \\ -D & C\end{array}\right]$, and $\left[\begin{array}{cc}A+C & B+D \\ -(B+D) & A+C\end{array}\right]$ are representations of the complex matrices $A+{ }_{\jmath} B, C+{ }^{D} D$, and their sum that preserve addition.

Fact 2.15.5. Let $A, B \in \mathbb{R}^{n \times m}$ and $C, D \in \mathbb{R}^{m \times l}$. Then, $\left[\begin{array}{cc}A & B \\ -B & A\end{array}\right]$, $\left[\begin{array}{cc}C & D \\ -D & C\end{array}\right]$, and $\left[\begin{array}{cc}A C-B D & A D+B C \\ -(A D+B C) & A C-B D\end{array}\right]$ are representations of the complex matrices $A+\jmath B, C+\jmath D$, and their product that preserve multiplication.

Fact 2.15.6. Let $A, B \in \mathbb{R}^{n \times n}$. Then, $\left[\begin{array}{cc}A & B \\ -B & A\end{array}\right]$ is a representation of the complex matrix $A+{ }_{\jmath} B$ that preserves addition, multiplication, and inversion of complex matrices. In particular, $A+\jmath B$ is nonsingular if and only if $\left[\begin{array}{cc}A & B \\ -B & A\end{array}\right]$ is nonsingular. Furthermore, if A is nonsingular, then $A+{ }_{\jmath} B$ is nonsingular if and only if $A+B A^{-1} B$ is nonsingular. In this case,

$$
\left[\begin{array}{cc}
A & B \\
-B & A
\end{array}\right]^{-1}=\left[\begin{array}{cc}
\left(A+B A^{-1} B\right)^{-1} & -A^{-1} B\left(A+B A^{-1} B\right)^{-1} \\
A^{-1} B\left(A+B A^{-1} B\right)^{-1} & \left(A+B A^{-1} B\right)^{-1}
\end{array}\right]
$$

and

$$
(A+\jmath B)^{-1}=\left(A+B A^{-1} B\right)^{-1}-\jmath A^{-1} B\left(A+B A^{-1} B\right)^{-1} .
$$

Finally, assume that B is nonsingular. Then, $A+{ }_{\jmath} B$ is nonsingular if and only if $B+A B^{-1} A$ is nonsingular. In this case,

$$
\left[\begin{array}{cc}
A & B \\
-B & A
\end{array}\right]^{-1}=\left[\begin{array}{cc}
B^{-1} A\left(B+A B^{-1} A\right)^{-1} & -\left(B+A B^{-1} A\right)^{-1} \\
\left(B+A B^{-1} A\right)^{-1} & B^{-1} A\left(B+A B^{-1} A\right)^{-1}
\end{array}\right]
$$

and

$$
(A+\jmath B)^{-1}=B^{-1} A\left(B+A B^{-1} A\right)^{-1}-\jmath\left(B+A B^{-1} A\right)^{-1} .
$$

(Problem: Consider the case in which A and B are singular.)

Fact 2.15.7. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\operatorname{det}(I+A \bar{A}) \geq 0
$$

(Proof: See [181].)
Fact 2.15.8. Let $A, B \in \mathbb{F}^{n \times n}$. Then,

$$
\operatorname{det}\left[\begin{array}{cc}
A & B \\
-\bar{B} & \bar{A}
\end{array}\right] \geq 0 .
$$

If, in addition, A is nonsingular, then

$$
\operatorname{det}\left[\begin{array}{cc}
A & B \\
-\bar{B} & \bar{A}
\end{array}\right]=|\operatorname{det} A| \operatorname{det}\left(I+\overline{A^{-1} B} A^{-1} B\right) .
$$

(Proof: See [628].)
Fact 2.15.9. Let $A, B \in \mathbb{R}^{n \times n}$, and define $C \in \mathbb{R}^{2 n \times 2 n}$ by $C \triangleq$ $\left[\begin{array}{ccc}C_{11} & C_{12} & \cdots \\ C_{21} & \cdots & \\ \vdots & & \end{array}\right]$, where $C_{i j} \triangleq\left[\begin{array}{ccc}A_{(i, j)} & B_{(i, j)} \\ -B_{(i, j)} & A_{(i, j)}\end{array}\right]$ for all $i, j=1, \ldots, n$. Then,

$$
\operatorname{det} C=\left|\operatorname{det}\left(A+{ }_{\jmath} B\right)\right|^{2} .
$$

(Proof: Note that

$$
C=A \otimes I_{2}+B \otimes J_{2}=P_{2, n}\left(I_{2} \otimes A+J_{2} \otimes B\right) P_{2, n}=P_{2, n}\left[\begin{array}{cc}
A & B \\
-B & A
\end{array}\right] P_{2, n} .
$$

See [109].)

2.16 Facts on Geometry

Fact 2.16.1. The points $x, y, z \in \mathbb{R}^{2}$ lie on one line if and only if

$$
\operatorname{det}\left[\begin{array}{lll}
x & y & z \\
1 & 1 & 1
\end{array}\right]=0 .
$$

The points $x, y, z \in \mathbb{R}^{3}$ lie on one line if and only if

$$
\operatorname{det}\left[\begin{array}{lll}
x & y & z
\end{array}\right]=0 .
$$

Fact 2.16.2. Let $S \subset \mathbb{R}^{2}$ denote the triangle with vertices $\left[\begin{array}{l}0 \\ 0\end{array}\right],\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right]$, $\left[\begin{array}{l}x_{2} \\ y_{2}\end{array}\right] \in \mathbb{R}^{2}$. Then,

$$
\operatorname{area}(\mathcal{S})=\frac{1}{2}\left|\operatorname{det}\left[\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right]\right|
$$

Fact 2.16.3. Let $\mathcal{S} \subset \mathbb{R}^{2}$ denote the polygon with vertices $\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right], \ldots$,
$\left[\begin{array}{l}x_{n} \\ y_{n}\end{array}\right] \in \mathbb{R}^{2}$ arranged in counterclockwise order. Then,

$$
\begin{aligned}
\operatorname{area}(\mathcal{S})= & \frac{1}{2} \operatorname{det}\left[\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right]+\frac{1}{2} \operatorname{det}\left[\begin{array}{ll}
x_{2} & x_{3} \\
y_{2} & y_{3}
\end{array}\right]+\cdots \\
& +\frac{1}{2} \operatorname{det}\left[\begin{array}{ll}
x_{n-1} & x_{n} \\
y_{n-1} & y_{n}
\end{array}\right]+\frac{1}{2} \operatorname{det}\left[\begin{array}{ll}
x_{n} & x_{1} \\
y_{n} & y_{1}
\end{array}\right] .
\end{aligned}
$$

(Remark: The polygon need not be convex, where "counterclockwise" is determined with respect to the inside of the polygon. See [529].)

Fact 2.16.4. Let $\mathcal{S} \subset \mathbb{R}^{3}$ denote the triangle with vertices $x, y, z \in \mathbb{R}^{3}$. Then,

$$
\operatorname{area}(\mathcal{S})=\frac{1}{2} \sqrt{[(y-x) \times(z-x)]^{\mathrm{T}}[(y-x) \times(z-x)]}
$$

Fact 2.16.5. Let $\mathcal{S} \subset \mathbb{R}^{3}$ denote the tetrahedron with vertices x, y, z, w $\in \mathbb{R}^{3}$. Then,

$$
\operatorname{volume}(\mathcal{S})=\frac{1}{6}\left|(x-w)^{\mathrm{T}}[(y-w) \times(z-w)]\right|
$$

Fact 2.16.6. Let $\mathcal{S} \subset \mathbb{R}^{3}$ denote the parallelepiped with vertices x, y, z, $y+z-x, w, w+y-x, w+z-x, w+z+y-2 x \in \mathbb{R}^{3}$. Then,

$$
\operatorname{volume}(\mathcal{S})=\left|(w-x)^{\mathrm{T}}[(y-x) \times(z-x)]\right|
$$

Fact 2.16.7. Let $A \in \mathbb{R}^{n \times m}$, assume that $\operatorname{rank} A=m$, and let $\mathcal{S} \subset \mathbb{R}^{n}$ denote the parallelepiped in \mathbb{R}^{n} generated by the columns of A. Then,

$$
\operatorname{volume}(\mathcal{S})=\left[\operatorname{det}\left(A^{\mathrm{T}} A\right)\right]^{1 / 2}
$$

If, in addition, $m=n$, then

$$
\operatorname{volume}(\mathcal{S})=|\operatorname{det} A|
$$

Fact 2.16.8. Let $\mathcal{S} \subset \mathbb{R}^{n}$ and $A \in \mathbb{R}^{n \times n}$. Then,

$$
\text { volume }(A \mathcal{S})=|\operatorname{det} A| \text { volume }(\mathcal{S})
$$

(Remark: See [416, p. 468].)

2.17 Notes

The theory of determinants is discussed in [430,560,574]. The empty matrix is discussed in [435] and [484]. Convexity is the subject of [80, 103, $185,357,485,565,591]$. Convex optimization theory is the subject of [79]. Our development of rank properties is based on [398]. Theorem 2.6.3 is based on [440]. The term "subdeterminant" is used in [456] and is equivalent to minor. The notation A^{A} for adjugate is used in [523]. Numerous papers on
basic topics in matrix theory and linear algebra are collected in [129,130]. A geometric interpretation of $\mathcal{N}(A), \mathcal{R}(A), \mathcal{N}\left(A^{\mathrm{T}}\right)$, and $\mathcal{R}\left(A^{\mathrm{T}}\right)$ is given in [531]. Some reflections on matrix theory are given in [536,549].

Chapter Three
 Matrix Classes and Transformations

This chapter presents definitions of various types of matrices as well as transformations needed to analyze matrices.

3.1 Matrix Classes

In this section we categorize various types of matrices based upon their algebraic and structural properties.

The following definition introduces various types of square matrices.
Definition 3.1.1. For $A \in \mathbb{F}^{n \times n}$ define the following types of matrices:
i) A is group invertible if $\mathcal{R}(A)=\mathcal{R}\left(A^{2}\right)$.
ii) A is range Hermitian if $\mathcal{R}(A)=\mathcal{R}\left(A^{*}\right)$.
iii) A is range symmetric if $\mathcal{R}(A)=\mathcal{R}\left(A^{\mathrm{T}}\right)$.
iv) A is Hermitian if $A=A^{*}$.
v) A is symmetric if $A=A^{\mathrm{T}}$.
vi) A is skew Hermitian if $A=-A^{*}$.
vii) A is skew symmetric if $A=-A^{\mathrm{T}}$.
viii) A is normal if $A A^{*}=A^{*} A$.
ix) A is nonnegative semidefinite $(A \geq 0)$ if A is Hermitian and $x^{*} A x \geq$ 0 for all $x \in \mathbb{F}^{n}$.
x) A is nonpositive semidefinite $(A \leq 0)$ if $-A$ is nonnegative semidefinite.
xi) A is positive definite $(A>0)$ if A is Hermitian and $x^{*} A x>0$ for all $x \in \mathbb{F}^{n}$ such that $x \neq 0$.
xii) A is negative definite $(A<0)$ if $-A$ is positive definite.
xiii) A is semidissipative if $A+A^{*}$ is nonpositive semidefinite.
xiv) A is dissipative if $A+A^{*}$ is negative definite.
$x v) A$ is unitary if $A^{*} A=I$.
xvi) A is orthogonal if $A^{\mathrm{T}} A=I$.
xvii) A is a projector if A is Hermitian and idempotent.
xviii) A is a reflector if A is Hermitian and unitary.
xix) A is an elementary projector if there exists nonzero $x \in \mathbb{F}^{n}$ such that $A=I-\left(x^{*} x\right)^{-1} x x^{*}$.
$x x) A$ is an elementary reflector if there exists nonzero $x \in \mathbb{F}^{n}$ such that $A=I-2\left(x^{*} x\right)^{-1} x x^{*}$.
xxi) A is an elementary matrix if there exist $x, y \in \mathbb{F}^{n}$ such that $A=$ $I-x y^{\mathrm{T}}$ and $x^{\mathrm{T}} y \neq 1$.
xxii) A is involutory if $A^{2}=I$.
xxiii) A is skew involutory if $A^{2}=-I$.
xxiv) A is idempotent if $A^{2}=A$.
$x x v) A$ is tripotent if $A^{3}=A$.
xxvi) A is nilpotent if there exists $k \in \mathbb{P}$ such that $A^{k}=0$.
xxvii) A is reverse Hermitian if $A=A^{\hat{*}}$.
xxviii) A is reverse symmetric if $A=A^{\hat{\mathrm{T}}}$.
xxix) A is a permutation matrix if every row of A and every column of A possesses one 1 and zeros otherwise.

Let $A \in \mathbb{F}^{n \times n}$ be Hermitian. Then, the function $f: \mathbb{F}^{n} \mapsto \mathbb{R}$ defined by

$$
\begin{equation*}
f(x) \triangleq x^{*} A x \tag{3.1.1}
\end{equation*}
$$

is a quadratic form.
The $n \times n$ standard nilpotent matrix, which has ones on the superdiagonal and zeros elsewhere, is denoted by N_{n} or just N. We define $N_{1} \triangleq 0$ and $N_{0} \triangleq 0_{0 \times 0}$.

The following definition considers matrices that are not necessarily square.

Definition 3.1.2. For $A \in \mathbb{F}^{n \times m}$ define the following types of matrices:
i) A is semicontractive if $I_{n}-A A^{*}$ is nonnegative semidefinite.
ii) A is contractive if $I_{n}-A A^{*}$ is positive definite.
iii) A is left inner if $A^{*} A=I_{m}$.
iv) A is right inner if $A A^{*}=I_{n}$.
v) A is centrohermitian if $A=\hat{I}_{n} \bar{A} \hat{I}_{m}$.
vi) A is centrosymmetric if $A=\hat{I}_{n} A \hat{I}_{m}$.
vii) A is an outer product if there exist $x \in \mathbb{F}^{n}$ and $y \in \mathbb{F}^{m}$ such that $A=x y^{\mathrm{T}}$.

The following definition introduces various types of structured matrices.

Definition 3.1.3. For $A \in \mathbb{F}^{n \times m}$ with $l \triangleq \min \{n, m\}$ define the following types of matrices:
i) A is diagonal if $A_{(i, j)}=0$ for all $i \neq j$. If $n=m$, then

$$
A=\operatorname{diag}\left(A_{(1,1)}, \ldots, A_{(n, n)}\right) .
$$

ii) A is tridiagonal if $A_{(i, j)}=0$ for all $|i-j|>1$.
iii) A is reverse diagonal if $A_{(i, j)}=0$ for all $i+j \neq l+1$. If $n=m$, then

$$
A=\operatorname{revdiag}\left(A_{(1, n)}, \ldots, A_{(n, 1)}\right) .
$$

iv) A is (upper triangular, strictly upper triangular) if $A_{(i, j)}=0$ for all $(i \geq j, i>j)$.
v) A is (lower triangular, strictly lower triangular) if $A_{(i, j)}=0$ for all $(i \leq j, i<j)$.
vi) A is (upper Hessenberg, lower Hessenberg) if $A_{(i, j)}=0$ for all $(i>$ $j+1, i<j+1)$.
vii) A is Toeplitz if $A_{(i, j)}=A_{(k, l)}$ for all $k-i=l-j$, that is,

$$
A=\left[\begin{array}{cccc}
a & b & c & \cdots \\
d & a & b & \ddots \\
e & d & a & \ddots \\
\vdots & \ddots & \ddots & \ddots
\end{array}\right]
$$

viii) A is Hankel if $A_{(i, j)}=A_{(k, l)}$ for all $i+j=k+l$, that is,

$$
A=\left[\begin{array}{cccc}
a & b & c & \cdots \\
b & c & d & . \\
c & d & e & . \cdot \\
\vdots & . & . \cdot & . \cdot
\end{array}\right]
$$

ix) A is block diagonal if

$$
A=\left[\begin{array}{ccc}
A_{1} & & 0 \\
& \ddots & \\
0 & & A_{k}
\end{array}\right]=\operatorname{diag}\left(A_{1}, \ldots, A_{n}\right)
$$

where $A_{i} \in \mathbb{F}^{n_{i} \times n_{i}}$ for all $i=1, \ldots, k$.
x) A is upper block triangular if

$$
A=\left[\begin{array}{cccc}
A_{11} & A_{12} & \cdots & A_{1 k} \\
0 & A_{22} & \cdots & A_{2 k} \\
\vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & A_{k k}
\end{array}\right]
$$

where $A_{i j} \in \mathbb{F}^{n_{i} \times n_{j}}$ for all $i, j=1, \ldots, k$.
xi) A is lower block triangular if

$$
A=\left[\begin{array}{cccc}
A_{11} & 0 & \cdots & 0 \\
A_{21} & A_{22} & \ddots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
A_{k 1} & A_{k 2} & \cdots & A_{k k}
\end{array}\right]
$$

where $A_{i j} \in \mathbb{F}^{n_{i} \times n_{j}}$ for all $i, j=1, \ldots, k$.
xii) A is block Toeplitz if $A_{(i, j)}=A_{(k, l)}$ for all $k-i=l-j$, that is,

$$
A=\left[\begin{array}{cccc}
A_{1} & A_{2} & A_{3} & \cdots \\
A_{4} & A_{1} & A_{2} & \ddots \\
A_{5} & A_{4} & A_{1} & \ddots \\
\vdots & \ddots & \ddots & \ddots
\end{array}\right]
$$

where $A_{i} \in \mathbb{F}^{n_{i} \times m_{i}}$.
xiii) A is block Hankel if $A_{(i, j)}=A_{(k, l)}$ for all $i+j=k+l$, that is,

$$
A=\left[\begin{array}{cccc}
A_{1} & A_{2} & A_{3} & \cdots \\
A_{2} & A_{3} & A_{4} & . \\
A_{3} & A_{4} & A_{5} & . \\
\vdots & . & . & . \\
. & .
\end{array}\right],
$$

where $A_{i} \in \mathbb{F}^{n_{i} \times m_{i}}$.
Define the matrix $J_{n} \in \mathbb{R}^{2 n \times 2 n}$ (or just J) by

$$
J_{2 n} \triangleq\left[\begin{array}{cc}
0 & I_{n} \tag{3.1.2}\\
-I_{n} & 0
\end{array}\right] .
$$

In particular,

$$
J_{2}=\left[\begin{array}{cc}
0 & 1 \tag{3.1.3}\\
-1 & 0
\end{array}\right] .
$$

The following definition introduces various types of real matrices.
Definition 3.1.4. For $A \in \mathbb{R}^{n \times m}$ define the following types of matrices:
i) A is nonnegative ($A \geq \geq 0$) if $A_{(i, j)} \geq 0$ for all $i=1, \ldots, n$ and $j=1, \ldots, m$.
ii) A is positive $(A \gg 0)$ if $A_{(i, j)}>0$ for all $i=1, \ldots, n$ and $j=$ $1, \ldots, m$.
For $A \in \mathbb{R}^{2 n \times 2 n}$ define the following types of real matrices:
iii) A is Hamiltonian if $J^{-1} A^{\mathrm{T}} J=-A$.
iv) A is symplectic if A is nonsingular and $J^{-1} A^{\mathrm{T}} J=A^{-1}$.

Proposition 3.1.5. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements hold:
i) If A is Hermitian or skew Hermitian, then A is normal.
ii) If A is nonsingular or normal, then A is range Hermitian.
iii) If A is range Hermitian, idempotent, or tripotent, then A is group invertible.
$i v$) If A is a reflector, then A is tripotent.
v) If A is a permutation matrix, then A is orthogonal.
Proof. i) is immediate. To prove $i i$) note that if A is nonsingular, then
$\mathcal{R}(A)=\mathcal{R}\left(A^{*}\right)=\mathbb{F}^{n}$, and thus A is range Hermitian. If A is normal, then it follows from Theorem 2.4.3 that $\mathcal{R}(A)=\mathcal{R}\left(A A^{*}\right)=\mathcal{R}\left(A^{*} A\right)=\mathcal{R}\left(A^{*}\right)$, which proves that A is range Hermitian. To prove $i i i)$ note that if A is range Hermitian, then $\mathcal{R}(A)=\mathcal{R}\left(A A^{*}\right)=A \mathcal{R}\left(A^{*}\right)=A \mathcal{R}(A)=\mathcal{R}\left(A^{2}\right)$, while, if A is idempotent, then $\mathcal{R}(A)=\mathcal{R}\left(A^{2}\right)$. If A is tripotent, then $\mathcal{R}(A)=\mathcal{R}\left(A^{3}\right)=$ $A^{2} \mathcal{R}(A) \subseteq \mathcal{R}\left(A^{2}\right)=A \mathcal{R}(A) \subseteq \mathcal{R}(A)$. Hence, $\mathcal{R}(A)=\mathcal{R}\left(A^{2}\right)$.

3.2 Matrix Transformations

A variety of transformations can be employed for analyzing matrices.
Definition 3.2.1. Let $A, B \in \mathbb{F}^{n \times m}$. Then, the following terminology is defined:
i) A and B are left equivalent if there exists a nonsingular matrix $S_{1} \in \mathbb{F}^{n \times n}$ such that $A=S_{1} B$.
ii) A and B are right equivalent if there exists a nonsingular matrix $S_{2} \in \mathbb{F}^{m \times m}$ such that $A=B S_{2}$.
iii) A and B are biequivalent if there exist nonsingular matrices $S_{1} \in$ $\mathbb{F}^{n \times n}$ and $S_{2} \in \mathbb{F}^{m \times m}$ such that $A=S_{1} B S_{2}$.
iv) A and B are unitarily left equivalent if there exists a unitary matrix $S_{1} \in \mathbb{F}^{n \times n}$ such that $A=S_{1} B$.
v) A and B are unitarily right equivalent if there exists a unitary matrix $S_{2} \in \mathbb{F}^{m \times m}$ such that $A=B S_{2}$.
vi) A and B are unitarily biequivalent if there exist unitary matrices $S_{1} \in \mathbb{F}^{n \times n}$ and $S_{2} \in \mathbb{F}^{m \times m}$ such that $A=S_{1} B S_{2}$.

Definition 3.2.2. Let $A, B \in \mathbb{F}^{n \times n}$. Then, the following terminology is defined:
i) A and B are similar if there exists a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that $A=S B S^{-1}$.
ii) A and B are congruent if there exists a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that $A=S B S^{*}$.
iii) A and B are T-congruent if there exists a nonsingular matrix $S \in$ $\mathbb{F}^{n \times n}$ such that $A=S B S^{\mathrm{T}}$.
iv) A and B are unitarily similar if there exists a unitary matrix $S \in$ $\mathbb{F}^{n \times n}$ such that $A=S B S^{*}=S B S^{-1}$.

The following results summarize some matrix properties that are pre-
served under left equivalence, right equivalence, biequivalence, similarity, congruence, and unitary similarity.

Proposition 3.2.3. Let $A, B \in \mathbb{F}^{n \times n}$. If A and B are similar, then the following statements hold:
i) A and B are biequivalent.
ii) $\operatorname{tr} A=\operatorname{tr} B$.
iii) $\operatorname{det} A=\operatorname{det} B$.
iv) A^{k} and B^{k} are similar for all $k \in \mathbb{P}$.
v) $A^{k *}$ and $B^{k *}$ are similar for all $k \in \mathbb{P}$.
vi) A is nonsingular if and only if B is; in this case, A^{-k} and B^{-k} are similar for all $k \in \mathbb{P}$.
vii) A is (group invertible, involutory, skew involutory, idempotent, tripotent, nilpotent) if and only if B is.

If A and B are congruent, then the following statements hold:
viii) A and B are biequivalent.
$i x) A^{*}$ and B^{*} are congruent.
x) A is nonsingular if and only if B is; in this case, A^{-1} and B^{-1} are congruent.
xi) A is (range Hermitian, group invertible, Hermitian, skew Hermitian, nonnegative semidefinite, positive definite) if and only if B is.

If A and B are unitarily similar, then the following statements hold:
xii) A and B are similar.
xiii) A and B are congruent.
xiv) A is (range Hermitian, group invertible, normal, Hermitian, skew Hermitian, nonnegative semidefinite, positive definite, orthogonal, involutory, skew involutory, idempotent, tripotent, nilpotent) if and only if B is.

Definition 3.2.4. Let $\mathcal{S} \subseteq \mathbb{F}^{n \times n}$. Then, \mathcal{S} is a Lie algebra if the following conditions are satisfied:
i) \mathcal{S} is a subspace.
ii) If $A, B \in \mathcal{S}$, then $[A, B] \in \mathcal{S}$.

Proposition 3.2.5. The following sets are Lie algebras:
i) $\mathrm{gl}_{\mathbb{F}}(n) \triangleq \mathbb{F}^{n \times n}$.
ii) $\operatorname{pl}_{\mathbb{C}}(n) \triangleq\left\{A \in \mathbb{C}^{n \times n}: \operatorname{tr} A \in \mathbb{R}\right\}$.
iii) $\operatorname{sl}_{\mathbb{F}}(n) \triangleq\left\{A \in \mathbb{F}^{n \times n}: \quad \operatorname{tr} A=0\right\}$.
iv) $\mathrm{u}(n) \triangleq\left\{A \in \mathbb{C}^{n \times n}: A\right.$ is skew Hermitian $\}$.
v) $\operatorname{su}(n) \triangleq\left\{A \in \mathbb{C}^{n \times n}: A\right.$ is skew Hermitian and $\left.\operatorname{tr} A=0\right\}$.
vi) $\operatorname{so}(n) \triangleq\left\{A \in \mathbb{R}^{n \times n}: A\right.$ is skew symmetric $\}$.
vii) $\operatorname{sp}(n) \triangleq\left\{A \in \mathbb{R}^{2 n \times 2 n}: A\right.$ is Hamiltonian $\}$.
viii) $\operatorname{aff}_{\mathbb{F}}(n) \triangleq\left\{\left[\begin{array}{cc}A & b \\ 0 & 0\end{array}\right]: A \in \operatorname{gl}_{\mathbb{F}}(n), b \in \mathbb{F}^{n}\right\}$.
ix) $\operatorname{se}_{\mathbb{C}}(n) \triangleq\left\{\left[\begin{array}{cc}A & b \\ 0 & 0\end{array}\right]: A \in \operatorname{su}(n), b \in \mathbb{C}^{n}\right\}$.
$x) \operatorname{se}_{\mathbb{R}}(n) \triangleq\left\{\left[\begin{array}{cc}A & b \\ 0 & 0\end{array}\right]: A \in \operatorname{so}(n), b \in \mathbb{R}^{n}\right\}$.
xi) $\operatorname{trans}_{\mathbb{F}}(n) \triangleq\left\{\left[\begin{array}{ll}0 & b \\ 0 & 0\end{array}\right]: b \in \mathbb{F}^{n}\right\}$.

Definition 3.2.6. Let $\mathcal{S} \subset \mathbb{F}^{n \times n}$. Then, \mathcal{S} is a group if the following conditions are satisfied:
i) If $A \in \mathcal{S}$, then A is nonsingular.
ii) If $A \in \mathcal{S}$, then $A^{-1} \in \mathcal{S}$.
iii) If $A, B \in \mathcal{S}$, then $A B \in \mathcal{S}$.

Note that if $\mathcal{S} \subset \mathbb{F}^{n \times n}$ is a group, then $I_{n} \in \mathcal{S}$.
The following result lists several classical groups that are of importance in physics and engineering. In particular, $\mathrm{O}(1,3)$ is the Lorentz group, see, for example, [505, p. 126] or [496, p. 16].

Proposition 3.2.7. The following sets are groups:
i) $\mathrm{GL}_{\mathbb{F}}(n) \triangleq\left\{A \in \mathbb{F}^{n \times n}: \operatorname{det} A \neq 0\right\}$.
ii) $\mathrm{PL}_{\mathbb{F}}(n) \triangleq\left\{A \in \mathbb{F}^{n \times n}: \operatorname{det} A>0\right\}$.
iii) $\mathrm{SL}_{\mathbb{F}}(n) \triangleq\left\{A \in \mathbb{F}^{n \times n}: \operatorname{det} A=1\right\}$.
iv) $\mathrm{U}(n) \triangleq\left\{A \in \mathbb{C}^{n \times n}: A\right.$ is unitary $\}$.
v) $\mathrm{O}(n) \triangleq\left\{A \in \mathbb{R}^{n \times n}: A\right.$ is orthogonal $\}$.
vi) $\mathrm{U}(n, m) \triangleq\left\{A \in \mathbb{C}^{(n+m) \times(n+m)}: A^{*} \operatorname{diag}\left(I_{n},-I_{m}\right) A=\operatorname{diag}\left(I_{n},-I_{m}\right)\right\}$.
vii) $\mathrm{O}(n, m) \triangleq\left\{A \in \mathbb{R}^{(n+m) \times(n+m)}: A^{\mathrm{T}} \operatorname{diag}\left(I_{n},-I_{m}\right) A=\operatorname{diag}\left(I_{n},-I_{m}\right)\right\}$.
viii) $\mathrm{SU}(n) \triangleq\{A \in \mathrm{U}(n): \operatorname{det} A=1\}$.
ix) $\mathrm{SO}(n) \triangleq\{A \in \mathrm{O}(n): \operatorname{det} A=1\}$.
x) $\operatorname{Sp}(n) \triangleq\left\{A \in \mathbb{R}^{2 n \times 2 n}: A\right.$ is symplectic $\}$.
xi) $\operatorname{Aff}_{\mathbb{F}}(n) \triangleq\left\{\left[\begin{array}{cc}A & b \\ 0 & 1\end{array}\right]: A \in \operatorname{GL}_{\mathbb{F}}(n), b \in \mathbb{F}^{n}\right\}$.
xii) $\mathrm{SE}_{\mathbb{C}}(n) \triangleq\left\{\left[\begin{array}{cc}A & b \\ 0 & 1\end{array}\right]: A \in \operatorname{SU}(n), b \in \mathbb{C}^{n}\right\}$.
xiii) $\mathrm{SE}_{\mathbb{R}}(n) \triangleq\left\{\left[\begin{array}{cc}A & b \\ 0 & 1\end{array}\right]: A \in \mathrm{SO}(n), b \in \mathbb{R}^{n}\right\}$.
xiv) $\operatorname{Trans}_{\mathbb{F}}(n) \triangleq\left\{\left[\begin{array}{ll}I & b \\ 0 & 1\end{array}\right]: b \in \mathbb{F}^{n}\right\}$.

The following result shows that groups can be used to define equivalence relations on $\mathbb{F}^{n \times m}$.

Proposition 3.2.8. Let $\mathcal{S}_{1} \subset \mathbb{R}^{n \times n}$ and $\mathcal{S}_{2} \subset \mathbb{R}^{m \times m}$ be groups. Then, the relation \mathcal{R} defined on $\mathbb{F}^{n \times m}$ by
$(A, B) \in \mathcal{R} \Longleftrightarrow$ there exist $S_{1} \in \mathcal{S}_{1}$ and $S_{2} \in \mathcal{S}_{2}$ such that $A=S_{1} B S_{2}$ is an equivalence relation.

3.3 Facts on Range-Hermitian and Group-Invertible Matrices

Fact 3.3.1. Let $A \in \mathbb{F}^{n \times n}$. Then, A is range Hermitian if and only if $\mathcal{N}(A)=\mathcal{N}\left(A^{*}\right)$.

Fact 3.3.2. Let $A, B \in \mathbb{F}^{n \times n}$ be range Hermitian. Then, $\operatorname{rank} A B=\operatorname{rank} B A$.
(Proof: See [52].)
Fact 3.3.3. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) A is group invertible.
ii) A^{*} is group invertible.
iii) $\mathcal{N}(A)=\mathcal{N}\left(A^{2}\right)$.
iv) $\mathcal{N}(A) \cap \mathcal{R}(A)=\{0\}$.
v) $\mathcal{N}(A)+\mathcal{R}(A)=\mathbb{F}^{n}$.
vi) A and A^{2} are left equivalent.
vii) A and A^{2} are right equivalent.
viii) $\operatorname{rank} A=\operatorname{rank} A^{2}$.
$i x) \operatorname{def} A=\operatorname{def} A^{2}$.
Fact 3.3.4. Let $A \in \mathbb{F}^{n \times n}$. If A is range Hermitian, then A is group invertible.

Fact 3.3.5. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A is dissipative and B is range Hermitian. Then, ind $B=$ ind $A B$. (Proof: See [87].)

3.4 Facts on Hermitian and Skew-Hermitian Matrices

Fact 3.4.1. Let $A \in \mathbb{F}^{n \times m}$. Then, $A A^{\mathrm{T}} \in \mathbb{F}^{n \times n}$ and $A^{\mathrm{T}} A \in \mathbb{F}^{m \times m}$ are symmetric.

Fact 3.4.2. Let $A \in \mathbb{F}^{n \times n}$, let $k \in \mathbb{P}$, and assume that A is Hermitian. Then, $\mathcal{R}(A)=\mathcal{R}\left(A^{k}\right)$ and $\mathcal{N}(A)=\mathcal{N}\left(A^{k}\right)$.

Fact 3.4.3. Let $A \in \mathbb{R}^{n \times n}$. Then, the following statements hold:
i) $x^{\mathrm{T}} A x=0$ for all $x \in \mathbb{R}^{n}$ if and only if A is skew symmetric.
ii) A is symmetric and $x^{\mathrm{T}} A x=0$ for all $x \in \mathbb{R}^{n}$ if and only if $A=0$.

Fact 3.4.4. Let $A \in \mathbb{C}^{n \times n}$. Then, the following statements hold:
i) $x^{*} A x$ is real for all $x \in \mathbb{C}^{n}$ if and only if A is Hermitian.
ii) $x^{*} A x$ is imaginary for all $x \in \mathbb{C}^{n}$ if and only if A is skew Hermitian.
iii) $x^{*} A x=0$ for all $x \in \mathbb{C}^{n}$ if and only if $A=0$.

Fact 3.4.5. Let $A \in \mathbb{C}^{n \times n}$. Then, the following statements hold:
i) A is skew Hermitian if and only if $\jmath A$ is Hermitian.
ii) A is Hermitian if and only if $\jmath A$ is skew Hermitian.
iii) A is Hermitian if and only if $\operatorname{Re} A$ is symmetric and $\operatorname{Im} A$ is skew symmetric.
iv) A is skew Hermitian if and only if $\operatorname{Re} A$ is skew symmetric and $\operatorname{Im} A$ is symmetric.
$v) A$ is nonnegative semidefinite if and only if $\operatorname{Re} A$ is nonnegative semidefinite.
$v i) A$ is positive definite if and only if $\operatorname{Re} A$ is positive definite.
Fact 3.4.6. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements hold:
i) If A is (Hermitian, nonnegative semidefinite, positive definite), then so is A^{A}.
ii) If A is skew Hermitian and n is odd, then A^{A} is Hermitian.
iii) If A is skew Hermitian and n is even, then A^{A} is skew Hermitian.
$i v)$ If A is normal, then so is A^{A}.
$v)$ If A is diagonal, then so is A^{A}, and, for all $i=1, \ldots, n$,

$$
\left(A^{\mathrm{A}}\right)_{(i, i)}=\prod_{\substack{j=1 \\ j \neq i}}^{n} A_{(j, j)} .
$$

(Proof: Use Fact 2.13.9.) (Remark: See Fact 5.11.2.)
Fact 3.4.7. Let $A \in \mathbb{F}^{n \times n}$, assume that n is even, let $x \in \mathbb{F}^{n}$, and let $\alpha \in \mathbb{F}$. Then,

$$
\operatorname{det}\left(A+\alpha x x^{*}\right)=\operatorname{det} A .
$$

(Proof: Use Fact 2.13.2 and Fact 3.4.6.)
Fact 3.4.8. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) A is Hermitian.
ii) $A^{2}=A^{*} A$.
iii) $\operatorname{tr} A^{2}=\operatorname{tr} A^{*} A$.
(Proof: Use the Schur decomposition Theorem 5.4.1. See [347].) (Problem: If $A A^{*} A=A^{*} A^{2}$, then does it follow that A is normal?)

Fact 3.4.9. Let $A \in \mathbb{R}^{n \times n}$ be skew symmetric, and let $\alpha>0$. Then, $-A^{2}$ is nonnegative semidefinite, $\operatorname{det} A \geq 0$, and $\operatorname{det}(\alpha I+A)>0$. If, in addition, n is odd, then $\operatorname{det} A=0$.

Fact 3.4.10. Let $A \in \mathbb{F}^{n \times n}$ be skew Hermitian. If n is even, then $\operatorname{det} A \geq 0$. If n is odd, then $\operatorname{det} A$ is imaginary. (Proof: The first statement
follows from Proposition 5.5.25.)
Fact 3.4.11. Let $x, y \in \mathbb{F}^{n}$ and define

$$
A \triangleq\left[\begin{array}{ll}
x & y
\end{array}\right] .
$$

Then,

$$
x y^{*}-y x^{*}=A J_{2} A^{*} .
$$

Furthermore, $x y^{*}-y x^{*}$ is skew Hermitian and has rank 0 or 2.
Fact 3.4.12. Let $x, y \in \mathbb{F}^{n}$. Then, the following statements hold:
i) $x y^{\mathrm{T}}$ is idempotent if and only if either $x y^{\mathrm{T}}=0$ or $x^{\mathrm{T}} y=1$.
ii) $x y^{\mathrm{T}}$ is Hermitian if and only if there exists $\alpha \in \mathbb{R}$ such that either $y=\alpha \bar{x}$ or $x=\alpha \bar{y}$.

Fact 3.4.13. Let $x, y \in \mathbb{F}^{n}$, and define $A \triangleq I-x y^{\mathrm{T}}$. Then, the following statements hold:
i) $\operatorname{det} A=1-x^{\mathrm{T}} y$.
ii) A is nonsingular if and only if $x^{\mathrm{T}} y \neq 1$.
iii) A is nonsingular if and only if A is elementary.
iv) $\operatorname{rank} A=n-1$ if and only if $x^{\mathrm{T}} y=1$.
$v) A$ is Hermitian if and only if there exists $\alpha \in \mathbb{R}$ such that either $y=\alpha \bar{x}$ or $x=\alpha \bar{y}$.
vi) A is nonnegative semidefinite if and only if A is Hermitian and $x^{\mathrm{T}} y \leq 1$.
vii) A is positive definite if and only if A is Hermitian and $x^{\mathrm{T}} y<1$.
viii) A is idempotent if and only if either $x y^{\mathrm{T}}=0$ or $x^{\mathrm{T}} y=1$.
$i x) A$ is orthogonal if and only if either $x=0$ or $y=\frac{1}{2} y^{\mathrm{T}} y x$.
x) A is involutory if and only if $x^{\mathrm{T}} y=2$.
xi) A is a projector if and only if either $y=0$ or $x=x^{*} x y$.
xii) A is a reflector if and only if either $y=0$ or $2 x=x^{*} x y$.
xiii) A is an elementary projector if and only if $x \neq 0$ and $y=\left(x^{*} x\right)^{-1} x$.
xiv) A is an elementary reflector if and only if $x \neq 0$ and $y=2\left(x^{*} x\right)^{-1} x$. (Remark: See Fact 3.5.9.)

Fact 3.4.14. Let $x, y \in \mathbb{F}^{n \times n}$ satisfy $x^{\mathrm{T}} y \neq 1$. Then, $I-x y^{\mathrm{T}}$ is
nonsingular and

$$
\left(I-x y^{\mathrm{T}}\right)^{-1}=I-\frac{1}{x^{\mathrm{T}} y-1} x y^{\mathrm{T}} .
$$

(Remark: The inverse of an elementary matrix is an elementary matrix.)
Fact 3.4.15. Let $A \in \mathbb{F}^{n \times n}$ be Hermitian. Then, $\operatorname{det} A$ is real.
Fact 3.4.16. Let $A \in \mathbb{F}^{n \times n}$ be Hermitian. Then,

$$
(\operatorname{tr} A)^{2} \leq(\operatorname{rank} A) \operatorname{tr} A^{2}
$$

Furthermore, equality holds if and only if there exists $\alpha \in \mathbb{R}$ such that $A^{2}=\alpha A$. (Remark: See Fact 5.9.27.)

Fact 3.4.17. Let $A \in \mathbb{R}^{n \times n}$, and assume that A is skew symmetric. Then, $\operatorname{tr} A=0$. If, in addition, $B \in \mathbb{R}^{n \times n}$ is symmetric, then $\operatorname{tr} A B=0$.

Fact 3.4.18. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is skew Hermitian. Then, $\operatorname{Re} \operatorname{tr} A=0$. If, in addition, $B \in \mathbb{F}^{n \times n}$ is Hermitian, then $\operatorname{Re} \operatorname{tr} A B=$ 0.

Fact 3.4.19. Let $A \in \mathbb{F}^{n \times m}$. Then, $A^{*} A$ is nonnegative semidefinite. Furthermore, $A^{*} A$ is positive definite if and only if A is left invertible. In this case, A^{L} defined by

$$
A^{\mathrm{L}} \triangleq\left(A^{*} A\right)^{-1} A^{*}
$$

is a left inverse of A. (Remark: See Fact 2.13.23, Fact 3.4.20, and Fact 3.5.3.)

Fact 3.4.20. Let $A \in \mathbb{F}^{n \times m}$. Then, $A A^{*}$ is nonnegative semidefinite. Furthermore, $A A^{*}$ is positive definite if and only if A is right invertible. In this case, A^{R} defined by

$$
A^{\mathrm{R}} \triangleq A^{*}\left(A A^{*}\right)^{-1}
$$

is a right inverse of A. (Remark: See Fact 2.13.23, Fact 3.5.3, and Fact 3.4.19.)

Fact 3.4.21. Let $A \in \mathbb{F}^{n \times m}$. Then, $A^{*} A, A A^{*}, A+A^{*}$, and $\left[\begin{array}{cc}0 & A^{*} \\ A & 0\end{array}\right]$ are Hermitian, and $\left[\begin{array}{cc}0 & A^{*} \\ -A & 0\end{array}\right]$ and $A-A^{*}$ are skew Hermitian.

Fact 3.4.22. Let $A \in \mathbb{F}^{n \times n}$. Then, there exist a unique Hermitian matrix $B \in \mathbb{F}^{n \times n}$ and a unique skew-Hermitian matrix $C \in \mathbb{F}^{n \times n}$ such that $A=B+C$. Specifically, if $A=\hat{B}+\jmath \hat{C}$, where $\hat{B}, \hat{C} \in \mathbb{R}^{n \times n}$, then \hat{B} and \hat{C} are given by

$$
B=\frac{1}{2}\left(A+A^{*}\right)=\frac{1}{2}\left(\hat{B}+\hat{B}^{T}\right)+\jmath \frac{1}{2}\left(\hat{C}-\hat{C}^{T}\right)
$$

and

$$
C=\frac{1}{2}\left(A-A^{*}\right)=\frac{1}{2}\left(\hat{B}-\hat{B}^{\mathrm{T}}\right)+\jmath \frac{1}{2}\left(\hat{C}+\hat{C}^{\mathrm{T}}\right) .
$$

Furthermore, A is normal if and only if $B C=C B$. (Remark: See Fact 11.10.7.)

Fact 3.4.23. Let $A \in \mathbb{F}^{n \times n}$. Then, there exist unique Hermitian matrices $B, C \in \mathbb{C}^{n \times n}$ such that $A=B+\jmath C$. Specifically, if $A=\hat{B}+\jmath \hat{C}$, where $\hat{B}, \hat{C} \in \mathbb{R}^{n \times n}$, then \hat{B} and \hat{C} are given by

$$
B=\frac{1}{2}\left(A+A^{*}\right)=\frac{1}{2}\left(\hat{B}+\hat{B}^{\mathrm{T}}\right)+\jmath \frac{1}{2}\left(\hat{C}-\hat{C}^{\mathrm{T}}\right)
$$

and

$$
C=\frac{1}{2 \jmath}\left(A-A^{*}\right)=\frac{1}{2}\left(\hat{C}+\hat{C}^{\mathrm{T}}\right)-\jmath \frac{1}{2}\left(\hat{B}-\hat{B}^{\mathrm{T}}\right) .
$$

Furthermore, A is normal if and only if $B C=C B$. (Remark: This result is the Cartesian decomposition.)

Fact 3.4.24. Let $x, y, z, w \in \mathbb{R}^{3}$, and define

$$
C(x) \triangleq\left[\begin{array}{ccc}
0 & -x_{(3)} & x_{(2)} \\
x_{(3)} & 0 & -x_{(1)} \\
-x_{(2)} & x_{(1)} & 0
\end{array}\right] .
$$

Then, the following statements hold:
i) $x \times y=C(x) y$.
ii) $x \times x=C(x) x=0$.
iii) $x \times y=-(y \times x)=C(x) y=-C(y) x$.
iv) If $x \times y \neq 0$, then $\mathcal{N}\left[(x \times y)^{\mathrm{T}}\right]=\mathcal{R}\left(\left[\begin{array}{ll}x & y\end{array}\right]\right)$.
v) $C(x \times y)=C[C(x) y]=[C(x), C(y)]=y x^{\mathrm{T}}-x y^{\mathrm{T}}$.
vi) $C^{2}(x)=x x^{\mathrm{T}}-\left(x^{\mathrm{T}} x\right) I$.
vii) If $x^{\mathrm{T}} x=1$, then $C^{3}(x)=-C(x)$.
viii) If $x^{\mathrm{T}} x=1$, then $C[(x \times y) \times x]=\left(I-x x^{\mathrm{T}}\right) y$.
$i x) \operatorname{det}\left[\begin{array}{lll}x & y & z\end{array}\right]=(x \times y)^{\mathrm{T}} z=x^{\mathrm{T}}(y \times z)$.
x) $(x \times y)^{\mathrm{T}}(x \times y)=\operatorname{det}\left[\begin{array}{lll}x & y & x \times y\end{array}\right]$.
xi) $(x \times y) \times z=\left(x^{\mathrm{T}} z\right) y-\left(y^{\mathrm{T}} z\right) x$.
xii) $x \times(y \times z)=\left(x^{\mathrm{T}} z\right) y-\left(x^{\mathrm{T}} y\right) z$.
xiii) $(x \times y)^{\mathrm{T}}(x \times y)=x^{\mathrm{T}} x y^{\mathrm{T}} y-\left(x^{\mathrm{T}} y\right)^{2}$.
xiv) $\sqrt{(x \times y)^{\mathrm{T}}(x \times y)}=\sqrt{x^{\mathrm{T}} x y^{\mathrm{T}} y} \sin \theta$, where θ is the angle between x
and y.
$x v)(x \times y)^{\mathrm{T}}(z \times w)=x^{\mathrm{T}} z y^{\mathrm{T}} w-x^{\mathrm{T}} w y^{\mathrm{T}} z=\operatorname{det}\left[\begin{array}{cc}x^{\mathrm{T}} \mathrm{T}_{z} & x^{\mathrm{T}} w \\ y^{\mathrm{T}} & y^{\mathrm{T}} w\end{array}\right]$.
xvi) $(x \times y) \times(z \times w)=x^{\mathrm{T}}(y \times w) z-x^{\mathrm{T}}(y \times z) w=x^{\mathrm{T}}(z \times w) y-y^{\mathrm{T}}(z \times w) x$.
xvii) $x \times[y \times(z \times w)]=\left(y^{\mathrm{T}} w\right)(x \times z)-\left(y^{\mathrm{T}} z\right)(x \times w)$.
xviii) $x \times[y \times(y \times x)]=y \times[x \times(y \times x)]=\left(y^{\mathrm{T}} x\right)(x \times y)$.
xix) If $A \in \mathbb{R}^{3 \times 3}$, then $A^{\mathrm{T}}(A x \times A y)=(\operatorname{det} A)(x \times y)$.
$x x$) If $A \in \mathbb{R}^{3 \times 3}$ is orthogonal and $\operatorname{det} A=1$, then $A(x \times y)=A x \times A y$.
(Proof: Using $i x), e_{i}^{\mathrm{T}} A^{\mathrm{T}}(A x \times A y)=\operatorname{det}\left[\begin{array}{ccc}A x & A y & A e_{i}\end{array}\right]=(\operatorname{det} A) e_{i}^{\mathrm{T}}(x \times y)$ for all $i=1,2,3$, which proves $x v i i)$.) (Remark: See [177, 447,508,539].)

Fact 3.4.25. Let $A, B \in \mathbb{R}^{3}$ be skew symmetric. Then,

$$
\operatorname{tr} A B^{3}=\frac{1}{2}(\operatorname{tr} A B)\left(\operatorname{tr} B^{2}\right)
$$

and

$$
\operatorname{tr} A^{3} B^{3}=\frac{1}{4}\left(\operatorname{tr} A^{2}\right)(\operatorname{tr} A B)\left(\operatorname{tr} B^{2}\right)+\frac{1}{3}\left(\operatorname{tr} A^{3}\right)\left(\operatorname{tr} B^{3}\right) .
$$

(Proof: See [37].)
Fact 3.4.26. Let $A, B \in \mathbb{F}^{n \times n}$. If either A and B are Hermitian or A and B are skew Hermitian, then $[A, B]$ is skew Hermitian. Furthermore, if A is Hermitian and B is skew Hermitian, or vice versa, then $[A, B]$ is Hermitian.

Fact 3.4.27. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) $\operatorname{tr} A=0$
ii) There exist $B, C \in \mathbb{F}^{n \times n}$ such that A is Hermitian, $\operatorname{tr} B=0$, and $A=[B, C]$.
(Proof: See [221] and Fact 5.7.18. If all of the diagonal entries of A are zero, then let $B \triangleq \operatorname{diag}(1, \ldots, n), C_{(i, i)} \triangleq 0$, and, for $i \neq j, C_{(i, j)} \triangleq A_{(i, j)} /(i-j)$. See [626, p. 110]. See also [466, p. 172].)

Fact 3.4.28. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) A is Hermitian and $\operatorname{tr} A=0$.
ii) There exists a nonsingular matrix $B \in \mathbb{F}^{n \times n}$ such that $A=\left[B, B^{*}\right]$.
iii) There exist a Hermitian matrix $B \in \mathbb{F}^{n \times n}$ and a skew-Hermitian matrix $C \in \mathbb{F}^{n \times n}$ such that $A=[B, C]$
$i v)$ There exist a skew-Hermitian matrix $B \in \mathbb{F}^{n \times n}$ and a Hermitian matrix $C \in \mathbb{F}^{n \times n}$ such that $A=[B, C]$
(Proof: See [542] and [221].)
Fact 3.4.29. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) A is skew Hermitian and $\operatorname{tr} A=0$.
ii) There exists a nonsingular matrix $B \in \mathbb{F}^{n \times n}$ such that $A=\left[\jmath B, B^{*}\right]$.
iii) If $A \in \mathbb{C}^{n \times n}$ is skew Hermitian, then there exist Hermitian matrices $B, C \in \mathbb{F}^{n \times n}$ such that $A=[B, C]$.
(Proof: See [221] or use Fact 3.4.28.)
Fact 3.4.30. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is skew symmetric. Then, there exist symmetric matrices $B, C \in \mathbb{F}^{n \times n}$ such that $A=[B, C]$. (Proof: Use Fact 5.13.22. See [466, pp. 83, 89].) (Remark: All matrices can be complex.)

Fact 3.4.31. Let $A \in \mathbb{F}^{n \times n}$, and assume that $\left[A,\left[A, A^{*}\right]\right]=0$. Then, A is normal. (Remark: See [626, p. 32].)

Fact 3.4.32. Let $A \in \mathbb{F}^{n \times n}$ and $k \in \mathbb{P}$. If A is (normal, Hermitian, unitary, involutory, nonnegative semidefinite, positive definite, idempotent, nilpotent), then so is A^{k}. If A is (skew Hermitian, skew involutory), then so is $A^{2 k+1}$. If A is Hermitian, then $A^{2 k}$ is nonnegative semidefinite. If A is tripotent, then so is $A^{3 k}$.

Fact 3.4.33. Let $x, y \in \mathbb{F}^{n}$, and assume that $x \neq 0$. Then, there exists a Hermitian matrix $A \in \mathbb{F}^{n \times n}$ such that $y=A x$ if and only if $x^{*} y$ is real. One such matrix is

$$
A=\left(x^{*} x\right)^{-1}\left[y x^{*}+x y^{*}-x^{*} y I\right] .
$$

(Remark: See Fact 2.11.12.)
Fact 3.4.34. Let $x, y \in \mathbb{F}^{n}$, and assume that $x \neq 0$. Then, there exists a positive-definite matrix $A \in \mathbb{F}^{n \times n}$ such that $y=A x$ if and only if $x^{*} y$ is real and positive. One such matrix is

$$
A=I+\left(x^{*} y\right)^{-1} y y^{*}-\left(x^{*} x\right)^{-1} x x^{*} .
$$

(Proof: To show that A is positive definite, note that the elementary projector $I-\left(x^{*} x\right)^{-1} x x^{*}$ is nonnegative semidefinite and $\operatorname{rank}\left[I-\left(x^{*} x\right)^{-1} x x^{*}\right]=$ $n-1$. Since $\left(x^{*} y\right)^{-1} y y^{*}$ is nonnegative semidefinite, it follows that $\mathcal{N}(A) \subseteq$ $\mathcal{N}\left[I-\left(x^{*} x\right)^{-1} x x^{*}\right]$. Next, since $x^{*} y>0$, it follows that $y^{*} x \neq 0$ and $y \neq 0$,
and thus $x \notin \mathcal{N}(A)$. Consequently, $\mathcal{N}(A) \subset \mathcal{N}\left[I-\left(x^{*} x\right)^{-1} x x^{*}\right]$ (note proper inclusion), and thus $\operatorname{def} A<1$. Hence, A is nonsingular.)

Fact 3.4.35. Let $x, y \in \mathbb{F}^{n}$. Then, there exists a skew-Hermitian ma$\operatorname{trix} A \in \mathbb{F}^{n \times n}$ such that $y=A x$ if and only if either $y=0$ or $x \neq 0$ and $x^{*} y=0$. If $x \neq 0$ and $x^{*} y=0$, then one such matrix is

$$
A=\left(x^{*} x\right)^{-1}\left(y x^{*}-x y^{*}\right) .
$$

(Proof: See [376].)
Fact 3.4.36. Let $A \in \mathbb{R}^{n \times n}$ be positive definite. Then,

$$
\left\{x \in \mathbb{R}^{n}: x^{\mathrm{T}} A x \leq 1\right\}
$$

is an ellipsoid.
Fact 3.4.37. Let $x, y, z \in \mathbb{F}^{n}$ satisfy $x^{*} x=y^{*} y=z^{*} z=1$. Then,

$$
\sqrt{1-\left|x^{*} y\right|^{2}} \leq \sqrt{1-\left|x^{*} z\right|^{2}}+\sqrt{1-\left|y^{*} z\right|^{2}} .
$$

Furthermore, if $A, B \in \mathbb{F}^{n \times n}$ are unitary, then

$$
\sqrt{1-\left|\frac{1}{n} \operatorname{tr} A B\right|^{2}} \leq \sqrt{1-\left|\frac{1}{n} \operatorname{tr} A\right|^{2}}+\sqrt{1-\left|\frac{1}{n} \operatorname{tr} B\right|^{2}} .
$$

(Proof: See [580].)

3.5 Facts on Projectors and Idempotent Matrices

Fact 3.5.1. Let $A \in \mathbb{F}^{n \times n}$ be a projector, and let $x \in \mathbb{F}^{n}$. Then, $x \in \mathcal{R}(A)$ if and only if $x=A x$.

Fact 3.5.2. Let $A, B \in \mathbb{F}^{n \times n}$ be projectors, and assume that $\mathcal{R}(A)=$ $\mathcal{R}(B)$. Then, $A=B$.

Fact 3.5.3. Let $A \in \mathbb{F}^{n \times m}$. If $\operatorname{rank} A=m$, then $B \triangleq A\left(A^{*} A\right)^{-1} A^{*}$ is a projector and $\operatorname{rank} B=m$. If $\operatorname{rank} A=n$, then $B \triangleq A^{*}\left(A A^{*}\right)^{-1} A$ is a projector and rank $B=n$. (Remark: See Fact 2.13.23, Fact 3.4.19, and Fact 3.4.20.)

Fact 3.5.4. Let $A \in \mathbb{F}^{n \times n}$. Then, A is a projector if and only if $A=A^{*} A$.

Fact 3.5.5. Let $A \in \mathbb{F}^{n \times m}$, and assume that A is a projector. Then, A is nonnegative semidefinite.

Fact 3.5.6. Let $x \in \mathbb{F}^{n}$ be nonzero and define the elementary projector
$A \triangleq I-\left(x^{*} x\right)^{-1} x x^{*}$. Then, the following statements hold:
i) $\operatorname{rank} A=n-1$.
ii) $\mathcal{N}(A)=\operatorname{span}\{x\}$.
iii) $\mathcal{R}(A)=\{x\}^{\perp}$.
iv) $2 A-I$ is the elementary reflector $I-2\left(x^{*} x\right)^{-1} x x^{*}$.
(Remark: If $y \in \mathbb{F}^{n}$, then $A y$ is the projection of y on $\{x\}^{\perp}$.
Fact 3.5.7. Let $A \in \mathbb{F}^{n \times n}$. Then, A is an elementary reflector if and only if A is a reflector and $\operatorname{tr} A=n-2$. Furthermore, A is an elementary projector if and only if A is a projector and $\operatorname{tr} A=n-1$. (Proof: See Proposition 5.5.25.)

Fact 3.5.8. Let $n>1$, and let $\mathcal{S} \subset \mathbb{F}^{n}$ be a hyperplane. Then, there exists a unique elementary projector $A \in \mathbb{F}^{n \times n}$ such that $\mathcal{R}(A)=\mathcal{S}$ and $\mathcal{N}(A)=\mathcal{S}^{\perp}$. Furthermore, if $x \in \mathbb{F}^{n}$ is nonzero and $\mathcal{S} \triangleq\{x\}^{\perp}$, then $A=$ $I-\left(x^{*} x\right)^{-1} x x^{*}$. (Remark: See Proposition 5.5.4.)

Fact 3.5.9. Let $A \in \mathbb{F}^{n \times n}$. Then, A is a projector and $\operatorname{rank} A=n-1$ if and only if there exists nonzero $x \in \mathcal{N}(A)$ such that

$$
A=I-\left(x^{*} x\right)^{-1} x x^{*}
$$

In this case, it follows that, for all $y \in \mathbb{F}^{n}$,

$$
y^{*} y-y^{*} A y=\frac{\left(y^{*} x\right)^{2}}{x^{*} x}
$$

Furthermore, for $y \in \mathbb{F}^{n}$, the following statements are equivalent:
i) $y^{*} A y=y^{*} y$.
ii) $y^{*} x=0$.
iii) $A y=y$.
(Remark: See Fact 3.4.13.)
Fact 3.5.10. Let $A \in \mathbb{F}^{n \times n}$ be a projector, and let $x \in \mathbb{F}^{n}$. Then,

$$
x^{*} A x \leq x^{*} x .
$$

Furthermore, the following statements are equivalent:
i) $x^{*} A x=x^{*} x$.
ii) $A x=x$.
iii) $x \in \mathcal{R}(A)$.

Fact 3.5.11. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is idempotent. Then, A is a projector if and only if, for all $x \in \mathbb{F}^{n}, x^{*} A x \leq x^{*} x$. (Proof: See [466, p. 105].)

Fact 3.5.12. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\mathcal{N}(A) \subseteq \mathcal{R}(I-A)
$$

and

$$
\mathcal{R}(A) \subseteq \mathcal{N}(I-A) .
$$

Furthermore, the following statements are equivalent:
i) A is idempotent.
ii) $\mathcal{N}(A)=\mathcal{R}(I-A)$.
iii) $\mathcal{R}(A)=\mathcal{N}(I-A)$.
(Proof: See [269, p. 146].)
Fact 3.5.13. Let $A \in \mathbb{F}^{n \times n}$. Then, A is idempotent and $\operatorname{rank} A=1$ if and only if there exist $x, y \in \mathbb{F}^{n}$ such that $y^{\mathrm{T}} x=1$ and $A=x y^{\mathrm{T}}$.

Fact 3.5.14. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is idempotent. Then, A^{T}, \bar{A}, and A^{*} are idempotent.

Fact 3.5.15. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{F}^{n}$ be complementary subspaces, and let $A \in \mathbb{F}^{n \times n}$ be the idempotent matrix associated with $\mathcal{S}_{1}, \mathcal{S}_{2}$. Then, A^{T} is the idempotent matrix associated with $\mathcal{S}_{2}^{\perp}, \mathcal{S}_{1}^{\perp}$. (Remark: See Fact 2.9.11.)

Fact 3.5.16. Let $A \in \mathbb{F}^{n \times n}$. Then, A is idempotent if and only if $\operatorname{rank} A+\operatorname{rank}(I-A)=n$.

Fact 3.5.17. Let $A, B \in \mathbb{R}^{n \times n}$ be idempotent and define $A_{\perp} \triangleq I-A$ and $B_{\perp} \triangleq I-B$. Then, the following identities hold:
i) $(A-B)^{2}+\left(A_{\perp}-B\right)^{2}=I$.
ii) $[A, B]=\left[B, A_{\perp}\right]=\left[B_{\perp}, A\right]=\left[A_{\perp}, B_{\perp}\right]$.
iii) $A-B=A B_{\perp}-A_{\perp} B$.
iv) $A B_{\perp}+B A_{\perp}=A B_{\perp} A+A_{\perp} B A_{\perp}$.
v) $A[A, B]=[A, B] A_{\perp}$.
vi) $B[A, B]=[A, B] B_{\perp}$.
(Proof: See [439].)
Fact 3.5.18. Let $A \in \mathbb{F}^{n \times n}$ and $\alpha \in \mathbb{F}$, where $\alpha \neq 0$. Then, the
matrices

$$
\left[\begin{array}{cc}
A & A^{*} \\
A^{*} & A
\end{array}\right], \quad\left[\begin{array}{cc}
A & \alpha^{-1} A \\
\alpha(I-A) & I-A
\end{array}\right], \quad\left[\begin{array}{cc}
A & \alpha^{-1} A \\
-\alpha A & -A
\end{array}\right]
$$

are, respectively, normal, idempotent, and nilpotent.
Fact 3.5.19. Let $A, B \in \mathbb{R}^{n \times n}$. Then, the following statements hold:
i) Assume that $A^{3}=-A$. Then, $B \triangleq I+A+A^{2}$ satisfies $B^{4}=I$, $B^{-1}=I-A+A^{2}, B^{3}-B^{2}+B-I=0$, and $A=\frac{1}{2}\left(B-B^{3}\right)$. Furthermore, $I+A^{2}$ is idempotent.
ii) Assume that $B^{4}=I$. Then, $A \triangleq \frac{1}{2}\left(B-B^{-1}\right)$ satisfies $B^{3}=-B$. Furthermore, $\frac{1}{4}\left(I+B+B^{2}+B^{3}\right)$ is idempotent.
iii) Assume that $B^{3}-B^{2}+B-I=0$. Then, $A \triangleq \frac{1}{2}\left(B-B^{3}\right)$ satisfies $A^{3}=-A$ and $B=I+A+A^{2}$.
(Remark: The geometrical interpretation of these results is discussed in [197].)

Fact 3.5.20. Let $A \in \mathbb{F}^{n \times m}$. If $A^{\mathrm{L}} \in \mathbb{F}^{m \times n}$ is a left inverse of A, then $A A^{\mathrm{L}}$ is idempotent and $\operatorname{rank} A^{\mathrm{L}}=\operatorname{rank} A$. Furthermore, if $A^{\mathrm{R}} \in \mathbb{F}^{m \times n}$ is a right inverse of A, then $A^{\mathrm{R}} A$ is idempotent and $\operatorname{rank} A^{\mathrm{R}}=\operatorname{rank} A$.

Fact 3.5.21. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times n}$, and assume that $A B$ is nonsingular. Then, $B(A B)^{-1} A$ is idempotent.

Fact 3.5.22. Let $A, B \in \mathbb{F}^{n \times n}$ be idempotent. Then, $A+B$ is idempotent if and only if $A B=B A=0$. (Proof: $A B+B A=0$ implies $A B+A B A=A B A+B A=0$, which implies that $A B-B A=0$ and hence $A B=0$. See [262, p. 250].)

Fact 3.5.23. If $A, B \in \mathbb{F}^{n \times n}$ are idempotent and $A B=0$, then $A+$ $B-B A$ is idempotent and $C \triangleq A-B$ is tripotent. Conversely, if $C \in \mathbb{F}^{n \times n}$ is tripotent, then $A \triangleq \frac{1}{2}\left(C^{2}+C\right)$ and $B \triangleq \frac{1}{2}\left(C^{2}-C\right)$ are idempotent and satisfy $C=A-B$ and $A B=B A=0$. (Proof: See [407, p. 114].)

Fact 3.5.24. Let $A \in \mathbb{F}^{n \times n}$ be nonsingular and idempotent. Then, $A=I_{n}$.

Fact 3.5.25. Let $A \in \mathbb{F}^{n \times n}$ be idempotent. Then, so is $A_{\perp} \triangleq I-A$, and, furthermore, $A A_{\perp}=A_{\perp} A=0$.

Fact 3.5.26. Let $A \in \mathbb{F}^{n \times n}$ be idempotent. Then,

$$
\operatorname{det}(I+A)=2^{\operatorname{tr} A}
$$

and

$$
(I+A)^{-1}=I-\frac{1}{2} A .
$$

Fact 3.5.27. If $A \in \mathbb{F}^{n \times n}$ is idempotent, then $B \triangleq 2 A-I$ is involutory, while if $B \in \mathbb{F}^{n \times n}$ is involutory, then $A \triangleq \frac{1}{2}(B+I)$ is idempotent. Furthermore, if $A \in \mathbb{F}^{n \times n}$ is a projector, then $B \triangleq 2 A-I$ is a reflector, while if $B \in \mathbb{F}^{n \times n}$ is a reflector, then $A \triangleq \frac{1}{2}(B+I)$ is a projector.

Fact 3.5.28. Let $A \in \mathbb{F}^{n \times n}$, and assume that A satisfies two out of the three properties (Hermitian, idempotent, $A+A^{*}=2 A A^{*}$). Then, A satisfies the remaining property. (Proof: If A is idempotent and $2 A A^{*}=A+A^{*}$, then $(2 A-I)^{-1}=2 A-I=\left(2 A^{*}-I\right)^{-1}$. Hence, A is Hermitian.) (Remark: These matrices are the projectors.) (Remark: The condition $A+A^{*}=2 A A^{*}$ is considered in Fact 3.5.29.) (Remark: See Fact 3.7.1 and Fact 3.7.5.)

Fact 3.5.29. If $B \in \mathbb{F}^{n \times n}$ is unitary and skew Hermitian, then $A \triangleq$ $\frac{1}{2}(B+I)$ satisfies

$$
A+A^{*}=2 A A^{*} .
$$

Conversely, if $A \in \mathbb{F}^{n \times n}$ satisfies this equation, then $B \triangleq 2 A-I$ is unitary. (Remark: See Fact 3.5.28.) (Remark: This equation has normal solutions such that $B \triangleq 2 A-I$ is not skew Hermitian, for example, $A=1 / 3+\jmath \sqrt{2} / 3$.) (Problem: Characterize all normal and nonnormal solutions.)

3.6 Facts on Unitary Matrices

Fact 3.6.1. Let $A \in \mathbb{F}^{n \times n}$ be unitary. Then, the following statements hold:
i) $U=U^{-*}$.
ii) $U^{\mathrm{T}}=\bar{U}^{-1}=\bar{U}^{*}$.
iii) $\bar{U}=U^{-\mathrm{T}}=\bar{U}^{-*}$.
iv) $U^{*}=U^{-1}$.

Fact 3.6.2. Let $A \in \mathbb{F}^{n \times n}$ be unitary. Then,

$$
\begin{aligned}
& -n \leq \operatorname{Re} \operatorname{tr} A \leq n, \\
& -n \leq \operatorname{Im} \operatorname{tr} A \leq n,
\end{aligned}
$$

and

$$
|\operatorname{tr} A| \leq n .
$$

Fact 3.6.3. Let $x, y \in \mathbb{F}^{n}$, and let $A \in \mathbb{F}^{n \times n}$ be unitary. Then, $x^{*} y=0$
if and only if $(A x)^{*} A y=0$.
Fact 3.6.4. Let $A \in \mathbb{F}^{n \times m}$. If A is (left inner, right inner), then A is (left invertible, right invertible) and A^{*} is a (left inverse, right inverse).

Fact 3.6.5. Let $A \in \mathbb{R}^{n \times n}$ be a permutation matrix. Then, A is orthogonal.

Fact 3.6.6. Let $A \in \mathbb{C}^{n \times n}$ be unitary. Then, $|\operatorname{det} A|=1$.
Fact 3.6.7. Let $M \triangleq\left[\begin{array}{cc}A & B \\ C & D\end{array}\right] \in \mathbb{F}^{(n+m) \times(n+m)}$ be unitary. Then,

$$
\operatorname{det} A=(\operatorname{det} M) \overline{\operatorname{det} D} .
$$

(Proof: Let $\left[\begin{array}{cc}\hat{A} & \hat{B} \\ \hat{C} & \hat{D}\end{array}\right] \triangleq A^{-1}$ and take the determinant of $A\left[\begin{array}{cc}I & \hat{B} \\ 0 & \hat{D}\end{array}\right]=\left[\begin{array}{cc}A & 0 \\ C & I\end{array}\right]$. See [3] or [506].) (Remark: See Fact 2.13.34.)

Fact 3.6.8. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is Hermitian, skew Hermitian, or unitary. Then, A is normal.

Fact 3.6.9. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is block diagonal. Then, A is (normal, Hermitian, unitary) if and only if every diagonally located block has the same property.

Fact 3.6.10. Let $A \in \mathbb{F}^{n \times n}$ be nonsingular. Then, A is normal if and only if $A^{-1} A^{*}$ is unitary.

Fact 3.6.11. Let $A \in \mathbb{F}^{n \times n}$ be nonsingular and assume that A is (normal, Hermitian, skew Hermitian, unitary). Then, so is A^{-1}.

Fact 3.6.12. Let $A, B \in \mathbb{R}^{n \times n}$. Then, $A+\jmath B$ is (Hermitian, skew Hermitian, unitary) if and only if $\left[\begin{array}{cc}A & B \\ -B & A\end{array}\right]$ is (symmetric, skew symmetric, orthogonal).

Fact 3.6.13. Let $A \in \mathbb{F}^{n \times n}$ be semicontractive. Then, $B \in \mathbb{F}^{2 n \times 2 n}$ defined by

$$
B \triangleq\left[\begin{array}{cc}
A & \left(I-A A^{*}\right)^{1 / 2} \\
\left(I-A^{*} A\right)^{1 / 2} & -A^{*}
\end{array}\right]
$$

is unitary. (Remark: See [216, p. 180].)
Fact 3.6.14. Let $\theta \in \mathbb{R}$, and define the orthogonal matrix

$$
A(\theta) \triangleq\left[\begin{array}{rr}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right] .
$$

Now, let $\theta_{1}, \theta_{2} \in \mathbb{R}$. Then,

$$
A\left(\theta_{1}\right) A\left(\theta_{2}\right)=A\left(\theta_{1}+\theta_{2}\right) .
$$

Consequently,

$$
\begin{aligned}
& \cos \left(\theta_{1}+\theta_{2}\right)=\left(\cos \theta_{1}\right) \cos \theta_{2}-\left(\sin \theta_{1}\right) \sin \theta_{2}, \\
& \sin \left(\theta_{1}+\theta_{2}\right)=\left(\cos \theta_{1}\right) \sin \theta_{2}+\left(\sin \theta_{1}\right) \cos \theta_{2} .
\end{aligned}
$$

Furthermore,

$$
\mathrm{SO}(2)=\{A(\theta): \quad \theta \in \mathbb{R}\} .
$$

(Remark: See Proposition 3.2.7 and Fact 11.9.3.)
Fact 3.6.15. Let $x, y, z \in \mathbb{R}^{2}$. If x is rotated according to the right hand rule through an angle $\theta \in \mathbb{R}$ about y, then the resulting vector $\hat{x} \in \mathbb{R}^{2}$ is given by

$$
\hat{x}=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] x+\left[\begin{array}{l}
y_{(1)}(1-\cos \theta)+y_{(2)} \sin \theta \\
y_{(2)}(1-\cos \theta)+y_{(1)} \sin \theta
\end{array}\right] .
$$

If x is reflected across the line passing through 0 and z and parallel to the line passing through 0 and y, then the resulting vector $\hat{x} \in \mathbb{R}^{2}$ is given by
$\hat{x}=\left[\begin{array}{cc}y_{(1)}^{2}-y_{(2)}^{2} & 2 y_{(1)} y_{(2)} \\ 2 y_{(1)} y_{(2)} & y_{(2)}^{2}-y_{(1)}^{2}\end{array}\right] x+\left[\begin{array}{c}-z_{(1)}\left(y_{(1)}^{2}-y_{(2)}^{2}-1\right)-2 z_{(2)} y_{(1)} y_{(2)} \\ -z_{(2)}\left(y_{(1)}^{2}-y_{(2)}^{2}-1\right)-2 z_{(1)} y_{(1)} y_{(2)}\end{array}\right]$.
(Remark: These affine planar transformations are used in computer graphics. See $[210,464]$.)

Fact 3.6.16. Let $x, y \in \mathbb{R}^{3}$, and assume that $y^{\mathrm{T}} y=1$. If x is rotated according to the right hand rule through an angle $\theta \in \mathbb{R}$ about the line passing through 0 and y, then the resulting vector $\hat{x} \in \mathbb{R}^{3}$ is given by

$$
\hat{x}=x+(\sin \theta)(y \times x)+(1-\cos \theta)[y \times(y \times x)] .
$$

(Proof: See [10].)
Fact 3.6.17. Let $x, y \in \mathbb{R}^{n}$. Then, there exists an orthogonal matrix $A \in \mathbb{R}^{n \times n}$ such that $y=A x$ if and only if $x^{\mathrm{T}} x=y^{\mathrm{T}} y$. (Remark: One such matrix is given by a product of n plane rotations given by Fact 5.13.13. Another is given by the product of elementary reflectors given by Fact 5.13.12. See Fact 11.9.9 and Fact 3.7.3.) (Problem: Extend this result to \mathbb{C}.)

Fact 3.6.18. Let $A \in \mathbb{F}^{n \times n}$ be unitary, and let $x \in \mathbb{F}^{n}$ be such that $x^{*} x=1$ and $A x=-x$. Then, the following statements hold:
i) $\operatorname{det}(A+I)=0$.
ii) $A+2 x x^{*}$ is unitary.
iii) $A=\left(A+2 x x^{*}\right)\left(I_{n}-2 x x^{*}\right)=\left(I_{n}-2 x x^{*}\right)\left(A+2 x x^{*}\right)$.
iv) $\operatorname{det}\left(A+2 x x^{*}\right)=-\operatorname{det} A$.

Fact 3.6.19. Let $A \in \mathbb{R}^{3 \times 3}$. Then, A is an orthogonal matrix if and only if there exist real numbers a, b, c, d, not all zero, such that

$$
A=\frac{ \pm 1}{\alpha}\left[\begin{array}{ccc}
a^{2}+b^{2}-c^{2}-d^{2} & 2(b c+d a) & 2(b d-c a) \\
2(b c-d a) & a^{2}-b^{2}+c^{2}-d^{2} & 2(c d+b a) \\
2(b d+c a) & 2(c d-b a) & a^{2}-b^{2}-c^{2}+d^{2}
\end{array}\right],
$$

where $\alpha \triangleq a^{2}+b^{2}+c^{2}+d^{2}$. (Remark: This result is due to Rodrigues.)
Fact 3.6.20. Let $A \in \mathbb{R}^{n \times n}$, and assume that A is orthogonal. Then, either $\operatorname{det} A=1$ or $\operatorname{det} A=-1$.

Fact 3.6.21. Let $A \in \mathbb{F}^{n \times n}$ and assume that A is involutory. Then, either $\operatorname{det} A=1$ or $\operatorname{det} A=-1$.

Fact 3.6.22. Let $A \in \mathbb{F}^{n \times n}$ be unitary. Then, $\frac{1}{\sqrt{2}}\left[\begin{array}{cc}A & -A \\ A & A\end{array}\right]$ is also unitary.

Fact 3.6.23. If $A \in \mathbb{F}^{n \times n}$ is Hermitian, then $I+\jmath A$ is nonsingular and $B \triangleq(A-\jmath I)\left(A+{ }_{\jmath} I\right)^{-1}$ is unitary and $B-I$ is nonsingular. Conversely, if $B \in \mathbb{F}^{n \times n}$ is unitary and $B-I$ is nonsingular, then $A \triangleq \jmath(I+B)(I-B)^{-1}$ is Hermitian. (Proof: See [216, pp. 168, 169].) (Remark: $(A-\jmath I)(A+\jmath)^{-1}$ is the Cayley transform of A. See Fact 3.6.24, Fact 3.6.25, Fact 3.9.8, and Fact 8.7.18, and Fact 11.15.9.) (Remark: The linear fractional transformation $f(s) \triangleq(s-\jmath)(s+\jmath)$ maps the upper half plane of \mathbb{C} onto the unit disk in \mathbb{C}, and the real line onto the unit circle in \mathbb{C}.)

Fact 3.6.24. If $A \in \mathbb{F}^{n \times n}$ is skew Hermitian, then $I+A$ is nonsingular, $B \triangleq(I-A)(I+A)^{-1}=(I+A)^{-1}(I-A)$ is unitary, and $|\operatorname{det} B|=1$. Conversely, if $B \in \mathbb{F}^{n \times n}$ is unitary and $I+B$ is nonsingular, then $A \triangleq$ $(I+B)^{-1}(I-B)$ is skew Hermitian. Furthermore, if B is unitary, then there exist $\lambda \in \mathbb{C}$ and a skew-Hermitian matrix $A \in \mathbb{F}^{n \times n}$ such that $|\lambda|=1$ and $B \triangleq(I-A)(I+A)^{-1}$. (Proof: See [289, p. 440] and [216, p. 184].)

Fact 3.6.25. If $A \in \mathbb{R}^{n \times n}$ is skew symmetric, then $I+A$ is nonsingular, $B \triangleq(I-A)(I+A)^{-1}=(I+A)^{-1}(I-A)$ is orthogonal, and $I+B$ is nonsingular. Equivalently, if $A \in \mathbb{R}^{n \times n}$ is skew symmetric, then there exists an orthogonal matrix $B \in \mathbb{R}^{n \times n}$ such that $I+B$ is nonsingular and $A=$ $(I+B)^{-1}(I-B)$. Conversely, if $B \in \mathbb{R}^{n \times n}$ is orthogonal and $I+B$ is nonsingular, then $\operatorname{det} B=1$ and $A \triangleq(I+B)^{-1}(I-B)$ is skew symmetric. Equivalently, if $B \in \mathbb{R}^{n \times n}$ is orthogonal and $I+B$ is nonsingular, then there
exists a skew-symmetric matrix $A \in \mathbb{R}^{n \times n}$ such that $B=(I-A)(I+A)^{-1}$.
Fact 3.6.26. Let $A \in \mathbb{R}^{n \times n}$ be orthogonal. Then, there exist a skewsymmetric matrix $B \in \mathbb{R}^{n \times n}$ and a diagonal matrix $C \in \mathbb{R}^{n \times n}$, each of whose diagonal entries is either 1 or -1 , such that

$$
A=C(I-B)(I+B)^{-1} .
$$

(Proof: See [466, p. 101].) (Remark: This result is due to Hsu.)

3.7 Facts on Reflectors

Fact 3.7.1. Let $A \in \mathbb{F}^{n \times n}$, and assume that A satisfies two out of the three properties (Hermitian, unitary, involutory). Then, A also satisfies the remaining property. (Remark: These matrices are the reflectors.) (Remark: See Fact 3.5.28 and Fact 3.7.5.)

Fact 3.7.2. Let $x \in \mathbb{F}^{n}$ be nonzero and define the elementary reflector $A \triangleq I-2\left(x^{*} x\right)^{-1} x x^{*}$. Then, the following statements hold:
i) $\operatorname{det} A=-1$.
ii) If $y \in \mathbb{F}^{n}$, then $A y$ is the reflection of y across $\{x\}^{\perp}$.
iii) $A x=-x$.
iv) $\frac{1}{2}(A+I)$ is the elementary projector $I-\left(x^{*} x\right)^{-1} x x^{*}$.

Fact 3.7.3. Let $x, y \in \mathbb{F}^{n}$. Then, there exists a unique elementary reflector $A \in \mathbb{F}^{n \times n}$ such that $y=A x$ if and only if $x^{*} y$ is real and $x^{*} x=y^{*} y$. If $x \neq y$, then A is given by

$$
A=I-2\left[(x-y)^{*}(x-y)\right]^{-1}(x-y)(x-y)^{*} .
$$

(Remark: This result is the reflection theorem. See [229, pp. 16-18] and [484, p. 357]. See Fact 3.6.17 and Fact 11.9.9.)

Fact 3.7.4. Let $n>1$, and let $\mathcal{S} \subset \mathbb{F}^{n}$ be a hyperplane. Then, there exists a unique elementary reflector $A \in \mathbb{F}^{n \times n}$ such that, for all $y=y_{1}+y_{2} \in$ \mathbb{F}^{n}, where $y_{1} \in \mathcal{S}$ and $y_{2}=\mathcal{S}^{\perp}$, it follows that $A y=y_{1}-y_{2}$. Furthermore, if $\mathcal{S}=\{x\}^{\perp}$, then $A=I-2\left(x^{*} x\right)^{-1} x x^{*}$.

Fact 3.7.5. Let $A \in \mathbb{F}^{n \times n}$, and assume that A satisfies two out of the three properties (skew Hermitian, unitary, skew involutory). Then, A also satisfies the remaining property. In particular, J_{n} satisfies all three properties. In addition, A^{2} is a reflector. (Problem: Does every reflector have a skew-Hermitian, unitary square root?) (Remark: See Fact 3.5.28 and Fact 3.7.1.)

Fact 3.7.6. Let $A \in \mathbb{F}^{n \times n}$. Then, A is a reflector if and only if $A=$ $A A^{*}+A^{*}-I$. (Proof: This condition is equivalent to $A=\frac{1}{2}(A+I)\left(A^{*}+I\right)-I$.)

3.8 Facts on Nilpotent Matrices

Fact 3.8.1. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are upper triangular. Then,

$$
[A, B]^{n-1}=0 .
$$

Hence, $[A, B]$ is nilpotent. (Remark: See $[211,212]$.)
Fact 3.8.2. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that $[A,[A, B]]=0$. Then, $[A, B]$ is nilpotent. (Remark: This result is due to Jacobson. See [207] or [287, p. 98].)

Fact 3.8.3. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that $\left[A, B^{2}\right]=B$. Then, B is nilpotent. (Proof: See [493].)

Fact 3.8.4. Let $A \in \mathbb{R}^{n \times n}$. Then, $\operatorname{rank} A^{k}$ is a nonincreasing function of $k \in \mathbb{P}$. Furthermore, if there exists $k \in\{1, \ldots, n\}$ such that rank $A^{k+1}=$ $\operatorname{rank} A^{k}$, then $\operatorname{rank} A^{l}=\operatorname{rank} A^{k}$ for all $l \geq k$. Finally, if A is nilpotent and $A^{l} \neq 0$, then $\operatorname{rank} A^{k+1}<\operatorname{rank} A^{k}$ for all $k=1, \ldots, l$.

Fact 3.8.5. Let $n \in \mathbb{P}$ and $k \in\{0, \ldots, n\}$. Then, $\operatorname{rank} N_{n}^{k}=n-k$.
Fact 3.8.6. Let $A \in \mathbb{F}^{n \times n}$. Then, A is nilpotent and $\operatorname{rank} A=1$ if and only if there exist nonzero $x, y \in \mathbb{F}^{n}$ such that $y^{\mathrm{T}} x=0$ and $A=x y^{\mathrm{T}}$.

Fact 3.8.7. Let $A \in \mathbb{R}^{n \times n}$ be nilpotent and assume that $A^{k}=0$, where $k \in \mathbb{P}$. Then,

$$
\operatorname{det}(I-A)=1
$$

and

$$
(I-A)^{-1}=\sum_{i=0}^{k-1} A^{i} .
$$

Fact 3.8.8. Let $\lambda \in \mathbb{F}$ and $n, k \in \mathbb{P}$. Then,

$$
\left(\lambda I_{n}+N_{n}\right)^{k}= \begin{cases}\lambda^{k} I_{n}+\binom{k}{1} \lambda^{k-1} N_{n}+\cdots+\binom{k}{k} N_{n}^{k}, & k<n-1, \\ \lambda^{k} I_{n}+\binom{k}{1} \lambda^{k-1} N_{n}+\cdots+\binom{k}{n-1} \lambda^{k-n+1} N_{n}^{n-1}, & k \geq n-1,\end{cases}
$$

that is, for $k \geq n-1$,

$$
\left[\begin{array}{ccccc}
\lambda & 1 & \cdots & 0 & 0 \\
0 & \lambda & \ddots & 0 & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & \ddots & \lambda & 1 \\
0 & 0 & \cdots & 0 & \lambda
\end{array}\right]^{k}=\left[\begin{array}{ccccc}
\lambda^{k} & \left.\begin{array}{c}
k \\
1
\end{array}\right) \lambda^{k-1} & \cdots & \binom{k}{n-2} \lambda^{k-n+1} & \binom{k}{n-1} \lambda^{k-n+1} \\
0 & \lambda^{k} & \ddots & \binom{k}{n-3} \lambda^{k-n+2} & \binom{k}{n-2} \lambda^{k-n+2} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & \ddots & \lambda^{k} & \binom{k}{1} \lambda^{k-1} \\
0 & 0 & \cdots & 0 & \lambda^{k}
\end{array}\right] .
$$

Fact 3.8.9. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A is nilpotent and $A B=B A$. Then, $\operatorname{det}(A+B)=\operatorname{det} B$. (Proof: Use Fact 5.8.6.)

Fact 3.8.10. Let $A, B \in \mathbb{R}^{n \times n}$ be nilpotent and assume that $A B=$ $B A$. Then, $A+B$ is nilpotent. (Proof: If $A^{k}=B^{l}=0$, then $(A+B)^{k+l}=0$.)

Fact 3.8.11. Let $A \in \mathbb{F}^{n \times n}$. Then, A is nilpotent if and only if, for all $k=1, \ldots, n, \operatorname{tr} A^{k}=0$. (Proof: See [466, p. 103].)

3.9 Facts on Hamiltonian and Symplectic Matrices

Fact 3.9.1. J_{n} is skew symmetric, skew involutory, and Hamiltonian, I_{n} is symplectic, and \hat{I}_{n} is a symmetric permutation matrix.

Fact 3.9.2. Let $A \in \mathbb{R}^{2 n \times 2 n}$ be symplectic. Then, $\operatorname{det} A=1$. Furthermore, $A \in \mathbb{R}^{2 \times 2}$ is symplectic if and only if $\operatorname{det} A=1$, that is, $\operatorname{SL}_{\mathbb{R}}(2)=$ $\operatorname{Sp}(1)$. (Proof: See [45, p. 27] or [505, p. 128].)

Fact 3.9.3. Let $A \in \mathbb{R}^{2 n \times 2 n}$. If A is Hamiltonian and nonsingular, then A^{-1} is Hamiltonian. Now let $B \in \mathbb{R}^{2 n \times 2 n}$. If A and B are Hamiltonian, the $A+B$ is Hamiltonian.

Fact 3.9.4. Let $A \in \mathbb{R}^{2 n \times 2 n}$. Then, A is Hamiltonian if and only if $J A=(J A)^{\mathrm{T}}$. Furthermore, A is symplectic if and only if $A^{\mathrm{T}} J A=J$.

Fact 3.9.5. Let $A \in \mathbb{R}^{2 n \times 2 n}$ be Hamiltonian, and let $S \in \mathbb{R}^{2 n \times 2 n}$ be symplectic. Then, $S A S^{-1}$ is Hamiltonian.

Fact 3.9.6. Let $\mathcal{A} \in \mathbb{R}^{2 n \times 2 n}$. Then, \mathcal{A} is skew symmetric and Hamiltonian if and only if there exist a skew-symmetric matrix $A \in \mathbb{R}^{n \times n}$ and a symmetric matrix $B \in \mathbb{R}^{n \times n}$ such that $\mathcal{A}=\left[\begin{array}{cc}A & B \\ -B & A\end{array}\right]$.

Fact 3.9.7. Let $A \in \mathbb{R}^{2 n \times 2 n}$ be skew symmetric. Then, there exists a nonsingular matrix $S \in \mathbb{R}^{2 n \times 2 n}$ such that $S^{\mathrm{T}} A S=J_{n}$. (Proof: See [45, p. 231].)

Fact 3.9.8. If $A \in \mathbb{R}^{2 n \times 2 n}$ is Hamiltonian and $A+I$ is nonsingular, then $B \triangleq(A-I)(A+I)^{-1}$ is symplectic and $I-B$ is nonsingular. Conversely, if $B \in \mathbb{R}^{2 n \times 2 n}$ is symplectic and $I-B$ is nonsingular, then $A=(I+B)(I-B)^{-1}$ is Hamiltonian. (Remark: See Fact 3.6.23, Fact 3.6.24, and Fact 3.6.25.)

3.10 Facts on Groups

Fact 3.10.1. The following subsets of \mathbb{R} are groups:
i) $\{x \in \mathbb{R}: x \neq 0\}$.
ii) $\{x \in \mathbb{R}: x>0\}$.
iii) $\{x \in \mathbb{R}: x \neq 0$ and x is rational $\}$.
iv) $\{x \in \mathbb{R}: x>0$ and x is rational $\}$.
v) $\{-1,1\}$.
vi) $\{1\}$.

Fact 3.10.2. The following subsets of $\mathbb{F}^{n \times n}$ are Lie algebras:
i) $\operatorname{ut}(n) \triangleq\left\{A \in \operatorname{gl}_{\mathbb{F}}(n)\right.$: A is upper triangular $\}$.
ii) $\operatorname{sut}(n) \triangleq\left\{A \in \operatorname{gl}_{\mathbb{F}}(n): A\right.$ is strictly upper triangular $\}$.
iii) $\left\{0_{n \times n}\right\}$.

Fact 3.10.3. The following subsets of $\mathbb{F}^{n \times n}$ are groups:
i) $\mathrm{UT}(n) \triangleq\left\{A \in \mathrm{GL}_{\mathbb{F}}(n): A\right.$ is upper triangular $\}$.
ii) $\mathrm{UT}_{+}(n) \triangleq\left\{A \in \mathrm{UT}(n): \quad A_{(i, i)}>0\right.$ for all $\left.i=1, \ldots, n\right\}$.
iii) $\mathrm{UT}_{ \pm 1}(n) \triangleq\left\{A \in \mathrm{UT}(n): \quad A_{(i, i)}= \pm 1\right.$ for all $\left.i=1, \ldots, n\right\}$.
iv) $\mathrm{SUT}(n) \triangleq\left\{A \in \mathrm{UT}(n): \quad A_{(i, i)}=1\right.$ for all $\left.i=1, \ldots, n\right\}$.
v) $\left\{I_{n}\right\}$.
(Remark: The matrices in $\mathrm{UT}_{1}(n)$ are unipotent. See Fact 5.13.6.)
Fact 3.10.4. Let $\mathcal{S} \subset \mathbb{F}^{n \times n}$, and assume that \mathcal{S} is a group. Then, $\left\{A^{\mathrm{T}}: A \in \mathcal{S}\right\}$ and $\{\bar{A}: A \in \mathcal{S}\}$ are groups.

3.11 Facts on Quaternions

Fact 3.11.1. Define $Q_{0}, Q_{2}, Q_{3} \in \mathbb{C}^{2 \times 2}$ by

$$
Q_{0} \triangleq I_{2}, Q_{1} \triangleq\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right], Q_{2} \triangleq\left[\begin{array}{cc}
\jmath & 0 \\
0 & -\jmath
\end{array}\right], Q_{3} \triangleq\left[\begin{array}{cc}
0 & -\jmath \\
-\jmath & 0
\end{array}\right] .
$$

Then, the following statements hold:
i) $Q_{0}^{*}=Q_{0}$ and $Q_{i}^{*}=-Q_{i}$ for all $i=1,2,3$.
ii) $Q_{0}^{2}=Q_{0}$ and $Q_{i}^{2}=-Q_{0}$ for all $i=1,2,3$.
iii) $Q_{i} Q_{j}=-Q_{j} Q_{i}$ for all $1 \leq i<j \leq 3$.
iv) $Q_{1} Q_{2}=Q_{3}, Q_{2} Q_{3}=Q_{1}$, and $Q_{3} Q_{1}=Q_{2}$.
v) $\left\{ \pm Q_{0}, \pm Q_{1}, \pm Q_{2}, \pm Q_{3}\right\}$ is a group.

For $\beta \triangleq\left[\begin{array}{llll}\beta_{0} & \beta_{1} & \beta_{2} & \beta_{3}\end{array}\right]^{\mathrm{T}} \in \mathbb{R}^{4}$ define

$$
Q(\beta) \triangleq \sum_{i=0}^{3} \beta_{i} Q_{i} .
$$

Then,

$$
Q(\beta) Q^{*}(\beta)=\beta^{\mathrm{T}} \beta I_{2}
$$

and

$$
\operatorname{det} Q(\beta)=\beta^{\mathrm{T}} \beta .
$$

Hence, if $\beta^{\mathrm{T}} \beta=1$, then $Q(\beta)$ is unitary. Furthermore, the complex matrices $Q_{0}, Q_{1}, Q_{2}, Q_{3}$, and $Q(\beta)$ have the real representations

$$
\begin{gathered}
Q_{0}=I_{4}, \quad Q_{1}=\left[\begin{array}{cc}
J_{2} & 0 \\
0 & J_{2}
\end{array}\right], \\
\mathcal{Q}_{2}=\left[\begin{array}{rrrr}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 \\
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right], \quad Q_{3}=\left[\begin{array}{rrrr}
0 & 0 & 0 & -1 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right], \\
\mathcal{Q}(\beta)=\left[\begin{array}{rrrr}
\beta_{0} & \beta_{1} & \beta_{2} & -\beta_{3} \\
-\beta_{1} & \beta_{0} & -\beta_{3} & -\beta_{2} \\
-\beta_{2} & \beta_{3} & \beta_{0} & \beta_{1} \\
\beta_{3} & \beta_{2} & -\beta_{1} & \beta_{0}
\end{array}\right] .
\end{gathered}
$$

Hence,

$$
\mathcal{Q}(\beta) \mathbb{Q}^{\mathrm{T}}(\beta)=\beta^{\mathrm{T}} \beta I_{4}
$$

and

$$
\operatorname{det} Q(\beta)=\left(\beta^{\mathrm{T}} \beta\right)^{2}
$$

(Remark: $Q_{0}, Q_{1}, Q_{2}, Q_{3}$ represent the quaternions $1, \imath, \jmath, k$. See Fact 3.11.3. The quaternion group v) is isomorphic to $\mathrm{SU}(2)$.) (Remark: Matrices with
quaternion entries and 4×4 matrix representations are considered in [38, 109, 248, 627]. For applications of quaternions, see [11, 250, 344].) (Remark: $\mathcal{Q}(\beta)$ has the form $\left[\begin{array}{cc}A & B \\ -B & A\end{array}\right]$, where A and $\hat{I} B$ are rotation-dilations. See Fact 2.15.1.)

Fact 3.11.2. Let $A \in \mathbb{C}^{2 \times 2}$. Then, A is unitary if and only if there exist $\theta \in \mathbb{R}$ and $\beta \in \mathbb{R}^{4}$ such that $A=e^{\jmath \theta} Q(\beta)$, where $Q(\beta)$ is defined in Fact 3.11.1. (Proof: See [484, p. 228].)

Fact 3.11.3. Let $A_{0}, A_{1}, A_{2}, A_{3} \in \mathbb{R}^{n \times n}$, let \imath, \jmath, k satisfy

$$
\begin{gathered}
\imath^{2}=\jmath^{2}=k^{2}=-1, \\
\imath \jmath=k=-\jmath \imath, \\
\jmath k=\imath=-k \jmath, \\
k \imath=\jmath=-\imath k,
\end{gathered}
$$

and let $A \triangleq A_{0}+\imath A_{1}+\jmath A_{2}+k A_{3}$. Then,

$$
\left[\begin{array}{rrrr}
A_{0} & -A_{1} & -A_{2} & -A_{3} \\
A_{1} & A_{0} & -A_{3} & A_{2} \\
A_{2} & A_{3} & A_{0} & -A_{1} \\
A_{3} & -A_{2} & A_{1} & A_{0}
\end{array}\right]=U \operatorname{diag}(A, A, A, A) U
$$

where

$$
U \triangleq \frac{1}{2}\left[\begin{array}{rrrr}
I & \imath I & \jmath I & k I \\
-\imath I & I & k I & -\jmath I \\
-\jmath I & -k I & I & \imath I \\
-k I & \jmath I & -\imath I & I
\end{array}\right]
$$

(Proof: See [551].) (Remark: k is not an integer here. \imath, \jmath, k are the unit quaternions. This identity uses a similarity transformation to construct a real representation of quaternions. See Fact 2.12.14.)

3.12 Facts on Miscellaneous Types of Matrices

Fact 3.12.1. Let $A \in \mathbb{F}^{n \times m}$. Then, A is centrosymmetric if and only if $A^{\mathrm{T}}=A^{\hat{\mathrm{T}}}$. Furthermore, A is centrohermitian if and only if $A^{*}=A^{\hat{*}}$.

Fact 3.12.2. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$. If A and B are both (centrohermitian, centrosymmetric), then so is $A B$.

Fact 3.12.3. Let $A \in \mathbb{F}^{n \times m}$. Then, A is (semicontractive, contractive) if and only if A^{*} is.

Fact 3.12.4. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is dissipative. Then,
A is nonsingular. (Proof: Suppose that A is singular, and let $x \in \mathcal{N}(A)$. Then, $x^{*}\left(A+A^{*}\right) x=0$.) (Remark: If $A+A^{*}$ is nonsingular, then A is not necessarily nonsingular. Let $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$.)

Fact 3.12.5. Let $A \in \mathbb{R}^{n \times n}$ be tridiagonal with positive diagonal entries, and assume that, for all $i=2, \ldots, n$,

$$
A_{(i, i-1)} A_{(i-1, i)}<\frac{1}{4}\left(\cos \frac{\pi}{n+1}\right)^{-2} A_{(i, i)} A_{(i-1, i-1)} .
$$

Then, $\operatorname{det} A>0$. (Proof: See [312].)
Fact 3.12.6. Let $A \in \mathbb{F}^{n \times n}$ be Toeplitz. Then, A is reverse symmetric.
Fact 3.12.7. Let $A \in \mathbb{F}^{n \times n}$. Then, A is Toeplitz if and only if there exist $a_{0}, \ldots, a_{n} \in \mathbb{F}$ and $b_{1}, \ldots, b_{n} \in \mathbb{F}$ such that

$$
A=\sum_{i=1}^{n} b_{i} N_{n}^{i \mathrm{~T}}+\sum_{i=0}^{n} a_{i} N_{n}^{i} .
$$

Fact 3.12.8. Let $A \in \mathbb{F}^{n \times n}$, let $k \in \mathbb{P}$, and assume that A is (lower triangular, strictly lower triangular, upper triangular, strictly upper triangular). Then, so is A^{k}. If, in addition, A is Toeplitz, then so is A^{k}. (Remark: See Fact 11.10.1.)

Fact 3.12.9. Let $A \in \mathbb{F}^{n \times m}$. Then, the following statements hold:
i) If A is Toeplitz, then $\hat{I} A$ and $A \hat{I}$ are Hankel.
ii) If A is Hankel, then $\hat{I} A$ and $A \hat{I}$ are Toeplitz.
iii) A is Toeplitz if and only if $\hat{I} A \hat{I}$ is Toeplitz.
iv) A is Hankel if and only if $\hat{I} A \hat{I}$ is Hankel.

Fact 3.12.10. Let $A \in \mathbb{F}^{n \times n}$, assume that A is Hankel, and consider the following conditions:
i) A is Hermitian.
ii) A is real.
iii) A is symmetric.

Then, $i) \Longrightarrow i i) \Longrightarrow i i i)$.
Fact 3.12.11. Let $A \in \mathbb{F}^{n \times n}$ be a partitioned matrix, each of whose blocks is a $k \times k$ (circulant, Hankel, Toeplitz) matrix. Then, A is similar to a block-(circulant, Hankel, Toeplitz) matrix. (Proof: See [60].)

Fact 3.12.12. For all $i, j=1, \ldots, n$, define $A \in \mathbb{R}^{n \times n}$ by $A_{(i, j)} \triangleq$
$1 /(i+j-1)$. Then, A is Hankel and

$$
\operatorname{det} A=\frac{[1!2!\cdots(n-1)!]^{4}}{1!2!\cdots(2 n-1)!}
$$

Furthermore, for all $i, j=1, \ldots, n, A^{-1}$ has integer entries given by

$$
\left(A^{-1}\right)_{(i, j)}=(-1)^{i+j}(i+j-1)\binom{n+i-1}{n-j}\binom{n+j-1}{n-1}\binom{i+j-2}{i-1}^{2}
$$

Finally, for large n,

$$
\operatorname{det} A \approx 2^{-2 n^{2}}
$$

(Remark: A is the Hilbert matrix, which is a Cauchy matrix. See [280, pp. 513], Fact 1.4.8, Fact 3.12.13, and Fact 8.7.29.)

Fact 3.12.13. Let $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n} \in \mathbb{R}$, assume that $a_{i}+b_{j} \neq 0$ for all $i, j=1, \ldots, n$, and, for all $i, j=1, \ldots, n$, define $A \in \mathbb{R}^{n \times n}$ by $A_{(i, j)} \triangleq 1 /\left(a_{i}+b_{j}\right)$. Then, A is Hankel and

$$
\operatorname{det} A=\frac{\prod_{1 \leq i<j \leq n}\left(a_{j}-a_{i}\right)\left(b_{j}-b_{i}\right)}{\prod_{1 \leq i, j \leq n}\left(a_{i}+b_{j}\right)}
$$

Now, assume that a_{1}, \ldots, a_{n} are distinct and b_{1}, \ldots, b_{n} are distinct. Then, A is nonsingular and

$$
\left(A^{-1}\right)_{(i, j)}=\frac{\prod_{\substack{1 \leq k \leq n}}\left(a_{j}+b_{k}\right)\left(a_{k}+b_{i}\right)}{\left(a_{j}+b_{i}\right) \prod_{\substack{1 \leq k \leq n \\ k \neq j}}\left(a_{j}-a_{k}\right) \prod_{\substack{1 \leq k \leq n \\ k \neq i}}\left(b_{i}-b_{k}\right)}
$$

Furthermore,

$$
1_{1 \times n} A^{-1} 1_{n \times 1}=\sum_{i=1}^{n}\left(a_{i}+b_{i}\right)
$$

(Remark: A is a Cauchy matrix. See [280, p. 515], Fact 8.7.23, and Fact 1.4.8.)

Fact 3.12.14. Let $A \in \mathbb{R}^{n \times n}$ be tripotent. Then,

$$
\operatorname{rank} A=\operatorname{rank} A^{2}=\operatorname{tr} A^{2}
$$

Fact 3.12.15. Let $A \in \mathbb{F}^{n \times n}$. Then, A is nonsingular and tripotent if and only if A is involutory.

Fact 3 .12.16. Let $A \in \mathbb{F}^{n \times n}$. Then, A is involutory if and only if $(A+I)(A-I)=0$.

Fact 3.12.17. $A \in \mathbb{R}^{n \times n}$, and assume that A is skew involutory. Then, n is even.

Fact 3.12.18. Let $x, y \in \mathbb{R}^{n}$, and assume that $x_{(1)} \geq \cdots \geq x_{(n)}$ and $y_{(1)} \geq \cdots \geq y_{(n)}$. Then, there exists a doubly stochastic matrix $A \in \mathbb{R}^{n \times n}$ such that $y=A x$ if and only if y strongly majorizes x. (Remark: The matrix A is doubly stochastic if it is nonnegative, $1_{1 \times n} A=1_{1 \times n}$, and $A 1_{n \times 1}=1_{n \times 1}$. This result is the Hardy-Littlewood-Polya theorem. See [93, p. 33], [287, p. 197], and [400, p. 22].)

3.13 Notes

In the literature on generalized inverses, range Hermitian matrices are traditionally called EP matrices. Elementary reflectors are traditionally called Householder matrices or Householder reflections.

Left equivalence, right equivalence, and biequivalence are treated in [484]. Each of the groups defined in Proposition 3.2.7 is actually a Lie group. Elementary treatments of Lie algebras and Lie groups are given in [36, 45, 157, 196, 227, 299, 455], while an advanced treatment appears in [571]. Some additional groups of structured matrices are given in [386].

Applications of the matrix inversion lemma are discussed in [256]. The terminology "idempotent" and "projector" is not standardized in the literature. Some writers use "projector" or "oblique projector" for idempotent, and "orthogonal projector" for projector. Centrosymmetric and centrohermitian matrices are discussed in [359,590]. Several characterizations of normal and almost normal matrices are given in [186,188,246]. Symplectic and Hamiltonian matrices are discussed in [354].

Chapter Four

Matrix Polynomials and Rational Transfer Functions

In this chapter we consider matrices whose entries are polynomials or rational functions. The decomposition of polynomial matrices in terms of the Smith form provides the foundation for developing canonical forms in Chapter 4. In this chapter we also present some basic properties of eigenvalues and eigenvectors as well as the minimal and characteristic polynomials of a square matrix. Finally, we consider the extension of the Smith form to the Smith-McMillan form for rational transfer functions.

4.1 Polynomials

A function $p: \mathbb{C} \mapsto \mathbb{C}$ of the form

$$
\begin{equation*}
p(s)=\beta_{k} s^{k}+\beta_{k-1} s^{k-1}+\cdots+\beta_{1} s+\beta_{0} \tag{4.1.1}
\end{equation*}
$$

where $k \in \mathbb{N}$ and $\beta_{0}, \ldots, \beta_{k} \in \mathbb{F}$, is a polynomial. The set of polynomials is denoted by $\mathbb{F}[s]$. If the leading coefficient $\beta_{k} \in \mathbb{F}$ is nonzero, then the degree of p, denoted by $\operatorname{deg} p$, is k. If, in addition, $\beta_{k}=1$, then p is monic. If $k=0$, then p is constant. The degree of a nonzero constant polynomial is zero, while the degree of the zero polynomial is defined to be $-\infty$.

Let p_{1} and p_{2} be polynomials. Then,

$$
\begin{equation*}
\operatorname{deg} p_{1} p_{2}=\operatorname{deg} p_{1}+\operatorname{deg} p_{2} . \tag{4.1.2}
\end{equation*}
$$

If $p_{1}=0$ or $p_{2}=0$, then $\operatorname{deg} p_{1} p_{2}=\operatorname{deg} p_{1}+\operatorname{deg} p_{2}=-\infty$. If p_{2} is a nonzero constant, then $\operatorname{deg} p_{2}=0$ and thus $\operatorname{deg} p_{1} p_{2}=\operatorname{deg} p_{1}$. Furthermore,

$$
\begin{equation*}
\operatorname{deg}\left(p_{1}+p_{2}\right) \leq \max \left\{\operatorname{deg} p_{1}, \operatorname{deg} p_{2}\right\} . \tag{4.1.3}
\end{equation*}
$$

Therefore, $\operatorname{deg}\left(p_{1}+p_{2}\right)=\max \left\{\operatorname{deg} p_{1}, \operatorname{deg} p_{2}\right\}$ if and only if either $\operatorname{deg} p_{1} \neq$ $\operatorname{deg} p_{2}$ or $p_{1}=p_{2}=0$ or $\operatorname{deg} p_{1}=\operatorname{deg} p_{2} \neq-\infty$ and $\frac{\mathrm{d}^{k}}{\mathrm{~d} s^{k}}\left[p_{1}(s)+p_{2}(s)\right] \neq 0$, where $k=\operatorname{deg} p_{1}=\operatorname{deg} p_{2}$.

Let $p \in \mathbb{F}[s]$ be a polynomial of degree $k \geq 1$. Then, it follows from the fundamental theorem of algebra that p has k possibly repeated complex roots $\lambda_{1}, \ldots, \lambda_{k}$ so that p can be factored as

$$
\begin{equation*}
p(s)=\beta \prod_{i=1}^{k}\left(s-\lambda_{i}\right) \tag{4.1.4}
\end{equation*}
$$

where $\beta \in \mathbb{F}$. The multiplicity of a root $\lambda \in \mathbb{C}$ of p is denoted by $\mathrm{m}_{p}(\lambda)$. If λ is not a root of p, then $\mathrm{m}_{p}(\lambda)=0$. The multiset consisting of the roots of p including multiplicity is $\operatorname{mroots}(p)=\left\{\lambda_{1}, \ldots \lambda_{k}\right\}_{\mathrm{m}}$, while the set of roots of p ignoring multiplicity is $\operatorname{roots}(p)=\left\{\hat{\lambda}_{1}, \ldots \hat{\lambda}_{l}\right\}$, where $\sum_{i=1}^{l} \mathrm{~m}_{p}\left(\hat{\lambda}_{i}\right)=k$. If $\mathbb{F}=\mathbb{R}$, then the multiplicity of a non-real root λ_{i} is equal to the multiplicity of its complex conjugate $\overline{\lambda_{i}}$. Hence, $\operatorname{mroots}(p)$ is self conjugate, that is, $\operatorname{mroots}(p)=\overline{\operatorname{mroots}(p)}$.

Let $p \in \mathbb{F}[s]$. If $p(-s)=p(s)$ for all $s \in \mathbb{C}$, then p is even, while, if $p(-s)=-p(s)$ for all $s \in \mathbb{C}$, then p is odd. If p is either odd or even, then $\operatorname{mroots}(p)=-\operatorname{mroots}(p)$. If $p \in \mathbb{R}[s]$ and there exists $q \in \mathbb{R}[s]$ such that $p(s)=q(s) q(-s)$ for all $s \in \mathbb{C}$, then p has a spectral factorization. If p has a spectral factorization, then p is even.

Proposition 4.1.1. Let $p \in \mathbb{R}[s]$. Then, the following statements are equivalent:
i) p has a spectral factorization.
ii) p is even and every imaginary root of p has even multiplicity.
iii) p is even and $p(\jmath \omega) \geq 0$ for all $\omega \in \mathbb{R}$.

Proof. The equivalence of i) and $i i$) is immediate. To prove $i) \Longrightarrow i i i$) note that, for all $\omega \in \mathbb{R}$,

$$
p(\jmath \omega)=q(\jmath \omega) q(-\jmath \omega)=|q(\jmath \omega)|^{2} \geq 0
$$

Conversely, to prove $i i i) \Longrightarrow i$) write $p=p_{1} p_{2}$, where all of the roots of p_{1} are imaginary and none of the roots of p_{2} are imaginary. Now, let z be a root of p_{2}. Then, $-z, \bar{z}$, and $-\bar{z}$ are also roots of p_{2} with the same multiplicity as z. Hence, there exists a polynomial $p_{20} \in \mathbb{R}[s]$ such that $p_{2}(s)=p_{20}(s) p_{20}(-s)$ for all $s \in \mathbb{C}$.

Next, write $p_{1}(s)=\prod_{i=1}^{k}\left(s^{2}+\omega_{i}^{2}\right)^{m_{i}}$, where $0 \leq \omega_{1}<\cdots<\omega_{k}$ and $m_{i} \triangleq \mathrm{~m}_{p_{i}}\left(\jmath \omega_{i}\right)$. Let $\omega_{i_{0}}$ denote the smallest element of the set $\left\{\omega_{1}, \ldots, \omega_{k}\right\}$ such that m_{i} is odd. Then, it follows that $p_{1}(\jmath \omega)=\prod_{i=1}^{k}\left(\omega_{i}^{2}-\omega^{2}\right)^{m_{i}}<0$ for all $\omega \in\left(\omega_{i_{0}}, \omega_{i_{0}+1}\right)$, where $\omega_{k+1} \triangleq \infty$. However, note that $p_{1}(\jmath \omega)=$ $p(\jmath \omega) / p_{2}(\jmath \omega)=p(\jmath \omega) /\left|p_{20}(\jmath \omega)\right|^{2} \geq 0$ for all $\omega \in \mathbb{R}$, which is a contradiction. Therefore, m_{i} is even for all $i=1, \ldots, k$, and thus $p_{1}(s)=p_{10}(s) p_{10}(-s)$
for all $s \in \mathbb{C}$, where $p_{10}(s) \triangleq \prod_{i=1}^{r}\left(s^{2}+\omega_{i}^{2}\right)^{m_{i} / 2}$. Consequently, $p(s)=$ $p_{10}(s) p_{20}(s) p_{10}(-s) p_{20}(-s)$ for all $s \in \mathbb{C}$.

The following division algorithm is essential to the study of polynomials.

Lemma 4.1.2. Let $p_{1}, p_{2} \in \mathbb{F}[s]$, and assume that p_{2} is not the zero polynomial. Then, there exist unique polynomials $q, r \in \mathbb{F}[s]$ such that $\operatorname{deg} r<\operatorname{deg} p_{2}$ and

$$
\begin{equation*}
p_{1}=q p_{2}+r . \tag{4.1.5}
\end{equation*}
$$

Proof. First note that if $\operatorname{deg} p_{1}<\operatorname{deg} p_{2}$, then $q=0$ and $r=p_{1}$. Hence, assume that $\operatorname{deg} p_{1}=n \geq m=\operatorname{deg} p_{2}$ and write $p_{1}(s)=\beta_{n} s^{n}+\cdots+$ β_{0} and $p_{2}(s)=\gamma_{m} s^{m}+\cdots+\gamma_{0}$. If $n=1$, then (4.1.5) is satisfied with $q(s)=\beta_{1} / \gamma_{1}$ and $r(s)=\beta_{0}-\beta_{1} \gamma_{0} / \gamma_{1}$. Now, suppose that $n=2$. Then, $\hat{p}_{1}(s)=p_{1}(s)-\left(\beta_{2} / \gamma_{m}\right) s^{2-m} p_{2}(s)$ has degree 1. Applying (4.1.5) with p_{1} replaced by \hat{p}_{1}, it follows that there exist $q_{1}, r_{1} \in \mathbb{F}[s]$ such that $\hat{p}_{1}=q_{1} p_{2}+r_{1}$ and such that $\operatorname{deg} r_{1}<\operatorname{deg} p_{2}$. It thus follows that $p_{1}(s)=q_{1}(s) p_{2}(s)+r_{1}(s)+$ $\left(\beta_{2} / \gamma_{m}\right) s^{2-m} p_{2}(s)=q(s) p_{2}(s)+r(s)$, where $q(s)=q_{1}(s)+\left(\beta_{2} / \gamma_{m}\right) s^{n-m}$ and $r=r_{1}$, which verifies (4.1.5). Similar arguments apply to successively larger values of n.

To prove uniqueness, suppose there exist polynomials \hat{q} and \hat{r} such that $\operatorname{deg} \hat{r}<\operatorname{deg} p_{2}$ and $p_{1}=\hat{q} p_{2}+\hat{r}$. Then, it follows that $(\hat{q}-q) p_{2}=r-\hat{r}$. Next, note that $\operatorname{deg}(r-\hat{r})<\operatorname{deg} p_{2}$. If $\hat{q} \neq q$, then $\operatorname{deg} p_{2} \leq \operatorname{deg}\left[(\hat{q}-q) p_{2}\right]$ so that $\operatorname{deg}(r-\hat{r})<\operatorname{deg}\left[(\hat{q}-q) p_{2}\right]$, which is a contradiction. Thus, $\hat{q}=q$, and, hence, $r=\hat{r}$.

In Lemma 4.1.2, q is the quotient of p_{1} and p_{2}, while r is the remainder. If $\operatorname{deg} p_{1}<\operatorname{deg} p_{2}$, then (4.1.5) is satisfied with $q=0$ and $r=p_{1}$ so that $\operatorname{deg} r<\operatorname{deg} p_{2}$. Furthermore, if p_{2} is a nonzero constant so that $\operatorname{deg} p_{2}=0$, then Lemma 4.1.2 implies that $q=p_{1} / p_{2}$ and $r=0$, in which case $-\infty=$ $\operatorname{deg} r<\operatorname{deg} p_{2}=0$. Finally, if $p_{2}(s)=s-\alpha$, where $\alpha \in \mathbb{F}$, then r is constant and thus $r(s)=p_{1}(\alpha)$. In general, if $r=0$, then p_{2} divides p_{1}, or, equivalently, p_{1} is a multiple of p_{2}.

If a polynomial $p_{3} \in \mathbb{F}[s]$ divides two polynomials $p_{1}, p_{2} \in \mathbb{F}[s]$, then p_{3} is a common divisor of p_{1} and p_{2}. Given polynomials $p_{1}, p_{2} \in \mathbb{F}[s]$, there exists a unique monic polynomial $p_{3} \in \mathbb{F}[s]$, the greatest common divisor of p_{1} and p_{2}, such that p_{3} is a common divisor of p_{1} and p_{2} and such that every common divisor of p_{1} and p_{2} divides p_{3}. In addition, there exist polynomials $q_{1}, q_{2} \in \mathbb{F}[s]$ such that the greatest common divisor p_{3} of p_{1} and p_{2} is given by $p_{3}=q_{1} p_{1}+q_{2} p_{2}$. See [456, p. 113], for proofs of these results. Finally, p_{1} and p_{2} are coprime if their greatest common divisor is $p_{3}=1$,
while a polynomial $p \in \mathbb{F}[s]$ is irreducible if there do not exist nonconstant polynomials $p_{1}, p_{2} \in \mathbb{F}[s]$ such that $p=p_{1} p_{2}$. For example, if $\mathbb{F}=\mathbb{R}$, then $p(s)=s^{2}+s+1$ is irreducible.

If a polynomial $p_{3} \in \mathbb{F}[s]$ is a multiple of two polynomials $p_{1}, p_{2} \in \mathbb{F}[s]$, then p_{3} is a common multiple of p_{1} and p_{2}. Given nonzero polynomials p_{1} and p_{2}, there exists (see $[456$, p. 113$]$) a unique monic polynomial $p_{3} \in \mathbb{F}[s]$, called the least common multiple of p_{1} and p_{2}, that is a common multiple of p_{1} and p_{2} and that divides every common multiple of p_{1} and p_{2}.

The polynomial $p \in \mathbb{F}[s]$ given by (4.1.1) can be evaluated with a square matrix argument $A \in \mathbb{F}^{n \times n}$ by defining

$$
\begin{equation*}
p(A) \triangleq \beta_{k} A^{k}+\beta_{k-1} A^{k-1}+\cdots+\beta_{1} A+\beta_{0} I \tag{4.1.6}
\end{equation*}
$$

4.2 Matrix Polynomials

The set $\mathbb{F}^{n \times m}[s]$ of matrix polynomials consists of matrix functions $P: \mathbb{C} \mapsto \mathbb{C}^{n \times m}$ all of whose entries are elements of $\mathbb{F}[s]$. A matrix polynomial $P \in \mathbb{F}^{n \times m}[s]$ can thus be written as

$$
\begin{equation*}
P(s)=s^{k} B_{k}+s^{k-1} B_{k-1}+\cdots+s B_{1}+B_{0} \tag{4.2.1}
\end{equation*}
$$

where $B_{0}, \ldots, B_{k} \in \mathbb{F}^{n \times m}$. If B_{k} is nonzero, then the degree of P, denoted by $\operatorname{deg} P$, is k, while if $P=0$, then $\operatorname{deg} P=-\infty$. If $n=m$ and B_{k} is nonsingular, then P is regular, while if $B_{k}=I$, then P is monic.

The following result, which generalizes Lemma 4.1.2, provides a division algorithm for matrix polynomials.

Lemma 4.2.1. Let $P_{1}, P_{2} \in \mathbb{F}^{n \times n}[s]$, where P_{2} is regular. Then, there exist unique matrix polynomials $Q, R, \hat{Q}, \hat{R} \in \mathbb{F}^{n \times n}[s]$ such that $\operatorname{deg} R<$ $\operatorname{deg} P_{2}, \operatorname{deg} \hat{R}<\operatorname{deg} P_{2}$,

$$
\begin{equation*}
P_{1}=Q P_{2}+R \tag{4.2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{1}=P_{2} \hat{Q}+\hat{R} \tag{4.2.3}
\end{equation*}
$$

Proof. See [456, pp. 134-135] or [230, p. 90].
If $R=0$, then P_{2} right divides P_{1}, while if $\hat{R}=0$, then P_{2} left divides P_{1}.

Let the matrix polynomial $P \in \mathbb{F}^{n \times m}[s]$ be given by (4.2.1). Then, P can be evaluated with a square matrix argument in two different ways,
either from the right or from the left. For $A \in \mathbb{C}^{m \times m}$ define

$$
\begin{equation*}
P_{\mathrm{R}}(A) \triangleq B_{k} A^{k}+B_{k-1} A^{k-1}+\cdots+B_{1} A+B_{0} \tag{4.2.4}
\end{equation*}
$$

while, for $A \in \mathbb{C}^{n \times n}$, define

$$
\begin{equation*}
P_{\mathrm{L}}(A) \triangleq A^{k} B_{k}+A^{k-1} B_{k-1}+\cdots+A B_{1}+B_{0} \tag{4.2.5}
\end{equation*}
$$

If $n=m$, then $P_{\mathrm{R}}(A)$ and $P_{\mathrm{L}}(A)$ can be evaluated for all $A \in \mathbb{F}^{n \times n}$, but are generally different.

The following result is useful.
Lemma 4.2.2. Let $Q, \hat{Q} \in \mathbb{F}^{n \times n}[s]$ and $A \in \mathbb{F}^{n \times n}$. Furthermore, define $P, \hat{P} \in \mathbb{F}^{n \times n}[s]$ by $P(s) \triangleq Q(s)(s I-A)$ and $\hat{P}(s) \triangleq(s I-A) \hat{Q}(s)$. Then, $P_{\mathrm{R}}(A)=0$ and $\hat{P}_{\mathrm{L}}(A)=0$.

Let $p \in \mathbb{F}[s]$ be given by (4.1.1) and define $P(s) \triangleq p(s) I_{n}=s^{k} \beta_{k} I_{n}+$ $s^{k-1} \beta_{k-1} I_{n}+\cdots+s \beta_{1} I_{n}+\beta_{0} I_{n} \in \mathbb{F}^{n \times n}[s]$. For $A \in \mathbb{C}^{n \times n}$ it follows that $p(A)=P(A)=P_{\mathrm{R}}(A)=P_{\mathrm{L}}(A)$.

The following result specializes Lemma 4.2.1 to the case of matrix polynomial divisors of degree 1 .

Corollary 4.2.3. Let $P \in \mathbb{F}^{n \times n}[s]$ and $A \in \mathbb{F}^{n \times n}$. Then, there exist unique matrix polynomials $Q, \hat{Q} \in \mathbb{F}^{n \times n}[s]$ and unique matrices $R, \hat{R} \in \mathbb{F}^{n \times n}$ such that

$$
\begin{equation*}
P(s)=Q(s)(s I-A)+R, \tag{4.2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
P(s)=(s I-A) \hat{Q}(s)+\hat{R} . \tag{4.2.7}
\end{equation*}
$$

Furthermore, $R=P_{\mathrm{R}}(A)$ and $\hat{R}=P_{\mathrm{L}}(A)$.
Proof. In Lemma 4.2.1 set $P_{1}=P$ and $P_{2}(s)=s I-A$. Since $\operatorname{deg} P_{2}=$ 1, it follows that $\operatorname{deg} R=\operatorname{deg} \hat{R}=0$ and thus R and \hat{R} are constant. Finally, the last statement follows from Lemma 4.2.2.

Definition 4.2.4. Let $P \in \mathbb{F}^{n \times m}[s]$. Then, the rank of P is the nonnegative integer

$$
\begin{equation*}
\operatorname{rank} P \triangleq \max _{s \in \mathbb{C}} \operatorname{rank} P(s) \tag{4.2.8}
\end{equation*}
$$

Let $P \in \mathbb{F}^{n \times n}[s]$. Then, $P(s) \in \mathbb{C}^{n \times n}$ for all $s \in \mathbb{C}$. Furthermore, $\operatorname{det} P$ is a polynomial in s, that is, $\operatorname{det} P \in \mathbb{F}[s]$.

Definition 4.2.5. Let $P \in \mathbb{F}^{n \times n}[s]$. Then, P is nonsingular if $\operatorname{det} P$ is not the zero polynomial; otherwise, P is singular.

Proposition 4.2.6. Let $P \in \mathbb{F}^{n \times n}[s]$, and assume that P is regular. Then, P is nonsingular.

Let $P \in \mathbb{F}^{n \times n}[s]$. If P is nonsingular, then the inverse P^{-1} of P can be constructed according to (2.7.21). In general, the entries of P^{-1} are rational functions of s (see Definition 4.7.1). For example, if $P(s)=\left[\begin{array}{cc}s+2 & s+1 \\ s-2 & s-1\end{array}\right]$, then $P^{-1}(s)=\frac{1}{2}\left[\begin{array}{cc}1 & -\frac{s+1}{s-1} \\ -\frac{s-2}{s-1} & \frac{s+1}{s-1}\end{array}\right]$. In certain cases P^{-1} is also a matrix polynomial. For example, if $P(s)=\left[\begin{array}{cc}s & 1 \\ s^{2}+s-1 & s+1\end{array}\right]$, then $P^{-1}(s)=\left[\begin{array}{cc}s+1 & -1 \\ -s^{2}-s+1 & s\end{array}\right]$.

The following result is an extension of Proposition 2.7.7 from constant to matrix polynomials.

Proposition 4.2.7. Let $P \in \mathbb{F}^{n \times m}[s]$. Then, $\operatorname{rank} P$ is the order of the largest nonsingular matrix polynomial that is a submatrix of P.

Proof. For all $s \in \mathbb{C}$ it follows from Proposition 2.7.7 that rank $P(s)$ is the order of the largest nonsingular submatrix of $P(s)$. Now, let $s_{0} \in \mathbb{C}$ be such that rank $P\left(s_{0}\right)=\operatorname{rank} P$. Then, $P\left(s_{0}\right)$ has a nonsingular submatrix of maximal order rank P. Therefore, P has a nonsingular submatrix polynomial of maximal order rank P.

A matrix polynomial can be transformed by performing elementary row and column operations of the following types:
i) Multiply a row or a column by a nonzero constant.
ii) Interchange two rows or two columns.
iii) Add a polynomial multiple of one (row, column) to another (row, column).

These operations correspond to left multiplication or right multiplication by the elementary matrices

$$
I_{n}+(\alpha-1) E_{i, i}=\left[\begin{array}{ccc}
I_{i-1} & 0 & 0 \tag{4.2.9}\\
0 & \alpha & 0 \\
0 & 0 & I_{n-i}
\end{array}\right]
$$

where $\alpha \in \mathbb{F}$ is nonzero,

$$
I_{n}+E_{i, j}+E_{j, i}-E_{i, i}-E_{j, j}=\left[\begin{array}{ccccc}
I_{i-1} & 0 & 0 & 0 & 0 \tag{4.2.10}\\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & I_{j-i-1} & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & I_{n-j}
\end{array}\right]
$$

where $i \neq j$, and as well as the elementary matrix polynomial

$$
I_{n}+p E_{i, j}=\left[\begin{array}{ccccc}
I_{i-1} & 0 & 0 & 0 & 0 \tag{4.2.11}\\
0 & 1 & 0 & p & 0 \\
0 & 0 & I_{j-i-1} & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & I_{n-j}
\end{array}\right]
$$

where $i \neq j$ and $p \in \mathbb{F}[s]$. The matrices shown in (4.2.10) and (4.2.11) illustrate the case $i<j$. Applying these operations sequentially corresponds to forming products of elementary matrices and elementary matrix polynomials. Note that the elementary matrix polynomial $I+p E_{i, j}$ is nonsingular and that $\left(I+p E_{i, j}\right)^{-1}=I-p E_{i, j}$ so that the inverse of an elementary matrix polynomial is an elementary matrix polynomial.

4.3 The Smith Decomposition and Similarity Invariants

Definition 4.3.1. Let $P \in \mathbb{F}^{n \times n}[s]$. Then, P is unimodular if P is the product of elementary matrices and elementary matrix polynomials.

The following result provides a canonical form, known as the Smith form, for matrix polynomials under unimodular transformation.

Theorem 4.3.2. Let $P \in \mathbb{F}^{n \times m}[s]$, and let $r \triangleq \operatorname{rank} P$. Then, there exist unimodular matrices $S_{1} \in \mathbb{F}^{n \times n}[s]$ and $S_{2} \in \mathbb{F}^{m \times m}[s]$ and monic polynomials $p_{1}, \ldots, p_{r} \in \mathbb{F}[s]$ such that p_{i} divides p_{i+1} for all $i=1, \ldots, r-1$ and such that

$$
P=S_{1}\left[\begin{array}{cccc}
p_{1} & & & \tag{4.3.1}\\
& \ddots & & \\
& & p_{r} & \\
& & & 0_{(n-r) \times(m-r)}
\end{array}\right] S_{2} .
$$

Furthermore, for all $i=1, \ldots, r, p_{i}$ is uniquely determined by

$$
\begin{equation*}
\Delta_{i}=p_{1} \cdots p_{i} \tag{4.3.2}
\end{equation*}
$$

where Δ_{i} is the greatest common divisor of all $i \times i$ subdeterminants of P.
Proof. The result is obtained by sequentially applying elementary row and column operations to P. For details, see [321, pp. 390-392] or [456, pp. 125-128].

Corollary 4.3.3. Let $P \in \mathbb{R}^{n \times n}[s]$ be unimodular. Then, the Smith form of P is the identity.

Definition 4.3.4. The monic polynomials $p_{1}, \ldots, p_{r} \in \mathbb{F}[s]$ of the Smith form of $P \in \mathbb{F}^{n \times n}[s]$ are the invariant polynomials of P.

Proposition 4.3.5. Let $P \in \mathbb{F}^{n \times n}[s]$. Then, P is unimodular if and only if $\operatorname{det} P$ is a nonzero constant.

Proof. Necessity is immediate since every elementary matrix and every elementary matrix polynomial has a constant nonzero determinant. To prove sufficiency, note that, since $\operatorname{det} P$ is a nonzero constant, it follows from Theorem 4.3.2 that every invariant polynomial of P is also a nonzero constant. Consequently, P is a product of elementary matrices and elementary matrix polynomials and thus is unimodular.

Proposition 4.3.6. Let $P \in \mathbb{F}^{n \times n}[s]$. Then, the following statements are equivalent:
i) P is unimodular.
ii) P is nonsingular, and P^{-1} is a matrix polynomial.
iii) P is nonsingular, and P^{-1} is unimodular.

Proof. To prove $i) \Longrightarrow i i$) suppose that P is unimodular. Then, it follows from Proposition 4.3.5 that $\operatorname{det} P$ is a nonzero constant. Therefore, P is nonsingular. Furthermore, since P^{A} is a matrix polynomial, it follows that $P^{-1}=(\operatorname{det} P)^{-1} P^{\mathrm{A}}$ is a matrix polynomial. To prove $\left.\left.i i\right) \Longrightarrow i i i\right)$ suppose that P is nonsingular and P^{-1} is a matrix polynomial so that $\operatorname{det} P^{-1}$ is a polynomial. Since $\operatorname{det} P$ is a nonzero constant and $\operatorname{det} P^{-1}=1 / \operatorname{det} P$, it follows that $\operatorname{det} P^{-1}$ is also a nonzero constant. Thus, Proposition 4.3.5 implies that P^{-1} is unimodular. Finally, to prove $\left.i i i\right) \Longrightarrow i$, suppose that P is nonsingular and P^{-1} is unimodular. Then, since $\operatorname{det} P^{-1}$ is a nonzero constant, it follows that $\operatorname{det} P=1 / \operatorname{det} P^{-1}$ is a nonzero constant. Proposition 4.3.5 thus implies that P is unimodular.

Proposition 4.3.7. Let $A_{1}, B_{1}, A_{2}, B_{2} \in \mathbb{F}^{n \times n}$, where A_{2} is nonsingular, and define the matrix polynomials $P_{1}, P_{2} \in \mathbb{F}^{n \times n}[s]$ by $P_{1}(s) \triangleq s A_{1}+B_{1}$ and $P_{2}(s) \triangleq s A_{2}+B_{2}$. Then, P_{1} and P_{2} have the same invariant polynomials if and only if there exist nonsingular matrices $S_{1}, S_{2} \in \mathbb{F}^{n \times n}$ such that $P_{2}=S_{1} P_{1} S_{2}$.

Proof. The sufficiency result is immediate. To prove necessity, note that it follows from Theorem 4.3.2 that there exist unimodular matrices $T_{1}, T_{2} \in \mathbb{F}^{n \times n}[s]$ such that $P_{2}=T_{2} P_{1} T_{1}$. Now, since P_{2} is regular, it follows from Lemma 4.2 .1 that there exist matrix polynomials $Q, \hat{Q} \in \mathbb{F}^{n \times n}[s]$ and constant matrices $R, \hat{R} \in \mathbb{F}^{n \times n}$ such that $T_{1}=Q P_{2}+R$ and $T_{2}=P_{2} \hat{Q}+\hat{R}$.

Next, we have

$$
\begin{aligned}
P_{2} & =T_{2} P_{1} T_{1} \\
& =\left(P_{2} \hat{Q}+\hat{R}\right) P_{1} T_{1} \\
& =\hat{R} P_{1} T_{1}+P_{2} \hat{Q} T_{2}^{-1} P_{2} \\
& =\hat{R} P_{1}\left(Q P_{2}+R\right)+P_{2} \hat{Q} T_{2}^{-1} P_{2} \\
& =\hat{R} P_{1} R+\left(T_{2}-P_{2} \hat{Q}\right) P_{1} Q P_{2}+P_{2} \hat{Q} T_{2}^{-1} P_{2} \\
& =\hat{R} P_{1} R+T_{2} P_{1} Q P_{2}+P_{2}\left(-\hat{Q} P_{1} Q+\hat{Q} T_{2}^{-1}\right) P_{2} \\
& =\hat{R} P_{1} R+P_{2}\left(T_{1}^{-1} Q-\hat{Q} P_{1} Q+\hat{Q} T_{2}^{-1}\right) P_{2} .
\end{aligned}
$$

Since P_{2} is regular and has degree 1, it follows that if $T_{1}^{-1} Q-\hat{Q} P_{1} Q+\hat{Q} T_{2}^{-1}$ is not zero, then $\operatorname{deg} P_{2}\left(T_{1}^{-1} Q-\hat{Q} P_{1} Q+\hat{Q} T_{2}^{-1}\right) P_{2} \geq 2$. However, since P_{2} and $\hat{R} P_{1} R$ have degree less than two, it follows that $T_{1}^{-1} Q-\hat{Q} P_{1} Q+\hat{Q} T_{2}^{-1}=0$. Hence, $P_{2}=\hat{R} P_{1} R$.

Next, to show that \hat{R} and R are nonsingular, note that, for all $s \in \mathbb{C}$,

$$
P_{2}(s)=\hat{R} P_{1}(s) R=s \hat{R} A_{1} R+\hat{R} B_{1} R
$$

which implies that $A_{2}=S_{1} A_{1} S_{2}$, where $S_{1}=\hat{R}$ and $S_{2}=R$. Since A_{2} is nonsingular, it follows that S_{1} and S_{2} are nonsingular.

Definition 4.3.8. Let $A \in \mathbb{F}^{n \times n}$. Then, the invariant polynomials of $s I-A$ are the similarity invariants of A.

The following result provides necessary and sufficient conditions for two matrices to be similar.

Theorem 4.3.9. Let $A, B \in \mathbb{F}^{n \times n}$. Then, A and B are similar if and only if they have the same similarity invariants.

Proof. To prove necessity, assume that A and B are similar. Then, the matrices $s I-A$ and $s I-B$ have the same Smith form and thus the same similarity invariants. To prove sufficiency, it follows from Proposition 4.3.7 that there exist nonsingular matrices $S_{1}, S_{2} \in \mathbb{F}^{n \times n}$ such that $s I-A=$ $S_{1}(s I-B) S_{2}$. Thus, $S_{1}=S_{2}^{-1}$, and, hence, $A=S_{1} B S_{1}^{-1}$.

4.4 Eigenvalues

Let $A \in \mathbb{F}^{n \times n}$. Then, the matrix polynomial $s I-A \in \mathbb{F}^{n \times n}[s]$ is monic and has degree 1 .

Definition 4.4.1. Let $A \in \mathbb{F}^{n \times n}$. Then, the characteristic polynomial of A is the polynomial $\chi_{A} \in \mathbb{F}[s]$ given by

$$
\begin{equation*}
\chi_{A}(s) \triangleq \operatorname{det}(s I-A) \tag{4.4.1}
\end{equation*}
$$

Proposition 4.4.2. Let $A \in \mathbb{F}^{n \times n}$. Then, χ_{A} is monic and $\operatorname{deg} \chi_{A}=n$.
Let $A \in \mathbb{F}^{n \times n}$ and write the characteristic polynomial of A as

$$
\begin{equation*}
\chi_{A}(s)=s^{n}+\beta_{n-1} s^{n-1}+\cdots+\beta_{1} s+\beta_{0} \tag{4.4.2}
\end{equation*}
$$

where $\beta_{0}, \ldots, \beta_{n-1} \in \mathbb{F}$. The eigenvalues of A are the n possibly repeated roots $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$ of χ_{A}, that is, the solutions of the characteristic equation

$$
\begin{equation*}
\chi_{A}(s)=0 \tag{4.4.3}
\end{equation*}
$$

It is often convenient to denote the eigenvalues of A by $\lambda_{1}(A), \ldots$, $\lambda_{n}(A)$ or just $\lambda_{1}, \ldots, \lambda_{n}$. This notation may be ambiguous, however, since it does not uniquely specify which eigenvalue is denoted by λ_{i}. If, however, every eigenvalue of A is real, then we employ the notational convention

$$
\begin{equation*}
\lambda_{1} \geq \cdots \geq \lambda_{n} \tag{4.4.4}
\end{equation*}
$$

and we define

$$
\begin{equation*}
\lambda_{\max }(A) \triangleq \lambda_{1}, \quad \lambda_{\min }(A) \triangleq \lambda_{n} \tag{4.4.5}
\end{equation*}
$$

Definition 4.4.3. Let $A \in \mathbb{F}^{n \times n}$. The algebraic multiplicity of an eigenvalue λ of A, denoted by $\operatorname{am}_{A}(\lambda)$, is the algebraic multiplicity of λ as a root of χ_{A}, that is,

$$
\begin{equation*}
\operatorname{am}_{A}(\lambda) \triangleq \mathrm{m}_{\chi_{A}}(\lambda) . \tag{4.4.6}
\end{equation*}
$$

The multiset consisting of the eigenvalues of A including their algebraic multiplicity, denoted by $\operatorname{mspec}(A)$, is the multispectrum of A, that is,

$$
\begin{equation*}
\operatorname{mspec}(A) \triangleq \operatorname{mroots}\left(\chi_{A}\right) \tag{4.4.7}
\end{equation*}
$$

Ignoring algebraic multiplicity, $\operatorname{spec}(A)$ denotes the spectrum of A, that is,

$$
\begin{equation*}
\operatorname{spec}(A) \triangleq \operatorname{roots}\left(\chi_{A}\right) \tag{4.4.8}
\end{equation*}
$$

If $\lambda \notin \operatorname{spec}(A)$, then $\lambda \notin \operatorname{roots}\left(\chi_{A}\right)$, and thus $\operatorname{am}_{A}(\lambda)=\mathrm{m}_{\chi_{A}}(\lambda)=0$.
Let $A \in \mathbb{F}^{n \times n}$ and $\operatorname{mroots}\left(\chi_{A}\right)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{m}}$. Then,

$$
\begin{equation*}
\chi_{A}(s)=\prod_{i=1}^{n}\left(s-\lambda_{i}\right) \tag{4.4.9}
\end{equation*}
$$

If $\mathbb{F}=\mathbb{R}$, then $\chi_{A}(s)$ has real coefficients, and thus the eigenvalues of A occur in complex conjugate pairs, that is, $\operatorname{mroots}\left(\chi_{A}\right)=\operatorname{mroots}\left(\chi_{A}\right)$. Now, let $\operatorname{spec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}$, and, for all $i=1, \ldots, r$, let n_{i} denote the algebraic multiplicity of λ_{i}. Then,

$$
\begin{equation*}
\chi_{A}(s)=\prod_{i=1}^{r}\left(s-\lambda_{i}\right)^{n_{i}} . \tag{4.4.10}
\end{equation*}
$$

The following result gives some basic properties of the spectrum of a matrix.

Proposition 4.4.4. Let $A, B \in \mathbb{F}^{n \times n}$. Then, the following statements hold:
i) $\chi_{A^{\mathrm{T}}}=\chi_{A}$.
ii) $\chi_{-A}=(-1)^{n} \chi_{A}$.
iii) $\operatorname{mspec}\left(A^{\mathrm{T}}\right)=\operatorname{mspec}(A)$.
iv) $\operatorname{mspec}(\bar{A})=\overline{\operatorname{mspec}(A)}$.
v) $\operatorname{mspec}\left(A^{*}\right)=\overline{\operatorname{mspec}(A)}$.
vi) $0 \in \operatorname{spec}(A)$ if and only if $\operatorname{det} A=0$.
vii) If either $k \in \mathbb{N}$ or A is nonsingular and $k \in \mathbb{Z}$, then

$$
\begin{equation*}
\operatorname{mspec}\left(A^{k}\right)=\left\{\lambda^{k}: \lambda \in \operatorname{mspec}(A)\right\}_{\mathrm{m}} . \tag{4.4.11}
\end{equation*}
$$

viii) If $\alpha \in \mathbb{F}$, then $\operatorname{mspec}(\alpha I+A)=\alpha+\operatorname{mspec}(A)$.
$i x)$ If $\alpha \in \mathbb{F}$, then $\operatorname{mspec}(\alpha A)=\alpha \operatorname{mspec}(A)$.
$x)$ If $A=A^{*}$, then $\operatorname{spec}(A) \subset \mathbb{R}$.
xi) If A and B are similar, then $\chi_{A}=\chi_{B}$ and $\operatorname{mspec}(A)=\operatorname{mspec}(B)$.

Proof. To prove i) note that $\operatorname{det}\left(s I-A^{\mathrm{T}}\right)=\operatorname{det}\left[(s I-A)^{\mathrm{T}}\right]=\operatorname{det}(s I$ $-A)$. To prove $i i$) note that $\chi_{-A}=\operatorname{det}(s I+A)=(-1)^{n} \operatorname{det}(-s I-A)=$ $(-1)^{n} \chi_{A}(-s)$. Next, $\left.i i i\right)$ follows from $\left.i\right)$. Next, $\left.i v\right)$ follows from $\operatorname{det}(s I-\bar{A})=$ $\operatorname{det}(\overline{\bar{s} I-A})=\overline{\operatorname{det}(\bar{s} I-A)}$, while v) follows from $i i i)$ and $i v)$. Next, $v i)$ follows from the fact that $\chi_{A}(0)=(-1)^{n} \operatorname{det} A$. To prove vii) note that, if $\lambda \in \operatorname{spec}(A)$ and $x \in \mathbb{C}^{n}$ is an eigenvector of A associated with λ, then $A^{2} x=$ $A(A x)=A(\lambda x)=\lambda A x=\lambda^{2} x$. Similarly, if A is nonsingular, then $A x=\lambda x$ implies that $A^{-1} x=\lambda^{-1} x$, and thus $A^{-2} x=\lambda^{-2} x$. Next, if $\lambda \in \operatorname{spec}(A)$ and $\alpha \in \mathbb{F}$, then $\operatorname{det}[(\alpha+\lambda) I-(\alpha I+A)]=\operatorname{det}(\lambda I-A)=0$, which implies that $\alpha+\lambda \in \operatorname{spec}(\alpha I+A)$ and thus proves viii). If $\lambda \in \operatorname{spec}(A)$ and $\alpha \in \mathbb{F}$, then $\operatorname{det}(\alpha \lambda I-\alpha A)=\alpha^{n} \operatorname{det}(\lambda I-A)=0$, which implies that $\alpha \lambda \in \operatorname{spec}(\alpha A)$,
which proves $i x$). To prove x), assume $A=A^{*}$, let $\lambda \in \operatorname{spec}(A)$, and let $x \in \mathbb{C}^{n}$ be an eigenvector of A associated with λ. Then, $\lambda=x^{*} A x / x^{*} x$, which is real. Finally, the proof of $x i$) is immediate.

The following result characterizes the coefficients of χ_{A} in terms of the eigenvalues of A.

Proposition 4.4.5. Let $A \in \mathbb{F}^{n \times n}$, let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{m}}$, and, for all $i=1, \ldots, n$, let γ_{i} denote the sum of all $i \times i$ principal subdeterminants of A. Then, for all $i=1, \ldots, n-1$,

$$
\begin{equation*}
\gamma_{i}=\sum \lambda_{j_{1}} \cdots \lambda_{j_{i}} \tag{4.4.12}
\end{equation*}
$$

where the summation in (4.4.12) is taken over all multisubsets of $\operatorname{mspec}(A)$ having i elements. Furthermore, for all $i=0, \ldots, n-1$, the coefficient β_{i} of s^{i} in (4.4.2) is given by

$$
\begin{equation*}
\beta_{i}=(-1)^{n-i} \gamma_{n-i} \tag{4.4.13}
\end{equation*}
$$

In particular,

$$
\begin{gather*}
\beta_{n-1}=-\operatorname{tr} A=-\sum_{i=1}^{n} \lambda_{i} \tag{4.4.14}\\
\beta_{n-2}=\frac{1}{2}\left[(\operatorname{tr} A)^{2}-\operatorname{tr} A^{2}\right]=\sum \lambda_{j_{1}} \lambda_{j_{2}} \tag{4.4.15}\\
\beta_{1}=(-1)^{n-1} \operatorname{tr} A^{\mathrm{A}}=(-1)^{n-1} \sum \lambda_{j_{1}} \cdots \lambda_{j_{n-1}}, \tag{4.4.16}\\
\beta_{0}=(-1)^{n} \operatorname{det} A=(-1)^{n} \prod_{i=1}^{n} \lambda_{i} . \tag{4.4.17}
\end{gather*}
$$

Proof. The expression for γ_{i} given by (4.4.12) follows from the factored form of $\chi_{A}(s)$ given by (4.4.9), while the expression for β_{i} given by (4.4.13) follows by examining the cofactor expansion (2.7.15) of $\operatorname{det}(s I-A)$. For details, see [416, p. 495]. Equation (4.4.14) follows from (4.4.13) and the fact that the $(n-1) \times(n-1)$ principal subdeterminants of A are the diagonal entries $A_{(i, i)}$. Using

$$
\sum_{i=1}^{n} \lambda_{i}^{2}=\left(\sum_{i=1}^{n} \lambda_{i}\right)^{2}-2 \sum \lambda_{j_{1}} \lambda_{j_{2}}
$$

and (4.4.14) yields (4.4.15). Next, if A is nonsingular, then $\chi_{A^{-1}}(s)=$ $(-s)^{n}\left(\operatorname{det} A^{-1}\right) \chi_{A}(1 / s)$. Using (4.4.2) with s replaced by $1 / s$ and (4.4.14), it follows that $\operatorname{tr} A^{-1}=(-1)^{n-1}\left(\operatorname{det} A^{-1}\right) \beta_{1}$, and, hence, (4.4.16) is satisfied. Using continuity for the case in which A is singular yields (4.4.16) for arbitrary A. Finally, $\beta_{0}=\chi_{A}(0)=\operatorname{det}(0 I-A)=(-1)^{n} \operatorname{det} A$, which verifies

From the definition the adjugate of a matrix it follows that $(s I-A)^{\mathrm{A}} \in$ $\mathbb{F}^{n \times n}[s]$ is a monic matrix polynomial of degree $n-1$ of the form

$$
\begin{equation*}
(s I-A)^{\mathrm{A}}=s^{n-1} I+s^{n-2} B_{n-2}+\cdots+s B_{1}+B_{0} \tag{4.4.18}
\end{equation*}
$$

where $B_{0}, B_{1}, \ldots, B_{n-2} \in \mathbb{F}^{n \times n}$. Since $(s I-A)^{\mathrm{A}}$ is regular it follows from Proposition 4.2.6 that $(s I-A)^{\mathrm{A}}$ is a nonsingular polynomial matrix.

The next result is the Cayley-Hamilton theorem, which shows that every matrix is a "root" of its characteristic polynomial.

Theorem 4.4.6. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\begin{equation*}
\chi_{A}(A)=0 \tag{4.4.19}
\end{equation*}
$$

Proof. Define $P, Q \in \mathbb{F}^{n \times n}[s]$ by $P(s) \triangleq \chi_{A}(s) I$ and $Q(s) \triangleq(s I-A)^{\mathrm{A}}$. Then, (4.7.2) implies that $P(s)=Q(s)(s I-A)$. It thus follows from Lemma 4.2.2 that $P_{\mathrm{R}}(A)=0$. Furthermore, $\chi_{A}(A)=P(A)=P_{\mathrm{R}}(A)$. Hence, $\chi_{A}(A)=0$.

In the notation of (4.4.10), it thus follows from Theorem 4.4.6 that

$$
\begin{equation*}
\prod_{i=1}^{r}\left(\lambda_{i} I-A\right)^{n_{i}}=0 \tag{4.4.20}
\end{equation*}
$$

Lemma 4.4.7. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} s} \chi_{A}(s)=\operatorname{tr}\left[(s I-A)^{\mathrm{A}}\right]=\sum_{i=1}^{n} \operatorname{det}\left(s I-A_{[i, i}\right) . \tag{4.4.21}
\end{equation*}
$$

Proof. It follows from (4.4.16) that $\left.\frac{\mathrm{d}}{\mathrm{d} s} \chi_{A}(s)\right|_{s=0}=\beta_{1}=(-1)^{n-1} \operatorname{tr} A^{\mathrm{A}}$. Hence,

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} s} \chi_{A}(s) & =\left.\frac{\mathrm{d}}{\mathrm{~d} z} \operatorname{det}[(s+z) I-A]\right|_{z=0}=\left.\frac{\mathrm{d}}{\mathrm{~d} z} \operatorname{det}[z I-(-s I+A)]\right|_{z=0} \\
& =(-1)^{n-1} \operatorname{tr}\left[(-s I+A)^{\mathrm{A}}\right]=\operatorname{tr}\left[(s I-A)^{\mathrm{A}}\right]
\end{aligned}
$$

The following result, known as Leverrier's algorithm, provides a recursive formula for the coefficients $\beta_{0}, \ldots, \beta_{n-1}$ of χ_{A} and B_{0}, \ldots, B_{n-2} of $(s I-A)^{\mathrm{A}}$.

Proposition 4.4.8. Let $A \in \mathbb{F}^{n \times n}$, let χ_{A} be given by (4.4.2), and let $(s I-A)^{\mathrm{A}}$ be given by (4.4.18). Then, $\beta_{n-1}, \ldots, \beta_{0}$ and B_{n-2}, \ldots, B_{0} are given by

$$
\begin{gather*}
\beta_{k}=\frac{1}{k-n} \operatorname{tr} A B_{k}, \quad k=n-1, \ldots, 0 \tag{4.4.22}\\
B_{k-1}=A B_{k}+\beta_{k} I, \quad k=n-1, \ldots, 1 \tag{4.4.23}
\end{gather*}
$$

where $B_{n-1}=I$.
Proof. Since $(s I-A)(s I-A)^{\mathrm{A}}=\chi_{A}(s) I$, it follows that

$$
\begin{aligned}
s^{n} I+s^{n-1}\left(B_{n-2}-A\right) & +s^{n-2}\left(B_{n-3}-A B_{n-2}\right)+\cdots+s\left(B_{0}-A B_{1}\right)-A B_{0} \\
& =\left(s^{n}+\beta_{n-1} s^{n-1}+\cdots+\beta_{1} s+\beta_{0}\right) I
\end{aligned}
$$

Equating coefficients of powers of s yields (4.4.23) along with $-A B_{0}=\beta_{0} I$. Taking the trace of this last identity yields $\beta_{0}=-\frac{1}{n} \operatorname{tr} A B_{0}$, which confirms (4.4.22) for $k=0$. Next, using (4.4.21) and (4.4.18), it follows that

$$
\frac{\mathrm{d}}{\mathrm{~d} s} \chi_{A}(s)=\sum_{k=1}^{n} k \beta_{k} s^{k-1}=\sum_{k=1}^{n}\left(\operatorname{tr} B_{k-1}\right) s^{k-1}
$$

where $B_{n-1} \triangleq I_{n}$ and $\beta_{n} \triangleq 1$. Equating powers of s, it follows that $k \beta_{k}=$ $\operatorname{tr} B_{k-1}$ for all $k=1, \ldots, n$. Now, (4.4.23) implies that $k \beta_{k}=\operatorname{tr}\left(A B_{k}+\beta_{k} I\right)$ for all $k=1, \ldots, n-1$, which implies (4.4.22).

Proposition 4.4.9. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times n}$, and assume that $m \leq n$. Then,

$$
\begin{equation*}
\chi_{A B}(s)=s^{n-m} \chi_{B A}(s) \tag{4.4.24}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
\operatorname{mspec}(A B)=\operatorname{mspec}(B A) \cup\{0, \ldots, 0\}_{\mathrm{m}} \tag{4.4.25}
\end{equation*}
$$

where the multiset $\{0, \ldots, 0\}_{\mathrm{m}}$ contains $n-m$ zeros.
Proof. First note that

$$
\left[\begin{array}{cc}
0_{m \times m} & 0_{m \times n} \\
A & A B
\end{array}\right]=\left[\begin{array}{cc}
I_{m} & -B \\
0_{n \times m} & I_{n}
\end{array}\right]\left[\begin{array}{cc}
B A & 0_{m \times n} \\
A & 0_{n \times n}
\end{array}\right]\left[\begin{array}{cc}
I_{m} & B \\
0_{n \times m} & I_{n}
\end{array}\right]
$$

which shows that $\left[\begin{array}{cc}0_{m \times m} & 0_{m \times n} \\ A & A B\end{array}\right]$ and $\left[\begin{array}{cc}B A & 0_{m \times n} \\ A & 0_{n \times n}\end{array}\right]$ are similar. It thus follows from $x i$) of Proposition 4.4 .4 that $s^{m} \chi_{A B}(s)=s^{n} \chi_{B A}(s)$, which implies (4.4.24). Finally, (4.4.25) follows immediately from (4.4.24).

If $n=m$, then Proposition 4.4 .9 specializes to the following result.
Corollary 4.4.10. Let $A, B \in \mathbb{F}^{n \times n}$. Then,

$$
\begin{equation*}
\chi_{A B}=\chi_{B A} \tag{4.4.26}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
\operatorname{mspec}(A B)=\operatorname{mspec}(B A) \tag{4.4.27}
\end{equation*}
$$

4.5 Eigenvectors

Let $A \in \mathbb{F}^{n \times n}$, and let $\lambda \in \mathbb{C}$ be an eigenvalue of A. Then, $\chi_{A}(\lambda)=$ $\operatorname{det}(\lambda I-A)=0$, and thus $\lambda I-A \in \mathbb{C}^{n \times n}$ is singular. Furthermore, $\mathcal{N}(\lambda I-A)$ is a nontrivial subspace of \mathbb{C}^{n}, that is, $\operatorname{def}(\lambda I-A)>0$. If $x \in \mathcal{N}(\lambda I-A)$, that is, $A x=\lambda x$, and $x \neq 0$, then x is an eigenvector of A associated with λ. Note that if A and λ are real, then there exists a real eigenvector associated with λ.

Definition 4.5.1. The geometric multiplicity of $\lambda \in \operatorname{spec}(A)$, denoted by $\operatorname{gm}_{A}(\lambda)$, is the number of linearly independent eigenvectors associated with λ, that is,

$$
\begin{equation*}
\operatorname{gm}_{A}(\lambda) \triangleq \operatorname{def}(\lambda I-A) . \tag{4.5.1}
\end{equation*}
$$

By convention, if $\lambda \notin \operatorname{spec}(A)$, then $\operatorname{gm}_{A}(\lambda) \triangleq 0$.
The spectral properties of normal matrices deserve special attention.
Lemma 4.5.2. Let $A \in \mathbb{F}^{n \times n}$ be normal, let $\lambda \in \operatorname{spec}(A)$, and let $x \in \mathbb{C}^{n}$ be an eigenvector of A associated with λ. Then, x is an eigenvector of A^{*} associated with $\bar{\lambda} \in \operatorname{spec}\left(A^{*}\right)$.

Proof. Since $\lambda \in \operatorname{spec}(A)$, iii) of Proposition 4.4.4 implies that $\bar{\lambda} \in$ $\operatorname{spec}\left(A^{*}\right)$. Next, note that, since $A x=\lambda x, x^{*} A^{*}=\bar{\lambda} x^{*}$, and $A A^{*}=A^{*} A$, it follows that

$$
\begin{aligned}
\left(A^{*} x-\bar{\lambda} x\right)^{*}\left(A^{*} x-\bar{\lambda} x\right) & =x^{*} A A^{*} x-\bar{\lambda} x^{*} A x-\lambda x^{*} A^{*} x+\lambda \bar{\lambda} x^{*} x \\
& =x^{*} A^{*} A x-\lambda \bar{\lambda} x^{*} x-\lambda \bar{\lambda} x^{*} x+\lambda \bar{\lambda} x^{*} x \\
& =\lambda \bar{\lambda} x^{*} x-\lambda \bar{\lambda} x^{*} x=0 .
\end{aligned}
$$

Hence, $A^{*} x=\bar{\lambda} x$.
Proposition 4.5.3. Let $A \in \mathbb{F}^{n \times n}$. Then, eigenvectors associated with distinct eigenvalues of A are linearly independent. If, in addition, A is normal, then these eigenvectors are mutually orthogonal.

Proof. Let $\lambda_{1}, \lambda_{2} \in \operatorname{spec}(A)$ be distinct with associated eigenvectors $x_{1}, x_{2} \in \mathbb{C}^{n}$. Suppose that x_{1} and x_{2} are linearly dependent, that is, $x_{1}=\alpha x_{2}$, where $\alpha \in \mathbb{C}$ and $\alpha \neq 0$. Then, $A x_{1}=\lambda_{1} x_{1}=\lambda_{1} \alpha x_{2}$, but also $A x_{1}=A \alpha x_{2}=\alpha \lambda_{2} x_{2}$. Hence, $\alpha\left(\lambda_{1}-\lambda_{2}\right) x_{2}=0$, which contradicts $\alpha \neq 0$. Since pairwise linearly independence does not imply the linear independence of larger sets, next, let $\lambda_{1}, \lambda_{2}, \lambda_{3} \in \operatorname{spec}(A)$ be distinct with associated eigenvectors $x_{1}, x_{2}, x_{3} \in \mathbb{C}^{n}$. Suppose that x_{1}, x_{2}, x_{3} are linearly dependent. In this case, there exist $a_{1}, a_{2}, a_{3} \in \mathbb{C}$, not all zero, such that
$a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}=0$. If $a_{1}=0$, then $a_{2} x_{2}+a_{3} x_{3}=0$. But $\lambda_{2} \neq \lambda_{3}$ implies that x_{2} and x_{3} are linearly independent, which in turn implies that $a_{2}=0$ and $a_{3}=0$. Since a_{1}, a_{2}, a_{3} are not all zero, it follows that $a_{1} \neq 0$. Therefore, $x_{1}=\alpha x_{2}+\beta x_{3}$, where $\alpha \triangleq-a_{2} / a_{1}$ and $\beta \triangleq-a_{3} / a_{1}$ are not both zero. Thus, $A x_{1}=A\left(\alpha x_{2}+\beta x_{3}\right)=\alpha A x_{2}+\beta A x_{3}=\alpha \lambda_{2} x_{2}+\beta \lambda_{3} x_{3}$. But, $A x_{1}=\lambda_{1} x_{1}=\lambda_{1}\left(\alpha x_{2}+\beta x_{3}\right)=\alpha \lambda_{1} x_{2}+\beta \lambda_{1} x_{3}$. Subtracting these relations yields $0=\alpha\left(\lambda_{1}-\lambda_{2}\right) x_{2}+\beta\left(\lambda_{1}-\lambda_{3}\right) x_{3}$. Since x_{2} and x_{3} are linearly independent, it follows that $\alpha\left(\lambda_{1}-\lambda_{2}\right)=0$ and $\beta\left(\lambda_{1}-\lambda_{3}\right)=0$. Since α and β are not both zero, it follows that $\lambda_{1}=\lambda_{2}$ or $\lambda_{1}=\lambda_{3}$, which contradicts the assumption that $\lambda_{1}, \lambda_{2}, \lambda_{3}$ are distinct. The same arguments apply to sets of four or more eigenvectors.

Now, suppose that A is normal and let $\lambda_{1}, \lambda_{2} \in \operatorname{spec}(A)$ be distinct eigenvalues with associated eigenvectors $x_{1}, x_{2} \in \mathbb{C}^{n}$. Then, by Lemma 4.5.2, $A x_{1}=\lambda_{1} x_{1}$ implies that $A^{*} x_{1}=\bar{\lambda}_{1} x_{1}$. Consequently, $x_{1}^{*} A=\lambda_{1} x_{1}^{*}$, which implies that $x_{1}^{*} A x_{2}=\lambda_{1} x_{1}^{*} x_{2}$. Furthermore, $x_{1}^{*} A x_{2}=\lambda_{2} x_{1}^{*} x_{2}$. It thus follows that $0=\left(\lambda_{1}-\lambda_{2}\right) x_{1}^{*} x_{2}$. Hence, $\lambda_{1} \neq \lambda_{2}$ implies that $x_{1}^{*} x_{2}=0$.

If $A \in \mathbb{R}^{n \times n}$ is symmetric, then Lemma 4.5.2 is not needed and the proof of Proposition 4.5 .3 is simpler. In this case, it follows from x) of Proposition 4.4.4 that $\lambda_{1}, \lambda_{2} \in \operatorname{spec}(A)$ are real and thus associated eigenvectors $x_{1} \in \mathcal{N}\left(\lambda_{1} I-A\right)$ and $x_{2} \in \mathcal{N}\left(\lambda_{1} I-A\right)$ can be chosen to be real. Hence, $A x_{1}=\lambda_{1} x_{1}$ and $A x_{2}=\lambda_{2} x_{2}$ imply that $x_{2}^{\mathrm{T}} A x_{1}=\lambda_{1} x_{2}^{\mathrm{T}} x_{1}$ and $x_{1}^{\mathrm{T}} A x_{2}=\lambda_{2} x_{1}^{\mathrm{T}} x_{2}$. Since $x_{1}^{\mathrm{T}} A x_{2}=x_{2}^{\mathrm{T}} A^{\mathrm{T}} x_{1}=x_{2}^{\mathrm{T}} A x_{1}$ and $x_{1}^{\mathrm{T}} x_{2}=x_{2}^{\mathrm{T}} x_{1}$, it follows that $\left(\lambda_{1}-\lambda_{2}\right) x_{1}^{\mathrm{T}} x_{2}=0$. Since $\lambda_{1} \neq \lambda_{2}$, it follows that $x_{1}^{\mathrm{T}} x_{2}=0$.

We define the spectral abscissa of $A \in \mathbb{F}^{n \times n}$ by

$$
\begin{equation*}
\operatorname{spabs}(A) \triangleq \max \{\operatorname{Re} \lambda: \quad \lambda \in \operatorname{spec}(A)\} \tag{4.5.2}
\end{equation*}
$$

and the spectral radius of $A \in \mathbb{F}^{n \times n}$ by

$$
\begin{equation*}
\operatorname{sprad}(A) \triangleq \max \{|\lambda|: \quad \lambda \in \operatorname{spec}(A)\} \tag{4.5.3}
\end{equation*}
$$

Let $A \in \mathbb{F}^{n \times n}$. Then, $\nu_{-}(A), \nu_{0}(A)$, and $\nu_{+}(A)$ denote the number of eigenvalues of A counting algebraic multiplicity having, respectively, negative, zero, and positive real part. Define the inertia of A by

$$
\operatorname{In}(A) \triangleq\left[\begin{array}{c}
\nu_{-}(A) \tag{4.5.4}\\
\nu_{0}(A) \\
\nu_{+}(A)
\end{array}\right]
$$

Note that $\operatorname{spabs}(A)<0$ if and only if $\nu_{-}(A)=n$.

4.6 Minimal Polynomial

As we showed in Theorem 4.4.6, every square matrix $A \in \mathbb{F}^{n \times n}$ is a root of its characteristic polynomial. However, there may be polynomials of degree less than n having A as a root. In fact, the following result shows that there exists a unique monic polynomial that has A as a root and that divides all polynomials that have A as a root.

Theorem 4.6.1. Let $A \in \mathbb{F}^{n \times n}$. Then, there exists a unique monic polynomial $\mu_{A} \in \mathbb{F}[s]$ of minimal degree such that $\mu_{A}(A)=0$. Furthermore, $\operatorname{deg} \mu_{A} \leq n$, and μ_{A} divides every polynomial $p \in \mathbb{F}[s]$ satisfying $p(A)=0$.

Proof. Since $\chi_{A}(A)=0$ and $\operatorname{deg} \chi_{A}=n$, it follows that there exists a minimal positive integer $n_{0} \leq n$ such that there exists a monic polynomial $p_{0} \in \mathbb{F}[s]$ satisfying $p_{0}(A)=0$ and $\operatorname{deg} p_{0}=n_{0}$. Let $p \in \mathbb{F}[s]$ satisfy $p(A)=0$. Then, by Lemma 4.1.2, there exist $q, r \in \mathbb{F}[s]$ such that $p=q p_{0}+r$ and $\operatorname{deg} r<\operatorname{deg} p_{0}$. However, $p(A)=p_{0}(A)=0$ implies that $r(A)=0$. If $r \neq 0$, then r can be normalized to obtain a monic polynomial of degree less than n_{0}, which contradicts the definition n_{0}. Hence, $r=0$, which implies that p_{0} divides p. This proves existence.

Now, suppose there exist two monic polynomials $p_{0}, \hat{p}_{0} \in \mathbb{F}[s]$ of degree n_{0} and such that $p_{0}(A)=\hat{p}_{0}(A)=0$. By the previous argument, p_{0} divides \hat{p}_{0}, and vice versa. Therefore, p_{0} is a constant multiple of \hat{p}_{0}. Since p_{0} and \hat{p}_{0} are both monic, it follows that $p_{0}=\hat{p}_{0}$. This proves uniqueness. Denote this polynomial by μ_{A}.

The monic polynomial μ_{A} of least order having A as a root is the minimal polynomial of A.

The following result relates the characteristic and minimal polynomials of $A \in \mathbb{F}^{n \times n}$ to the similarity invariants of A. Note that $\operatorname{rank}(s I-A)=n$, so that A has n similarity invariants $p_{1}, \ldots, p_{n} \in \mathbb{F}[s]$. In this case, (4.3.1) becomes

$$
s I-A=S_{1}(s)\left[\begin{array}{ccc}
p_{1}(s) & & \tag{4.6.1}\\
& \ddots & \\
& & p_{n}(s)
\end{array}\right] S_{2}(s),
$$

where $S_{1}, S_{2} \in \mathbb{F}^{n \times n}[s]$ are unimodular and p_{i} divides p_{i+i} for all $i=$ $1, \ldots, n-1$.

Proposition 4.6.2. Let $A \in \mathbb{F}^{n \times n}$, and let $p_{1}, \ldots, p_{n} \in \mathbb{F}[s]$ be the similarity invariants of A, where p_{i} divides p_{i+1} for all $i=1, \ldots, n-1$.

Then,

$$
\begin{equation*}
\chi_{A}=\prod_{i=1}^{n} p_{i} \tag{4.6.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{A}=p_{n} \tag{4.6.3}
\end{equation*}
$$

Proof. Using Theorem 4.3.2 and (4.6.1) it follows that

$$
\chi_{A}(s)=\operatorname{det}(s I-A)=\left[\operatorname{det} S_{1}(s)\right]\left[\operatorname{det} S_{2}(s)\right] \prod_{i=1}^{n} p_{i}(s)
$$

Since S_{1} and S_{2} are unimodular and χ_{A} and p_{1}, \ldots, p_{n} are monic, it follows that $\left[\operatorname{det} S_{1}(s)\right]\left[\operatorname{det} S_{2}(s)\right]=1$, which proves (4.6.2).

To prove (4.6.3), first note that it follows from Theorem 4.3.2 that $\chi_{A}=\Delta_{n-1} p_{n}$, where $\Delta_{n-1} \in \mathbb{F}[s]$ is the greatest common divisor of all $(n-1) \times(n-1)$ subdeterminants of $s I-A$. Since the $(n-1) \times(n-1)$ subdeterminants of $s I-A$ are the entries of $\pm(s I-A)^{\mathrm{A}}$, it follows that Δ_{n-1} divides every entry of $(s I-A)^{\mathrm{A}}$. Hence, there exists a polynomial matrix $P \in \mathbb{F}^{n \times n}[s]$ such that $(s I-A)^{\mathrm{A}}=\Delta_{n-1}(s) P(s)$. Furthermore, since $(s I-A)^{\mathrm{A}}(s I-A)=\chi_{A}(s) I$, it follows that $\Delta_{n-1}(s) P(s)(s I-A)=\chi_{A}(s) I=$ $\Delta_{n-1}(s) p_{n}(s) I$, and thus $P(s)(s I-A)=p_{n}(s) I$. Lemma 4.2.2 now implies that $p_{n}(A)=0$.

Since $p_{n}(A)=0$, it follows from Theorem 4.6.1 that μ_{A} divides p_{n}. Hence, let $q \in \mathbb{F}[s]$ be the monic polynomial satisfying $p_{n}=q \mu_{A}$. Furthermore, since $\mu_{A}(A)=0$, it follows from Corollary 4.2.3 that there exists a polynomial matrix $Q \in \mathbb{F}^{n \times n}[s]$ such that $\mu_{A}(s) I=Q(s)(s I-A)$. Thus, $P(s)(s I-A)=p_{n}(s) I=q(s) \mu_{A}(s) I=q(s) Q(s)(s I-A)$, which implies that $P=q Q$. Thus, q divides every entry of P. However, since P was obtained by dividing $(s I-A)^{\mathrm{A}}$ by the greatest common divisor of all of its entries, it follows that the greatest common divisor of the entries of P is 1 . Hence, $q=1$, which implies that $p_{n}=\mu_{A}$, which proves (4.6.3).

Proposition 4.6.2 shows that μ_{A} divides χ_{A}, which is also a consequence of Theorem 4.4.6 and Theorem 4.6.1. Proposition 4.6.2 also shows that $\mu_{A}=\chi_{A}$ if and only if $p_{1}=\cdots=p_{n-1}=1$, that is, if and only if $p_{n}=\chi_{A}$ is the only nonconstant similarity invariant of A. Note that, in general, it follows from (4.6.2) that $\sum_{i=1}^{n} \operatorname{deg} p_{i}=n$.

Finally, note that the similarity invariants of the $n \times n$ identity matrix I_{n} are given by $p_{i}(s)=s-1$ for all $i=1, \ldots, n$. Thus, $\chi_{I_{n}}(s)=(s-1)^{n}$ and $\mu_{I_{n}}(s)=s-1$.

Proposition 4.6.3. Let $A \in \mathbb{F}^{n \times n}$, and assume that A and B are
similar. Then,

$$
\begin{equation*}
\mu_{A}=\mu_{B} \tag{4.6.4}
\end{equation*}
$$

4.7 Rational Transfer Functions and the Smith-McMillan Decomposition

We now turn our attention to rational functions.
Definition 4.7.1. The set $\mathbb{F}(s)$ of rational functions consists of functions $g: \mathbb{C} \backslash \mathcal{S} \mapsto \mathbb{C}$, where $g(s)=p(s) / q(s), p, q \in \mathbb{F}[s]$ are coprime, $q \neq 0$, and $\mathcal{S} \triangleq \operatorname{roots}(q)$. The rational function g is strictly proper, proper, exactly proper, improper, respectively, if $\operatorname{deg} p<\operatorname{deg} q, \operatorname{deg} p \leq \operatorname{deg} q, \operatorname{deg} p=\operatorname{deg} q$, $\operatorname{deg} p>\operatorname{deg} q$. The relative degree of g, denoted by reldeg g, is $\operatorname{deg} q-\operatorname{deg} p$. Finally, the roots of p are the zeros of g, while the roots of the denominator q are the poles of g.

Definition 4.7.2. The set $\mathbb{F}^{n \times m}(s)$ of rational transfer functions consists of matrices whose entries are elements of $\mathbb{F}(s)$. The rational transfer function $G \in \mathbb{F}^{n \times m}(s)$ is strictly proper if every entry of G is strictly proper, proper if every entry of G is proper, exactly proper if every entry of G is proper and at least one entry of G is exactly proper, and improper if at least one entry of G is improper. The relative degree of $G \in \mathbb{F}^{n \times m}(s)$, denoted by reldeg G, is defined by

$$
\begin{equation*}
\operatorname{reldeg} G \triangleq \min _{\substack{i=1, \ldots, n \\ j=1, \ldots, m}} \operatorname{reldeg} G_{(i, j)} . \tag{4.7.1}
\end{equation*}
$$

By writing $(s I-A)^{-1}$ as

$$
\begin{equation*}
(s I-A)^{-1}=\frac{1}{\chi_{A}(s)}(s I-A)^{\mathrm{A}}, \tag{4.7.2}
\end{equation*}
$$

it follows from (4.4.18) that $(s I-A)^{-1}$ is a strictly proper rational transfer function. In fact, for all $i=1, \ldots, n$,

$$
\begin{equation*}
\operatorname{reldeg}\left[(s I-A)^{-1}\right]_{(i, i)}=n-1, \tag{4.7.3}
\end{equation*}
$$

and thus

$$
\begin{equation*}
\text { reldeg }(s I-A)^{-1}=n-1 \tag{4.7.4}
\end{equation*}
$$

The following result provides a canonical form, known as the SmithMcMillan form, for rational transfer functions under unimodular transformation. The following definition is an extension of Definition 4.2.4 for matrix polynomials.

Definition 4.7.3. Let $G \in \mathbb{F}^{n \times m}(s)$, and let \mathcal{S} be as defined in Definition 4.7.2. Then, the rank of G is the nonnegative integer

$$
\begin{equation*}
\operatorname{rank} G \triangleq \max _{s \in \mathbb{C} \backslash S} \operatorname{rank} G(s) \tag{4.7.5}
\end{equation*}
$$

Theorem 4.7.4. Let $G \in \mathbb{F}^{n \times m}(s)$ and let $r \triangleq \operatorname{rank} G$. Then, there exist unimodular matrices $S_{1} \in \mathbb{F}^{n \times n}[s]$ and $S_{2} \in \mathbb{F}^{m \times m}[s]$ and monic polynomials $p_{1}, \ldots, p_{r}, q_{1}, \ldots, q_{r} \in \mathbb{F}[s]$ such that p_{i} and q_{i} are coprime for all $i=1, \ldots, r, p_{i}$ divides p_{i+1} for all $i=1, \ldots, r-1, q_{i+1}$ divides q_{i} for all $i=1, \ldots, r-1$, and

$$
G=S_{1}\left[\begin{array}{cccc}
p_{1} / q_{1} & & & \tag{4.7.6}\\
& \ddots & & \\
& & p_{r} / q_{r} & \\
& & & 0_{(n-r) \times(m-r)}
\end{array}\right] S_{2}
$$

Proof. Let $n_{i j} / d_{i j}$ denote the (i, j) entry of G, where $n_{i j}, d_{i j} \in \mathbb{F}[s]$ are coprime, and let $d \in \mathbb{F}[s]$ denote the least common multiple of $d_{i j}$ for all $i=1, \ldots, n$, and $j=1, \ldots, m$. From Theorem 4.3.2 it follows that the polynomial matrix $d G$ has a Smith form $\operatorname{diag}\left(\hat{p}_{1}, \ldots, \hat{p}_{r}, 0, \ldots, 0\right)$, where $\hat{p}_{1}, \ldots, \hat{p}_{r} \in \mathbb{F}[s]$ and \hat{p}_{i} divides \hat{p}_{i+1} for all $i=1, \ldots, r-1$. Now, divide this Smith form by d and express every rational function \hat{p}_{i} / d in coprime form p_{i} / q_{i} so that p_{i} divides p_{i+1} for all $i=1, \ldots, r-1$ and q_{i+1} divides q_{i} for all $i=1, \ldots, r-1$.

Let $g_{1}, \ldots, g_{r} \in \mathbb{F}^{n}(s)$. Then, g_{1}, \ldots, g_{r} are linearly independent if $\alpha_{1}, \ldots, \alpha_{r} \in \mathbb{F}[s]$ and $\sum_{n=1}^{r} \alpha_{i} g_{i}=0$ imply that $\alpha_{1}=\cdots=\alpha_{r}=0$. It can be seen that this definition is unchanged if $\alpha_{1}, \ldots, \alpha_{r} \in \mathbb{F}(s)$.

Proposition 4.7.5. Let $G \in \mathbb{F}^{n \times m}(s)$. Then, $\operatorname{rank} G$ is equal to the number of linearly independent columns of G.

As a special case, Proposition 4.7.5 applies to polynomial matrices $G \in \mathbb{F}^{n \times m}[s]$.

Definition 4.7.6. Let $G \in \mathbb{F}^{n \times m}(s)$, let $r \triangleq \operatorname{rank} G$, and let p_{1}, \ldots, p_{r}, $q_{1}, \ldots, q_{r} \in \mathbb{F}[s]$ be given by Theorem 4.7.4. Then, the McMillan degree of G is $\sum_{i=1}^{r} \operatorname{deg} q_{i}$. Furthermore, the poles of G are the roots of q_{1}, the transmission zeros of G are the roots of p_{r}, and the blocking zeros of G are the roots of p_{1}.

4.8 Facts on Polynomials

Fact 4.8.1. Let $p \in \mathbb{R}[s]$ be monic and define $q(s) \triangleq s^{n} p(1 / s)$, where $n \triangleq \operatorname{deg} p$. If $0 \notin \operatorname{roots}(p)$, then $\operatorname{deg}(q)=n$ and

$$
\operatorname{mroots}(q)=\{1 / \lambda: \lambda \in \operatorname{mroots}(p)\}_{\mathrm{m}} .
$$

If $0 \in \operatorname{roots}(p)$ with multiplicity r, then $\operatorname{deg}(q)=n-r$ and

$$
\operatorname{mroots}(q)=\{1 / \lambda: \lambda \neq 0 \text { and } \lambda \in \operatorname{mroots}(p)\}_{\mathrm{m}} .
$$

(Remark: See Fact 11.13.3 and Fact 11.13.4.)
Fact 4.8.2. Let $p \in \mathbb{F}^{n}$ be given by

$$
p(s)=s^{n}+\beta_{n-1} s^{n-1}+\cdots+\beta_{1} s+\beta_{0}
$$

let $\beta_{n} \triangleq 1$, let $\operatorname{mroots}(p)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{m}}$, and define μ_{1}, \ldots, μ_{n} by

$$
\mu_{i} \triangleq \lambda_{1}^{i}+\cdots+\lambda_{n}^{i} .
$$

Then, for all $k=1, \ldots, n$,

$$
k \beta_{n-k}+\mu_{1} \beta_{n-k+1}+\mu_{2} \beta_{n-k+2}+\cdots \mu_{k} \beta_{n}=0
$$

That is,

$$
\left[\begin{array}{ccccccc}
n & \mu_{1} & \mu_{2} & \mu_{3} & \mu_{4} & \cdots & \mu_{n} \\
0 & n-1 & \mu_{1} & \mu_{2} & \mu_{3} & \cdots & \mu_{n-1} \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 2 & \mu_{1} & \mu_{2} \\
0 & 0 & \cdots & 0 & 0 & 1 & \mu_{1}
\end{array}\right]\left[\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\vdots \\
\beta_{n-1} \\
\beta_{n}
\end{array}\right]=0 .
$$

Consequently, $\beta_{1}, \ldots, \beta_{n-1}$ are uniquely determined by μ_{1}, \ldots, μ_{n}. In particular,

$$
\beta_{n-1}=-\mu_{1}
$$

and

$$
\beta_{n-2}=\frac{1}{2}\left[\mu_{1}^{2}-\mu_{2}\right] .
$$

(Proof: See [287, p. 44] and [419, p. 9].) (Remark: These equations are Newton's identities.)

Fact 4.8.3. Let $p, q \in \mathbb{F}[s]$ be monic. Then, p and q are coprime if and only if their least common multiple is $p q$.

Fact 4.8.4. Let $p, q \in \mathbb{F}[s]$, where $p(s)=a_{n} s^{n}+\cdots+a_{1} s+a_{0}, q(s)=$ $b_{m} s^{m}+\cdots+b_{1} s+b_{0}, \operatorname{deg} p=n$, and $\operatorname{deg} q=m$. Furthermore, define the

Toeplitz matrices $[p]^{(m)} \in \mathbb{F}^{m \times(n+m)}$ and $[q]^{(n)} \in \mathbb{F}^{n \times(n+m)}$ by

$$
[p]^{(m)} \triangleq\left[\begin{array}{ccccccccc}
a_{n} & a_{n-1} & \cdots & a_{1} & a_{0} & 0 & 0 & \cdots & 0 \\
0 & a_{n} & a_{n-1} & \cdots & a_{1} & a_{0} & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \cdots & \ddots & \ddots & \ddots & \vdots
\end{array}\right]
$$

and

$$
[q]^{(n)} \triangleq\left[\begin{array}{ccccccccc}
b_{m} & b_{m-1} & \cdots & b_{1} & b_{0} & 0 & 0 & \cdots & 0 \\
0 & b_{m} & b_{m-1} & \cdots & b_{1} & b_{0} & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \cdots & \ddots & \ddots & \ddots & \vdots
\end{array}\right]
$$

Then, p and q are coprime if and only if

$$
\operatorname{det}\left[\begin{array}{c}
{[p]^{(m)}} \\
{[q]^{(n)}}
\end{array}\right] \neq 0
$$

(Proof: See [202, p. 162] or [466, pp. 187-191].) (Remark: $\left[\begin{array}{l}A \\ B\end{array}\right]$ is the Sylvester matrix, and $\operatorname{det}\left[\begin{array}{c}A \\ B\end{array}\right]$ is the resultant of p and q.) (Remark: The form $\left[\begin{array}{c}{[p]^{(m)}} \\ {[q]^{(n)}}\end{array}\right]$ appears in [466, pp. 187-191]. The result is given in [202, p. 162] in terms of $\left[\begin{array}{c}\hat{I}[p]^{(m)} \\ \hat{I}[q]^{(n)}\end{array}\right] \hat{I}$ and in [633, p. 85] in terms of $\left[\begin{array}{c}{[p]^{(m)}} \\ \hat{I}[q]^{(n)}\end{array}\right]$.)

Fact 4.8.5. Let $p_{1}, \ldots, p_{n} \in \mathbb{F}[s]$, and let $d \in \mathbb{F}[s]$ be the greatest common divisor of p_{1}, \ldots, p_{n}. Then, there exist $q_{1}, \ldots, q_{n} \in \mathbb{F}[s]$ such that

$$
d=\sum_{i=1}^{n} q_{i} p_{i}
$$

In addition, p_{1}, \ldots, p_{n} are coprime if and only if there exist $q_{1}, \ldots, q_{n} \in \mathbb{F}[s]$ such that

$$
1=\sum_{i=1}^{n} q_{i} p_{i}
$$

(Proof: See [216, p. 16].) (Remark: The polynomial d is given by the Bezout equation.)

Fact 4.8.6. Let $p, q \in \mathbb{F}[s]$, where $p(s)=a_{n} s^{n}+\cdots+a_{1} s+a_{0}$ and $q(s)=b_{n} s^{n}+\cdots+b_{1} s+b_{0}$, and define $[p]^{(n)},[q]^{(n)} \in \mathbb{F}^{n \times 2 n}$ as in Fact 4.8.4. Furthermore, define

$$
R(p, q) \triangleq\left[\begin{array}{c}
{[p]^{(m)}} \\
{[q]^{(n)}}
\end{array}\right]=\left[\begin{array}{ll}
A_{1} & A_{2} \\
B_{1} & B_{2}
\end{array}\right]
$$

where $A_{1}, A_{2}, B_{1}, B_{2} \in \mathbb{F}^{n \times n}$, and define $\hat{p}(s) \triangleq s^{n} p(-s)$ and $\hat{q}(s) \triangleq s^{n} q(-s)$.

Then,

$$
\begin{gathered}
{\left[\begin{array}{cc}
A_{1} & A_{2} \\
B_{1} & B_{2}
\end{array}\right]=\left[\begin{array}{cc}
\hat{p}\left(N^{\mathrm{T}}\right) & p(N) \\
\hat{q}\left(N^{\mathrm{T}}\right) & q(N)
\end{array}\right]} \\
A_{1} B_{1}=B_{1} A_{1} \\
A_{2} B_{2}=B_{2} A_{2} \\
A_{1} B_{2}+A_{2} B_{1}=B_{1} A_{2}+B_{2} A_{1}
\end{gathered}
$$

Therefore,

$$
\begin{aligned}
& {\left[\begin{array}{cc}
I & 0 \\
-B_{1} & A_{1}
\end{array}\right]\left[\begin{array}{ll}
A_{1} & A_{2} \\
B_{1} & B_{2}
\end{array}\right]=\left[\begin{array}{cc}
A_{1} & A_{2} \\
0 & A_{1} B_{2}-B_{1} A_{2}
\end{array}\right]} \\
& {\left[\begin{array}{cc}
-B_{2} & A_{2} \\
0 & I
\end{array}\right]\left[\begin{array}{ll}
A_{1} & A_{2} \\
B_{1} & B_{2}
\end{array}\right]=\left[\begin{array}{cc}
A_{2} B_{1}-B_{2} A_{1} & 0 \\
B_{1} & B_{2}
\end{array}\right]}
\end{aligned}
$$

and

$$
\operatorname{det} R(p, q)=\operatorname{det}\left(A_{1} B_{2}-B_{1} A_{2}\right)=\operatorname{det}\left(B_{2} A_{1}-A_{2} B_{1}\right)
$$

Now, define $B(p, q) \in \mathbb{F}^{n \times n}$ by

$$
B(p, q) \triangleq\left(A_{1} B_{2}-B_{1} A_{2}\right) \hat{I}
$$

Then, the following statements hold:
$i)$ For all $s, \hat{s} \in \mathbb{C}$,

$$
p(s) q(\hat{s})-q(s) p(\hat{s})=(s-\hat{s})\left[\begin{array}{c}
1 \\
s \\
\vdots \\
s^{n-1}
\end{array}\right]^{\mathrm{T}} B(p, q)\left[\begin{array}{c}
1 \\
\hat{s} \\
\vdots \\
\hat{s}^{n-1}
\end{array}\right]
$$

ii) $B(p, q)=\left(B_{2} A_{1}-A_{2} B_{1}\right) \hat{I}=\hat{I}\left(A_{1}^{\mathrm{T}} B_{2}^{\mathrm{T}}-B_{1}^{\mathrm{T}} A_{2}^{\mathrm{T}}\right)=\hat{I}\left(B_{1}^{\mathrm{T}} A_{2}^{\mathrm{T}}-A_{1}^{\mathrm{T}} B_{2}^{\mathrm{T}}\right)$.
iii) $\left[\begin{array}{cc}0 & B(p, q) \\ -B(p, q) & \end{array}\right]=Q R^{\mathrm{T}}(p, q) Q R(p, q) Q$, where $Q \triangleq\left[\begin{array}{cc}0 & \hat{I} \\ -\hat{I} & 0\end{array}\right]$.
iv) $|\operatorname{det} B(p, q)|=|\operatorname{det} R(p, q)|=|\operatorname{det} q[C(p)]|$.
$v) B(p, q)$ and $\hat{B}(p, q)$ are symmetric.
vi) $B(p, q)$ is a linear function of (p, q).
vii) $B(p, q)=-B(q, p)$.

Now, assume that $\operatorname{deg} q \leq \operatorname{deg} p=n$ and p is monic. Then, the following statements hold:
viii) def $B(p, q)$ is equal to the degree of the greatest common divisor of p and q.
ix) p and q are coprime if and only if $B(p, q)$ is nonsingular.
x) If $B(p, q)$ is nonsingular, then $[B(p, q)]^{-1}$ is Hankel. In fact,

$$
[B(p, q)]^{-1}=H(a / p)
$$

where $a, b \in \mathbb{F}[s]$ satisfy the Bezout equation $a q+b p=1$.
xi) If $q=q_{1} q_{2}$, where $q_{1}, q_{2} \in \mathbb{F}[s]$, then

$$
B(p, q)=B\left(p, q_{1}\right) q_{2}[C(p)]=q_{1}\left[C^{\mathrm{T}}(p)\right] B\left(p, q_{2}\right)
$$

xii) $B(p, q)=B(p, q) C(p)=C^{\mathrm{T}}(p) B(p, q)$.
xiii) $B(p, q)=B(p, 1) q[C(p)]=q\left[C^{\mathrm{T}}(p)\right] B(p, 1)$, where $B(p, 1)$ is the Hankel matrix

$$
B(p, 1)=\left[\begin{array}{ccccc}
a_{1} & a_{2} & \cdots & a_{n-1} & 1 \\
a_{2} & a_{3} & . \cdot & 1 & 0 \\
\vdots & . \cdot & . \cdot & . \cdot & \vdots \\
a_{n-1} & 1 & . \cdot & 0 & 0 \\
1 & 0 & \cdots & 0 & 0
\end{array}\right]
$$

In particular, for $n=3$ and $q(s)=s$, it follows that

$$
\left[\begin{array}{ccc}
-a_{0} & 0 & 0 \\
0 & a_{2} & 1 \\
0 & 1 & 0
\end{array}\right]=\left[\begin{array}{ccc}
a_{1} & a_{2} & 1 \\
a_{2} & 1 & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-a_{0} & -a_{1} & -a_{2}
\end{array}\right]
$$

xiv) $\left[\begin{array}{ll}A_{1} & A_{2} \\ B_{1} & B_{2}\end{array}\right]=\left[\begin{array}{cc}0 & I \\ A_{2}^{-1} \hat{I} & B_{2} A_{2}^{-1}\end{array}\right]\left[\begin{array}{cc}B(p, q) & 0 \\ 0 & I\end{array}\right]\left[\begin{array}{cc}I & 0 \\ A_{1} & A_{2}\end{array}\right]$.
$x v$) If p has distinct roots $\lambda_{1}, \ldots, \lambda_{n}$, then
$V^{\mathrm{T}}\left(\lambda_{1}, \ldots, \lambda_{n}\right) B(p, q) V\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\operatorname{diag}\left[q\left(\lambda_{1}\right) p^{\prime}\left(\lambda_{1}\right), \ldots, q\left(\lambda_{n}\right) p^{\prime}\left(\lambda_{n}\right)\right]$.
(Proof: See [202, pp. 164-167], [273], and [216, pp. 200-207]. To prove ii), note that $A_{1}, A_{2}, B_{1}, B_{2}$ are square and Toeplitz, and thus reverse symmetric, that is, $A_{1}=A_{1}^{\hat{\mathrm{T}}}$. See Fact 3.12.6.) (Remark: $B(p, q)$ is a Bezout matrix. See $[65,298],[466$, p. 189], [566], and Fact 5.13.22.) (Remark: xiii) is the Barnett factorization. See $[59,566]$. The definition of $B(p, q)$ and $i i)$ are the Gohberg-Semencul formulas. See [216, p. 206].) (Remark: It follows from continuity that the determinant expressions are valid if A_{1} or B_{2} is singular. See Fact 2.12.16.) (Remark: The inverse of a Hankel matrix is a Bezout matrix. See [202, p. 174].)

Fact 4.8.7. Let $p, q \in \mathbb{F}[s]$, assume that q is monic, and $\operatorname{deg} p<\operatorname{deg} q=$ n. Furthermore, define $g \in \mathbb{F}(s)$ by

$$
g(s) \triangleq \frac{p(s)}{q(s)}=\sum_{i=1}^{\infty} \frac{g_{i}}{s^{i}}
$$

Finally, define the Hankel matrix

$$
H(g) \triangleq\left[\begin{array}{ccccc}
g_{1} & g_{2} & \cdots & g_{n-1} & g_{n} \\
g_{2} & g_{3} & . \cdot & g_{n} & g_{n+1} \\
\vdots & . & . & . & \vdots \\
g_{n-1} & g_{n} & . & g_{2 n-3} & g_{2 n-2} \\
g_{n} & g_{n+1} & \cdots & g_{2 n-2} & g_{2 n-1}
\end{array}\right] .
$$

Then, the following statements hold:
i) p and q are coprime if and only if $H(g)$ is nonsingular.
$i i)$ If p and q are coprime, then $[H(g)]^{-1}=B(q, a)$, where $a, b \in \mathbb{F}[s]$ satisfy the Bezout equation $a p+b q=1$.
iii) $B(q, p)=B(q, 1) H(g) B(q, 1)$.
iv) $B(q, p)$ and $H(g)$ are congruent.
v) $\operatorname{In} B(q, p)=\operatorname{In} H(g)$.
vi) $\operatorname{det} H(g)=\operatorname{det} B(q, p)$.
(Proof: See [216, pp. 215-221].)
Fact 4.8.8. Let $p \in \mathbb{R}[s]$, and define $g \in \mathbb{F}(s)$ by $g \triangleq q^{\prime} / q$. Then, the following statements hold:
${ }^{i}$) The number of distinct roots of q is $\operatorname{rank} B\left(q, q^{\prime}\right)$.
ii) q has n distinct roots if and only if $B\left(q, q^{\prime}\right)$ is nonsingular.
iii) The number of distinct real roots of q is $\operatorname{sig} B\left(q, q^{\prime}\right)$.
iv) q has n distinct, real roots if and only if $B\left(q, q^{\prime}\right)$ is positive definite.
v) The number of distinct complex roots of q is $2 \nu_{-}\left[B\left(q, q^{\prime}\right)\right]$.
vi) q has n distinct, complex roots if and only if n is even and $\nu_{-}\left[B\left(q, q^{\prime}\right)\right]$ $=n / 2$.
vii) q has n real roots if and only if $B\left(q, q^{\prime}\right)$ is nonnegative semidefinite.
(Proof: See [216, p. 252].) (Remark: $q^{\prime}(s) \triangleq(\mathrm{d} / \mathrm{d} s) q(s)$.)
Fact 4.8.9. Let $q \in \mathbb{F}[s]$, where $q(s)=\sum_{i=0}^{n} b_{i} s^{i}$, and define

$$
\operatorname{coeff}(q) \triangleq\left[\begin{array}{c}
b_{n} \\
\vdots \\
b_{0}
\end{array}\right] .
$$

Now, let $p \in \mathbb{F}[s]$, where $p(s)=\sum_{i=0}^{n} a_{i} s^{i}$. Then,

$$
\operatorname{coeff}(p q)=A \operatorname{coeff}(q)
$$

where $A \in \mathbb{F}^{2 n \times(n+1)}$ is the Toeplitz matrix

$$
A=\left[\begin{array}{ccccc}
a_{n} & 0 & 0 & \cdots & 0 \\
a_{n-1} & a_{n} & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & & \vdots \\
a_{0} & a_{1} & \cdots & \cdots & a_{n} \\
0 & a_{0} & \ddots & \cdots & a_{n-1} \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & a_{0} & a_{1}
\end{array}\right]
$$

In particular, if $n=3$, then

$$
A=\left[\begin{array}{ccc}
a_{2} & 0 & 0 \\
a_{1} & a_{2} & 0 \\
a_{0} & a_{1} & a_{2} \\
0 & a_{0} & a_{1}
\end{array}\right]
$$

Fact 4.8.10. Let $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$ be distinct and, for all $i=1, \ldots, n$, define

$$
p_{i}(s) \triangleq \prod_{\substack{j=1 \\ j \neq i}}^{n} \frac{s-\lambda_{i}}{\lambda_{i}-\lambda_{j}}
$$

Then, for all $i=1, \ldots, n$,

$$
p_{i}\left(\lambda_{j}\right)= \begin{cases}1, & i=j \\ 0, & i \neq j\end{cases}
$$

(Remark: This identity is the Lagrange interpolation formula.)
Fact 4.8.11. Let $A \in \mathbb{F}^{n \times n}$, and assume that $\operatorname{det}(I+A) \neq 0$. Then, there exists a polynomial p of degree less than or equal to $n-1$ such that $(I+A)^{-1}=p(A)$.

Fact 4.8.12. indexPfaffian!skew-symmetric matrix!Fact 4.8.12Let $A \in$ $\mathbb{R}^{n \times n}$ be skew symmetric and let the components of $x_{A} \in \mathbb{R}^{n(n-1) / 2}$ be the entries $A_{(i, j)}$ for all $i>j$. Then, there exists a polynomial function $p: \mathbb{R}^{n(n-1) / 2} \mapsto \mathbb{R}$ such that, for all $\alpha \in \mathbb{R}$ and $x \in \mathbb{R}^{n(n-1) / 2}$,

$$
p(\alpha x)=\alpha^{n / 2} p(x)
$$

and

$$
\operatorname{det} A=p^{2}\left(x_{A}\right)
$$

In particular,

$$
\operatorname{det}\left[\begin{array}{cc}
0 & a \\
-a & 0
\end{array}\right]=a^{2}
$$

and

$$
\operatorname{det}\left[\begin{array}{cccc}
0 & a & b & c \\
-a & 0 & d & e \\
-b & -d & 0 & f \\
-c & -e & -f & 0
\end{array}\right]=(a f-b e+c d)^{2}
$$

(Proof: See [356, p. 224] and [466, pp. 125-127].) (Remark: The polynomial p is the Pfaffian, and this result is Pfaff's theorem.)

Fact 4.8.13. Let $G \in \mathbb{F}^{n \times m}(s)$, and let $G_{(i, j)}=n_{i j} / d_{i j}$, where $n_{i j} \in$ $\mathbb{F}[s]$ and $d_{i j} \in \mathbb{F}[s]$ are coprime for all $i=1, \ldots, n$ and $j=1, \ldots, m$. Then, q_{1} given by the Smith-McMillan form is the least common multiple of $d_{11}, d_{12}, \ldots, d_{n m}$.

Fact 4.8.14. Let $G \in \mathbb{F}^{n \times m}(s)$, assume that $\operatorname{rank} G=m$, and let $\lambda \in \mathbb{C}$, where λ is not a pole of G. Then, λ is a transmission zero of G if and only if there exists $u \in \mathbb{C}^{m}$ such that $G(\lambda) u=0$. Furthermore, if G is square, then λ is a transmission zero of G if and only if $\operatorname{det} G(\lambda)=0$.

4.9 Facts on the Characteristic and Minimal Polynomials

Fact 4.9.1. Let $A=\left[\begin{array}{cc}a & b \\ c & d\end{array}\right] \in \mathbb{R}^{2 \times 2}$. Then, the following identities hold:
i) $\operatorname{mspec}(A)=\left\{\frac{1}{2}\left[a+d \pm \sqrt{(a-d)^{2}+4 b c}\right]\right\}_{\mathrm{m}}$

$$
=\left\{\frac{1}{2}\left[\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^{2}-4 \operatorname{det} A}\right]\right\}_{\mathrm{m}} .
$$

ii) $\chi_{A}(s)=s^{2}-(\operatorname{tr} A) s+\operatorname{det} A$.
iii) $\operatorname{det} A=\frac{1}{2}\left[(\operatorname{tr} A)^{2}-\operatorname{tr} A^{2}\right]$.
iv) $(s I-A)^{\mathrm{A}}=s I+A-(\operatorname{tr} A) I$.
v) $A^{-1}=(\operatorname{det} A)^{-1}[(\operatorname{tr} A) I-A]$.
vi) $A^{\mathrm{A}}=(\operatorname{tr} A) I-A$.
vii) $\operatorname{tr} A^{-1}=\operatorname{tr} A / \operatorname{det} A$.

Fact 4.9.2. Let $A, B \in \mathbb{F}^{2 \times 2}$. Then,

$$
A B+B A-(\operatorname{tr} A) B-(\operatorname{tr} B) A+[(\operatorname{tr} A)(\operatorname{tr} B)-\operatorname{tr} A B] I=0
$$

Furthermore,

$$
\operatorname{det}(A+B)-\operatorname{det} A-\operatorname{det} B=(\operatorname{tr} A)(\operatorname{tr} B)-\operatorname{tr}(A B)
$$

(Proof: Apply the Cayley-Hamilton theorem to $A+x B$, differentiate with respect to x, and set $x=0$. For the second identity, evaluate the CayleyHamilton theorem with $A+B$. See $[211,212,364,483]$ or $[505$, p. 37].)

Fact 4.9.3. Let $A \in \mathbb{R}^{3 \times 3}$. Then, the following identities hold:
i) $\chi_{A}(s)=s^{3}-(\operatorname{tr} A) s^{2}+\left(\operatorname{tr} A^{\mathrm{A}}\right) s-\operatorname{det} A$.
ii) $\operatorname{tr} A^{\mathrm{A}}=\frac{1}{2}\left[(\operatorname{tr} A)^{2}-\operatorname{tr} A^{2}\right]$.
iii) $\operatorname{det} A=\frac{1}{3} \operatorname{tr} A^{3}-\frac{1}{2}(\operatorname{tr} A) \operatorname{tr} A^{2}+\frac{1}{6}(\operatorname{tr} A)^{3}$.
iv) $(s I-A)^{\mathrm{A}}=s^{2} I+s[A-(\operatorname{tr} A) I]+A^{2}-(\operatorname{tr} A) A+\frac{1}{2}\left[(\operatorname{tr} A)^{2}-\operatorname{tr} A^{2}\right] I$.

Fact 4.9.4. Let $A, B, C \in \mathbb{F}^{3 \times 3}$. Then,

$$
\begin{aligned}
& \sum\left[A^{\prime} B^{\prime} C^{\prime}-\left(\operatorname{tr} A^{\prime}\right) B^{\prime} C^{\prime}+\left(\operatorname{tr} A^{\prime}\right)\left(\operatorname{tr} B^{\prime}\right) C^{\prime}-\left(\operatorname{tr} A^{\prime} B^{\prime}\right) C^{\prime}\right] \\
& -[(\operatorname{tr} A)(\operatorname{tr} B) \operatorname{tr} C-(\operatorname{tr} A) \operatorname{tr} B C-(\operatorname{tr} B) \operatorname{tr} C A-(\operatorname{tr} C) \operatorname{tr} A B+\operatorname{tr} A B C \\
& +\operatorname{tr} C B A] I=0
\end{aligned}
$$

where the sum is taken over all six permutations $A^{\prime}, B^{\prime}, C^{\prime}$ of A, B, C. (Remark: This identity is the polarized Cayley-Hamilton theorem. See [37,364, 483].)

Fact 4.9.5. Let $A \in \mathbb{F}^{n \times n}$, and let $\chi_{A}(s)=s^{n}+\beta_{n-1} s^{n-1}+\cdots+\beta_{0}$. Then,

$$
A^{\mathrm{A}}=(-1)^{n-1}\left(A^{n-1}+\beta_{n-1} A^{n-2}+\cdots+\beta_{1} I\right)
$$

Furthermore,

$$
\operatorname{tr} A^{\mathrm{A}}=(-1)^{n-1} \chi_{A}^{\prime}(0)=(-1)^{n-1} \beta_{1}
$$

(Proof: Use $A^{-1} \chi_{A}(A)=0$. The second identity follows from (4.4.16) or Lemma 4.4.7.)

Fact 4.9.6. Let $A \in \mathbb{F}^{n \times n}$ be nonsingular, and let $\chi_{A}(s)=s^{n}+$ $\beta_{n-1} s^{n-1}+\cdots+\beta_{0}$. Then,

$$
\begin{aligned}
\chi_{A^{-1}}(s) & =\frac{1}{\operatorname{det} A}(-s)^{n} \chi_{A}(1 / s) \\
& =s^{n}+\left(\beta_{1} / \beta_{0}\right) s^{n-1}+\cdots+\left(\beta_{n-1} / \beta_{0}\right) s+1 / \beta_{0} .
\end{aligned}
$$

(Remark: See Fact 5.12.2.)
Fact 4.9.7. Let $A \in \mathbb{F}^{n \times n}$, and assume that either A and $-A$ are
similar or A^{T} and $-A$ are similar. Then,

$$
\chi_{A}(s)=(-1)^{n} \chi_{A}(-s) .
$$

Furthermore, if n is even, then χ_{A} is even, whereas, if n is odd, then χ_{A} is odd.

Fact 4.9.8. Let $A \in \mathbb{F}^{n \times n}$. Then, for all $s \in \mathbb{C}$,

$$
(s I-A)^{\mathrm{A}}=\chi_{A}(s)(s I-A)^{-1}=\sum_{i=0}^{n-1} \chi_{A}^{[i]}(s) A^{i},
$$

where

$$
\chi_{A}(s)=s^{n}+\beta_{n-1} s^{n-1}+\cdots+\beta_{1} s+\beta_{0}
$$

and, for all $i=0, \ldots, n-1$, the polynomial $\chi_{A}^{[i]}$ is defined by

$$
\chi_{A}^{[i]}(s) \triangleq s^{n-i}+\beta_{n-1} s^{n-1-i}+\cdots+\beta_{i+1} .
$$

Note that

$$
\chi_{A}^{[n-1]}(s)=s+\beta_{n-1}, \quad \chi_{A}^{[n]}(s)=1,
$$

and that, for all $i=0, \ldots, n-1$ and with $\chi_{A}^{[0]} \triangleq \chi_{A}$, the polynomials $\chi_{A}^{[i]}$ satisfy the recursion

$$
s \chi_{A}^{[i+1]}(s)=\chi_{A}^{[i]}(s)-\beta_{i} .
$$

(Proof: See [615, p. 31].)
Fact 4.9.9. Let $A \in \mathbb{R}^{n \times n}$ be skew symmetric. If n is even, then χ_{A} is even, whereas, if n is odd, then χ_{A} is odd.

Fact 4.9.10. Let $A \in \mathbb{F}^{n \times n}$. Then, $\chi_{\mathcal{A}}$ is even for all of the matrices \mathcal{A} given by $\left[\begin{array}{c}0 \\ A^{*}\end{array} 0_{0}\right],\left[\begin{array}{cc}A & 0 \\ 0 & -A\end{array}\right]$, and $\left[\begin{array}{cc}A & 0 \\ 0 & -A^{*}\end{array}\right]$.

Fact 4.9.11. Let $A, B \in \mathbb{F}^{n \times n}$, and define $\mathcal{A} \triangleq\left[\begin{array}{cc}0 & A \\ B & 0\end{array}\right]$. Then, $\chi_{\mathcal{A}}(s)=$ $\chi_{A B}\left(s^{2}\right)=\chi_{B A}\left(s^{2}\right)$. Consequently, $\chi_{\mathcal{A}}$ is even. (Proof: Use Fact 2.12.16 and Proposition 4.4.9.)

Fact 4.9.12. Let $x, y, z, w \in \mathbb{F}^{n}$, and define $A \triangleq x y^{\mathrm{T}}$ and $B \triangleq x y^{\mathrm{T}}+$ $z w^{\mathrm{T}}$. Then,

$$
\chi_{A}(s)=s^{n-1}\left(s-x^{\mathrm{T}} y\right)
$$

and

$$
\chi_{B}(s)=s^{n-2}\left[s^{2}-\left(x^{\mathrm{T}} y+z^{\mathrm{T}} w\right) s+x^{\mathrm{T}} y z^{\mathrm{T}} w-y^{\mathrm{T}} z x^{\mathrm{T}} w\right] .
$$

(Remark: See Fact 5.9.8.)

Fact 4.9.13. Let $x, y, z, w \in \mathbb{F}^{n-1}$, and define $A \in \mathbb{F}^{n \times n}$ by

$$
A \triangleq\left[\begin{array}{cc}
1 & x^{\mathrm{T}} \\
y & z w^{\mathrm{T}}
\end{array}\right] .
$$

Then,

$$
\chi_{A}(s)=s^{n-3}\left[s^{3}-\left(1+w^{\mathrm{T}} z\right) s^{2}+\left(w^{\mathrm{T}} z-x^{\mathrm{T}} y\right) s+w^{\mathrm{T}} z x^{\mathrm{T}} y-x^{\mathrm{T}} z w^{\mathrm{T}} y\right] .
$$

(Proof: See [176].)
Fact 4.9.14. Let $A \in \mathbb{R}^{2 n \times 2 n}$ be Hamiltonian. Then, χ_{A} is even.
Fact 4.9.15. Let $A, B, C \in \mathbb{R}^{n \times n}$ and define $\mathcal{A} \triangleq\left[\begin{array}{cc}A & B \\ C & -A^{\mathrm{T}}\end{array}\right]$. If B and C are symmetric, then \mathcal{A} is Hamiltonian. If B and C are skew symmetric, then $\chi_{\mathcal{A}}$ is even, but \mathcal{A} is not necessarily Hamiltonian. (Proof: For the second result replace J_{n} by $\left[\begin{array}{ccc}0 & I_{n} \\ I_{n} & 0\end{array}\right]$.)

Fact 4.9.16. Let $A \in \mathbb{R}^{n \times n}, R \in \mathbb{R}^{n \times n}$, and $B \in \mathbb{R}^{n \times m}$, and define $\mathcal{A} \in \mathbb{R}^{2 n \times 2 n}$ by

$$
\mathcal{A} \triangleq\left[\begin{array}{ll}
A & B B^{\mathrm{T}} \\
R & -A^{\mathrm{T}}
\end{array}\right] .
$$

Then,

$$
\chi_{\mathcal{A}}(s)=(-1)^{n} \chi_{A}(s) \chi_{A}(-s) \operatorname{det}\left[I+B^{\mathrm{T}}\left(-s I-A^{\mathrm{T}}\right)^{-1} R(s I-A)^{-1} B\right] .
$$

(Remark: If R is symmetric, then \mathcal{A} is Hamiltonian, and it can be seen directly that $\chi_{\mathcal{A}}$ is even.) If, in addition, R is nonnegative semidefinite, then $(-1)^{n} \chi_{\mathcal{A}}$ has a spectral factorization. (Proof: Using (2.8.10) and (2.8.14) it follows that, for all $s \notin \pm \operatorname{spec}(A)$,

$$
\begin{aligned}
\chi_{\mathcal{A}}(s) & =\operatorname{det}(s I-A) \operatorname{det}\left[s I+A^{\mathrm{T}}-R(s I-A)^{-1} B B^{\mathrm{T}}\right] \\
& =(-1)^{n} \chi_{A}(s) \chi_{A}(-s) \operatorname{det}\left[I-B^{\mathrm{T}}\left(s I+A^{\mathrm{T}}\right)^{-1} R(s I-A)^{-1} B\right] .
\end{aligned}
$$

To prove the second statement, note that, for $\omega \in \mathbb{R}$ such that $\jmath \omega \notin \operatorname{spec}(A)$, it follows that

$$
\chi_{\mathcal{A}}(\jmath \omega)=(-1)^{n} \chi_{\mathcal{A}}(\jmath \omega) \overline{\chi_{\mathcal{A}}(\jmath \omega)} \operatorname{det}\left[I+B^{\mathrm{T}}(\jmath \omega I-A)^{-*} R(\jmath \omega I-A)^{-1} B\right]
$$

and thus $(-1)^{n} \chi_{\mathcal{A}}(\jmath \omega) \geq 0$. By continuity, this inequality holds for all $\omega \in \mathbb{R}$. Now, Proposition 4.1.1 implies that $(-1)^{n} \chi_{\mathcal{A}}$ has a spectral factorization.) (Remark: Not all Hamiltonian matrices have this property.
Consider $\left[\begin{array}{cccc}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & -3 & 0 & 0\end{array}\right]$, which has spectrum $\{\jmath,-\jmath, \sqrt{3} \jmath,-\sqrt{3} \jmath\}$.)

4.10 Facts on the Spectrum

Fact 4.10.1. Let $A \in \mathbb{F}^{n \times n}$, let $p \in \mathbb{F}[s]$, and define $B \triangleq p(A)$. Then, B is nonsingular if and only if $\operatorname{spec}(A) \cap \operatorname{roots}(p)=\varnothing$.

Fact 4.10.2. Let $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{m \times m}$. If $\operatorname{tr} A^{k}=\operatorname{tr} B^{k}$ for all $k \in\{1, \ldots, \max \{m, n\}\}$, then A and B have the same nonzero eigenvalues with the same algebraic multiplicity. Now, assume that $n=m$. Then, $\operatorname{tr} A^{k}=\operatorname{tr} B^{k}$ for all $k \in\{1, \ldots, n\}$ if and only if $\operatorname{mspec}(A)=\operatorname{mspec}(B)$. (Proof: Use Newton's identities. See Fact 4.8.2.) (Remark: This result yields Proposition 4.4.9 since $\operatorname{tr}(A B)^{k}=\operatorname{tr}(B A)^{k}$ for all $k \in \mathbb{P}$ and for all matrices A and B that are not square.) (Remark: Setting $B=0_{n \times n}$ yields necessity in Fact 2.11.16.)

Fact 4.10.3. Let $A \in \mathbb{F}^{n \times n}$ and let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{m}}$. Then,

$$
\operatorname{mspec}\left(A^{\mathrm{A}}\right)= \begin{cases}\left\{\frac{\operatorname{det} A}{\lambda_{1}}, \ldots, \frac{\operatorname{det} A}{\lambda_{n}}\right\}_{\mathrm{m}}, & \operatorname{rank} A=n, \\ \left\{\sum_{i=1}^{n} \operatorname{det} A_{[i, i]}, 0, \ldots, 0\right\}_{\mathrm{m}}, & \operatorname{rank} A=n-1, \\ \{0, \ldots, 0\}_{\mathrm{m}}, & \operatorname{rank} A<n-1 .\end{cases}
$$

(Remark: See Fact 2.13.7 and Fact 5.9.19.)
Fact 4.10.4. Let $a, b, c, d, \omega \in \mathbb{R}$, and define the skew-symmetric matrix $A \in \mathbb{R}^{4 \times 4}$ by

$$
A \triangleq\left[\begin{array}{rrrr}
0 & \omega & a & b \\
-\omega & 0 & c & d \\
-a & -c & 0 & \omega \\
-b & -d & -\omega & 0
\end{array}\right] .
$$

Then,

$$
\operatorname{det} A=\left[\omega^{2}-(a d-b c)\right]^{2} .
$$

Furthermore, A has a repeated eigenvalue if and only if either $i) A$ is singular or $i i) a=-d$ and $b=c$. In case i), A has the repeated eigenvalue 0 , while in case $i i$), A has the repeated eigenvalues $j \sqrt{\omega^{2}+a^{2}+b^{2}}$ and $-\jmath \sqrt{\omega^{2}+a^{2}+b^{2}}$.

Fact 4.10.5. Let $A \in \mathbb{F}^{n \times n}$, and let $p \in \mathbb{F}[s]$. Then, μ_{A} divides p if and only if $\operatorname{spec}(A) \subseteq \operatorname{roots}(p)$ and, for all $\lambda \in \operatorname{spec}(A), \operatorname{ind}_{A}(\lambda) \leq \mathrm{m}_{p}(\lambda)$.

Fact 4.10.6. Let $A \in \mathbb{F}^{n \times n}$, let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{m}}$, and let $p \in \mathbb{F}[s]$. Then,

$$
\operatorname{mspec}[p(A)]=\left\{p\left(\lambda_{1}\right), \ldots, p\left(\lambda_{n}\right)\right\}_{\mathrm{m}} .
$$

Furthermore, $\operatorname{roots}(p) \cap \operatorname{spec}(A)=\varnothing$ if and only if $p(A)$ is nonsingular. Finally, μ_{A} divides p if and only if $p(A)=0$.

Fact 4.10.7. Let $A_{1} \in \mathbb{F}^{n \times n}, A_{12} \in \mathbb{F}^{n \times m}$, and $A_{2} \in \mathbb{F}^{m \times m}$, and define $A \in \mathbb{F}^{(n+m) \times(n+m)}$ by

$$
A \triangleq\left[\begin{array}{cc}
A_{1} & A_{12} \\
0 & A_{2}
\end{array}\right]
$$

Then,

$$
\chi_{A}=\chi_{A_{1}} \chi_{A_{2}}
$$

Now, write

$$
A^{k}=\left[\begin{array}{cc}
A_{1}^{k} & B_{k} \\
0 & A_{2}^{k}
\end{array}\right],
$$

where $B_{k} \in \mathbb{F}^{n \times m}$ for all $k \in \mathbb{N}$. Then,

$$
\chi_{A_{1}}(A)=\left[\begin{array}{cc}
0 & \hat{B}_{1} \\
0 & \chi_{A_{1}}\left(A_{2}\right)
\end{array}\right]
$$

and

$$
\chi_{A_{2}}(A)=\left[\begin{array}{cc}
\chi_{A_{2}}\left(A_{1}\right) & \hat{B}_{2} \\
0 & 0
\end{array}\right]
$$

where $\hat{B}_{1}, \hat{B}_{2} \in \mathbb{F}^{n \times m}$. Therefore,

$$
\mathcal{R}\left[\chi_{A_{2}}(A)\right] \subseteq \mathcal{R}\left(\left[\begin{array}{c}
I_{n} \\
0
\end{array}\right]\right) \subseteq \mathcal{N}\left[\chi_{A_{1}}(A)\right]
$$

and

$$
\chi_{A_{2}}\left(A_{1}\right) \hat{B}_{1}+\hat{B}_{2} \chi_{A_{1}}\left(A_{2}\right)=0
$$

Hence, $\chi_{A}(A)=\chi_{A_{1}}(A) \chi_{A_{2}}(A)=\chi_{A_{2}}(A) \chi_{A_{1}}(A)=0$.
Fact 4.10.8. Let $A_{1} \in \mathbb{F}^{n \times n}, A_{12} \in \mathbb{F}^{n \times m}$, and $A_{2} \in \mathbb{F}^{m \times m}$, assume that $\operatorname{spec}\left(A_{1}\right) \cap \operatorname{spec}\left(A_{2}\right)=\varnothing$, and define $A \in \mathbb{F}^{(n+m) \times(n+m)}$ by

$$
A \triangleq\left[\begin{array}{cc}
A_{1} & A_{12} \\
0 & A_{2}
\end{array}\right]
$$

Furthermore, let $\mu_{1}, \mu_{2} \in \mathbb{F}[s]$ be such that

$$
\begin{gathered}
\mu_{A}=\mu_{1} \mu_{2} \\
\operatorname{roots}\left(\mu_{1}\right)=\operatorname{spec}\left(A_{1}\right) \\
\operatorname{roots}\left(\mu_{2}\right)=\operatorname{spec}\left(A_{2}\right)
\end{gathered}
$$

Now, write

$$
A^{k}=\left[\begin{array}{cc}
A_{1}^{k} & B_{k} \\
0 & A_{2}^{k}
\end{array}\right]
$$

where $B_{k} \in \mathbb{F}^{n \times m}$ for all $k \in \mathbb{N}$. Then,

$$
\mu_{1}(A)=\left[\begin{array}{cc}
0 & \hat{B}_{1} \\
0 & \mu_{1}\left(A_{2}\right)
\end{array}\right]
$$

and

$$
\mu_{2}(A)=\left[\begin{array}{cc}
\mu_{2}\left(A_{1}\right) & \hat{B}_{2} \\
0 & 0
\end{array}\right]
$$

where $\hat{B}_{1}, \hat{B}_{2} \in \mathbb{F}^{n \times m}$. Therefore,

$$
\mathcal{R}\left[\mu_{2}(A)\right] \subseteq \mathcal{R}\left(\left[\begin{array}{c}
I_{n} \\
0
\end{array}\right]\right) \subseteq \mathcal{N}\left[\mu_{1}(A)\right]
$$

and

$$
\mu_{2}\left(A_{1}\right) \hat{B}_{1}+\hat{B}_{2} \mu_{1}\left(A_{2}\right)=0
$$

Hence, $\mu_{A}(A)=\mu_{1}(A) \mu_{2}(A)=\mu_{2}(A) \mu_{1}(A)=0$.
Fact 4.10.9. Let $A_{1}, A_{2}, A_{3}, A_{4}, B_{1}, B_{2} \in \mathbb{F}^{n \times n}$, and define $A \in \mathbb{F}^{4 n \times 4 n}$ by

$$
A \triangleq\left[\begin{array}{cccc}
A_{1} & B_{1} & 0 & 0 \\
0 & A_{2} & 0 & 0 \\
0 & 0 & A_{3} & 0 \\
0 & 0 & B_{2} & A_{4}
\end{array}\right] .
$$

Then,

$$
\operatorname{mspec}(A)=\bigcup_{i=1}^{4} \operatorname{mspec}\left(A_{i}\right) .
$$

Fact 4.10.10. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times n}$, and assume that $m<n$. Then,

$$
\operatorname{mspec}\left(I_{n}+A B\right)=\operatorname{mspec}\left(I_{m}+B A\right) \cup\{1, \ldots, 1\}_{\mathrm{m}}
$$

Fact 4.10.11. Let $a, b \in \mathbb{F}$, and define the Toeplitz matrix $A \in \mathbb{F}^{n \times n}$ by

$$
A \triangleq\left[\begin{array}{ccccc}
a & b & b & \cdots & b \\
b & a & b & \cdots & b \\
b & b & a & \cdots & b \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
b & b & b & \cdots & a
\end{array}\right] .
$$

Then,

$$
\operatorname{mspec}(A)=\{a+(n-1) b, a-b, \ldots, a-b\}_{\mathrm{m}}
$$

and

$$
A^{2}+a_{1} A+a_{0} I=0
$$

where $a_{1} \triangleq-2 a+(2-n) b$ and $a_{0} \triangleq a^{2}+(n-2) a b+(1-n) b^{2}$. Furthermore, if A is nonsingular, then

$$
A^{-1}=\frac{1}{a-b} I_{n}+\frac{b}{(b-a)[a+b(n-1)]} 1_{n \times n}
$$

(Remark: See Fact 2.12.24.)
Fact 4.10.12. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\operatorname{spec}(A) \subset \bigcup_{i=1}^{n}\left\{\lambda \in \mathbb{C}:\left|\lambda-A_{(i, i)}\right| \leq \sum_{j=1, j \neq i}^{n}\left|A_{(i, j)}\right|\right\} .
$$

(Remark: This result is the Gershgorin circle theorem. See [115] for a proof and related results.)

Fact 4.10.13. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\operatorname{spec}(A) \subset \bigcup_{\substack{i, j=1 \\ i \neq j}}^{n}\left\{\lambda \in \mathbb{C}:\left|\lambda-A_{(i, i)}\right|\left|\lambda-A_{(j, j)}\right| \leq \sum_{\substack{k=1 \\ k \neq i}}^{n}\left|A_{(i, k)}\right| \sum_{\substack{k=1 \\ k \neq j}}^{n}\left|A_{(j, k)}\right|\right\}
$$

(Remark: The inclusion region is the ovals of Cassini. The result is due to Brauer. See [287, p. 380].)

Fact 4.10.14. Let $A \in \mathbb{F}^{n \times n}$, and assume that, for all $i=1, \ldots, n$,

$$
\sum_{j=1, j \neq i}^{n}\left|A_{(i, j)}\right|<\left|A_{(i, i)}\right| .
$$

Then, A is nonsingular. (Proof: Apply the Gershgorin circle theorem.) (Remark: This result is the diagonal dominance theorem and A is diagonally dominant. See [500] for a history of this result.) (Remark: For related results, see $[189,428,470]$.) (Problem: Determine a lower bound for $|\operatorname{det} A|$ in terms of the difference between these quantities.)

Fact 4.10.15. Let $A \in \mathbb{F}^{n \times n}$, and, for $j=1, \ldots, n$, define $b_{j} \triangleq$ $\sum_{i=1}^{n}\left|A_{(i, j)}\right|$. Then,

$$
\sum_{j=1}^{n}\left|A_{(j, j)}\right| / b_{j} \leq \operatorname{rank} A
$$

(Proof: See [466, p. 67].) (Remark: See Fact 4.10.14.)
Fact 4.10.16. Let $A_{1}, \ldots, A_{r} \in \mathbb{F}^{n \times n}$ be normal and let $A \in \operatorname{co}\left\{A_{1}\right.$,
$\left.\ldots, A_{r}\right\}$. Then,

$$
\operatorname{spec}(A) \subseteq \operatorname{co} \bigcup_{i=1, \ldots, r} \operatorname{spec}\left(A_{i}\right) .
$$

(Proof: See [584].)
Fact 4.10.17. Let $A \in \mathbb{F}^{n \times n}$, and define the numerical range of A by

$$
\Theta(A) \triangleq\left\{x^{*} A x: x \in \mathbb{C}^{n} \text { and } x^{*} x=1\right\} .
$$

Then, $\Theta(A)$ is a closed, convex subset of \mathbb{C}. Furthermore,

$$
\operatorname{cospec}(A) \subseteq \Theta(A) \subseteq \operatorname{co}\left\{\nu_{1}+\jmath \mu_{1}, \nu_{1}+\jmath \mu_{n}, \nu_{n}+\jmath \mu_{1}, \nu_{n}+\jmath \mu_{n}\right\},
$$

where

$$
\begin{array}{ll}
\nu_{1}=\lambda_{\max }\left(\frac{1}{2}\left(A+A^{*}\right)\right), & \nu_{n}=\lambda_{\min }\left(\frac{1}{2}\left(A+A^{*}\right)\right), \\
\mu_{1}=\lambda_{\max }\left(\frac{1}{2 \jmath}\left(A-A^{*}\right)\right), & \mu_{n}=\lambda_{\min }\left(\frac{1}{2 \jmath}\left(A-A^{*}\right)\right) .
\end{array}
$$

If, in addition, A is normal, then

$$
\Theta(A)=\operatorname{cospec}(A) .
$$

Conversely, if $n \leq 4$ and $\Theta(A)=\operatorname{cospec}(A)$, then A is normal. (Proof: See [252] or [289, pp. 11, 52].) (Remark: $\Theta(A)$ is called the field of values in [289, p. 5].)

Fact 4.10.18. Let $A, B \in \mathbb{R}^{n \times n}$. Then,

$$
\operatorname{mspec}\left(\left[\begin{array}{cc}
A & B \\
-B & A
\end{array}\right]\right)=\operatorname{mspec}\left(A+{ }_{\jmath} B\right) \cup \operatorname{mspec}\left(A-{ }_{\jmath} B\right) .
$$

(Remark: See Fact 2.15.3.)
Fact 4.10.19. Let $A \in \mathbb{F}^{n \times n}$ be nonsingular and assume that $\operatorname{sprad}(I-$ $A)<1$. Then,

$$
A^{-1}=\sum_{k=0}^{\infty}(I-A)^{k} .
$$

4.11 Facts on Nonnegative Matrices

Fact 4.11.1. Let $A \in \mathbb{R}^{n \times n}$, where $n>1$, and assume that A is nonnegative. Then, the following statements hold:
i) $\operatorname{sprad}(A)$ is an eigenvalue of A.
ii) There exists a nonnegative vector $x \in \mathbb{R}^{n}$ such that $A x=\operatorname{sprad}(A) x$.

Furthermore, the following statements are equivalent:
iii) $(I+A)^{n-1}$ is positive.
iv) There do not exist $k>0$ and a permutation matrix $S \in \mathbb{R}^{n \times n}$ such that

$$
S A S^{\mathrm{T}}=\left[\begin{array}{cc}
B & C \\
0_{k \times(n-k)} & D
\end{array}\right] .
$$

v) No eigenvector of A has a zero component.
vi) A has exactly one nonnegative eigenvector whose components sum to 1 , and this eigenvector is positive.
A is irreducible if $i i i)-v i$) are satisfied. If A is irreducible, then the following statements hold:
vii) $\operatorname{sprad}(A)>0$.
viii) $\operatorname{sprad}(A)$ is a simple eigenvalue of A.
$i x)$ There exists a positive vector $x \in \mathbb{R}^{n}$ such that $A x=\operatorname{sprad}(A) x$.
x) A has exactly one positive eigenvector whose components sum to 1 .
xi) Assume that $\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}_{\mathrm{m}}=\{\lambda \in \operatorname{mspec}(A):|\lambda|=\operatorname{sprad}(A)\}_{\mathrm{m}}$. Then, $\lambda_{1}, \ldots, \lambda_{k}$ are distinct, and

$$
\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}=\left\{e^{2 \pi j i / k} \operatorname{sprad}(A): i=1, \ldots, k\right\}
$$

Furthermore,

$$
\operatorname{mspec}(A)=e^{2 \pi \jmath / k} \operatorname{mspec}(A)
$$

xii) If at least one diagonal entry of A is positive, then $\operatorname{sprad}(A)$ is the only eigenvalue of A whose absolute value is $\operatorname{sprad}(A)$.

In addition, the following statements are equivalent:
xiii) There exists $k>0$ such that A^{k} is positive.
xiv) A is irreducible and $|\lambda|<\operatorname{sprad}(A)$ for all $\lambda \in \operatorname{spec}(A) \backslash\{\operatorname{sprad}(A)\}$.
$x v) A^{n^{2}-2 n+2}$ is positive.
A is primitive if $x i i i)$-xiv) are satisfied. (Example: $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ is irreducible but not primitive.) Finally, assume that A is irreducible and let $x \in \mathbb{R}^{n}$ be positive and satisfy $A x=\operatorname{sprad}(A) x$. Then, for all positive $x_{0} \in \mathbb{R}^{n}$, there exists a positive real number γ such that

$$
\lim _{k \rightarrow \infty}\left(A^{k} x_{0}-\gamma[\operatorname{sprad}(A)]^{k} x\right)=0
$$

(Remark: For an arbitrary positive initial condition, the state of the difference equation $x_{k+1}=A x_{k}$ approaches a distribution that is identical to the distribution of the eigenvector associated with the positive eigenvalue of maximum absolute value. In demography, this eigenvector is interpreted as the stable age distribution. See [329, pp. 47, 63].) (Proof: See [7, pp. 45-49], [81, pp. 26-28, 32, 55], [287, pp. 507-511], and [202].) (Remark:

This result is the Perron-Frobenius theorem.) (Remark: See Fact 11.14.18.) (Remark: Statement $x v$) is due to Wielandt. See [466, p. 157].)

Fact 4.11.2. Let $A \triangleq\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$. Then, $\chi_{A}(s)=s^{2}-s-1$ and $\operatorname{spec}(A)=$ $\{\alpha, \beta\}$, where $\alpha \triangleq \frac{1}{2}(1+\sqrt{5})$ and $\beta \triangleq \frac{1}{2}(1-\sqrt{5})$ satisfy

$$
\alpha-1=1 / \alpha, \quad \beta-1=1 / \beta
$$

Furthermore, $\left[\begin{array}{c}\alpha \\ 1\end{array}\right]$ is an eigenvector of A associated with α. Now, for $k \geq 0$, consider the difference equation

$$
x_{k+1}=A x_{k}
$$

Then, for all $k \geq 0$,

$$
x_{k}=A^{k} x_{0}
$$

and

$$
x_{k+2(1)}=x_{k+1(1)}+x_{k(1)}
$$

Furthermore, if x_{0} is positive, then

$$
\lim _{k \rightarrow \infty} \frac{x_{k(1)}}{x_{k(2)}}=\alpha .
$$

In particular, if $x_{0} \triangleq\left[\begin{array}{l}1 \\ 1\end{array}\right]$, then, for all $k \geq 0$,

$$
x_{k}=\left[\begin{array}{l}
F_{k+2} \\
F_{k+1}
\end{array}\right]
$$

where $F_{1} \triangleq F_{2} \triangleq 1$ and, for all $k \geq 1, F_{k}$ satisfies

$$
F_{k+2}=F_{k+1}+F_{k} .
$$

Furthermore,

$$
A^{k}=\left[\begin{array}{cc}
F_{k+1} & F_{k} \\
F_{k} & F_{k-1}
\end{array}\right]
$$

On the other hand, if $x_{0} \triangleq\left[\begin{array}{l}3 \\ 1\end{array}\right]$, then, for all $k \geq 0$,

$$
x_{k}=\left[\begin{array}{l}
L_{k+2} \\
L_{k+1}
\end{array}\right]
$$

where $L_{1} \triangleq 1, L_{2} \triangleq 3$, and, for all $k \geq 1, L_{k}$ satisfies

$$
L_{k+2}=L_{k+1}+L_{k}
$$

Furthermore,

$$
\lim _{k \rightarrow \infty} \frac{F_{k+1}}{F_{k}}=\frac{L_{k+1}}{L_{k}}=\alpha
$$

(Proof: Use the last statement of Fact 4.11.1.) (Remark: F_{k} is the k th Fibonacci number, L_{k} is the k th Lucas number, and α is the golden mean. See [339, pp. 6-8, 239-241, 362, 363].)

Fact 4.11.3. Consider the nonnegative companion matrix $A \in \mathbb{R}^{n \times n}$ defined by

$$
A \triangleq\left[\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \ddots & 0 & 0 \\
0 & 0 & 0 & \ddots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
1 / n & 1 / n & 1 / n & \cdots & 1 / n & 1 / n
\end{array}\right] .
$$

Then, A is irreducible, 1 is a simple eigenvalue of A with associated eigenvector $1_{n \times 1}$, and $|\lambda|<1$ for all $\lambda \in \operatorname{spec}(A) \backslash\{1\}$. Furthermore, if $x \in \mathbb{R}^{n}$, then

$$
\lim _{k \rightarrow \infty} A^{k} x=\left[\frac{2}{n(n+1)} \sum_{i=1}^{n} i x_{(i-1)}\right] 1_{n \times 1} .
$$

(Proof: See [261, pp. 82, 83, 263-266].) (Remark: The result also follows from Fact 4.11.1.)

Fact 4.11.4. Let $A \in \mathbb{R}^{n \times m}$ and $b \in \mathbb{R}^{m}$. Then, the following statements are equivalent:
i) If $x \in \mathbb{R}^{m}$ and $A x \geq \geq 0$, then $b^{\mathrm{T}} x \geq 0$.
ii) There exists $y \in \mathbb{R}^{n}$ such that $y \geq \geq 0$ and $A^{\mathrm{T}} y=b$.

Equivalently, exactly one of the following two statements is satisfied:
i) There exists $x \in \mathbb{R}^{m}$ such that $A x \geq \geq 0$ and $b^{\mathrm{T}} x<0$.
ii) There exists $y \in \mathbb{R}^{n}$ such that $y \geq \geq 0$ and $A^{\mathrm{T}} y=b$.
(Proof: See [68, p. 47].) (Remark: This result is Farkas' theorem.)
Fact 4.11.5. Let $A \in \mathbb{R}^{n \times m}$. Then, the following statements are equivalent:
i) There exists $x \in \mathbb{R}^{m}$ such that $A x \gg 0$.
ii) If $y \in \mathbb{R}^{n}$ is nonzero and $y \geq \geq 0$, then $A^{\mathrm{T}} y \neq 0$.

Equivalently, exactly one of the following two statements is satisfied:
i) There exists $x \in \mathbb{R}^{m}$ such that $A x \gg 0$.
ii) There exists nonzero $y \in \mathbb{R}^{n}$ such that $y \geq \geq 0$ and $A^{\mathrm{T}} y=0$.
(Proof: See [68, p. 47].) (Remark: This result is Gordan's theorem.)
Fact 4.11.6. Let $A \in \mathbb{C}^{n \times n}$, and define $|A| \in \mathbb{R}^{n \times n}$ by $|A|_{(i, j)} \triangleq\left|A_{(i, j)}\right|$
for all $i, j=1, \ldots, n$. Then,

$$
\operatorname{sprad}(A) \leq \operatorname{sprad}(|A|)
$$

(Proof: See [416, p. 619].)
Fact 4.11.7. Let $A, B \in \mathbb{R}^{n \times n}$, where $0 \leq \leq A \leq \leq B$. Then,

$$
\operatorname{sprad}(A) \leq \operatorname{sprad}(B)
$$

If, in addition, $B \neq A$ and $A+B$ is irreducible, then

$$
\operatorname{sprad}(A)<\operatorname{sprad}(B) .
$$

(Proof: See [74, p. 27].)
Fact 4.11.8. Let $A \in \mathbb{R}^{n \times n}$, assume that $A \gg 0$, and let $\lambda \in$ $\operatorname{spec}(A) \backslash\{\operatorname{sprad}(A)\}$. Then,

$$
|\lambda| \leq \frac{A_{\max }-A_{\min }}{A_{\max }+A_{\min }} \operatorname{sprad}(A),
$$

where

$$
A_{\max } \triangleq \max \left\{A_{(i, j)}: i, j=1, \ldots, n\right\}
$$

and

$$
A_{\min } \triangleq \min \left\{A_{(i, j)}: \quad i, j=1, \ldots, n\right\} .
$$

(Remark: This result is Hopf's theorem.)
Fact 4.11.9. Let $A \in \mathbb{R}^{n \times n}$, assume that A is nonnegative and primitive, and let $x, y \in \mathbb{R}^{n}$, where $x>0$ and $y>0$ satisfy $A x=\operatorname{sprad}(A) x$ and $A^{\mathrm{T}} y=\operatorname{sprad}(A) y$. Then,

$$
\lim _{i \rightarrow \infty}\left[\frac{1}{\operatorname{sprad}(A)} A\right]^{i}=x y^{\mathrm{T}}
$$

(Proof: See [287, p. 516].)

4.12 Notes

Much of the development in this chapter is based upon [456]. Additional discussions of the Smith and Smith-McMillan forms are given in [321] and [632]. The proofs of Lemma 4.4.7 and Leverrier's algorithm Proposition 4.4.8 are based on [484, p. 432, 433], where it is called the Souriau-Frame algorithm. Alternative proofs of Leverrier's algorithm are given in [63,296]. The proof of Theorem 4.6.1 is based on [287]. Polynomial-based approaches to linear algebra are given in $[120,216]$, while polynomial matrices and rational transfer functions are studied in [230,572].

Chapter Five
 Matrix Decompositions

In this chapter we present several matrix decompositions, namely, the Smith, multi-companion, hypercompanion, Jordan, Schur, and singular value decompositions.

5.1 Smith Form

Our first decomposition involves rectangular matrices subject to a biequivalence transformation. This result is the specialization of the Smith decomposition given by Theorem 4.3.2 to constant matrices.

Theorem 5.1.1. Let $A \in \mathbb{F}^{n \times m}$ and $r \triangleq \operatorname{rank} A$. Then, there exist nonsingular matrices $S_{1} \in \mathbb{F}^{n \times n}$ and $S_{2} \in \mathbb{F}^{m \times m}$ such that

$$
A=S_{1}\left[\begin{array}{cc}
I_{r} & 0_{r \times(m-r)} \tag{5.1.1}\\
0_{(n-r) \times r} & 0_{(n-r) \times(m-r)}
\end{array}\right] S_{2} .
$$

Corollary 5.1.2. Let $A, B \in \mathbb{F}^{n \times m}$. Then, A and B are biequivalent if and only if A and B have the same Smith form.

Proposition 5.1.3. Let $A, B \in \mathbb{F}^{n \times m}$. Then, the following statements hold:
i) A and B are left equivalent if and only if $\mathcal{N}(A)=\mathcal{N}(B)$.
ii) A and B are right equivalent if and only $\mathcal{R}(A)=\mathcal{R}(B)$.
iii) A and B are biequivalent if and only if $\operatorname{rank} A=\operatorname{rank} B$.

Proof. The proof of necessity is immediate in i)-iii). Sufficiency in iii) follows from Corollary 5.1.2. For sufficiency in i) and $i i$), see [484, pp. 179-181].

5.2 Multi-Companion Form

For the monic polynomial $p(s)=s^{n}+\beta_{n-1} s^{n-1}+\cdots+\beta_{1} s+\beta_{0} \in \mathbb{F}[s]$ of degree $n \geq 1$, the companion matrix $C(p) \in \mathbb{F}^{n \times n}$ associated with p is defined to be

$$
C(p) \triangleq\left[\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \tag{5.2.1}\\
0 & 0 & 1 & \ddots & 0 & 0 \\
0 & 0 & 0 & \ddots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
-\beta_{0} & -\beta_{1} & -\beta_{2} & \cdots & -\beta_{n-2} & -\beta_{n-1}
\end{array}\right]
$$

If $n=1$, then $p(s)=s+\beta_{0}$ and $C(p)=-\beta_{0}$. Furthermore, if $n=0$ and $p=1$, then we define $C(p) \triangleq 0_{0 \times 0}$. Note that if $n \geq 1$, then $\operatorname{tr} C(p)=-\beta_{n-1}$ and $\operatorname{det} C(p)=(-1)^{n} \beta_{0}=(-1)^{n} p(0)$.

It is easy to see that the characteristic polynomial of the companion matrix $C(p)$ is p. For example, let $n=3$ so that

$$
C(p)=\left[\begin{array}{ccc}
0 & 1 & 0 \tag{5.2.2}\\
0 & 0 & 1 \\
-\beta_{0} & -\beta_{1} & -\beta_{2}
\end{array}\right]
$$

and thus

$$
s I-C(p)=\left[\begin{array}{ccc}
s & -1 & 0 \tag{5.2.3}\\
0 & s & -1 \\
\beta_{0} & \beta_{1} & s+\beta_{2}
\end{array}\right]
$$

Adding s times the second column and s^{2} times the third column to the first column leaves the determinant of $s I-C(p)$ unchanged and yields

$$
\left[\begin{array}{ccc}
0 & -1 & 0 \tag{5.2.4}\\
0 & s & -1 \\
p(s) & \beta_{1} & s+\beta_{2}
\end{array}\right]
$$

Hence, $\chi_{C(p)}=p$. If $n=0$ and $p=1$, then we define $\chi_{C(p)} \triangleq \chi_{0_{0 \times 0}}=1$. The following result shows that companion matrices have the same characteristic and minimal polynomials.

Proposition 5.2.1. Let $p \in \mathbb{F}[s]$ be a monic polynomial having degree
n. Then, there exist unimodular matrices $S_{1}, S_{2} \in \mathbb{F}^{n \times n}[s]$ such that

$$
s I-C(p)=S_{1}(s)\left[\begin{array}{cc}
I_{n-1} & 0_{(n-1) \times 1} \tag{5.2.5}\\
0_{1 \times(n-1)} & p(s)
\end{array}\right] S_{2}(s) .
$$

Furthermore,

$$
\begin{equation*}
\chi_{C(p)}(s)=\mu_{C(p)}(s)=p(s) . \tag{5.2.6}
\end{equation*}
$$

Proof. Since $\chi_{C(p)}=p$, it follows that $\operatorname{rank}[s I-C(p)]=n$. Next, since $\operatorname{det}\left([s I-C(p)]_{[n, 1]}\right)=(-1)^{n-1}$, it follows that $\Delta_{n-1}=1$, where Δ_{n-1} is the greatest common divisor (which is monic by definition) of all $(n-1) \times(n-1)$ subdeterminants of $s I-C(p)$. Furthermore, since Δ_{i-1} divides Δ_{i} for all $i=2, \ldots, n-1$, it follows that $\Delta_{1}=\cdots=\Delta_{n-2}=1$. Consequently, $p_{1}=$ $\cdots=p_{n-1}=1$. Since, by Proposition 4.6.2, $\chi_{C(p)}=\prod_{i=1}^{n} p_{i}=p_{n}$ and $\mu_{C(p)}=p_{n}$, it follows that $\chi_{C(p)}=\mu_{C(p)}=p$.

Next, we consider block-diagonal matrices all of whose diagonally located blocks are companion matrices.

Lemma 5.2.2. Let $p_{1}, \ldots, p_{n} \in \mathbb{F}[s]$ be monic polynomials such that p_{i} divides p_{i+1} for all $i=1, \ldots, n-1$ and $n=\sum_{i=1}^{n} \operatorname{deg} p_{i}$. Furthermore, define $C \triangleq \operatorname{diag}\left[C\left(p_{1}\right), \ldots, C\left(p_{n}\right)\right] \in \mathbb{F}^{n \times n}$. Then, there exist unimodular matrices $S_{1}, S_{2} \in \mathbb{F}^{n \times n}[s]$ such that

$$
s I-C=S_{1}(s)\left[\begin{array}{ccc}
p_{1}(s) & & 0 \tag{5.2.7}\\
& \ddots & \\
0 & & p_{n}(s)
\end{array}\right] S_{2}(s)
$$

Proof. Letting $k_{i}=\operatorname{deg} p_{i}$, Proposition 5.2.1 implies that the Smith form of $s I_{k_{i}}-C\left(p_{i}\right)$ is $0_{0 \times 0}$ if $k_{i}=0$ and $\operatorname{diag}\left(I_{k_{i}-1}, p_{i}\right)$ if $k_{i} \geq 1$. By combining these Smith forms it follows that there exist unimodular matrices $S_{1}, S_{2} \in \mathbb{F}^{n \times n}[s]$ such that

$$
\begin{aligned}
s I-C & =\left[\begin{array}{ccc}
s I_{k_{1}}-C\left(p_{1}\right) & & \\
& \ddots & \\
& & s I_{k_{n}}-C\left(p_{n}\right)
\end{array}\right] \\
& =S_{1}(s)\left[\begin{array}{ccc}
p_{1}(s) & & 0 \\
& \ddots & \\
0 & & p_{n}(s)
\end{array}\right] S_{2}(s) .
\end{aligned}
$$

Since p_{i} divides p_{i+1} for all $i=1, \ldots, n-1$, it follows that this diagonal matrix is the Smith form of $s I-C$.

The following result uses Lemma 5.2.2 to construct a canonical form,
known as the multi-companion form, for square matrices under a similarity transformation.

Theorem 5.2.3. Let $A \in \mathbb{F}^{n \times n}$, and let $p_{1}, \ldots, p_{n} \in \mathbb{F}[s]$ denote the similarity invariants of A, where p_{i} divides p_{i+1} for all $i=1, \ldots, n-1$. Then, there exists a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that

$$
A=S\left[\begin{array}{lll}
C\left(p_{1}\right) & & \tag{5.2.8}\\
& \ddots & \\
& & C\left(p_{n}\right)
\end{array}\right] S^{-1}
$$

Proof. Lemma 5.2.2 implies that the $n \times n$ matrix $s I-C$, where $C \triangleq \operatorname{diag}\left[C\left(p_{1}\right), \ldots, C\left(p_{n}\right)\right]$, has the Smith form $\operatorname{diag}\left(p_{1}, \ldots, p_{n}\right)$. Now, since $s I-A$ has the same similarity invariants as C, it follows from Theorem 4.3.9 that A and C are similar.

Corollary 5.2.4. Let $A \in \mathbb{F}^{n \times n}$. Then, $\mu_{A}=\chi_{A}$ if and only if A is similar to $C\left(\chi_{A}\right)$.

Proof. Suppose that $\mu_{A}=\chi_{A}$. Then, it follows from Proposition 4.6.2 that $p_{i}=1$ for all $i=1, \ldots, n-1$ and $p_{n}=\chi_{A}$ is the only nonconstant similarity invariant of A. Thus, $C\left(p_{i}\right)=0_{0 \times 0}$ for all $i=1, \ldots, n-1$, and it follows from Theorem 5.2.3 that A is similar to $C\left(\chi_{A}\right)$. The converse can be verified directly.

Corollary 5.2.5. Let $A \in \mathbb{F}^{n \times n}$ be a companion matrix. Then, $\mu_{A}=$ χ_{A}.

Proof. The result is an immediate consequence of Corollary 5.2.5. Alternatively, if p is monic with degree $n-1$, then $[p(A)]_{(1, n)}=1$.

Note that if $A=I_{n}$, then the similarity invariants of A are $p_{i}(s)=s-1$ for all $i=1, \ldots, n$. Thus, $C\left(p_{i}\right)=1$ for all $i=1, \ldots, n$, as expected.

Corollary 5.2.6. Let $A, B \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) A and B are similar.
ii) A and B have the same similarity invariants.
iii) A and B have the same multi-companion form.

The multi-companion form given by Theorem 5.2.3 provides a canonical form for A in terms of a block-diagonal matrix of companion matrices. As will be seen, however, the multi-companion form is only one such
decomposition. The goal of the remainder of this section is to obtain an additional canonical form by applying a similarity transformation to the multi-companion form.

To begin, note that if A_{i} is similar to B_{i} for all $i=1, \ldots, r$, then $\operatorname{diag}\left(A_{1}, \ldots, A_{r}\right)$ is similar to $\operatorname{diag}\left(B_{1}, \ldots, B_{r}\right)$. Therefore, it follows from Corollary 5.2.6 that, if $s I-A_{i}$ and $s I-B_{i}$ have the same Smith form for all $i=1, \ldots, r$, then $s I-\operatorname{diag}\left(A_{1}, \ldots, A_{r}\right)$ and $s I-\operatorname{diag}\left(B_{1}, \ldots, B_{r}\right)$ have the same Smith form. The following lemma is needed.

Lemma 5.2.7. Let $A=\operatorname{diag}\left(A_{1}, A_{2}\right)$, where $A_{i} \in \mathbb{F}^{n_{i} \times n_{i}}$ for $i=1,2$. Then, μ_{A} is the least common multiple of $\mu_{A_{1}}$ and $\mu_{A_{2}}$. In particular, if $\mu_{A_{1}}$ and $\mu_{A_{2}}$ are coprime, then $\mu_{A}=\mu_{A_{1}} \mu_{A_{2}}$.

Proof. Since $\mu_{A}(A)=0$, it follows that $\mu_{A}\left(A_{1}\right)=0$ and $\mu_{A}\left(A_{2}\right)=0$. Therefore, Theorem 4.1.5 implies that $\mu_{A_{1}}$ and $\mu_{A_{2}}$ both divide μ_{A}. Consequently, the least common multiple q of $\mu_{A_{1}}$ and $\mu_{A_{2}}$ also divides μ_{A}. Since $q\left(A_{1}\right)=0$ and $q\left(A_{2}\right)=0$, it follows that $q(A)=0$. Therefore, μ_{A} divides q. Hence, $q=\mu_{A}$. If, in addition, $\mu_{A_{1}}$ and $\mu_{A_{2}}$ are coprime, then $\mu_{A}=\mu_{A_{1}} \mu_{A_{2}}$.

Proposition 5.2.8. Let $p \in \mathbb{F}[s]$ be a monic polynomial of positive degree n, and let $p=p_{1} \cdots p_{r}$, where $p_{1}, \ldots, p_{r} \in \mathbb{F}[s]$ are monic and pairwise coprime polynomials. Then, the matrices $C(p)$ and $\operatorname{diag}\left[C\left(p_{1}\right), \ldots, C\left(p_{r}\right)\right]$ are similar.

Proof. Let $\hat{p}_{2}=p_{2} \cdots p_{r}$ and $\hat{C} \triangleq \operatorname{diag}\left[C\left(p_{1}\right), C\left(\hat{p}_{2}\right)\right]$. Since p_{1} and \hat{q}_{2} are coprime, it follows from Lemma 5.2 .7 that $\mu_{\hat{C}}=\mu_{C\left(p_{1}\right)} \mu_{C\left(\hat{p}_{2}\right)}$. Furthermore, $\chi_{\hat{C}}=\chi_{C\left(p_{1}\right)} \chi_{C\left(\hat{p}_{2}\right)}=\mu_{\hat{C}}$. Hence, Corollary 5.2.4 implies that \hat{C} is similar to $C\left(\chi_{\hat{C}}\right)$. However, $\chi_{\hat{C}}=p_{1} \cdots p_{r}=p$, so that \hat{C} is similar to $C(p)$. If $r>2$, then the same argument can be used to decompose $C\left(\hat{p}_{2}\right)$ to show that $C(p)$ is similar to $\operatorname{diag}\left[C\left(p_{1}\right), \ldots, C\left(p_{r}\right)\right]$.

Proposition 5.2.8 can be used to decompose every companion block of a multi-companion form into smaller companion matrices. This procedure can be carried out for every companion block whose characteristic polynomial has coprime factors. For example, suppose that $A \in \mathbb{R}^{10 \times 10}$ has the similarity invariants $p_{i}(s)=1$ for all $i=1, \ldots, 7, p_{8}(s)=(s+1)^{2}$, $p_{9}(s)=(s+1)^{2}(s+2)$, and $p_{10}(s)=(s+1)^{2}(s+2)\left(s^{2}+3\right)$, so that, by Theorem 5.2.3 the multi-companion form of A is $\operatorname{diag}\left[C\left(p_{8}\right), C\left(p_{9}\right), C\left(p_{10}\right)\right]$, where $C\left(p_{8}\right) \in \mathbb{R}^{2 \times 2}, C\left(p_{9}\right) \in \mathbb{R}^{3 \times 3}$, and $C\left(p_{10}\right) \in \mathbb{R}^{5 \times 5}$. According to Proposition 5.2.8, the companion matrices $C\left(p_{9}\right)$ and $C\left(p_{10}\right)$ can be further decomposed. For example, $C\left(p_{9}\right)$ is similar to $\operatorname{diag}\left[C\left(p_{9,1}\right), C\left(p_{9,2}\right)\right]$, where $p_{9,1}(s)=(s+1)^{2}$ and $p_{9,2}(s)=s+2$ are coprime. Furthermore,
$C\left(p_{10}\right)$ is similar to four different diagonal matrices, three of which have two companion blocks while the fourth has three companion blocks. Since $p_{8}(s)=(s+1)^{2}$ does not have nonconstant coprime factors, however, it follows that the companion matrix $C\left(p_{8}\right)$ cannot be decomposed into smaller companion matrices.

The largest number of companion blocks achievable by similarity transformation is obtained by factoring every similarity invariant into elementary divisors, which are powers of irreducible polynomials that are nonconstant, monic, and pairwise coprime. In the above example, this factorization is given by $p_{9}(s)=p_{9,1}(s) p_{9,2}(s)$, where $p_{9,1}(s)=(s+1)^{2}$ and $p_{9,2}(s)=s+2$, and by $p_{10}=p_{10,1} p_{10,2} p_{10,3}$, where $p_{10,1}(s)=(s+1)^{2}, p_{10,2}(s)=s+2$, and $p_{10,3}(s)=s^{2}+3$. The elementary divisors of A are thus $(s+1)^{2},(s+1)^{2}$, $s+2,(s+1)^{2}, s+2$, and $s^{2}+3$, which yields six companion blocks. Viewing $A \in \mathbb{C}^{n \times n}$ we can further factor $p_{10,3}(s)=(s+\jmath \sqrt{3})(s-\jmath \sqrt{3})$, which yields a total of seven companion blocks. From Proposition 5.2.8 and Theorem 5.2.3 we obtain the elementary multi-companion form, which provides another canonical form for A.

Theorem 5.2.9. Let $A \in \mathbb{F}^{n \times n}$, and let $q_{1}^{l_{1}}, \ldots, q_{h}^{l_{h}} \in \mathbb{F}[s]$ be the elementary divisors of A, where $l_{1}, \ldots, l_{h} \in \mathbb{P}$. Then, there exists a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that

$$
A=S\left[\begin{array}{lll}
C\left(q_{1}^{l_{1}}\right) & & \tag{5.2.9}\\
& \ddots & \\
& & C\left(q_{h}^{l_{h}}\right)
\end{array}\right] S^{-1} .
$$

5.3 Hypercompanion Form and Jordan Form

In this section we present an alternative form of the companion blocks of the elementary multi-companion form (5.2.9). To do this we define the hypercompanion matrix $\mathcal{H}_{l}(q)$ associated with the elementary divisor $q^{l} \in$ $\mathbb{F}[s]$, where $l \in \mathbb{P}$, as follows. For $q(s)=s-\lambda \in \mathbb{C}[s]$, define the $l \times l$ Toeplitz hypercompanion matrix

$$
\mathcal{H}_{l}(q) \triangleq \lambda I_{l}+N_{l}=\left[\begin{array}{cccccc}
\lambda & 1 & 0 & \cdots & 0 & 0 \tag{5.3.1}\\
0 & \lambda & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ddots & 1 & 0 \\
0 & 0 & 0 & \cdots & \lambda & 1 \\
0 & 0 & 0 & \cdots & 0 & \lambda
\end{array}\right],
$$

while, for $q(s)=s^{2}-\beta_{1} s-\beta_{0} \in \mathbb{R}[s]$, define the $2 l \times 2 l$ real, tridiagonal hypercompanion matrix

$$
\mathcal{H}_{l}(q) \triangleq\left[\begin{array}{ccccccc}
0 & 1 & & & & & \tag{5.3.2}\\
\beta_{0} & \beta_{1} & 1 & & & 0 & \\
& 0 & 0 & 1 & & & \\
& & \beta_{0} & \beta_{1} & 1 & & \\
& & & \ddots & \ddots & \ddots & \\
& 0 & & & \ddots & 0 & 1 \\
& & & & & \beta_{0} & \beta_{1}
\end{array}\right]
$$

The following result shows that the hypercompanion matrix $\mathcal{H}_{l}(q)$ is similar to the companion matrix $C\left(q^{l}\right)$ associated with the elementary divisor q^{l} of $\mathcal{H}_{l}(q)$.

Lemma 5.3.1. Let $l \in \mathbb{P}$, and let $q(s)=s-\lambda \in \mathbb{C}[s]$ or $q(s)=$ $s^{2}-\beta_{1} s-\beta_{0} \in \mathbb{R}[s]$. Then, q^{l} is the only elementary divisor of $\mathcal{H}_{l}(q)$, and $\mathcal{H}_{l}(q)$ is similar to $C\left(q^{l}\right)$.

Proof. Let k denote the order of $\mathcal{H}_{l}(q)$. Then, $\chi_{\mathcal{H}_{l}(q)}=q^{l}$ and $\operatorname{det}\left(\left[s I-C_{l}(q)\right]_{[k, 1]}\right)=(-1)^{k-1}$. Hence, as in the proof of Proposition 5.2.1, it follows that $\chi_{\mathcal{H}_{l}(q)}=\mu_{\mathcal{H}_{l}(q)}$. Corollary 5.2 .4 now implies that $\mathcal{H}_{l}(q)$ is similar to $C\left(q^{l}\right)$.

Proposition 5.2.8 and Lemma 5.3.1 yield the following canonical form, which is known as the hypercompanion form.

Theorem 5.3.2. Let $A \in \mathbb{F}^{n \times n}$, and let $q_{1}^{l_{1}}, \ldots, q_{h}^{l_{h}} \in \mathbb{F}[s]$ be the elementary divisors of A, where $l_{1}, \ldots, l_{h} \in \mathbb{P}$. Then, there exists a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that

$$
A=S\left[\begin{array}{lll}
\mathcal{H}_{l_{1}(}\left(q_{1}\right) & & \tag{5.3.3}\\
& \ddots & \\
& & \mathcal{H}_{l_{h}}\left(q_{h}\right)
\end{array}\right] S^{-1} .
$$

Next, consider Theorem 5.3 .3 with $\mathbb{F}=\mathbb{C}$. In this case, every elementary divisor $q_{i}^{l_{i}}$ is of the form $\left(s-\lambda_{i}\right)^{l_{i}}$, where $\lambda_{i} \in \mathbb{C}$. Furthermore, $S \in \mathbb{C}^{n \times n}$, and the hypercompanion form (5.3.4) is a block-diagonal matrix all of whose diagonally located blocks are of the form (5.3.1). The hypercompanion form (5.3.4) with every diagonally located block of the form (5.3.1) is the Jordan form given by the following result.

Theorem 5.3.3. Let $A \in \mathbb{F}^{n \times n}$, and let $q_{1}^{l_{1}}, \ldots, q_{h}^{l_{h}} \in \mathbb{C}[s]$ be the
elementary divisors of A, where $l_{1}, \ldots, l_{h} \in \mathbb{P}$ and $q_{1}, \ldots, q_{h} \in \mathbb{C}[s]$ are linear. Then, there exists a nonsingular matrix $S \in \mathbb{C}^{n \times n}$ such that

$$
A=S\left[\begin{array}{lll}
\mathcal{H}_{l_{1}}\left(q_{1}\right) & & \tag{5.3.4}\\
& \ddots & \\
& & \mathcal{H}_{l_{h}}\left(q_{h}\right)
\end{array}\right] S^{-1}
$$

Corollary 5.3.4. Let $p \in \mathbb{F}[s]$, let $\lambda_{1}, \ldots, \lambda_{r}$ denote the distinct roots of p, and, for $i=1, \ldots, r$, let $l_{i} \triangleq \mathrm{~m}_{p}\left(\lambda_{i}\right)$ and $p_{i}(s) \triangleq s-\lambda_{i}$. Then, $C(p)$ is similar to $\operatorname{diag}\left[\mathcal{H}_{l_{1}}\left(p_{1}\right), \ldots, \mathcal{H}_{l_{r}}\left(p_{r}\right)\right]$.

To illustrate the structure of the Jordan form, let $l_{i}=3$ and $q_{i}(s)=$ $s-\lambda_{i}$, where $\lambda_{i} \in \mathbb{C}$. Then, $\mathcal{H}_{l_{i}}\left(q_{i}\right)$ is the 3×3 matrix

$$
\mathcal{H}_{l_{i}}\left(q_{i}\right)=\lambda_{i} I_{3}+N_{3}=\left[\begin{array}{ccc}
\lambda_{i} & 1 & 0 \tag{5.3.5}\\
0 & \lambda_{i} & 1 \\
0 & 0 & \lambda_{i}
\end{array}\right]
$$

so that $\operatorname{mspec}\left[\mathcal{H}_{l_{i}}\left(q_{i}\right)\right]=\left\{\lambda_{i}, \lambda_{i}, \lambda_{i}\right\}_{\mathrm{m}}$. If $\mathcal{H}_{l_{i}}\left(q_{i}\right)$ is the only diagonally located block of the Jordan form associated with the eigenvalue λ_{i}, then the algebraic multiplicity of λ_{i} is equal to 3 while its geometric multiplicity is equal to 1 .

Now, consider Theorem 5.3.3 with $\mathbb{F}=\mathbb{R}$. In this case, every elementary divisor $q_{i}^{l_{i}}$ is either of the form $\left(s-\lambda_{i}\right)^{l_{i}}$ or of the form $\left(s^{2}-\beta_{1 i} s-\beta_{0 i}\right)^{l_{i}}$, where $\beta_{0 i}, \beta_{1 i} \in \mathbb{R}$. Furthermore, $S \in \mathbb{R}^{n \times n}$ and the hypercompanion form (5.3.4) is a block-diagonal matrix whose diagonally located blocks are real matrices of the form (5.3.1) or (5.3.2). In this case, (5.3.4) is the real hypercompanion form.

Applying an additional real similarity transformation to each diagonally located block of the real hypercompanion form yields the real Jordan form. To do this, define the real Jordan matrix $\mathcal{J}_{l}(q)$ for $l \in \mathbb{P}$ as follows. For $q(s)=s-\lambda \in \mathbb{F}[s]$ define $\mathcal{J}_{l}(q) \triangleq \mathcal{H}_{l}(q)$, while if $q(s)=s^{2}-\beta_{1} s-\beta_{0} \in \mathbb{F}[s]$ is irreducible with a nonreal root $\lambda=\nu+\jmath \omega$, then define the $2 l \times 2 l$ upper-

Hessenberg matrix

$$
\mathcal{J}_{l}(q) \triangleq\left[\begin{array}{cccccccc}
\nu & \omega & 1 & 0 & & & & \tag{5.3.6}\\
-\omega & \nu & 0 & 1 & \ddots & & 0 & \\
& & \nu & \omega & 1 & \ddots & & \\
& & -\omega & \nu & 0 & \ddots & \ddots & \\
& & & & \ddots & \ddots & 1 & 0 \\
& & & & & \ddots & 0 & 1 \\
& 0 & & & & & \nu & \omega \\
& & & & & & -\omega & \nu
\end{array}\right]
$$

Theorem 5.3.5. Let $A \in \mathbb{R}^{n \times n}$, and let $q_{1}^{l_{1}}, \ldots, q_{h}^{l_{h}} \in \mathbb{R}[s]$, where $l_{1}, \ldots, l_{h} \in \mathbb{P}$ are the elementary divisors of A. Then, there exists a nonsingular matrix $S \in \mathbb{R}^{n \times n}$ such that

$$
A=S\left[\begin{array}{ccc}
\mathcal{J}_{l_{1}}\left(q_{1}\right) & & 0 \tag{5.3.7}\\
& \ddots & \\
0 & & \mathcal{J}_{l_{h}}\left(q_{h}\right)
\end{array}\right] S^{-1} .
$$

Proof. It need only be shown that $\mathcal{J}_{l}(q)$ and $\mathcal{H}_{l}(q)$ are similar in the case that $q(s)=s^{2}-\beta_{1} s-\beta_{0}$ is an irreducible quadratic. Let $\lambda=\nu+\jmath \omega$ denote a root of q so that $\beta_{1}=2 \nu$ and $\beta_{0}=-\left(\nu^{2}+\omega^{2}\right)$. Then,

$$
\mathcal{H}_{1}(q)=\left[\begin{array}{cc}
0 & 1 \\
\beta_{0} & \beta_{1}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
\nu & \omega
\end{array}\right]\left[\begin{array}{cc}
\nu & \omega \\
-\omega & \nu
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-\nu / \omega & 1 / \omega
\end{array}\right]=S \mathcal{S}_{1}(q) S^{-1} .
$$

The transformation matrix $S=\left[\begin{array}{cc}1 & 0 \\ \nu & \omega\end{array}\right]$ is not unique; an alternative choice is $S=\left[\begin{array}{c}\omega \\ 0 \\ 0\end{array} \nu^{\nu}+\omega^{2}\right]$. Similarly,

$$
\mathcal{H}_{2}(q)=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
\beta_{0} & \beta_{1} & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & \beta_{0} & \beta_{1}
\end{array}\right]=S\left[\begin{array}{cccc}
\nu & \omega & 1 & 0 \\
-\omega & \nu & 0 & 1 \\
0 & 0 & \nu & \omega \\
0 & 0 & -\omega & \nu
\end{array}\right] S^{-1}=S \mathcal{F}_{2}(q) S^{-1},
$$

where

$$
S \triangleq\left[\begin{array}{cccc}
\omega & \nu & \omega & \nu \\
0 & \nu^{2}+\omega^{2} & \omega & \nu^{2}+\omega^{2}+\nu \\
0 & 0 & -2 \omega \nu & 2 \omega^{2} \\
0 & 0 & -2 \omega\left(\nu^{2}+\omega^{2}\right) & 0
\end{array}\right] .
$$

Finally, we relate the real Jordan form (5.3.7) to the Jordan form (5.3.4) by showing that every diagonally located block of the form (5.3.6) is similar to a pair of Jordan blocks of the form (5.3.1). For example, if
$q(s)=s^{2}-2 \nu s+\nu^{2}+\omega^{2}$ with roots $\lambda=\nu+\jmath \omega$ and $\bar{\lambda}=\nu-\jmath \omega$, then

$$
\mathcal{H}_{1}(q)=\left[\begin{array}{cc}
\nu & \omega \tag{5.3.8}\\
-\omega & \nu
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
\jmath & -\jmath
\end{array}\right]\left[\begin{array}{cc}
\lambda & 0 \\
0 & \frac{\lambda}{\lambda}
\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & -\jmath \\
1 & \jmath
\end{array}\right]
$$

while

$$
\mathcal{H}_{2}(q)=\left[\begin{array}{cccc}
\nu & \omega & 1 & 0 \tag{5.3.9}\\
-\omega & \nu & 0 & 1 \\
0 & 0 & \nu & \omega \\
0 & 0 & -\omega & \nu
\end{array}\right]=S\left[\begin{array}{cccc}
\lambda & 1 & 0 & 0 \\
0 & \lambda & 0 & 0 \\
0 & 0 & \bar{\lambda} & 1 \\
0 & 0 & 0 & \frac{\lambda}{\lambda}
\end{array}\right] S^{-1}
$$

where

$$
S=\frac{1}{\sqrt{2}}\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \tag{5.3.10}\\
\jmath & 0 & -\jmath & 0 \\
0 & 1 & 0 & 1 \\
0 & \jmath & 0 & -\jmath
\end{array}\right]
$$

and

$$
S^{-1}=\frac{1}{\sqrt{2}}\left[\begin{array}{cccc}
1 & -\jmath & 0 & 0 \tag{5.3.11}\\
0 & 0 & 1 & -\jmath \\
1 & \jmath & 0 & 0 \\
0 & 0 & 1 & \jmath
\end{array}\right] .
$$

Example 5.3.6. Let $A, B \in \mathbb{R}^{4 \times 4}$ and $C \in \mathbb{C}^{4 \times 4}$ be given by

$$
\begin{align*}
& A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-16 & 0 & -8 & 0
\end{array}\right], \tag{5.3.12}\\
& B=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-4 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -4 & 0
\end{array}\right], \tag{5.3.13}
\end{align*}
$$

and

$$
C=\left[\begin{array}{cccc}
2 \jmath & 1 & 0 & 0 \tag{5.3.14}\\
0 & 2 \jmath & 0 & 0 \\
0 & 0 & -2 \jmath & 1 \\
0 & 0 & 0 & -2 \jmath
\end{array}\right]
$$

Then, A is in companion form, B is in real hypercompanion form, and C is in Jordan form. Furthermore, A, B, and C are similar.

Example 5.3.7. Let $A, B \in \mathbb{R}^{6 \times 6}$ and $C \in \mathbb{C}^{6 \times 6}$ be given by

$$
\begin{gather*}
A=\left[\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
-27 & 54 & -63 & 44 & -21 & 6
\end{array}\right] \tag{5.3.15}\\
B=\left[\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
-3 & 2 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & -3 & 2 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & -3 & 2
\end{array}\right] \tag{5.3.16}
\end{gather*}
$$

and

$$
C=\left[\begin{array}{cccccc}
1+\jmath \sqrt{2} & 1 & 0 & 0 & 0 & 0 \tag{5.3.17}\\
0 & 1+\jmath \sqrt{2} & 1 & 0 & 0 & 0 \\
0 & 0 & 1+\jmath \sqrt{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 1-\jmath \sqrt{2} & 1 & 0 \\
0 & 0 & 0 & 0 & 1-\jmath \sqrt{2} & 1 \\
0 & 0 & 0 & 0 & 0 & 1-\jmath \sqrt{2}
\end{array}\right] .
$$

Then, A is in companion form, B is in real hypercompanion form, and C is in Jordan form. Furthermore, A, B, and C are similar.

The next result shows that every matrix is similar to its transpose by means of a symmetric similarity transformation. This result is due to Frobenius.

Corollary 5.3.8. Let $A \in \mathbb{F}^{n \times n}$. Then, there exists a symmetric nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that $A=S A^{\mathrm{T}} S^{-1}$.

Proof. It follows from Theorem 5.3.3 that there exists a nonsingular matrix $\hat{S} \in \mathbb{C}^{n \times n}$ such that $A=\hat{S} B \hat{S}^{-1}$, where $B=\operatorname{diag}\left(B_{1}, \ldots, B_{r}\right)$ is the Jordan form of A and $B_{i} \in \mathbb{C}^{n_{i} \times n_{i}}$ for all $i=1, \ldots, r$. Now, define the symmetric nonsingular matrix $S \triangleq \hat{S} \tilde{I} \hat{S}^{\mathrm{T}}$, where $\tilde{I} \triangleq \operatorname{diag}\left(\hat{I}_{n_{1}}, \ldots, \hat{I}_{n_{r}}\right)$ is symmetric and involutory. Furthermore, note that $\hat{I}_{n_{i}} B_{i} \hat{I}_{n_{i}}=B_{i}^{\mathrm{T}}$ for all i $=1, \ldots, r$ so that $\tilde{I} B \tilde{I}=B^{\mathrm{T}}$ and thus $\tilde{I} B^{\mathrm{T}} \tilde{I}=B$. Hence, it follows that

$$
\begin{aligned}
S A^{\mathrm{T}} S^{-1} & =S \hat{S}^{-\mathrm{T}} B^{\mathrm{T}} \hat{S}^{\mathrm{T}} S^{-1}=\hat{S} \tilde{I} \hat{S}^{\mathrm{T}} \hat{S}^{-\mathrm{T}} B^{\mathrm{T}} \hat{S}^{\mathrm{T}} \hat{S}^{-\mathrm{T}} \tilde{I} \hat{S}^{-1} \\
& =\hat{S} \tilde{I} B^{\mathrm{T}} \tilde{I} \hat{S}^{-1}=\hat{S} B \hat{S}^{-1}=A .
\end{aligned}
$$

If A is real, then a similar argument based on the real Jordan form shows that S can be chosen to be real.

Corollary 5.3.9. Let $A \in \mathbb{F}^{n \times n}$. Then, there exist symmetric matrices $S_{1}, S_{2} \in \mathbb{F}^{n \times n}$ such that S_{2} is nonsingular and $A=S_{1} S_{2}$.

Proof. From Corollary 5.3 .8 it follows that there exists a symmetric, nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that $A=S A^{\mathrm{T}} S^{-1}$. Now, let $S_{1}=S A^{\mathrm{T}}$ and $S_{2}=S^{-1}$. Note that S_{2} is symmetric and nonsingular. Furthermore, $S_{1}^{\mathrm{T}}=A S=S A^{\mathrm{T}}=S_{1}$, which shows that S_{1} is symmetric.

Note that Corollary 5.3.9 follows from Corollary 5.3.8. If $A=S_{1} S_{2}$, where S_{1}, S_{2} are symmetric and S_{2} is nonsingular, then $A=S_{2}^{-1} S_{2} S_{1} S_{2}=$ $S_{2}^{-1} A^{\mathrm{T}} S_{2}$.

5.4 Schur Form

Next, we consider a decomposition involving a unitary transformation and an upper triangular matrix called the Schur form.

Theorem 5.4.1. Let $A \in \mathbb{C}^{n \times n}$. Then, there exists a unitary matrix $S \in \mathbb{C}^{n \times n}$ and an upper triangular matrix $B \in \mathbb{C}^{n \times n}$ such that

$$
\begin{equation*}
A=S B S^{*} \tag{5.4.1}
\end{equation*}
$$

Proof. Let $\lambda_{1} \in \mathbb{C}$ be an eigenvalue of A with associated eigenvector $x \in \mathbb{C}^{n}$ chosen such that $x^{*} x=1$. Furthermore, let $S_{1} \triangleq\left[\begin{array}{cc}x & \hat{S}_{1}\end{array}\right] \in \mathbb{C}^{n \times n}$ be unitary, where $\hat{S}_{1} \in \mathbb{C}^{n \times(n-1)}$ satisfies $\hat{S}_{1}^{*} S_{1}=I_{n-1}$ and $x^{*} \hat{S}_{1}=0_{1 \times(n-1)}$. Then, $S_{1} e_{1}=x$ and

$$
\operatorname{col}_{1}\left(S_{1}^{-1} A S_{1}\right)=S_{1}^{-1} A x=\lambda_{1} S_{1}^{-1} x=\lambda_{1} e_{1}
$$

Consequently,

$$
A=S_{1}\left[\begin{array}{cc}
\lambda_{1} & C_{1} \\
0_{(n-1) \times 1} & A_{1}
\end{array}\right] S_{1}^{-1}
$$

where $C_{1} \in \mathbb{C}^{1 \times(n-1)}$ and $A_{1} \in \mathbb{C}^{(n-1) \times(n-1)}$. Next, let $S_{20} \in \mathbb{C}^{(n-1) \times(n-1)}$ be a unitary matrix such that

$$
A_{1}=S_{20}\left[\begin{array}{cc}
\lambda_{2} & C_{2} \\
0_{(n-2) \times 1} & A_{2}
\end{array}\right] S_{20}^{-1}
$$

where $C_{2} \in \mathbb{C}^{1 \times(n-2)}$ and $A_{2} \in \mathbb{C}^{(n-2) \times(n-2)}$. Hence,

$$
A=S_{1} S_{2}\left[\begin{array}{ccc}
\lambda_{1} & C_{11} & C_{12} \\
0 & \lambda_{2} & C_{2} \\
0 & 0 & A_{2}
\end{array}\right] S_{2}^{-1} S_{1}
$$

where $C_{1}=\left[\begin{array}{ll}C_{11} & C_{12}\end{array}\right], C_{11} \in \mathbb{C}$, and $S_{2} \triangleq\left[\begin{array}{cc}1 & 0 \\ 0 & S_{20}\end{array}\right]$ is unitary. Proceeding in a similar manner yields (5.4.1) with $S \triangleq S_{1} S_{2} \cdots S_{n-1}$, where $S_{1}, \ldots, S_{n-1} \in \mathbb{C}^{n \times n}$ are unitary.

It can be seen that the diagonal entries of B are the eigenvalues of A.
As with the real Jordan form, there exists a real Schur form.
Corollary 5.4.2. Let $A \in \mathbb{R}^{n \times n}$, and let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}_{\mathrm{m}} \cup$ $\left\{\nu_{1}+\jmath \omega_{1}, \nu_{1}-\jmath \omega_{1}, \ldots, \nu_{l}+\jmath \omega_{l}, \nu_{l}-\jmath \omega_{l}\right\}_{\mathrm{m}}$, where $\lambda_{1}, \ldots, \lambda_{r} \in \mathbb{R}$ and, for all $i=1, \ldots, l, \nu_{i}, \omega_{i} \in \mathbb{R}$ and $\omega_{i} \neq 0$. Then, there exists an orthogonal matrix $S \in \mathbb{R}^{n \times n}$ such that

$$
\begin{equation*}
A=S B S^{\mathrm{T}} \tag{5.4.2}
\end{equation*}
$$

where B is upper block triangular and the diagonally located blocks B_{1}, \ldots, $B_{r} \in \mathbb{R}$ and $\hat{B}_{1}, \ldots, \hat{B}_{l} \in \mathbb{R}^{2 \times 2}$ of B are $B_{i} \triangleq\left[\lambda_{i}\right]$ for all $i=1, \ldots, r$ and $\hat{B}_{i} \triangleq\left[\begin{array}{cc}\nu_{i} & \omega_{i} \\ \omega_{i} & -\nu_{i}\end{array}\right]$ for all $i=1, \ldots, l$.

Corollary 5.4.3. Let $A \in \mathbb{R}^{n \times n}$, and assume that A has real spectrum. Then, there exist an orthogonal matrix $S \in \mathbb{R}^{n \times n}$ and an upper triangular matrix $B \in \mathbb{R}^{n \times n}$ such that

$$
\begin{equation*}
A=S B S^{\mathrm{T}} \tag{5.4.3}
\end{equation*}
$$

The Schur decomposition reveals the structure of range-Hermitian matrices and thus, as a special case, normal matrices.

Corollary 5.4.4. Let $A \in \mathbb{F}^{n \times n}$. Then, A is range Hermitian if and only if there exist a unitary matrix $S \in \mathbb{F}^{n \times n}$ and a nonsingular matrix $B \in \mathbb{F}^{r \times r}$, where $r \triangleq \operatorname{rank} A$, such that

$$
A=S\left[\begin{array}{cc}
B & 0 \tag{5.4.4}\\
0 & 0
\end{array}\right] S^{*}
$$

In addition, A is normal if and only if there exist a unitary matrix $S \in \mathbb{C}^{n \times n}$ and a diagonal matrix $B \in \mathbb{C}^{n \times n}$ such that

$$
\begin{equation*}
A=S B S^{*} \tag{5.4.5}
\end{equation*}
$$

Proof. Suppose that A is range Hermitian and let $A=S B S^{*}$, where B is the real Schur form of A and $S \in \mathbb{F}^{n \times n}$ is unitary. Assume A is singular and choose S such that $B_{(j, j)}=B_{(j+1, j+1)}=\cdots=B_{(n, n)}=0$ and
such that all other diagonal entries of B are nonzero. Thus, $\operatorname{row}_{n}(B)=0$, which implies that $e_{n} \notin \mathcal{R}(B)$. Since A is range Hermitian, it follows that $\mathcal{R}(B)=\mathcal{R}\left(B^{*}\right)$ so that $e_{n} \notin \mathcal{R}\left(B^{*}\right)$. Thus, $\operatorname{col}_{n}(B)=\operatorname{row}_{n}\left(B^{*}\right)=0$. If, in addition, $B_{(n-1, n-1)}=0$, then $\operatorname{col}_{n-1}(B)=0$. Repeating this argument shows that B has the form $\left[\begin{array}{cc}\hat{B} & 0 \\ 0 & 0\end{array}\right]$, where \hat{B} is nonsingular.

Now, suppose that A is normal and let $A=S B S^{*}$, where $B \in \mathbb{C}^{n \times n}$ is upper triangular and $S \in \mathbb{C}^{n \times n}$ is unitary. Since A is normal, it follows that $A A^{*}=A^{*} A$, which implies that $B B^{*}=B^{*} B$. Since B is upper triangular, it follows that $\left(B^{*} B\right)_{(1,1)}=B_{(1,1)} \bar{B}_{(1,1)}$, whereas $\left(B B^{*}\right)_{(1,1)}=$ $\operatorname{row}_{1}(B)\left[\operatorname{row}_{1}(B)\right]^{*}=\sum_{i=1}^{n} B_{(1, i)} \bar{B}_{(1, i)}$. Since $\left(B^{*} B\right)_{(1,1)}=\left(B B^{*}\right)_{(1,1)}$, it follows that $B_{(1, i)}=0$ for all $i=2, \ldots, n$. Continuing in a similar fashion row by row, it follows that B is diagonal.

Corollary 5.4.5. Let $A \in \mathbb{F}^{n \times n}$ be Hermitian. Then, there exist a unitary matrix $S \in \mathbb{F}^{n \times n}$ and a diagonal matrix $B \in \mathbb{R}^{n \times n}$ such that

$$
\begin{equation*}
A=S B S^{*} . \tag{5.4.6}
\end{equation*}
$$

If, in addition, A is (nonnegative semidefinite, positive definite), then the diagonal entries of B are (nonnegative, positive).

Proof. It follows from Corollary 5.4.4 that there exists a unitary matrix $S \in \mathbb{F}^{n \times n}$ and a diagonal matrix $B \in \mathbb{F}^{n \times n}$ such that $A=S B S^{*}$. If A is nonnegative semidefinite, then $x^{*} A x \geq 0$ for all $x \in \mathbb{F}^{n}$. Choosing $x=S e_{i}$ it follows that $B_{(i, i)}=e_{i}^{\mathrm{T}} B e_{i}=e_{i}^{\mathrm{T}} S^{*} A S e_{i} \geq 0$ for all $i=1, \ldots, n$. If A is positive definite, then $B_{(i, i)}>0$ for all $i=1, \ldots, n$.

Proposition 5.4.6. Let $A \in \mathbb{F}^{n \times n}$ be Hermitian. Then, there exists a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that

$$
A=S\left[\begin{array}{ccc}
-I_{\nu_{-}(A)} & 0 & 0 \tag{5.4.7}\\
0 & 0_{\nu_{0}(A) \times \nu_{0}(A)} & 0 \\
0 & 0 & I_{\nu_{+}(A)}
\end{array}\right] S^{*} .
$$

Furthermore,

$$
\begin{equation*}
\operatorname{rank} A=\nu_{+}(A)+\nu_{-}(A) . \tag{5.4.8}
\end{equation*}
$$

Let $A \in \mathbb{F}^{n \times n}$ be Hermitian. Then, the quantity

$$
\begin{equation*}
\operatorname{sig}(A) \triangleq \nu_{+}(A)-\nu_{-}(A) \tag{5.4.9}
\end{equation*}
$$

is the signature of A.
Proof. Since A is Hermitian, it follows from Corollary 5.4.5 that there exist a unitary matrix $\hat{S} \in \mathbb{F}^{n \times n}$ and a diagonal matrix $B \in \mathbb{R}^{n \times n}$ such
that $A=\hat{S} B \hat{S}^{*}$. Choose S to order the diagonal entries of B such that $B=\operatorname{diag}\left(B_{1}, 0,-B_{2}\right)$, where the diagonal matrices B_{1}, B_{2} are both positive definite. Now, define $\hat{B} \triangleq \operatorname{diag}\left(B_{1}, I, B_{2}\right)$. Then, $B=\hat{B}^{1 / 2} D \hat{B}^{1 / 2}$, where $D=\operatorname{diag}\left(I_{\nu_{-}(A)}, 0_{\nu_{0}(A) \times \nu_{0}(A)},-I_{\nu_{+}(A)}\right)$. Consequently, $A=\hat{S} \hat{B}^{1 / 2} D \hat{B}^{1 / 2} \hat{S}^{*}$.

Corollary 5.4.7. Let $A, B \in \mathbb{F}^{n \times n}$ be Hermitian. Then, A and B are congruent if and only if $\operatorname{In}(A)=\operatorname{In}(B)$.

In Proposition 4.5.3 it was shown that eigenvectors associated with a collection of distinct eigenvalues of a normal matrix are mutually orthogonal. Thus, a normal matrix will have at least as many mutually orthogonal eigenvectors as it has distinct eigenvalues. The next result, which is an immediate consequence of Corollary 5.4.4, shows that every $n \times n$ normal matrix actually has n mutually orthogonal eigenvectors. In fact, the converse is also true.

Corollary 5.4.8. Let $A \in \mathbb{C}^{n \times n}$. Then, A is normal if and only if A has n mutually orthogonal eigenvectors.

There is also a real normal form, which is analogous to the real Schur form.

Corollary 5.4.9. Let $A \in \mathbb{R}^{n \times n}$ be range symmetric. Then, there exist an orthogonal matrix $S \in \mathbb{R}^{n \times n}$ and a nonsingular matrix $B \in \mathbb{R}^{r \times r}$, where $r \triangleq \operatorname{rank} A$, such that

$$
A=S\left[\begin{array}{ll}
B & 0 \tag{5.4.10}\\
0 & 0
\end{array}\right] S^{\mathrm{T}} .
$$

In addition, assume that A is normal and let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}_{\mathrm{m}} \cup$ $\left\{\nu_{1}+\jmath \omega_{1}, \nu_{1}-\jmath \omega_{1}, \ldots, \nu_{l}+\jmath \omega_{l}, \nu_{l}-\jmath \omega_{l}\right\}_{\mathrm{m}}$, where $\lambda_{1}, \ldots, \lambda_{r} \in \mathbb{R}$ and, for all $i=1, \ldots, l, \nu_{i}, \omega_{i} \in \mathbb{R}$ and $\omega_{i} \neq 0$. Then, there exists an orthogonal matrix $S \in \mathbb{R}^{n \times n}$ such that

$$
\begin{equation*}
A=S B S^{\mathrm{T}}, \tag{5.4.11}
\end{equation*}
$$

where $B \triangleq \operatorname{diag}\left(B_{1}, \ldots, B_{r}, \hat{B}_{1}, \ldots, \hat{B}_{l}\right), B_{i} \triangleq\left[\lambda_{i}\right]$ for all $i=1, \ldots, r$, and $\hat{B}_{i} \triangleq\left[\begin{array}{c}\nu_{i} \\ -\omega_{i} \\ \omega_{i}\end{array}\right]$ for all $i=1, \ldots, l$.

5.5 Eigenstructure Properties

Definition 5.5.1. Let $A \in \mathbb{F}^{n \times n}$, and let $\lambda \in \mathbb{C}$. Then, the index of λ with respect to A, denoted by $\operatorname{ind}_{A}(\lambda)$, is the smallest nonnegative integer k such that

$$
\begin{equation*}
\mathcal{R}\left[(\lambda I-A)^{k}\right]=\mathcal{R}\left[(\lambda I-A)^{k+1}\right] . \tag{5.5.1}
\end{equation*}
$$

Furthermore, the index of A, denoted by ind A, is the smallest nonnegative integer k such that

$$
\begin{equation*}
\mathcal{R}\left(A^{k}\right)=\mathcal{R}\left(A^{k+1}\right), \tag{5.5.2}
\end{equation*}
$$

that is, $\operatorname{ind} A=\operatorname{ind}_{A}(0)$.
Note that $\lambda \notin \operatorname{spec}(A)$ if and only if $\operatorname{ind}_{A}(\lambda)=0$. Hence, $0 \notin \operatorname{spec}(A)$ if and only if ind $A=\operatorname{ind}_{A}(0)=0$. Hence, A is nonsingular if and only if ind $A=0$.

Proposition 5.5.2. Let $A \in \mathbb{F}^{n \times n}$, and let $\lambda \in \mathbb{C}$. Then, $\operatorname{ind}_{A}(\lambda)$ is the smallest nonnegative integer k such that

$$
\begin{equation*}
\operatorname{rank}\left[(\lambda I-A)^{k}\right]=\operatorname{rank}\left[(\lambda I-A)^{k+1}\right] . \tag{5.5.3}
\end{equation*}
$$

Furthermore, ind A is the smallest nonnegative integer k such that

$$
\begin{equation*}
\operatorname{rank}\left(A^{k}\right)=\operatorname{rank}\left(A^{k+1}\right) . \tag{5.5.4}
\end{equation*}
$$

Proof. Corollary 2.4.2 implies that $\mathcal{R}\left[(\lambda I-A)^{k}\right] \subseteq \mathcal{R}\left[(\lambda I-A)^{k+1}\right]$. Now, Lemma 2.3.4 implies that $\mathcal{R}\left[(\lambda I-A)^{k}\right]=\mathcal{R}\left[(\lambda I-A)^{k+1}\right]$ if and only if $\operatorname{rank}\left[(\lambda I-A)^{k}\right]=\operatorname{rank}\left[(\lambda I-A)^{k+1}\right]$.

Proposition 5.5.3. Let $A \in \mathbb{F}^{n \times n}$, and let $\lambda \in \operatorname{spec}(A)$. Then, the following statements hold:
$\left.{ }^{i}\right) \operatorname{ind}_{A}(\lambda)$ is the order of the largest Jordan block of A associated with λ.
ii) $\operatorname{gm}_{A}(\lambda)$ is equal to the number of Jordan blocks of A associated with λ.
iii) $\operatorname{ind}_{A}(\lambda) \leq \operatorname{am}_{A}(\lambda)$.
iv) $\operatorname{gm}_{A}(\lambda) \leq \mathrm{am}_{A}(\lambda)$.
v) $\operatorname{ind}_{A}(\lambda)+\operatorname{gm}_{A}(\lambda) \leq \operatorname{am}_{A}(\lambda)+1$.
vi) $\operatorname{rank} A=n-\operatorname{gm}_{A}(0)$.

Proposition 5.5.4. Let $\mathcal{S} \subseteq \mathbb{F}^{n}$ be a subspace. Then, there exists a unique projector $A \in \mathbb{F}^{n \times n}$ such that $\mathcal{S}=\mathcal{R}(A)$. Furthermore, $x \in \mathcal{S}$ if and only if $x=A x$.

Proof. See [416, p. 386].
For a subspace $\mathcal{S} \subseteq \mathbb{F}^{n}$, the matrix $A \in \mathbb{F}^{n \times n}$ given by Proposition 5.5.4 is the projector onto \mathcal{S}.

Let $A \in \mathbb{F}^{n \times n}$ be an idempotent matrix. Then, the complementary idempotent matrix defined by

$$
\begin{equation*}
A_{\perp} \triangleq I-A \tag{5.5.5}
\end{equation*}
$$

is also idempotent. If A is a projector, then A_{\perp} is the complementary projector.

Proposition 5.5.5. Let $\mathcal{S} \subseteq \mathbb{F}^{n}$ be a subspace and let $A \in \mathbb{F}^{n \times n}$ be the projector onto \mathcal{S}. Then, A_{\perp} is the projector onto \mathcal{S}^{\perp}. Furthermore,

$$
\begin{equation*}
\mathcal{R}(A)^{\perp}=\mathcal{N}(A)=\mathcal{R}\left(A_{\perp}\right) \tag{5.5.6}
\end{equation*}
$$

Proposition 5.5.6. Let $A \in \mathbb{F}^{n \times n}$, and let k be a positive integer. Then, ind $A \leq k$ if and only if $\mathcal{R}\left(A^{k}\right)$ and $\mathcal{N}\left(A^{k}\right)$ are complementary subspaces.

Corollary 5.5.7. Let $A \in \mathbb{F}^{n \times n}$. Then, A is group invertible if and only if $\mathcal{R}(A)$ and $\mathcal{N}(A)$ are complementary subspaces.

Proposition 5.5.8. Let $A \in \mathbb{F}^{n \times n}$, and let $\mathcal{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{F}^{n}$ be complementary subspaces. Then, there exists a unique idempotent matrix $A \in \mathbb{F}^{n \times n}$ such that $\mathcal{R}(A)=\mathcal{S}_{1}$ and $\mathcal{N}(A)=\mathcal{S}_{2}$. Furthermore, $\mathcal{R}\left(A_{\perp}\right)=\mathcal{S}_{2}$ and $\mathcal{N}\left(A_{\perp}\right)=\mathcal{S}_{1}$.

Proof. See [82, p. 118] or [416, p. 386].
For complementary subspaces $\mathfrak{S}_{1}, \mathcal{S}_{2} \subseteq \mathbb{F}^{n}$, the unique idempotent ma$\operatorname{trix} A \in \mathbb{F}^{n \times n}$ given by Proposition 5.5 .8 is the idempotent matrix onto $\mathcal{S}_{1}=\mathcal{R}(A)$ along $\mathcal{S}_{2}=\mathcal{N}(A)$.

Proposition 5.5.9. Let $A \in \mathbb{F}^{n \times n}$, and let $r \triangleq \operatorname{rank} A$. Then, A is group invertible if and only if there exist $B \in \mathbb{F}^{n \times r}$ and $C \in \mathbb{F}^{r \times n}$ such that $\operatorname{rank} B=\operatorname{rank} C=r$. Furthermore, the idempotent matrix $P \triangleq B(C B)^{-1} C$ is the idempotent matrix onto $\mathcal{R}(A)$ along $\mathcal{N}(A)$.

Proof. See [416, p. 634].
An alternative expression for the idempotent matrix onto $\mathcal{R}(A)$ along $\mathcal{N}(A)$ is given by Proposition 6.2.2.

Definition 5.5.10. Let $A \in \mathbb{F}^{n \times n}$, and let $\lambda \in \operatorname{spec}(A)$. Then, the following terminology is defined:
i) λ is simple if $\operatorname{am}_{A}(\lambda)=1$.
ii) A is simple if every eigenvalue of A is simple.
iii) λ is cyclic if $\operatorname{gm}_{A}(\lambda)=1$.
iv) A is cyclic if every eigenvalue of A is cyclic.
v) λ is derogatory if $\operatorname{gm}_{A}(\lambda)>1$.
$v i) ~ A$ is derogatory if A has at least one derogatory eigenvalue.
vii) λ is semisimple if $\operatorname{gm}_{A}(\lambda)=\operatorname{am}_{A}(\lambda)$.
viii) A is semisimple if every eigenvalue of A is semisimple.
ix) λ is defective if $\operatorname{gm}_{A}(\lambda)<\operatorname{am}_{A}(\lambda)$.
x) A is defective if A has at least one defective eigenvalue.
xi) A is diagonalizable over \mathbb{C} if A is semisimple.
xii) $A \in \mathbb{R}^{n \times n}$ is diagonalizable over \mathbb{R} if A is semisimple and every eigenvalue of A is real.

Proposition 5.5.11. Let $A \in \mathbb{F}^{n \times n}$ and $\lambda \in \operatorname{spec}(A)$. Then, λ is simple if and only if λ is cyclic and semisimple.

Proposition 5.5.12. Let $A \in \mathbb{F}^{n \times n}$, and let $\lambda \in \operatorname{spec}(A)$. Then,

$$
\begin{equation*}
\operatorname{def}\left[(\lambda I-A)^{\operatorname{ind}_{A}(\lambda)}\right]=\operatorname{am}_{A}(\lambda) \tag{5.5.7}
\end{equation*}
$$

Theorem 5.3.3 yields the following result, which shows that the subspaces $\mathcal{N}\left[(\lambda I-A)^{k}\right]$, where $\lambda \in \operatorname{spec}(A)$ and $k=\operatorname{ind}_{A}(\lambda)$, provide a decomposition of \mathbb{F}^{n}.

Proposition 5.5.13. Let $A \in \mathbb{F}^{n \times n}$, let $\operatorname{spec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}$, and, for all $i=1, \ldots, r$, let $k_{i} \triangleq \operatorname{ind}_{A}\left(\lambda_{i}\right)$. Then, the following statements hold:
i) $\mathcal{N}\left[\left(\lambda_{i} I-A\right)^{k_{i}}\right] \cap \mathcal{N}\left[\left(\lambda_{j} I-A\right)^{k_{j}}\right]=\{0\}$ for all $i, j=1, \ldots, r$ such that $i \neq j$.
ii) $\sum_{i=1}^{r} \mathcal{N}\left[\left(\lambda_{i} I-A\right)^{k_{i}}\right]=\mathbb{F}^{n}$.

Proposition 5.5.14. Let $A \in \mathbb{F}^{n \times n}$, and let $\lambda \in \operatorname{spec}(A)$. Then, the following statements are equivalent:
i) λ is semisimple.
ii) $\operatorname{def}(\lambda I-A)=\operatorname{def}\left[(\lambda I-A)^{2}\right]$.
iii) $\mathcal{N}(\lambda I-A)=\mathcal{N}\left[(\lambda I-A)^{2}\right]$.
iv) $\operatorname{ind}_{A}(\lambda)=1$.

Proof. To prove that i) implies i), suppose that λ is semisimple so
that $\operatorname{gm}_{A}(\lambda)=\operatorname{am}_{A}(\lambda)$ and thus $\operatorname{def}(\lambda I-A)=\operatorname{am}_{A}(\lambda)$. Then, it follows from Proposition 5.5 .12 that $\operatorname{def}\left[(\lambda I-A)^{k}\right]=\operatorname{am}_{A}(\lambda)$, where $k \triangleq \operatorname{ind}_{A}(\lambda)$. Therefore, it follows from Corollary 2.5.6 that $\operatorname{am}_{A}(\lambda)=\operatorname{def}(\lambda I-A) \leq$ $\operatorname{def}\left[(\lambda I-A)^{2}\right] \leq \operatorname{def}\left[(\lambda I-A)^{k}\right]=\operatorname{am}_{A}(\lambda)$, which implies that $\operatorname{def}(\lambda I-$ $A)=\operatorname{def}\left[(\lambda I-A)^{2}\right]$.

To prove that $i i$ implies $i i i$), note that it follows from Corollary 2.5.6 that $\mathcal{N}(\lambda I-A) \subseteq \mathcal{N}\left[(\lambda I-A)^{2}\right]$. Since, by $\left.i i\right)$, these subspaces have equal dimension, it follows from Lemma 2.3.4 that these subspaces are equal. Conversely, iii) implies $i i$).

Finally, $i v$) is equivalent to the fact that every Jordan block of A associated with λ has order 1 , which is equivalent to the fact that the geometric multiplicity of λ is equal to the algebraic multiplicity of λ, that is, that λ is semisimple.

Corollary 5.5.15. Let $A \in \mathbb{F}^{n \times n}$. Then, A is group invertible if and only if ind $A \leq 1$.

Proposition 5.5.16. Suppose $A, B \in \mathbb{F}^{n \times n}$ are similar. Then, the following statements hold:
i) $\operatorname{mspec}(A)=\operatorname{mspec}(B)$.
ii) For all $\lambda \in \operatorname{spec}(A), \operatorname{gm}_{A}(\lambda)=\operatorname{gm}_{B}(\lambda)$.

Proposition 5.5.17. Let $A \in \mathbb{F}^{n \times n}$. Then, A is semisimple if and only if A is similar to a normal matrix.

The following result is an extension of Corollary 5.3.9.

Proposition 5.5.18. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) A is diagonalizable over \mathbb{R}.
ii) There exists a positive-definite matrix $S \in \mathbb{F}^{n \times n}$ such that $A=$ $S A^{*} S^{-1}$.
iii) There exist a Hermitian matrix $S_{1} \in \mathbb{F}^{n \times n}$ and a positive-definite matrix $S_{2} \in \mathbb{F}^{n \times n}$ such that $A=S_{1} S_{2}$.

Proof. To prove that i) implies $i i$), let nonsingular $\hat{S} \in \mathbb{F}^{n \times n}$ be such that $A=\hat{S} B \hat{S}^{-1}$, where $B \in \mathbb{R}^{n \times n}$ is diagonal. Then, $B=\hat{S}^{-1} A \hat{S}=$ $\hat{S}^{*} A^{*} \hat{S}^{-*}$. Hence, $A=\hat{S} B \hat{S}^{-1}=\hat{S}\left(\hat{S}^{*} A^{*} \hat{S}^{-*}\right) \hat{S}^{-1}=\left(\hat{S} \hat{S}^{*}\right) A^{*}\left(\hat{S} \hat{S}^{*}\right)^{-1}=S A^{*} S^{-1}$, where $S \triangleq \hat{S} \hat{S}^{*}$ is positive definite. To show that ii) implies iii), note that $A=S A^{*} S^{-1}=S_{1} S_{2}$, where $S_{1} \triangleq S A^{*}$ and $S_{2}=S^{-1}$. Since $S_{1}^{*}=$ $\left(S A^{*}\right)^{*}=A S^{*}=A S=S A^{*}=S_{1}$, it follows that S_{1} is Hermitian. Furthermore, since S is positive definite, it follows that S^{-1}, and hence S_{2}, is also positive definite. Finally, to prove that $i i i$) implies i), note that $A=S_{1} S_{2}=S_{2}^{-1 / 2}\left(S_{2}^{1 / 2} S_{1} S_{2}^{1 / 2}\right) S_{2}^{1 / 2}$. Since $S_{2}^{1 / 2} S_{1} S_{2}^{1 / 2}$ is Hermitian, it follows from Corollary 5.4.5 that $S_{2}^{1 / 2} S_{1} S_{2}^{1 / 2}$ is diagonalizable over \mathbb{R}. Consequently, A is diagonalizable over \mathbb{R}.

If a matrix is block triangular, then the following result shows that its eigenvalues and their algebraic multiplicity are determined by the diagonally located blocks. If, in addition, the matrix is block diagonal, then the geometric multiplicities of its eigenvalues are determined by the diagonally located blocks.

Proposition 5.5.19. Let $A \in \mathbb{F}^{n \times n}$ be either upper block triangular or lower block triangular with diagonally located blocks $A_{11}, \ldots, A_{r r}$, where $A_{i i} \in \mathbb{F}^{n_{i} \times n_{i}}$ for all $i=1, \ldots, r$. Then,

$$
\begin{equation*}
\operatorname{am}_{A}(\lambda)=\sum_{i=1}^{r} \operatorname{am}_{A_{i i}}(\lambda) . \tag{5.5.8}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\operatorname{mspec}(A)=\bigcup_{i=1}^{r} \operatorname{mspec}\left(A_{i i}\right) \tag{5.5.9}
\end{equation*}
$$

Now, assume that A is block diagonal. Then,

$$
\begin{equation*}
\operatorname{gm}_{A}(\lambda)=\sum_{i=1}^{r} \operatorname{gm}_{A_{i i}}(\lambda) \tag{5.5.10}
\end{equation*}
$$

Proposition 5.5.20. Let $A \in \mathbb{F}^{n \times n}$, let $\operatorname{spec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}$, and let $k_{i} \triangleq \operatorname{ind}_{A}\left(\lambda_{i}\right)$ for all $i=1, \ldots, r$. Then,

$$
\begin{equation*}
\mu_{A}(s)=\prod_{i=1}^{r}\left(s-\lambda_{i}\right)^{k_{i}} \tag{5.5.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{deg} \mu_{A}=\sum_{i=1}^{r} k_{i} . \tag{5.5.12}
\end{equation*}
$$

Furthermore, the following statements are equivalent:
i) $\mu_{A}=\chi_{A}$.
ii) A is cyclic.
iii) For all $\lambda \in \operatorname{spec}(A)$, the Jordan form of A contains exactly one block associated with λ.

Proof. Let $A=S B S^{-1}$, where $B=\operatorname{diag}\left(B_{1}, \ldots, B_{n_{\mathrm{h}}}\right)$ denotes the Jordan form of A given by (5.3.4). Let $\lambda_{i} \in \operatorname{spec}(A)$, and let B_{j} be a Jordan block associated with λ_{i}. Then, the order of B_{j} is less than or equal to k_{i}. Consequently, $\left(B_{j}-\lambda_{i} I\right)^{k_{i}}=0$.

Next, let $p(s)$ denote the right-hand side of (5.5.11). Thus,

$$
\begin{aligned}
p(A) & =\prod_{i=1}^{r}\left(A-\lambda_{i} I\right)^{k_{i}}=S\left[\prod_{i=1}^{r}\left(B-\lambda_{i} I\right)^{k_{i}}\right] S^{-1} \\
& =S \operatorname{diag}\left(\prod_{i=1}^{r}\left(B_{1}-\lambda_{i} I\right)^{k_{i}}, \ldots, \prod_{i=1}^{r}\left(B_{n_{\mathrm{h}}}-\lambda_{i} I\right)^{k_{i}}\right) S^{-1}=0
\end{aligned}
$$

Therefore, it follows from Theorem 4.6.1 that μ_{A} divides p. Furthermore, note that if k_{i} is replaced by $\hat{k}_{i}<k_{i}$, then $p(A) \neq 0$. Hence, p is the minimal polynomial of A. The equivalence of i) and $i i$) is now immediate, while the equivalence of $i i$) and $i i i$) follows from Theorem 5.3.5.

Example 5.5.21. The matrix $\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]$ is normal but is neither symmetric nor skew symmetric, while the matrix $\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ is normal but is neither symmetric nor semisimple with real eigenvalues.

Example 5.5.22. The matrices $\left[\begin{array}{cc}1 & 0 \\ 2 & -1\end{array}\right]$ and $\left[\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right]$ are diagonalizable over \mathbb{R} but not normal, while the matrix $\left[\begin{array}{cc}-1 & 1 \\ -2 & 1\end{array}\right]$ is diagonalizable but is neither normal nor diagonalizable over \mathbb{R}.

Example 5.5.23. The product of the Hermitian matrices $\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$ and $\left[\begin{array}{ll}2 & 1 \\ 1 & -2\end{array}\right]$ has has no real eigenvalues.

Example 5.5.24. The matrices $\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$ and $\left[\begin{array}{cc}0 & 1 \\ -2 & 3\end{array}\right]$ are similar, whereas $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $\left[\begin{array}{cc}0 & 1 \\ -1 & 2\end{array}\right]$ have the same spectrum but are not similar.

Proposition 5.5.25. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements hold:
i) A is singular if and only if $0 \in \operatorname{spec}(A)$.
ii) A is group invertible if and only if either A is nonsingular or $0 \in$ $\operatorname{spec}(A)$ is semisimple.
iii) A is Hermitian if and only if A is normal and $\operatorname{spec}(A) \subset \mathbb{R}$.
$i v) A$ is skew Hermitian if and only if A is normal and $\operatorname{spec}(A) \subset \jmath \mathbb{R}$.
$v) A$ is nonnegative semidefinite if and only if A is normal and $\operatorname{spec}(A)$ $\subset[0, \infty)$.
$v i) A$ is positive definite if and only if A is normal and $\operatorname{spec}(A) \subset(0, \infty)$.
vii) A is unitary if and only if A is normal and $\operatorname{spec}(A) \subset\{\lambda \in \mathbb{C}:|\lambda|=$ $1\}$.
viii) A is involutory if and only if A is semisimple and $\operatorname{spec}(A) \subseteq\{-1,1\}$.
ix) A is skew involutory if and only if A is semisimple and $\operatorname{spec}(A) \subseteq$ $\{-\jmath, \jmath\}$.
x) A is idempotent if and only if A is semisimple and $\operatorname{spec}(A) \subseteq\{0,1\}$.
xi) A is tripotent if and only if A is semisimple and $\operatorname{spec}(A) \subseteq\{-1,0,1\}$.
xii) A is nilpotent if and only if $\operatorname{spec}(A)=\{0\}$.
xiii) A is a projector if and only if A is normal and $\operatorname{spec}(A)=\{0,1\}$.
xiv) A is a reflector if and only if A is normal and $\operatorname{spec}(A)=\{-1,1\}$.
$x v) A$ is an elementary projector if and only if A is normal and $\operatorname{mspec}(A)$ $=\{0,1, \ldots, 1\}_{\mathrm{m}}$.
$x v i) A$ is an elementary reflector if and only if A is normal and $\operatorname{mspec}(A)$ $=\{-1,1, \ldots, 1\}_{\mathrm{m}}$.
xvii) A is an elementary matrix if and only if A is normal and $\operatorname{mspec}(A)=$ $\{\alpha, 1, \ldots, 1\}_{\mathrm{m}}$, where $\alpha \neq 0$.

If, furthermore, $A \in \mathbb{R}^{2 n \times 2 n}$, then the following statements hold:
xviii) If A is Hamiltonian, then $\operatorname{mspec}(A)=-\operatorname{mspec}(A)$.
$i x)$ If A is symplectic, then $\operatorname{mspec}(A)=\{1 / \lambda: \lambda \in \operatorname{mspec}(A)\}_{\mathrm{m}}$.

5.6 Singular Value Decomposition

The third matrix decomposition that we consider is the singular value decomposition. Unlike the Jordan and Schur decompositions, the singular value decomposition applies to matrices that are not necessarily square. Let $A \in \mathbb{F}^{n \times m}$, where $A \neq 0$, and consider the nonnegative-semidefinite matrices $A A^{*} \in \mathbb{F}^{n \times n}$ and $A^{*} A \in \mathbb{F}^{m \times m}$. It follows from Proposition 4.4.9 that $A A^{*}$ and $A^{*} A$ have the same nonzero eigenvalues with the same algebraic multiplicities. Since $A A^{*}$ and $A^{*} A$ are nonnegative semidefinite, it follows that they have the same positive eigenvalues with the same algebraic multiplicities. Furthermore, since $A A^{*}$ is Hermitian, it follows that the number of positive eigenvalues of $A A^{*}$ (or $A^{*} A$) counting algebraic multiplicity is equal to the rank of $A A^{*}\left(\right.$ or $\left.A^{*} A\right)$. Since $\operatorname{rank} A=\operatorname{rank} A A^{*}=\operatorname{rank} A^{*} A$, it thus follows that $A A^{*}$ and $A^{*} A$ both have r positive eigenvalues, where $r \triangleq \operatorname{rank} A$.

Definition 5.6.1. Let $A \in \mathbb{F}^{n \times m}$. Then, the singular values of A are the $\min \{n, m\}$ nonnegative numbers $\sigma_{1}(A), \ldots, \sigma_{\min \{n, m\}}(A)$, where, for all $i=1, \ldots, \min \{n, m\}$,

$$
\sigma_{i}(A) \triangleq \begin{cases}{\left[\lambda_{i}\left(A A^{*}\right)\right]^{1 / 2},} & n \leq m \tag{5.6.1}\\ {\left[\lambda_{i}\left(A^{*} A\right)\right]^{1 / 2},} & m \leq n\end{cases}
$$

Let $A \in \mathbb{F}^{n \times m}$. Then,

$$
\begin{equation*}
\sigma_{1}(A) \geq \cdots \geq \sigma_{\min \{n, m\}}(A) \geq 0 \tag{5.6.2}
\end{equation*}
$$

If $A \neq 0$, then

$$
\begin{equation*}
\sigma_{1}(A) \geq \cdots \geq \sigma_{r}(A)>\sigma_{r+1}(A)=\cdots=\sigma_{\min \{n, m\}}(A)=0 \tag{5.6.3}
\end{equation*}
$$

where $r \triangleq \operatorname{rank} A$. For convenience, define

$$
\begin{equation*}
\sigma_{\max }(A) \triangleq \sigma_{1}(A) \tag{5.6.4}
\end{equation*}
$$

and, if $n=m$,

$$
\begin{equation*}
\sigma_{\min }(A) \triangleq \sigma_{n}(A) \tag{5.6.5}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\sigma_{\max }\left(0_{n \times n}\right)=\sigma_{\min }\left(0_{n \times n}\right)=0 \tag{5.6.6}
\end{equation*}
$$

and, for all $i=1, \ldots, \min \{n, m\}$,

$$
\begin{equation*}
\sigma_{i}(A)=\sigma_{i}\left(A^{*}\right)=\sigma_{i}(\bar{A})=\sigma_{i}\left(A^{\mathrm{T}}\right) \tag{5.6.7}
\end{equation*}
$$

Proposition 5.6.2. Let $A \in \mathbb{F}^{n \times m}$, where $A \neq 0$. Then, the following statements are equivalent:
i) $\operatorname{rank} A=n$.
ii) $\sigma_{n}(A)>0$.

The following statements are also equivalent:
iii) $\operatorname{rank} A=m$.
iv) $\sigma_{m}(A)>0$.

Now, assume that $n=m$. Then, the following statements are also equivalent:
v) A is nonsingular.
vi) $\sigma_{\min }(A)>0$.

We now state the singular value decomposition.
Theorem 5.6.3. Let $A \in \mathbb{F}^{n \times m}$ where $A \neq 0$, let $r \triangleq \operatorname{rank} A$, and define $B \triangleq \operatorname{diag}\left[\sigma_{1}(A), \ldots, \sigma_{r}(A)\right]$. Then, there exist unitary matrices $S_{1} \in$ $\mathbb{F}^{n \times n}$ and $S_{2} \in \mathbb{F}^{m \times m}$ such that

$$
A=S_{1}\left[\begin{array}{cc}
B & 0_{r \times(m-r)} \tag{5.6.8}\\
0_{(n-r) \times r} & 0_{(n-r) \times(m-r)}
\end{array}\right] S_{2} .
$$

Proof. For convenience, assume $r<\min \{n, m\}$, since otherwise the zero matrices become empty matrices. By Corollary 5.4.5 there exists a unitary matrix $U \in \mathbb{F}^{n \times n}$ such that

$$
A A^{*}=U\left[\begin{array}{cc}
B^{2} & 0 \\
0 & 0
\end{array}\right] U^{*}
$$

Partition $U=\left[\begin{array}{cc}U_{1} & U_{2}\end{array}\right]$, where $U_{1} \in \mathbb{F}^{n \times r}$ and $U_{2} \in \mathbb{F}^{n \times(n-r)}$. Since $U^{*} U=I_{n}$, it follows that $U_{1}^{*} U_{1}=I_{r}$ and $U_{1}^{*} U=\left[\begin{array}{cc}I_{r} & 0_{r \times(n-r)}\end{array}\right]$. Now, define $V_{1} \triangleq A^{*} U_{1} B^{-1} \in \mathbb{F}^{m \times r}$ and note that

$$
V_{1}^{*} V_{1}=B^{-1} U_{1}^{*} A A^{*} U_{1} B^{-1}=B^{-1} U_{1}^{*} U\left[\begin{array}{cc}
B^{2} & 0 \\
0 & 0
\end{array}\right] U^{*} U_{1} B^{-1}=I_{r}
$$

Next, note that, since $U_{2}^{*} U=\left[\begin{array}{ll}0_{(n-r) \times r} & I_{n-r}\end{array}\right]$, it follows that

$$
U_{2}^{*} A A^{*}=\left[\begin{array}{ll}
0 & I
\end{array}\right]\left[\begin{array}{cc}
B^{2} & 0 \\
0 & 0
\end{array}\right] U^{*}=0 .
$$

However, since $\mathcal{R}(A)=\mathcal{R}\left(A A^{*}\right)$, it follows that $U_{2}^{*} A=0$. Finally, let $V_{2} \in$ $\mathbb{F}^{m \times(m-r)}$ be such that $V \triangleq\left[\begin{array}{ll}V_{1} & V_{2}\end{array}\right] \in \mathbb{F}^{m \times m}$ is unitary. Hence, we have

$$
\begin{aligned}
U\left[\begin{array}{ll}
B & 0 \\
0 & 0
\end{array}\right] V^{*} & =\left[\begin{array}{ll}
U_{1} & U_{2}
\end{array}\right]\left[\begin{array}{cc}
B & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
V_{1}^{*} \\
V_{2}^{*}
\end{array}\right]=U_{1} B V_{1}^{*}=U_{1} B B^{-1} U_{1}^{*} A \\
& =U_{1} U_{1}^{*} A=\left(U_{1} U_{1}^{*}+U_{2} U_{2}^{*}\right) A=U U^{*} A=A
\end{aligned}
$$

which yields (5.6.8) with $S_{1}=U$ and $S_{2}=V^{*}$.

An immediate corollary of the singular value decomposition is the polar decomposition.

Corollary 5.6.4. Let $A \in \mathbb{F}^{n \times n}$. Then, there exists a nonnegativesemidefinite matrix $M \in \mathbb{F}^{n \times n}$ and a unitary matrix $S \in \mathbb{F}^{n \times n}$ such that

$$
\begin{equation*}
A=M S . \tag{5.6.9}
\end{equation*}
$$

Proof. It follows from the singular value decomposition that there exist unitary matrices $S_{1}, S_{2} \in \mathbb{F}^{n \times n}$ and a diagonal positive-definite matrix $B \in \mathbb{F}^{r \times r}$, where $r \triangleq \operatorname{rank} A$, such that $A=S_{1}\left[\begin{array}{ll}B & 0 \\ 0 & 0\end{array}\right] S_{2}$. Hence,

$$
A=S_{1}\left[\begin{array}{cc}
B & 0 \\
0 & 0
\end{array}\right] S_{1}^{*} S_{1} S_{2}=M S,
$$

where $M \triangleq S_{1}\left[\begin{array}{ll}B & 0 \\ 0 & 0\end{array}\right] S_{1}^{*}$ is nonnegative semidefinite and $S \triangleq S_{1} S_{2}$ is unitary.

Proposition 5.6.5. Let $A \in \mathbb{F}^{n \times m}$, let $r \triangleq \operatorname{rank} A$, and define the Hermitian matrix $\mathcal{A} \triangleq\left[\begin{array}{cc}0 & A \\ A^{*} & 0\end{array}\right] \in \mathbb{F}^{(n+m) \times(n+m)}$. Then, $\operatorname{rank} \mathcal{A}=2 r$, and the $2 r$ nonzero eigenvalues of \mathcal{A} are the r positive singular values of A and their negatives.

Proof. Since $\chi_{\mathcal{A}}(s)=s^{2} I-A^{*} A$, it follows that

$$
\operatorname{mspec}(\mathcal{A}) \backslash\{0, \ldots, 0\}_{\mathrm{m}}=\left\{\sigma_{1}(A),-\sigma_{1}(A), \ldots, \sigma_{r}(A),-\sigma_{r}(A)\right\}_{\mathrm{m}} .
$$

5.7 Facts on Matrix Transformations Involving One Matrix

Fact 5.7.1. Let $A \in \mathbb{F}^{n \times n}$, and assume that $\operatorname{spec}(A)=\{1\}$. Then, A^{k} is similar to A for all $k \in \mathbb{P}$.

Fact 5.7.2. Let $A \in \mathbb{F}^{n \times n}$ be normal. Then, the Schur form of A is equal to the Jordan form of A.

Fact 5.7.3. Let $A \in \mathbb{R}^{n \times n}$. Then, there exists an orthogonal matrix $S \in \mathbb{R}^{n \times n}$ such that $-1 \notin \operatorname{spec}(S)$ and $S A S^{\mathrm{T}}$ is diagonal. (Proof: See [466, p. 101].) (Remark: This result is due to Hsu.)

Fact 5.7.4. Let $A \in \mathbb{F}^{n \times n}$, and assume there exists a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that $S^{-1} A S$ is upper triangular. Then, for all $r=1, \ldots, n, \mathcal{R}\left(S\left[\begin{array}{c}I_{r} \\ 0\end{array}\right]\right)$ is an invariant subspace of A. (Remark: Analogous results hold for lower triangular matrices and for block-triangular matrices.)

Fact 5.7.5. Let $A \in \mathbb{F}^{n \times n}$. Then, $\left[\begin{array}{cc}A & 0 \\ 0 & -A\end{array}\right]$ and $\left[\begin{array}{cc}0 & A \\ A & 0\end{array}\right]$ are unitarily similar. (Proof: Use the unitary transformation $\frac{1}{\sqrt{2}}\left[\begin{array}{cc}I & -I \\ I & I\end{array}\right]$.)

Fact 5.7.6. Let $A \in \mathbb{F}^{n \times n}$. Then, there exists a unitary matrix $S \in$ $\mathbb{F}^{n \times n}$ such that $S^{*} A S$ has equal diagonal entries. (Remark: The diagonal entries are equal to $(1 / n) \operatorname{tr} A$.) (Proof: See [206] or [466, p. 78]. This result is due to Parker. See [221].)

Fact 5.7.7. Let $A \in \mathbb{R}^{n \times n}$, and assume that A is not of the form $a I$, where $a \in \mathbb{R}$. Then, A is similar to a matrix with diagonal entries $0, \ldots, 0, \operatorname{tr} A$. (Proof: See [466, p. 77].) (Remark: This result is due to Gibson.)

Fact 5.7.8. Let $A \in \mathbb{R}^{n \times n}$, and assume that A is not zero. Then, A is similar to a matrix all of whose diagonal entries are nonzero. (Proof: See [466, p. 79].) (Remark: This result is due to Marcus and Purves.)

Fact 5.7.9. Let $A \in \mathbb{F}^{n \times n}$ be Hermitian, let $S \in \mathbb{F}^{m \times n}$, and assume that rank $S=n$. Then, $\nu_{+}\left(S A S^{\mathrm{T}}\right)=\nu_{+}(A)$ and $\nu_{-}\left(S A S^{\mathrm{T}}\right)=\nu_{-}(A)$. (Proof: See [216, p. 194].)

Fact 5.7.10. Let $A \in \mathbb{F}^{n \times n}$ be symmetric. Then, there exists a unitary matrix $S \in \mathbb{F}^{n \times n}$ such that

$$
A=S B S^{\mathrm{T}}
$$

where

$$
B \triangleq \operatorname{diag}\left[\sigma_{1}(A), \ldots, \sigma_{n}(A)\right]
$$

(Proof: See [287, p. 207].) (Remark: A is symmetric, complex, and Tcongruent to B.)

Fact 5.7.11. Let $A \in \mathbb{F}^{n \times n}$. Then, there exists a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ and a skew-Hermitian matrix $B \in \mathbb{F}^{n \times n}$ such that

$$
A=S\left(\left[\begin{array}{ccc}
I_{\nu_{+}}\left(A+A^{*}\right) & 0 & 0 \\
0 & 0_{\nu_{0}\left(A+A^{*}\right) \times \nu_{0}\left(A+A^{*}\right)} & 0 \\
0 & 0 & -I_{\nu_{-}\left(A+A^{*}\right)}
\end{array}\right]+B\right) S^{*}
$$

(Proof: Write $A=\frac{1}{2}\left(A+A^{*}\right)+\frac{1}{2}\left(A-A^{*}\right)$ and apply Proposition 5.4 .6 to $\frac{1}{2}\left(A+A^{*}\right)$.

Fact 5.7.12. Let $A \in \mathbb{F}^{n \times n}$, and let $r \triangleq \operatorname{rank} A$. Then, A is group invertible if and only if there exist a nonsingular matrix $B \in \mathbb{F}^{r \times r}$ and a
nonsingular matrix $S \in \mathbb{R}^{n \times n}$ such that

$$
A=S\left[\begin{array}{ll}
B & 0 \\
0 & 0
\end{array}\right] S^{-1} .
$$

Fact 5.7.13. Let $A \in \mathbb{F}^{n \times n}$ be normal. Then, there exists a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that

$$
A^{\mathrm{T}}=S A S^{-1}
$$

and such that $S=S^{\mathrm{T}}$ and $S^{-1}=\bar{S}$. (Remark: If $\mathbb{F}=\mathbb{R}$, then S is a reflector.) (Proof: For $\mathbb{F}=\mathbb{C}$, let $A=U B U^{*}$, where U is unitary and B is diagonal. Then, $A^{\mathrm{T}}=S A \bar{S}$, where $S \triangleq \bar{U} U^{-1}$. For $\mathbb{F}=\mathbb{R}$, use the real normal form and let $S \triangleq U \tilde{I} U^{\mathrm{T}}$, where U is orthogonal and $\tilde{I} \triangleq \operatorname{diag}(\hat{I}, \ldots, \hat{I})$.)

Fact 5.7.14. Let $A \in \mathbb{F}^{n \times n}$ be nonsingular. Then, there exists an involutory matrix $S \in \mathbb{F}^{n \times n}$ such that

$$
A^{\mathrm{T}}=S A S^{\mathrm{T}} .
$$

(Remark: A^{T}, not A^{*}.) (Proof: See [240].)

Fact 5.7.15. Let $n \in \mathbb{P}$. Then,

$$
\hat{I}_{n}= \begin{cases}S\left[\begin{array}{cc}
-I_{n / 2} & 0 \\
0 & -I_{n / 2}
\end{array}\right] S^{\mathrm{T}}, & n \text { even, } \\
S\left[\begin{array}{ccc}
-I_{n / 2} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & I_{n / 2}
\end{array}\right] S^{\mathrm{T}}, & n \text { odd }\end{cases}
$$

where

$$
S \triangleq \begin{cases}\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
I_{n / 2} & -\hat{I}_{n / 2} \\
\hat{I}_{n / 2} & I_{n / 2}
\end{array}\right], & n \text { even }, \\
\frac{1}{\sqrt{2}}\left[\begin{array}{ccc}
I_{n / 2} & 0 & -\hat{I}_{n / 2} \\
0 & \sqrt{2} & 0 \\
\hat{I}_{n / 2} & 0 & I_{n / 2}
\end{array}\right], & n \text { odd. }\end{cases}
$$

Therefore,

$$
\operatorname{mspec}\left(\hat{I}_{n}\right)= \begin{cases}\{-1,1, \ldots,-1,1\}_{\mathrm{m}}, & n \text { even }, \\ \{1,-1,1, \ldots,-1,1\}_{\mathrm{m}}, & n \text { odd }\end{cases}
$$

(Remark: See [590].)

Fact 5.7.16. Let $A \in \mathbb{F}^{n \times n}$ be unitary and let $m \leq n / 2$. Then, there exist unitary matrices $U, V \in \mathbb{F}^{n \times n}$ such that

$$
A=U\left[\begin{array}{ccc}
\Gamma & -\Sigma & 0 \\
\Sigma & \Gamma & 0 \\
0 & 0 & I_{n-2 m}
\end{array}\right] V,
$$

where $\Gamma, \Sigma \in \mathbb{R}^{m \times m}$ are diagonal and nonnegative semidefinite and satisfy

$$
\Gamma^{2}+\Sigma^{2}=I_{m} .
$$

(Proof: See [525, p. 37].) (Remark: This result is the CS decomposition.)
Fact 5.7.17. Let $A \in \mathbb{C}^{n \times n}$. Then, there exists $B \in \mathbb{R}^{n \times n}$ such that $A \bar{A}$ and B^{2} are similar. (Proof: See [180].)

Fact 5.7.18. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) $\operatorname{tr} A=0$.
ii) There exist $B, C \in \mathbb{F}^{n \times n}$ such that $A=[B, C]$.
iii) A is unitarily similar to a matrix whose diagonal entries are zero.
(Remark: This result is Shoda's theorem. See $[4,220,325,333]$ or [258, p. 146].)

5.8 Facts on Matrix Transformations Involving Two or More Matrices

Fact 5.8.1. Let $A, B \in \mathbb{F}^{n \times m}$. Then, A and B are in the same equivalence class of $\mathbb{F}^{n \times m}$ induced by equivalence if and only if A and B are equivalent to $\left[\begin{array}{cc}I & 0 \\ 0 & 0\end{array}\right]$. Now, let $n=m$. Then, A and B are in the same equivalence class of $\mathbb{F}^{n \times n}$ induced by (similarity, unitary similarity) if and only if A and B have the same (Jordan, Schur) form.

Fact 5.8.2. Left equivalence, right equivalence, biequivalence, unitary left equivalence, unitary right equivalence, and unitary biequivalence are equivalence relations on $\mathbb{F}^{n \times m}$. Similarity, congruence, and unitary similarity are equivalence relations on $\mathbb{F}^{n \times n}$.

Fact 5.8.3. Let $A, B \in \mathbb{F}^{n \times n}$ be normal and assume that A and B are similar. Then, A and B are unitarily similar. (Proof: Since A and B are similar, it follows that $\operatorname{mspec}(A)=\operatorname{mspec}(B)$. Since A and B are normal, it follows that they are unitarily similar to the same diagonal matrix.)

Fact 5.8.4. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that either A or B is nonsingular. Then, $A B$ and $B A$ are similar. (Proof: If A is nonsingular, then $A B=A(B A) A^{-1}$.)

Fact 5.8.5. Let $A, B \in \mathbb{R}^{n \times n}$ be projectors. Then, $A B$ and $B A$ are unitarily similar. (Remark: This result is due to Dixmier. See [474].)

Fact 5.8.6. Let $\mathcal{S} \subset \mathbb{F}^{n \times n}$, and assume that $A B=B A$ for all $A, B \in \mathcal{S}$. Then, there exists a unitary matrix $S \in \mathbb{F}^{n \times n}$ such that, for all $A \in \mathcal{S}, S A S^{*}$ is upper triangular. (Proof: See [287, p. 81] and [473].) (Remark: See Fact 8.11.5.)

Fact 5.8.7. Let $\mathcal{S} \subset \mathbb{F}^{n \times n}$, and assume that every matrix $A \in \mathcal{S}$ is normal. Then, $A B=B A$ for all $A, B \in \mathcal{S}$ if and only if there exists a unitary matrix $S \in \mathbb{F}^{n \times n}$ such that, for all $A \in \mathcal{S}, S A S^{*}$ is diagonal. (Remark: See Fact 8.11.2 and [287, pp. 103, 172].)

Fact 5.8.8. Let $\mathcal{S} \subset \mathbb{F}^{n \times n}$, and assume that every matrix $A \in \mathcal{S}$ is diagonalizable over \mathbb{F}. Then, $A B=B A$ for all $A, B \in \mathcal{S}$ if and only if there exists a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that, for all $A \in \mathcal{S}, S A S^{-1}$ is diagonal. (Proof: See [287, p. 52].)

Fact 5.8.9. Let $A, B \in \mathbb{F}^{n \times m}$. Then, the following statements hold:
i) The matrices A and B are unitarily left equivalent if and only if $A^{*} A=B^{*} B$.
ii) The matrices A and B are unitarily right equivalent if and only if $A A^{*}=B B^{*}$.
iii) The matrices A and B are unitarily biequivalent if and only if A and B have the same singular values with the same multiplicity.
(Proof: See [293] and [484, pp. 372, 373].) (Remark: In [293] A and B need not be the same size.) (Remark: The singular value decomposition provides a canonical form under unitary biequivalence in analogy with the Smith form under biequivalence.) (Remark: Note that $A A^{*}=B B^{*}$ implies $\mathcal{R}(A)=\mathcal{R}(B)$, which implies that right equivalence, which is an alternative proof of the immediate fact that unitary right equivalence implies right equivalence.)

Fact 5.8.10. Let $A, B \in \mathbb{F}^{n \times n}$. Then, the following statements hold:
i) $A^{*} A=B^{*} B$ if and only if there exists a unitary matrix $S \in \mathbb{F}^{n \times n}$ such that $A=S B$.
ii) $A^{*} A \leq B^{*} B$ if and only if there exists $S \in \mathbb{F}^{n \times n}$ such that $A=S B$ and $S^{*} S \leq I$.
iii) $A^{*} B+B^{*} A=0$ if and only if there exists a unitary matrix $S \in \mathbb{F}^{n \times n}$ such that $(I-S) A=(I+S) B$.
iv) $A^{*} B+B^{*} A \geq 0$ if and only if there exists $S \in \mathbb{F}^{n \times n}$ such that $(I-S) A=(I+S) B$ and $S^{*} S \leq I$.
(Proof: See [476].) (Remark: Statements iii) and $i v$) follow from i) and $i i$) by replacing A and B with $A-B$ and $A+B$, respectively.)

Fact 5.8.11. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{m \times m}$, and $C \in \mathbb{F}^{n \times m}$. Then, there exists $X \in \mathbb{F}^{n \times m}$ satisfying

$$
A X+X B+C=0
$$

if and only if the matrices

$$
\left[\begin{array}{cc}
A & 0 \\
0 & -B
\end{array}\right], \quad\left[\begin{array}{cc}
A & C \\
0 & -B
\end{array}\right]
$$

are similar. (Proof: See [353, pp. 422-424] or [466, pp. 194-195]. For necessity, the similarity transformation is given by $\left[\begin{array}{cc}I & X \\ 0 & I\end{array}\right]$.) (Remark: $A X+$ $X B+C=0$ is Sylvester's equation. See Proposition 7.2.4 and Proposition 11.7.3.) (Remark: This result is due to Roth.)

Fact 5.8.12. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{m \times m}$, and $C \in \mathbb{F}^{n \times m}$. Then, there exist $X, Y \in \mathbb{F}^{n \times m}$ satisfying

$$
A X+Y B+C=0
$$

if and only if

$$
\operatorname{rank}\left[\begin{array}{cc}
A & 0 \\
0 & -B
\end{array}\right]=\operatorname{rank}\left[\begin{array}{cc}
A & C \\
0 & -B
\end{array}\right]
$$

(Proof: See [466, pp. 194-195].) (Remark: $A X+Y B+C=0$ is a generalization of Sylvester's equation. See Fact 5.8.11.) (Remark: This result is due to Roth.)

5.9 Facts on Eigenvalues and Singular Values Involving One Matrix

Fact 5.9.1. Let $A \in \mathbb{F}^{n \times n}$, let $\alpha \in \mathbb{F}$, and assume that $A^{2}=\alpha A$. Then, $\operatorname{spec}(A) \subseteq\{0, \alpha\}$.

Fact 5.9.2. Let $A \in \mathbb{F}^{n \times n}$ be Hermitian and let $\alpha \in \mathbb{R}$. Then, $A^{2}=\alpha A$ if and only if $\operatorname{spec}(A) \subseteq\{0, \alpha\}$. (Remark: See Fact 3.4.16.)

Fact 5.9.3. Let $A \in \mathbb{F}^{n \times n}$ be Hermitian. Then,

$$
\begin{gathered}
\operatorname{spabs}(A)=\lambda_{\max }(A), \\
\operatorname{sprad}(A)=\sigma_{\max }(A)=\max \left\{\left|\lambda_{\min }(A)\right|, \lambda_{\max }(A)\right\},
\end{gathered}
$$

and

$$
\operatorname{spabs}(A)=\lambda_{\max }(A)
$$

If, in addition, A is nonnegative semidefinite, then

$$
\operatorname{sprad}(A)=\sigma_{\max }(A)=\operatorname{spabs}(A)=\lambda_{\max }(A) .
$$

Fact 5.9.4. Let $A \in \mathbb{F}^{n \times n}$ be skew Hermitian. Then, the eigenvalues of A are imaginary. (Proof: Let $\lambda \in \operatorname{spec}(A)$. Since $0 \leq A A^{*}=-A^{2}$, it follows that $-\lambda^{2} \geq 0$ and thus $\lambda^{2} \leq 0$.)

Fact 5.9.5. Let $A \in \mathbb{F}^{n \times n}$, assume that every eigenvalue of A is real, and assume that exactly r eigenvalues of A, including algebraic multiplicity, are nonzero. Then,

$$
(\operatorname{tr} A)^{2} \leq r \operatorname{tr} A^{2} .
$$

Furthermore, equality holds if and only if the nonzero eigenvalues of A are equal. (Remark: For arbitrary $A \in \mathbb{F}^{n \times n}$ with r nonzero eigenvalues, it is not generally true that $|\operatorname{tr} A|^{2} \leq r\left|\operatorname{tr} A^{2}\right|$. For example, consider $\operatorname{mspec}(A)=$ $\{1,1, \jmath,-\jmath\}_{\mathrm{m}}$.)

Fact 5.9.6. Let $A \in \mathbb{R}^{n \times n}$, and let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{m}}$. Then,

$$
\sum_{i=1}^{n}\left(\operatorname{Re} \lambda_{i}\right)\left(\operatorname{Im} \lambda_{i}\right)=0
$$

and

$$
\operatorname{tr} A^{2}=\sum_{i=1}^{n}\left(\operatorname{Re} \lambda_{i}\right)^{2}-\sum_{i=1}^{n}\left(\operatorname{Im} \lambda_{i}\right)^{2} .
$$

Fact 5.9.7. Let $a_{1}, \ldots, a_{n}>0$, and define the symmetric matrix $A \in$ $\mathbb{R}^{n \times n}$ by $A_{(i, j)} \triangleq a_{i}+a_{j}$ for all $i, j=1, \ldots, n$. Then,
$\operatorname{rank} A=2$,

$$
\operatorname{spec}(A)=\left\{\left(\sum_{i=1}^{n} a_{i}\right)+\sqrt{\sum_{i=1}^{n} a_{i}^{2}},\left(\sum_{i=1}^{n} a_{i}\right)-\sqrt{\sum_{i=1}^{n} a_{i}^{2}}, 0\right\},
$$

and

$$
\lambda_{\min }(A)<0<\operatorname{tr} A=2 \sum_{i=1}^{n} a_{i}<\lambda_{\max }(A) .
$$

(Proof: $A=a 1_{1 \times n}+1_{n \times 1} a^{\mathrm{T}}$, where $a \triangleq\left[\begin{array}{lll}a_{1} & \cdots & a_{n}\end{array}\right]^{\mathrm{T}}$.) (Remark: See Fact 8.7.25.)

Fact 5.9.8. Let $x, y \in \mathbb{R}^{n}$. Then,

$$
\begin{gathered}
\operatorname{mspec}\left(x y^{\mathrm{T}}+y x^{\mathrm{T}}\right)=\left\{x^{\mathrm{T}} y+\sqrt{x^{\mathrm{T}} x y^{\mathrm{T}} y}, x^{\mathrm{T}} y-\sqrt{x^{\mathrm{T}} x y^{\mathrm{T}} y}, 0, \ldots, 0\right\}_{\mathrm{m}}, \\
\operatorname{sprad}\left(x y^{\mathrm{T}}+y x^{\mathrm{T}}\right)= \begin{cases}x^{\mathrm{T}} y+\sqrt{x^{\mathrm{T}} x y^{\mathrm{T}} y}, & x^{\mathrm{T}} y \geq 0, \\
\left|x^{\mathrm{T}} y-\sqrt{x^{\mathrm{T}} x y^{\mathrm{T}} y}\right|, & x^{\mathrm{T}} y \leq 0,\end{cases}
\end{gathered}
$$

and

$$
\operatorname{sprad}\left(x y^{\mathrm{T}}+y x^{\mathrm{T}}\right)=x^{\mathrm{T}} y+\sqrt{x^{\mathrm{T}} x y^{\mathrm{T}} y}
$$

(Problem: Extend this result to \mathbb{C} and $x y^{\mathrm{T}}+z w^{\mathrm{T}}$. See Fact 4.9.12.)
Fact 5.9.9. Let $A \in \mathbb{F}^{n \times n}$, and let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{m}}$. Then,

$$
\begin{gathered}
\operatorname{mspec}\left(A^{-1}\right)=\left\{\lambda_{1}^{-1}, \ldots, \lambda_{n}^{-1}\right\}_{\mathrm{m}} \\
\operatorname{mspec}\left[(I+A)^{-1}\right]=\left\{\left(1+\lambda_{1}\right)^{-1}, \ldots,\left(1+\lambda_{n}\right)^{-1}\right\}_{\mathrm{m}}, \\
\operatorname{mspec}\left[(I+A)^{2}\right]=\left\{\left(1+\lambda_{1}\right)^{2}, \ldots,\left(1+\lambda_{n}\right)^{2}\right\}_{\mathrm{m}} \\
\operatorname{mspec}\left[A(I+A)^{-1}\right]=\left\{\lambda_{1}\left(1+\lambda_{1}\right)^{-1}, \ldots, \lambda_{n}\left(1+\lambda_{n}\right)^{-1}\right\}_{\mathrm{m}} .
\end{gathered}
$$

Fact 5.9.10. Let $x \in \mathbb{F}^{n}$ and $y \in \mathbb{F}^{m}$. Then,

$$
\sigma_{\max }\left(x y^{*}\right)=\sqrt{x^{*} x y^{*} y} .
$$

If, in addition, $m=n$, then

$$
\begin{gathered}
\operatorname{mspec}\left(x y^{*}\right)=\left\{x^{*} y, 0, \ldots, 0\right\}_{\mathrm{m}} \\
\operatorname{mspec}\left(I+x y^{*}\right)=\left\{1+x^{*} y, 1, \ldots, 1\right\}_{\mathrm{m}} \\
\operatorname{sprad}\left(x y^{*}\right)=\left|x^{*} y\right| \\
\operatorname{spabs}\left(x y^{*}\right)=\max \left\{0, \operatorname{Re} x^{*} y\right\}
\end{gathered}
$$

Fact 5.9.11. Let $A \in \mathbb{F}^{n \times n}$ and $\operatorname{rank} A=1$. Then,

$$
\sigma_{\max }(A)=\sigma_{\min }(A)=\left(\operatorname{tr} A A^{*}\right)^{1 / 2}
$$

Fact 5.9.12. Let $x, y \in \mathbb{F}^{n}$, and assume that $x^{*} y \neq 0$. Then,

$$
\sigma_{\max }\left[\left(x^{*} y\right)^{-1} x y^{*}\right] \geq 1
$$

Fact 5.9.13. Let $A \in \mathbb{F}^{n \times n}$, and let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \cdots, \lambda_{n}\right\}_{\mathrm{m}}$, where $\lambda_{1}, \ldots, \lambda_{n}$ are ordered such that $\left|\lambda_{1}\right| \geq \cdots \geq\left|\lambda_{n}\right|$. Then, for all $k=1, \ldots, n$,

$$
\prod_{i=1}^{k}\left|\lambda_{i}\right| \leq \prod_{i=1}^{k} \sigma_{i}(A)
$$

with equality for $k=n$, that is,

$$
|\operatorname{det} A|=\prod_{i=1}^{n}\left|\lambda_{i}\right|=\prod_{i=1}^{n} \sigma_{i}(A) .
$$

Hence, for all $k=1, \ldots, n$,

$$
\prod_{i=k}^{n} \sigma_{i}(A) \leq \prod_{i=k}^{n}\left|\lambda_{i}\right|
$$

(Proof: See [93, p. 43], [289, p. 171], or [625, p. 19].) (Remark: This result is due to Weyl.) (Remark: See Fact 8.14.16 and Fact 9.11.16.)

Fact 5.9.14. Let $\beta_{0}, \ldots, \beta_{n-1} \in \mathbb{R}$, define $A \in \mathbb{F}^{n \times n}$ by

$$
A \triangleq\left[\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \ddots & 0 & 0 \\
0 & 0 & 0 & \ddots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
-\beta_{0} & -\beta_{1} & -\beta_{2} & \cdots & -\beta_{n-2} & -\beta_{n-1}
\end{array}\right]
$$

and define $\alpha \triangleq 1+\sum_{i=1}^{n-1} \beta_{i}^{2}$. Then,

$$
\begin{gathered}
\sigma_{1}(A)=\sqrt{\frac{1}{2}\left(\alpha+\sqrt{\alpha^{2}+4 \beta_{0}^{2}}\right)} \\
\sigma_{2}(A)=\cdots=\sigma_{n-1}(A)=1 \\
\sigma_{n}(A)=\sqrt{\frac{1}{2}\left(\alpha-\sqrt{\alpha^{2}+4 \beta_{0}^{2}}\right)}
\end{gathered}
$$

(Proof: See [326, 334] or [280, p. 523].)
Fact 5.9.15. Let $\beta \in \mathbb{C}$. Then,

$$
\sigma_{\max }\left(\left[\begin{array}{cc}
1 & 2 \beta \\
0 & 1
\end{array}\right]\right)=|\beta|+\sqrt{1+|\beta|^{2}}
$$

and

$$
\sigma_{\min }\left(\left[\begin{array}{cc}
1 & 2 \beta \\
0 & 1
\end{array}\right]\right)=\sqrt{1+|\beta|^{2}}-|\beta|
$$

(Proof: See [370].) (Remark: Inequalities involving the singular values of block-triangular matrices are given in [370].)

Fact 5.9.16. Let $A \in \mathbb{F}^{n \times m}$. Then,

$$
\sigma_{\max }\left(\left[\begin{array}{cc}
I & 2 A \\
0 & I
\end{array}\right]\right)=\sigma_{\max }(A)+\sqrt{1+\sigma_{\max }^{2}(A)}
$$

(Proof: See [280, p. 116].)
Fact 5.9.17. Let $A \in \mathbb{F}^{n \times m}$, and let $r=\operatorname{rank} A$. Then, for all $i=$ $1, \ldots, r$,

$$
\sigma_{i}\left(A A^{*}\right)=\sigma_{i}\left(A^{*} A\right)=\sigma_{i}^{2}(A)
$$

In particular,

$$
\sigma_{\max }\left(A A^{*}\right)=\sigma_{\max }^{2}(A)
$$

and, if $n=m$, then

$$
\sigma_{\min }\left(A A^{*}\right)=\sigma_{\min }^{2}(A)
$$

Furthermore, for all $i=1, \ldots, r$,

$$
\sigma_{i}\left(A A^{*} A\right)=\sigma_{i}^{3}(A)
$$

Fact 5.9.18. Let $A \in \mathbb{F}^{n \times n}$. Then, $\sigma_{\max }(A) \leq 1$ if and only if $A^{*} A \leq I$.
Fact 5.9.19. Let $A \in \mathbb{F}^{n \times n}$. Then, for all $i=1, \ldots, n$,

$$
\sigma_{i}\left(A^{\mathrm{A}}\right)=\prod_{\substack{j=1 \\ j \neq n+1-i}}^{n} \sigma_{j}(A)
$$

(Proof: See Fact 4.10.3 and [466, p. 149].)
Fact 5.9.20. Let $A \in \mathbb{F}^{n \times n}$. Then, $\sigma_{1}(A)=\sigma_{n}(A)$ if and only if there exist $\lambda \in \mathbb{F}$ and a unitary matrix $B \in \mathbb{F}^{n \times n}$ such that $A=\lambda B$. (Proof: See [466, pp. 149, 165].)

Fact 5.9.21. Let $A \in \mathbb{R}^{n \times n}$, and let $\lambda \in \operatorname{spec}(A)$. Then, the following inequalities hold:
i) $\sigma_{\min }(A) \leq|\lambda| \leq \sigma_{\max }(A)$.
ii) $\lambda_{\min }\left[\frac{1}{2}\left(A+A^{\mathrm{T}}\right)\right] \leq \operatorname{Re} \lambda \leq \lambda_{\max }\left[\frac{1}{2}\left(A+A^{\mathrm{T}}\right)\right]$.
iii) $\lambda_{\min }\left[\frac{1}{2 \jmath}\left(A-A^{\mathrm{T}}\right)\right] \leq \operatorname{Im} \lambda \leq \lambda_{\max }\left[\frac{1}{2 \jmath}\left(A-A^{\mathrm{T}}\right)\right]$.
(Remark: i) is Browne's theorem, ii) is Bendixson's theorem, and iii) is Hirsch's theorem. See [395, pp. 140-144]. See Fact 9.10.6.)

Fact 5.9.22. Let $A \in \mathbb{R}^{n \times n}$, where $n \geq 2$, be the tridiagonal matrix

$$
A \triangleq\left[\begin{array}{cccccc}
b_{1} & c_{1} & 0 & \cdots & 0 & 0 \\
a_{1} & b_{2} & c_{2} & \cdots & 0 & 0 \\
0 & a_{2} & b_{3} & \ddots & 0 & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \ddots & b_{n-1} & c_{n-1} \\
0 & 0 & 0 & \cdots & a_{n-1} & b_{n}
\end{array}\right]
$$

and assume that $a_{i} c_{i}>0$ for all $i=1, \ldots, n-1$. Then, A is simple and every eigenvalue of A is real. (Proof: $S A S^{-1}$ is symmetric, where $S \triangleq$ $\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right), d_{1} \triangleq 1$, and $d_{i+1} \triangleq\left(c_{i} / a_{i}\right)^{1 / 2} d_{i}$ for all $i=1, \ldots, n-1$. For a proof of the fact that A is simple, see [202, p. 198].)

Fact 5.9.23. Let $A \in \mathbb{R}^{n \times n}$ be the tridiagonal matrix

$$
A \triangleq\left[\begin{array}{ccccccc}
0 & 1 & 0 & & & & \\
n-1 & 0 & 2 & & & 0 & \\
0 & n-2 & 0 & \ddots & & & \\
& \ddots & \ddots & \ddots & \ddots & & \\
& & \ddots & \ddots & 0 & n-2 & 0 \\
& 0 & & \ddots & 2 & 0 & n-1 \\
& & & & 0 & 1 & 0
\end{array}\right] .
$$

Then,

$$
\chi_{A}(s)=\prod_{i=1}^{n}[s-(n+1-2 i)]
$$

Hence,

$$
\operatorname{spec}(A)= \begin{cases}\{n-1,-(n-1), \ldots, 1,-1\}, & n \text { even } \\ \{n-1,-(n-1), \ldots, 2,-2,0\}, & n \text { odd }\end{cases}
$$

(Proof: See [537].)

Fact 5.9.24. Let $A \in \mathbb{R}^{n \times n}$, where $n \geq 1$, be the tridiagonal matrix

$$
A \triangleq\left[\begin{array}{cccccc}
b & c & 0 & \cdots & 0 & 0 \\
a & b & c & \cdots & 0 & 0 \\
0 & a & b & \ddots & 0 & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \ddots & b & c \\
0 & 0 & 0 & \cdots & a & b
\end{array}\right]
$$

and assume that $a b>0$. Then,

$$
\operatorname{spec}(A)=\{b+\sqrt{a c} \cos [i \pi /(n+1)]: i=1, \ldots, n\} .
$$

(Remark: See [280, p. 522].)
Fact 5 .9.25. Let $a_{1}, \ldots, a_{n} \in \mathbb{R}^{n}$ be linearly independent and, for all $i=1, \ldots, n$, define

$$
A_{i} \triangleq I-\left(a_{i}^{\mathrm{T}} a_{i}\right)^{-1} a_{i} a_{i}^{\mathrm{T}} .
$$

Then,

$$
\sigma_{\max }\left(A_{n} A_{n-1} \cdots A_{1}\right)<1
$$

Fact 5.9.26. Let $A \in \mathbb{R}^{n \times n}$, and assume that A has real eigenvalues. Then,

$$
\begin{aligned}
\lambda_{\min }(A) & \leq \frac{1}{n} \operatorname{tr} A-\sqrt{\frac{1}{n^{2}-n}\left[\operatorname{tr} A^{2}-\frac{1}{n}(\operatorname{tr} A)^{2}\right]} \\
& \leq \frac{1}{n} \operatorname{tr} A+\sqrt{\frac{1}{n^{2}-n}\left[\operatorname{tr} A^{2}-\frac{1}{n}(\operatorname{tr} A)^{2}\right]} \\
& \leq \lambda_{\max }(A) \\
& \leq \frac{1}{n} \operatorname{tr} A+\sqrt{\frac{n-1}{n}\left[\operatorname{tr} A^{2}-\frac{1}{n}(\operatorname{tr} A)^{2}\right]} .
\end{aligned}
$$

Furthermore, for all $i=1, \ldots, n$,

$$
\left|\lambda_{i}(A)-\frac{1}{n} \operatorname{tr} A\right| \leq \sqrt{\frac{n-1}{n}\left[\operatorname{tr} A^{2}-\frac{1}{n}(\operatorname{tr} A)^{2}\right]} .
$$

(Proof: See [610].)
Fact 5.9.27. Let $A \in \mathbb{R}^{n \times n}$, and assume that $r \triangleq \operatorname{rank} A \geq 2$. If $r \operatorname{tr} A^{2} \leq(\operatorname{tr} A)^{2}$, then

$$
\operatorname{sprad}(A) \geq \sqrt{\frac{(\operatorname{tr} A)^{2}-\operatorname{tr} A^{2}}{r(r-1)}}
$$

If $(\operatorname{tr} A)^{2} \leq r \operatorname{tr} A^{2}$, then

$$
\operatorname{sprad}(A) \geq \frac{|\operatorname{tr} A|}{r}+\sqrt{\frac{r \operatorname{tr} A^{2}-(\operatorname{tr} A)^{2}}{r^{2}(r-1)}} .
$$

If $\operatorname{rank} A=2$, then equality holds in both cases. Finally, if A is skew symmetric, then

$$
\operatorname{sprad}(A) \geq \sqrt{\frac{3}{r(r-1)}}\|A\|_{\mathrm{F}}
$$

(Proof: See [295].)
Fact 5.9.28. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\operatorname{spabs}(A) \leq \frac{1}{2} \lambda_{\max }\left(A+A^{*}\right)
$$

Furthermore, equality holds if and only if A is normal. (Proof: See xii) and xiv) of Fact 9.10.8.)

5.10 Facts on Eigenvalues and Singular Values Involving Two or More Matrices

Fact 5.10.1. Let $A, B \in \mathbb{F}^{n \times n}$ be normal. Then,

$$
\min \operatorname{Re} \sum_{i=1}^{n} \lambda_{i}(A) \lambda_{\sigma(i)}(B) \leq \operatorname{Retr} A B \leq \max \operatorname{Re} \sum_{i=1}^{n} \lambda_{i}(A) \lambda_{\sigma(i)}(B),
$$

where "max" and "min" are taken over all permutations σ of the eigenvalues of B. If, in addition, A and B are Hermitian, then

$$
\sum_{i=1}^{n} \lambda_{i}(A) \lambda_{i}(B) \leq \operatorname{tr} A B \leq \sum_{i=1}^{n} \lambda_{i}(A) \lambda_{i}(B) .
$$

(Proof: See [392].) (Remark: See Proposition 8.4.13 and Fact 8.12.14.)
Fact 5.10.2. Let $A, B \in \mathbb{R}^{n \times n}$, assume that B is symmetric, and define $C \triangleq \frac{1}{2}\left(A+A^{\mathrm{T}}\right)$. Then,

$$
\begin{aligned}
\lambda_{\min }(C) \operatorname{tr} B- & \lambda_{\min }(B)\left[n \lambda_{\min }(C)-\operatorname{tr} A\right] \\
& \leq \operatorname{tr} A B \leq \lambda_{\max }(C) \operatorname{tr} B-\lambda_{\max }(B)\left[n \lambda_{\max }(C)-\operatorname{tr} A\right] .
\end{aligned}
$$

(Proof: See [195].) (Remark: See Fact 5.10.1, Proposition 8.4.13, and Fact 8.12.14. Extensions are given in [451].)

Fact 5 .10.3. Let $A, B \in \mathbb{F}^{n \times n}$. Then,

$$
|\operatorname{tr} A B| \leq \sum_{i=1}^{n} \sigma_{i}(A) \sigma_{i}(B)
$$

(Proof: See [466, p. 148].) (Remark: This result is due to Mirsky.)
Fact 5.10.4. Let $A, B \in \mathbb{R}^{n \times n}$, and assume that $A B=B A$. Then,

$$
\begin{aligned}
\operatorname{sprad}(A B) & \leq \operatorname{sprad}(A) \operatorname{sprad}(B) \\
\operatorname{sprad}(A+B) & \leq \operatorname{sprad}(A)+\operatorname{sprad}(B)
\end{aligned}
$$

(Remark: If $A B \neq B A$, then both of these inequalities may be violated. Consider $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{lll}0 & 0 \\ 1 & 0\end{array}\right]$.)

Fact 5.10.5. Let $M \in \mathbb{R}^{r \times r}$ be positive definite, let $C, K \in \mathbb{R}^{r \times r}$ be nonnegative semidefinite, and consider the equation

$$
M \ddot{q}+C \dot{q}+K q=0 .
$$

Then, $x(t) \triangleq\left[\begin{array}{c}q(t) \\ \dot{q}(t)\end{array}\right]$, satisfies $\dot{x}(t)=A x(t)$, where A is the $2 r \times 2 r$ matrix

$$
A \triangleq\left[\begin{array}{cc}
0 & I \\
-M^{-1} K & -M^{-1} C
\end{array}\right] .
$$

Furthermore,

$$
\operatorname{det} A=\frac{\operatorname{det} K}{\operatorname{det} M}
$$

and

$$
\operatorname{rank} A=r+\operatorname{rank} K
$$

Hence, A is nonsingular if and only if K is positive definite. In this case,

$$
A^{-1}=\left[\begin{array}{cc}
-K^{-1} C & -K^{-1} M \\
I & 0
\end{array}\right] .
$$

Finally, let $\lambda \in \mathbb{C}$. Then, $\lambda \in \operatorname{spec}(A)$ if and only if $\operatorname{det}\left(\lambda^{2} M+\lambda C+K\right)=0$. (Remark: M, C, K are mass, damping, and stiffness matrices. See [85].)

Fact 5.10.6. Let $M, C, K \in \mathbb{R}^{r \times r}$, and assume that M is positive definite and C and K are nonnegative semidefinite. Furthermore, let $\lambda \in \mathbb{C}$ satisfy $\operatorname{det}\left(\lambda^{2} M+\lambda C+K\right)=0$. Then, $\operatorname{Re} \lambda \leq 0$. Furthermore, if C and K are positive definite, then $\operatorname{Re} \lambda<0$.

Fact 5.10.7. Let $A, B \in \mathbb{R}^{n \times n}$ be nonnegative semidefinite. Then, every eigenvalue λ of $\left[\begin{array}{cc}0 & B \\ -A & 0\end{array}\right]$ satisfies $\operatorname{Re} \lambda=0$. (Proof: Square this matrix.) (Problem: What happens if A and B have different dimensions?) In addition, let $C \in \mathbb{R}^{n \times n}$ be (nonnegative semidefinite, positive definite).

Then, every eigenvalue of $\left[\begin{array}{cc}0 & A_{C} \\ -B & -C\end{array}\right]$ satisfies $(\operatorname{Re} \lambda \leq 0, \operatorname{Re} \lambda<0)$. (Problem: Consider also $\left[\begin{array}{cc}-C & A \\ -B & -C\end{array}\right]$ and $\left[\begin{array}{cc}-C & A \\ -A & -C\end{array}\right]$.)

5.11 Facts on Matrix Eigenstructure

Fact 5.11.1. Let $A \in \mathbb{F}^{n \times n}$. Then, $\mathcal{R}(A)=\mathcal{R}\left(A^{2}\right)$ if and only if ind $A \leq 1$.

Fact 5.11.2. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is diagonalizable. Then, are $A^{\mathrm{A}}, A^{*}, \bar{A}$, and A^{T} are diagonalizable. If, in addition, A is nonsingular, then A^{-1} is diagonalizable. (Proof: See Fact 2.13.9 and Fact 3.4.6.)

Fact 5.11.3. Let $A \in \mathbb{F}^{n \times n}$ be diagonalizable over \mathbb{F} with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, and let $B \triangleq \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. If, for all $i=1, \ldots, n, x_{i} \in \mathbb{F}^{n}$ is an eigenvector of A associated with λ_{i}, then $A=S B S^{-1}$, where $S \triangleq$ $\left[\begin{array}{lll}x_{1} & \cdots & x_{n}\end{array}\right]$. Conversely, if $S \in \mathbb{F}^{n \times n}$ is nonsingular and $A=S B S^{-1}$, then, for all $i=1, \ldots, n, \operatorname{col}_{i}(S)$ is an associated eigenvector.

Fact 5.11.4. Let $A \in \mathbb{F}^{n \times n}$, let $S \in \mathbb{F}^{n \times n}$, assume that S is nonsingular, let $\lambda \in \mathbb{C}$, and assume that $\operatorname{row}_{1}\left(S^{-1} A S\right)=\lambda e_{1}^{\mathrm{T}}$. Then, $\lambda \in \operatorname{spec}(A)$, and $\operatorname{col}_{1}(S)$ is an associated eigenvector.

Fact 5.11.5. Let $A \in \mathbb{F}^{n \times n}$. Then, A is cyclic if and only if there exists $x \in \mathbb{F}^{n}$ such that $\left[\begin{array}{llll}x & A x & \cdots & A^{n-1} x\end{array}\right]$ is nonsingular.

Fact 5.11.6. Let $A \in \mathbb{R}^{n \times n}$. Then, A is cyclic and diagonalizable over \mathbb{R} if and only if A is simple.

Fact 5.11.7. Let $A=\operatorname{revdiag}\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n \times n}$. Then, A is semisimple if and only if, for all $i=1, \ldots, n, a_{i}$ and a_{n+1-i} are either both zero or both nonzero. (Proof: See [258, p. 116], [328], or [466, pp. 68, 86].)

Fact 5.11.8. Let $A \in \mathbb{F}^{n \times n}$. The A has at least m real eigenvalues and m associated linearly independent eigenvectors if and only if there exists a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that $A S=S A^{*}$. (Proof: See [466, pp. 68, 86].) (Remark: See Proposition 5.5.18.) (Remark: This result is due to Drazin and Haynsworth.)

Fact 5.11.9. Let $A \in \mathbb{F}^{n \times n}$ be normal and let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{m}}$. Then, there exist $x_{1}, \ldots, x_{n} \in \mathbb{C}^{n}$ such that $x_{i}^{*} x_{j}=\delta_{i j}$ for all $i, j=1, \ldots, n$
and

$$
A=\sum_{i=1}^{n} \lambda_{i} x_{i} x_{i}^{*}
$$

Fact 5.11.10. Let $A \in \mathbb{F}^{n \times n}$, assume that A is normal, and let $\operatorname{mspec}(A)$ $=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{m}}$. Then, the singular values of A are $\left|\lambda_{1}\right|, \ldots,\left|\lambda_{n}\right|$.

Fact 5.11.11. Let $A \in \mathbb{F}^{n \times n}$ be idempotent. Then, A is diagonalizable over $\mathbb{R}, \operatorname{spec}(A) \subset\{0,1\}$, and $\operatorname{tr} A=\operatorname{rank} A$.

Fact 5.11.12. Let $A \in \mathbb{F}^{n \times n}$ be either involutory or skew involutory. Then, A is semisimple.

Fact 5.11.13. Let $A \in \mathbb{R}^{n \times n}$ be involutory. Then, A is diagonalizable over \mathbb{R}.

Fact 5.11.14. Let $A \in \mathbb{F}^{n \times n}$ be semisimple and assume that $A^{3}=A^{2}$. Then, A is idempotent.

Fact 5.11.15. Let $A \in \mathbb{F}^{n \times n}$, and let $\operatorname{spec}(A)=\left\{0, \lambda_{1}, \ldots, \lambda_{r}\right\}$. Then, A is group invertible if and only if rank $A=\sum_{i=1}^{r} \operatorname{am}_{A}\left(\lambda_{i}\right)$.

Fact 5.11.16. Let $A \in \mathbb{F}^{n \times n}$. Then, every matrix $B \in \mathbb{F}^{n \times n}$ satisfying $A B=B A$ is a polynomial in A if and only if A is cyclic.

Fact 5.11.17. Let $A, B \in \mathbb{C}^{n \times n}$, and assume that $A B=B A$. Then, there exists a nonzero vector $x \in \mathbb{C}^{n}$ that is an eigenvector of both A and B. (Proof: See [287, p. 51].)

Fact 5.11.18. Let $A, B \in \mathbb{F}^{n \times n}$. Then, the following statements hold:
i) If A and B are Hermitian, then $A B$ is Hermitian if and only if $A B=B A$.
ii) If A is normal and $A B=B A$, then $A^{*} B=B A^{*}$.
iii) If B is Hermitian and $A B=B A$, then $A^{*} B=B A^{*}$.
iv) If A and B are normal and $A B=B A$, then $A B$ is normal.
$v)$ If A, B, and $A B$ are normal, then $B A$ is normal.
vi) If A and B are normal and either A or B has the property that distinct eigenvalues have unequal absolute values, then $A B$ is normal if and only if $A B=B A$.
vii) If A and B are normal, either A or B is nonnegative semidefinite, and $A B$ is normal, then $A B$ is normal if and only if $A B=B A$.
(Proof: See [154,597], [259, p. 157], [262, p. 157], and [466, p. 102].)
Fact 5.11.19. Let $A, B, C \in \mathbb{F}^{n \times n}$, and assume that A and B are normal and $A C=C B$. Then, $A^{*} C=C B^{*}$. (Proof: Consider $\left[\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right]$ and $\left[\begin{array}{ll}0 & C \\ 0 & 0\end{array}\right]$ in $i i$) of Fact 5.11.18. See [259, p. 104] or [262, p. 321].) (Remark: This result is the Putnam-Fuglede theorem.)

Fact 5.11.20. Let $A, B \in \mathbb{R}^{n \times n}$ be skew symmetric. Then, there exists an orthogonal matrix $S \in \mathbb{R}^{n \times n}$ such that

$$
A=S\left[\begin{array}{cc}
0_{(n-l) \times(n-l)} & A_{12} \\
-A_{12}^{\mathrm{T}} & A_{22}
\end{array}\right] S^{\mathrm{T}}
$$

and

$$
B=S\left[\begin{array}{cc}
B_{11} & B_{12} \\
-B_{12}^{\mathrm{T}} & 0_{l \times l}
\end{array}\right] S^{\mathrm{T}},
$$

where $l \triangleq\lfloor n / 2\rfloor$. Consequently,

$$
\operatorname{mspec}(A B)=\operatorname{mspec}\left(-A_{12} B_{12}^{\mathrm{T}}\right) \cup \operatorname{mspec}\left(-A_{12}^{\mathrm{T}} B_{12}\right)
$$

and thus every nonzero eigenvalue of $A B$ has even algebraic multiplicity. (Proof: See [13].)

Fact 5.11.21. Let $A, B \in \mathbb{R}^{n \times n}$ be skew symmetric. If n is even, then there exists a monic polynomial p of degree $n / 2$ such that $\chi_{A B}(s)=$ $p^{2}(s)$ and $p(A B)=0$. If n is odd, then there exists a monic polynomial $p(s)$ of degree $(n-1) / 2$ such that $\chi_{A B}(s)=s p^{2}(s)$ and $A B p(A B)=0$. Consequently, if n is (even, odd), then $\chi_{A B}$ is (even, odd) and (every, every nonzero) eigenvalue of $A B$ has even algebraic multiplicity and geometric multiplicity of at least 2. (Proof: See $[183,241]$.)

Fact 5.11.22. Let $A, B \in \mathbb{F}^{n \times n}$ be projectors. Then, $\operatorname{spec}(A B) \subset[0,1]$ and $\operatorname{spec}(A-B) \subset[-1,1]$. (Proof: See [19] or [466, p. 147].) (Remark: The first result is due to Afriat.)

Fact 5.11.23. Let $q(t)$ denote the displacement of a mass $m>0$ connected to a spring $k \geq 0$ and dashpot $c \geq 0$ and subject to a force $f(t)$. Then, $q(t)$ satisfies

$$
m \ddot{q}(t)+c \dot{q}(t)+k q(t)=f(t)
$$

or

$$
\ddot{q}(t)+\frac{c}{m} \dot{q}(t)+\frac{k}{m} q(t)=\frac{1}{m} f(t) .
$$

Now, define the natural frequency $\omega_{\mathrm{n}} \triangleq \sqrt{k / m}$ and, if $k>0$, the damping
ratio $\zeta \triangleq c / 2 \sqrt{k m}$ to obtain

$$
\ddot{q}(t)+2 \zeta \omega_{\mathrm{n}} \dot{q}(t)+\omega_{\mathrm{n}}^{2} q(t)=\frac{1}{m} f(t)
$$

If $k=0$, then set $\omega_{\mathrm{n}}=0$, and $\zeta \omega_{\mathrm{n}}=c / 2 m$. Next, define $x_{1}(t) \triangleq q(t)$ and $x_{2}(t) \triangleq \dot{q}(t)$ so that this equation can be written as

$$
\left[\begin{array}{c}
\dot{x}_{1}(t) \\
\dot{x}_{2}(t)
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-\omega_{\mathrm{n}}^{2} & -2 \zeta \omega_{\mathrm{n}}
\end{array}\right]\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
0 \\
1 / m
\end{array}\right] f(t)
$$

The eigenvalues of the companion matrix $A_{\mathrm{c}} \triangleq\left[\begin{array}{cc}0 & 1 \\ -\omega_{\mathrm{n}}^{2} & -2 \zeta \omega_{\mathrm{n}}\end{array}\right]$ are given by

$$
\operatorname{mspec}\left(A_{\mathrm{c}}\right)= \begin{cases}\left\{-\zeta \omega_{\mathrm{n}}-\jmath \omega_{\mathrm{d}},-\zeta \omega_{n}+\jmath \omega_{\mathrm{d}}\right\}_{\mathrm{m}}, & 0 \leq \zeta \leq 1 \\ \left\{\left(-\zeta-\sqrt{\zeta^{2}-1}\right) \omega_{\mathrm{n}},\left(-\zeta+\sqrt{\zeta^{2}-1}\right) \omega_{\mathrm{n}}\right\}, & \zeta>1\end{cases}
$$

where $\omega_{\mathrm{d}} \triangleq \omega_{\mathrm{n}} \sqrt{1-\zeta^{2}}$ is the damped natural frequency. The matrix A_{c} has repeated eigenvalues in exactly two cases, namely,

$$
\operatorname{mspec}\left(A_{\mathrm{c}}\right)= \begin{cases}\{0,0\}_{\mathrm{m}}, & \omega_{\mathrm{n}}=0 \\ \left\{-\omega_{\mathrm{n}},-\omega_{\mathrm{n}}\right\}_{\mathrm{m}}, & \zeta=1\end{cases}
$$

In both of these cases the matrix A_{c} is defective. In the case $\omega_{\mathrm{n}}=0$, the matrix A_{c} is also in Jordan form, while in the case $\zeta=1$, it follows that $A_{\mathrm{c}}=S A_{\mathrm{J}} S^{-1}$, where $S \triangleq\left[\begin{array}{cc}-1 & 0 \\ \omega_{\mathrm{n}} & -1\end{array}\right]$ and A_{J} is the Jordan form matrix $A_{\mathrm{J}} \triangleq\left[\begin{array}{cc}-\omega_{\mathrm{n}} & 1 \\ 0 & -\omega_{\mathrm{n}}\end{array}\right]$. If A_{c} is not defective, that is, if $\omega_{\mathrm{n}} \neq 0$ and $\zeta \neq 1$, then the Jordan form A_{J} of A_{c} is given by
$A_{\mathrm{J}} \triangleq \begin{cases}{\left[\begin{array}{cc}-\zeta \omega_{\mathrm{n}}+\jmath \omega_{\mathrm{d}} & 0 \\ 0 & -\zeta \omega_{\mathrm{n}}-\jmath \omega_{\mathrm{d}}\end{array}\right],} & 0 \leq \zeta<1, \omega_{\mathrm{n}} \neq 0, \\ {\left[\begin{array}{cc}\left(-\zeta-\sqrt{\zeta^{2}-1}\right) \omega_{\mathrm{n}} & 0 \\ 0 & \left(-\zeta+\sqrt{\zeta^{2}-1}\right) \omega_{\mathrm{n}}\end{array}\right],} & \zeta>1, \omega_{\mathrm{n}} \neq 0 .\end{cases}$
In the case $0 \leq \zeta<1$ and $\omega_{\mathrm{n}} \neq 0$, define the real normal form

$$
A_{\mathrm{n}} \triangleq\left[\begin{array}{cc}
-\zeta \omega_{\mathrm{n}} & \omega_{\mathrm{d}} \\
-\omega_{\mathrm{d}} & -\zeta \omega_{\mathrm{n}}
\end{array}\right]
$$

The matrices $A_{\mathrm{c}}, A_{\mathrm{J}}$, and A_{n} are related by the similarity transformations

$$
A_{\mathrm{c}}=S_{1} A_{\mathrm{J}} S_{1}^{-1}=S_{2} A_{\mathrm{n}} S_{2}^{-1}, \quad A_{\mathrm{J}}=S_{3} A_{\mathrm{n}} S_{3}^{-1}
$$

where

$$
\begin{array}{ll}
S_{1} \triangleq\left[\begin{array}{cc}
1 & 1 \\
-\zeta \omega_{\mathrm{n}}+\jmath \omega_{\mathrm{d}} & -\zeta \omega_{\mathrm{n}}-\jmath \omega_{\mathrm{d}}
\end{array}\right], & S_{1}^{-1}=\frac{\jmath}{2 \omega_{\mathrm{d}}}\left[\begin{array}{cc}
-\zeta \omega_{\mathrm{n}}-\jmath \omega_{\mathrm{d}} & -1 \\
\zeta \omega_{\mathrm{n}}-\jmath \omega_{\mathrm{d}} & 1
\end{array}\right], \\
S_{2} \triangleq \frac{1}{\omega_{\mathrm{d}}}\left[\begin{array}{cc}
1 & 0 \\
-\zeta \omega_{\mathrm{n}} & \omega_{\mathrm{d}}
\end{array}\right], & S_{2}^{-1}=\left[\begin{array}{cc}
\omega_{\mathrm{d}} & 0 \\
\zeta \omega_{\mathrm{n}} & 1
\end{array}\right], \\
S_{3} \triangleq \frac{1}{2 \omega_{\mathrm{d}}}\left[\begin{array}{cc}
1 & -\jmath \\
1 & \jmath
\end{array}\right], & S_{3}^{-1}=\omega_{\mathrm{d}}\left[\begin{array}{cc}
1 & 1 \\
\jmath & -\jmath
\end{array}\right] .
\end{array}
$$

In the case $\zeta>1$ and $\omega_{\mathrm{n}} \neq 0$, the matrices A_{c} and A_{J} are related by

$$
A_{\mathrm{c}}=S_{4} A_{\mathrm{J}} S_{4}^{-1}
$$

where

$$
S_{4} \triangleq\left[\begin{array}{cc}
1 & 1 \\
-\zeta \omega_{\mathrm{n}}+\jmath \omega_{\mathrm{d}} & -\zeta \omega_{\mathrm{n}}-\jmath \omega_{\mathrm{d}}
\end{array}\right], \quad S_{4}^{-1}=\frac{\jmath}{2 \omega_{\mathrm{d}}}\left[\begin{array}{cc}
-\zeta \omega_{\mathrm{n}}-\jmath \omega_{\mathrm{d}} & -1 \\
\zeta \omega_{\mathrm{n}}-\jmath \omega_{\mathrm{d}} & 1
\end{array}\right] .
$$

Finally, define the energy coordinates matrix

$$
A_{\mathrm{e}} \triangleq\left[\begin{array}{cc}
0 & \omega_{\mathrm{n}} \\
-\omega_{\mathrm{n}} & -2 \zeta \omega_{\mathrm{n}}
\end{array}\right] .
$$

Then, $A_{\mathrm{e}}=S_{5} A_{\mathrm{c}} S_{5}^{-1}$, where

$$
S_{5} \triangleq \sqrt{\frac{m}{2}}\left[\begin{array}{cc}
1 / \omega_{\mathrm{n}} & 0 \\
0 & 1
\end{array}\right] .
$$

5.12 Facts on Companion, Vandermonde, and Circulant Matrices

Fact 5.12.1. Let $p \in \mathbb{F}[s]$, where $p(s)=s^{n}+\beta_{n-1} s^{n-1}+\cdots+\beta_{0}$, and define $C_{\mathrm{b}}(p), C_{\mathrm{r}}(p), C_{\mathrm{t}}(p), C_{\mathrm{l}}(p) \in \mathbb{F}^{n \times n}$ by

$$
C_{\mathrm{b}}(p) \triangleq\left[\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \ddots & 0 & 0 \\
0 & 0 & 0 & \ddots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
-\beta_{0} & -\beta_{1} & -\beta_{2} & \cdots & -\beta_{n-2} & -\beta_{n-1}
\end{array}\right]
$$

$$
\begin{gathered}
C_{\mathrm{r}}(p) \triangleq\left[\begin{array}{cccccc}
0 & 0 & 0 & \cdots & 0 & -\beta_{0} \\
1 & 0 & 0 & \cdots & 0 & -\beta_{1} \\
0 & 1 & 0 & \cdots & 0 & -\beta_{2} \\
\vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ddots & 0 & -\beta_{n-2} \\
0 & 0 & 0 & \cdots & 1 & -\beta_{n-1}
\end{array}\right], \\
C_{\mathrm{t}}(p) \triangleq\left[\begin{array}{cccccc}
-\beta_{n-1} & -\beta_{n-2} & \cdots & -\beta_{2} & -\beta_{1} & -\beta_{0} \\
1 & 0 & \cdots & 0 & 0 & 0 \\
\vdots & \ddots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & \ddots & 0 & 0 & 0 \\
0 & 0 & \ddots & 1 & 0 & 0 \\
0 & 0 & \cdots & 0 & 1 & 0
\end{array}\right], \\
C_{\mathrm{l}}(p) \triangleq\left[\begin{array}{cccccc}
-\beta_{n-1} & 1 & \cdots & 0 & 0 & 0 \\
-\beta_{n-2} & 0 & \ddots & 0 & 0 & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
-\beta_{2} & 0 & \cdots & 0 & 1 & 0 \\
-\beta_{1} & 0 & \cdots & 0 & 0 & 1 \\
-\beta_{0} & 0 & \cdots & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Then,

$$
\begin{array}{cl}
C_{\mathrm{r}}(p)=C_{\mathrm{b}}^{\mathrm{T}}(p), & C_{\mathrm{l}}(p)=C_{\mathrm{t}}^{\mathrm{T}}(p), \\
C_{\mathrm{t}}(p)=\hat{I} C_{\mathrm{b}}(p) \hat{I}, & C_{\mathrm{l}}(p)=\hat{I} C_{\mathrm{r}}(p) \hat{I}, \\
C_{\mathrm{l}}(p)=C_{\mathrm{b}}^{\hat{\mathrm{T}}}(p), & C_{\mathrm{t}}(p)=C_{\mathrm{r}}^{\hat{\mathrm{T}}}(p),
\end{array}
$$

and

$$
\chi_{C_{\mathrm{b}}(p)}=\chi_{C_{\mathrm{r}}(p)}=\chi_{C_{\mathrm{t}}(p)}=\chi_{C_{\mathrm{l}}(p)}=p .
$$

Furthermore,

$$
C_{\mathrm{r}}(p)=S C_{\mathrm{b}}(p) S^{-1}
$$

and

$$
C_{\mathrm{t}}(p)=\hat{S} C_{\mathbf{l}}(p) \hat{S}^{-1}
$$

where $S, \hat{S} \in \mathbb{F}^{n \times n}$ are the Hankel matrices

$$
S \triangleq\left[\begin{array}{ccccc}
\beta_{1} & \beta_{2} & \cdots & \beta_{n-1} & 1 \\
\beta_{2} & \beta_{3} & . & . & 1
\end{array}\right) 0
$$

and

$$
\hat{S} \triangleq \hat{I} S \hat{I}=\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & 1 \\
0 & 0 & . & 1 & \beta_{n-1} \\
\vdots & . & . & . & . \\
\vdots & 1 & . & \beta_{3} & \beta_{2} \\
0 & \beta_{n-1} & \cdots & \beta_{2} & \beta_{1}
\end{array}\right]
$$

(Remark: $\left(C_{\mathrm{b}}(p), C_{\mathrm{r}}(p), C_{\mathrm{t}}(p), C_{\mathrm{l}}(p)\right)$ are the (bottom, right, top, left) companion matrices. See [64, p. 282] and [321, p. 659].) (Remark: $S=B(p, 1)$, where $B(p, 1)$ is a Bezout matrix. See Fact 4.8.6.)

Fact 5.12.2. Let $p \in \mathbb{F}[s]$, where $p(s)=s^{n}+\beta_{n-1} s^{n-1}+\cdots+\beta_{0}$, assume that $\beta_{0} \neq 0$, and let

$$
C_{\mathrm{b}}(p) \triangleq\left[\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \ddots & 0 & 0 \\
0 & 0 & 0 & \ddots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
-\beta_{0} & -\beta_{1} & -\beta_{2} & \cdots & -\beta_{n-2} & -\beta_{n-1}
\end{array}\right]
$$

Then,

$$
C_{\mathrm{b}}^{-1}(p)=C_{\mathrm{t}}(\hat{p})=\left[\begin{array}{ccccc}
-\beta_{1} / \beta_{0} & \cdots & -\beta_{n-2} / \beta_{0} & -\beta_{n-1} / \beta_{0} & -1 / \beta_{0} \\
1 & \cdots & 0 & 0 & 0 \\
\vdots & \ddots & \vdots & \vdots & \vdots \\
0 & \cdots & 1 & 0 & 0 \\
0 & \cdots & 0 & 1 & 0
\end{array}\right]
$$

where $\hat{p}(s) \triangleq \beta_{0}^{-1} s^{n} p(1 / s)$. (Remark: See Fact 4.9.6.)
Fact 5.12.3. Let $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{F}$, and define the Vandermonde matrix
$V\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{F}^{n \times n}$ by

$$
V\left(\lambda_{1}, \ldots, \lambda_{n}\right) \triangleq\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\lambda_{1} & \lambda_{2} & \cdots & \lambda_{n} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \cdots & \lambda_{n}^{2} \\
\lambda_{1}^{3} & \lambda_{2}^{3} & \cdots & \lambda_{n}^{3} \\
\vdots & \vdots & \vdots & \vdots \\
\lambda_{1}^{n-1} & \lambda_{2}^{n-1} & \cdots & \lambda_{n}^{n-1}
\end{array}\right]
$$

Then,

$$
\operatorname{det} V\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\prod_{i>j}\left(\lambda_{i}-\lambda_{j}\right)
$$

Thus, $V\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is nonsingular if and only if $\lambda_{1}, \ldots, \lambda_{n}$ are distinct. (Remark: This result yields Proposition 4.5.3. Let x_{1}, \ldots, x_{k} be eigenvectors of $V\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ associated with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$ of $V\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. Assume $\alpha_{1} x_{1}+\cdots+\alpha_{k} x_{k}=0$ so that $V^{i}\left(\lambda_{1}, \ldots, \lambda_{n}\right)\left(\alpha_{1} x_{1}+\cdots+\alpha_{k} x_{k}\right)=$ $\alpha_{1} \lambda_{1}^{i} x_{i}+\cdots+\alpha_{k} \lambda_{k}^{i} x_{k}=0$ for all $i=0,1, \ldots, k-1$. Let $X \triangleq\left[\begin{array}{lll}x_{1} & \cdots & x_{k}\end{array}\right] \in$ $\mathbb{F}^{n \times k}$ and $D \triangleq \operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{k}\right)$. Then, $X_{D} V^{\mathrm{T}}\left(\lambda_{1}, \ldots, \lambda_{k}\right)=0$, which implies that $X D=0$. Hence, $\alpha_{i} x_{i}=0$ for all $i=1, \ldots, k$, and thus $\alpha_{1}=\alpha_{2}=\cdots=\alpha_{k}=0$.)

Fact 5.12.4. Let $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{F}$ and, for $i=1, \ldots, n$, define

$$
p_{i}(s) \triangleq \prod_{\substack{j=1 \\ j \neq i}}^{n}\left(s-\lambda_{j}\right)
$$

Furthermore, define $A \in \mathbb{F}^{n \times n}$ by

$$
A \triangleq\left[\begin{array}{cccc}
p_{1}(0) & \frac{1}{1!} p_{1}^{\prime}(0) & \cdots & \frac{1}{(n-1)!} p_{1}^{(n-1)}(0) \\
\vdots & . \vdots & \ddots . & \vdots \\
p_{n}(0) & \frac{1}{1!} p_{n}^{\prime}(0) & \cdots & \frac{1}{(n-1)!} p_{n}^{(n-1)}(0)
\end{array}\right]
$$

Then,

$$
\operatorname{diag}\left[p_{1}(s), \ldots, p_{n}(s)\right]=A V(s, \ldots, s)
$$

(Proof: See [202, p. 159].)
Fact 5.12.5. Let $p \in \mathbb{F}[s]$, where $p(s)=s^{n}+\beta_{n-1} s^{n-1}+\cdots+\beta_{1} s+\beta_{0}$, and assume that p has distinct roots $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$. Then,

$$
C(p)=V^{-1}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) V\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

Fact 5.12.6. Let $A \in \mathbb{F}^{n \times n}$. Then, A is cyclic if and only if A is
similar to a companion matrix. (Proof: The result follows from Corollary 5.3.4. Alternatively, let $\operatorname{spec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}$ and $A=S B S^{-1}$, where $S \in \mathbb{C}^{n \times n}$ is nonsingular and $B=\operatorname{diag}\left(B_{1}, \ldots, B_{r}\right)$ is the Jordan form of A, where, for all $i=1, \ldots, r, B_{i} \in \mathbb{C}^{n_{i} \times n_{i}}$ and $\lambda_{i}, \ldots, \lambda_{i}$ are the diagonal entries of B_{i}. Now, define $R \in \mathbb{C}^{n \times n}$ by $R \triangleq\left[\begin{array}{lll}R_{1} & \cdots & R_{r}\end{array}\right] \in \mathbb{C}^{n \times n}$, where, for all $i=1, \ldots, r, R_{i} \in \mathbb{C}^{n \times n_{i}}$ is the matrix

$$
R_{i} \triangleq\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
\lambda_{i} & 1 & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots \\
\lambda_{i}^{n-2} & \binom{n-2}{1} \lambda_{i}^{n-3} & \cdots & \binom{n-2}{n_{i}-1} \lambda_{i}^{n-n_{i}-1} \\
\lambda_{i}^{n-1} & \binom{n-1}{1} \lambda_{i}^{n-2} & \cdots & \binom{n-1}{n_{i}-1} \lambda_{i}^{n-n_{i}}
\end{array}\right]
$$

Then, since $\lambda_{1}, \ldots, \lambda_{r}$ are distinct, it follows that R is nonsingular. Furthermore, $C=R B R^{-1}$ is in companion form and thus $A=S R^{-1} C R S$. If $n_{i}=1$ for all $i=1, \ldots, r$, then R is a Vandermonde matrix. See Fact 5.12.3 and Fact 5.12.5.)

Fact 5.12.7. Let $a_{0}, \ldots, a_{n-1} \in \mathbb{F}$, and define $\operatorname{circ}\left(a_{0}, \ldots, a_{n-1}\right) \in \mathbb{F}^{n \times n}$ by

$$
\operatorname{circ}\left(a_{0}, \ldots, a_{n-1}\right) \triangleq\left[\begin{array}{cccccc}
a_{0} & a_{1} & a_{2} & \cdots & a_{n-2} & a_{n-1} \\
a_{n-1} & a_{0} & a_{1} & \cdots & a_{n-3} & a_{n-2} \\
a_{n-2} & a_{n-1} & a_{0} & \ddots & a_{n-4} & a_{n-3} \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
a_{2} & a_{3} & a_{4} & \ddots & a_{0} & a_{1} \\
a_{1} & a_{2} & a_{3} & \cdots & a_{n-1} & a_{0}
\end{array}\right]
$$

A matrix of this form is circulant. Furthermore, define the primary circulant

$$
P \triangleq \operatorname{circ}(0,1,0, \ldots, 0) \triangleq\left[\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \ddots & 0 & 0 \\
0 & 0 & 0 & \ddots & 0 & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \ddots & 0 & 1 \\
1 & 0 & 0 & \cdots & 0 & 0
\end{array}\right]
$$

Finally, define $p(s) \triangleq a_{n-1} s^{n-1}+\cdots+a_{1} s+a_{0}$. Then, the following statements hold:
i) $\operatorname{circ}\left(a_{0}, \ldots, a_{n-1}\right)=p(P)$.
ii) If $A, B \in \mathbb{F}^{n \times n}$ are circulant, then A and B commute and $A B$ is
circulant.
iii) If A is circulant, then A^{*} is circulant.
$i v)$ If A is circulant and $k \geq 0$, then A^{k} is circulant.
v) If A is nonsingular and circulant, then A^{-1} is circulant.
vi) $A \in \mathbb{F}^{n \times n}$ is circulant if and only if $A=P A P^{\mathrm{T}}$.
vii) P is an orthogonal matrix, and $P^{n}=I_{n}$.
viii) $P=C(p)$, where $p \in \mathbb{F}[s]$ is defined by $p(s) \triangleq s^{n}-1$.
$i x)$ If $A \in \mathbb{F}^{n \times n}$ is circulant, then A is reverse symmetric, Toeplitz, and normal.
x) $A \in \mathbb{F}^{n \times n}$ is normal if and only if A is unitarily similar to a normal matrix.

Next, let $\theta \triangleq e^{2 \pi J / n}$, and define the Fourier matrix $S \in \mathbb{C}^{n \times n}$ by

$$
S \triangleq n^{-1 / 2} V\left(1, \theta, \ldots, \theta^{n-1}\right)=\frac{1}{\sqrt{n}}\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & \theta & \theta^{2} & \cdots & \theta^{n-1} \\
1 & \theta^{2} & \theta^{4} & \cdots & \theta^{n-2} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & \theta^{n-1} & \theta^{n-2} & \cdots & \theta
\end{array}\right]
$$

Then, the following statements hold:
i) S is symmetric and unitary.
ii) $S^{4}=I_{n}$.
iii) $\operatorname{spec}(S)=\{1,-1, \jmath,-\jmath\}$.
iv) $\operatorname{Re} S$ and $\operatorname{Im} S$ are symmetric, commute, and satisfy $(\operatorname{Re} S)^{2}+$ $(\operatorname{Im} S)^{2}=I_{n}$.
v) $S P S^{-1}=\operatorname{diag}\left(1, \theta, \ldots, \theta^{n-1}\right)$.
vi) $S \operatorname{circ}\left(a_{0}, \ldots, a_{n-1}\right) S^{-1}=\operatorname{diag}\left[p(1), p(\theta), \ldots, p\left(\theta^{n-1}\right)\right]$.
vii) $\operatorname{mspec}\left[\operatorname{circ}\left(a_{0}, \ldots, a_{n-1}\right)\right]=\left\{p(1), p(\theta), p\left(\theta^{2}\right), \ldots, p\left(\theta^{n-1}\right)\right\}_{\mathrm{m}}$.
viii) $\operatorname{spec}(P)=\left\{1, \theta, \theta^{2}, \ldots, \theta^{n-1}\right\}$.
(Proof: See [7, pp. 81-98], [163, p. 81], and [629, pp. 106-110].) (Remark: Circulant matrices play an important role in digital signal processing, specifically, in the efficient implementation of the fast Fourier transform. See [415, pp. 356-380] and [569, pp. 206, 207].) (Remark: If a real Toeplitz matrix is normal, then it must be either symmetric, skew-symmetric, circulant, or skew circulant. See [34] and the references therein.)

5.13 Facts on Matrix Factorizations

Fact 5.13.1. Let $A \in \mathbb{F}^{n \times n}$. Then, A is normal if and only if there exists a unitary matrix $S \in \mathbb{F}^{n \times n}$ such that $A^{*}=A S$. (Proof: See [466, pp. 102, 113].)

Fact 5.13.2. Let $A \in \mathbb{F}^{m \times m}$ and $B \in \mathbb{F}^{n \times n}$. Then, there exist $C \in$ $\mathbb{F}^{m \times n}$ and $D \in \mathbb{F}^{n \times m}$ such that $A=C D$ and $B=D C$ if and only if the following statements hold:
i) The Jordan blocks associated with nonzero eigenvalues are identical in A and B.
ii) Let $n_{1} \geq n_{2} \geq \cdots \geq n_{r}$ denote the sizes of the Jordan blocks of A associated with $0 \in \operatorname{spec}(A)$, and let $m_{1} \geq m_{2} \geq \cdots \geq m_{r}$ denote the sizes of the Jordan blocks of B associated with $0 \in \operatorname{spec}(B)$, where $n_{i}=0$ or $m_{i}=0$ as needed. Then, $\left|n_{i}-m_{i}\right| \leq 1$ for all $i=1, \ldots, r$.
(Proof: See [315].) (Remark: See Fact 5.13.3.)
Fact 5.13.3. Let $A, B \in \mathbb{F}^{n \times n}$ be nonsingular. Then, A and B are similar if and only if there exist nonsingular matrices $C, D \in \mathbb{F}^{n \times n}$ such that $A=C D$ and $B=D C$. (Proof: Sufficiency follows from Fact 5.8.4. Necessity is a special case of Fact 5.13.2.)

Fact 5.13.4. Let $A, B \in \mathbb{F}^{n \times n}$ be nonsingular. Then, $\operatorname{det} A=\operatorname{det} B$ if and only if there exist nonsingular matrices $C, D, E \in \mathbb{R}^{n \times n}$ such that $A=C D E$ and $B=E D C$. (Remark: This result is due to Shoda and Taussky-Todd. See [110].)

Fact 5.13.5. Let $A \in \mathbb{F}^{n \times n}$. Then, there exist $B, C \in \mathbb{F}^{n \times n}$ such that B is unitary, C is upper triangular, and $A=B C$. If, in addition, A is nonsingular, then there exist unique $B, C \in \mathbb{F}^{n \times n}$ such that B is unitary, C is upper triangular with positive diagonal entries, and $A=B C$. (Proof: See [287, p. 112] or [484, p. 362].) (Remark: This result is the $Q R$ decomposition. The orthogonal matrix B is constructed as a product of elementary reflectors.)

Fact 5.13.6. Let $A \in \mathbb{F}^{n \times m}$, and assume that rank $A=m$. Then, there a unique matrix $B \in \mathbb{F}^{n \times m}$ and a matrix $C \in \mathbb{F}^{m \times m}$ such that $B^{*} B=I_{m}$, C is upper triangular with positive diagonal entries, and $A=B C$. (Proof: See [287, p. 15] or [484, p. 206].) (Remark: $C \in \mathrm{UT}_{+}(n)$. See Fact 3.10.3.) (Remark: This result is Gram-Schmidt orthonormalization.)

Fact 5.13.7. Let $A \in \mathbb{F}^{n \times n}$, let $r \triangleq \operatorname{rank} A$, and assume that the first r leading principal subdeterminants of A are nonzero. Then, there exist
$B, C \in \mathbb{F}^{n \times n}$ such that B is lower triangular, C is upper triangular, and $A=B C$. Either B or C can be chosen to be nonsingular. Furthermore, both B and C are nonsingular if and only if A is nonsingular. (Proof: See [287, p. 160].) (Remark: This result is the $L U$ decomposition.)

Fact 5.13.8. Let $A \in \mathbb{F}^{n \times n}$, and let $r \triangleq \operatorname{rank} A$. Then, A is range Hermitian if and only if there exist a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ and a nonsingular matrix $B \in \mathbb{F}^{r \times r}$ such that

$$
A=S\left[\begin{array}{cc}
B & 0 \\
0 & 0
\end{array}\right] S^{*}
$$

(Remark: S need not be unitary for sufficiency. See Corollary 5.4.4.) (Proof: Use the QR decomposition Fact 5.13 .5 to let $S \triangleq \hat{S} R$, where \hat{S} is unitary and R is upper triangular.)

Fact 5.13.9. Let $A \in \mathbb{F}^{n \times n}$. Then, A is nonsingular if and only if A is the product of elementary matrices. (Problem: How many factors are needed?)

Fact 5.13.10. Let $A \in \mathbb{F}^{n \times n}$ be a projector, and let $r \triangleq \operatorname{rank} A$. Then, there exist nonzero $x_{1}, \ldots, x_{n-r} \in \mathbb{F}^{n}$ such that $x_{i}^{*} x_{j}=0$ for all $i \neq j$ and such that

$$
A=\prod_{i=1}^{n-r}\left[I-\left(x_{i}^{*} x_{i}\right)^{-1} x_{i} x_{i}^{*}\right]
$$

(Remark: Every projector is the product of mutually orthogonal elementary projectors.) (Proof: A is unitarily similar to $\operatorname{diag}(1, \ldots, 1,0, \ldots, 0)$, which can be written as the product of elementary projectors.)

Fact 5.13.11. Let $A \in \mathbb{F}^{n \times n}$. Then, A is a reflector if and only if there exist $m \leq n$ nonzero vectors $x_{1}, \ldots, x_{m} \in \mathbb{F}^{n}$ such that $x_{i}^{*} x_{j}=0$ for all $i \neq j$ and such that

$$
A=\prod_{i=1}^{m}\left[I-2\left(x_{i}^{*} x_{i}\right)^{-1} x_{i} x_{i}^{*}\right]
$$

In this case, m is the algebraic multiplicity of $-1 \in \operatorname{spec}(A)$. (Remark: Every reflector is the product of mutually orthogonal elementary reflectors.) (Proof: A is unitarily similar to $\operatorname{diag}(\pm 1, \ldots, \pm 1)$, which can be written as the product of elementary reflectors.)

Fact 5.13.12. Let $A \in \mathbb{F}^{n \times n}$. Then, A is unitary if and only if there exist nonzero vectors $x_{1}, \ldots, x_{m} \in \mathbb{F}^{n}$ such that

$$
A=\prod_{i=1}^{m}\left[I-2\left(x_{i}^{*} x_{i}\right)^{-1} x_{i} x_{i}^{*}\right]
$$

(Remark: Every unitary matrix is the product of elementary reflectors. This factorization is a result of Cartan and Dieudonne. See [45, p. 24] and $[498,564]$. The minimal number of factors is unsettled; see Fact 3.7.3. See Fact 3.6.17.)

Fact 5.13.13. Let $A \in \mathbb{R}^{n \times n}$, where $n \geq 2$. Then, A is orthogonal if and only if there exist $\theta_{1}, \ldots, \theta_{n} \in \mathbb{R}$ and $j_{1}, \ldots, j_{n}, k_{1}, \ldots, k_{n} \in\{1, \ldots, n\}$ such that

$$
A=\operatorname{sign}(\operatorname{det} A) \prod_{i=1}^{n} P\left(\theta_{i}, j_{i}, k_{i}\right),
$$

where

$$
P(\theta, j, k) \triangleq I_{n}+[(\cos \theta)-1]\left(E_{j, j}+E_{k, k}\right)+(\sin \theta)\left(E_{j, k}-E_{k, j}\right) .
$$

(Remark: $P(\theta, j, k)$ is a plane or Givens rotation. See Fact 3.6.17.) (Problem: Generalize this result to $\mathbb{C}^{n \times n}$.)

Fact 5.13.14. Let $A \in \mathbb{F}^{n \times n}$. Then, $A^{2 *} A=A^{*} A^{2}$ if and only if there exist a projector $B \in \mathbb{F}^{n \times n}$ and a Hermitian matrix $C \in \mathbb{F}^{n \times n}$ such that $A=B C$. (Proof: See [474].)

Fact 5.13.15. Let $A \in \mathbb{R}^{n \times n}$. Then, $|\operatorname{det} A|=1$ if and only if A is the product of $n+2$ or fewer involutory matrices that have exactly one negative eigenvalue. In addition, the following statements hold:
i) If $n=2$, then 3 or fewer factors are needed.
ii) If $A \neq \alpha I$ for all $\alpha \in \mathbb{R}$ and $\operatorname{det} A=(-1)^{n}$, then n or fewer factors are needed.
iii) If $\operatorname{det} A=(-1)^{n+1}$, then $n+1$ or fewer factors are needed.
(Proof: See [133,472].) (Remark: The minimal number of factors for unitary A is given in [182].)

Fact 5.13.16. Let $A \in \mathbb{F}^{n \times n}$, and define $r_{0} \triangleq n$ and $r_{k} \triangleq \operatorname{rank} A^{k}$ for all $k=1,2, \ldots$. Then, there exists $B \in \mathbb{C}^{n \times n}$ such that $A=B^{2}$ if and only if the sequence $\left\{r_{k}-r_{k+1}\right\}_{k=0}^{\infty}$ does not contain two successive occurrences of the same odd integer and, if $r_{0}-r_{1}$ is odd, then $r_{0}+r_{2} \geq 1+2 r_{1}$. Now, assume that $A \in \mathbb{R}^{n \times n}$. Then, there exists $B \in \mathbb{R}^{n \times n}$ such that $A=B^{2}$ if and only if the above condition holds and, for every negative eigenvalue λ of A and for every positive integer k, the Jordan form of A has an even number of $k \times k$ blocks associated with λ. (Proof: See [289, p. 472].) (Remark: See Fact 11.14.31.) (Remark: For all $l \geq 2, A \triangleq N_{l}$ does not have a complex square root.) (Remark: Uniqueness is discussed in [314]. m th roots are considered in [468].)

Fact 5.13.17. Let $A \in \mathbb{C}^{n \times n}$ be group invertible. Then, there exists $B \in \mathbb{C}^{n \times n}$ such that $A=B^{2}$.

Fact 5.13.18. Let $A \in \mathbb{F}^{n \times n}$ be nonsingular and define $\left\{P_{k}\right\}_{k=0}^{\infty} \subset$ $\mathbb{F}^{n \times n}$ and $\left\{Q_{k}\right\}_{k=0}^{\infty} \subset \mathbb{F}^{n \times n}$ by

$$
P_{0} \triangleq A, \quad Q_{0} \triangleq I,
$$

and, for $k \in \mathbb{P}$,

$$
\begin{aligned}
P_{k+1} & \triangleq \frac{1}{2}\left(P_{k}+Q_{k}^{-1}\right) \\
Q_{k+1} & \triangleq \frac{1}{2}\left(Q_{k}+P_{k}^{-1}\right)
\end{aligned}
$$

Then,

$$
B \triangleq \lim _{k \rightarrow \infty} P_{k}
$$

exists and satisfies $B^{2}=A$. Furthermore,

$$
\lim _{k \rightarrow \infty} Q_{k}=A^{-1}
$$

(Proof: See [170, 277].) (Remark: This sequence is a modified NewtonRaphson algorithm based on the matrix sign function. See [327].) (Remark: See Fact 8.7.20.)

Fact 5.13.19. Let $A \in \mathbb{C}^{n \times n}$ be nonsingular. Then, there exist a semisimple matrix $S_{1} \in \mathbb{C}^{n \times n}$ and a nilpotent matrix $S_{2} \in \mathbb{C}^{n \times n}$ such that $S_{1} S_{2}=S_{2} S_{1}$ and $A=S_{1}\left(I+S_{2}\right)$. (Proof: The result follows from the Jordan decomposition.)

Fact 5.13.20. Let $A \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite and let $r \triangleq$ rank A. Then, there exists $B \in \mathbb{F}^{n \times r}$ such that $A=B B^{*}$.

Fact 5.13.21. Let $A \in \mathbb{F}^{n \times n}$, and let $k \in \mathbb{P}$. Then, there exists a unique matrix $B \in \mathbb{F}^{n \times n}$ such that

$$
A=B\left(B^{*} B\right)^{k}
$$

(Proof: See [461].)
Fact 5.13.22. Let $A \in \mathbb{F}^{n \times n}$. Then, there exist symmetric matrices $B, C \in \mathbb{F}^{n \times n}$, one of which is singular, such that $A=B C$. (Proof: See [466, p. 82].) (Remark: Note that

$$
\left[\begin{array}{ccc}
\beta_{1} & \beta_{2} & 1 \\
\beta_{2} & 1 & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-\beta_{0} & -\beta_{1} & -\beta_{2}
\end{array}\right]=\left[\begin{array}{ccc}
-\beta_{0} & 0 & 0 \\
0 & \beta_{2} & 1 \\
0 & 1 & 0
\end{array}\right]
$$

and use Theorem 5.2.3.) (Remark: This result is due to Frobenius. The identity is a Bezout matrix factorization; see Fact 4.8.6. See $[104,105,260]$.)
(Remark: Symmetric, not Hermitian.)
Fact 5.13.23. Let $A \in \mathbb{C}^{n \times n}$. Then, $\operatorname{det} A$ is real if and only if A is the product of four Hermitian matrices. Furthermore, four is the smallest number of factors in general. (Proof: See [618].)

Fact 5.13.24. Let $A \in \mathbb{R}^{n \times n}$. Then, the following statements hold:
i) A is the product of two nonnegative-semidefinite matrices if and only if A is similar to a nonnegative-semidefinite matrix.
ii) If A is nilpotent, then A is the product of three nonnegative-semidefinite matrices.
iii) If A is singular, then A is the product of four nonnegative-semidefinite matrices.
iv) $\operatorname{det} A>0$ and $A \neq \alpha I$ for all $\alpha \leq 0$ if and only if A is the product of four positive-definite matrices.
$v) \operatorname{det} A>0$ if and only if A is the product of five positive-definite matrices.
(Proof: [48, 260,617,618].) (Remark: See [618] for factorizations of complex matrices and operators.) (Example:

$$
\left.\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]=\left[\begin{array}{cc}
2 & 0 \\
0 & 1 / 2
\end{array}\right]\left[\begin{array}{cc}
5 & 7 \\
7 & 10
\end{array}\right]\left[\begin{array}{cc}
13 / 2 & -5 \\
-5 & 4
\end{array}\right]\left[\begin{array}{cc}
8 & 5 \\
5 & 13 / 4
\end{array}\right]\left[\begin{array}{cc}
25 / 8 & -11 / 2 \\
-11 / 2 & 10
\end{array}\right] .\right)
$$

Fact 5.13.25. Let $A \in \mathbb{R}^{n \times n}$. Then, the following statements hold:
i) $A=B C$, where $B \in \mathbf{S}^{n}$ and $C \in \mathbf{N}^{n}$, if and only if A^{2} is diagonalizable over \mathbb{R} and $\operatorname{spec}(A) \subset[0, \infty)$.
ii) $A=B C$, where $B \in \mathbf{S}^{n}$ and $C \in \mathbf{P}^{n}$, if and only if A is diagonalizable over \mathbb{R}.
iii) $A=B C$, where $B, C \in \mathbf{N}^{n}$, if and only if $A=D E$, where $D \in \mathbf{N}^{n}$ and $E \in \mathbf{P}^{n}$.
iv) $A=B C$, where $B \in \mathbf{N}^{n}$ and $C \in \mathbf{P}^{n}$, if and only if A is diagonalizable over \mathbb{R} and $\operatorname{spec}(A) \subset[0, \infty)$.
v) $A=B C$, where $B, C \in \mathbf{P}^{n}$, if and only if A is diagonalizable over \mathbb{R} and $\operatorname{spec}(A) \subset[0, \infty)$.
(Proof: See [286,614, 617].)
Fact 5.13.26. Let $A \in \mathbb{R}^{n \times n}$ be singular and assume that A is not a 2×2 nilpotent matrix. Then, there exist nilpotent matrices $B, C \in \mathbb{R}^{n \times n}$ such that $A=B C$ and $\operatorname{rank} A=\operatorname{rank} B=\operatorname{rank} A$. (Proof: See [616].)

Fact 5.13.27. Let $A \in \mathbb{R}^{n \times n}$ be nonsingular. Then, A is similar to A^{-1} if and only if A is the product of two involutory matrices. If, in addition, A is orthogonal, then A is the product of two reflectors. (Proof: See [53, 179, 612, 613] or [466, p. 108].) (Problem: Construct these reflectors for $A=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$.)

Fact 5.13.28. Let $A \in \mathbb{R}^{n \times n}$. Then, $|\operatorname{det} A|=1$ if and only if A is the product of four or fewer involutory matrices. (Proof: [54, 253, 517].)

Fact 5.13.29. Let $A \in \mathbb{R}^{n \times n}$. Then, A is the identity or singular if and only if A is the product of n or fewer idempotent matrices. Furthermore, $\operatorname{rank}(A-I) \leq k \operatorname{def}(A)$, where $k \in \mathbb{N}$, if and only if A is the product of k idempotent matrices. (Proof: See [55].) (Problem: Explicitly construct the two factors when $\operatorname{rank} A=1$ and A is not idempotent. Example: $\left[\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right]=$ $\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]$.)

Fact 5.13.30. Let $A \in \mathbb{R}^{n \times n}$, where $n \geq 2$. Then, A is the product of two commutators. (Proof: See [618].)

Fact 5.13.31. Let $A \in \mathbb{R}^{n \times n}$, and assume that $\operatorname{det} A=1$. Then, there exist nonsingular matrices $B, C \in \mathbb{R}^{n \times n}$ such that $A=B C B^{-1} C^{-1}$. (Proof: See [507].) (Remark: The product is a multiplicative commutator. This result is due to Shoda.)

Fact 5.13.32. Let $A \in \mathbb{R}^{n \times n}$ be orthogonal and assume that $\operatorname{det} A=1$. Then, there exist reflectors $B, C \in \mathbb{R}^{n \times n}$ such that $A=B C B^{-1} C^{-1}$. (Proof: See [544].)

Fact 5.13.33. Let $A \in \mathbb{F}^{n \times n}$ be nonsingular. Then, there exists an involutory matrix $B \in \mathbb{F}^{n \times n}$ and a symmetric matrix $C \in \mathbb{F}^{n \times n}$ such that $A=B C$. (Proof: See [240].)

Fact 5.13.34. Let $A \in \mathbb{F}^{n \times n}$, and assume that n is even. Then, the following statements are equivalent:
i) A is the product of two skew-symmetric matrices.
ii) Every elementary divisor of A has even algebraic multiplicity.
iii) There exists $B \in \mathbb{F}^{n / 2 \times n / 2}$ such that A is similar to $\left[\begin{array}{ll}B & 0 \\ 0 & B\end{array}\right]$.
(Remark: In i) the factors are skew symmetric even when A is complex.) (Proof: See [241, 618].)

Fact 5.13.35. Let $A \in \mathbb{R}^{n \times n}$ be skew symmetric. If $n=4,8,12 \ldots$, then A is the product of five or fewer skew-symmetric matrices. If $n=$ $6,10,14, \ldots$, then A is the product of seven or fewer skew-symmetric matri-
ces. (Proof: See [348].)
Fact 5.13.36. Let $A \in \mathbb{F}^{n \times n}$. Then, there exist a symmetric matrix $B \in \mathbb{F}^{n \times n}$ and a skew-symmetric matrix $C \in \mathbb{F}^{n \times n}$ such that $A=B C$ if and only if A is similar to $-A$. (Proof: See [487].)

Fact 5.13.37. Let $A \in \mathbb{F}^{n \times m}$, and let $r \triangleq \operatorname{rank} A$. Then, there exist $B \in \mathbb{F}^{n \times r}$ and $C \in \mathbb{R}^{r \times m}$ such that $A=B C$. Furthermore, rank $B=$ $\operatorname{rank} C=r$.

Fact 5.13.38. Let $A \in \mathbb{F}^{n \times m}$, where $n \leq m$. Then, there exist $M \in \mathbb{F}^{n \times n}$ and $S \in \mathbb{F}^{n \times m}$ such that M is nonnegative semidefinite, S satisfies $S S^{*}=I_{n}$, and $A=M S$. Furthermore, M is given uniquely by $M=\left(A A^{*}\right)^{1 / 2}$. If, in addition, $\operatorname{rank} A=n$, then S is given uniquely by $S=\left(A A^{*}\right)^{-1 / 2} A$.

Fact 5.13.39. Let $A \in \mathbb{F}^{n \times m}$, where $m \leq n$. Then, there exist $M \in$ $\mathbb{F}^{m \times m}$ and $S \in \mathbb{F}^{n \times m}$ such that M is nonnegative semidefinite, S satisfies $S^{*} S=I_{m}$, and $A=S M$. Furthermore, M is given uniquely by $M=\left(A^{*} A\right)^{1 / 2}$. If, in addition, $\operatorname{rank} A=m$, then S is given uniquely by $S=A\left(A^{*} A\right)^{-1 / 2}$.

Fact 5.13.40. Let $A \in \mathbb{F}^{n \times n}$ be nonsingular. Then, these exist unique matrices $M, S \in \mathbb{F}^{n \times n}$ such that $A=M S, M$ is nonnegative semidefinite, and S is unitary. Furthermore, S is given uniquely by $S=\left(A A^{*}\right)^{-1 / 2} A$. In addition, A is nonsingular if and only if M is unique. In this case, M is given by $M=\left(A A^{*}\right)^{1 / 2}$.

Fact 5.13.41. Let $M_{1}, M_{2} \in \mathbb{F}^{n \times n}$ be positive definite, let $S_{1}, S_{2} \in$ $\mathbb{F}^{n \times n}$ be unitary, and assume that $M_{1} S_{1}=S_{2} M_{2}$. Then, $S_{1}=S_{2}$. (Proof: Let $A=M_{1} S_{1}=S_{2} M_{2}$. Then, $S_{1}=\left(S_{2} M_{2}^{2} S_{2}^{*}\right)^{-1 / 2} S_{2} M_{2}=S_{2}$.)

Fact 5.13.42. Let $A \in \mathbb{F}^{n \times n}$ be nonsingular and let $M, S \in \mathbb{F}^{n \times n}$ be such that $A=M S, M$ is nonnegative semidefinite, and S is unitary. Then, A is normal if and only if $M S=S M$. (Proof: See [287, p. 414].)

5.14 Notes

It is sometimes useful to define block-companion form matrices in which the scalars are replaced by matrix blocks [231]. The companion form illustrates but one connection between matrices and polynomials. Additional connections are given by the comrade form, Leslie form, Schwarz form, Routh form, confederate form, and congenial form. See [61,64] and Fact 11.14.23 and Fact 11.14.24 for the Schwarz and Routh forms.

The multi-companion form and the elementary multi-companion form are generally know as rational canonical forms, while the multi-companion form is traditionally called the Frobenius canonical form [66]. The derivation of the Jordan form by means of the elementary multi-companion form and the hypercompanion form follows [456]. Corollary 5.3.8, Corollary 5.3.9, and Proposition 5.5 .18 are given in $[104,105,534,535,538]$. Corollary 5.3.9 is due to Frobenius. Canonical forms for congruence transformations are given in $[360,548]$.

Chapter Six

Generalized Inverses

Generalized inverses provide a useful extension of the matrix inverse to singular matrices and to rectangular matrices that are neither left nor right invertible.

6.1 Moore-Penrose Generalized Inverse

Let $A \in \mathbb{F}^{n \times m}$. If A is nonzero, then, by the singular value decomposition Theorem 5.6.3, there exist orthogonal matrices $S_{1} \in \mathbb{F}^{n \times n}$ and $S_{2} \in \mathbb{F}^{m \times m}$ such that

$$
A=S_{1}\left[\begin{array}{ll}
B & 0 \tag{6.1.1}\\
0 & 0
\end{array}\right] S_{2},
$$

where $B \triangleq \operatorname{diag}\left[\sigma_{1}(A), \ldots, \sigma_{r}(A)\right], r \triangleq \operatorname{rank} A$, and $\sigma_{1}(A) \geq \sigma_{2}(A) \geq \cdots \geq$ $\sigma_{r}(A)>0$ are the positive singular values of A. In (6.1.1), some of the bordering zero matrices may be empty. Then, the (Moore-Penrose) generalized inverse A^{+}of A is the $m \times n$ matrix

$$
A^{+} \triangleq S_{2}^{*}\left[\begin{array}{cc}
B^{-1} & 0 \tag{6.1.2}\\
0 & 0
\end{array}\right] S_{1}^{*}
$$

If $A=0_{n \times m}$, then $A^{+} \triangleq 0_{m \times n}$, while if $m=n$ and $\operatorname{det} A \neq 0$, then $A^{+}=A^{-1}$. In general, it is helpful to remember that A^{+}and A^{*} are the same size. It is easy to verify that A^{+}satisfies

$$
\begin{align*}
A A^{+} A & =A, \tag{6.1.3}\\
A^{+} A A^{+} & =A^{+}, \tag{6.1.4}\\
\left(A A^{+}\right)^{*} & =A A^{+}, \tag{6.1.5}\\
\left(A^{+} A\right)^{*} & =A^{+} A . \tag{6.1.6}
\end{align*}
$$

Hence, for all $A \in \mathbb{F}^{n \times m}$ there exists a matrix $X \in \mathbb{F}^{m \times n}$ satisfying the four conditions

$$
\begin{align*}
A X A & =A \tag{6.1.7}\\
X A X & =X \tag{6.1.8}\\
(A X)^{*} & =A X \tag{6.1.9}\\
(X A)^{*} & =X A \tag{6.1.10}
\end{align*}
$$

We now show that X is uniquely defined by (6.1.7)-(6.1.10).
Theorem 6.1.1. Let $A \in \mathbb{F}^{n \times m}$. Then, $X=A^{+}$is the unique matrix $X \in \mathbb{F}^{m \times n}$ satisfying (6.1.7)-(6.1.10).

Proof. Suppose there exists $X \in \mathbb{F}^{m \times n}$ satisfying (6.1.7)-(6.1.10). Then,

$$
\begin{aligned}
X & =X A X=X(A X)^{*}=X X^{*} A^{*}=X X^{*}\left(A A^{+} A\right)^{*}=X X^{*} A^{*} A^{+*} A^{*} \\
& =X(A X)^{*}\left(A A^{+}\right)^{*}=X A X A A^{+}=X A A^{+}=(X A)^{*} A^{+}=A^{*} X^{*} A^{+} \\
& =\left(A A^{+} A\right)^{*} X^{*} A^{+}=A^{*} A^{+*} A^{*} X^{*} A^{+}=\left(A^{+} A\right)^{*}(X A)^{*} A^{+} \\
& =A^{+} A X A A^{+}=A^{+} A A^{+}=A^{+}
\end{aligned}
$$

Given $A \in \mathbb{F}^{n \times m}, X \in \mathbb{F}^{m \times n}$ is a (1)-inverse of A if (6.1.7) holds, a (1,2)-inverse of A if (6.1.7) and (6.1.8) hold, etc.

Proposition 6.1.2. Let $A \in \mathbb{F}^{n \times m}$, and assume that A is right invertible. Then, $X \in \mathbb{F}^{m \times n}$ is a right inverse of A if and only if X is a (1)-inverse of A. Furthermore, every right inverse (or, equivalently, every (1)-inverse) of A is also a $(2,3)$-inverse of A.

Proof. Suppose that $A X=I_{n}$, that is, $X \in \mathbb{F}^{m \times n}$ is a right inverse of A. Then, $A X A=A$, which implies that X is a (1)-inverse of A. Conversely, let X be a (1)-inverse of A, that is, $A X A=A$. Then, letting $\hat{X} \in \mathbb{F}^{m \times n}$ denote a right inverse of A, it follows that $A X=A X A \hat{X}=A \hat{X}=I_{n}$. Hence, X is a right inverse of A. Finally, if X is a right inverse of A, then it is also a $(2,3)$-inverse of A.

Proposition 6.1.3. Let $A \in \mathbb{F}^{n \times m}$, and assume that A is left invertible. Then, $X \in \mathbb{F}^{m \times n}$ is a left inverse of A if and only if X is a (1)-inverse of A. Furthermore, every left inverse (or, equivalently, every (1)-inverse) of A is also a (2,4)-inverse of A.

It can now be seen that A^{+}is a particular (right, left) inverse when A is (right, left) invertible.

Corollary 6.1.4. Let $A \in \mathbb{F}^{n \times m}$. If A is right invertible, then A^{+}is a right inverse of A. Furthermore, if A is left invertible, then A^{+}is a left
inverse of A.
The following result provides an explicit expression for A^{+}when A is right or left invertible. It is helpful to note that A is (right, left) invertible if and only if $\left(A A^{*}, A^{*} A\right)$ is positive definite.

Proposition 6.1.5. Let $A \in \mathbb{F}^{n \times m}$. If A is right invertible, then

$$
\begin{equation*}
A^{+}=A^{*}\left(A A^{*}\right)^{-1} . \tag{6.1.11}
\end{equation*}
$$

If A is left invertible, then

$$
\begin{equation*}
A^{+}=\left(A^{*} A\right)^{-1} A^{*} . \tag{6.1.12}
\end{equation*}
$$

Proof. The result follows by verifying (6.1.7)-(6.1.10) with $X=A^{+}$.

Proposition 6.1.6. Let $A \in \mathbb{F}^{n \times m}$. Then, the following statements hold:
i) $A=0$ if and only if $A^{+}=0$.
ii) $\left(A^{+}\right)^{+}=A$.
iii) $\bar{A}^{+}=\overline{A^{+}}$.
iv) $\left(A^{\mathrm{T}}\right)^{+}=\left(A^{+}\right)^{\mathrm{T}}=A^{+\mathrm{T}}$.
v) $\left(A^{*}\right)^{+}=\left(A^{+}\right)^{*} \triangleq A^{+*}$.
vi) $\mathcal{R}(A)=\mathcal{R}\left(A A^{+}\right)=\mathcal{R}\left(A A^{*}\right)=\mathcal{N}\left(I-A A^{+}\right)$.
vii) $\mathcal{R}\left(A^{*}\right)=\mathcal{R}\left(A^{*} A\right)=\mathcal{R}\left(A^{+}\right)=\mathcal{R}\left(A^{+} A\right)$.
viii) $\mathcal{N}(A)=\mathcal{N}\left(A^{+} A\right)=\mathcal{N}\left(A^{*} A\right)=\mathcal{R}\left(I-A^{+} A\right)$.
ix) $\mathcal{N}\left(A^{*}\right)=\mathcal{N}\left(A^{+}\right)=\mathcal{N}\left(A A^{+}\right)=\mathcal{R}\left(I-A A^{+}\right)$.
x) $A A^{+}$is the projector onto $\mathcal{R}(A)$.
xi) $A^{+} A$ is the projector onto $\mathcal{R}\left(A^{*}\right)$.
xii) $I-A^{+} A$ is the projector onto $\mathcal{N}(A)$.
xiii) $I-A A^{+}$is the projector onto $\mathcal{N}\left(A^{*}\right)$.
xiv) $x \in \mathcal{R}(A)$ if and only if $x=A A^{+} x$.
xv) $\operatorname{rank} A=\operatorname{rank} A^{+}=\operatorname{rank} A A^{+}=\operatorname{rank} A^{+} A=\operatorname{tr} A A^{+}=\operatorname{tr} A^{+} A$.
xvi) $\left(A^{*} A\right)^{+}=A^{+} A^{+*}$.
xvii) $\left(A A^{*}\right)^{+}=A^{+*} A^{+}$.
xviii) $A A^{+}=A\left(A^{*} A\right)^{+} A^{*}$.
xix) $A^{+} A=A^{*}\left(A A^{*}\right)^{+} A$.
xx) $A=A A^{*} A^{*+}=A^{*+} A^{*} A$.
xxi) $A^{*}=A^{*} A A^{+}=A^{+} A A^{*}$.
xxii) $A^{+}=A^{*}\left(A A^{*}\right)^{+}=\left(A^{*} A\right)^{+} A^{*}$.
xxiii) $A^{+*}=\left(A A^{*}\right)^{+} A=A\left(A^{*} A\right)^{+}$.
xxiv) $A=A\left(A^{*} A\right)^{+} A^{*} A=A A^{*} A\left(A^{*} A\right)^{+}$.
$x x v) ~ A=A A^{*}\left(A A^{*}\right)^{+} A=\left(A A^{*}\right)^{+} A A^{*} A$.
xxvi) If $S_{1} \in \mathbb{F}^{n \times n}$ and $S_{2} \in \mathbb{F}^{m \times m}$ are unitary, then $\left(S_{1} A S_{2}\right)^{+}=S_{2}^{*} A^{+} S_{1}^{*}$.
xxvii) If A is (normal, Hermitian, nonnegative semidefinite, positive definite), then so is A^{+}.
xxviii) A is range Hermitian if and only if $A A^{+}=A^{+} A$.

Theorem 2.6 .3 showed that the equation $A x=b$, where $A \in \mathbb{F}^{n \times m}$ and $b \in \mathbb{F}^{n}$, has a solution $x \in \mathbb{F}^{m}$ if and only if $\operatorname{rank} A=\operatorname{rank}\left[\begin{array}{cc}A & b\end{array}\right]$. In particular, $A x=b$ has a unique solution $x \in \mathbb{F}^{m}$ if and only if $\operatorname{rank} A=$ $\operatorname{rank}\left[\begin{array}{ll}A & b\end{array}\right]=m$, while $A x=b$ has infinitely many solutions if and only if $\operatorname{rank} A=\operatorname{rank}\left[\begin{array}{cc}A & b\end{array}\right]<m$. We are now prepared to characterize these nonunique solutions.

Proposition 6.1.7. Let $A \in \mathbb{F}^{n \times m}$ and $b \in \mathbb{F}^{n}$. Then, the following statements are equivalent:
i) There exists $x \in \mathbb{F}^{m}$ satisfying $A x=b$.
ii) $\operatorname{rank} A=\operatorname{rank}\left[\begin{array}{cc}A & b\end{array}\right]$.
iii) $b \in \mathcal{R}(A)$.
iv) $A A^{+} b=b$.

Now, assume that i)-iv) are satisfied. Then, the following statements hold:
v) If $x \in \mathbb{F}^{m}$ satisfies $A x=b$, then

$$
\begin{equation*}
x=A^{+} b+\left(I-A^{+} A\right) x . \tag{6.1.13}
\end{equation*}
$$

vi) For all $y \in \mathbb{F}^{m}, x \in \mathbb{F}^{m}$ given by

$$
\begin{equation*}
x=A^{+} b+\left(I-A^{+} A\right) y \tag{6.1.14}
\end{equation*}
$$

satisfies $A x=b$.
vii) Let $x \in \mathbb{F}^{m}$ be given by (6.1.14), where $y \in \mathbb{F}^{m}$. Then, $y=0$ minimizes $x^{*} x$.
viii) Assume rank $A=m$. Then, there exists a unique $x \in \mathbb{F}^{m}$ satisfying
$A x=b$ given by $x=A^{+} b$. If, in addition, $A^{\mathrm{L}} \in \mathbb{F}^{m \times m}$ is a left inverse of A, then $A^{\mathrm{L}} b=A^{+} b$.
$i x)$ Assume $\operatorname{rank} A=n$, and let $A^{\mathrm{R}} \in \mathbb{F}^{m \times n}$ be a right inverse of A. Then, $x=A^{\mathrm{R}} b$ satisfies $A x=b$.

Proof. The equivalence of i-iiii) is immediate. To prove the equivalence of $i v$), note that if there exists $x \in \mathbb{F}^{n}$ satisfying $A x=b$, then $b=A x=A A^{+} A x=A A^{+} b$. Conversely, if $b=A A^{+} b$, then $x=A^{+} b$ satisfies $A x=b$.

Now, suppose that i)-iv) are satisfied. To prove v) let $x \in \mathbb{F}^{m}$ satisfy $A x=b$ so that $A^{+} A x=A^{+} b$. Hence, $x=x+A^{+} b-A^{+} A x=A^{+} b+\left(I-A^{+} A\right) x$. To prove vi) let $y \in \mathbb{F}^{m}$, and let $x \in \mathbb{F}^{m}$ be given by (6.1.14). Then, $A x=A A^{+} b=b$. To prove vii) let $y \in \mathbb{F}^{m}$, and let $x \in \mathbb{F}^{n}$ be given by (6.1.14). Then, $x^{*} x=b^{*} A^{+*} A^{+} b+y^{*}\left(I-A^{+} A\right) y$. Therefore, $x^{*} x$ is minimized by $y=0$. To prove viii) suppose that $\operatorname{rank} A=m$. Then, A is left invertible, and it follows from Corollary 6.1.4 that A^{+}is a left inverse of A. Hence, it follows from (6.1.13) that $x=A^{+} b$ is the unique solution to $A x=b$. In addition, $x=A^{\mathrm{L}} b$. To prove $\left.i x\right)$ let $x=A^{\mathrm{R}} b$ and note that $A A^{\mathrm{R}} b=b$.

Definition 6.1.8. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{n \times l}, C \in \mathbb{F}^{k \times m}$, and $D \in \mathbb{F}^{k \times l}$, and define $\mathcal{A} \triangleq\left[\begin{array}{ll}A & B \\ C & D\end{array}\right] \in \mathbb{F}^{(n+k) \times(m+l)}$. Then, the Schur complement $D \mid \mathcal{A}$ of D with respect to \mathcal{A} is defined by

$$
\begin{equation*}
D \mid \mathcal{A} \triangleq A-B D^{+} C . \tag{6.1.15}
\end{equation*}
$$

Likewise, the Schur complement $A \mid \mathcal{A}$ of A with respect to \mathcal{A} is defined by

$$
\begin{equation*}
A \mid \mathcal{A} \triangleq D-C A^{+} B . \tag{6.1.16}
\end{equation*}
$$

6.2 Drazin Generalized Inverse

We now introduce a different type of generalized inverse, which applies only to square matrices but which is more useful in certain applications. Let $A \in \mathbb{F}^{n \times n}$. Then, A has a decomposition

$$
A=S\left[\begin{array}{cc}
J_{1} & 0 \tag{6.2.1}\\
0 & J_{2}
\end{array}\right] S^{-1},
$$

where $S \in \mathbb{F}^{n \times n}$ is nonsingular, $J_{1} \in \mathbb{F}^{m \times m}$ is nonsingular, and $J_{2} \in$ $\mathbb{F}^{(n-m) \times(n-m)}$ is nilpotent. Then, the Drazin generalized inverse A^{D} of A is the matrix

$$
A^{\mathrm{D}} \triangleq S\left[\begin{array}{cc}
J_{1}^{-1} & 0 \tag{6.2.2}\\
0 & 0
\end{array}\right] S^{-1}
$$

Let $A \in \mathbb{F}^{n \times n}$. Then, it follows from Definition 5.5 .1 that ind $A=$ $\operatorname{ind}_{A}(0)$. If A is nonsingular, then ind $A=0$, whereas ind $A=1$ if and only if A is singular and the zero eigenvalue of A is semisimple. In particular, ind $0_{n \times n}=1$. Note that ind A is the size of the largest Jordan block of A associated with the zero eigenvalue of A.

It can be seen that A^{D} satisfies

$$
\begin{gather*}
A^{\mathrm{D}} A A^{\mathrm{D}}=A^{\mathrm{D}}, \tag{6.2.3}\\
A A^{\mathrm{D}}=A^{\mathrm{D}} A, \tag{6.2.4}\\
A^{k+1} A^{\mathrm{D}}=A^{k}, \tag{6.2.5}
\end{gather*}
$$

where $k=\operatorname{ind} A$. Hence, for all $A \in \mathbb{F}^{n \times n}$ such that ind $A=k$ there exists a matrix $X \in \mathbb{F}^{n \times n}$ satisfying the three conditions

$$
\begin{gather*}
X A X=X \tag{6.2.6}\\
A X=X A \tag{6.2.7}\\
A^{k+1} X=A^{k} \tag{6.2.8}
\end{gather*}
$$

We now show that X is uniquely defined by (6.2.6)-(6.2.8).
Theorem 6.2.1. Let $A \in \mathbb{F}^{n \times n}$, and let $k \triangleq$ ind A. Then, $X=A^{\mathrm{D}}$ is the unique matrix $X \in \mathbb{F}^{n \times n}$ satisfying (6.2.6)-(6.2.8).

Proof. Let $X \in \mathbb{F}^{n \times n}$ satisfy (6.2.6)-(6.2.8). If $k=0$, then it follows from (6.2.8) that $X=A^{-1}$. Hence, let $A=S\left[\begin{array}{cc}J_{1} & 0 \\ 0 & J_{2}\end{array}\right] S^{-1}$, where $k=\operatorname{ind} A \geq 1, S \in \mathbb{F}^{n \times n}$ is nonsingular, $J_{1} \in \mathbb{F}^{m \times m}$ is nonsingular, and $J_{2} \in \mathbb{F}^{(n-m) \times(n-m)}$ is nilpotent. Now, let $\hat{X} \triangleq S^{-1} X S=\left[\begin{array}{cc}\hat{X}_{1} & \hat{X}_{12} \\ \hat{X}_{21} & \hat{X}_{2}\end{array}\right]$ be partitioned conformably with $S^{-1} A S=\left[\begin{array}{cc}J_{1} & 0 \\ 0 & J_{2}\end{array}\right]$. Since, by (6.2.7), $\hat{A} \hat{X}=\hat{X} \hat{A}$, it follows that $J_{1} \hat{X}_{1}=\hat{X}_{1} J_{1}, J_{1} \hat{X}_{12}=\hat{X}_{12} J_{2}, J_{2} \hat{X}_{21}=\hat{X}_{21} J_{1}$, and $J_{2} \hat{X}_{2}=\hat{X}_{2} J_{2}$. Since $J_{2}^{k}=0$, it follows that $J_{1} \hat{X}_{12} J_{2}^{k-1}=0$, and thus $\hat{X}_{12} J_{2}^{k-1}=0$. By repeating this argument, it follows that $J_{1} \hat{X}_{12} J_{2}=0$, and thus $\hat{X}_{12} J_{2}=0$, which implies that $J_{1} \hat{X}_{12}=0$ and thus $\hat{X}_{12}=0$. Similarly, $\hat{X}_{21}=0$, so that $\hat{X}=\left[\begin{array}{cc}\hat{X}_{1} & 0 \\ 0 & \hat{X}_{2}\end{array}\right]$. Now, (6.2.8) implies that $J_{1}^{k+1} \hat{X}_{1}=J_{1}^{k}$ and hence $\hat{X}_{1}=J_{1}^{-1}$. Next, (6.2.6) implies that $\hat{X}_{2} J_{2} \hat{X}_{2}=\hat{X}_{2}$, which, together with $J_{2} \hat{X}_{2}=\hat{X}_{2} J_{2}$, yields $\hat{X}_{2}^{2} J_{2}=\hat{X}_{2}$. Consequently, $0=\hat{X}_{2}^{2} J_{2}^{k}=\hat{X}_{2} J_{2}^{k-1}$ and thus, by repeating this argument, $\hat{X}_{2}=0$. Therefore, $A^{\mathrm{D}}=S\left[\begin{array}{cc}J_{1}^{-1} & 0 \\ 0 & 0\end{array}\right] S^{-1}=S\left[\begin{array}{cc}\hat{X}_{1} & 0 \\ 0 & 0\end{array}\right] S^{-1}=$ $S \hat{X} S^{-1}=X$.

Let $A \in \mathbb{F}^{n \times n}$, and assume that ind $A \leq 1$ so that A is group invertible. In this case, the Drazin inverse A^{D} is denoted by $A^{\#}$, which is the group
generalized inverse of A. Therefore, $A^{\#}$ satisfies

$$
\begin{gather*}
A^{\#} A A^{\#}=A^{\#} \tag{6.2.9}\\
A A^{\#}=A^{\#} A \tag{6.2.10}\\
A A^{\#} A=A \tag{6.2.11}
\end{gather*}
$$

while $A^{\#}$ is the unique matrix $X \in \mathbb{F}^{n \times n}$ satisfying

$$
\begin{align*}
& X A X=X \tag{6.2.12}\\
& A X=X A \tag{6.2.13}\\
& A X A=A \tag{6.2.14}
\end{align*}
$$

Proposition 6.2.2. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is group invertible. Then, the following statements hold:
i) $A=0$ if and only if $A^{\#}=0$.
ii) $\left(A^{\#}\right)^{\#}=A$.
iii) If A is idempotent, then $A^{\#}=A$.
iv) $A A^{\#}$ and $A^{\#} A$ are idempotent.
v) $\left(A^{\mathrm{T}}\right)^{\#}=\left(A^{\#}\right)^{\mathrm{T}}$.
vi) $\operatorname{rank} A=\operatorname{rank} A^{\#}=\operatorname{rank} A A^{\#}=\operatorname{rank} A^{\#} A$.
vii) $\mathcal{R}(A)=\mathcal{R}\left(A A^{\#}\right)=\mathcal{N}\left(I-A A^{\#}\right)=\mathcal{R}\left(A A^{+}\right)=\mathcal{N}\left(I-A A^{+}\right)$.
viii) $\mathcal{N}(A)=\mathcal{N}\left(A A^{\#}\right)=\mathcal{R}\left(I-A A^{\#}\right)=\mathcal{N}\left(A^{+} A\right)=\mathcal{R}\left(I-A^{+} A\right)$.
ix) $A A^{\#}$ is the idempotent matrix onto $\mathcal{R}(A)$ along $\mathcal{N}(A)$.

An alternative expression for the idempotent matrix onto $\mathcal{R}(A)$ along $\mathcal{N}(A)$ is given by Proposition 5.5.9.

6.3 Facts on the Moore-Penrose Generalized Inverse Involving One Matrix

Fact 6.3.1. Let $A \in \mathbb{F}^{n \times m}$, and assume that $\operatorname{rank} A=1$. Then,

$$
A^{+}=\left(\operatorname{tr} A A^{*}\right)^{-1} A^{*}
$$

Consequently, if $x \in \mathbb{F}^{n}$ and $y \in \mathbb{F}^{n}$ are nonzero, then

$$
\left(x y^{*}\right)^{+}=\left(x^{*} x y^{*} y\right)^{-1} y x^{*}
$$

Fact 6.3.2. Let $A \in \mathbb{F}^{n \times m}$, and assume that $\operatorname{rank} A=m$. Then,

$$
\left(A A^{*}\right)^{+}=A\left(A^{*} A\right)^{-2} A^{*}
$$

Fact 6.3.3. Let $A \in \mathbb{F}^{n \times m}$. Then,

$$
A^{+}=\lim _{\alpha \downarrow 0} A^{*}\left(A A^{*}+\alpha I\right)^{-1}=\lim _{\alpha \downarrow 0}\left(A^{*} A+\alpha I\right)^{-1} A^{*} .
$$

Fact 6.3.4. Let $A \in \mathbb{F}^{n \times m}$, let $\chi_{A A^{*}}(s)=s^{n}+\beta_{n-1} s^{n-1}+\cdots+\beta_{1} s+\beta_{0}$, and let $n-k$ denote the smallest integer in $\{0, \ldots, n-1\}$ such that $\beta_{k} \neq 0$. Then,

$$
A^{+}=-\beta_{n-k}^{-1} A^{*}\left[\left(A A^{*}\right)^{k-1}+\beta_{n-1}\left(A A^{*}\right)^{k-2}+\cdots+\beta_{n-k+1} I\right] .
$$

(Proof: See [168].)
Fact 6.3.5. Let $A \in \mathbb{F}^{n \times n}$ and assume that A is Hermitian. Then, $\operatorname{In} A=\operatorname{In} A^{+}$.

Fact 6.3.6. Let $A \in \mathbb{F}^{n \times n}$ be a projector. Then, $A^{+}=A$.
Fact 6.3.7. Let $A \in \mathbb{F}^{n \times n}$. Then, $A^{+}=A$ if and only if A is tripotent and A^{2} is Hermitian.

Fact 6.3.8. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is idempotent. Then,

$$
A^{+} A+(I-A)(I-A)^{+}=I .
$$

(Proof: $\mathcal{N}(A)=\mathcal{R}\left(I-A^{+} A\right)=\mathcal{R}(I-A)=\mathcal{R}\left[(I-A)\left(I-A^{+}\right)\right]$.)
Fact 6.3.9. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is idempotent. Then,

$$
A^{*} A^{+} A=A^{+} A
$$

and

$$
A A^{+} A^{*}=A A^{+} .
$$

(Proof: Note that $A^{*} A^{+} A$ is a projector and $\mathcal{R}\left(A^{*} A^{+} A\right)=\mathcal{R}\left(A^{*}\right)=\mathcal{R}\left(A^{+} A\right)$.)
Fact 6.3.10. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is idempotent. Then, $A+A^{*}-I$ is nonsingular, and

$$
\left(A+A^{*}-I\right)^{-1}=A A^{+}+A^{+} A-I .
$$

(Proof: Use Fact 6.3.9.) (Remark: See [416, p. 457] for a geometric interpretation of this identity.)

Fact 6.3.11. Let $A \in \mathbb{F}^{n \times n}$, and let $r \triangleq \operatorname{rank} A$. Then, $A^{+}=A^{*}$ if and only if $\sigma_{1}(A)=\sigma_{r}(A)=1$.

Fact 6.3.12. Let $A \in \mathbb{F}^{n \times m}$ where $A \neq 0$, and let $r \triangleq \operatorname{rank} A$. Then, for all $i=1, \ldots, r$, the singular values of A^{+}are given by

$$
\sigma_{i}\left(A^{+}\right)=\sigma_{r+1-i}^{-1}(A) .
$$

In particular,

$$
\sigma_{r}(A)=1 / \sigma_{\max }\left(A^{+}\right) .
$$

If, in addition, $A \in \mathbb{F}^{n \times n}$ and A is nonsingular, then

$$
\sigma_{\min }(A)=1 / \sigma_{\max }\left(A^{-1}\right)
$$

Fact 6.3.13. Let $A \in \mathbb{F}^{n \times m}$. Then, $X=A^{+}$is the unique matrix satisfying

$$
\operatorname{rank}\left[\begin{array}{cc}
A & A A^{+} \\
A^{+} A & X
\end{array}\right]=\operatorname{rank} A
$$

(Remark: See Fact 2.13.39 and Fact 6.5.5.) (Proof: See [203].)
Fact 6.3.14. Let $A \in \mathbb{F}^{n \times n}$ be centrohermitian. Then, A^{+}is centrohermitian. (Proof: See [359].)

Fact 6.3.15. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) $A^{2}=A A^{*} A$.
ii) A is the product of two projectors.
iii) $A=A\left(A^{+}\right)^{2} A$.
(Remark: This result is due to Crimmins. See [474].)
Fact 6.3.16. Let $A \in \mathbb{F}^{n \times m}$. Then,

$$
A^{+}=4\left(I+A^{+} A\right)^{+} A^{+}\left(I+A A^{+}\right)^{+} .
$$

(Proof: Use Fact 6.4.20 with $B=A$.)
Fact 6.3.17. Let $A \in \mathbb{F}^{n \times n}$ be unitary. Then,

$$
\lim _{k \rightarrow \infty} \frac{1}{k} \sum_{i=0}^{k-1} A^{i}=I-(A-I)(A-I)^{+} .
$$

(Remark: $I-(A-I)(A-I)^{+}$is the projector onto $\{x: A x=x\}=\mathcal{N}(A-I)$.) (Remark: This result is the ergodic theorem.) (Proof: Use Fact 11.15.12 and Fact 11.15.14 and note that $(A-I)^{*}=(A-I)^{+}$. See [258, p. 185].)

Fact 6.3.18. Let $A \in \mathbb{F}^{n \times m}$, and define $\left\{B_{i}\right\}_{i=1}^{\infty}$ by

$$
B_{i+1} \triangleq 2 B_{i}-B_{i} A B_{i},
$$

where $B_{0} \triangleq \alpha A^{*}$ and $\alpha \in\left(0,2 / \sigma_{\text {max }}^{2}(A)\right)$. Then,

$$
\lim _{i \rightarrow \infty} B_{i}=A^{+} .
$$

(Proof: See [64, p. 259] or [124, p. 250]. This result is due to Ben-Israel.) (Remark: This sequence is a Newton-Raphson algorithm.) (Remark: B_{0} satisfies $\operatorname{sprad}\left(I-B_{0} A\right)<1$.) (Remark: For the case in which A is square and nonsingular, see Fact 2.13.37.) (Problem: Does convergence hold for all $B_{0} \in \mathbb{F}^{n \times n}$ satisfying $\operatorname{sprad}\left(I-B_{0} A\right)<1$?)

6.4 Facts on the Moore-Penrose Generalized Inverse Involving Two or More Matrices

Fact 6.4.1. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$. Then, $A B=0$ if and only if $B^{+} A^{+}=0$.

Fact 6.4.2. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{n \times l}$. Then, $A^{+} B=0$ if and only if $A^{*} B=0$.

Fact 6.4.3. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$. Then,

$$
(A B)^{+}=B_{1}^{+} A_{1}^{+}
$$

where $B_{1} \triangleq A^{+} A B$ and $A_{1} \triangleq A B_{1} B_{1}^{+}$. That is,

$$
(A B)^{+}=\left(A^{+} A B\right)^{+}\left[A B\left(A^{+} A B\right)^{+}\right]^{+}
$$

(Proof: See [6, p. 55].) (Remark: This result is due to Cline.)
Fact 6.4.4. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$. Then,

$$
(A B)^{+}=B^{+} A^{+}
$$

if and only if $\mathcal{R}\left(B B^{*} A^{*}\right) \subseteq \mathcal{R}\left(A^{*}\right)$ and $\mathcal{R}\left(A^{*} A B\right) \subseteq \mathcal{R}(B)$. (Proof: See [6, p. 53].) (Remark: This result is due to Greville.)

Fact 6.4.5. Let $A \in \mathbb{F}^{n \times r}$ and $B \in \mathbb{F}^{r \times m}$, and assume that $\operatorname{rank} A=$ $\operatorname{rank} B=r$. Then,

$$
(A B)^{+}=B^{+} A^{+}=B^{*}\left(B B^{*}\right)^{-1}\left(A^{*} A\right)^{-1} A^{*}
$$

Fact 6.4.6. Let $A, B \in \mathbb{F}^{n \times n}$ be range Hermitian. If $(A B)^{+}=A^{+} B^{+}$, then $A B$ is range Hermitian. (Proof: See [268].) (Remark: See Fact 8.9.10.)

Fact 6.4.7. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$, and assume that $\operatorname{rank} B=$ m. Then,

$$
A B(A B)^{+}=A A^{+}
$$

Fact 6.4.8. Let $A \in \mathbb{F}^{n \times m}$, let $B \in \mathbb{F}^{m \times n}$ satisfy $B A A^{*}=A^{*}$, and let
$C \in \mathbb{F}^{m \times n}$ satisfy $A^{*} A C=A^{*}$. Then,

$$
A^{+}=B A C .
$$

(Proof: See [6, p. 36].) (Remark: This result is due to Decell.)
Fact 6.4.9. Let $A \in \mathbb{F}^{n \times m}$. Then, there exists $B \in \mathbb{F}^{m \times m}$ satisfying $B A B=B$ if and only if there exist projectors $C \in \mathbb{F}^{n \times n}$ and $D \in \mathbb{F}^{m \times m}$ such that $B=(C A D)^{+}$. (Proof: See [245].)

Fact 6.4.10. Let $A \in \mathbb{F}^{n \times n}$. Then, A is idempotent if and only if there exist projectors $B, C \in \mathbb{F}^{n \times n}$ such that $A=(B C)^{+}$. (Proof: Let $A=I$ in Fact 6.4.9.) (Remark: See [247].)

Fact 6.4.11. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{n \times l}, C \in \mathbb{F}^{k \times m}, D \in \mathbb{F}^{k \times l}$. Then,

$$
\begin{aligned}
\operatorname{rank}\left[\begin{array}{ll}
A & B
\end{array}\right] & =\operatorname{rank} A+\operatorname{rank}\left(B-A A^{+} B\right) \\
& =\operatorname{rank} B+\operatorname{rank}\left(A-B B^{+} A\right),
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{rank}\left[\begin{array}{c}
A \\
C
\end{array}\right] & =\operatorname{rank} A+\operatorname{rank}\left(C-C A^{+} A\right) \\
& =\operatorname{rank} C+\operatorname{rank}\left(A-A C^{+} C\right),
\end{aligned}
$$

$\operatorname{rank}\left[\begin{array}{cc}A & B \\ C & 0\end{array}\right]=\operatorname{rank} B+\operatorname{rank} C+\operatorname{rank}\left[\left(I_{n}-B B^{+}\right) A\left(I_{m}-C^{+} C\right)\right]$.
Now, define $\mathcal{A} \triangleq\left[\begin{array}{cc}A & B \\ C & D\end{array}\right]$. Then,

$$
\begin{aligned}
\operatorname{rank} \mathcal{A} & =\operatorname{rank} A+\operatorname{rank} X+\operatorname{rank} Y \\
& +\operatorname{rank}\left[\left(I_{k}-Y Y^{+}\right)(D \mid \mathcal{A})\left(I_{p}-X^{+} X\right)\right],
\end{aligned}
$$

where $X \triangleq B-A A^{+} B$ and $Y \triangleq C-C A^{+} A$. Consequently,

$$
\operatorname{rank} A+\operatorname{rank}(D \mid \mathcal{A}) \leq \operatorname{rank} \mathcal{A}
$$

Furthermore, if $A A^{+} B=B$ and $C A^{+} A=C$, then

$$
\operatorname{rank} A+\operatorname{rank}(D \mid \mathcal{A})=\operatorname{rank} \mathcal{A}
$$

Finally, if $n=m$ and A is nonsingular, then

$$
\operatorname{rank} A+\operatorname{rank}\left(D-C A^{-1} B\right) \leq \operatorname{rank} \mathcal{A}
$$

(Proof: See $[128,398]$.$) (Remark: With certain restrictions the generalized$ inverses can be replaced by (1)-inverses.) (Remark: See Proposition 2.8.3.)

Fact 6.4.12. Let $A, B \in \mathbb{F}^{n \times n}$. Then,

$$
\begin{aligned}
\operatorname{rank}\left[\begin{array}{cc}
0 & A \\
B & I
\end{array}\right] & =\operatorname{rank} A+\operatorname{rank}\left[\begin{array}{cc}
B & I-A^{+} A
\end{array}\right] \\
& =\operatorname{rank}\left[\begin{array}{c}
A \\
I-B B^{+}
\end{array}\right]+\operatorname{rank} B \\
& =\operatorname{rank} A+\operatorname{rank} B+\operatorname{rank}\left[\left(I-B B^{+}\right)\left(I-A^{+} A\right)\right] \\
& =n+\operatorname{rank} A B .
\end{aligned}
$$

Hence, the following statements hold:
i) $\operatorname{rank} A B=\operatorname{rank} A+\operatorname{rank} B-n$ if and only if $\left(I-B B^{+}\right)\left(I-A^{+} A\right)=0$.
ii) $\operatorname{rank} A B=\operatorname{rank} A$ if and only if [$B \quad I-A^{+} A$] is right invertible.
iii) $\operatorname{rank} A B=\operatorname{rank} B$ if and only if $\left[\stackrel{A}{{ }_{I-B B^{+}}}\right]$is left invertible.
(Proof: See [398].) (Remark: The generalized inverses can be replaced by arbitrary (1)-inverses.)

Fact 6.4.13. Let $A \in \mathbb{F}^{n \times m}$ and $b \in \mathbb{F}^{n}$. Then,

$$
\left[\begin{array}{ll}
A & b
\end{array}\right]^{+}=\left[\begin{array}{c}
A^{+}[I-b c] \\
c
\end{array}\right],
$$

where

$$
c \triangleq \begin{cases}\left(b-A A^{+} b\right)^{+}, & b \neq A A^{+} b, \\ \frac{b^{*}\left(A A^{*}\right)^{+}}{1+b^{*}\left(A A^{*}\right)^{+} b}, & b=A A^{+} b .\end{cases}
$$

(Proof: See [6, p. 44], [202, p. 270], or [505, p. 148].) (Remark: This result is due to Greville.)

Fact 6.4.14. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{n \times l}$. Then,

$$
\left[\begin{array}{ll}
A & B
\end{array}\right]^{+}=\left[\begin{array}{c}
A^{+}-A^{+} B\left(C^{+}+D\right) \\
C^{+}+D
\end{array}\right]
$$

where

$$
C \triangleq\left(I-A A^{+}\right) B
$$

and
$D \triangleq\left(I-C^{+} C\right)\left[I+\left(I-C^{+} C\right) B^{*}\left(A A^{*}\right)^{+} B\left(I-C^{+} C\right)\right]^{-1} B^{*}\left(A A^{*}\right)^{+}\left(I-B C^{+}\right)$.

Furthermore,

$$
\left[\begin{array}{ll}
A & B
\end{array}\right]^{+}= \begin{cases}{\left[\begin{array}{l}
A^{*}\left(A A^{*}+B B^{*}\right)^{-1} \\
B^{*}\left(A A^{*}+B B^{*}\right)^{-1}
\end{array}\right],} & \operatorname{rank}\left[\begin{array}{cc}
A & B
\end{array}\right]=n \\
{\left[\begin{array}{cc}
A^{*} A & A^{*} B \\
B^{*} A & B^{*} B
\end{array}\right]^{-1}\left[\begin{array}{c}
A^{*} \\
B^{*}
\end{array}\right],} & \operatorname{rank}\left[\begin{array}{ll}
A & B
\end{array}\right]=m+l, \\
{\left[\begin{array}{c}
A^{*}\left(A A^{*}\right)^{-1}(I-B E) \\
E
\end{array}\right], \quad \operatorname{rank} A=n}\end{cases}
$$

where

$$
E \triangleq\left[I+B^{*}\left(A A^{*}\right)^{-1} B\right]^{-1} B^{*}\left(A A^{*}\right)^{-1}
$$

(Proof: See [147] or [387, p. 14].) (Remark: If $\left[\begin{array}{ll}A & B\end{array}\right]$ is square and nonsingular and $A^{*} B=0$, then the second expression yields Fact 2.13.33.)

Fact 6.4.15. Let $A \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite, let $B \in \mathbb{F}^{n \times m}$, and define

$$
\mathcal{A} \triangleq\left[\begin{array}{cc}
A & B \\
B^{*} & 0
\end{array}\right]
$$

Then,

$$
\mathcal{A}^{+}=\left[\begin{array}{cc}
C^{+}-C^{+} B D^{+} B^{*} C^{+} & C^{+} B D^{+} \\
\left(C^{+} B D^{+}\right)^{*} & D D^{+}-D^{+}
\end{array}\right]
$$

where

$$
C \triangleq A+B B^{*}, \quad D \triangleq B^{+} C^{+} C
$$

(Proof: See [388, p. 58].) (Remark: Representations for the generalized inverse of a partitioned matrix are given in $[47,57,76,121,124,266,301,414$, $415,417,418,478,489,550,593]$.

Fact 6.4.16. Let $A \in \mathbb{F}^{n \times n}$ be Hermitian, let $b \in \mathbb{F}^{n}$, and define $S \triangleq I-A^{+} A$. Then,

$$
\begin{aligned}
& \left(A+b b^{*}\right)^{+} \\
& =\left\{\begin{array}{lr}
{\left[I-\left(b^{*} S b\right)^{-1} S b b^{*}\right] A^{+}\left[I-\left(b^{*} S b\right)^{-1} b b^{*} S\right]+\left(b^{*} S b\right)^{-2} S b b^{*} S,} & S b \neq 0, \\
A^{+}-\left(1+b^{*} A^{+} b\right) A^{+} b b^{*} A^{+}, & 1+b^{*} A^{+} b \neq 0 \\
{\left[I-\left(b^{*} A^{2+} b\right)^{-1} A^{+} b b^{*} A^{+}\right] A^{+}\left[I-\left(b^{*} A^{2+} b\right)^{-1} A^{+} b b^{*} A^{+}\right],} & b^{*} A^{+} b=0
\end{array}\right.
\end{aligned}
$$

(Proof: See [421].) (Remark: Expressions for $\left(A+B B^{*}\right)^{+}$, where $B \in \mathbb{F}^{n \times l}$, are given in [421].)

Fact 6.4.17. Let $A \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite, let $C \in \mathbb{F}^{m \times m}$ be positive definite, and let $B \in \mathbb{F}^{n \times m}$. Then,

$$
\left(A+B C B^{*}\right)^{+}=A^{+}-A^{+} B\left(C^{-1}+B^{*} A^{+} B\right)^{-1} B^{*} A^{+}
$$

if and only if

$$
A A^{+} B=B .
$$

(Proof: See [442].) (Remark: $A A^{+} B=B$ is equivalent to $\mathcal{R}(B) \subseteq \mathcal{R}(A)$.)
Fact 6.4.18. Let $A, B \in \mathbb{F}^{n \times m}$, and assume that $A^{*} B=0$ and $B A^{*}=$ 0 . Then,

$$
(A+B)^{+}=A^{+}+B^{+} .
$$

(Proof: Use Fact 2.10.6 and Fact 6.4.19. See [148].) (Remark: This result is due to Penrose.)

Fact 6.4.19. Let $A, B \in \mathbb{F}^{n \times m}$, and assume that $\operatorname{rank}(A+B)=$ $\operatorname{rank} A+\operatorname{rank} B$. Then,

$$
(A+B)^{+}=\left(I-C^{+} B\right) A^{+}\left(I-B C^{+}\right)+C^{+},
$$

where $C \triangleq\left(I-A A^{+}\right) B\left(I-A^{+} A\right)$. (Proof: See [148].)
Fact 6.4.20. Let $A, B \in \mathbb{F}^{n \times m}$. Then,

$$
(A+B)^{+}=\left(I+A^{+} B\right)^{+}\left(A^{+}+A^{+} B A^{+}\right)\left(I+B A^{+}\right)^{+}
$$

if and only if $A A^{+} B=B=B A^{+} A$. Furthermore, if $n=m$ and A is nonsingular, then

$$
(A+B)^{+}=\left(I+A^{-1} B\right)^{+}\left(A^{-1}+A^{-1} B A^{-1}\right)\left(I+B A^{-1}\right)^{+} .
$$

(Proof: See [148].) (Remark: If A and $A+B$ are nonsingular, then the last statement yields $(A+B)^{-1}=(A+B)^{-1}(A+B)(A+B)^{-1}$ for which the assumption that A is nonsingular is superfluous.)

Fact 6.4.21. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{l \times k}$, and $C \in \mathbb{F}^{n \times k}$. Then, there exists $X \in \mathbb{F}^{m \times l}$ satisfying $A X B=C$ if and only if $A A^{+} C B^{+} B=C$. Furthermore, X satisfies $A X B=C$ if and only if there exists $Y \in \mathbb{F}^{m \times l}$ such that

$$
X=A^{+} C B^{+}+Y-A^{+} A Y B B^{+} .
$$

Finally, if $Y=0$, then $\operatorname{tr} X^{*} X$ is minimized. (Proof: Use Proposition 6.1.7. See [388, p. 37] and, for Hermitian solutions, see [330].)

Fact 6.4.22. Let $A \in \mathbb{F}^{n \times m}$, and assume that $\operatorname{rank} A=m$. Then, $A^{\mathrm{L}} \in \mathbb{F}^{m \times n}$ is a left inverse of A if and only if there exists $B \in \mathbb{F}^{m \times n}$ such that

$$
A^{\mathrm{L}}=A^{+}+B\left(I-A A^{+}\right) .
$$

(Proof: Use Fact 6.4.16 with $A=C=I_{m}$.)
Fact 6.4.23. Let $A \in \mathbb{F}^{n \times m}$, and assume that $\operatorname{rank} A=n$. Then, $A^{\mathrm{R}} \in \mathbb{F}^{m \times n}$ is a right inverse of A if and only if there exists $B \in \mathbb{F}^{m \times n}$ such that

$$
A^{\mathrm{R}}=A^{+}+\left(I-A^{+} A\right) B .
$$

(Proof: Use Fact 6.4.21 with $B=C=I_{n}$.)
Fact 6.4.24. Let $A \in \mathbb{F}^{n \times n}, x, y \in \mathbb{F}^{n}$, and $a \in \mathbb{F}$, and assume that $x \in \mathcal{R}(A)$. Then,

$$
\left[\begin{array}{cc}
A & x \\
y^{\mathrm{T}} & a
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
y^{\mathrm{T}} & 1
\end{array}\right]\left[\begin{array}{cc}
A & 0 \\
y^{\mathrm{T}}-y^{\mathrm{T}} A & a-y^{\mathrm{T}} A^{+} x
\end{array}\right]\left[\begin{array}{cc}
I & A^{+} x \\
0 & 1
\end{array}\right] .
$$

(Remark: See Fact 2.12.4 and Fact 2.12 .13 and note that $x=A A^{+} x$.) (Problem: Obtain a factorization for the case $x \notin \mathcal{R}(A)$.)

Fact 6.4.25. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{n \times l}$. Then,

$$
\begin{aligned}
\operatorname{det}\left[\begin{array}{cc}
A^{*} A & B^{*} A \\
B^{*} A & B^{*} B
\end{array}\right] & =\operatorname{det}\left(A^{*} A\right) \operatorname{det}\left[B^{*}\left(I-A A^{+}\right) B\right] \\
& =\operatorname{det}\left(B^{*} B\right) \operatorname{det}\left[A^{*}\left(I-B B^{+}\right) A\right] .
\end{aligned}
$$

Fact 6.4.26. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{n \times m}, C \in \mathbb{F}^{m \times n}$, and $D \in \mathbb{F}^{m \times m}$, assume that either $\operatorname{rank}\left[\begin{array}{ll}A & B\end{array}\right]=\operatorname{rank} A$ or $\operatorname{rank}\left[\begin{array}{l}A \\ C\end{array}\right]=\operatorname{rank} A$, and let A^{-}be a (1)-inverse of A. Then,

$$
\operatorname{det}\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=(\operatorname{det} A) \operatorname{det}\left(D-C A^{-} B\right)
$$

(Proof: See [64, p. 266].)
Fact 6.4.27. Let $A, B \in \mathbb{F}^{n \times n}$ be projectors. Then,

$$
\lim _{k \rightarrow \infty} A(B A)^{k}=2 A(A+B)^{+} B
$$

Furthermore, $2 A(A+B)^{+} B$ is the projector onto $\mathcal{R}(A) \cap \mathcal{R}(B)$. (Proof: See [20].) (Remark: See Fact 6.4.28 and Fact 8.9.9.)

Fact 6.4.28. Let $A \in \mathbb{R}^{n \times m}$ and $B \in \mathbb{R}^{n \times l}$. Then,

$$
\mathcal{R}(A) \cap \mathcal{R}(B)=\mathcal{R}\left[A A^{+}\left(A A^{+}+B B^{+}\right)^{+} B B^{+}\right] .
$$

(Remark: See Theorem 2.3.1, and Fact 8.9.9.)
Fact 6.4.29. Let $A \in \mathbb{R}^{n \times m}$ and $B \in \mathbb{R}^{n \times l}$. Then, $\mathcal{R}(A) \subseteq \mathcal{R}(B)$ if and only if $B B^{+} A=A$. (Proof: See [6, p. 35].)

Fact 6.4.30. Let $A \in \mathbb{R}^{n \times m}$ and $B \in \mathbb{R}^{n \times l}$. Then, $\operatorname{rank} A A^{+}\left(A A^{+}+B B^{+}\right)^{+} B B^{+}=\operatorname{rank} A+\operatorname{rank} B-\operatorname{rank}\left[\begin{array}{ll}A & B\end{array}\right]$.
(Proof: Use Fact 6.4.28, Fact 2.10.26, and Fact 2.10.22.)
Fact 6.4.31. Let $A \in \mathbb{F}^{n \times m}$ and $b \in \mathbb{F}^{n}$, and define $f(x) \triangleq(A x-$ $b)^{*}(A x-b)$, where $x \in \mathbb{F}^{m}$. Then, x minimizes f if and only if there exists $y \in \mathbb{F}^{m}$ such that

$$
x=A^{+} b+\left(I-A^{+} A\right) y .
$$

In this case,

$$
f(x)=b^{*}\left(I-A A^{+}\right) b .
$$

Finally, f has a unique minimizer if and only if A is left invertible. (Remark: The minimization of f is the least squares problem. See $[6,100]$.)

Fact 6.4.32. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{n \times l}$, and define

$$
f(X) \triangleq \operatorname{tr}\left[(A X-B)^{*}(A X-B)\right],
$$

where $X \in \mathbb{F}^{m \times l}$. Then, $X=A^{+} B$ minimizes f. (Problem: Determine all minimizers.) (Problem: Consider $f(X)=\operatorname{tr}\left[(A X-B)^{*} C(A X-B)\right]$, where $C \in \mathbb{F}^{n \times n}$ is positive definite.)

Fact 6.4.33. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{l \times m}$, and define

$$
f(X) \triangleq \operatorname{tr}\left[(X A-B)^{*}(X A-B)\right],
$$

where $X \in \mathbb{F}^{l \times n}$. Then, $X=B A^{+}$minimizes f.
Fact 6.4.34. Let $A, B \in \mathbb{F}^{n \times m}$, and define

$$
f(X) \triangleq \operatorname{tr}\left[(A X-B)^{*}(A X-B)\right],
$$

where $X \in \mathbb{F}^{m \times m}$ is unitary. Then, $X=S_{1} S_{2}$ minimizes f, where $S_{1}\left[\begin{array}{cc}\hat{B} & 0 \\ 0 & 0\end{array}\right] S_{2}$ is the singular value decomposition of $A^{*} B$. (Proof: See [64, p. 224].)

Fact 6.4.35. Let $A \triangleq\left[\begin{array}{cc}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right] \in \mathbb{F}^{(n+m) \times(n+m)}, B \in \mathbb{F}^{(n+m) \times l}, C \in$ $\mathbb{F}^{l \times(n+m)}, D \in \mathbb{F}^{l \times l}$, and $\mathcal{A} \triangleq\left[\begin{array}{cc}A & B \\ C & D\end{array}\right]$, and assume that A and A_{11} are nonsingular. Then,

$$
A\left|\mathcal{A}=\left(A_{11} \mid A\right)\right|\left(A_{11} \mid \mathcal{A}\right) .
$$

(Proof: See [466, pp. 18, 19].) (Remark: This result is due to Haynsworth.) (Problem: Is the result true if either A or A_{11} is singular?)

6.5 Facts on the Drazin and Group Generalized Inverses

Fact 6.5.1. Let $A \in \mathbb{F}^{n \times n}$. Then, $A A^{\mathrm{D}}$ is idempotent.
Fact 6.5.2. Let $A \in \mathbb{F}^{n \times n}$. Then, $A=A^{\mathrm{D}}$ if and only if A is tripotent.
Fact 6.5.3. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\left(A^{*}\right)^{\mathrm{D}}=\left(A^{\mathrm{D}}\right)^{*} .
$$

Fact 6.5.4. Let $A \in \mathbb{F}^{n \times n}$, and let $r \in \mathbb{P}$. Then,

$$
\left(A^{\mathrm{D}}\right)^{r}=\left(A^{r}\right)^{\mathrm{D}} .
$$

Fact 6.5.5. Let $A \in \mathbb{F}^{n \times n}$. Then, $X=A^{\mathrm{D}}$ is the unique matrix satisfying

$$
\operatorname{rank}\left[\begin{array}{cc}
A & A A^{\mathrm{D}} \\
A^{\mathrm{D}} A & X
\end{array}\right]=\operatorname{rank} A
$$

(Remark: See Fact 2.13.39 and Fact 6.3.13.) (Proof: See [631].)
Fact 6.5.6. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that $A B=B A$. Then,

$$
\begin{gathered}
(A B)^{\mathrm{D}}=B^{\mathrm{D}} A^{\mathrm{D}}, \\
A^{\mathrm{D}} B=B A^{\mathrm{D}}, \\
A B^{\mathrm{D}}=B^{\mathrm{D}} A .
\end{gathered}
$$

Fact 6.5.7. Let $A \in \mathbb{F}^{n \times n}$, and assume that $\operatorname{ind} A=\operatorname{rank} A=1$. Then,

$$
A^{\#}=\left(\operatorname{tr} A^{2}\right)^{-1} A .
$$

Consequently, if $x, y \in \mathbb{F}^{n}$ satisfy $x^{*} y \neq 0$, then

$$
\left(x y^{*}\right)^{\#}=\left(x^{*} y\right)^{-2} x y^{*} .
$$

In particular, $1_{n \times n}^{\#}=n^{-2} 1_{n \times n}$.
Fact 6.5.8. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) A is range Hermitian.
ii) $A^{+} A=A A^{+}$.
iii) $A^{+}=A^{\mathrm{D}}$.
iv) ind $A \leq 1$ and $A^{+}=A^{\#}$.
$v)$ ind $A \leq 1$ and $\left(A^{+}\right)^{2}=\left(A^{2}\right)^{+}$.
vi) There exists a nonsingular matrix $B \in \mathbb{F}^{n \times n}$ such that $A=A^{*} B$.
(Proof: To prove $i) \Longrightarrow v i$) use Corollary 5.4.4 and $B=S\left[\begin{array}{cc}B_{0}^{-*} B_{0} & 0 \\ 0 & I\end{array}\right] S^{*}$.)
Fact 6.5.9. Let $A \in \mathbb{F}^{n \times n}$. Then, A is group invertible if and only if $\lim _{\alpha \rightarrow 0}(A+\alpha I)^{-1} A$ exists. In this case,

$$
\lim _{\alpha \rightarrow 0}(A+\alpha I)^{-1} A=A A^{\#}
$$

6.6 Notes

The proof of the uniqueness of A^{+}is given in [388]. Most of the results given in this chapter can be found in [124]. Reverse order laws for the generalized inverse of a product are discussed in [592]. Additional books on generalized inverses include [78,106,477]. Generalized inverses are widely used in least squares methods; see [102, 124, 355]. Applications to singular differential equations are considered in [123]. Historical remarks are given in [77].

Chapter Seven

Kronecker and Schur Algebra

In this chapter we introduce Kronecker matrix algebra, which is useful for analyzing linear matrix equations.

7.1 Kronecker Product

For $A \in \mathbb{F}^{n \times m}$ define the vec operator as

$$
\operatorname{vec} A \triangleq\left[\begin{array}{c}
\operatorname{col}_{1}(A) \tag{7.1.1}\\
\vdots \\
\operatorname{col}_{m}(A)
\end{array}\right] \in \mathbb{F}^{n m}
$$

which is the column vector of size $n m \times 1$ obtained by stacking the columns of A. We recover A from vec A by writing

$$
\begin{equation*}
A=\operatorname{vec}^{-1}(\operatorname{vec} A) \tag{7.1.2}
\end{equation*}
$$

Proposition 7.1.1. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times n}$. Then,

$$
\begin{equation*}
\operatorname{tr} A B=\left(\operatorname{vec} A^{\mathrm{T}}\right)^{\mathrm{T}} \operatorname{vec} B=\left(\operatorname{vec} B^{\mathrm{T}}\right)^{\mathrm{T}} \operatorname{vec} A \tag{7.1.3}
\end{equation*}
$$

Proof. Note that

$$
\begin{aligned}
\operatorname{tr} A B & =\sum_{i=1}^{n} e_{i}^{\mathrm{T}} A B e_{i}=\sum_{i=1}^{n} \operatorname{row}_{i}(A) \operatorname{col}_{i}(B) \\
& =\sum_{i=1}^{n}\left[\operatorname{col}_{i}\left(A^{\mathrm{T}}\right)\right]^{\mathrm{T}} \operatorname{col}_{i}(B) \\
& =\left[\begin{array}{lll}
\operatorname{col}_{1}^{\mathrm{T}}\left(A^{\mathrm{T}}\right) & \cdots & \operatorname{col}_{n}^{\mathrm{T}}\left(A^{\mathrm{T}}\right)
\end{array}\right]\left[\begin{array}{c}
\operatorname{col}_{1}(B) \\
\vdots \\
\operatorname{col}_{n}(B)
\end{array}\right] \\
& =\left(\operatorname{vec} A^{\mathrm{T}}\right)^{\mathrm{T}} \operatorname{vec} B .
\end{aligned}
$$

Next, we introduce the Kronecker product.

Definition 7.1.2. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{l \times k}$. Then, the Kronecker product $A \otimes B \in \mathbb{F}^{n l \times m k}$ of A is the partitioned matrix

$$
A \otimes B \triangleq\left[\begin{array}{cccc}
A_{(1,1)} B & A_{(1,2)} B & \cdots & A_{(1, m)} B \tag{7.1.4}\\
\vdots & \vdots & \cdots & \vdots \\
A_{(n, 1)} B & A_{(n, 2)} B & \cdots & A_{(n, m)} B
\end{array}\right]
$$

Unlike matrix multiplication, the Kronecker product $A \otimes B$ does not entail a restriction on either the size of A or the size of B.

The following results are immediate consequences of the definition of the Kronecker product.

Proposition 7.1.3. Let $\alpha \in \mathbb{F}, A \in \mathbb{F}^{n \times m}$, and $B \in \mathbb{F}^{l \times k}$. Then,

$$
\begin{gather*}
A \otimes(\alpha B)=(\alpha A) \otimes B=\alpha(A \otimes B), \tag{7.1.5}\\
\overline{A \otimes B}=\bar{A} \otimes \bar{B}, \tag{7.1.6}\\
(A \otimes B)^{\mathrm{T}}=A^{\mathrm{T}} \otimes B^{\mathrm{T}}, \tag{7.1.7}\\
(A \otimes B)^{*}=A^{*} \otimes B^{*} . \tag{7.1.8}
\end{gather*}
$$

Proposition 7.1.4. Let $A, B \in \mathbb{F}^{n \times m}$ and $C \in \mathbb{F}^{l \times k}$. Then,

$$
\begin{equation*}
(A+B) \otimes C=A \otimes C+B \otimes C \tag{7.1.9}
\end{equation*}
$$

and

$$
\begin{equation*}
C \otimes(A+B)=C \otimes A+C \otimes B \tag{7.1.10}
\end{equation*}
$$

Proposition 7.1.5. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{l \times k}$, and $C \in \mathbb{F}^{j \times i}$. Then,

$$
\begin{equation*}
A \otimes(B \otimes C)=(A \otimes B) \otimes C \tag{7.1.11}
\end{equation*}
$$

Hence, we write $A \otimes B \otimes C$ for $A \otimes(B \otimes C)$ and $(A \otimes B) \otimes C$.
The next result illustrates an important form of compatibility between matrix multiplication and the Kronecker product.

Proposition 7.1.6. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{l \times k}, C \in \mathbb{F}^{m \times j}$, and $D \in$ $\mathbb{F}^{k \times i}$, and assume that $m j=l k$. Then,

$$
\begin{equation*}
(A \otimes B)(C \otimes D)=A C \otimes B D . \tag{7.1.12}
\end{equation*}
$$

Proof. Note that the $i j$ block of $(A \otimes B)(C \otimes D)$ is given by

$$
\begin{aligned}
{[(A \otimes B)(C \otimes D)]_{i j} } & =\left[\begin{array}{lll}
A_{(i, 1)} B & \cdots & A_{(i, m)} B
\end{array}\right]\left[\begin{array}{c}
C_{(1, j)} D \\
\vdots \\
C_{(m, j)} D
\end{array}\right] \\
& =\sum_{k=1}^{m} A_{(i, k)} C_{(k, j)} B D=(A C)_{(i, j)} B D \\
& =(A C \otimes B D)_{i j} .
\end{aligned}
$$

Next, we consider the inverse of a Kronecker product.
Proposition 7.1.7. Suppose $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{m \times m}$ are nonsingular. Then,

$$
\begin{equation*}
(A \otimes B)^{-1}=A^{-1} \otimes B^{-1} \tag{7.1.13}
\end{equation*}
$$

Proof. Note that

$$
(A \otimes B)\left(A^{-1} \otimes B^{-1}\right)=A A^{-1} \otimes B B^{-1}=I_{n} \otimes I_{m}=I_{n m}
$$

Proposition 7.1.8. Let $x \in \mathbb{F}^{n}$ and $y \in \mathbb{F}^{m}$. Then,

$$
\begin{equation*}
x y^{\mathrm{T}}=x \otimes y^{\mathrm{T}}=y^{\mathrm{T}} \otimes x \tag{7.1.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{vec} x y^{\mathrm{T}}=y \otimes x \tag{7.1.15}
\end{equation*}
$$

The following result concerns the vec of the product of three matrices.
Proposition 7.1.9. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{m \times l}$, and $C \in \mathbb{F}^{l \times k}$. Then,

$$
\begin{equation*}
\operatorname{vec}(A B C)=\left(C^{\mathrm{T}} \otimes A\right) \operatorname{vec} B \tag{7.1.16}
\end{equation*}
$$

Proof. Using (7.1.12) and (7.1.15), it follows that

$$
\begin{aligned}
\operatorname{vec} A B C & =\operatorname{vec} \sum_{i=1}^{l} A \operatorname{col}_{i}(B) e_{i}^{\mathrm{T}} C=\sum_{i=1}^{l} \operatorname{vec}\left[A \operatorname{col}_{i}(B)\left(C^{\mathrm{T}} e_{i}\right)^{\mathrm{T}}\right] \\
& =\sum_{i=1}^{l}\left[C^{\mathrm{T}} e_{i}\right] \otimes\left[A \operatorname{col}_{i}(B)\right]=\left(C^{\mathrm{T}} \otimes A\right) \sum_{i=1}^{l} e_{i} \otimes \operatorname{col}_{i}(B) \\
& =\left(C^{\mathrm{T}} \otimes A\right) \sum_{i=1}^{l} \operatorname{vec}\left[\operatorname{col}_{i}(B) e_{i}^{\mathrm{T}}\right]=\left(C^{\mathrm{T}} \otimes A\right) \operatorname{vec} B .
\end{aligned}
$$

The following result concerns eigenvalues and eigenvectors of the Kronecker product of two matrices.

Proposition 7.1.10. Let $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{m \times m}$. Then,

$$
\begin{equation*}
\operatorname{mspec}(A \otimes B)=\{\lambda \mu: \quad \lambda \in \operatorname{mspec}(A), \mu \in \operatorname{mspec}(B)\}_{\mathrm{m}} . \tag{7.1.17}
\end{equation*}
$$

If, in addition, $x \in \mathbb{C}^{n}$ is an eigenvector of A associated with $\lambda \in \operatorname{spec}(A)$ and $y \in \mathbb{C}^{n}$ is an eigenvector of B associated with $\mu \in \operatorname{spec}(B)$, then $x \otimes y$ is an eigenvector of $A \otimes B$ associated with $\lambda \mu$.

Proof. Using (7.1.12), we have

$$
(A \otimes B)(x \otimes y)=(A x) \otimes(B y)=(\lambda x) \otimes(\mu y)=\lambda \mu(x \otimes y) .
$$

Proposition 7.1.10 shows that $\operatorname{mspec}(A \otimes B)=\operatorname{mspec}(B \otimes A)$. Consequently, it follows that $\operatorname{det}(A \otimes B)=\operatorname{det}(B \otimes A)$ and $\operatorname{tr}(A \otimes B)=\operatorname{tr}(B \otimes A)$. The following results are generalizations of these identities.

Proposition 7.1.11. Let $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{m \times m}$. Then,

$$
\begin{equation*}
\operatorname{det}(A \otimes B)=\operatorname{det}(B \otimes A)=(\operatorname{det} A)^{m}(\operatorname{det} B)^{n} . \tag{7.1.18}
\end{equation*}
$$

Proof. Let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{m}}$ and $\operatorname{mspec}(B)=\left\{\mu_{1}, \ldots, \mu_{m}\right\}_{\mathrm{m}}$. Then, Proposition 7.1.10 implies that

$$
\begin{aligned}
\operatorname{det}(A \otimes B) & =\prod_{i, j=1}^{n, m} \lambda_{i} \mu_{j}=\left(\lambda_{1}^{m} \prod_{j=1}^{m} \mu_{j}\right) \cdots\left(\lambda_{n}^{m} \prod_{j=1}^{m} \mu_{j}\right) \\
& =\left(\lambda_{1} \cdots \lambda_{n}\right)^{m}\left(\mu_{1} \cdots \mu_{m}\right)^{n}=(\operatorname{det} A)^{m}(\operatorname{det} B)^{n}
\end{aligned}
$$

Proposition 7.1.12. Let $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{m \times m}$. Then,

$$
\begin{equation*}
\operatorname{tr}(A \otimes B)=\operatorname{tr}(B \otimes A)=(\operatorname{tr} A)(\operatorname{tr} B) . \tag{7.1.19}
\end{equation*}
$$

Proof. Note that

$$
\begin{aligned}
\operatorname{tr}(A \otimes B) & =\operatorname{tr}\left(A_{(1,1)} B\right)+\cdots+\operatorname{tr}\left(A_{(n, n)} B\right) \\
& =\left[A_{(1,1)}+\cdots+A_{(n, n)}\right] \operatorname{tr} B=(\operatorname{tr} A)(\operatorname{tr} B) .
\end{aligned}
$$

Next, define the Kronecker permutation matrix $P_{n, m} \in \mathbb{F}^{n m \times n m}$ by

$$
\begin{equation*}
P_{n, m} \triangleq \sum_{i, j=1}^{n, m} E_{i, j, n \times m} \otimes E_{j, i, m \times n} . \tag{7.1.20}
\end{equation*}
$$

Proposition 7.1.13. Let $A \in \mathbb{F}^{n \times m}$. Then,

$$
\begin{equation*}
\operatorname{vec} A^{\mathrm{T}}=P_{n, m} \operatorname{vec} A . \tag{7.1.21}
\end{equation*}
$$

7.2 Kronecker Sum and Linear Matrix Equations

Next, we define the Kronecker sum of two square matrices.
Definition 7.2.1. Let $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{m \times m}$. Then, the Kronecker sum $A \oplus B \in \mathbb{F}^{n m \times n m}$ of A and B is

$$
\begin{equation*}
A \oplus B \triangleq A \otimes I_{m}+I_{n} \otimes B \tag{7.2.1}
\end{equation*}
$$

Proposition 7.2.2. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{m \times m}$, and $C \in \mathbb{F}^{l \times l}$. Then,

$$
\begin{equation*}
A \oplus(B \oplus C)=(A \oplus B) \oplus C \tag{7.2.2}
\end{equation*}
$$

Hence, we write $A \oplus B \oplus C$ for $A \oplus(B \oplus C)$ and $(A \oplus B) \oplus C$.
In Proposition 7.1 .10 it was shown that if $\lambda \in \operatorname{spec}(A)$ and $\mu \in$ $\operatorname{spec}(B)$, then $\lambda \mu \in \operatorname{spec}(A \otimes B)$. Next, we present an analogous result involving Kronecker sums.

Proposition 7.2.3. Let $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{m \times m}$. Then,

$$
\begin{equation*}
\operatorname{mspec}(A \oplus B)=\{\lambda+\mu: \quad \lambda \in \operatorname{mspec}(A), \mu \in \operatorname{mspec}(B)\}_{\mathrm{m}} . \tag{7.2.3}
\end{equation*}
$$

Now, let $x \in \mathbb{C}^{n}$ be an eigenvector of A associated with $\lambda \in \operatorname{spec}(A)$, and let $y \in \mathbb{C}^{m}$ be an eigenvector of B associated with $\mu \in \operatorname{spec}(B)$. Then, $x \otimes y$ is an eigenvector of $A \oplus B$ associated with $\lambda+\mu$.

Proof. Note that

$$
\begin{aligned}
(A \oplus B)(x \otimes y) & =\left(A \otimes I_{m}\right)(x \otimes y)+\left(I_{n} \otimes B\right)(x \otimes y) \\
& =(A x \otimes y)+(x \otimes B y)=(\lambda x \otimes y)+(x \otimes \mu y) \\
& =\lambda(x \otimes y)+\mu(x \otimes y)=(\lambda+\mu)(x \otimes y)
\end{aligned}
$$

The next result concerns the existence and uniqueness of solutions to Sylvester's equation. See Fact 5.8.11 and Proposition 11.7.3.

Proposition 7.2.4. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{m \times m}$, and $C \in \mathbb{F}^{n \times m}$. Then, $X \in \mathbb{F}^{n \times m}$ satisfies

$$
\begin{equation*}
A X+X B+C=0 \tag{7.2.4}
\end{equation*}
$$

if and only if X satisfies

$$
\begin{equation*}
\left(B^{\mathrm{T}} \oplus A\right) \operatorname{vec} X+\operatorname{vec} C=0 \tag{7.2.5}
\end{equation*}
$$

Consequently, $B^{\mathrm{T}} \oplus A$ is nonsingular if and only if there exists a unique
matrix $X \in \mathbb{F}^{n \times m}$ satisfying (7.2.4). In this case, X is given by

$$
\begin{equation*}
X=-\operatorname{vec}^{-1}\left[\left(B^{\mathrm{T}} \oplus A\right)^{-1} \operatorname{vec} C\right] \tag{7.2.6}
\end{equation*}
$$

Furthermore, $B^{\mathrm{T}} \oplus A$ is singular and $\operatorname{rank} B^{\mathrm{T}} \oplus A=\operatorname{rank}\left[\begin{array}{ll}B^{\mathrm{T}} \oplus A & \operatorname{vec} C\end{array}\right]$ if and only if there exist infinitely many matrices $X \in \mathbb{F}^{n \times m}$ satisfying (7.4.15). Then, the set of solutions of (7.2.4) is given by $X+\mathcal{N}\left(B^{\mathrm{T}} \oplus A\right)$.

Proof. Note that (7.2.4) is equivalent to

$$
\begin{aligned}
0 & =\operatorname{vec}(A X I+I X B)+\operatorname{vec} C=(I \otimes A) \operatorname{vec} X+\left(B^{*} \otimes I\right) \operatorname{vec} X+\operatorname{vec} C \\
& =\left(B^{*} \otimes I+I \otimes A\right) \operatorname{vec} X+\operatorname{vec} C=\left(B^{*} \oplus A\right) \operatorname{vec} X+\operatorname{vec} C
\end{aligned}
$$

which yields (7.2.5). The remaining results follow from Corollary 2.6.5.

7.3 Schur Product

An alternative form of vector and matrix multiplication is given by the Schur product. If $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{n \times m}$, then $A \circ B \in \mathbb{F}^{n \times m}$ is defined by

$$
\begin{equation*}
(A \circ B)_{(i, j)} \triangleq A_{(i, j)} B_{(i, j)} \tag{7.3.1}
\end{equation*}
$$

that is, $A \circ B$ is formed by means of entry-by-entry multiplication. For matrices $A, B, C \in \mathbb{F}^{n \times m}$, the commutative, associative, and distributive identities

$$
\begin{gather*}
A \circ B=B \circ A, \tag{7.3.2}\\
A \circ(B \circ C)=(A \circ B) \circ C, \tag{7.3.3}\\
A \circ(B+C)=A \circ B+A \circ C \tag{7.3.4}
\end{gather*}
$$

are valid. For a real scalar $\alpha \geq 0$ and $A \in \mathbb{F}^{n \times m}$, the Schur power $A^{\{\alpha\}}$ is defined by

$$
\begin{equation*}
\left(A^{\{\alpha\}}\right)_{(i, j)} \triangleq\left(A_{(i, j)}\right)^{\alpha} \tag{7.3.5}
\end{equation*}
$$

Thus, $A^{\{2\}}=A \circ A$. Note that $A^{\{0\}}=1_{n \times m}$, while $\alpha<0$ is allowed if A has no zero entries. Finally, for all $A \in \mathbb{F}^{n \times m}$,

$$
\begin{equation*}
A \circ 1_{n \times m}=1_{n \times m} \circ A=A . \tag{7.3.6}
\end{equation*}
$$

Proposition 7.3.1. Let $A, \in \mathbb{F}^{n \times n}$. Then, $A \circ B$ is a submatrix of $A \otimes B$ consisting of rows $\operatorname{row}_{1}(A \otimes B), \operatorname{row}_{n+2}(A \otimes B), \operatorname{row}_{2 n+3}(A \otimes B), \ldots, \operatorname{row}_{n^{2}}(A \otimes$ $B)$ and columns $\operatorname{col}_{1}(A \otimes B), \operatorname{col}_{m+2}(A \otimes B), \operatorname{col}_{2 m+3}(A \otimes B), \ldots, \operatorname{col}_{m^{2}}(A \otimes B)$. If, in addition, $n=m$, then $A \circ B$ is a principal submatrix of $A \otimes B$.

Proof. See [394] or [289, p. 304].

7.4 Facts on the Kronecker Product

Fact 7.4.1. Let $x, y \in \mathbb{F}^{n}$. Then,

$$
x \otimes y=\left(x \otimes I_{n}\right) y=\left(I_{n} \otimes y\right) x .
$$

Fact 7.4.2. Let $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{m \times m}$ be (diagonal, upper triangular, lower triangular). Then, so is $A \otimes B$.

Fact 7.4.3. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{m \times m}$, and $l \in \mathbb{P}$. Then,

$$
(A \otimes B)^{l}=A^{l} \otimes B^{l} .
$$

Fact 7.4.4. Let $A \in \mathbb{F}^{n \times m}$. Then,

$$
\operatorname{vec} A=\left(I_{m} \otimes A\right) \operatorname{vec} I_{m}=\left(A^{\mathrm{T}} \otimes I_{n}\right) \operatorname{vec} I_{n} .
$$

Fact 7.4.5. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$. Then,
$\operatorname{vec} A B=\left(I_{l} \otimes A\right)$ vec $B=\left(B^{\mathrm{T}} \otimes A\right) \operatorname{vec} I_{m}=\sum_{i=1}^{m} \operatorname{col}_{i}\left(B^{\mathrm{T}}\right) \otimes \operatorname{col}_{i}(A)$.
Fact 7.4.6. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{m \times l}$, and $C \in \mathbb{F}^{l \times n}$. Then,

$$
\operatorname{tr} A B C=(\operatorname{vec} A)^{\mathrm{T}}(B \otimes I) \operatorname{vec} C^{\mathrm{T}}
$$

Fact 7.4.7. Let $A, B, C \in \mathbb{F}^{n \times n}$, where C is symmetric. Then,

$$
(\operatorname{vec} C)^{\mathrm{T}}(A \otimes B) \operatorname{vec} C=(\operatorname{vec} C)^{\mathrm{T}}(B \otimes A) \operatorname{vec} C .
$$

Fact 7.4.8. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{m \times l}, C \in \mathbb{F}^{l \times k}$, and $D \in \mathbb{F}^{k \times n}$. Then,

$$
\operatorname{tr} A B C D=(\operatorname{vec} A)^{\mathrm{T}}\left(B \otimes D^{\mathrm{T}}\right) \operatorname{vec} C^{\mathrm{T}} .
$$

Fact 7.4.9. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{m \times l}$, and $k \in \mathbb{P}$. Then,

$$
(A B)^{\otimes k}=A^{\otimes k} B^{\otimes k},
$$

where $A^{\otimes k} \triangleq A \otimes A \otimes \cdots \otimes A$, with A appearing k times.
Fact 7.4.10. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
(A \oplus A)^{2}=A^{2} \oplus A^{2}+2 A \otimes A .
$$

Fact 7.4.11. Let $A, C \in \mathbb{F}^{n \times m}$ and $B, D \in \mathbb{F}^{l \times k}$, and assume that A is (left equivalent, right equivalent, biequivalent) to C and B is (left equivalent, right equivalent, biequivalent) to D. Then, $A \otimes B$ is (left equivalent, right equivalent, biequivalent) to $C \otimes D$.

Fact 7.4.12. Let $A, B, C, D \in \mathbb{F}^{n \times n}$, and assume that A is (similar, congruent, unitarily similar) to C and B is (similar, congruent, unitarily similar) to D. Then, $A \otimes B$ is (similar, congruent, unitarily similar) to $C \otimes D$.

Fact 7.4.13. Let $A_{1}, \ldots, A_{r} \in \mathbb{F}^{n \times n}$ be (Hermitian, nonnegative semidefinite, positive definite, range Hermitian, normal, semisimple, group invertible). Then, so is $A_{1} \otimes \cdots \otimes A_{r}$.

Fact 7.4.14. Let $A_{1}, \ldots, A_{l} \in \mathbb{F}^{n \times n}$ be skew Hermitian. If l is (even, odd), then $A_{1} \otimes \cdots \otimes A_{l}$ is (Hermitian, skew Hermitian).

Fact 7.4.15. Let $A_{1}, \ldots, A_{l} \in \mathbb{F}^{n \times n}$ be (Hermitian, nonnegative semidefinite, positive definite, skew Hermitian). Then, so is $A_{1} \oplus \cdots \oplus A_{l}$.

Fact 7.4.16. Let $A_{i, j} \in \mathbb{F}^{n_{i} \times n_{j}}$ for all $i=1, \ldots, k$ and $j=1, \ldots, l$. Then,

$$
\left[\begin{array}{ccc}
A_{11} & A_{22} & \cdots \\
A_{21} & A_{22} & \cdots \\
\vdots & . \vdots & . \vdots
\end{array}\right] \otimes B=\left[\begin{array}{ccc}
A_{11} \otimes B & A_{22} \otimes B & \cdots \\
A_{21} \otimes B & A_{22} \otimes B & \cdots \\
\vdots & \vdots . & \vdots .
\end{array}\right]
$$

Fact 7.4.17. Let $x \in \mathbb{F}^{k}$, and let $A_{i} \in \mathbb{F}^{n \times n_{i}}$ for all $i=1, \ldots, l$. Then,

$$
x \otimes\left[\begin{array}{lll}
A_{1} & \cdots & A_{l}
\end{array}\right]=\left[\begin{array}{lll}
x \otimes A_{1} & \cdots & x \otimes A_{l}
\end{array}\right] .
$$

Fact 7.4.18. Let $A \in \mathbb{F}^{n \times n}$ be (range Hermitian, normal). Then, so is $A \oplus A$.

Fact 7.4.19. Let $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{m \times m}$. Then, the eigenvalues of $\sum_{i, j=1,1}^{k, l} \gamma_{i j} A^{i} \otimes B^{j}$ are of the form $\sum_{i, j=1,1}^{k, l} \gamma_{i j} \lambda^{i} \mu^{j}$, where $\lambda \in \operatorname{spec}(A)$ and $\mu \in \operatorname{spec}(B)$ and an associated eigenvector is given by $x \otimes y$, where $x \in \mathbb{F}^{n}$ is an eigenvector of A associated with $\lambda \in \operatorname{spec}(A)$ and $y \in \mathbb{F}^{n}$ is an eigenvector of B associated with $\mu \in \operatorname{spec}(B)$. (Remark: This result is due to Stephanos.) (Proof: Let $A x=\lambda x$ and $B y=\mu y$. Then, $\gamma_{i j}\left(A^{i} \otimes B^{j}\right)(x \otimes y)=$ $\gamma_{i j} \lambda^{i} \mu^{j}(x \otimes y)$. See [217], [353, p. 411], or [384, p. 83].)

Fact 7.4.20. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{l \times k}$. Then,

$$
\operatorname{rank}(A \otimes B)=(\operatorname{rank} A)(\operatorname{rank} B)
$$

(Proof: Use the singular value decomposition of $A \otimes B$.) (Remark: See Fact 8.15.9.)

Fact 7.4.21. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{l \times k}$, and assume that $n l=m k$ and $n \neq m$. Then, $A \otimes B$ is singular. (Proof: See [289, p. 250].)

Fact 7.4.22. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times n}$. Then, the algebraic multiplicity of the zero eigenvalue of $A \otimes B$ is greater than or equal to $|n-m| \min \{n, m\}$. (Proof: See [289, p. 249].)

Fact 7.4.23. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{m \times m}$, and let $\gamma \in \operatorname{spec}(A \otimes B)$. Then,

$$
\sum \operatorname{gm}_{A}(\lambda) \operatorname{gm}_{B}(\mu) \leq \operatorname{gm}_{A \otimes B}(\gamma) \leq \operatorname{am}_{A \otimes B}(\gamma)=\sum \operatorname{am}_{A}(\lambda) \operatorname{am}_{B}(\mu)
$$

where both sums are taken over all $\lambda \in \operatorname{spec}(A)$ and $\mu \in \operatorname{spec}(B)$ such that $\lambda \mu=\gamma$.

Fact 7.4.24. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{m \times m}$, and let $\gamma \in \operatorname{spec}(A \otimes B)$. Then, $\operatorname{ind}_{A \otimes B}(\gamma) \leq 1$ if and only if $\operatorname{ind}_{A}(\lambda) \leq 1$ and $\operatorname{ind}_{B}(\mu) \leq 1$ for all $\lambda \in \operatorname{spec}(A)$ and $\mu \in \operatorname{spec}(B)$ such that $\lambda \mu=\gamma$.

Fact 7.4.25. Let $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{m \times m}$. Then,

$$
\text { ind } A \otimes B=\max \{\operatorname{ind} A, \text { ind } B\} .
$$

Fact 7.4.26. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{m \times m}$, and let $\gamma \in \operatorname{spec}(A \oplus B)$. Then,

$$
\sum \operatorname{gm}_{A}(\lambda) \operatorname{gm}_{B}(\mu) \leq \operatorname{gm}_{A \oplus B}(\gamma) \leq \operatorname{am}_{A \oplus B}(\gamma)=\sum \operatorname{am}_{A}(\lambda) \operatorname{am}_{B}(\mu),
$$

where both sums are taken over all $\lambda \in \operatorname{spec}(A)$ and $\mu \in \operatorname{spec}(B)$ such that $\lambda+\mu=\gamma$.

Fact 7.4.27. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{m \times m}$, and let $\gamma \in \operatorname{spec}(A \oplus B)$. Then, $\operatorname{ind}_{A \oplus B}(\gamma) \leq 1$ if and only if $\operatorname{ind}_{A}(\lambda) \leq 1$ and $\operatorname{ind}_{B}(\mu) \leq 1$ for all $\lambda \in \operatorname{spec}(A)$ and $\mu \in \operatorname{spec}(B)$ such that $\lambda+\mu=\gamma$.

Fact 7.4.28. Let $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{m \times m}$, where B is nonnegative semidefinite, and let $\operatorname{mspec}(B)=\left\{\lambda_{1}, \ldots, \lambda_{m}\right\}_{\mathrm{m}}$. Then,

$$
\operatorname{det}(A \oplus B)=\prod_{i=1}^{n} \operatorname{det}\left(\lambda_{i} I+A\right)
$$

(Proof: See [419, p. 40].) (Remark: Expressions for $\operatorname{det}(A \otimes B+C \otimes D)$ are given in [419].) (Problem: Weaken the assumption that B is nonnegative semidefinite.)

Fact 7.4.29. The Kronecker permutation matrix has the following properties:
i) $P_{n, m}$ is a permutation matrix.
ii) $P_{n, m}^{\mathrm{T}}=P_{m, n}$.
iii) $P_{n, m}$ is orthogonal.
iv) $P_{n, m} P_{m, n}=I_{n m}$.
v) $P_{1, m}=I_{m}$ and $P_{n, 1}=I_{n}$.
vi) If $x \in \mathbb{F}^{n}$ and $y \in \mathbb{F}^{m}$, then

$$
P_{n, m}(y \otimes x)=x \otimes y
$$

vii) If $A \in \mathbb{F}^{n \times m}$, then

$$
P_{n, l}\left(I_{l} \otimes A\right)=\left(A \otimes I_{l}\right) P_{m, l}
$$

viii) If $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{l \times k}$, then

$$
P_{n, l}(A \otimes B) P_{m, k}=B \otimes A
$$

and

$$
\operatorname{vec}(A \otimes B)=\left(I_{m} \otimes P_{k, n} \otimes I_{l}\right)[(\operatorname{vec} A) \otimes(\operatorname{vec} B)]
$$

$i x)$ If $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times n}$, then

$$
\operatorname{tr} A B=\operatorname{tr}\left[P_{m, n}(A \otimes B)\right]
$$

Fact 7.4.30. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{m \times m}$, and $C \in \mathbb{F}^{n \times m}$, and assume that $\operatorname{det}\left(B^{\mathrm{T}} \oplus A\right) \neq 0$. Then, $X \in \mathbb{F}^{n \times m}$ satisfies

$$
A^{2} X+2 A X B+X B^{2}+C=0
$$

if and only if

$$
X=-\operatorname{vec}^{-1}\left[\left(B^{\mathrm{T}} \oplus A\right)^{-2} \operatorname{vec} C\right]
$$

Fact 7.4.31. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{l \times k}$. Then,

$$
(A \otimes B)^{+}=A^{+} \otimes B^{+}
$$

Fact 7.4.32. Let $A \in \mathbb{F}^{n \times m}$, and let $k \in \mathbb{P}$ satisfy $1 \leq k \leq \min \{n, m\}$. Furthermore, define the k th compound $A^{(k)}$ to be the $\binom{n}{k} \times\binom{ m}{k}$ matrix whose entries are $k \times k$ subdeterminants of A, ordered lexicographically. (Example: For $n=k=3$, subsets of the rows and columns of A are chosen in the order $(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2), \ldots)$ Specifically, $\left(A^{(k)}\right)_{(i, j)}$ is the $k \times k$ subdeterminant of A corresponding to the i th selection of k rows of A and the j th selection of k columns of A. Then, the following statements hold:
i) $\left[A^{(k)}\right]^{\mathrm{T}}=\left[A^{\mathrm{T}}\right]^{(k)}$.
ii) $\operatorname{det} A^{(k)}=(\operatorname{det} A)^{\binom{n-1}{k-1}}$.
iii) If $n=m$ and A is nonsingular, then $\left[A^{(k)}\right]^{-1}=\left[A^{-1}\right]^{(k)}$.
$i v)$ If $B \in \mathbb{F}^{m \times l}$, then $(A B)^{(k)}=A^{(k)} B^{(k)}$.
Now, assume that $n=m$, let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{m}}$, and, for $i=$ $0, \ldots, k$, define $A^{(k, i)}$ by

$$
(A+s I)^{(k)}=s^{k} A^{(k, 0)}+s^{k-1} A^{(k, 1)}+\cdots+s A^{(k, k-1)}+A^{(k, k)} .
$$

Then,

$$
\begin{gathered}
\operatorname{mspec}\left[A^{(2,1)}\right]=\left\{\lambda_{i}+\lambda_{j}: \quad i, j=1, \ldots, n, i<j\right\}_{\mathrm{m}}, \\
\operatorname{mspec}\left(A^{(2)}\right)=\left\{\lambda_{i} \lambda_{j}: i, j=1, \ldots, n, i<j\right\}_{\mathrm{m}},
\end{gathered}
$$

and

$$
\operatorname{mspec}\left(\left[A^{(2,1)}\right]^{2}-4 A^{(2)}\right)=\left\{\left(\lambda_{i}-\lambda_{j}\right)^{2}: i, j=1, \ldots, n, i<j\right\}_{\mathrm{m}} .
$$

(Proof: See [202, pp. 142-155] and [466, p. 124].) (Remark: $\left(A^{(2,1)}\right)^{2}-4 A^{(2)}$ is the discriminant of A. The discriminant of A is singular if and only if A has a repeated eigenvalue.) (Remark: The compound operation is related to the bialternate product since $\operatorname{mspec}(2 A \cdot I)=\operatorname{mspec}\left(A^{(2,1)}\right)$ and $\operatorname{mspec}(A \cdot A)=\operatorname{mspec}\left(A^{(2)}\right)$. See [217,239], [319, pp. 313-320], and [384, pp. 84, 85].) (Problem: Express $A \cdot B$ in terms of compounds.)

7.5 Facts on the Schur Product

Fact 7.5.1. Let $x, y, z \in \mathbb{F}^{n}$. Then,

$$
x^{\mathrm{T}}(y \circ z)=z^{\mathrm{T}}(x \circ y)=y^{\mathrm{T}}(x \circ z) .
$$

Fact 7.5.2. Let $w, y \in \mathbb{F}^{n}$ and $x, z \in \mathbb{F}^{m}$. Then,

$$
\left(w x^{\mathrm{T}}\right) \circ\left(y z^{\mathrm{T}}\right)=(w \circ y)(x \circ z)^{\mathrm{T}} .
$$

Fact 7.5.3. Let $A \in \mathbb{F}^{n \times n}$ and $d \in \mathbb{F}^{n}$. Then,

$$
\operatorname{diag}(d) A=A \circ d 1_{1 \times n} .
$$

Fact 7.5.4. Let $A \in \mathbb{F}^{n \times m}, D_{1} \in \mathbb{F}^{n \times n}$, and $D_{2} \in \mathbb{F}^{m \times m}$, where D_{1} and D_{2} are diagonal. Then,

$$
\left(D_{1} A\right) \circ\left(B D_{2}\right)=D_{1}(A \circ B) D_{2} .
$$

Fact 7.5.5. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{l \times k}$. Then,

$$
\operatorname{rank}(A \circ B) \leq \operatorname{rank}(A \otimes B)=(\operatorname{rank} A)(\operatorname{rank} B) .
$$

(Proof: Use Proposition 7.3.1.) (Remark: See Fact 8.15.9.)

Fact 7.5.6. Let $A, B \in \mathbb{F}^{n \times m}$. Then,

$$
\operatorname{tr}\left[(A \circ B)(A \circ B)^{\mathrm{T}}\right]=\operatorname{tr}\left[(A \circ A)(B \circ B)^{\mathrm{T}}\right] .
$$

Fact 7.5.7. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{m \times n}, a \in \mathbb{F}^{m}$, and $b \in \mathbb{F}^{n}$. Then,

$$
\operatorname{tr}\left[A\left(B \circ a b^{\mathrm{T}}\right)\right]=b^{\mathrm{T}}\left(A \circ B^{\mathrm{T}}\right) a .
$$

Fact 7.5.8. Let $A, B \in \mathbb{F}^{n \times m}$ and $C \in \mathbb{F}^{m \times n}$. Then,

$$
I \circ\left[A\left(B^{\mathrm{T}} \circ C\right)\right]=I \circ[(A \circ B) C]=I \circ\left[\left(A \circ C^{\mathrm{T}}\right) B^{\mathrm{T}}\right] .
$$

Hence,

$$
\operatorname{tr}\left[A\left(B^{\mathrm{T}} \circ C\right)\right]=\operatorname{tr}[(A \circ B) C]=\operatorname{tr}\left[\left(A \circ C^{\mathrm{T}}\right) B^{\mathrm{T}}\right] .
$$

Fact 7.5.9. Let $x \in \mathbb{R}^{m}, A \in \mathbb{R}^{n \times m}$, and define $x^{A} \in \mathbb{R}^{n}$ by

$$
x^{A} \triangleq\left[\begin{array}{c}
x_{(1)}^{A_{(1,1)}} \cdots x_{(m)}^{A_{(1, m)}} \\
\vdots \\
x_{(1)}^{A_{(n, 1)}} \cdots x_{(m)}^{A_{(n, m)}}
\end{array}\right],
$$

where every entry is assumed to exist. Then, the following statements hold:
i) If $a \in \mathbb{R}$, then $a^{x}=\left[\begin{array}{c}a^{x(1)} \\ \vdots \\ a^{x}(m)\end{array}\right]$. ii) $x^{-A}=\left(x^{A}\right)^{\{-1\}}$.
ii) $x^{-A}=\left(x^{A}\right)^{\{-1\}}$.
iii) If $y \in \mathbb{R}^{m}$, then $(x \circ y)^{A}=x^{A} \circ y^{A}$.
$i v)$ If $B \in \mathbb{R}^{n \times m}$, then $x^{A+B}=x^{A} \circ x^{B}$.
v) If $B \in \mathbb{R}^{l \times n}$, then $\left(x^{A}\right)^{B}=x^{B A}$.
vi) If $a \in \mathbb{R}$, then $\left(a^{x}\right)^{A}=a^{A x}$.
vii) If $A^{\mathrm{L}} \in \mathbb{R}^{m \times n}$ is a left inverse of A and $y=x^{A}$, then $x=y^{A^{\mathrm{L}}}$.
viii) If $A \in \mathbb{R}^{n \times n}$ is nonsingular and $y=x^{A}$, then $x=y^{A^{-1}}$.
$i x)$ Define $f(x) \triangleq x^{A}$. Then, $f^{\prime}(x)=\operatorname{diag}\left(x^{A}\right) A \operatorname{diag}\left(x^{\{-1\}}\right)$.
(Remark: These operations arise in modeling chemical reaction kinetics. See [365].)

Fact 7.5.10. Let $A \in \mathbb{R}^{n \times n}$ be nonsingular. Then,

$$
\left(A \circ A^{-\mathrm{T}}\right) 1_{n \times 1}=1_{n \times 1}
$$

and

$$
1_{1 \times n}\left(A \circ A^{-\mathrm{T}}\right)=1_{1 \times n} .
$$

(Proof: See [316].)
Fact 7.5.11. Let $A \in \mathbb{R}^{n \times n}$, and assume that $A \geq \geq 0$. Then,

$$
\operatorname{sprad}\left[\left(A \circ A^{\mathrm{T}}\right)^{\{1 / 2\}}\right] \leq \operatorname{sprad}(A) \leq \operatorname{sprad}\left[\frac{1}{2}\left(A+A^{\mathrm{T}}\right)\right] .
$$

(Proof: See [502].)
Fact 7.5.12. Let $A_{1}, \ldots, A_{r} \in \mathbb{R}^{n \times n}$ and $\alpha_{1}, \ldots, \alpha_{r} \in \mathbb{R}$, where $A_{i} \geq \geq$ 0 for all $i=1, \ldots, r, \alpha_{i}>0$ for all $i=1, \ldots, r$, and $\sum_{i=1}^{r} \alpha_{i} \geq 1$. Then,

$$
\operatorname{sprad}\left(A_{1}^{\left\{\alpha_{1}\right\}} \circ \cdots \circ A_{r}^{\left\{\alpha_{n}\right\}}\right) \leq \prod_{i=1}^{r}\left[\operatorname{sprad}\left(A_{i}\right)\right]^{\alpha_{i}}
$$

In particular, let $A \in \mathbb{R}^{n \times n}$ be such that $A \geq \geq 0$. Then, for all $\alpha \geq 1$,

$$
\operatorname{sprad}\left(A^{\{\alpha\}}\right) \leq[\operatorname{sprad}(A)]^{\alpha}
$$

and, for all $\alpha \leq 1$,

$$
[\operatorname{sprad}(A)]^{\alpha} \leq \operatorname{sprad}\left(A^{\{\alpha\}}\right)
$$

Furthermore,

$$
\operatorname{sprad}\left(A^{\{1 / 2\}} \circ A^{\mathrm{T}\{1 / 2\}}\right) \leq \operatorname{sprad}(A)
$$

and

$$
[\operatorname{sprad}(A \circ A)]^{1 / 2} \leq \operatorname{sprad}(A) .
$$

If, in addition, $B \in \mathbb{R}^{n \times n}$ is such that $B \geq \geq 0$, then

$$
\operatorname{sprad}(A \circ B) \leq[\operatorname{sprad}(A \circ A) \operatorname{sprad}(B \circ B)]^{1 / 2} \leq \operatorname{sprad}(A) \operatorname{sprad}(B)
$$

and

$$
\operatorname{sprad}\left(A^{\{1 / 2\}} \circ B^{\{1 / 2\}}\right) \leq \sqrt{\operatorname{sprad}(A) \operatorname{sprad}(B)} .
$$

If, in addition, $A \gg 0$ and $B \gg 0$, then

$$
\operatorname{sprad}(A \circ B)<\operatorname{sprad}(A) \operatorname{sprad}(B) .
$$

(Proof: See [187,322].)

7.6 Notes

A history of the Kronecker product is given in [275]. Kronecker matrix algebra is discussed in [111,242,276,388,412,518,575]. Applications to signal processing are considered in [479].

The fact that the Schur product is a principal submatrix of the Kronecker product is noted in [394]. A variation of Kronecker matrix algebra for symmetric matrices can be developed in terms of the half-vectorization
operator "vech" and associated elimination and duplication matrices [276, 387, 559].

Generalizations of the Schur and Kronecker products, known as the block-Kronecker, Khatri-Rao, and Tracy-Singh products, are discussed in [292, 303, 338, 377]. Another related operation is the bialternate product, which is a variation of the compound operation discussed in Fact 7.4.32. See $[217,239]$, $[319$, pp. 313-320], and [384, pp. 84, 85]. The Schur product is also called the Hadamard product.

Chapter Eight

Nonnegative-Semidefinite Matrices

In this chapter we focus on nonnegative-semidefinite and positivedefinite matrices. These matrices arise in a variety of applications, such as covariance analysis in signal processing and controllability analysis in linear system theory, and they have many special properties.

8.1 Nonnegative-Semidefinite and Positive-Definite Orderings

Let $A \in \mathbb{F}^{n \times n}$ be a Hermitian matrix. As shown in Corollary 5.4.5, A is unitarily similar to a real diagonal matrix whose diagonal entries are the eigenvalues of A. We denote these eigenvalues by $\lambda_{1}, \ldots, \lambda_{n}$ or, for clarity, by $\lambda_{1}(A), \ldots, \lambda_{n}(A)$. As in Chapter 3, we employ the convention

$$
\begin{equation*}
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \tag{8.1.1}
\end{equation*}
$$

and, for convenience, we define

$$
\begin{equation*}
\lambda_{\max }(A) \triangleq \lambda_{1}, \quad \lambda_{\min }(A) \triangleq \lambda_{n} . \tag{8.1.2}
\end{equation*}
$$

Then, A is nonnegative semidefinite if and only if $\lambda_{\min }(A) \geq 0$, while A is positive definite if and only if $\lambda_{\min }(A)>0$.

For convenience, let $\mathbf{H}^{n}, \mathbf{N}^{n}$, and \mathbf{P}^{n} denote, respectively, the Hermitian, nonnegative-semidefinite, and positive-definite matrices in $\mathbb{F}^{n \times n}$. Hence, $\mathbf{P}^{n} \subset \mathbf{N}^{n} \subset \mathbf{H}^{n}$. If $A \in \mathbf{N}^{n}$, then we write $A \geq 0$, while if $A \in \mathbf{P}^{n}$, then we write $A>0$. If $A, B \in \mathbf{H}^{n}$, then $A-B \in \mathbf{N}^{n}$ is possible even if neither A nor B is nonnegative semidefinite. In this case, we write $A \geq B$ or $B \leq A$. Similarly, $A-B \in \mathbf{P}^{n}$ is denoted by $A>B$ or $B<A$. This notation is consistent with the case $n=1$, where $\mathbf{H}^{1}=\mathbb{R}, \mathbf{N}^{1}=[0, \infty)$, and $\mathbf{P}^{1}=(0, \infty)$.

Note that, since $0 \in \mathbf{N}^{n}$, it follows that \mathbf{N}^{n} is a pointed cone. Furthermore, if $A,-A \in \mathbf{N}^{n}$, then $x^{*} A x=0$ for all $x \in \mathbb{F}^{n}$, which implies that
$A=0$. Hence, \mathbf{N}^{n} is a one-sided cone. Finally, \mathbf{N}^{n} and \mathbf{P}^{n} are convex cones since, if $A, B \in \mathbf{N}^{n}$, then $\alpha A+\beta B \in \mathbf{N}^{n}$ for all $\alpha, \beta>0$ and likewise for \mathbf{P}^{n}. The following result shows that the relation " \leq " is a partial ordering on \mathbf{H}^{n}.

Proposition 8.1.1. The relation " \leq " is reflexive, antisymmetric, and transitive on \mathbf{H}^{n}, that is, if $A, B, C \in \mathbf{H}^{n}$, then the following statements hold:
i) $A \leq A$.
ii) If $A \leq B$ and $B \leq A$, then $A=B$.
iii) If $A \leq B$ and $B \leq C$, then $A \leq C$.

Proof. Since \mathbf{N}^{n} is a pointed, one-sided, and convex cone, it follows from Proposition 2.3.6 that the relation " \leq " is reflexive, antisymmetric, and transitive.

Additional properties of " \leq " and " $<$ " are given by the following result.
Proposition 8.1.2. Let $A, B, C, D \in \mathbf{H}^{n}$. Then, the following statements hold:
i) If $A \geq 0$, then $\alpha A \geq 0$ for all $\alpha \geq 0$, and $\alpha A \leq 0$ for all $\alpha \leq 0$.
ii) If $A>0$, then $\alpha A>0$ for all $\alpha>0$, and $\alpha A<0$ for all $\alpha<0$.
iii) If $A \geq 0$ and $B \geq 0$, then $\alpha A+\beta B \geq 0$ for all $\alpha, \beta \geq 0$.
iv) If $A \geq 0$ and $B>0$, then $A+B>0$.
v) $A^{2} \geq 0$.
vi) $A^{2}>0$ if and only if $\operatorname{det} A \neq 0$.
vii) If $A \leq B$ and $B<C$, then $A<C$.
viii) If $A<B$ and $B \leq C$, then $A<C$.
$i x)$ If $A \leq B$ and $C \leq D$, then $A+C \leq B+D$.
$x)$ If $A \leq B$ and $C<D$, then $A+C<B+D$.
Furthermore, let $S \in \mathbb{F}^{m \times n}$. Then, the following statements hold:
$x i)$ If $A \leq B$, then $S A S^{*} \leq S B S^{*}$.
xii) If $A<B$ and $\operatorname{rank} S=m$, then $S A S^{*}<S B S^{*}$.
xiii) If $S A S^{*} \leq S B S^{*}$ and $\operatorname{rank} S=n$, then $A \leq B$.
xiv) If $S A S^{*}<S B S^{*}$ and $\operatorname{rank} S=n$, then $m=n$ and $A<B$.

Proof. Results $i)-x i$) are immediate. To prove $x i i$) note that $A<B$ implies that $(B-A)^{1 / 2}$ is positive definite. Thus, $\operatorname{rank} S(A-B)^{1 / 2}=m$, which implies that $S(A-B) S^{*}$ is positive definite. To prove xiii) note that, since $\operatorname{rank} S=n$, it follows that S has a left inverse $S^{\mathrm{L}} \in \mathbb{F}^{n \times m}$. Thus, $x i$) implies that $A=S^{\mathrm{L}} S A S^{*} S^{\mathrm{L} *} \leq S^{\mathrm{L}} S B S^{*} S^{\mathrm{L} *}=B$. To prove $x i v$), note that, since $S(B-A) S^{*}$ is positive definite, it follows that $\operatorname{rank} S=m$. Hence, $m=n$ and S is nonsingular. Thus, xii) implies that $A=S^{-1} S A S^{*} S^{-*}<$ $S^{-1} S B S^{*} S^{-*}=B$.

The following result is an immediate consequence of Corollary 5.4.7.
Corollary 8.1.3. Let $A, B \in \mathbf{H}^{n}$ and assume that A and B are congruent. Then, A is nonnegative semidefinite if and only if B is nonnegative semidefinite. Furthermore, A is positive definite if and only if B is positive definite.

Lemma 8.1.4. Let $A \in \mathbf{P}^{n}$. If $A \leq I$, then $A^{-1} \geq I$. Furthermore, if $A<I$, then $A^{-1}>I$.

Proof. Since $A \leq I$, it follows from $x i$) of Proposition 8.1.2 that $I=$ $A^{-1 / 2} A A^{-1 / 2} \leq A^{-1 / 2} I A^{-1 / 2}=A^{-1}$. Similarly, $A<I$ implies that $I=$ $A^{-1 / 2} A A^{-1 / 2}<A^{-1 / 2} I A^{-1 / 2}=A^{-1}$.

Proposition 8.1.5. Let $A, B \in \mathbf{H}^{n}$ be both positive definite or both negative definite. If $A \leq B$, then $B^{-1} \leq A^{-1}$. If, in addition, $A<B$, then $B^{-1}<A^{-1}$.

8.2 Submatrices

We first consider some identities involving a partitioned nonnegative-semi-definite matrix.

Lemma 8.2.1. Let $A=\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{12}^{T} & A_{22}\end{array}\right] \in \mathbf{N}^{n+m}$. Then,

$$
\begin{align*}
& A_{12}=A_{11} A_{11}^{+} A_{12} \tag{8.2.1}\\
& A_{12}=A_{12} A_{22} A_{22}^{+} \tag{8.2.2}
\end{align*}
$$

Proof. Since $A \geq 0$, it follows from Corollary 5.4.5 that $A=B B^{*}$, where $B=\left[\begin{array}{l}B_{1} \\ B_{2}\end{array}\right] \in \mathbb{F}^{(n+m) \times r}$ and $r \triangleq \operatorname{rank} A$. Thus, $A_{11}=B_{1} B_{1}^{*}, A_{12}=$ $B_{1} B_{2}^{*}$, and $A_{22}=B_{2} B_{2}^{*}$. Since A_{11} is Hermitian, it follows that A_{11}^{+}is also Hermitian. Next, defining $S \triangleq B_{1}-B_{1} B_{1}^{*}\left(B_{1} B_{1}^{*}\right)^{+} B_{1}$, it follows that $S S^{*}=0$ and thus $\operatorname{tr} S S^{*}=0$. Hence, Lemma 2.2.3 implies that $S=0$, and thus $B_{1}=B_{1} B_{1}^{*}\left(B_{1} B_{1}^{*}\right)^{+} B_{1}$. Consequently, $B_{1} B_{2}^{*}=B_{1} B_{1}^{*}\left(B_{1} B_{1}^{*}\right)^{+} B_{1} B_{2}$, that
is, $A_{12}=A_{11} A_{11}^{+} A_{12}$. The second result is analogous.
Corollary 8.2.2. Let $A=\left[\begin{array}{ccc}A_{11} & A_{12} \\ A_{12} & A_{22}\end{array}\right] \in \mathbf{N}^{n+m}$. Then, the following statements hold:
i) $\mathcal{R}\left(A_{12}\right) \subseteq \mathcal{R}\left(A_{11}\right)$.
ii) $\mathcal{R}\left(A_{12}^{*}\right) \subseteq \mathcal{R}\left(A_{22}\right)$.
iii) $\operatorname{rank}\left[\begin{array}{ll}A_{11} & A_{12}\end{array}\right]=\operatorname{rank} A_{11}$.
iv) $\operatorname{rank}\left[\begin{array}{ll}A_{12}^{*} & A_{22}\end{array}\right]=\operatorname{rank} A_{22}$.

Proof. Results i) and $i i$) follow from (8.2.1) and (8.2.2), while $i i i$) and $i v$) are consequences of i) and $i i$).

Next, if (8.2.1) holds, then the partitioned matrix $A \triangleq\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{12} & A_{22}\end{array}\right]$ can be factored as

$$
\left[\begin{array}{ll}
A_{11} & A_{12} \tag{8.2.3}\\
A_{12}^{*} & A_{22}
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
A_{12}^{*} A_{11}^{+} & I
\end{array}\right]\left[\begin{array}{cc}
A_{11} & 0 \\
0 & A_{11} \mid A
\end{array}\right]\left[\begin{array}{cc}
I & A_{11}^{+} A_{12} \\
0 & I
\end{array}\right],
$$

while if (8.2.2) holds, then

$$
\left[\begin{array}{cc}
A_{11} & A_{12} \tag{8.2.4}\\
A_{12}^{*} & A_{22}
\end{array}\right]=\left[\begin{array}{cc}
I & A_{12} A_{22}^{+} \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
A_{22} \mid A & 0 \\
0 & A_{22}
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
A_{22}^{+} A_{12}^{*} & I
\end{array}\right],
$$

where

$$
\begin{equation*}
A_{11} \mid A=A_{22}-A_{12}^{*} A_{11}^{+} A_{12} \tag{8.2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{22} \mid A=A_{11}-A_{12} A_{22}^{+} A_{12}^{*} . \tag{8.2.6}
\end{equation*}
$$

Hence, it follows from Lemma 8.2.1 that, if A is nonnegative semidefinite, then (8.2.3) and (8.2.4) are valid, and, furthermore, the Schur complements $A_{11} \mid A$ and $A_{22} \mid A$ are both nonnegative semidefinite. Consequently, we have the following result.

Proposition 8.2.3. Let $A \triangleq\left[\begin{array}{cc}A_{11} & A_{12} \\ A_{12} & A_{22}\end{array}\right] \in \mathbf{H}^{n+m}$. Then, the following statements are equivalent:
i) $A \geq 0$.
ii) $A_{11} \geq 0, A_{12}=A_{11} A_{11}^{+} A_{12}$, and $A_{12}^{*} A_{11}^{+} A_{12} \leq A_{22}$.
iii) $A_{22} \geq 0, A_{12}=A_{12} A_{22} A_{22}^{+}$, and $A_{12} A_{22}^{+} A_{12}^{*} \leq A_{11}$.

The following statements are also equivalent:
iv) $A>0$.
v) $A_{11}>0$ and $A_{12}^{*} A_{11}^{-1} A_{12}<A_{22}$.
vi) $A_{22}>0$ and $A_{12} A_{22}^{-1} A_{12}^{*}<A_{11}$.

The following result follows from (2.8.16) and (2.8.17).
Proposition 8.2.4. Let $A \triangleq\left[\begin{array}{cc}A_{11} & A_{12} \\ A_{12}^{*} & A_{22}\end{array}\right] \in \mathbf{P}^{n+m}$. Then,

$$
A^{-1}=\left[\begin{array}{cc}
A_{11}^{-1}+A_{11}^{-1} A_{12}\left(A_{11} \mid A\right)^{-1} A_{12}^{*} A_{11}^{-1} & -A_{11}^{-1} A_{12}\left(A_{11} \mid A\right)^{-1} \tag{8.2.7}\\
-\left(A_{11} \mid A\right)^{-1} A_{12}^{*} A_{11}^{-1} & \left(A_{11} \mid A\right)^{-1}
\end{array}\right]
$$

and

$$
A^{-1}=\left[\begin{array}{cc}
\left(A_{22} \mid A\right)^{-1} & -\left(A_{22} \mid A\right)^{-1} A_{12} A_{22}^{-1} \tag{8.2.8}\\
-A_{22}^{-1} A_{12}^{*}\left(A_{22} \mid A\right)^{-1} & A_{22}^{-1} A_{12}^{*}\left(A_{22} \mid A\right)^{-1} A_{12} A_{22}^{-1}+A_{22}^{-1}
\end{array}\right],
$$

where

$$
\begin{equation*}
A_{11} \mid A=A_{22}-A_{12}^{*} A_{11}^{-1} A_{12} \tag{8.2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{22} \mid A=A_{11}-A_{12} A_{22}^{-1} A_{12}^{*} . \tag{8.2.10}
\end{equation*}
$$

Now, let $A^{-1}=\left[\begin{array}{cc}B_{11} & B_{12} \\ B_{12}^{12} & B_{22}\end{array}\right]$. Then,

$$
\begin{equation*}
B_{11} \mid A^{-1}=A_{22}^{-1} \tag{8.2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{22} \mid A^{-1}=A_{11}^{-1} . \tag{8.2.12}
\end{equation*}
$$

Lemma 8.2.5. Let $A \in \mathbb{F}^{n \times n}, b \in \mathbb{F}^{n}$, and $a \in \mathbb{R}$. Then, $B \triangleq\left[\begin{array}{c}A \\ A^{*} \\ b\end{array}\right]$ is nonnegative semidefinite if and only if A is nonnegative semidefinite, $b=$ $A A^{+} b$, and $b^{*} A^{+} b \leq a$. Furthermore, B is positive definite if and only if A is positive definite and $b^{*} A^{-1} b<a$. In this case,

$$
\begin{equation*}
\operatorname{det} B=(\operatorname{det} A)\left(a-b^{*} A^{-1} b\right) . \tag{8.2.13}
\end{equation*}
$$

For the following result note that a matrix is a principal submatrix of itself and the determinant of a matrix is also a principal subdeterminant.

Proposition 8.2.6. Let $A \in \mathbf{H}^{n}$. Then, the following statements are equivalent:
i) A is nonnegative semidefinite.
ii) Every principal submatrix of A is nonnegative semidefinite.
iii) Every principal subdeterminant of A is nonnegative.
$i v$) For all $i=1, \ldots, n$, the sum of all $i \times i$ principal subdeterminants of A is nonnegative.

Proof. To prove $i) \Longrightarrow i i)$, let $\hat{A} \in \mathbb{F}^{m \times m}$ be the principal submatrix of A obtained from A by retaining rows and columns i_{1}, \ldots, i_{m}. Then, $\hat{A}=S^{\mathrm{T}} A S$, where $S \triangleq\left[\begin{array}{lll}e_{i_{1}} & \cdots & e_{i_{m}}\end{array}\right] \in \mathbb{R}^{n \times m}$. Now, let $\hat{x} \in \mathbb{F}^{m}$. Since A is nonnegative semidefinite, it follows that $\hat{x}^{*} \hat{A} \hat{x}=\hat{x}^{*} S^{\mathrm{T}} A S \hat{x} \geq 0$, and thus \hat{A} is nonnegative semidefinite.

Next, the implications $i i) \Longrightarrow i i i) \Longrightarrow i v$) are immediate. To prove $i v$) $\Longrightarrow i$), note that it follows from Proposition 4.4.5 that

$$
\begin{equation*}
\chi_{A}(s)=\sum_{i=0}^{n} \beta_{i} s^{i}=\sum_{i=0}^{n}(-1)^{n-i} \gamma_{n-i} s^{i}=(-1)^{n} \sum_{i=0}^{n} \gamma_{n-i}(-s)^{i}, \tag{8.2.14}
\end{equation*}
$$

where, for all $i=1, \ldots, n, \gamma_{i}$ is the sum of all $i \times i$ principal subdeterminants of A, and $\beta_{n}=\gamma_{0}=1$. By assumption, $\gamma_{i} \geq 0$ for all $i=1, \ldots, n$. Now, suppose that there exists $\lambda \in \operatorname{spec}(A)$ such that $\lambda<0$. Then, $0=(-1)^{n} \chi_{A}(\lambda)=\sum_{i=0}^{n} \gamma_{n-i}(-\lambda)^{i}>0$, which is a contradiction.

Proposition 8.2.7. Let $A \in \mathbf{H}^{n}$. Then, the following statements are equivalent:
i) A is positive definite.
ii) Every principal submatrix of A is positive definite.
iii) Every principal subdeterminant of A is positive.
$i v)$ Every leading principal submatrix of A is positive definite.
v) Every leading principal subdeterminant of A is positive.
Proof. To prove $i) \Longrightarrow i i)$, let $\hat{A} \in \mathbb{F}^{m \times m}$ and S be as in the proof of Proposition 8.2.6 and let \hat{x} be nonzero so that $S \hat{x}$ is nonzero. Since A is positive definite, it follows that $\hat{x} * \hat{A} \hat{x}=\hat{x}^{*} S^{\mathrm{T}} A S \hat{x}>0$ and hence \hat{A} is positive definite.

Next, the implications $i) \Longrightarrow i i) \Longrightarrow i i i) \Longrightarrow v$) and $i i) \Longrightarrow i v) \Longrightarrow$ v) are immediate. To prove $v) \Longrightarrow i$, suppose that the leading principal submatrix $A_{i} \in \mathbb{F}^{i \times i}$ has positive determinant for all $i=1, \ldots, n$, The result is true for $n=1$. For $n \geq 2$, we show that if A_{i} is positive definite, then so is A_{i+1}. Writing $A_{i+1}=\left[\begin{array}{cc}A_{i} & b_{i} \\ b_{i}^{*} & a_{i}\end{array}\right]$, it follows from Lemma 8.2.5 that $\operatorname{det} A_{i+1}=$ $\left(\operatorname{det} A_{i}\right)\left(a_{i}-b_{i}^{*} A_{i}^{-1} b_{i}\right)>0$ and hence $a_{i}-b_{i}^{*} A_{i}^{-1} b_{i}=\operatorname{det} A_{i+1} / \operatorname{det} A_{i}>0$. Lemma 8.2.5 now implies that A_{i+1} is positive definite. Using this argument for all $i=2, \ldots, n$ implies that A is positive definite.

The example $A=\left[\begin{array}{cc}0 & 0 \\ 0 & -1\end{array}\right]$ shows that every principal subdeterminant of A, rather than just the leading principal subdeterminants of A, must be checked to determine whether A is nonnegative semidefinite. A less obvious
example is $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0\end{array}\right]$, whose eigenvalues are $0,1+\sqrt{3}$, and $1-\sqrt{3}$. In this case, the principal subdeterminant $\operatorname{det} A_{[1,1]}=\operatorname{det}\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]<0$.

Corollary 8.2.8. Let $A \in \mathbf{N}^{n}$. Then, every diagonally located square submatrix of A is nonnegative semidefinite. If, in addition, A is positive definite, then every diagonally located square submatrix of A is positive definite.

8.3 Simultaneous Diagonalization

This section considers the simultaneous diagonalization of a pair of matrices $A, B \in \mathbf{H}^{n}$. There are two types of simultaneous diagonalization. Cogredient diagonalization involves a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that $S A S^{*}$ and $S B S^{*}$ are both diagonal, whereas contragredient diagonalization involves finding a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that $S A S^{*}$ and $S^{-*} B S^{-1}$ are both diagonal. Both types of simultaneous transformation involve only congruence transformations. We begin by assuming that one of the matrices is positive definite, in which case the results are quite simple to prove. Our first result involves cogredient diagonalization.

Theorem 8.3.1. Let $A, B \in \mathbf{H}^{n}$ and assume that A is positive definite. Then, there exists a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that $S A S^{*}=I$ and $S B S^{*}$ is diagonal.

Proof. Setting $S_{1}=A^{-1 / 2}$ it follows that $S_{1} A S_{1}^{*}=I$. Now, since $S_{1} B S_{1}^{*}$ is Hermitian, it follows from Corollary 5.4.5 that there exists a unitary matrix $S_{2} \in \mathbb{F}^{n \times n}$ such that $S B S^{*}=S_{2} S_{1} B S_{1}^{*} S_{2}^{*}$ is diagonal, where $S=$ $S_{2} S_{1}$. Finally, $S A S^{*}=S_{2} S_{1} A S_{1}^{*} S_{2}^{*}=S_{2} I S_{2}^{*}=I$.

An analogous result holds for contragedient diagonalization.
Theorem 8.3.2. Let $A, B \in \mathbf{H}^{n}$, and assume that A is positive definite. Then, there exists a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that $S A S^{*}=I$ and $S^{-*} B S^{-1}$ is diagonal.

Proof. Setting $S_{1}=A^{-1 / 2}$ it follows that $S_{1} A S_{1}^{*}=I$. Since $S_{1}^{-*} B S_{1}^{-1}$ is Hermitian, it follows that there exists a unitary matrix $S_{2} \in \mathbb{F}^{n \times n}$ such that $S^{-*} B S^{-1}=S_{2}^{-*} S_{1}^{-*} B S_{1}^{-1} S_{2}^{-1}=S_{2}\left(S_{1}^{-*} B S_{1}^{-1}\right) S_{2}^{*}$ is diagonal, where $S=$ $S_{2} S_{1}$. Finally, $S A S^{*}=S_{2} S_{1} A S_{1}^{*} S_{2}^{*}=S_{2} I S_{2}^{*}=I$.

Corollary 8.3.3. Let $A, B \in \mathbf{P}^{n}$. Then, there exists a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that $S A S^{*}$ and $S^{-*} B S^{-1}$ are equal and diagonal.

Proof. By Theorem 8.3.2 there exists a nonsingular matrix $S_{1} \in \mathbb{F}^{n \times n}$ such that $S_{1} A S_{1}^{*}=I$ and $B_{1}=S_{1}^{-*} B S_{1}^{-1}$ is diagonal. Defining $S \triangleq B_{1}^{1 / 4} S_{1}$ yields $S A S^{*}=S^{-*} B S^{-1}=B_{1}^{1 / 2}$.

The transformation S of Corollary 8.3.3 is a balancing transformation.
Next, we weaken the requirement in Theorem 8.3.1 and Theorem 8.3.2 that A be positive definite by assuming only that A is nonnegative semidefinite. In this case, however, we assume that B is also nonnegative semidefinite.

Theorem 8.3.4. Let $A, B \in \mathbf{N}^{n}$. Then, there exists a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that $S A S^{*}=\left[\begin{array}{ll}I & 0 \\ 0 & 0\end{array}\right]$ and $S B S^{*}$ is diagonal.

Proof. Let the nonsingular matrix $S_{1} \in \mathbb{F}^{n \times n}$ be such that $S_{1} A S_{1}^{*}=$ $\left[\begin{array}{cc}I & 0 \\ 0 & 0\end{array}\right]$, and similarly partition $S_{1} B S_{1}^{*}=\left[\begin{array}{cc}B_{11} & B_{12} \\ B_{12} & B_{22}\end{array}\right]$, which is nonnegative semidefinite. Letting $S_{2} \triangleq\left[\begin{array}{cc}I & -B_{12} B_{22}^{+} \\ 0 & I\end{array}\right]$ it follows from Lemma 8.2.1 that

$$
S_{2} S_{1} B S_{1}^{*} S_{2}^{*}=\left[\begin{array}{cc}
B_{11}-B_{12} B_{22}^{+} B_{12}^{*} & 0 \\
0 & B_{22}
\end{array}\right] .
$$

Next, let U_{1} and U_{2} be unitary matrices such that $U_{1}\left(B_{11}-B_{12} B_{22}^{+} B_{12}^{*}\right) U_{1}^{*}$ and $U_{2} B_{22} U_{2}^{*}$ are diagonal. Then, defining $S_{3} \triangleq\left[\begin{array}{cc}U_{1} & 0 \\ 0 & U_{2}\end{array}\right]$ and $S \triangleq S_{3} S_{2} S_{1}$, it follows that $S A S^{*}=\left[\begin{array}{cc}I & 0 \\ 0 & 0\end{array}\right]$ and $S B S^{*}=S_{3} S_{2} S_{1} B S_{1}^{*} S_{2}^{*} S_{3}^{*}$ is diagonal.

Theorem 8.3.5. Let $A, B \in \mathbf{N}^{n}$. Then, there exists a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that $S A S^{*}=\left[\begin{array}{cc}I & 0 \\ 0 & 0\end{array}\right]$ and $S^{-*} B S^{-1}$ is diagonal.

Proof. Let $S_{1} \in \mathbb{F}^{n \times n}$ be a nonsingular matrix such that $S_{1} A S_{1}^{*}=$ $\left[\begin{array}{ll}I & 0 \\ 0 & 0\end{array}\right]$, and similarly partition $S_{1}^{-*} B S_{1}^{-1}=\left[\begin{array}{cc}B_{11} & B_{12} \\ B_{12}^{12} & B_{22}\end{array}\right]$, which is nonnegative semidefinite. Letting $S_{2} \triangleq\left[\begin{array}{ccc}I & B_{11}^{+} B_{12} \\ 0 & I\end{array}\right]$, it follows that

$$
S_{2}^{-*} S_{1}^{-*} B S_{1}^{-1} S_{2}^{-1}=\left[\begin{array}{cc}
B_{11} & 0 \\
0 & B_{22}-B_{12}^{*} B_{11}^{+} B_{12}
\end{array}\right] .
$$

Now, let U_{1} and U_{2} be unitary matrices such that $U_{1} B_{11} U_{1}^{*}$ and $U_{2}\left(B_{22}-\right.$ $\left.B_{12}^{*} B_{11}^{+} B_{12}\right) U_{2}^{*}$ are diagonal. Then, defining $S_{3} \triangleq\left[\begin{array}{cc}U_{1} & 0 \\ 0 & U_{2}\end{array}\right]$ and $S \triangleq S_{3} S_{2} S_{1}$, it follows that $S A S^{*}=\left[\begin{array}{cc}I & 0 \\ 0 & 0\end{array}\right]$ and $S^{-*} B S^{-1}=S_{3}^{-*} S_{2}^{-*} S_{1}^{-*} B S_{1}^{-1} S_{2}^{-1} S_{3}^{-1}$ is diagonal.

Corollary 8.3.6. Let $A, B \in \mathbf{N}^{n}$. Then, $A B$ is semisimple, and every eigenvalue of $A B$ is nonnegative. If, in addition, A and B are positive definite, then every eigenvalue of $A B$ is positive.

Proof. It follows from Theorem 8.3.5 that there exists a nonsingular matrix $S \in \mathbb{R}^{n \times n}$ such that $A_{1}=S A S^{*}$ and $B_{1}=S^{-*} B S^{-1}$ are diagonal with nonnegative diagonal entries. Hence, $A B=S^{-1} A_{1} B_{1} S$ is semisimple and has nonnegative eigenvalues.

A more direct approach to showing that $A B$ has nonnegative eigenvalues is to use Corollary 4.4.10 and note that $\lambda_{i}(A B)=\lambda_{i}\left(B^{1 / 2} A B^{1 / 2}\right) \geq 0$.

Corollary 8.3.7. Let $A, B \in \mathbf{N}^{n}$ and assume that $\operatorname{rank} A=\operatorname{rank} B=$ $\operatorname{rank} A B$. Then, there exists a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that $S A S^{*}=S^{-*} B S^{-1}$ and such that $S A S^{*}$ is diagonal.

Proof. By Theorem 8.3.5 there exists a nonsingular matrix $S_{1} \in \mathbb{F}^{n \times n}$ such that $S_{1} A S_{1}^{*}=\left[\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right]$, where $r \triangleq \operatorname{rank} A$, and such that $B_{1}=S_{1}^{-*} B S_{1}^{-1}$ is diagonal. Hence, $A B=S_{1}^{-1}\left[\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right] B_{1} S_{1}$. Since $\operatorname{rank} A=\operatorname{rank} B=\operatorname{rank} A B=$ r, it follows that $B_{1}=\left[\begin{array}{cc}\hat{B}_{1} & 0 \\ 0 & 0\end{array}\right]$, where $\hat{B}_{1} \in \mathbb{F}^{r \times r}$ is positive diagonal. Hence, $S_{1}^{-*} B S_{1}^{-1}=\left[\begin{array}{cc}\hat{B}_{1} & 0 \\ 0 & 0\end{array}\right]$. Now, define $S_{2} \triangleq\left[\begin{array}{cc}\hat{B}_{1 / 4}^{1 / 4} & 0 \\ 0 & I\end{array}\right]$ and $S \triangleq S_{2} S_{1}$. Then, $S A S^{*}=S_{2} S_{1} A S_{1}^{*} S_{2}^{*}=\left[\begin{array}{cc}\hat{B}_{1}^{1 / 2} & 0 \\ 0 & 0\end{array}\right]=S_{2}^{-*} S_{1}^{-*} B S_{1}^{-1} S_{2}^{-1}=S^{-*} B S^{-1}$.

8.4 Eigenvalue Inequalities

Next, we turn our attention to inequalities involving eigenvalues. We begin with a series of lemmas.

Lemma 8.4.1. Let $A \in \mathbf{H}^{n}$ and let $\beta \in \mathbb{R}$. Then, the following statements hold:
i) $\beta I \leq A$ if and only if $\beta \leq \lambda_{\min }(A)$.
ii) $\beta I<A$ if and only if $\beta<\lambda_{\min }(A)$.
iii) $A \leq \beta I$ if and only if $\lambda_{\max }(A) \leq \beta$.
iv) $A<\beta I$ if and only if $\lambda_{\max }(A)<\beta$.

Proof. To prove i) assume that $\beta I \leq A$, and let $S \in \mathbb{F}^{n \times n}$ be a unitary matrix such that $B=S A S^{*}$ is diagonal. Then, $\beta I \leq B$, which yields $\beta \leq \lambda_{\min }(B)=\lambda_{\min }(A)$. Conversely, let $S \in \mathbb{F}^{n \times n}$ be a unitary matrix such that $B=S A S^{*}$ is diagonal. Since the diagonal entries of B are the eigenvalues of A, it follows that $\lambda_{\min }(A) I \leq B$, which implies that $\beta I \leq \lambda_{\min }(A) I \leq S^{*} B S=A$. Results $i i$, $i i i$) and $i v$) are proved in a similar manner.

Corollary 8.4.2. Let $A \in \mathbf{H}^{n}$. Then,

$$
\begin{equation*}
\lambda_{\min }(A) I \leq A \leq \lambda_{\max }(A) I . \tag{8.4.1}
\end{equation*}
$$

Proof. The result follows from i) and $i i$) of Lemma 8.4.1 with $\beta=$ $\lambda_{\min }(A)$ and $\beta=\lambda_{\max }(A)$, respectively.

Lemma 8.4.3. Let $A \in \mathbf{H}^{n}$. Then,

$$
\begin{equation*}
\lambda_{\min }(A)=\min _{x \in \mathbb{F}^{n} \backslash\{0\}} \frac{x^{*} A x}{x^{*} x} \tag{8.4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{\max }(A)=\max _{x \in \mathbb{\mathbb { P }}^{n} \backslash\{0\}} \frac{x^{*} A x}{x^{*} x} . \tag{8.4.3}
\end{equation*}
$$

Proof. It follows from (8.4.1) that $\lambda_{\min }(A) \leq x^{*} A x / x^{*} x$ for all nonzero $x \in \mathbb{F}^{n}$. Letting $x \in \mathbb{F}^{n}$ be an eigenvector of A associated with $\lambda_{\min }(A)$, it follows that this lower bound is attained. This proves (8.4.2). An analogous argument yields (8.4.3).

The following result is the Cauchy interlacing theorem.
Lemma 8.4.4. Let $A \in \mathbf{H}^{n}$ and let A_{0} be an $(n-1) \times(n-1)$ principal submatrix of A. Then, for all $i=1, \ldots, n-1$,

$$
\begin{equation*}
\lambda_{i+1}(A) \leq \lambda_{i}\left(A_{0}\right) \leq \lambda_{i}(A) \tag{8.4.4}
\end{equation*}
$$

Proof. Suppose that the chain of inequalities (8.4.4) does not hold. In particular, first suppose that the right-most inequality in (8.4.4) that is not true is $\lambda_{i}\left(A_{0}\right) \leq \lambda_{i}(A)$, so that $\lambda_{i}(A)<\lambda_{i}\left(A_{0}\right)$. Choose δ such that $\lambda_{i}(A)<\delta<\lambda_{i}\left(A_{0}\right)$ and such that δ is not an eigenvalue of A_{0}. If $i=1$, then $A-\delta I$ is negative definite, while if $i \geq 2$, then $\lambda_{i}(A)<\delta<$ $\lambda_{i}\left(A_{0}\right) \leq \lambda_{i-1}\left(A_{0}\right) \leq \lambda_{i-1}(A)$, so that $A-\delta I$ has $i-1$ positive eigenvalues. Thus, $\nu_{+}(A-\delta I)=i-1$. Furthermore, since $\delta<\lambda_{i}\left(A_{0}\right)$, it follows that $\nu_{+}\left(A_{0}-\delta I\right) \geq i$.

Now, assume for convenience that the rows and columns of A are ordered so that A_{0} is the $(n-1) \times(n-1)$ leading principal submatrix of A. Thus, $A=\left[\begin{array}{c}A_{0} \beta \\ \beta^{*}\end{array}\right]$, where $\beta \in \mathbb{F}^{n-1}$ and $\gamma \in \mathbb{F}$. Next, note the identity

$$
\begin{align*}
& A-\delta I \tag{8.4.5}\\
& =\left[\begin{array}{cc}
I & 0 \\
\beta^{*}\left(A_{0}-\delta I\right)^{-1} & 1
\end{array}\right]\left[\begin{array}{cc}
A_{0}-\delta I & 0 \\
0 & \gamma-\delta-\beta^{*}\left(A_{0}-\delta I\right)^{-1} \beta
\end{array}\right]\left[\begin{array}{cc}
I & \left(A_{0}-\delta I\right)^{-1} \beta \\
0 & 1
\end{array}\right],
\end{align*}
$$

where $A_{0}-\delta I$ is nonsingular since δ was chosen to not be an eigenvalue of A_{0}. Since the right-hand side of this identity involves a congruence trans-
formation and, since $\nu_{+}\left(A_{0}-\delta I\right) \geq i$, it follows from Corollary 5.4.7 that $\nu_{+}(A-\delta I) \geq i$. However, this contradicts the fact that $\nu_{+}(A-\delta I)=i-1$.

Finally, suppose that the right-most inequality in (8.4.4) that is not true is $\lambda_{i+1}(A) \leq \lambda_{i}\left(A_{0}\right)$, so that $\lambda_{i}\left(A_{0}\right)<\lambda_{i+1}(A)$. Choose δ such that $\lambda_{i}\left(A_{0}\right)<\delta<\lambda_{i+1}(A)$ and such that δ is not an eigenvalue of A_{0}. Then, it follows that $\nu_{+}(A-\delta I) \geq i+1$ and $\nu_{+}\left(A_{0}-\delta I\right)=i-1$. Using the congruence transformation as in the previous case, it follows that $\nu_{+}(A-\delta I) \leq i$, which contradicts the fact that $\nu_{+}(A-\delta I) \geq i+1$.

The following result is the inclusion principle.
Theorem 8.4.5. Let $A \in \mathbf{H}^{n}$ and let $A_{0} \in \mathbf{H}^{k}$ be a $k \times k$ principal submatrix of A. Then, for all $i=1, \ldots, k$,

$$
\begin{equation*}
\lambda_{i+n-k}(A) \leq \lambda_{i}\left(A_{0}\right) \leq \lambda_{i}(A) . \tag{8.4.6}
\end{equation*}
$$

Proof. If $k=n-1$, then the result is given by Lemma 8.4.4. Hence, let $k=n-2$, and let A_{1} denote an $(n-1) \times(n-1)$ principal submatrix of A such that the $(n-2) \times(n-2)$ principal submatrix A_{0} of A is also a principal submatrix of A_{1}. Therefore, Lemma 8.4.4 implies that $\lambda_{n}(A) \leq \lambda_{n-1}\left(A_{1}\right) \leq$ $\cdots \leq \lambda_{2}\left(A_{1}\right) \leq \lambda_{2}(A) \leq \lambda_{1}\left(A_{1}\right) \leq \lambda_{1}(A)$ and $\lambda_{n-1}\left(A_{1}\right) \leq \lambda_{n-2}\left(A_{0}\right) \leq \cdots \leq$ $\lambda_{2}\left(A_{0}\right) \leq \lambda_{2}\left(A_{1}\right) \leq \lambda_{1}\left(A_{0}\right) \leq \lambda_{1}\left(A_{1}\right)$. Combining these inequalities yields $\lambda_{i+2}(A) \leq \lambda_{i}\left(A_{0}\right) \leq \lambda_{i}(A)$ for all $i=1, \ldots, n-2$, while proceeding in a similar manner with $k<n-2$ yields (8.4.6).

Corollary 8.4.6. Let $A \in \mathbf{H}^{n}$ and let $A_{0} \in \mathbf{H}^{k}$ be a $k \times k$ principal submatrix of A. Then,

$$
\begin{equation*}
\lambda_{\min }(A) \leq \lambda_{\min }\left(A_{0}\right) \leq \lambda_{\max }\left(A_{0}\right) \leq \lambda_{\max }(A) \tag{8.4.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{\min }\left(A_{0}\right) \leq \lambda_{k}(A) . \tag{8.4.8}
\end{equation*}
$$

Corollary 8.4.7. Let $A \in \mathbf{H}^{n}$. Then,

$$
\begin{equation*}
\lambda_{\min }(A) \leq \mathrm{d}_{\min }(A) \leq \mathrm{d}_{\max }(A) \leq \lambda_{\max }(A) . \tag{8.4.9}
\end{equation*}
$$

Lemma 8.4.8. Let $A, B \in \mathbf{H}^{n}$, and assume that $A \leq B$ and $\operatorname{mspec}(A)$ $=\operatorname{mspec}(B)$. Then, $A=B$.

Proof. Let $\alpha \geq 0$ be such that $0<\hat{A} \leq \hat{B}$, where $\hat{A} \triangleq A+\alpha I$ and $\hat{B} \triangleq$ $B+\alpha I$. Note that $\operatorname{mspec}(\hat{A})=\operatorname{mspec}(\hat{B})$ and thus $\operatorname{det} \hat{A}=\operatorname{det} \hat{B}$. Next, it follows that $I \leq \hat{A}^{-1 / 2} \hat{B} \hat{A}^{-1 / 2}$. Hence, it follows from i) of Lemma 8.4.1 that $\lambda_{\min }\left(\hat{A}^{-1 / 2} \hat{B} \hat{A}^{-1 / 2}\right) \geq 1$. Furthermore, $\operatorname{det}\left(\hat{A}^{-1 / 2} \hat{B} \hat{A}^{-1 / 2}\right)=\operatorname{det} \hat{B} / \operatorname{det} \hat{A}=$ 1 , which implies that $\lambda_{i}\left(\hat{A}^{-1 / 2} \hat{B} \hat{A}^{-1 / 2}\right)=1$ for all $i=1, \ldots, n$. Hence,
$\hat{A}^{-1 / 2} \hat{B} \hat{A}^{-1 / 2}=I$ and thus $\hat{A}=\hat{B}$. Hence, $A=B$.
The following result is the monotonicity theorem or Weyl's inequality.
Theorem 8.4.9. Let $A, B \in \mathbf{H}^{n}$, and assume that $A \leq B$. Then, for all $i=1, \ldots, n$,

$$
\begin{equation*}
\lambda_{i}(A) \leq \lambda_{i}(B) . \tag{8.4.10}
\end{equation*}
$$

If $A \neq B$, then there exists $i \in\{1, \ldots, n\}$ such that

$$
\begin{equation*}
\lambda_{i}(A)<\lambda_{i}(B) . \tag{8.4.11}
\end{equation*}
$$

If $A<B$, then (8.4.11) holds for all $i=1, \ldots, n$.
Proof. Since $A \leq B$, it follows from Corollary 8.4.2 that $\lambda_{\min }(A) I \leq$ $A \leq B \leq \lambda_{\max }(B) I$. Hence, by $i i i$) and i) of Lemma 8.4.1 it follows that $\lambda_{\min }(A) \leq \lambda_{\min }(B)$ and $\lambda_{\max }(A) \leq \lambda_{\max }(B)$. Next, let $S \in \mathbb{F}^{n \times n}$ be a unitary matrix such that $S A S^{*}=\operatorname{diag}\left[\lambda_{1}(A), \ldots, \lambda_{n}(A)\right]$. Furthermore, for $2 \leq i \leq n-1$, let $A_{0}=\operatorname{diag}\left[\lambda_{1}(A), \ldots, \lambda_{i}(A)\right]$ and B_{0} denote the $i \times i$ leading principal submatrices of $S A S^{*}$ and $S B S^{*}$, respectively. Since $A \leq B$, it follows that $A_{0} \leq B_{0}$, which implies that $\lambda_{\min }\left(A_{0}\right) \leq \lambda_{\min }\left(B_{0}\right)$. It now follows from (8.4.8) that

$$
\lambda_{i}(A)=\lambda_{\min }\left(A_{0}\right) \leq \lambda_{\min }\left(B_{0}\right) \leq \lambda_{i}\left(S B S^{*}\right)=\lambda_{i}(B),
$$

which proves (8.4.10). If $A \neq B$, then it follows from Lemma 8.4.8 that $\operatorname{mspec}(A) \neq \operatorname{mspec}(B)$ and thus there exists $i \in\{1, \ldots, n\}$ such that (8.4.11) holds. If $A<B$, then $\lambda_{\min }\left(A_{0}\right)<\lambda_{\min }\left(B_{0}\right)$, which implies that (8.4.11) holds for all $i=1, \ldots, n$.

Corollary 8.4.10. Let $A, B \in \mathbf{H}^{n}$. Then, the following statements hold:
i) If $A \leq B$, then $\operatorname{tr} A \leq \operatorname{tr} B$.
ii) If $A \leq B$ and $\operatorname{tr} A=\operatorname{tr} B$, then $A=B$.
iii) If $A<B$, then $\operatorname{tr} A<\operatorname{tr} B$.
iv) If $0 \leq A \leq B$, then $0 \leq \operatorname{det} A \leq \operatorname{det} B$.
$v)$ If $0 \leq A<B$, then $0 \leq \operatorname{det} A<\operatorname{det} B$.
vi) If $0<A \leq B$ and $\operatorname{det} A=\operatorname{det} B$, then $A=B$.

Proof. Statements i), iii), $i v$), v) follow from Theorem 8.4.9. To prove ii) note that, since $A \leq B$ and $\operatorname{tr} A=\operatorname{tr} B$, it follows from Theorem 8.4.9 that $\operatorname{mspec}(A)=\operatorname{mspec}(B)$. Now, Lemma 8.4.8 implies that $A=B$. A similar argument yields vi).

The following result, which is a generalization of Theorem 8.4.9, is due to Weyl.

Theorem 8.4.11. Let $A, B \in \mathbf{H}^{n}$. If $i+j \geq n+1$, then

$$
\begin{equation*}
\lambda_{i}(A)+\lambda_{j}(B) \leq \lambda_{i+j-n}(A+B) \tag{8.4.12}
\end{equation*}
$$

If $i+j \leq n+1$, then

$$
\begin{equation*}
\lambda_{i+j-1}(A+B) \leq \lambda_{i}(A)+\lambda_{j}(B) \tag{8.4.13}
\end{equation*}
$$

In particular, for all $i=1, \ldots, n$,

$$
\begin{gather*}
\lambda_{i}(A)+\lambda_{\min }(B) \leq \lambda_{i}(A+B) \leq \lambda_{i}(A)+\lambda_{\max }(B) \tag{8.4.14}\\
\lambda_{\min }(A)+\lambda_{\min }(B) \leq \lambda_{\min }(A+B) \leq \lambda_{\min }(A)+\lambda_{\max }(B) \tag{8.4.15}\\
\lambda_{\max }(A)+\lambda_{\min }(B) \leq \lambda_{\max }(A+B) \leq \lambda_{\max }(A)+\lambda_{\max }(B) \tag{8.4.16}
\end{gather*}
$$

Proof. See [287, p. 182].
Lemma 8.4.12. Let $A, B, C \in \mathbf{H}^{n}$. If $A \leq B$ and C is nonnegative semidefinite, then

$$
\begin{equation*}
\operatorname{tr} A C \leq \operatorname{tr} B C \tag{8.4.17}
\end{equation*}
$$

If $A<B$ and C is positive definite, then

$$
\begin{equation*}
\operatorname{tr} A C<\operatorname{tr} B C \tag{8.4.18}
\end{equation*}
$$

Proof. Since $C^{1 / 2} A C^{1 / 2} \leq C^{1 / 2} B C^{1 / 2}$, it follows from i) of Corollary 8.4.10 that

$$
\operatorname{tr} A C=\operatorname{tr} C^{1 / 2} A C^{1 / 2} \leq \operatorname{tr} C^{1 / 2} B C^{1 / 2}=\operatorname{tr} B C
$$

Result (8.4.18) follows from $i i$) of Corollary 8.4.10 in a similar fashion.
Proposition 8.4.13. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that B is nonnegative semidefinite. Then,

$$
\begin{equation*}
\frac{1}{2} \lambda_{\min }\left(A+A^{*}\right) \operatorname{tr} B \leq \operatorname{tr} A B \leq \frac{1}{2} \lambda_{\max }\left(A+A^{*}\right) \operatorname{tr} B \tag{8.4.19}
\end{equation*}
$$

If, in addition, A is Hermitian, then

$$
\begin{equation*}
\lambda_{\min }(A) \operatorname{tr} B \leq \operatorname{tr} A B \leq \lambda_{\max }(A) \operatorname{tr} B \tag{8.4.20}
\end{equation*}
$$

Proof. It follows from Corollary 8.4.2 that $\frac{1}{2} \lambda_{\min }\left(A+A^{*}\right) I \leq \frac{1}{2}\left(A+A^{*}\right)$, while Lemma 8.4.12 implies that $\frac{1}{2} \lambda_{\min }\left(A+A^{*}\right) \operatorname{tr} B=\operatorname{tr} \frac{1}{2} \lambda_{\min }\left(A+A^{*}\right) I B \leq$ $\operatorname{tr} \frac{1}{2}\left(A+A^{*}\right) B=\operatorname{tr} A B$, which proves the left-hand inequality of (8.4.19). Similarly, the right-hand inequality holds.

Proposition 8.4.14. Let $A, B \in \mathbf{P}^{n}$, and assume that $\operatorname{det} B=1$.

Then,

$$
\begin{equation*}
(\operatorname{det} A)^{1 / n} \leq \frac{1}{n} \operatorname{tr} A B . \tag{8.4.21}
\end{equation*}
$$

Furthermore, equality holds if and only if $B=(\operatorname{det} A)^{1 / n} A^{-1}$.
Proof. Using the arithmetic-mean-geometric-mean inequality given by Fact 1.4.9 it follows that

$$
\begin{aligned}
(\operatorname{det} A)^{1 / n} & =\left(\operatorname{det} B^{1 / 2} A B^{1 / 2}\right)^{1 / n}=\left[\prod_{i=1}^{n} \lambda_{i}\left(B^{1 / 2} A B^{1 / 2}\right)\right]^{1 / n} \\
& \leq \frac{1}{n} \sum_{i=1}^{n} \lambda_{i}\left(B^{1 / 2} A B^{1 / 2}\right)=\frac{1}{n} \operatorname{tr} A B
\end{aligned}
$$

Equality holds if and only if there exists $\beta>0$ such that $B^{1 / 2} A B^{1 / 2}=\beta I$. In this case, $\beta=(\operatorname{det} A)^{1 / n}$ and $B=(\operatorname{det} A)^{1 / n} A^{-1}$.

The following corollary of Proposition 8.4.14 is Minkowski's determinant theorem.

Corollary 8.4.15. Let $A, B \in \mathbf{N}^{n}$. Then,

$$
\begin{equation*}
\operatorname{det} A+\operatorname{det} B \leq\left[(\operatorname{det} A)^{1 / n}+(\operatorname{det} B)^{1 / n}\right]^{n} \leq \operatorname{det}(A+B) . \tag{8.4.22}
\end{equation*}
$$

If $B=0$ or $\operatorname{det}(A+B)=0$, then both inequalities become identities. If there exists $\alpha \geq 0$ such that $B=\alpha A$, then the right-hand inequality becomes an identity. Conversely, if $A+B$ is positive definite and the righthand inequality holds as an identity, then there exists $\alpha \geq 0$ such that either $B=\alpha A$ or $A=\alpha B$. Finally, if A is positive definite and both inequalities hold as identities, then $B=0$.

Proof. The left-hand inequality is immediate. To prove the right-hand inequality, note that it follows from Proposition 8.4.14 that

$$
\begin{aligned}
(\operatorname{det} A)^{1 / n}+(\operatorname{det} B)^{1 / n} \leq & \frac{1}{n} \operatorname{tr}\left[A[\operatorname{det}(A+B)]^{1 / n}(A+B)^{-1}\right] \\
& +\frac{1}{n} \operatorname{tr}\left[B[\operatorname{det}(A+B)]^{1 / n}(A+B)^{-1}\right] \\
= & {[\operatorname{det}(A+B)]^{1 / n} . }
\end{aligned}
$$

If $B=0$ or $\operatorname{det}(A+B)=0$, then both inequalities become identities, while if there exists $\alpha \geq 0$ such that $B=\alpha A$, then

$$
\left[(\operatorname{det} A)^{1 / n}+(\operatorname{det} B)^{1 / n}\right]^{n}=(1+\alpha)^{n} \operatorname{det} A=\operatorname{det}[(1+\alpha) A] .
$$

Now, suppose that $A+B$ is positive definite and the right-hand inequality holds as an identity. Then, either A or B is positive definite. Hence, suppose that A is positive definite. Multiplying the identity $(\operatorname{det} A)^{1 / n}+(\operatorname{det} B)^{1 / n}=$
$[\operatorname{det}(A+B)]^{1 / n}$ by $(\operatorname{det} A)^{-1 / n}$ yields

$$
1+\left(\operatorname{det} A^{-1 / 2} B A^{-1 / 2}\right)^{1 / n}=\left[\operatorname{det}\left(I+A^{-1 / 2} B A^{-1 / 2}\right)\right]^{1 / n} .
$$

Letting $\lambda_{1}, \ldots, \lambda_{n}$ denote the eigenvalues of $A^{-1 / 2} B A^{-1 / 2}$ it follows that $1+$ $\left(\lambda_{1} \cdots \lambda_{n}\right)^{1 / n}=\left[\left(1+\lambda_{1}\right) \cdots\left(1+\lambda_{n}\right)\right]^{1 / n}$. It now follows from Fact 1.4.12 that $\lambda_{1}=\cdots=\lambda_{n}$. Now, suppose that A is positive definite and both inequalities hold as identities. Then, it follows that $1+\operatorname{det} A^{-1 / 2} B A^{-1 / 2}=$ $\operatorname{det}\left(1+A^{-1 / 2} B A^{-1 / 2}\right)$, which implies that $1+\lambda_{1} \cdots \lambda_{n}=\left(1+\lambda_{1}\right) \cdots\left(1+\lambda_{n}\right)$, where $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of $A^{-1 / 2} B A^{-1 / 2}$. Consequently, $B=0$.

Finally, suppose that A is positive definite and both inequalities hold as identities. Since $\operatorname{det} A>0$, it follows from the left-hand identity that $\operatorname{det} B=0$. Hence, the right-hand identity implies that $\operatorname{det} A=\operatorname{det}(A+B)$. Since $A \leq A+B$, it follows from v) of Corollary 8.4.10 that $B=0$.

8.5 Matrix Inequalities

Lemma 8.5.1. Let $A, B \in \mathbf{H}^{n}$ and assume that $0 \leq A \leq B$. Then, $\mathcal{R}(A) \subseteq \mathcal{R}(B)$.

Proof. Let $x \in \mathcal{N}(B)$. Then, $x^{*} B x=0$ and thus $x^{*} A x=0$, which implies $A x=0$. Hence, $\mathcal{N}(B) \subseteq \mathcal{N}(A)$ and thus $\mathcal{N}(A)^{\perp} \subseteq \mathcal{N}(B)^{\perp}$. Since A and B are Hermitian, it follows from Theorem 2.4.3 that $\mathcal{R}(A)=\mathcal{N}(A)^{\perp}$ and $\mathcal{R}(B)=\mathcal{N}(B)^{\perp}$. Hence, $\mathcal{R}(A) \subseteq \mathcal{R}(B)$.

The following result is the Douglas-Fillmore-Williams lemma.
Theorem 8.5.2. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{n \times l}$. Then, the following statements are equivalent:
i) There exists a matrix $C \in \mathbb{F}^{l \times m}$ such that $A=B C$.
ii) There exists $\alpha>0$ such that $A A^{*} \leq \alpha B B^{*}$.
iii) $\mathcal{R}(A) \subseteq \mathcal{R}(B)$.

Proof. First we prove that i) implies $i i$). Since $A=B C$, it follows that $A A^{*}=B C C^{*} B^{*}$. Since $C C^{*} \leq \lambda_{\max }\left(C C^{*}\right) I$, it follows that $A A^{*} \leq$ $\alpha B B^{*}$, where $\alpha \triangleq \lambda_{\max }\left(C C^{*}\right)$. To prove that $\left.i i\right)$ implies iii), first note that Lemma 8.5.1 implies that $\mathcal{R}\left(A A^{*}\right) \subseteq \mathcal{R}\left(\alpha B B^{*}\right)=\mathcal{R}\left(B B^{*}\right)$. Since, by Theorem 2.4.3, $\mathcal{R}\left(A A^{*}\right)=\mathcal{R}(A)$ and $\mathcal{R}\left(B B^{*}\right)=\mathcal{R}(B)$, it follows that $\mathcal{R}(A) \subseteq \mathcal{R}(B)$. Finally, to prove that $i i i)$ implies i), use Theorem 5.6.3 to write $B=S_{1}\left[\begin{array}{ll}D & 0 \\ 0 & 0\end{array}\right] S_{2}$, where $S_{1} \in \mathbb{F}^{n \times n}$ and $S_{2} \in \mathbb{F}^{l \times l}$ are unitary and $D \in \mathbb{R}^{r \times r}$ is diagonal with positive diagonal entries, where $r \triangleq \operatorname{rank} B$. Since
$\mathcal{R}\left(S_{1}^{*} A\right) \subseteq \mathcal{R}\left(S_{1}^{*} B\right)$ and $S_{1}^{*} B=\left[\begin{array}{cc}D & 0 \\ 0 & 0\end{array}\right] S_{2}$, it follows that $S_{1}^{*} A=\left[\begin{array}{c}A_{1} \\ 0\end{array}\right]$, where $A_{1} \in \mathbb{F}^{r \times m}$. Consequently,

$$
A=S_{1}\left[\begin{array}{c}
A_{1} \\
0
\end{array}\right]=S_{1}\left[\begin{array}{cc}
D & 0 \\
0 & 0
\end{array}\right] S_{2} S_{2}^{*}\left[\begin{array}{cc}
D^{-1} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
A_{1} \\
0
\end{array}\right]=B C
$$

where $C \triangleq S_{2}^{*}\left[\begin{array}{cc}D_{0}^{-1} & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{c}A_{1} \\ 0\end{array}\right] \in \mathbb{F}^{l \times m}$.
Proposition 8.5.3. Let $\left\{A_{i}\right\}_{i=1}^{\infty} \subset \mathbf{N}^{n}$ satisfy $0 \leq A_{i} \leq A_{j}$ for all $i \leq j$, and assume that there exists $B \in \mathbf{N}^{n}$ satisfying $A_{i} \leq B$ for all $i \in \mathbb{P}$. Then, $A \triangleq \lim _{i \rightarrow \infty} A_{i}$ exists and satisfies $0 \leq A \leq B$.

Proof. Let $k \in\{1, \ldots, n\}$. Then, the sequence $\left\{A_{i(k, k)}\right\}_{i=1}^{\infty}$ is nondecreasing and bounded from above. Hence, $A_{(k, k)} \triangleq \lim _{i \rightarrow \infty} A_{i(k, k)}$ exists. Now, let $k, l \in\{1, \ldots, n\}$, where $k \neq l$. Since $A_{i} \leq A_{j}$ for all $i<j$, it follows that $\left(e_{k}+e_{l}\right)^{*} A_{i}\left(e_{k}+e_{l}\right) \leq\left(e_{k}+e_{l}\right)^{*} A_{j}\left(e_{k}+e_{l}\right)$, which implies that $A_{i(k, l)}-$ $A_{j(k, l)} \leq \frac{1}{2}\left[A_{j(k, k)}-A_{i(k, k)}+A_{j(l, l)}-A_{i(l, l)}\right]$. Alternatively, replacing $e_{k}+e_{l}$ by $e_{k}-e_{l}$ yields $A_{j(k, l)}-A_{i(k, l)} \leq \frac{1}{2}\left[A_{j(k, k)}-A_{i(k, k)}+A_{j(l, l)}-A_{i(l, l)}\right]$. Thus, $A_{i(k, l)}-A_{j(k, l)} \rightarrow 0$ as $i, j \rightarrow \infty$, which implies that $A_{(k, l)} \triangleq \lim _{i \rightarrow \infty} A_{i(k, l)}$ exists. Hence, $A \triangleq \lim _{i \rightarrow \infty} A_{i}$ exists. Since $A_{i} \leq B$ for all $i=1,2, \ldots$, it follows that $A \leq B$.

Let $A=S B S^{*} \in \mathbb{F}^{n \times n}$ be Hermitian, where $S \in \mathbb{F}^{n \times n}$ is unitary, $B \in$ $\mathbb{R}^{n \times n}$ is diagonal, $\operatorname{spec}(A) \subset \mathcal{D}$, and $\mathcal{D} \subset \mathbb{R}$. Furthermore, let $f: \mathcal{D} \mapsto \mathbb{R}$. Then, we define $f(A) \in \mathbf{H}^{n}$ by

$$
\begin{equation*}
f(A) \triangleq S f(B) S^{*} \tag{8.5.1}
\end{equation*}
$$

where $[f(B)]_{(i, i)} \triangleq f\left(B_{(i, i)}\right)$. In particular, suppose that A is nonnegative semidefinite. Then, for all $r \geq 0$ (not necessarily an integer), $A^{r}=$ $S B^{r} S^{*}$ is nonnegative semidefinite, where, for all $i=1, \ldots, n,\left(B^{r}\right)_{(i, i)}=$ $\left(B_{(i, i)}\right)^{r}$. Note that $A^{0} \triangleq I$. In particular, $A^{1 / 2}=S B^{1 / 2} S^{*}$ is a nonnegativesemidefinite square root of A since $A^{1 / 2} A^{1 / 2}=S B^{1 / 2} S^{*} S B^{1 / 2} S^{*}=S B S^{*}=A$. Hence, if $C \in \mathbb{F}^{n \times m}$, then $C^{*} C$ is nonnegative semidefinite, and we define

$$
\begin{equation*}
\langle C\rangle \triangleq \operatorname{tr}\left(C^{*} C\right)^{1 / 2} \tag{8.5.2}
\end{equation*}
$$

If A is positive definite, then A^{r} is positive definite for all $r \in \mathbb{R}$, and, if $r \neq 0$, then $\left(A^{r}\right)^{1 / r}=A$. If, in addition, A is positive definite, then $\log A=S(\log B) S^{*} \in \mathbf{H}^{n}$, where $(\log B)_{(i, i)}=\log B_{(i, i)}$.

If $0 \leq A \leq B$, then it does not necessarily follow that $A^{2} \leq B^{2}$. Consider $A \triangleq\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$ and $B \triangleq\left[\begin{array}{ll}2 & 0 \\ 0 & 8\end{array}\right]$. However, the following result, known as Furuta's inequality, is valid.

Proposition 8.5.4. Let $A, B \in \mathbf{N}^{n}$, and assume that $0 \leq A \leq B$.

Furthermore, let $p, q, r \in \mathbb{R}$ satisfy $p \geq 0, q \geq 1, r \geq 0$, and $p+2 r \leq(1+2 r) q$. Then,

$$
\begin{equation*}
A^{(p+2 r) / q} \leq\left(A^{r} B^{p} A^{r}\right)^{1 / q} \tag{8.5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(B^{r} A^{p} B^{r}\right)^{1 / q} \leq B^{(p+2 r) / q} \tag{8.5.4}
\end{equation*}
$$

Proof. See [218].
Corollary 8.5.5. Let $A, B \in \mathbf{N}^{n}$, and assume that $0 \leq A \leq B$. Then,

$$
\begin{equation*}
A^{2} \leq\left(A B^{2} A\right)^{1 / 2} \tag{8.5.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(B A^{2} B\right)^{1 / 2} \leq B^{2} \tag{8.5.6}
\end{equation*}
$$

Proof. In Proposition 8.5.4 set $r=1, p=2$, and $q=2$.
Corollary 8.5.6. Let $A, B, C \in \mathbf{N}^{n}$, and assume that $0 \leq A \leq C \leq B$. Then,

$$
\begin{equation*}
\left(C A^{2} C\right)^{1 / 2} \leq C^{2} \leq\left(C B^{2} C\right)^{1 / 2} \tag{8.5.7}
\end{equation*}
$$

Proof. The result follows directly from Corollary 8.5.5. See also [583].

The following result provides representations for A^{r}, where $r \in[0,1)$.
Proposition 8.5.7. Let $A \in \mathbf{P}^{n}$ and $r \in(0,1)$. Then,

$$
\begin{equation*}
A^{r}=\left(\cos \frac{r \pi}{2}\right) I+\frac{\sin r \pi}{\pi} \int_{0}^{\infty}\left[\frac{x^{r+1}}{1+x^{2}} I-(A+x I)^{-1} x^{r}\right] \mathrm{d} x \tag{8.5.8}
\end{equation*}
$$

and

$$
\begin{equation*}
A^{r}=\frac{\sin r \pi}{\pi} \int_{0}^{\infty}(A+x I)^{-1} A x^{r-1} \mathrm{~d} x \tag{8.5.9}
\end{equation*}
$$

Proof. Let $t \geq 0$. As shown in [90], [93, p. 143],

$$
\int_{0}^{\infty}\left[\frac{x^{r+1}}{1+x^{2}}-\frac{x^{r}}{t+x}\right] \mathrm{d} x=\frac{\pi}{\sin r \pi}\left(t^{r}-\cos \frac{r \pi}{2}\right)
$$

Solving for t^{r} and replacing t by A yields (8.5.8). Likewise, it follows from [633, p. 448, formula 589] that

$$
\int_{0}^{\infty} \frac{t x^{r-1}}{t+x} \mathrm{~d} x=\frac{t^{r} \pi}{\sin r \pi}
$$

Replacing t by A yields (8.5.9).
The following result is the Lowner-Heinz inequality.
Corollary 8.5.8. Let $A, B \in \mathbf{N}^{n}$, assume that $0 \leq A \leq B$, and let $r \in[0,1]$. Then, $A^{r} \leq B^{r}$. If, in addition, $A<B$ and $r \in(0,1]$, then $A^{r}<B^{r}$.

Proof. Let $0<A \leq B$, and let $r \in(0,1)$. In Proposition 8.5.4, replace p, q, r with $r, 1,0$. The first result now follows from (8.5.3). Alternatively, it follows from (8.5.8) of Proposition 8.5.7 that

$$
B^{r}-A^{r}=\frac{\sin r \pi}{\pi} \int_{0}^{\infty}\left[(A+x I)^{-1}-(B+x I)^{-1}\right] x^{r} \mathrm{~d} x
$$

Since $A \leq B$, it follows from Proposition 8.1.5 that, for all $x \geq 0,(B+$ $x I)^{-1} \leq(A+x I)^{-1}$. Hence, $A^{r} \leq B^{r}$. By continuity, the result holds for $A, B \in \mathbf{N}^{n}$ and $r \in[0,1]$. In the case $A<B$, it follows from Proposition 8.1.5 that, for all $x \geq 0,(B+x I)^{-1}<(A+x I)^{-1}$, so that $A^{r}<B^{r}$.

Alternatively, it follows from (8.5.9) of Proposition 8.5.7 that

$$
B^{r}-A^{r}=\frac{\sin r \pi}{\pi} \int_{0}^{\infty}\left[(A+x I)^{-1} A-(B+x I)^{-1} B\right] x^{r-1} \mathrm{~d} x .
$$

Since $A \leq B$, it follows that, for all $x \geq 0,(B+x I)^{-1} B \leq(A+x I)^{-1} A$. Hence, $A^{r} \leq B^{r}$. For yet another proof, see [625, p. 2].

Many of the results already given involve functions that are nondecreasing or increasing on suitable sets of matrices.

Definition 8.5.9. Let $\mathcal{D} \subseteq \mathbf{H}^{n}$, and let $\phi: \mathcal{D} \mapsto \mathbf{H}^{m}$. The function ϕ is nondecreasing if $\phi(A) \leq \phi(B)$ for all $A, B \in \mathcal{D}$ such that $A \leq B$, it is increasing if it is nondecreasing and $\phi(A)<\phi(B)$ for all $A, B \in \mathcal{D}$ such that $A<B$, and it is strongly increasing if it is nondecreasing and $\phi(A)<\phi(B)$ for all $A, B \in \mathcal{D}$ such that $A \leq B$ and $A \neq B$. The function ϕ is (nonincreasing, decreasing, strongly decreasing) if $-\phi$ is (nondecreasing, increasing, strongly increasing).

Proposition 8.5.10. The following functions are nondecreasing:
i) $\phi: \mathbf{H}^{n} \mapsto \mathbf{H}^{n}$ defined by $\phi(A) \triangleq B A B^{*}$, where $B \in \mathbb{F}^{m \times n}$.
ii) $\phi: \mathbf{H}^{n} \mapsto \mathbb{R}$ defined by $\phi(A) \triangleq \operatorname{tr} A B$, where $B \in \mathbf{N}^{n}$.
iii) $\phi: \quad \mathbf{N}^{n+m} \mapsto \mathbf{N}^{n}$ defined by $\phi(A) \triangleq A_{22} \mid A$, where $A \triangleq\left[\begin{array}{cc}A_{11} & A_{12} \\ A_{12}^{*} & A_{22}\end{array}\right]$.

The following functions are increasing:
iv) $\phi: \mathbf{H}^{n} \mapsto \mathbb{R}$ defined by $\phi(A) \triangleq \lambda_{i}(A)$, where $i \in\{1, \ldots, n\}$.
v) $\phi: \quad \mathbf{N}^{n} \mapsto \mathbf{N}^{n}$ defined by $\phi(A) \triangleq A^{r}$, where $r \in[0,1]$.
vi) $\phi: \mathbf{N}^{n} \mapsto \mathbf{N}^{n}$ defined by $\phi(A) \triangleq A^{1 / 2}$.
vii) $\phi: \mathbf{P}^{n} \mapsto-\mathbf{P}^{n}$ defined by $\phi(A) \triangleq-A^{-r}$, where $r \in[0,1]$.
viii) ϕ : $\mathbf{P}^{n} \mapsto-\mathbf{P}^{n}$ defined by $\phi(A) \triangleq-A^{-1}$.
ix) $\phi: \mathbf{P}^{n} \mapsto-\mathbf{P}^{n}$ defined by $\phi(A) \triangleq-A^{-1 / 2}$.
x) $\phi: \quad-\mathbf{P}^{n} \mapsto \mathbf{P}^{n}$ defined by $\phi(A) \triangleq(-A)^{-r}$, where $r \in[0,1]$.
xi) $\phi:-\mathbf{P}^{n} \mapsto \mathbf{P}^{n}$ defined by $\phi(A) \triangleq-A^{-1}$.
xii) $\phi:-\mathbf{P}^{n} \mapsto \mathbf{P}^{n}$ defined by $\phi(A) \triangleq-A^{-1 / 2}$.
xiii) $\phi: \mathbf{H}^{n} \mapsto \mathbf{H}^{m}$ defined by $\phi(A) \triangleq B A B^{*}$, where $B \in \mathbb{F}^{m \times n}$ and $\operatorname{rank} B=m$.
xiv) $\phi: \quad \mathbf{P}^{n+m} \mapsto \mathbf{P}^{n}$ defined by $\phi(A) \triangleq A_{22} \mid A$, where $A \triangleq\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{12} & A_{22}\end{array}\right]$.
xv) $\phi: \mathbf{P}^{n+m} \mapsto \mathbf{P}^{n}$ defined by $\phi(A) \triangleq-\left(A_{22} \mid A\right)^{-1}$, where $A \triangleq\left[\begin{array}{ccc}A_{11} & A_{12} \\ A_{12} & A_{22}\end{array}\right]$.
xvi) $\phi: \mathbf{P}^{n} \mapsto \mathbf{H}^{m}$ defined by $\phi(A) \triangleq \log A$.

The following functions are strongly increasing:
xvii) $\phi: \mathbf{H}^{n} \mapsto[0, \infty)$ defined by $\phi(A) \triangleq \operatorname{tr} B A B^{*}$, where $B \in \mathbb{F}^{m \times n}$ and rank $B=m$.
xviii) $\phi: \mathbf{H}^{n} \mapsto \mathbb{R}$ defined by $\phi(A) \triangleq \operatorname{tr} A B$, where $B \in \mathbf{P}^{n}$.
xix) $\phi: \quad \mathbf{N}^{n} \mapsto[0, \infty)$ defined by $\phi(A) \triangleq \operatorname{det} A$.

Proof. For the proof of $i i i$), see [369].
Finally, we consider convex functions defined with respect to matrix inequalities.

Definition 8.5.11. Let $\mathcal{D} \subseteq \mathbb{F}^{n \times m}$ be a convex set and let $\phi: \mathcal{D} \mapsto \mathbf{H}^{p}$. The function ϕ is convex if

$$
\begin{equation*}
\phi\left[\alpha A_{1}+(1-\alpha) A_{2}\right] \leq \alpha \phi\left(A_{1}\right)+(1-\alpha) \phi\left(A_{2}\right) \tag{8.5.10}
\end{equation*}
$$

for all $\alpha \in[0,1]$ and $A_{1}, A_{2} \in \mathcal{D}$. The function ϕ is concave if $-\phi$ is convex.
Lemma 8.5.12. Let $\mathcal{D} \subseteq \mathbb{F}^{n \times m}$ and $\mathcal{S} \subseteq \mathbf{H}^{p}$ be convex sets, and let $\phi_{1}: \mathcal{D} \mapsto \mathcal{S}$ and $\phi_{2}: \mathcal{S} \mapsto \mathbf{H}^{q}$. Then, the following statements hold:
i) If ϕ_{1} is convex and ϕ_{2} is nondecreasing and convex, then ϕ_{2} $\phi_{1}: \mathcal{D} \mapsto \mathbf{H}^{q}$ is convex.
ii) If ϕ_{1} is concave and ϕ_{2} is nonincreasing and convex, then ϕ_{2} $\phi_{1}: \mathcal{D} \mapsto \mathbf{H}^{q}$ is convex.
iii) If \mathcal{S} is symmetric, $\phi_{2}(-A)=-\phi_{2}(A)$ for all $A \in \mathcal{S}, \phi_{1}$ is concave, and ϕ_{2} is nonincreasing and concave, then $\phi_{2} \bullet \phi_{1}: \mathcal{D} \mapsto \mathbf{H}^{q}$ is convex.
$i v)$ If \mathcal{S} is symmetric, $\phi_{2}(-A)=-\phi_{2}(A)$ for all $A \in \mathcal{S}, \phi_{1}$ is convex, and ϕ_{2} is nondecreasing and concave, then $\phi_{2} \bullet \phi_{1}: \mathcal{D} \mapsto \mathbf{H}^{q}$ is convex.

Proof. To prove i) and $i i)$, let $\alpha \in[0,1]$ and $A_{1}, A_{2} \in \mathcal{D}$. In both cases it follows that

$$
\begin{aligned}
\phi_{2}\left(\phi_{1}\left[\alpha A_{1}+(1-\alpha) A_{2}\right]\right) & \leq \phi_{2}\left[\alpha \phi_{1}\left(A_{1}\right)+(1-\alpha) \phi_{1}\left(A_{2}\right)\right] \\
& \leq \alpha \phi_{2}\left[\phi_{1}\left(A_{1}\right)\right]+(1-\alpha) \phi_{2}\left[\phi_{1}\left(A_{2}\right)\right]
\end{aligned}
$$

Statements $i i i$) and $i v$) follow from i) and $i i$, respectively.
Proposition 8.5.13. The following functions are convex:
i) $\phi: \quad \mathbf{N}^{n} \mapsto \mathbf{N}^{n}$ defined by $\phi(A) \triangleq A^{r}$, where $r \in[1,2]$.
ii) $\phi: \mathbf{N}^{n} \mapsto \mathbf{N}^{n}$ defined by $\phi(A) \triangleq A^{2}$.
iii) ϕ : $\mathbf{P}^{n} \mapsto \mathbf{P}^{n}$ defined by $\phi(A) \triangleq A^{-r}$, where $r \in[0,1]$.
iv) $\phi: \mathbf{P}^{n} \mapsto \mathbf{P}^{n}$ defined by $\phi(A) \triangleq A^{-1}$.
v) $\phi: \mathbf{P}^{n} \mapsto \mathbf{P}^{n}$ defined by $\phi(A) \triangleq A^{-1 / 2}$.
vi) $\phi: \quad \mathbf{N}^{n} \mapsto-\mathbf{N}^{n}$ defined by $\phi(A) \triangleq-A^{r}$, where $r \in[0,1]$.
vii) $\phi: \quad \mathbf{N}^{n} \mapsto-\mathbf{N}^{n}$ defined by $\phi(A) \triangleq-A^{1 / 2}$.
viii) $\phi: \quad \mathbf{N}^{n} \mapsto \mathbf{H}^{m}$ defined by $\phi(A) \triangleq \gamma B A B^{*}$, where $\gamma \in \mathbb{R}$ and $B \in$ $\mathbb{F}^{m \times n}$.
ix) $\phi: \quad \mathbf{N}^{n} \mapsto \mathbf{N}^{m}$ defined by $\phi(A) \triangleq B A^{r} B^{*}$, where $B \in \mathbb{F}^{m \times n}$ and $r \in[1,2]$.
x) $\phi: \quad \mathbf{P}^{n} \mapsto \mathbf{N}^{m}$ defined by $\phi(A) \triangleq B A^{-r} B^{*}$, where $B \in \mathbb{F}^{m \times n}$ and $r \in[0,1]$.
xi) ϕ : $\quad \mathbf{N}^{n} \mapsto-\mathbf{N}^{m}$ defined by $\phi(A) \triangleq-B A^{r} B^{*}$, where $B \in \mathbb{F}^{m \times n}$ and $r \in[0,1]$.
xii) $\phi: \quad \mathbf{P}^{n} \mapsto-\mathbf{P}^{m}$ defined by $\phi(A) \triangleq-\left(B A^{-r} B^{*}\right)^{-p}$, where $B \in \mathbb{F}^{m \times n}$ has rank m and $r, p \in[0,1]$.
xiii) $\phi: \mathbb{F}^{n \times m} \mapsto \mathbf{N}^{n}$ defined by $\phi(A) \triangleq A B A^{*}$, where $B \in \mathbf{N}^{m}$.
xiv) $\phi: \mathbf{P}^{n} \times \mathbb{F}^{m \times n} \mapsto \mathbf{N}^{m}$ defined by $\phi(A, B) \triangleq B A^{-1} B^{*}$.
$x v) \phi: \quad \mathbf{N}^{n+m} \mapsto \mathbf{N}^{n}$ defined by $\phi(A) \triangleq-A_{22} \mid A$, where $A \triangleq\left[\begin{array}{lll}A_{11} & A_{12} \\ A_{12}^{*} & A_{22}\end{array}\right]$.
xvi) $\phi: \quad \mathbf{P}^{n+m} \mapsto \mathbf{P}^{n}$ defined by $\phi(A) \triangleq\left(A_{22} \mid A\right)^{-1}$, where $A \triangleq\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{12}^{*} & A_{22}\end{array}\right]$.
xvii) $\phi: \mathbf{P}^{n} \mapsto(0, \infty)$ defined by $\phi(A) \triangleq \operatorname{tr} A^{-r}$, where $r>0$.
xviii) $\phi: \mathbf{P}^{n} \mapsto(-\infty, 0)$ defined by $\phi(A) \triangleq-\left(\operatorname{tr} A^{-r}\right)^{-p}$, where $r, p \in$ $[0,1]$.
xix) $\phi: \quad \mathbf{N}^{n} \times \mathbf{N}^{n} \mapsto(-\infty, 0]$ defined by $\phi(A, B) \triangleq-\operatorname{tr}\left(A^{r}+B^{r}\right)^{1 / r}$, where $r \in[0,1]$.
$x x) \phi: \quad \mathbf{N}^{n} \times \mathbf{N}^{n} \mapsto[0, \infty)$ defined by $\phi(A, B) \triangleq \operatorname{tr}\left(A^{2}+B^{2}\right)^{1 / 2}$.
xxi) $\phi: \quad \mathbf{N}^{n} \times \mathbf{N}^{m} \mapsto \mathbb{R}$ defined by $\phi(A, B) \triangleq-\operatorname{tr} A^{r} X B^{p} X^{*}$, where $X \in \mathbb{F}^{n \times m}, r, p \geq 0$, and $r+p \leq 1$.
xxii) $\phi: \quad \mathbf{N}^{n} \mapsto(-\infty, 0)$ defined by $\phi(A) \triangleq-\operatorname{tr} A^{r} X A^{p} X^{*}$, where $X \in$ $\mathbb{F}^{n \times n}, r, p \geq 0$, and $r+p \leq 1$.
xxiii) $\phi: \mathbf{P}^{n} \times \mathbf{P}^{m} \times \mathbb{F}^{m \times n} \mapsto \mathbb{R}$ defined by $\phi(A, B, X) \triangleq\left(\operatorname{tr} A^{-p} X B^{-r} X^{*}\right)^{q}$, where $r, p \geq 0, r+p \leq 1$, and $q \geq(2-r-p)^{-1}$.
xxiv) $\phi: \mathbf{P}^{n} \times \mathbb{F}^{n \times n} \mapsto[0, \infty)$ defined by $\phi(A, X) \triangleq \operatorname{tr} A^{-p} X A^{-r} X^{*}$, where $r, p \geq 0$ and $r+p \leq 1$.
$x x v) \phi: \quad \mathbf{P}^{n} \times \mathbb{F}^{n \times n} \mapsto[0, \infty)$ defined by $\phi(A) \triangleq \operatorname{tr} A^{-p} X A^{-r} X^{*}$, where $r, p \in[0,1]$ and $X \in \mathbb{F}^{n \times n}$.
xxvi) $\phi: \mathbf{P}^{n} \mapsto \mathbb{R}$ defined by $\phi(A) \triangleq \operatorname{tr}\left(\left[A^{r}, X\right]\left[A^{1-r}, X\right]\right)$, where $X \in \mathbf{H}^{n}$.
xxvii) $\phi: \quad \mathbf{P}^{n} \mapsto \mathbf{H}^{m}$ defined by $\phi(A) \triangleq A \log A$.
xxviii) $\phi: \quad \mathbf{N}^{n} \backslash\{0\} \mapsto \mathbb{R}$ defined by $\phi(A) \triangleq-\log \operatorname{tr} A^{r}$, where $r \in[0,1]$.
xxix) $\phi: \mathbf{P}^{n} \times \mathbf{P}^{n} \mapsto(0, \infty)$ defined by $\phi(A, B) \triangleq \operatorname{tr}[A(\log A-\log B)]$.
$x x x) \phi: \quad \mathbf{N}^{n} \mapsto(-\infty, 0]$ defined by $\phi(A) \triangleq-(\operatorname{det} A)^{1 / n}$.
xxxi) $\phi: \quad \mathbf{P}^{n} \mapsto \mathbb{R}$ defined by $\phi(A) \triangleq-\log \operatorname{det} A$.
xxxii) $\phi: \mathbf{P}^{n} \mapsto(0, \infty)$ defined by $\phi(A) \triangleq \operatorname{det} A^{-1}$.
xxxiii) $\phi: \quad \mathbf{N}^{n} \times \mathbf{N}^{m} \mapsto-\mathbf{N}^{n m}$ defined by $\phi(A, B) \triangleq-A^{r} \otimes B^{1-r}$, where $r \in[0,1]$.
xxxiv) $\phi: \quad \mathbf{N}^{n} \times \mathbf{N}^{n} \mapsto-\mathbf{N}^{n}$ defined by $\phi(A, B) \triangleq-A^{r} \circ B^{1-r}$, where $r \in[0,1]$.
xxxv) $\phi: \quad \mathbf{H}^{n} \mapsto \mathbb{R}$ defined by $\phi(A) \triangleq \sum_{i=1}^{k} \lambda_{i}(A)$, where $k \in\{1, \ldots, n\}$.
xxxvi) $\phi: \mathbf{H}^{n} \mapsto \mathbb{R}$ defined by $\phi(A) \triangleq-\sum_{i=k}^{n} \lambda_{i}(A)$, where $k \in\{1, \ldots, n\}$.

Proof. Statements i) and $i i i$) are proved in [23] and [93, p. 123].
Let $\alpha \in[0,1]$ for the remainder of the proof.
To prove $i i$) directly, let $A_{1}, A_{2} \in \mathbf{H}^{n}$. Since

$$
\alpha(1-\alpha)=\left(\alpha-\alpha^{2}\right)^{1 / 2}\left[(1-\alpha)-(1-\alpha)^{2}\right]^{1 / 2},
$$

it follows that

$$
\begin{aligned}
0 & \leq\left[\left(\alpha-\alpha^{2}\right)^{1 / 2} A_{1}-\left[(1-\alpha)-(1-\alpha)^{2}\right]^{1 / 2} A_{2}\right]^{2} \\
& =\left(\alpha-\alpha^{2}\right) A_{1}^{2}+\left[(1-\alpha)-(1-\alpha)^{2}\right] A_{2}^{2}-\alpha(1-\alpha)\left(A_{1} A_{2}+A_{2} A_{1}\right) .
\end{aligned}
$$

Hence,

$$
\left[\alpha A_{1}+(1-\alpha) A_{2}\right]^{2} \leq \alpha A_{1}^{2}+(1-\alpha) A_{2}^{2},
$$

which shows that $\phi(A)=A^{2}$ is convex.
To prove iv) directly, let $A_{1}, A_{2} \in \mathbf{P}^{n}$. Then, $\left[\begin{array}{cc}A_{1}^{-1} & I \\ I & A_{1}\end{array}\right]$ and $\left[\begin{array}{cc}A_{2}^{-1} & I \\ I & A_{2}\end{array}\right]$ are nonnegative semidefinite, and thus

$$
\begin{aligned}
\alpha\left[\begin{array}{cc}
A_{1}^{-1} & I \\
I & A_{1}
\end{array}\right] & +(1-\alpha)\left[\begin{array}{cc}
A_{2}^{-1} & I \\
I & A_{2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\alpha A_{1}^{-1}+(1-\alpha) A_{2}^{-1} & I \\
I & \alpha A_{1}+(1-\alpha) A_{2}
\end{array}\right]
\end{aligned}
$$

is nonnegative semidefinite. It now follows from Proposition 8.2.3 that [$\alpha A_{1}+$ $\left.(1-\alpha) A_{2}\right]^{-1} \leq \alpha A_{1}^{-1}+(1-\alpha) A_{2}^{-1}$, which shows that $\phi(A)=A^{-1}$ is convex.

To prove v) directly, note that $\phi(A)=A^{-1 / 2}=\phi_{2}\left[\phi_{1}(A)\right]$, where $\phi_{1}(A) \triangleq A^{1 / 2}$ and $\phi_{2}(B) \triangleq B^{-1}$. It follows from vii) that ϕ_{1} is concave, while it follows from $i v$) that ϕ_{2} is convex. Furthermore, viii) of Proposition 8.5.10 implies that ϕ_{2} is nonincreasing. It thus follows from $i i$) of Lemma 8.5.12 that $\phi(A)=A^{-1 / 2}$ is convex.

To prove $v i$), let $A \in \mathbf{P}^{n}$ and note that $\phi(A)=-A^{r}=\phi_{2}\left[\phi_{1}(A)\right]$, where $\phi_{1}(A) \triangleq A^{-r}$ and $\phi_{2}(B) \triangleq-B^{-1}$. It follows from iii) that ϕ_{1} is convex, while it follows from $i v$) that ϕ_{2} is concave. Furthermore, viii) of Proposition 8.5.10 implies that ϕ_{2} is nondecreasing. It thus follows from $i v$) of Lemma 8.5.12 that $\phi(A)=A^{r}$ is convex on \mathbf{P}^{n}. Continuity implies that $\phi(A)=A^{r}$ is convex on \mathbf{N}^{n}.

To prove vii) directly, let $A_{1}, A_{2} \in \mathbf{N}^{n}$. Then,

$$
0 \leq \alpha(1-\alpha)\left(A_{1}^{1 / 2}-A_{2}^{1 / 2}\right)^{2},
$$

which is equivalent to

$$
\left[\alpha A_{1}^{1 / 2}+(1-\alpha) A_{2}^{1 / 2}\right]^{2} \leq \alpha A_{1}+(1-\alpha) A_{2}
$$

Using vi) of Proposition 8.5.10 yields

$$
\alpha A_{1}^{1 / 2}+(1-\alpha) A_{2}^{1 / 2} \leq\left[\alpha A_{1}+(1-\alpha) A_{2}\right]^{1 / 2} .
$$

Finally, multiplying by -1 shows that $\phi(A)=-A^{1 / 2}$ is convex.
The proof of $v i i i)$ is immediate. Statements $i x$), x), $x i$) follow from i, $i i i$, and $v i$), respectively.

To prove xii), note that $\phi(A)=-\left(B A^{-r} B^{*}\right)^{-p}=\phi_{2}\left[\phi_{1}(A)\right]$, where $\phi_{1}(A)=-B A^{-r} B^{*}$ and $\phi_{2}(C)=C^{-p}$. Statement x) implies that ϕ_{1} is concave, while $i i i$) implies that ϕ_{2} is convex. Furthermore, vii) of Proposition 8.5.10 implies that ϕ_{2} is nonincreasing. It thus follows from $\left.i i\right)$ of Lemma 8.5.12 that $\phi(A)=-\left(B A^{-r} B^{*}\right)^{-p}$ is convex.

To prove xiiii), let $A_{1}, A_{2} \in \mathbb{F}^{n \times m}$, and let $B \in \mathbf{N}^{m}$. Then,

$$
\begin{aligned}
0 & \leq \alpha(1-\alpha)\left(A_{1}-A_{2}\right) B\left(A_{1}-A_{2}\right)^{*} \\
& =\alpha A_{1} B A_{1}^{*}+(1-\alpha) A_{2} B A_{2}^{*}-\left[\alpha A_{1}+(1-\alpha) A_{2}\right] B\left[\alpha A_{1}+(1-\alpha) A_{2}\right]^{*} .
\end{aligned}
$$

Thus,

$$
\left[\alpha A_{1}+(1-\alpha) A_{2}\right] B\left[\alpha A_{1}+(1-\alpha) A_{2}\right]^{*} \leq \alpha A_{1} B A_{1}^{*}+(1-\alpha) A_{2} B A_{2}^{*},
$$

which shows that $\phi(A)=A B A^{*}$ is convex.
To prove xiv), let $A_{1}, A_{2} \in \mathbf{P}^{n}$ and $B_{1}, B_{2} \in \mathbb{F}^{m \times n}$. Then, it follows from Proposition 8.2.3 that $\left[\begin{array}{ccc}B_{1} A_{1}^{-1} B_{1}^{*} & B_{1} \\ B_{1}^{*} & A_{1}\end{array}\right]$ and $\left[\begin{array}{cc}B_{2} A_{2}^{-1} B_{2}^{*} & B_{2} \\ B_{2}^{*} & A_{2}\end{array}\right]$ are nonnegative semidefinite and thus

$$
\begin{aligned}
& \alpha\left[\begin{array}{cc}
B_{1} A_{1}^{-1} B_{1}^{*} & B_{1} \\
B_{1}^{*} & A_{1}
\end{array}\right]+(1-\alpha)\left[\begin{array}{cc}
B_{2} A_{2}^{-1} B_{2}^{*} & B_{2} \\
B_{2}^{*} & A_{2}
\end{array}\right] \\
& \quad=\left[\begin{array}{cc}
\alpha B_{1} A_{1}^{-1} B_{1}^{*}+(1-\alpha) B_{2} A_{2}^{-1} B_{2}^{*} & \alpha B_{1}+(1-\alpha) B_{2} \\
\alpha B_{1}^{*}+(1-\alpha) B_{2}^{*} & \alpha A_{1}+(1-\alpha) A_{2}
\end{array}\right]
\end{aligned}
$$

is nonnegative semidefinite. It thus follows from Proposition 8.2.3 that

$$
\begin{aligned}
{\left[\alpha B_{1}+(1-\alpha) B_{2}\right]\left[\alpha A_{1}\right.} & \left.+(1-\alpha) A_{2}\right]^{-1}\left[\alpha B_{1}+(1-\alpha) B_{2}\right]^{*} \\
\leq & \alpha B_{1} A_{1}^{-1} B_{1}^{*}+(1-\alpha) B_{2} A_{2}^{-1} B_{2}^{*}
\end{aligned}
$$

which shows that $\phi(A, B)=B A^{-1} B^{*}$ is convex.
To prove $x v$), let $A \triangleq\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{12}^{*} & A_{22}\end{array}\right] \in \mathbf{P}^{n+m}$ and $B \triangleq\left[\begin{array}{ll}B_{11} & B_{12} \\ B_{12} & B_{22}\end{array}\right] \in \mathbf{P}^{n+m}$. Then, it follows from xiv) with $A_{1}, B_{1}, A_{2}, B_{2}$ replaced by $A_{22}, A_{12}, B_{22}, B_{12}$, respectively, that

$$
\begin{aligned}
{\left[\alpha A_{12}+(1-\alpha) B_{12}\right]\left[\alpha A_{22}\right.} & \left.+(1-\alpha) B_{22}\right]^{-1}\left[\alpha A_{12}+(1-\alpha) B_{12}\right]^{*} \\
& \leq \alpha A_{12} A_{22}^{-1} A_{12}^{*}+(1-\alpha) B_{12} B_{22}^{-1} B_{12}^{*}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
-\left[\alpha A_{22}+\right. & \left.(1-\alpha) B_{22}\right] \mid[\alpha A+(1-\alpha) B] \\
= & {\left[\alpha A_{12}+(1-\alpha) B_{12}\right]\left[\alpha A_{22}+(1-\alpha) B_{22}\right]^{-1}\left[\alpha A_{12}+(1-\alpha) B_{12}\right]^{*} } \\
& \quad-\left[\alpha A_{11}+(1-\alpha) B_{11}\right] \\
\leq & \alpha\left(A_{12} A_{22}^{-1} A_{12}^{*}-A_{11}\right)+(1-\alpha)\left(B_{12} B_{22}^{-1} B_{12}^{*}-B_{11}\right) \\
= & \alpha\left(-A_{22} \mid A\right)+(1-\alpha)\left(-B_{22} \mid B\right)
\end{aligned}
$$

which shows that $\phi(A) \triangleq-A_{22} \mid A$ is convex. By continuity, the result holds for $A \in \mathbf{N}^{n+m}$.

To prove xvi), note that $\phi(A)=\left(A_{22} \mid A\right)^{-1}=\phi_{2}\left[\phi_{1}(A)\right]$, where $\phi_{1}(A)=$ $A_{22} \mid A$ and $\phi_{2}(B)=B^{-1}$. It follows from $x v$) that ϕ_{1} is concave, while it follows from $i v$) that ϕ_{2} is convex. Furthermore, viii) of Proposition 8.5.10 implies that ϕ_{2} is nonincreasing. It thus follows from Lemma 8.5.12 that $\phi(A) \triangleq\left(A_{22} \mid A\right)^{-1}$ is convex.

Result xvii) is given in by Theorem 9 of [372].
To prove xviii), note that $\phi(A)=-\left(\operatorname{tr} A^{-r}\right)^{-p}=\phi_{2}\left[\phi_{1}(A)\right]$, where $\phi_{1}(A)=\operatorname{tr} A^{-r}$ and $\phi_{2}(B)=-B^{-p}$. Statement iii) implies that ϕ_{1} is convex and that ϕ_{2} is concave. Furthermore, vii) of Proposition 8.5.10 implies that ϕ_{2} is nondecreasing. It thus follows from $i v$) of Lemma 8.5.12 that $\phi(A)=-\left(\operatorname{tr} A^{-r}\right)^{-p}$ is convex.

Results xix) and $x x$) are proved in [126].
Results $x x i)-x x v$) are given by Corollary 1.1, Theorem 1, Corollary 2.1, Theorem 2, and Theorem 8, respectively, of [126]. A proof of $x x i$) in the case $p=1-r$ is given in [93, p. 273].

Result $x x v i$) is proved in [126] and [93, p. 274].
Result $x x v i i$) is given in [93, p. 123].
To prove xviii), note that $\phi(A)=-\log \operatorname{tr} A^{r}=\phi_{2}\left[\phi_{1}(A)\right]$, where $\phi_{1}(A)=\operatorname{tr} A^{r}$ and $\phi_{2}(x)=-\log x$. Statement vi) implies that ϕ_{1} is concave. Furthermore, ϕ_{2} is convex and nonincreasing. It thus follows from $i i$) of Lemma 8.5.12 that $\phi(A)=-\log \operatorname{tr} A^{r}$ is convex.

Result $x x i x$) is given in [93, p. 275].
To prove $x x x$), let $A_{1}, A_{2} \in \mathbf{N}^{n}$. From Corollary 8.4.15 it follows that $\left(\operatorname{det} A_{1}\right)^{1 / n}+\left(\operatorname{det} A_{2}\right)^{1 / n} \leq\left[\operatorname{det}\left(A_{1}+A_{2}\right)\right]^{1 / n}$. Replacing A_{1} and A_{2} by αA_{1} and $(1-\alpha) A_{2}$, respectively, and multiplying by -1 shows that $\phi(A)=-(\operatorname{det} A)^{1 / n}$ is convex.

To prove xxxi), note that $\phi(A)=-n \log \left[(\operatorname{det} A)^{1 / n}\right]=\phi_{2}\left[\phi_{1}(A)\right]$, where $\phi_{1}(A)=(\operatorname{det} A)^{1 / n}$ and $\phi_{2}(x)=-n \log x$. It follows from xix) that ϕ_{1} is concave. Since ϕ_{2} is nonincreasing and convex, it follows from $\left.i i\right)$ of Lemma 8.5.12 that $\phi(A)=-\log \operatorname{det} A$ is convex.

To prove $x x x i i)$, note that $\phi(A)=\operatorname{det} A^{-1}=\phi_{2}\left[\phi_{1}(A)\right]$, where $\phi_{1}(A)=$ $\log \operatorname{det} A^{-1}$ and $\phi_{2}(x)=e^{x}$. It follows from $x x$) that ϕ_{1} is convex. Since ϕ_{2} is nondecreasing and convex, it follows from i) of Lemma 8.5.12 that $\phi(A)=\operatorname{det} A^{-1}$ is convex.

Next, xxxiiii) is given in [93, p. 273] and [625, p. 9]. Statement xxxiv) is given in [625, p. 9].

Finally, $x x x v$) is given in [400, p. 478]. Statement $x x x v i$) follows immediately from $x x x v$).

The following result is a corollary of $x v$) of Proposition 8.5.13 for the $\operatorname{case} \alpha=1 / 2$. Versions of this result appear in $[128,272,369]$ and $[466, \mathrm{p}$. 152].

Corollary 8.5.14. Let $A \triangleq\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{12} & A_{22}\end{array}\right] \in \mathbb{F}^{n+m}$ and $B \triangleq\left[\begin{array}{ll}B_{11} & B_{12} \\ B_{12} & B_{22}\end{array}\right] \in$ \mathbb{F}^{n+m}, and assume that A and B are nonnegative semidefinite. Then,

$$
A_{11}\left|A+B_{11}\right| B \leq\left(A_{11}+B_{11}\right) \mid(A+B) .
$$

The following corollary of $x x x v$) gives a strong majorization condition for the eigenvalues of a pair of Hermitian matrices.

Corollary 8.5.15. Let $A, B \in \mathbf{H}^{n}$. Then, for all $k=1, \ldots, n$,

$$
\begin{equation*}
\sum_{i=1}^{k} \lambda_{i}(A+B) \leq \sum_{i=1}^{k}\left[\lambda_{i}(A)+\lambda_{i}(B)\right] \tag{8.5.11}
\end{equation*}
$$

with equality for $k=n$.
Proof. See [93, p. 69], [289, p. 201], or [400, p. 478].

8.6 Facts on Range and Rank

Fact 8.6.1. Let $A, B \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite. Then, there exists $\alpha>0$ such that $A \leq \alpha B$ if and only if $\mathcal{R}(A) \subseteq \mathcal{R}(B)$. In this case, rank $A \leq \operatorname{rank} B$. (Proof: Use Theorem 8.5.2 and Corollary 8.5.8.)

Fact 8.6.2. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A is nonnegative semidefinite and B is either nonnegative semidefinite or skew Hermitian. Then, the following identities hold:
i) $\mathcal{N}(A+B)=\mathcal{N}(A) \cap \mathcal{N}(B)$.
ii) $\mathcal{R}(A+B)=\mathcal{R}(A)+\mathcal{R}(B)$.
(Proof: Use $\left[(\mathcal{N}(A) \cap \mathcal{N}(B)]^{\perp}=\mathcal{R}(A)+\mathcal{R}(B)\right.$.)
Fact 8.6.3. Let $A \in \mathbb{F}^{n \times n}$, and assume that $A+A^{*} \geq 0$. Then, the following identities hold:
i) $\mathcal{N}(A)=\mathcal{N}\left(A+A^{*}\right) \cap \mathcal{N}\left(A-A^{*}\right)$.
ii) $\mathcal{R}(A)=\mathcal{R}\left(A+A^{*}\right)+\mathcal{R}\left(A-A^{*}\right)$.
iii) $\operatorname{rank} A=\operatorname{rank}\left[\begin{array}{cc}A+A^{*} & A-A^{*}\end{array}\right]$.

Fact 8.6.4. Let $A, B \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite. Then,

$$
\operatorname{rank}\left[\begin{array}{cc}
A & B
\end{array}\right]=\operatorname{rank}(A+B)
$$

and

$$
\operatorname{rank}\left[\begin{array}{cc}
A & B \\
0 & A
\end{array}\right]=\operatorname{rank} A+\operatorname{rank}(A+B)
$$

(Proof: Using Fact 8.6.2,

$$
\begin{aligned}
\mathcal{R}\left(\left[\begin{array}{ll}
A & B
\end{array}\right]\right) & =\mathcal{R}\left(\left[\begin{array}{ll}
A & B
\end{array}\right]\left[\begin{array}{l}
A \\
B
\end{array}\right]\right)=\mathcal{R}\left(A^{2}+B^{2}\right)=\mathcal{R}\left(A^{2}\right)+\mathcal{R}\left(B^{2}\right) \\
& =\mathcal{R}(A)+\mathcal{R}(B)=\mathcal{R}(A+B) .
\end{aligned}
$$

Alternatively, it follows from Fact 6.4.11 that

$$
\begin{aligned}
\operatorname{rank}\left[\begin{array}{ll}
A & B
\end{array}\right] & =\operatorname{rank}\left[\begin{array}{ll}
A+B & B
\end{array}\right] \\
& =\operatorname{rank}(A+B)+\operatorname{rank}\left[B-(A+B)(A+B)^{+} B\right] .
\end{aligned}
$$

Next, note that

$$
\begin{aligned}
\operatorname{rank}\left[B-(A+B)(A+B)^{+} B\right] & =\operatorname{rank}\left(B^{1 / 2}\left[I-(A+B)(A+B)^{+}\right] B^{1 / 2}\right) \\
& \leq \operatorname{rank}\left(B^{1 / 2}\left[I-B B^{+}\right] B^{1 / 2}\right)=0 .
\end{aligned}
$$

For the second result use Theorem 8.3.4 to simultaneously diagonalize A and B.)

8.7 Facts on Identities and Inequalities Involving One Matrix

Fact 8.7.1. Let $A \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite, and assume that there exists $i \in\{1, \ldots, n\}$ such that $A_{(i, i)}=0$. Then, $\operatorname{row}_{i}(A)=0$ and $\operatorname{col}_{i}(A)=0$.

Fact 8.7.2. Let $A \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite. Then, $A_{(i, i)} \geq$ 0 for all $i=1, \ldots, n$, and $\left|A_{(i, j)}\right|^{2} \leq A_{(i, i)} A_{(j, j)}$ for all $i, j=1, \ldots, n$.

Fact 8.7.3. Let $A \in \mathbb{F}^{n \times n}$. Then, $A \geq 0$ if and only if $A \geq-A$.
Fact 8.7.4. Let $A \in \mathbb{F}^{n \times n}$ be Hermitian. Then, $A^{2} \geq 0$.
Fact 8.7.5. Let $A \in \mathbb{F}^{n \times n}$ be skew Hermitian. Then, $A^{2} \leq 0$.
Fact 8.7.6. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\left(A+A^{*}\right)^{2} \geq 0
$$

and

$$
\left(A-A^{*}\right)^{2} \leq 0 .
$$

Fact 8.7.7. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
A^{2}+A^{2 *} \leq A A^{*}+A^{*} A .
$$

Equality holds if and only if $A=A^{*}$.
Fact 8.7.8. Let $A \in \mathbb{F}^{n \times n}$, and let $\alpha>0$. Then,

$$
A+A^{*} \leq \alpha I+\alpha^{-1} A A^{*} .
$$

Equality holds if and only if $A=\alpha I$.

Fact 8.7.9. Let $A \in \mathbb{F}^{n \times n}$ be positive definite. Then,

$$
2 I \leq A+A^{-1} .
$$

Equality holds if and only if $A=I$.
Fact 8.7.10. Let $A \in \mathbb{F}^{n \times n}$ be Hermitian. Then, $A^{2} \leq A$ if and only if $0 \leq A \leq I$.

Fact 8.7.11. Let $A \in \mathbb{F}^{n \times n}$ be Hermitian. Then, $\alpha I+A \geq 0$ if and only if $\alpha \geq-\lambda_{\min }(A)$. Furthermore,

$$
A^{2}+A+\frac{1}{4} I \geq 0 .
$$

Fact 8.7.12. Let $A \in \mathbb{F}^{n \times m}$. Then, $A A^{*} \leq I_{n}$ if and only if $A^{*} A \leq I_{m}$.
Fact 8.7.13. Let $A \in \mathbb{F}^{n \times n}$, and assume that either $A A^{*} \leq A^{*} A$ or $A^{*} A \leq A A^{*}$. Then, A is normal. (Proof: Use the Schur decomposition.)

Fact 8.7.14. Let $A \in \mathbb{F}^{n \times n}$ be a projector. Then,

$$
0 \leq A \leq I .
$$

Fact 8.7.15. Let $A \in \mathbb{F}^{n \times m}$. Then,

$$
\left(A A^{*}\right)^{1 / 2} A=A\left(A^{*} A\right)^{1 / 2} .
$$

Fact 8.7.16. Let $A \in \mathbb{F}^{n \times m}$, and assume that $A^{*} A$ is nonsingular. Then,

$$
\left(A A^{*}\right)^{1 / 2}=A\left(A^{*} A\right)^{-1 / 2} A^{*} .
$$

Fact 8.7.17. Let $A \in \mathbb{F}^{n \times n}$ be nonsingular. Then, $\left(A A^{*}\right)^{-1 / 2} A$ is unitary.

Fact 8.7.18. Let $A \in \mathbb{F}^{n \times n}$. Then, A is positive definite if and only if $I+A$ is nonsingular and the matrices $I-B$ and $I+B$ are positive definite, where $B \triangleq(I+A)^{-1}(I-A)$. (Proof: See [191].) (Remark: For additional results on the Cayley transform, see Fact 3.6.23, Fact 3.6.24, Fact 3.6.25, Fact 3.9.8, and Fact 11.15.9.)

Fact 8.7.19. Let $A \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite and let $k \in \mathbb{P}$. Then, there exists a unique nonnegative-semidefinite matrix $B \in \mathbb{F}^{n \times n}$ such that $B^{k}=A$. (Proof: See [287, p. 405].) (Problem: Find a direct proof of uniqueness for $k=2$ and extend to nonintegral powers.)

Fact 8.7.20. Let $A \in \mathbb{R}^{n \times n}$ be positive definite, assume that $A \leq I$,
and define $\left\{B_{k}\right\}_{k=0}^{\infty}$ by $B_{0} \triangleq 0$ and

$$
B_{k+1} \triangleq B_{k}+\frac{1}{2}\left(A-B_{k}^{2}\right) .
$$

Then,

$$
\lim _{k \rightarrow \infty} B_{k}=A^{1 / 2}
$$

(Proof: See [74, p. 181].) (Remark: See Fact 5.13.18.)
Fact 8.7.21. Let $A \in \mathbb{R}^{n \times n}$ be nonsingular and define $\left\{B_{k}\right\}_{k=0}^{\infty}$ by $B_{0} \triangleq A$ and

$$
B_{k+1} \triangleq \frac{1}{2}\left(B_{k}+B_{k}^{-\mathrm{T}}\right) .
$$

Then,

$$
\lim _{k \rightarrow \infty} B_{k}=\left(A A^{\mathrm{T}}\right)^{-1 / 2} A
$$

(Remark: The limit is unitary. See Fact 8.7.17. See [64, p. 224].)
Fact 8.7.22. Let $0 \leq \alpha_{1} \leq \cdots \leq \alpha_{n}$, and define $A \in \mathbb{R}^{n \times n}$ by $A_{(i, j)} \triangleq \min \left\{\alpha_{i}, \alpha_{j}\right\}$ for all $i, j=1, \ldots, n$. Then, A is nonnegative semidefinite. (Problem: Determine rank A. When is A positive definite?) (Remark: When $\alpha_{i}=i$ for all $i=1, \ldots, n$, the matrix A is a covariance matrix arising in the theory of Brownian motion.)

Fact 8.7.23. Let $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$ be such that $\operatorname{Re} \lambda_{i}<0$ for all $i=$ $1, \ldots, n$, and, for all $i, j=1, \ldots, n$, define $A \in \mathbb{C}^{n \times n}$ by

$$
A_{(i, j)} \triangleq \frac{-1}{\lambda_{i}+\overline{\lambda_{j}}} .
$$

Then, A is nonnegative semidefinite. (Proof: Note that $A=2 B \circ\left(1_{n \times n}-\right.$ $C)^{\{-1\}}$, where $B_{(i, j)}=\frac{1}{\left(\lambda_{i}-1\right)\left(\overline{\lambda_{j}}-1\right)}$ and $C_{(i, j)}=\frac{\left(\lambda_{i}+1\right)\left(\overline{\lambda_{j}}+1\right)}{\left(\lambda_{i}-1\right)\left(\lambda_{j}-1\right)}$. Then, note that B is nonnegative semidefinite and that $\left(1_{n \times n}-C\right)^{\{-1\}}=1_{n \times n}+C+C^{\{2\}}+$ $C^{\{3\}}+\cdots$. Alternatively, A satisfies a Lyapunov equation with coefficient $\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. See [289, p. 348].) (Remark: A is a Cauchy matrix. See Fact 3.12.13 and Fact 8.7.29.)

Fact 8.7.24. Let $a_{1}, \ldots, a_{n} \geq 0$ and $p \in \mathbb{R}$, assume that either a_{1}, \ldots, a_{n} are positive or p is positive, and, for all $i, j=1, \ldots, n$, define $A \in \mathbb{R}^{n \times n}$ by

$$
A_{(i, j)} \triangleq\left(a_{i} a_{j}\right)^{p} .
$$

Then, A is nonnegative semidefinite. (Proof: $A=a^{\{p\}} a^{\{p\} \mathrm{T}}$, where $a \triangleq$ $\left[\begin{array}{lll}a_{1} & \cdots & a_{n}\end{array}\right]^{\mathrm{T}}$.)

Fact 8.7.25. Let $a_{1}, \ldots, a_{n}>0$, let $\alpha>0$, and, for all $i, j=1, \ldots, n$, define $A \in \mathbb{R}^{n \times n}$ by

$$
A_{(i, j)} \triangleq \frac{1}{\left(a_{i}+a_{j}\right)^{\alpha}}
$$

Then, A is nonnegative semidefinite. (Proof: See [462].) (Remark: See Fact 5.9.7.)

Fact 8.7.26. Let $a_{1}, \ldots, a_{n}>0$, let $r \in[-1,1]$, and, for all $i, j=$ $1, \ldots, n$, define $A \in \mathbb{R}^{n \times n}$ by

$$
A_{(i, j)} \triangleq \frac{a_{i}^{r}+a_{j}^{r}}{a_{i}+a_{j}}
$$

Then, A is nonnegative semidefinite. (Proof: See [625, p. 74].)
Fact 8.7.27. Let $a_{1}, \ldots, a_{n}>0$, let $q>0$, let $p \in[-q, q]$, and, for all $i, j=1, \ldots, n$, define $A \in \mathbb{R}^{n \times n}$ by

$$
A_{(i, j)} \triangleq \frac{a_{i}^{p}+a_{j}^{p}}{a_{i}^{q}+a_{j}^{q}}
$$

Then, A is nonnegative semidefinite. (Proof: In Fact 8.7.26, replace a_{i} by $1 / a_{i}$, and let $r=p / q$. See [405] for the case $q \geq p \geq 0$.) (Remark: The case $q=1$ and $p=0$ yields a Cauchy matrix. In the case $n=2, A \geq 0$ yields Fact 1.4.6.) (Problem: When is A positive definite?)

Fact 8.7.28. Let $a_{1}, \ldots, a_{n}>0$, let $p \in[-1,1]$ and $q \in(-2,2]$, and, for all $i, j=1, \ldots, n$, define $A \in \mathbb{R}^{n \times n}$ by

$$
A_{(i, j)} \triangleq \frac{a_{i}^{p}+a_{j}^{p}}{a_{i}^{2}+q a_{i} a_{j}+a_{j}^{2}}
$$

Then, A is nonnegative semidefinite. (Proof: See [624] or [625, p. 76].)
Fact 8.7.29. Let $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n} \in \mathbb{R}$ be positive and, for all $i, j=$ $1, \ldots, n$, define the Cauchy matrix $A \in \mathbb{R}^{n \times n}$ by $A_{(i, j)} \triangleq 1 /\left(a_{i}+b_{j}\right)$. Then, A is nonnegative semidefinite. If, in addition, $a_{1}<\cdots<a_{n}$ are distinct and $b_{1}<\cdots<b_{n}$ are distinct, then A is positive definite. In particular, the Hilbert matrix is positive definite. (Remark: See Fact 3.12.12 and Fact 3.12.13.) (Problem: Extend this result to complex entries and generalize Fact 8.7.23.)

Fact 8.7.30. Let $A \in \mathbb{F}^{n \times n}$ be Hermitian, assume that $A_{(i, i)}>0$ for all $i=1, \ldots, n$, and assume that, for all $i, j=1, \ldots, n$,

$$
\left|A_{(i, j)}\right|<\frac{1}{n-1} \sqrt{A_{(i, i)} A_{(j, j)}}
$$

Then, A is positive definite. (Proof: Note that

$$
\left.x^{*} A x=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n}\left[\begin{array}{c}
x_{(i)} \\
x_{(j)}
\end{array}\right]^{*}\left[\begin{array}{cc}
\frac{1}{n-1} A_{(i, i)} & A_{(i, j)} \\
\overline{A_{(i, j)}} & \frac{1}{n-1} A_{(j, j)}
\end{array}\right]\left[\begin{array}{l}
x_{(i)} \\
x_{(j)}
\end{array}\right] .\right)
$$

(Remark: This result is due to Roup.)
Fact 8.7.31. Let $\alpha_{0}, \ldots, \alpha_{n}>0$, and define the tridiagonal matrix $A \in \mathbb{R}^{n \times n}$ by

$$
A \triangleq\left[\begin{array}{cccccc}
\alpha_{0}+\alpha_{1} & -\alpha_{1} & 0 & 0 & \cdots & 0 \\
-\alpha_{1} & \alpha_{1}+\alpha_{2} & -\alpha_{2} & 0 & \cdots & 0 \\
0 & -\alpha_{2} & \alpha_{2}+\alpha_{3} & -\alpha_{3} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & & \vdots \\
0 & 0 & 0 & 0 & \cdots & \alpha_{n-1}+\alpha_{n}
\end{array}\right]
$$

Then, A is positive definite. (Proof: For $k=2, \ldots, n$, the $k \times k$ leading principal subdeterminant of A is given by $\left[\sum_{i=0}^{k} \alpha_{i}^{-1}\right] \alpha_{0} \alpha_{1} \cdots \alpha_{k}$. See $[66, \mathrm{p}$. 115].) (Remark: A a stiffness matrix arising in structural analysis.)

Fact 8.7.32. Let $x_{1}, \ldots, x_{n} \in \mathbb{F}^{n}$, and define $A \in \mathbb{F}^{n \times n}$ by $A_{(i, j)} \triangleq x_{i}^{*} x_{j}$ for all $i, j=1, \ldots, n$, and $B \triangleq\left[\begin{array}{lll}x_{1} & \cdots & x_{n}\end{array}\right]$. Then, $A=B^{*} B$. Consequently, A is nonnegative semidefinite and $\operatorname{rank} A=\operatorname{rank} B$. Conversely, let $A \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite. Then, there exist $x_{1}, \ldots, x_{n} \in \mathbb{F}^{n}$ such that $A=B^{*} B$, where $B=\left[\begin{array}{lll}x_{1} & \cdots & x_{n}\end{array}\right]$. (Proof: The converse is an immediate consequence of Corollary 5.4.5.) (Remark: A is the Gram matrix of x_{1}, \ldots, x_{n}.)

Fact 8.7.33. Let $A \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite. Then, there exists $B \in \mathbb{F}^{n \times n}$ such that B is upper triangular, B has nonnegative diagonal entries, and $A=B B^{*}$. If, in addition, A is positive definite, then B is unique and has positive diagonal entries. (Remark: This result is the Cholesky decomposition.)

Fact 8.7.34. Let $x \in \mathbb{F}^{n}$. Then,

$$
x x^{*} \leq x^{*} x I
$$

Fact 8.7.35. Let $A \in \mathbb{F}^{n \times m}$, and assume that rank $A=m$. Then,

$$
0 \leq A\left(A^{*} A\right)^{-1} A^{*} \leq I
$$

Fact 8.7.36. Let $A \in \mathbb{F}^{n \times n}$ be positive definite. Then,

$$
A^{-1} \leq \frac{\alpha+\beta}{\alpha \beta} I-\frac{1}{\alpha \beta} A \leq \frac{(\alpha+\beta)^{2}}{4 \alpha \beta} A^{-1}
$$

where $\alpha \triangleq \lambda_{\max }(A)$ and $\beta \triangleq \lambda_{\text {min }}(A)$. (Proof: See [401].)
Fact 8.7.37. Let $A=\left[\begin{array}{ccc}A_{11} & A_{12} \\ A_{12} & A_{22}\end{array}\right] \in \mathbb{F}^{n \times n}$ be Hermitian, assume that A_{22} is nonsingular, and let $S \triangleq\left[\begin{array}{ll}I & -A_{12} A_{22}^{-1}\end{array}\right]$. Then,

$$
A_{11}-A_{12} A_{22}^{-1} A_{12}^{*}=S A S^{*} .
$$

If, in addition, A is (nonnegative semidefinite, positive definite), then so is $A_{11}-A_{12} A_{22}^{-1} A_{12}^{*}$.

Fact 8.7.38. Let $A \in \mathbb{F}^{n \times m}$, and define

$$
\mathcal{A} \triangleq\left[\begin{array}{cc}
\left(A A^{*}\right)^{1 / 2} & A \\
A^{*} & \left(A^{*} A\right)^{1 / 2}
\end{array}\right] .
$$

Then, \mathcal{A} is nonnegative semidefinite.
Fact 8.7.39. Let $A \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite. Then, $\left[\begin{array}{cc}A & A \\ A & A\end{array}\right]$ and $\left[\begin{array}{cc}A & -A \\ -A & A\end{array}\right]$ are nonnegative semidefinite. Furthermore, if $\left[\begin{array}{c}\frac{\alpha}{\beta} \\ \bar{\beta}\end{array}\right] \in \mathbb{F}^{2 \times 2}$ is nonnegative semidefinite, then so is $\left[\begin{array}{cc}\alpha A & \bar{\beta} A \\ \beta A & \gamma A\end{array}\right]$. Finally, if A and $\left[\begin{array}{c}\alpha \\ \bar{\beta}\end{array}\right]$ are positive definite, then $\left[\begin{array}{cc}\alpha A & \bar{\beta} A \\ \beta A & \gamma A\end{array}\right]$ is positive definite. (Proof: Use Fact 7.4.13.)

Fact 8.7.40. Let $A_{11}, A_{12}, A_{22} \in \mathbb{F}^{n \times n}$, assume that $\left[\begin{array}{cc}A_{11} & A_{12} \\ A_{12}^{12} & A_{22}\end{array}\right] \in \mathbb{F}^{2 n \times 2 n}$ is nonnegative semidefinite, and assume that $\left[\begin{array}{c}\alpha \\ \bar{\beta}\end{array}\right] \in \mathbb{F}^{2 \times 2}$ is nonnegative semidefinite. Then, $\left[\begin{array}{cc}\alpha A_{11} & \beta A_{12} \\ \bar{\beta} A_{12}^{*} & \gamma A_{22}\end{array}\right]$ is nonnegative semidefinite. If, in addition, $\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{12}^{12} & A_{22}\end{array}\right]$ is positive definite and $\alpha, \beta>0$, then $\left[\begin{array}{cc}\frac{\alpha}{\beta} A_{11} & \beta A_{12} \\ \beta A_{12}^{*} & \gamma A_{22}\end{array}\right]$ is positive definite. (Proof: Note that $\left[\begin{array}{c}\alpha A_{11}\end{array} \beta_{12} A_{12} \bar{\beta}_{12}^{*} \gamma A_{22}\right]=\left(\left[\begin{array}{c}\alpha \\ \bar{\beta}\end{array}\right] \otimes 1_{n \times n}\right) \circ\left[\begin{array}{cc}A_{11} & A_{12} \\ A_{12}^{*} & A_{22}\end{array}\right]$ and use Fact 8.15.6 and Fact 7.4.13.) (Problem: Extend this result to nonsquare A_{12}.)

Fact 8.7.41. Let $\left[\begin{array}{cc}A_{11} & A_{12} \\ A_{12}^{*} & A_{22}\end{array}\right] \in \mathbb{F}^{2 n \times 2 n}$ be nonnegative semidefinite, where $A_{11}, A_{22} \in \mathbb{F}^{n \times n}$. Then,

$$
-A_{11}-A_{22} \leq A_{12}+A_{12}^{*} \leq A_{11}+A_{22}
$$

If, in addition, $\left[\begin{array}{cc}A_{11} & A_{12} \\ A_{12} & A_{22}\end{array}\right]$ is positive definite, then

$$
-A_{11}-A_{22}<A_{12}+A_{12}^{*}<A_{11}+A_{22}
$$

(Proof: Consider $S\left[\begin{array}{cc}A_{11} & A_{12} \\ A_{12} & A_{22}\end{array}\right] S^{\mathrm{T}}$, where $S \triangleq\left[\begin{array}{ll}I & I\end{array}\right]$ and $S \triangleq\left[\begin{array}{ll}I & -I\end{array}\right]$.)

Fact 8.7.42. Let $A, B \in \mathbb{F}^{n \times n}$ be Hermitian. Then, $-A \leq B \leq A$ if and only if $\left[\begin{array}{cc}A & B \\ B & A\end{array}\right]$ is nonnegative semidefinite. Furthermore, $-A<B<A$ if and only if $\left[\begin{array}{cc}A & B \\ B & A\end{array}\right]$ is positive definite.

Fact 8.7.43. Let $A \in \mathbb{R}^{n \times n}$ be positive definite, let $\mathcal{S} \subseteq\{1, \ldots, n\}$, and let $A_{[\mathrm{s}]}$ denote the principal submatrix of A obtained by ${\operatorname{deleting} \operatorname{row}_{i}(A)}^{(})$ and $\operatorname{col}_{i}(A)$ for all $i \in \mathcal{S}$. Then,

$$
\left(A_{[8]}\right)^{-1} \leq\left(A^{-1}\right)_{[8]} .
$$

(Proof: See [287, p. 474].) (Remark: Generalizations of this result are given in [143].)

Fact 8.7.44. Let $A \in \mathbb{F}^{n \times n}$ be positive definite. Then,

$$
n+\log \operatorname{det} A \leq n(\operatorname{det} A)^{1 / n} \leq \operatorname{tr} A \leq\left(n \operatorname{tr} A^{2}\right)^{1 / 2},
$$

with equality if and only if $A=I$.
Fact 8.7.45. Let $A \triangleq\left[\begin{array}{ccc}A_{11} & \cdots & A_{1 k} \\ \vdots & \ddots & \vdots \\ A_{1 k} & \cdots & A_{k k}\end{array}\right]$, where $A_{i j} \in \mathbb{F}^{n_{i} \times n_{j}}$ for all $i, j=$ $1, \ldots, k$, and assume that A is positive definite. Furthermore, define $\hat{A} \triangleq$ $\left[\begin{array}{ccc}\hat{A}_{11} & \cdots & \hat{A}_{1 k} \\ \vdots & \vdots & \vdots \\ \hat{A}_{1 k} & \cdots & \hat{A}_{k k}\end{array}\right]$, where $\hat{A}_{i j}=1_{1 \times n_{i}} A_{i j} 1_{n_{j} \times 1}$ is the sum of the entries of $A_{i j}$ for all $i, j=1, \ldots, k$. Then, \hat{A} is positive definite. (Proof: $\hat{A}=B A B^{\mathrm{T}}$, where the entries of $B \in \mathbb{R}^{n \times n}$ are zeros and ones. See [22].)

8.8 Facts on Identities and Inequalities Involving Two or More Matrices

Fact 8.8.1. Let $A, B \in \mathbb{F}^{n \times n}$ be positive definite. Then,

$$
\left(A^{-1}+B^{-1}\right)^{-1}=A(A+B)^{-1} B .
$$

Fact 8.8.2. Let $A \in \mathbb{F}^{n \times n}$ be positive semidefinite, let $A \in \mathbb{F}^{n \times n}$ be Hermitian, and assume that $A+B$ is nonsingular. Then,

$$
(A+B)^{-1}+(A+B)^{-1} B(A+B)^{-1} \leq A^{-1} .
$$

If, in addition, B is nonsingular, the inequality is strict. (Proof: The inequality is equivalent to $B A^{-1} B \geq 0$. See [443].)

Fact 8.8.3. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times m}$, and assume that B is nonnegative semidefinite. Then, $A B A^{*}=0$ if and only if $A B=0$.

Fact 8.8.4. Let $A, B \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite. Then, $A B$ is nonnegative semidefinite if and only if $A B$ is normal.

Fact 8.8.5. Let $A, B \in \mathbb{F}^{n \times n}$ be Hermitian and assume that either $\left.i\right) A$ and B are nonnegative semidefinite or $i i$) either A or B is positive definite. Then, $A B$ is group invertible. (Proof: Use Theorem 8.3.2 and Theorem 8.3.5.)

Fact 8.8.6. Let $A, B \in \mathbb{F}^{n \times n}$ be Hermitian and assume that A and $A B+B A$ are positive definite. Then, B is positive definite. (Proof: See [356, p. 120] or [599]. Alternatively, the result follows from Corollary 11.7.4.)

Fact 8.8.7. Let $A, B \in \mathbb{F}^{n \times n}$ be Hermitian and assume that $A \leq B$. Then, $A_{(i, i)} \leq B_{(i, i)}$ for all $i=1, \ldots, n$.

Fact 8.8.8. Let $A \in \mathbb{F}^{n \times n}$ be positive definite and let $B \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite. Then, $B \leq A$ if and only if $B A^{-1} B \leq B$.

Fact 8.8.9. Let $A, B, C, D \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite, and assume that $0<D \leq C$ and $B C B \leq A D A$. Then, $B \leq A$. (Proof: See $[40,134]$.)

Fact 8.8.10. Let $A, B \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite and assume that $0 \leq A \leq B$. Then,

$$
\left(A+\frac{1}{4} A^{2}\right)^{1 / 2} \leq\left(B+\frac{1}{4} B^{2}\right)^{1 / 2}
$$

(Proof: See [425].)
Fact 8.8.11. Let $A \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite and let $B \in$ $\mathbb{F}^{l \times n}$. Then, $B A B^{*}$ is positive definite if and only if $B\left(A+A^{2}\right) B^{*}$ is positive definite. (Proof: Diagonalize A using a unitary transformation and note that $B A^{1 / 2}$ and $B\left(A+A^{2}\right)^{1 / 2}$ have the same rank.)

Fact 8.8.12. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{n \times l}$, and assume that $\operatorname{rank} B=$ l. Then,

$$
0 \leq A^{*} B\left(B^{*} B\right)^{-1} B^{*} A \leq A^{*} A
$$

If, in particular, $m=l=1$, then

$$
\left|A^{*} B\right|^{2} \leq A^{*} A B^{*} B .
$$

(Remark: This result is the Cauchy-Schwarz inequality. See Fact 8.13.13.)
Fact 8.8.13. Let $A \in \mathbb{F}^{n \times n}$ be positive definite and let $B \in \mathbb{F}^{m \times n}$,
where $\operatorname{rank} B=m$. Then,

$$
0 \leq B^{*}\left(B A B^{*}\right)^{-1} B \leq A^{-1}
$$

and $A^{-1}-B^{*}\left(B A B^{*}\right)^{-1} B$ is nonnegative semidefinite and has rank $n-m$. (Proof: $I-A^{1 / 2} B^{*}\left(B A B^{*}\right)^{-1} B A^{1 / 2}$ is a projector.)

Fact 8.8.14. Let $A_{1}, \ldots, A_{k} \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite and let $p, q \in \mathbb{R}$ satisfy $1 \leq p \leq q$. Then,

$$
\left(\frac{1}{k} \sum_{i=1}^{k} A_{i}^{p}\right)^{1 / p} \leq\left(\frac{1}{k} \sum_{i=1}^{k} A_{i}^{q}\right)^{1 / q} .
$$

(Proof: See [90].)
Fact 8.8.15. Let $A, B \in \mathbb{F}^{n \times n}$ be Hermitian. Then, there exists a Hermitian matrix $C \in \mathbb{F}^{n \times n}$ that is a least upper bound for A and B in the sense that $A \leq C, B \leq C$, and, if $D \in \mathbb{F}^{n \times n}$ is a Hermitian matrix satisfying $A \leq D$ and $B \leq D$, then $C \leq D$. (Proof: First consider the case in which A and B are both nonnegative semidefinite.) (Problem: Generalize to three or more matrices.)

Fact 8.8.16. Let $A, B \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite, and let $p, q \in \mathbb{R}$ satisfy $p \geq q \geq 0$. Then,

$$
\left[\frac{1}{2}\left(A^{q}+B^{q}\right)\right]^{1 / q} \leq\left[\frac{1}{2}\left(A^{p}+B^{p}\right)\right]^{1 / p} .
$$

Furthermore,

$$
\mu(A, B) \triangleq \lim _{r \rightarrow \infty}\left[\frac{1}{2}\left(A^{r}+B^{r}\right)\right]^{1 / r}
$$

exists and satisfies

$$
A \leq \mu(A, B), \quad B \leq \mu(A, B) .
$$

(Proof: See [75].) (Problem: If $A \leq C$ and $B \leq C$, then does it follow that $\mu(A, B) \leq C$? See $[27,323]$.)

Fact 8.8.17. Let $\left[\begin{array}{cc}A & B \\ B^{*} & C\end{array}\right] \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite, where C is positive definite, and let D be positive definite. Then, $\left[\begin{array}{c}A+D \\ B^{*}\end{array}{ }_{C}^{B}\right]$ is positive definite.

Fact 8.8.18. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that $C, D \in \mathbb{F}^{n \times n}$ are positive definite. Then,

$$
(A+B)(C+D)^{-1}(A+B)^{*} \leq A C^{-1} A^{*}+B D^{-1} B^{*} .
$$

(Proof: Form the Schur complement of $A+B$ with respect to the nonneg-ative-semidefinite matrices $\left[\begin{array}{cc}A C^{-1} A^{*} & A \\ A^{*}\end{array}\right]+\left[\begin{array}{c}B D_{B^{*}}^{-1} B^{*} \\ D\end{array}\right]$. See $[272,373]$ or $[466$,
p. 151].) (Remark: Replacing A, B, C, D by $\alpha B_{1},(1-\alpha) B_{2}, \alpha A_{1},(1-\alpha) A_{2}$ yields xiv) of Proposition 8.5.13.)

Fact 8.8.19. Let $A, B \in \mathbb{F}^{n \times n}$ be positive definite, let $C \in \mathbb{F}^{n \times n}$ satisfy $B=C^{*} C$, and let $\alpha \in[0,1]$. Then,

$$
C^{*}\left(C^{-*} A C^{-1}\right)^{\alpha} C \leq \alpha A+(1-\alpha) B
$$

If, in addition, $\alpha \in(0,1)$, then equality holds if and only if $A=B$. (Proof: See [413].)

Fact 8.8.20. Let $A, B \in \mathbb{F}^{n \times n}$ be positive definite. Then,

$$
\begin{aligned}
A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2} A^{1 / 2} & =A\left(A^{-1} B\right)^{1 / 2} \\
& =(A+B)\left[(A+B)^{-1} A(A+B)^{-1} B\right]^{1 / 2}
\end{aligned}
$$

where $\left(A^{-1} B\right)^{1 / 2}$ has positive eigenvalues and satisfies $\left[\left(A^{-1} B\right)^{1 / 2}\right]^{2}=A^{-1} B$. Denote the above quantity by $A \# B$. Then,

$$
\begin{gathered}
A \# B=B \# A \\
2\left(A^{-1}+B^{-1}\right)^{-1} \leq A \# B \leq \frac{1}{2}(A+B) \\
(A \# B) B^{-1}(A \# B)=A^{-1} \\
{\left[\begin{array}{cc}
A & A \# B \\
A \# B & B
\end{array}\right] \geq 0}
\end{gathered}
$$

Furthermore, if $X \in \mathbf{H}^{n}$ and $\left[\begin{array}{cc}A & X \\ X & B\end{array}\right]$ is nonnegative semidefinite, then $X \leq$ $A \# B$. Finally, if $\alpha \in[0,1]$, then

$$
\left[\alpha A^{-1}+(1-\alpha) B^{-1}\right]^{-1} \leq A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1-\alpha} A^{1 / 2} \leq \alpha A+(1-\alpha) B
$$

or, equivalently,

$$
[\alpha A+(1-\alpha) B]^{-1} \leq A^{-1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{\alpha-1} A^{-1 / 2} \leq \alpha A^{-1}+(1-\alpha) B^{-1}
$$

Hence,
$\operatorname{tr}[\alpha A+(1-\alpha) B]^{-1} \leq \operatorname{tr}\left[A^{-1}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{\alpha-1}\right] \leq \operatorname{tr}\left[\alpha A^{-1}+(1-\alpha) B^{-1}\right]$.
(Proof: See [553].) (Remark: These inequalities improve $i v$) of Proposition 8.5.13. Alternative means and their differences are considered in [8]. $A \# B$ is the geometric mean of A and B. A related mean is defined in [205].) (Problem: Does $\left[\begin{array}{cc}A & X \\ X & B\end{array}\right]>0$ imply that $-(A \# B)<X<A \# B$?) (Remark: A geometric mean for an arbitrary number of positive-definite matrices is given in [28].)

Fact 8.8.21. Let $\left\{x_{i}\right\}_{i=1}^{\infty} \subset \mathbb{R}^{n}$ be such that $\sum_{i=1}^{\infty} x_{i}$ exists, and let $\left\{A_{i}\right\}_{i=1}^{\infty} \subset \mathbf{N}^{n}$ be such that $A_{i} \leq A_{i+1}$ for all $i \in \mathbb{P}$ and $\lim _{i \rightarrow \infty} \operatorname{tr} A_{i}=\infty$. Then,

$$
\lim _{k \rightarrow \infty}\left(\operatorname{tr} A_{k}\right)^{-1} \sum_{i=1}^{k} A_{i} x_{i}=0 .
$$

If, in addition A_{i} is positive definite for all $i \in \mathbb{P}$ and $\left\{\lambda_{\max }\left(A_{i}\right) / \lambda_{\min }\left(A_{i}\right)\right\}_{i=1}^{\infty}$ is bounded, then

$$
\lim _{k \rightarrow \infty} A_{k}^{-1} \sum_{i=1}^{k} A_{i} x_{i}=0 .
$$

(Proof: See [16].) (Remark: These identities are matrix versions of the Kronecker lemma.)

8.9 Facts on Generalized Inverses

Fact 8.9.1. Let $A \in \mathbb{F}^{m \times m}$ be nonnegative semidefinite. Then, the following statements hold:
i) $A^{+}=A^{\mathrm{D}}=A^{\#} \geq 0$.
ii) $\operatorname{rank} A=\operatorname{rank} A^{+}$.
iii) $\left(A^{1 / 2}\right)^{+}=\left(A^{+}\right)^{1 / 2}$.
iv) $A^{1 / 2}=A\left(A^{+}\right)^{1 / 2}=\left(A^{+}\right)^{1 / 2} A$.
v) $A A^{+}=A^{1 / 2}\left(A^{1 / 2}\right)^{+}$.

Fact 8.9.2. Let $A, B \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite. Then,

$$
A=(A+B)(A+B)^{+} A .
$$

Fact 8.9.3. Let $A, B \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite. Then, $A \leq$ B if and only if $\mathcal{R}(A) \subseteq \mathcal{R}(B)$ and $\operatorname{sprad}\left(B^{+} A\right) \leq 1$. (Proof: See [520].)

Fact 8.9.4. Let $A, B \in \mathbb{R}^{n \times n}$ be nonnegative semidefinite, and assume that $A \leq B$. Then, the following statements are equivalent:
i) $B^{+} \leq A^{+}$.
ii) $\mathcal{R}(A)=\mathcal{R}(B)$.
iii) $\operatorname{rank} A=\operatorname{rank} B$.

Furthermore, the following statements are equivalent:
iv) $A^{+} \leq B^{+}$.
v) $A^{2}=A B$.
(Proof: See [267, 420].)
Fact 8.9.5. Let $A, B \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite and assume that $A \leq B$. Then,

$$
0 \leq A A^{+} \leq B B^{+}
$$

If, in addition, $\operatorname{rank} A=\operatorname{rank} B$, then

$$
A A^{+}=B B^{+}
$$

Fact 8.9.6. Let $A, B \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite and assume that $A \leq B$. Then,

$$
0 \leq A B^{+} A \leq A \leq A+B\left[\left(I-A A^{+}\right) B\left(I-A A^{+}\right)\right]^{+} B \leq B
$$

(Proof: See [267].)
Fact 8.9.7. Let $A, B \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite. Then,

$$
\operatorname{spec}\left[(A+B)^{+} A\right] \subset[0,1]
$$

(Proof: Let C be positive definite and satisfy $B \leq C$. Then, $(A+C)^{-1 / 2} C$ $(A+C)^{-1 / 2} \leq I$. The result now follows from Fact 8.9.8.)

Fact 8.9.8. Let $A, B, C \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite and assume that $B \leq C$. Then, for all $i=1, \ldots, n$,

$$
\lambda_{i}\left[(A+B)^{+} B\right] \leq \lambda_{i}\left[(A+C)^{+} C\right] .
$$

Consequently,

$$
\operatorname{tr}\left[(A+B)^{+} B\right] \leq \operatorname{tr}\left[(A+C)^{+} C\right]
$$

(Proof: See [579].) (Remark: See Fact 8.9.7.)
Fact 8.9.9. Let $A, B \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite and define

$$
A: B \triangleq A(A+B)^{+} B
$$

Then,

$$
\begin{gathered}
A: B=B-B(A+B)^{+} A=A-A(A+B)^{+} B=B: A, \\
\mathcal{R}(A: B)=\mathcal{R}(A) \cap \mathcal{R}(B),
\end{gathered}
$$

for all $\alpha, \beta>0$,

$$
\left(\alpha^{-1} A\right):\left(\beta^{-1} B\right) \leq \alpha A+\beta B
$$

$A: B \geq X$ for all nonnegative-semidefinite matrices $X \in \mathbb{F}^{n \times n}$ such that

$$
\left[\begin{array}{cc}
A+B & A \\
A & A-X
\end{array}\right] \geq 0
$$

and $\phi: \mathbf{N}^{n} \times \mathbf{N}^{n} \mapsto-\mathbf{N}^{n}$ defined by $\phi(A, B) \triangleq-A: B$ is convex. If A and B are projectors, then

$$
A: B=\left(A^{+}+B^{+}\right)^{+}
$$

and $2(A: B)$ is the projector onto $\mathcal{R}(A) \cap \mathcal{R}(B)$. If $A+B$ is positive definite, then

$$
A: B=A(A+B)^{-1} B
$$

If A and B are positive definite, then

$$
A: B=\left(A^{-1}+B^{-1}\right)^{-1}
$$

Let $C, D \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite. Then,

$$
(A: B): C=A:(B: C)
$$

and

$$
A: C+B: D \leq(A+B):(C+D)
$$

(Proof: See $[17,18,21,340]$, [477, p. 189], and [625, p. 9].) (Remark: $A: B$ is the parallel sum of A and B.) (Remark: See Fact 6.4.27 and Fact 6.4.28.)

Fact 8.9.10. Let $A, B \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite. If $(A B)^{+}$ $=B^{+} A^{+}$, then $A B$ is range Hermitian. Furthermore, the following statements are equivalent:
i) $A B$ is range Hermitian.
ii) $(A B)^{\#}=B^{+} A^{+}$.
iii) $(A B)^{+}=B^{+} A^{+}$.
(Proof: See [408].) (Remark: See Fact 6.4.6.)
Fact 8.9.11. Let $A \in \mathbb{F}^{n \times n}$ and $C \in \mathbb{F}^{m \times m}$ be nonnegative semidefinite, let $B \in \mathbb{F}^{n \times m}$, and define $X \triangleq A^{+1 / 2} B C^{+1 / 2}$. Then, the following statements are equivalent:
i) $\left[\begin{array}{cc}A & B \\ B^{*} & C\end{array}\right]$ is nonnegative semidefinite.
ii) $A A^{+} B=B$ and $X^{*} X \leq I_{m}$.
iii) $B C^{+} C=B$ and $X^{*} X \leq I_{m}$.
iv) $B=A^{1 / 2} X C^{1 / 2}$ and $X^{*} X \leq I_{m}$.
(Remark: This result provides an explicit expression for X given in [625, p. 15].)

8.10 Facts on Identities and Inequalities Involving Quadratic Forms

Fact 8.10.1. Let $x, y \in \mathbb{F}^{n}$. Then, $x x^{*} \leq y y^{*}$ if and only if there exists $\alpha \in \mathbb{F}$ such that $|\alpha| \in[0,1]$ and $x=\alpha y$.

Fact 8.10.2. Let $x, y \in \mathbb{F}^{n}$. Then, $x y^{*}+y x^{*} \geq 0$ if and only x and y are linearly dependent. (Proof: Evaluate the product of the nonzero eigenvalues of $x y^{*}+y x^{*}$ and use the Cauchy-Schwarz inequality $\left|x^{*} y\right|^{2} \leq x^{*} x y^{*} y$.)

Fact 8.10.3. Let $A \in \mathbb{F}^{n \times n}$ be positive definite, and let $x, y \in \mathbb{F}^{n}$. Then,

$$
2 \operatorname{Re} x^{*} y \leq x^{*} A x+y^{*} A^{-1} y
$$

(Proof: $\left(A^{1 / 2} x-A^{-1 / 2} y\right)^{*}\left(A^{1 / 2} x-A^{-1 / 2} y\right) \geq 0$.)
Fact 8.10.4. Let $A \in \mathbb{F}^{n \times n}$ be positive definite, and let $x, y \in \mathbb{F}^{n}$. Then,

$$
\left|x^{*} y\right|^{2} \leq\left(x^{*} A x\right)\left(y^{*} A^{-1} y\right)
$$

(Proof: Use Fact 8.8 .12 with A replaced by $A^{1 / 2} x$ and B replaced by $A^{-1 / 2} y$.)
Fact 8.10.5. Let $A \in \mathbb{F}^{n \times n}$ be positive definite and let $x \in \mathbb{F}^{n}$. Then,

$$
\left(x^{*} x\right)^{2} \leq\left(x^{*} A x\right)\left(x^{*} A^{-1} x\right) \leq \frac{(\alpha+\beta)^{2}}{4 \alpha \beta}\left(x^{*} x\right)^{2}
$$

where $\alpha \triangleq \lambda_{\min }(A)$ and $\beta \triangleq \lambda_{\max }(A)$. (Remark: The second inequality is the Kantorovich inequality. See Fact 1.4.14 and [9]. See also [378].)

Fact 8.10.6. Let $A \in \mathbb{F}^{n \times n}$ be positive definite, let $y \in \mathbb{F}^{n}$, let $\alpha>0$, and define $f: \mathbb{F}^{n} \mapsto \mathbb{R}$ by $f(x) \triangleq\left|x^{*} y\right|^{2}$. Then,

$$
x_{0}=\sqrt{\frac{\alpha}{y^{*} A^{-1} y}} A^{-1} y
$$

minimizes $f(x)$ subject to $x^{*} A x \leq \alpha$. Furthermore, $f\left(x_{0}\right)=\alpha y^{*} A^{-1} y$. (Proof: See [14].)

Fact 8.10.7. Let $A \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite and let $x \in \mathbb{F}^{n}$. Then,

$$
\left(x^{*} A^{2} x\right)^{2} \leq\left(x^{*} A x\right)\left(x^{*} A^{3} x\right)
$$

and

$$
\left(x^{*} A x\right)^{2} \leq\left(x^{*} x\right)\left(x^{*} A^{2} x\right)
$$

Fact 8.10.8. Let $A, B \in \mathbb{R}^{n}$, and assume that A is Hermitian is B is positive definite. Then,

$$
\lambda_{\max }\left(A B^{-1}\right)=\max \{\lambda \in \mathbb{R}: \quad \operatorname{det}(A-\lambda B)=0\}=\min _{x \in \mathbb{F}^{n} \backslash\{0\}} \frac{x^{*} A x}{x^{*} B x} .
$$

(Proof: Use Lemma 8.4.3.)
Fact 8.10.9. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A is positive definite and B is nonnegative semidefinite. Then,

$$
4\left(x^{*} x\right)\left(x^{*} B x\right)<\left(x^{*} A x\right)^{2}
$$

for all nonzero $x \in \mathbb{R}^{n}$ if and only if there exists $\alpha>0$ such that

$$
\alpha I+\alpha^{-1} B<A .
$$

In this case, $4 B<A^{2}$ and hence $2 B^{1 / 2}<A$. (Proof: Sufficiency follows from $\alpha x^{*} x+\alpha^{-1} x^{*} B x<x^{*} A x$. Necessity follows from Fact 8.10.10. The last result follows from $(A-2 \alpha I)^{2} \geq 0$ or $2 B^{1 / 2} \leq \alpha I+\alpha^{-1} B$.)

Fact 8.10.10. Let $A, B, C \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite and assume that

$$
4\left(x^{*} C x\right)\left(x^{*} B x\right)<\left(x^{*} A x\right)^{2}
$$

for all nonzero $x \in \mathbb{R}^{n}$. Then, there exists $\alpha>0$ such that

$$
\alpha C+\alpha^{-1} B<A .
$$

(Proof: See [457].)
Fact 8.10.11. Let $A, B \in \mathbb{F}^{n \times n}$, where A is Hermitian and B is nonnegative semidefinite. Then, $x^{*} A x<0$ for all $x \in \mathbb{F}^{n}$ such that $B x=0$ and $x \neq 0$ if and only if there exists $\alpha>0$ such that $A<\alpha B$. (Proof: Suppose that for every $\alpha>0$ there exists $x \neq 0$ such that $x^{*} A x \geq \alpha x^{*} B x$. Now, $B x=0$ implies that $x^{*} A x \geq 0$.)

Fact 8.10.12. Let $A, B \in \mathbb{F}^{n \times n}$ be Hermitian and linearly independent. Then, the following statements are equivalent:
i) There exist $\alpha, \beta \in \mathbb{R}$ such that $\alpha A+\beta B$ is positive definite.
ii) Either $x^{*} A x \geq 0$ for all $x \in\left\{y \in \mathbb{F}^{n}: y^{*} B y=0\right\}$ or $x^{*} A x \leq 0$ for all $x \in\left\{y \in \mathbb{F}^{n}: y^{*} B y=0\right\}$.
Now, assume that $\mathbb{F}=\mathbb{R}$ and $n \geq 3$. Then, the following statement is equivalent to i) and $i i$:
iii) $\left\{x \in \mathbb{R}^{n}: x^{\mathrm{T}} A x=x^{\mathrm{T}} B x=0\right\}=\{0\}$.
(Remark: The equivalence of i) and $i i$) is Finsler's lemma. A history of this result is given in [563].)

Fact 8.10.13. Let $A \in \mathbb{R}^{n \times n}$ be positive definite. Then,

$$
\int_{\mathbb{R}^{n}} e^{-x^{\mathrm{T}} A x} \mathrm{~d} x=\frac{\pi^{n / 2}}{\sqrt{\operatorname{det} A}} .
$$

Fact 8.10.14. Let $A, B \in \mathbb{R}^{n \times n}$ be positive definite and, for $k=$ $0,1,2,3$, define

$$
\mathcal{J}_{k} \triangleq \frac{1}{(2 \pi)^{n / 2} \sqrt{\operatorname{det} A}} \int_{\mathbb{R}^{n}}\left(x^{\mathrm{T}} B x\right)^{k} e^{-\frac{1}{2} x^{\mathrm{T}} A^{-1} x} \mathrm{~d} x .
$$

Then,

$$
\begin{gathered}
\mathrm{J}_{0}=1, \\
\mathrm{~J}_{1}=\operatorname{tr} A B, \\
\mathrm{~J}_{2}=(\operatorname{tr} A B)^{2}+2 \operatorname{tr}(A B)^{2}, \\
\mathrm{~J}_{3}=(\operatorname{tr} A B)^{3}+6(\operatorname{tr} A B)\left[\operatorname{tr}(A B)^{2}\right]+8 \operatorname{tr}(A B)^{3} .
\end{gathered}
$$

(Proof: See [419, p. 80].) (Remark: These identities are Lancaster's formulas.)

Fact 8.10.15. Let $A \in \mathbb{R}^{n \times n}$ be positive definite, let $B \in \mathbb{R}^{n \times n}$, let $a, b \in \mathbb{R}^{n}$, and let $\alpha, \beta \in \mathbb{R}$. Then,

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}}\left(x^{\mathrm{T}} B x+b^{\mathrm{T}} x+\beta\right) e^{-\left(x^{\mathrm{T}} A x+a^{\mathrm{T}} x+\alpha\right)} \mathrm{d} x \\
& \quad=\frac{\pi^{n / 2}}{2 \sqrt{\operatorname{det} A}}\left[2 \beta+\operatorname{tr}\left(A^{-1} B\right)-b^{\mathrm{T}} A^{-1} a+\frac{1}{2} a^{\mathrm{T}} A^{-1} B A^{-1} a\right] e^{\frac{1}{4} a^{\mathrm{T}} A^{-1} a-\alpha} .
\end{aligned}
$$

(Proof: See [269, p. 322].)
Fact 8.10.16. Let $A \in \mathbb{R}^{n \times n}$ be symmetric, let $b \in \mathbb{R}^{n}$ and $a \in \mathbb{R}$, and define $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ by $f(x) \triangleq x^{\mathrm{T}} A x+b^{\mathrm{T}} x+a$. Then, f is convex if and only if A is nonnegative semidefinite, while f is strictly convex if and only if A is positive definite. (Remark: Strictly convex means that $f\left(\alpha x_{1}+(1-\alpha) x_{2}\right)<$ $\alpha f\left(x_{1}\right)+(1-\alpha) f\left(x_{2}\right)$ for all $\alpha \in(0,1)$ and for all $x_{1}, x_{2} \in \mathbb{R}^{n}$ such that $x_{1} \neq x_{2}$.) Furthermore, f has a minimizer if and only if $b \in \mathcal{R}(A)$. The point $x_{0} \in \mathbb{R}^{n}$ is a minimizer of f if and only if x_{0} satisfies $2 x_{0}^{\mathrm{T}} A+b^{\mathrm{T}}=0$. The minimum of f is given by $f\left(x_{0}\right)=c-x_{0}^{\mathrm{T}} A x_{0}$. Furthermore, if A is positive definite, then $x_{0}=-\frac{1}{2} A^{-1} b$ is the unique minimizer of f, and the minimum of f is given by $f\left(x_{0}\right)=c-\frac{1}{4} b^{\mathrm{T}} A^{-1} b$.

8.11 Facts on Matrix Transformations

Fact 8.11.1. Let $A \in \mathbb{F}^{n \times n}$. Then, $A A^{*}$ and $A^{*} A$ are unitarily similar.
Fact 8.11.2. Let $A, B \in \mathbb{F}^{n \times n}$ be Hermitian, and assume that A is nonsingular. Then, the following statements are equivalent:
i) There exists a unitary matrix $S \in \mathbb{F}^{n \times n}$ such that $S A S^{*}$ and $S B S^{*}$ are diagonal.
ii) $A B=B A$.
iii) $A^{-1} B$ is Hermitian.
(Proof: See [287, p. 229].) (Remark: The equivalence of i) and $i i$) is given by Fact 5.8.7.)

Fact 8.11.3. Let $A, B \in \mathbb{F}^{n \times n}$ be Hermitian, and assume that A is nonsingular. Then, there exists a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that $S A S^{*}$ and $S B S^{*}$ are diagonal if and only if $A^{-1} B$ is diagonalizable over \mathbb{R}. (Proof: See [287, p. 229] or [466, p. 95].)

Fact 8.11.4. Let $A, B \in \mathbb{F}^{n \times n}$ be symmetric, and assume that A is nonsingular. Then, there exists a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that $S A S^{\mathrm{T}}$ and $S B S^{\mathrm{T}}$ are diagonal if and only if $A^{-1} B$ is diagonalizable. (Proof: See [287, p. 229] and [563].) (Remark: A and B are complex symmetric.)

Fact 8.11.5. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that $\left\{x \in \mathbb{F}^{n}: x^{*} A x=\right.$ $\left.x^{*} B x=0\right\}=\{0\}$. Then, there exists a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that $S A S^{*}$ and $S B S^{*}$ are upper triangular. (Proof: See [466, p. 96].) (Remark: See Fact 8.11.6 and Fact 5.8.6.)

Fact 8.11.6. Let $A, B \in \mathbb{F}^{n \times n}$ be Hermitian, and assume that $\{x \in$ $\left.\mathbb{F}^{n}: x^{*} A x=x^{*} B x=0\right\}=\{0\}$. Then, there exists a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that $S A S^{*}$ and $S B S^{*}$ are diagonal. (Proof: The result follows from Fact 8.11.6. See [389] or [466, p. 96].)

Fact 8.11.7. Let $A, B \in \mathbb{R}^{n \times n}$ be symmetric and nonsingular, and assume there exist $\alpha, \beta \in \mathbb{R}$ such that $\alpha A+\beta B$ is positive definite. Then, there exists a nonsingular matrix $S \in \mathbb{R}^{n \times n}$ such that $S A S^{\mathrm{T}}$ and $S B S^{\mathrm{T}}$ are diagonal. (Remark: This result is due to Weierstrass. See [563].) (Remark: Suppose that B is positive definite. Then, by necessity of Fact 8.11 .3 , it follows that $A^{-1} B$ is diagonalizable over \mathbb{R}. This proves $\left.i i i\right) \Longrightarrow i$) of Proposition 5.5.18.)

Fact 8.11.8. Let $A \in \mathbb{F}^{n \times n}$. Then, A is diagonalizable over \mathbb{F} with (nonnegative, positive) eigenvalues if and only if there exist (nonnegative-
semidefinite, positive-definite) matrices $B, C \in \mathbb{F}^{n \times n}$ such that $A=B C$. (Proof: To prove sufficiency, use Theorem 8.3.5 and note that $A=S^{-1}$ $\cdot\left(S B S^{*}\right)\left(S^{-*} C S^{-1}\right) S$. $)$

8.12 Facts on the Trace

Fact 8.12.1. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are both Hermitian or both skew Hermitian. Then, $\operatorname{tr} A B$ is real.

Fact 8.12.2. Let $A, B \in \mathbb{F}^{n \times n}$ be Hermitian, and assume that $-A \leq$ $B \leq A$. Then,

$$
\operatorname{tr} B^{2} \leq \operatorname{tr} A^{2}
$$

(Proof: $0 \leq \operatorname{tr}[(A-B)(A+B)]=\operatorname{tr} A^{2}-\operatorname{tr} B^{2}$. See [555].)
Fact 8.12.3. Let $A, B \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite. Then, $A B=0$ if and only if $\operatorname{tr} A B=0$.

Fact 8.12.4. Let $A, B \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite, and let $p, q \geq 1$ satisfy $1 / p+1 / q=1$. Then,

$$
\operatorname{tr} A B \leq\left(\operatorname{tr} A^{p}\right)^{1 / p}\left(\operatorname{tr} B^{q}\right)^{1 / q}
$$

Furthermore, equality holds if and only if A^{p-1} and B are linearly dependent. (Remark: This result is a matrix version of Holder's inequality.)

Fact 8.12.5. Let $A, B \in \mathbb{F}^{n \times n}$, and let $k \in \mathbb{N}$. Then,

$$
\left|\operatorname{tr}(A B)^{2 k}\right| \leq \operatorname{tr}\left(A^{*} A B B^{*}\right)^{k} \leq \operatorname{tr}\left(A^{*} A\right)^{k}\left(B B^{*}\right)^{k}
$$

(Proof: See [622].)
Fact 8.12.6. Let $A, B \in \mathbb{F}^{n \times n}$ be Hermitian, and let $k \in \mathbb{P}$. Then,

$$
\left|\operatorname{tr}(A B)^{2 k}\right| \leq \operatorname{tr}\left(A^{2} B^{2}\right)^{2} \leq\left\{\begin{array}{l}
\operatorname{tr} A^{2 k} B^{2 k} \\
\left(\operatorname{tr} A^{2} B^{2}\right)^{k}
\end{array}\right.
$$

(Proof: See [622].)
Fact 8.12.7. Let $A, B \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite. Then,

$$
\operatorname{tr} A B \leq\left[\operatorname{tr}\left(A^{1 / 2} B A^{1 / 2}\right)^{1 / 2}\right]^{2} \leq(\operatorname{tr} A)(\operatorname{tr} B) \leq \frac{1}{4}(\operatorname{tr} A+\operatorname{tr} B)^{2}
$$

(Remark: Note that

$$
\operatorname{tr}\left(A^{1 / 2} B A^{1 / 2}\right)^{1 / 2}=\sum_{i=1}^{n} \lambda_{i}^{1 / 2}(A B)
$$

and

$$
\operatorname{tr} A B=\operatorname{tr} A^{1 / 2} B A^{1 / 2}=\operatorname{tr}\left[\left(A^{1 / 2} B A^{1 / 2}\right)^{1 / 2}\left(A^{1 / 2} B A^{1 / 2}\right)^{1 / 2}\right]
$$

The second inequality follows from Proposition 9.3 .6 with $p=q=2, r=1$, and A and B replaced by $A^{1 / 2}$ and $B^{1 / 2}$.)

Fact 8.12.8. Let $A, B \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite, and let $p \geq 0$ and $r \geq 1$. Then,

$$
\operatorname{tr}\left(A^{1 / 2} B A^{1 / 2}\right)^{p r} \leq \operatorname{tr}\left(A^{r / 2} B^{r} A^{r / 2}\right)^{p} .
$$

In particular,

$$
\operatorname{tr}\left(A^{1 / 2} B A^{1 / 2}\right)^{2 p} \leq \operatorname{tr}\left(A B^{2} A\right)^{p}
$$

and

$$
\operatorname{tr} A B \leq \operatorname{tr}\left(A B^{2} A\right)^{1 / 2}
$$

(Proof: Use Fact 8.14.6 and Fact 8.14.7.) (Remark: This inequality is due to Araki. See [33] and [93, p. 258].) (Problem: Compare the upper bounds

$$
\operatorname{tr} A B \leq\left[\operatorname{tr}\left(A^{1 / 2} B A^{1 / 2}\right)^{1 / 2}\right]^{2}
$$

and

$$
\left.\operatorname{tr} A B \leq \operatorname{tr}\left(A B^{2} A\right)^{1 / 2} .\right)
$$

Fact 8.12.9. Let $A, B \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite, and let $k, m \in \mathbb{P}$, where $m \geq k$. Then,

$$
\operatorname{tr}\left(A^{k} B^{k}\right)^{m} \leq \operatorname{tr}\left(A^{m} B^{m}\right)^{k}
$$

In particular,

$$
\operatorname{tr}(A B)^{m} \leq \operatorname{tr} A^{m} B^{m}
$$

If, in addition, m is even, then

$$
\operatorname{tr}(A B)^{m} \leq \operatorname{tr}\left(A^{2} B^{2}\right)^{m / 2} \leq \operatorname{tr} A^{m} B^{m}
$$

(Proof: Use Fact 8.14.6 and Fact 8.14.7.) (Remark: The result $\operatorname{tr}(A B)^{m} \leq$ $\operatorname{tr} A^{m} B^{m}$ is the Lieb-Thirring inequality. See [93, p. 279]. The inequality $\operatorname{tr}(A B)^{m} \leq \operatorname{tr}\left(A^{2} B^{2}\right)^{m / 2}$ follows from Fact 8.12.8. See [622].) (Problem: Compare the upper bounds

$$
\operatorname{tr} A B \leq\left[\operatorname{tr}\left(A^{1 / 2} B A^{1 / 2}\right)^{1 / 2}\right]^{2}
$$

and

$$
\left.\operatorname{tr} A B \leq \operatorname{tr}\left(A B^{2} A\right)^{1 / 2} .\right)
$$

Fact 8.12.10. Let $A, B \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite, and let $p \geq r \geq 0$. Then,

$$
\left[\operatorname{tr}\left(A^{1 / 2} B A^{1 / 2}\right)^{p}\right]^{1 / p} \leq\left[\operatorname{tr}\left(A^{1 / 2} B A^{1 / 2}\right)^{r}\right]^{1 / r} .
$$

In particular,

$$
\left[\operatorname{tr}\left(A^{1 / 2} B A^{1 / 2}\right)^{2}\right]^{1 / 2} \leq \operatorname{tr} A B \leq\left\{\begin{array}{c}
\operatorname{tr}\left(A B^{2} A\right)^{1 / 2} \\
{\left[\operatorname{tr}\left(A^{1 / 2} B A^{1 / 2}\right)^{1 / 2}\right]^{2}}
\end{array}\right.
$$

(Proof: The result follows from the power sum inequality Fact 1.4.13. See [159].)

Fact 8.12.11. Let $A, B \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite, assume that $A \leq B$, and let $p, q \geq 0$. Then,

$$
\operatorname{tr} A^{p} B^{q} \leq \operatorname{tr} B^{p+q}
$$

If, in addition, A and B are positive definite, then this inequality holds for all $p, q \in \mathbb{R}$ satisfying $q \geq-1$ and $p+q \geq 0$. (Proof: See [107].)

Fact 8.12.12. Let $A, B \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite, and let $\alpha \in[0,1]$. Then,

$$
\operatorname{tr} A^{\alpha} B^{1-\alpha} \leq(\operatorname{tr} A)^{\alpha}(\operatorname{tr} B)^{1-\alpha} \leq \operatorname{tr}[\alpha A+(1-\alpha) B] .
$$

Furthermore, the first inequality is an equality if and only if A and B are linearly dependent, while the second inequality is an equality if and only if $A=B$. (Remark: See Fact 1.4.2 and Fact 8.12.13.)

Fact 8.12.13. Let $A, B \in \mathbb{F}^{n \times n}$ be positive definite, and let $\alpha \in[0,1]$. Then,

$$
\operatorname{tr} A^{-\alpha} B^{\alpha-1} \leq\left(\operatorname{tr} A^{-1}\right)^{\alpha}\left(\operatorname{tr} B^{-1}\right)^{1-\alpha} \leq \operatorname{tr}\left[\alpha A^{-1}+(1-\alpha) B^{-1}\right]
$$

and

$$
\operatorname{tr}[\alpha A+(1-\alpha) B]^{-1} \leq\left(\operatorname{tr} A^{-1}\right)^{\alpha}\left(\operatorname{tr} B^{-1}\right)^{1-\alpha} \leq \operatorname{tr}\left[\alpha A^{-1}+(1-\alpha) B^{-1}\right] .
$$

(Remark: The lower inequalities refine the convexity of $\phi(A)=\operatorname{tr} A^{-1}$. See Fact 1.4.2 and Fact 8.12.12.) (Problem: Compare this result to Fact 8.8.20.)

Fact 8.12.14. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that B is nonnegative semidefinite. Then,

$$
|\operatorname{tr} A B| \leq \sigma_{\max }(A) \operatorname{tr} B
$$

(Proof: Use Proposition 8.4.13 and $\sigma_{\max }\left(A+A^{*}\right) \leq 2 \sigma_{\max }(A)$.) (Remark: See Fact 5.10.1.)

Fact 8.12.15. Let $A, B \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite, and let $p \geq 1$. Then,

$$
\left[\operatorname{tr}\left(A^{p}+B^{p}\right)\right]^{1 / p} \leq\left[\operatorname{tr}(A+B)^{p}\right]^{1 / p} \leq\left(\operatorname{tr} A^{p}\right)^{1 / p}+\left(\operatorname{tr} B^{p}\right)^{1 / p}
$$

(Proof: See [107].) (Remark: The first inequality is the McCarthy inequality. The second inequality is a special case of the triangle inequality for the norm $\|\cdot\|_{\sigma p}$ and a matrix version of Minkowski's inequality.)

Fact 8.12.16. Let $A, B \in \mathbb{F}^{n \times n}$, assume that B is nonnegative semidefinite, and assume that $A^{*} A \leq B$. Then,

$$
\operatorname{tr} A \leq \operatorname{tr} B^{1 / 2} .
$$

(Proof: $\sum_{i=1}^{n}\left|\lambda_{i}\right| \leq \sum_{i=1}^{n} \sigma_{i}(A)=\operatorname{tr}\left(A^{*} A\right)^{1 / 2} \leq \operatorname{tr} B^{1 / 2}$. See [71].)
Fact 8.12.17. Let $A=\left[\begin{array}{cc}A_{11} & A_{12} \\ A_{12}^{2} & A_{22}\end{array}\right] \in \mathbb{F}^{(n+m) \times(n+m)}$ be Hermitian. Then, A is nonnegative semidefinite if and only if

$$
\operatorname{tr} B A_{12}^{*} \leq \operatorname{tr}\left(A_{11}^{1 / 2} B A_{22} B^{*} A_{11}^{1 / 2}\right)^{1 / 2}
$$

for all $B \in \mathbb{F}^{n \times m}$. (Proof: See [71].)
Fact 8.12.18. Let $A=\left[\begin{array}{lll}A_{11} & A_{12} \\ A_{12} & A_{22}\end{array}\right] \in \mathbb{F}^{(n+m) \times(n+m)}$ be nonnegative semidefinite. Then,

$$
\operatorname{tr} A_{12}^{*} A_{12} \leq\left(\operatorname{tr} A_{11}\right)\left(\operatorname{tr} A_{22}\right) .
$$

(Proof: See [454].)
Fact 8.12.19. Let $A, B \in \mathbb{F}^{n \times n}$ be positive definite. Then,

$$
\operatorname{tr}(A-B) \leq \operatorname{tr}[A(\log A-\log B)]
$$

and

$$
(\log \operatorname{tr} A-\log \operatorname{tr} B) \operatorname{tr} A \leq \operatorname{tr}[A(\log A-\log B)] .
$$

(Proof: See [93, p. 281] and [69].) (Remark: The second inequality is equivalent to the thermodynamic inequality. See Fact 11.11.22.) (Remark: $\operatorname{tr}[A(\log A-\log B)]$ is the relative entropy of Umegaki.)

8.13 Facts on the Determinant

Fact 8.13.1. Let $A \in \mathbb{F}^{n \times n}$ be such that $A+A^{*}$ is positive definite. Then,

$$
\operatorname{det} \frac{1}{2}\left(A+A^{*}\right) \leq|\operatorname{det} A| .
$$

Furthermore, equality holds if and only if A is Hermitian. (Remark: This result is the Ostrowski-Taussky inequality.)

Fact 8.13.2. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A is positive definite and B is Hermitian. Then,

$$
\operatorname{det} A \leq|\operatorname{det}(A+\jmath B)|
$$

Furthermore, equality holds if and only if $B=0$. (Proof: See [466, pp. 146, 163].)

Fact 8.13.3. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are positive definite, and assume that $B \leq A$. Then,

$$
\operatorname{det} A+n \operatorname{det} B \leq \operatorname{det}(A+B)
$$

(Proof: See [466, pp. 154, 166].)
Fact 8.13.4. Let $A \in \mathbb{F}^{n \times n}$ be such that $\frac{1}{2 \jmath}\left(A-A^{*}\right)$ is positive definite. Then,

$$
B \triangleq\left[\frac{1}{2}\left(A+A^{*}\right)\right]^{1 / 2} A^{-1} A^{*}\left[\frac{1}{2}\left(A+A^{*}\right)\right]^{-1 / 2}
$$

is unitary. (Proof: See [194].) (Remark: A is strictly dissipative if $\frac{1}{2 \jmath}\left(A-A^{*}\right)$ is positive definite. A is strictly dissipative if and only if $-\jmath A$ is dissipative. See $[192,193]$.) (Remark: $A^{-1} A^{*}$ is similar to a unitary matrix. See Fact 3.6.10.)

Fact 8.13.5. Let $A \in \mathbb{R}^{n \times n}$ be such that $A+A^{\mathrm{T}}$ is positive definite. Then,

$$
\left[\operatorname{det} \frac{1}{2}\left(A+A^{\mathrm{T}}\right)\right]\left[\frac{1}{2}\left(A+A^{\mathrm{T}}\right)\right]^{-1} \leq(\operatorname{det} A)\left[\frac{1}{2}\left(A^{-1}+A^{-\mathrm{T}}\right)\right]
$$

Furthermore,

$$
\left[\operatorname{det} \frac{1}{2}\left(A+A^{\mathrm{T}}\right)\right]\left[\frac{1}{2}\left(A+A^{\mathrm{T}}\right)\right]^{-1}<(\operatorname{det} A)\left[\frac{1}{2}\left(A^{-1}+A^{-\mathrm{T}}\right)\right]
$$

if and only if $\operatorname{rank}\left(A-A^{\mathrm{T}}\right) \geq 4$. Finally, if $n \geq 4$ and $A-A^{\mathrm{T}}$ is nonsingular, then

$$
(\operatorname{det} A)\left[\frac{1}{2}\left(A^{-1}+A^{-\mathrm{T}}\right)\right]<\left[\operatorname{det} A-\operatorname{det} \frac{1}{2}\left(A-A^{\mathrm{T}}\right)\right]\left[\frac{1}{2}\left(A+A^{\mathrm{T}}\right)\right]^{-1}
$$

(Proof: See [193, 310].) (Remark: This result does not hold for complex matrices.) (Problem: If $A+A^{\mathrm{T}}$ is nonnegative semidefinite, does it follow that $\left.\left[\frac{1}{2}\left(A+A^{\mathrm{T}}\right)\right]^{\mathrm{A}} \leq \frac{1}{2}\left(A^{\mathrm{A}}+A^{\mathrm{AT}}\right) ?\right)$

Fact 8.13.6. Let $A, B \in \mathbb{F}^{n \times n}$, assume that B is Hermitian, and assume that $A^{*} B A<A+A^{*}$. Then, $\operatorname{det} A \neq 0$.

Fact 8.13.7. Let $A, B \in \mathbb{F}^{n \times n}$ be positive definite and let $\alpha \in[0,1]$.

Then,

$$
(\operatorname{det} A)^{\alpha}(\operatorname{det} B)^{1-\alpha} \leq \operatorname{det}[\alpha A+(1-\alpha) B]
$$

Furthermore, equality holds if and only if $A=B$. (Remark: This result is due to Bergstrom.)

Fact 8.13.8. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are nonnegative semidefinite, assume that $0 \leq A \leq B$, and let $\alpha \in[0,1]$. Then,

$$
\operatorname{det}[\alpha A+(1-\alpha) B] \leq \alpha \operatorname{det} A+(1-\alpha) \operatorname{det} B
$$

(Proof: See [588].)
Fact 8.13.9. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are positive definite. Then,

$$
\frac{\operatorname{det} A}{\operatorname{det} A_{[1,1]}}+\frac{\operatorname{det} B}{\operatorname{det} B_{[1,1]}} \leq \frac{\operatorname{det}(A+B)}{\operatorname{det}\left(A_{[1,1]}+B_{[1,1]}\right)}
$$

(Proof: See [466, p. 145].)
Fact 8.13.10. Let $A_{1}, \ldots, A_{k} \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite, and let $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{C}$. Then,

$$
\operatorname{det}\left(\sum_{i=1}^{k} \lambda_{i} A_{i}\right) \leq \operatorname{det}\left(\sum_{i=1}^{k}\left|\lambda_{i}\right| A_{i}\right)
$$

(Proof: See [466, p. 144].)
Fact 8.13.11. Let $A, B, C \in \mathbb{R}^{n \times n}$, let $D \triangleq A+\jmath B$, and assume that $C B+B^{\mathrm{T}} C^{\mathrm{T}}<D+D^{*}$. Then, $\operatorname{det} A \neq 0$.

Fact 8.13.12. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are nonnegative semidefinite, and let $m \in \mathbb{P}$. Then,

$$
n^{1 / m}(\operatorname{det} A B)^{1 / n} \leq\left(\operatorname{tr} A^{m} B^{m}\right)^{1 / m}
$$

(Proof: See [159].) (Remark: Assuming det $B=1$ and setting $m=1$ yields Proposition 8.4.14.)

Fact 8.13.13. Let $A, B \in \mathbb{F}^{n \times m}$. Then,

$$
\left|\operatorname{det} A B^{*}\right|^{2} \leq\left(\operatorname{det} A A^{*}\right)\left(\operatorname{det} B B^{*}\right)
$$

(Proof: Apply Fact 8.13.23 to $\left[\begin{array}{c}A A^{*} \\ B A^{*}\end{array}{ }_{B B^{*}}{ }^{*}\right]$.) (Remark: See Fact 8.8.12.)
Fact 8.13.14. Let $A \in \mathbb{F}^{n \times n}$ be positive definite and let $B \in \mathbb{F}^{m \times n}$, where $\operatorname{rank} B=m$. Then,

$$
\left(\operatorname{det} B B^{*}\right)^{2} \leq\left(\operatorname{det} B A B^{*}\right) \operatorname{det} B A^{-1} B^{*} .
$$

(Proof: Use Fact 8.8.13.)
Fact 8.13.15. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{n \times l}, C \in \mathbb{F}^{m \times n}$, and $D \in \mathbb{F}^{l \times n}$. Then,

$$
|\operatorname{det}(A C+B D)|^{2} \leq \operatorname{det}\left(A A^{*}+B B^{*}\right) \operatorname{det}\left(C^{*} C+D^{*} D\right) .
$$

(Proof: Use $S S^{*} \geq 0$, where $S \triangleq\left[\begin{array}{cc}A & B \\ C^{*} & D^{*}\end{array}\right]$.)
Fact 8.13.16. Let $A, B \in \mathbb{F}^{n \times m}$. Then,

$$
\left|\operatorname{det}\left(I+A B^{*}\right)\right|^{2} \leq \operatorname{det}\left(I+A A^{*}\right) \operatorname{det}\left(I+B B^{*}\right) .
$$

(Proof: Specialize Fact 8.13.15.)
Fact 8.13.17. Let $A, B \in \mathbb{F}^{n \times n}$, assume that $A+A^{*}>0$ and $B+B^{*} \geq$ 0 , and let $\alpha>0$. Then,

$$
\operatorname{mspec}(\alpha I+A B) \cap(-\infty, 0]=\varnothing
$$

Hence,

$$
\operatorname{det}(\alpha I+A B)>0
$$

(Proof: See [254].) (Remark: Equivalently, $-A$ is dissipative and $-B$ is semidissipative.) (Problem: Find a positive lower bound for $\operatorname{det}(\alpha I+A B)$ in terms of α, A, and B.)

Fact 8.13.18. Let $A, B \in \mathbb{F}^{n \times m}$. Then,

$$
\left[\begin{array}{cc}
I+A^{*} A & (A+B)^{*} \\
A+B & I+B B^{*}
\end{array}\right]=\left[\begin{array}{cc}
I & A^{*} \\
B & I
\end{array}\right]\left[\begin{array}{cc}
I & B^{*} \\
A & I
\end{array}\right] \geq 0
$$

and

$$
(A+B)^{*}\left(I+B B^{*}\right)^{-1}(A+B) \leq I+A^{*} A .
$$

If, in addition, $n=m$, then

$$
|\operatorname{det}(A+B)|^{2} \leq \operatorname{det}\left(I+A^{*} A\right) \operatorname{det}\left(I+B B^{*}\right)
$$

(Proof: See [630].)
Fact 8.13.19. Let $A, B \in \mathbb{F}^{n \times m}$. Then, there exist unitary matrices $S_{1}, S_{2} \in \mathbb{F}^{n \times n}$ such that

$$
I+\langle A+B\rangle \leq S_{1}(I+\langle A\rangle)^{1 / 2} S_{2}(I+\langle B\rangle) S_{2}^{*}(I+\langle A\rangle)^{1 / 2} S_{1}^{*} .
$$

Therefore,

$$
\operatorname{det}(I+\langle A+B\rangle) \leq \operatorname{det}(I+\langle A\rangle) \operatorname{det}(I+\langle B\rangle) .
$$

(Proof: See $[24,545]$.$) (Remark: This result is due to Seiler and Simon.)$

Fact 8.13.20. Let $A, B \in \mathbb{F}^{n \times m}$, and assume that $I-A^{*} A$ and $I-B^{*} B$ are positive definite. Then,

$$
\begin{gathered}
{\left[\begin{array}{cc}
\left(I-A^{*} A\right)^{-1} & \left(I-B^{*} A\right)^{-1} \\
\left(I-A^{*} B\right)^{-1} & \left(I-B^{*} B\right)^{-1}
\end{array}\right] \geq 0} \\
I-B^{*} B \leq\left(I-B^{*} A\right)\left(I-A^{*} A\right)^{-1}\left(I-A^{*} B\right) \\
0<\operatorname{det}\left(I-A^{*} A\right) \operatorname{det}\left(I-B^{*} B\right) \leq\left[\operatorname{det}\left(I-A^{*} B\right)\right]^{2} .
\end{gathered}
$$

(Remark: These results are Hua's inequalities. See [24].)
Fact 8.13.21. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
|\operatorname{det} A| \leq \prod_{i=1}^{n}\left(\sum_{j=1}^{n}\left|A_{(i, j)}\right|^{2}\right)^{1 / 2}
$$

Furthermore, equality holds if and only if $A A^{*}$ is diagonal. (Remark: Replace A with $A A^{*}$ in Fact 8.14.5.)

Fact 8.13.22. Let $A=\left[\begin{array}{cc}A_{11} & A_{12} \\ A_{12} & A_{22}\end{array}\right] \in \mathbb{F}^{(n+m) \times(n+m)}$ be positive definite. Then,

$$
\begin{aligned}
\operatorname{det} A & =\left(\operatorname{det} A_{11}\right) \operatorname{det}\left(A_{22}-A_{12}^{*} A_{11}^{-1} A_{12}\right) \\
& \leq\left(\operatorname{det} A_{11}\right) \operatorname{det} A_{22} \\
& \leq \prod_{i=1}^{n+m} A_{(i, i)} .
\end{aligned}
$$

If, in addition, $n=m$, then

$$
0<\left(\operatorname{det} A_{11}\right) \operatorname{det} A_{22}-\left|\operatorname{det} A_{12}\right|^{2} \leq \operatorname{det} A \leq\left(\operatorname{det} A_{11}\right) \operatorname{det} A_{22} .
$$

(Proof: Since $0 \leq A_{12}^{*} A_{11}^{-1} A_{12}<A_{22}$, it follows that $\left|\operatorname{det} A_{12}\right|^{2} / \operatorname{det} A_{11}<$ $\operatorname{det} A_{22}$. Use Fact 8.13.23. Also, see [466, p. 142].) (Remark: $\operatorname{det} A \leq$ ($\operatorname{det} A_{11}$) $\operatorname{det} A_{22}$ is Fischer's inequality.)

Fact 8.13.23. Let $A=\left[\begin{array}{ccc}A_{11} & \cdots & A_{1 k} \\ \vdots & \ddots & \vdots \\ A_{1 k}^{\mathrm{T}} & \cdots & A_{k k}\end{array}\right]$ be nonnegative semidefinite, where $A_{i j} \in \mathbb{F}^{n \times n}$ for all $i, j=1, \ldots, k$. Then,

$$
\operatorname{det}\left[\begin{array}{ccc}
\operatorname{det} A_{11} & \cdots & \operatorname{det} A_{1 k} \\
\vdots & \ddots & \vdots \\
\operatorname{det} A_{1 k} & \cdots & \operatorname{det} A_{k k}
\end{array}\right] \leq \operatorname{det} A
$$

and

$$
\left[\begin{array}{ccc}
\operatorname{tr} A_{11} & \cdots & \operatorname{tr} A_{1 k} \\
\vdots & \ddots & \vdots \\
\operatorname{tr} A_{1 k} & \cdots & \operatorname{tr} A_{k k}
\end{array}\right] \geq 0 .
$$

(Remark: The matrix whose (i, j) entry is $\operatorname{det} A_{i j}$ is a determinantal compression of A. See $[165,166,454,543]$.)

8.14 Facts on Eigenvalues and Singular Values

Fact 8.14.1. Let $A \in \mathbb{F}^{n \times m}$. Then,

$$
\operatorname{tr}\langle A\rangle=\sum_{i=1}^{\min \{n, m\}} \sigma_{i}(A)
$$

Fact 8.14.2. Let $A \in \mathbb{F}^{n \times n}$. Then, for all $i=1, \ldots, n$,

$$
\left|\lambda_{i}\left[\frac{1}{2}\left(A+A^{*}\right)\right]\right| \leq \sigma_{i}(A)
$$

Hence,

$$
|\operatorname{tr} A| \leq \operatorname{tr}\langle A\rangle
$$

(Proof: See [289, p. 151] or [516].)
Fact 8.14.3. Let $A \in \mathbb{F}^{n \times n}$, and let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \cdots, \lambda_{n}\right\}_{\mathrm{m}}$, where $\lambda_{1}, \ldots, \lambda_{n}$ are ordered such that $\left|\lambda_{1}\right| \geq \cdots \geq\left|\lambda_{n}\right|$. If $r>0$ or $r \in \mathbb{R}$ and A is nonsingular, then, for all $k=1, \ldots, n$,

$$
\sum_{i=1}^{k}\left|\lambda_{i}\right|^{r} \leq \sum_{i=1}^{k} \sigma_{i}^{r}(A) .
$$

In particular, for all $k=1, \ldots, n$,

$$
\sum_{i=1}^{k}\left|\lambda_{i}\right| \leq \sum_{i=1}^{k} \sigma_{i}(A)
$$

Hence,

$$
|\operatorname{tr} A| \leq \sum_{i=1}^{n}\left|\lambda_{i}\right| \leq \sum_{i=1}^{n} \sigma_{i}(A)=\operatorname{tr}\langle A\rangle
$$

Furthermore, for all $k=1, \ldots, n$,

$$
\sum_{i=1}^{k}\left|\lambda_{i}\right|^{2} \leq \sum_{i=1}^{k} \sigma_{i}^{2}(A)
$$

Hence,

$$
\left|\operatorname{tr} A^{2}\right| \leq \sum_{i=1}^{n}\left|\lambda_{i}\right|^{2} \leq \sum_{i=1}^{n} \sigma_{i}\left(A^{2}\right)=\operatorname{tr}\left\langle A^{2}\right\rangle \leq \sum_{i=1}^{n} \sigma_{i}^{2}(A)=\operatorname{tr} A^{*} A .
$$

(Proof: The result follows from Fact 8.16.5 and Fact 5.9.13. See [93, p. 42], [289, p. 176], or [625, p. 19]. See Fact 9.11 .15 for the inequality $\operatorname{tr}\left\langle A^{2}\right\rangle=\operatorname{tr}\left(A^{2 *} A^{2}\right)^{1 / 2} \leq \operatorname{tr} A^{*} A$.) Finally,

$$
\sum_{i=1}^{n}\left|\lambda_{i}\right|^{2}=\operatorname{tr} A^{*} A
$$

if and only if A is normal. (Proof: See [466, p. 146].) (Remark: $\sum_{i=1}^{n}\left|\lambda_{i}\right|^{2} \leq$ $\operatorname{tr} A^{*} A$ is Schur's inequality. See Fact 9.10.2.) (Problem: Determine when equality holds for the remaining inequalities.)

Fact 8.14.4. Let $A \in \mathbb{F}^{n \times n}$ be Hermitian. Then, for all $k=1, \ldots, n$,

$$
\sum_{i=1}^{k} d_{i}(A) \leq \sum_{i=1}^{k} \lambda_{i}(A)
$$

with equality for $k=n$, that is,

$$
\operatorname{tr} A=\sum_{i=1}^{n} d_{i}(A)=\sum_{i=1}^{n} \lambda_{i}(A) .
$$

Hence, for all $k=1, \ldots, n$,

$$
\sum_{i=k}^{n} \lambda_{i}(A) \leq \sum_{i=k}^{n} d_{i}(A) .
$$

(Proof: See [93, p. 35], [287, p. 193], or [625, p. 18].) (Remark: This result is Schur's theorem.)

Fact 8.14.5. Let $A \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite. Then, for all $k=1, \ldots, n$,

$$
\prod_{i=k}^{n} \lambda_{i}(A) \leq \prod_{i=k}^{n} d_{i}(A)
$$

In particular,

$$
\operatorname{det} A \leq \prod_{i=1}^{n} A_{(i, i)}
$$

Now, assume that A is positive definite. Then, equality holds if and only if A is diagonal. (Proof: See [287, p. 200], [625, p. 18], and [287, p. 477].) (Remark: The case $k=n$ is Hadamard's inequality.)

Fact 8.14.6. Let $A, B \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite. If $p \geq 1$, then

$$
\sum_{i=1}^{n} \lambda_{i}^{p}(A) \lambda_{n-i+1}^{p}(B) \leq \operatorname{tr}(A B)^{p} \leq \operatorname{tr} A^{p} B^{p} \leq \sum_{i=1}^{n} \lambda_{i}^{p}(A) \lambda_{i}^{p}(B)
$$

If $0 \leq p \leq 1$, then

$$
\sum_{i=1}^{n} \lambda_{i}^{p}(A) \lambda_{n-i+1}^{p}(B) \leq \operatorname{tr} A^{p} B^{p} \leq \operatorname{tr}(A B)^{p} \leq \sum_{i=1}^{n} \lambda_{i}^{p}(A) \lambda_{i}^{p}(B)
$$

Now, suppose that A and B are positive definite. If $p \leq-1$, then

$$
\sum_{i=1}^{n} \lambda_{i}^{p}(A) \lambda_{n-i+1}^{p}(B) \leq \operatorname{tr}(A B)^{p} \leq \operatorname{tr} A^{p} B^{p} \leq \sum_{i=1}^{n} \lambda_{i}^{p}(A) \lambda_{i}^{p}(B)
$$

If $-1 \leq p \leq 0$, then

$$
\sum_{i=1}^{n} \lambda_{i}^{p}(A) \lambda_{n-i+1}^{p}(B) \leq \operatorname{tr} A^{p} B^{p} \leq \operatorname{tr}(A B)^{p} \leq \sum_{i=1}^{n} \lambda_{i}^{p}(A) \lambda_{i}^{p}(B)
$$

(Proof: See [578]. See also [122, 358, 374, 581].) (Remark: See Fact 8.12.8. See Fact 8.12.5 for the indefinite case.)

Fact 8.14.7. Let $A, B \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite, and let $p \geq r \geq 0$. Then,

$$
\left[\begin{array}{lll}
\lambda_{1}^{1 / p}\left(A^{p} B^{p}\right) & \cdots & \lambda_{n}^{1 / p}\left(A^{p} B^{p}\right)
\end{array}\right]
$$

weakly \log majorizes and thus weakly majorizes

$$
\left[\begin{array}{lll}
\lambda_{1}^{1 / r}\left(A^{r} B^{r}\right) & \cdots & \lambda_{n}^{1 / r}\left(A^{r} B^{r}\right)
\end{array}\right] .
$$

(Proof: See [93, p. 257] or [625, p. 20] and Fact 8.16.5.)
Fact 8.14.8. Let $A, B \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite. Then,

$$
\lambda_{\max }(A+B) \leq \max \left\{\lambda_{\max }(A), \lambda_{\max }(B)\right\}+\lambda_{\max }\left(A^{1 / 2} B^{1 / 2}\right)
$$

(Proof: See [335].)
Fact 8.14.9. Let $A, B \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite. Then,

$$
\begin{aligned}
& \lambda_{\max }(A+B) \\
& \quad \leq \frac{1}{2}\left[\lambda_{\max }(A)+\lambda_{\max }(B)+\sqrt{\left[\lambda_{\max }(A)-\lambda_{\max }(B)\right]^{2}+4 \lambda_{\max }^{2}\left(A^{1 / 2} B^{1 / 2}\right)}\right]
\end{aligned}
$$

(Proof: See [337].)

Fact 8.14.10. Let $f: \mathbb{R} \mapsto \mathbb{R}$ be convex, and let $A, B \in \mathbb{F}^{n \times n}$ be Hermitian. Then, for all $\alpha \in[0,1]$,

$$
\left[\begin{array}{lll}
\alpha \lambda_{1} f(A)+(1-\alpha) \lambda_{1} f(B) & \cdots & \alpha \lambda_{n} f(A)+(1-\alpha) \lambda_{n} f(B)
\end{array}\right]
$$

weakly majorizes

$$
\left[\begin{array}{lll}
\lambda_{1} f(\alpha A+(1-\alpha) B) & \cdots & \lambda_{n} f(\alpha A+(1-\alpha) B)
\end{array}\right] .
$$

If, in addition, f is either nonincreasing or nondecreasing, then, for all $i=$ $1, \ldots, n$,

$$
\lambda_{i} f(\alpha A+(1-\alpha) B) \leq \alpha \lambda_{i} f(A)+(1-\alpha) \lambda_{i} f(B)
$$

(Proof: See [42].)
Fact 8.14.11. Let $A, B \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite. If $r \in$ $[0,1]$, then

$$
\left[\begin{array}{lll}
\lambda_{1}\left(A^{r}+B^{r}\right) & \cdots & \lambda_{n}\left(A^{r}+B^{r}\right)
\end{array}\right]
$$

weakly majorizes

$$
\left[\begin{array}{lll}
\lambda_{1}\left[(A+B)^{r}\right] & \cdots & \lambda_{n}\left[(A+B)^{r}\right]
\end{array}\right]
$$

and, for all $i=1, \ldots, n$,

$$
2^{1-r} \lambda_{i}\left[(A+B)^{r}\right] \leq \lambda_{i}\left(A^{r}+B^{r}\right)
$$

If $r \geq 1$, then

$$
\left[\begin{array}{lll}
\lambda_{1}\left[(A+B)^{r}\right] & \cdots & \lambda_{n}\left[(A+B)^{r}\right]
\end{array}\right]
$$

weakly majorizes

$$
\left[\begin{array}{lll}
\lambda_{1}\left(A^{r}+B^{r}\right) & \cdots & \left.\lambda_{n}\left(A^{r}+B^{r}\right)\right]
\end{array}\right.
$$

and, for all $i=1, \ldots, n$,

$$
\lambda_{i}\left(A^{r}+B^{r}\right) \leq 2^{r-1} \lambda_{i}\left[(A+B)^{r}\right]
$$

(Proof: The result follows from Fact 8.14.10. See [29, 41, 42].)
Fact 8.14.12. Let $A \in \mathbb{F}^{n \times n}$ be Hermitian and let $S \in \mathbb{R}^{k \times n}$ satisfy $S S^{*}=I_{k}$. Then, for all $i=1, \ldots, k$,

$$
\lambda_{i+n-k}(A) \leq \lambda_{i}\left(S A S^{*}\right) \leq \lambda_{i}(A)
$$

Consequently,

$$
\sum_{i=1}^{k} \lambda_{i+n-k}(A) \leq \operatorname{tr} S A S^{*} \leq \sum_{i=1}^{k} \lambda_{i}(A)
$$

and

$$
\prod_{i=1}^{k} \lambda_{i+n-k}(A) \leq \operatorname{det} S A S^{*} \leq \prod_{i=1}^{k} \lambda_{i}(A)
$$

(Proof: See [287, p. 190].) (Remark: This result is the Poincare separation theorem.)

Fact 8.14.13. Let $A \in \mathbb{F}^{n \times n}$ be Hermitian. Then, for all $k=1, \ldots, n$,

$$
\sum_{i=n+1-i}^{n} \lambda_{i}=\min \left\{\operatorname{tr} S^{*} A S: \quad S \in \mathbb{F}^{n \times k} \text { and } S^{*} S=I_{k}\right\}
$$

(Proof: See [289, p. 191].) (Remark: This result is the minimum principle.)
Fact 8.14.14. Let $A \in \mathbb{F}^{n \times n}$. Then, $\left[\begin{array}{cc}I^{*} & A \\ A^{*} & I\end{array}\right]$ is nonnegative semidefinite if and only if $\sigma_{\max }(A) \leq 1$. Furthermore, $\left[\begin{array}{c}I \\ A^{*} \\ \hline\end{array}\right]$ is positive definite if and only if $\sigma_{\max }(A)<1$. (Proof: Note that

$$
\left.\left[\begin{array}{cc}
I & A \\
A^{*} & I
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
A^{*} & I
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
0 & I-A^{*} A
\end{array}\right]\left[\begin{array}{cc}
I & A \\
0 & I
\end{array}\right] .\right)
$$

Fact 8.14.15. Let $\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{12}^{*} & A_{22}\end{array}\right] \in \mathbb{F}^{(n+m) \times(n+m)}$ be nonnegative semidefinite. Then,

$$
\sigma_{\max }^{2}\left(A_{12}\right) \leq \sigma_{\max }\left(A_{11}\right) \sigma_{\max }\left(A_{22}\right)
$$

(Proof: Use $A_{22} \geq A_{12}^{*} A_{11}^{+} A_{12} \geq 0$, factor $A_{11}^{+}=M M^{*}$, where M has full column rank, and recall that $\sigma_{\max }\left(S S^{*}\right)=\sigma_{\max }^{2}(S)$.) (Problem: Consider alternative norms.)

Fact 8.14.16. Let $A, B \in \mathbb{F}^{n \times m}$ be nonnegative semidefinite. Then, for all $k=1, \ldots, n$,

$$
\prod_{i=1}^{k} \lambda_{i}(A B) \leq \prod_{i=1}^{k} \sigma_{i}(A B) \leq \prod_{i=1}^{k} \lambda_{i}(A) \lambda_{i}(B)
$$

with equality for $k=n$. Furthermore, for all $k=1, \ldots, n$,

$$
\prod_{i=k}^{n} \lambda_{i}(A) \lambda_{i}(B) \leq \prod_{i=k}^{n} \sigma_{i}(A B) \leq \prod_{i=k}^{n} \lambda_{i}(A B)
$$

(Proof: Use Fact 5.9.13 and Fact 9.11.16.)
Fact 8.14.17. Let $A, B \in \mathbb{F}^{n \times n}$ be positive definite. If $q \geq 1$, then

$$
\sigma_{\max }^{q}(A B) \leq \sigma_{\max }\left(A^{q} B^{q}\right)
$$

If $p \geq q>0$, then

$$
\sigma_{\max }^{1 / q}\left(A^{q} B^{q}\right) \leq \sigma_{\max }^{1 / p}\left(A^{p} B^{p}\right)
$$

(Proof: See [219].)

8.15 Facts on the Schur and Kronecker Products

Fact 8.15.1. Let $A \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite, and assume that every entry of A is nonzero. Then, $A^{\{-1\}}$ is nonnegative semidefinite if and only if $\operatorname{rank} A=1$. (Proof: See [363].)

Fact 8.15.2. Let $A \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite and let $k \in \mathbb{P}$. If $r \in[0,1]$, then

$$
\left(A^{r}\right)^{\{k\}} \leq\left(A^{\{k\}}\right)^{r}
$$

If $r \in[1,2]$, then

$$
\left(A^{\{k\}}\right)^{r} \leq\left(A^{r}\right)^{\{k\}}
$$

If A is positive definite and $r \in[0,1]$, then

$$
\left(A^{\{k\}}\right)^{-r} \leq\left(A^{-r}\right)^{\{k\}}
$$

(Proof: See [625, p. 8].)
Fact 8.15.3. Let $A \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite. Then,

$$
(I \circ A)^{2} \leq \frac{1}{2}\left(I \circ A^{2}+A \circ A\right) \leq I \circ A^{2} .
$$

Now, assume that A is positive definite. Then,

$$
\begin{gathered}
\left(A \circ A^{-1}\right)^{-1} \leq I \leq\left(A^{1 / 2} \circ A^{-1 / 2}\right)^{2} \leq \frac{1}{2}\left(I+A \circ A^{-1}\right) \leq A \circ A^{-1} \\
(A \circ A)^{-1} \leq A^{-1} \circ A^{-1}
\end{gathered}
$$

and

$$
1 \in \operatorname{spec}\left(A \circ A^{-1}\right)
$$

Define $\Phi(A) \triangleq A \circ A^{-1}$ and, for all $k \in \mathbb{P}$, define

$$
\Phi^{(k+1)}(A) \triangleq \Phi\left[\Phi^{(k)}(A)\right]
$$

where $\Phi^{(1)}(A) \triangleq \Phi(A)$. Then, for all $k \in \mathbb{P}$,

$$
\Phi^{(k)}(A) \geq I
$$

and

$$
\lim _{k \rightarrow \infty} \Phi^{(k)}(A)=I
$$

(Proof: See [201, 316, 577] and [287, p. 475].) (Remark: The convergence result also holds if A is an H -matrix [316]. $A \circ A^{-1}$ is the relative gain array.)

Fact 8.15.4. Let $A \triangleq\left[\begin{array}{cc}A_{11} & A_{12} \\ A_{12}^{*} & A_{22}\end{array}\right] \in \mathbb{F}^{(n+m) \times(n+m)}$ and $B \triangleq\left[\begin{array}{ll}B_{11} & B_{12} \\ B_{12} & B_{22}\end{array}\right] \in$ $\mathbf{P}^{(n+m) \times(n+m)}$, and assume that A and B are nonnegative semidefinite. Then,

$$
\left(A_{11} \mid A\right) \circ\left(B_{11} \mid B\right) \leq\left(A_{11} \mid A\right) \circ B_{22} \leq\left(A_{11} \circ B_{11}\right) \mid(A \circ B)
$$

(Proof: See [369].)
Fact 8.15.5. Let $A \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite and assume that $I_{n} \circ A=I_{n}$. Then,

$$
\operatorname{det} A \leq \lambda_{\min }(A \circ A)
$$

(Proof: See [589].)
Fact 8.15.6. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are nonnegative semidefinite. Then, $A \circ B$ is nonnegative semidefinite. If, in addition, B is positive definite and all of the diagonal entries of A are positive, then $A \circ B$ is positive definite. (Proof: By Fact 7.4.13, $A \otimes B$ is nonnegative semidefinite, and the Schur product $A \circ B$ is a principal submatrix of the Kronecker product. If A is positive definite, use Fact 8.15 .12 to obtain $\operatorname{det}(A \circ B)>0$.) (Remark: The first result is Schur's theorem.)

Fact 8.15.7. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is positive definite. Then, there exist positive-definite matrices $B, C \in \mathbb{F}^{n \times n}$ such that $A=B \circ C$. (Remark: See [466, pp. 154, 166].) (Remark: This result is due to Djokovic.)

Fact 8.15.8. Let $A \in \mathbb{F}^{n \times n}$ be positive definite and let $B \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite. Then,

$$
\left(1_{1 \times n} A^{-1} 1_{n \times 1}\right)^{-1} B \leq A \circ B
$$

(Proof: See [204].)
Fact 8.15.9. Let $A \in \mathbb{F}^{n \times n}$ be positive definite and let $B \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite. Then,

$$
\operatorname{rank} B \leq \operatorname{rank}(A \circ B) \leq \operatorname{rank}(A \otimes B)=(\operatorname{rank} A)(\operatorname{rank} B)
$$

(Remark: See Fact 7.4.20, Fact 7.5.5, and Fact 8.15.8.) (Remark: The first inequality is due to Djokovic. See [466, pp. 154, 166].)

Fact 8.15.10. Let $A, B \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite. If $p \geq 1$, then

$$
\operatorname{tr}(A \circ B)^{p} \leq \operatorname{tr} A^{p} \circ B^{p} .
$$

If $0 \leq p \leq 1$, then

$$
\operatorname{tr} A^{p} \circ B^{p} \leq \operatorname{tr}(A \circ B)^{p}
$$

Now, assume that A and B are positive definite. If $p \leq 0$, then

$$
\operatorname{tr}(A \circ B)^{p} \leq \operatorname{tr} A^{p} \circ B^{p} .
$$

(Proof: See [581].)

Fact 8.15.11. Let $A, B \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite. Then, for all $k=1, \ldots, n$,

$$
\prod_{i=k}^{n} \lambda_{i}(A) \lambda_{i}(B) \leq \prod_{i=k}^{n} \sigma_{i}(A B) \leq \prod_{i=k}^{n} \lambda_{i}(A B) \leq \prod_{i=k}^{n} \lambda_{i}^{2}(A \# B) \leq \prod_{i=k}^{n} \lambda_{i}(A \circ B)
$$

Consequently,

$$
\lambda_{\min }(A B) I \leq A \circ B
$$

and

$$
\operatorname{det} A B=[\operatorname{det}(A \# B)]^{2} \leq \operatorname{det}(A \circ B) .
$$

(Proof: See [25, 201], [625, p. 21], and Fact 8.14.16.)
Fact 8.15.12. Let $A, B \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite. Then,

$$
\operatorname{det} A B \leq\left(\prod_{i=1}^{n} A_{(i, i)}\right) \operatorname{det} B \leq \operatorname{det}(A \circ B) .
$$

If, in addition, A and B are positive definite, then the right-hand inequality is an equality if and only if B is diagonal. (Proof: See [397].) (Remark: The left-hand inequality follows from Hadamard's inequality Fact 8.14.5. The right-hand inequality is Oppenheim's inequality.) (Problem: Compare $\left(\prod_{i=1}^{n} A_{(i, i)}\right) \operatorname{det} B$ and $[\operatorname{det}(A \# B)]^{2}$.)

Fact 8.15.13. Let $A_{1}, A_{2}, B_{1}, B_{2} \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite, and assume that $0 \leq A_{1} \leq B_{1}$ and $0 \leq A_{2} \leq B_{2}$. Then,

$$
0 \leq A_{1} \otimes A_{2} \leq B_{1} \otimes B_{2}
$$

and

$$
0 \leq A_{1} \circ A_{2} \leq B_{1} \circ B_{2} .
$$

(Proof: See [23].) (Problem: Under which conditions are these inequalities strict?)

Fact 8.15.14. Let $A_{1}, \ldots, A_{k}, B_{1}, \ldots, B_{k} \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite. Then,

$$
\left(A_{1}+B_{1}\right) \otimes \cdots \otimes\left(A_{k}+B_{k}\right) \leq A_{1} \otimes \cdots \otimes A_{k}+B_{1} \otimes \cdots \otimes B_{k} .
$$

(Proof: See [412, p. 143].)
Fact 8.15.15. Let $A_{1}, A_{2}, B_{1}, B_{2} \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite, assume that $0 \leq A_{1} \leq B_{1}$ and $0 \leq A_{2} \leq B_{2}$, and let $\alpha \in[0,1]$. Then,

$$
\left[\alpha A_{1}+(1-\alpha) B_{1}\right] \otimes\left[\alpha A_{2}+(1-\alpha) B_{2}\right] \leq \alpha\left(A_{1} \otimes A_{2}\right)+(1-\alpha)\left(B_{1} \otimes B_{2}\right)
$$

(Proof: See [588].)

Fact 8.15.16. Let $A, B \in \mathbb{F}^{n \times n}$ be Hermitian. Then, for all $i=$ $1, \ldots, n$,

$$
\lambda_{n}(A) \lambda_{n}(B) \leq \lambda_{i+n^{2}-n}(A \otimes B) \leq \lambda_{i}(A \circ B) \leq \lambda_{i}(A \otimes B) \leq \lambda_{1}(A) \lambda_{1}(B)
$$

(Proof: The result follows from Proposition 7.3.1 and Theorem 8.4.5. For A, B nonnegative semidefinite, the result is given in [394].)

Fact 8.15.17. Let $A, B \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite, assume that $0 \leq A \leq B$, and let $k \in \mathbb{P}$. Then,

$$
A^{\{k\}} \leq B^{\{k\}}
$$

(Proof: $0 \leq(B-A) \circ(B+A)$ implies $A \circ A \leq B \circ B$.)
Fact 8.15.18. Let $A, B \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite. If $r \in$ $[0,1]$, then

$$
A^{r} \circ B^{r} \leq(A \circ B)^{r}
$$

If $r \in[1,2]$, then

$$
(A \circ B)^{r} \leq A^{r} \circ B^{r}
$$

If A and B are positive definite and $r \in[0,1]$, then

$$
(A \circ B)^{-r} \leq A^{-r} \circ B^{-r} .
$$

Therefore,

$$
\begin{gathered}
(A \circ B)^{2} \leq A^{2} \circ B^{2}, \\
A \circ B \leq\left(A^{2} \circ B^{2}\right)^{1 / 2}, \\
A^{1 / 2} \circ B^{1 / 2} \leq(A \circ B)^{1 / 2} .
\end{gathered}
$$

Furthermore,

$$
A^{2} \circ B^{2}-\frac{1}{4}(\beta-\alpha)^{2} I \leq(A \circ B)^{2} \leq \frac{1}{2}\left[A^{2} \circ B^{2}+(A B)^{\{2\}}\right] \leq A^{2} \circ B^{2}
$$

and

$$
A \circ B \leq\left(A^{2} \circ B^{2}\right)^{1 / 2} \leq \frac{\alpha+\beta}{2 \sqrt{\alpha \beta}} A \circ B
$$

where $\alpha \triangleq \lambda_{\text {min }}(A \otimes B)$ and $\beta \triangleq \lambda_{\max }(A \otimes B)$. Hence,

$$
\begin{aligned}
A \circ B-\frac{1}{4}(\sqrt{\beta}-\sqrt{\alpha})^{2} I & \leq\left(A^{1 / 2} \circ B^{1 / 2}\right)^{2} \\
& \leq \frac{1}{2}\left[A \circ B+\left(A^{1 / 2} B^{1 / 2}\right)^{\{2\}}\right] \\
& \leq A \circ B \\
& \leq\left(A^{2} \circ B^{2}\right)^{1 / 2} \\
& \leq \frac{\alpha+\beta}{2 \sqrt{\alpha \beta}} A \circ B
\end{aligned}
$$

(Proof: See [23, 427, 577], [287, p. 475], and [625, p. 8].)
Fact 8.15.19. Let $A, B \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite and let $p, q \in[1, \infty)$ be such that $p \leq q$. Then,

$$
\left(A^{p} \circ B^{p}\right)^{1 / p} \leq\left(A^{q} \circ B^{q}\right)^{1 / q} .
$$

(Proof: Since $p / q \leq 1$, it follows from Fact 8.15.18 that $A^{p} \circ B^{p}=\left(A^{q}\right)^{p / q} \circ$ $\left(A^{q}\right)^{p / q} \leq\left(A^{q} \circ B^{q}\right)^{p / q}$. Then, use Corollary 8.5 .8 with p replaced by $1 / p$. See [625, p. 8].)

Fact 8.15.20. Let $A, B \in \mathbb{F}^{n \times n}$ be positive definite and let p, q be nonzero integers such that $p \leq q$. Then,

$$
\left(A^{p} \circ B^{p}\right)^{1 / p} \leq\left(A^{q} \circ B^{q}\right)^{1 / q} .
$$

In particular,

$$
\begin{aligned}
& \left(A^{-1} \circ B^{-1}\right)^{-1} \leq A \circ B, \\
& (A \circ B)^{-1} \leq A^{-1} \circ B^{-1},
\end{aligned}
$$

and, for all $p \in \mathbb{P}$,

$$
\begin{gathered}
A \circ B \leq\left(A^{p} \circ B^{p}\right)^{1 / p}, \\
A^{1 / p} \circ B^{1 / p} \leq(A \circ B)^{1 / p} .
\end{gathered}
$$

Furthermore,

$$
(A \circ B)^{-1} \leq A^{-1} \circ B^{-1} \leq \frac{(\alpha+\beta)^{2}}{4 \alpha \beta}(A \circ B)^{-1},
$$

where $\alpha \triangleq \lambda_{\min }(A \otimes B)$ and $\beta \triangleq \lambda_{\max }(A \otimes B)$. (Proof: See [427].) (Problem: Consider real numbers $p \leq q \leq-1$ to unify this result with Fact 8.15.19.)

Fact 8.15.21. Let $A, B \in \mathbb{F}^{n \times n}$ be positive definite. Then,

$$
I \circ(\log A+\log B) \leq \log (A \circ B) .
$$

(Proof: See [23,625].) (Remark: See Fact 11.11.20.)

Fact 8.15.22. Let $A, B \in \mathbb{F}^{n \times n}$ be positive definite, and let $C, D \in$ $\mathbb{F}^{m \times n}$. Then,

$$
(C \circ D)(A \circ B)^{-1}(C \circ D)^{*} \leq\left(C A^{-1} C^{*}\right) \circ\left(D B^{-1} D^{*}\right) .
$$

In particular,

$$
(A \circ B)^{-1} \leq A^{-1} \circ B^{-1}
$$

and

$$
(C \circ D)(C \circ D)^{*} \leq\left(C C^{*}\right) \circ\left(D D^{*}\right) .
$$

(Proof: Form the Schur complement $A_{22 c}$ of the Schur product of the nonnegative-semidefinite matrices $\left[\begin{array}{cc}A & C^{* *} \\ C & C A^{-1} C^{*}\end{array}\right]$ and $\left[\begin{array}{cc}B & D^{*} \\ D & D B^{-1} D^{*}\end{array}\right]$. See $[396,582]$ or [625, p. 13].)

Fact 8.15.23. Let $A, B \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite, and let $p, q \in(1, \infty)$ satisfy $1 / p+1 / q=1$. Then,

$$
(A \circ B)+(C \circ D) \leq\left(A^{p}+C^{p}\right)^{1 / p} \circ\left(B^{q}+D^{q}\right)^{1 / q} .
$$

(Proof: Use xxiv) of Proposition 8.5.13 with $r=1 / p$. See [625, p. 10].) (Remark: Note the relationship between the conjugate parameters p, q and the barycentric coordinates $\alpha, 1-\alpha$. See Fact 1.4.16.)

Fact 8.15.24. Let $A, B \in \mathbb{F}^{n \times m}$. Then,

$$
(A \circ B)(A \circ B)^{*} \leq \frac{1}{2}\left(A A^{*} \circ B B^{*}+A B^{*} \circ B A^{*}\right) \leq A A^{*} \circ B B^{*} .
$$

(Proof: See [291,577].)

8.16 Facts on Majorization

Fact 8.16.1. Let $x, y \in \mathbb{R}^{n}$, where $x_{(1)} \geq \cdots \geq x_{(n)}$ and $y_{(1)} \geq \cdots \geq$ $y_{(n)}$, assume that y strongly majorizes x, let $f:\left[\min \left\{x_{(n)}, y_{(n)}\right\}, y_{(1)}\right] \mapsto$ \mathbb{R}, and assume that f is convex. Then, $\left[\begin{array}{lll}f\left(y_{(1)}\right) & \cdots & f\left(y_{(n)}\right)\end{array}\right]^{\mathrm{T}}$ weakly majorizes $\left[\begin{array}{lll}f\left(x_{(1)}\right) & \cdots & f\left(x_{(n)}\right)\end{array}\right]^{\mathrm{T}}$. (Proof: See [93, p. 42], [289, p. 173], or [400, p. 116].)

Fact 8.16.2. Let $x, y \in \mathbb{R}^{n}$, where $x_{(1)} \geq \cdots \geq x_{(n)} \geq 0$ and $y_{(1)} \geq$ $\cdots \geq y_{(n)} \geq 0$, assume that y strongly \log majorizes x, let $f:[0, \infty) \mapsto \mathbb{R}$, and assume that $g(z) \triangleq f\left(e^{z}\right)$ is convex. Then, $\left[\begin{array}{lll}f\left(y_{(1)}\right) & \cdots & f\left(y_{(n)}\right)\end{array}\right]^{\mathrm{T}}$ weakly majorizes $\left[\begin{array}{lll}f\left(x_{(1)}\right) & \cdots & f\left(x_{(n)}\right)\end{array}\right]^{\mathrm{T}}$. (Proof: Apply Fact 8.16.1.)

Fact 8.16.3. Let $x, y \in \mathbb{R}^{n}$, where $x_{(1)} \geq \cdots \geq x_{(n)}$ and $y_{(1)} \geq \cdots \geq$ $y_{(n)}$, assume that y weakly majorizes x, let $f:\left[\min \left\{x_{(n)}, y_{(n)}\right\}, y_{(1)}\right] \mapsto \mathbb{R}$, and assume that f is convex and increasing. Then, $\left[\begin{array}{lll}f\left(y_{(1)}\right) & \cdots & f\left(y_{(n)}\right)\end{array}\right]^{\mathrm{T}}$
weakly majorizes $\left[\begin{array}{lll}f\left(x_{(1)}\right) & \cdots & f\left(x_{(n)}\right)\end{array}\right]^{\mathrm{T}}$. (Proof: See [93, p. 42], [289, p. 173], or [400, p. 116].)

Fact 8.16.4. Let $x, y \in \mathbb{R}^{n}$, where $x_{(1)} \geq \cdots \geq x_{(n)} \geq 0$ and $y_{(1)} \geq$ $\cdots \geq y_{(n)} \geq 0$, assume that $y \log$ majorizes x, let $f:[0, \infty) \mapsto \mathbb{R}$, and assume that $g(z) \triangleq f\left(e^{z}\right)$ is convex and increasing. Then, $\left[\begin{array}{ccc}f\left(y_{(1)}\right) & \cdots & f\left(y_{(n)}\right)\end{array}\right]^{\mathrm{T}}$ weakly majorizes $\left[\begin{array}{lll}f\left(x_{(1)}\right) & \cdots & f\left(x_{(n)}\right)\end{array}\right]^{\mathrm{T}}$. (Proof: Use Fact 8.16.3.)

Fact 8.16.5. Let $x, y \in \mathbb{R}^{n}$, where $x_{(1)} \geq \cdots \geq x_{(n)} \geq 0$ and $y_{(1)} \geq$ $\cdots \geq y_{(n)} \geq 0$, and assume that y weakly log majorizes x. Then, y weakly majorizes x. (Proof: Use Fact 8.16 .3 with $f(t)=e^{t}$. See [625, p. 19].)

Fact 8.16.6. Let $x, y \in \mathbb{R}^{n}$, where $x_{(1)} \geq \cdots \geq x_{(n)} \geq 0$ and $y_{(1)} \geq$ $\cdots \geq y_{(n)} \geq 0$, assume that y weakly majorizes x, let $p \in[1, \infty)$, and let $r>0$. Then, for all $k=1, \ldots, n$,

$$
\left(\sum_{i=1}^{k} x_{(i)}^{p}\right)^{r} \leq\left(\sum_{i=1}^{k} y_{(i)}^{p}\right)^{r} .
$$

(Proof: Use Fact 8.16.3. See [400, p. 96].) (Remark: $\phi(x) \triangleq\left(\sum_{i=1}^{k} x_{(i)}^{p}\right)^{1 / p}$ is a symmetric gauge function.)

8.17 Notes

The ordering $A \leq B$ is traditionally called the Loewner ordering. Proposition 8.2.3 is given in [5] and [342] with extensions in [71]. The proof of Proposition 8.2.6 is based on [113, p. 120], as suggested in [533]. The proof given in [222, p. 307] is incomplete.

Theorem 8.3.4 is due to Newcomb [437].
Proposition 8.4.13 is given in [284, 429]. Special cases such as Fact 8.12.14 appear in numerous papers.

The proofs of Lemma 8.4.4 and Theorem 8.4.5 are based on [525]. Theorem 8.4.9 can also be obtained as a corollary of the Fischer minimax theorem given in [287, 400], which provides a geometric characterization of the eigenvalues of a symmetric matrix. Theorem 8.3.5 appears in [477, p. 121]. Theorem 8.5.2 is given in [21]. Additional inequalities appear in [422].

Functions that are nondecreasing on \mathbf{P}^{n} are characterized by the theory of monotone matrix functions $[93,184]$. See [425] for a summary of the
principal results.
The literative on convex maps is extensive. Result xiv) of Proposition 8.5.13 is due to Lieb and Ruskai [373]. Result xxi) is the Lieb concavity theorem [372]. Result $x x x i i i)$ is due to Ando. Results $x x x v$) and $x x x v i$) are due to Fan. Some extensions to strict convexity are considered in [400]. See also $[23,411,431]$.

Products of positive-definite matrices are studied in [48-51, 617]. Alternative orderings for nonnegative-semidefinite matrices are considered in $[46,267]$.

Essays on the legacy of Issai Schur appear in [318].

Chapter Nine

Norms

Norms are used to quantify vectors and norms, and they play a basic role in convergence analysis. This chapter introduces vector and matrix norms and their numerous properties.

9.1 Vector Norms

For $\alpha \in \mathbb{F}$, let $|\alpha|$ denote the absolute value of α. For $x \in \mathbb{F}^{n}$ and $A \in \mathbb{F}^{n \times m}$, every component of x and every entry of A can be replaced by its absolute value to obtain $|x| \in \mathbb{R}^{n}$ and $|A| \in \mathbb{R}^{n \times m}$ defined by

$$
\begin{equation*}
|x|_{(i)} \triangleq\left|x_{(i)}\right| \tag{9.1.1}
\end{equation*}
$$

for all $i=1, \ldots, n$ and

$$
\begin{equation*}
|A|_{(i, j)} \triangleq\left|A_{(i, j)}\right| \tag{9.1.2}
\end{equation*}
$$

for all $i=1, \ldots, n$ and $j=1, \ldots, m$. For many applications it is useful to have a scalar measure of the magnitude of x or A. Norms provide such measures.

Definition 9.1.1. A norm $\|\cdot\|$ on \mathbb{F}^{n} is a function $\|\cdot\|: \mathbb{F}^{n} \mapsto \mathbb{R}$ that satisfies the following conditions:
i) $\|x\| \geq 0$ for all $x \in \mathbb{F}^{n}$.
ii) $\|x\|=0$ if and only if $x=0$.
iii) $\|\alpha x\|=|\alpha|\|x\|$ for all $\alpha \in \mathbb{F}$ and $x \in \mathbb{F}^{n}$.
iv) $\|x+y\| \leq\|x\|+\|y\|$ for all $x, y \in \mathbb{F}^{n}$.

Condition $i v$) is the triangle inequality.
A norm $\|\cdot\|$ on \mathbb{F}^{n} is monotone if $|x| \leq \leq|y|$ implies that $\|x\| \leq\|y\|$ for all $x, y \in \mathbb{F}^{n}$, while $\|\cdot\|$ is absolute if $\||x|\|=\|x\|$ for all $x \in \mathbb{F}^{n}$.

Proposition 9.1.2. Let $\|\cdot\|$ be a norm on \mathbb{F}^{n}. Then, $\|\cdot\|$ is monotone if and only if $\|\cdot\|$ is absolute.

Proof. First, suppose that $\|\cdot\|$ is monotone. Let $x \in \mathbb{F}^{n}$, and define $y \triangleq|x|$. Then, $|y|=|x|$ and thus $|y| \leq \leq|x|$ and $|y| \leq \leq|x|$. Hence, $\|x\| \leq$ $\|y\|$ and $\|y\| \leq\|x\|$, which implies that $\|x\|=\|y\|$. Thus, $\||x|\|=\|y\|=\|x\|$, which proves that $\|\cdot\|$ is absolute.

Conversely, suppose that $\|\cdot\|$ is absolute and, for convenience, let $n=2$. Now, let $x, y \in \mathbb{F}^{2}$ be such that $|x| \leq \leq|y|$. Then, there exist $\alpha_{1}, \alpha_{2} \in[0,1]$ and $\theta_{1}, \theta_{2} \in \mathbb{R}$ such that $x_{(i)}=\alpha_{i} e^{\jmath \theta_{i}} y_{(i)}$ for $i=1,2$. Since $\|\cdot\|$ is absolute, it follows that

$$
\begin{aligned}
\|x\| & =\left\|\left[\begin{array}{c}
\alpha_{1} e^{\jmath \theta_{1}} y_{(1)} \\
\alpha_{2} e^{\jmath \theta_{2}} y_{(2)}
\end{array}\right]\right\| \\
& =\left\|\left[\begin{array}{cc}
\alpha_{1} & \left|y_{(1)}\right| \\
\alpha_{2} & \left|y_{(2)}\right|
\end{array}\right]\right\| \\
& =\left\|\frac{1}{2}\left(1-\alpha_{1}\right)\left[\begin{array}{c}
-\left|y_{(1)}\right| \\
\left|\alpha_{2}\right|\left|y_{(2)}\right|
\end{array}\right]+\frac{1}{2}\left(1-\alpha_{1}\right)\left[\begin{array}{c}
\left|y_{(1)}\right| \\
\alpha_{2}\left|y_{(2)}\right|
\end{array}\right]+\alpha_{1}\left[\begin{array}{c}
\left|y_{(1)}\right| \\
\alpha_{2}\left|y_{(2)}\right|
\end{array}\right]\right\| \\
& \leq\left[\frac{1}{2}\left(1-\alpha_{1}\right)+\frac{1}{2}\left(1-\alpha_{1}\right)+\alpha_{1}\right]\left\|\left[\begin{array}{c}
\left|y_{(1)}\right| \\
\alpha_{2}\left|y_{(2)}\right|
\end{array}\right]\right\| \\
& =\left\|\left[\begin{array}{c}
\left|y_{(1)}\right| \\
\alpha_{2}\left|y_{(2)}\right|
\end{array}\right]\right\| \\
& =\left\|\frac{1}{2}\left(1-\alpha_{2}\right)\left[\begin{array}{c}
\left|y_{(1)}\right| \\
-\left|y_{(2)}\right|
\end{array}\right]+\frac{1}{2}\left(1-\alpha_{2}\right)\left[\begin{array}{c}
\left|y_{(1)}\right| \\
\left|y_{(2)}\right|
\end{array}\right]+\alpha_{2}\left[\begin{array}{l}
\left|y_{(1)}\right| \\
\left|y_{(2)}\right|
\end{array}\right]\right\| \\
& \leq\left\|\left[\begin{array}{l}
\left|y_{(1)}\right| \\
\left|y_{(2)}\right|
\end{array}\right]\right\| \\
& =\|y\| .
\end{aligned}
$$

Thus, $\|\cdot\|$ is monotone.
As we shall see, there are many different norms. A useful class of norms consists of the Holder norms defined by

$$
\|x\|_{p} \triangleq \begin{cases}\left(\sum_{i=1}^{n}\left|x_{(i)}\right|^{p}\right)^{1 / p}, & 1 \leq p<\infty \tag{9.1.3}\\ \max _{i \in\{1, \ldots, n\}}\left|x_{(i)}\right|, & p=\infty\end{cases}
$$

These norms depend on Minkowski's inequality given by the following result.

Lemma 9.1.3. Let $p \in[1, \infty]$, and let $x, y \in \mathbb{F}^{n}$. Then,

$$
\begin{equation*}
\|x+y\|_{p} \leq\|x\|_{p}+\|y\|_{p} . \tag{9.1.4}
\end{equation*}
$$

If $p=1$, then equality holds if and only if, for all $i=1, \ldots, n$, there exists $\alpha_{i} \geq 0$ such that either $x_{(i)}=\alpha_{i} y_{(i)}$ or $y_{(i)}=\alpha_{i} x_{(i)}$. If $p \in(1, \infty)$, then equality holds if and only if there exists $\alpha \geq 0$ such that either $x=\alpha y$ or $y=\alpha x$.

Proof. See [70, 395] and Fact 1.4.17.
Proposition 9.1.4. Let $p \in[1, \infty]$. Then, $\|\cdot\|_{p}$ is a norm on \mathbb{F}^{n}.
For $p=1$,

$$
\begin{equation*}
\|x\|_{1}=\sum_{i=1}^{n}\left|x_{(i)}\right| \tag{9.1.5}
\end{equation*}
$$

is the absolute sum norm; for $p=2$,

$$
\begin{equation*}
\|x\|_{2}=\left(\sum_{i=1}^{n}\left|x_{(i)}\right|^{2}\right)^{1 / 2}=\sqrt{x^{*} x} \tag{9.1.6}
\end{equation*}
$$

is the Euclidean norm; and, for $p=\infty$,

$$
\begin{equation*}
\|x\|_{\infty}=\max _{i \in\{1, \ldots, n\}}\left|x_{(i)}\right| \tag{9.1.7}
\end{equation*}
$$

is the infinity norm.
Proposition 9.1.5. Let $1 \leq p \leq q \leq \infty$, and let $x \in \mathbb{F}^{n}$. Then,

$$
\begin{equation*}
\|x\|_{\infty} \leq\|x\|_{q} \leq\|x\|_{p} \leq\|x\|_{1} . \tag{9.1.8}
\end{equation*}
$$

Assume, in addition, that $1 \leq p<q \leq \infty$. Then, x has at least two nonzero components if and only if

$$
\begin{equation*}
\|x\|_{\infty}<\|x\|_{q}<\|x\|_{p}<\|x\|_{1} . \tag{9.1.9}
\end{equation*}
$$

Proof. If either $p=q$ or $x=0$ or x has exactly one nonzero component, then $\|x\|_{q}=\|x\|_{p}$. Hence, to prove both (9.1.8) and (9.1.9) it suffices to prove (9.1.9) in the case that $1<p<q<\infty$ and x has at least two nonzero components. Thus, let $n \geq 2$, let $x \in \mathbb{F}^{n}$ have at least two nonzero components, and define $f:[1, \infty) \rightarrow[0, \infty)$ by $f(\beta) \triangleq\|x\|_{\beta}$. Hence,

$$
f^{\prime}(\beta)=\frac{1}{\beta}\|x\|_{\beta}^{1-\beta} \sum_{i=1}^{n} \gamma_{i},
$$

where, for all $i=1, \ldots, n$,

$$
\gamma_{i} \triangleq \begin{cases}\left|x_{i}\right|^{\beta}\left(\log \left|x_{(i)}\right|-\log \|x\|_{\beta}\right), & x_{(i)} \neq 0, \\ 0, & x_{(i)}=0 .\end{cases}
$$

If $x_{(i)} \neq 0$, then $\log \left|x_{(i)}\right|<\log \|x\|_{\beta}$. It thus follows that $f^{\prime}(\beta)<0$, which implies that f is decreasing on $[1, \infty)$. Hence, (9.1.9) holds.

The following result is Holder's inequality. For this result we interpret $1 / \infty=0$.

Proposition 9.1.6. Let $p, q \in[0, \infty]$ satisfy $1 / p+1 / q=1$, and let $x, y \in \mathbb{F}^{n}$. Then,

$$
\begin{equation*}
\left|x^{*} y\right| \leq\|x\|_{p}\|y\|_{q} . \tag{9.1.10}
\end{equation*}
$$

Furthermore, equality holds if and only if $\left|x^{*} y\right|=|x|^{\mathrm{T}}|y|$ and

$$
\begin{cases}|x| \circ|y|=\|y\|_{\infty}|x|, & p=1, \tag{9.1.11}\\ |x|^{\{p\}} \text { and }|y|^{\{q\}} \text { are linearly dependent, } & 1<p<\infty, \\ |x| \circ|y|=\|x\|_{\infty}|y|, & p=\infty .\end{cases}
$$

Proof. See [117, p. 127], [287, pp. 534-536], and Fact 1.4.16.
The case $p=q=2$ is the Cauchy-Schwarz inequality.
Corollary 9.1.7. Let $x, y \in \mathbb{F}^{n}$. Then,

$$
\begin{equation*}
\left|x^{*} y\right| \leq\|x\|_{2}\|y\|_{2} . \tag{9.1.12}
\end{equation*}
$$

Furthermore, equality holds if and only if x and y are linearly dependent.
Proof. Assume $y \neq 0$, and define $M \triangleq\left[\begin{array}{ll}\sqrt{y^{*} y} I & \left(y^{*} y\right)^{-1 / 2} y\end{array}\right]$. Since $M^{*} M=\left[\begin{array}{cc}y^{*} y I & y \\ y^{*} & 1\end{array}\right]$ is nonnegative semidefinite, it follows from $\left.i i i\right)$ of Proposition 8.2.3 that $y y^{*} \leq y^{*} y I$. Therefore, $x^{*} y y^{*} x \leq x^{*} x y^{*} y$, which is equivalent to (9.1.12).

Now, suppose that x and y are linearly dependent. Then, there exists $\beta \in \mathbb{F}$ such that either $x=\beta y$ or $y=\beta x$. In both cases it follows that $\left|x^{*} y\right|=\|x\|_{2}\|y\|_{2}$. Conversely, define $f: \mathbb{F}^{n} \times \mathbb{F}^{n} \rightarrow[0, \infty)$ by $f(\mu, \nu) \triangleq$ $\mu^{*} \mu \nu^{*} \nu-\left|\mu^{*} \nu\right|^{2}$. Now, suppose that $f(x, y)=0$ so that (x, y) minimizes f. Then, it follows that $f_{\mu}(x, y)=0$, which implies that $y^{*} y x=y^{*} x y$. Hence, x and y are linearly dependent.

The norms $\|\cdot\|$ and $\|\cdot\|^{\prime}$ on \mathbb{F}^{n} are equivalent if there exist $\alpha, \beta>0$
such that

$$
\begin{equation*}
\alpha\|x\| \leq\|x\|^{\prime} \leq \beta\|x\| \tag{9.1.13}
\end{equation*}
$$

for all $x \in \mathbb{F}^{n}$. Note that these inequalities can be written as

$$
\begin{equation*}
\frac{1}{\beta}\|x\|^{\prime} \leq\|x\| \leq \frac{1}{\alpha}\|x\|^{\prime} . \tag{9.1.14}
\end{equation*}
$$

Hence, the word "equivalent" is justified.
Theorem 9.1.8. Let $\|\cdot\|$ and $\|\cdot\|^{\prime}$ be norms on \mathbb{F}^{n}. Then, $\|\cdot\|$ and $\|\cdot\|^{\prime}$ are equivalent.

Proof. See [287, p. 272].

9.2 Matrix Norms

One way to define norms for matrices is by viewing a matrix $A \in \mathbb{F}^{n \times m}$ as a vector in $\mathbb{F}^{n m}$, for example, as vec A.

Definition 9.2.1. A norm $\|\cdot\|$ on $\mathbb{F}^{n \times m}$ is a function $\|\cdot\|: \mathbb{F}^{n \times m} \mapsto \mathbb{R}$ that satisfies the following conditions:
i) $\|A\| \geq 0$ for all $A \in \mathbb{F}^{n \times m}$.
ii) $\|A\|=0$ if and only if $A=0$.
iii) $\|\alpha A\|=|\alpha|\|A\|$ for all $\alpha \in \mathbb{F}$.
iv) $\|A+B\| \leq\|A\|+\|B\|$ for all $A, B \in \mathbb{F}^{n \times m}$.

If $\|\cdot\|$ is a norm on $\mathbb{F}^{n m}$, then $\|\cdot\|^{\prime}$ defined by $\|A\|^{\prime} \triangleq\|\operatorname{vec} A\|$ is a norm on $\mathbb{F}^{n \times m}$. For example, Holder norms can be defined for matrices by choosing $\|\cdot\|=\|\cdot\|_{p}$. Hence, for all $A \in \mathbb{F}^{n \times m}$ define

$$
\|A\|_{p} \triangleq \begin{cases}\left(\sum_{i=1}^{n} \sum_{j=1}^{m}\left|A_{(i, j)}\right|^{p}\right)^{1 / p}, & 1 \leq p<\infty \tag{9.2.1}\\ \max _{\substack{i \in\{1, \ldots, n\} \\ j \in\{1, \ldots, m\}}}\left|A_{(i, j)}\right|, & p=\infty\end{cases}
$$

Note that the same symbol $\|\cdot\|_{p}$ is used to denote the Holder norm for both vectors and matrices. This notation is consistent since, if $A \in \mathbb{F}^{n \times 1}$, then $\|A\|_{p}$ coincides with the vector Holder norm. Furthermore, if $A \in \mathbb{F}^{n \times m}$ and $1 \leq p \leq \infty$, then

$$
\begin{equation*}
\|A\|_{p}=\|\operatorname{vec} A\|_{p} \tag{9.2.2}
\end{equation*}
$$

It follows from (9.1.8) that, if $A \in \mathbb{F}^{n \times m}$ and $1 \leq p \leq q$, then

$$
\begin{equation*}
\|A\|_{\infty} \leq\|A\|_{q} \leq\|A\|_{p} \leq\|A\|_{1} . \tag{9.2.3}
\end{equation*}
$$

If, in addition, $1<p<q<\infty$ and A has at least two nonzero entries, then

$$
\begin{equation*}
\|A\|_{\infty}<\|A\|_{q}<\|A\|_{p}<\|A\|_{1} . \tag{9.2.4}
\end{equation*}
$$

The Holder norms in the cases $p=1,2, \infty$ are the most commonly used. Let $A \in \mathbb{F}^{n \times m}$. For $p=2$ we define the Frobenius norm $\|\cdot\|_{\mathrm{F}}$ by

$$
\begin{equation*}
\|A\|_{\mathrm{F}} \triangleq\|A\|_{2} . \tag{9.2.5}
\end{equation*}
$$

Since $\|A\|_{2}=\|$ vec $A \|_{2}$, it follows that

$$
\begin{equation*}
\|A\|_{\mathrm{F}}=\|A\|_{2}=\|\operatorname{vec} A\|_{2}=\|\operatorname{vec} A\|_{\mathrm{F}} . \tag{9.2.6}
\end{equation*}
$$

It is easy to see that

$$
\begin{equation*}
\|A\|_{\mathrm{F}}=\sqrt{\operatorname{tr} A^{*} A} . \tag{9.2.7}
\end{equation*}
$$

Let $\|\cdot\|$ be a norm on $\mathbb{F}^{n \times m}$. If $\left\|S_{1} A S_{2}\right\|=\|A\|$ for all $A \in \mathbb{F}^{n \times m}$ and for all unitary matrices $S_{1} \in \mathbb{F}^{n \times n}$ and $S_{2} \in \mathbb{F}^{m \times m}$, then $\|\cdot\|$ is unitarily invariant. Now, let $m=n$. If $\|A\|=\left\|A^{*}\right\|$ for all $A \in \mathbb{F}^{n \times n}$, then $\|\cdot\|$ is self adjoint. If $\left\|I_{n}\right\|=1$, then $\|\cdot\|$ is normalized. Note that the Frobenius norm is not normalized since $\left\|I_{n}\right\|_{\mathrm{F}}=\sqrt{n}$. If $\left\|S A S^{*}\right\|=\|A\|$ for all $A \in \mathbb{F}^{n \times n}$ and for all unitary $S \in \mathbb{F}^{n \times n}$, then $\|\cdot\|$ is weakly unitarily invariant.

An important class of norms can be defined in terms of singular values. Let $\sigma_{1}(A) \geq \sigma_{2}(A) \geq \cdots$ denote the singular values of $A \in \mathbb{F}^{n \times m}$. The following result gives a weak majorization condition for singular values.

Proposition 9.2.2. Let $A, B \in \mathbb{F}^{n \times m}$. Then, for all $k=1, \ldots$, $\min \{n, m\}$,

$$
\begin{equation*}
\sum_{i=1}^{k}\left[\sigma_{i}(A)-\sigma_{i}(B)\right] \leq \sum_{i=1}^{k} \sigma_{i}(A+B) \leq \sum_{i=1}^{k}\left[\sigma_{i}(A)+\sigma_{i}(B)\right] . \tag{9.2.8}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\sigma_{\max }(A+B) \leq \sigma_{\max }(A)+\sigma_{\max }(B) \tag{9.2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{tr}\langle A+B\rangle \leq \operatorname{tr}\langle A\rangle+\operatorname{tr}\langle B\rangle . \tag{9.2.10}
\end{equation*}
$$

Proof. Define $\mathcal{A}, \mathcal{B} \in \mathbf{H}^{n+m}$ by $\mathcal{A} \triangleq\left[\begin{array}{cc}0 & A \\ A^{*} & 0\end{array}\right]$ and $\mathcal{B} \triangleq\left[\begin{array}{cc}0 & B \\ B^{*} & 0\end{array}\right]$. Then, Corollary 8.5.15 implies that, for all $k=1, \ldots, n+m$,

$$
\sum_{i=1}^{k} \lambda_{i}(\mathcal{A}+\mathcal{B}) \leq \sum_{i=1}^{k}\left[\lambda_{i}(\mathcal{A})+\lambda_{i}(\mathcal{B})\right] .
$$

Now, consider $k \leq \min \{n, m\}$. Then, it follows from Proposition 5.6.5 that, for all $i=1, \ldots, k, \lambda_{i}(\mathcal{A})=\sigma_{i}(A)$. Setting $k=1$ yields (9.2.9), while setting $k=\min \{n, m\}$ and using Fact 8.14.1 yields (9.2.10).

Proposition 9.2.3. Let $p \in[1, \infty]$, and let $A \in \mathbb{F}^{n \times m}$. Then, $\|\cdot\|_{\sigma p}$ defined by

$$
\|A\|_{\sigma p} \triangleq \begin{cases}\left(\sum_{i=1}^{\min \{n, m\}} \sigma_{i}^{p}(A)\right)^{1 / p}, & 1 \leq p<\infty, \tag{9.2.11}\\ \sigma_{\max }(A), & p=\infty,\end{cases}
$$

is a norm on $\mathbb{F}^{n \times m}$.
Proof. Let $p \in[1, \infty]$. Then, it follows from Proposition 9.2.2 and Minkowski's inequality Fact 1.4.17 that

$$
\begin{aligned}
\|A+B\|_{\sigma p} & =\left(\sum_{i=1}^{\min \{n, m\}} \sigma_{i}^{p}(A+B)\right)^{1 / p} \\
& \leq\left(\sum_{i=1}^{\min \{n, m\}}\left[\sigma_{i}(A)+\sigma_{i}(B)\right]^{p}\right)^{1 / p} \\
& \leq\left(\sum_{i=1}^{\min \{n, m\}} \sigma_{i}^{p}(A)\right)^{1 / p}+\left(\sum_{i=1}^{\min \{n, m\}} \sigma_{i}^{p}(B)\right)^{1 / p} \\
& =\|A\|_{\sigma p}+\|B\|_{\sigma p} .
\end{aligned}
$$

The norm $\|\cdot\|_{\sigma p}$ is a Schatten norm. Let $A \in \mathbb{F}^{n \times m}$. Then, for all $p \in[1, \infty)$,

$$
\begin{equation*}
\|A\|_{\sigma p}=\left(\operatorname{tr}\langle A\rangle^{p}\right)^{1 / p} . \tag{9.2.12}
\end{equation*}
$$

Important special cases are

$$
\begin{gather*}
\|A\|_{\sigma 1}=\sigma_{1}(A)+\cdots+\sigma_{\min \{n, m\}}(A)=\operatorname{tr}\langle A\rangle, \tag{9.2.13}\\
\|A\|_{\sigma 2}=\left[\sigma_{1}^{2}(A)+\cdots+\sigma_{\min \{n, m\}}^{2}(A)\right]^{1 / 2}=\left(\operatorname{tr} A^{*} A\right)^{1 / 2}=\|A\|_{\mathrm{F}}, \tag{9.2.14}
\end{gather*}
$$

and

$$
\begin{equation*}
\|A\|_{\sigma \infty}=\sigma_{1}(A)=\sigma_{\max }(A), \tag{9.2.15}
\end{equation*}
$$

which are the trace norm, Frobenius norm, and spectral norm, respectively.
By applying Proposition 9.1.5 to the vector $\left[\sigma_{1}(A) \cdots \sigma_{\min \{n, m\}}(A)\right]^{\mathrm{T}}$, we obtain the following result.

Proposition 9.2.4. Let $p, q \in[1, \infty)$, where $p \leq q$, and let $A \in \mathbb{F}^{n \times m}$. Then,

$$
\begin{equation*}
\|A\|_{\sigma \infty} \leq\|A\|_{\sigma q} \leq\|A\|_{\sigma p} \leq\|A\|_{\sigma 1} \tag{9.2.16}
\end{equation*}
$$

Assume, in addition, that $1<p<q<\infty$ and rank $A \geq 2$. Then,

$$
\begin{equation*}
\|A\|_{\infty}<\|A\|_{q}<\|A\|_{p}<\|A\|_{1} \tag{9.2.17}
\end{equation*}
$$

The norms $\|\cdot\|_{\sigma p}$ are not very interesting when applied to vectors. Let $x \in \mathbb{F}^{n}=\mathbb{F}^{n \times 1}$. Then, $\sigma_{\max }(x)=\left(x^{*} x\right)^{1 / 2}=\|x\|_{2}$, and, since rank $x \leq 1$, it follows that, for all $p \in[1, \infty]$,

$$
\begin{equation*}
\|x\|_{\sigma p}=\|x\|_{2} \tag{9.2.18}
\end{equation*}
$$

Proposition 9.2.5. Let $A \in \mathbb{F}^{n \times m}$. If $p \in(0,2]$, then

$$
\begin{equation*}
\|A\|_{\sigma p} \leq\|A\|_{p} \tag{9.2.19}
\end{equation*}
$$

If $p \geq 2$, then

$$
\begin{equation*}
\|A\|_{p} \leq\|A\|_{\sigma p} \tag{9.2.20}
\end{equation*}
$$

Proof. See [625, p. 50].
Proposition 9.2.6. Let $\|\cdot\|$ be a norm on $\mathbb{F}^{n \times n}$, and let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\begin{equation*}
\operatorname{sprad}(A)=\lim _{k \rightarrow \infty}\left\|A^{k}\right\|^{1 / k} \tag{9.2.21}
\end{equation*}
$$

Proof. See [287, p. 322].

9.3 Compatible Norms

The norms $\|\cdot\|,\|\cdot\|^{\prime}$, and $\|\cdot\|^{\prime \prime}$ on $\mathbb{F}^{n \times l}, \mathbb{F}^{n \times m}$, and $\mathbb{F}^{m \times l}$, respectively, are compatible if, for all $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$,

$$
\begin{equation*}
\|A B\| \leq\|A\|^{\prime}\|B\|^{\prime \prime} \tag{9.3.1}
\end{equation*}
$$

For $l=1$, the norms $\|\cdot\|,\|\cdot\|^{\prime}$, and $\|\cdot\|^{\prime \prime}$ on $\mathbb{F}^{n}, \mathbb{F}^{n \times m}$, and \mathbb{F}^{m}, respectively, are compatible if, for all $A \in \mathbb{F}^{n \times m}$ and $x \in \mathbb{F}^{m}$,

$$
\begin{equation*}
\|A x\| \leq\|A\|^{\prime}\|x\|^{\prime \prime} \tag{9.3.2}
\end{equation*}
$$

Furthermore, the norm $\|\cdot\|$ on \mathbb{F}^{n} is compatible with the norm $\|\cdot\|^{\prime}$ on $\mathbb{F}^{n \times n}$ if, for all $A \in \mathbb{F}^{n \times n}$ and $x \in \mathbb{F}^{n}$,

$$
\begin{equation*}
\|A x\| \leq\|A\|^{\prime}\|x\| \tag{9.3.3}
\end{equation*}
$$

Note that $\left\|I_{n}\right\|^{\prime} \geq 1$. The norm $\|\cdot\|$ on $\mathbb{F}^{n \times n}$ is submultiplicative if, for all $A, B \in \mathbb{F}^{n \times n}$,

$$
\begin{equation*}
\|A B\| \leq\|A\|\|B\| . \tag{9.3.4}
\end{equation*}
$$

Hence, the norm $\|\cdot\|$ on $\mathbb{F}^{n \times n}$ is submultiplicative if and only if $\|\cdot\|,\|\cdot\|$, and $\|\cdot\|$ are compatible. In this case, $\left\|I_{n}\right\| \geq 1$.

Proposition 9.3.1. Let $\|\cdot\|$ be a submultiplicative norm on $\mathbb{F}^{n \times n}$, and let $y \in \mathbb{F}^{n}$. Then, $\|x\|^{\prime} \triangleq\left\|x y^{*}\right\|$ is a norm on \mathbb{F}^{n}, and $\|\cdot\|^{\prime}$ is compatible with $\|\cdot\|$.

Proposition 9.3.2. Let $\|\cdot\|$ be a submultiplicative norm on $\mathbb{F}^{n \times n}$, and let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\begin{equation*}
\operatorname{sprad}(A) \leq\|A\| . \tag{9.3.5}
\end{equation*}
$$

Proof. Use Proposition 9.3 .1 to construct a norm $\|\cdot\|^{\prime}$ on \mathbb{F}^{n} that is compatible with $\|\cdot\|$. Furthermore, let $A \in \mathbb{F}^{n \times n}$, let $\lambda \in \operatorname{spec}(A)$, and let $x \in \mathbb{C}^{n}$ be an eigenvector of A associated with λ. Then, $A x=\lambda x$ implies that $|\lambda|\|x\|^{\prime}=\|A x\|^{\prime} \leq\|A\|\|x\|^{\prime}$, and thus $|\lambda| \leq\|A\|$, which implies (9.3.5).

Proposition 9.3.3. Let $A \in \mathbb{F}^{n \times n}$, and let $\varepsilon>0$. Then, there exists a submultiplicative norm $\|\cdot\|$ on $\mathbb{F}^{n \times n}$ such that

$$
\begin{equation*}
\operatorname{sprad}(A) \leq\|A\| \leq \operatorname{sprad}(A)+\varepsilon \tag{9.3.6}
\end{equation*}
$$

Proof. See [287, p. 297].
Corollary 9.3.4. Let $A \in \mathbb{F}^{n \times n}$, and assume that $\operatorname{sprad}(A)<1$. Then, there exists a submultiplicative norm $\|\cdot\|$ on $\mathbb{F}^{n \times n}$ such that $\|A\|<1$.

We now identify some compatible norms. We begin with the Holder norms.

Proposition 9.3.5. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$. If $p \in[1,2]$, then

$$
\begin{equation*}
\|A B\|_{p} \leq\|A\|_{p}\|B\|_{p} . \tag{9.3.7}
\end{equation*}
$$

If $p \in[2, \infty]$ and q satisfies $1 / p+1 / q=1$, then

$$
\begin{equation*}
\|A B\|_{p} \leq\|A\|_{p}\|B\|_{q} \tag{9.3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\|A B\|_{p} \leq\|A\|_{q}\|B\|_{p} . \tag{9.3.9}
\end{equation*}
$$

Proof. First let $1 \leq p \leq 2$ so that $q \triangleq p /(p-1) \geq 2$. Using Holder's
inequality (9.1.10) and (9.1.8) with $p \leq q$ yields

$$
\begin{aligned}
\|A B\|_{p} & =\left(\sum_{i, j=1}^{n, l}\left|\operatorname{row}_{i}(A) \operatorname{col}_{j}(B)\right|^{p}\right)^{1 / p} \\
& \leq\left(\sum_{i, j=1}^{n, l}\left\|\operatorname{row}_{i}(A)\right\|_{p}^{p}\left\|\operatorname{col}_{j}(B)\right\|_{q}^{p}\right)^{1 / p} \\
& =\left(\sum_{i=1}^{n}\left\|\operatorname{row}_{i}(A)\right\|_{p}^{p}\right)^{1 / p}\left(\sum_{j=1}^{l}\left\|\operatorname{col}_{j}(B)\right\|_{q}^{p}\right)^{1 / p} \\
& \leq\left(\sum_{i=1}^{n}\left\|\operatorname{row}_{i}(A)\right\|_{p}^{p}\right)^{1 / p}\left(\sum_{j=1}^{l}\left\|\operatorname{col}_{j}(B)\right\|_{p}^{p}\right)^{1 / p} \\
& =\|A\|_{p}\|B\|_{p} .
\end{aligned}
$$

Next, let $2 \leq p \leq \infty$ so that $q \triangleq p /(p-1) \leq 2$. Using Holder's inequality (9.1.10) and (9.1.8) with $q \leq p$ yields

$$
\begin{aligned}
\|A B\|_{p} & \leq\left(\sum_{i=1}^{n}\left\|\operatorname{row}_{i}(A)\right\|_{p}^{p}\right)^{1 / p}\left(\sum_{j=1}^{l}\left\|\operatorname{col}_{j}(B)\right\|_{q}^{p}\right)^{1 / p} \\
& \leq\left(\sum_{i=1}^{n}\left\|\operatorname{row}_{i}(A)\right\|_{p}^{p}\right)^{1 / p}\left(\sum_{j=1}^{l}\left\|\operatorname{col}_{j}(B)\right\|_{q}^{q}\right)^{1 / q} \\
& =\|A\|_{p}\|B\|_{q}
\end{aligned}
$$

Similarly, it can be shown that (9.3.9) holds.
Proposition 9.3.6. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{m \times l}$, and $p, q \in[1, \infty]$, and let $r \triangleq 1 /(1 / p+1 / q) \geq 1$. Then,

$$
\begin{equation*}
\|A B\|_{\sigma r} \leq\|A\|_{\sigma p}\|B\|_{\sigma q} . \tag{9.3.10}
\end{equation*}
$$

Proof. Using Proposition 9.6.3 and Holder's inequality with $1 /(p / r)+$
$1 /(q / r)=1$, it follows that

$$
\begin{aligned}
\|A B\|_{\sigma r} & =\left(\sum_{i=1}^{\min \{n, m, l\}} \sigma_{i}^{r}(A B)\right)^{1 / r} \\
& \leq\left(\sum_{i=1}^{\min \{n, m, l\}} \sigma_{i}^{r}(A) \sigma_{i}^{r}(B)\right)^{1 / r} \\
& \leq\left[\left(\sum_{i=1}^{\min \{n, m, l\}} \sigma_{i}^{p}(A)\right)^{r / p}\left(\sum_{i=1}^{\min \{n, m, l\}} \sigma_{i}^{q}(B)\right)^{r / q}\right]^{1 / r} \\
& =\|A\|_{\sigma p}\|B\|_{\sigma q} .
\end{aligned}
$$

Let $A, B \in \mathbb{F}^{n \times m}$. Using (9.2.16) and (9.3.10) it follows that

$$
\|A B\|_{\sigma \infty} \leq\|A B\|_{\sigma 2} \leq\left\{\begin{array}{c}
\|A\|_{\sigma \infty}\|B\|_{\sigma 2} \tag{9.3.11}\\
\|A\|_{\sigma 2}\|B\|_{\sigma \infty} \\
\|A B\|_{\sigma 1}
\end{array}\right\} \leq\|A\|_{\sigma 2}\|B\|_{\sigma 2}
$$

or, equivalently,

$$
\sigma_{\max }(A B) \leq\|A B\|_{\mathrm{F}} \leq\left\{\begin{array}{c}
\sigma_{\max }(A)\|B\|_{\mathrm{F}} \tag{9.3.12}\\
\|A\|_{\mathrm{F}} \sigma_{\max }(B) \\
\operatorname{tr}\langle A B\rangle
\end{array}\right\} \leq\|A\|_{\mathrm{F}}\|B\|_{\mathrm{F}}
$$

Also, for all $r \in[1, \infty]$,

$$
\|A B\|_{\sigma r} \leq\left\{\begin{array}{l}
\|A\|_{\sigma r} \sigma_{\max }(B) \tag{9.3.13}\\
\sigma_{\max }(A)\|B\|_{\sigma r}
\end{array}\right.
$$

In particular, setting $r=\infty$ yields

$$
\begin{equation*}
\sigma_{\max }(A B) \leq \sigma_{\max }(A) \sigma_{\max }(B) \tag{9.3.14}
\end{equation*}
$$

Note that the inequality $\|A B\|_{\mathrm{F}} \leq\|A\|_{\mathrm{F}}\|B\|_{\mathrm{F}}$ in (9.3.12) is equivalent to (9.3.7) with $p=2$ as well as (9.3.8) and (9.3.9) with $p=q=2$. Finally, it follows from the Cauchy-Schwarz inequality Corollary 9.1.7 that

$$
\begin{equation*}
\left|\operatorname{tr} A^{*} B\right| \leq\|A\|_{\mathrm{F}}\|B\|_{\mathrm{F}} . \tag{9.3.15}
\end{equation*}
$$

9.4 Induced Norms

In this section we consider the case in which there exists nonzero $x \in$ \mathbb{F}^{m} such that (9.3.3) holds as an equality. This condition characterizes a special class of norms on $\mathbb{F}^{n \times n}$, namely, the induced norms.

Definition 9.4.1. Let $\|\cdot\|^{\prime \prime}$ and $\|\cdot\|$ be norms on \mathbb{F}^{m} and \mathbb{F}^{n}, respectively. Then, $\|\cdot\|^{\prime}: \mathbb{F}^{n \times m} \mapsto \mathbb{F}$ defined by

$$
\begin{equation*}
\|A\|^{\prime}=\max _{x \in \mathbb{F}^{m} \backslash\{0\}} \frac{\|A x\|}{\|x\|^{\prime \prime}} \tag{9.4.1}
\end{equation*}
$$

is an induced norm on $\mathbb{F}^{n \times m}$. In this case, $\|\cdot\|^{\prime}$ is induced by $\|\cdot\|^{\prime \prime}$ and $\|\cdot\|$. If $m=n$ and $\|\cdot\|^{\prime \prime}=\|\cdot\|$, then $\|\cdot\|^{\prime}$ is induced by $\|\cdot\|$, and $\|\cdot\|^{\prime}$ is an equi-induced norm.

The next result confirms that $\|\cdot\|^{\prime}$ defined by (9.4.1) is indeed a norm.
Theorem 9.4.2. Every induced norm is a norm. Furthermore, every equi-induced norm is normalized.

Proof. See [287, p. 293].
Let $A \in \mathbb{F}^{n \times m}$. It can be seen that (9.4.1) is equivalent to

$$
\begin{equation*}
\|A\|^{\prime}=\max _{x \in\left\{y \in \mathbb{F}^{m}: 0<\|y\|^{\prime \prime} \leq 1\right\}} \frac{\|A x\|}{\|x\|^{\prime \prime}} \tag{9.4.2}
\end{equation*}
$$

as well as

$$
\begin{equation*}
\|A\|^{\prime}=\max _{x \in\left\{y \in \mathbb{F}^{m}:\|y\|^{\prime \prime}=1\right\}}\|A x\| \tag{9.4.3}
\end{equation*}
$$

Theorem 10.3.7 implies that the maximum in (9.4.3) exists. Since, for all $x \neq 0$,

$$
\begin{equation*}
\|A\|^{\prime}=\max _{x \in \mathbb{F}^{m} \backslash\{0\}} \frac{\|A x\|}{\|x\|^{\prime \prime}} \geq \frac{\|A x\|}{\|x\|^{\prime \prime}} \tag{9.4.4}
\end{equation*}
$$

it follows that, for all $x \in \mathbb{F}^{m}$,

$$
\begin{equation*}
\|A x\| \leq\|A\|^{\prime}\|x\|^{\prime \prime} \tag{9.4.5}
\end{equation*}
$$

so that $\|\cdot\|,\|\cdot\|^{\prime}$, and $\|\cdot\|^{\prime \prime}$ are compatible. If $m=n$ and $\|\cdot\|^{\prime \prime}=\|\cdot\|$, then the norm $\|\cdot\|$ is compatible with the induced norm $\|\cdot\|^{\prime}$. The next result shows that compatible norms can be obtained from induced norms.

Proposition 9.4.3. Let $\|\cdot\|,\|\cdot\|^{\prime}$, and $\|\cdot\|^{\prime \prime}$ be norms on $\mathbb{F}^{l}, \mathbb{F}^{m}$, and \mathbb{F}^{n}, respectively. Furthermore, let $\|\cdot\|^{\prime \prime \prime}$ be the norm on $\mathbb{F}^{m \times l}$ induced by $\|\cdot\|$ and $\|\cdot\|^{\prime}$, let $\|\cdot\|^{\prime \prime \prime \prime}$ be the norm on $\mathbb{F}^{n \times m}$ induced by $\|\cdot\|^{\prime}$ and $\|\cdot\|^{\prime \prime}$, and let $\|\cdot\|^{\prime \prime \prime \prime \prime}$ be the norm on $\mathbb{F}^{n \times l}$ induced by $\|\cdot\|$ and $\|\cdot\|^{\prime \prime}$. If $A \in \mathbb{F}^{n \times m}$
and $B \in \mathbb{F}^{m \times l}$, then

$$
\begin{equation*}
\|A B\|^{\prime \prime \prime \prime \prime} \leq\|A\|^{\prime \prime \prime \prime}\|B\|^{\prime \prime \prime} . \tag{9.4.6}
\end{equation*}
$$

Proof. Note that, for all $x \in \mathbb{F}^{l},\|B x\|^{\prime} \leq\|B\|^{\prime \prime \prime}\|x\|$, and, for all $y \in$ $\mathbb{F}^{m},\|A y\|^{\prime \prime} \leq\|A\|^{\prime \prime \prime \prime}\|y\|^{\prime}$. Hence, for all $x \in \mathbb{F}^{l},\|A B x\|^{\prime \prime} \leq\|A\|^{\prime \prime \prime \prime}\|B x\|^{\prime} \leq$ $\|A\|^{\prime \prime \prime \prime}\|B\|^{\prime \prime \prime}\|x\|$, which implies that

$$
\|A B\|^{\prime \prime \prime \prime \prime}=\max _{x \in \mathbb{F}^{\gtrless} \backslash\{0\}} \frac{\|A B x\|^{\prime \prime}}{\|x\|} \leq\|A\|^{\prime \prime \prime \prime \prime}\|B\|^{\prime \prime \prime} .
$$

Corollary 9.4.4. Every equi-induced norm is submultiplicative.
The following result is a consequence of Corollary 9.4.4 and Proposition 9.3.2.

Corollary 9.4.5. Let $\|\cdot\|$ be an equi-induced norm on $\mathbb{F}^{n \times n}$, and let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\begin{equation*}
\operatorname{sprad}(A) \leq\|A\| . \tag{9.4.7}
\end{equation*}
$$

By assigning $\|\cdot\|_{p}$ to \mathbb{F}^{m} and $\|\cdot\|_{q}$ to \mathbb{F}^{n}, the Holder-induced norm on $\mathbb{F}^{n \times m}$ is defined by

$$
\begin{equation*}
\|A\|_{q, p} \triangleq \max _{x \in \mathbb{F}^{m} \backslash\{0\}} \frac{\|A x\|_{q}}{\|x\|_{p}} . \tag{9.4.8}
\end{equation*}
$$

Proposition 9.4.6. Let $p, q, p^{\prime}, q^{\prime} \in[1, \infty]$, where $p \leq p^{\prime}$ and $q \leq q^{\prime}$, and let $A \in \mathbb{F}^{n \times m}$. Then,

$$
\begin{equation*}
\|A\|_{q^{\prime} p} \leq\|A\|_{q, p} \leq\|A\|_{q, p^{\prime}} . \tag{9.4.9}
\end{equation*}
$$

Proof. The result follows from Proposition 9.1.5.
The following result gives explicit expressions for several Holderinduced norms.

Proposition 9.4.7. Let $A \in \mathbb{F}^{n \times m}$. Then,

$$
\begin{equation*}
\|A\|_{2,2}=\sigma_{\max }(A) . \tag{9.4.10}
\end{equation*}
$$

Now, let $p \in[1, \infty]$. Then,

$$
\begin{equation*}
\|A\|_{p, 1}=\max _{i \in\{1, \ldots, m\}}\left\|\operatorname{col}_{i}(A)\right\|_{p} \tag{9.4.11}
\end{equation*}
$$

Finally, let $q \in[1, \infty]$ satisfy $1 / p+1 / q=1$. Then,

$$
\begin{equation*}
\|A\|_{\infty, p}=\max _{i \in\{1, \ldots, n\}}\left\|\operatorname{row}_{i}(A)\right\|_{q} . \tag{9.4.12}
\end{equation*}
$$

Proof. Since $A^{*} A$ is Hermitian, it follows from Corollary 8.4.2 that,
for all $x \in \mathbb{F}^{m}$,

$$
x^{*} A^{*} A x \leq \lambda_{\max }\left(A^{*} A\right) x^{*} x
$$

which implies that, for all $x \in \mathbb{F}^{m},\|A x\|_{2} \leq \sigma_{\max }(A)\|x\|_{2}$, and thus $\|A\|_{2,2} \leq$ $\sigma_{\max }(A)$. Now, let $x \in \mathbb{F}^{n \times n}$ be an eigenvector associated with $\lambda_{\max }\left(A^{*} A\right)$ so that $\|A x\|_{2}=\sigma_{\max }(A)\|x\|_{2}$, which implies that $\sigma_{\max }(A) \leq\|A\|_{2,2}$. Hence, (9.4.10) holds.

Next, note that, for all $x \in \mathbb{F}^{m}$,
$\|A x\|_{p}=\left\|\sum_{i=1}^{m} x_{(i)} \operatorname{col}_{i}(A)\right\|_{p} \leq \sum_{i=1}^{m}\left|x_{(i)}\right|\left\|\operatorname{col}_{i}(A)\right\|_{p} \leq \max _{i \in\{1, \ldots, m\}}\left\|\operatorname{col}_{i}(A)\right\|_{p}\|x\|_{1}$, and hence $\|A\|_{p, 1} \leq \max _{i \in\{1, \ldots, m\}}\left\|\operatorname{col}_{i}(A)\right\|_{p}$. Next, let $j \in\{1, \ldots, m\}$ be such that $\left\|\operatorname{col}_{j}(A)\right\|_{p}=\max _{i \in\{1, \ldots, m\}}\left\|\operatorname{col}_{i}(A)\right\|_{p}$. Now, since $\left\|e_{j}\right\|_{1}=1$, it follows that $\left\|A e_{j}\right\|_{p}=\left\|\operatorname{col}_{j}(A)\right\|_{p}\left\|e_{j}\right\|_{1}$, which implies that

$$
\max _{i \in\{1, \ldots, n\}}\left\|\operatorname{col}_{i}(A)\right\|_{p}=\left\|\operatorname{col}_{j}(A)\right\|_{p} \leq\|A\|_{p, 1}
$$

and hence (9.4.11) holds.
Next, for all $x \in \mathbb{F}^{m}$, it follows from Holder's inequality (9.1.10) that

$$
\|A x\|_{\infty}=\max _{i \in\{1, \ldots, n\}}\left|\operatorname{row}_{i}(A) x\right| \leq \max _{i \in\{1, \ldots, n\}}\left\|\operatorname{row}_{i}(A)\right\|_{q}\|x\|_{p}
$$

which implies that $\|A\|_{\infty, p} \leq \max _{i \in\{1, \ldots, n\}}\left\|\operatorname{row}_{i}(A)\right\|_{q}$. Next, let $j \in\{1, \ldots, n\}$ be such that $\left\|\operatorname{row}_{j}(A)\right\|_{q}=\max _{i \in\{1, \ldots, n\}}\left\|\operatorname{row}_{i}(A)\right\|_{q}$, and let nonzero $x \in \mathbb{F}^{m}$ be such that $\left|\operatorname{row}_{j}(A) x\right|=\left\|\operatorname{row}_{j}(A)\right\|_{q}\|x\|_{p}$. Hence,

$$
\|A x\|_{\infty}=\max _{i \in\{1, \ldots, n\}}\left|\operatorname{row}_{i}(A) x\right| \geq\left|\operatorname{row}_{j}(A) x\right|=\left\|\operatorname{row}_{j}(A)\right\|_{q}\|x\|_{p}
$$

which implies that

$$
\max _{i \in\{1, \ldots, n\}}\left\|\operatorname{row}_{i}(A)\right\|_{q}=\left\|\operatorname{row}_{j}(A)\right\|_{q} \leq\|A\|_{\infty, p}
$$

and thus (9.4.12) holds.
Note that

$$
\begin{equation*}
\max _{i \in\{1, \ldots, m\}}\left\|\operatorname{col}_{i}(A)\right\|_{2}=\mathrm{d}_{\max }^{1 / 2}\left(A^{*} A\right) \tag{9.4.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\max _{i \in\{1, \ldots, n\}}\left\|\operatorname{row}_{i}(A)\right\|_{2}=\mathrm{d}_{\max }^{1 / 2}\left(A A^{*}\right) \tag{9.4.14}
\end{equation*}
$$

Therefore, it follows from Proposition 9.4.7 that

$$
\begin{gather*}
\|A\|_{1,1}=\max _{i \in\{1, \ldots, m\}}\left\|\operatorname{col}_{i}(A)\right\|_{1} \tag{9.4.15}\\
\|A\|_{2,1}=\mathrm{d}_{\max }^{1 / 2}\left(A^{*} A\right) \tag{9.4.16}\\
\|A\|_{\infty, 1}=\|A\|_{\infty}=\max _{\substack{i \in\{1, \ldots, n\} \\
j \in\{1, \ldots, m\}}}\left|A_{(i, j)}\right| \tag{9.4.17}\\
\|A\|_{\infty, 2}=\mathrm{d}_{\max }^{1 / 2}\left(A A^{*}\right) \tag{9.4.18}\\
\|A\|_{\infty, \infty}=\max _{i \in\{1, \ldots, n\}}\left\|\operatorname{row}_{i}(A)\right\|_{1} \tag{9.4.19}
\end{gather*}
$$

For convenience, we define the column norm

$$
\begin{equation*}
\|A\|_{\mathrm{col}} \triangleq\|A\|_{1,1} \tag{9.4.20}
\end{equation*}
$$

and the row norm

$$
\begin{equation*}
\|A\|_{\text {row }} \triangleq\|A\|_{\infty, \infty} \tag{9.4.21}
\end{equation*}
$$

Proposition 9.4.8. Let $p, q \in[1, \infty]$ be such that $1 / p+1 / q=1$, and let $A \in \mathbb{F}^{n \times m}$. Then,

$$
\begin{equation*}
\|A\|_{q, p} \leq\|A\|_{q} . \tag{9.4.22}
\end{equation*}
$$

Proof. For $p=1$ and $q=\infty$, (9.4.22) follows from (9.4.17). For $q<\infty$ and $x \in \mathbb{F}^{n}$, it follows from Holder's inequality (9.1.10) that

$$
\begin{aligned}
\|A x\|_{q} & =\left(\sum_{i=i}^{n}\left|\operatorname{row}_{i}(A) x\right|^{q}\right)^{1 / q} \leq\left(\sum_{i=1}^{n}\left\|\operatorname{row}_{i}(A)\right\|_{q}^{q}\|x\|_{p}^{q}\right)^{1 / q} \\
& =\left(\sum_{i=1}^{n} \sum_{j=1}^{m}\left|A_{(i, j)}\right|^{q}\right)^{1 / q}\|x\|_{p}=\|A\|_{q}\|x\|_{p}
\end{aligned}
$$

which implies (9.4.22).
Next, we specialize Proposition 9.4 .3 to the Holder-induced norms.
Corollary 9.4.9. Let $1 \leq p, q, r \leq \infty$, and let $A \in \mathbb{F}^{n \times m}$ and $A \in \mathbb{F}^{m \times l}$. Then,

$$
\begin{equation*}
\|A B\|_{r, p} \leq\|A\|_{r, q}\|B\|_{q, p} \tag{9.4.23}
\end{equation*}
$$

In particular,

$$
\begin{gather*}
\|A B\|_{\mathrm{col}} \leq\|A\|_{\mathrm{col}}\|B\|_{\mathrm{col}}, \tag{9.4.24}\\
\sigma_{\max }(A B) \leq \sigma_{\max }(A) \sigma_{\max }(B), \tag{9.4.25}\\
\|A B\|_{\mathrm{row}} \leq\|A\|_{\text {row }}\|B\|_{\mathrm{row}}, \tag{9.4.26}\\
\|A B\|_{\infty} \leq\|A\|_{\infty}\|B\|_{\mathrm{col}}, \tag{9.4.27}\\
\|A B\|_{\infty} \leq\|A\|_{\mathrm{row}}\|B\|_{\infty}, \tag{9.4.28}\\
\mathrm{d}_{\max }^{1 / 2}\left(B^{*} A^{*} A B\right) \leq \mathrm{d}_{\max }^{1 / 2}\left(A^{*} A\right)\|B\|_{\mathrm{col}}, \tag{9.4.29}\\
\mathrm{~d}_{\max }^{1 / 2}\left(B^{*} A^{*} A B\right) \leq \sigma_{\max }(A) \mathrm{d}_{\max }^{1 / 2}\left(B^{*} B\right), \tag{9.4.30}\\
\mathrm{d}_{\max }^{1 / 2}\left(A B B^{*} A^{*}\right) \leq \mathrm{d}_{\max }^{1 / 2}\left(A A^{*}\right) \sigma_{\max }(B), \tag{9.4.31}\\
\mathrm{d}_{\max }^{1 / 2}\left(A B B^{*} A^{*}\right) \leq\|B\|_{\mathrm{row}} \mathrm{~d}_{\max }^{1 / 2}\left(B B^{*}\right) . \tag{9.4.32}
\end{gather*}
$$

The following result is often useful.
Proposition 9.4.10. Let $A \in \mathbb{F}^{n \times n}$, and assume that $\operatorname{sprad}(A)<1$. Then, there exists a submultiplicative norm $\|\cdot\|$ on $\mathbb{F}^{n \times n}$ such that $\|A\|<1$. Furthermore, the series $\sum_{k=0}^{\infty} A^{k}$ converges absolutely, and

$$
\begin{equation*}
(I-A)^{-1}=\sum_{k=0}^{\infty} A^{k} \tag{9.4.33}
\end{equation*}
$$

Finally,

$$
\begin{equation*}
\frac{1}{1+\|A\|} \leq\left\|(I-A)^{-1}\right\| \leq \frac{1}{1-\|A\|}+\|I\|-1 \tag{9.4.34}
\end{equation*}
$$

If, in addition, $\|\cdot\|$ is normalized, then

$$
\begin{equation*}
\frac{1}{1+\|A\|} \leq\left\|(I-A)^{-1}\right\| \leq \frac{1}{1-\|A\|} \tag{9.4.35}
\end{equation*}
$$

Proof. Corollary 9.3.4 implies that there exists a submultiplicative norm $\|\cdot\|$ on $\mathbb{F}^{n \times n}$ such that $\|A\|<1$. It thus follows that

$$
\left\|\sum_{k=0}^{\infty} A^{k}\right\| \leq \sum_{k=0}^{\infty}\left\|A^{k}\right\| \leq\|I\|-1+\sum_{k=0}^{\infty}\|A\|^{k}=\frac{1}{1-\|A\|}+\|I\|-1,
$$

which proves that the series $\sum_{k=0}^{\infty} A^{k}$ converges absolutely.
Next, we show that $I-A$ is nonsingular. If $I-A$ is singular, then there exists a nonzero vector $x \in \mathbb{C}^{n}$ such that $A x=x$. Hence, $1 \in \operatorname{spec}(A)$,
which contradicts $\operatorname{sprad}(A)<1$. Next, to verify (9.4.33), note that

$$
(I-A) \sum_{k=0}^{\infty} A^{k}=\sum_{k=0}^{\infty} A^{k}-\sum_{k=1}^{\infty} A^{k}=I+\sum_{k=1}^{\infty} A^{k}-\sum_{k=1}^{\infty} A^{k}=I
$$

which implies (9.4.33) and thus the right-hand inequality in (9.4.34). Furthermore,

$$
\begin{aligned}
1 & \leq\|I\| \\
& =\left\|(I-A)(I-A)^{-1}\right\| \\
& \leq\|I-A\|\left\|(I-A)^{-1}\right\| \\
& \leq(1+\|A\|)\left\|(I-A)^{-1}\right\|
\end{aligned}
$$

which yields the left-hand inequality in (9.4.34).

9.5 Induced Lower Bound

We now consider a variation of the induced norm.
Definition 9.5.1. Let $\|\cdot\|$ and $\|\cdot\|^{\prime}$ denote norms on \mathbb{F}^{m} and \mathbb{F}^{n}, respectively. Then, for $A \in \mathbb{F}^{n \times m}, \ell: \mathbb{F}^{n \times m} \mapsto \mathbb{R}$ defined by

$$
\ell(A) \triangleq \begin{cases}\min _{y \in \mathcal{R}(A) \backslash\{0\}} \max _{x \in\left\{z \in \mathbb{F}^{m}: A z=y\right\}} \frac{\|y\|^{\prime}}{\|x\|}, & A \neq 0 \tag{9.5.1}\\ 0, & A=0\end{cases}
$$

is the lower bound induced by $\|\cdot\|$ and $\|\cdot\|^{\prime}$. Equivalently,

$$
\ell(A) \triangleq \begin{cases}\min _{y \in \mathcal{R}(A) \backslash\{0\}} \max _{z \in \mathcal{N}(A)} \frac{\|A x\|^{\prime}}{\|x+z\|}, & A \neq 0, \tag{9.5.2}\\ 0, & A=0 .\end{cases}
$$

Proposition 9.5.2. Let $\|\cdot\|$ and $\|\cdot\|^{\prime}$ be norms on \mathbb{F}^{m} and \mathbb{F}^{n}, respectively, let $\|\cdot\|^{\prime \prime}$ be the norm induced by $\|\cdot\|$ and $\|\cdot\|^{\prime}$, let $\|\cdot\|^{\prime \prime \prime}$ be the norm induced by $\|\cdot\|^{\prime}$ and $\|\cdot\|$, and let ℓ be the lower bound induced by $\|\cdot\|$ and $\|\cdot\|^{\prime}$. Then, the following statements hold:
i) $\ell(A)$ exists for all $A \in \mathbb{F}^{n \times m}$, that is, the minimum in (9.5.1) is attained.
ii) If $A \in \mathbb{F}^{n \times m}$, then $\ell(A)=0$ if and only if $A=0$.
iii) For all $A \in \mathbb{F}^{n \times m}$ there exists $x \in \mathbb{F}^{m}$ such that

$$
\begin{equation*}
\ell(A)\|x\|=\|A x\|^{\prime} \tag{9.5.3}
\end{equation*}
$$

iv) For all $A \in \mathbb{F}^{n \times m}$,

$$
\begin{equation*}
\ell(A) \leq\|A\|^{\prime \prime} \tag{9.5.4}
\end{equation*}
$$

v) If $A \neq 0$ and B is a (1)-inverse of A, then

$$
\begin{equation*}
1 /\|B\|^{\prime \prime \prime} \leq \ell(A) \leq\|B\|^{\prime \prime \prime} . \tag{9.5.5}
\end{equation*}
$$

vi) If $A, B \in \mathbb{F}^{n \times m}$ and either $\mathcal{R}(A) \subseteq \mathcal{R}(A+B)$ or $\mathcal{N}(A) \subseteq \mathcal{N}(A+B)$, then

$$
\begin{equation*}
\ell(A)-\|B\|^{\prime \prime \prime} \leq \ell(A+B) . \tag{9.5.6}
\end{equation*}
$$

vii) If $A, B \in \mathbb{F}^{n \times m}$ and either $\mathcal{R}(A+B) \subseteq \mathcal{R}(A)$ or $\mathcal{N}(A+B) \subseteq \mathcal{N}(A)$, then

$$
\begin{equation*}
\ell(A+B) \leq \ell(A)+\|B\|^{\prime \prime \prime} . \tag{9.5.7}
\end{equation*}
$$

viii) If $n=m$ and $A \in \mathbb{F}^{n \times n}$ is nonsingular, then

$$
\begin{equation*}
\ell(A)=1 /\left\|A^{-1}\right\|^{\prime \prime \prime} \tag{9.5.8}
\end{equation*}
$$

Proof. See [243].
Proposition 9.5.3. Let $\|\cdot\|,\|\cdot\|^{\prime}$, and $\|\cdot\|^{\prime \prime}$ be norms on $\mathbb{F}^{l}, \mathbb{F}^{m}$, and \mathbb{F}^{n}, respectively, let $\|\cdot\|^{\prime \prime \prime}$ denote the norm on $\mathbb{F}^{m \times l}$ induced by $\|\cdot\|$ and $\|\cdot\|^{\prime}$, let $\|\cdot\|^{\prime \prime \prime \prime}$ denote the norm on $\mathbb{F}^{n \times m}$ induced by $\|\cdot\|^{\prime}$ and $\|\cdot\|^{\prime \prime}$, and let $\|\cdot\|^{\prime \prime \prime \prime \prime \prime}$ denote the norm on $\mathbb{F}^{n \times l}$ induced by $\|\cdot\|$ and $\|\cdot\|^{\prime \prime}$. If $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$, then

$$
\begin{equation*}
\ell(A) \ell^{\prime}(B) \leq \ell^{\prime \prime}(A B) . \tag{9.5.9}
\end{equation*}
$$

In addition, the following statements hold:
i) If either $\operatorname{rank} B=\operatorname{rank} A B$ or $\operatorname{def} B=\operatorname{def} A B$, then

$$
\begin{equation*}
\ell^{\prime \prime}(A B) \leq\|A\|^{\prime \prime} \ell(B) . \tag{9.5.10}
\end{equation*}
$$

ii) If $\operatorname{rank} A=\operatorname{rank} A B$, then

$$
\begin{equation*}
\ell^{\prime \prime}(A B) \leq \ell(A)\|B\|^{\prime \prime \prime \prime} \tag{9.5.11}
\end{equation*}
$$

iii) If $\operatorname{rank} B=m$, then

$$
\begin{equation*}
\|A\|^{\prime \prime} \ell(B) \leq\|A B\|^{\prime \prime \prime \prime \prime} \tag{9.5.12}
\end{equation*}
$$

$i v)$ If $\operatorname{rank} A=m$, then

$$
\begin{equation*}
\ell(A)\|B\|^{\prime \prime \prime \prime} \leq\|A B\|^{\prime \prime \prime \prime \prime} . \tag{9.5.13}
\end{equation*}
$$

Proof. See [243].
By assigning $\|\cdot\|_{p}$ to \mathbb{F}^{m} and $\|\cdot\|_{q}$ to \mathbb{F}^{n}, the Holder-induced lower bound on $\mathbb{F}^{n \times m}$ is defined by

$$
\ell_{q, p}(A) \triangleq \begin{cases}\min _{y \in \mathcal{R}(A) \backslash\{0\}} \max _{x \in\left\{z \in \mathbb{F}^{m}: A z=y\right\}} \frac{\|y\|_{q}^{\prime}}{\|x\|_{p}}, & A \neq 0, \tag{9.5.14}\\ 0, & A=0 .\end{cases}
$$

The following result shows that $\ell_{2,2}(A)$ is the smallest positive singular value of A.

Proposition 9.5.4. Let $A \in \mathbb{F}^{n \times m}$, assume that A is nonzero, and let $r \triangleq \operatorname{rank} A$. Then,

$$
\begin{equation*}
\ell_{2,2}(A)=\sigma_{r}(A) . \tag{9.5.15}
\end{equation*}
$$

Proof. The result follows from the singular value decomposition.
Corollary 9.5.5. Let $A \in \mathbb{F}^{n \times m}$. If A is right invertible, then

$$
\begin{equation*}
\ell_{2,2}(A)=\sigma_{n}(A) . \tag{9.5.16}
\end{equation*}
$$

If A is left invertible, then

$$
\begin{equation*}
\ell_{2,2}(A)=\sigma_{m}(A) . \tag{9.5.17}
\end{equation*}
$$

Finally, if $n=m$ and A is nonsingular, then

$$
\begin{equation*}
\ell_{2,2}\left(A^{-1}\right)=\sigma_{\min }\left(A^{-1}\right)=\frac{1}{\sigma_{\max }(A)} . \tag{9.5.18}
\end{equation*}
$$

Proof. Use Proposition 5.6.2 and Fact 6.3.12.
In contrast to the submultiplicativity condition (9.4.5) satisfied by the induced norm, the induced lower bound satisfies a supermultiplicativity condition. The following result is analogous to Proposition 9.4.3.

Proposition 9.5.6. Let $\|\cdot\|,\|\cdot\|^{\prime}$, and $\|\cdot\|^{\prime \prime}$ be norms on \mathbb{F}^{l}, \mathbb{F}^{m}, and \mathbb{F}^{n}, respectively. Let $\ell(\cdot)$ be the lower bound induced by $\|\cdot\|$ and $\|\cdot\|^{\prime}$, let $\ell^{\prime}(\cdot)$ be the lower bound induced by $\|\cdot\|^{\prime}$ and $\|\cdot\|^{\prime \prime}$, let $\ell^{\prime \prime}(\cdot)$ be the lower bound induced by $\|\cdot\|$ and $\|\cdot\|^{\prime \prime}$, let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$, and assume that either A or B is right invertible. Then,

$$
\begin{equation*}
\ell^{\prime}(A) \ell(B) \leq \ell^{\prime \prime}(A B) . \tag{9.5.19}
\end{equation*}
$$

Furthermore, if $1 \leq p, q, r \leq \infty$, then

$$
\begin{equation*}
\ell_{r, q}(A) \ell_{q, p}(B) \leq \ell_{r, p}(A B) . \tag{9.5.20}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\sigma_{m}(A) \sigma_{l}(B) \leq \sigma_{l}(A B) \tag{9.5.21}
\end{equation*}
$$

Proof. See [243] and [353, pp. 369, 370].

9.6 Singular Value Inequalities

Proposition 9.6.1. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$. Then, for all $i \in$ $\{1, \ldots, \min \{n, m\}\}$ and $j \in\{1, \ldots, \min \{m, l\}\}$ such that $i+j \leq \min \{n, l\}+$ 1 ,

$$
\begin{equation*}
\sigma_{i+j-1}(A B) \leq \sigma_{i}(A) \sigma_{j}(B) . \tag{9.6.1}
\end{equation*}
$$

In particular, for all $j=1, \ldots, \min \{n, m, l\}$,

$$
\begin{equation*}
\sigma_{j}(A B) \leq \sigma_{\max }(A) \sigma_{j}(B) \tag{9.6.2}
\end{equation*}
$$

and, for all $i=1, \ldots, \min \{n, m, l\}$,

$$
\begin{equation*}
\sigma_{i}(A B) \leq \sigma_{i}(A) \sigma_{\max }(B) \tag{9.6.3}
\end{equation*}
$$

Proof. See [289, p. 178].
Proposition 9.6.2. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$. Then, for all $k=1, \ldots, \min \{n, m, l\}$,

$$
\prod_{i=1}^{k} \sigma_{i}(A B) \leq \prod_{i=1}^{k} \sigma_{i}(A) \sigma_{i}(B)
$$

If, in addition, $n=m=l$, then

$$
\prod_{i=1}^{n} \sigma_{i}(A B)=\prod_{i=1}^{n} \sigma_{i}(A) \sigma_{i}(B)
$$

Proof. See [289, p. 172].
Proposition 9.6.3. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$. If $r \geq 0$, then, for all $k=1, \ldots, \min \{n, m, l\}$,

$$
\begin{equation*}
\sum_{i=1}^{k} \sigma_{i}^{r}(A B) \leq \sum_{i=1}^{k} \sigma_{i}^{r}(A) \sigma_{i}^{r}(B) . \tag{9.6.4}
\end{equation*}
$$

In particular, for all $k=1, \ldots, \min \{n, m, l\}$,

$$
\begin{equation*}
\sum_{i=1}^{k} \sigma_{i}(A B) \leq \sum_{i=1}^{k} \sigma_{i}(A) \sigma_{i}(B) . \tag{9.6.5}
\end{equation*}
$$

If $r<0, n=m=l$, and A and B are nonsingular, then

$$
\begin{equation*}
\sum_{i=1}^{n} \sigma_{i}^{r}(A B) \leq \sum_{i=1}^{n} \sigma_{i}^{r}(A) \sigma_{i}^{r}(B) . \tag{9.6.6}
\end{equation*}
$$

Proof. The first statement follows from Proposition 9.6.2 and Fact 8.16.2. For the case $r<0$, use Fact 8.16.4. See [289, p. 177] or [93, p.

94].
Proposition 9.6.4. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$. If $m \leq n$, then, for all $i=1, \ldots, \min \{n, m, l\}$,

$$
\begin{equation*}
\sigma_{m}(A) \sigma_{i}(B) \leq \sigma_{i}(A B) . \tag{9.6.7}
\end{equation*}
$$

If $m \leq l$, then, for all $i=1, \ldots, \min \{n, m, l\}$,

$$
\begin{equation*}
\sigma_{i}(A) \sigma_{m}(B) \leq \sigma_{i}(A B) \tag{9.6.8}
\end{equation*}
$$

Proof. Corollary 8.4.2 implies that $\sigma_{m}^{2}(A) I_{m}=\lambda_{\min }\left(A^{*} A\right) I_{m} \leq A^{*} A$, which implies that $\sigma_{m}^{2}(A) B^{*} B \leq B^{*} A^{*} A B$. Hence, it follows from the monotonicity theorem Theorem 8.4 .9 that, for all $i=1, \ldots, \min \{n, m, l\}$,

$$
\sigma_{m}(A) \sigma_{i}(B)=\lambda_{i}\left[\sigma_{m}^{2}(A) B^{*} B\right]^{1 / 2} \leq \lambda_{i}^{1 / 2}\left(B^{*} A^{*} A B\right)=\sigma_{i}(A B),
$$

which proves the left-hand inequality in (9.6.7). Similarly, for all $i=$ $1, \ldots, \min \{n, m, l\}$,

$$
\sigma_{i}(A) \sigma_{m}(B)=\lambda_{i}\left[\sigma_{m}^{2}(B) A A^{*}\right]^{1 / 2} \leq \lambda_{i}^{1 / 2}\left(A B B^{*} A^{*}\right)=\sigma_{i}(A B) .
$$

Corollary 9.6.5. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$. Then,

$$
\begin{gather*}
\sigma_{m}(A) \sigma_{\min \{n, m, l\}}(B) \leq \sigma_{\min \{n, m, l\}}(A B) \leq \sigma_{\max }(A) \sigma_{\min \{n, m, l\}}(B) \tag{9.6.9}\\
\sigma_{m}(A) \sigma_{\max }(B) \leq \sigma_{\max }(A B) \leq \sigma_{\max }(A) \sigma_{\max }(B) \tag{9.6.10}\\
\sigma_{\min \{n, m, l\}}(A) \sigma_{m}(B) \leq \sigma_{\min \{n, m, l\}}(A B) \leq \sigma_{\min \{n, m, l\}}(A) \sigma_{\max }(B) \tag{9.6.11}\\
\sigma_{\max }(A) \sigma_{m}(B) \leq \sigma_{\max }(A B) \leq \sigma_{\max }(A) \sigma_{\max }(B) \tag{9.6.12}
\end{gather*}
$$

Specializing Corollary 9.6 .5 to the case in which A or B is square yields the following result.

Corollary 9.6.6. Let $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{n \times l}$. Then, for all $i=$ $1, \ldots, \min \{n, l\}\}$,

$$
\begin{equation*}
\sigma_{\min }(A) \sigma_{i}(B) \leq \sigma_{i}(A B) \leq \sigma_{\max }(A) \sigma_{i}(B) . \tag{9.6.13}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\sigma_{\min }(A) \sigma_{\max }(B) \leq \sigma_{\max }(A B) \leq \sigma_{\max }(A) \sigma_{\max }(B) . \tag{9.6.14}
\end{equation*}
$$

If $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times m}$, then, for all $\left.i=1, \ldots, \min \{n, m\}\right\}$,

$$
\begin{equation*}
\sigma_{i}(A) \sigma_{\min }(B) \leq \sigma_{i}(A B) \leq \sigma_{i}(A) \sigma_{\max }(B) . \tag{9.6.15}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\sigma_{\max }(A) \sigma_{\min }(B) \leq \sigma_{\max }(A B) \leq \sigma_{\max }(A) \sigma_{\max }(B) \tag{9.6.16}
\end{equation*}
$$

Corollary 9.6.7. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$. If $m \leq n$, then

$$
\begin{equation*}
\sigma_{m}(A)\|B\|_{\mathrm{F}} \leq\|A B\|_{\mathrm{F}} \tag{9.6.17}
\end{equation*}
$$

If $m \leq l$, then

$$
\begin{equation*}
\|A\|_{\mathrm{F}} \sigma_{m}(B) \leq\|A B\|_{\mathrm{F}} . \tag{9.6.18}
\end{equation*}
$$

Proposition 9.6.8. Let $A, B \in \mathbb{F}^{n \times m}$. Then, for all $i, j \in\{1, \ldots$, $\min \{n, m\}\}$ such that $i+j \leq \min \{n, m\}+1$,

$$
\begin{equation*}
\sigma_{i+j-1}(A+B) \leq \sigma_{i}(A)+\sigma_{j}(B) \tag{9.6.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{i+j-1}(A)-\sigma_{j}(B) \leq \sigma_{i}(A+B) . \tag{9.6.20}
\end{equation*}
$$

Proof. See [289, p. 178].
Corollary 9.6.9. Let $A, B \in \mathbb{F}^{n \times m}$. Then,

$$
\begin{equation*}
\sigma_{n}(A)-\sigma_{\max }(B) \leq \sigma_{n}(A+B) \leq \sigma_{n}(A)+\sigma_{\max }(B) \tag{9.6.21}
\end{equation*}
$$

Proof. The result follows from Proposition 9.6.8. Alternatively, it follows from Lemma 8.4.3 and the Cauchy-Schwarz inequality Corollary 9.1.7 that, for all $x \in \mathbb{F}^{n}$,

$$
\begin{aligned}
\lambda_{\min }\left[(A+B)(A+B)^{*}\right] & \leq \frac{x^{*}\left(A A^{*}+B B^{*}+A B^{*}+B A^{*}\right) x}{x^{*} x} \\
& =\frac{x^{*} A A^{*} x}{\|x\|_{2}^{2}}+\frac{x^{*} B B^{*} x}{\|x\|_{2}^{2}}+\frac{2 x^{*} A B^{*} x}{\|x\|_{2}^{2}} \\
& \leq \frac{x^{*} A A^{*} x}{\|x\|_{2}^{2}}+\sigma_{\max }^{2}(B)+2 \frac{\left(x^{*} A A^{*} x\right)^{1 / 2}}{\|x\|_{2}^{2}} \sigma_{\max }(B) .
\end{aligned}
$$

Minimizing with respect to x and using Lemma 8.4.3 yields

$$
\begin{aligned}
\sigma_{n}^{2}(A+B) & =\lambda_{\min }\left[(A+B)(A+B)^{*}\right] \\
& \leq \lambda_{\min }\left(A A^{*}\right)+\sigma_{\max }^{2}(B)+2 \lambda_{\min }^{1 / 2}\left(A A^{*}\right) \sigma_{\max }(B) \\
& =\left[\sigma_{n}(A)+\sigma_{\max }(B)\right]^{2},
\end{aligned}
$$

which proves the right-hand inequality of (9.6.21). Finally, the left-hand inequality follows from the right-hand inequality with A and B replaced by $A+B$ and $-B$, respectively.

9.7 Facts on Vector Norms

Fact 9.7.1. Let $x, y \in \mathbb{F}^{n}$. Then, x and y are linearly dependent if and only if $|x|^{\{2\}}$ and $|y|^{\{2\}}$ are linearly dependent and $\left|x^{*} y\right|=|x|^{\mathrm{T}}|y|$. (Remark:

This equivalence clarifies the relationship between (9.1.11) with $p=2$ and Corollary 9.1.7.)

Fact 9.7.2. Let $x, y \in \mathbb{F}^{n}$, and let $\|\cdot\|$ be a norm \mathbb{F}^{n}. Then,

$$
|\|x\|-\|y\|| \leq\|x+y\|
$$

and

$$
|\|x\|-\|y\|| \leq\|x-y\|
$$

Fact 9.7.3. Let $x, y \in \mathbb{F}^{n}$, and let $\|\cdot\|$ be a norm on \mathbb{F}^{n}. Then, the following statements hold:
i) If there exists $\beta \geq 0$ such that either $x=\beta y$ or $y=\beta x$, then $\|x+y\|=\|x\|+\|y\|$.
ii) If $\|x+y\|=\|x\|+\|y\|$ and x and y are linearly dependent, then there exists $\beta \geq 0$ such that either $x=\beta y$ or $y=\beta x$.
iii) If $\|x+y\|_{2}=\|x\|_{2}+\|y\|_{2}$, then there exists $\beta \geq 0$ such that either $x=\beta y$ or $y=\beta x$.
(Proof: For $i i i$) use v) of Fact 9.7.4.) (Problem: Consider $i i i$) with alternative norms.) (Problem: If x and y are linearly independent, then does it follow that $\|x+y\|<\|x\|+\|y\| ?)$

Fact 9.7.4. Let $x, y \in \mathbb{F}^{n}$. Then, the following statements hold:
i) $\frac{1}{2}\left(\|x+y\|_{2}^{2}+\|x-y\|_{2}^{2}\right)=\|x\|_{2}^{2}+\|y\|_{2}^{2}$.
ii) $\operatorname{Re} x^{*} y=\frac{1}{4}\left(\|x+y\|_{2}^{2}-\|x-y\|_{2}^{2}\right)=\frac{1}{2}\left(\|x+y\|_{2}^{2}-\|x\|_{2}^{2}-\|y\|_{2}^{2}\right)$.
iii) $\|x-y\|_{2}=\sqrt{\|x\|_{2}^{2}+\|y\|_{2}^{2}-2 \operatorname{Re} x^{*} y}$.
iv) $\|x+y\|_{2}\|x-y\|_{2} \leq\|x\|_{2}^{2}+\|y\|_{2}^{2}$.
v) If $\|x+y\|_{2}=\|x\|_{2}+\|y\|_{2}$, then $\operatorname{Im} x^{*} y=0$ and $\operatorname{Re} x^{*} y \geq 0$.
Furthermore, the following statements are equivalent:
vi) $\|x+y\|_{2}^{2}=\|x\|_{2}^{2}+\|y\|_{2}^{2}$.
vii) $\|x-y\|_{2}=\|x+y\|_{2}$.
viii) $\operatorname{Re} x^{*} y=0$.
(Remark: i) is the parallelogram law, which relates the diagonals and the sides of a parallelogram, $i i$) is the polarization identity, $i i i$) is the cosine law, and the equivalence of $v i$) and viii) is the Pythagorean theorem.)

Fact 9.7.5. Let $x, y \in \mathbb{F}^{n}$ be nonzero. Then,

$$
\|x\|_{2}+\|y\|_{2} \leq \frac{2\|x-y\|}{\left\|\frac{x}{\|x\|}-\frac{y}{\|y\|}\right\|}
$$

(Proof: See [629, p. 28].) (Problem: Interpret this inequality geometrically.)
Fact 9.7.6. Let $x \in \mathbb{F}^{n}$, and let $p, q \in[1, \infty]$ satisfy $1 / p+1 / q=1$. Then,

$$
\|x\|_{2} \leq \sqrt{\|x\|_{p}\|x\|_{q}} .
$$

Fact 9.7.7. Let $x, y \in \mathbb{F}^{n}$, let $p \in(0,1]$, and define $\|\cdot\|_{p}$ as in (9.1.3). Then,

$$
\|x\|_{p}+\|y\|_{p} \leq\|x+y\|_{p}
$$

(Remark: This result is a reverse triangle inequality.)
Fact 9.7.8. Let $y \in \mathbb{F}^{n}$, let $\|\cdot\|$ be a norm on \mathbb{F}^{n}, let $\|\cdot\|^{\prime}$ be the norm on $\mathbb{F}^{n \times n}$ induced by $\|\cdot\|$, and define

$$
\|y\|_{\mathrm{D}} \triangleq \max _{x \in\left\{z \in \mathbb{F}^{n}:\|z\|=1\right\}}\left|y^{*} x\right| .
$$

Then, $\|\cdot\|_{\mathrm{D}}$ is a norm on \mathbb{F}^{n}. Furthermore,

$$
\|y\|=\max _{x \in\left\{z \in \mathbb{F}^{n}:\|z\|_{\mathrm{D}}=1\right\}}\left|y^{*} x\right| .
$$

Hence, for all $x \in \mathbb{F}^{n}$,

$$
\left|x^{*} y\right| \leq\|x\|\|y\|_{\mathrm{D}} .
$$

In addition,

$$
\left\|x y^{*}\right\|^{\prime}=\|x\|\|y\|_{\mathrm{D}}
$$

Finally, let $p \in[1, \infty]$, and let $1 / p+1 / q=1$. Then,

$$
\|\cdot\|_{p \mathrm{D}}=\|\cdot\|_{q} .
$$

Hence, for all $x \in \mathbb{F}^{n}$,

$$
\left|x^{*} y\right| \leq\|x\|_{p}\|y\|_{q}
$$

and

$$
\left\|x y^{*}\right\|_{p, p}=\|x\|_{p}\|y\|_{q}
$$

(Proof: See [525, p. 57].) (Remark: $\|\cdot\|_{\mathrm{D}}$ is the dual norm of $\|\cdot\|$.)
Fact 9.7.9. Let $\|\cdot\|$ be a norm on \mathbb{F}^{n}, and let $\alpha>0$. Then, $\{x \in$ $\left.\mathbb{F}^{n}:\|x\| \leq \alpha\right\}$ is convex.

Fact 9.7.10. Let $x \in \mathbb{R}^{n}$, and let $\|\cdot\|$ be a norm on \mathbb{R}^{n}. Then, $x^{\mathrm{T}} y>0$ for all $y \in \mathbb{B}_{\|x\|}(x)=\left\{z \in \mathbb{R}^{n}:\|z-x\|<\|x\|\right\}$.

Fact 9.7.11. Let $x, y \in \mathbb{R}^{n}$ be nonzero, assume that $x^{\mathrm{T}} y=0$, and let $\|\cdot\|$ be a norm on \mathbb{R}^{n}. Then, $\|x\| \leq\|x+y\|$. (Proof: If $\|x+y\|<\|x\|$, then $x+y \in \mathbb{B}_{\|x\|}(0)$, and thus $y \in \mathbb{B}_{\|x\|}(-x)$. By Fact 9.7.10, $x^{\mathrm{T}} y<0$.) (Remark: See $[98,371]$ for related results concerning matrices.)

Fact 9.7.12. Let $x \in \mathbb{F}^{n}$ and $y \in \mathbb{F}^{m}$. Then,

$$
\sigma_{\max }\left(x y^{*}\right)=\left\|x y^{*}\right\|_{\mathrm{F}}=\|x\|_{2}\|y\|_{2}
$$

and

$$
\sigma_{\max }\left(x x^{*}\right)=\left\|x x^{*}\right\|_{F}=\|x\|_{2}^{2} .
$$

Fact 9.7.13. Let $x \in \mathbb{F}^{n}$ and $y \in \mathbb{F}^{m}$. Then,
$\|x \otimes y\|_{2}=\left\|\operatorname{vec}\left(x \otimes y^{\mathrm{T}}\right)\right\|_{2}=\left\|\operatorname{vec}\left(y x^{\mathrm{T}}\right)\right\|_{2}=\left\|y x^{\mathrm{T}}\right\|_{2}=\|x\|_{2}\|y\|_{2}$.
Fact 9.7.14. Let $x \in \mathbb{F}^{n}$, and let $1 \leq p, q \leq \infty$. Then,

$$
\|x\|_{p}=\|x\|_{p, q} .
$$

Fact 9.7.15. Let $x \in \mathbb{F}^{n}$, and let $p, q \in[1, \infty)$, where $p \leq q$. Then,

$$
\|x\|_{q} \leq\|x\|_{p} \leq n^{1 / p-1 / q}\|x\|_{q} .
$$

(Proof: See [279], [280, p. 107].) (Remark: See Fact 9.8.13.)
Fact 9.7.16. Let $A \in \mathbb{F}^{n \times n}$ be positive definite. Then,

$$
\|x\|_{A} \triangleq\left(x^{*} A x\right)^{1 / 2}
$$

is a norm on \mathbb{F}^{n}.
Fact 9.7.17. Let $\|\cdot\|$ and $\|\cdot\|^{\prime}$ be norms on \mathbb{F}^{n} and let $\alpha, \beta>0$. Then, $\alpha\|\cdot\|+\beta\|\cdot\|^{\prime}$ is also a norm on \mathbb{F}^{n}. Furthermore, $\max \left\{\|\cdot\|,\|\cdot\|^{\prime}\right\}$ is a norm on \mathbb{F}^{n}. (Remark: $\min \left\{\|\cdot\|,\|\cdot\|^{\prime}\right\}$ is not generally a norm.)

Fact 9.7.18. Let $A \in \mathbb{F}^{n \times n}$, assume that A is nonsingular, and let $\|\cdot\|$ be a norm on \mathbb{F}^{n}. Then, $\|x\|^{\prime} \triangleq\|A x\|$ is a norm on \mathbb{F}^{n}.

Fact 9.7.19. Let $x \in \mathbb{F}^{n}$, and let $p \in[1, \infty]$. Then,

$$
\|\bar{x}\|_{p}=\|x\|_{p}
$$

9.8 Facts on Matrix Norms Involving One Matrix

Fact 9.8.1. Let $A \in \mathbb{F}^{n \times n}$, and assume that $\operatorname{sprad}(A)<1$. Then, there exists a submultiplicative matrix norm $\|\cdot\|$ on $\mathbb{F}^{n \times n}$ such that $\|A\|<1$.

Furthermore,

$$
\lim _{k \rightarrow \infty} A^{k}=0
$$

Fact 9.8.2. Let $A \in \mathbb{F}^{n \times n}$ be nonsingular, and let $\|\cdot\|$ be a submultiplicative norm on $\mathbb{F}^{n \times n}$. Then,

$$
\left\|A^{-1}\right\| \geq\left\|I_{n}\right\| /\|A\|
$$

Fact 9.8.3. Let $A \in \mathbb{F}^{n \times n}$, assume that A is nonzero and idempotent, and let $\|\cdot\|$ be a submultiplicative norm on $\mathbb{F}^{n \times n}$. Then,

$$
\|A\| \geq 1
$$

Fact 9.8.4. Let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times n}$. Then, $\|\cdot\|$ is self adjoint.

Fact 9.8.5. Let $A \in \mathbb{F}^{n \times m}$, let $\|\cdot\|$ be a norm on $\mathbb{F}^{n \times m}$, and define $\|A\|^{\prime} \triangleq\left\|A^{*}\right\|$. Then, $\|\cdot\|^{\prime}$ is a norm on $\mathbb{F}^{m \times n}$. If, in addition, $n=m$ and $\|\cdot\|$ is induced by $\|\cdot\|^{\prime \prime}$, then $\|\cdot\|^{\prime}$ is induced by $\|\cdot\|_{\mathrm{D}}^{\prime \prime}$. (Proof: See [287, p. 309] and Fact 9.8.8.) (Remark: See Fact 9.7 .8 for the definition of the dual norm. $\|\cdot\|^{\prime}$ is the adjoint norm of $\|\cdot\|$.) (Problem: Generalize this result to matrices that are not square and norms that are not equi-induced.)

Fact 9.8.6. Let $1 \leq p \leq \infty$. Then, $\|\cdot\|_{\sigma p}$ is unitarily invariant.
Fact 9.8.7. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is nonnegative semidefinite. Then,

$$
\|A\|_{1, \infty}=\max _{x \in\left\{z \in \mathbb{F}^{n}:\|z\|_{\infty}=1\right\}} x^{*} A x .
$$

(Remark: This result is due to Tao. See [490] and [280, p. 116].)
Fact 9.8.8. Let $A \in \mathbb{F}^{n \times m}$, and let $p, q \in[1, \infty]$ be such that $1 / p+1 / q=$ 1. Then,

$$
\left\|A^{*}\right\|_{p, p}=\|A\|_{q, q} .
$$

In particular,

$$
\left\|A^{*}\right\|_{\text {col }}=\|A\|_{\text {row }} .
$$

(Proof: See Fact 9.8.5.)
Fact 9.8.9. Let $A \in \mathbb{F}^{n \times m}$, and let $p, q \in[1, \infty]$ be such that $1 / p+1 / q=$ 1. Then,

$$
\left\|\left[\begin{array}{cc}
0 & A \\
A^{*} & 0
\end{array}\right]\right\|_{p, p}=\max \left\{\|A\|_{p, p},\|A\|_{q, q}\right\} .
$$

In particular,

$$
\left\|\left[\begin{array}{cc}
0 & A \\
A^{*} & 0
\end{array}\right]\right\|_{\text {col }}=\left\|\left[\begin{array}{cc}
0 & A \\
A^{*} & 0
\end{array}\right]\right\|_{\text {row }}=\max \left\{\|A\|_{\text {col }},\|A\|_{\text {row }}\right\} .
$$

Fact 9.8.10. Let $A \in \mathbb{F}^{n \times m}$. Then, the following inequalities hold:
i) $\|A\|_{\mathrm{F}} \leq\|A\|_{1} \leq \sqrt{m n}\|A\|_{\mathrm{F}}$.
ii) $\|A\|_{\infty} \leq\|A\|_{1} \leq m n\|A\|_{\infty}$.
iii) $\|A\|_{\text {col }} \leq\|A\|_{1} \leq m\|A\|_{\text {col }}$.
iv) $\|A\|_{\text {row }} \leq\|A\|_{1} \leq n\|A\|_{\text {row }}$.
v) $\sigma_{\max }(A) \leq\|A\|_{1} \leq \sqrt{m n \operatorname{rank} A} \sigma_{\max }(A)$.
vi) $\|A\|_{\infty} \leq\|A\|_{\mathrm{F}} \leq \sqrt{m n}\|A\|_{\infty}$.
vii) $\frac{1}{\sqrt{n}}\|A\|_{\text {col }} \leq\|A\|_{\mathrm{F}} \leq \sqrt{m}\|A\|_{\mathrm{col}}$.
viii) $\frac{1}{\sqrt{m}}\|A\|_{\text {row }} \leq\|A\|_{\mathrm{F}} \leq \sqrt{n}\|A\|_{\text {row }}$.
ix) $\sigma_{\max }(A) \leq\|A\|_{\mathrm{F}} \leq \sqrt{\operatorname{rank} A} \sigma_{\max }(A)$.
x) $\frac{1}{n}\|A\|_{\text {col }} \leq\|A\|_{\infty} \leq\|A\|_{\text {col }}$.
xi) $\frac{1}{m}\|A\|_{\text {row }} \leq\|A\|_{\infty} \leq\|A\|_{\text {row }}$.
xii) $\frac{1}{\sqrt{m n}} \sigma_{\max }(A) \leq\|A\|_{\infty} \leq \sigma_{\max }(A)$.
xiii) $\frac{1}{m}\|A\|_{\text {row }} \leq\|A\|_{\text {col }} \leq n\|A\|_{\text {row }}$.
xiv) $\frac{1}{\sqrt{m}} \sigma_{\max }(A) \leq\|A\|_{\text {col }} \leq \sqrt{n} \sigma_{\max }(A)$.
$x v) \frac{1}{\sqrt{n}} \sigma_{\max }(A) \leq\|A\|_{\text {row }} \leq \sqrt{m} \sigma_{\max }(A)$.
(Remark: See [280, p. 115] for matrices that attain these bounds.)
Fact 9.8.11. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\left\|A^{\mathrm{A}}\right\|_{\mathrm{F}} \leq n^{(2-n) / 2}\|A\|_{\mathrm{F}}^{n-1} .
$$

(Proof: See [466, pp. 151, 165].)
Fact 9.8.12. Let $A \in \mathbb{F}^{n \times n}$, let $\|\cdot\|$ and $\|\cdot\|^{\prime}$ be norms on \mathbb{F}^{n}, and define the induced norms

$$
\|A\|^{\prime \prime} \triangleq \max _{x \in\left\{y \in \mathbb{F}^{m}:\|y\|=1\right\}}\|A x\|
$$

and

$$
\|A\|^{\prime \prime \prime} \triangleq \max _{x \in\left\{y \in \mathbb{F}^{m}:\|y\|^{\prime}=1\right\}}\|A x\|^{\prime} .
$$

Then,

$$
\begin{aligned}
\max _{A \in\left\{X \in \mathbb{F}^{n \times n}: X \neq 0\right\}} \frac{\|A\|^{\prime \prime}}{\|A\|^{\prime \prime \prime}} & =\max _{A \in\left\{X \in \mathbb{F}^{n \times n}: X \neq 0\right\}} \frac{\|A\|^{\prime \prime \prime}}{\|A\|^{\prime \prime}} \\
& =\max _{x \in\left\{y \in \mathbb{F}^{n}: y \neq 0\right\}} \frac{\|x\|}{\|x\|^{\prime}} \max _{x \in\left\{y \in \mathbb{F}^{n}: y \neq 0\right\}} \frac{\|x\|^{\prime}}{\|x\|} .
\end{aligned}
$$

(Proof: See [287, p. 303].) (Remark: This symmetry property is evident in Fact 9.8.10.)

Fact 9.8.13. Let $A \in \mathbb{F}^{n \times n}$, and let $p, q \in[1, \infty]$. Then,

$$
\|A\|_{p, p} \leq \begin{cases}n^{1 / p-1 / q}\|A\|_{q, q}, & p \leq q \\ n^{1 / q-1 / p}\|A\|_{q, q}, & q \leq p\end{cases}
$$

Consequently,

$$
\begin{aligned}
n^{1 / p-1}\|A\|_{\mathrm{col}} & \leq\|A\|_{p, p} \leq n^{1-1 / p}\|A\|_{\mathrm{col}} \\
n^{-|1 / p-1 / 2|} \sigma_{\max }(A) & \leq\|A\|_{p, p} \leq n^{|1 / p-1 / 2|} \sigma_{\max }(A), \\
n^{-1 / p}\|A\|_{\mathrm{col}} & \leq\|A\|_{p, p} \leq n^{1 / p}\|A\|_{\mathrm{row}}
\end{aligned}
$$

(Proof: See [279] and [280, p. 112].) (Remark: See Fact 9.7.15.) (Problem: Extend these inequalities to matrices that are not square.)

Fact 9.8.14. Let $A \in \mathbb{F}^{n \times m}, p, q \in[1, \infty]$, and $\alpha \in[0,1]$, and let $r \triangleq p q /[(1-\alpha) p+\alpha q]$. Then,

$$
\|A\|_{r, r} \leq\|A\|_{p, p}^{\alpha}\|A\|_{q, q}^{1-\alpha} .
$$

(Proof: See [279] or [280, p. 113].)
Fact 9.8.15. Let $A \in \mathbb{F}^{n \times m}$, and let $p \in[1, \infty]$. Then,

$$
\|A\|_{p, p} \leq\|A\|_{\text {col }}^{1 / p}\|A\|_{\text {row }}^{1-1 / p}
$$

In particular,

$$
\sigma_{\max }(A) \leq \sqrt{\|A\|_{\text {col }}\|A\|_{\text {row }}}
$$

(Proof: Set $\alpha=1 / p, p=1$, and $q=\infty$ in Fact 9.8.14. See [280, p. 113]. To prove the special case $p=2$ directly, note that $\lambda_{\max }\left(A^{*} A\right) \leq\left\|A^{*} A\right\|_{\text {col }} \leq$ $\left\|A^{*}\right\|_{\text {col }}\|A\|_{\text {col }}=\|A\|_{\text {row }}\|A\|_{\text {col }}$.)

Fact 9.8.16. Let $A \in \mathbb{F}^{n \times m}$, and let $p \in[1,2]$. Then,

$$
\|A\|_{p, p} \leq\|A\|_{\mathrm{col}}^{2 / p-1} \sigma_{\max }^{2-2 / p}(A)
$$

(Proof: Let $\alpha=2 / p-1, p=1$, and $q=2$ in Fact 9.8.14. See [280, p. 113].)

Fact 9.8.17. Let $A \in \mathbb{F}^{n \times n}$, and let $p \in[1, \infty]$. Then,

$$
\|A\|_{p, p} \leq\||A|\|_{p, p} \leq n^{\min \{1 / p, 1-1 / p\}}\|A\|_{p, p} \leq \sqrt{n}\|A\|_{p, p}
$$

(Remark: See [280, p. 117].)
Fact 9.8.18. Let $A \in \mathbb{F}^{n \times m}$, and let $p, q \in[1, \infty]$. Then,

$$
\|\bar{A}\|_{q, p}=\|A\|_{q, p} .
$$

Fact 9.8.19. Let $A \in \mathbb{F}^{n \times m}$, and let $p, q \in[1, \infty]$. Then,

$$
\left\|A^{*}\right\|_{q, p}=\|A\|_{p /(p-1), q /(q-1)} .
$$

Fact 9.8.20. Let $A \in \mathbb{F}^{n \times m}$, and let $p, q \in[1, \infty]$. Then,

$$
\|A\|_{q, p} \leq \begin{cases}\|A\|_{p /(p-1)}, & 1 / p+1 / q \leq 1 \\ \|A\|_{q}, & 1 / p+1 / q \geq 1\end{cases}
$$

Fact 9.8.21. Let $A \in \mathbb{F}^{n \times n}$, and let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times n}$. Then,

$$
\|\langle A\rangle\|=\|A\| .
$$

Fact 9.8.22. Let $A \in \mathbb{F}^{n \times n}$, let $S \in \mathbb{F}^{n \times n}$ be nonsingular, and let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times n}$. Then,

$$
\|A\| \leq \frac{1}{2}\left\|S A S^{-1}+S^{*} A S^{-*}\right\| .
$$

(Proof: See [30, 107].)
Fact 9.8.23. Let $A \in \mathbb{F}^{n \times n}$, assume that A is nonnegative semidefinite, and let $\|\cdot\|$ be a submultiplicative norm on $\mathbb{F}^{n \times n}$. Then,

$$
\|A\|^{1 / 2} \leq\left\|A^{1 / 2}\right\| .
$$

In particular,

$$
\sigma_{\max }^{1 / 2}(A)=\sigma_{\max }\left(A^{1 / 2}\right)
$$

Fact 9.8.24. Let $\left[\begin{array}{ccc}A_{11} & A_{12} \\ A_{12}^{*} & A_{22}\end{array}\right] \in \mathbb{F}^{(n+m) \times(n+m)}$ be nonnegative semidefinite, let $\|\cdot\|$ and $\|\cdot\|^{\prime}$ be unitarily invariant norms on $\mathbb{F}^{n \times n}$ and $\mathbb{F}^{m \times m}$, respectively, and let $p>0$. Then,

$$
\left\|\left\langle A_{12}\right\rangle^{p}\right\|^{\prime 2} \leq\left\|A_{11}^{p}\right\|\left\|A_{22}^{p}\right\|^{\prime} .
$$

(Proof: See [291].)
Fact 9.8.25. Let $A \in \mathbb{F}^{n \times n}$, let $\|\cdot\|$ be a norm on \mathbb{F}^{n}, let $\|\cdot\|_{\mathrm{D}}$ denote the dual norm on \mathbb{F}^{n}, and let $\|\cdot\|^{\prime}$ denote norm induced by $\|\cdot\|$ on $\mathbb{F}^{n \times n}$.

Then,

$$
\|A\|^{\prime}=\max _{\substack{x, y \in \mathbb{F}^{n} \\ x, y \neq 0}} \frac{\operatorname{Re} y^{*} A x\left\|_{\mathrm{D}}\right\| x \|^{\prime}}{}
$$

(Proof: See [280, p. 115].) (Remark: See Fact 9.7.8 for the definition of the dual norm.) (Problem: Generalize this result to obtain Fact 9.8.26 as a special case.)

Fact 9.8.26. Let $A \in \mathbb{F}^{n \times m}$, and let $p, q \in[1, \infty]$. Then,

$$
\|A\|_{q, p}=\max _{\substack{x \in \mathbb{F}^{m}, y \in \mathbb{F}^{n} \\ x, y \neq 0}} \frac{\left|y^{*} A x\right|}{\|y\|_{q /(q-1)}\|x\|_{p}} .
$$

Fact 9.8.27. Let $A \in \mathbb{F}^{n \times m}$, and let $p, q \in[1, \infty]$ satisfy $1 / p+1 / q=1$. Then,

$$
\|A\|_{p, p}=\max _{\substack{x \in \mathbb{F}^{\mathbb{F}^{\prime}, y \in \mathbb{F}^{n}} \\ x, y \neq 0}} \frac{\left|y^{*} A x\right|}{\|y\|_{q}\|x\|_{p}}=\max _{\substack{x \in \mathbb{F}^{m}, y \in \mathbb{F}^{n} \\ x, y \neq 0}} \frac{\left|y^{*} A x\right|}{\|y\|_{p /(p-1)}\|x\|_{p}} .
$$

(Remark: See Fact 9.11.2 for the case $p=2$.)
Fact 9.8.28. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is positive definite. Then,

$$
\min _{x \in \mathbb{F}^{n} \backslash\{0\}} \frac{x^{*} A x}{\|A x\|_{2}\|x\|_{2}}=\frac{2 \sqrt{\alpha \beta}}{\alpha+\beta}
$$

and

$$
\min _{\alpha \geq 0} \sigma_{\max }(\alpha A-I)=\frac{\alpha-\beta}{\alpha+\beta}
$$

where $\alpha \triangleq \lambda_{\max }(A)$ and $\beta \triangleq \lambda_{\min }(A)$. (Proof: See [251].) (Remark: These quantities are antieigenvalues.)

Fact 9.8.29. Let $A \in \mathbb{F}^{n \times n}$, and define

$$
\operatorname{nrad}(A) \triangleq \max \left\{\left|x^{*} A x\right|: \quad x \in \mathbb{C}^{n} \text { and } x^{*} x \leq 1\right\}
$$

Then, the following statements hold:
i) $\operatorname{nrad}(A)=\max \{|z|: \quad z \in \Theta(A)\}$.
ii) $\operatorname{sprad}(A) \leq \operatorname{nrad}(A) \leq \operatorname{nrad}(|A|)=\frac{1}{2} \operatorname{sprad}\left(|A|+|A|^{\mathrm{T}}\right)$.
iii) $\frac{1}{2} \sigma_{\max }(A) \leq \operatorname{nrad}(A) \leq \sigma_{\max }(A)$.
iv) If A is normal, then $\operatorname{sprad}(A)=\operatorname{nrad}(A)=\sigma_{\text {max }}(A)$.
v) $\operatorname{nrad}\left(A^{k}\right) \leq[\operatorname{nrad}(A)]^{k}$ for all $k \in \mathbb{N}$.
vi) $\operatorname{nrad}(\cdot)$ is a weakly unitarily invariant norm on $\mathbb{F}^{n \times n}$.
vii) $\operatorname{nrad}(\cdot)$ is not a submultiplicative norm on $\mathbb{F}^{n \times n}$.
viii) $\|\cdot\| \triangleq \alpha \operatorname{nrad}(\cdot)$ is a submultiplicative norm on $\mathbb{F}^{n \times n}$ if and only if $\alpha \geq 4$.
ix) $\operatorname{nrad}(A B) \leq \operatorname{nrad}(A) \operatorname{nrad}(B)$ for all $A, B \in \mathbb{F}^{n \times n}$ such that either A or B is normal.
x) $\operatorname{nrad}(A \circ B) \leq \alpha \operatorname{nrad}(A) \operatorname{nrad}(B)$ for all $A, B \in \mathbb{F}^{n \times n}$ if and only if $\alpha \geq 2$.
xi) $\operatorname{nrad}(A \oplus B)=\max \{\operatorname{nrad}(A), \operatorname{nrad}(B)\}$ for all $A \in \mathbb{F}^{n \times n}$ and $B \in$ $\mathbb{F}^{m \times m}$.
(Proof: See [287, p. 331] and [289, pp. 43, 44].) (Remark: $\operatorname{nrad}(\cdot)$ is not submultiplicative. $\operatorname{nrad}(A)$ is the numerical radius of $A . \Theta(A)$ is the numerical range. See Fact 4.10.17.) (Remark: vii) is the power inequality.)

Fact 9.8.30. Let $A \in \mathbb{F}^{n \times m}$, let $\gamma>\sigma_{\max }(A)$, and define $\beta \triangleq \sigma_{\max }(A) / \gamma$. Then,

$$
\|A\|_{\mathrm{F}} \leq \sqrt{-\left[\gamma^{2} /(2 \pi)\right] \log \operatorname{det}\left(I-\gamma^{-2} A^{*} A\right)} \leq \beta^{-1} \sqrt{-\log \left(1-\beta^{2}\right)}\|A\|_{\mathrm{F}}
$$

(Proof: See [108].)
Fact 9.8.31. Let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times n}$. Then, $\|A\|=1$ for all $A \in \mathbb{F}^{n \times n}$ such that $\operatorname{rank} A=1$ if and only if $\left\|E_{1,1}\right\|=1$. (Proof: $\|A\|=\left\|E_{1,1}\right\| \sigma_{\max }(A)$.) (Remark: These equivalent normalizations are used in [525, p. 74] and [93], respectively.)

Fact 9.8 .32 . Let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) $\sigma_{\max }(A) \leq\|A\|$ for all $A \in \mathbb{F}^{n \times n}$.
ii) $\|\cdot\|$ is submultiplicative.
iii) $\left\|A^{2}\right\| \leq\|A\|^{2}$ for all $A \in \mathbb{F}^{n \times n}$.
iv) $\left\|A^{k}\right\| \leq\|A\|^{k}$ for all $k \in \mathbb{P}$ and $A \in \mathbb{F}^{n \times n}$.
v) $\|A \circ B\| \leq\|A\|\|B\|$ for all $A, B \in \mathbb{F}^{n \times n}$.
vi) $\operatorname{sprad}(A) \leq\|A\|$ for all $A \in \mathbb{C}^{n \times n}$.
vii) $\|A x\|_{2} \leq\|A\|\|x\|_{2}$ for all $A \in \mathbb{C}^{n \times n}$ and $x \in \mathbb{C}^{n}$.
viii) $\|A\|_{\infty} \leq\|A\|$ for all $A \in \mathbb{C}^{n \times n}$.
ix) $\left\|E_{1,1}\right\| \geq 1$.
x) $\sigma_{\max }(A) \leq\|A\|$ for all $A \in \mathbb{C}^{n \times n}$ such that $\operatorname{rank} A=1$.
(Proof: The equivalence of i) - vii) is given in [288] and [289, p. 211]. Since
$\|A\|=\left\|E_{1,1}\right\| \sigma_{\max }(A)$ for all $A \in \mathbb{F}^{n \times n}$ such that rank $A=1$, it follows that vii) and viii) are equivalent. To prove $i x) \Longrightarrow x)$ let $A \in \mathbb{C}^{n \times n}$ satisfy $\operatorname{rank} A=1$. Then, $\|A\|=\sigma_{\max }(A)\left\|E_{1,1}\right\| \geq \sigma_{\max }(A)$. To show $\left.\left.x\right) \Longrightarrow i i\right)$, define $\|\cdot\|^{\prime} \triangleq\left\|E_{1,1}\right\|^{-1}\|\cdot\|$. Since $\left\|E_{1,1}\right\|^{\prime}=1$, it follows from [93, p. 94] that $\|\cdot\|^{\prime}$ is submultiplicative. Since $\left\|E_{1,1}\right\|^{-1} \leq 1$, it follows that $\|\cdot\|$ is also submultiplicative. Alternatively, $\|A\|^{\prime}=\sigma_{\max }(A)$ for all $A \in \mathbb{F}^{n \times n}$ having rank 1. Then, Corollary 3.10 of [525, p. 80] implies that $\|\cdot\|^{\prime}$, and thus $\|\cdot\|$ is submultiplicative.)

Fact 9.8.33. Let $\Phi: \mathbb{F}^{n} \mapsto \mathbb{F}$ satisfy the following conditions:
i) If $x \neq 0$, then $\Phi(x)>0$.
ii) $\Phi(\alpha x)=|\alpha| \Phi(x)$ for all $\alpha \in \mathbb{R}$.
iii) $\Phi(x+y) \leq \Phi(x)+\Phi(y)$ for all $x, y \in \mathbb{F}^{n}$.
iv) If $A \in \mathbb{F}^{n \times n}$ is a permutation matrix, then $\Phi(A x)=\Phi(x)$ for all $x \in \mathbb{F}^{n}$.
v) $\Phi(|x|)=\Phi(x)$ for all $x \in \mathbb{F}^{n}$.

Furthermore, for $A \in \mathbb{F}^{n \times m}$, define

$$
\|A\| \triangleq \Phi\left(\sigma_{1}(A), \ldots, \sigma_{n}(A)\right) .
$$

Then, $\|\cdot\|$ is a unitarily invariant norm. Conversely, if $\|\cdot\|$ is a unitarily invariant norm on $\mathbb{F}^{n \times m}$, where $n \leq m$, then $\Phi: \mathbb{F}^{n} \mapsto \mathbb{F}$ defined by

$$
\Phi(x) \triangleq\left\|\left[\begin{array}{cccc}
x_{(1)} & & & 0 \\
& \ddots & & \\
& & x_{(n)} & \\
0 & & 0_{n \times(m-n)}
\end{array}\right]\right\|
$$

satisfies i)-v). (Proof: See [525, pp. 75-76].) (Remark: Φ is a symmetric gauge function. This result is due to von Neumann. See Fact 8.16.6.)

Fact 9.8.34. Let $\|\cdot\|$ and $\|\cdot\|^{\prime}$ denote norms on \mathbb{F}^{m} and \mathbb{F}^{n}, respectively, and define $\hat{\ell}: \mathbb{F}^{n \times m} \mapsto \mathbb{R}$ by

$$
\hat{\ell}(A) \triangleq \min _{x \in \mathbb{F}^{m} \backslash\{0\}} \frac{\|A x\|^{\prime}}{\|x\|},
$$

or, equivalently,

$$
\hat{\ell}(A) \triangleq \min _{x \in\left\{y \in \mathbb{F}^{m}:\|y\|=1\right\}}\|A x\|^{\prime} .
$$

Then, for $A \in \mathbb{F}^{n \times n}$, the following statements hold:
i) $\hat{\ell}(A) \geq 0$.
ii) $\hat{\ell}(A)>0$ if and only if $\operatorname{rank} A=m$
iii) $\hat{\ell}(A)=\ell(A)$ if and only if either $A=0$ or $\operatorname{rank} A=m$.
(Proof: See [353, pp. 369, 370].) (Remark: $\hat{\ell}$ is a weaker version of ℓ.)

9.9 Facts on Matrix Norms Involving Two or More Matrices

Fact 9.9.1. $\|\cdot\|_{\infty}^{\prime} \triangleq n\|\cdot\|_{\infty}$ is submultiplicative on $\mathbb{F}^{n \times n}$. (Remark: It is not generally true that $\|A B\|_{\infty} \leq\|A\|_{\infty}\|B\|_{\infty}$. For example, let $A=$ $B=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$.)

Fact 9.9.2. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$. Then,

$$
\|A B\|_{\infty} \leq m\|A\|_{\infty}\|B\|_{\infty} .
$$

Furthermore, if $A=1_{n \times m}$ and $B=1_{m \times l}$, then $\|A B\|_{\infty}=m\|A\|_{\infty}\|B\|_{\infty}$.
Fact 9.9.3. Let $A, B \in \mathbb{F}^{n \times n}$ and let $\|\cdot\|$ be a submultiplicative norm on $\mathbb{F}^{n \times n}$. Then, $\|A B\| \leq\|A\|\|B\|$. Hence, if $\|A\| \leq 1$ and $\|B\| \leq 1$, then $\|A B\| \leq 1$, and if either $\|A\|<1$ or $\|B\|<1$, then $\|A B\|<1$. (Remark: $\operatorname{sprad}(A)<1$ and $\operatorname{sprad}(B)<1$ do not imply that $\operatorname{sprad}(A B)<1$. Let $A=B^{\mathrm{T}}=\left[\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right]$.)

Fact 9.9.4. Let $\|\cdot\|$ be a norm on $\mathbb{F}^{m \times m}$, and let

$$
\delta>\sup \left\{\frac{\|A B\|}{\|A\|\|B\|}: \quad A, B \in \mathbb{F}^{m \times m}, A, B \neq 0\right\}
$$

Then, $\|\cdot\|^{\prime}=\delta\|\cdot\|$ is a submultiplicative norm on $\mathbb{F}^{m \times m}$. (Proof: See [287, p. 323].)

Fact 9.9.5. Let $A, B \in \mathbb{F}^{n \times n}$, and let $\|\cdot\|$ be a submultiplicative norm on $\mathbb{F}^{n \times n}$. Then, $\|\cdot\|^{\prime} \triangleq 2\|\cdot\|$ is submultiplicative and satisfies

$$
\|[A, B]\|^{\prime} \leq\|A\|^{\prime}\|B\|^{\prime}
$$

Fact 9.9.6. Let $\|\cdot\|$ be a normalized, submultiplicative norm on $\mathbb{F}^{n \times n}$. Then, $\|\cdot\|$ is equi-induced if and only if $\|A\| \leq\|A\|^{\prime}$ for all $A \in \mathbb{F}^{n \times n}$ and for all normalized submultiplicative norms $\|\cdot\|^{\prime}$ on $\mathbb{F}^{n \times n}$. (Proof: See [528].) (Remark: As shown in $[138,164]$, not every normalized submultiplicative norm on $\mathbb{F}^{n \times n}$ is equi-induced or induced.)

Fact 9.9.7. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are Hermitian, let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times n}$, and let $k \in \mathbb{N}$. Then,

$$
\left\|(A-B)^{2 k+1}\right\| \leq 2^{2 k}\left\|A^{2 k+1}-B^{2 k+1}\right\| .
$$

(Proof: See [93, p. 294].)
Fact 9.9.8. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are nonnegative semidefinite, and let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times n}$. Then,

$$
\left\|(A-B)^{2}\right\| \leq\left\|A^{2}-B^{2}\right\| .
$$

(Proof: See [336].)
Fact 9.9.9. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are nonnegative semidefinite. Then,

$$
\|A B-B A\|_{\mathrm{F}}^{2}+\left\|(A-B)^{2}\right\|_{\mathrm{F}}^{2} \leq\left\|A^{2}-B^{2}\right\|_{\mathrm{F}}^{2}
$$

(Proof: See [336].)
Fact 9.9.10. Let $A, B \in \mathbb{F}^{n \times n}$, and let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times n}$. Then,

$$
\|A B\| \leq \sigma_{\max }(A)\|B\|
$$

and

$$
\|A B\| \leq\|A\| \sigma_{\max }(B)
$$

(Proof: See [336].)
Fact 9.9.11. Let $A, B \in \mathbb{F}^{n \times m}$, and let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times n}$. If $p>0$, then

$$
\left\|\left\langle B^{*} A\right\rangle^{p}\right\|^{2} \leq\left\|\left(A^{*} A\right)^{p}\right\|\left\|\left(B^{*} B\right)^{p}\right\| .
$$

In particular,

$$
\left\|\left(A^{*} B B^{*} A\right)^{1 / 4}\right\|^{2} \leq\|A\|\|B\|
$$

and

$$
\left\|A^{*} B\right\|^{2} \leq\left\|A^{*} A\right\|\left\|B^{*} B\right\| .
$$

Furthermore,

$$
\operatorname{tr}\left\langle B^{*} A\right\rangle \leq\|A\|_{\mathrm{F}}\|B\|_{\mathrm{F}}
$$

and

$$
\left[\operatorname{tr}\left(A^{*} B B^{*} A\right)^{1 / 4}\right]^{2} \leq(\operatorname{tr}\langle A\rangle)(\operatorname{tr}\langle B\rangle) .
$$

(Proof: See [291].) (Problem: Noting Fact 9.10.5, compare the lower bounds for $\|A\|_{\mathrm{F}}^{2}\|B\|_{\mathrm{F}}^{2}$ given by

$$
\left|\operatorname{tr}\left(A^{*} B\right)^{2}\right| \leq \operatorname{tr} A A^{*} B B^{*} \leq\|A\|_{\mathrm{F}}^{2}\|B\|_{\mathrm{F}}^{2}
$$

and

$$
\left.\left[\operatorname{tr}\left(A^{*} B B^{*} A\right)^{1 / 2}\right]^{2} \leq\|A\|_{\mathrm{F}}^{2}\|B\|_{\mathrm{F}}^{2} .\right)
$$

Fact 9.9.12. Let $A, B \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite. Then, $\left(2\|A\|_{\mathrm{F}}\|B\|_{\mathrm{F}}\right)^{1 / 2} \leq\left[\|A\|_{\mathrm{F}}^{2}+\|B\|_{\mathrm{F}}^{2}\right]^{1 / 2} \leq\|A+B\|_{\mathrm{F}} \leq \sqrt{2}\left[\|A\|_{\mathrm{F}}^{2}+\|B\|_{\mathrm{F}}^{2}\right]^{1 / 2}$.

Fact 9.9.13. Let $A, B \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite, and let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times n}$. Then,

$$
\|A B\| \leq \frac{1}{4}\left\|(A+B)^{2}\right\| .
$$

In particular,

$$
\begin{gathered}
\operatorname{tr} A B \leq \operatorname{tr}\left(A B^{2} A\right)^{1 / 2} \leq \frac{1}{4} \operatorname{tr}(A+B)^{2}, \\
\operatorname{tr}(A B)^{2} \leq \operatorname{tr} A^{2} B^{2} \leq \frac{1}{16} \operatorname{tr}(A+B)^{4}, \\
\quad \sigma_{\max }(A B) \leq \frac{1}{4} \sigma_{\max }\left[(A+B)^{2}\right] .
\end{gathered}
$$

(Proof: See [625, p. 77] or [97]. The inequalities $\operatorname{tr} A B \leq \operatorname{tr}\left(A B^{2} A\right)^{1 / 2}$ and $\operatorname{tr}(A B)^{2} \leq \operatorname{tr} A^{2} B^{2}$ follow from Fact 8.12.8.) (Problem: Noting Fact 9.9.12, compare the lower bounds for $\|A+B\|_{\mathrm{F}}$ given by

$$
\left(2\|A\|_{\mathrm{F}}\|B\|_{\mathrm{F}}\right)^{1 / 2} \leq\left[\|A\|_{\mathrm{F}}^{2}+\|B\|_{\mathrm{F}}^{2}\right]^{1 / 2} \leq\|A+B\|_{\mathrm{F}}
$$

and

$$
\left.2\|A B\|_{\mathrm{F}}^{1 / 2} \leq\left\|(A+B)^{2}\right\|_{\mathrm{F}}^{1 / 2} \leq\|A+B\|_{\mathrm{F}} .\right)
$$

Fact 9.9.14. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{m \times l}$, and $p, q, q^{\prime}, r \in[1, \infty]$, and assume that $1 / q+1 / q^{\prime}=1$. Then,

$$
\|A B\|_{p} \leq \varepsilon_{p q}(n) \varepsilon_{p r}(l) \varepsilon_{q^{\prime} r}(m)\|A\|_{q}\|B\|_{r},
$$

where

$$
\varepsilon_{p q}(n) \triangleq \begin{cases}1, & p \geq q, \\ n^{1 / p-1 / q}, & q \geq p .\end{cases}
$$

Furthermore, there exist $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{m \times l}$ such that equality holds. (Proof: See [233].) (Remark: Related results are given in [198,233-235,366, 552]

Fact 9.9.15. Let $A, B \in \mathbb{C}^{n \times m}$. Then, there exist unitary matrices $S_{1}, S_{2} \in \mathbb{C}^{m \times m}$ such that

$$
\langle A+B\rangle \leq S_{1}\langle A\rangle S_{1}^{*}+S_{2}\langle B\rangle S_{2}^{*} .
$$

(Remark: This result is a matrix version of the triangle inequality. See [24, 546].)

Fact 9.9.16. Let $A, X, B \in \mathbb{F}^{n \times n}$, and let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times n}$. Then,

$$
\left\|A^{*} X B\right\| \leq \frac{1}{2}\left\|A A^{*} X+X B B^{*}\right\| .
$$

In particular,

$$
\left\|A^{*} B\right\| \leq \frac{1}{2}\left\|A A^{*}+B B^{*}\right\| .
$$

(Proof: See [94, 96].) (Remark: See Fact 9.12.20.)
Fact 9.9.17. Let $A, B \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite, and let $p \in[1, \infty]$. Then,

$$
\|A-B\|_{\sigma 2 p}^{2} \leq\left\|A^{2}-B^{2}\right\|_{\sigma p}
$$

(Proof: See [332].)
Fact 9.9.18. Let $A, B \in \mathbb{F}^{n \times n}$. If $p \in(0,2]$, then

$$
2^{p-1}\left(\|A\|_{\sigma p}^{p}+\|B\|_{\sigma p}^{p}\right) \leq\|A+B\|_{\sigma p}^{p}+\|A-B\|_{\sigma p}^{p} \leq 2\left(\|A\|_{\sigma p}^{p}+\|B\|_{\sigma p}^{p}\right) .
$$

If $p \in[2, \infty)$, then

$$
2\left(\|A\|_{\sigma p}^{p}+\|B\|_{\sigma p}^{p}\right) \leq\|A+B\|_{\sigma p}^{p}+\|A-B\|_{\sigma p}^{p} \leq 2^{p-1}\left(\|A\|_{\sigma p}^{p}+\|B\|_{\sigma p}^{p}\right) .
$$

If $p \in(1,2]$ and $1 / p+1 / q=1$, then

$$
\|A+B\|_{\sigma p}^{q}+\|A-B\|_{\sigma p}^{q} \leq 2\left(\|A\|_{\sigma p}^{p}+\|B\|_{\sigma p}^{p}\right)^{q / p} .
$$

If $p \in[2, \infty)$ and $1 / p+1 / q=1$, then

$$
2\left(\|A\|_{\sigma p}^{p}+\|B\|_{\sigma p}^{p}\right)^{q / p} \leq\|A+B\|_{\sigma p}^{q}+\|A-B\|_{\sigma p}^{q} .
$$

(Proof: See [283].) (Remark: These inequalities are versions of the Clarkson inequalities.) (Remark: See [283] for extensions to unitarily invariant norms.)

Fact 9.9.19. Let $A, B \in \mathbb{F}^{n \times n}$. Then,

$$
\|\langle A\rangle-\langle B\rangle\|_{\mathrm{F}}^{2}+\left\|\left\langle A^{*}\right\rangle-\left\langle B^{*}\right\rangle\right\|_{\mathrm{F}}^{2} \leq 2\|A-B\|_{\mathrm{F}}^{2} .
$$

If, in addition, A and B are Hermitian, then

$$
\|\langle A\rangle-\langle B\rangle\|_{\mathrm{F}} \leq\|A-B\|_{\mathrm{F}} .
$$

(Proof: See $[24,331]$.) (Remark: This inequality generalizes a result due to Araki and Yamagami.)

Fact 9.9.20. Let $A, B \in \mathbb{F}^{n \times n}$. Then,

$$
\|\langle A\rangle-\langle B\rangle\|_{\mathrm{F}}^{2}+\left\|\left\langle A^{*}\right\rangle-\left\langle B^{*}\right\rangle\right\|_{\mathrm{F}}^{2} \leq 2\|A-B\|_{\mathrm{F}}^{2} .
$$

If, in addition, A and B are Hermitian, then

$$
\|\langle A\rangle-\langle B\rangle\|_{\mathrm{F}} \leq\|A-B\|_{\mathrm{F}} .
$$

(Proof: See [24, 331].)

Fact 9.9.21. Let $A, B \in \mathbb{F}^{n \times n}$, and let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times n}$. Then,

$$
\|\langle A\rangle-\langle B\rangle\| \leq \sqrt{2\|A+B\|\|A-B\|} .
$$

(Proof: See [24].) (Remark: This result is due to Kosaki and Bhatia.)
Fact 9.9.22. Let $A, B \in \mathbb{F}^{n \times n}$, and let $p \geq 1$. Then,

$$
\|\langle A\rangle-\langle B\rangle\|_{\sigma p} \leq \max \left\{2^{1 / p-1 / 2}, 1\right\} \sqrt{\left\|A+\left.B\right|_{\sigma p}\right\| A-B \|_{\sigma p}} .
$$

(Proof: See [24].) (Remark: This result is due to Kittaneh, Kosaki, and Bhatia.)

Fact 9.9.23. Let $A \in \mathbb{F}^{n \times n}$, let $B \in \mathbb{F}^{n \times n}$, and assume that B is Hermitian. Then,

$$
\sigma_{\max }\left[A-\frac{1}{2}\left(A+A^{*}\right)\right] \leq \sigma_{\max }(A-B)
$$

and

$$
\left\|A-\frac{1}{2}\left(A+A^{*}\right)\right\|_{\mathrm{F}} \leq\|A-B\|_{\mathrm{F}} .
$$

(Proof: See [466, p. 150].)
Fact 9.9.24. Let $A, M, S, B \in \mathbb{F}^{n \times n}$, and assume that $A=M S, M$ is nonnegative semidefinite, and S and B are unitary. Then,

$$
\|A-S\|_{\mathrm{F}} \leq\|A-B\|_{\mathrm{F}} .
$$

(Proof: See [466, p. 150].) (Remark: $A=M S$ is the polar decomposition of A. See Corollary 5.6.4.)

Fact 9.9.25. Let $A \in \mathbb{F}^{n \times n}$, let $\|\cdot\|$ be a normalized submultiplicative norm on $\mathbb{F}^{n \times n}$, and assume that $\|I-A\|<1$. Then, A is nonsingular.

Fact 9.9.26. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A is nonsingular, let $\|\cdot\|$ be a normalized submultiplicative norm on $\mathbb{F}^{n \times n}$, and assume that $\|A-B\|<$ $1 /\left\|A^{-1}\right\|$. Then, B is nonsingular.

Fact 9.9.27. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and $A+B$ are nonsingular, and let $\|\cdot\|$ be a normalized submultiplicative norm on $\mathbb{F}^{n \times n}$. Then,

$$
\left\|A^{-1}-(A+B)^{-1}\right\| \leq\left\|A^{-1}\right\|\left\|(A+B)^{-1}\right\|\|B\| .
$$

If, in addition, $\left\|A^{-1} B\right\|<1$, then

$$
\left\|A^{-1}+(A+B)^{-1}\right\| \leq \frac{\left\|A^{-1}\right\|\left\|A^{-1} B\right\|}{1-\left\|A^{-1} B\right\|}
$$

Furthermore, if $\left\|A^{-1} B\right\|<1$ and $\|B\|<1 /\left\|A^{-1}\right\|$, then

$$
\left\|A^{-1}-(A+B)^{-1}\right\| \leq \frac{\left\|A^{-1}\right\|^{2}\|B\|}{1-\left\|A^{-1}\right\|\|B\|}
$$

Fact 9.9.28. Let $A \in \mathbb{F}^{n \times n}$, assume that A is nonsingular, let $E \in$ $\mathbb{F}^{n \times n}$, and let $\|\cdot\|$ be a normalized norm on $\mathbb{F}^{n \times n}$. Then,

$$
\begin{aligned}
(A+E)^{-1} & =A^{-1}\left(I+E A^{-1}\right)^{-1} \\
& =A^{-1}-A^{-1} E A^{-1}+O\left(\|E\|^{2}\right)
\end{aligned}
$$

Fact 9.9.29. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{l \times k}$. Then,

$$
\begin{aligned}
\|A \otimes B\|_{\mathrm{col}} & =\|A\|_{\mathrm{col}}\|B\|_{\mathrm{col}} \\
\|A \otimes B\|_{\infty} & =\|A\|_{\infty}\|B\|_{\infty} \\
\|A \otimes B\|_{\mathrm{row}} & =\|A\|_{\mathrm{row}}\|B\|_{\mathrm{row}}
\end{aligned}
$$

Furthermore, if $p \in[1, \infty]$, then

$$
\|A \otimes B\|_{p}=\|A\|_{p}\|B\|_{p}
$$

Fact 9.9.30. Let $A, B \in \mathbb{F}^{n \times n}$, and let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times m}$. Then,

$$
\|A \circ B\|^{2} \leq\left\|A^{*} A\right\|\left\|B^{*} B\right\|
$$

(Proof: See [290].)
Fact 9.9.31. Let $A \in \mathbb{R}^{n \times n}$ be nonsingular, let $b \in \mathbb{R}^{n}$, and let $\hat{x} \in \mathbb{R}^{n}$. Then,

$$
\frac{1}{\kappa(A)} \frac{\|A \hat{x}-b\|}{\|b\|} \leq \frac{\left\|\hat{x}-A^{-1} b\right\|}{\left\|A^{-1} b\right\|} \leq \kappa(A) \frac{\|A \hat{x}-b\|}{\|b\|},
$$

where $\kappa(A) \triangleq\|A\|\left\|A^{-1}\right\|$ and the vector and matrix norms are compatible. Equivalently, letting $\hat{b} \triangleq A \hat{x}-b$ and $x \triangleq A^{-1} b$, it follows that

$$
\frac{1}{\kappa(A)} \frac{\|\hat{b}\|}{\|b\|} \leq \frac{\|\hat{x}-x\|}{\|x\|} \leq \kappa(A) \frac{\|\hat{b}\|}{\|b\|}
$$

(Remark: This result estimates the accuracy of an approximate solution \hat{x} to $A x=b . \kappa(A)$ is the condition number of A.)

Fact 9.9.32. Let $A \in \mathbb{R}^{n \times n}$ be nonsingular, let $\hat{A} \in \mathbb{R}^{n \times n}$, assume that $\left\|A^{-1} \hat{A}\right\|<1$, and let $b, \hat{b} \in \mathbb{R}^{n}$. Furthermore, let $x \in \mathbb{R}^{n}$ satisfy $A x=b$, and
let $\hat{x} \in \mathbb{R}^{n}$ satisfy $(A+\hat{A}) \hat{x}=b+\hat{b}$. Then,

$$
\frac{\|\hat{x}-x\|}{\|x\|} \leq \frac{\kappa(A)}{1-\left\|A^{-1} \hat{A}\right\|}\left(\frac{\|\hat{b}\|}{\|b\|}+\frac{\|\hat{A}\|}{\|A\|}\right)
$$

where $\kappa(A) \triangleq\|A\|\left\|A^{-1}\right\|$ and the vector and matrix norms are compatible. If, in addition, $\left\|A^{-1}\right\|\|\hat{A}\|<1$, then

$$
\frac{1}{\kappa(A)+1} \frac{\|\hat{b}-\hat{A} x\|}{\|b\|} \leq \frac{\|\hat{x}-x\|}{\|x\|} \leq \frac{\kappa(A)}{1-\left\|A^{-1} \hat{A}\right\|} \frac{\|\hat{b}-\hat{A} x\|}{\|b\|} .
$$

(Proof: See [174, 175].)
Fact 9.9.33. Let $A, \hat{A} \in \mathbb{R}^{n \times n}$ satisfy $\left\|A^{+} \hat{A}\right\|<1$, let $b \in \mathcal{R}(A)$, let $\hat{b} \in \mathbb{R}^{n}$, and assume that $b+\hat{b} \in \mathcal{R}(A+\hat{A})$. Furthermore, let $\hat{x} \in \mathbb{R}^{n}$ satisfy $(A+\hat{A}) \hat{x}=b+\hat{b}$. Then, $x \triangleq A^{+} b+\left(I-A^{+} A\right) \hat{x}$ satisfies $A x=b$ and

$$
\frac{\|\hat{x}-x\|}{\|x\|} \leq \frac{\kappa(A)}{1-\left\|A^{+} \hat{A}\right\|}\left(\frac{\|\hat{b}\|}{\|b\|}+\frac{\|\hat{A}\|}{\|A\|}\right)
$$

where $\kappa(A) \triangleq\|A\|\left\|A^{-1}\right\|$ and the vector and matrix norms are compatible. (Proof: See [174].) (Remark: See [175] for a lower bound.)

Fact 9.9.34. Let $A \in \mathbb{F}^{n \times m}$ be the partitioned matrix

$$
A=\left[\begin{array}{cccc}
A_{11} & A_{12} & \cdots & A_{1 k} \\
A_{21} & A_{22} & \cdots & A_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
A_{k 1} & A_{k 2} & \cdots & A_{k k}
\end{array}\right],
$$

where $A_{i j} \in \mathbb{F}^{n_{i} \times n_{j}}$ for all $i, j=1, \ldots, k$. Then, the following statements hold:
i) If $p \in[1,2]$, then

$$
\sum_{i, j=1}^{k}\left\|A_{i j}\right\|_{\sigma p}^{2} \leq\|A\|_{\sigma p}^{2} \leq k^{4 / p-2} \sum_{i, j=1}^{k}\left\|A_{i j}\right\|_{\sigma p}^{2}
$$

ii) If $p \in[2, \infty]$, then

$$
k^{4 / p-2} \sum_{i, j=1}^{k}\left\|A_{i j}\right\|_{\sigma p}^{2} \leq\|A\|_{\sigma p}^{2} \leq \sum_{i, j=1}^{k}\left\|A_{i j}\right\|_{\sigma p}^{2} .
$$

iii) If $p \in[1,2]$, then

$$
\|A\|_{\sigma p}^{p} \leq \sum_{i, j=1}^{k}\left\|A_{i j}\right\|_{\sigma p}^{p} \leq k^{2-p}\|A\|_{\sigma p}^{p} .
$$

iv) If $p \in[2, \infty)$, then

$$
k^{2-p}\|A\|_{\sigma p}^{p} \leq \sum_{i, j=1}^{k}\left\|A_{i j}\right\|_{\sigma p}^{p} \leq\|A\|_{\sigma p}^{p} .
$$

(Proof: See [95].) (Remark: Equality holds for $p=1$.)

9.10 Facts on Matrix Norms and Eigenvalues

Fact 9.10.1. Let $A \in \mathbb{F}^{n \times n}$, and let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{m}}$. Then,

$$
|\operatorname{tr} A| \leq \sum_{i=1}^{n}\left|\lambda_{i}\right| \leq\|A\|_{\sigma 1}=\operatorname{tr}\langle A\rangle .
$$

If, in addition, A is nonnegative semidefinite, then

$$
\|A\|_{\sigma 1}=\operatorname{tr} A
$$

Fact 9.10.2. Let $A \in \mathbb{F}^{n \times n}$, and let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{m}}$. Then,

$$
\left|\operatorname{tr} A^{2}\right| \leq \sum_{i=1}^{n}\left|\lambda_{i}\right|^{2} \leq\|A\|_{\sigma 2}^{2}=\|A\|_{\mathrm{F}}^{2}=\operatorname{tr} A^{*} A .
$$

If, in addition, A is Hermitian, then

$$
\|A\|_{\sigma 2}=\sqrt{\operatorname{tr} A^{2}}
$$

(Proof: $\operatorname{tr}\left(A+A^{*}\right)^{2} \geq 0$ and $\operatorname{tr}\left(A-A^{*}\right)^{2} \leq 0$.) (Remark: See Fact 8.14.3.)
Fact 9.10.3. Let $A \in \mathbb{F}^{n \times n}$, let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{m}}$, and let $p \in(0,2]$. Then,

$$
\left|\operatorname{tr} A^{p}\right| \leq \sum_{i=1}^{n}\left|\lambda_{i}\right|^{p} \leq\|A\|_{\sigma p}^{p} \leq\|A\|_{p}^{p}
$$

(Proof: See Fact 8.14.3 and Proposition 9.2.5.)
Fact 9.10.4. Let $A, B \in \mathbb{F}^{n \times m}$, let $\operatorname{mspec}\left(A^{*} B\right)=\left\{\lambda_{1}, \ldots, \lambda_{m}\right\}_{\mathrm{m}}$, and let $p, q \in[1, \infty]$ satisfy $1 / p+1 / q=1$. Then,

$$
\left|\operatorname{tr} A^{*} B\right| \leq \sum_{i=1}^{n}\left|\lambda_{i}\right| \leq \sum_{i=1}^{n} \sigma_{i}\left(A^{*} B\right)=\|A B\|_{\sigma 1} \leq\|A\|_{\sigma_{p}}\|B\|_{\sigma q} .
$$

In particular,

$$
\left|\operatorname{tr} A^{*} B\right| \leq\|A\|_{\mathrm{F}}\|B\|_{\mathrm{F}} .
$$

(Proof: Use Proposition 9.3.6.)

Fact 9.10.5. Let $A, B \in \mathbb{F}^{n \times m}$, and let $\operatorname{mspec}\left(A^{*} B\right)=\left\{\lambda_{1}, \ldots, \lambda_{m}\right\}_{\mathrm{m}}$. Then,
$\left|\operatorname{tr}\left(A^{*} B\right)^{2}\right| \leq \sum_{i=1}^{n}\left|\lambda_{i}\right|^{2} \leq \sum_{i=1}^{n} \sigma_{i}^{2}\left(A^{*} B\right)=\operatorname{tr} A A^{*} B B^{*}=\left\|A^{*} B\right\|_{\mathrm{F}}^{2} \leq\|A\|_{\mathrm{F}}^{2}\|B\|_{\mathrm{F}}^{2}$.
(Proof: Use Fact 8.14.3.)
Fact 9.10.6. Let $A \in \mathbb{R}^{n \times n}$, and let $\lambda \in \operatorname{spec}(A)$. Then, the following inequalities hold:
i) $|\lambda| \leq n\|A\|_{\infty}$.
ii) $|\operatorname{Re} \lambda| \leq \frac{n}{2}\left\|A+A^{\mathrm{T}}\right\|_{\infty}$.
iii) $|\operatorname{Im} \lambda| \leq \frac{\sqrt{n^{2}-n}}{2 \sqrt{2}}\left\|A-A^{\mathrm{T}}\right\|_{\infty}$.
(Proof: See [395, p. 140].) (Remark: i) and ii) are Hirsch's theorems, while iii) is Bendixson's theorem. See Fact 5.9.21.)

Fact 9.10.7. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are Hermitian, and let $\operatorname{mspec}(A+\jmath B)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{m}}$. Then,

$$
\sum_{i=1}^{n}\left|\operatorname{Re} \lambda_{i}\right|^{2} \leq\|B\|_{\mathrm{F}}^{2}
$$

and

$$
\sum_{i=1}^{n}\left|\operatorname{Im} \lambda_{i}\right|^{2} \leq\|C\|_{\mathrm{F}}^{2}
$$

(Proof: See [466, p. 146].)
Fact 9.10.8. Let $A \in \mathbb{F}^{n \times n}$, let $\|\cdot\|$ be the norm on $\mathbb{F}^{n \times n}$ induced by the norm $\|\cdot\|^{\prime}$ on \mathbb{F}^{n}, and define

$$
\mu(A) \triangleq \lim _{\varepsilon \rightarrow 0^{+}} \frac{\|I+\varepsilon A\|-1}{\varepsilon}
$$

and let $A, B \in \mathbb{F}^{n \times n}$. Then, the following statements hold:
i) $\mu(A)=\mathrm{D}_{+} f(A ; I)$, where $f: \mathbb{F}^{n \times n} \mapsto \mathbb{R}$ is defined by $f(A) \triangleq\|A\|$.
ii) $\mu(A)=\lim _{\varepsilon \rightarrow 0^{+}} \varepsilon^{-1} \log \left\|e^{\varepsilon A}\right\|$.
iii) $\mu(I)=1, \mu(-I)=-1$, and $\mu(0)=0$.
iv) $-\|A\| \leq-\mu(-A) \leq \operatorname{Re} \lambda_{i}(A) \leq \mu(A) \leq\|A\|$ for all $i=1, \ldots, n$.
v) $\mu(\alpha A)=|\alpha| \mu[(\operatorname{sign} \alpha) A]$ for all $\alpha \in \mathbb{R}$.
vi) $\mu(A+\alpha I)=\mu(A)+\operatorname{Re} \alpha$ for all $\alpha \in \mathbb{F}$.
vii) $\max \{\mu(A)-\mu(-B),-\mu(-A)+\mu(B)\} \leq \mu(A+B) \leq \mu(A)+\mu(B)$.
viii) $\mu(\alpha A+(1-\alpha) B) \leq \alpha \mu(A)+(1-\alpha) \mu(B)$ for all $\alpha \in[0,1]$.
ix) $|\mu(A)-\mu(B)| \leq \max \{|\mu(A-B)|,|\mu(B-A)|\} \leq\|A-B\|$.
x) $\max \{-\mu(-A),-\mu(A)\}\|x\|^{\prime} \leq\|A x\|^{\prime}$ for all $x \in \mathbb{F}^{n}$.
xi) If A is nonsingular, then $\max \{-\mu(-A),-\mu(A)\} \leq 1 /\left\|A^{-1}\right\|$.
xii) $\operatorname{spabs}(A) \leq \mu(A)$.
xiii) $\left\|e^{A}\right\| \leq e^{\mu(A)}$.
xiv) If $\|\cdot\|=\sigma_{\max }(\cdot)$, then

$$
\mu(A)=\frac{1}{2} \lambda_{\max }\left(A+A^{*}\right) .
$$

xv) If $\|\cdot\|^{\prime}=\|\cdot\|_{1}$ and thus $\|\cdot\|=\|\cdot\|_{\text {col }}$, then

$$
\mu(A)=\max _{j \in\{1, \ldots, n\}}\left(\operatorname{Re} a_{j j}+\sum_{\substack{i=1 \\ i \neq j}}^{n}\left|a_{i j}\right|\right)
$$

xvi) If $\|\cdot\|^{\prime}=\|\cdot\|_{\infty}$ and thus $\|\cdot\|=\|\cdot\|_{\text {row }}$, then

$$
\mu(A)=\max _{i \in\{1, \ldots, n\}}\left(\operatorname{Re} a_{i i}+\sum_{\substack{j=1 \\ j \neq i}}^{n}\left|a_{i j}\right|\right)
$$

(Proof: See $[171,172,448,532]$.) (Remark: $\mu(\cdot)$ is the matrix measure or logarithmic derivative. For applications, see [576]. See Fact 9.10 .8 for the logarithmic derivative of an asymptotically stable matrix.)

Fact 9.10.9. Let $A, B \in \mathbb{F}^{n \times n}$, assume that A and B are Hermitian, and let $\|\cdot\|$ be a weakly unitarily invariant norm on $\mathbb{F}^{n \times n}$. Then,

$$
\begin{aligned}
& \left\|\left[\begin{array}{ccc}
\lambda_{1}(A) & & 0 \\
& \ddots & \\
0 & & \lambda_{n}(A)
\end{array}\right]-\left[\begin{array}{ccc}
\lambda_{1}(B) & & 0 \\
& \ddots & \\
0 & & \lambda_{n}(B)
\end{array}\right]\right\| \leq\|A-B\| \\
& \quad \leq\left\|\left[\begin{array}{ccc}
\lambda_{1}(A) & & 0 \\
0 & \ddots & \\
0 & & \lambda_{n}(A)
\end{array}\right]-\left[\begin{array}{ccc}
\lambda_{n}(B) & & 0 \\
& \ddots & \\
0 & & \lambda_{1}(B)
\end{array}\right]\right\| .
\end{aligned}
$$

In particular,

$$
\max _{i \in\{1, \ldots, n\}}\left|\lambda_{i}(A)-\lambda_{i}(B)\right| \leq \sigma_{\max }(A-B) \leq \max _{i \in\{1, \ldots, n\}}\left|\lambda_{i}(A)-\lambda_{n-i+1}(B)\right|
$$

and

$$
\sum_{i=1}^{n}\left[\lambda_{i}(A)-\lambda_{i}(B)\right]^{2} \leq\|A-B\|_{\mathrm{F}}^{2} \leq \sum_{i=1}^{n}\left[\lambda_{i}(A)-\lambda_{n-i+1}(B)\right]^{2} .
$$

(Proof: See [24], [92, p. 38], [93, p. 63, 69], [324, p. 126], [356, p. 134], [368], or [525, p. 202].) (Remark: The first inequality is the Lidskii-MirskyWielandt theorem. The result can be stated without norms using Fact 9.8.33. See [368].)

Fact 9.10.10. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A and B are normal. Then, there exists a permutation σ of $1, \ldots, n$ such that

$$
\sum_{i=1}^{n}\left|\lambda_{\sigma(i)}(A)-\lambda_{i}(B)\right|^{2} \leq\|A-B\|_{\mathrm{F}}^{2}
$$

(Proof: See [287, p. 368] or [466, pp. 160-161].) (Remark: This inequality is the Hoffman-Wielandt theorem.)

Fact 9.10.11. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A is Hermitian and B is normal. Furthermore, let $\operatorname{mspec}(B)=\left\{\lambda_{1}(B), \ldots, \lambda_{n}(B)\right\}_{\mathrm{m}}$, where $\operatorname{Re} \lambda_{1}(B) \geq \cdots \geq \operatorname{Re} \lambda_{n}(B)$. Then,

$$
\sum_{i=1}^{n}\left|\lambda_{i}(A)-\lambda_{i}(B)\right|^{2} \leq\|A-B\|_{\mathrm{F}}^{2}
$$

(Proof: See [287, p. 370].) (Remark: This result is a special case of Fact 9.10.10.)

9.11 Facts on Singular Values Involving One Matrix

Fact 9.11.1. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\sigma_{\min }(A)=\min _{x \in \mathbb{F}^{n} \backslash\{0\}}\left(\frac{x^{*} A^{*} A x}{x^{*} x}\right)^{1 / 2}
$$

and

$$
\sigma_{\max }(A)=\max _{x \in \mathbb{P}^{n} \backslash\{\{ \}}\left(\frac{x^{*} A^{*} A x}{x^{*} x}\right)^{1 / 2} .
$$

(Proof: See Lemma 8.4.3.)
Fact 9.11.2. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\begin{aligned}
\sigma_{\max }(A) & =\max \left\{\left|y^{*} A x\right|: x \in \mathbb{F}^{m}, y \in \mathbb{F}^{n},\|x\|_{2}=\|y\|_{2}=1\right\} \\
& =\max \left\{\left|y^{*} A x\right|: x \in \mathbb{F}^{m}, y \in \mathbb{F}^{n},\|x\|_{2} \leq 1,\|y\|_{2} \leq 1\right\} .
\end{aligned}
$$

(Remark: See Fact 9.8.27.)
Fact 9.11.3. Let $x \in \mathbb{F}^{n}$ and $y \in \mathbb{F}^{m}$, and define $\mathcal{S} \triangleq\left\{A \in \mathbb{F}^{n \times m}\right.$: $\left.\sigma_{\max }(A) \leq 1\right\}$. Then,

$$
\max _{A \in \mathcal{S}} x^{*} A y=\sqrt{x^{*} x y^{*} y}
$$

Fact 9.11.4. Let $\|\cdot\|$ be an equi-induced unitarily invariant norm on $\mathbb{F}^{n \times n}$. Then, $\|\cdot\|=\sigma_{\max }(\cdot)$.

Fact 9.11.5. Let $\|\cdot\|$ be an equi-induced self-adjoint norm on $\mathbb{F}^{n \times n}$. Then, $\|\cdot\|=\sigma_{\max }(\cdot)$.

Fact 9.11.6. Let $A \in \mathbb{F}^{n \times n}$, and let $\lambda \in \operatorname{spec}(A)$. Then,

$$
\sigma_{\min }(A) \leq|\lambda| \leq \sigma_{\max }(A)
$$

Hence,

$$
\left[\sigma_{\min }(A)\right]^{n} \leq|\operatorname{det} A| \leq\left[\sigma_{\max }(A)\right]^{n}
$$

(Proof: The second inequality follows from $|\lambda|\|x\|_{2} \leq \sigma_{\max }(A)\|x\|_{2}$ or Proposition 9.2.6.)

Fact 9.11.7. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
|\operatorname{det} A| \leq \sigma_{\min }(A) \sigma_{\max }^{n-1}(A)
$$

(Proof: Use $|\operatorname{det} A|=\prod_{i=1}^{n} \sigma_{i}(A)$.)
Fact 9.11.8. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\sigma_{\min }(A)-1 \leq \sigma_{\min }(A+I) \leq \sigma_{\min }(A)+1
$$

(Proof: Use Proposition 9.6.8.)
Fact 9.11.9. Let $A \in \mathbb{F}^{n \times n}$ be normal and let $r \in \mathbb{N}$. Then,

$$
\sigma_{\max }\left(A^{r}\right)=\sigma_{\max }^{r}(A)
$$

(Remark: Nonnormal matrices may also satisfy these conditions. Consider $\left.\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right].\right)$

Fact 9.11.10. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\sigma_{\max }^{2}(A)-\sigma_{\max }\left(A^{2}\right) \leq \sigma_{\max }\left(A^{*} A-A A^{*}\right) \leq \sigma_{\max }^{2}(A)
$$

If $A^{2}=0$, then

$$
\sigma_{\max }\left(A^{*} A-A A^{*}\right)=\sigma_{\max }^{2}(A)
$$

If A is normal, then

$$
\sigma_{\max }^{2}(A)=\sigma_{\max }\left(A^{2}\right)
$$

(Proof: See [336].)
Fact 9.11.11. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) $\operatorname{sprad}(A)=\sigma_{\max }(A)$.
ii) $\sigma_{\max }\left(A^{i}\right)=\sigma_{\text {max }}^{i}(A)$ for all $i \in \mathbb{P}$.
iii) $\sigma_{\max }\left(A^{n}\right)=\sigma_{\max }^{n}(A)$.
(Proof: See [208] and [289, p. 44].) (Remark: The result $i i i) \Longrightarrow i$) is due to Ptak.)

Fact 9.11.12. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\sigma_{\max }(A) \leq \sigma_{\max }(|A|) \leq \sqrt{\operatorname{rank} A} \sigma_{\max }(A)
$$

(Proof: See [280, p. 111].)
Fact 9.11.13. Let $A \in \mathbb{R}^{n \times n}$. Then,

$$
\sqrt{\frac{1}{2\left(n^{2}-n\right)}\left(\|A\|_{\mathrm{F}}^{2}+\operatorname{tr} A^{2}\right)} \leq \sigma_{\max }(A) .
$$

Furthermore, if $\|A\|_{\mathrm{F}} \leq \operatorname{tr} A$, then

$$
\sigma_{\max }(A) \leq \frac{1}{n} \operatorname{tr} A+\sqrt{\frac{n-1}{n}\left[\|A\|_{\mathrm{F}}^{2}-\frac{1}{n}(\operatorname{tr} A)^{2}\right]} .
$$

(Proof: See [410].) (Proof: The complex case is considered in [410].)
Fact 9.11.14. Let $A \in \mathbb{F}^{n \times n}$. Then, the polynomial $p \in \mathbb{R}[s]$ defined by

$$
p(s) \triangleq s^{n}-\|A\|_{\mathrm{F}}^{2} s+(n-1)|\operatorname{det} A|^{2 /(n-1)}=0
$$

has either exactly one or exactly two positive roots $0<\alpha \leq \beta$. Furthermore,

$$
\alpha^{(n-1) / 2} \leq \sigma_{\min }(A) \leq \sigma_{\max }(A) \leq \beta^{(n-1) / 2}
$$

(Proof: See [491].)
Fact 9.11.15. Let $A \in \mathbb{F}^{n \times n}$. Then, for all $k=1, \ldots, n$,

$$
\sum_{i=1}^{k} \sigma_{i}\left(A^{2}\right) \leq \sum_{i=1}^{k} \sigma_{i}^{2}(A)
$$

Hence,

$$
\operatorname{tr}\left(A^{2 *} A^{2}\right)^{1 / 2} \leq \operatorname{tr} A^{*} A,
$$

that is,

$$
\operatorname{tr}\left\langle A^{2}\right\rangle \leq \operatorname{tr}\langle A\rangle^{2}
$$

(Proof: Let $A=B$ in Proposition 9.6.3.)

Fact 9.11.16. Let $A \in \mathbb{F}^{n \times n}$, and let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{m}}$, where $\lambda_{1}, \ldots, \lambda_{n}$ are ordered such that $\left|\lambda_{1}\right| \geq \cdots \geq\left|\lambda_{n}\right|$. Then, for all $k=1, \ldots, n$,

$$
\prod_{i=1}^{k}\left|\lambda_{i}(A)\right|^{2} \leq \prod_{i=1}^{k} \sigma_{i}\left(A^{2}\right) \leq \prod_{i=1}^{k} \sigma_{i}^{2}(A)
$$

and

$$
\prod_{i=1}^{n}\left|\lambda_{i}(A)\right|^{2}=\prod_{i=1}^{n} \sigma_{i}\left(A^{2}\right)=\prod_{i=1}^{n} \sigma_{i}^{2}(A)=|\operatorname{det} A|^{2}
$$

(Proof: See [289, p. 172] and use Fact 5.9.13.) (Remark: See Fact 5.9.13 and Fact 8.14.16.)

Fact 9.11.17. Let $A \in \mathbb{F}^{n \times n}$, and let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \cdots, \lambda_{n}\right\}_{\mathrm{m}}$, where $\lambda_{1}, \ldots, \lambda_{n}$ are ordered such that $\left|\lambda_{1}\right| \geq \cdots \geq\left|\lambda_{n}\right|$. Then, for all $i=1, \ldots, n$,

$$
\lim _{k \rightarrow \infty} \sigma_{i}^{1 / k}\left(A^{k}\right)=\left|\lambda_{i}(A)\right|
$$

In particular,

$$
\lim _{k \rightarrow \infty}\left[\sigma_{\max }\left(A^{k}\right)\right]^{1 / k}=\operatorname{sprad}(A) .
$$

(Proof: See [287, p. 180].) (Remark: This identity is due to Yamamoto.) (Remark: The expression for $\operatorname{sprad}(A)$ is a special case of Proposition 9.2.6.)

9.12 Facts on Singular Values Involving Two or More Matrices

Fact 9.12.1. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{m \times n}$, and $p \in[1, \infty)$, and assume that $A B$ is normal. Then,

$$
\|A B\|_{\sigma p} \leq\|B A\|_{\sigma p}
$$

In particular,

$$
\begin{aligned}
\operatorname{tr}\langle A B\rangle & \leq \operatorname{tr}\langle B A\rangle, \\
\|A B\|_{\mathrm{F}} & \leq\|B A\|_{\mathrm{F}}, \\
\sigma_{\max }(A B) & \leq \sigma_{\max }(B A) .
\end{aligned}
$$

(Proof: This result is due to Simon. See [107].)
Fact 9.12.2. Let $A \in \mathbb{R}^{n \times n}$ be nonsingular and let $B \in \mathbb{R}^{n \times n}$ be singular. Then,

$$
\sigma_{\min }(A) \leq \sigma_{\max }(A-B)
$$

Furthermore, if $\sigma_{\max }\left(A^{-1}\right)=\operatorname{sprad}\left(A^{-1}\right)$, then there exists a singular matrix $C \in \mathbb{R}^{n \times n}$ such that $\sigma_{\max }(A-C)=\sigma_{\min }(A)$. (Proof: See [466, p. 151].) (Remark: This result is due to Franck.)

Fact 9.12.3. Let $A \in \mathbb{C}^{n \times n}$, assume that A is nonsingular, let $\|\cdot\|$ and $\|\cdot\|^{\prime}$ be norms on \mathbb{C}^{n}, let $\|\cdot\|^{\prime \prime}$ be the norm on $\mathbb{C}^{n \times n}$ induced by $\|\cdot\|$ and $\|\cdot\|^{\prime}$, and let $\|\cdot\|^{\prime \prime \prime}$ be the norm on $\mathbb{C}^{n \times n}$ induced by $\|\cdot\|^{\prime}$ and $\|\cdot\|$. Then,

$$
\min \left\{\|B\|^{\prime \prime}: \quad B \in \mathbb{C}^{n \times n} \text { and } A+B \text { is nonsingular }\right\}=1 /\left\|A^{-1}\right\|^{\prime \prime \prime}
$$

In particular,

$$
\begin{aligned}
& \min \left\{\|B\|_{\mathrm{col}}: \quad B \in \mathbb{C}^{n \times n} \text { and } A+B \text { is singular }\right\}=1 /\left\|A^{-1}\right\|_{\mathrm{col}} \\
& \min \left\{\sigma_{\max }(B): B \in \mathbb{C}^{n \times n} \text { and } A+B \text { is singular }\right\}=\sigma_{\min }(A) \\
& \min \left\{\|B\|_{\mathrm{row}}: B \in \mathbb{C}^{n \times n} \text { and } A+B \text { is singular }\right\}=1 /\left\|A^{-1}\right\|_{\mathrm{row}}
\end{aligned}
$$

(Proof: See [280, p. 111] and [278].) (Remark: This result is due to Gastinel. See [278].) (Remark: The result involving $\sigma_{\max }(B)$ is equivalent to the inequality in Fact 9.12.2.)

Fact 9.12.4. Let $A, B \in \mathbb{F}^{n \times m}$, and assume that $\operatorname{rank} A=\operatorname{rank} B$ and $\alpha \triangleq \sigma_{\max }\left(A^{+}\right) \sigma_{\max }(A-B)<1$. Then,

$$
\sigma_{\max }\left(B^{+}\right)<\frac{1}{1-\alpha} \sigma_{\max }\left(A^{+}\right)
$$

If, in addition, $n=m, A$ and B are nonsingular, and $\sigma_{\max }(A-B)<\sigma_{\min }(A)$, then

$$
\sigma_{\max }\left(B^{-1}\right)<\frac{\sigma_{\min }(A)}{\sigma_{\min }(A)-\sigma_{\max }(A-B)} \sigma_{\max }\left(A^{-1}\right)
$$

(Proof: See [280, p. 400].)
Fact 9.12.5. Let $A, B \in \mathbb{F}^{n \times n}$. Then,

$$
\sigma_{\max }(I-[A, B]) \geq 1
$$

(Proof: Since $\operatorname{tr}[A, B]=0$ it follows that there exists $\lambda \in \operatorname{spec}(I-[A, B])$ such that $\operatorname{Re} \lambda \geq 1$, and thus $|\lambda| \geq 1$. Hence, Corollary 9.4.5 implies that $\sigma_{\max }(I-[A, B]) \geq \operatorname{sprad}(I-[A, B]) \geq|\lambda| \geq 1$.)

Fact 9.12.6. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{n \times l}, C \in \mathbb{F}^{k \times m}$, and $D \in \mathbb{F}^{k \times l}$. Then,

$$
\sigma_{\max }\left(\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]\right) \leq \sigma_{\max }\left(\left[\begin{array}{cc}
\sigma_{\max }(A) & \sigma_{\max }(B) \\
\sigma_{\max }(C) & \sigma_{\max }(D)
\end{array}\right]\right)
$$

(Proof: See [337] and references given therein.) (Remark: This is a result of Tomiyama.)

Fact 9.12.7. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{n \times l}$, and $C \in \mathbb{F}^{k \times m}$. Then, for all
$X \in \mathbb{F}^{k \times l}$,

$$
\max \left\{\sigma_{\max }\left(\left[\begin{array}{ll}
A & B
\end{array}\right]\right), \sigma_{\max }\left(\left[\begin{array}{l}
A \\
C
\end{array}\right]\right)\right\} \leq \sigma_{\max }\left(\left[\begin{array}{cc}
A & B \\
C & X
\end{array}\right]\right)
$$

Furthermore, there exists $X \in \mathbb{F}^{k \times l}$ such that equality holds. (Remark: This result is Parrott's theorem. See [158].)

Fact 9.12.8. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{n \times l}$. Then,

$$
\begin{aligned}
\max \left\{\sigma_{\max }(A), \sigma_{\max }(B)\right\} & \leq \sigma_{\max }\left(\left[\begin{array}{ll}
A & B
\end{array}\right]\right) \\
& \leq\left[\sigma_{\max }^{2}(A)+\sigma_{\max }^{2}(B)\right]^{1 / 2} \\
& \leq \sqrt{2} \max \left\{\sigma_{\max }(A), \sigma_{\max }(B)\right\}
\end{aligned}
$$

and

$$
\left[\sigma_{n}^{2}(A)+\sigma_{n}^{2}(B)\right]^{1 / 2} \leq \sigma_{n}\left(\left[\begin{array}{ll}
A & B
\end{array}\right]\right) \leq\left\{\begin{array}{l}
{\left[\sigma_{n}^{2}(A)+\sigma_{\max }^{2}(B)\right]^{1 / 2}} \\
{\left[\sigma_{\max }^{2}(A)+\sigma_{n}^{2}(B)\right]^{1 / 2}}
\end{array}\right.
$$

Fact 9.12.9. Let $A, B \in \mathbb{F}^{n \times n}$, and let $\alpha>0$. Then,

$$
\sigma_{\max }(A+B) \leq\left[\left(1+\alpha^{2}\right) \sigma_{\max }^{2}(A)+\left(1+\alpha^{-2}\right) \sigma_{\max }^{2}(B)\right]^{1 / 2}
$$

and

$$
\sigma_{\min }(A+B) \leq\left[\left(1+\alpha^{2}\right) \sigma_{\min }^{2}(A)+\left(1+\alpha^{-2}\right) \sigma_{\max }^{2}(B)\right]^{1 / 2}
$$

Fact 9.12.10. Let $A, B \in \mathbb{F}^{n \times n}$. Then,

$$
\sigma_{\max }\left(\left[\begin{array}{cc}
A^{*} A & 0 \\
0 & B B^{*}
\end{array}\right]\right) \leq \sigma_{\max }\left(A^{*} A-B B^{*}\right)+\sigma_{\max }(A B)
$$

(Proof: See [623].)
Fact 9.12.11. Let $A, B \in \mathbb{F}^{n \times n}$. Then,

$$
\begin{aligned}
\sigma_{\min }(A)-\sigma_{\max }(B) & \leq|\operatorname{det}(A+B)|^{1 / n} \\
& \leq \prod_{i=1}^{n}\left|\sigma_{i}(A)+\sigma_{n-i+1}(B)\right|^{1 / n} \\
& \leq \sigma_{\max }(A)+\sigma_{\max }(B)
\end{aligned}
$$

(Proof: See [297, p. 63] and [367].)
Fact 9.12.12. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that $\sigma_{\max }(B) \leq \sigma_{\min }(A)$.

Then,

$$
\begin{aligned}
0 & \leq\left[\sigma_{\min }(A)-\sigma_{\max }(B)\right]^{n} \\
& \leq \prod_{i=1}^{n}\left|\sigma_{i}(A)-\sigma_{n-i+1}(B)\right| \\
& \leq|\operatorname{det}(A+B)| \\
& \leq \prod_{i=1}^{n}\left|\sigma_{i}(A)+\sigma_{n-i+1}(B)\right| \\
& \leq\left[\sigma_{\max }(A)+\sigma_{\max }(B)\right]^{n} .
\end{aligned}
$$

Hence, if $\sigma_{\max }(B)<\sigma_{\min }(A)$, then A is nonsingular and $A+\alpha B$ is nonsingular for all $-1 \leq \alpha \leq 1$. (Proof: See [367].) (Remark: See Fact 11.14.15.)

Fact 9.12.13. Let $A, B \in \mathbb{F}^{n \times m}$. Then,

$$
\left[\begin{array}{lll}
\sigma_{1}(A+B) & \cdots & \sigma_{\min \{n, m\}}(A+B)
\end{array}\right]
$$

weakly majorizes

$$
\left[\begin{array}{llll}
\sigma_{1}(A)+\sigma_{\min \{n, m\}}(B) & \cdots & \sigma_{\min \{n, m\}}(A)+\sigma_{1}(B)
\end{array}\right] .
$$

Furthermore, if either $\sigma_{\max }(A)<\sigma_{\min }(B)$ or $\sigma_{\max }(B)<\sigma_{\min }(A)$, then

$$
\left[\left|\sigma_{1}(A)-\sigma_{\min \{n, m\}}(B)\right| \cdots\left|\sigma_{\min \{n, m\}}(A)-\sigma_{1}(B)\right|\right]
$$

weakly majorizes

$$
\left[\begin{array}{lll}
\sigma_{1}(A+B) & \cdots & \sigma_{\min \{n, m\}}(A+B)
\end{array}\right]
$$

(Proof: See [367].)
Fact 9.12.14. Let $A \in \mathbb{F}^{n \times n}$, let $k \in \mathbb{P}$ satisfy $k<\operatorname{rank} A$, and let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times n}$. Then,

$$
\min _{B \in\left\{X \in \mathbb{F}^{n \times n}: \operatorname{rank} X=k\right\}}\|A-B\|=\left\|A-B_{0}\right\|,
$$

where B_{0} is formed by replacing the $n-k$ smallest singular values in the singular value decomposition of A by zeros. Furthermore,

$$
\sigma_{\max }\left(A-B_{0}\right)=\sigma_{k+1}(A)
$$

and

$$
\left\|A-B_{0}\right\|_{\mathrm{F}}=\sqrt{\sum_{i=k+1}^{r} \sigma_{i}^{2}(A)} .
$$

(Proof: The result follows from Fact 9.12.15. See [236] and [525, p. 208].) (Remark: This result is due to Schmidt and Mirsky.)

Fact 9.12.15. Let $A, B \in \mathbb{F}^{n \times m}$, define $A_{\sigma}, B_{\sigma} \in \mathbb{F}^{n \times m}$ by

$$
A_{\sigma} \triangleq\left[\begin{array}{llll}
\sigma_{1}(A) & & & \\
& \ddots & & \\
& & \sigma_{r}(A) & \\
& & & 0_{(n-r) \times(m-r)}
\end{array}\right]
$$

where $r \triangleq \operatorname{rank} A$, and

$$
B_{\sigma} \triangleq\left[\begin{array}{cccc}
\sigma_{1}(A) & & & \\
& \ddots & & \\
& & \sigma_{l}(A) & \\
& & & 0_{(n-l) \times(m-l)}
\end{array}\right]
$$

where $l \triangleq \operatorname{rank} B$, let $S_{1} \in \mathbb{F}^{n \times n}$ and $S_{2} \in \mathbb{F}^{m \times m}$ be unitary, and let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times m}$. Then,

$$
\left\|A_{\sigma}-B_{\sigma}\right\| \leq\left\|A-S_{1} B S_{2}\right\| \leq\left\|A_{\sigma}+B_{\sigma}\right\| .
$$

In particular,

$$
\max _{i \in\{1, \ldots, \max \{r, l\}\}}\left|\sigma_{i}(A)-\sigma_{i}(B)\right| \leq \sigma_{\max }(A-B) \leq \sigma_{\max }(A)+\sigma_{\max }(B) .
$$

(Proof: See [579].) (Remark: In the case $S_{1}=I_{n}$ and $S_{2}=I_{m}$, the left-hand inequality is Mirsky's theorem. See [525, p. 204].)

Fact 9.12.16. Let $A, B \in \mathbb{F}^{n \times m}$, and assume that $\operatorname{rank} A=\operatorname{rank} B$. Then,

$$
\begin{aligned}
\sigma_{\max }\left[A A^{+}\left(I-B B^{+}\right)\right] & =\sigma_{\max }\left[B B^{+}\left(I-A A^{+}\right)\right] \\
& \leq \min \left\{\sigma_{\max }\left(A^{+}\right), \sigma_{\max }\left(B^{+}\right)\right\} \sigma_{\max }(A-B) .
\end{aligned}
$$

(Proof: See [280, p. 400] and [525, p. 141].)
Fact 9.12.17. Let $A, B \in \mathbb{F}^{n \times m}$. Then, for all $k=1, \ldots, \min \{n, m\}$,

$$
\sum_{i=1}^{k} \sigma_{i}(A \circ B) \leq \sum_{i=1}^{k} \sigma_{i}(A) \sigma_{i}(B) .
$$

In particular,

$$
\sigma_{\max }(A \circ B) \leq \sigma_{\max }(A) \sigma_{\max }(B) .
$$

(Proof: See [289, p. 334].)
Fact 9.12.18. Let $A \in \mathbb{F}^{n \times m}, B \in \mathbb{F}^{l \times k}$, and $p \in[1, \infty]$. Then,

$$
\|A \otimes B\|_{\sigma p}=\|A\|_{\sigma p}\|B\|_{\sigma p} .
$$

In particular,

$$
\sigma_{\max }(A \otimes B)=\sigma_{\max }(A) \sigma_{\max }(B)
$$

and

$$
\|A \otimes B\|_{\mathrm{F}}=\|A\|_{\mathrm{F}}\|B\|_{\mathrm{F}}
$$

Fact 9.12.19. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{l \times m}$, and let $p, q>1$ satisfy $1 / p+1 / q=1$. Then, for all $i=1, \ldots, \min \{n, m, l\}$,

$$
\sigma_{i}\left(A B^{*}\right) \leq \sigma_{i}\left(\frac{1}{p}\langle A\rangle^{p}+\frac{1}{q}\langle B\rangle^{q}\right) .
$$

Equivalently, there exists a unitary matrix $S \in \mathbb{F}^{m \times m}$ such that

$$
\left\langle A B^{*}\right\rangle^{1 / 2} \leq S^{*}\left(\frac{1}{p}\langle A\rangle^{p}+\frac{1}{q}\langle B\rangle^{q}\right) S .
$$

(Proof: See [24] or [625, p. 28].) (Remark: This result is a matrix version of Young's inequality. See Fact 1.4.5 and [282].)

Fact 9.12.20. Let $A \in \mathbb{F}^{n \times m}$ and $B \in \mathbb{F}^{l \times m}$. Then, for all $i=$ $1, \ldots, \min \{n, m, l\}$,

$$
\sigma_{i}\left(A B^{*}\right) \leq \frac{1}{2} \sigma_{i}\left(A^{*} A+B^{*} B\right) .
$$

(Proof: Set $p=q=2$ in Fact 9.12.19. See [96].) (Remark: See Fact 9.9.16.)

9.13 Notes

The equivalence of absolute and monotone norms given by Proposition 9.1.2 is due to [67]. More general monotonicity conditions are considered in [313]. Induced lower bounds are treated in [353, pp. 369, 370]; see also [525, pp. 33, 80]. The induced norms (9.4.11) and (9.4.12) are given in [280, p. 116] and [140]. The $d_{\text {max }}$ norm is related to alternative norms for the convolution operator given in [603]. Proposition 9.3 .6 is given in [482, p. 97]. Norm-related topics are discussed in [73]. Spectral perturbation theory in finite and infinite dimensions is treated in [324], where the emphasis is on the regularity of the spectrum as a function of the perturbation rather than on bounds for finite perturbations.

Chapter Ten

Functions of Matrices and Their Derivatives

The notion of a norm on \mathbb{F}^{n} discussed in Chapter 9 provides the foundation for the development of some basic results in topology and analysis. This chapter provides a brief review of some basic definitions and results.

10.1 Open and Closed Sets

Let $\|\cdot\|$ be a norm on \mathbb{F}^{n} and, for $x \in \mathbb{F}^{n}$ and $\varepsilon>0$, define the open ball of radius ε centered at x by

$$
\begin{equation*}
\mathbb{B}_{\varepsilon}(x) \triangleq\left\{y \in \mathbb{F}^{n}:\|x-y\|<\varepsilon\right\} \tag{10.1.1}
\end{equation*}
$$

and the sphere of radius ε centered at x by

$$
\begin{equation*}
\mathbb{S}_{\varepsilon}(x) \triangleq\left\{y \in \mathbb{F}^{n}: \quad\|x-y\|=\varepsilon\right\} . \tag{10.1.2}
\end{equation*}
$$

Definition 10.1.1. Let $\mathcal{S} \subseteq \mathbb{F}^{n}$. The vector $x \in S$ is an interior point of \mathcal{S} if there exists $\varepsilon>0$ such that $\mathbb{B}_{\varepsilon}(x) \subseteq \mathcal{S}$. The interior of \mathcal{S} is the set

$$
\begin{equation*}
\operatorname{int} \mathcal{S} \triangleq\{x \in \mathcal{S}: x \text { is an interior point of } \mathcal{S}\} . \tag{10.1.3}
\end{equation*}
$$

Finally, \mathcal{S} is open if every element of \mathcal{S} is an interior point, that is, if $\mathcal{S}=\operatorname{int} \mathcal{S}$.
Definition 10.1.2. Let $\mathcal{S} \subseteq \mathcal{S}^{\prime} \subseteq \mathbb{F}^{n}$. The vector $x \in \mathcal{S}$ is an interior point of \mathcal{S} relative to \mathcal{S}^{\prime} if there exists $\varepsilon>0$ such that $\mathbb{B}_{\varepsilon}(x) \cap \mathcal{S}^{\prime} \subseteq \mathcal{S}$ or, equivalently, $\mathbb{B}_{\varepsilon}(x) \cap \mathcal{S}=\mathbb{B}_{\varepsilon}(x) \cap \mathcal{S}^{\prime}$. The interior of \mathcal{S} relative to \mathcal{S}^{\prime} is the set
$\operatorname{int}_{\mathcal{S}^{\prime}} \mathcal{S} \triangleq\left\{x \in \mathcal{S}: x\right.$ is an interior point of \mathcal{S} relative to $\left.\mathcal{S}^{\prime}\right\}$.
Finally, \mathcal{S} is open relative to \mathcal{S}^{\prime} if $\mathcal{S}=\operatorname{int}^{\prime} \mathcal{S}$.
Definition 10.1.3. Let $\mathcal{S} \subseteq \mathbb{F}^{n}$. The vector $x \in \mathbb{F}^{n}$ is a closure point of \mathcal{S} if, for all $\varepsilon>0$, the set $\mathcal{S} \cap \mathbb{B}_{\varepsilon}(x)$ is not empty. The closure of \mathcal{S} is the
set

$$
\begin{equation*}
\operatorname{cl} \mathcal{S} \triangleq\left\{x \in \mathbb{F}^{n}: x \text { is a closure point of } \mathcal{S}\right\} \tag{10.1.5}
\end{equation*}
$$

Finally, the set \mathcal{S} is closed if every closure point of \mathcal{S} is an element of \mathcal{S}, that is, if $\mathcal{S}=\operatorname{cl} S$.

Definition 10.1.4. Let $\mathcal{S} \subseteq \mathcal{S}^{\prime} \subseteq \mathbb{F}^{n}$. The vector $x \in \mathcal{S}^{\prime}$ is a closure point of \mathcal{S} relative to \mathcal{S}^{\prime} if, for all $\varepsilon>0$, the set $\mathcal{S} \cap \mathbb{B}_{\varepsilon}(x)$ is not empty. The closure of \mathcal{S} relative to \mathcal{S}^{\prime} is the set

$$
\begin{equation*}
\operatorname{cl}_{\mathcal{S}^{\prime}} \mathcal{S} \triangleq\left\{x \in \mathbb{F}^{n}: x \text { is a closure point of } \mathcal{S} \text { relative to } \mathcal{S}^{\prime}\right\} \tag{10.1.6}
\end{equation*}
$$

Finally, \mathcal{S} is closed relative to \mathcal{S}^{\prime} if $\mathcal{S}=\operatorname{cl}_{\mathcal{S}^{\prime}} \mathcal{S}$.
It follows from Theorem 9.1.8 on the equivalence of norms on \mathbb{F}^{n} that these definitions are independent of the norm assigned to \mathbb{F}^{n}.

Let $\mathcal{S} \subseteq \mathcal{S}^{\prime} \subseteq \mathbb{F}^{n}$. Then,

$$
\begin{align*}
\operatorname{cl}_{\mathcal{S}^{\prime}} \mathcal{S} & =(\operatorname{cl} \mathcal{S}) \cap \mathcal{S}^{\prime} \tag{10.1.7}\\
\operatorname{int}_{\mathcal{S}^{\prime}} \mathcal{S} & =\mathcal{S}^{\prime} \backslash \operatorname{cl}\left(\mathcal{S}^{\prime} \backslash \mathcal{S}\right) \tag{10.1.8}
\end{align*}
$$

and

$$
\begin{equation*}
\operatorname{int} \mathcal{S} \subseteq \operatorname{int}_{\mathcal{S}^{\prime}} \mathcal{S} \subseteq \mathcal{S} \subseteq \operatorname{cl}_{\mathcal{S}^{\prime}} \mathcal{S} \subseteq \operatorname{cl} \mathcal{S} \tag{10.1.9}
\end{equation*}
$$

The set \mathcal{S} is solid if int \mathcal{S} is not empty, and \mathcal{S} is completely solid if $\operatorname{clint} \mathcal{S}=$ $\mathrm{cl} \mathcal{S}$. Note that if \mathcal{S} is completely solid, then \mathcal{S} is solid. The boundary of \mathcal{S} is the set

$$
\begin{equation*}
\operatorname{bd} \mathcal{S} \triangleq \operatorname{cl} S \backslash \operatorname{int} \mathcal{S} \tag{10.1.10}
\end{equation*}
$$

while the boundary of \mathcal{S} relative to \mathcal{S}^{\prime} is the set

$$
\begin{equation*}
\operatorname{bd}_{\mathcal{S}^{\prime}} \mathcal{S} \triangleq \operatorname{cl}_{\mathcal{S}^{\prime}} \mathcal{S} \backslash \operatorname{int}_{\mathcal{S}^{\prime}} \mathcal{S} \tag{10.1.11}
\end{equation*}
$$

Note that the empty set is both open and closed, although it is not solid.
The set $\mathcal{S} \subset \mathbb{F}^{n}$ is bounded if there exists $\delta>0$ such that, for all $x, y \in \mathcal{S}$,

$$
\begin{equation*}
\|x-y\|<\delta \tag{10.1.12}
\end{equation*}
$$

The set $\mathcal{S} \subset \mathbb{F}^{n}$ is compact if it is both closed and bounded.

10.2 Limits

Definition 10.2.1. A sequence $\left\{x_{1}, x_{2}, \ldots\right\}_{\mathrm{m}}$ is an ordered multiset with countably infinite elements. We write $\left\{x_{i}\right\}_{i=1}^{\infty}$ for $\left\{x_{1}, x_{2}, \ldots\right\}_{\mathrm{m}}$.

Definition 10.2.2. The sequence $\left\{\alpha_{i}\right\}_{i=1}^{\infty} \subset \mathbb{F}$ converges to $\alpha \in \mathbb{F}$ if, for all $\varepsilon>0$, there exists $p \in \mathbb{P}$ such that $\left|\alpha_{i}-\alpha\right|<\varepsilon$ for all $i>p$. In this case, we write $\alpha=\lim _{i \rightarrow \infty} \alpha_{i}$ or $\alpha_{i} \rightarrow \alpha$ as $i \rightarrow \infty$, where $i \in \mathbb{P}$.

Definition 10.2.3. The sequence $\left\{x_{i}\right\}_{i=1}^{\infty} \subset \mathbb{F}^{n}$ converges to $x \in \mathbb{F}^{n}$ if $\lim _{i \rightarrow \infty}\left\|x-x_{i}\right\|=0$, where $\|\cdot\|$ is a norm on \mathbb{F}^{n}. In this case, we write $x=\lim _{i \rightarrow \infty} x_{i}$ or $x_{i} \rightarrow x$ as $i \rightarrow \infty$, where $i \in \mathbb{P}$. Similarly, $\left\{A_{i}\right\}_{i=1}^{\infty} \subset \mathbb{F}^{n \times m}$ converges to $A \in \mathbb{F}^{n \times m}$ if $\lim _{i \rightarrow \infty}\left\|A-A_{i}\right\|=0$, where $\|\cdot\|$ is a norm on $\mathbb{F}^{n \times m}$. In this case, we write $A=\lim _{i \rightarrow \infty} A_{i}$ or $A_{i} \rightarrow A$ as $i \rightarrow \infty$, where $i \in \mathbb{P}$.

It follows from Theorem 9.1.8 that convergence of a sequence is independent of the choice of norm.

Proposition 10.2.4. Let $\mathcal{S} \subseteq \mathbb{F}^{n}$. The vector $x \in \mathbb{F}^{n}$ is a closure point of \mathcal{S} if and only if there exists a sequence $\left\{x_{i}\right\}_{i=1}^{\infty} \subseteq \mathcal{S}$ such that $x=\lim _{i \rightarrow \infty} x_{i}$.

Proof. Suppose that $x \in \mathbb{F}^{n}$ is a closure point of \mathcal{S}. Then, for all $i \in \mathbb{P}$, there exists $x_{i} \in \mathcal{S}$ such that $\left\|x-x_{i}\right\|<1 / i$. Hence, $x-x_{i} \rightarrow 0$ as $i \rightarrow \infty$. Conversely, suppose that $\left\{x_{i}\right\}_{i=1}^{\infty} \subseteq \mathcal{S}$ is such that $x_{i} \rightarrow x$ as $i \rightarrow \infty$, and let $\varepsilon>0$. Then, there exists $p \in \mathbb{P}$ such that $\left\|x-x_{i}\right\|<\varepsilon$ for all $i>p$. Therefore, $x_{p+1} \in \mathcal{S} \cap \mathbb{B}_{\varepsilon}(x)$, and thus $\mathcal{S} \cap \mathbb{B}_{\varepsilon}(x)$ is not empty. Hence, x is a closure point of \mathcal{S}.

Theorem 10.2.5. Let $\mathcal{S} \subset \mathbb{F}^{n}$ be compact and let $\left\{x_{i}\right\}_{i=1}^{\infty} \subseteq \mathcal{S}$. Then, there exists a convergent subsequence $\left\{x_{i_{j}}\right\}_{j=1}^{\infty} \subseteq\left\{x_{i}\right\}_{i=1}^{\infty}$ such that $\lim _{j \rightarrow \infty}$ $x_{i_{j}}$ exists and $\lim _{j \rightarrow \infty} x_{i_{j}} \in \mathcal{S}$.

Proof. See [434, p. 145].
Next, we define convergence for the series $\sum_{i=1}^{\infty} x_{i}$ in terms of the partial sums $\sum_{i=1}^{k} x_{i}$.

Definition 10.2.6. The series $\sum_{i=1}^{\infty} x_{i}$, where $\left\{x_{i}\right\}_{i=1}^{\infty} \subset \mathbb{F}^{n}$, converges to $x \in \mathbb{F}^{n}$ if

$$
\begin{equation*}
x=\lim _{k \rightarrow \infty} \sum_{i=1}^{k} x_{i} . \tag{10.2.1}
\end{equation*}
$$

Furthermore, $\sum_{i=1}^{\infty} x_{i}$ converges absolutely if $\sum_{i=1}^{\infty}\left\|x_{i}\right\|$ converges, where $\|\cdot\|$ is a norm on \mathbb{F}^{n}. Similarly, the series $\sum_{i=1}^{\infty} A_{i}$, where $\left\{A_{i}\right\}_{i=1}^{\infty} \subset \mathbb{F}^{n \times m}$, converges to $A \in \mathbb{F}^{n \times m}$ if

$$
\begin{equation*}
A=\lim _{k \rightarrow \infty} \sum_{i=1}^{k} A_{i} \tag{10.2.2}
\end{equation*}
$$

Finally, $\sum_{i=1}^{\infty} A_{i}$ converges absolutely if $\sum_{i=1}^{\infty}\left\|A_{i}\right\|$ converges, where $\|\cdot\|$ is a norm on $\mathbb{F}^{n \times m}$.

10.3 Continuity

Definition 10.3.1. Let $\mathcal{D} \subseteq \mathbb{F}^{m}, f: \mathcal{D} \mapsto \mathbb{F}^{n}$, and $x \in \mathcal{D}$. Then, f is continuous at x if, for every convergent sequence $\left\{x_{i}\right\}_{i=1}^{\infty} \subseteq \mathcal{D}$ such that $\lim _{i \rightarrow \infty} x_{i}=x$, it follows that $\lim _{i \rightarrow \infty} f\left(x_{i}\right)=f(x)$. Furthermore, let $\mathcal{D}_{0} \subseteq \mathcal{D}$. Then, f is continuous on \mathcal{D}_{0} if f is continuous at x for all $x \in \mathcal{D}_{0}$. Finally, f is continuous if it is continuous on \mathcal{D}.

Theorem 10.3.2. Let $\mathcal{D} \subseteq \mathbb{F}^{n}$ be convex and let $f: \mathcal{D} \rightarrow \mathbb{F}$ be convex. Then, f is continuous on $\operatorname{int}_{\text {aff }} \mathcal{D}$.

Proof. See [68, p. 81] and [485, p. 82].
Corollary 10.3.3. Let $A \in \mathbb{F}^{n \times m}$, and define $f: \mathbb{F}^{m} \rightarrow \mathbb{F}^{n}$ by $f(x) \triangleq$ $A x$. Then, f is continuous.

Proof. The result is a consequence of Theorem 10.3.2. Alternatively, let $x \in \mathbb{F}^{m}$, and let $\left\{x_{i}\right\}_{i=1}^{\infty} \subset \mathbb{F}^{m}$ be such that $x_{i} \rightarrow x$ as $i \rightarrow \infty$. Furthermore, let $\|\cdot\|$ and $\|\cdot\|^{\prime}$ be compatible norms on \mathbb{F}^{m} and $\mathbb{F}^{m \times n}$, respectively. Since $\left\|A x-A x_{i}\right\| \leq\|A\|^{\prime}\left\|x-x_{i}\right\|$, it follows that $A x_{i} \rightarrow A x$ as $i \rightarrow \infty$.

Theorem 10.3.4. Let $\mathcal{D} \subseteq \mathbb{F}^{m}$, and let $f: \mathcal{D} \mapsto \mathbb{F}^{n}$. Then, the following statements are equivalent:
i) f is continuous.
ii) For all open $\mathcal{S} \subseteq \mathbb{F}^{n}$, the set $f^{-1}(\mathcal{S})$ is open relative to \mathcal{D}.
iii) For all closed $\mathcal{S} \subseteq \mathbb{F}^{n}$, the set $f^{-1}(\mathcal{S})$ is closed relative to \mathcal{D}.

Proof. See [434, pp. 87, 110].
Corollary 10.3.5. Let $A \in \mathbb{F}^{n \times m}$ and $\mathcal{S} \subseteq \mathbb{F}^{n}$, and define $\mathcal{S}^{\prime} \triangleq\{x \in$ $\left.\mathbb{F}^{m}: A x \in \mathcal{S}\right\}$. If \mathcal{S} is open, then \mathcal{S}^{\prime} is open. If \mathcal{S} is closed, then \mathcal{S}^{\prime} is closed.

The following result is the open mapping theorem.
Theorem 10.3.6. Let $A \in \mathbb{F}^{n \times m}$ be right invertible and let $\mathcal{D} \subseteq \mathbb{F}^{m}$ be open. Then, $A \mathcal{D}$ is open.

Theorem 10.3.7. Let $\mathcal{D} \subset \mathbb{F}^{m}$ be compact and let $f: \mathcal{D} \mapsto \mathbb{F}^{n}$ be continuous. Then, $f(\mathcal{D})$ is compact.

Proof. See [434, p. 146].
Corollary 10.3.8. Let $\mathcal{D} \subset \mathbb{F}^{m}$ be compact and let $f: \mathcal{D} \mapsto \mathbb{R}$ be continuous. Then, there exists $x \in \mathcal{D}$ such that $f(\mathcal{D})$ is compact.

The following result is the Schauder fixed point theorem.
Theorem 10.3.9. Let $\mathcal{D} \subseteq \mathbb{F}^{m}$ be closed and convex, let $f: \mathcal{D} \rightarrow \mathcal{D}$ be continuous, and assume that $f(\mathcal{D})$ is bounded. Then, there exists $x \in \mathcal{D}$ such that $f(x)=x$.

Proof. See [586, p. 167].

10.4 Derivatives

Let $\mathcal{D} \subseteq \mathbb{F}^{m}$, and let $x_{0} \in \mathcal{D}$. Then, the variational cone of \mathcal{D} with respect to x_{0} is the set

$$
\begin{align*}
\operatorname{vcone}\left(\mathcal{D}, x_{0}\right) \triangleq\left\{\xi \in \mathbb{F}^{m}:\right. & \text { there exists } \alpha_{0}>0 \text { such that } \\
& \left.x_{0}+\alpha \xi \in \mathcal{D}, \alpha \in\left[0, \alpha_{0}\right)\right\} . \tag{10.4.1}
\end{align*}
$$

Note that $\operatorname{vcone}\left(\mathcal{D}, x_{0}\right)$ is a pointed cone, although it may consist of only the origin as can be seen from the example $x_{0}=0$ and

$$
\mathcal{D}=\left\{x \in \mathbb{R}^{2}: 0 \leq x_{(1)} \leq 1, x_{(1)}^{3} \leq x_{(2)} \leq x_{(1)}^{2}\right\} .
$$

Now, let $\mathcal{D} \subseteq \mathbb{F}^{m}$ and $f: \mathcal{D} \rightarrow \mathbb{F}^{n}$. If $\xi \in \operatorname{vcone}\left(\mathcal{D}, x_{0}\right)$, then the one-sided directional differential of f at x_{0} in the direction ξ is given by

$$
\begin{equation*}
\mathrm{D}_{+} f\left(x_{0} ; \xi\right) \triangleq \lim _{\alpha \rightarrow 0^{+}} \frac{1}{\alpha}\left[f\left(x_{0}+\alpha \xi\right)-f\left(x_{0}\right)\right] \tag{10.4.2}
\end{equation*}
$$

if the limit exists. Similarly, if $\xi \in \operatorname{vcone}\left(\mathcal{D}, x_{0}\right)$ and $-\xi \in \operatorname{vcone}\left(\mathcal{D}, x_{0}\right)$, then the two-sided directional differential $\mathrm{D} f\left(x_{0} ; \xi\right)$ of f at x_{0} in the direction ξ is defined by replacing " $\alpha \rightarrow 0^{+}$" in (10.4.2) by " $\alpha \rightarrow 0$." If $\xi=e_{i}$ so that the direction ξ is one of the coordinate axes, then the partial derivative of f with respect to $x_{(i)}$ at x_{0}, denoted by $\frac{\partial f\left(x_{0}\right)}{\partial x_{(i)}}$, is given by

$$
\begin{equation*}
\frac{\partial f\left(x_{0}\right)}{\partial x_{(i)}} \triangleq \lim _{\alpha \rightarrow 0} \frac{1}{\alpha}\left[f\left(x_{0}+\alpha e_{i}\right)-f\left(x_{0}\right)\right] \tag{10.4.3}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\frac{\partial f\left(x_{0}\right)}{\partial x_{(i)}}=\mathrm{D} f\left(x_{0} ; e_{i}\right), \tag{10.4.4}
\end{equation*}
$$

when the two-sided directional differential $\mathrm{D} f\left(x_{0} ; e_{i}\right)$ exists.

Proposition 10.4.1. Let $\mathcal{D} \subseteq \mathbb{F}^{m}$ be a convex set, let $f: \mathcal{D} \rightarrow \mathbb{F}^{n}$ be convex, and let $x_{0} \in \operatorname{int} \mathcal{D}$. Then, $\overline{\mathrm{D}}_{+} f\left(x_{0} ; \xi\right)$ exists for all $\xi \in \mathbb{F}^{m}$.

Proof. See [68, p. 83].
Note that $\mathrm{D}_{+} f\left(x_{0} ; \xi\right)= \pm \infty$ is possible if x_{0} is an element of the boundary of \mathcal{D} even if f is continuous at x_{0}. For example, consider $f:[0, \infty) \mapsto \mathbb{R}$ given by $f(x)=1-\sqrt{x}$.

Next, we consider a stronger form of differentiation.
Proposition 10.4.2. Let $\mathcal{D} \subseteq \mathbb{F}^{m}$ be solid and convex, let $f: \mathcal{D} \rightarrow \mathbb{F}^{n}$, and let $x_{0} \in \mathcal{D}$. Then, there exists at most one matrix $F \in \mathbb{F}^{n \times m}$ satisfying

$$
\begin{equation*}
\lim _{\substack{\left.x \rightarrow x_{0} \\ x \in \mathcal{D} \backslash x_{0}\right\}}}\left\|x-x_{0}\right\|^{-1}\left[f(x)-f\left(x_{0}\right)-F\left(x-x_{0}\right)\right]=0 . \tag{10.4.5}
\end{equation*}
$$

Proof. See [586, p. 170].
In (9.5) the limit is taken over all sequences that are contained in \mathcal{D}, do not include x_{0}, and converge to x_{0}.

Definition 10.4.3. Let $\mathcal{D} \subseteq \mathbb{F}^{m}$ be solid and convex, let $f: \mathcal{D} \rightarrow \mathbb{F}^{n}$, let $x_{0} \in \mathcal{D}$, and assume there exists $F \in \mathbb{F}^{n \times m}$ satisfying (9.5). Then, f is differentiable at x_{0} and the matrix F is the (Frechet) derivative of f at x_{0}. In this case, we write $f^{\prime}\left(x_{0}\right)=F$ and

$$
\begin{equation*}
\lim _{\substack{x \rightarrow x_{0} \\ x \in \mathcal{D}\left\{\left\{x_{0}\right\}\right.}}\left\|x-x_{0}\right\|^{-1}\left[f(x)-f\left(x_{0}\right)-f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)\right]=0 . \tag{10.4.6}
\end{equation*}
$$

Note that Proposition 10.4.2 and Definition 10.4.3 do not require that x_{0} lie in the interior of \mathcal{D}. Sometimes we write $\frac{\mathrm{d} f\left(x_{0}\right)}{\mathrm{d} x}$ for $f^{\prime}\left(x_{0}\right)$.

Proposition 10.4.4. Let $\mathcal{D} \subseteq \mathbb{F}^{m}$ be solid and convex, let $f: \mathcal{D} \rightarrow \mathbb{F}^{n}$, let $x \in \mathcal{D}$, and assume that f is differentiable at x_{0}. Then, f is continuous at x_{0}.

Let $\mathcal{D} \subseteq \mathbb{F}^{m}$ be solid and convex and let $f: \mathcal{D} \mapsto \mathbb{F}^{n}$. In terms of its scalar components, f can be written as $f=\left[\begin{array}{lll}f_{1} & \cdots & f_{n}\end{array}\right]^{\mathrm{T}}$, where $f_{i}: \mathcal{D} \mapsto \mathbb{F}$ for all $i=1, \ldots, n$ and $f(x)=\left[\begin{array}{lll}f_{1}(x) & \cdots & f_{n}(x)\end{array}\right]^{\mathrm{T}}$ for all $x \in \mathcal{D}$. With this notation, $f^{\prime}\left(x_{0}\right)$ can be written as

$$
f^{\prime}\left(x_{0}\right)=\left[\begin{array}{c}
f_{1}^{\prime}\left(x_{0}\right) \tag{10.4.7}\\
\vdots \\
f_{n}^{\prime}\left(x_{0}\right)
\end{array}\right],
$$

where $f_{i}^{\prime}\left(x_{0}\right) \in \mathbb{F}^{1 \times m}$ is the gradient of f_{i} at x_{0} and $f^{\prime}\left(x_{0}\right)$ is the Jacobian of f at x_{0}. Furthermore, if $x \in \operatorname{int} \mathcal{D}$ then $f^{\prime}\left(x_{0}\right)$ is related to the partial derivatives of f by

$$
f^{\prime}\left(x_{0}\right)=\left[\begin{array}{lll}
\frac{\partial f\left(x_{0}\right)}{\partial x_{(1)}} & \cdots & \frac{\partial f\left(x_{0}\right)}{\partial x_{(m)}} \tag{10.4.8}
\end{array}\right],
$$

where $\frac{\partial f\left(x_{0}\right)}{\partial x_{(i)}} \in \mathbb{F}^{n \times 1}$ for all $i=1, \ldots, m$. Note that the existence of the partial derivatives of f at x_{0} does not imply that f is differentiable at x_{0}, that is, $f^{\prime}\left(x_{0}\right)$ given by (10.4.8) may not satisfy (10.4.6). Finally, note that the (i, j) entry of the $n \times m$ matrix $f^{\prime}\left(x_{0}\right)$ is $\frac{\partial f_{i}\left(x_{0}\right)}{\partial x_{(j)}}$. For example, if $x \in \mathbb{F}^{n}$ and $A \in \mathbb{F}^{n \times n}$, then

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} x} A x=A \tag{10.4.9}
\end{equation*}
$$

Let $\mathcal{D} \subseteq \mathbb{F}^{m}$ and $f: \mathcal{D} \mapsto \mathbb{F}^{n}$. If $f^{\prime}(x)$ exists for all $x \in \mathcal{D}$ and $f^{\prime}: \mathcal{D} \mapsto \mathbb{F}^{n \times n}$ is continuous, then f is continuously differentiable, or C^{1}. The second derivative of f at $x_{0} \in \mathcal{D}$, denoted by $f^{\prime \prime}\left(x_{0}\right)$, is the derivative of $f^{\prime}: \mathcal{D} \mapsto \mathbb{F}^{n \times n}$ at $x_{0} \in \mathcal{D}$. For $x_{0} \in \mathcal{D}$ it can be seen that $f^{\prime \prime}\left(x_{0}\right): \mathbb{F}^{m} \times \mathbb{F}^{m} \mapsto$ \mathbb{F}^{n} is bilinear, that is, for all $\hat{\eta} \in \mathbb{F}^{m}$, the mapping $\eta \mapsto f^{\prime \prime}\left(x_{0}\right)(\eta, \hat{\eta})$ is linear and, for all $\eta \in \mathbb{F}^{m}$, the mapping $\hat{\eta} \mapsto f^{\prime \prime}\left(x_{0}\right)(\eta, \hat{\eta})$ is linear. Letting $f=\left[\begin{array}{lll}f_{1} & \cdots & f_{n}\end{array}\right]^{\mathrm{T}}$, it follows that

$$
f^{\prime \prime}\left(x_{0}\right)(\eta, \hat{\eta})=\left[\begin{array}{c}
\eta^{\mathrm{T}} f_{1}^{\prime \prime}\left(x_{0}\right) \hat{\eta} \tag{10.4.10}\\
\vdots \\
\eta^{\mathrm{T}} f_{n}^{\prime \prime}\left(x_{0}\right) \hat{\eta}
\end{array}\right]
$$

where, for all $i=1, \ldots, n$, the matrix $f_{i}^{\prime \prime}\left(x_{0}\right)$ is the $m \times m$ Hessian of f_{i} at x_{0}. We write $f^{(2)}\left(x_{0}\right)$ for $f^{\prime \prime}\left(x_{0}\right)$ and $f^{(k)}\left(x_{0}\right)$ for the k th derivative of f at $x_{0} . f$ is C^{k} if $f^{(k)}(x)$ exists and is continuous on \mathcal{D}.

The following result is the inverse function theorem.
Theorem 10.4.5. Let $\mathcal{D} \subseteq \mathbb{F}^{n}$ be open, let $f: \mathcal{D} \mapsto \mathbb{F}^{n}$, and assume that f is C^{k}. Furthermore, let $x_{0} \in \mathcal{D}$ be such that $\operatorname{det} f^{\prime}\left(x_{0}\right) \neq 0$. Then, there exists an open set $\mathcal{N} \subset \mathbb{F}^{n}$ containing $f\left(x_{0}\right)$ and a C^{k} function $g: \mathcal{N} \mapsto$ \mathcal{D} such that $f(g(y))=y$ for all $y \in \mathcal{N}$.

10.5 Functions of a Matrix

Consider the function $f: \mathcal{D} \subseteq \mathbb{C} \mapsto \mathbb{C}$ defined by the power series

$$
\begin{equation*}
f(s)=\sum_{i=0}^{\infty} \beta_{i} s^{i} \tag{10.5.1}
\end{equation*}
$$

where $\beta_{i} \in \mathbb{C}$ for all $i \in \mathbb{N}$, and assume that this series converges for all $|s|<\gamma$. Then, for $A \in \mathbb{C}^{n \times n}$, we define

$$
\begin{equation*}
f(A) \triangleq \sum_{i=1}^{\infty} \beta_{i} A^{i} \tag{10.5.2}
\end{equation*}
$$

which converges for all $A \in \mathbb{C}^{n \times n}$ such that $\operatorname{sprad}(A)<\gamma$. Now, assume that $A=S B S^{-1}$, where $S \in \mathbb{C}^{n \times n}$ is nonsingular, $B \in \mathbb{C}^{n \times n}$, and $\operatorname{sprad}(B)<\gamma$. Then,

$$
\begin{equation*}
f(A)=S f(B) S^{-1} . \tag{10.5.3}
\end{equation*}
$$

If, in addition, $B=\operatorname{diag}\left(J_{1}, \ldots, J_{r}\right)$ is the Jordan form of A, then

$$
\begin{equation*}
f(A)=S \operatorname{diag}\left[f\left(J_{1}\right), \ldots, f\left(J_{r}\right)\right] S^{-1} \tag{10.5.4}
\end{equation*}
$$

Letting $J=\lambda I_{k}+N_{k}$ denote a Jordan block, $f(J)$ is the upper triangular Toeplitz matrix

$$
\begin{align*}
f(J) & =f(\lambda) N_{k}+f^{\prime}(\lambda) N_{k}+\frac{1}{2} f^{\prime \prime}(\lambda) N_{k}^{2}+\cdots+\frac{1}{(k-1)!} f^{(k-1)}(\lambda) N_{k}^{k-1} \\
& =\left[\begin{array}{ccccc}
f(\lambda) & f^{\prime}(\lambda) & \frac{1}{2} f^{\prime \prime}(\lambda) & \cdots & \frac{1}{(k-1)!} f^{(k-1)}(\lambda) \\
0 & f(\lambda) & f^{\prime}(\lambda) & \cdots & \frac{1}{(k-2)!} f^{(k-2)}(\lambda) \\
0 & 0 & f(\lambda) & \cdots & \frac{1}{(k-3)!} f^{(k-3)}(\lambda) \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & f(\lambda)
\end{array}\right] . \tag{10.5.5}
\end{align*}
$$

Next, we extend the definition $f(A)$ to functions $f: \mathcal{D} \subseteq \mathbb{C} \mapsto \mathbb{C}$ that are not necessarily of the form (10.5.1). To do this, let $A \in \mathbb{C}^{n \times n}$, where $\operatorname{spec}(A) \subset \mathcal{D}$, and assume that, for all $\lambda_{i} \in \operatorname{spec}(A), f$ is $k_{i}-1$ times differentiable at λ_{i}, where $k_{i} \triangleq \operatorname{ind}_{A}\left(\lambda_{i}\right)$ is the order of the largest Jordan block associated with λ_{i} as given by Theorem 5.3.3. In this case, f is defined at A, and $f(A)$ is given by (10.5.3) and (10.5.4) with $f\left(J_{i}\right)$ defined as in (10.5.5).

Theorem 10.5.1. Let $A \in \mathbb{F}^{n \times n}$, let $\operatorname{spec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}$, and, for $i=1, \ldots, r$, let $k_{i} \triangleq \operatorname{ind}_{A}\left(\lambda_{i}\right)$. Furthermore, suppose that $f: \mathcal{D} \subseteq$ $\mathbb{C} \mapsto \mathbb{C}$ is defined at A. Then, there exists $p \in \mathbb{F}[s]$ such that $f(A)=$
$p(A)$. Furthermore, there exists a unique polynomial p of minimal degree $\sum_{i=1}^{r} k_{i}$ satisfying $f(A)=p(A)$ and such that, for all $i=1, \ldots, r$ and $j=0,1, \ldots, k_{i}-1$,

$$
\begin{equation*}
f^{(j)}\left(\lambda_{i}\right)=p^{(j)}\left(\lambda_{i}\right) \tag{10.5.6}
\end{equation*}
$$

This polynomial is given by

$$
\begin{equation*}
p(s)=\sum_{i=1}^{r}\left(\left.\left[\prod_{\substack{j=1 \\ j \neq i}}^{r}\left(s-\lambda_{j}\right)^{n_{j}}\right] \sum_{k=0}^{k_{i}-1} \frac{1}{k!} \frac{\mathrm{d}^{k}}{\mathrm{~d} s^{k}} \frac{f(s)}{\prod_{\substack{l=1 \\ l \neq i}}^{r}\left(s-\lambda_{l}\right)^{k_{l}}}\right|_{s=\lambda_{i}}\left(s-\lambda_{i}\right)^{k}\right) . \tag{10.5.7}
\end{equation*}
$$

If, in addition, A is diagonalizable, then p is given by

$$
\begin{equation*}
p(s)=\sum_{i=1}^{r} f\left(\lambda_{i}\right) \prod_{\substack{j=1 \\ j \neq i}}^{r} \frac{s-\lambda_{j}}{\lambda_{i}-\lambda_{j}} \tag{10.5.8}
\end{equation*}
$$

Proof. See [155, pp. 263, 264].
The polynomial (10.5.7) is the Lagrange-Hermite interpolation polynomial for f.

The following result, which is known as the identity theorem, is a special case of Theorem 10.5.1.

Theorem 10.5.2. Let $A \in \mathbb{F}^{n \times n}$, let $\operatorname{spec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}$, and, for $i=1, \ldots, r$, let $k_{i} \triangleq \operatorname{ind}_{A}\left(\lambda_{i}\right)$. Furthermore, let $f: \mathcal{D} \subseteq \mathbb{C} \mapsto \mathbb{C}$ and $g: \mathcal{D} \subseteq$ $\mathbb{C} \mapsto \mathbb{C}$ be analytic on a neighborhood of $\operatorname{spec}(A)$. Then, $f(A)=g(A)$ if and only if, for all $i=1, \ldots, r$ and $j=0,1, \ldots, k_{i}-1$,

$$
\begin{equation*}
f^{(j)}\left(\lambda_{i}\right)=g^{(j)}\left(\lambda_{i}\right) \tag{10.5.9}
\end{equation*}
$$

Corollary 10.5.3. Let $A \in \mathbb{F}^{n \times n}$, and let $f: \mathcal{D} \subset \mathbb{C} \rightarrow \mathbb{C}$ be analytic on a neighborhood of $\operatorname{mspec}(A)$. Then,

$$
\begin{equation*}
\operatorname{mspec}[f(A)]=f[\operatorname{mspec}(A)] \tag{10.5.10}
\end{equation*}
$$

10.6 Matrix Derivatives

In this section we consider derivatives of differentiable scalar-valued functions with matrix arguments. Consider the linear function $f: \mathbb{F}^{m \times n} \mapsto$ \mathbb{F} given by $f(X)=\operatorname{tr} A X$, where $A \in \mathbb{F}^{n \times m}$ and $X \in \mathbb{F}^{m \times n}$. In terms of vectors $x \in \mathbb{F}^{m n}$, we can define the linear function $\hat{f}(x) \triangleq(\operatorname{vec} A)^{\mathrm{T}} x$ so that
$\hat{f}(\operatorname{vec} X)=f(X)=(\operatorname{vec} A)^{\mathrm{T}} \operatorname{vec} X$. Consequently, for all $Y \in \mathbb{F}^{m \times n}, f^{\prime}\left(X_{0}\right)$ can be represented by $f^{\prime}\left(X_{0}\right) Y=\operatorname{tr} A Y$.

These observations suggest that a convenient representation of the derivative $\frac{\mathrm{d}}{\mathrm{d} X} f(X)$ of a differentiable scalar-valued differentiable function $f(X)$ of a matrix argument $X \in \mathbb{F}^{m \times n}$ is the $n \times m$ matrix whose (i, j) entry is $\frac{\partial f(X)}{\partial X_{(j, i)}}$. Note the order of indices.

Proposition 10.6.1. Let $x \in \mathbb{F}^{n}$. Then, the following statements hold:
i) If $A \in \mathbb{F}^{n \times n}$, then

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} x} x^{\mathrm{T}} A x=x^{\mathrm{T}}\left(A+A^{\mathrm{T}}\right) \tag{10.6.1}
\end{equation*}
$$

ii) If $A \in \mathbb{F}^{n \times n}$ is symmetric, then

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} x} x^{\mathrm{T}} A x=2 x^{\mathrm{T}} A . \tag{10.6.2}
\end{equation*}
$$

iii) If $A \in \mathbb{F}^{n \times n}$ is Hermitian, then

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} x} x^{*} A x=2 x^{*} A . \tag{10.6.3}
\end{equation*}
$$

Proposition 10.6.2. Let $X \in \mathbb{F}^{m \times n}$. Then, the following statements hold:
i) If $A \in \mathbb{F}^{n \times m}$, then

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} X} \operatorname{tr} A X=A \tag{10.6.4}
\end{equation*}
$$

ii) If $A \in \mathbb{F}^{l \times m}$ and $B \in \mathbb{F}^{n \times l}$, then

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} X} \operatorname{tr} A X B=B A . \tag{10.6.5}
\end{equation*}
$$

iii) If $A \in \mathbb{F}^{l \times n}$ and $B \in \mathbb{F}^{m \times l}$, then

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} X} \operatorname{tr} A X^{\mathrm{T}} B=A^{\mathrm{T}} B^{\mathrm{T}} \tag{10.6.6}
\end{equation*}
$$

iv) If $A \in \mathbb{F}^{l \times m}$ and $B \in \mathbb{F}^{n \times l}$, then

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} X} \operatorname{det} A X B=B(A X B)^{\mathrm{A}} A \tag{10.6.7}
\end{equation*}
$$

v) If $A \in \mathbb{F}^{k \times l}, B \in \mathbb{F}^{l \times m}, C \in \mathbb{F}^{n \times l}, D \in \mathbb{F}^{l \times l}$, and $E \in \mathbb{F}^{l \times k}$, then

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} X} \operatorname{tr} A(D+B X C)^{-1} E=-C(D+B X C)^{-1} E A(D+B X C)^{-1} B \tag{10.6.8}
\end{equation*}
$$

vi) If $A \in \mathbb{F}^{k \times l}, B \in \mathbb{F}^{l \times n}, C \in \mathbb{F}^{m \times l}, D \in \mathbb{F}^{l \times l}$, and $E \in \mathbb{F}^{l \times k}$, then

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d} X} \operatorname{tr} \\
& \quad A\left(D+B X^{\mathrm{T}} C\right)^{-1} E \tag{10.6.9}\\
& \quad=-B^{\mathrm{T}}\left(D+B X^{\mathrm{T}} C\right)^{-\mathrm{T}} A^{\mathrm{T}} E^{\mathrm{T}}\left(D+B X^{\mathrm{T}} C\right)^{-\mathrm{T}} C^{\mathrm{T}}
\end{align*}
$$

vii) If $A \in \mathbb{F}^{n \times m}$ and $A \in \mathbb{F}^{m \times n}$, then

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} X} \operatorname{tr} A X B X=A X B+B X A \tag{10.6.10}
\end{equation*}
$$

viii) If $A \in \mathbb{F}^{m \times m}$ and $B \in \mathbb{F}^{n \times n}$, then

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} X} \operatorname{tr} A X B X^{\mathrm{T}}=B X^{\mathrm{T}} A+B^{\mathrm{T}} X^{\mathrm{T}} A^{\mathrm{T}} \tag{10.6.11}
\end{equation*}
$$

Proposition 10.6.3. Let $X \in \mathbb{F}^{n \times n}$. Then, the following statements hold:
$i)$ For all $k \in \mathbb{P}$,

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} X} \operatorname{tr} X^{k}=k X^{k-1} \tag{10.6.12}
\end{equation*}
$$

ii) If $A \in \mathbb{F}^{m \times n}$ and $B \in \mathbb{F}^{n \times m}$, then, for all $k \in \mathbb{P}$,

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} X} \operatorname{tr} A X^{k} B=\sum_{i=0}^{k-1} X^{k-1-i} B A X^{i} \tag{10.6.13}
\end{equation*}
$$

iii) If X is nonsingular, $A \in \mathbb{F}^{m \times n}$, and $B \in \mathbb{F}^{n \times m}$, then

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} X} \operatorname{tr} A X^{-1} B=-X^{-1} B A X^{-1} \tag{10.6.14}
\end{equation*}
$$

iv) For all $X \in \mathbb{F}^{n \times n}$,

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} X} \operatorname{det} X=X^{\mathrm{A}} \tag{10.6.15}
\end{equation*}
$$

$v)$ If X is nonsingular, then

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} X} \log \operatorname{det} X=X^{-1} \tag{10.6.16}
\end{equation*}
$$

10.7 Facts on Open, Closed, and Convex Sets

Fact 10.7.1. Let $x \in \mathbb{F}^{n}$ and $\varepsilon>0$. Then, $\mathbb{B}_{\varepsilon}(x)$ is completely solid and convex.

Fact 10.7.2. Let $\mathcal{S} \subset \mathbb{F}^{n}$ be bounded, let $\delta>0$ satisfy $\|x-y\|<\delta$ for all $x, y \in \mathcal{S}$, and let $x_{0} \in \mathcal{S}$. Then, $\mathcal{S} \subseteq \mathbb{B}_{\delta}\left(x_{0}\right)$.

Fact 10.7.3. Let $S_{1} \subseteq \delta_{2} \subseteq \mathbb{F}^{n}$. Then,

$$
\mathrm{cl}_{1} \subseteq \mathrm{clS}_{2}
$$

and

$$
\operatorname{int} S_{1} \subseteq \operatorname{int} \delta_{2}
$$

Fact 10.7.4. Let $\mathcal{S} \subseteq \mathbb{F}^{n}$. Then, cl \mathcal{S} is the smallest closed set containing \mathcal{S}, and int \mathcal{S} is the largest open set contained in \mathcal{S}.

Fact 10.7.5. Let $\mathcal{S} \subseteq \mathbb{F}^{n}$. Then,

$$
(\operatorname{int} S)^{\sim}=\operatorname{cl}\left(\mathcal{S}^{\sim}\right)
$$

and

$$
\operatorname{bd} \mathcal{S}=(\mathrm{cl} \mathcal{S}) \cap\left(\mathrm{cl} \mathcal{S}^{\sim}\right)=\left[(\operatorname{int} \mathcal{S}) \cup \operatorname{int}\left(\mathcal{S}^{\sim}\right)\right]^{\sim} .
$$

Fact 10.7.6. Let $\mathcal{S} \subseteq \mathbb{F}^{n}$ be convex. Then, $\mathrm{cl} \mathcal{S}$, int \mathcal{S}, and $\operatorname{int}_{\text {aff } \mathcal{S}} \mathcal{S}$ are also convex. (Proof: See [485, p. 45] and [486, p. 64].)

Fact 10.7.7. Let $\mathcal{S} \subseteq \mathbb{F}^{n}$ be convex. Then, \mathcal{S} is solid if and only if \mathcal{S} is completely solid.

Fact 10.7.8. Let $\mathcal{S} \subseteq \mathbb{F}^{n}$ be solid. Then, $\operatorname{co} \mathcal{S}$ is solid and completely solid.

Fact 10.7.9. Let $\mathcal{S} \subseteq \mathbb{F}^{n}$. Then, co cl $\mathcal{S} \subseteq \operatorname{clco} \mathcal{S}$. (Remark: Equality does not generally hold. Consider

$$
\mathcal{S}=\left\{x \in \mathbb{R}^{2}: \quad x_{(1)}^{2} x_{(2)}^{2}=1 \text { for all } x_{(1)}>0\right\}
$$

Hence, if \mathcal{S} is closed, then it does not necessarily follow that co \mathcal{S} is closed.)
Fact 10.7.10. Let $\mathcal{S} \subseteq \mathbb{F}^{n}$ be either bounded or convex. Then,

$$
\operatorname{cocl} \mathcal{S}=\operatorname{cl} \operatorname{co} \mathcal{S} .
$$

(Proof: Use Fact 10.7.6 and Fact 10.7.9.)
Fact 10.7.11. Let $\mathcal{S} \subseteq \mathbb{F}^{n}$ be open. Then, co \mathcal{S} is also open.
Fact 10.7.12. Let $\mathcal{S} \subseteq \mathbb{F}^{n}$ be compact. Then, $\operatorname{co} \mathcal{S}$ is also compact.
Fact 10.7.13. Let $\mathcal{S} \subset \mathbb{F}^{n}$ be symmetric, solid, convex, closed, and bounded, and, for all $x \in \mathbb{F}^{n}$, define

$$
\|x\| \triangleq \min \{\alpha \geq 0: \quad x \in \alpha \delta\}=\max \{\alpha \geq 0: \alpha x \in \mathcal{S}\}
$$

Then, $\|\cdot\|$ is a norm on \mathbb{F}^{n}, and $\mathbb{B}_{1}(0)=\operatorname{int} \mathcal{S}$. Conversely, let $\|\cdot\|$ be a norm on \mathbb{F}^{n}. Then, $\mathbb{B}_{1}(0)$ is convex, bounded, symmetric, and solid. (Proof:

See [297, pp. 38, 39].) (Remark: In all cases, $\mathbb{B}_{1}(0)$ is defined with respect to $\|\cdot\|$. This result is due to Minkowski.)

Fact 10.7.14. Let $\mathcal{S} \subseteq \mathbb{F}^{n}$ be solid. Then, $\operatorname{dim} \mathcal{S}=n$.
Fact 10.7.15. Let $\mathcal{S} \subseteq \mathbb{F}^{n}$ be a subspace. Then, \mathcal{S} is closed.
Fact 10.7.16. \mathbf{N}^{n} is a closed and completely solid subset of $\mathbb{F}^{n(n+1) / 2}$. Furthermore,

$$
\operatorname{int} \mathbf{N}^{n}=\mathbf{P}^{n}
$$

Fact 10.7.17. Let $\mathcal{S} \subseteq \mathbb{F}^{n}$ be convex. Then,

$$
\operatorname{int} \operatorname{cl} \mathcal{S}=\operatorname{int} \mathcal{S}
$$

Fact 10.7.18. Let $\mathcal{D} \subseteq \mathbb{F}^{n}$, and let x_{0} belong to a solid, convex subset of \mathcal{D}. Then,

$$
\operatorname{dim} \operatorname{vcone}\left(\mathcal{D}, x_{0}\right)=n
$$

Fact 10.7.19. Let $\|\cdot\|$ be a norm on \mathbb{F}^{n}, let \mathcal{S} be a subspace in \mathbb{F}^{n}, let $y \in \mathbb{F}^{n}$, and define

$$
\mu \triangleq \max _{x \in\{z \in \mathcal{S}:\|z\|=1\}}\left|y^{*} x\right| .
$$

Then, there exists $z \in \mathcal{S}^{\perp}$ such that

$$
\max _{x \in\left\{z \in \mathbb{F}^{n}:\|z\|=1\right\}}\left|(y+z)^{*} x\right|=\mu .
$$

(Proof: See [525, p. 57].) (Remark: This result is the Hahn-Banach theorem.) (Problem: Find a simple interpretation in \mathbb{R}^{2}.)

Fact 10.7.20. Let $\mathcal{S} \subset \mathbb{R}^{n}$ be a convex cone, let $x \in \mathbb{R}^{n}$, and assume that $x \notin \operatorname{int} \mathcal{S}$. Then, there exists nonzero $\lambda \in \mathbb{R}^{n}$ such that $\lambda^{\mathrm{T}} x \leq 0$ and $\lambda^{\mathrm{T}} z \geq 0$ for all $z \in \mathcal{S}$. (Remark: This result is a separation theorem. See [357, p. 37] and [465, p. 443].)

Fact 10.7.21. Let $\mathcal{S}_{1}, \mathcal{S}_{2} \subset \mathbb{R}^{n}$ be convex. Then, the following statements are equivalent:
i) There exists a nonzero vector $\lambda \in \mathbb{R}^{n}$ and $\alpha \in \mathbb{R}$ such that $\lambda^{\mathrm{T}} x \leq \alpha$ for all $x \in \mathcal{S}_{1}, \lambda^{\mathrm{T}} x \geq \alpha$ for all $x \in \mathcal{S}_{2}$, and either \mathcal{S}_{1} or \mathcal{S}_{2} is not contained in the affine hyperplane $\left\{x \in \mathbb{R}^{n}: \lambda^{\mathrm{T}} x=\alpha\right\}$.
ii) $\operatorname{int}_{\text {aff }} \mathcal{S}_{1} \delta_{1}$ and int aff $\mathcal{S}_{2} \delta_{2}$ are disjoint.
(Proof: See [80, p. 82].) (Remark: This result is a proper separation theorem.)

10.8 Facts on Functions and Derivatives

Fact 10.8.1. Let $\left\{x_{i}\right\}_{i=1}^{\infty} \subset \mathbb{F}^{n}$. Then, $\lim _{i \rightarrow \infty} x_{i}=x$ if and only if $\lim _{i \rightarrow \infty} x_{i(j)}=x_{(j)}$ for all $j=1, \ldots, n$.

Fact 10.8.2. Let $\mathcal{S}_{1} \subseteq \mathbb{F}^{n}$ be compact, let $\mathcal{S}_{2} \subset \mathbb{F}^{m}$, and let $f: \mathcal{S}_{1} \times$ $\mathcal{S}_{2} \rightarrow \mathbb{R}$ be continuous. Then, $g: \mathcal{S}_{2} \rightarrow \mathbb{R}$ defined by $g(y) \triangleq \max _{x \in \mathcal{S}_{1}} f(x, y)$ is continuous.

Fact 10.8.3. Let $f:[0, \infty) \rightarrow \mathbb{R}$, and assume that $\lim _{t \rightarrow \infty} f(t)$ exists. Then,

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} f(\tau) \mathrm{d} \tau=\lim _{t \rightarrow \infty} f(t)
$$

Fact 10.8.4. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, g: \mathbb{R} \rightarrow \mathbb{R}$, and $h: \mathbb{R} \rightarrow \mathbb{R}$. Then, assuming each of the following integrals exists,

$$
\frac{\mathrm{d}}{\mathrm{~d} \alpha} \int_{g(\alpha)}^{h(\alpha)} f(t, \alpha) \mathrm{d} t=f(h(\alpha), \alpha) h^{\prime}(\alpha)-f(g(\alpha), \alpha) g^{\prime}(\alpha)+\int_{g(\alpha)}^{h(\alpha)} \frac{\partial}{\partial \alpha} f(t, \alpha) \mathrm{d} t
$$

(Remark: This identity is Leibniz’ rule.)
Fact 10.8.5. Let $\mathcal{D} \subseteq \mathbb{R}^{m}$ be a convex set and let $f: \mathcal{D} \rightarrow \mathbb{R}$. Then, f is convex if and only if the set $\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}: y \geq f(x)\right\}$ is convex.

Fact 10.8.6. Let $\mathcal{D} \subseteq \mathbb{R}^{m}$ be a convex set and let $f: \mathcal{D} \rightarrow \mathbb{R}$ be convex. Then, $f^{-1}((-\infty, \alpha])=\{x \in \mathcal{D}: \quad f(x) \leq \alpha\}$ is convex.

Fact 10.8.7. Let $f: \mathcal{D} \subseteq \mathbb{F}^{m} \mapsto \mathbb{F}^{n}$, and assume that $\mathrm{D}_{+} f(0 ; \xi)$ exists. Then, for all $\beta>0$,

$$
\mathrm{D}_{+} f(0 ; \beta \xi)=\beta \mathrm{D}_{+} f(0 ; \xi)
$$

Fact 10.8.8. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x) \triangleq|x|$. Then, for all $\xi \in \mathbb{R}$,

$$
\mathrm{D}_{+} f(0 ; \xi)=|\xi| .
$$

Now, define $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by $f(x) \triangleq \sqrt{x^{\mathrm{T}} x}$. Then, for all $\xi \in \mathbb{R}^{n}$,

$$
\mathrm{D}_{+} f(0 ; \xi)=\sqrt{\xi^{\mathrm{T}} \xi}
$$

Fact 10.8.9. Let $A, B \in \mathbb{F}^{n \times n}$. Then, for all $s \in \mathbb{F}$,

$$
\frac{\mathrm{d}}{\mathrm{~d} s}(A+s B)^{2}=A B+B A+2 s B
$$

Hence,

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} s}(A+s B)^{2}\right|_{s=0}=A B+B A .
$$

Fact 10.8.10. Let $A, B \in \mathbb{F}^{n \times n}$, and let $\mathcal{D} \triangleq\{s \in \mathbb{F}: \operatorname{det}(A+s B) \neq$ $0\}$. Then, for all $s \in \mathcal{D}$,

$$
\frac{\mathrm{d}}{\mathrm{~d} s}(A+s B)^{-1}=-(A+s B)^{-1} B(A+s B)^{-1} .
$$

Hence, if A is nonsingular, then

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} s}(A+s B)^{-1}\right|_{s=0}=-A^{-1} B A^{-1}
$$

Fact 10.8.11. Let $\mathcal{D} \subseteq \mathbb{F}$, and let $A: \mathcal{D} \longrightarrow \mathbb{F}^{n \times n}$ be differentiable. Then,

$$
\frac{\mathrm{d}}{\mathrm{~d} s} \operatorname{det} A(s)=\operatorname{tr}\left[A^{\mathrm{A}}(s) \frac{\mathrm{d}}{\mathrm{~d} s} A(s)\right]=\frac{1}{n-1} \operatorname{tr}\left[A(s) \frac{\mathrm{d}}{\mathrm{~d} s} A^{\mathrm{A}}(s)\right]=\sum_{i=1}^{n} \operatorname{det} A_{i}(s),
$$

where $A_{i}(s)$ is obtained by differentiating the entries of the i th row of $A(s)$. (Proof: See [155, p. 267], [466, pp. 199, 212], and [484, p. 430].)

Fact 10.8.12. Let $\mathcal{D} \subseteq \mathbb{F}$, let $A: \mathcal{D} \longrightarrow \mathbb{F}^{n \times n}$ be differentiable, and assume that $A(s)$ is nonsingular for all $x \in \mathcal{D}$. Then,

$$
\frac{\mathrm{d}}{\mathrm{~d} s} A^{-1}(s)=-A^{-1}(s)\left[\frac{\mathrm{d}}{\mathrm{~d} s} A(s)\right] A^{-1}(s)
$$

and

$$
\operatorname{tr}\left[A^{-1}(s) \frac{\mathrm{d}}{\mathrm{~d} s} A(s)\right]=-\operatorname{tr}\left[A(s) \frac{\mathrm{d}}{\mathrm{~d} s} A^{-1}(s)\right] .
$$

(Proof: See [466, pp. 198, 212].)
Fact 10.8.13. Let $A, B \in \mathbb{F}^{n \times n}$. Then, for all $s \in \mathbb{F}$,

$$
\frac{\mathrm{d}}{\mathrm{~d} s} \operatorname{det}(A+s B)=\operatorname{tr}\left[B(A+s B)^{\mathrm{A}}\right] .
$$

Hence,

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} s} \operatorname{det}(A+s B)\right|_{s=0}=\operatorname{tr} B A^{\mathrm{A}}=\sum_{i=1}^{n} \operatorname{det}\left[A \stackrel{i}{\leftarrow} \operatorname{col}_{i}(B)\right] .
$$

(Proof: Use Fact 10.8.11 and Fact 2.13.8.) (Remark: This result generalizes Lemma 4.4.7.)

Fact 10.8.14. Let $A \in \mathbb{F}^{n \times n}, r \in \mathbb{R}$, and $k \in \mathbb{P}$. Then, for all $s \in \mathbb{C}$,

$$
\frac{\mathrm{d}^{k}}{\mathrm{~d} s^{k}}[\operatorname{det}(I+s A)]^{r}=(r \operatorname{tr} A)^{k}[\operatorname{det}(I+s A)]^{r} .
$$

Hence,

$$
\left.\frac{\mathrm{d}^{k}}{\mathrm{~d} s^{k}}[\operatorname{det}(I+s A)]^{r}\right|_{s=0}=(r \operatorname{tr} A)^{k} .
$$

Fact 10.8.15. Let $A \in \mathbb{R}^{n \times n}$ be symmetric and let $X \in \mathbb{R}^{m \times n}$ be such that $X A X^{\mathrm{T}}$ is nonsingular. Then,

$$
\left(\frac{\mathrm{d}}{\mathrm{~d} X} \operatorname{det} X A X^{\mathrm{T}}\right)=2\left(\operatorname{det} X A X^{\mathrm{T}}\right) A^{\mathrm{T}} X^{\mathrm{T}}\left(X A X^{\mathrm{T}}\right)^{-1}
$$

(Proof: See [153].)

10.9 Notes

An introductory treatment of limits and continuity is given in [434]. Frechet and directional derivatives are discussed in [209], while differentiation of matrix functions is considered in [269, 388, 403, 460, 488, 504]. In $[485,486]$ the set $\operatorname{int}_{\text {aff }} \mathcal{S}$ is called the relative interior of \mathcal{S}. An extensive treatment of matrix functions is given in Chapter 6 of [289]; see also [294]. The identity theorem is discussed in [305]. The chain rule for matrix functions is considered in [388, 406]. Differentiation with respect to complex matrices is discussed in [317].

Chapter Eleven

The Matrix Exponential and Stability Theory

The matrix exponential function is fundamental to the study or linear ordinary differential equations. This chapter focuses on the properties of the matrix exponential as well as on stability theory.

11.1 Definition of the Matrix Exponential

The scalar initial value problem

$$
\begin{gather*}
\dot{x}(t)=a x(t), \tag{11.1.1}\\
x(0)=x_{0}, \tag{11.1.2}
\end{gather*}
$$

where $t \in[0, \infty)$ and $a, x(t) \in \mathbb{R}$, has the solution

$$
\begin{equation*}
x(t)=e^{a t} x_{0}, \tag{11.1.3}
\end{equation*}
$$

where $t \in[0, \infty)$. We are interested in systems of linear differential equations of the form

$$
\begin{gather*}
\dot{x}(t)=A x(t), \tag{11.1.4}\\
x(0)=x_{0}, \tag{11.1.5}
\end{gather*}
$$

where $t \in[0, \infty), x(t) \in \mathbb{R}^{n}$, and $A \in \mathbb{R}^{n \times n}$. Here $\dot{x}(t)$ denotes $\frac{\mathrm{d} x(t)}{\mathrm{d} t}$, where the derivative is one sided for $t=0$ and two sided for $t>0$. The solution to (11.1.4), (11.1.5) is given by

$$
\begin{equation*}
x(t)=e^{t A} x_{0}, \tag{11.1.6}
\end{equation*}
$$

where $t \in[0, \infty)$ and $e^{t A}$ is the matrix exponential. The following definition is based on (10.5.2).

Definition 11.1.1. Let $A \in \mathbb{F}^{n \times n}$. Then, the matrix exponential $e^{A} \in$
$\mathbb{F}^{n \times n}$ or $\exp (A) \in \mathbb{F}^{n \times n}$ is the matrix

$$
\begin{equation*}
e^{A} \triangleq \sum_{k=0}^{\infty} \frac{1}{k!} A^{k} . \tag{11.1.7}
\end{equation*}
$$

Note that $0!\triangleq 1$ and $e^{0_{n \times n}}=I_{n}$.
Proposition 11.1.2. The series (11.1.7) converges absolutely for all $A \in \mathbb{F}^{n \times n}$. Furthermore, let $\|\cdot\|$ be a normalized submultiplicative norm on $\mathbb{F}^{n \times n}$. Then,

$$
\begin{equation*}
\left\|e^{A}\right\| \leq e^{\|A\|} . \tag{11.1.8}
\end{equation*}
$$

Proof. Defining the partial sum $S_{r} \triangleq \sum_{k=0}^{r} \frac{1}{k!} A^{k}$, we need to show that $\lim _{r \rightarrow \infty} S_{r}=e^{A}$. We thus have, as $r \rightarrow \infty$,

$$
\begin{aligned}
\left\|e^{A}-S_{r}\right\| & =\left\|\sum_{k=r+1}^{\infty} \frac{1}{k!} A^{k}\right\| \leq \sum_{k=r+1}^{\infty} \frac{1}{k!}\|A\|^{k} \\
& =e^{\|A\|}-\sum_{k=0}^{r} \frac{1}{k!}\|A\|^{k} \rightarrow 0
\end{aligned}
$$

Furthermore, note that

$$
\left\|e^{A}\right\|=\left\|\sum_{k=0}^{\infty} \frac{1}{k!} A^{k}\right\| \leq \sum_{k=0}^{\infty} \frac{1}{k!}\left\|A^{k}\right\| \leq \sum_{k=0}^{\infty} \frac{1}{k!}\|A\|^{k}=e^{\|A\|},
$$

which verifies (11.1.8).
The following result generalizes the well-known scalar result.
Proposition 11.1.3. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\begin{equation*}
e^{A}=\lim _{k \rightarrow \infty}\left(I+\frac{1}{k} A\right)^{k} . \tag{11.1.9}
\end{equation*}
$$

Proof. It follows from the binomial theorem that

$$
\left(I+\frac{1}{k} A\right)^{k}=\sum_{i=0}^{k} \alpha_{i}(k) A^{i},
$$

where

$$
\alpha_{i}(k) \triangleq \frac{1}{k^{i}}\binom{k}{i}=\frac{1}{k^{i}} \frac{k!}{i!(k-i)!} .
$$

For all $i \in \mathbb{P}$, it follows that $\alpha_{i}(k) \rightarrow 1 / i!$ as $k \rightarrow \infty$. Hence,

$$
\lim _{k \rightarrow \infty}\left(I+\frac{1}{k} A\right)^{k}=\lim _{k \rightarrow \infty} \sum_{i=0}^{k} \alpha_{i}(k) A^{i}=\sum_{i=0}^{\infty} \frac{1}{i!} A^{i}=e^{A} .
$$

The following results are immediate consequences of Definition 11.1.1.
Proposition 11.1.4. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements hold:
i) $\left(e^{A}\right)^{\mathrm{T}}=e^{A^{\mathrm{T}}}$.
ii) e^{A} is nonsingular, and $\left(e^{A}\right)^{-1}=e^{-A}$.
iii) If $A=\operatorname{diag}\left(A_{1}, \ldots, A_{k}\right)$, where $A_{i} \in \mathbb{F}^{n_{i} \times n_{i}}$ for all $i=1, \ldots, k$, then $e^{A}=\operatorname{diag}\left(e^{A_{1}}, \ldots, e^{A_{k}}\right)$.
$i v)$ If $S \in \mathbb{F}^{n \times n}$ is nonsingular, then $e^{S A S^{-1}}=S e^{A} S^{-1}$.
v) If A and $B \in \mathbb{F}^{n \times n}$ are similar, then e^{A} and e^{B} are similar.
vi) If A and $B \in \mathbb{F}^{n \times n}$ are unitarily similar, then e^{A} and e^{B} are unitarily similar.
vii) If A is Hermitian, then e^{A} is positive definite.
viii) If A is skew Hermitian, then e^{A} is unitary.

The converse of v) is not true. For example, $A \triangleq\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ and $B \triangleq$ $\left[\begin{array}{cc}0 & 2 \pi \\ -2 \pi & 0\end{array}\right]$ satisfy $e^{A}=e^{B}=I$, although A and B are not similar. The converses of $v i$) and $v i i$) are given by x) and $v i$) of Proposition 11.4.6.

Let $S:\left[t_{0}, t_{1}\right] \mapsto \mathbb{F}^{n \times m}$, and assume that every entry of $S(t)$ is differentiable. Then, define $\dot{S}(t) \triangleq \frac{\mathrm{d} S(t)}{\mathrm{d} t} \in \mathbb{F}^{n \times m}$ for all $t \in\left[t_{0}, t_{1}\right]$ entrywise, that is, for all $i=1, \ldots, n$ and $j=1, \ldots, m$,

$$
\begin{equation*}
[\dot{S}(t)]_{(i, j)} \triangleq \frac{\mathrm{d}}{\mathrm{~d} t} S_{(i, j)}(t) \tag{11.1.10}
\end{equation*}
$$

If $t=t_{0}$ or $t=t_{1}$, then " $\mathrm{d} / \mathrm{d} t$ " denotes a one-sided derivative. Similarly, define $\int_{t_{0}}^{t_{1}} S(t) \mathrm{d} t$ entrywise, that is, for all $i=1, \ldots, n$ and $j=1, \ldots, m$,

$$
\begin{equation*}
\left[\int_{t_{0}}^{t_{1}} S(t) \mathrm{d} t\right]_{(i, j)} \triangleq \int_{t_{0}}^{t_{1}}[S(t)]_{(i, j)} \mathrm{d} t . \tag{11.1.11}
\end{equation*}
$$

Proposition 11.1.5. Let $A \in \mathbb{F}^{n \times n}$. Then, for all $t \in \mathbb{R}$,

$$
\begin{equation*}
e^{t A}-I=\int_{0}^{t} A e^{\tau A} \mathrm{~d} \tau \tag{11.1.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} e^{t A}=A e^{t A} \tag{11.1.13}
\end{equation*}
$$

Proof. Note that

$$
\int_{0}^{t} A e^{\tau A} \mathrm{~d} \tau=\int_{0}^{t} \sum_{k=0}^{\infty} \frac{1}{k!} \tau^{k} A^{k+1} \mathrm{~d} \tau=\sum_{k=0}^{\infty} \frac{1}{k!} \frac{t^{k+1}}{k+1} A^{k+1}=e^{t A}-I,
$$

which yields (11.1.12), while differentiating (11.1.12) with respect to t yields (11.1.13).

Proposition 11.1.6. Let $A, B \in \mathbb{F}^{n \times n}$. Then, $A B=B A$ if and only if, for all $t \in[0, \infty)$,

$$
\begin{equation*}
e^{t A} e^{t B}=e^{t(A+B)} \tag{11.1.14}
\end{equation*}
$$

Proof. Suppose $A B=B A$. By expanding $e^{t A}, e^{t B}$, and $e^{t(A+B)}$, it can be seen that the expansions of $e^{t A} e^{t B}$ and $e^{t(A+B)}$ are identical. Conversely, differentiating (11.1.14) twice with respect to t and setting $t=0$ yields $A B=B A$.

Corollary 11.1.7. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that $A B=B A$. Then,

$$
\begin{equation*}
e^{A} e^{B}=e^{B} e^{A}=e^{A+B} \tag{11.1.15}
\end{equation*}
$$

The converse of Corollary 11.1.7 is not true. For example, if $A \triangleq$ $\left[\begin{array}{cc}0 & \pi \\ -\pi & 0\end{array}\right]$ and $B \triangleq\left[\begin{array}{cc}0 & (7+4 \sqrt{3}) \pi \\ (-7+4 \sqrt{3}) \pi & 0\end{array}\right]$, then $e^{A}=e^{B}=-I$ and $e^{A+B}=I$, but $A B \neq B A$. A partial converse is given by Fact 11.11.2.

Proposition 11.1.8. Let $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{m \times m}$. Then,

$$
\begin{align*}
& e^{A \otimes I_{m}}=e^{A} \otimes I_{m}, \tag{11.1.16}\\
& e^{I_{n} \otimes B}=I_{n} \otimes e^{B}, \tag{11.1.17}\\
& e^{A \oplus B}=e^{A} \otimes e^{B} . \tag{11.1.18}
\end{align*}
$$

Proof. Note that

$$
\begin{aligned}
e^{A \otimes I_{m}} & =I_{n m}+A \otimes I_{m}+\frac{1}{2!}\left(A \otimes I_{m}\right)^{2}+\cdots \\
& =I_{n} \otimes I_{m}+A \otimes I_{m}+\frac{1}{2!}\left(A^{2} \otimes I_{m}\right)+\cdots \\
& =\left(I_{n}+A+\frac{1}{2!} A^{2}+\cdots\right) \otimes I_{m} \\
& =e^{A} \otimes I_{m}
\end{aligned}
$$

and similarly for (11.1.17). To prove (11.1.18) note that $\left(A \otimes I_{m}\right)\left(I_{n} \otimes B\right)=$ $A \otimes B$ and $\left(I_{n} \otimes B\right)\left(A \otimes I_{m}\right)=A \otimes B$, which shows that $A \otimes I_{m}$ and $I_{n} \otimes B$ commute. Thus, by Corollary 11.1.7,

$$
e^{A \oplus B}=e^{A \otimes I_{m}+I_{n} \otimes B}=e^{A \otimes I_{m}} e^{I_{n} \otimes B}=\left(e^{A} \otimes I_{m}\right)\left(I_{n} \otimes e^{B}\right)=e^{A} \otimes e^{B}
$$

11.2 Structure of the Matrix Exponential

To elucidate the structure of the matrix exponential, recall that, by Theorem 4.6.1, every term A^{k} in (11.1.7) for $k>r \triangleq \operatorname{deg} \mu_{A}$ can be expressed as a linear combination of I, A, \ldots, A^{r-1}. The following result provides an expression for $e^{t A}$ in terms of I, A, \ldots, A^{r-1}.

Proposition 11.2.1. Let $A \in \mathbb{F}^{n \times n}$. Then, for all $t \in \mathbb{R}$,

$$
\begin{equation*}
e^{t A}=\oint_{\mathcal{C}}(z I-A)^{-1} e^{t z} \mathrm{~d} z=\sum_{i=0}^{n-1} \psi_{i}(t) A^{i} \tag{11.2.1}
\end{equation*}
$$

where, for all $i=0, \ldots, n-1, \psi_{i}(t)$ is given by

$$
\begin{equation*}
\psi_{i}(t) \triangleq \oint_{\mathcal{C}} \frac{\chi_{A}^{[i]}(z)}{\chi_{A}(z)} e^{t z} \mathrm{~d} z \tag{11.2.2}
\end{equation*}
$$

where \mathcal{C} is a simple, closed contour in the complex plane enclosing $\operatorname{spec}(A)$,

$$
\begin{equation*}
\chi_{A}(s)=s^{n}+\beta_{n-1} s^{n-1}+\cdots+\beta_{1} s+\beta_{0} \tag{11.2.3}
\end{equation*}
$$

and, for all $i=0, \ldots, n-1$, the polynomials $\chi_{A}^{[i]}$ satisfy the recursion

$$
s \chi_{A}^{[i+1]}(s)=\chi_{A}^{[i]}(s)-\beta_{i},
$$

where $\chi_{A}^{[0]} \triangleq \chi_{A}$. Then, for all $i=0, \ldots, n-1$ and $t \geq 0, \psi_{i}(t)$ satisfies

$$
\begin{equation*}
\psi_{i}^{(n)}(t)+\beta_{n-1} \psi_{i}^{(n-1)}(t)+\cdots+\beta_{1} \psi_{i}^{\prime}(t)+\beta_{0} \psi_{i}(t)=0 \tag{11.2.4}
\end{equation*}
$$

where, for all $i=0, \ldots, n-1$,

$$
\psi_{i}^{(j)}(0)= \begin{cases}1, & j=i-1 \tag{11.2.5}\\ 0, & j \neq i-1\end{cases}
$$

(Remark: See Fact 4.9.8.)

Proof. See [615, p. 31], [236, p. 381], [362, 379], and Fact 4.9.8.
To further understand the structure of $e^{t A}$, where $A \in \mathbb{F}^{n \times n}$, let $A=$ $S B S^{-1}$, where $B=\operatorname{diag}\left(B_{1}, \ldots, B_{k}\right)$ is the Jordan form of A. Hence, by Proposition 11.1.4,

$$
\begin{equation*}
e^{t A}=S e^{t B} S^{-1} \tag{11.2.6}
\end{equation*}
$$

where

$$
\begin{equation*}
e^{t B}=\operatorname{diag}\left(e^{t B_{1}}, \ldots, e^{t B_{k}}\right) \tag{11.2.7}
\end{equation*}
$$

The structure of $e^{t B}$ can thus be determined by considering the block $B_{i} \in$ $\mathbb{F}^{\alpha_{i} \times \alpha_{i}}$, which, for all $i=1, \ldots, k$, has the form

$$
\begin{equation*}
B_{i}=\lambda_{i} I_{\alpha_{i}}+N_{\alpha_{i}} \tag{11.2.8}
\end{equation*}
$$

Since $\lambda_{i} I_{\alpha_{i}}$ and $N_{\alpha_{i}}$ commute, it follows from Proposition 11.1.6 that

$$
\begin{equation*}
e^{t B_{i}}=e^{t\left(\lambda_{i} I_{\alpha_{i}}+N_{\alpha_{i}}\right)}=e^{\lambda_{i} t I_{\alpha_{i}}} e^{t N_{\alpha_{i}}}=e^{\lambda_{i} t} e^{t N_{\alpha_{i}}} \tag{11.2.9}
\end{equation*}
$$

Since $N_{\alpha_{i}}^{\alpha_{i}}=0$, it follows that $e^{t N_{\alpha_{i}}}$ is a finite sum of powers of $t N_{\alpha_{i}}$. Specifically,

$$
\begin{align*}
e^{t N_{\alpha_{i}}} & =I_{\alpha_{i}}+t N_{\alpha_{i}}+\frac{1}{2} t^{2} N_{\alpha_{i}}^{2}+\cdots+\frac{1}{\left(\alpha_{i}-1\right)!} t^{\alpha_{i}-1} N_{\alpha_{i}}^{\alpha_{i}-1} \tag{11.2.10}\\
& =\left[\begin{array}{ccccc}
1 & t & \frac{t^{2}}{2} & \cdots & \frac{t^{\alpha_{i}-1}}{\left(\alpha_{i}-1\right)!} \\
0 & 1 & t & \ddots & \frac{t^{\alpha_{i}-2}}{\left(\alpha_{i}-2\right)!} \\
0 & 0 & 1 & \ddots & \frac{t^{\alpha_{i}-3}}{\left(\alpha_{i}-3\right)!} \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right] \tag{11.2.11}
\end{align*}
$$

which is a Toeplitz matrix. Note that (11.2.9) follows from (10.5.5) with $f(\lambda)=e^{\lambda t}$. Furthermore, every entry of $e^{t B_{i}}$ is of the form $\frac{1}{r!} t^{r} e^{\lambda_{i} t}$, where $r \in\left\{0, \alpha_{i}-1\right\}$ and λ_{i} is an eigenvalue of A. Reconstructing A by means of $A=S B S^{-1}$ shows that every entry of A is a linear combination of the entries of the blocks $e^{t B_{i}}$. If A is real, then $e^{t A}$ is also real. Thus, the term $e^{\lambda_{i} t}$ for complex $\lambda_{i}=\nu_{i}+\jmath \omega_{i} \in \operatorname{spec}(A)$, where ν_{i} and ω_{i} are real, yields terms of the form $e^{\nu_{i} t} \cos \omega_{i} t$ and $e^{\nu_{i} t} \sin \omega_{i} t$.

The following result follows from (11.2.11) or Corollary 10.5.3.
Proposition 11.2.2. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\begin{equation*}
\operatorname{mspec}\left(e^{A}\right)=\left\{e^{\lambda}: \quad \lambda \in \operatorname{mspec}(A)\right\}_{\mathrm{m}} \tag{11.2.12}
\end{equation*}
$$

Proof. It can be seen that every diagonal entry of the Jordan form of e^{A} is of the form e^{λ}, where $\lambda \in \operatorname{spec}(A)$.

Corollary 11.2.3. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\begin{equation*}
\operatorname{det} e^{A}=e^{\operatorname{tr} A} \tag{11.2.13}
\end{equation*}
$$

Corollary 11.2.4. Let $A \in \mathbb{F}^{n \times n}$, and assume that $\operatorname{tr} A=0$. Then, $\operatorname{det} e^{A}=1$.

11.3 Explicit Expressions

In this section we present explicit expressions for the exponential of a general 2×2 real matrix A. Expressions are given in terms of both the entries of A and the eigenvalues of A.

Lemma 11.3.1. Let $A \triangleq\left[\begin{array}{ll}a & b \\ 0 & d\end{array}\right] \in \mathbb{C}^{2 \times 2}$. Then,

$$
e^{A}= \begin{cases}e^{a}\left[\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right], & a=d, \tag{11.3.1}\\
{\left[\begin{array}{cc}
e^{a} & b \frac{e^{a}-e^{d}}{a-d} \\
0 & e^{d}
\end{array}\right],} & a \neq d .\end{cases}
$$

The following result gives an expression for e^{A} in terms of the eigenvalues of A.

Proposition 11.3.2. Let $A \in \mathbb{C}^{2 \times 2}$, and let $\operatorname{mspec}(A)=\{\lambda, \mu\}_{\mathrm{m}}$. Then,

$$
e^{A}= \begin{cases}e^{\lambda}[(1-\lambda) I+A], & \lambda=\mu \tag{11.3.2}\\ \frac{\mu e^{\lambda}-\lambda e^{\mu}}{\mu-\lambda} I+\frac{e^{\mu}-e^{\lambda}}{\mu-\lambda} A, & \lambda \neq \mu\end{cases}
$$

Proof. The result follows from Theorem 10.5.1. Alternatively, suppose that $\lambda=\mu$. Then, there exists a nonsingular matrix $S \in \mathbb{C}^{2 \times 2}$ such that $A=S\left[\begin{array}{cc}\lambda & \alpha \\ 0 & \lambda\end{array}\right] S^{-1}$, where $\alpha \in \mathbb{C}$. Hence, $e^{A}=e^{\lambda} S\left[\begin{array}{cc}1 & \alpha \\ 0 & 1\end{array}\right] S^{-1}=e^{\lambda}[(1-\lambda) I+A]$. Now, suppose that $\lambda \neq \mu$. Then, there exists a nonsingular matrix $S \in \mathbb{C}^{2 \times 2}$ such that $A=S\left[\begin{array}{cc}\lambda & 0 \\ 0 & \mu\end{array}\right] S^{-1}$. Hence, $e^{A}=S\left[\begin{array}{cc}e^{\lambda} & 0 \\ 0 & e^{\mu}\end{array}\right] S^{-1}$. Then, the identity $\left[\begin{array}{cc}e^{\lambda} & 0 \\ 0 & e^{\mu}\end{array}\right]=\frac{\mu e^{\lambda}-\lambda e^{\mu}}{\mu-\lambda} I+\frac{e^{\mu}-e^{\lambda}}{\mu-\lambda}\left[\begin{array}{ll}\lambda & 0 \\ 0 & \mu\end{array}\right]$ yields the given result.

Next, we give an expression for e^{A} in terms of the entries of $A \in \mathbb{R}^{2 \times 2}$.

Corollary 11.3.3. Let $A \triangleq\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \mathbb{R}^{2 \times 2}$, and define $\gamma \triangleq(a-d)^{2}+4 b c$ and $\delta \triangleq \frac{1}{2}|\gamma|^{1 / 2}$. Then,

$$
e^{A}= \begin{cases}e^{\frac{a+d}{2}}\left[\begin{array}{cc}
\cos \delta+\frac{a-d}{2 \delta} \sin \delta & \frac{b}{\delta} \sin \delta \\
\frac{c}{\delta} \sin \delta & \cos \delta-\frac{a-d}{2 \delta} \sin \delta
\end{array}\right], & \gamma<0, \tag{11.3.3}\\
e^{\frac{a+d}{2}}\left[\begin{array}{cc}
1+\frac{a-d}{2} & b \\
c & 1-\frac{a-d}{2}
\end{array}\right], & \gamma=0, \\
e^{\frac{a+d}{2}}\left[\begin{array}{cc}
\cosh \delta+\frac{a-d}{2 \delta} \sinh \delta & \frac{b}{\delta} \sinh \delta \\
\frac{c}{\delta} \sinh \delta & \cosh \delta-\frac{a-d}{2 \delta} \sinh \delta
\end{array}\right], & \gamma>0 .\end{cases}
$$

Proof. The eigenvalues of A are $\lambda \triangleq \frac{1}{2}(a+d-\sqrt{\gamma})$ and $\mu \triangleq \frac{1}{2}(a+$ $d+\sqrt{\gamma})$. Hence, $\lambda=\mu$ if and only if $\gamma=0$. The result now follows from Proposition 11.3.2.

Example 11.3.4. Let $A \triangleq\left[\begin{array}{cc}\stackrel{\nu}{-\omega} & \omega \\ \hline\end{array}\right] \in \mathbb{R}^{2 \times 2}$. Then,

$$
e^{t A}=e^{\nu t}\left[\begin{array}{cc}
\cos \omega t & \sin \omega t \tag{11.3.4}\\
-\sin \omega t & \cos \omega t
\end{array}\right] .
$$

On the other hand, if $A \triangleq\left[\begin{array}{cc}\nu & \omega \\ \omega & -\nu\end{array}\right]$, then

$$
e^{t A}=\left[\begin{array}{cc}
\cosh \delta t+\frac{\nu}{\delta} \sinh \delta t & \frac{\omega}{\delta} \sinh \delta t \tag{11.3.5}\\
\frac{\omega}{\delta} \sinh \delta t & \cosh \delta t-\frac{\nu}{\delta} \sinh \delta t
\end{array}\right]
$$

where $\delta \triangleq \sqrt{\omega^{2}+\nu^{2}}$.
Example 11.3.5. Let $\alpha \in \mathbb{F}$, and define $A \triangleq\left[\begin{array}{cc}0 & 1 \\ 0 & \alpha\end{array}\right]$. Then,

$$
e^{t A}= \begin{cases}{\left[\begin{array}{cc}
1 & \alpha^{-1}\left(e^{\alpha t}-1\right) \\
0 & e^{\alpha t}
\end{array}\right],} & \alpha \neq 0 \\
{\left[\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right],} & \alpha=0\end{cases}
$$

Example 11.3.6. Let $A \triangleq\left[\begin{array}{c}\alpha \\ 0 \\ 0\end{array}\right] \in \mathbb{R}^{2 \times 2}$. Then,

$$
e^{t A}= \begin{cases}{\left[\begin{array}{cc}
e^{\alpha t} & \beta \frac{\left(e^{\alpha t}-e^{\gamma t}\right)}{\alpha-\gamma} \\
0 & e^{\gamma t}
\end{array}\right],} & \alpha \neq \gamma, \\
{\left[\begin{array}{cc}
e^{\alpha t} & \beta t e^{\alpha t} \\
0 & e^{\gamma t}
\end{array}\right],} & \alpha=\gamma .\end{cases}
$$

In particular,

$$
e^{t}\left[\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right]=\left[\begin{array}{cc}
e^{t} & e^{t}-e^{2 t} \\
0 & e^{2 t}
\end{array}\right] .
$$

Example 11.3.7. Let $\theta \in \mathbb{R}$, and define $A \triangleq\left[\begin{array}{cc}0 \\ -\theta & 0 \\ 0\end{array}\right]$. Then,

$$
e^{A}=\left[\begin{array}{ll}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]
$$

Furthermore, define $B \triangleq\left[\begin{array}{cc}0 & \left.\begin{array}{c}\frac{\pi}{2}-\theta \\ \frac{-\pi}{2}+\theta \\ 0\end{array}\right] \text {. Then, }\end{array}\right.$

$$
e^{B}=\left[\begin{array}{cc}
\sin \theta & \cos \theta \\
-\cos \theta & \sin \theta
\end{array}\right] .
$$

Example 11.3.8. Consider the second-order mechanical vibration equation

$$
\begin{equation*}
m \ddot{q}+c \dot{q}+k q=0, \tag{11.3.6}
\end{equation*}
$$

where m is positive and c and k are nonnegative. Here m, c, and k denote mass, damping, and stiffness parameters, respectively. Equation (11.3.6) can be written in companion form as the system

$$
\begin{equation*}
\dot{x}=A x \tag{11.3.7}
\end{equation*}
$$

where

$$
x \triangleq\left[\begin{array}{c}
q \tag{11.3.8}\\
\dot{q}
\end{array}\right], \quad A \triangleq\left[\begin{array}{cc}
0 & 1 \\
-k / m & -c / m
\end{array}\right] .
$$

The inelastic case $k=0$ is the simplest one since A is upper triangular. In this case,

$$
e^{t A}= \begin{cases}{\left[\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right],} & k=c=0, \tag{11.3.9}\\
{\left[\begin{array}{cc}
1 & \frac{m}{c}\left(1-e^{-c t / m}\right) \\
0 & e^{-c t / m}
\end{array}\right],} & k=0, c>0,\end{cases}
$$

where $c=0$ and $c>0$ correspond to a rigid body and a damped rigid body, respectively.

Next, we consider the elastic case $c \geq 0$ and $k>0$. In this case, we define

$$
\begin{equation*}
\omega_{\mathrm{n}} \triangleq \sqrt{\frac{k}{m}}, \quad \zeta \triangleq \frac{c}{2 \sqrt{m k}} \tag{11.3.10}
\end{equation*}
$$

where $\omega_{\mathrm{n}}>0$ denotes the (undamped) natural frequency of vibration and $\zeta \geq 0$ denotes the damping ratio. Now, A can be written as

$$
A=\left[\begin{array}{cc}
0 & 1 \tag{11.3.11}\\
-\omega_{\mathrm{n}}^{2} & -2 \zeta \omega_{\mathrm{n}}
\end{array}\right]
$$

and Corollary 11.3.3 yields
$e^{t A}$
where $\zeta=0,0<\zeta<1, \zeta=1$, and $\zeta>1$ correspond to undamped, underdamped, critically damped, and overdamped oscillators, respectively, and where the damped natural frequency ω_{d} is the positive number

$$
\omega_{\mathrm{d}} \triangleq \begin{cases}\omega_{\mathrm{n}} \sqrt{1-\zeta^{2}}, & 0<\zeta<1 \tag{11.3.13}\\ \omega_{\mathrm{n}} \sqrt{\zeta^{2}-1}, & \zeta>1\end{cases}
$$

11.4 Logarithms

Let $A \in \mathbb{F}^{n \times n}$ be positive definite so that $A=S B S^{*} \in \mathbb{F}^{n \times n}$, where $S \in \mathbb{F}^{n \times n}$ is unitary and $B \in \mathbb{R}^{n \times n}$ is diagonal with positive diagonal entries. In Section 8.5, $\log A$ is defined as $\log A=S(\log B) S^{*} \in \mathbf{H}^{n}$, where $(\log B)_{(i, i)} \triangleq \log B_{(i, i)}$. It can be seen that $\log A$ satisfies $A=e^{\log A}$. The following definition is not restricted to positive-definite matrices A.

Definition 11.4.1. Let $A \in \mathbb{F}^{n \times n}$. Then, $B \in \mathbb{F}^{n \times n}$ is a logarithm of A if $e^{B}=A$.

Proposition 11.4.2. Let $\|\cdot\|$ be a normalized submultiplicative norm on $\mathbb{F}^{n \times n}$, and, for $A \in \mathbb{F}^{n \times n}$, define

$$
\begin{equation*}
\log A \triangleq \sum_{i=1}^{\infty} \frac{(-1)^{i-1}}{i}(A-I)^{i} \tag{11.4.1}
\end{equation*}
$$

Then, the following statements hold:
i) The series (11.4.1) converges absolutely for all $A \in \mathbb{F}^{n \times n}$ such that $\|A-I\|<1$.
ii) If $A \in \mathbb{F}^{n \times n}$ and $\|A-I\|<1$, then $\|\log A\| \leq \log (1+\|A-I\|)$.
iii) If $A \in \mathbb{F}^{n \times n}$ and $\|A-I\|<1$, then $\log A$ is a logarithm of A, that is, $e^{\log A}=A$.
iv) If $B \in \mathbb{F}^{n \times n}$ and $\left\|e^{B}-I\right\|<1$, then $\log e^{B}=B$.
$v) \exp : \mathbb{B}_{\log 2}(0) \mapsto \mathbb{F}^{n \times n}$ is one-to-one.
Proof. For $\alpha \triangleq\|A-I\|<1$ it follows from (11.4.1) that $\|\log A\| \leq$ $\sum_{i=1}^{\infty}(-1)^{i-1} \alpha^{i} / i=\log (1+\alpha)$, which proves $\left.i\right)$ and $\left.i i\right)$. Statements $\left.i i i\right)$ and $i v$) can be confirmed by using the series representation of the matrix exponential. To prove v), let $B \in \mathbb{B}_{\log 2}(0)$, so that $e^{\|B\|}<2$, and thus $\left\|e^{B}-I\right\| \leq \sum_{i=1}^{\infty}\|B\|^{i}=e^{\|B\|}-1<1$. Now, let $B_{1}, B_{2} \in \mathbb{B}_{\log 2}(0)$, and assume that $e^{B_{1}}=e^{B_{2}}$. Then, it follows from ii) that $B_{1}=\log e^{B_{1}}=$ $\log e^{B_{2}}=B_{2}$.

The following result shows that every complex, nonsingular matrix has a complex logarithm.

Proposition 11.4.3. Let $A \in \mathbb{C}^{n \times n}$. Then, there exists a matrix $B \in$ $\mathbb{C}^{n \times n}$ such that $A=e^{B}$ if and only if A is nonsingular.

Proof. See [289, p. 474].
However, only certain real matrices have a real logarithm.
Proposition 11.4.4. Let $A \in \mathbb{R}^{n \times n}$. Then, there exists a matrix $B \in$ $\mathbb{R}^{n \times n}$ such that $A=e^{B}$ if and only if A is nonsingular and, for every negative eigenvalue λ of A and for every positive integer k, the Jordan form of A has an even number of $k \times k$ blocks associated with λ.

Proof. See [289, p. 475].

Replacing A and B in Proposition 11.4.4 by e^{A} and A, respectively, yields the following result.

Corollary 11.4.5. Let $A \in \mathbb{R}^{n \times n}$. Then, for every negative eigenvalue λ of e^{A} and for every positive integer k, the Jordan form of e^{A} has an even number of $k \times k$ blocks associated with λ.

Since the matrix $A \triangleq\left[\begin{array}{cc}-2 \pi & 4 \pi \\ -2 \pi & 2 \pi\end{array}\right]$ satisfies $e^{A}=I$ it follows that a positive-definite matrix can have a logarithm that is not normal. However, the following result shows that every positive-definite matrix has at least one Hermitian logarithm. Analogous results are given for several sets of matrices.

Proposition 11.4.6. Let $n \geq 1$. Then, the following functions are onto:
i) $\exp : \mathrm{gl}_{\mathbb{C}}(n) \mapsto \mathrm{GL}_{\mathbb{C}}(n)$.
ii) $\exp : \mathrm{gl}_{\mathbb{R}}(1) \mapsto \mathrm{PL}_{\mathbb{R}}(1)$.
iii) exp: $\operatorname{pl}_{\mathbb{C}}(n) \mapsto \mathrm{PL}_{\mathbb{C}}(n)$.
iv) exp: $\operatorname{sl}_{\mathbb{C}}(n) \mapsto \operatorname{SL}_{\mathbb{C}}(n)$.
$v)$ exp: $\mathbf{H}^{n} \mapsto \mathbf{P}^{n}$.
vi) exp: $\mathrm{u}(n) \mapsto \mathrm{U}(n)$.
vii) exp: $\operatorname{su}(n) \mapsto \mathrm{SU}(n)$.
viii) exp: $\operatorname{so}(n) \mapsto \mathrm{SO}(n)$.

Furthermore, the following functions are not onto:
ix) $\exp : \mathrm{gl}_{\mathbb{R}}(n) \mapsto \mathrm{PL}_{\mathbb{R}}(n)$, where $n \geq 2$.
x) exp: $\operatorname{sl}_{\mathbb{R}}(n) \mapsto \mathrm{SL}_{\mathbb{R}}(n)$.
xi) exp: $\operatorname{so}(n) \mapsto \mathrm{O}(n)$.
xii) exp: $\operatorname{sp}(n) \mapsto \operatorname{Sp}(n)$.

Proof. Statement i) follows from Proposition 11.4.3, while $i i$) is immediate. Statements $i i i$)-viii) can be verified by construction; see [466, pp. 199, 212] for the proof of $v i$) and viii). The example $A \triangleq\left[\begin{array}{cc}-1 & 0 \\ 0 & -2\end{array}\right]$ and Proposition 11.4.4 show that $i x$) is not onto. For $\lambda<0, \lambda \neq-1$, Proposition 11.4.4 and the example $\left[\begin{array}{cc}\lambda & 0 \\ 0 & 1 / \lambda\end{array}\right]$ given in [496, p. 39] show that x) is not onto. See also [45, pp. 84, 85]. Statement viii) shows that $x i$) is not onto. For xii), see [173].

Let $A \in \mathbb{R}^{n \times n}$. If there exists $B \in \mathbb{R}^{n \times n}$ such that $A=e^{B}$, then

Corollary 11.2.3 implies that $\operatorname{det} A=\operatorname{det} e^{B}=e^{\operatorname{tr} B}>0$. However, the converse is not true. Consider, for example, $A \triangleq\left[\begin{array}{cc}-1 & 0 \\ 0 & -2\end{array}\right]$, which satisfies $\operatorname{det} A>0$. However, Proposition 11.4.4 implies that there does not exist $B \in \mathbb{R}^{2 \times 2}$ such that $A=e^{B}$. On the other hand, note that $A=e^{B} e^{C}$, where $B \triangleq\left[\begin{array}{cc}0 & \pi \\ -\pi & 0\end{array}\right]$ and $C \triangleq\left[\begin{array}{cc}0 & 0 \\ 0 & \log 2\end{array}\right]$. While the product of two exponentials of real matrices has positive determinant, the following result shows that the converse is also true.

Proposition 11.4.7. Let $A \in \mathbb{R}^{n \times n}$. Then, there exist $B, C \in \mathbb{R}^{n \times n}$ such that $A=e^{B} e^{C}$ if and only if $\operatorname{det} A>0$.

Proof. Suppose that there exist $B, C \in \mathbb{R}^{n \times n}$ such that $A=e^{B} e^{C}$. Then, $\operatorname{det} A=\left(\operatorname{det} e^{B}\right)\left(\operatorname{det} e^{C}\right)>0$. Conversely, suppose that $\operatorname{det} A>0$. If A has no negative eigenvalues, then it follows from Proposition 11.4.4 that there exists $B \in \mathbb{R}^{n \times n}$ such that $A=e^{B}$. Hence, $A=e^{B} e^{0_{n \times n}}$. Now, suppose that A has at least one negative eigenvalue. Then, Theorem 5.3.5 on the real Jordan form implies that there exists a nonsingular matrix $S \in \mathbb{R}^{n \times n}$ and matrices $A_{1} \in \mathbb{R}^{n_{1} \times n_{1}}$ and $A_{2} \in \mathbb{R}^{n_{2} \times n_{2}}$ such that $A=S\left[\begin{array}{cc}A_{1} & 0 \\ 0 & A_{2}\end{array}\right] S^{-1}$, where all of the eigenvalues of A_{1} are negative and where none of the eigenvalues of A_{2} are negative. Since $\operatorname{det} A$ and $\operatorname{det} A_{2}$ are positive, it follows that n_{1} is even. Now, write $A=S\left[\begin{array}{cc}-I_{n_{1}} & 0 \\ 0 & I_{n_{2}}\end{array}\right]\left[\begin{array}{cc}-A_{1} & 0 \\ 0 & A_{2}\end{array}\right] S^{-1}$. Since the eigenvalue -1 of $\left[\begin{array}{cc}-I_{n_{1}} & 0 \\ 0 & I_{n_{2}}\end{array}\right]$ appears in an even number of 1×1 Jordan blocks, it follows from Proposition 11.4.4 that there exists $\hat{B} \in \mathbb{R}^{n \times n}$ such that $\left[\begin{array}{cc}-I_{n_{1}} & 0 \\ 0 & I_{n_{2}}\end{array}\right]=e^{\hat{B}}$. Furthermore, since $\left[\begin{array}{cc}-A_{1} & 0 \\ 0 & A_{2}\end{array}\right]$ has no negative eigenvalues, it follows that there exists $\hat{C} \in \mathbb{R}^{n \times n}$ such that $\left[\begin{array}{cc}-A_{1} & 0 \\ 0 & A_{2}\end{array}\right]=e^{\hat{C}}$. Hence, $e^{A}=S e^{\hat{B}} e^{\hat{C}} S^{-1}=$ $e^{S \hat{B} S^{-1}} e^{S \hat{C} S^{-1}}$.

Although $e^{A} e^{B}$ is generally different from e^{A+B}, the following result, known as the Baker-Campbell-Hausdorff series, provides an expansion for a matrix function $C(t)$ that satisfies $e^{C(t)}=e^{t A} e^{t B}$.

Proposition 11.4.8. Let $A_{1}, \ldots, A_{l} \in \mathbb{F}^{n \times n}$. Then, there exists $\varepsilon>0$ such that, for all $t \in(-\varepsilon, \varepsilon)$,

$$
\begin{equation*}
e^{t A_{1}} \cdots e^{t A_{l}}=e^{C(t)} \tag{11.4.2}
\end{equation*}
$$

where

$$
\begin{equation*}
C(t) \triangleq \sum_{i=1}^{l} t A_{i}+\sum_{1 \leq i<j \leq l} \frac{1}{2} t^{2}\left[A_{i}, A_{j}\right]+O\left(t^{3}\right) \tag{11.4.3}
\end{equation*}
$$

Proof. See [571, p. 97] or [496, p. 35].
To illustrate (11.4.2), let $l=2, A=A_{1}$, and $B=A_{2}$. Then, the first
two terms of the series are given by

$$
\begin{equation*}
e^{t A} e^{t B}=e^{t A+t B+\frac{t^{2}}{2}[A, B]+\frac{t^{3}}{12}[[B, A], A+B]+\cdots} \tag{11.4.4}
\end{equation*}
$$

The radius of convergence of this series is discussed in [438].
Corollary 11.4.9. Let $A, B \in \mathbb{F}^{n \times n}$. Then,

$$
\begin{equation*}
e^{A+B}=\lim _{k \rightarrow \infty}\left(e^{\frac{1}{k} A} e^{\frac{1}{k} B}\right)^{k} . \tag{11.4.5}
\end{equation*}
$$

Proof. Setting $l=2$ and $k=1 / t$ in (11.4.2) yields, as $k \rightarrow \infty$,

$$
\left(e^{\frac{1}{k} A} e^{\frac{1}{k} B}\right)^{k}=\left[e^{\frac{1}{k}(A+B)+O\left(\frac{1}{k^{2}}\right)}\right]^{k}=e^{A+B+O(1 / k)} \rightarrow e^{A+B}
$$

11.5 Lyapunov Stability Theory

Consider the dynamical system

$$
\begin{equation*}
\dot{x}(t)=f(x(t)), \tag{11.5.1}
\end{equation*}
$$

where $t \geq 0, x(t) \in \mathcal{D} \subseteq \mathbb{R}^{n}$, and $f: \mathcal{D} \rightarrow \mathbb{R}^{n}$ is continuous. We assume that, for all $x_{0} \in \mathcal{D}$ and for all $T>0$, there exists a unique C^{1} solution $x: \quad[0, T] \mapsto \mathcal{D}$ satisfying (11.5.1). If $x_{\mathrm{e}} \in \mathcal{D}$ satisfies $f\left(x_{\mathrm{e}}\right)=0$, then $x(t) \equiv x_{\mathrm{e}}$ is an equilibrium of (11.5.1). The following definition concerns the stability of an equilibrium. Throughout this section, let $\|\cdot\|$ denote a norm on \mathbb{R}^{n}.

Definition 11.5.1. Let $x_{\mathrm{e}} \in \mathcal{D}$ be an equilibrium of (11.5.1). Then, x_{e} is Lyapunov stable if, for all $\varepsilon>0$, there exists $\delta>0$ such that if $\left\|x(0)-x_{\mathrm{e}}\right\|<\delta$, then $\left\|x(t)-x_{\mathrm{e}}\right\|<\varepsilon$ for all $t \geq 0$. Furthermore, x_{e} is asymptotically stable if it is Lyapunov stable and there exists $\varepsilon>0$ such that, if $\left\|x(0)-x_{\mathrm{e}}\right\|<\varepsilon$, then $\lim _{t \rightarrow \infty} x(t)=x_{\mathrm{e}}$. In addition, x_{e} is globally asymptotically stable if it is Lyapunov stable, $\mathcal{D}=\mathbb{R}^{n}$, and, for all $x(0) \in \mathbb{R}^{n}$, $\lim _{t \rightarrow \infty} x(t)=x_{\mathrm{e}}$. Finally, x_{e} is unstable if it is not Lyapunov stable.

Note that if $x_{\mathrm{e}} \in \mathbb{R}^{n}$ is a globally asymptotically stable equilibrium, then x_{e} is the only equilibrium of (11.5.1).

The following result, known as Lyapunov's direct method, gives sufficient conditions for Lyapunov stability and asymptotic stability of an equilibrium of (11.5.1).

Theorem 11.5.2. Let $x_{\mathrm{e}} \in \mathcal{D}$ be an equilibrium of the dynamical system (11.5.1) and assume that there exists a C^{1} function $V: \mathcal{D} \mapsto \mathbb{R}$ such
that

$$
\begin{equation*}
V\left(x_{\mathrm{e}}\right)=0 \tag{11.5.2}
\end{equation*}
$$

such that, for all $x \in \mathcal{D} \backslash\left\{x_{\mathrm{e}}\right\}$,

$$
\begin{equation*}
V(x)>0 \tag{11.5.3}
\end{equation*}
$$

and such that, for all $x \in \mathcal{D}$,

$$
\begin{equation*}
V^{\prime}(x) f(x) \leq 0 \tag{11.5.4}
\end{equation*}
$$

Then, x_{e} is Lyapunov stable. If, in addition, for all $x \in \mathcal{D} \backslash\left\{x_{\mathrm{e}}\right\}$,

$$
\begin{equation*}
V^{\prime}(x) f(x)<0 \tag{11.5.5}
\end{equation*}
$$

then x_{e} is asymptotically stable. Finally, if $\mathcal{D}=\mathbb{R}^{n}$ and

$$
\begin{equation*}
\lim _{\|x\| \rightarrow \infty} V(x)=\infty \tag{11.5.6}
\end{equation*}
$$

then x_{e} is globally asymptotically stable.
Proof. For convenience, let $x_{\mathrm{e}}=0$. To prove Lyapunov stability, let $\varepsilon>0$ be such that $\mathbb{B}_{\varepsilon}(0) \subseteq \mathcal{D}$. Since $\mathbb{S}_{\varepsilon}(0)$ is compact and $V(x)$ is continuous, it follows from Theorem 10.3 .7 that $V\left(\mathbb{S}_{\varepsilon}(0)\right)$ is compact. Since $0 \notin \mathbb{S}_{\varepsilon}(0), V(x)>0$ for all $x \in \mathcal{D} \backslash\{0\}$, and $V\left(\mathbb{S}_{\varepsilon}(0)\right)$ is compact, it follows that $\alpha \triangleq \min V\left(\mathbb{S}_{\varepsilon}(0)\right)$ is positive. Next, since V is continuous, it follows that there exists $\delta \in(0, \varepsilon]$ such that $V(x)<\alpha$ for all $x \in \mathbb{B}_{\delta}(0)$. Now, let $x(t)$ for all $t \geq 0$ satisfy (11.5.1), where $\|x(0)\|<\delta$. Hence, $V(x(0))<\alpha$. It thus follows from (11.5.4) that, for all $t \geq 0$,

$$
V(x(t))-V(x(0))=\int_{0}^{t} V^{\prime}(x(s)) f(x(s)) \mathrm{d} s \leq 0
$$

and hence, for all $t \geq 0$,

$$
V(x(t)) \leq V(x(0))<\alpha
$$

Now, since $V(x) \geq \alpha$ for all $x \in \mathbb{S}_{\varepsilon}(0)$, it follows that $x(t) \notin \mathbb{S}_{\varepsilon}(0)$ for all $t \geq 0$. Hence, $\|x(t)\|<\varepsilon$ for all $t \geq 0$, which proves that $x_{\mathrm{e}}=0$ is Lyapunov stable.

To prove that $x_{\mathrm{e}}=0$ is asymptotically stable, let $\varepsilon>0$ be such that $\mathbb{B}_{\varepsilon}(0) \subseteq \mathcal{D}$. Since (11.5.5) implies (11.5.4), it follows that there exists $\delta>0$ such that, if $\|x(0)\|<\delta$, then $\|x(t)\|<\varepsilon$ for all $t \geq 0$. Furthermore, $\frac{\mathrm{d}}{\mathrm{d} t} V(x(t))=V^{\prime}(x(t)) f(x(t))<0$ for all $t \geq 0$, and thus $V(x(t))$ is decreasing and bounded from below by zero. Now, suppose that $V(x(t))$ does not converge to zero. Therefore, there exists $L>0$ such that $V(x(t)) \geq L$ for all $t \geq 0$. Now, let $\delta^{\prime}>0$ be such that $V(x)<L$ for all $x \in \mathbb{B}_{\delta^{\prime}}(0)$. Therefore, $\|x(t)\| \geq \delta^{\prime}$ for all $t \geq 0$. Next, define $\gamma<0$ by $\gamma \triangleq \max _{\delta^{\prime} \leq\|x\| \leq \varepsilon} V^{\prime}(x) f(x)$.

Therefore, since $\|x(t)\|<\varepsilon$ for all $t \geq 0$, it follows that

$$
V(x(t))-V(x(0))=\int_{0}^{t} V^{\prime}(x(\tau)) f(x(\tau)) \mathrm{d} \tau \leq \gamma t
$$

and hence

$$
V(x(t)) \leq V(x(0))+\gamma t .
$$

However, $t>-V(x(0)) / \gamma$ implies that $V(x(t))<0$, which is a contradiction.
To prove that $x_{\mathrm{e}}=0$ is globally asymptotically stable, let $x(0) \in \mathbb{R}^{n}$, and let $\beta \triangleq V(x(0))$. It follows from (11.5.6) that there exists $\varepsilon>0$ such that $V(x)>2 \beta$ for all $x \in \mathbb{R}^{n}$ such that $\|x\|>\varepsilon$. Therefore, $\|x(0)\|<\varepsilon$, and, since $V(x(t))$ is decreasing, it follows that $\|x(t)\|<\varepsilon$ for all $t>0$. The remainder of the proof is identical to the proof of asymptotic stability.

11.6 Linear Stability Theory

We now specialize Definition 11.5.1 to the linear system

$$
\begin{equation*}
\dot{x}(t)=A x(t), \tag{11.6.1}
\end{equation*}
$$

where $t \geq 0, x(t) \in \mathbb{R}^{n}$, and $A \in \mathbb{R}^{n \times n}$. Note that $x_{\mathrm{e}}=0$ is an equilibrium of (11.6.1), and that $x_{\mathrm{e}} \in \mathbb{R}^{n}$ is an equilibrium of (11.6.1) if and only if $x_{\mathrm{e}} \in \mathcal{N}(A)$. Hence, if x_{e} is the globally asymptotically stable equilibrium of (11.6.1), then A is nonsingular and $x_{\mathrm{e}}=0$.

We consider three types of stability for the linear system (11.6.1). Unlike Definition 11.5.1, these definitions are stated in terms of the dynamics rather than the equilibrium.

Definition 11.6.1. For $A \in \mathbb{F}^{n \times n}$, define the following classes of matrices:
i) A is Lyapunov stable if $\operatorname{spec}(A) \subset$ CLHP and, if $\lambda \in \operatorname{spec}(A)$ and $\operatorname{Re} \lambda=0$, then λ is semisimple.
ii) A is semistable if $\operatorname{spec}(A) \subset$ OLHP $\cup\{0\}$ and, if $0 \in \operatorname{spec}(A)$, then 0 is semisimple.
iii) A is asymptotically stable if $\operatorname{spec}(A) \subset$ OLHP.

The following result concerns Lyapunov stability, semistability, and asymptotic stability for (11.6.1).

Proposition 11.6.2. Let $A \in \mathbb{R}^{n \times n}$. Then, the following statements
are equivalent:
i) $x_{\mathrm{e}}=0$ is a Lyapunov stable equilibrium of (11.6.1).
ii) At least one equilibrium of (11.6.1) is Lyapunov stable.
iii) Every equilibrium of (11.6.1) is Lyapunov stable.
iv) A is Lyapunov stable.
$v)$ For every initial condition $x(0) \in \mathbb{R}^{n}, x(t)$ is bounded for all $t \geq 0$.
vi) $\left\|e^{t A}\right\|$ is bounded for all $t \geq 0$, where $\|\cdot\|$ is a norm on $\mathbb{R}^{n \times n}$.
vii) For every initial condition $x(0) \in \mathbb{R}^{n}, e^{t A} x(0)$ is bounded for all $t \geq 0$.

The following statements are equivalent:
vii) A is semistable.
viii) $\lim _{t \rightarrow \infty} e^{t A}$ exists. In fact, $\lim _{t \rightarrow \infty} e^{t A}=I-A A^{\#}$.
$i x)$ For every initial condition $x(0), \lim _{t \rightarrow \infty} x(t)$ exists.
The following statements are equivalent:
x) $x_{\mathrm{e}}=0$ is an asymptotically stable equilibrium of (11.6.1).
xi) A is asymptotically stable.
xii) $\operatorname{spabs}(A)<0$.
xiii) For every initial condition $x(0) \in \mathbb{R}^{n}, \lim _{t \rightarrow \infty} x(t)=0$.
xiv) For every initial condition $x(0) \in \mathbb{R}^{n}, e^{t A} x(0) \rightarrow 0$ as $t \rightarrow \infty$.
$x v) e^{t A} \rightarrow 0$ as $t \rightarrow \infty$.
The following definition concerns the stability of a polynomial.
Definition 11.6.3. Let $p \in \mathbb{R}[s]$. Then, define the following terminology:
i) p is Lyapunov stable if $\operatorname{roots}(p) \subset$ CLHP and, if λ is an imaginary root of p, then $\mathrm{m}_{p}(\lambda)=1$.
ii) p is semistable if $\operatorname{roots}(p) \subset$ OLHP $\cup\{0\}$ and, if $0 \in \operatorname{roots}(p)$, then $\mathrm{m}_{p}(0)=1$.
iii) p is asymptotically stable if $\operatorname{roots}(p) \subset$ OLHP.

For the following result, recall Definition 11.6.1.
Proposition 11.6.4. Let $A \in \mathbb{R}^{n \times n}$. Then, the following statements hold:
i) A is Lyapunov stable if and only if μ_{A} is Lyapunov stable.
ii) A is semistable if and only if μ_{A} is semistable.

Furthermore, the following statements are equivalent:
iii) A is asymptotically stable
iv) μ_{A} is asymptotically stable.
v) χ_{A} is asymptotically stable.

Next, consider the factorization of the minimal polynomial μ_{A} of A given by

$$
\begin{equation*}
\mu_{A}=\mu_{A}^{\mathrm{s}} \mu_{A}^{\mathrm{u}} \tag{11.6.2}
\end{equation*}
$$

where μ_{A}^{s} and μ_{A}^{u} are monic polynomials such that

$$
\begin{equation*}
\operatorname{roots}\left(\mu_{A}^{\mathrm{s}}\right) \subset \mathrm{OLHP} \tag{11.6.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{roots}\left(\mu_{A}^{\mathrm{u}}\right) \subset \mathrm{CRHP} \tag{11.6.4}
\end{equation*}
$$

Proposition 11.6.5. Let $A \in \mathbb{R}^{n \times n}$, and let $S \in \mathbb{R}^{n \times n}$ be a nonsingular matrix such that

$$
A=S\left[\begin{array}{cc}
A_{1} & A_{12} \tag{11.6.5}\\
0 & A_{2}
\end{array}\right] S^{-1}
$$

where $A_{1} \in \mathbb{R}^{r \times r}$ is asymptotically stable, $A_{12} \in \mathbb{R}^{r \times(n-r)}$, and $A_{2} \in$ $\mathbb{R}^{(n-r) \times(n-r)}$ satisfies $\operatorname{spec}\left(A_{2}\right) \subset$ CRHP. Then,

$$
\mu_{A}^{\mathrm{s}}(A)=S\left[\begin{array}{cc}
0 & C_{12 \mathrm{~s}} \tag{11.6.6}\\
0 & \mu_{A}^{\mathrm{s}}\left(A_{2}\right)
\end{array}\right] S^{-1}
$$

where $C_{12 \mathrm{~s}} \in \mathbb{R}^{r \times(n-r)}$ and $\mu_{A}^{\mathrm{s}}\left(A_{2}\right)$ is nonsingular, and

$$
\mu_{A}^{\mathrm{u}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{u}}\left(A_{1}\right) & C_{12 \mathrm{u}} \tag{11.6.7}\\
0 & 0
\end{array}\right] S^{-1},
$$

where $C_{12 \mathrm{u}} \in \mathbb{R}^{r \times(n-r)}$ and $\mu_{A}^{\mathrm{u}}\left(A_{1}\right)$ is nonsingular. Consequently,

$$
\mathcal{N}\left[\mu_{A}^{\mathrm{s}}(A)\right]=\mathcal{R}\left[\mu_{A}^{\mathrm{u}}(A)\right]=\mathcal{R}\left(S\left[\begin{array}{c}
I_{r} \tag{11.6.8}\\
0
\end{array}\right]\right)
$$

If, in addition, $A_{12}=0$, then

$$
\mu_{A}^{\mathrm{s}}(A)=S\left[\begin{array}{cc}
0 & 0 \tag{11.6.9}\\
0 & \mu_{A}^{\mathrm{s}}\left(A_{2}\right)
\end{array}\right] S^{-1}
$$

and

$$
\mu_{A}^{\mathrm{u}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{u}}\left(A_{1}\right) & 0 \tag{11.6.10}\\
0 & 0
\end{array}\right] S^{-1}
$$

Consequently,

$$
\mathcal{R}\left[\mu_{A}^{\mathrm{s}}(A)\right]=\mathcal{N}\left[\mu_{A}^{\mathrm{u}}(A)\right]=\mathcal{R}\left(S\left[\begin{array}{c}
0 \tag{11.6.11}\\
I_{n-r}
\end{array}\right]\right) .
$$

Corollary 11.6.6. Let $A \in \mathbb{R}^{n \times n}$. Then,

$$
\begin{equation*}
\mathcal{N}\left[\mu_{A}^{\mathrm{s}}(A)\right]=\mathcal{R}\left[\mu_{A}^{\mathrm{u}}(A)\right] \tag{11.6.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{N}\left[\mu_{A}^{\mathrm{u}}(A)\right]=\mathcal{R}\left[\mu_{A}^{\mathrm{s}}(A)\right] . \tag{11.6.13}
\end{equation*}
$$

Proof. It follows from Theorem 5.3.5 that there exists a nonsingular matrix $S \in \mathbb{R}^{n \times n}$ such that (11.6.5) is satisfied, where $A_{1} \in \mathbb{R}^{r \times r}$ is asymptotically stable, $A_{12}=0$, and $A_{2} \in \mathbb{R}^{(n-r) \times(n-r)}$ satisfies spec $\left(A_{2}\right) \subset$ CRHP. The result now follows from Proposition 11.6.5.

In view of Corollary 11.6.6 we define the asymptotically stable subspace $\delta_{\mathrm{s}}(A)$ of A by

$$
\begin{equation*}
\mathcal{S}_{\mathbf{s}}(A) \triangleq \mathcal{N}\left[\mu_{A}^{\mathrm{s}}(A)\right]=\mathcal{R}\left[\mu_{A}^{\mathrm{u}}(A)\right] \tag{11.6.14}
\end{equation*}
$$

and the unstable subspace $\delta_{\mathrm{u}}(A)$ of A by

$$
\begin{equation*}
\mathcal{S}_{\mathrm{u}}(A) \triangleq \mathcal{N}\left[\mu_{A}^{\mathrm{u}}(A)\right]=\mathcal{R}\left[\mu_{A}^{\mathrm{S}}(A)\right] . \tag{11.6.15}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\operatorname{dim} \delta_{\mathrm{s}}(A)=\operatorname{def} \mu_{A}^{\mathrm{s}}(A)=\operatorname{rank} \mu_{A}^{\mathrm{u}}(A)=\sum_{\substack{\lambda \in \operatorname{spec}(A) \\ \operatorname{Re}\langle 0}} \operatorname{am}_{A}(\lambda) \tag{11.6.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{dim} \mathcal{S}_{\mathrm{u}}(A)=\operatorname{def} \mu_{A}^{\mathrm{u}}(A)=\operatorname{rank} \mu_{A}^{\mathrm{s}}(A)=\sum_{\substack{\lambda \in \operatorname{spec}(A) \\ \operatorname{Re} \geq 0}} \operatorname{am}_{A}(\lambda) . \tag{11.6.17}
\end{equation*}
$$

Lemma 11.6.7. Let $A \in \mathbb{R}^{n \times n}$, assume that $\operatorname{spec}(A) \subset \operatorname{CRHP}$, let $x \in \mathbb{R}^{n}$, and assume that $\lim _{t \rightarrow \infty} e^{t A} x=0$. Then, $x=0$.

For the following result, note Proposition 11.6.2, Proposition 5.5.8, Fact 3.5.12, Fact 11.14.3, and Proposition 6.1.7.

Proposition 11.6.8. Let $A \in \mathbb{R}^{n \times n}$. Then, the following statements hold:
i) $\mathcal{S}_{\mathrm{s}}(A)=\left\{x \in \mathbb{R}^{n}: \lim _{t \rightarrow \infty} e^{t A} x=0\right\}$.
ii) $\mu_{A}^{\mathrm{s}}(A)$ and $\mu_{A}^{\mathrm{u}}(A)$ are group invertible.
iii) $P_{\mathrm{s}} \triangleq I-\mu_{A}^{\mathrm{s}}(A)\left[\mu_{A}^{\mathrm{s}}(A)\right]^{\#}$ and $P_{\mathrm{u}} \triangleq I-\mu_{A}^{\mathrm{u}}(A)\left[\mu_{A}^{\mathrm{u}}(A)\right]^{\#}$ are idempotent.
iv) $P_{\mathrm{s}}+P_{\mathrm{u}}=I$.
v) $P_{\mathrm{s} \perp}=P_{\mathrm{u}}$ and $P_{\mathrm{u} \perp}=P_{\mathrm{s}}$.
vi) $\mathcal{S}_{\mathrm{s}}(A)=\mathcal{R}\left(P_{\mathrm{s}}\right)=\mathcal{N}\left(P_{\mathrm{u}}\right)$.
vii) $\mathcal{S}_{\mathrm{u}}(A)=\mathcal{R}\left(P_{\mathrm{u}}\right)=\mathcal{N}\left(P_{\mathrm{s}}\right)$.
viii) $\mathcal{S}_{\mathrm{s}}(A)$ and $\mathcal{S}_{\mathrm{u}}(A)$ are invariant subspaces of A.
$i x) \mathcal{S}_{\mathrm{s}}(A)$ and $\mathcal{S}_{\mathrm{u}}(A)$ are complementary subspaces.
x) P_{S} is the idempotent matrix onto $\mathcal{S}_{\mathrm{S}}(A)$ along $\mathcal{S}_{\mathrm{u}}(A)$.
xi) P_{u} is the idempotent matrix onto $\mathcal{S}_{\mathrm{u}}(A)$ along $\mathcal{S}_{\mathrm{s}}(A)$.

Proof. To prove i) let $S \in \mathbb{R}^{n \times n}$ be a nonsingular matrix such that

$$
A=S\left[\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right] S^{-1}
$$

where $A_{1} \in \mathbb{R}^{r \times r}$ is asymptotically stable and $\operatorname{spec}\left(A_{2}\right) \subset$ CRHP. It then follows from Proposition 11.6.5 that

$$
\mathcal{S}_{\mathrm{s}}(A)=\mathcal{N}\left[\mu_{A}^{\mathrm{s}}(A)\right]=\mathcal{R}\left(S\left[\begin{array}{c}
I_{r} \\
0
\end{array}\right]\right)
$$

Furthermore,

$$
e^{t A}=S\left[\begin{array}{cc}
e^{t A_{1}} & 0 \\
0 & e^{t A_{2}}
\end{array}\right] S^{-1}
$$

To prove $\mathcal{S}_{\mathrm{s}}(A) \subseteq\left\{x \in \mathbb{R}^{n}: \lim _{t \rightarrow \infty} e^{t A} x=0\right\}$, let $x \triangleq S\left[\begin{array}{c}x_{1} \\ 0\end{array}\right] \in \mathcal{S}_{\mathrm{s}}(A)$, where $x_{1} \in \mathbb{R}^{r}$. Then, $e^{t A} x=S\left[\begin{array}{c}e^{t A_{1}} x_{1} \\ 0\end{array}\right] \rightarrow 0$ as $t \rightarrow \infty$. Hence, $x \in\{x \in$ $\left.\mathbb{R}^{n}: \lim _{t \rightarrow \infty} e^{t A} x=0\right\}$. Conversely, to prove $\left\{x \in \mathbb{R}^{n}: \lim _{t \rightarrow \infty} e^{t A} x=0\right\} \subseteq$ $\mathcal{S}_{\mathrm{s}}(A)$, let $x \triangleq S\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \in \mathbb{R}^{n}$ satisfy $\lim _{t \rightarrow \infty} e^{t A} x=0$. Hence, $e^{t A_{2}} x_{2} \rightarrow 0$ as $t \rightarrow \infty$. Since $\operatorname{spec}\left(A_{2}\right) \subset$ CRHP, it follows from Lemma 11.6.7 that $x_{2}=0$. Hence, $x \in \mathcal{R}\left(S\left[\begin{array}{c}I_{r} \\ 0\end{array}\right]\right)=\mathcal{S}_{\mathrm{s}}(A)$.

The remaining statements follow directly from Proposition 11.6.5.

11.7 The Lyapunov Equation

In this section we specialize Theorem 11.5.2 to the linear system (11.6.1).

Corollary 11.7.1. Let $A \in \mathbb{R}^{n \times n}$ and assume that there exists a nonneg-ative-semidefinite matrix $R \in \mathbb{R}^{n \times n}$ and a positive-definite matrix $P \in \mathbb{R}^{n \times n}$ satisfying

$$
\begin{equation*}
A^{\mathrm{T}} P+P A+R=0 \tag{11.7.1}
\end{equation*}
$$

Then, A is Lyapunov stable. If, in addition, for all nonzero $\omega \in \mathbb{R}$,

$$
\operatorname{rank}\left[\begin{array}{c}
\jmath \omega I-A \tag{11.7.2}\\
R
\end{array}\right]=n,
$$

then A is semistable. Finally, if R is positive definite, then A is asymptotically stable.

Proof. Define $V(x) \triangleq x^{\mathrm{T}} P x$, which satisfies (11.5.2) with $x_{\mathrm{e}}=0$ and satisfies (11.5.3) for all nonzero $x \in \mathcal{D}=\mathbb{R}^{n}$. Furthermore, Theorem 11.5.2 implies that $V^{\prime}(x) f(x)=2 x^{\mathrm{T}} P A x=x^{\mathrm{T}}\left(A^{\mathrm{T}} P+P A\right) x=-x^{\mathrm{T}} R x$, which satisfies (11.5.4) for all $x \in \mathbb{R}^{n}$. Thus, Theorem 11.5.2 implies that A is Lyapunov stable. If, in addition, R is positive definite, then (11.5.5) is satisfied for all $x \neq 0$, and thus A is asymptotically stable.

Alternatively, we shall prove the first and third statements without using Theorem 11.5.2. Letting $\lambda \in \operatorname{spec}(A)$ and $x \in \mathbb{C}^{n}$ be an associated eigenvector, it follows that $0 \geq-x^{*} R x=x^{*}\left(A^{\mathrm{T}} P+P A\right) x=(\bar{\lambda}+\lambda) x^{*} P x$. Therefore, $\operatorname{spec}(A) \subset$ CLHP. Now, suppose that $\jmath \omega \in \operatorname{spec}(A)$, where $\omega \in \mathbb{R}$, and let $x \in \mathcal{N}\left[(\jmath \omega I-A)^{2}\right]$. Defining $y \triangleq(\jmath \omega I-A) x$, it follows that $(\jmath \omega I-A) y=0$ and thus $A y=\jmath \omega y$. Therefore, $-y^{*} R y=$ $y^{*}\left(A^{\mathrm{T}} P+P A\right) y=-\jmath \omega y^{*} P y+\jmath \omega y^{*} P y=0$, and thus $R y=0$. Hence, $0=x^{*} R y=-x^{*}\left(A^{\mathrm{T}} P+P A\right) y=-x^{*}\left(A^{\mathrm{T}}+\jmath \omega I\right) P y=y^{*} P y$. Since P is positive definite, it follows that $y=0$, that is, $(\jmath \omega I-A) x=0$. Therefore, $x \in \mathcal{N}(\jmath \omega I-A)$. Now, Proposition 5.5.14 implies that $\jmath \omega$ is semisimple. Therefore, A is Lyapunov stable.

Next, to prove that A is asymptotically stable, let $\lambda \in \operatorname{spec}(A)$, and let $x \in \mathbb{C}^{n}$ be an associated eigenvector. Thus, $0>-x^{*} R x=(\bar{\lambda}+\lambda) x^{*} P x$, which implies that A is asymptotically stable.

Finally, to prove that A is semistable, let $\jmath \omega \in \operatorname{spec}(A)$, where $\omega \in \mathbb{R}$ is nonzero, and let $x \in \mathbb{C}^{n}$ be an associated eigenvector. Then,

$$
-x^{*} R x=x^{*}\left(A^{\mathrm{T}} P+P A\right) x=x^{*}\left[(\jmath \omega I-A)^{*} P+P(\jmath \omega I-A] x=0 .\right.
$$

Therefore, $R x=0$ and thus

$$
\left[\begin{array}{c}
\jmath \omega I-A \\
R
\end{array}\right] x=0
$$

which implies that $x=0$, which contradicts $x \neq 0$. Consequently, $\jmath \omega \notin$ $\operatorname{spec}(A)$ for all nonzero $\omega \in \mathbb{R}$, and thus A is semistable.

Equation (11.7.1) is a Lyapunov equation. Converse results for Corollary 11.7.1 are given by Corollary 11.7.4, Proposition 11.7.5, Proposition 11.7.6, Proposition 11.7.7, and Proposition 12.7.5. The following lemma will be useful for analyzing (11.7.1).

Lemma 11.7.2. Assume that $A \in \mathbb{F}^{n \times n}$ is asymptotically stable. Then,

$$
\begin{equation*}
\int_{0}^{\infty} e^{t A} \mathrm{~d} t=-A^{-1} \tag{11.7.3}
\end{equation*}
$$

Proof. Proposition 11.1.5 implies that $\int_{0}^{t} e^{\tau A} \mathrm{~d} \tau=A^{-1}\left(e^{t A}-I\right)$. Letting $t \rightarrow \infty$ yields (11.7.3).

The following result concerns Sylvester's equation. See Fact 5.8.11 and Proposition 7.2.4.

Proposition 11.7.3. Let $A, B, C \in \mathbb{R}^{n \times n}$. Then, there exists a unique matrix $X \in \mathbb{R}^{n \times n}$ satisfying

$$
\begin{equation*}
A X+X B+C=0 \tag{11.7.4}
\end{equation*}
$$

if and only if $B^{\mathrm{T}} \oplus A$ is nonsingular. In this case, X is given by

$$
\begin{equation*}
X=-\operatorname{vec}^{-1}\left[\left(B^{\mathrm{T}} \oplus A\right)^{-1} \operatorname{vec} C\right] . \tag{11.7.5}
\end{equation*}
$$

If, in addition, $B^{\mathrm{T}} \oplus A$ is asymptotically stable, then X is given by

$$
\begin{equation*}
X=\int_{0}^{\infty} e^{t A} C e^{t B} \mathrm{~d} t . \tag{11.7.6}
\end{equation*}
$$

Proof. The first two statements follow from Proposition 7.2.4. If $B^{\mathrm{T}} \oplus$ A is asymptotically stable, then it follows from (11.7.5) using Lemma 11.7.2 and Proposition 11.1.8 that

$$
\begin{aligned}
X & =\int_{0}^{\infty} \operatorname{vec}^{-1}\left(e^{t\left(B^{\mathrm{T}} \oplus A\right)} \operatorname{vec} C\right) \mathrm{d} t=\int_{0}^{\infty} \operatorname{vec}^{-1}\left(e^{t B^{\mathrm{T}}} \otimes e^{t A}\right) \operatorname{vec} C \mathrm{~d} t \\
& =\int_{0}^{\infty} \operatorname{vec}^{-1} \operatorname{vec}\left(e^{t A} C e^{t B}\right) \mathrm{d} t=\int_{0}^{\infty} e^{t A} C e^{t B} \mathrm{~d} t .
\end{aligned}
$$

The following result provides a converse to Corollary 11.7.1 for the case of asymptotic stability.

Corollary 11.7.4. Let $A \in \mathbb{R}^{n \times n}$, and let $R \in \mathbb{R}^{n \times n}$. Then, there exists a unique matrix $P \in \mathbb{R}^{n \times n}$ satisfying (11.7.1) if and only if $A \oplus A$ is nonsingular. In this case, if R is symmetric, then P is symmetric. Now,
assume that A is asymptotically stable. Then, $P \in \mathbf{S}^{n}$ is given by

$$
\begin{equation*}
P=\int_{0}^{\infty} e^{t A^{\mathrm{T}}} R e^{t A} \mathrm{~d} t \tag{11.7.7}
\end{equation*}
$$

Finally, if R is (nonnegative semidefinite, positive definite), then P is (nonnegative semidefinite, positive definite).

Proof. First note that $A \oplus A$ is nonsingular if and only if $(A \oplus A)^{\mathrm{T}}=$ $A^{\mathrm{T}} \oplus A^{\mathrm{T}}$ is nonsingular. Now, the first statement follows from Proposition 11.7.3. To prove the second statement note that $A^{\mathrm{T}}\left(P-P^{\mathrm{T}}\right)+$ $\left(P-P^{\mathrm{T}}\right) A=0$, which implies that P is symmetric. Now, suppose that A is asymptotically stable. Then, Fact 11.14.29 implies that $A \oplus A$ is asymptotically stable. Consequently, (11.7.7) follows from (11.7.6).

The following result provides a converse to Corollary 11.7.1 for the case of Lyapunov stability.

Proposition 11.7.5. Let $A \in \mathbb{R}^{n \times n}$, and assume that A is Lyapunov stable. Then, there exist a positive-definite matrix P and a nonnegativesemidefinite matrix R satisfying (11.7.1).

Proof. Let $S \in \mathbb{R}^{n \times n}$ be a nonsingular matrix such that $S A S^{-1}=$ $\left[\begin{array}{cc}A_{1} & 0 \\ 0 & A_{2}\end{array}\right]$ is in real Jordan form, where $A_{1} \in \mathbb{R}^{n_{1} \times n_{1}}, \operatorname{spec}\left(A_{1}\right) \subset$ OLHP, $\operatorname{spec}\left(A_{2}\right) \subset \jmath \mathbb{R}$, and A_{2} is skew symmetric. Let $R_{1} \in \mathbb{R}^{n_{1} \times n_{1}}$ be positive definite and let $P_{1} \in \mathbb{R}^{n_{1} \times n_{1}}$ be the positive-definite solution to $A_{1}^{\mathrm{T}} P_{1}+P_{1} A_{1}+$ $R_{1}=0$. Since $A_{2}+A_{2}^{\mathrm{T}}=0$, it follows that $\left(S A S^{-1}\right)^{\mathrm{T}} \hat{P}+\hat{P} S A S^{-1}+\hat{R}=0$, where $\hat{P} \triangleq\left[\begin{array}{cc}P_{1} & 0 \\ 0 & 0\end{array}\right]$ and $\hat{R} \triangleq\left[\begin{array}{cc}R_{1} & 0 \\ 0 & 0\end{array}\right]$. Therefore, (11.7.1) is satisfied with $P \triangleq S^{\mathrm{T}} \hat{P} S$ and $R \triangleq S^{\mathrm{T}} \hat{R} S$.

The following results also include converse statements. We first consider asymptotic stability.

Consider the Lyapunov equation

$$
\begin{equation*}
A^{\mathrm{T}} P+P A+R=0 . \tag{11.7.8}
\end{equation*}
$$

Proposition 11.7.6. Let $A \in \mathbb{R}^{n \times n}$. The following statements are equivalent:
i) A is asymptotically stable.
ii) For all positive-definite matrices $R \in \mathbb{R}^{n \times n}$ there exists a positivedefinite matrix $P \in \mathbb{R}^{n \times n}$ such that (11.7.8) is satisfied.
iii) There exists a positive-definite matrix $R \in \mathbb{R}^{n \times n}$ and a positive-
definite matrix $P \in \mathbb{R}^{n \times n}$ such that (11.7.8) is satisfied.
Proof. The result $i) \Longrightarrow i i$) follows from Corollary 11.7.1. The implications $i i) \Longrightarrow i i i)$ and $i i i) \Longrightarrow i v$) are immediate. To prove $i v) \Longrightarrow i$) note that, since there exists a nonnegative-semidefinite matrix P satisfying (11.7.8), it follows from Proposition 12.4.4 that (A, C) is completely undetectable. Thus, there exists a nonsingular matrix $S \in \mathbb{R}^{n \times n}$ such that $A=S\left[\begin{array}{cc}A_{1} & 0 \\ A_{21} & A_{2}\end{array}\right] S^{-1}$ and $C=\left[\begin{array}{cc}C_{1} & 0\end{array}\right] S^{-1}$, where $\left(C_{1}, A_{1}\right)$ is observable and A_{1} is asymptotically stable. Furthermore, since $\left(S^{-1} A S, C S\right)$ is detectable, it follows that A_{2} is also asymptotically stable. Consequently, A is asymptotically stable.

Next, we consider the case of Lyapunov stability.
Proposition 11.7.7. Let $A \in \mathbb{R}^{n \times n}$. Then, A is Lyapunov stable if and only if there exists a nonnegative-semidefinite matrix $R \in \mathbb{R}^{n \times n}$ and a positive-definite matrix $P \in \mathbb{R}^{n \times n}$ such that (11.7.8) is satisfied.

Proof. Suppose that A is Lyapunov stable. Then, there exists a nonsingular matrix $S \in \mathbb{R}^{n \times n}$ such that $A=S\left[\begin{array}{cc}A_{1} & 0 \\ 0 & A_{2}\end{array}\right] S^{-1}, A_{1} \in \mathbb{R}^{n_{1} \times n_{1}}$, $A_{2} \in \mathbb{R}^{n_{2} \times n_{2}}, \operatorname{spec}\left(A_{1}\right) \subset \jmath \mathbb{R}$, and $\operatorname{spec}\left(A_{2}\right) \subset$ OLHP. Let $S_{1} \in \mathbb{R}^{n_{1} \times n_{1}}$ be such that $A_{1}=S_{1} J_{1} S_{1}^{-1}$, where $J_{1} \in \mathbb{R}^{n_{1} \times n_{1}}$ is skew symmetric. Then, it follows that $A_{1}^{\mathrm{T}} P_{1}+P_{1} A_{1}=0$, where $P_{1}=S_{1}^{-\mathrm{T}} S_{1}^{-1}$ is positive definite. Next, let $R_{2} \in \mathbb{R}^{n_{2} \times n_{2}}$ be positive definite and let $P_{2} \in \mathbb{R}^{n_{2} \times n_{2}}$ be the positivedefinite solution to $A_{2}^{\mathrm{T}} P_{2}+P_{2} A_{2}+R_{2}=0$. Hence, (11.7.8) is satisfied with $P \triangleq S^{-\mathrm{T}}\left[\begin{array}{cc}P_{1} & 0 \\ 0 & P_{2}\end{array}\right] S^{-1}$ and $R \triangleq S^{-\mathrm{T}}\left[\begin{array}{cc}0 & 0 \\ 0 & R_{2}\end{array}\right] S^{-1}$.

Conversely, suppose that there exist a nonnegative-semidefinite matrix $R \in \mathbb{R}^{n \times n}$ and a positive-definite matrix $P \in \mathbb{R}^{n \times n}$ such that (11.7.8) is satisfied. Let $\lambda \in \operatorname{spec}(A)$, and let $x \in \mathbb{R}^{n}$ be an eigenvector of A associated with λ. It thus follows from (11.7.8) that $0=x^{*} A^{\mathrm{T}} P x+x^{*} P A x+x^{*} R x=$ $(\lambda+\bar{\lambda}) x^{*} P x+x^{*} R x$. Therefore, $\operatorname{Re} \lambda=-x^{*} R x /\left(2 x^{*} P x\right)$, which shows that $\operatorname{spec}(A) \subset \operatorname{CLHP}$. Now, let $\jmath \omega \in \operatorname{spec}(A)$, and suppose that $x \in \mathbb{R}^{n}$ satisfies $(\jmath \omega I-A)^{2} x=0$. Then, $(\jmath \omega I-A) y=0$, where $y=(\jmath \omega I-A) x$. Computing $0=y^{*}\left(A^{\mathrm{T}} P+P A\right) y+y^{*} R y$ yields $y^{*} R y=0$ and thus $R y=0$. Therefore, $\left(A^{\mathrm{T}} P+P A\right) y=0$ and thus $y^{*} P y=\left(A^{\mathrm{T}}+\jmath \omega I\right) P y=0$. Since P is positive definite, it follows that $y=(\jmath \omega I-A) x=0$. Therefore, $\mathcal{N}(\jmath \omega I-A)=$ $\mathcal{N}\left[(\jmath \omega I-A)^{2}\right]$. Hence, it follows from Corollary TBD that $\jmath \omega$ is semisimple,

Corollary 11.7.8. Let $A \in \mathbb{R}^{n \times n}$. Then, the following statements hold:
i) A is Lyapunov stable if and only if there exists a positive-definite
matrix $P \in \mathbb{R}^{n \times n}$ such that $A^{\mathrm{T}} P+P A$ is nonpositive semidefinite.
ii) A is asymptotically stable if and only if there exists a positivedefinite matrix $P \in \mathbb{R}^{n \times n}$ such that $A^{\mathrm{T}} P+P A$ is negative definite.

11.8 Discrete-Time Stability Theory

The theory of difference equations is concerned with the behavior of discrete-time dynamical systems of the form

$$
\begin{equation*}
x_{k+1}=f\left(x_{k}\right), \tag{11.8.1}
\end{equation*}
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, k \in \mathbb{N}, x_{k} \in \mathbb{R}^{n}$, and x_{0} is the initial condition. The solution $x_{k} \equiv x_{\mathrm{e}}$ is an equilibrium of (11.8.1) if $x_{\mathrm{e}}=f\left(x_{\mathrm{e}}\right)$.

A linear discrete-time system has the form

$$
\begin{equation*}
x_{k+1}=A x_{k}, \tag{11.8.2}
\end{equation*}
$$

where $A \in \mathbb{R}^{n \times n}$. For $k \in \mathbb{N}, x_{k}$ is given by

$$
\begin{equation*}
x_{k}=A^{k} x_{0} . \tag{11.8.3}
\end{equation*}
$$

The behavior of $\left\{x_{k}\right\}_{k=0}^{\infty}$ is determined by the stability of A. To study the stability of discrete-time systems it is helpful to define the open unit disk (OUD) and the closed unit disk (CUD) by

$$
\begin{equation*}
\text { OUD } \triangleq\{x \in \mathbb{C}:|x|<1\} \tag{11.8.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{CUD} \triangleq\{x \in \mathbb{C}:|x| \leq 1\} . \tag{11.8.5}
\end{equation*}
$$

Definition 11.8.1. For $A \in \mathbb{F}^{n \times n}$, define the following classes of matrices:
i) A is discrete-time Lyapunov stable if $\operatorname{spec}(A) \subset C U D$ and, if $\lambda \in$ $\operatorname{spec}(A)$ and $|\lambda|=1$, then λ is semisimple.
ii) A is discrete-time semistable if $\operatorname{spec}(A) \subset \mathrm{OUD} \cup\{1\}$ and, if $1 \in$ $\operatorname{spec}(A)$, then 1 is semisimple.
iii) A is discrete-time asymptotically stable if $\operatorname{spec}(A) \subset \mathrm{OUD}$.

Proposition 11.8.2. Let $A \in \mathbb{R}^{n \times n}$ and consider the linear discretetime system (11.8.2). Then, the following statements are equivalent:
i) A is discrete-time Lyapunov stable.
ii) For every initial condition $x_{0} \in \mathbb{R}^{n}, x_{k}$ is bounded for all $k \in \mathbb{N}$.
iii) $\left\|A^{k}\right\|$ is bounded for all $k \in \mathbb{N}$, where $\|\cdot\|$ is a norm on $\mathbb{R}^{n \times n}$.
iv) For every initial condition $x_{0} \in \mathbb{R}^{n}, A^{k} x_{0}$ is bounded for all $k \in \mathbb{N}$. The following statements are equivalent:
$v) A$ is discrete-time semistable.
vi) $\lim _{k \rightarrow \infty} A^{k}$ exists. In this case, $\lim _{k \rightarrow \infty} A^{k}=I-(I-A)^{\#}(I-A)$.
$v i i)$ For every initial condition $x_{0} \in \mathbb{R}^{n}, \lim _{k \rightarrow \infty} x_{k}$ exists.
The following statements are equivalent:
viii) A is discrete-time asymptotically stable.
ix) $\operatorname{sprad}(A)<1$.
$x)$ For every initial condition $x_{0} \in \mathbb{R}^{n}, \lim _{k \rightarrow \infty} x_{k}=0$.
$x i)$ For every initial condition $x_{0} \in \mathbb{R}^{n}, A^{k} x_{0} \rightarrow 0$ as $k \rightarrow \infty$.
xii) $A^{k} \rightarrow 0$ as $k \rightarrow \infty$.

The following definition concerns the discrete-time stability of a polynomial.

Definition 11.8.3. Let $p \in \mathbb{R}[s]$. Then, define the following terminology:
i) p is discrete-time Lyapunov stable if $\operatorname{roots}(p) \subset$ CUD and, if λ is an imaginary root of p, then $\mathrm{m}_{p}(\lambda)=1$.
ii) p is discrete-time semistable if $\operatorname{roots}(p) \subset \mathrm{OUD} \cup\{1\}$ and, if $1 \in$ $\operatorname{roots}(p)$, then $\mathrm{m}_{p}(1)=1$.
iii) p is discrete-time asymptotically stable if $\operatorname{roots}(p) \subset$ OUD.

Proposition 11.8.4. Let $A \in \mathbb{R}^{n \times n}$. Then, the following statements hold:
i) A is discrete-time Lyapunov stable if and only if μ_{A} is discrete-time Lyapunov stable.
ii) A is discrete-time semistable if and only if μ_{A} is discrete-time semistable.

Furthermore, the following statements are equivalent:
i) A is discrete-time asymptotically stable.
ii) μ_{A} is discrete-time asymptotically stable.
iii) χ_{A} is discrete-time asymptotically stable.

11.9 Facts on Matrix Exponential Formulas

Fact 11.9.1. Let $A \in \mathbb{R}^{n \times n}$. Then, the following statements hold:
$i)$ If $A^{2}=0$, then $e^{t A}=I+t A$.
ii) If $A^{2}=I$, then $e^{t A}=(\cosh t) I+(\sinh t) A$.
iii) If $A^{2}=-I$, then $e^{t A}=(\cos t) I+(\sin t) A$.
$i v)$ If $A^{2}=A$, then $e^{t A}=I-A+e^{t} A$.
$v)$ If $A^{2}=-A$, then $e^{t A}=I+A-e^{-t} A$.
vi) If $\operatorname{rank} A=1$ and $\operatorname{tr} A=0$, then $e^{t A}=I+t A$.
vii) If $\operatorname{rank} A=1$ and $\operatorname{tr} A \neq 0$, then $e^{t A}=I+\frac{e^{(\operatorname{tr} A) t}-1}{\operatorname{tr} A} A$.
(Remark: See [458].)
Fact 11.9.2. Let $A \triangleq\left[\begin{array}{cc}0 & I_{n} \\ I_{n} & 0\end{array}\right]$. Then,

$$
e^{t A}=(\cosh t) I_{2 n}+(\sinh t) A
$$

Furthermore,

$$
e^{t J_{2 n}}=(\cos t) I_{2 n}+(\sin t) J_{2 n}
$$

Fact 11.9.3. Let $A \in \mathbb{R}^{n \times n}$ be skew symmetric. Then, $\left\{e^{\theta A}: \theta \in\right.$ $\mathbb{R}\} \subseteq \operatorname{SO}(n)$ is a group. If, in addition, $n=2$, then

$$
\left\{e^{\theta J_{2}}: \theta \in \mathbb{R}\right\}=\mathrm{SO}(2)
$$

(Remark: Note that $e^{\theta J_{2}}=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$. See Fact 3.6.14.)
Fact 11.9.4. Let $A \in \mathbb{R}^{n \times n}$, where

$$
A \triangleq\left[\begin{array}{cccccc}
0 & 1 & 0 & 0 & \cdots & 0 \\
0 & 0 & 2 & 0 & \cdots & 0 \\
0 & 0 & 0 & 3 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \ddots & n-1 \\
0 & 0 & 0 & 0 & \cdots & 0
\end{array}\right] .
$$

Then,

$$
e^{A}=\left[\begin{array}{cccccc}
\binom{0}{0} & \binom{1}{0} & \binom{2}{0} & \binom{3}{0} & \cdots & \binom{n-1}{0} \\
0 & \binom{1}{1} & \binom{2}{1} & \binom{3}{1} & \cdots & \binom{n-1}{1} \\
0 & 0 & \binom{2}{2} & \binom{3}{2} & \cdots & \binom{n-1}{2} \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \ddots & \binom{n-1}{n-2} \\
0 & 0 & 0 & 0 & \cdots & \binom{n-1}{n-1}
\end{array}\right] .
$$

Furthermore, if $k \geq n$, then

$$
\left.\sum_{i=1}^{k} i^{n-1}=\left[\begin{array}{llll}
1^{n-1} & 2^{n-1} & \cdots & n^{n-1}
\end{array}\right] e^{-A}\left[\begin{array}{c}
k \\
1
\end{array}\right)\right] .
$$

(Proof: See [35].)
Fact 11.9.5. Let $A \in \mathbb{F}^{3 \times 3}$. If $\operatorname{spec}(A)=\{\lambda\}$, then

$$
e^{t A}=e^{\lambda t}\left[I+t(A-\lambda I)+\frac{1}{2} t^{2}(A-\lambda I)^{2}\right]
$$

If $\operatorname{mspec}(A)=\{\lambda, \lambda, \mu\}_{\mathrm{m}}$, where $\mu \neq \lambda$, then

$$
e^{t A}=e^{\lambda t}[I+t(A-\lambda I)]+\left[\frac{e^{\mu t}-e^{\lambda t}}{(\mu-\lambda)^{2}}-\frac{t e^{\lambda t}}{\mu-\lambda}\right](A-\lambda I)^{2}
$$

If $\operatorname{spec}(A)=\{\lambda, \mu, \nu\}$, then

$$
\begin{aligned}
e^{t A}= & \frac{e^{\lambda t}}{(\lambda-\mu)(\lambda-\nu)}(A-\mu I)(A-\nu I)+\frac{e^{\mu t}}{(\mu-\lambda)(\mu-\nu)}(A-\lambda I)(A-\nu I) \\
& +\frac{e^{\nu t}}{(\nu-\lambda)(\nu-\mu)}(A-\lambda I)(A-\mu I)
\end{aligned}
$$

(Proof: See [32].)
Fact 11.9.6. Let $z_{1}, z_{2}, z_{3} \in \mathbb{R}$, and define

$$
A \triangleq\left[\begin{array}{ccc}
0 & -z_{3} & z_{2} \\
z_{3} & 0 & -z_{1} \\
-z_{2} & z_{1} & 0
\end{array}\right]
$$

Then,

$$
\begin{aligned}
e^{A} & =I+\frac{\sin \theta}{\theta} A+\frac{1-\cos \theta}{\theta^{2}} A^{2} \\
& =I+\frac{\sin \theta}{\theta} A+\frac{1}{2}\left[\frac{\sin (\theta / 2)}{\theta / 2}\right]^{2} A^{2} \\
& =(\cos \theta) I+\frac{\sin \theta}{\theta} A+\frac{1-\cos \theta}{\theta^{2}} z z^{\mathrm{T}}
\end{aligned}
$$

where $z \triangleq\left[\begin{array}{lll}z_{1} & z_{2} & z_{3}\end{array}\right]^{\mathrm{T}}$ and $\theta \triangleq\|z\|_{2}$. (Remark: For $x \in \mathbb{R}^{3}, e^{A} x$ is the rotation of x about the vector $\left[\begin{array}{lll}z_{1} & z_{2} & z_{3}\end{array}\right]^{\mathrm{T}}$ through the angle θ. See [89]. See Fact 11.9.8.) (Proof: The Cayley-Hamilton theorem implies $A^{3}+\theta^{2} A=0$. Then, every term A^{k} in the expansion of e^{A} can be expressed in terms of A or A^{2}. Finally, $\theta^{2} I+A^{2}=z z^{\mathrm{T}}$.)

Fact 11.9.7. Let $A \in \mathbb{F}^{3 \times 3}$ be unitary and assume there exists $\theta \in \mathbb{R}$ such that $\operatorname{tr} A=1+2 \cos \theta$ and $|\theta|<\pi$. Then,

$$
e^{\frac{\theta}{2 \sin \theta}\left(A-A^{\mathrm{T}}\right)}=A .
$$

(Proof: See [307, p. 364].)
Fact 11.9.8. Let $x, y \in \mathbb{R}^{n}$ satisfy $x^{\mathrm{T}} y=0$, let $\theta \in[0,2 \pi]$, and define $A \in \mathbb{F}^{n \times n}$ by

$$
A \triangleq I+(\sin \theta)\left(x y^{\mathrm{T}}-y x^{\mathrm{T}}\right)-(1-\cos \theta)\left(x x^{\mathrm{T}}+y y^{\mathrm{T}}\right)
$$

Then, A is orthogonal and $\operatorname{det} A=1$. Now, let $n=3$ and $z \triangleq y \times x$. Then,

$$
A=(\cos \theta) I+(\sin \theta) C(z)+(1-\cos \theta) z z^{\mathrm{T}}
$$

where

$$
C(z) \triangleq\left[\begin{array}{ccc}
0 & -z_{(3)} & z_{(2)} \\
z_{(3)} & 0 & -z_{(1)} \\
-z_{(2)} & z_{(1)} & 0
\end{array}\right] .
$$

If, in addition, $\theta \neq \pi$, then

$$
A=(I-B)(I+B)^{-1}
$$

where

$$
B \triangleq-\tan (\theta / 2) C(z)
$$

(Remark: See Fact 11.9.6.) (Problem: Represent A as a matrix exponential.)
Fact 11.9.9. Let $x, y \in \mathbb{R}^{3}$ be nonzero. Then, there exists a skewsymmetric matrix $A \in \mathbb{R}^{3 \times 3}$ such that $y=e^{A} x$ if and only if $x^{\mathrm{T}} x=y^{\mathrm{T}} y$. If $x \neq-y$, then one such matrix is $A=\phi C(z)$, where

$$
\begin{gathered}
z \triangleq\|x \times y\|_{2}^{-1} x \times y \\
C(z) \triangleq\left[\begin{array}{ccc}
0 & -z_{(3)} & z_{(2)} \\
z_{(3)} & 0 & -z_{(1)} \\
-z_{(2)} & z_{(1)} & 0
\end{array}\right],
\end{gathered}
$$

and

$$
\phi \triangleq \cos ^{-1}\left(x^{\mathrm{T}} y\right)
$$

If $x=-y$, then one such matrix is $A=\pi C(z)$, where $z \triangleq \nu \times y$ and $\nu \in\{y\}^{\perp}$ satisfies $\nu^{\mathrm{T}} \nu=1$. (Remark: Since $\operatorname{det} e^{A}=e^{\operatorname{tr} A}$, it follows that vectors in \mathbb{R}^{3} having the same Euclidean length are always related by a proper rotation. See Fact 3.6.17 and Fact 3.7.3.) (Problem: Extend this result to \mathbb{R}^{n}. See [58].)

Fact 11.9.10. Let $A \in \mathbb{R}^{4 \times 4}$ be skew symmetric with $\operatorname{mspec}(A)=$ $\{\jmath \omega,-\jmath \omega, \jmath \mu,-\jmath \mu\}_{\mathrm{m}}$. If $\omega \neq \mu$, then

$$
e^{A}=a_{3} A^{3}+a_{2} A^{2}+a_{1} A+a_{0} I
$$

where

$$
\begin{aligned}
& a_{3}=\left(\omega^{2}-\mu^{2}\right)^{-1}\left(\frac{1}{\mu} \sin \mu-\frac{1}{\omega} \sin \omega\right) \\
& a_{2}=\left(\omega^{2}-\mu^{2}\right)^{-1}(\cos \mu-\cos \omega) \\
& a_{1}=\left(\omega^{2}-\mu^{2}\right)^{-1}\left(\frac{\omega^{2}}{\mu} \sin \mu-\frac{\mu^{2}}{\omega} \sin \omega\right) \\
& a_{0}=\left(\omega^{2}-\mu^{2}\right)^{-1}\left(\omega^{2} \cos \mu-\mu^{2} \cos \omega\right)
\end{aligned}
$$

If $\omega=\mu$, then

$$
e^{A}=(\cos \omega) I+\frac{\sin \omega}{\omega} A
$$

(Proof: See [250, p. 18] and [459].) (Remark: There are typographical errors in $[250$, p. 18] and [459].)

Fact 11.9.11. Let $C \in \mathbb{R}^{n \times n}$ be nonsingular and let $k \in \mathbb{P}$. Then, there exists $B \in \mathbb{R}^{n \times n}$ such that $C^{2 k}=e^{B}$. (Proof: Use Proposition 11.4.4 with $A=C^{2}$ and note that every negative eigenvalue $-\alpha<0$ of C^{2} arises as the square of complex conjugate eigenvalues $\pm \jmath \sqrt{\alpha}$ of C.)

11.10 Facts on Matrix Exponential Identities Involving One Matrix

Fact 11.10.1. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is (lower triangular, upper triangular). Then, so is e^{A}. If, in addition, A is Toeplitz, then so is e^{A}. (Remark: See Fact 3.12.7.)

Fact 11.10.2. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\operatorname{sprad}\left(e^{A}\right)=e^{\operatorname{spabs}(A)}
$$

Fact 11.10.3. Let $A \in \mathbb{R}^{n \times n}$. Then, the matrix differential equation

$$
\dot{X}(t)=A X(t)
$$

where $t \geq 0$ and $X(t) \in \mathbb{R}^{n \times n}$, has the solution

$$
X(t)=e^{t A} X(0)
$$

Fact 11.10.4. Let $A: \quad[0, T] \rightarrow \mathbb{R}^{n \times n}$ be continuous and assume that the matrix differential equation

$$
\dot{X}(t)=A(t) X(t)
$$

has a solution $X(t) \in \mathbb{R}^{n \times n}$. Then,

$$
\operatorname{det} X(t)=e^{\int_{0}^{t} \operatorname{tr} A(\tau) \mathrm{d} \tau} \operatorname{det} X(0)
$$

(Remark: This result is Jacobi's identity.)
Fact 11.10.5. Let $A \in \mathbb{R}^{n \times n}$, let $\lambda \in \operatorname{spec}(A)$, and let $v \in \mathbb{C}^{n}$ be an eigenvector of A associated with λ. Then, for all $t \geq 0$,

$$
x(t) \triangleq \operatorname{Re}\left(e^{\lambda t} v\right)
$$

satisfies $\dot{x}(t)=A x(t)$.
Fact 11.10.6. Let $S:\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}^{n \times n}$ be differentiable. Then, for all $t \in\left[t_{0}, t_{1}\right]$,

$$
\frac{\mathrm{d}}{\mathrm{~d} t} S^{2}(t)=\dot{S}(t) S(t)+S(t) \dot{S}(t)
$$

Let $S_{1}:\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}^{n \times m}$ and $S_{2}:\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}^{m \times l}$ be differentiable. Then, for all $t \in\left[t_{0}, t_{1}\right]$,

$$
\frac{\mathrm{d}}{\mathrm{~d} t} S_{1}(t) S_{2}(t)=\dot{S}_{1}(t) S_{2}(t)+S_{1}(t) \dot{S}_{2}(t)
$$

Fact 11.10.7. Let $A \in \mathbb{F}^{n \times n}$, and let $A_{1}=\frac{1}{2}\left(A+A^{*}\right)$ and $A_{2}=$ $\frac{1}{2}\left(A-A^{*}\right)$. Then, $A_{1} A_{2}=A_{2} A_{1}$ if and only if A is normal. In this case, $e^{A_{1}} e^{A_{2}}$ is the polar decomposition of e^{A}. (Remark: See Fact 3.4.22.) (Problem: Obtain the polar decomposition of e^{A} when A is not normal.)

Fact 11.10.8. Let $A \in \mathbb{F}^{n \times m}$, and assume that $\operatorname{rank} A=m$. Then,

$$
A^{+}=\int_{0}^{\infty} e^{-t A^{*} A} A^{*} \mathrm{~d} t
$$

Fact 11.10.9. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is nonsingular. Then,

$$
A^{-1}=\int_{0}^{\infty} e^{-t A^{*} A} \mathrm{~d} t A^{*}
$$

Fact 11.10.10. Let $A \in \mathbb{F}^{n \times n}$ and let $k \triangleq \operatorname{ind} A$. Then,

$$
A^{\mathrm{D}}=\int_{0}^{\infty} e^{-t A^{k} A^{(2 k+1)} * A^{k+1}} \mathrm{~d} t A^{k} A^{(2 k+1) *} A^{k} .
$$

(Proof: See [237].)
Fact 11.10.11. Let $A \in \mathbb{F}^{n \times n}$ and assume that ind $A=1$. Then,

$$
A^{\#}=\int_{0}^{\infty} e^{-t A A^{3 *} A^{2}} \mathrm{~d} t A A^{3 *} A .
$$

(Proof: See Fact 11.10.10.)
Fact 11.10.12. Let $A \in \mathbb{F}^{n \times n}$ and let $k \triangleq \operatorname{ind} A$. Then,

$$
\int_{0}^{t} e^{\tau A} \mathrm{~d} \tau=A^{\mathrm{D}}\left(e^{t A}-I\right)+\left(I-A A^{\mathrm{D}}\right)\left(t I+\frac{1}{2!} t^{2} A+\cdots+\frac{1}{k!} t^{k} A^{k-1}\right) .
$$

If, in particular, A is group invertible, then

$$
\int_{0}^{t} e^{\tau A} \mathrm{~d} \tau=A^{\#}\left(e^{t A}-I\right)+\left(I-A A^{\#}\right) t
$$

Fact 11.10.13. Let $A \in \mathbb{F}^{n \times n}$, let $\operatorname{mspec}(A)=\left\{\lambda_{1}, \ldots, \lambda_{r}, 0, \ldots, 0\right\}_{\mathrm{m}}$, where $\lambda_{1}, \ldots, \lambda_{r}$ are nonzero, and let $t>0$. Then,

$$
\operatorname{det} \int_{0}^{t} e^{\tau A} \mathrm{~d} \tau=t^{n-r} \prod_{i=1}^{r} \lambda_{i}^{-1}\left(e^{\lambda_{i} t}-1\right)
$$

Hence, $\operatorname{det} \int_{0}^{t} e^{\tau A} \mathrm{~d} \tau \neq 0$ if and only if $2 \pi \jmath k / t \notin \operatorname{spec}(A)$ for all $k \in \mathbb{P}$. Finally, $\operatorname{det}\left(e^{t A}-I\right) \neq 0$ if and only if $\operatorname{det} A \neq 0$ and $\operatorname{det} \int_{0}^{t} e^{\tau A} \mathrm{~d} \tau \neq 0$.

Fact 11.10.14. Let $A \in \mathbb{F}^{n \times n}$, and assume that e^{A} is orthogonal. Then, either A is skew symmetric or two eigenvalues of A differ by a nonzero integer multiple of $2 \pi j$. (Remark: See [620].)

11.11 Facts on Matrix Exponential Identities Involving Two or More Matrices

Fact 11.11.1. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{n \times m}$, and $C \in \mathbb{F}^{m \times m}$. Then,

$$
e^{t}\left[\begin{array}{ll}
A & B \\
0 & C
\end{array}\right]=\left[\begin{array}{cc}
e^{t A} & \int_{0}^{t} e^{(t-\tau) A} B e^{\tau C} \\
0 & e^{t C} \tau
\end{array}\right] .
$$

Furthermore,

$$
\int_{0}^{t} e^{\tau A} \mathrm{~d} \tau=\left[\begin{array}{ll}
I & 0
\end{array}\right] e^{t\left[\begin{array}{cc}
A & I \\
0 & 0
\end{array}\right]}\left[\begin{array}{l}
0 \\
I
\end{array}\right]
$$

(Remark: The result can be extended to block- $k \times k$ matrices. See [567]. For an application, see [445].)

Fact 11.11.2. Let $A, B \in \mathbb{F}^{n \times n}$, assume that $e^{A} e^{B}=e^{B} e^{A}$, and assume that either A and B are Hermitian or all of the entries of A and B are algebraic numbers (roots of polynomials with rational coefficients). Then, $A B=B A$. (Proof. See [261, pp. 88, 89, 270-272] and [594].) (Remark: The matrices $A \triangleq\left[\begin{array}{cc}0 & 1 \\ 0 & 2 \pi_{j}\end{array}\right]$ and $B \triangleq\left[\begin{array}{cc}2 \pi_{J} & 0 \\ 0 & -2 \pi_{J}\end{array}\right]$ do not commute but satisfy $e^{A}=e^{B}=e^{A+B}=I$.)

Fact 11.11.3. Let $A, B \in \mathbb{R}^{n \times n}$. Then,

$$
\frac{\mathrm{d}}{\mathrm{~d} t} e^{A+t B}=\int_{0}^{1} e^{\tau(A+t B)} B e^{(1-\tau)(A+t B)} \mathrm{d} \tau .
$$

Hence,

$$
\operatorname{Dexp}\left(e^{t A} ; B\right)=\left.\frac{\mathrm{d}}{\mathrm{~d} t} e^{A+t B}\right|_{t=0}=\int_{0}^{1} e^{\tau A} B e^{(1-\tau) A} \mathrm{~d} \tau
$$

Furthermore,

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{tr} e^{A+t B}=\operatorname{tr}\left(e^{A+t B} B\right)
$$

Hence,

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{tr} e^{A+t B}\right|_{t=0}=\operatorname{tr}\left(e^{A} B\right)
$$

(Proof: See [74, p. 175] and [358, 404, 433].)
Fact 11.11.4. Let $A, B \in \mathbb{R}^{n \times n}$. Then,

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t} e^{A+t B}\right|_{t=0}=\sum_{k=0}^{\infty} \frac{1}{(k+1)!} \operatorname{ad}_{A}^{k}(B) e^{A} .
$$

(Proof: See [45, p. 49].) (Remark: See Fact 2.14.5.)
Fact 11.11.5. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that $e^{A}=e^{B}$. Then, the following statements hold:
i) If $\lambda-\mu \neq 2 k \pi j$ for all $\lambda \in \operatorname{spec}(A), \mu \in \operatorname{spec}(B)$, and $k \in \mathbb{Z}$, then $[A, B]=0$.
ii) If A is normal and $\sigma_{\max }(A)<\pi$, then $[A, B]=0$.
iii) If A is normal and $\sigma_{\max }(A)=\pi$, then $\left[A^{2}, B\right]=0$.
(Proof: See [499].) (Remark: If $[A, B]=0$, then $\left[A^{2}, B\right]=0$.)
Fact 11.11.6. Let $A, B \in \mathbb{F}^{n \times n}$ be skew Hermitian. Then, $e^{t A} e^{t B}$ is unitary and there exists a skew-Hermitian matrix $C(t)$ such that $e^{t A} e^{t B}=$ $e^{C(t)}$. (Problem: Does (11.4.2) converge in this case? See [190].)

Fact 11.11.7. Let $A, B \in \mathbb{F}^{n \times n}$ be Hermitian. Then,

$$
\lim _{p \rightarrow 0}\left(e^{\frac{p}{2} A} e^{p B} e^{\frac{p}{2} A}\right)^{1 / p}=e^{A+B} .
$$

(Proof: See [26].)
Fact 11.11.8. Let $A, B \in \mathbb{F}^{n \times n}$ be Hermitian. Then

$$
\lim _{p \rightarrow \infty}\left[\frac{1}{2}\left(e^{p A}+e^{p B}\right)\right]^{1 / p}=e^{\frac{1}{2}(A+B)} .
$$

(Proof: See [90].)
Fact 11.11.9. Let $A, B \in \mathbb{F}^{n \times n}$ be Hermitian, let $q, p>0$, where $q \leq p$, and let $\|\cdot\|$ be a unitarily invariant norm on $\mathbb{F}^{n \times n}$. Then,

$$
\left\|\left(e^{\frac{q}{2} A} e^{q B} e^{\frac{q}{2} A}\right)^{1 / q}\right\| \leq\left\|\left(e^{\frac{p}{2} A} e^{p B} e^{\frac{p}{2} A}\right)^{1 / p}\right\| .
$$

(Proof: See [26].)
Fact 11.11.10. Let $A, B \in \mathbb{F}^{n \times n}$. Then,

$$
\lim _{k \rightarrow \infty}\left(e^{\frac{1}{k} A} e^{\frac{1}{k} B} e^{-\frac{1}{k} A} e^{-\frac{1}{k} B}\right)^{k^{2}}=e^{[A, B]} .
$$

Fact 11.11.11. Let $A \in \mathbb{F}^{n \times m}, X \in \mathbb{F}^{m \times l}$, and $B \in \mathbb{F}^{l \times n}$. Then,

$$
\frac{\mathrm{d}}{\mathrm{~d} X} \operatorname{tr} e^{A X B}=B e^{A X B} A .
$$

Fact 11.11.12. Let $A, B \in \mathbb{F}^{n \times n}$. Then,

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t} e^{t A} e^{t B} e^{-t A} e^{-t B}\right|_{t=0}=0
$$

and

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t} e^{\sqrt{t} A} e^{\sqrt{t} B} e^{-\sqrt{t} A} e^{-\sqrt{t} B}\right|_{t=0}=A B-B A
$$

Fact 11.11.13. Let $A, B, C \in \mathbb{F}^{n \times n}$, assume that there exists $\beta \in \mathbb{F}$ such that $[A, B]=\beta B+C$, and assume that $[A, C]=[B, C]=0$. Then,

$$
e^{A+B}=e^{A} e^{\phi(\beta) B} e^{\psi(\beta) C},
$$

where

$$
\phi(\beta) \triangleq \begin{cases}\frac{1}{\beta}\left(1-e^{-\beta}\right), & \beta \neq 0, \\ 1, & \beta=0,\end{cases}
$$

and

$$
\psi(\beta) \triangleq \begin{cases}\frac{1}{\beta^{2}}\left(1-\beta-e^{-\beta}\right), & \beta \neq 0 \\ -\frac{1}{2}, & \beta=0\end{cases}
$$

(Proof: See [228,540].)
Fact 11.11.14. Let $A, B \in \mathbb{F}^{n \times n}$ and assume there exist $\alpha, \beta \in \mathbb{F}$ such that $[A, B]=\alpha A+\beta B$. Then,

$$
e^{t(A+B)}=e^{\phi(t) A} e^{\psi(t) B},
$$

where

$$
\phi(t) \triangleq \begin{cases}t, & \alpha=\beta=0, \\ \alpha^{-1} \log (1+\alpha t), & \alpha=\beta \neq 0,1+\alpha t>0, \\ \int_{0}^{t} \frac{\alpha-\beta}{\alpha e^{(\alpha-\beta) \tau}-\beta} \mathrm{d} \tau, & \alpha \neq \beta,\end{cases}
$$

and

$$
\psi(t) \triangleq \int_{0}^{t} e^{-\beta \phi(\tau)} \mathrm{d} \tau
$$

(Proof: See [541].)
Fact 11.11.15. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that there exists nonzero $\beta \in \mathbb{F}$ such that $[A, B]=\alpha B$. Then, for all $t>0$,

$$
e^{t(A+B)}=e^{t A} e^{\frac{1-e^{-\alpha t}}{\alpha} B} .
$$

(Proof: Apply Fact 11.11.13 with $[t A, t B]=\alpha t(t B)$ and $\beta=\alpha t$.)

Fact 11.11.16. Let $A, B \in \mathbb{F}^{n \times n}$ and assume that $[[A, B], A]=0$ and $[[A, B], B]=0$. Then,

$$
e^{A} e^{B}=e^{A+B+\frac{1}{2}[A, B]}=e^{A+B} e^{\frac{1}{2}[A, B]}
$$

and

$$
e^{B} e^{2 A} e^{B}=e^{2 A+2 B} .
$$

(Proof: See [600].)
Fact 11.11.17. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that $[A, B]=B^{2}$. Then,

$$
e^{A+B}=e^{A}(I+B) .
$$

Fact 11.11.18. Let $A, B \in \mathbb{F}^{n \times n}$. Then, for all $t \in[0, \infty)$,

$$
e^{t(A+B)}=e^{t A} e^{t B}+\sum_{k=2}^{\infty} C_{k} t^{k},
$$

where, for all $k \in \mathbb{N}$,

$$
\begin{gathered}
C_{k+1} \triangleq \frac{1}{k+1}\left([A+B] C_{k}+\left[B, D_{k}\right]\right), \quad C_{0} \triangleq 0, \\
D_{k+1} \triangleq \frac{1}{k+1}\left(A D_{k}+D_{k} B\right), \quad D_{0} \triangleq I .
\end{gathered}
$$

(Proof: See [481].)
Fact 11.11.19. Let $A \in \mathbb{F}^{n \times n}$ be positive definite and let $B \in \mathbb{F}^{n \times n}$ be nonnegative semidefinite. Then,

$$
A+B \leq A^{1 / 2} e^{A^{-1 / 2} B A^{-1 / 2}} A^{1 / 2} .
$$

Hence,

$$
\frac{\operatorname{det}(A+B)}{\operatorname{det} A} \leq e^{\operatorname{tr} A^{-1} B} .
$$

Furthermore, for each inequality, equality holds if and only if $B=0$. (Proof: For nonnegative semi-definite A it follows that $e^{A} \leq I+A$.)

Fact 11.11.20. Let $A, B \in \mathbb{F}^{n \times n}$ be Hermitian. Then,

$$
I \circ(A+B) \leq \log \left(e^{A} \circ e^{B}\right) .
$$

(Proof: See [23,625].) (Remark: See Fact 8.15.21.)
Fact 11.11.21. Let $A, B \in \mathbb{F}^{n \times n}$ be Hermitian. Then,

$$
\left(\operatorname{tr} e^{A}\right) e^{\operatorname{tr}\left(e^{A} B\right) / \operatorname{tr} e^{A}} \leq \operatorname{tr} e^{A+B} .
$$

(Proof: See [69].) (Remark: This inequality is equivalent to the thermodynamic inequality. See Fact 11.11.22.)

Fact 11.11.22. Let $A, B \in \mathbb{F}^{n \times n}$, and assume that A is positive definite, $\operatorname{tr} A=1$, and B is Hermitian. Then,

$$
\operatorname{tr} A B \leq \operatorname{tr}(A \log A)+\log \operatorname{tr} e^{B} .
$$

Furthermore, equality holds if and only if

$$
A=\left(\operatorname{tr} e^{B}\right)^{-1} e^{B} .
$$

(Proof: See [69].) (Remark: This result is the thermodynamic inequality. Equivalent forms are given by Fact 8.12.19 and Fact 11.11.21.)

Fact 11.11.23. Let $A, B \in \mathbb{F}^{n \times n}$ be skew Hermitian. Then, there exist unitary matrices $S_{1}, S_{2} \in \mathbb{F}^{n \times n}$ such that

$$
e^{A} e^{B}=e^{S_{1} A S_{1}^{-1}+S_{2} B S_{2}^{-1}} .
$$

(Proof: See [515, 547].)
Fact 11.11.24. Let $A, B \in \mathbb{F}^{n \times n}$ be Hermitian. Then, there exist unitary matrices $S_{1}, S_{2} \in \mathbb{F}^{n \times n}$ such that

$$
e^{\frac{1}{2} A} e^{B} e^{\frac{1}{2} A}=e^{S_{1} A S_{1}^{-1}+S_{2} B S_{2}^{-1}} .
$$

(Proof: See $[514,515,547]$.) (Problem: Determine the relationship between this result and Fact 11.11.23.)

Fact 11.11.25. Let $B \in \mathbb{F}^{n \times n}$ be Hermitian. Then, $\phi: \mathbf{P}^{n} \rightarrow[0, \infty)$ defined by

$$
\phi(A) \triangleq-\operatorname{tr} e^{B+\log A}
$$

is convex. (Proof: See [372, 381].)
Fact 11.11.26. Let $A, B, C \in \mathbb{F}^{n \times n}$ be positive definite. Then,

$$
\operatorname{tr} e^{\log A-\log B+\log C} \leq \operatorname{tr} \int_{0}^{\infty} A(B+x I)^{-1} C(B+x I)^{-1} \mathrm{~d} x
$$

(Proof: See [372,381].) (Remark: $-\log B$ is correct.) (Remark: $\operatorname{tr} e^{A+B+C}$ $\leq\left|\operatorname{tr} e^{A} e^{B} e^{C}\right|$ is not generally true.)

Fact 11.11.27. Let $A \in \mathbb{F}^{n \times n}$ and $B \in \mathbb{F}^{m \times m}$. Then,

$$
\operatorname{tr} e^{A \oplus B}=\left(\operatorname{tr} e^{A}\right)\left(\operatorname{tr} e^{B}\right)
$$

Fact 11.11.28. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{m \times m}$, and $C \in \mathbb{F}^{l \times l}$. Then,

$$
e^{A \oplus B \oplus C}=e^{A} \otimes e^{B} \otimes e^{C} .
$$

Fact 11.11.29. Let $A \in \mathbb{F}^{n \times n}, B \in \mathbb{F}^{m \times m}, C \in \mathbb{F}^{k \times k}$, and $D \in \mathbb{F}^{l \times l}$. Then,

$$
\operatorname{tr} e^{A \otimes I \otimes B \otimes I+I \otimes C \otimes I \otimes C}=\operatorname{tr} e^{A \otimes B} \operatorname{tr} e^{C \otimes D}
$$

(Proof: By Fact 7.4.29, a similarity transformation involving the Kronecker permutation matrix can be used to reorder the inner two terms. See [519].)

11.12 Facts on Eigenvalues, Singular Values, and Norms

Fact 11.12.1. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t} \sigma_{\max }\left(e^{A t}\right)\right|_{t=0^{+}}=\frac{1}{2} \lambda_{\max }\left(A+A^{*}\right) .
$$

Hence, $\sigma_{\max }\left(e^{t A}\right)$ is decreasing for all sufficiently small $t>0$ if and only if A is dissipative. (Proof: See [585].)

Fact 11.12.2. Let $A \in \mathbb{R}^{n \times n}$. Then, for all $t \geq 0$,

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left\|e^{t A}\right\|_{\mathrm{F}}^{2}=\operatorname{tr} e^{t A}\left(A+A^{*}\right) e^{t A^{*}}
$$

Hence, if A is dissipative, then $\left\|e^{t A}\right\|_{\mathrm{F}}$ is decreasing for all $t>0$. (Proof: See [585].)

Fact 11.12.3. Let $A \in \mathbb{F}^{n \times n}$. Then,

$$
\left|\operatorname{tr} e^{2 A}\right| \leq \operatorname{tr} e^{A} e^{A^{*}} \leq \operatorname{tr} e^{A+A^{*}} \leq\left[n \operatorname{tr} e^{2\left(A+A^{*}\right)}\right]^{1 / 2} \leq \frac{n}{2}+\frac{1}{2} \operatorname{tr} e^{2\left(A+A^{*}\right)}
$$

In addition, $\operatorname{tr} e^{A} e^{A^{*}}=\operatorname{tr} e^{A+A^{*}}$ if and only if A is normal. (Proof: See [83], [289, p. 515], and [513].) (Remark: $\operatorname{tr} e^{A} e^{A^{*}} \leq \operatorname{tr} e^{A+A^{*}}$ is Bernstein's inequality. See [24].)

Fact 11.12.4. Let $A \in \mathbb{F}^{n \times n}$. Then, for all $k=1, \ldots, n$,

$$
\prod_{i=1}^{k} \sigma_{i}\left(e^{A}\right) \leq \prod_{i=1}^{k} \lambda_{i}\left(e^{\frac{1}{2}\left(A+A^{*}\right)}\right)=\prod_{i=1}^{k} e^{\lambda_{i}\left(\frac{1}{2}\left(A+A^{*}\right)\right)} \leq \prod_{i=1}^{k} e^{\sigma_{i}(A)} .
$$

Furthermore, for all $k=1, \ldots, n$,

$$
\sum_{i=1}^{k} \sigma_{i}\left(e^{A}\right) \leq \sum_{i=1}^{k} \lambda_{i}\left(e^{\frac{1}{2}\left(A+A^{*}\right)}\right)=\sum_{i=1}^{k} e^{\lambda_{i}\left(\frac{1}{2}\left(A+A^{*}\right)\right)} \leq \sum_{i=1}^{k} e^{\sigma_{i}(A)} .
$$

In particular,

$$
\sigma_{\max }\left(e^{A}\right) \leq \lambda_{\max }\left(e^{\frac{1}{2}\left(A+A^{*}\right)}\right)=e^{\frac{1}{2} \lambda_{\max }\left(A+A^{*}\right)} \leq e^{\sigma_{\max }(A)}
$$

or, equivalently,

$$
\lambda_{\max }\left(e^{A} e^{A^{*}}\right) \leq \lambda_{\max }\left(e^{A+A^{*}}\right)=e^{\lambda_{\max }\left(A+A^{*}\right)} \leq e^{2 \sigma_{\max }(A)}
$$

Furthermore,

$$
\left|\operatorname{det} e^{A}\right|=\left|e^{\operatorname{tr} A}\right| \leq e^{|\operatorname{tr} A|} \leq e^{\operatorname{tr}\langle A\rangle}
$$

and

$$
\operatorname{tr}\left\langle e^{A}\right\rangle \leq \sum_{i=1}^{n} e^{\sigma_{i}(A)}
$$

(Proof: See [516], Fact 8.14.2, Fact 8.14.3, and Fact 8.16.5.)
Fact 11.12.5. Let $A \in \mathbb{F}^{n \times n}$, and let $\|\cdot\|$ be a unitarily invariant norm. Then,

$$
\left\|e^{A} e^{A^{*}}\right\| \leq\left\|e^{A+A^{*}}\right\|
$$

In particular,

$$
\lambda_{\max }\left(e^{A} e^{A^{*}}\right) \leq \lambda_{\max }\left(e^{A+A^{*}}\right)
$$

and

$$
\operatorname{tr} e^{A} e^{A^{*}} \leq \operatorname{tr} e^{A+A^{*}}
$$

(Proof: See [150].)
Fact 11.12.6. Let $A, B \in \mathbb{F}^{n \times n}$. Then,

$$
\begin{aligned}
\left|\operatorname{tr} e^{A+B}\right| & \leq \operatorname{tr} e^{\frac{1}{2}(A+B)} e^{\frac{1}{2}(A+B)^{*}} \leq \operatorname{tr} e^{\frac{1}{2}\left(A+A^{*}+B+B^{*}\right)} \leq \operatorname{tr} e^{\frac{1}{2}\left(A+A^{*}\right)} e^{\frac{1}{2}\left(B+B^{*}\right)} \\
& \leq\left(\operatorname{tr} e^{A+A^{*}}\right)^{1 / 2}\left(\operatorname{tr} e^{B+B^{*}}\right)^{1 / 2} \leq \frac{1}{2} \operatorname{tr}\left(e^{A+A^{*}}+e^{B+B^{*}}\right)
\end{aligned}
$$

and

$$
\left.\begin{array}{c}
\operatorname{tr} e^{A} e^{B} \\
\frac{1}{2} \operatorname{tr}\left(e^{2 A}+e^{2 B}\right)
\end{array}\right\} \leq \frac{1}{2} \operatorname{tr}\left(e^{A} e^{A^{*}}+e^{B} e^{B^{*}}\right) \leq \frac{1}{2} \operatorname{tr}\left(e^{A+A^{*}}+e^{B+B^{*}}\right)
$$

(Proof: See [83, 151, 454] and [289, p. 514].)
Fact 11.12.7. Let $A, B \in \mathbb{F}^{n \times n}$ be Hermitian. If $\|\cdot\|$ is a unitarily invariant norm on $\mathbb{F}^{n \times n}$, then

$$
\left\|e^{A+B}\right\| \leq\left\|e^{\frac{1}{2} A} e^{B} e^{\frac{1}{2} A}\right\| \leq\left\|e^{A} e^{B}\right\|
$$

Furthermore, for all $k=1, \ldots, n$,

$$
\prod_{i=1}^{k} \lambda_{i}\left(e^{A+B}\right) \leq \prod_{i=1}^{k} \lambda_{i}\left(e^{A} e^{B}\right) \leq \prod_{i=1}^{k} \sigma_{i}\left(e^{A} e^{B}\right)
$$

with equality for $k=n$, that is,

$$
\prod_{i=1}^{n} \lambda_{i}\left(e^{A+B}\right)=\prod_{i=1}^{n} \lambda_{i}\left(e^{A} e^{B}\right)=\prod_{i=1}^{n} \sigma_{i}\left(e^{A} e^{B}\right)=\operatorname{det}\left(e^{A} e^{B}\right)
$$

Furthermore, for all $k=1, \ldots, n$,

$$
\sum_{i=1}^{k} \lambda_{i}\left(e^{A+B}\right) \leq \sum_{i=1}^{k} \lambda_{i}\left(e^{A} e^{B}\right) \leq \sum_{i=1}^{k} \sigma_{i}\left(e^{A} e^{B}\right)
$$

In particular,

$$
\lambda_{\max }\left(e^{A+B}\right) \leq \lambda_{\max }\left(e^{A} e^{B}\right) \leq \sigma_{\max }\left(e^{A} e^{B}\right)
$$

and

$$
\operatorname{tr} e^{A+B} \leq \operatorname{tr} e^{A} e^{B} \leq \operatorname{tr}\left\langle e^{A} e^{B}\right\rangle
$$

(Proof: See [26], Fact 5.9.13, and Fact 8.16.5.) (Remark: $\operatorname{tr} e^{A+B} \leq \operatorname{tr} e^{A} e^{B}$ is the Golden-Thompson inequality.)

Fact 11.12.8. Let $A, B \in \mathbb{F}^{n \times n}$ be Hermitian and let $\|\cdot\|$ be a unitarily invariant norm. Then,

$$
\left\|e^{A+B}\right\| \leq\left\|e^{\frac{1}{2} A} e^{B} e^{\frac{1}{2} A}\right\| \leq\left\|e^{A} e^{B}\right\|
$$

(Remark: The left-hand inequality is Segal's inequality. See [24].)
Fact 11.12.9. Let $\|\cdot\|$ be a submultiplicative norm on $\mathbb{F}^{n \times n}$, and let $A, B \in \mathbb{F}^{n \times n}$. Then, for all $t \geq 0$,

$$
\left\|e^{t A}-e^{t B}\right\| \leq e^{\|A\| t}\left(e^{\|A-B\| t}-1\right)
$$

Fact 11.12.10. Let $A, B \in \mathbb{R}^{n \times n}$, and assume that A is normal. Then, for all $t \geq 0$,

$$
\sigma_{\max }\left(e^{t A}-e^{t B}\right) \leq \sigma_{\max }\left(e^{t A}\right)\left[e^{\sigma_{\max }(A-B) t}-1\right]
$$

(Proof: See [594].)
Fact 11.12.11. Let $A \in \mathbb{F}^{n \times n}$, and define $f_{i}: \mathbb{R} \mapsto \mathbb{R}$ by $f_{i}(t) \triangleq$ $\log \sigma_{i}\left(e^{t A}\right)$. Then, A is normal if and only if, for all $i=1, \ldots, n, f_{i}$ is convex. (Proof: See [43].)

11.13 Facts on Stable Polynomials

Fact 11.13.1. Let $p \in \mathbb{R}[s]$ be asymptotically stable and let $p(s)=$ $s^{n}+\beta_{n-1} s^{n-1}+\cdots+\beta_{1} s+\beta_{0}$. Then, $\beta_{i}>0$ for all $i=0, \ldots, n-1$.

Fact 11.13.2. Let $p \in \mathbb{R}[s]$, where $p(s)=s^{n}+a_{n-1} s^{n-1}+\cdots+a_{0}$. If p is asymptotically stable, then a_{0}, \ldots, a_{n-1} are positive. Now, assume that a_{0}, \ldots, a_{n-1} are positive. Then, the following statements hold:
i) If $n=1$ or $n=2$, then p is asymptotically stable.
ii) If $n=3$, then p is asymptotically stable if and only if

$$
a_{0}<a_{1} a_{2} .
$$

iii) If $n=4$, then p is asymptotically stable if and only if

$$
a_{1}^{2}+a_{0} a_{3}^{2}<a_{1} a_{2} a_{3} .
$$

iv) If $n=5$, then p is asymptotically stable if and only if

$$
\begin{gathered}
a_{2}<a_{3} a_{4} \\
a_{2}^{2}+a_{1} a_{4}^{2}<a_{0} a_{4}+a_{2} a_{3} a_{4} \\
a_{0}^{2}+a_{1} a_{2}^{2}+a_{1}^{2} a_{4}^{2}+a_{0} a_{3}^{2} a_{4}<a_{0} a_{2} a_{3}+2 a_{0} a_{1} a_{4}+a_{1} a_{2} a_{3} a_{4}
\end{gathered}
$$

(Remark: These results are special cases of the Routh criterion, which provides stability criteria for polynomials of arbitrary degree n. See [135].)

Fact 11.13.3. Let $p \in \mathbb{R}[s]$ be monic and define $q(s) \triangleq s^{n} p(1 / s)$, where $n \triangleq \operatorname{deg} p$. Then, p is asymptotically stable if and only if q is asymptotically stable. (Remark: See Fact 4.8.1 and Fact 11.13.4.)

Fact 11.13.4. Let $p \in \mathbb{R}[s]$ be monic and assume that p is semistable. Then, $q(s) \triangleq p(s) / s$ and $\hat{q}(s) \triangleq s^{n} p(1 / s)$ are asymptotically stable. (Remark: See Fact 4.8.1 and Fact 11.13.3.)

Fact 11.13.5. Let $p \in \mathbb{R}[s]$ be asymptotically stable and let $p(s)=$ $\beta_{n} s^{n}+\beta_{n-1} s^{n-1}+\cdots+\beta_{1} s+\beta_{0}$, where $\beta_{n}>0$. Then, for all $i=1, \ldots, n-2$,

$$
\beta_{i-1} \beta_{i+2}<\beta_{i} \beta_{i+1} .
$$

(Remark: This result is a necessary condition for asymptotic stability, which can be used to show that a given polynomial with positive coefficients is unstable.) (Remark: This result is due to Xie. See [621].)

Fact 11.13.6. Let $n \in \mathbb{P}$ be even, let $m \triangleq n / 2$, let $p \in \mathbb{R}[s]$, where $p(s)=\beta_{n} s^{n}+\beta_{n-1} s^{n-1}+\cdots+\beta_{1} s+\beta_{0}$ and $\beta_{n}>0$, and assume that p is asymptotically stable. Then, for all $i=1, \ldots, m-1$,

$$
\binom{m}{i} \beta_{0}^{(m-i) / m} \beta_{n}^{i / m} \leq \beta_{2 i} .
$$

(Remark: This result is a necessary condition for asymptotic stability, which can be used to show that a given polynomial with positive coefficients is unstable.) (Remark: This result is due to Borobia and Dormido. See [621] for extensions to polynomials of odd degree.)

Fact 11.13.7. Let $p, q \in \mathbb{R}[s]$, where $p(s)=\alpha_{n} s^{n}+\alpha_{n-1} s^{n-1}+\cdots+$
$\alpha_{1} s+\alpha_{0}$ and $q(s)=\beta_{m} s^{m}+\beta_{m-1} s^{m-1}+\cdots+\beta_{1} s+\beta_{0}$. If p and q are (Lyapunov, asymptotically) stable, then $r(s) \triangleq \alpha_{l} \beta_{l} s^{l}+\alpha_{l-1} \beta_{l-1} s^{l-1}+\cdots+\alpha_{1} \beta_{1} s+\alpha_{0} \beta_{0}$, where $l \triangleq \min \{m, n\}$, is (Lyapunov, asymptotically) stable. (Proof: See [224].) (Remark: The polynomial r is the Schur product of p and q. See [39, 311].)

Fact 11.13.8. Let $A \in \mathbb{R}^{n \times n}$ be diagonalizable over \mathbb{R}. Then, χ_{A} has all positive coefficients if and only if χ_{A} (equivalently, A) is asymptotically stable. (Proof: Sufficiency follows from Fact 11.13.1. For necessity, note that χ_{A} has only real roots and that $\chi_{A}(\lambda)>0$ for all $\lambda \geq 0$. Hence, $\operatorname{roots}\left(\chi_{A}\right) \subset(-\infty, 0)$.)

Fact 11.13.9. Let $A \in \mathbb{R}^{n \times n}$. Then, $\chi_{A \oplus A}$ has all positive coefficients if and only if $\chi_{A \oplus A}$ (equivalently, A) is asymptotically stable. (Proof: If A is not asymptotically stable, then Fact 11.14 .28 implies that $A \oplus A$ has a positive eigenvalue λ. Since $\chi_{A \oplus A}(\lambda)=0$, it follows that $\chi_{A \oplus A}$ cannot have all positive coefficients. See [217, Theorem 5].)

11.14 Facts on Stable Matrices

Fact 11.14.1. Let $A \in \mathbb{F}^{n \times n}$ be semistable. Then, A is Lyapunov stable.

Fact 11.14.2. Let $A \in \mathbb{F}^{n \times n}$ be Lyapunov stable. Then, A is group invertible.

Fact 11.14.3. Let $A \in \mathbb{F}^{n \times n}$ be semistable. Then, A is group invertible.

Fact 11.14.4. Let $A \in \mathbb{F}^{n \times n}$ be semistable. Then,

$$
\lim _{t \rightarrow \infty} e^{t A}=I-A A^{\#}
$$

and thus

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} e^{\tau A} \mathrm{~d} \tau=I-A A^{\#}
$$

(Remark: See Fact 11.14.1, Fact 11.14.2, and Fact 10.8.3.)
Fact 11.14.5. Let $A \in \mathbb{R}^{n \times n}$ be Lyapunov stable. Then,

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} e^{\tau A} \mathrm{~d} \tau=I-A A^{\#}
$$

(Remark: See Fact 11.14.2.)
Fact 11.14.6. Let $A, B \in \mathbb{F}^{n \times n}$. Then, $\lim _{\alpha \rightarrow \infty} e^{A+\alpha B}$ exists if and only if B is semistable. In this case,

$$
\lim _{\alpha \rightarrow \infty} e^{A+\alpha B}=e^{\left(I-B B^{\#}\right) A}\left(I-B B^{\#}\right)=\left(I-B B^{\#}\right) e^{A\left(I-B B^{\#}\right)} .
$$

(Proof: See [125].)
Fact 11.14.7. Let $A \in \mathbb{R}^{n \times n}$. Then, $e^{t A}$ is nonnegative for all $t \geq 0$ if and only if

$$
A_{(i, j)} \geq 0
$$

for all $i, j=1, \ldots, n$ such that $i \neq j$. In this case, A is asymptotically stable if and only if, for all $i=1, \ldots, n$, the sign of the i th leading principal subdeterminant of A is $(-1)^{i}$. (Proof: See [88] and [223, p. 74].) (Remark: A is essentially nonnegative.)

Fact 11.14.8. Let $\|\cdot\|$ be a submultiplicative norm on $\mathbb{F}^{n \times n}$, let $A \in$ $\mathbb{F}^{n \times n}$ be asymptotically stable, and let $\beta>\operatorname{spabs}(A)$. Then, there exists $\gamma>0$ such that, for all $t \geq 0$,

$$
\left\|e^{t A}\right\| \leq \gamma e^{\beta t} .
$$

(Remark: See [229, pp. 201-206] and [320].)
Fact 11.14.9. let $A \in \mathbb{F}^{n \times n}$ be asymptotically stable, let $R \in \mathbb{F}^{n \times n}$ be positive definite, and let $P \in \mathbb{F}^{n \times n}$ be the positive-definite solution of $A^{*} P+P A+R=0$. Then,

$$
\sigma_{\max }\left(e^{t A}\right) \leq \sqrt{\frac{\sigma_{\max }(P)}{\sigma_{\min }(P)}} e^{-t \lambda_{\min }\left(R P^{-1}\right) / 2}
$$

and

$$
\left\|e^{t A}\right\|_{\mathrm{F}} \leq \sqrt{\|P\|_{\mathrm{F}}\left\|P^{-1}\right\|_{\mathrm{F}}} \mathrm{e}^{-t \lambda_{\min }\left(R P^{-1}\right) / 2}
$$

If, in addition, $A+A^{*}$ is negative definite, then

$$
\left\|e^{t A}\right\|_{\mathrm{F}} \leq e^{-t \lambda_{\min }\left(-A-A^{*}\right) / 2} .
$$

(Proof: See [390].)
Fact 11.14.10. let $A \in \mathbb{R}^{n \times n}$ be asymptotically stable, let $R \in \mathbb{R}^{n \times n}$ be positive definite, and let $P \in \mathbb{R}^{n \times n}$ be the positive-definite solution of $A^{\mathrm{T}} P+P A+R=0$. Furthermore, define the vector norm $\|x\|^{\prime} \triangleq \sqrt{x^{\mathrm{T}} P x}$ on \mathbb{R}^{n}, let $\|\cdot\|$ denote the induced norm on $\mathbb{R}^{n \times n}$, and let $\mu(\cdot)$ denote the corresponding logarithmic norm. Then,

$$
\mu(A)=-\lambda_{\min }\left(R P^{-1}\right) / 2 .
$$

Consequently,

$$
\left\|e^{t A}\right\| \leq e^{-t \lambda_{\min }\left(R P^{-1}\right) / 2}
$$

(Proof: See [300] and use xiii) of Fact 9.10.8.) (Remark: See Fact 9.10 .8 for the definition and properties of the logarithmic derivative.)

Fact 11.14.11. Let $A \in \mathbb{F}^{n \times n}$. Then, A is similar to a skew-Hermitian matrix if and only if there exists a positive-definite matrix $P \in \mathbb{F}^{n \times n}$ such that $A^{*} P+P A=0$.

Fact 11.14.12. Let $A \in \mathbb{R}^{n \times n}$. Then, A and A^{2} are asymptotically stable if and only if, for all $\lambda=r e^{\jmath \theta} \in \operatorname{spec}(A)$, where $\theta \in[0,2 \pi]$, it follows that $\theta \in\left(\frac{\pi}{2}, \frac{3 \pi}{4}\right) \cup\left(\frac{5 \pi}{4}, \frac{3 \pi}{2}\right)$.

Fact 11.14.13. Let $A \in \mathbb{R}^{n \times n}$. Then, A is group invertible and $2 \pi k J \notin$ $\operatorname{spec}(A)$ for all $k \in \mathbb{P}$ if and only if

$$
A A^{\#}=\left(e^{A}-I\right)\left(e^{A}-I\right)^{\#}
$$

In particular, if A is semistable, then this identity holds. (Proof: Use $i i$) of Fact 11.15.16 and $i x$) of Proposition 11.6.2.)

Fact 11.14.14. Let $A \in \mathbb{F}^{n \times n}$. Then, A is asymptotically stable if and only if A^{-1} is asymptotically stable. Hence, $e^{t A} \rightarrow 0$ as $t \rightarrow \infty$ if and only if $e^{t A^{-1}} \rightarrow 0$ as $t \rightarrow \infty$.

Fact 11.14.15. Let $A, B \in \mathbb{R}^{n \times n}$, assume A is asymptotically stable, and assume that $\sigma_{\max }(B \oplus B)<\sigma_{\min }(A \oplus A)$. Then, $A+B$ is asymptotically stable. (Proof: Since $A \oplus A$ is nonsingular, Fact 9.12 .12 implies that $A \oplus$ $A+\alpha(B \oplus B)=(A+\alpha B) \oplus(A+\alpha B)$ is nonsingular for all $0 \leq \alpha \leq$ 1. Now, suppose that $A+B$ is not asymptotically stable. Then, there exists $\alpha_{0} \in(0,1]$ such that $A+\alpha_{0} B$ has an imaginary eigenvalue, and thus $\left(A+\alpha_{0} B\right) \oplus\left(A+\alpha_{0} B\right)=A \oplus A+\alpha_{0}(B \oplus B)$ is singular, which is a contradiction.) (Remark: This result provides a suboptimal solution to a nearness problem. See [278, Section 7] and Fact 9.12.12.)

Fact 11.14.16. Let $A \in \mathbb{C}^{n \times n}$ be asymptotically, let $\|\cdot\|$ denote either $\sigma_{\max }(\cdot)$ or $\|\cdot\|_{\mathrm{F}}$, and define

$$
\beta(A) \triangleq\left\{\|B\|: B \in \mathbb{C}^{n \times n} \text { and } A+B \text { is not asymptotically stable }\right\}
$$

Then,

$$
\begin{aligned}
\frac{1}{2} \sigma_{\min }(A \otimes A) & \leq \beta(A)=\min _{\gamma \in \mathbb{R}} \sigma_{\min }(A+\gamma J I) \\
& \leq \min \left\{\operatorname{spabs}(A), \sigma_{\min }(A), \frac{1}{2} \sigma_{\max }\left(A+A^{*}\right)\right\}
\end{aligned}
$$

Furthermore, let $R \in \mathbb{F}^{n \times n}$ be positive definite, and let $P \in \mathbb{F}^{n \times n}$ be the
positive-definite solution of $A^{*} P+P A+R=0$. Then,

$$
\frac{1}{2} \sigma_{\min }(R) /\|P\| \leq \beta(A)
$$

If, in addition, $A+A^{*}$ is negative definite, then

$$
-\frac{1}{2} \lambda_{\min }\left(A+A^{*}\right) \leq \beta(A) .
$$

(Proof: See $[278,568]$.) (Remark: The analogous problem for real matrices and real perturbations is discussed in [471].)

Fact 11.14.17. Let $A \in \mathbb{F}^{n \times n}$ be asymptotically stable, let $V \in \mathbb{F}^{n \times n}$ be positive definite, and let $Q \in \mathbf{P}^{n}$ satisfy $A Q+Q A^{*}+V=0$. Then, for all $t \geq 0$,

$$
e^{t A} e^{t A^{*}} \leq \kappa(Q) \operatorname{tr} e^{-t S^{-1} V S^{-*}} \leq \kappa(Q) e^{-\left(t / \sigma_{\max }(Q)\right) V}
$$

where $S \in \mathbb{F}^{n \times n}$ satisfies $Q=S S^{*}$ and $\kappa(Q) \triangleq \sigma_{\max }(Q) / \sigma_{\min }(Q)$. (Proof: See [620].) (Remark: Fact 11.12.3 yields $e^{t A} e^{t A^{*}} \leq e^{t\left(A+A^{*}\right)}$. However, $A+A^{*}$ may not be asymptotically stable. See [84].)

Fact 11.14.18. Let $A \in \mathbb{R}^{n \times n}$, and assume that every entry of $A \in$ $\mathbb{R}^{n \times n}$ is positive. Then, A is unstable. (Proof: See Fact 4.11.1.)

Fact 11.14.19. Let $A \in \mathbb{R}^{n \times n}$. Then, A is asymptotically stable if and only if there exist $B, C \in \mathbb{R}^{n \times n}$ such that B is positive definite, C is dissipative, and $A=B C$. (Proof: $A=P^{-1}\left(-A^{\mathrm{T}} P-R\right)$.) (Remark: To reverse the order of factors, consider A^{T}.)

Fact 11.14.20. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements hold:
i) All of the real eigenvalues of A are positive if and only if A is the product of two dissipative matrices.
ii) A is nonsingular and $A \neq \alpha I$ for all $\alpha<0$ if and only if A is the product of two asymptotically stable matrices.
iii) A is nonsingular if and only if A is the product of three or fewer asymptotically stable matrices.
(Proof: See $[56,618]$.)
Fact 11.14.21. Let $p \in \mathbb{R}[s]$, where $p(s)=s^{n}+\beta_{n-1} s^{n-1}+\cdots+\beta_{1} s+\beta_{0}$
and $\beta_{0}, \ldots, \beta_{n}>0$. Furthermore, define $A \in \mathbb{R}^{n \times n}$ by

$$
A \triangleq\left[\begin{array}{ccccccc}
\beta_{n-1} & \beta_{n-3} & \beta_{n-5} & \beta_{n-7} & \cdots & \cdots & 0 \\
1 & \beta_{n-2} & \beta_{n-4} & \beta_{n-6} & \cdots & \cdots & 0 \\
0 & \beta_{n-1} & \beta_{n-3} & \beta_{n-5} & \cdots & \cdots & 0 \\
0 & 1 & \beta_{n-2} & \beta_{n-4} & \cdots & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & \cdots & \beta_{1} & 0 \\
0 & 0 & 0 & \cdots & \cdots & \beta_{2} & \beta_{0}
\end{array}\right] .
$$

If p is Lyapunov stable, then every subdeterminant of A is nonnegative. (Remark: A is totally nonnegative.) Furthermore, p is asymptotically stable if and only if every leading principal subdeterminant of A is positive. (Proof: See [39].) (Remark: The second statement is due to Hurwitz.) (Remark: The diagonal entries of A are $\beta_{n-1}, \ldots, \beta_{0}$.) (Problem: Show that this condition for stability is equivalent to the condition given in [202, p. 183] in terms of an alternative matrix \hat{A}.)

Fact 11.14.22. Let $A \in \mathbb{R}^{n \times n}$ be tridiagonal and assume that $A_{(i, i)}>$ 0 for all $i=1, \ldots, n$ and $A_{(i, i+1)} A_{(i+1, i)}>0$ for all $i=1, \ldots, n-1$. Then, A is asymptotically stable. (Proof: See [127].) (Remark: This result is due to Barnett and Storey.)

Fact 11.14.23. Let $A \in \mathbb{R}^{n \times n}$ be cyclic. Then, there exists a nonsingular matrix $S \in \mathbb{R}^{n \times n}$ such that $A_{\mathrm{S}}=S A S^{-1}$ is given by the tridiagonal matrix

$$
A_{\mathrm{S}}=\left[\begin{array}{ccccccc}
0 & 1 & 0 & 0 & \cdots & 0 & 0 \\
-\alpha_{n} & 0 & 1 & \cdots & 0 & 0 & \\
0 & -\alpha_{n-1} & 0 & \cdots & 0 & 0 & \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \\
0 & 0 & 0 & \cdots & 0 & 1 & \\
0 & 0 & 0 & \cdots & -\alpha_{2} & -\alpha_{1} &
\end{array}\right]
$$

where $\alpha_{1}, \ldots, \alpha_{n}$ are real numbers. If $\alpha_{1} \alpha_{2} \cdots \alpha_{n} \neq 0$, then the number of eigenvalues of A in the OLHP is equal to the number of positive elements in $\left\{\alpha_{1}, \alpha_{1} \alpha_{2}, \ldots, \alpha_{1} \alpha_{2} \cdots \alpha_{n}\right\}_{\mathrm{m}}$. Furthermore, $A_{\mathrm{S}}^{\mathrm{T}} P+P A_{\mathrm{S}}+R=0$, where

$$
P \triangleq \operatorname{diag}\left(\alpha_{1} \alpha_{2} \cdots \alpha_{n}, \alpha_{1} \alpha_{2} \cdots \alpha_{n-1}, \ldots, \alpha_{1} \alpha_{2}, \alpha_{1}\right)
$$

and

$$
R \triangleq \operatorname{diag}\left(0, \ldots, 0,2 \alpha_{1}^{2}\right) .
$$

(Remark: A_{S} is in Schwarz form.) (Proof: See [66, pp. 52, 95].)
Fact 11.14.24. Let $\alpha_{1}, \alpha_{2}, \alpha_{3}>0$, and define $A, P, R \in \mathbb{R}^{3 \times 3}$ by the
tridiagonal matrix

$$
A_{\mathrm{R}} \triangleq\left[\begin{array}{ccc}
-\alpha_{1} & \alpha_{2}^{1 / 2} & 0 \\
-\alpha_{2}^{1 / 2} & 0 & \alpha_{3}^{1 / 2} \\
0 & -\alpha_{3}^{1 / 2} & 0
\end{array}\right]
$$

and the diagonal matrices

$$
P \triangleq I, \quad R \triangleq \operatorname{diag}\left(2 \alpha_{1}, 0,0\right) .
$$

Then, $A_{\mathrm{R}}^{\mathrm{T}} P+P A_{\mathrm{R}}+R=0$. (Remark: The matrix A_{R} is in Routh form. The Routh form A_{R} and the Schwarz form A_{S} are related by $A_{\mathrm{R}}=S_{\mathrm{RS}} A_{\mathrm{S}} S_{\mathrm{RS}}^{-1}$, where

$$
\left.S_{\mathrm{RS}} \triangleq\left[\begin{array}{ccc}
0 & 0 & \alpha_{1}^{1 / 2} \\
0 & -\left(\alpha_{1} \alpha_{2}\right)^{1 / 2} & 0 \\
\left(\alpha_{1} \alpha_{2} \alpha_{3}\right)^{1 / 2} & 0 & 0
\end{array}\right] .\right)
$$

Fact 11.14.25. Let $\alpha_{1}, \alpha_{2}, \alpha_{3}>0$, and define $A_{\mathrm{C}}, P, R \in \mathbb{R}^{3 \times 3}$ by the tridiagonal matrix

$$
A_{\mathrm{C}} \triangleq\left[\begin{array}{ccc}
0 & 1 / a_{3} & 0 \\
-1 / a_{2} & 0 & 1 / a_{2} \\
0 & -1 / a_{1} & -1 / a_{1}
\end{array}\right]
$$

and the diagonal matrices

$$
P \triangleq \operatorname{diag}\left(a_{3}, a_{2}, a_{1}\right), \quad R \triangleq \operatorname{diag}(0,0,2),
$$

where $a_{1} \triangleq 1 / \alpha_{1}, a_{2} \triangleq \alpha_{1} / \alpha_{2}$, and $a_{3} \triangleq \alpha_{2} /\left(\alpha_{1} \alpha_{3}\right)$. Then, $A_{\mathrm{C}}^{\mathrm{T}} P+P A_{\mathrm{C}}+R=$ 0 . (Remark: The matrix A_{C} is in Chen form.) The Schwarz form A_{S} and the Chen form A_{C} are related by $A_{\mathrm{S}}=S_{\mathrm{SC}} A_{\mathrm{C}} S_{\mathrm{SC}}^{-1}$, where

$$
\left.S_{\mathrm{SC}} \triangleq\left[\begin{array}{ccc}
1 /\left(\alpha_{1} \alpha_{3}\right) & 0 & 0 \\
0 & 1 / \alpha_{2} & 0 \\
0 & 0 & 1 / \alpha_{1}
\end{array}\right] .\right)
$$

(Proof: See [141, p. 346].) (Remark: The Schwarz, Routh, and Chen forms provide the basis for the Routh criterion. See [15, 115, 141, 452].)

Fact 11.14.26. Let $A \in \mathbb{F}^{n \times n}$. Then, the following statements are equivalent:
i) A is asymptotically stable.
ii) There exist a negative-definite matrix $B \in \mathbb{F}^{n \times n}$, a skew-Hermitian matrix $C \in \mathbb{F}^{n \times n}$, and a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that $A=B+S C S^{-1}$.
iii) There exist a negative-definite matrix $B \in \mathbb{F}^{n \times n}$, a skew-Hermitian matrix $C \in \mathbb{F}^{n \times n}$, and a nonsingular matrix $S \in \mathbb{F}^{n \times n}$ such that

$$
A=S(B+C) S^{-1} .
$$

(Proof: See [160].)
Fact 11.14.27. Let $A \in \mathbb{R}^{n \times n}$, and let $k \geq 2$. Then, there exist asymptotically stable matrices $A_{1}, \ldots, A_{k} \in \mathbb{R}^{n \times n}$ such that $A=\sum_{i=1}^{k} A_{i}$ if and only if $\operatorname{tr} A<0$. (Proof: See [308].)

Fact 11.14.28. Let $A \in \mathbb{R}^{n \times n}$. Then, A is (Lyapunov stable, semistable, asymptotically stable) if and only if $A \oplus A$ is. (Proof: Use Fact 7.4.27 and the fact that $\operatorname{vec}\left(e^{t A} V e^{t A^{*}}\right)=e^{t(A \oplus \bar{A})} \operatorname{vec} V$.)

Fact 11.14.29. Let $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{m \times m}$. Then, the following statements hold:
i) If A and B are (Lyapunov stable, semistable, asymptotically stable), then $A \oplus B$ is (Lyapunov stable, semistable, asymptotically stable).
ii) If $A \oplus B$ is (Lyapunov stable, semistable, asymptotically stable), then either A or B is (Lyapunov stable, semistable, asymptotically stable).
(Proof: Use Fact 7.4.27.)
Fact 11.14.30. Let $A \in \mathbb{R}^{2 \times 2}$. Then, A is asymptotically stable if and only if $\operatorname{tr} A<0$ and $\operatorname{det} A>0$.

Fact 11.14.31. Let $A \in \mathbb{C}^{n \times n}$. Then, there exists a unique asymptotically stable matrix $B \in \mathbb{C}^{n \times n}$ such that $B^{2}=-A$. (Remark: This result is stated in [526]. The uniqueness of the square root for complex matrices that have no eigenvalues in $(-\infty, 0]$ is implicitly assumed in [527].) (Remark: See Fact 5.13.16.)

Fact 11.14.32. Let $A \in \mathbb{R}^{n \times n}$. Then, the following statements hold:
i) If A is semidissipative, then A is Lyapunov stable.
ii) If A is dissipative, then A is asymptotically stable.
iii) If A is Lyapunov stable and normal, then A is semidissipative.
$i v)$ If A is asymptotically stable and normal, then A is dissipative.
v) If A is discrete-time Lyapunov stable and normal, then A is semicontractive.

Fact 11.14.33. Let $A \in \mathbb{R}^{n \times n}$, and assume that $A_{(i, j)} \leq 0$ for all $i, j=1, \ldots, n$ such that $i \neq j$. (Remark: A is a Z-matrix.) Then, the following conditions are equivalent:
i) $-A$ is asymptotically stable.
ii) There exists $B \in \mathbb{R}^{n \times n}$ such that $B \geq \geq 0, A=\alpha I-B$, and $\alpha>$ $\operatorname{sprad}(B)$.
iii) If $\lambda \in \operatorname{spec}(A)$ is real, then $\lambda>0$.
iv) $A+\alpha I$ is nonsingular for all $\alpha \geq 0$.
v) $A+B$ is nonsingular for all nonnegative, diagonal matrices $B \in$ $\mathbb{R}^{n \times n}$.
vi) Every principal subdeterminant of A is positive.
vii) Every leading principal subdeterminant of A is positive.
viii) For all $k \in\{1, \ldots, n\}$, the sum of all $k \times k$ principal subdeterminants of A is positive.
$i x)$ There exists $x \in \mathbb{R}^{n}$ such that $x \gg 0$ and $A x \gg 0$.
x) If $x \in \mathbb{R}^{n}$ and $A x \geq \geq 0$, then $x \geq \geq 0$.
xi) A is nonsingular and $A^{-1} \geq \geq 0$.
(Proof: See [81, pp. 134-140] or [289, pp. 114-116].) (Remark: A is an M-matrix.)

11.15 Facts on Discrete-Time Stability

Fact 11.15.1. Let $p \in \mathbb{R}[s]$, where $p(s)=s^{n}+a_{n-1} s^{n-1}+\cdots+a_{0}$. Then, the following statements hold:
i) If $n=1$, then p is discrete-time asymptotically stable if and only if $\left|a_{0}\right|<1$.
ii) If $n=2$, then p is discrete-time asymptotically stable if and only if $\left|a_{0}\right|<1$ and $\left|a_{1}\right|<1+a_{0}$.
iii) If $n=3$, then p is discrete-time asymptotically stable if and only if $\left|a_{0}\right|<1,\left|a_{2}\right|<1+a_{0}$, and $\left|a_{2}-a_{0} a_{1}\right|<1$.
(Remark: These results are special cases of the Jury test, which provides stability criteria for polynomials of arbitrary degree n. See $[141,319]$.)

Fact 11.15.2. Let $A \in \mathbb{R}^{2 \times 2}$. Then, A is discrete-time asymptotically stable if and only if $|\operatorname{tr} A|<1+\operatorname{det} A$ and $|\operatorname{det} A|<1$.

Fact 11.15.3. Let $A \in \mathbb{F}^{n \times n}$. Then, A is discrete-time asymptotically stable if and only if A^{2} is discrete-time asymptotically stable.

Fact 11.15.4. Let $A \in \mathbb{R}^{n \times n}$. Then, for all $k \geq 0$,

$$
A^{k}=x_{1}(k) I+x_{2}(k) A+\cdots+x_{n}(k) A^{n-1}
$$

where, for all $i=1, \ldots, n$ and for all $k \geq 0, x_{i}$ satisfies

$$
x(n+k)+\beta_{n-1} x(n+k-1)+\cdots+c_{1} x(k+1)+c_{0} x(k)=0,
$$

with, for all $i, j=1, \ldots, n$, the initial conditions

$$
x_{i}(j-1)=\delta_{i j} .
$$

(Proof: See [346].)
Fact 11.15.5. Let $A \in \mathbb{R}^{n \times n}$. Then, the following statements hold:
i) If A is semicontractive, then A is discrete-time Lyapunov stable.
ii) If A is contractive, then A is discrete-time asymptotically stable.
$\left.{ }^{i i i}\right)$ If A is discrete-time Lyapunov stable and normal, then A is semicontractive.
iv) If A is discrete-time asymptotically stable and normal, then A is contractive.
(Problem: Prove these results by using Fact 11.12.5.)
Fact 11.15.6. Let $A \in \mathbb{F}^{n \times n}$. Then, A is discrete-time (Lyapunov stable, semistable, asymptotically stable) if and only if $A \otimes A$ is. (Proof: Use Fact 7.4.24.)

Fact 11.15.7. Let $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{m \times m}$. Then, the following statements hold:
i) If A and B are discrete-time (Lyapunov stable, semistable, asymptotically stable), then $A \otimes B$ is discrete-time (Lyapunov stable, semistable, asymptotically stable).
ii) If $A \otimes B$ is discrete-time (Lyapunov stable, semistable, asymptotically stable), then either A or B is discrete-time (Lyapunov stable, semistable, asymptotically stable).
(Proof: Use Fact 7.4.24.)
Fact 11.15.8. Let $A \in \mathbb{R}^{n \times n}$ be (Lyapunov stable, semistable, asymptotically stable). Then, e^{A} is discrete-time (Lyapunov stable, semistable, asymptotically stable). (Problem: If $B \in \mathbb{R}^{n \times n}$ is discrete-time (Lyapunov stable, semistable, asymptotically stable), when does there exist (Lyapunov stable, semistable, asymptotically stable) $A \in \mathbb{R}^{n \times n}$ such that $B=e^{A}$? See Proposition 11.4.4.)

Fact 11.15.9. Let $A \in \mathbb{R}^{n \times n}$. If A is discrete-time asymptotically stable, then $B \triangleq(A+I)^{-1}(A-I)$ is asymptotically stable. Conversely, if $B \in \mathbb{R}^{n \times n}$ is asymptotically stable, then $A \triangleq(I+B)(I-B)^{-1}$ is discrete-time asymptotically stable. (Proof: See [271].) (Remark: For additional results on the Cayley transform, see Fact 3.6.23, Fact 3.6.24, Fact 3.6.25, Fact 3.9.8, and Fact 8.7.18.) (Problem: Obtain analogous results for Lyapunov-stable and semistable matrices.)

Fact 11.15.10. Let $\left[\begin{array}{l}P_{1} \\ P_{12} \\ P_{12}^{\text {s }} \\ P_{2}\end{array}\right] \in \mathbb{R}^{2 n \times 2 n}$ be positive definite, where P_{1}, $P_{12}, P_{2} \in \mathbb{R}^{n \times n}$. If $P_{1} \geq P_{2}$, then $A \triangleq P_{1}^{-1} P_{12}^{\mathrm{T}}$ is discrete-time asymptotically stable, while if $P_{2} \geq P_{1}$, then $A \triangleq P_{2}^{-1} P_{12}$ is discrete-time asymptotically stable. (Proof: If $P_{1} \geq P_{2}$, then $P_{1}-P_{12} P_{1}^{-1} P_{1} P_{1}^{-1} P_{12}^{\mathrm{T}} \geq P_{1}-P_{12} P_{2}^{-2} P_{12}^{\mathrm{T}}>0$. See [145].)

Fact 11.15.11. Let $A \in \mathbb{F}^{n \times n}$. Then, A is discrete-time semistable if and only if

$$
A_{\infty} \triangleq \lim _{k \rightarrow \infty} A^{k}
$$

exists. In this case, A_{∞} is idempotent and is given by

$$
A_{\infty}=I-(A-I)(A-I)^{\#} .
$$

(Proof: See [416, p. 640].) (Remark: See Fact 11.15.16 and Fact 11.15.15.)
Fact 11.15.12. Let $A \in \mathbb{F}^{n \times n}$. Then, A is discrete-time Lyapunov stable if and only if

$$
A_{\infty} \triangleq \lim _{k \rightarrow \infty} \frac{1}{k} \sum_{i=0}^{k-1} A^{i}
$$

exists. In this case,

$$
A_{\infty}=I-(A-I)(A-I)^{\#} .
$$

(Proof: See [416, p. 633].) (Remark: A is Cesaro summable.) (Remark: See Fact 6.3.17.)

Fact 11.15.13. Let $A \in \mathbb{F}^{n \times n}$. Then, A is discrete-time asymptotically stable if and only if

$$
\lim _{k \rightarrow \infty} A^{k}=0 .
$$

Fact 11.15.14. Let $A \in \mathbb{F}^{n \times n}$, and assume that A is unitary. Then, A is discrete-time Lyapunov stable.

Fact 11.15.15. Let $A, B \in \mathbb{R}^{n \times n}$, assume that A is discrete-time semistable, and let $A_{\infty} \triangleq \lim _{k \rightarrow \infty} A^{k}$. Then,

$$
\lim _{k \rightarrow \infty}\left(A+\frac{1}{k} B\right)^{k}=A_{\infty} e^{A_{\infty} B A_{\infty}} .
$$

(Proof: See $[101,598]$.) (Remark: If A is idempotent, then $A_{\infty}=A$. The existence of A_{∞} is guaranteed by either Fact 11.15.11 or Fact 11.15.16.)

Fact 11.15.16. Let $A \in \mathbb{R}^{n \times n}$, and let $\|\cdot\|$ be a norm on $\mathbb{R}^{n \times n}$. Then, the following statements hold:
i) A is discrete-time Lyapunov stable if and only if $\left\{\left\|A^{k}\right\|\right\}_{k=0}^{\infty}$ is bounded.
ii) A is discrete-time semistable if and only if $A_{\infty} \triangleq \lim _{k \rightarrow \infty} A^{k}$ exists. In this case, $A_{\infty}=I-(A-I)(A-I)^{\#}$ is idempotent.
iii) A is discrete-time asymptotically stable if and only if $\lim _{k \rightarrow \infty} A^{k}=$ 0 .
(Remark: i i) is given by Fact 11.15.11. See Fact 11.15.15.)
Fact 11.15.17. Let $A \in \mathbb{R}^{n \times n}$. Then, the following statements hold:
i) A is discrete-time Lyapunov stable if and only if there exists a positive-definite matrix $P \in \mathbb{R}^{n \times n}$ such that $P-A^{\mathrm{T}} P A$ is nonnegative semidefinite.
ii) A is discrete-time asymptotically stable if and only if there exists a positive-definite matrix $P \in \mathbb{R}^{n \times n}$ such that $P-A^{\mathrm{T}} P A$ is positive definite.
(Remark: The discrete-time Lyapunov equation or the Stein equation is $P=$ $A^{\mathrm{T}} P A+R$.)

Fact 11.15.18. Let $\left\{A_{k}\right\}_{k=0}^{\infty} \subset \mathbb{R}^{n \times n}$ and, for $k \in \mathbb{N}$, consider the discrete-time, time-varying system

$$
x_{k+1}=A_{k} x_{k}
$$

Furthermore, assume that there exist real numbers $\beta \in(0,1), \gamma>0$, and $\varepsilon>0$ such that, for all $k \in \mathbb{N}$,

$$
\begin{gathered}
\operatorname{sprad}\left(A_{k}\right)<\beta \\
\left\|A_{k}\right\|<\gamma \\
\left\|A_{k+1}-A_{k}\right\|<\varepsilon
\end{gathered}
$$

where $\|\cdot\|$ is a norm on $\mathbb{R}^{n \times n}$. Then, $x_{k} \rightarrow 0$ as $k \rightarrow \infty$. (Proof: See [265, pp. 170-173].) (Remark: This result arises from the theory of infinite matrix products.

11.16 Facts on Subspace Decomposition

Fact 11.16.1. Let $A \in \mathbb{R}^{n \times n}$, and let $S \in \mathbb{R}^{n \times n}$ be a nonsingular matrix such that

$$
A=S\left[\begin{array}{cc}
A_{1} & A_{12} \tag{11.16.1}\\
0 & A_{2}
\end{array}\right] S^{-1}
$$

where $A_{1} \in \mathbb{R}^{r \times r}$ is asymptotically stable, $A_{12} \in \mathbb{R}^{r \times(n-r)}$, and $A_{2} \in$ $\mathbb{R}^{(n-r) \times(n-r)}$. Then,

$$
\mu_{A}^{\mathrm{s}}(A)=S\left[\begin{array}{cc}
0 & B_{12 \mathrm{~s}} \\
0 & \mu_{A}^{\mathrm{s}}\left(A_{2}\right)
\end{array}\right] S^{-1}
$$

where $B_{12 \mathrm{~s}} \in \mathbb{R}^{r \times(n-r)}$, and

$$
\mu_{A}^{\mathrm{u}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{u}}\left(A_{1}\right) & B_{12 \mathrm{u}} \\
0 & \mu_{A}^{\mathrm{u}}\left(A_{2}\right)
\end{array}\right] S^{-1},
$$

where $B_{12 \mathrm{u}} \in \mathbb{R}^{r \times(n-r)}$ and $\mu_{A}^{\mathrm{u}}\left(A_{1}\right)$ is nonsingular. Consequently,

$$
\mathcal{R}\left(S\left[\begin{array}{c}
I_{r} \\
0
\end{array}\right]\right) \subseteq \mathcal{S}_{\mathrm{s}}(A)
$$

If, in addition, $A_{12}=0$, then

$$
\begin{gathered}
\mu_{A}^{\mathrm{s}}(A)=S\left[\begin{array}{cc}
0 & 0 \\
0 & \mu_{A}^{\mathrm{s}}\left(A_{2}\right)
\end{array}\right] S^{-1}, \\
\mu_{A}^{\mathrm{u}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{u}}\left(A_{1}\right) & 0 \\
0 & \mu_{A}^{\mathrm{u}}\left(A_{2}\right)
\end{array}\right] S^{-1}, \\
\mathcal{S}_{\mathrm{u}}(A) \subseteq \mathcal{R}\left(S\left[\begin{array}{c}
0 \\
I_{n-r}
\end{array}\right]\right) .
\end{gathered}
$$

(Proof: The result follows from Fact 4.10.8.)
Fact 11.16.2. Let $A \in \mathbb{R}^{n \times n}$, and let $S \in \mathbb{R}^{n \times n}$ be a nonsingular matrix such that

$$
A=S\left[\begin{array}{cc}
A_{1} & A_{12} \\
0 & A_{2}
\end{array}\right] S^{-1}
$$

where $A_{1} \in \mathbb{R}^{r \times r}, A_{12} \in \mathbb{R}^{r \times(n-r)}$, and $A_{2} \in \mathbb{R}^{(n-r) \times(n-r)}$ satisfies $\operatorname{spec}\left(A_{2}\right)$ \subset CRHP. Then,

$$
\mu_{A}^{\mathrm{s}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{s}}\left(A_{1}\right) & C_{12 \mathrm{~s}} \\
0 & \mu_{A}^{\mathrm{s}}\left(A_{2}\right)
\end{array}\right] S^{-1}
$$

where $C_{12 \mathrm{~s}} \in \mathbb{R}^{r \times(n-r)}$ and $\mu_{A}^{\mathrm{s}}\left(A_{2}\right)$ is nonsingular, and

$$
\mu_{A}^{\mathrm{u}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{u}}\left(A_{1}\right) & C_{12 \mathrm{u}} \\
0 & 0
\end{array}\right] S^{-1}
$$

where $C_{12 \mathrm{u}} \in \mathbb{R}^{r \times(n-r)}$. Consequently,

$$
\mathcal{S}_{\mathrm{s}}(A) \subseteq \mathcal{R}\left(S\left[\begin{array}{c}
I_{r} \\
0
\end{array}\right]\right)
$$

If, in addition, $A_{12}=0$, then

$$
\begin{gathered}
\mu_{A}^{\mathrm{s}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{s}}\left(A_{1}\right) & 0 \\
0 & \mu_{A}^{\mathrm{s}}\left(A_{2}\right)
\end{array}\right] S^{-1} \\
\mu_{A}^{\mathrm{u}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{u}}\left(A_{1}\right) & 0 \\
0 & 0
\end{array}\right] S^{-1} \\
\mathcal{R}\left(S\left[\begin{array}{c}
0 \\
I_{n-r}
\end{array}\right]\right) \subseteq \mathcal{S}_{\mathrm{u}}(A)
\end{gathered}
$$

Fact 11.16.3. Let $A \in \mathbb{R}^{n \times n}$, and let $S \in \mathbb{R}^{n \times n}$ be a nonsingular matrix such that

$$
A=S\left[\begin{array}{cc}
A_{1} & A_{12} \\
0 & A_{2}
\end{array}\right] S^{-1}
$$

where $A_{1} \in \mathbb{R}^{r \times r}$ satisfies $\operatorname{spec}\left(A_{1}\right) \subset \operatorname{CRHP}, A_{12} \in \mathbb{R}^{r \times(n-r)}$, and $A_{2} \in$ $\mathbb{R}^{(n-r) \times(n-r)}$. Then,

$$
\mu_{A}^{\mathrm{s}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{s}}\left(A_{1}\right) & B_{12 \mathrm{~s}} \\
0 & \mu_{A}^{\mathrm{s}}\left(A_{2}\right)
\end{array}\right] S^{-1}
$$

where $\mu_{A}^{\mathrm{S}}\left(A_{1}\right)$ is nonsingular and $B_{12 \mathrm{~s}} \in \mathbb{R}^{r \times(n-r)}$, and

$$
\mu_{A}^{\mathrm{u}}(A)=S\left[\begin{array}{cc}
0 & B_{12 \mathrm{u}} \\
0 & \mu_{A}^{\mathrm{u}}\left(A_{2}\right)
\end{array}\right] S^{-1}
$$

where $B_{12 \mathrm{u}} \in \mathbb{R}^{r \times(n-r)}$. Consequently,

$$
\mathcal{R}\left(S\left[\begin{array}{c}
I_{r} \\
0
\end{array}\right]\right) \subseteq \mathcal{S}_{\mathrm{u}}(A)
$$

If, in addition, $A_{12}=0$, then

$$
\begin{gathered}
\mu_{A}^{\mathrm{s}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{s}}\left(A_{1}\right) & 0 \\
0 & \mu_{A}^{\mathrm{s}}\left(A_{2}\right)
\end{array}\right] S^{-1} \\
\mu_{A}^{\mathrm{u}}(A)=S\left[\begin{array}{cc}
0 & 0 \\
0 & \mu_{A}^{\mathrm{u}}\left(A_{2}\right)
\end{array}\right] S^{-1} \\
\mathcal{S}_{\mathrm{s}}(A) \subseteq \mathcal{R}\left(S\left[\begin{array}{c}
0 \\
I_{n-r}
\end{array}\right]\right)
\end{gathered}
$$

Fact 11.16.4. Let $A \in \mathbb{R}^{n \times n}$, and let $S \in \mathbb{R}^{n \times n}$ be a nonsingular matrix such that

$$
A=S\left[\begin{array}{cc}
A_{1} & A_{12} \\
0 & A_{2}
\end{array}\right] S^{-1}
$$

where $A_{1} \in \mathbb{R}^{r \times r}, A_{12} \in \mathbb{R}^{r \times(n-r)}$, and $A_{2} \in \mathbb{R}^{(n-r) \times(n-r)}$ is asymptotically stable. Then,

$$
\mu_{A}^{\mathrm{s}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{s}}\left(A_{1}\right) & C_{12 \mathrm{~s}} \\
0 & 0
\end{array}\right] S^{-1},
$$

where $C_{12 \mathrm{~s}} \in \mathbb{R}^{r \times(n-r)}$, and

$$
\mu_{A}^{\mathrm{u}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{u}}\left(A_{1}\right) & C_{12 \mathrm{u}} \\
0 & \mu_{A}^{\mathrm{u}}\left(A_{2}\right)
\end{array}\right] S^{-1},
$$

where $\mu_{A}^{\mathrm{u}}\left(A_{2}\right)$ is nonsingular and $C_{12 \mathrm{u}} \in \mathbb{R}^{r \times(n-r)}$. Consequently,

$$
\mathcal{S}_{\mathrm{u}}(A) \subseteq \mathcal{R}\left(S\left[\begin{array}{c}
I_{r} \\
0
\end{array}\right]\right) .
$$

If, in addition, $A_{12}=0$, then

$$
\begin{gathered}
\mu_{A}^{\mathrm{s}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{s}}\left(A_{1}\right) & 0 \\
0 & 0
\end{array}\right] S^{-1}, \\
\mu_{A}^{\mathrm{u}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{u}}\left(A_{1}\right) & 0 \\
0 & \mu_{A}^{\mathrm{u}}\left(A_{2}\right)
\end{array}\right] S^{-1}, \\
\mathcal{R}\left(S\left[\begin{array}{c}
0 \\
I_{n-r}
\end{array}\right]\right) \subseteq \mathfrak{S}_{\mathrm{s}}(A) .
\end{gathered}
$$

Fact 11.16.5. Let $A \in \mathbb{R}^{n \times n}$, and let $S \in \mathbb{R}^{n \times n}$ be a nonsingular matrix such that

$$
A=S\left[\begin{array}{cc}
A_{1} & A_{12} \\
0 & A_{2}
\end{array}\right] S^{-1}
$$

where $A_{1} \in \mathbb{R}^{r \times r}$ satisfies $\operatorname{spec}\left(A_{1}\right) \subset \mathrm{CRHP}, A_{12} \in \mathbb{R}^{r \times(n-r)}$, and $A_{2} \in$ $\mathbb{R}^{(n-r) \times(n-r)}$ is asymptotically stable. Then,

$$
\mu_{A}^{\mathrm{s}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{s}}\left(A_{1}\right) & C_{12 \mathrm{~s}} \\
0 & 0
\end{array}\right] S^{-1}
$$

where $C_{12 \mathrm{~s}} \in \mathbb{R}^{r \times(n-r)}$ and $\mu_{A}^{\mathrm{s}}\left(A_{1}\right)$ is nonsingular, and

$$
\mu_{A}^{\mathrm{u}}(A)=S\left[\begin{array}{cc}
0 & C_{12 \mathrm{u}} \\
0 & \mu_{A}^{\mathrm{u}}\left(A_{2}\right)
\end{array}\right] S^{-1},
$$

where $C_{12 \mathrm{u}} \in \mathbb{R}^{r \times(n-r)}$ and $\mu_{A}^{\mathrm{u}}\left(A_{2}\right)$ is nonsingular. Consequently,

$$
\mathcal{S}_{\mathrm{u}}(A)=\mathcal{R}\left(S\left[\begin{array}{c}
I_{r} \\
0
\end{array}\right]\right)
$$

If, in addition, $A_{12}=0$, then

$$
\mu_{A}^{\mathrm{s}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{s}}\left(A_{1}\right) & 0 \\
0 & 0
\end{array}\right] S^{-1}
$$

and

$$
\mu_{A}^{\mathrm{u}}(A)=S\left[\begin{array}{cc}
0 & 0 \\
0 & \mu_{A}^{\mathrm{u}}\left(A_{2}\right)
\end{array}\right] S^{-1}
$$

Consequently,

$$
\mathcal{S}_{\mathrm{s}}(A)=\mathcal{R}\left(S\left[\begin{array}{c}
0 \\
I_{n-r}
\end{array}\right]\right)
$$

Fact 11.16.6. Let $A \in \mathbb{R}^{n \times n}$, and let $S \in \mathbb{R}^{n \times n}$ be a nonsingular matrix such that

$$
A=S\left[\begin{array}{cc}
A_{1} & 0 \\
A_{21} & A_{2}
\end{array}\right] S^{-1}
$$

where $A_{1} \in \mathbb{R}^{r \times r}$ is asymptotically stable, $A_{21} \in \mathbb{R}^{(n-r) \times r}$, and $A_{2} \in$ $\mathbb{R}^{(n-r) \times(n-r)}$. Then,

$$
\mu_{A}^{\mathrm{s}}(A)=S\left[\begin{array}{cc}
0 & 0 \\
B_{21 \mathrm{~s}} & \mu_{A}^{\mathrm{s}}\left(A_{2}\right)
\end{array}\right] S^{-1}
$$

where $B_{21 \mathrm{~s}} \in \mathbb{R}^{(n-r) \times r}$, and

$$
\mu_{A}^{\mathrm{u}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{u}}\left(A_{1}\right) & 0 \\
B_{21 \mathrm{u}} & \mu_{A}^{\mathrm{u}}\left(A_{2}\right)
\end{array}\right] S^{-1},
$$

where $B_{21 \mathrm{u}} \in \mathbb{R}^{(n-r) \times r}$ and $\mu_{A}^{\mathrm{u}}\left(A_{1}\right)$ is nonsingular. Consequently,

$$
\mathcal{S}_{\mathrm{u}}(A) \subseteq \mathcal{R}\left(S\left[\begin{array}{c}
0 \\
I_{n-r}
\end{array}\right]\right)
$$

If, in addition, $A_{21}=0$, then

$$
\begin{gathered}
\mu_{A}^{\mathrm{s}}(A)=S\left[\begin{array}{cc}
0 & 0 \\
0 & \mu_{A}^{\mathrm{s}}\left(A_{2}\right)
\end{array}\right] S^{-1}, \\
\mu_{A}^{\mathrm{u}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{u}}\left(A_{1}\right) & 0 \\
0 & \mu_{A}^{\mathrm{u}}\left(A_{2}\right)
\end{array}\right] S^{-1}, \\
\mathcal{R}\left(S\left[\begin{array}{c}
I_{r} \\
0
\end{array}\right]\right) \subseteq \mathcal{S}_{\mathrm{s}}(A) .
\end{gathered}
$$

Fact 11.16.7. Let $A \in \mathbb{R}^{n \times n}$, and let $S \in \mathbb{R}^{n \times n}$ be a nonsingular matrix such that

$$
A=S\left[\begin{array}{cc}
A_{1} & 0 \\
A_{21} & A_{2}
\end{array}\right] S^{-1}
$$

where $A_{1} \in \mathbb{R}^{r \times r}, A_{21} \in \mathbb{R}^{(n-r) \times r}$, and $A_{2} \in \mathbb{R}^{(n-r) \times(n-r)}$ satisfies spec $\left(A_{2}\right)$ \subset CRHP. Then,

$$
\mu_{A}^{\mathrm{s}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{s}}\left(A_{1}\right) & 0 \\
C_{21 \mathrm{~s}} & \mu_{A}^{\mathrm{s}}\left(A_{2}\right)
\end{array}\right] S^{-1}
$$

where $C_{21 \mathrm{~s}} \in \mathbb{R}^{(n-r) \times r}$ and $\mu_{A}^{\mathrm{s}}\left(A_{2}\right)$ is nonsingular, and

$$
\mu_{A}^{\mathrm{u}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{u}}\left(A_{1}\right) & 0 \\
C_{21 \mathrm{u}} & 0
\end{array}\right] S^{-1},
$$

where $C_{21 \mathrm{u}} \in \mathbb{R}^{(n-r) \times r}$. Consequently,

$$
\mathcal{R}\left(S\left[\begin{array}{c}
0 \\
I_{n-r}
\end{array}\right]\right) \subseteq S_{\mathrm{u}}(A)
$$

If, in addition, $A_{21}=0$, then

$$
\begin{gathered}
\mu_{A}^{\mathrm{s}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{s}}\left(A_{1}\right) & 0 \\
0 & \mu_{A}^{\mathrm{s}}\left(A_{2}\right)
\end{array}\right] S^{-1}, \\
\mu_{A}^{\mathrm{u}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{u}}\left(A_{1}\right) & 0 \\
0 & 0
\end{array}\right] S^{-1}, \\
\mathcal{S}_{\mathrm{s}}(A) \subseteq \mathcal{R}\left(S\left[\begin{array}{c}
I_{r} \\
0
\end{array}\right]\right) .
\end{gathered}
$$

Fact 11.16.8. Let $A \in \mathbb{R}^{n \times n}$, and let $S \in \mathbb{R}^{n \times n}$ be a nonsingular matrix such that

$$
A=S\left[\begin{array}{cc}
A_{1} & 0 \\
A_{21} & A_{2}
\end{array}\right] S^{-1}
$$

where $A_{1} \in \mathbb{R}^{r \times r}$ is asymptotically stable, $A_{21} \in \mathbb{R}^{(n-r) \times r}$, and $A_{2} \in$ $\mathbb{R}^{(n-r) \times(n-r)}$ satisfies $\operatorname{spec}\left(A_{2}\right) \subset$ CRHP. Then,

$$
\mu_{A}^{\mathrm{s}}(A)=S\left[\begin{array}{cc}
0 & 0 \\
C_{21 \mathrm{~s}} & \mu_{A}^{\mathrm{s}}\left(A_{2}\right)
\end{array}\right] S^{-1},
$$

where $C_{21 \mathrm{~s}} \in \mathbb{R}^{n-r \times r}$ and $\mu_{A}^{\mathrm{s}}\left(A_{2}\right)$ is nonsingular, and

$$
\mu_{A}^{\mathrm{u}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{u}}\left(A_{1}\right) & 0 \\
C_{21 \mathrm{u}} & 0
\end{array}\right] S^{-1}
$$

where $C_{21 \mathrm{u}} \in \mathbb{R}^{(n-r) \times r}$ and $\mu_{A}^{\mathrm{u}}\left(A_{1}\right)$ is nonsingular. Consequently,

$$
\mathcal{S}_{\mathrm{u}}(A)=\mathcal{R}\left(S\left[\begin{array}{c}
0 \\
I_{n-r}
\end{array}\right]\right)
$$

If, in addition, $A_{21}=0$, then

$$
\mu_{A}^{\mathrm{s}}(A)=S\left[\begin{array}{cc}
0 & 0 \\
0 & \mu_{A}^{\mathrm{s}}\left(A_{2}\right)
\end{array}\right] S^{-1}
$$

and

$$
\mu_{A}^{\mathrm{u}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{u}}\left(A_{1}\right) & 0 \\
0 & 0
\end{array}\right] S^{-1}
$$

Consequently,

$$
\mathcal{S}_{\mathrm{s}}(A)=\mathcal{R}\left(S\left[\begin{array}{c}
I_{r} \\
0
\end{array}\right]\right)
$$

Fact 11.16.9. Let $A \in \mathbb{R}^{n \times n}$, and let $S \in \mathbb{R}^{n \times n}$ be a nonsingular matrix such that

$$
A=S\left[\begin{array}{cc}
A_{1} & 0 \\
A_{21} & A_{2}
\end{array}\right] S^{-1}
$$

where $A_{1} \in \mathbb{R}^{r \times r}, A_{21} \in \mathbb{R}^{(n-r) \times r}$, and $A_{2} \in \mathbb{R}^{(n-r) \times(n-r)}$ is asymptotically stable. Then,

$$
\mu_{A}^{\mathrm{s}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{s}}\left(A_{1}\right) & 0 \\
B_{21 \mathrm{~s}} & 0
\end{array}\right] S^{-1}
$$

where $B_{21 \mathrm{~s}} \in \mathbb{R}^{(n-r) \times r}$, and

$$
\mu_{A}^{\mathrm{u}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{u}}\left(A_{1}\right) & 0 \\
B_{21 \mathrm{u}} & \mu_{A}^{\mathrm{u}}\left(A_{2}\right)
\end{array}\right] S^{-1}
$$

where $B_{21 \mathrm{u}} \in \mathbb{R}^{(n-r) \times r}$ and $\mu_{A}^{\mathrm{u}}\left(A_{2}\right)$ is nonsingular. Consequently,

$$
\mathcal{R}\left(S\left[\begin{array}{c}
0 \\
I_{n-r}
\end{array}\right]\right) \subseteq \mathcal{S}(A)
$$

If, in addition, $A_{21}=0$, then

$$
\begin{gathered}
\mu_{A}^{\mathrm{s}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{s}}\left(A_{1}\right) & 0 \\
0 & 0
\end{array}\right] S^{-1}, \\
\mu_{A}^{\mathrm{u}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{u}}\left(A_{1}\right) & 0 \\
0 & \mu_{A}^{\mathrm{u}}\left(A_{2}\right)
\end{array}\right] S^{-1}, \\
\mathcal{S}_{\mathrm{u}}(A) \subseteq \mathcal{R}\left(S\left[\begin{array}{c}
I_{r} \\
0
\end{array}\right]\right) .
\end{gathered}
$$

Fact 11.16.10. Let $A \in \mathbb{R}^{n \times n}$, and let $S \in \mathbb{R}^{n \times n}$ be a nonsingular matrix such that

$$
A=S\left[\begin{array}{cc}
A_{1} & 0 \\
A_{21} & A_{2}
\end{array}\right] S^{-1}
$$

where $A_{1} \in \mathbb{R}^{r \times r}$ satisfies $\operatorname{spec}\left(A_{1}\right) \subset \operatorname{CRHP}, A_{21} \in \mathbb{R}^{(n-r) \times r}$, and $A_{2} \in$ $\mathbb{R}^{(n-r) \times(n-r)}$. Then,

$$
\mu_{A}^{\mathrm{s}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{s}}\left(A_{1}\right) & 0 \\
C_{12 \mathrm{~s}} & \mu_{A}^{\mathrm{s}}\left(A_{2}\right)
\end{array}\right] S^{-1},
$$

where $C_{21 \mathrm{~s}} \in \mathbb{R}^{(n-r) \times r}$ and $\mu_{A}^{\mathrm{s}}\left(A_{1}\right)$ is nonsingular, and

$$
\mu_{A}^{\mathrm{u}}(A)=S\left[\begin{array}{cc}
0 & 0 \\
C_{21 \mathrm{u}} & \mu_{A}^{\mathrm{u}}\left(A_{2}\right)
\end{array}\right] S^{-1}
$$

where $C_{21 \mathrm{u}} \in \mathbb{R}^{(n-r) \times r}$. Consequently,

$$
\mathcal{S}_{\mathrm{s}}(A) \subseteq \mathcal{R}\left(S\left[\begin{array}{c}
0 \\
I_{n-r}
\end{array}\right]\right)
$$

If, in addition, $A_{21}=0$, then

$$
\begin{gathered}
\mu_{A}^{\mathrm{s}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{s}}\left(A_{1}\right) & 0 \\
0 & \mu_{A}^{\mathrm{s}}\left(A_{2}\right)
\end{array}\right] S^{-1}, \\
\mu_{A}^{\mathrm{u}}(A)=S\left[\begin{array}{cc}
0 & 0 \\
0 & \mu_{A}^{\mathrm{u}}\left(A_{2}\right)
\end{array}\right] S^{-1}, \\
\mathcal{R}\left(S\left[\begin{array}{c}
I_{r} \\
0
\end{array}\right]\right) \subseteq \mathcal{S}_{\mathrm{u}}(A) .
\end{gathered}
$$

Fact 11.16.11. Let $A \in \mathbb{R}^{n \times n}$, and let $S \in \mathbb{R}^{n \times n}$ be a nonsingular matrix such that

$$
A=S\left[\begin{array}{cc}
A_{1} & 0 \\
A_{21} & A_{2}
\end{array}\right] S^{-1}
$$

where $A_{1} \in \mathbb{R}^{r \times r}$ satisfies $\operatorname{spec}\left(A_{1}\right) \subset$ CRHP, $A_{21} \in \mathbb{R}^{(n-r) \times r}$, and $A_{2} \in$ $\mathbb{R}^{(n-r) \times(n-r)}$ is asymptotically stable. Then,

$$
\mu_{A}^{\mathrm{s}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{s}}\left(A_{1}\right) & 0 \\
C_{21 \mathrm{~s}} & 0
\end{array}\right] S^{-1},
$$

where $C_{21 \mathrm{~s}} \in \mathbb{R}^{(n-r) \times r}$ and $\mu_{A}^{\mathrm{s}}\left(A_{1}\right)$ is nonsingular, and

$$
\mu_{A}^{\mathrm{u}}(A)=S\left[\begin{array}{cc}
0 & 0 \\
C_{21 \mathrm{u}} & \mu_{A}^{\mathrm{u}}\left(A_{2}\right)
\end{array}\right] S^{-1},
$$

where $C_{21 \mathrm{u}} \in \mathbb{R}^{(n-r) \times r}$ and $\mu_{A}^{\mathrm{u}}\left(A_{2}\right)$ is nonsingular. Consequently,

$$
\mathcal{S}_{\mathrm{s}}(A)=\mathcal{R}\left(S\left[\begin{array}{c}
0 \\
I_{n-r}
\end{array}\right]\right)
$$

If, in addition, $A_{21}=0$, then

$$
\mu_{A}^{\mathrm{s}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{s}}\left(A_{1}\right) & 0 \\
0 & 0
\end{array}\right] S^{-1}
$$

and

$$
\mu_{A}^{\mathrm{u}}(A)=S\left[\begin{array}{cc}
0 & 0 \\
0 & \mu_{A}^{\mathrm{u}}\left(A_{2}\right)
\end{array}\right] S^{-1} .
$$

Consequently,

$$
\mathcal{S}_{\mathrm{u}}(A)=\mathcal{R}\left(S\left[\begin{array}{c}
I_{r} \\
0
\end{array}\right]\right)
$$

11.17 Notes

Explicit formulas for the matrix exponential are given in [32, 89, 142, $264,458,459$]. Computational methods are discussed in [426]. An arithmetic-mean-geometric-mean iteration for computing the matrix exponential and matrix logarithm is given in [527].

The exponential function plays a central role in the theory of Lie groups, see $[72,132,299,304,496,571]$. Applications to robotics and kinematics are given in [432, 450]. Additional applications are discussed in [131].

The real logarithm is discussed in [156, 274, 441, 469].
An asymptotically stable polynomial is traditionally called Hurwitz. Semistability was first defined in [124]. Stability theory is treated in [257, 361, 463]. Solutions of the Lyapunov equation under weak conditions are considered in [512]

Chapter Twelve

Linear Systems and Control Theory

This chapter considers linear state space systems with inputs and outputs. These systems are considered in both the time domain and frequency (Laplace) domain. Some basic results in control theory are also considered.

12.1 State Space and Transfer Function Models

Let $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times m}$, and, for $t \geq t_{0}$, consider the state equation

$$
\begin{equation*}
\dot{x}(t)=A x(t)+B u(t) \tag{12.1.1}
\end{equation*}
$$

with the initial condition

$$
\begin{equation*}
x\left(t_{0}\right)=x_{0} \tag{12.1.2}
\end{equation*}
$$

In (12.1.1), $x(t) \in \mathbb{R}^{n}$ is the state and $u(t) \in \mathbb{R}^{m}$ is the input.
Proposition 12.1.1. For $t \geq t_{0}$ the state $x(t)$ of the dynamical equation (12.1.1) with initial condition (12.1.2) is given by

$$
\begin{equation*}
x(t)=e^{\left(t-t_{0}\right) A} x_{0}+\int_{t_{0}}^{t} e^{(t-\tau) A} B u(\tau) \mathrm{d} \tau \tag{12.1.3}
\end{equation*}
$$

Proof. Multiplying (12.1.1) by $e^{-t A}$ yields

$$
e^{-t A}[\dot{x}(t)-A x(t)]=e^{-t A} B u(t)
$$

which is equivalent to

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left[e^{-t A} x(t)\right]=e^{-t A} B u(t)
$$

Integrating over $\left[t_{0}, t\right]$ yields

$$
e^{-t A} x(t)=e^{-t_{0} A} x\left(t_{0}\right)+\int_{t_{0}}^{t} e^{-\tau A} B u(\tau) \mathrm{d} \tau
$$

Now, multiplying by $e^{t A}$ yields (12.1.3).
Alternatively, let $x(t)$ be given by (12.1.3). Then, it follows from Liebniz' rule Fact 10.8.4 that

$$
\begin{aligned}
\dot{x}(t) & =\frac{\mathrm{d}}{\mathrm{~d} t} e^{\left(t-t_{0}\right) A} x_{0}+\frac{\mathrm{d}}{\mathrm{~d} t} \int_{t_{0}}^{t} e^{(t-\tau) A} B u(\tau) \mathrm{d} \tau \\
& =A e^{\left(t-t_{0}\right) A} x_{0}+\int_{t_{0}}^{t} A e^{(t-\tau) A} B u(\tau) \mathrm{d} \tau+B u(t) \\
& =A x(t)+B u(t)
\end{aligned}
$$

For convenience, we can reset the clock and assume without loss of generality that $t_{0}=0$. In this case, $x(t)$ for all $t \geq 0$ is given by

$$
\begin{equation*}
x(t)=e^{t A} x_{0}+\int_{0}^{t} e^{(t-\tau) A} B u(\tau) \mathrm{d} \tau \tag{12.1.4}
\end{equation*}
$$

If $u(t)=0$ for all $t \geq 0$, then, for all $t \geq 0, x(t)$ is given by

$$
\begin{equation*}
x(t)=e^{t A} x_{0} \tag{12.1.5}
\end{equation*}
$$

Now, let $u(t)=\delta(t) v$, where $\delta(t)$ is the unit impulse at $t=0$ and $v \in \mathbb{R}^{m}$. Then, for all $t \geq 0, x(t)$ is given by

$$
\begin{equation*}
x(t)=e^{t A} x_{0}+e^{t A} B v \tag{12.1.6}
\end{equation*}
$$

Let $a<b$. Then, $\delta(t)$, which has physical dimensions of $1 /$ time, satisfies

$$
\int_{a}^{b} \delta(\tau) \mathrm{d} \tau= \begin{cases}0, & a>0 \text { or } b \leq 0 \tag{12.1.7}\\ 1, & a \leq 0<b\end{cases}
$$

More generally, if $g: \mathcal{D} \rightarrow \mathbb{R}^{n}$, where $[a, b] \subseteq \mathcal{D} \subseteq \mathbb{R}, t_{0} \in \mathcal{D}$, and g is continuous at t_{0}, then

$$
\int_{a}^{b} \delta\left(\tau-t_{0}\right) g(\tau) \mathrm{d} \tau= \begin{cases}0, & a>t_{0} \text { or } b \leq t_{0} \tag{12.1.8}\\ g\left(t_{0}\right), & a \leq t_{0}<b\end{cases}
$$

Alternatively, if the input $u(t)$ is constant, that is, $u(t)=v$ for all $t \geq 0$, where $v \in \mathbb{R}^{m}$, then, by a change of variable of integration, it follows that, for all $t \geq 0$,

$$
\begin{equation*}
x(t)=e^{t A} x_{0}+\int_{0}^{t} e^{\tau A} \mathrm{~d} \tau B v \tag{12.1.9}
\end{equation*}
$$

Using Fact 11.10 .12 , (12.1.9) can be written for all $t \geq 0$ as

$$
\begin{equation*}
x(t)=e^{t A} x_{0}+\left[A^{\mathrm{D}}\left(e^{t A}-I\right)+\left(I-A A^{\mathrm{D}}\right) \sum_{i=1}^{\text {ind } A}(i!)^{-1} t^{i} A^{i-1}\right] B v \tag{12.1.10}
\end{equation*}
$$

If A is group invertible, then, for all $t \geq 0,(12.1 .10)$ becomes

$$
\begin{equation*}
x(t)=e^{t A} x_{0}+\left[A^{\#}\left(e^{t A}-I\right)+t\left(I-A A^{\#}\right)\right] B v \tag{12.1.11}
\end{equation*}
$$

If, in addition, A is nonsingular, then, for all $t \geq 0$, (12.1.11) becomes

$$
\begin{equation*}
x(t)=e^{t A} x_{0}+A^{-1}\left(e^{t A}-I\right) B v \tag{12.1.12}
\end{equation*}
$$

Next, consider the output equation

$$
\begin{equation*}
y(t)=C x(t)+D u(t) \tag{12.1.13}
\end{equation*}
$$

where $t \geq 0, y(t) \in \mathbb{R}^{l}$ is the output, $C \in \mathbb{R}^{l \times n}$, and $D \in \mathbb{R}^{l \times m}$. Then, for all $t \geq 0$,

$$
\begin{equation*}
y(t)=C e^{t A} x_{0}+\int_{0}^{t} C e^{(t-\tau) A} B u(\tau) \mathrm{d} \tau+D u(t) \tag{12.1.14}
\end{equation*}
$$

If $u(t)=0$ for all $t \geq 0$, then the free response is given by

$$
\begin{equation*}
y(t)=C e^{t A} x_{0} \tag{12.1.15}
\end{equation*}
$$

while, if $x_{0}=0$, then the forced response is given by

$$
\begin{equation*}
y(t)=\int_{0}^{t} C e^{(t-\tau) A} B u(\tau) \mathrm{d} \tau+D u(t) \tag{12.1.16}
\end{equation*}
$$

In particular, setting $u(t)=\delta(t) v$ yields, for all $t>0$,

$$
\begin{equation*}
y(t)=C e^{t A} x_{0}+H(t) v \tag{12.1.17}
\end{equation*}
$$

where, for all $t \geq 0$, the impulse response function $H(t)$ is defined by

$$
\begin{equation*}
H(t) \triangleq C e^{t A} B+\delta(t) D \tag{12.1.18}
\end{equation*}
$$

and the impulse response is

$$
\begin{equation*}
y(t)=H(t) v \tag{12.1.19}
\end{equation*}
$$

Alternatively, if $u(t)=v$ for all $t \geq 0$, then

$$
\begin{equation*}
y(t)=C e^{t A} x_{0}+\int_{0}^{t} C e^{\tau A} \mathrm{~d} \tau B v+D v \tag{12.1.20}
\end{equation*}
$$

and the step response is

$$
\begin{equation*}
y(t)=\int_{0}^{t} H(\tau) \mathrm{d} \tau v=\int_{0}^{t} C e^{\tau A} \mathrm{~d} \tau B v+D v \tag{12.1.21}
\end{equation*}
$$

In general, the forced response can be written as

$$
\begin{equation*}
y(t)=\int_{0}^{t} H(t-\tau) u(\tau) \mathrm{d} \tau \tag{12.1.22}
\end{equation*}
$$

Proposition 12.1.2. Let $D=0$ and $m=1$, and assume that $x_{0}=B v$. Then, the free response and the impulse response are equal and given by

$$
\begin{equation*}
y(t)=C e^{t A} x_{0}=C e^{t A} B v \tag{12.1.23}
\end{equation*}
$$

Now, consider the linear system

$$
\begin{align*}
& \dot{x}(t)=A x(t)+B u(t) \tag{12.1.24}\\
& y(t)=C x(t)+D u(t) \tag{12.1.25}
\end{align*}
$$

with state $x(t) \in \mathbb{R}^{n}$, input $u(t) \in \mathbb{R}^{m}$, and output $y(t) \in \mathbb{R}^{l}$, where $t \geq 0$ and $x(0)=x_{0}$. Taking Laplace transforms yields

$$
\begin{gather*}
s \hat{x}(s)-x_{0}=A \hat{x}(s)+B \hat{u}(s), \tag{12.1.26}\\
\hat{y}(s)=C \hat{x}(s)+D \hat{u}(s) \tag{12.1.27}
\end{gather*}
$$

where

$$
\begin{gather*}
\hat{x}(s) \triangleq \mathcal{L}\{x(t)\} \triangleq \int_{0}^{\infty} e^{-s t} x(t) \mathrm{d} t \tag{12.1.28}\\
\hat{u}(s) \triangleq \mathcal{L}\{u(t)\} \tag{12.1.29}
\end{gather*}
$$

and

$$
\begin{equation*}
\hat{y}(s) \triangleq \mathcal{L}\{y(t)\} \tag{12.1.30}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\hat{x}(s)=(s I-A)^{-1} x_{0}+(s I-A)^{-1} B \hat{u}(s), \tag{12.1.31}
\end{equation*}
$$

and thus

$$
\begin{equation*}
\hat{y}(s)=C(s I-A)^{-1} x_{0}+\left[C(s I-A)^{-1} B+D\right] \hat{u}(s) . \tag{12.1.32}
\end{equation*}
$$

We can also obtain (12.1.32) from the time-domain expression for $y(t)$ given by (12.1.14). To do this, the following result will be needed.

Lemma 12.1.3. Let $A \in \mathbb{R}^{n \times n}$. Then, for all $s \in \mathbb{C} \backslash \operatorname{spec}(A)$,

$$
\begin{equation*}
\mathcal{L}\left\{e^{t A}\right\}=(s I-A)^{-1} . \tag{12.1.33}
\end{equation*}
$$

Proof. Let $s \in \mathbb{C}$ satisfy $\operatorname{Re} s>\operatorname{spabs}(A)$ so that $A-s I$ is asymptotically stable. Thus, it follows from Lemma 11.7.2 that

$$
\mathcal{L}\left\{e^{t A}\right\}=\int_{0}^{\infty} e^{-s t} e^{t A} \mathrm{~d} t=\int_{0}^{\infty} e^{t(A-s I)} \mathrm{d} t=(s I-A)^{-1} .
$$

By analytic continuation, $\mathcal{L}\left\{e^{t A}\right\}$ is given by (12.1.33) for all $s \in \mathbb{C} \backslash \operatorname{spec}(A)$.

Using Lemma 12.1.3, it follows from (12.1.14) that

$$
\begin{align*}
\hat{y}(s) & =\mathcal{L}\left\{C e^{t A} x_{0}\right\}+\mathcal{L}\left\{\int_{0}^{t} C e^{(t-\tau) A} B u(\tau) \mathrm{d} \tau\right\}+D \hat{u}(s) \\
& =C \mathcal{L}\left\{e^{t A}\right\} x_{0}+C \mathcal{L}\left\{e^{t A}\right\} B \hat{u}(s)+D \hat{u}(s) \\
& =C(s I-A)^{-1} x_{0}+\left[C(s I-A)^{-1} B+D\right] \hat{u}(s), \tag{12.1.34}
\end{align*}
$$

which coincides with (12.1.32). We define

$$
\begin{equation*}
G(s) \triangleq C(s I-A)^{-1} B+D . \tag{12.1.35}
\end{equation*}
$$

Note that $G \in \mathbb{R}^{l \times m}(s)$, that is, by Definition 4.7.2, G is a rational transfer function. Since $\mathcal{L}\{\delta(t)\}=1$ it follows that

$$
\begin{equation*}
G(s)=\mathcal{L}\{H(t)\} . \tag{12.1.36}
\end{equation*}
$$

Using (4.7.2), G can be written as

$$
\begin{equation*}
G(s)=\frac{1}{\chi_{A}(s)} C(s I-A)^{\mathrm{A}} B+D . \tag{12.1.37}
\end{equation*}
$$

It follows from (4.7.3) that G is a proper rational transfer function. Furthermore, G is a strictly proper rational transfer function if and only if $D=0$, whereas G is an exactly proper rational transfer function if and only if $D \neq 0$. Finally, if A is nonsingular, then

$$
\begin{equation*}
G(0)=-C A^{-1} B+D . \tag{12.1.38}
\end{equation*}
$$

Let $A \in \mathbb{R}^{n \times n}$. If $|s|>\operatorname{sprad}(A)$, then Proposition 9.4.10 implies that

$$
\begin{equation*}
(s I-A)^{-1}=\frac{1}{s}\left(I-\frac{1}{s} A\right)^{-1}=\sum_{k=0}^{\infty} \frac{1}{s^{k+1}} A^{k} \tag{12.1.39}
\end{equation*}
$$

where the series is absolutely convergent, and thus

$$
\begin{equation*}
G(s)=\sum_{k=-1}^{\infty} \frac{1}{s^{k+1}} H_{k} \tag{12.1.40}
\end{equation*}
$$

where, for $k \geq-1$, the Markov parameter $H_{k} \in \mathbb{R}^{l \times m}$ is defined by

$$
H_{k} \triangleq \begin{cases}D, & k=-1 \tag{12.1.41}\\ C A^{k} B, & k \geq 0\end{cases}
$$

It follows from (12.1.39) that $\lim _{s \rightarrow \infty}(s I-A)^{-1}=0$, and thus

$$
\begin{equation*}
\lim _{s \rightarrow \infty} G(s)=D \tag{12.1.42}
\end{equation*}
$$

Finally, it follows from Definition 4.7.2 that

$$
\begin{equation*}
\text { reldeg } G=\min \left\{k \geq-1: \quad H_{k} \neq 0\right\} \tag{12.1.43}
\end{equation*}
$$

12.2 Observability

Let $A \in \mathbb{R}^{n \times n}$ and $C \in \mathbb{R}^{l \times n}$, and, for $t \geq 0$, consider the linear system

$$
\begin{gather*}
\dot{x}(t)=A x(t) \tag{12.2.1}\\
x(0)=x_{0} \tag{12.2.2}\\
y(t)=C x(t) \tag{12.2.3}
\end{gather*}
$$

Definition 12.2.1. The unobservable subspace $\mathcal{U}_{t_{\mathrm{f}}}(A, C)$ of (A, C) at time $t_{\mathrm{f}}>0$ is the subspace

$$
\begin{equation*}
\mathcal{U}_{t_{\mathrm{f}}}(A, C) \triangleq\left\{x_{0} \in \mathbb{R}^{n}: y(t)=0 \text { for all } t \in\left[0, t_{\mathrm{f}}\right]\right\} \tag{12.2.4}
\end{equation*}
$$

Let $t_{\mathrm{f}}>0$. Since $y(t)=0$ for all $t \in\left[0, t_{\mathrm{f}}\right]$ is the free response corresponding to $x_{0}=0$, it follows that $0 \in \mathcal{U}_{t_{\mathrm{f}}}(A, C)$. Hence, if $x_{0} \neq 0$ and $x_{0} \in \mathcal{U}_{t_{\mathrm{f}}}(A, C)$, then x_{0} cannot be determined from knowledge of $y(t)$ for all $t \in\left[0, t_{\mathrm{f}}\right]$.

The following result provides explicit expressions for $\mathcal{U}_{t_{\mathrm{f}}}(A, C)$.
Lemma 12.2.2. Let $t_{\mathrm{f}}>0$. Then, the following subspaces are equal:
i) $\mathcal{U}_{t_{f}}(A, C)$
ii) $\bigcap_{t \in\left[0, t_{f}\right]} \mathcal{N}\left(C e^{t A}\right)$
iii) $\bigcap_{i=0}^{n-1} \mathcal{N}\left(C A^{i}\right)$
iv) $\mathcal{N}\left(\left[\begin{array}{c}C A \\ \vdots \\ C A^{n-1}\end{array}\right]\right)$
v) $\mathcal{N}\left(\int_{0}^{t_{\mathrm{f}}} e^{t A^{\mathrm{T}}} C^{\mathrm{T}} C e^{t A} \mathrm{~d} t\right)$

Proof. The proof is dual to the proof of Lemma 12.5.2.
Lemma 12.2.2 shows that $\mathcal{U}_{t_{\mathrm{f}}}(A, C)$ is independent of t_{f}. Hence, we write $\mathcal{U}(A, C)$ for $\mathcal{U}_{t_{\mathrm{f}}}(A, C)$ and call $\mathcal{U}(A, C)$ the unobservable subspace of $(A, C) .(A, C)$ is observable if $\mathcal{U}(A, C)=\{0\}$. For convenience, define the observability matrix

$$
\mathcal{O}(A, C) \triangleq\left[\begin{array}{c}
C \tag{12.2.5}\\
C A \\
\vdots \\
C A^{n-1}
\end{array}\right]
$$

so that

$$
\begin{equation*}
\mathcal{U}(A, C)=\mathcal{N}[\mathcal{O}(A, C)] . \tag{12.2.6}
\end{equation*}
$$

Define

$$
\begin{equation*}
p \triangleq n-\operatorname{dim} \mathcal{U}(A, C)=n-\operatorname{def} \mathcal{O}(A, C) \tag{12.2.7}
\end{equation*}
$$

The following result shows that the unobservable subspace $\mathcal{U}(A, C)$ is unchanged by replacing $\dot{x}(t)=A x(t)$ by $\dot{x}(t)=A x(t)+F y(t)$.

Proposition 12.2.3. Let $F \in \mathbb{R}^{n \times l}$. Then,

$$
\begin{equation*}
\mathcal{U}(A+F C, C)=\mathcal{U}(A, C) . \tag{12.2.8}
\end{equation*}
$$

In particular, (A, C) is observable if and only if $(A+F C, C)$ is observable.
Proof. The proof is dual to the proof of Proposition 12.5.3.
Let $\tilde{U}(A, C) \subseteq \mathbb{R}^{n}$ be a subspace that is complementary to $\mathcal{U}(A, C)$. Then, $\tilde{\mathcal{U}}(A, C)$ is an observable subspace in the sense that if $x_{0}=x_{0}^{\prime}+x_{0}^{\prime \prime}$, where $x_{0}^{\prime} \in \tilde{\mathcal{U}}(A, C)$ and $x_{0}^{\prime \prime} \in \mathcal{U}(A, C)$, then it is possible to determine x_{0}^{\prime} from knowledge of $y(t)$ for $t \in\left[0, t_{\mathrm{f}}\right]$. The following result uses $y(t)$ to determine x_{0}^{\prime} for $\tilde{\mathcal{U}}(A, C) \triangleq \mathcal{U}(A, C)^{\perp}$.

Lemma 12.2.4. Let $t_{\mathrm{f}}>0$, and define $\mathcal{P} \in \mathbb{R}^{n \times n}$ by

$$
\begin{equation*}
\mathcal{P} \triangleq\left(\int_{0}^{t_{\mathrm{f}}} e^{t A^{\mathrm{T}}} C^{\mathrm{T}} C e^{t A} \mathrm{~d} t\right)^{+} \int_{0}^{t_{\mathrm{f}}} e^{t A^{\mathrm{T}}} C^{\mathrm{T}} C e^{t A} \mathrm{~d} t . \tag{12.2.9}
\end{equation*}
$$

Then, \mathcal{P}_{\perp} is the projector onto $\mathcal{U}(A, C)$, and \mathcal{P} is the projector onto $\mathcal{U}(A, C)^{\perp}$. Hence,

$$
\begin{gather*}
\mathcal{U}(A, C)=\mathcal{N}(\mathcal{P})=\mathcal{R}\left(\mathcal{P}_{\perp}\right), \tag{12.2.10}\\
\mathcal{U}(A, C)^{\perp}=\mathcal{R}(\mathcal{P})=\mathcal{N}\left(\mathcal{P}_{\perp}\right), \tag{12.2.11}\\
n-p=\operatorname{dim} \mathcal{U}(A, C)=\operatorname{def} \mathcal{P}=\operatorname{rank} \mathcal{P}_{\perp}, \tag{12.2.12}\\
p=\operatorname{dim} \mathcal{U}(A, C)^{\perp}=\operatorname{rank} \mathcal{P}=\operatorname{def} \mathcal{P}_{\perp} . \tag{12.2.13}
\end{gather*}
$$

If $x_{0}=x_{0}^{\prime}+x_{0}^{\prime \prime}$, where $x_{0}^{\prime} \in \mathcal{U}(A, C)^{\perp}$ and $x_{0}^{\prime \prime} \in \mathcal{U}(A, C)$, then

$$
\begin{equation*}
x_{0}^{\prime}=\mathcal{P} x_{0}=\left(\int_{0}^{t_{\mathrm{f}}} e^{t A^{\mathrm{T}}} C^{\mathrm{T}} C e^{t A} \mathrm{~d} t\right)^{+} \int_{0}^{t_{\mathrm{f}}} e^{t A^{\mathrm{T}}} C^{\mathrm{T}} y(t) \mathrm{d} t \tag{12.2.14}
\end{equation*}
$$

Finally, (A, C) is observable if and only if $\mathcal{P}=I_{n}$. In this case, for all $x_{0} \in \mathbb{R}^{n}$,

$$
\begin{equation*}
x_{0}=\left(\int_{0}^{t_{\mathrm{f}}} e^{t A^{\mathrm{T}}} C^{\mathrm{T}} C e^{t A} \mathrm{~d} t\right)^{-1} \int_{0}^{t_{\mathrm{f}}} e^{t A^{\mathrm{T}}} C^{\mathrm{T}} y(t) \mathrm{d} t \tag{12.2.15}
\end{equation*}
$$

Lemma 12.2.5. Let $\alpha \in \mathbb{R}$. Then,

$$
\begin{equation*}
\mathcal{U}(A+\alpha I, C)=\mathcal{U}(A, C) \tag{12.2.16}
\end{equation*}
$$

The following result uses a coordinate transformation to characterize $\mathcal{U}(A, C)$.

Theorem 12.2.6. There exists an orthogonal matrix $S \in \mathbb{R}^{n \times n}$ such that A and C have the form

$$
A=S\left[\begin{array}{cc}
A_{1} & 0 \tag{12.2.17}\\
A_{21} & A_{2}
\end{array}\right] S^{-1}, \quad C=\left[\begin{array}{cc}
C_{1} & 0
\end{array}\right] S^{-1}
$$

where $A_{1} \in \mathbb{R}^{p \times p}, C_{1} \in \mathbb{R}^{l \times p}$, and $\left(A_{1}, C_{1}\right)$ is observable.
Proof. The proof is dual to the proof of Theorem 12.5.6.
Proposition 12.2.7. Let $S \in \mathbb{R}^{n \times n}$ be orthogonal. Then, the following conditions are equivalent:
i) A and C have the form (12.2.17), where $A_{1} \in \mathbb{R}^{p \times p}, C_{1} \in \mathbb{R}^{l \times p}$, and $\left(A_{1}, C_{1}\right)$ is observable.
ii) $\mathcal{U}(A, C)=\mathcal{R}\left(S\left[\begin{array}{c}0 \\ I_{n-p}\end{array}\right]\right)$.
iii) $\mathcal{U}(A, C)^{\perp}=\mathcal{R}\left(S\left[\begin{array}{c}I_{p} \\ 0\end{array}\right]\right)$.
iv) $\mathcal{P}=S\left[\begin{array}{cc}I_{p} & 0 \\ 0 & 0\end{array}\right] S^{\mathrm{T}}$.

Proposition 12.2.8. Let $S \in \mathbb{R}^{n \times n}$ be nonsingular. Then, the following conditions are equivalent:
i) A and C have the form (12.2.17), where $A_{1} \in \mathbb{R}^{p \times p}, C_{1} \in \mathbb{R}^{l \times p}$, and $\left(A_{1}, C_{1}\right)$ is observable.
ii) $\mathcal{U}(A, C)=\mathcal{R}\left(S\left[\begin{array}{c}0 \\ I_{n-p}\end{array}\right]\right)$.
iii) $\mathcal{U}(A, C)^{\perp}=\mathcal{R}\left(S^{-\mathrm{T}}\left[\begin{array}{c}I_{p} \\ 0\end{array}\right]\right)$.

Definition 12.2.9. Let $\lambda \in \operatorname{spec}(A)$. Then, λ is an observable eigenvalue of (A, C) if

$$
\operatorname{rank}\left[\begin{array}{c}
\lambda I-A \tag{12.2.18}\\
C
\end{array}\right]=n
$$

Otherwise, λ is an unobservable eigenvalue of (A, C).
Proposition 12.2.10. Let $\lambda \in \operatorname{mspec}(A)$ and $F \in \mathbb{R}^{n \times l}$. Then, λ is an observable eigenvalue of (A, C) if and only if λ is an observable eigenvalue of $(A+F C, C)$.

Lemma 12.2.11. Let $\lambda \in \operatorname{mspec}(A)$. Then,

$$
\operatorname{Re} \mathcal{N}\left(\left[\begin{array}{c}
\lambda I-A \tag{12.2.19}\\
C
\end{array}\right]\right) \subseteq \mathcal{U}(A, C)
$$

Proof. Let $x \in \mathcal{N}\left(\left[{ }_{C}^{\lambda I-A}\right]\right)$ so that $A x=\lambda x$ and $C x=0$. Let $x_{0} \triangleq \operatorname{Re} x$. Then, for all $t \geq 0, y(t)=C e^{t A} x_{0}=C e^{t A} \operatorname{Re} x=\operatorname{Re} C e^{t A} x=$ $\operatorname{Re} C e^{\lambda t} x=\operatorname{Re} e^{\lambda t} C x=0$. Hence, $\operatorname{Re} x=x_{0} \in \mathcal{U}(A, C)$.

The next result characterizes observability in several equivalent ways.
Theorem 12.2.12. The following statements are equivalent:
i) (A, C) is observable.
ii) There exists $t>0$ such that $\int_{0}^{t} e^{\tau A^{\mathrm{T}}} C^{\mathrm{T}} C e^{\tau A} \mathrm{~d} \tau$ is positive definite.
iii) $\int_{0}^{t} e^{\tau A^{\mathrm{T}}} C^{\mathrm{T}} C e^{\tau A} \mathrm{~d} \tau$ is positive definite for all $t>0$.
iv) $\operatorname{rank} \mathcal{O}(A, C)=n$.
$v)$ Every eigenvalue of (A, C) is observable.
vi) For every self-conjugate multiset $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{m}} \subset \mathbb{C}$, there exists a matrix $F \in \mathbb{R}^{n \times l}$ such that $\operatorname{mspec}(A+F C)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{m}}$.

Proof. The proof is dual to the proof of Theorem 12.5.12.

12.3 Detectability

Let $A \in \mathbb{R}^{n \times n}, C \in \mathbb{R}^{l \times n}$, and $p \triangleq n-\operatorname{dim} \mathcal{U}(A, C)$.
Definition 12.3.1. (A, C) is detectable if

$$
\begin{equation*}
\mathcal{U}(A, C) \subseteq \mathcal{S}_{\mathrm{s}}(A) \tag{12.3.1}
\end{equation*}
$$

Proposition 12.3.2. Let $F \in \mathbb{R}^{n \times l}$. Then, (A, C) is detectable if and only if $(A+F C, C)$ is detectable.

Proposition 12.3.3. The following statements are equivalent:
i) (A, C) is detectable.
ii) There exists a nonsingular matrix $S \in \mathbb{R}^{n \times n}$ such that

$$
A=S\left[\begin{array}{cc}
A_{1} & 0 \tag{12.3.2}\\
A_{21} & A_{2}
\end{array}\right] S^{-1}, \quad C=\left[\begin{array}{cc}
C_{1} & 0
\end{array}\right] S^{-1}
$$

where $A_{1} \in \mathbb{R}^{p \times p}, C_{1} \in \mathbb{R}^{l \times p},\left(A_{1}, C_{1}\right)$ is observable, and $A_{2} \in$ $\mathbb{R}^{(n-p) \times(n-p)}$ is asymptotically stable.
iii) Every CRHP eigenvalue of (A, C) is observable.
iv) $(A+F C, C)$ is detectable for all $F \in \mathbb{R}^{n \times l}$.

Proof. The proof is dual to the proof of Proposition 12.6.3.
Lemma 12.3.4. Assume that (A, C) is detectable and that

$$
P \triangleq \int_{0}^{\infty} e^{t A^{\mathrm{T}}} C^{\mathrm{T}} C e^{t A^{\mathrm{T}}} \mathrm{~d} t
$$

exists. Then, A is asymptotically stable.

12.4 Observable Asymptotic Stability

Definition 12.4.1. (A, C) is observably asymptotically stable if

$$
\begin{equation*}
\mathcal{S}_{\mathrm{u}}(A) \subseteq \mathcal{U}(A, C) \tag{12.4.1}
\end{equation*}
$$

Proposition 12.4.2. Let $F \in \mathbb{R}^{n \times l}$. Then, (A, C) is observably asymptotically stable if and only if $(A+F C, C)$ is observably asymptotically stable.

Lemma 12.4.3. Assume that the nonnegative-semidefinite matrix $P \in$ $\mathbb{R}^{n \times n}$ defined by

$$
\begin{equation*}
P \triangleq \int_{0}^{\infty} e^{t A^{\mathrm{T}}} C^{\mathrm{T}} C e^{t A} \mathrm{~d} t \tag{12.4.2}
\end{equation*}
$$

exists. Then, P satisfies

$$
\begin{equation*}
A^{\mathrm{T}} P+P A+C^{\mathrm{T}} C=0 \tag{12.4.3}
\end{equation*}
$$

The matrix P defined by (12.4.2) is the observability Gramian, and equation (12.4.3) is the observation Lyapunov equation. If $A \in \mathbb{R}^{n \times n}$ is asymptotically stable, Then, Corollary 11.7 .4 implies that the P defined by (12.4.2) exists and is the unique solution to (12.4.3).

Proposition 12.4.4. The following statements are equivalent:
i) (A, C) is observably asymptotically stable.
ii) There exists a nonsingular matrix $S \in \mathbb{R}^{n \times n}$ and $k \in \mathbb{N}$ such that

$$
A=S\left[\begin{array}{cc}
A_{1} & 0 \tag{12.4.4}\\
A_{21} & A_{2}
\end{array}\right] S^{-1}, \quad C=\left[\begin{array}{cc}
C_{1} & 0
\end{array}\right] S^{-1}
$$

where $A_{1} \in \mathbb{R}^{k \times k}$ is asymptotically stable and $C_{1} \in \mathbb{R}^{l \times k}$.
iii) $\lim _{t \rightarrow \infty} C e^{t A}=0$.
iv) $P \triangleq \int_{0}^{\infty} e^{t A^{\mathrm{T}}} C^{\mathrm{T}} C e^{t A} \mathrm{~d} t$ exists.
v) There exists a nonnegative-semidefinite matrix $P \in \mathbb{R}^{n \times n}$ satisfying (12.4.3).

In this case, one nonnegative-semidefinite solution of (12.4.3) is given by (12.4.2). Furthermore,

$$
\begin{gather*}
\mathcal{P}=P P^{+} \tag{12.4.5}\\
\mathcal{R}(\mathcal{P})=\mathcal{R}(P)=\mathcal{U}(A, C)^{\perp}, \tag{12.4.6}\\
\mathcal{N}(\mathcal{P})=\mathcal{N}(P)=\mathcal{U}(A, C), \tag{12.4.7}\\
\operatorname{rank} \mathcal{P}=\operatorname{rank} P=p \tag{12.4.8}
\end{gather*}
$$

Proof. The proof is dual to the proof of Proposition 12.7.4.
Proposition 12.4.5. The following statements are equivalent:
i) A is asymptotically stable.
ii) (A, C) is detectable and observably asymptotically stable.

Furthermore, if two of the following three conditions are satisfied, then the third condition is satisfied:
iii) A is asymptotically stable.
$i v)(A, C)$ is observable.
v) $P \triangleq \int_{0}^{\infty} e^{t A^{\mathrm{T}}} C^{\mathrm{T}} C e^{t A} \mathrm{~d} t$ exists and is positive definite.

12.5 Controllability

Let $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times m}$, and, for $t \geq 0$, consider the linear system

$$
\begin{gather*}
\dot{x}(t)=A x(t)+B u(t) \tag{12.5.1}\\
x(0)=0 \tag{12.5.2}
\end{gather*}
$$

Definition 12.5.1. The controllable subspace $\mathcal{C}_{t_{\mathrm{f}}}(A, B)$ of (A, B) at time $t_{\mathrm{f}}>0$ is the subspace
$\mathcal{C}_{t_{\mathrm{f}}}(A, B) \triangleq\left\{x_{\mathrm{f}} \in \mathbb{R}^{n}: \quad\right.$ there exists a continuous control $u: \quad\left[0, t_{\mathrm{f}}\right] \mapsto \mathbb{R}^{m}$ such that the solution $x(\cdot)$ of $(12.5 .1),(12.5 .2)$ satisfies $\left.x\left(t_{\mathrm{f}}\right)=x_{\mathrm{f}}\right\}$.

Let $t_{\mathrm{f}}>0$. Then, Definition 12.5.1 states that $x_{\mathrm{f}} \in \mathcal{C}_{t_{\mathrm{f}}}(A, B)$ if and only if there exists a continuous control $u:\left[0, t_{\mathrm{f}}\right] \mapsto \mathbb{R}^{m}$ such that

$$
\begin{equation*}
x_{\mathrm{f}}=\int_{0}^{t_{\mathrm{f}}} e^{\left(t_{\mathrm{f}}-t\right) A} B u(t) \mathrm{d} t \tag{12.5.4}
\end{equation*}
$$

The following result provides explicit expressions for $\mathcal{C}_{t_{\mathrm{f}}}(A, B)$.
Lemma 12.5.2. Let $t_{\mathrm{f}}>0$. Then, the following subspaces are equal:
i) $\mathcal{C}_{t_{\mathrm{f}}}(A, B)$
ii) $\left[\bigcap_{t \in\left[0, t_{\mathrm{r}}\right]} \mathcal{N}\left(B^{\mathrm{T}} e^{t A^{\mathrm{T}}}\right)\right]^{\perp}$
iii) $\left[\bigcap_{i=0}^{n-1} \mathcal{N}\left(B^{\mathrm{T}} A^{i \mathrm{~T}}\right)\right]^{\perp}$
iv) $\mathcal{R}\left(\left[\begin{array}{llll}B & A B & \cdots & A^{n-1} B\end{array}\right]\right)$
v) $\mathcal{R}\left(\int_{0}^{t_{\mathrm{f}}} e^{t A} B B^{\mathrm{T}} e^{t A^{\mathrm{T}}} \mathrm{d} t\right)$

Proof. To prove that $i) \subseteq i i)$, let $\eta \in \bigcap_{t \in\left[0, t_{f}\right]} \mathcal{N}\left(B^{\mathrm{T}} e^{t A^{\mathrm{T}}}\right)$ so that $\eta^{\mathrm{T}} e^{t A} B=0$ for all $t \in\left[0, t_{\mathrm{f}}\right]$. Now, let $u: \quad\left[0, t_{\mathrm{f}}\right] \mapsto \mathbb{R}^{m}$ be continuous. Then, $\eta^{\mathrm{T}} \int_{0}^{t_{\mathrm{t}}} e^{\left(t_{\mathrm{f}}-t\right) A} B u(t) \mathrm{d} t=0$, which implies that $\eta \in \mathfrak{C}_{t_{f}}(A, B)^{\perp}$.

To prove that $i i) \subseteq i i i)$, let $\eta \in \bigcap_{i=0}^{n-1} \mathcal{N}\left(B^{\mathrm{T}} A^{i \mathrm{~T}}\right)$ so that $\eta^{\mathrm{T}} A^{i} B=0$ for all $i=0,1, \ldots, n-1$. It follows from Theorem 4.4.6 that $\eta^{\mathrm{T}} A^{i} B=0$ for all $i \geq 0$. Now, let $t \in\left[0, t_{\mathrm{f}}\right]$. Then, $\eta^{\mathrm{T}} e^{t A} B=\sum_{i=0}^{\infty} t^{i}(i!)^{-1} \eta^{\mathrm{T}} A^{i} B=0$, and thus $\eta \in \mathcal{N}\left(B^{\mathrm{T}} e^{t A^{\mathrm{T}}}\right)$.

To show that $i i i) \subseteq i v)$, let $\eta \in \mathcal{R}\left(\left[\begin{array}{llll}B & A B & \cdots & A^{n-1} B\end{array}\right]\right)^{\perp}$. Then, $\eta \in \mathcal{N}\left(\left[\begin{array}{llll}B & A B & \cdots & A^{n-1} B\end{array}\right]^{\mathrm{T}}\right)$, which implies that $\eta^{\mathrm{T}} A^{i} B=0$ for all $i=0,1, \ldots, n-1$.

To prove that $i v) \subseteq v)$, let $\eta \in \mathcal{N}\left(\int_{0}^{t_{\mathrm{f}}} e^{t A} B B^{\mathrm{T}} e^{t A^{\mathrm{T}}} \mathrm{d} t\right)$. Then,

$$
\eta^{\mathrm{T}} \int_{0}^{t_{\mathrm{f}}} e^{t A} B B^{\mathrm{T}} e^{t A^{\mathrm{T}}} \mathrm{~d} t \eta=0
$$

which implies that $\eta^{\mathrm{T}} e^{t A} B=0$ for all $t \in\left[0, t_{\mathrm{f}}\right]$. Differentiating with respect to t and setting $t=0$ implies that $\eta^{T} A^{i} B=0$ for all $i=0,1, \ldots, n-1$. Hence, $\eta \in \mathcal{R}\left(\left[\begin{array}{llll}B & A B & \cdots & A^{n-1} B\end{array}\right]\right)^{\perp}$.

To prove that $v) \subseteq i)$, let $\eta \in \mathcal{C}_{t_{\mathrm{f}}}(A, B)^{\perp}$. Then, $\eta^{\mathrm{T}} \int_{0}^{t_{\mathrm{f}}} e^{\left(t_{\mathrm{f}}-t\right) A} B u(t) \mathrm{d} t=$ 0 for all continuous $u: \quad\left[0, t_{\mathrm{f}}\right] \mapsto \mathbb{R}^{m}$. Letting $u(t)=B^{\mathrm{T}} e^{\left(t_{\mathrm{f}}-t\right) A^{\mathrm{T}}} \eta^{\mathrm{T}}$, it follows that $\eta^{\mathrm{T}} \int_{0}^{t_{\mathrm{f}}} e^{t A} B B^{\mathrm{T}} e^{t A^{\mathrm{T}}} \mathrm{d} t \eta=0$, which implies that $\eta \in \mathcal{N}\left(\int_{0}^{t_{\mathrm{f}}} e^{t A} B B^{\mathrm{T}} e^{t A^{\mathrm{T}}} \mathrm{d} t\right)$.

Lemma 12.5.2 shows that the controllable subspace $\mathcal{C}_{t_{f}}(A, B)$ at time $t_{\mathrm{f}}>0$ is independent of t_{f}. Hence, we write $\mathcal{C}(A, B)$ for $\mathcal{C}_{t_{\mathrm{f}}}(A, B)$ and call $\mathcal{C}(A, B)$ the controllable subspace of $(A, B) .(A, B)$ is controllable if $\mathcal{C}(A, B)=\mathbb{R}^{n}$. For convenience, define the controllability matrix

$$
\mathcal{K}(A, B) \triangleq\left[\begin{array}{llll}
B & A B & \cdots & A^{n-1} B \tag{12.5.5}
\end{array}\right]
$$

so that

$$
\begin{equation*}
\mathcal{C}(A, B)=\mathcal{R}[\mathcal{K}(A, B)] . \tag{12.5.6}
\end{equation*}
$$

Define

$$
\begin{equation*}
q \triangleq \operatorname{dim} \mathcal{C}(A, B)=\operatorname{rank} \mathcal{K}(A, B) . \tag{12.5.7}
\end{equation*}
$$

The following result shows that the controllable subspace $\mathcal{C}(A, B)$ is unchanged by full-state feedback $u(t)=K x(t)+v(t)$.

Proposition 12.5.3. Let $K \in \mathbb{R}^{m \times n}$. Then,

$$
\begin{equation*}
\mathfrak{C}(A+B K, B)=\mathfrak{C}(A, B) \tag{12.5.8}
\end{equation*}
$$

In particular, (A, B) is controllable if and only if $(A+B K, B)$ is controllable.
Proof. Note that

$$
\begin{aligned}
\mathcal{C}(A & +B K, B) \\
& =\mathcal{R}[\mathcal{K}(A+B K, B)] \\
& =\mathcal{R}\left(\left[\begin{array}{lll}
B & A B+B K B & A^{2} B+A B K B+B K A B+B K B K B \\
\cdots
\end{array}\right]\right) \\
& =\mathcal{R}[\mathcal{K}(A, B)]=\mathcal{C}(A, B) .
\end{aligned}
$$

Let $\tilde{\mathcal{C}}(A, B) \subseteq \mathbb{R}^{n}$ be a subspace that is complementary to $\mathcal{C}(A, B)$. Then, $\tilde{\mathscr{C}}(A, B)$ is an uncontrollable subspace in the sense that if $x_{\mathrm{f}}=x_{\mathrm{f}}^{\prime}+$ $x_{\mathrm{f}}^{\prime \prime} \in \mathbb{R}^{n}$, where $x_{\mathrm{f}}^{\prime} \in \mathcal{C}(A, B)$ and $x_{\mathrm{f}}^{\prime \prime} \in \tilde{\mathcal{C}}(A, B)$ is nonzero, then there is a continuous control $u:\left[0, t_{\mathrm{f}}\right] \rightarrow \mathbb{R}^{m}$ such that $x\left(t_{\mathrm{f}}\right)=x_{\mathrm{f}}^{\prime}$ but no continuous control such that $x\left(t_{\mathrm{f}}\right)=x_{\mathrm{f}}$. The following result provides a continuous control $u(\cdot)$ that yields $x\left(t_{\mathrm{f}}\right)=x_{\mathrm{f}}^{\prime}$ for $\tilde{\mathcal{C}}(A, B) \triangleq \mathcal{E}(A, B)^{\perp}$.

Lemma 12.5.4. Let $t_{\mathrm{f}}>0$, and define $\mathcal{Q} \in \mathbb{R}^{n \times n}$ by

$$
\begin{equation*}
Q \triangleq\left(\int_{0}^{t_{\mathrm{f}}} e^{t A} B B^{\mathrm{T}} e^{t A^{\mathrm{T}}} \mathrm{~d} t\right)^{+} \int_{0}^{t_{\mathrm{f}}} e^{t A} B B^{\mathrm{T}} e^{t A^{\mathrm{T}}} \mathrm{~d} t . \tag{12.5.9}
\end{equation*}
$$

Then, Q is the projector onto $\mathcal{C}(A, B)$, and Q_{\perp} is the projector onto $\mathcal{C}(A, B)^{\perp}$. Hence,

$$
\begin{gather*}
\mathcal{C}(A, B)=\mathcal{R}(\mathbb{Q})=\mathcal{N}\left(Q_{\perp}\right), \tag{12.5.10}\\
\mathcal{C}(A, B)^{\perp}=\mathcal{N}(\mathcal{Q})=\mathcal{R}(\mathfrak{Q}), \tag{12.5.11}\\
q=\operatorname{dim} \mathcal{C}(A, B)=\operatorname{rank} \mathcal{Q}=\operatorname{def} \mathcal{Q}_{\perp}, \tag{12.5.12}\\
n-q=\operatorname{dim} \mathcal{C}(A, B)^{\perp}=\operatorname{def} \mathcal{Q}=\operatorname{rank} Q_{\perp} . \tag{12.5.13}
\end{gather*}
$$

Now, define $u:\left[0, t_{\mathrm{f}}\right] \mapsto \mathbb{R}^{m}$ by

$$
\begin{equation*}
u(t) \triangleq B^{\mathrm{T}} e^{\left(t_{\mathrm{f}}-t\right) A^{\mathrm{T}}}\left(\int_{0}^{t_{\mathrm{f}}} e^{\tau A} B B^{\mathrm{T}} e^{\tau A^{\mathrm{T}}} \mathrm{~d} \tau\right)^{+} x_{\mathrm{f}} . \tag{12.5.14}
\end{equation*}
$$

If, in addition, $x_{\mathrm{f}}=x_{\mathrm{f}}^{\prime}+x_{\mathrm{f}}^{\prime \prime}$, where $x_{\mathrm{f}}^{\prime} \in \mathcal{C}(A, B)$ and $x_{\mathrm{f}}^{\prime \prime} \in \mathcal{C}(A, B)^{\perp}$, then

$$
\begin{equation*}
x_{\mathrm{f}}^{\prime}=Q x_{\mathrm{f}}=\int_{0}^{t_{\mathrm{f}}} e^{\left(t_{\mathrm{f}}-t\right) A} B u(t) \mathrm{d} t \tag{12.5.15}
\end{equation*}
$$

Finally, (A, B) is controllable if and only if $Q=I_{n}$. In this case, for all $x_{\mathrm{f}} \in \mathbb{R}^{n}$,

$$
\begin{equation*}
x_{\mathrm{f}}=\int_{0}^{t_{\mathrm{f}}} e^{\left(t_{\mathrm{f}}-t\right) A} B u(t) \mathrm{d} t \tag{12.5.16}
\end{equation*}
$$

where $u: \quad\left[0, t_{\mathrm{f}}\right] \mapsto \mathbb{R}^{m}$ is defined by

$$
\begin{equation*}
u(t) \triangleq B^{\mathrm{T}} e^{\left(t_{\mathrm{f}}-t\right) A^{\mathrm{T}}}\left(\int_{0}^{t_{\mathrm{f}}} e^{\tau A} B B^{\mathrm{T}} e^{\tau A^{\mathrm{T}}} \mathrm{~d} \tau\right)^{-1} x_{\mathrm{f}} . \tag{12.5.17}
\end{equation*}
$$

Lemma 12.5.5. Let $\alpha \in \mathbb{R}$. Then,

$$
\begin{equation*}
\mathcal{C}(A+\alpha I, B)=\mathcal{C}(A, B) \tag{12.5.18}
\end{equation*}
$$

The following result uses a coordinate transformation to characterize $\mathcal{C}(A, B)$.

Theorem 12.5.6. There exists an orthogonal matrix $S \in \mathbb{R}^{n \times n}$ such that

$$
A=S\left[\begin{array}{cc}
A_{1} & A_{12} \tag{12.5.19}\\
0 & A_{2}
\end{array}\right] S^{-1}, \quad B=S\left[\begin{array}{c}
B_{1} \\
0
\end{array}\right],
$$

where $A_{1} \in \mathbb{R}^{q \times q}, B_{1} \in \mathbb{R}^{q \times m}$, and $\left(A_{1}, B_{1}\right)$ is controllable.
Proof. Let $\alpha>0$ be such that $A_{\alpha} \triangleq A-\alpha I$ is asymptotically stable, and let $Q \in \mathbb{R}^{n \times n}$ be the nonnegative-semidefinite solution to

$$
\begin{equation*}
A_{\alpha} Q+Q A_{\alpha}^{\mathrm{T}}+B B^{\mathrm{T}}=0 \tag{12.5.20}
\end{equation*}
$$

given by

$$
Q=\int_{0}^{\infty} e^{t A_{\alpha}} B B^{\mathrm{T}} e^{t A_{\alpha}^{\mathrm{T}}} \mathrm{~d} t .
$$

It now follows from Lemma 12.5.2 with $t_{\mathrm{f}}=\infty$ and Lemma 12.5.5

$$
\operatorname{rank} Q=\operatorname{rank} \int_{0}^{\infty} e^{t A_{\alpha}} B B^{\mathrm{T}} e^{t A_{\alpha}^{\mathrm{T}}} \mathrm{~d} t=\operatorname{dim} \mathcal{C}\left(A_{\alpha}, B\right)=\operatorname{dim} \mathcal{C}(A, B)=q,
$$

and let $S \in \mathbb{R}^{n \times n}$ be an orthogonal matrix such that $Q=S\left[\begin{array}{cc}Q_{1} & 0 \\ 0 & 0\end{array}\right] S^{\mathrm{T}}$, where $Q_{1} \in \mathbb{R}^{q \times q}$ is positive definite. Writing $A_{\alpha}=S\left[\begin{array}{cc}\hat{A}_{1} & \hat{A}_{12} \\ \hat{A}_{21} & \hat{A}_{2}\end{array}\right] S^{-1}$ and $B=S\left[\begin{array}{c}B_{1} \\ B_{2}\end{array}\right]$,
where $\hat{A}_{1} \in \mathbb{R}^{q \times q}$ and $B_{1} \in \mathbb{R}^{q \times m}$, it follows from (12.5.20) that

$$
\begin{gathered}
\hat{A}_{1} Q_{1}+Q_{1} \hat{A}_{1}^{\mathrm{T}}+B_{1} B_{1}^{\mathrm{T}}=0, \\
\hat{A}_{21} Q_{1}+B_{2} B_{1}^{\mathrm{T}}=0, \\
B_{2} B_{2}^{\mathrm{T}}=0 .
\end{gathered}
$$

Therefore, $B_{2}=0$ and $\hat{A}_{21}=0$, and thus

$$
A_{\alpha}=S\left[\begin{array}{cc}
\hat{A}_{1} & \hat{A}_{12} \\
0 & \hat{A}_{2}
\end{array}\right] S^{-1}, \quad B=S\left[\begin{array}{c}
B_{1} \\
0
\end{array}\right] .
$$

Hence,

$$
A=S\left[\begin{array}{cc}
\hat{A}_{1} & \hat{A}_{12} \\
0 & \hat{A}_{2}
\end{array}\right] S^{-1}+\alpha I=S\left[\begin{array}{cc}
A_{1} & A_{12} \\
0 & A_{2}
\end{array}\right] S^{-1}
$$

where $A_{1} \triangleq \hat{A}_{1}+\alpha I_{q}, A_{12} \triangleq \hat{A}_{12}$, and $A_{2} \triangleq \hat{A}_{2}+\alpha I_{n-q}$.
Proposition 12.5.7. Let $S \in \mathbb{R}^{n \times n}$ be orthogonal. Then, the following conditions are equivalent:
i) A and B have the form (12.5.19), where $A_{1} \in \mathbb{R}^{q \times q}, B_{1} \in \mathbb{R}^{q \times m}$, and $\left(A_{1}, B_{1}\right)$ is controllable.
ii) $\mathcal{C}(A, B)=\mathcal{R}\left(S\left[\begin{array}{c}I_{q} \\ 0\end{array}\right]\right)$.
iii) $\mathcal{C}(A, B)^{\perp}=\mathcal{R}\left(S\left[I_{n-q}^{0}\right]\right)$.
iv) $\mathcal{Q}=S\left[\begin{array}{cc}I_{q} & 0 \\ 0 & 0\end{array}\right] S^{\mathrm{T}}$.

Proposition 12.5.8. Let $S \in \mathbb{R}^{n \times n}$ be nonsingular. Then, the following conditions are equivalent:
i) A and B have the form (12.5.19), where $A_{1} \in \mathbb{R}^{q \times q}, B_{1} \in \mathbb{R}^{q \times m}$, and $\left(A_{1}, B_{1}\right)$ is controllable.
ii) $\mathcal{C}(A, B)=\mathcal{R}\left(S\left[\begin{array}{c}I_{q} \\ 0\end{array}\right]\right)$.
iii) $\mathcal{C}(A, B)^{\perp}=\mathcal{R}\left(S^{-\mathrm{T}}\left[\begin{array}{l}I_{n-q}\end{array}\right]\right)$.

Definition 12.5.9. Let $\lambda \in \operatorname{spec}(A)$. Then, λ is a controllable eigenvalue of (A, B) if

$$
\operatorname{rank}\left[\begin{array}{cc}
\lambda I-A & B]=n . \tag{12.5.21}
\end{array}\right.
$$

Otherwise, λ is an uncontrollable eigenvalue of (A, B).
Proposition 12.5.10. Let $\lambda \in \operatorname{mspec}(A)$ and $K \in \mathbb{R}^{n \times m}$. Then, λ is a controllable eigenvalue of (A, B) if and only if λ is a controllable eigenvalue of $(A+B K, B)$.

Proposition 12.5.11. Let $\lambda \in \operatorname{mspec}(A)$. Then,

$$
\mathcal{C}(A, B) \subseteq \mathcal{R}\left(\left[\begin{array}{ll}
\lambda I-A & B \tag{12.5.22}
\end{array}\right]\right) .
$$

Proof. First, note that (12.5.22) is equivalent to

$$
\operatorname{Re} \mathcal{R}\left(\left[\begin{array}{ll}
\lambda I-A & B
\end{array}\right]\right)^{\perp} \subseteq \mathcal{C}(A, B)^{\perp} .
$$

Let $x \in \mathcal{R}\left(\left[\begin{array}{ll}\lambda I-A & B\end{array}\right]\right)^{\perp}=\mathcal{N}\left(\left[\begin{array}{c}\bar{\lambda} I-A^{\mathrm{T}} \\ B^{\mathrm{T}}\end{array}\right]\right)$ so that $\bar{\lambda} x=A^{\mathrm{T}} x$ and $B^{\mathrm{T}} x=0$. Now, let $u(\cdot)$ be given by (12.5.14) with $x_{\mathrm{f}} \triangleq \operatorname{Re} x$. Then,

$$
\int_{0}^{t_{\mathrm{f}}} e^{\left(t_{\mathrm{f}}-t\right) A} B u(t) \mathrm{d} t=Q x_{\mathrm{f}}=0
$$

which implies that $\operatorname{Re} x=x_{\mathrm{f}} \in \mathcal{E}(A, B)^{\perp}$.
The next result characterizes controllability in several equivalent ways.
Theorem 12.5.12. The following statements are equivalent:
i) (A, B) is controllable.
ii) There exists $t>0$ such that $\int_{0}^{t} e^{t A} B B^{\mathrm{T}} e^{t A^{\mathrm{T}}} \mathrm{d} t$ is positive definite.
iii) $\int_{0}^{t_{\mathrm{f}}} e^{t A} B B^{\mathrm{T}} e^{t A^{\mathrm{T}}} \mathrm{d} t$ is positive definite for all $t>0$.
iv) $\operatorname{rank} \mathcal{K}(A, B)=n$.
$v)$ Every eigenvalue of (A, B) is controllable.
vi) For every self-conjugate multiset $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{m}} \subset \mathbb{C}$ there exists a matrix $K \in \mathbb{R}^{m \times n}$ such that $\operatorname{mspec}(A+B K)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{m}}$.

Proof. The equivalence of i)-iv) follows from Lemma 12.5.2. To prove that $i v$) implies v), suppose that v) does not hold, that is, there exists $\lambda \in \operatorname{spec}(A)$ and a nonzero vector $x \in \mathbb{C}^{n}$ such that $x^{\mathrm{T}} A=\lambda x^{\mathrm{T}}$ and $x^{\mathrm{T}} B=0$. It thus follows that $x^{\mathrm{T}} A B=\lambda x^{\mathrm{T}} B=0$. Similarly, we obtain $x^{\mathrm{T}} A^{i} B=0$ for all $i=0,1, \ldots, n-1$. Hence, $\operatorname{dim} \mathcal{C}(A, B)<n$.

Conversely, to show that $v) \Longrightarrow i v$, suppose that $\operatorname{rank}\left[\begin{array}{llll}B & A B & \cdots & A^{n-1} B\end{array}\right]<n$. Then, there exists nonzero $x \in \mathbb{R}^{n}$ such that $x^{\mathrm{T}} A^{i} B=0$ for all $i=0, \ldots, n-1$. Now, let $p \in \mathbb{R}[s]$ be a nonzero polynomial of minimal degree such that $x^{\mathrm{T}} p(A)=0$. Note that p is not a constant polynomial and that $x^{\mathrm{T}} \mu_{A}(A)=0$. Thus, $1 \leq \operatorname{deg} p \leq \operatorname{deg} \mu_{A}$. Now, let $\lambda \in \mathbb{C}$ be such that $p(\lambda)=0$, and let $q \in \mathbb{R}[s]$ be such that $p(s)=q(s)(s-\lambda)$ for all $s \in \mathbb{C}$. Since $\operatorname{deg} q<\operatorname{deg} p$, it follows that $x^{\mathrm{T}} q(A) \neq 0$. Therefore, $\eta \triangleq q(A) x$ is nonzero. Furthermore, $\eta^{\mathrm{T}}(A-\lambda I)=x^{\mathrm{T}} p(A)=0$. Since $x^{\mathrm{T}} A^{i} B=0$ for all $i=0, \ldots, n-1$, it follows that $\eta^{\mathrm{T}} B=x^{\mathrm{T}} q(A) B=0$. Consequently, v) does
not hold.

The equivalence of v) and $v i$) is immediate.
To prove that i implies $v i$, assume that $m=1$, and let $A_{\mathrm{c}}=C\left(\chi_{A}\right)$ and $B_{\mathrm{c}}=e_{n}$. Then, Proposition 12.8 .3 implies that $\mathcal{K}\left(A_{\mathrm{c}}, B_{\mathrm{c}}\right)$ is nonsingular, while Proposition 12.8.6 implies that $A_{\mathrm{c}}=S^{-1} A S$ and $B_{\mathrm{c}}=S^{-1} B$. Now, let $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}_{\mathrm{m}} \subset \mathbb{C}$ be self conjugate and define $p \in \mathbb{R}[s]$ by $p(s) \triangleq \prod_{i=1}^{n}\left(s-\lambda_{i}\right)$ Letting $K \triangleq e_{n}^{\mathrm{T}}\left[C(p)-A_{\mathrm{c}}\right] S^{-1}$ it follows that

$$
\begin{aligned}
A+B K & =S\left(A_{\mathrm{c}}+B_{\mathrm{c}} K S\right) S^{-1} \\
& =S\left(A_{\mathrm{c}}+B_{\mathrm{c}} e_{n}^{\mathrm{T}}\left[C(p)-A_{\mathrm{c}}\right]\right) S^{-1} \\
& =S C(p) S^{-1}
\end{aligned}
$$

See [494, p. 248] for the case $m>1$. See wonham/kailath.
Conversely, to show that vii) implies i, suppose that (A, B) is not controllable. Then, it follows from Proposition 12.5 .8 that there exists a nonsingular matrix $S \in \mathbb{R}^{n \times n}$ such that A and B have the form given by $i)$ of Proposition 12.5.8. Since the eigenvalues of A_{2} are not affected by $K \in \mathbb{R}^{m \times n}$, it follows that vi) does not hold.

12.6 Stabilizability

Let $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}$, and $q \triangleq \operatorname{dim} \mathcal{C}(A, C)$.
Definition 12.6.1. (A, B) is stabilizable if

$$
\begin{equation*}
\mathcal{S}_{\mathrm{u}}(A) \subseteq \mathcal{C}(A, B) \tag{12.6.1}
\end{equation*}
$$

Proposition 12.6.2. Let $K \in \mathbb{R}^{m \times n}$. Then, (A, B) is stabilizable if and only if $(A+B K, B)$ is stabilizable.

Proposition 12.6.3. The following statements are equivalent:
i) (A, B) is stabilizable.
ii) There exists a nonsingular matrix $S \in \mathbb{R}^{n \times n}$ such that

$$
A=S\left[\begin{array}{cc}
A_{1} & A_{12} \tag{12.6.2}\\
0 & A_{2}
\end{array}\right] S^{-1}, \quad B=S\left[\begin{array}{c}
B_{1} \\
0
\end{array}\right]
$$

where $A_{1} \in \mathbb{R}^{q \times q}, B_{1} \in \mathbb{R}^{q \times m},\left(A_{1}, B_{1}\right)$ is controllable, and $A_{2} \in$ $\mathbb{R}^{(n-q) \times(n-q)}$ is asymptotically stable.
iii) Every CRHP eigenvalue of (A, B) is controllable.
iv) $(A+B K, B)$ is stabilizable for all $K \in \mathbb{R}^{m \times n}$.

Proof. First assume that (A, B) is stabilizable so that $\mathcal{S}_{\mathrm{u}}(A)=\mathcal{N}\left[\mu_{A}^{\mathrm{u}}(A)\right]=$ $\mathcal{R}\left[\mu_{A}^{\mathrm{s}}(A)\right] \subseteq \mathcal{C}(A, B)$. Using Proposition 12.5.8 it follows that there exists an orthogonal matrix $S \in \mathbb{R}^{n \times n}$ such that (12.6.2) is satisfied, where $A_{1} \in \mathbb{R}^{q \times q}$ and $\left(A_{1}, B_{1}\right)$ is controllable. Thus, $\mathcal{R}\left[\mu_{A}^{s}(A)\right] \subseteq \mathcal{C}(A, B)=\mathcal{R}\left(S\left[\begin{array}{c}I_{q} \\ 0\end{array}\right]\right)$.

Next, note that

$$
\mu_{A}^{\mathrm{s}}(A)=S\left[\begin{array}{cc}
\mu_{A}^{\mathrm{s}}\left(A_{1}\right) & B_{12 \mathrm{~s}} \\
0 & \mu_{A}^{\mathrm{s}}\left(A_{2}\right)
\end{array}\right] S^{-1},
$$

where $B_{12 \mathrm{~s}} \in \mathbb{R}^{q \times(n-q)}$, and suppose that A_{2} is not asymptotically stable with CRHP eigenvalue λ. Then, $\lambda \notin \operatorname{roots}\left(\mu_{A}^{\mathrm{s}}\right)$, and thus $\mu_{A}^{\mathrm{s}}\left(A_{2}\right) \neq 0$. Let $x_{2} \in I_{n-q}$ satisfy $\mu_{A}^{\mathrm{s}}\left(A_{2}\right) x_{2} \neq 0$. Then,

$$
\mu_{A}^{\mathrm{s}}(A) S\left[\begin{array}{c}
0 \\
x_{2}
\end{array}\right] \notin \mathcal{R}\left(S\left[\begin{array}{c}
I_{q} \\
0
\end{array}\right]\right),
$$

which implies that $\mathcal{S}_{\mathrm{u}}(A)$ is not contained in $\mathcal{C}(A, B)$. Hence, A_{2} is asymptotically stable.

Conversely, assume that there exists a nonsingular matrix $S \in \mathbb{R}^{n \times n}$ such that (12.6.2) is satisfied, where $A_{1} \in \mathbb{R}^{q \times q}, q=\operatorname{dim} \mathcal{C}(A, B)$, and $A_{2} \in \mathbb{R}^{(n-q) \times(n-q)}$ is asymptotically stable. Using Fact 11.16 .4 it follows that $\mathcal{S}_{\mathrm{u}}(A) \subseteq \mathcal{R}\left(S\left[\begin{array}{c}I_{q} \\ 0\end{array}\right]\right)=\mathcal{C}(A, B)$, which implies that (A, B) is stabilizable.

Lemma 12.6.4. Assume that (A, B) is stabilizable and

$$
Q \triangleq \int_{0}^{\infty} e^{t A} B B^{\mathrm{T}} e^{t A^{\mathrm{T}}} \mathrm{~d} t
$$

exists. Then, A is asymptotically stable.
Proof. Since (A, B) is stabilizable, it follows from Proposition 12.3.3 that there exists a nonsingular matrix $S \in \mathbb{R}^{n \times n}$ such that $A=S\left[\begin{array}{cc}A_{1} & 0 \\ A_{21} & A_{2}\end{array}\right] S^{-1}$ and $C=\left[\begin{array}{ll}C_{1} & 0\end{array}\right] S^{-1}$, where $A_{1} \in \mathbb{R}^{p \times p},\left(A_{1}, C_{1}\right)$ is observable, and A_{2} is asymptotically stable. Thus, the integral

$$
\int_{0}^{\infty} e^{t A^{\mathrm{T}}} C^{\mathrm{T}} C e^{t A} \mathrm{~d} t=S\left[\begin{array}{cc}
\int_{0}^{\infty} e^{t A_{1}^{\mathrm{T}}} C_{1}^{\mathrm{T}} C_{1} e^{t A_{1}} \mathrm{~d} t & 0 \\
0 & 0
\end{array}\right] S^{-1}
$$

exists. Now, suppose that A is not asymptotically stable so that A_{1} is not asymptotically stable. Let $\lambda \in \operatorname{spec}\left(A_{1}\right) \cap \mathrm{CRHP}$, and let $x_{1} \in \mathbb{C}^{p}$ be an associated eigenvector. Since $\left(A_{1}, C_{1}\right)$ is observable, it follows from Proposition 8.5.3 and $i i i$) of Theorem 12.2.12 that $\int_{0}^{\infty} e^{t A_{1}^{\mathrm{T}}} C_{1}^{\mathrm{T}} C_{1} e^{t A_{1}} \mathrm{~d} t$ is positive
definite. Consequently,

$$
\alpha \triangleq x_{1}^{*} \int_{0}^{\infty} e^{t A_{1}^{\mathrm{T}}} C_{1}^{\mathrm{T}} C_{1} e^{t A_{1}} \mathrm{~d} t x_{1}
$$

is positive. However, we also have that

$$
\alpha=x_{1}^{*} \int_{0}^{\infty} e^{\bar{\lambda} t} C_{1}^{\mathrm{T}} C_{1} e^{\lambda t} \mathrm{~d} t x_{1}=x_{1}^{*} C_{1}^{\mathrm{T}} C_{1} x_{1} \int_{0}^{\infty} e^{2(\operatorname{Re} \lambda) t} \mathrm{~d} t .
$$

Since $\operatorname{Re} \lambda \geq 0$, it follows that $\int_{0}^{\infty} e^{2(\operatorname{Re} \lambda) t} \mathrm{~d} t=\infty$, which contradicts the fact that α is finite.

12.7 Controllable Asymptotic Stability

Definition 12.7.1. (A, B) is controllably asymptotically stable if

$$
\begin{equation*}
\mathcal{C}(A, B) \subseteq \mathcal{S}_{\mathrm{s}}(A) \tag{12.7.1}
\end{equation*}
$$

Proposition 12.7.2. Let $K \in \mathbb{R}^{m \times n}$. Then, (A, B) is controllably asymptotically stable if and only if $(A+B K, B)$ is controllably asymptotically stable.

Lemma 12.7.3. Assume that the nonnegative-semidefinite matrix $P \in$ $\mathbb{R}^{n \times n}$ defined by

$$
\begin{equation*}
Q \triangleq \int_{0}^{\infty} e^{t A} B B^{\mathrm{T}} e^{t A^{\mathrm{T}}} \mathrm{~d} t \tag{12.7.2}
\end{equation*}
$$

exists. Then, Q satisfies

$$
\begin{equation*}
A Q+Q A^{\mathrm{T}}+B B^{\mathrm{T}}=0 \tag{12.7.3}
\end{equation*}
$$

Proposition 12.7.4. The following statements are equivalent:
i) (A, B) is controllably asymptotically stable.
ii) There exists a nonsingular matrix $S \in \mathbb{R}^{n \times n}$ and $k \in \mathbb{N}$ such that

$$
A=S\left[\begin{array}{cc}
A_{1} & A_{12} \tag{12.7.4}\\
0 & A_{2}
\end{array}\right] S^{-1}, \quad B=S\left[\begin{array}{c}
B_{1} \\
0
\end{array}\right]
$$

where $A_{1} \in \mathbb{R}^{k \times k}$ is asymptotically stable and $B_{1} \in \mathbb{R}^{k \times m}$.
iii) $\lim _{t \rightarrow \infty} e^{t A} B=0$.
iv) $Q \triangleq \int_{0}^{\infty} e^{t A} B B^{\mathrm{T}} e^{t A^{\mathrm{T}}} \mathrm{d} t$ exists.
$v)$ There exists a nonnegative-semidefinite matrix $Q \in \mathbb{R}^{n \times n}$ satisfying (12.7.3).

In this case, one nonnegative-semidefinite solution is given by (12.7.2). Furthermore,

$$
\begin{gather*}
\mathcal{Q}=Q Q^{+} \tag{12.7.5}\\
\mathcal{R}(\mathbb{Q})=\mathcal{R}(Q)=\mathcal{C}(A, B), \tag{12.7.6}\\
\mathcal{R}(\mathcal{Q})=\mathcal{R}(Q)=\mathcal{C}(A, B)^{\perp}, \tag{12.7.7}\\
\operatorname{rank} \mathcal{Q}=\operatorname{rank} Q=q \tag{12.7.8}
\end{gather*}
$$

Proof. To prove that i) implies $i i$, assume that (A, C) is controllably asymptotically stable. It then follows that there exists a nonsingular matrix $S \in \mathbb{R}^{n \times n}$ such that $A=S\left[\begin{array}{cc}A_{1} & 0 \\ A_{21} & A_{2}\end{array}\right] S^{-1}$ and $C=\left[\begin{array}{ll}C_{1} & 0\end{array}\right] S^{-1}$, where A_{1} is asymptotically stable. Thus,

$$
C e^{t A}=\left[\begin{array}{ll}
C_{1} e^{t A_{1}} & 0
\end{array}\right] S \rightarrow 0
$$

as $t \rightarrow \infty$. Next, to prove that ii) implies iii), assume that $C e^{t A} \rightarrow 0$ as $t \rightarrow \infty$. Then, every entry of $C e^{t A}$ involves exponentials of t, where the coefficients of t have negative real part. Hence, so does every entry of $e^{t A^{\mathrm{T}}} C^{\mathrm{T}} C e^{t A}$, which implies that $\int_{0}^{\infty} e^{t A^{\mathrm{T}}} C^{\mathrm{T}} C e^{t A} \mathrm{~d} t$ exists. To prove that $\left.i i i\right)$ implies $i v$), assume that $P=\int_{0}^{\infty} e^{t A^{\mathrm{T}}} C^{\mathrm{T}} C e^{t A} \mathrm{~d} t$ exists. Then, $e^{t A^{\mathrm{T}}} C^{\mathrm{T}} C e^{t A} \rightarrow 0$ as $t \rightarrow \infty$, and thus

$$
\begin{aligned}
A^{\mathrm{T}} P+P A & =\int_{0}^{\infty}\left[A^{\mathrm{T}} e^{t A^{\mathrm{T}}} C^{\mathrm{T}} C e^{t A}+e^{t A^{\mathrm{T}}} C^{\mathrm{T}} C e^{t A} A\right] \mathrm{d} t \\
& =\int_{0}^{\infty} \frac{\mathrm{d}}{\mathrm{~d} t} e^{t A^{\mathrm{T}}} C^{\mathrm{T}} C e^{t A} \mathrm{~d} t \\
& =\lim _{t \rightarrow \infty} e^{t A^{\mathrm{T}}} C^{\mathrm{T}} C e^{t A}-C^{\mathrm{T}} C \\
& =-C^{\mathrm{T}} C,
\end{aligned}
$$

which shows that P satisfies (12.4.3).
To prove that $i v$) implies i, suppose that there exists a nonnegative-
semidefinite matrix $P \in \mathbb{R}^{n \times n}$ satisfying (12.4.3). Then,

$$
\begin{aligned}
\int_{0}^{t} e^{\tau A^{\mathrm{T}}} C^{\mathrm{T}} C e^{\tau A} \mathrm{~d} \tau & =-\int_{0}^{t} e^{\tau A^{\mathrm{T}}}\left(A^{\mathrm{T}} P+P A\right) e^{\tau A} \mathrm{~d} \tau \\
& =-\int_{0}^{t} \frac{\mathrm{~d}}{\mathrm{~d} \tau} e^{\tau A^{\mathrm{T}}} P e^{\tau A} \mathrm{~d} \tau \\
& =P-e^{t A^{\mathrm{T}}} P e^{t A} \\
& \leq P .
\end{aligned}
$$

Next, it follows from Proposition 12.5.7 that there exists an orthogonal matrix $S \in \mathbb{R}^{n \times n}$ such that $A=S\left[\begin{array}{cc}A_{1} & 0 \\ A_{21} & A_{2}\end{array}\right] S^{\mathrm{T}}$ and $C=\left[\begin{array}{ll}C_{1} & 0\end{array}\right] S^{\mathrm{T}}$, where $\left(A_{1}, C_{1}\right)$ is observable. Consequently, we have

$$
\begin{aligned}
\int_{0}^{t} e^{\tau A_{1}^{\mathrm{T}}} C_{1}^{\mathrm{T}} C_{1} e^{\tau A_{1}} \mathrm{~d} \tau & =\left[\begin{array}{ll}
I & 0
\end{array}\right] S \int_{0}^{t} e^{\tau A^{\mathrm{T}}} C^{\mathrm{T}} C e^{\tau A} \mathrm{~d} \tau S^{\mathrm{T}}\left[\begin{array}{l}
I \\
0
\end{array}\right] \\
& \leq\left[\begin{array}{ll}
I & 0
\end{array}\right] S P S^{\mathrm{T}}\left[\begin{array}{l}
I \\
0
\end{array}\right]
\end{aligned}
$$

Thus, it follows from Proposition 8.5.3 that $\int_{0}^{\infty} e^{t A_{1}^{\mathrm{T}}} C_{1}^{\mathrm{T}} C_{1} e^{t A_{1}} \mathrm{~d} t$ exists. Since $\left(A_{1}, C_{1}\right)$ is observable, it follows from Lemma 12.4.3 that A_{1} is asymptotically stable. Therefore, $\left(A_{1}, C_{1}\right)$ is controllably asymptotically stable.

Proposition 12.7.5. The following statements are equivalent:
i) A is asymptotically stable.
ii) (A, B) is stabilizable and controllably asymptotically stable.

Furthermore, if two of the following three conditions are satisfied, then the third condition is satisfied:
iii) A is asymptotically stable.
iv) (A, B) is controllable.
v) $\int_{0}^{\infty} e^{t A} B B^{\mathrm{T}} e^{t A^{\mathrm{T}}} \mathrm{d} t$ exists and is positive definite.

12.8 Realization Theory

Given a proper rational transfer function G we wish to determine (A, B, C, D) such that (12.1.35) holds. The following terminology is standard.

Definition 12.8.1. Let $G \in \mathbb{R}^{l \times m}(s)$. If $l=m=1$, then G is a single-input/single-output (SISO) rational transfer function; if $l=1$ and $m>1$, then G is a multiple-input/single-output (MISO) rational transfer function; if $l>1$ and $m=1$, then G is a single-input/multiple-output (SIMO) rational transfer function; and, if $l>1$ and $m>1$, then G is a multiple-input/multiple output (MIMO) rational transfer function.

Definition 12.8.2. Let $G \in \mathbb{R}^{l \times m}(s)$ be proper, and assume that $A \in$ $\mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{l \times n}$, and $D \in \mathbb{R}^{l \times m}$ satisfy $G(s)=C(s I-A)^{-1} B+D$. Then, $\left[\begin{array}{c|c}A & B \\ \hline C & D\end{array}\right]$ is a realization of G, which is written as

$$
G \sim\left[\begin{array}{c|c}
A & B \tag{12.8.1}\\
\hline C & D
\end{array}\right] .
$$

The order of the realization $\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$ is the order of A.
Although realizations are not unique, the matrix D is unique and is given by

$$
\begin{equation*}
D=G(\infty) . \tag{12.8.2}
\end{equation*}
$$

Furthermore, note that $G \sim\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$ if and only if $\hat{G} \sim\left[\begin{array}{l|l}A & B \\ \hline C & 0\end{array}\right]$, where $\hat{G} \triangleq G-D$. Therefore, it suffices to construct realizations for strictly proper transfer functions.

Suppose that $n=0$. Then, A, B, and C are empty matrices, and G is given by

$$
\begin{equation*}
G(s)=0_{l \times 0}\left(s I_{0 \times 0}-0_{0 \times 0}\right)^{-1} 0_{0 \times m}+D=0_{l \times m}+D=D . \tag{12.8.3}
\end{equation*}
$$

Therefore, the order of the realization $\left[\begin{array}{c|c}0_{0 \times 0} & 0_{0 \times m} \\ \hline 0_{l \times 0} & D\end{array}\right]$ is zero.
The following result shows that every strictly proper, SISO rational transfer function has a realization. In fact, two realizations are the controllable canonical form and the observable canonical form given by (12.8.6) and (12.8.8), respectively.

Proposition 12.8.3. Let $G \in \mathbb{R}(s)$ be strictly proper and given by

$$
\begin{equation*}
G(s)=\frac{\alpha_{n-1} s^{n-1}+\alpha_{n-2} s^{n-2}+\cdots+\alpha_{1} s+\alpha_{0}}{s^{n}+\beta_{n-1} s^{n-1}+\cdots+\beta_{1} s+\beta_{0}} . \tag{12.8.4}
\end{equation*}
$$

Then, $G \sim\left[\begin{array}{c|c}A_{\mathrm{c}} & B_{\mathrm{c}} \\ \hline C_{\mathrm{c}} & 0\end{array}\right]$, where $A_{\mathrm{c}}, B_{\mathrm{c}}, C_{\mathrm{c}}$ are given by

$$
\begin{align*}
A_{\mathrm{c}} & =\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
-\beta_{0} & -\beta_{1} & -\beta_{2} & \cdots & -\beta_{n-1}
\end{array}\right], \quad B_{\mathrm{c}}=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right], \tag{12.8.5}\\
C_{\mathrm{c}} & =\left[\begin{array}{llll}
\alpha_{0} & \alpha_{1} & \cdots & \alpha_{n-1}
\end{array}\right], \tag{12.8.6}
\end{align*}
$$

and $G \sim\left[\begin{array}{c|c}A_{\mathrm{o}} & B_{\mathrm{o}} \\ \hline C_{\mathrm{o}} & 0\end{array}\right]$, where $A_{\mathrm{o}}, B_{\mathrm{o}}, C_{\mathrm{o}}$ are given by

$$
\begin{align*}
A_{\mathrm{o}} & =\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & -\beta_{0} \\
1 & 0 & \cdots & 0 & -\beta_{1} \\
0 & 1 & \cdots & 0 & -\beta_{2} \\
\vdots & \vdots & \ddots & & \vdots \\
0 & 0 & \cdots & 1 & -\beta_{n-1}
\end{array}\right], \quad B_{\mathrm{o}}=\left[\begin{array}{c}
\alpha_{0} \\
\alpha_{2} \\
\vdots \\
\alpha_{n-1}
\end{array}\right], \tag{12.8.7}\\
C_{\mathrm{o}} & =\left[\begin{array}{llll}
0 & \cdots & 0 & 1
\end{array}\right] . \tag{12.8.8}
\end{align*}
$$

Furthermore, $\left(A_{\mathrm{c}}, B_{\mathrm{c}}\right)$ is controllable and $\left(A_{\mathrm{o}}, C_{\mathrm{o}}\right)$ is observable.
Proof. The realizations can be verified directly. Furthermore, note that

$$
\mathcal{C}\left(A_{\mathrm{c}}, B_{\mathrm{c}}\right)=\mathcal{O}\left(A_{\mathrm{o}}, C_{\mathrm{o}}\right)=\left[\begin{array}{cccccc}
0 & 0 & 0 & \cdots & 0 & 1 \\
\vdots & \vdots & \vdots & . & . \cdot & -\beta_{n-1} \\
0 & 0 & 0 & . & & \vdots \\
0 & 0 & 1 & \cdots & \cdots & -\beta_{2} \\
0 & 1 & -\beta_{n-1} & \cdots & \cdots & -\beta_{1} \\
1 & -\beta_{n-1} & -\beta_{n-2} & \cdots & \cdots & -\beta_{0}
\end{array}\right]
$$

Using Fact 2.12.20 it follows that $\operatorname{det} \mathcal{C}\left(A_{\mathrm{c}}, B_{\mathrm{c}}\right)=\operatorname{det} \mathcal{O}\left(A_{\mathrm{o}}, C_{\mathrm{o}}\right)=(-1)^{\lfloor n / 2\rfloor}$, which shows that $\left(A_{\mathrm{c}}, B_{\mathrm{c}}\right)$ is controllable and $\left(A_{\mathrm{o}}, C_{\mathrm{o}}\right)$ is observable.

The following result shows that every proper rational transfer function has a realization.

Theorem 12.8.4. Let $G \in \mathbb{R}^{l \times m}(s)$ be proper. Then, there exist $A \in$ $\mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{l \times n}$, and $D \in \mathbb{R}^{l \times m}$ such that $G \sim\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$.

Proof. By Proposition 12.8.3, every entry $G_{(i, j)}$ of G has a realization $G_{(i, j)} \sim\left[\begin{array}{c|c}A_{i j} & B_{i j} \\ \hline C_{i j} & D_{i j}\end{array}\right]$. Combining these realizations yields a realization of

Let $G \in \mathbb{R}^{l \times m}(s)$, and let $\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$ be a realization of G, where $A \in$ $\mathbb{R}^{n \times n}$. If $S \in \mathbb{R}^{n \times n}$ is nonsingular, then $\left[\begin{array}{c|c}S A S^{-1} & S B \\ C S^{-1} & D\end{array}\right]$ is also a realization of G.

Definition 12.8.5. Let $G \in \mathbb{R}^{l \times m}(s)$ be proper, and let $\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$ and $\left[\begin{array}{c|c}\hat{A} & \hat{B} \\ \hline \hat{C} & D\end{array}\right]$ be n th-order realizations of G. Then, $\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$ and $\left[\begin{array}{l|l}\hat{A} & \hat{B} \\ \hline \hat{C} & D\end{array}\right]$ are equivalent if there exists a nonsingular matrix $S \in \mathbb{R}^{n \times n}$ such that $\hat{A}=$ $S A S^{-1}, \hat{B}=S B$, and $\hat{C}=C S^{-1}$.

Proposition 12.8.6. Let $G \in \mathbb{R}(s)$ be SISO and strictly proper with n th-order realization $\left[\begin{array}{c|c}A & B \\ \hline C & 0\end{array}\right]$. If (A, B) is controllable, then there exists a nonsingular matrix $S \in \mathbb{R}^{n \times n}$ such that $\left[\begin{array}{c|c}S A S^{-1} & S B \\ C S^{-1} & 0\end{array}\right]$ is in controllable companion form. Furthermore, if (A, C) is observable, then there exists a nonsingular matrix $S \in \mathbb{R}^{n \times n}$ such that $\left[\begin{array}{c|c}S A S^{-1} & S B \\ \hline C S^{-1} & 0\end{array}\right]$ is in observable companion form.

Proof. Defining $S \triangleq \mathcal{K}(A, B)\left[\mathcal{K}\left(A_{\mathrm{c}}, B_{\mathrm{c}}\right)\right]^{-1}$, it follows that $S A S^{-1}=$ $C\left(\chi_{A}\right)$ and $S^{-1} B=e_{n}$. Alternatively, defining $S \triangleq\left[\mathcal{O}\left(A_{\mathrm{o}}, C_{\mathrm{o}}\right)\right]^{-1} \mathcal{O}\left(A_{\mathrm{o}}, C_{\mathrm{o}}\right)$, it follows that $S A S^{-1}=C\left(\chi_{A}\right)^{\mathrm{T}}$ and $C S^{-1}=e_{n}^{\mathrm{T}}$.

Proposition 12.8.7. Let $G \in \mathbb{R}^{l \times m}(s)$ be proper and have controllable and observable realizations $G \sim\left[\begin{array}{l|l|l}A_{1} & B_{1} \\ \hline C_{1} & D\end{array}\right]$ and $G \sim\left[\begin{array}{l|l}A_{2} & B_{2} \\ \hline C_{2} & D\end{array}\right]$. Then, these realizations are equivalent.

Proof. For the SISO case $l=m=1$, the result is an immediate consequence of Proposition 12.8.6. In the MIMO case, for $i=1,2$ define $\mathcal{K}_{i} \triangleq \mathcal{K}\left(A_{i}, B_{i}\right), \mathcal{O}_{i} \triangleq \mathcal{O}\left(A_{i}, C_{i}\right)$, and $S \triangleq\left(\mathcal{O}_{2}^{\mathrm{T}} \mathcal{O}_{2}\right)^{-1} \mathcal{O}_{2}^{\mathrm{T}} \mathcal{O}_{1}$. Then, $S^{-1}=$ $\mathcal{K}_{1} \mathcal{K}_{2}^{\mathrm{T}}\left(\mathcal{K}_{2} \mathcal{K}_{2}^{\mathrm{T}}\right)^{-1}$ and it follows that $A_{2}=S A_{1} S^{-1}, B_{2}=S B_{1}$, and $C_{2}=$ $C_{1} S^{-1}$. NEEDS TO BE CHECKED

A rational transfer function $G \in \mathbb{R}^{l \times m}(s)$ can have realizations of different orders. For example, letting

$$
A=1, \quad B=1, \quad C=1, \quad D=0,
$$

and

$$
\hat{A}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad \hat{B}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad \hat{C}=\left[\begin{array}{ll}
1 & 0
\end{array}\right], \quad \hat{D}=0,
$$

it follows that

$$
G(s)=C(s I-A)^{-1} B+D=\hat{C}(s I-\hat{A})^{-1} \hat{B}+\hat{D}=\frac{1}{s-1}
$$

Generally, it is desirable to find realizations whose order is as small as possible.

Definition 12.8.8. Let $G \in \mathbb{R}^{l \times m}(s)$ be proper. Then, the realization $\left[\begin{array}{c|c}A & B \\ \hline C & D\end{array}\right]$ is a minimal realization of G if its order is less than or equal to the order of every realization of G. In this case, we write

$$
G \stackrel{\min }{\sim}\left[\begin{array}{c|c}
A & B \tag{12.8.9}\\
\hline C & D
\end{array}\right] .
$$

Note that minimality of a realization is independent of D. The following result is useful for constructing minimal realizations.

Proposition 12.8.9. Let $G \in \mathbb{R}^{l \times m}(s)$, where $G \sim\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$. Then, there exists a nonsingular matrix $S \in \mathbb{R}^{n \times n}$ such that

$$
\begin{align*}
& A=S\left[\begin{array}{cccc}
A_{1} & 0 & A_{13} & 0 \\
A_{21} & A_{2} & A_{23} & A_{24} \\
0 & 0 & A_{3} & 0 \\
0 & 0 & A_{43} & A_{4}
\end{array}\right] S^{-1}, \quad B=S\left[\begin{array}{c}
B_{1} \\
B_{2} \\
0 \\
0
\end{array}\right], \tag{12.8.10}\\
& C=\left[\begin{array}{llll}
C_{1} & 0 & C_{3} & 0
\end{array}\right] S^{-1}, \tag{12.8.11}
\end{align*}
$$

where $\left(A_{1}, B_{1}\right)$ and $\left(A_{2}, B_{2}\right)$ are controllable, and $\left(A_{1}, C_{1}\right)$ and $\left(A_{3}, C_{3}\right)$ are observable. Furthermore, $G \sim\left[\begin{array}{l|l}A_{1} & B_{1} \\ \hline C_{1} & D_{1}\end{array}\right]$.

Proof. The result is obtained by combining Proposition 12.5.7 and Proposition 12.5.8. More directly, it follows from Theorem 8.3.4 that there exists a nonsingular matrix $S \in \mathbb{R}^{n \times n}$ such that the controllability and observability Gramians (12.7.2) and (12.4.2) satisfy

$$
Q=S\left[\begin{array}{cccc}
Q_{1} & & & 0 \\
& Q_{2} & & \\
& & 0 & \\
0 & & & 0
\end{array}\right] S^{\mathrm{T}}, \quad P=S^{-\mathrm{T}}\left[\begin{array}{cccc}
P_{1} & & & 0 \\
& 0 & & \\
& & P_{2} & \\
0 & & & 0
\end{array}\right] S^{-1}
$$

where Q_{1}, Q_{2}, P_{1} and P_{2} are positive definite and diagonal. The form of $S A S^{-1}, S B$, and $C S^{-1}$ given by (12.8.11) now follows from (12.4.3) and (12.7.3). Finally, it can be verified directly that $\left[\begin{array}{l|l}A_{1} & B_{1} \\ \hline C_{1} & D_{1}\end{array}\right]$ is a realization of G.

The following result show that the controllable and observable realization $\left[\begin{array}{l|l}A_{1} & B_{1} \\ \hline C_{1} & D_{1}\end{array}\right]$ of G in Proposition 12.8.9 is, in fact, minimal.

Corollary 12.8.10. Let $G \sim\left[\begin{array}{c|c}A & B \\ \hline C & D\end{array}\right] \in \mathbb{R}^{l \times m}(s)$. Then, $\left[\begin{array}{c|c}A & B \\ \hline C & D\end{array}\right]$ is minimal if and only if it is controllable and observable.

Proof. To prove necessity, suppose that $\left[\begin{array}{c|c}A & B \\ \hline C & D\end{array}\right]$ is either not controllable or not observable. Then, Proposition 12.8 .3 can be used to construct a realization of G of order less than n. Hence, $\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$ is not minimal. Sufficiency is proved in [494, pp. 172, 173] or [572, p. 50].

Theorem 12.8.11. Let $G \in \mathbb{R}^{l \times m}(s)$, where $G \stackrel{\min }{\sim}\left[\begin{array}{l|l}A & B \\ \hline C & 0\end{array}\right]$. Then, the McMillan degree of G is equal to the order of A.

Proof. See ????.
Definition 12.8.12. Let $G \in \mathbb{R}^{l \times m}(s)$, where $G \stackrel{\min }{\sim}\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$. Then, G is (asymptotically stable, semistable, Lyapunov stable) if A is.

Proposition 12.8.13. Let $G \in \mathbb{R}^{l \times m}(s)$. Then, G is (asymptotically stable, semistable, Lyapunov stable) if and only if every entry of G has the same property.

Definition 12.8.14. Let $G \in \mathbb{R}^{l \times m}(s)$, where $G \stackrel{\min }{\sim}\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$ and A is asymptotically stable. Then, the realization $\left[\begin{array}{c|c}A & B \\ \hline C & D\end{array}\right]$ is semi-balanced if the controllability and observability Gramians (12.4.2) and (12.7.2) are diagonal, and balanced if they are diagonal and equal.

Proposition 12.8.15. Let $G \in \mathbb{R}^{l \times m}(s)$, where $G \sim\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$ and A is asymptotically stable. If, in addition, $G \stackrel{\min }{\sim}\left[\begin{array}{c|c}A & B \\ \hline C & D\end{array}\right]$, then there exists a nonsingular matrix $S \in \mathbb{R}^{n \times n}$ such that the realization $G \sim\left[\begin{array}{c|c}S A S^{-1} & S B \\ \hline C S^{-1} & D\end{array}\right]$ is semi-balanced.

Proof. It follows from Corollary 8.3.7 that there exists a nonsingular matrix $S \in \mathbb{R}^{n \times n}$ such that $S Q S^{\mathrm{T}}$ and $S^{-\mathrm{T}} P S^{-1}$ are diagonal, where Q and P are the controllability and observability Gramians. Hence, the realization $\left[\begin{array}{c|c}S A S^{-1} & S B \\ \hline C S^{-1} & D\end{array}\right]$ is semi-balanced.

12.9 System Zeros

Recall Definition 4.2.4 on the rank of a matrix polynomial.
Definition 12.9.1. Let $G \in \mathbb{R}^{l \times m}(s)$, where $G \sim\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$. Then, the Rosenbrock system matrix $Z \in \mathbb{R}^{(n+l) \times(n+m)}[s]$ is the polynomial matrix

$$
z(s) \triangleq\left[\begin{array}{cc}
s I-A & B \tag{12.9.1}\\
C & D
\end{array}\right] .
$$

Furthermore, $z \in \mathbb{C}$ is an invariant zero of the realization $\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$ if

$$
\begin{equation*}
\operatorname{rank} Z(z)<\operatorname{rank} Z \tag{12.9.2}
\end{equation*}
$$

It is easy to see that equivalent realizations have the same invariant zeros. Furthermore, invariant zeros are not changed by full-state feedback. To see this, let $u=K x+v$, which leads to the rational transfer function

$$
G_{K} \sim\left[\begin{array}{c|c}
A+B K & B \tag{12.9.3}\\
\hline C+D K & D
\end{array}\right]
$$

Since

$$
\left[\begin{array}{cc}
z I-(A+B K) & B \tag{12.9.4}\\
-(C+D K) & D
\end{array}\right]=\left[\begin{array}{cc}
z I-A & B \\
-C & D
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
-K & I
\end{array}\right],
$$

it follows that $\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$ and $\left[\begin{array}{c|c}A+B K & B \\ \hline C+D K & D\end{array}\right]$ have the same invariant zeros.
Proposition 12.9.2. Let $G \in \mathbb{R}^{l \times m}(s)$, where $G \sim\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$, and assume that $C^{\mathrm{T}} D=0$ and $D^{\mathrm{T}} D$ is positive definite. Then, the following statements hold:
i) $\operatorname{rank} \mathbb{Z}=n+m$.
ii) $z \in \mathbb{C}$ is an invariant zero of $\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$ if and only if z is an unobservable eigenvalue of (A, C).

Proof. To prove i), assume that $\operatorname{rank} Z<n+m$. Then, for every $s \in \mathbb{C}$, there exists nonzero $\left[\begin{array}{l}x \\ y\end{array}\right] \in \mathcal{N}(Z(s))$, that is,

$$
\left[\begin{array}{cc}
s I-A & B \\
-C & D
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=0 .
$$

Consequently, $-C x+D y=0$, which implies that $-D^{\mathrm{T}} C x+D^{\mathrm{T}} D y=0$ and thus $y=0$. Furthermore, since $(s I-A) x=0$, it follows that choosing $s \notin \operatorname{spec}(A)$ yields $x=0$, which is a contradiction. To prove $i i)$, note that
z is an invariant zero of $\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$ if and only if $\operatorname{rank} Z(z)<n+m$, which holds if and only if there exists nonzero $\left[\begin{array}{l}x \\ y\end{array}\right] \in \mathcal{N}(\mathcal{Z}(z))$. This condition is equivalent to $y=0$ and $\left[\begin{array}{c}z I-A \\ -C\end{array}\right] x=0$. Since $x \neq 0$, this last condition is equivalent to the fact that z is an unobservable eigenvalue of (A, C).

Corollary 12.9.3. Let (A, C) be observable and assume that $C^{\mathrm{T}} D=0$ and $D^{\mathrm{T}} D$ is positive definite. Then, $\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$ has no invariant zeros.

Definition 12.9.4. Let $G \in \mathbb{R}^{p \times m}$. Then, $z \in \mathbb{C}$ is a transmission zero of G if $\operatorname{rank} G(z)<\operatorname{rank} G$.

Proposition 12.9.5. Let $G \in \mathbb{R}^{p \times m}(s)$, where $G \stackrel{\min }{\sim}\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$. If $s \notin \operatorname{spec}(A)$, then

$$
\begin{equation*}
\operatorname{rank} \mathcal{Z}(s)=n+\operatorname{rank} G(s) . \tag{12.9.5}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
\operatorname{rank} Z=n+\operatorname{rank} G . \tag{12.9.6}
\end{equation*}
$$

Proof. Since $s \notin \operatorname{spec}(A)$, it follows that

$$
\left[\begin{array}{cc}
s I-A & B \\
-C & D
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
-C(s I-A)^{-1} & I
\end{array}\right]\left[\begin{array}{cc}
s I-A & B \\
0 & G(s)
\end{array}\right],
$$

which implies (12.9.5) and (12.9.6).
Theorem 12.9.6. Let $G \in \mathbb{R}^{p \times m}(s)$, where $G \stackrel{\min }{\sim}\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$, and let $z \notin \operatorname{spec}(A)$. Then, z is a transmission zero of G if and only if z is an invariant zero of $\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$.

Proof. Let $z \notin \operatorname{spec}(A)$ be a transmission zero of G. Then,

$$
\operatorname{rank} \mathcal{Z}(z)=n+\operatorname{rank} G(z)<n+\operatorname{rank} G=\operatorname{rank} Z,
$$

which implies that z is an invariant zero of $\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$. Conversely, let $z \notin$ $\operatorname{spec}(A)$ be an invariant zero of $\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$. Then,

$$
\operatorname{rank} G(z)=\operatorname{rank} \mathcal{Z}(z)-n<\operatorname{rank} \mathcal{S}-n=\operatorname{rank} G,
$$

which implies that z is a transmission zero of G.

$12.10 \mathrm{H}_{2}$ System Norm

Consider the system

$$
\begin{align*}
\dot{x}(t) & =A x(t)+B u(t) \tag{12.10.1}\\
y(t) & =C x(t) \tag{12.10.2}
\end{align*}
$$

where $A \in \mathbb{R}^{n \times n}$ is asymptotically stable, $B \in \mathbb{R}^{n \times m}$, and $C \in \mathbb{R}^{l \times n}$. Then, for all $t \geq 0$, the impulse response function is given by $H(t)=C e^{t A} B$. The L_{2} norm of $H(\cdot)$ is given by

$$
\begin{equation*}
\|H\|_{\mathrm{L}_{2}} \triangleq\left[\int_{0}^{\infty}\|H(t)\|_{\mathrm{F}}^{2} \mathrm{~d} t\right]^{1 / 2} \tag{12.10.3}
\end{equation*}
$$

The following result provides expressions for $\|H(\cdot)\|_{\mathrm{L}_{2}}$ in terms of the controllability and observability Gramians.

Theorem 12.10.1. Let $H(t)=C e^{t A} B$, where A is asymptotically stable. Then, the L_{2} norm of H is given by

$$
\begin{equation*}
\|H\|_{\mathrm{L}_{2}}^{2}=\operatorname{tr} C Q C^{\mathrm{T}}=\operatorname{tr} B^{\mathrm{T}} P B \tag{12.10.4}
\end{equation*}
$$

where $Q, P \in \mathbb{R}^{n \times n}$ satisfy

$$
\begin{align*}
A Q+Q A^{\mathrm{T}}+B B^{\mathrm{T}} & =0 \tag{12.10.5}\\
A^{\mathrm{T}} P+P A+C^{\mathrm{T}} C & =0 . \tag{12.10.6}
\end{align*}
$$

Proof. Note that

$$
\|H\|_{\mathrm{L}_{2}}^{2}=\int_{0}^{\infty} \operatorname{tr} C e^{t A} B B^{\mathrm{T}} e^{t A^{\mathrm{T}}} C^{\mathrm{T}} \mathrm{~d} t=\operatorname{tr} C Q C^{\mathrm{T}}
$$

where Q satisfies (12.10.5). The dual expression follows in a similar manner or by noting that

$$
\begin{aligned}
\operatorname{tr} C Q C^{\mathrm{T}} & =\operatorname{tr} C^{\mathrm{T}} C Q=-\operatorname{tr}\left(A^{\mathrm{T}} P+P A\right) Q \\
& =-\operatorname{tr}\left(A Q+Q A^{\mathrm{T}}\right) P=\operatorname{tr} B B^{\mathrm{T}} P=\operatorname{tr} B^{\mathrm{T}} P B
\end{aligned}
$$

For the following definition note that

$$
\begin{equation*}
\|G(s)\|_{\mathrm{F}}=\left[\operatorname{tr} G(s) G^{*}(s)\right]^{1 / 2} \tag{12.10.7}
\end{equation*}
$$

Definition 12.10.2. The H_{2} norm of $G \in \mathbb{R}^{l \times m}(s)$ is the nonnegative
number

$$
\begin{equation*}
\|G\|_{\mathrm{H}_{2}} \triangleq\left[\frac{1}{2 \pi} \int_{-\infty}^{\infty}\|G(\jmath \omega)\|_{\mathrm{F}}^{2} \mathrm{~d} \omega\right]^{1 / 2} \tag{12.10.8}
\end{equation*}
$$

The following result is Parseval's theorem, which relates the L_{2} norm of the impulse response function to the H_{2} norm of its transform.

Theorem 12.10.3. Let $G \sim\left[\begin{array}{l|l}A & B \\ \hline C & 0\end{array}\right]$, where $A \in \mathbb{R}^{n \times n}$ is asymptotically stable, and let $H(t)=C e^{t A} B$. Then,

$$
\begin{equation*}
\int_{0}^{\infty} H(t) H^{\mathrm{T}}(t) \mathrm{d} t=\frac{1}{2 \pi} \int_{-\infty}^{\infty} G(\jmath \omega) G^{*}(\jmath \omega) \mathrm{d} \omega \tag{12.10.9}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\|H\|_{\mathrm{L}_{2}}=\|G\|_{\mathrm{H}_{2}} . \tag{12.10.10}
\end{equation*}
$$

Proof. First note that

$$
G(s)=\mathcal{L}\{H(t)\}=\int_{0}^{\infty} H(t) e^{-s t} \mathrm{~d} t
$$

and that

$$
H(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} G(\jmath \omega) e^{\jmath \omega t} \mathrm{~d} \omega
$$

Hence,

$$
\begin{aligned}
\int_{0}^{\infty} H(t) H^{\mathrm{T}}(t) e^{-s t} \mathrm{~d} t & =\int_{0}^{\infty}\left[\frac{1}{2 \pi} \int_{-\infty}^{\infty} G(\jmath \omega) e^{\jmath \omega t} \mathrm{~d} \omega\right] H^{\mathrm{T}}(t) e^{-s t} \mathrm{~d} t \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} G(\jmath \omega)\left[\int_{0}^{\infty} H^{\mathrm{T}}(t) e^{-(s-\jmath \omega) t} \mathrm{~d} t\right] \mathrm{d} \omega \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} G(\jmath \omega) G^{\mathrm{T}}(s-\jmath \omega) \mathrm{d} \omega
\end{aligned}
$$

Setting $s=0$ yields (12.10.6), while taking the trace of (12.10.9) yields (12.10.10).

Corollary 12.10.4. Let $G \sim\left[\begin{array}{c|c}A & B \\ \hline C & 0\end{array}\right]$, where $A \in \mathbb{R}^{n \times n}$ is asymptoti-
cally stable, and let $H(t)=C e^{t A} B$. Then,

$$
\begin{equation*}
\|G\|_{\mathrm{H}_{2}}^{2}=\|H\|_{\mathrm{L}_{2}}^{2}=C Q C^{\mathrm{T}}=B^{\mathrm{T}} P B \tag{12.10.11}
\end{equation*}
$$

where $Q, P \in \mathbb{R}^{n \times n}$ satisfy (12.10.5) and (12.10.6), respectively.
The following corollary of Theorem 12.10 .3 provides a frequency domain expression for the solution of the Lyapunov equation.

Corollary 12.10.5. Let $A \in \mathbb{R}^{n \times n}$ be asymptotically stable and let $B \in \mathbb{R}^{n \times m}$. Then, the matrix $Q \in \mathbb{R}^{n \times n}$ given by

$$
\begin{equation*}
Q=\frac{1}{2 \pi} \int_{-\infty}^{\infty}(\jmath \omega I-A)^{-1} B B^{\mathrm{T}}(\jmath \omega I-A)^{-*} \mathrm{~d} \omega \tag{12.10.12}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
A Q+Q A^{\mathrm{T}}+B B^{\mathrm{T}}=0 . \tag{12.10.13}
\end{equation*}
$$

Proof. The result follows directly from Theorem 12.10.3 with $H(t)=$ $e^{t A} B$ and $G(s)=(s I-A)^{-1} B$. Alternatively, it follows from (12.10.13) that $\int_{-\infty}^{\infty}(\jmath \omega I-A)^{-1} \mathrm{~d} \omega Q+Q \int_{-\infty}^{\infty}(\jmath \omega I-A)^{-*} \mathrm{~d} \omega=\int_{-\infty}^{\infty}(\jmath \omega I-A)^{-1} B B^{\mathrm{T}}(\jmath \omega I-A)^{-*} \mathrm{~d} \omega$.
Assuming A is diagonalizable with eigenvalues $\lambda_{i}=-\sigma_{i}+\jmath \omega_{i}$, it follows that

$$
\int_{-\infty}^{\infty} \frac{\mathrm{d} \omega}{\jmath \omega-\lambda_{i}}=\int_{-\infty}^{\infty} \frac{\sigma_{i}-\jmath \omega}{\sigma_{i}^{2}+\omega^{2}} \mathrm{~d} \omega=\frac{\sigma_{i} \pi}{\left|\sigma_{i}\right|}-\jmath \lim _{r \rightarrow \infty} \int_{-r}^{r} \frac{\omega}{\sigma_{i}^{2}+\omega^{2}} \mathrm{~d} \omega=\pi,
$$

which implies that

$$
\int_{-\infty}^{\infty}(\jmath \omega I-A)^{-1} \mathrm{~d} \omega=\pi I_{n},
$$

which yields (12.10.12). See [139] for a proof of the general case.
Proposition 12.10.6. Let $G_{1}, G_{2} \in \mathbb{R}^{l \times m}(s)$ be asymptotically stable rational transfer functions. Then,

$$
\begin{equation*}
\left\|G_{1}+G_{2}\right\|_{\mathrm{H}_{2}} \leq\left\|G_{1}\right\|_{\mathrm{H}_{2}}+\left\|G_{2}\right\|_{\mathrm{H}_{2}} . \tag{12.10.14}
\end{equation*}
$$

Proof. Let $G_{1} \stackrel{\min }{\sim}\left[\begin{array}{l|l}A_{1} & B_{1} \\ \hline C_{1} & 0\end{array}\right]$ and $G_{2} \stackrel{\min }{\sim}\left[\begin{array}{l|l}A_{2} & B_{2} \\ \hline C_{2} & 0\end{array}\right]$, where $A_{1} \in$ $\mathbb{R}^{n_{1} \times n_{1}}$ and $A_{2} \in \mathbb{R}^{n_{2} \times n_{2}}$. It thus follows that $G_{1}+G_{2} \sim\left[\begin{array}{cccc}A_{1} & 0 & B_{1} \\ 0 & A_{2} & B_{2} \\ \hline C_{1} & C_{2} & 0\end{array}\right]$. It
follows from Theorem 12.10.3 that $\left\|G_{1}\right\|_{\mathrm{H}_{2}}=\sqrt{\operatorname{tr} C_{1} Q_{1} C_{1}^{\mathrm{T}}}$ and $\left\|G_{2}\right\|_{\mathrm{H}_{2}}=$ $\sqrt{\operatorname{tr} C_{2} Q_{2} C_{2}^{\mathrm{T}}}$, where $Q_{1} \in \mathbb{R}^{n_{1} \times n_{1}}$ and $Q_{2} \in \mathbb{R}^{n_{2} \times n_{2}}$ are the unique positivedefinite matrices satisfying $A_{1} Q_{1}+Q_{1} A_{1}^{\mathrm{T}}+B_{1} B_{1}^{\mathrm{T}}=0$ and $A_{2} Q_{2}+Q_{2} A_{2}^{\mathrm{T}}+$ $B_{2} B_{2}^{\mathrm{T}}=0$. Furthermore,

$$
\left\|G_{2}+G_{2}\right\|_{\mathrm{H}_{2}}^{2}=\operatorname{tr}\left[\begin{array}{ll}
C_{1} & C_{2}
\end{array}\right] Q\left[\begin{array}{c}
C_{1}^{\mathrm{T}} \\
C_{2}^{\mathrm{T}}
\end{array}\right],
$$

where $Q \in \mathbb{R}^{\left(n_{1}+n_{2}\right) \times\left(n_{1}+n_{2}\right)}$ is the unique, nonnegative-semidefinite matrix satisfying

$$
\left[\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right] Q+Q\left[\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right]^{\mathrm{T}}+\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right]\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right]^{\mathrm{T}}=0 .
$$

It can be seen that $Q=\left[\begin{array}{ll}Q_{1} & Q_{12} \\ Q_{12} & Q_{2}\end{array}\right]$, where Q_{1} and Q_{2} are as given above and where Q_{12} satisfies $A_{1} Q_{12}+Q_{12} A_{2}^{\mathrm{T}}+B_{1} B_{2}^{\mathrm{T}}=0$. Now, using the CauchySchwarz inequality (9.3.15) and iii) of Proposition 8.2.3, it follows that

$$
\begin{aligned}
\left\|G_{1}+G_{2}\right\|_{\mathrm{H}_{2}}^{2} & =\operatorname{tr}\left(C_{1} Q_{1} C_{1}^{\mathrm{T}}+C_{2} Q_{2} C_{2}^{\mathrm{T}}+C_{2} Q_{12}^{\mathrm{T}} C_{1}^{\mathrm{T}}+C_{1} Q_{12} C_{2}^{\mathrm{T}}\right) \\
& =\left\|G_{1}\right\|_{\mathrm{H}_{2}}^{2}+\left\|G_{2}\right\|_{\mathrm{H}_{2}}^{2}+2 \operatorname{tr} C_{1} Q_{12} Q_{2}^{-1 / 2} Q_{2}^{1 / 2} C_{2}^{\mathrm{T}} \\
& \leq\left\|G_{1}\right\|_{\mathrm{H}_{2}}^{2}+\left\|G_{2}\right\|_{\mathrm{H}_{2}}^{2}+2 \operatorname{tr}\left(C_{1} Q_{12} Q_{2}^{-1} Q_{12}^{\mathrm{T}} C_{1}^{\mathrm{T}}\right) \operatorname{tr}\left(C_{2} Q_{2} C_{2}^{\mathrm{T}}\right) \\
& \leq\left\|G_{1}\right\|_{\mathrm{H}_{2}}^{2}+\left\|G_{2}\right\|_{\mathrm{H}_{2}}^{2}+2 \operatorname{tr}\left(C_{1} Q_{1} C_{1}^{\mathrm{T}}\right) \operatorname{tr}\left(C_{2} Q_{2} C_{2}^{\mathrm{T}}\right) \\
& =\left(\left\|G_{1}\right\|_{\mathrm{H}_{2}}+\left\|G_{2}\right\|_{\mathrm{H}_{2}}\right)^{2} .
\end{aligned}
$$

12.11 Harmonic Steady-State Response

The following result, which is the fundamental theorem of linear systems theory, concerns the response of a linear system to a harmonic input.

Theorem 12.11.1. For $t \geq 0$, consider the linear system

$$
\begin{equation*}
\dot{x}(t)=A x(t)+B u(t), \tag{12.11.1}
\end{equation*}
$$

with harmonic input

$$
\begin{equation*}
u(t)=\operatorname{Re} u_{0} e^{\jmath \omega_{0} t}, \tag{12.11.2}
\end{equation*}
$$

where $u_{0} \in \mathbb{C}^{m}$ and $\omega_{0} \in \mathbb{R}$ is such that $\jmath \omega_{0} \notin \operatorname{spec}(A)$. Then, $x(t)$ is given by

$$
\begin{equation*}
x(t)=e^{t A}\left(x(0)-\operatorname{Re}\left[\left(\jmath \omega_{0} I-A\right)^{-1} B u_{0}\right]\right)+\operatorname{Re}\left[\left(\jmath \omega_{0} I-A\right)^{-1} B u_{0} e^{\jmath \omega_{0} t}\right] . \tag{12.11.3}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
& x(t)=e^{t A} x(0)+\int_{0}^{t} e^{(t-\tau) A} B \operatorname{Re}\left(u_{0} e^{\jmath \omega_{0} \tau}\right) \mathrm{d} \tau \\
&=e^{t A} x(0)+e^{t A} \operatorname{Re}\left[\int_{0}^{t} e^{-\tau A} e^{\jmath \omega_{0} \tau} \mathrm{~d} \tau B u_{0}\right] \\
&=e^{t A} x(0)+e^{t A} \operatorname{Re}\left[\int_{0}^{t} e^{\tau\left(\jmath \omega_{0} I-A\right)} \mathrm{d} \tau B u_{0}\right] \\
&=e^{t A} x(0)+e^{t A} \operatorname{Re}\left[\left(\jmath \omega_{0} I-A\right)^{-1}\left(e^{\tau \tau\left(\jmath \omega_{0} I-A\right)}-I\right) B u_{0}\right] \\
&=e^{t A} x(0)+\operatorname{Re}\left[\left(\jmath \omega_{0} I-A\right)^{-1}\left(e^{\jmath \omega_{0} t I}-e^{t A}\right) B u_{0}\right] \\
&=e^{t A} x(0)+\operatorname{Re}\left[\left(\jmath \omega_{0} I-A\right)^{-1}\left(-e^{t A}\right) B u_{0}\right]+\operatorname{Re}\left[\left(\jmath \omega_{0} I-A\right)^{-1} e^{\jmath \omega_{0} t} B u_{0}\right] \\
&=e^{t A}\left(x(0)-\operatorname{Re}\left[\left(\jmath \omega_{0} I-A\right)^{-1} B u_{0}\right]\right)+\operatorname{Re}\left[\left(\jmath \omega_{0} I-A\right)^{-1} B u_{0} e^{\jmath \omega_{0} t}\right] . \\
& \square
\end{aligned}
$$

Theorem 12.11.1 shows that the response of a linear system to a harmonic input consists of two components, namely, a transient component

$$
\begin{equation*}
x_{\text {trans }}(t) \triangleq e^{t A}\left(x(0)-\operatorname{Re}\left[\left(\jmath \omega_{0} I-A\right)^{-1} B u_{0}\right]\right), \tag{12.11.4}
\end{equation*}
$$

which depends on both the initial condition and input, and a harmonic steady-state component

$$
\begin{equation*}
x_{\mathrm{hss}}(t)=\operatorname{Re}\left[\left(\jmath \omega_{0} I-A\right)^{-1} B u_{0} e^{\jmath \omega_{0} t}\right], \tag{12.11.5}
\end{equation*}
$$

which depends only on the input.
If A is asymptotically stable, then $\lim _{t \rightarrow \infty} x_{\text {trans }}(t)=0$ and thus $x(t)$ approaches its harmonic steady-state component $x_{\text {hss }}(t)$ for large t. Since the response is sinusoidal, it follows that $x(t)$ does not converge in the usual sense. If A is semistable, then it follows from vii) of Proposition 11.6.2 that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} x_{\text {trans }}(t)=\left(I-A A^{\#}\right)\left(x(0)-\operatorname{Re}\left[\left(\jmath \omega_{0} I-A\right)^{-1} B u_{0}\right]\right), \tag{12.11.6}
\end{equation*}
$$

which represents a constant offset to the harmonic steady-state component. Finally, note that the complex amplitude of $x_{\text {hss }}(t)$ involves $G\left(\jmath \omega_{0}\right)=$ $\left(\jmath \omega_{0} I-A\right)^{-1} B$, that is, the value of the rational transfer function $G \sim$ $\left[\begin{array}{c|c}A & B \\ \hline C & 0\end{array}\right]$ evaluated at $s=\jmath \omega_{0}$, where ω_{0} is the input frequency.

12.12 System Interconnections

Let $G \in \mathbb{R}^{l \times m}(s)$. We define the parahermitian conjugate G^{\sim} of G by $G^{\sim} \triangleq G^{\mathrm{T}}(-s)$. The following result provides realizations for G^{T}, G^{\sim} and G^{-1}.

Proposition 12.12.1. Let $G \sim\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$. Then,

$$
G^{\mathrm{T}} \sim\left[\begin{array}{c|c}
A^{\mathrm{T}} & C^{\mathrm{T}} \tag{12.12.1}\\
\hline B^{\mathrm{T}} & D^{\mathrm{T}}
\end{array}\right]
$$

and

$$
G^{\sim} \sim\left[\begin{array}{c|c}
-A^{\mathrm{T}} & -C^{\mathrm{T}} \tag{12.12.2}\\
\hline B^{\mathrm{T}} & D^{\mathrm{T}}
\end{array}\right] .
$$

Furthermore, if G is square and D is nonsingular, then

$$
G^{-1} \sim\left[\begin{array}{c|c}
A-B D^{-1} C & -B D^{-1} \tag{12.12.3}\\
\hline D^{-1} C & D^{-1}
\end{array}\right] .
$$

Proof. Since $y=G u$, it follows that G^{-1} must satisfy $u=G^{-1} y$. Since $\dot{x}=A x+B u$ and $y=C x+D u$, it follows that $u=-D^{-1} C x+D^{-1} y$, and thus $\dot{x}=A x+B\left(-D^{-1} C x+D^{-1} y\right)=\left(A-B D^{-1} C\right) x+B D^{-1} y$.

Note that if G is a SISO rational transfer function and $G \sim\left[\begin{array}{c|c}A & B \\ \hline C & D\end{array}\right]$, then $G \sim\left[\begin{array}{c|c}A^{\mathrm{T}} & B^{\mathrm{T}} \\ \hline C^{\mathrm{T}} & D\end{array}\right]$.

Let G_{1} and G_{2} be $l_{1} \times m_{1}$ and $l_{2} \times m_{2}$ rational transfer functions, respectively. Then, the cascade interconnection of G_{1} and G_{2} is the product $G_{2} G_{1}$, while the parallel interconnection is the sum $G_{1}+G_{1}$. Note that $G_{2} G_{1}$ is defined only if $m_{2}=l_{1}$ while $G_{1}+G_{2}$ requires that $m_{1}=m_{2}$ and $l_{1}=l_{2}$.

Proposition 12.12.2. Let $G_{1} \in \mathbb{R}^{l_{1} \times m_{1}}(s)$ and $G_{1} \in \mathbb{R}^{l_{2} \times m_{2}}(s)$, and let $G_{1} \sim\left[\begin{array}{l|l|l}A_{1} & B_{1} \\ \hline C_{1} & D_{1}\end{array}\right]$ and $G_{2} \sim\left[\begin{array}{l|l}A_{2} & B_{2} \\ \hline C_{2} & D_{2}\end{array}\right]$. If $m_{2}=l_{1}$, then

$$
G_{2} G_{1} \sim\left[\begin{array}{c|cc}
A_{1} & 0 & B_{1} \tag{12.12.4}\\
B_{2} C_{1} & A_{2} & B_{2} D_{1} \\
\hline D_{2} C_{1} & C_{2} & D_{2} D_{1}
\end{array}\right] .
$$

If $m_{1}=m_{2}$ and $l_{1}=l_{2}$, then

$$
G_{1}+G_{2} \sim\left[\begin{array}{c|cc}
A_{1} & 0 & B_{1} \tag{12.12.5}\\
0 & A_{2} & B_{2} \\
\hline C_{1} & C_{2} & D_{1}+D_{2}
\end{array}\right] .
$$

Proof. Consider the state space equations

$$
\begin{array}{ll}
\dot{x}_{1}=A_{1} x_{1}+B_{1} u_{1}, & \dot{x}_{2}=A_{2} x_{2}+B_{2} u_{2}, \\
y_{1}=C_{1} x_{1}+D_{1} u_{1}, & y_{2}=C_{2} x_{2}+D_{2} u_{2} .
\end{array}
$$

Since $u_{2}=y_{1}$, it follows that

$$
\begin{aligned}
& \dot{x}_{2}=A_{2} x_{2}+B_{2} C_{1} x_{1}+B_{2} D_{1} u_{1}, \\
& y_{2}=C_{2} x_{2}+D_{2} C_{1} x_{1}+D_{2} D_{1} u_{1},
\end{aligned}
$$

and thus

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right] } & =\left[\begin{array}{cc}
A_{1} & 0 \\
B_{2} C_{1} & A_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{c}
B_{1} \\
B_{2} D_{1}
\end{array}\right] u_{1}, \\
y_{2} & =\left[\begin{array}{ll}
D_{2} C_{1} & C_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+D_{2} D_{1} u_{1},
\end{aligned}
$$

which yields the realization (12.12.4) of $G_{2} G_{1}$. The realization (12.12.5) for $G_{1}+G_{2}$ can be obtained by similar techniques.

It is sometimes useful to combine systems by concatenating them in row, column, or block-diagonal forms.

Proposition 12.12.3. Let $G_{1} \sim\left[\begin{array}{l|l}A_{1} & B_{1} \\ \hline C_{1} & D_{1}\end{array}\right]$ and $G_{2} \sim\left[\begin{array}{l|l}A_{2} & B_{2} \\ \hline C_{2} & D_{2}\end{array}\right]$. Then,

$$
\begin{align*}
{\left[\begin{array}{ll}
G_{1} & G_{2}
\end{array}\right] } & \sim\left[\begin{array}{cc|cc}
A_{1} & 0 & B_{1} & 0 \\
0 & A_{2} & 0 & B_{2} \\
\hline C_{1} & C_{2} & D_{1} & D_{2}
\end{array}\right], \tag{12.12.6}\\
{\left[\begin{array}{c}
G_{1} \\
G_{2}
\end{array}\right] } & \sim\left[\begin{array}{cc|c}
A_{1} & 0 & B_{1} \\
0 & A_{2} & B_{2} \\
\hline C_{1} & 0 & D_{1} \\
0 & C_{2} & D_{2}
\end{array}\right], \tag{12.12.7}\\
{\left[\begin{array}{cc}
G_{1} & 0 \\
0 & G_{2}
\end{array}\right] } & \sim\left[\begin{array}{cc|cc}
A_{1} & 0 & B_{1} & 0 \\
0 & A_{2} & 0 & B_{2} \\
\hline C_{1} & 0 & D_{1} & 0 \\
0 & C_{2} & 0 & D_{2}
\end{array}\right] . \tag{12.12.8}
\end{align*}
$$

Next, we interconnect a pair of systems G_{1}, G_{2} by means of feedback
as shown in Figure 2. It can be seen that u and y are related by

$$
\begin{equation*}
\hat{y}=\left(I+G_{1} G_{2}\right)^{-1} G_{1} \hat{u} \tag{12.12.9}
\end{equation*}
$$

or

$$
\begin{equation*}
\hat{y}=G_{1}\left(I+G_{2} G_{1}\right)^{-1} \hat{u} . \tag{12.12.10}
\end{equation*}
$$

The equivalence of (12.12.9) and (12.12.10) follows from the push-through identity Fact 2.13.15

$$
\begin{equation*}
\left(I+G_{1} G_{2}\right)^{-1} G_{1}=G_{1}\left(I+G_{2} G_{1}\right)^{-1} . \tag{12.12.11}
\end{equation*}
$$

A realization of this rational transfer function is given by the following result.
Proposition 12.12.4. Let $G_{1} \sim\left[\begin{array}{l|l}A_{1} & B_{1} \\ \hline C_{1} & D_{1}\end{array}\right]$ and $G_{2} \sim\left[\begin{array}{l|l}A_{2} & B_{2} \\ \hline C_{2} & D_{2}\end{array}\right]$. Then,

$$
\begin{align*}
& {\left[I+G_{1} G_{2}\right]^{-1} G_{1}} \\
& \sim\left[\begin{array}{cc|c}
A_{1}-B_{1}\left(I+D_{2} D_{1}\right)^{-1} D_{2} C_{1} & -B_{1}\left(I+D_{2} D_{1}\right)^{-1} C_{2} C_{2} & B_{1}\left(I+D_{2} D_{1}\right)^{-1} \\
\left.\hline B_{2}\left(I+D_{1}\right)^{-1}\right)^{-1} C_{1} & A_{2}-B_{2}\left(I+D_{1} D_{2}\right)^{-1} D_{1} C_{2} & B_{2}\left(I+D_{2} D_{2}-l_{1} D_{1}\right. \\
\hline\left(I+D_{1} D_{2}\right)^{-1} C_{1} & -\left(I+D_{1} D_{2}\right)^{-1} D_{1} C_{2} & \left(I+D_{1} D_{2}\right)^{-1} D_{1}
\end{array}\right] . \tag{12.12.12}
\end{align*}
$$

12.13 H_{2} Standard Problem

The standard problem of feedback control involves four distinct signals, namely, an exogenous input w, a control input u, a performance variable z, and a feedback signal y. This system can be written as

$$
\left[\begin{array}{l}
\hat{z}(s) \tag{12.13.1}\\
\hat{y}(s)
\end{array}\right]=\left[\begin{array}{ll}
G_{11}(s) & G_{12}(s) \\
G_{21}(s) & G_{22}(s)
\end{array}\right]\left[\begin{array}{l}
\hat{w}(s) \\
\hat{u}(s)
\end{array}\right],
$$

where G_{11}, G_{12}, G_{21}, and G_{22} are rational transfer functions.
Now, define the two-vector-input, two-vector-output transfer function

$$
\mathcal{G} \triangleq\left[\begin{array}{ll}
G_{11} & G_{12} \tag{12.1}\\
G_{21} & G_{22}
\end{array}\right]
$$

which has a realization

$$
\mathcal{G} \sim\left[\begin{array}{c|cc}
A & D_{1} & B \tag{12.13.3}\\
\hline E_{1} & E_{0} & E_{2} \\
C & D_{2} & D
\end{array}\right] .
$$

Consequently, it can be seen that

$$
\mathcal{G}(s)=\left[\begin{array}{cc}
E_{1}(s I-A)^{-1} D_{1}+E_{0} & E_{1}(s I-A)^{-1} B+E_{2} \tag{12.13.4}\\
C(s I-A)^{-1} D_{1}+D_{2} & C(s I-A)^{-1} B+D
\end{array}\right],
$$

which shows that G_{11}, G_{12}, G_{21}, and G_{22} have the realizations

$$
\begin{array}{ll}
G_{11} \sim\left[\begin{array}{c|c}
A & D_{1} \\
\hline E_{1} & E_{0}
\end{array}\right], & G_{12} \sim\left[\begin{array}{c|c}
A & B \\
\hline E_{1} & E_{2}
\end{array}\right], \\
G_{21} \sim\left[\begin{array}{c|c}
A & D_{1} \\
\hline C & D_{2}
\end{array}\right], & G_{22} \sim\left[\begin{array}{c|c}
A & B \\
\hline C & D
\end{array}\right] . \tag{12.13.6}
\end{array}
$$

Letting G_{C} denote the feedback controller, we interconnect G and G_{C} according to

$$
\begin{equation*}
\hat{u}(s)=G_{\mathrm{C}}(s) \hat{y}(s) \tag{12.13.7}
\end{equation*}
$$

The resulting rational transfer function $\tilde{\mathcal{G}}$ satisfying $\hat{z}(s)=\tilde{\mathcal{G}}(s) \hat{w}(s)$ is thus given by

$$
\begin{equation*}
\tilde{\mathcal{G}}=G_{11}+G_{12} G_{\mathrm{c}}\left(I-G_{22} G_{\mathrm{c}}\right)^{-1} G_{21} \tag{12.13.8}
\end{equation*}
$$

or

$$
\begin{equation*}
\tilde{\mathcal{G}}=G_{11}+G_{12}\left(I-G_{\mathrm{c}} G_{22}\right)^{-1} G_{\mathrm{c}} G_{21} \tag{12.13.9}
\end{equation*}
$$

A realization of \tilde{G} is given by the following result.
Proposition 12.13.1. Let $\tilde{\mathcal{G}} \sim\left[\begin{array}{c|cc}A & D_{1} & B \\ \hline E_{1} & E_{0} & E_{2} \\ C & D_{2} & D\end{array}\right]$ and $G_{\mathrm{c}} \sim\left[\begin{array}{c|c}A_{\mathrm{c}} & B_{\mathrm{c}} \\ \hline C_{\mathrm{c}} & D_{\mathrm{c}}\end{array}\right]$. If $\operatorname{det}\left(I-D D_{c}\right) \neq 0$, then
$\tilde{\mathcal{G}} \sim\left[\begin{array}{cc|c}A+B D_{c}\left(I-D D_{\mathrm{c}}\right)^{-1} C & B C_{\mathrm{c}}+B D_{\mathrm{c}}\left(I-D D_{\mathrm{c}}\right)^{-1} D C_{\mathrm{c}} & D_{1}+B D_{\mathrm{c}}\left(I+D D_{\mathrm{c}}{ }^{-1} D_{2}\right. \\ B_{\mathrm{c}}\left(I-D D_{\mathrm{c}}\right)^{-1} C & A_{\mathrm{c}}+B_{\mathrm{c}}\left(I-D D_{\mathrm{c}}\right)^{-1} D C_{\mathrm{c}} & B_{\mathrm{c}}\left(I-D D_{\mathrm{c}}\right)^{-1} D_{2} \\ \hline E_{1}+E_{2} D_{\mathrm{c}}\left(I-D D_{\mathrm{c}}\right)^{-1} C & E_{2} C_{\mathrm{c}}+E_{2} D_{\mathrm{c}}\left(I-D D_{\mathrm{c}}\right)^{-1} D C_{\mathrm{c}} & E_{0}+E_{2} D_{\mathrm{c}}\left(I-D D_{\mathrm{c}}\right)^{-1} D_{2}\end{array}\right]$.

The realization (12.13.10) can be simplified when $D D_{c}=0$. For example, if $D=0$, then

$$
\tilde{\mathcal{G}} \sim\left[\begin{array}{cc|c}
A+B D_{\mathrm{c}} C & B C_{\mathrm{c}} & D_{1}+B D_{\mathrm{c}} D_{2} \tag{12.13.11}\\
B_{\mathrm{c}} C & A_{c} & B_{\mathrm{c}} D_{2} \\
\hline E_{1}+E_{2} D_{\mathrm{c}} C & E_{2} C_{\mathrm{c}} & E_{0}+E_{2} D_{\mathrm{c}} D_{2}
\end{array}\right],
$$

while if $D_{\mathrm{c}}=0$, then

$$
\tilde{\mathcal{G}} \sim\left[\begin{array}{cc|c}
A & B C_{\mathrm{c}} & D_{1} \tag{12.13.12}\\
B_{\mathrm{c}} C & A_{\mathrm{c}}+B_{\mathrm{c}} D C_{\mathrm{c}} & B_{\mathrm{c}} D_{2} \\
\hline E_{1} & E_{2} C_{\mathrm{c}} & E_{0}
\end{array}\right] .
$$

Finally, if both $D=0$ and $D_{\text {c }}=0$, then

$$
\tilde{\mathcal{G}} \sim\left[\begin{array}{cc|c}
A & B C_{\mathrm{c}} & D_{1} \tag{12.13.13}\\
B_{\mathrm{c}} C & A_{\mathrm{c}} & B_{\mathrm{c}} D_{2} \\
\hline E_{1} & E_{2} C_{\mathrm{c}} & E_{0}
\end{array}\right] .
$$

The feedback interconnection shown in Figure 4 forms the basis for the standard problem in feedback control. For this problem the signal w is interpreted as a disturbance, while the signal z represents the performance variables, that is, variables whose behavior reflects the performance of the closed-loop system. The performance variables need not be physically measured. The controlled input or the control u is driven by the feedback controller G_{c}, while the measurement signal y serves as the input to the feedback controller G_{c}. The standard problem in feedback control theory is the following: Given knowledge of w, determine G_{c} to minimize a performance criterion $J\left(G_{\mathrm{c}}\right)$.

12.14 Linear-Quadratic Control

Let $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times m}$, and, for all $t \in[0, \infty)$, consider the system

$$
\begin{gather*}
\dot{x}(t)=A x(t)+B u(t), \tag{12.14.1}\\
x(0)=x_{0} . \tag{12.14.2}
\end{gather*}
$$

Furthermore, let $K \in \mathbb{R}^{m \times n}$ and consider the full-state-feedback control law

$$
\begin{equation*}
u(t)=K x(t) \tag{12.14.3}
\end{equation*}
$$

The objective of the linear-quadratic control problem is to minimize the quadratic performance measure

$$
\begin{equation*}
J\left(K, x_{0}\right)=\int_{0}^{\infty}\left[x^{\mathrm{T}}(t) R_{1} x(t)+x^{\mathrm{T}}(t) R_{12} u(t)+u^{\mathrm{T}}(t) R_{2} u(t)\right] \mathrm{d} t \tag{12.14.4}
\end{equation*}
$$

where $R_{1} \in \mathbb{R}^{n \times n}, R_{12} \in \mathbb{R}^{n \times m}$, and $R_{2} \in \mathbb{R}^{m \times m}$. We assume that $\left[\begin{array}{cc}R_{1} & R_{12} \\ R_{12}^{\mathrm{T}} & R_{2}\end{array}\right]$ is nonnegative semidefinite and R_{2} is positive definite.

The performance measure (12.14.4) indicates the desire to maintain the state vector $x(t)$ close to the zero equilibrium without an excessive expenditure of control effort. Specifically, the term $x^{\mathrm{T}}(t) R_{1} x(t)$ is a measure of the deviation of the state $x(t)$ from the zero state, where the $n \times n$ nonnegativesemidefinite matrix R_{1} determines how much weighting is associated with every component of the state. Likewise, the $m \times m$ positive-definite matrix
R_{2} weights the magnitude of the control input.
Using (12.14.1) and (12.14.3) the closed-loop dynamic system can be written as

$$
\begin{equation*}
\dot{x}(t)=(A+B K) x(t) \tag{12.14.5}
\end{equation*}
$$

so that

$$
\begin{equation*}
x(t)=e^{t \tilde{A}} x_{0} \tag{12.14.6}
\end{equation*}
$$

where $\tilde{A} \triangleq A+B K$. Thus, the performance measure (12.14.4) becomes

$$
\begin{align*}
J\left(K, x_{0}\right) & =\int_{0}^{\infty} x^{\mathrm{T}}(t)\left(R_{1}+2 R_{12} K+K^{\mathrm{T}} R_{2} K\right) x(t) \mathrm{d} t \\
& =\int_{0}^{\infty} x_{0}^{\mathrm{T}} e^{t \tilde{A}^{\mathrm{T}} \tilde{R}} e^{t \tilde{A}} x_{0} \mathrm{~d} t \\
& =\operatorname{tr} x_{0}^{\mathrm{T}} \int_{0}^{\infty} e^{t \tilde{A}^{\mathrm{T}} \tilde{R}} e^{t \tilde{A}^{\mathrm{T}}} \mathrm{~d} t x(0) \\
& =\operatorname{tr} \int_{0}^{\infty} e^{t \tilde{A}^{\mathrm{T}} \tilde{R}} e^{t \tilde{A}} \mathrm{~d} t x_{0} x_{0}^{\mathrm{T}} \tag{12.14.7}
\end{align*}
$$

where $\tilde{R} \triangleq R_{1}+2 R_{12} K+K^{\mathrm{T}} R_{2} K$.
Consider the standard problem with plant

$$
\mathcal{G} \sim\left[\begin{array}{c|cc}
A & D_{1} & B \tag{12.14.8}\\
\hline E_{1} & 0 & E_{2} \\
I_{n} & 0 & 0
\end{array}\right]
$$

and full-state feedback $u=K x$. Then, the closed-loop transfer function is given by

$$
\tilde{\mathcal{G}} \sim\left[\begin{array}{c|c}
A+B K & D_{1} \tag{12.14.9}\\
\hline E_{1}+E_{2} K & 0
\end{array}\right] .
$$

The following result shows that the quadratic performance measure (12.14.4) is equivalent to an H_{2} norm.

Proposition 12.14.1. Assume that $m=1, D_{1}=x_{0}$, and

$$
\left[\begin{array}{cc}
R_{1} & R_{12} \tag{12.14.10}\\
R_{12}^{\mathrm{T}} & R_{2}
\end{array}\right]=\left[\begin{array}{c}
E_{1}^{\mathrm{T}} \\
E_{2}^{\mathrm{T}}
\end{array}\right]\left[\begin{array}{ll}
E_{1} & E_{2}
\end{array}\right]
$$

and let $\tilde{\mathcal{G}}$ be given by (12.14.9). Then,

$$
\begin{equation*}
J\left(K, x_{0}\right)=\|\tilde{\mathcal{G}}\|_{\mathrm{H}_{2}}^{2} . \tag{12.14.11}
\end{equation*}
$$

Proof. The result is a consequence of Proposition 12.1.2.
To develop necessary conditions for the linear-quadratic control problem, we restrict K to the set of stabilizing gains

$$
\begin{equation*}
\mathcal{S} \triangleq\left\{K \in \mathbb{R}^{m \times n}: A+B K \text { is asymptotically stable }\right\} \tag{12.14.12}
\end{equation*}
$$

Obviously, \mathcal{S} is nonempty if and only if (A, B) is stabilizable. The following result gives necessary conditions for characterizing a stabilizing solution K of the linear-quadratic control problem.

Theorem 12.14.2. Assume that (A, B) is stabilizable and assume that $K \in \mathcal{S}$ solves the linear-quadratic control problem. Then, there exists an $n \times n$ nonnegative-semidefinite matrix P such that K is given by

$$
\begin{equation*}
K=-R_{2}^{-1} B^{\mathrm{T}} P \tag{12.14.13}
\end{equation*}
$$

and such that P satisfies

$$
\begin{equation*}
A^{\mathrm{T}} P+P A+R_{1}-P B R_{2}^{-1} B^{\mathrm{T}} P=0 . \tag{12.14.14}
\end{equation*}
$$

Furthermore, the minimal cost is given by

$$
\begin{equation*}
J(K)=\operatorname{tr} P V . \tag{12.14.15}
\end{equation*}
$$

Proof. Since $K \in \mathcal{S}$, it follows that \tilde{A} is asymptotically stable. It then follows that $J(K)$ is given by (12.14.15), where $P \triangleq \int_{0}^{\infty} e^{t \tilde{A}^{T}} \tilde{R} e^{t \tilde{A}} \mathrm{~d} t$ is nonnegative semidefinite and satisfies the Lyapunov equation

$$
\begin{equation*}
\tilde{A}^{\mathrm{T}} P+P \tilde{A}+\tilde{R}=0 . \tag{12.14.16}
\end{equation*}
$$

Note that (12.14.16) can be written as

$$
\begin{equation*}
(A+B K)^{\mathrm{T}} P+P(A+B K)+R_{1}+K^{\mathrm{T}} R_{2} K=0 . \tag{12.14.17}
\end{equation*}
$$

To optimize (12.14.15) subject to the constraint (12.14.16) over the open set \mathcal{S}, form the Lagrangian

$$
\begin{equation*}
\mathcal{L}\left(K, P, Q, \lambda_{0}\right) \triangleq \operatorname{tr}\left[\lambda_{0} P V+Q\left(\tilde{A}^{\mathrm{T}} P+P \tilde{A}+\tilde{R}\right)\right], \tag{12.14.18}
\end{equation*}
$$

where the Lagrange multipliers $\lambda_{0} \geq 0$ and $Q \in \mathbb{R}^{n \times n}$ are not both zero. Note that the $n \times n$ Lagrange multiplier Q accounts for the $n \times n$ constraint equation (12.14.16).

Next, setting $\partial \mathcal{L} / \partial P=0$ yields

$$
\begin{equation*}
\tilde{A} Q+Q \tilde{A}^{\mathrm{T}}+\lambda_{0} V=0 \tag{12.14.19}
\end{equation*}
$$

Since \tilde{A} is asymptotically stable, it follows from Proposition 11.7.3 that, for all $\lambda_{0} \geq 0,(12.14 .19)$ has a unique solution Q and, furthermore, Q is nonnegative-semidefinite. In particular, if $\lambda_{0}=0$, then $Q=0$. Since λ_{0} and Q are not both zero, we can set $\lambda_{0}=1$ so that (12.14.19) becomes

$$
\begin{equation*}
\tilde{A} Q+Q \tilde{A}^{\mathrm{T}}+V=0 \tag{12.14.20}
\end{equation*}
$$

Since V is positive definite, it follows that Q is positive definite.
Next, evaluating $\partial \mathcal{L} / \partial K$ yields

$$
\begin{equation*}
R_{2} K Q+B^{\mathrm{T}} P Q=0 \tag{12.14.21}
\end{equation*}
$$

Since Q is positive definite, it follows from (12.14.21) that (12.14.13) is satisfied. Furthermore, using (12.14.13), it follows that (12.14.16) is equivalent to (12.14.14).

Note that with K given by (12.14.13) the closed-loop dynamics matrix $\tilde{A}=A+B K$ is given by

$$
\begin{equation*}
\tilde{A}=A-B R_{2}^{-1} B^{\mathrm{T}} P \tag{12.14.22}
\end{equation*}
$$

where P is the solution of the Riccati equation (12.14.14). For convenience we define $\Sigma \triangleq B R_{2}^{-1} B^{\mathrm{T}}$ so that $\tilde{A}=A-\Sigma P$ and (12.14.14) can be written as

$$
\begin{equation*}
A^{\mathrm{T}} P+P A+R_{1}-P \Sigma P=0 \tag{12.14.23}
\end{equation*}
$$

Note that (12.14.23) can be written in the form of the Lyapunov equation

$$
\begin{equation*}
(A-\Sigma P)^{\mathrm{T}} P+P(A-\Sigma P)+R_{1}+P \Sigma P=0 \tag{12.14.24}
\end{equation*}
$$

which is equivalent to (12.14.16) with $\tilde{R}=R_{1}+P \Sigma P$.
Next, we consider solutions of the Riccati equation (12.14.23). For convenience we let $R_{1}=E_{1}^{\mathrm{T}} E_{1}$, where $E_{1} \in \mathbb{R}^{q \times n}$ characterizes a performance variable $z(t)=E_{1} x(t)$. The following examples help to clarify conditions under which (12.14.23) has a solution.

Example 12.14.3. Let $A=0, B=0, E_{1} \neq 0$, and $R_{2}=I$. In this case (A, B) is not stabilizable, and (12.14.23) becomes $R_{1}=0$. Thus, (12.14.23) has no solution.

Example 12.14.4. Let $A=I, B=0, E_{1}=I$, and $R_{2}=I$. In this case (A, B) is not stabilizable. Furthermore, $(12.14 .23)$ becomes $2 P+I=0$
so that $P=-\frac{1}{2} I$ is the only solution. Thus, (12.14.23) does not have a nonnegative-semidefinite solution.

Example 12.14.5. Let $n>1, A=0, B=I, E_{1}=I$ and $R_{2}=I$. In this case (A, B) is stabilizable. Furthermore, (12.14.23) becomes $P^{2}=I$, which is satisfied by infinitely many real symmetric matrices P given by $P=S\left[\begin{array}{cc} \pm 1 & 0 \\ 0 & \pm 1\end{array}\right] S^{\mathrm{T}}$, where $S \in \mathbb{R}^{2 \times 2}$ is orthogonal. However, $P=I$ is the only nonnegative-semidefinite solution. In fact, P is positive definite.

Example 12.14.6. Let $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right], B=\left[\begin{array}{l}1 \\ 1\end{array}\right], E_{1}=\left[\begin{array}{ll}0 & 0\end{array}\right]$ and $R_{2}=1$ so that (A, B) is controllable but neither of the states is weighted. In this case (12.14.23) has four nonnegative-semidefinite solutions given by
$P_{1}=\left[\begin{array}{cc}18 & -24 \\ -24 & 36\end{array}\right], \quad P_{2}=\left[\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right], \quad P_{3}=\left[\begin{array}{ll}0 & 0 \\ 0 & 4\end{array}\right], \quad P_{4}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.
The corresponding feedback matrices are given by $K_{1}=\left[\begin{array}{cc}6 & -12\end{array}\right], K_{2}=$ $\left[\begin{array}{ll}-2 & 0\end{array}\right], K_{3}=\left[\begin{array}{cc}0 & -4\end{array}\right]$, and $K_{4}=\left[\begin{array}{cc}0 & 0\end{array}\right]$. Letting $\tilde{A}_{i}=A-\Sigma P_{i}$, it follows that $\operatorname{spec}\left(\tilde{A}_{1}\right)=\{-1,-2\}, \operatorname{spec}\left(\tilde{A}_{2}\right)=\{-1,2\}, \operatorname{spec}\left(\tilde{A}_{3}\right)=\{1,-2\}$, and $\operatorname{spec}\left(\tilde{A}_{4}\right)=\{1,2\}$. Thus, P_{1} is the only solution that stabilizes the closed-loop system, while the solutions P_{2} and P_{3} partially stabilize the closed-loop system. Note also that the closed-loop poles that differ from those of the open-loop system are mirror images of the open-loop poles as reflected across the imaginary axis. Finally, note that these solutions satisfy the partial ordering $P_{1} \geq P_{2} \geq P_{4}$ and $P_{1} \geq P_{3} \geq P_{4}$, and that "larger" solutions have a more stabilizing effect than "smaller" solutions. Moreover, letting $J\left(K_{i}\right)=\operatorname{tr} P_{i} V$, it can be seen that larger solutions incur a greater closed-loop cost, with the greatest cost incurred by the stabilizing solution P_{4}. However, the expression $J(K)=\operatorname{tr} P V$ requires justification when $A+B K$ is not asymptotically stable.

Example 12.14.7. Let $A=\left[\begin{array}{rr}-1 & 0 \\ 0 & 0\end{array}\right], B=\left[\begin{array}{l}0 \\ 1\end{array}\right], E_{1}=\left[\begin{array}{ll}0 & 0\end{array}\right]$ and $R_{2}=1$ so that (A, B) is stabilizable, while only the asymptotically stable eigenvalue is weighted. Now, $P=0$ is the only nonnegative-semidefinite solution of (12.14.23). This solution is not asymptotically stabilizing since reflecting the eigenvalue at the origin across the imaginary axis fails to move it into the open left half plane.

Example 12.14.8. Let $A=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right], B=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], E_{1}=\left[\begin{array}{ll}0 & 0\end{array}\right]$, and $R_{2}=1$. Taking the trace of (12.14.23) yields $\operatorname{tr} P^{2}=0$. Thus, the only nonnegative-semidefinite matrix P satisfying (12.14.23) is $P=0$, which implies that $K=0$ and $\tilde{A}=A$. Consequently, the open-loop eigenvalues $\pm \jmath$ are unmoved by the feedback gain (12.14.13) even though (A, B) is controllable. As in the previous example, reflecting these unweighted poles across the imaginary axis fails to move them into the open left half plane.

12.15 Solutions of the Riccati Equation

The following definitions will be useful in studying the various solutions to the Riccati equation.

Definition 12.15.1. A matrix $P \in \mathbb{R}^{n \times n}$ is a solution of the Riccati equation (12.14.23) if P is symmetric and satisfies (12.14.23). Furthermore, P is the stabilizing solution to $(12.14 .23)$ if $A-\Sigma P$ is asymptotically stable. Finally, a solution P is the maximal solution to (12.14.23) if $P \geq P^{\prime}$ for every solution P^{\prime} to (12.14.23).

Theorem 12.15.2. There exists a nonnegative-semidefinite solution to (12.14.23) if and only if $\left(A, B, E_{1}\right)$ has no CRHP eigenvalues that are uncontrollable and observable.

Proof. To prove necessity, suppose that (12.14.23) has a nonnegativesemidefinite solution P, let $\tilde{A}=A-\Sigma P$, and suppose that $\left(A, B, E_{1}\right)$ has a CRHP eigenvalue that is uncontrollable and observable. It thus follows from Proposition 12.8.9 that there exists an invertible matrix $S \in \mathbb{R}^{n \times n}$ such that

$$
S A S^{-1}=\left[\begin{array}{cc}
A_{1} & A_{12} \\
0 & A_{2}
\end{array}\right], \quad S B=\left[\begin{array}{c}
B_{1} \\
0
\end{array}\right], \quad E_{1} S^{-1}=\left[\begin{array}{ll}
E_{11} & E_{12}
\end{array}\right]
$$

where $\left(A_{2}, E_{12}\right)$ is observable and A_{2} is not asymptotically stable. Next, note that

$$
\begin{aligned}
\int_{0}^{t} e^{\tau \tilde{A}^{\mathrm{T}}} E_{1}^{\mathrm{T}} E_{1} e^{\tau \tilde{A}} \mathrm{~d} \tau & \leq \int_{0}^{t} e^{\tau \tilde{A}^{\mathrm{T}}} \tilde{R} e^{\tau \tilde{A}} \mathrm{~d} \tau=-\int_{0}^{t} e^{\tau \tilde{A}^{\mathrm{T}}}\left(\tilde{A}^{\mathrm{T}} P+P \tilde{A}\right) e^{\tau \tilde{A}} \mathrm{~d} \tau \\
& =-\int_{0}^{t} \frac{\mathrm{~d}}{\mathrm{~d} \tau} e^{\tau \tilde{A}^{\mathrm{T}}} P e^{\tau \tilde{A}} \mathrm{~d} \tau=P-e^{t \tilde{A}^{\mathrm{T}}} P e^{t \tilde{A}} \leq P
\end{aligned}
$$

Next, it can be seen that the $(2,2)$ block of this inequality in the transformed basis is given by

$$
\int_{0}^{t} e^{\tau A_{2}^{\mathrm{T}}} E_{12}^{\mathrm{T}} E_{12} e^{\tau A_{2}} \mathrm{~d} \tau \leq\left[\begin{array}{ll}
0 & I
\end{array}\right] S^{\mathrm{T}} P S\left[\begin{array}{l}
0 \\
I
\end{array}\right]
$$

Since $\left(A_{2}, E_{12}\right)$ is observable and the integral is bounded, it follows from Proposition 12.4 .3 that A_{2} is asymptotically stable, which is a contradiction.

Conversely, suppose that $\left(A, B, E_{1}\right)$ has no CRHP eigenvalues that are uncontrollable and observable. Then, it follows from Theorem 5.4.1
that there exists an invertible matrix $S \in \mathbb{F}^{n \times n}$ such that

$$
S A S^{-1}=\left[\begin{array}{cc}
A_{1} & 0 \\
A_{21} & A_{2}
\end{array}\right], \quad S B=\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right], E_{1} S^{-1}=\left[\begin{array}{ll}
E_{11} & 0
\end{array}\right],
$$

where $\left(A_{1}, B_{1}\right)$ is stabilizable and $\left(A_{1}, E_{11}\right)$ is observable. Theorem XXX thus implies that the reduced Riccati equation $A_{1}^{\mathrm{T}} P_{1}+P_{1} A_{1}+E_{11}^{\mathrm{T}} E_{11}-$ $P_{1} B_{1} R_{2}^{-1} B_{1}^{\mathrm{T}} P_{1}=0$ has a nonnegative-semidefinite solution P_{1}. Finally, the Riccati equation (12.14.23) is now satisfied by $P=S^{\mathrm{T}}\left[\begin{array}{cc}P_{1} & 0 \\ 0 & 0\end{array}\right] S$, which is nonnegative semidefinite.
where $\left(A_{2}, E_{12}\right)$ is observable and $\lambda \in \operatorname{spec}\left(A_{2}\right)$. Since (12.14.23) has a nonnegative-semidefinite solution, it follows from Proposition XXX that $\left(\hat{A}-\hat{\Sigma} \hat{P}, \hat{E}_{1}\right)$ is controllably asymptotically stable, where $\hat{\Sigma}=\left[\begin{array}{cc}\Sigma_{1} & 0 \\ 0 & 0\end{array}\right], \Sigma_{1}=$ $B_{1} R_{2}^{-1} B_{1}^{\mathrm{T}}$, and $\hat{P}=S^{\mathrm{T}} P S=\left[\begin{array}{ccc}P_{1}^{1} & P_{12} \\ P_{12}^{1} & P_{2}\end{array}\right]$. Therefore, Proposition XXX implies that $\hat{E}_{1} e^{t(\hat{A}-\hat{\Sigma} \hat{P})} \rightarrow 0$ as $t \rightarrow \infty$. Consequently, $E_{11} e^{t\left(A_{1}-\Sigma_{1} P_{1}\right)} \rightarrow 0$ as $t \rightarrow \infty$ and

$$
\begin{equation*}
E_{11} \int_{0}^{t} e^{t\left(A_{1}-\Sigma_{1} P_{1}\right)}\left(A_{12}-\Sigma_{1} P_{12}\right) e^{(t-\tau) \hat{A}_{2}} \mathrm{~d} t+E_{12} e^{t A_{2}} \rightarrow 0 \text { as } t \rightarrow \infty . \tag{12.15.1}
\end{equation*}
$$

For large $t>0$, the first term has norm proportional to $\left|e^{\lambda_{1} t}\right|$, where $\operatorname{Re} \lambda_{1}<\operatorname{Re} \lambda$, and the second term has norm proportional to $\left|e^{\lambda t}\right|$. However, $\operatorname{Re} \lambda \geq 0$ contradicts (12.15.1).

Conversely, suppose that (A, B, E_{1}) has no ORHP eigenvalues that are uncontrollable and observable. Then, it follows from Proposition 12.8.9 that there exists a nonsingular matrix $S \in \mathbb{R}^{n \times n}$ such that

$$
\begin{align*}
S A S^{-1} & =\left[\begin{array}{cccc}
A_{1} & A_{13} & 0 & 0 \\
0 & A_{3} & 0 & 0 \\
A_{21} & A_{23} & A_{2} & A_{24} \\
0 & A_{43} & 0 & A_{4}
\end{array}\right], \quad S B=\left[\begin{array}{c}
B_{1} \\
0 \\
B_{2} \\
0
\end{array}\right], \\
E_{1} S^{-1} & =\left[\begin{array}{cccc}
E_{11} & E_{13} & 0 & 0
\end{array}\right] . \tag{12.15.2}
\end{align*}
$$

where $\left(A_{1}, B_{1}, E_{11}\right)$ is controllable and observable, $\left(A_{2}, B_{2}\right)$ is controllable, (A_{3}, E_{13}) is observable, and A_{3} is asymptotically stable. Therefore,

$$
\left(\left[\begin{array}{cc}
A_{1} & A_{13} \\
0 & A_{3}
\end{array}\right],\left[\begin{array}{c}
B_{1} \\
0
\end{array}\right],\left[\begin{array}{ll}
E_{11} & E_{13}
\end{array}\right]\right)
$$

is stabilizable and detectable, and thus Theorem 1 implies that there exists
a nonnegative-semidefinite solution \hat{P}_{1} to

$$
\begin{array}{r}
{\left[\begin{array}{cc}
A_{1} & A_{13} \\
0 & A_{3}
\end{array}\right]^{\mathrm{T}} \hat{P}_{1}+\hat{P}_{1}\left[\begin{array}{cc}
A_{1} & A_{13} \\
0 & A_{3}
\end{array}\right]+\left[\begin{array}{cc}
E_{11}^{\mathrm{T}} E_{11} & E_{11}^{\mathrm{T}} E_{13} \\
E_{13}^{\mathrm{T}} E_{11} & E_{13}^{\mathrm{T}} E_{13}
\end{array}\right]} \\
-\hat{P}_{1}\left[\begin{array}{cc}
B_{1} R_{2}^{-1} B_{1}^{\mathrm{T}} & 0 \\
0 & 0
\end{array}\right] \hat{P}_{1}=0 . \tag{12.15.3}
\end{array}
$$

Consequently, $P=S^{\mathrm{T}} \operatorname{diag}\left(\hat{P}_{1}, 0,0\right) S$ is a nonnegative-semidefinite solution of (12.14.23).

Corollary 12.15.3. Suppose that (A, B) is stabilizable. Then, (12.14.23) has a nonnegative-semidefinite solution.

Theorem 12.15.4. Let P be a nonnegative-semidefinite solution to (12.14.23). Then, P is maximal if and only if $\operatorname{spec}(A-\Sigma P) \subset$ CLHP.

Proof. See

Note that, since the ordering " \leq " is antisymmetric, there exists at most one maximal solution to (12.14.23). Therefore, it follows from Theorem 12.15.2 that (12.14.23) has at most one nonnegative-semidefinite solution P such that $\operatorname{spec}(A-\Sigma P) \subset$ CLHP.

Corollary 12.15.5. There exists at most one stabilizing solution (12.14.23). If P is the stabilizing solution to (12.14.23), then P is nonnegative-semidefinite and it is also the maximal solution (12.14.23).

Proof. Suppose there exist two stabilizing solutions P_{1} and P_{2} to (12.14.23). Then,

$$
\begin{aligned}
& A^{\mathrm{T}} P_{1}+P_{1} A+R_{1}-P_{1} \Sigma P_{1}=0, \\
& A^{\mathrm{T}} P_{2}+P_{2} A+R_{1}-P_{2} \Sigma P_{2}=0
\end{aligned}
$$

Subtracting these equations and rearranging yields

$$
\left(A-\Sigma P_{1}\right)^{\mathrm{T}}\left(P_{1}-P_{2}\right)+\left(P_{1}-P_{2}\right)\left(A-\Sigma P_{2}\right)=0
$$

Since $A-\Sigma P_{1}$ and $A-\Sigma P_{2}$ are asymptotically stable, it follows from Proposition 7.2.3 and Proposition 11.7.3 that $P_{1}-P_{2}=0$. Hence, there exists at most one stabilizing solution to (12.14.23).

Next, suppose that there exists a stabilizing P to (12.14.23). Then, it follows from (12.14.23) that

$$
P=\int_{0}^{\infty} e^{t(A-\Sigma P)^{\mathrm{T}}}\left(R_{1}+P \Sigma P\right) e^{t(A-\Sigma P)} \mathrm{d} t,
$$

which shows that P is nonnegative semidefinite. Next, let P^{\prime} be a solution to (12.14.23). Then, it follows that

$$
(A-\Sigma P)^{\mathrm{T}}\left(P-P^{\prime}\right)+\left(P-P^{\prime}\right)(A-\Sigma P)+\left(P-P^{\prime}\right) \Sigma\left(P-P^{\prime}\right)=0,
$$

which implies that $P^{\prime} \leq P$. Thus, P is also the maximal solution to (12.14.23).

Next, we consider the existence of a maximal solution to (12.14.23). The following lemma is needed.

Lemma 12.15.6. Let (A, B) be controllable, let $t_{1}>0$, and define

$$
\begin{equation*}
P=\left(\int_{0}^{t_{1}} e^{-t A} \Sigma e^{-t A^{\mathrm{T}}} \mathrm{~d} t\right)^{-1} \tag{12.15.4}
\end{equation*}
$$

Then, $A-\Sigma P$ is asymptotically stable.
Proof. It can be seen that P satisfies

$$
(A-\Sigma P)^{\mathrm{T}} P+P(A-\Sigma P)+P\left(\Sigma+e^{t_{1} A} \Sigma e^{t_{1} A^{\mathrm{T}}}\right) P=0 .
$$

Since $\left(A-\Sigma P, \Sigma+e^{t_{1} A} \Sigma e^{t_{1} A^{\mathrm{T}}}\right)$ is observable and P is positive definite, it follows from Proposition 11.7.6 that $A-\Sigma P$ is asymptotically stable.

Theorem 12.15.7. Suppose that (A, B) is stabilizable. Then, there exists a maximal solution P to (12.14.23). Furthermore, $\operatorname{spec}(A-\Sigma P) \subset$ CLHP.

Proof. Since (A, B) is stabilizable, it follows from Corollary 12.6.3 that there exists an invertible matrix $S \in \mathbb{R}^{n \times n}$ such that

$$
S A S^{-1}=\left[\begin{array}{cc}
A_{1} & A_{12} \tag{12.15.5}\\
0 & A_{2}
\end{array}\right], \quad S B=\left[\begin{array}{c}
B_{1} \\
0
\end{array}\right],
$$

where $A_{1} \in \mathbb{R}^{r \times r},\left(A_{1}, B_{1}\right)$ is controllable, and A_{2} is asymptotically stable. Next, since the pair $\left(A_{1}, B_{1}\right)$ is controllable, there exists a positive-definite matrix $\hat{P}_{0} \in \mathbb{R}^{r \times r}$ such that $A_{1}-B_{1} R_{2}^{-1} B_{1}^{\mathrm{T}} \hat{P}_{0}$ is asymptotically stable. It follows from Lemma 12.15.6 that one such matrix is given by

$$
\begin{equation*}
\hat{P}_{0}=\left(\int_{0}^{1} e^{-t A_{1}} B_{1} \Sigma B_{1}^{\mathrm{T}} e^{-t A_{1}^{\mathrm{T}}} \mathrm{~d} t\right)^{-1} . \tag{12.15.6}
\end{equation*}
$$

Thus, for the nonnegative-semidefinite matrix

$$
P_{0} \triangleq\left[\begin{array}{cc}
\hat{P}_{0} & 0 \\
0 & 0
\end{array}\right]
$$

it follows that $A-\Sigma P_{0}$ is asymptotically stable.
Next, it follows from Proposition 12.1? that there exists a nonnegativesemidefinite matrix $P \in \mathbb{F}^{n \times n}$ satisfying (12.14.23), that is,

$$
\begin{equation*}
(A-\Sigma P)^{\mathrm{T}} P+P(A-\Sigma P)+P \Sigma P+R_{1}=0 \tag{12.15.7}
\end{equation*}
$$

Now, define a sequence of nonnegative-semidefinite matrices $\left\{P_{k}\right\}_{k=0}^{\infty}$ satisfying

$$
\begin{equation*}
\left(A-\Sigma P_{k}\right)^{\mathrm{T}} P_{k+1}+P_{k+1}\left(A-\Sigma P_{k}\right)+P_{k} \Sigma P_{k}+R_{1}^{\prime}=0, \tag{12.15.8}
\end{equation*}
$$

where $R_{1}^{\prime} \in \mathbb{R}^{n \times n}$ is symmetric and satisfies $R_{1}^{\prime} \geq R_{1}$. Assuming now that $A-M \operatorname{Sig} P_{k}$ is asymptotically stable, we show that $A-\Sigma P_{k+1}$ is asymptotically stable. To do this, first note that (12.20??) and (12.21??) imply that

$$
\begin{equation*}
\left(A-\Sigma P_{k}\right)^{\mathrm{T}} P+P\left(A-\Sigma P_{k}\right)+P_{k} \Sigma P_{k}-\left(P-P_{k}\right) \Sigma\left(P-P_{k}\right)+R_{1}=0 \tag{12.15.9}
\end{equation*}
$$

Subtracting (12.15.9) from (12.15.8) yields

$$
\begin{array}{r}
\left(A-\Sigma P_{k}\right)^{\mathrm{T}}\left(P_{k+1}-P\right)+\left(P_{k+1}-P\right)\left(A-\Sigma P_{k}\right) \\
+\left(P-P_{k}\right) \Sigma\left(P-P_{k}\right)+R_{1}^{\prime}-R_{1}=0, \tag{12.15.10}
\end{array}
$$

which, since $A-\Sigma P_{k}$ is asymptotically stable, implies that

$$
\begin{equation*}
P_{k+1}-P=\int_{0}^{\infty} e^{t\left(A-\Sigma P_{k}\right)^{\mathrm{T}}}\left[\left(P-P_{k}\right) \Sigma\left(P-P_{k}\right)+R_{1}^{\prime}-R_{1}\right] e^{t\left(A-\Sigma P_{k}\right)} \mathrm{d} t \geq 0 . \tag{12.15.11}
\end{equation*}
$$

Hence, $P_{k+1} \geq P$.
Next, note that (12.15.8) is equivalent to

$$
\begin{array}{r}
\left(A-\Sigma P_{k+1}\right)^{\mathrm{T}} P_{k+1}+P_{k+1}\left(A-\Sigma P_{k+1}\right)+P_{k+1} \Sigma P_{k+1} \\
+\left(P_{k+1}-P_{k}\right) \Sigma\left(P_{k+1}-P_{k}\right)+R_{1}^{\prime}=0 . \tag{12.15.12}
\end{array}
$$

Subtracting (12.15.9) with k replaced by $k+1$ from (12.15.12) yields

$$
\begin{equation*}
\left(A-\Sigma P_{k+1}\right)^{\mathrm{T}}\left(P_{k+1}-P\right)+\left(P_{k+1}-P\right)\left(A-\Sigma P_{k+1}\right)=M, \tag{12.15.13}
\end{equation*}
$$

where $M \triangleq-\left(P_{k+1}-P_{k}\right) \Sigma\left(P_{k+1}-P_{k}\right)-\left(P_{k+1}-P\right) \Sigma\left(P_{k+1}-P\right)-R_{1}^{\prime}+R_{1} \leq$ 0 .

Now, let $\lambda \in \mathbb{C}$ and nonzero $x \in \mathbb{C}^{n}$ satisfy $\left(A-\Sigma P_{k+1}\right) x=\lambda x$. Then, it follows from (12.15.13) that

$$
\begin{equation*}
(\lambda+\bar{\lambda}) x^{*}\left(P_{k+1}-P\right) x=x^{*} M x . \tag{12.15.14}
\end{equation*}
$$

Since $\lambda+\bar{\lambda} \geq 0$ and $P_{k+1} \geq P$, it follows from (12.15.14) that $x^{*} M x=0$, which in turn implies that

$$
\begin{equation*}
x^{*}\left(P_{k+1}-P_{k}\right) \Sigma\left(P_{k+1}-P_{k}\right) x=0 . \tag{12.15.15}
\end{equation*}
$$

Furthermore, since Σ is nonnegative semidefinite, it follows that $\Sigma\left(P_{k+1}-\right.$ $\left.P_{k}\right) x=0$, which implies that

$$
\begin{equation*}
\left(A-\Sigma P_{k}\right) x=\left(A-\Sigma P_{k+1}\right) x=\lambda x . \tag{12.15.16}
\end{equation*}
$$

However, $A-\Sigma P_{k}$ is asymptotically stable, which implies that $\operatorname{Re} \lambda<0$, which is a contradiction. Hence, $A-\Sigma P_{k+1}$ is asymptotically stable.

Next, subtract (12.15.12) with k replaced by $k-1$ from (12.15.8) to obtain

$$
\begin{array}{r}
\left(A-\Sigma P_{k}\right)^{\mathrm{T}}\left(P_{k}-P_{k+1}\right)+\left(P_{k}-P_{k+1}\right)\left(A-\Sigma P_{k}\right) \\
+\left(P_{k}-P_{k-1}\right) \Sigma\left(P_{k}-P_{k-1}\right)=0, \tag{12.15.17}
\end{array}
$$

which, since $A-\Sigma P_{k}$ is asymptotically stable, implies that

$$
\begin{equation*}
P_{k}-P_{k+1}=\int_{0}^{\infty} e^{t\left(A-\Sigma P_{k}\right)^{\mathrm{T}}}\left(P_{k}-P_{k+1}\right) \Sigma\left(P_{k}-P_{k+1}\right) e^{t\left(A-\Sigma P_{k}\right)} \mathrm{d} t \geq 0 . \tag{12.15.18}
\end{equation*}
$$

Hence, $\left\{P_{k}\right\}_{k=0}^{\infty}$ is a nonincreasing sequence of nonnegative-semidefinite matrices bounded from below by P. Thus, $P_{+} \triangleq \lim _{k \rightarrow \infty} P_{k}$ exists.

Now, let $R_{1}^{\prime}=R_{1}$. Letting $k \rightarrow \infty$ it follows from (12.15.8) that P_{+} is a solution to (12.14.23). Furthermore, since $A-\Sigma P_{k}$ is asymptotically stable for all $k \in \mathbb{P}$ it follows that $\operatorname{spabs}\left(A-\Sigma P_{+}\right) \leq 0$. Also note that $P_{+} \geq P$ for every solution P of (12.14.23), which implies that P_{+}is the maximal solution of (12.14.23).

Proposition 12.15.8. Suppose that (A, B) is stabilizable, let $R_{1}^{\prime} \in \mathbb{N}^{n}$ satisfy $R_{1}^{\prime} \geq R_{1}$, and let P_{+}and P_{+}^{\prime} denote, respectively, the maximal solutions of (12.14.23) and

$$
\begin{equation*}
A^{\mathrm{T}} P+P A+R_{1}^{\prime}-P \Sigma P=0 . \tag{12.15.19}
\end{equation*}
$$

Then, $P_{+}^{\prime} \geq P_{+}$.
Proof. Letting $k \rightarrow \infty$ in (12.15.8), it follows that $P_{0} \triangleq \lim _{k \rightarrow \infty} P_{k}$ is a solution of (12.15.19) and satisfies $P_{0} \geq P$ for every solution of (12.15.8). Hence, $P_{0}=P_{+}^{\prime}$ and thus $P_{0} \geq P_{+}$.

Proposition 12.15.9. Suppose that (A, B) is stabilizable and $\left(A, E_{1}\right)$ is detectable. Then, there exists a nonnegative-semidefinite solution P to
(12.14.23) such that $A-\Sigma P$ is asymptotically stable. If, in addition, $\left(A, E_{1}\right)$ is observable, then P is positive definite.

Proof. Define a sequence of nonnegative-semidefinite matrices $\left\{P_{k}\right\}_{k=0}^{\infty}$ satisfying

$$
\begin{equation*}
\left(A+B K_{k}\right)^{\mathrm{T}} P_{k}+P_{k}\left(A+B K_{k}\right)+R_{1}+K_{k}^{\mathrm{T}} R_{2} K_{k}=0 \tag{12.15.20}
\end{equation*}
$$

where $K_{0} \in \mathbb{R}^{m \times n}$ is such that $A+B K_{0}$ is asymptotically stable, and, for all $k \in \mathbb{P}, K_{k}$ is given by

$$
\begin{equation*}
K_{k+1}=-R_{2}^{-1} B^{\mathrm{T}} P_{k} \tag{12.15.21}
\end{equation*}
$$

Therefore, P_{0} is nonnegative semidefinite.
Next, note the identity

$$
\begin{align*}
(A & \left.-\Sigma P_{k}\right)^{\mathrm{T}} P_{k}+P_{k}\left(A-\Sigma P_{k}\right)+P_{k} \Sigma P_{k} \\
& =\left(A-\Sigma P_{k-1}\right)^{\mathrm{T}} P_{k}+P_{k}\left(A-\Sigma P_{k-1}\right)+P_{k-1} \Sigma P_{k-1} \\
& -\left(P_{k}-P_{k-1}\right) \Sigma\left(P_{k}-P_{k-1}\right) \tag{12.15.22}
\end{align*}
$$

or, equivalently,

$$
\begin{align*}
& \left(A+B K_{k+1}\right)^{\mathrm{T}} P_{k}+P_{k}\left(A+B K_{k+1}\right)+R_{1}+K_{k+1}^{\mathrm{T}} R_{2} K_{k+1} \\
& \quad=\left(A+B K_{k}\right)^{\mathrm{T}} P_{k}+P_{k}\left(A+B K_{k}\right)+R_{1}+K_{k}^{\mathrm{T}} R_{2} K_{k}- \\
& \quad\left(K_{k}-K_{k+1}\right)^{\mathrm{T}} R_{2}\left(K_{k}-K_{k+1}\right) . \tag{12.15.23}
\end{align*}
$$

Next, using (12.15.20) it follows from (12.15.23) that

$$
\begin{equation*}
\left(A+B K_{k+1}\right)^{\mathrm{T}} P_{k}+P_{k}\left(A+B K_{k+1}\right)+R_{1}+N_{k}+K_{k+1}^{\mathrm{T}} R_{2} K_{k+1}=0 \tag{12.15.24}
\end{equation*}
$$

where

$$
\begin{equation*}
N_{k} \triangleq\left(K_{k}-K_{k+1}\right)^{\mathrm{T}} R_{2}\left(K_{k}-K_{k+1}\right) \geq 0 \tag{12.15.25}
\end{equation*}
$$

Since, by assumption, $\left(A, E_{1}\right)$ is detectable, it follows from Lemma 12.17.33, that the pair $\left(A+B K_{k+1},\left[R_{1}+N_{k}+K_{k+1}^{\mathrm{T}} R_{2} K_{k+1}\right]^{1 / 2}\right)$ is also detectable for all $k \in \mathbb{N}$. Now, assume that P_{k} is nonnegative semidefinite so that Proposition 12.12.4 implies that $A+B K_{k+1}$ is asymptotically stable. Next, replacing k by $k+1$ in (12.15.20) yields

$$
\begin{equation*}
\left(A+B K_{k+1}\right)^{\mathrm{T}} P_{k+1}+P_{k+1}\left(A+B K_{k+1}\right)+R_{1}+K_{k+1}^{\mathrm{T}} R_{2} K_{k+1}=0 \tag{12.15.26}
\end{equation*}
$$

Since $A+B K_{k+1}$ is asymptotically stable, it follows that P_{k+1} is nonnegative semidefinite.

Next, subtracting (12.15.26) from (12.15.24) yields

$$
\begin{equation*}
\left(A+B K_{k+1}^{\mathrm{T}}\right)\left(P_{k}-P_{k+1}\right)+\left(P_{k}-P_{k+1}\right)\left(A+B K_{k+1}\right)+N_{k}=0, \tag{12.15.27}
\end{equation*}
$$

which, since $A+B K_{k+1}$ is asymptotically stable, implies that $\left\{P_{k}\right\}_{k=0}^{\infty}$ is a nonincreasing sequence of nonnegative-semidefinite matrices. Thus, $P \triangleq$ $\lim _{k \rightarrow \infty} P_{k}$ exists and satisfies

$$
\begin{equation*}
(A+B K)^{\mathrm{T}} P+P(A+B K)+R_{1}+K^{\mathrm{T}} R_{2} K=0 . \tag{12.15.28}
\end{equation*}
$$

Furthermore, $K \triangleq \lim _{k \rightarrow \infty} K_{k}=-R_{2}^{-1} B^{\mathrm{T}} P$ also exists. Next, since $\left(A+B K,\left[R_{1}+K^{\mathrm{T}} R_{2} K\right]^{1 / 2}\right)$ is detectable, Proposition 12.12.4 implies that $A+B K$ is asymptotically stable.

Next, assume that $\left(A, E_{1}\right)$ is observable so that $\left(A+B K,\left[R_{1}+K^{T} R_{2} K\right]^{1 / 2}\right)$ is observable. Since $A+B K$ is asymptotically stable, it follows from (12.15.28) that P is positive definite.

Theorem 12.15.10. (12.14.23) has a nonnegative-semidefinite solution if and only if every CRHP eigenvalue of $\left(A, B, E_{1}\right)$ is either controllable or unobservable.

Theorem 12.15.11. The following statements hold:
i) (12.14.23) has at most one maximal solution.
ii) (12.14.23) has a nonnegative-semidefinite maximal solution if and only if it has a nonnegative-semidefinite solution and every unobservable eigenvalue of $\left(A, B, E_{1}\right)$ is controllable.

Proof. To prove i), suppose that P_{1} and P_{2} are maximal solutions of (12.14.23). Then, $P_{1} \leq P_{2}$ and $P_{2} \leq P_{1}$. Since " \leq " is antisymmetric, it follows that $P_{1}=P_{2}$.

To prove the necessity part of $i i$), suppose that (12.14.23) has a nonnegativesemidefinite solution P and $\left(A, B, E_{1}\right)$ has an imaginary eigenvalue that is unobservable and uncontrollable. Then, there exists a nonsingular matrix $S \in \mathbb{R}^{n \times n}$ such that

$$
S A S^{-1}=\left[\begin{array}{cc}
A_{1} & 0 \\
A_{21} & A_{2}
\end{array}\right], \quad S B=\left[\begin{array}{c}
B_{1} \\
0
\end{array}\right], \quad E_{1} S^{-1}=\left[\begin{array}{ll}
E_{11} & 0
\end{array}\right],
$$

where $\operatorname{spec}\left(A_{2}\right) \subset \jmath_{\mathbb{R}}$. Therefore, $P=S^{\mathrm{T}}\left[\begin{array}{cc}P_{1} & P_{12} \\ P_{12}^{\mathrm{T}} & P_{2}\end{array}\right] S$, where P_{2} satisfies $A_{2}^{\mathrm{T}} P_{2}+P_{2} A_{2}=0$. Letting \hat{P}_{2} be a nonzero nonnegative-semidefinite solution of $A_{2}^{\mathrm{T}} \hat{P}_{2}+\hat{P}_{2} A_{2}=0$, it follows that $\hat{P}=S^{\mathrm{T}}\left[\begin{array}{cc}P_{1} & P_{12} \\ P_{12}^{\mathrm{T}} & P_{2}+\alpha \hat{P}_{2}\end{array}\right] S$ is a solution of
(12.14.23) for all $\alpha>0$. Therefore, (12.14.23) does not have a maximal solution.

To prove the sufficiency part of $i i$) suppose that (12.14.23) has a nonnegative-semidefinite solution and every unobservable imaginary eigenvalue of $\left(A, B, E_{1}\right)$ is controllable. Then, (TBD).

Theorem 12.15.12. (12.14.23) has a solution such that $\operatorname{spec}(A-$ $\Sigma P) \subset$ CLHP if and only if (TBD).

Theorem 12.15.13. The following statements are equivalent:
i) (12.14.23) has a maximal solution P satisfying $\operatorname{spec}(A-\Sigma P) \subset$ CLHP.
ii) (12.14.23) has a unique nonnegative-semidefinite solution P satisfying $\operatorname{spec}(A-\Sigma P) \subset$ CLHP.
iii) (A, B) is stabilizable.

Proof. To prove that $i i \Longrightarrow i i i)$, suppose that (A, B) is not stabilizable. If $\left(A, B, E_{1}\right)$ has a CRHP eigenvalue that is uncontrollable and observable, then (12.14.23) does not have a nonnegative-semidefinite solution. If (12.14.23) has a nonnegative-semidefinite solution but $\left(A, B, E_{1}\right)$ has an imaginary eigenvalue that is uncontrollable and unobservable, then (TBD).

Since (A, B) is stabilizable, it follows from Proposition 12.6.3 that there exists an invertible matrix $S \in \mathbb{R}^{n \times n}$ such that

$$
S A S^{-1}=\left[\begin{array}{cc}
A_{1} & A_{12} \\
0 & A_{2}
\end{array}\right], \quad S B=\left[\begin{array}{c}
B_{1} \\
0
\end{array}\right]
$$

where $A_{1} \in \mathbb{R}^{n \times n},\left(A_{1}, B_{1}\right)$ is controllable, and A_{2} is asymptotically stable. Next, since the pair $\left(A_{1}, B_{1}\right)$ is controllable, it follows that there exists a positive-definite matrix $\hat{P}_{0} \in \mathbb{R}^{n \times n}$ such that $A_{1}-B_{1} R_{2}^{-1} B_{1}^{\mathrm{T}} \hat{P}_{0}$ is asymptotically stable. It follows from Lemma 12.1 that one such matrix is given by

$$
\hat{P}_{0}=\left(\int_{0}^{1} e^{-t A_{1}} B_{1} R_{2}^{-1} B_{1}^{\mathrm{T}} e^{-t A_{1}^{\mathrm{T}}} \mathrm{~d} t\right)^{-1}
$$

Thus, $A-\Sigma P_{0}$ is asymptotically stable where,

$$
P_{0} \triangleq\left[\begin{array}{cc}
\hat{P}_{0} & 0 \\
0 & 0
\end{array}\right]
$$

Next, it follows from Proposition 12.1 that there exists a nonnegative-
semidefinite matrix $P \in \mathbb{R}^{n \times n}$ satisfying (12.14.23), that is,

$$
\begin{equation*}
(A-\Sigma P)^{\mathrm{T}} P+P(A-\Sigma P)+P \Sigma P+R_{1}=0 . \tag{12.15.29}
\end{equation*}
$$

Now, define a sequence of nonnegative-semidefinite matrices $\left\{P_{k}\right\}_{k=0}^{\infty}$ satisfying

$$
\begin{equation*}
\left(A-\Sigma P_{k}\right)^{\mathrm{T}} P_{k+1}+P_{k+1}\left(A-\Sigma P_{k}\right)+P_{k} \Sigma P_{k}+R_{1}^{\prime}=0, \quad k=0,1 \ldots, \tag{12.15.30}
\end{equation*}
$$

where $R_{1}^{\prime} \in \mathbb{R}^{n \times n}$ is symmetric and satisfies $R_{1}^{\prime} \geq R_{1}$. Assuming now that $A-\Sigma P_{k}$ is asymptotically stable, we show that $A-\Sigma P_{k+1}$ is stable. To do this, first note that 12.15 .40 and 12.15 .41 imply that

$$
\begin{equation*}
\left(A-\Sigma P_{k}\right)^{\mathrm{T}} P+P\left(A-\Sigma P_{k}\right)+P_{k} \Sigma P_{k}-\left(P-P_{k}\right) \Sigma\left(P-P_{k}\right)+R_{1}=0 . \tag{12.15.31}
\end{equation*}
$$

Subtracting (12.15.31) from (12.15.30) yields

$$
\begin{align*}
\left(A-\Sigma P_{k}\right)^{\mathrm{T}}\left(P_{k+1}-P\right) & +\left(P_{k+1}-P\right)\left(A-\Sigma P_{k}\right) \\
& +\left(P-P_{k}\right) \Sigma\left(P-P_{k}\right)+R_{1}^{\prime}-R_{1}=0 \tag{12.15.32}
\end{align*}
$$

which, since $A-\Sigma P_{k}$ is asymptotically stable, implies that

$$
\begin{equation*}
P_{k+1}-P=\int_{0}^{\infty} e^{t\left(A-\Sigma P_{k}\right)^{\mathrm{T}}}\left[\left(P-P_{k}\right) \Sigma\left(P-P_{k}\right)+R_{1}^{\prime}-R_{1}\right] e^{t\left(A-\Sigma P_{k}\right)} \mathrm{d} t \geq 0 . \tag{12.15.33}
\end{equation*}
$$

Hence, $P_{k+1} \geq P$. Next, note that (12.15.30) is equivalent to

$$
\begin{array}{r}
\left(A-\Sigma P_{k+1}\right)^{\mathrm{T}}\left(P_{k+1}+P_{k+1}\left(A-\Sigma P_{k+1}\right)+P_{k+1} \Sigma P_{k+1}+\right. \\
\left(P_{k+1}-P_{k}\right) \Sigma\left(P_{k+1}-P_{k}\right)+R_{1}^{\prime}=0 . \tag{12.15.34}
\end{array}
$$

Subtracting (12.15.31) with k replaced by $k+1$ from (12.15.34) yields

$$
\begin{array}{r}
\left(A-\Sigma P_{k}\right)^{\mathrm{T}}\left(P_{k+1}-P\right)+\left(P_{k+1}-P\right)\left(A-\Sigma P_{k+1}\right)= \\
-\left(P_{k+1}-P_{k}\right) \Sigma\left(P_{k+1}-P_{k}\right)-\left(P_{k+1}-P\right) \Sigma\left(P_{k+1}-P\right)-R_{1}^{\prime}+R_{1} . \tag{12.15.35}
\end{array}
$$

Now, let $\left(A-\Sigma P_{k+1}\right) x=\lambda x$ for $\lambda \in \mathbb{C}$ where $\operatorname{Re} \lambda \geq 0$ and nonzero $x \in \mathbb{C}^{n}$. Then, it follows from (12.15.35) that

$$
\begin{equation*}
(\lambda+\bar{\lambda}) x^{*}\left(P_{k+1}-P\right) x=x^{*} M x \tag{12.15.36}
\end{equation*}
$$

where $M \leq 0$ denotes the right hand side of (12.15.35). Since $\lambda+\bar{\lambda} \geq 0$ and $P_{k+1} \geq P$, it follows from (12.15.36) that $x^{*} M x=0$, which in turn implies

$$
\begin{equation*}
x^{*}\left(P_{k+1}-P_{k}\right) \Sigma\left(P_{k+1}-P_{k}\right) x=0 . \tag{12.15.37}
\end{equation*}
$$

Furthermore, since Σ is nonnegative-semidefinite, it follows that $\Sigma\left(P_{k+1}-\right.$ $\left.P_{k}\right) x=0$, which implies that

$$
\begin{equation*}
\left(A-\Sigma P_{k}\right) x=\left(A-\Sigma P_{k+1}\right) x=\lambda x . \tag{12.15.38}
\end{equation*}
$$

However, $A-\Sigma P_{k}$ is asymptotically stable, which implies that $\operatorname{Re} \lambda<0$, which is a contradiction. Hence, $A-\Sigma P_{k+1}$ is asymptotically stable.

Next, subtract (12.15.34) with k replaced by $k-1$ from (12.15.30) to obtain

$$
\begin{align*}
& \left(A-\Sigma P_{k}\right)^{\mathrm{T}}\left(P_{k}-P_{k+1}\right)+\left(P_{k}-P_{k+1}\right)\left(A-\Sigma P_{k}\right)+ \\
\left(P_{k}-\right. & \left.P_{k-1}\right) \Sigma\left(P_{k}-P_{k-1}\right)=0 \tag{12.15.39}
\end{align*}
$$

which, since $A-\Sigma P_{k}$ is asymptotically stable, implies that

$$
\begin{equation*}
P_{k}-P_{k+1}=\int_{0}^{\infty} e^{t\left(A-\Sigma P_{k}\right)^{\mathrm{T}}}\left(P_{k}-P_{k+1}\right) \Sigma\left(P_{k}-P_{k+1}\right) e^{t\left(A-\Sigma P_{k}\right)} \mathrm{d} t \geq 0 \tag{12.15.40}
\end{equation*}
$$

Hence, $\left\{P_{k}\right\}_{k=0}^{\infty}$ is a nonincreasing sequence of nonnegative-semidefinite matrices bounded from below by P. Thus, $P_{+} \triangleq \lim _{k \rightarrow \infty} P_{k}$ exists.

Now, let $R_{1}^{\prime}=R_{1}$. Letting $k \rightarrow \infty$, it follows from 12.21 that P_{+} is a solution to (12.14.23). Furthermore, since $A-\Sigma P_{k}$ is asymptotically stable for all $k=0,1,2, \ldots$, it follows that $\operatorname{Re} \lambda\left(A-\Sigma P_{+}\right) \leq 0$. Also note that $P_{+} \geq P$ for every solution P of (12.14.23), which implies that P_{+}is the maximal solution of (12.14.23).

Theorem 12.15.14. The following statements hold:
i) (12.14.23) has at most one stabilizing solution. If it exists, then it is nonnegative-semidefinite and maximal.
ii) (12.14.23) has a stabilizing solution if and only if (A, B) is stabilizable and every imaginary eigenvalue of $\left(A, E_{1}\right)$ is observable.

Proof. To prove i), suppose there exist two stabilizing solutions P_{1} and P_{2} to (12.14.23). Then,

$$
A^{\mathrm{T}} P_{1}+P_{1} A+R_{1}-P_{1} \Sigma P_{1}=0, A^{\mathrm{T}} P_{2}+P_{2} A+R_{1}-P_{2} \Sigma P_{2}=0
$$

Subtracting these equations and rearranging yields

$$
\left(A-\Sigma P_{1}\right)^{\mathrm{T}}\left(P_{1}-P_{2}\right)+\left(P_{1}-P_{2}\right)\left(A-\Sigma P_{2}\right)=0
$$

Since $A-\Sigma P_{1}$ and $A-\Sigma P_{2}$ are asymptotically stable, it follows from Proposition 11.2 that $P_{1}-P_{2}=0$. Hence, there exists at most one stabilizing
solution to (12.14.23).
Next, suppose that there exists a stabilizing solution P to (12.14.23). Then, it follows from (12.14.23) that

$$
P=\int_{0}^{\infty} e^{t(A-\Sigma P)^{\mathrm{T}}}\left(R_{1}+P \Sigma P\right) e^{t(A-\Sigma P)} \mathrm{d} t,
$$

which shows that P is nonnegative semidefinite. Next, let P^{\prime} be a solution to (12.14.23). Then, it follows that

$$
(A-\Sigma P)^{\mathrm{T}}\left(P-P^{\prime}\right)+\left(P-P^{\prime}\right)(A-\Sigma P)+\left(P-P^{\prime}\right) \Sigma\left(P-P^{\prime}\right)=0,
$$

which implies that $P^{\prime} \leq P$. Thus, P is the maximal solution to (12.14.23).
Finally, statement $i i$) follows from Theorem 1.5.
Proposition 12.15.15. Suppose that (A, B) is stabilizable, let $R_{1}^{\prime} \in$ $\mathbb{R}^{n \times n}$ satisfy $R_{1}^{\prime} \geq R_{1}$, and let P_{+}and P_{+}^{\prime} denote, respectively, the maximal solutions of (12.14.23) and

$$
\begin{equation*}
A^{\mathrm{T}} P+P A+R_{1}^{\prime}-P \Sigma P=0 . \tag{12.15.41}
\end{equation*}
$$

Then, $P_{+}^{\prime} \geq P_{+}$.
Proof. Letting $k \rightarrow \infty$ in (12.15.39) it follows that $P_{+}^{\prime} \triangleq \lim _{k \rightarrow \infty} P_{k}$ is a solution of (12.15.41) and satisfies $P_{+}^{\prime} \geq P$ for every solution P of (12.14.23). In particular, $P_{+}^{\prime} \geq P_{+}$.

Proposition 12.15.16. Let $R_{1}=0$, and let $P \in \mathbb{R}^{n \times n}$ be a nonnegativesemidefinite solution to (12.15.38). Then, P is the maximal solution to (12.14.23) if and only if

$$
\begin{equation*}
\operatorname{mspec}(A-\Sigma P)=[\operatorname{mspec}(-A) \cap \mathrm{OLHP}] \cup[\operatorname{mspec}(A) \cap \operatorname{CLHP}] . \tag{12.15.42}
\end{equation*}
$$

Proof. To prove necessity, let P be the maximal solution to (12.14.23) with $R_{1}=0$. Therefore, P satisfies

$$
(A-\Sigma P)^{\mathrm{T}} P+P A=0 .
$$

Next, let S be such that

$$
\hat{P}=S^{\mathrm{T}} P S=\left[\begin{array}{cc}
P_{1} & 0 \\
0 & 0
\end{array}\right],
$$

where P_{1} is positive definite. Now, define $\hat{A}=S^{-1} A S$ and $\hat{\Sigma}=S^{-1} \Sigma S^{-T}$
so that

$$
\begin{equation*}
(\hat{A}-\hat{\Sigma} \hat{P})^{\mathrm{T}} \hat{P}+\hat{P} \hat{A}=0 . \tag{12.15.43}
\end{equation*}
$$

Letting

$$
\hat{A}=\left[\begin{array}{cc}
\hat{A}_{1} & \hat{A}_{12} \\
\hat{A}_{21} & \hat{A}_{2}
\end{array}\right], \quad \hat{\Sigma}=\left[\begin{array}{cc}
\hat{\Sigma}_{1} & \hat{\Sigma}_{12} \\
\hat{\Sigma}_{12}^{\mathrm{T}} & \hat{\Sigma}_{2}
\end{array}\right],
$$

(12.15.43) implies that

$$
\begin{gather*}
\left(\hat{A}_{1}-\hat{\Sigma}_{1} \hat{P}_{1}\right)^{\mathrm{T}} P_{1}+P_{1} \hat{A}_{1}=0, \tag{12.15.44}\\
P_{1} \hat{A}_{12}=0 . \tag{12.15.45}
\end{gather*}
$$

Since P_{1} is positive definite it follows from (12.15.44) and (12.15.45) that

$$
\begin{align*}
\left(\hat{A}_{1}-\hat{\Sigma}_{1} P_{1}\right)^{\mathrm{T}} & =-P_{1} \hat{A}_{1} P_{1}^{-1}, \tag{12.15.46}\\
\hat{A}_{12} & =0 . \tag{12.15.47}
\end{align*}
$$

Hence,

$$
\hat{A}-\hat{\Sigma} \hat{P}=\left[\begin{array}{cc}
-P_{1}^{-1} \hat{A}_{1}^{\mathrm{T}} P_{1} & 0 \tag{12.15.48}\\
\hat{A}_{21}-\hat{\Sigma}_{21}^{\mathrm{T}} P_{1} & \hat{A}_{2}
\end{array}\right],
$$

where

$$
\hat{A}=\left[\begin{array}{cc}
\hat{A}_{1} & 0 \tag{12.15.49}\\
\hat{A}_{21} & \hat{A}_{2}
\end{array}\right] .
$$

Next, it follows from (12.15.48) that

$$
\begin{equation*}
\operatorname{mspec}(A-\Sigma P)=\operatorname{mspec}\left(-\hat{A}_{1}\right) \cup \operatorname{mspec}\left(\hat{A}_{2}\right) . \tag{12.15.50}
\end{equation*}
$$

Furthermore, Theorem 4.3.2 implies that $\operatorname{spec}(A-\Sigma P) \subset$ CLHP. Therefore,

$$
\begin{equation*}
\operatorname{mspec}\left(-\hat{A}_{1}\right) \subset \operatorname{CLHP} \tag{12.15.51}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{mspec}\left(\hat{A}_{2}\right) \subset \mathrm{CLHP}, \tag{12.15.52}
\end{equation*}
$$

and thus

$$
\begin{equation*}
\operatorname{mspec}\left(-\hat{A}_{1}\right)=\left\{-\lambda \in \operatorname{mspec}\left(\hat{A}_{1}\right): \lambda \in \operatorname{ORHP}\right\} \cup\left[\operatorname{mspec}\left(\hat{A}_{1}\right) \cap \jmath \mathbb{R}\right] . \tag{12.15.53}
\end{equation*}
$$

Next, it follows from (12.15.48) that

$$
\begin{equation*}
\operatorname{mspec}(A)=\operatorname{mspec}\left(\hat{A}_{1}\right) \cup \operatorname{mspec}\left(\hat{A}_{2}\right) . \tag{12.15.54}
\end{equation*}
$$

Now, combining (12.15.50)-(12.15.54) yields (12.15.42). Finally, sufficiency follows from Theorem 12.15.14.

Corollary 12.15.17. Let $R_{1}=0$, and assume that $\operatorname{spec}(A) \subset \operatorname{CLHP}$. Then, $P=0$ is the only nonnegative-semidefinite solution to (12.14.23).

12.16 Hamiltonian-Based Analysis of the Riccati Equation

We now analyze the Riccati equation by means of the $2 n \times 2 n$ Hamiltonian matrix

$$
\mathcal{H} \triangleq\left[\begin{array}{cc}
A & \Sigma \\
R_{1} & -A^{\mathrm{T}}
\end{array}\right] .
$$

The Hamiltonian matrix is closely linked to the Riccati equation due to the fact that P is a solution to $(12.14 .23)$ if and only if P is symmetric and

$$
\left[\begin{array}{ll}
P & I
\end{array}\right] \mathcal{H}\left[\begin{array}{c}
P \tag{12.16.1}\\
I
\end{array}\right]=0
$$

It is also useful to note that if P is a solution to (12.14.23), then

$$
\mathcal{H}=\left[\begin{array}{cc}
I & 0 \tag{12.16.2}\\
-P & I
\end{array}\right]\left[\begin{array}{cc}
A-\Sigma P & \Sigma \\
0 & -(A-\Sigma P)^{\mathrm{T}}
\end{array}\right]\left[\begin{array}{ll}
I & 0 \\
P & I
\end{array}\right] .
$$

It thus follows that

$$
\begin{equation*}
\operatorname{mspec}(\mathcal{H})=\operatorname{mspec}(A-\Sigma P) \cup \operatorname{mspec}(-(A-\Sigma P)) \tag{12.16.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\chi_{\mathcal{H}}(s)=(-1)^{n} \chi_{A-\Sigma P}(s) \chi_{A-\Sigma P}(-s) \tag{12.16.4}
\end{equation*}
$$

The factorization (12.16.4) of the characteristic polynomial of \mathcal{H} is a spectral decomposition. It can be seen that the existence of a spectral decomposition requires that i) if λ is an element of the spectrum of \mathcal{H}, then $-\lambda$ is also an element of the spectrum of \mathcal{H} with the same algebraic multiplicity, and $i i)$ if λ is an element of the spectrum of \mathcal{H} with $\operatorname{Re} \lambda=$ 0 , then λ must have even algebraic multiplicity. Note that the spectral decomposition (12.16.4) was obtained under the assumption that (12.14.23) has a solution.

We now show that the characteristic polynomial of the Hamiltonian matrix associated with the Riccati equation (12.14.23) has a spectral decomposition.

Corollary 12.16.1. Every imaginary eigenvalue of \mathcal{H} has even algebraic multiplicity.

It is important to keep in mind that spectral decompositions are not unique. For example, if $\chi_{\mathcal{H}}(s)=(s+1)(s+2)(-s+1)(-s+2)$, then $\chi_{\mathcal{H}}(s)=$ $p(s) p(-s)=\hat{p}(s) \hat{p}(-s)$, where $p(s)=(s+1)(s+2)$ and $\hat{p}(s)=(s+1)(s-2)$. Thus, the spectral factors $p(s)$ and $p(-s)$ can "trade" roots. These roots are the eigenvalues of \mathcal{H}.

Lemma 12.16.2. Let $\lambda \in \operatorname{spec}(A)$ be an uncontrollable eigenvalue of (A, B). Then, $\lambda \in \operatorname{spec}(\mathcal{H})$.

Proof. Since

$$
\operatorname{rank}\left[\begin{array}{c}
A^{\mathrm{T}}-\lambda I \\
B^{\mathrm{T}}
\end{array}\right]<n,
$$

it follows that there exists nonzero $x \in \mathbb{R}^{n}$ such that $A^{\mathrm{T}} x=\lambda x$ and $B^{\mathrm{T}} x=0$, and thus $\Sigma x=0$. Now, note that

$$
\mathcal{H}\left[\begin{array}{l}
0 \\
x
\end{array}\right]=\left[\begin{array}{c}
\Sigma x \\
-A^{\mathrm{T}} x
\end{array}\right]=\left[\begin{array}{c}
0 \\
-\lambda x
\end{array}\right]=-\lambda\left[\begin{array}{l}
0 \\
x
\end{array}\right] .
$$

Thus, $-\lambda \in \operatorname{spec}(\mathcal{H})$. Since \mathcal{H} is Hamiltonian, it follows from Fact 4.9.14 that $\lambda \in \operatorname{spec}(\mathcal{H})$.

Lemma 12.16.3. Let $\lambda \in \operatorname{spec}(A)$ be an unobservable eigenvalue of $\left(A, E_{1}\right)$. Then, $\lambda \in \operatorname{spec}(\mathcal{H})$.

Proof. Since

$$
\operatorname{rank}\left[\begin{array}{c}
A-\lambda I \\
E_{1}
\end{array}\right]<n,
$$

it follows that there exists nonzero $y \in \mathbb{R}^{n}$ such that $A y=\lambda y$ and $E_{1} y=0$. Now, note that

$$
\mathcal{H}\left[\begin{array}{l}
y \\
0
\end{array}\right]=\left[\begin{array}{c}
A y \\
E_{1}^{\mathrm{T}} E_{1} y
\end{array}\right]=\left[\begin{array}{c}
\lambda y \\
0
\end{array}\right]=\lambda\left[\begin{array}{l}
y \\
0
\end{array}\right] .
$$

Thus, $\lambda \in \operatorname{spec}(\mathcal{H})$.
Next, we present a partial converse of Lemma 12.16.2 and Lemma 12.16.3.

Lemma 12.16.4. Suppose $\lambda \in \operatorname{spec}(\mathcal{H})$ is such that $\operatorname{Re} \lambda=0$. Then, λ is either an uncontrollable eigenvalue of (A, B) or an unobservable eigenvalue of $\left(A, E_{1}\right)$.

Proof. Suppose that $\lambda=\jmath \omega$ is an eigenvalue of \mathcal{H}, where $\omega \in \mathbb{R}$. Then, there exist $x, y \in \mathbb{C}^{n}$ such that $\left[\begin{array}{l}x \\ y\end{array}\right] \neq 0$ and $\mathcal{H}\left[\begin{array}{l}x \\ y\end{array}\right]=\jmath \omega\left[\begin{array}{l}x \\ y\end{array}\right]$. Consequently,

$$
A x+\Sigma y=\jmath \omega x, \quad R_{1} x-A^{\mathrm{T}} y=\jmath \omega y .
$$

Rewriting these identities as

$$
(A-\jmath \omega I) x=-\Sigma y, \quad(A-\jmath \omega I)^{*} y=R_{1} x,
$$

yields

$$
y^{*}(A-\jmath \omega I) x=-y^{*} \Sigma y, \quad x^{*}(A-\jmath \omega I)^{*} y=x^{*} R_{1} x .
$$

Hence, $-y^{*} \Sigma y=x^{*} R_{1} x$, and thus $y^{*} \Sigma y=x^{*} R_{1} x=0$, which implies that $B^{\mathrm{T}} y=0$ and $E_{1} x=0$. Consequently, we have

$$
(A-\jmath \omega I) x=0, \quad(A-\jmath \omega I)^{*} y=0,
$$

and hence

$$
\left[\begin{array}{c}
A-\jmath \omega I \\
E_{1}
\end{array}\right] x=0, \quad y^{*}\left[\begin{array}{cc}
A-\jmath \omega I & B
\end{array}\right]=0 .
$$

Since $\left[\begin{array}{l}x \\ y\end{array}\right] \neq 0$, it follows that either $x \neq 0$ or $y \neq 0$, and thus either $\operatorname{rank}\left[\begin{array}{c}A-\jmath \omega I \\ E_{1}\end{array}\right]<n$ or $\operatorname{rank}\left[\begin{array}{ll}A-\jmath \omega I & B\end{array}\right]<n$.

Combining Lemmas 12.16.2, 12.16.3, and 12.16.4 yields the following result.

Proposition 12.16.5. Suppose that $\lambda \in \mathbb{C}$ and $\operatorname{Re} \lambda=0$. Then, λ is an eigenvalue of \mathcal{H} if and only if λ is either an uncontrollable eigenvalue of (A, B) or an unobservable eigenvalue of $\left(A, E_{1}\right)$.

Corollary 12.16.6. Suppose that (A, B) is stabilizable and every imaginary eigenvalue of $\left(A, B, E_{1}\right)$ is either uncontrollable or observable. Then, \mathcal{H} has no imaginary eigenvalues.

Theorem 12.16.7. The following statements are equivalent:
i) (A, B) is stabilizable, and every imaginary eigenvalue of $\left(A, E_{1}\right)$ is observable.
ii) \mathcal{H} has no imaginary eigenvalues, and, if $S=\left[\begin{array}{cc}S_{1} & S_{12} \\ S_{21} & S_{2}\end{array}\right] \in \mathbb{R}^{2 n \times 2 n}$ is an invertible matrix such that $\mathcal{H}=S Z S^{-1}$, where $Z=\left[\begin{array}{cc}Z_{1} & Z_{12} \\ 0 & Z_{2}\end{array}\right] \in$ $\mathbb{R}^{2 n \times 2 n}$ and $Z_{1} \in \mathbb{R}^{n \times n}$ is asymptotically stable, then S_{1} is invertible and $P \triangleq-S_{21} S_{1}^{-1}$ is the nonnegative-semidefinite stabilizing solution to (12.14.23).
In this case, the following statements hold:
iii) If (A, E_{1}) is detectable, then P is the only nonnegative-semidefinite solution to (12.14.23).
$i v)$ rank P is equal to the number of OLHP observable eigenvalues of $\left(A, E_{1}\right)$.
$v)$ If all of the OLHP eigenvalues of $\left(A, E_{1}\right)$ are observable, then P is positive definite.

Proof. To prove that i implies $i i$), first note that Corollary ??? implies that \mathcal{H} has no imaginary eigenvalues. Since \mathcal{H} is Hamiltonian, it follows that there exists $S=\left[\begin{array}{cc}S_{1} & S_{12} \\ S_{21} & S_{2}\end{array}\right] \in \mathbb{R}^{2 n \times 2 n}$ such that S is invertible and
$\mathcal{H}=S Z S^{-1}$, where $Z=\left[\begin{array}{cc}Z_{1} & Z_{12} \\ 0 & Z_{2}\end{array}\right]$ and $Z_{1} \in \mathbb{R}^{n \times n}$ is asymptotically stable.
Next, note that $\mathcal{H} S=S Z$ implies that $\mathcal{H}\left[\begin{array}{c}S_{1} \\ S_{21}\end{array}\right]=S\left[\begin{array}{c}Z_{1} \\ 0\end{array}\right]=\left[\begin{array}{c}S_{1} \\ S_{21}\end{array}\right] Z_{1}$. Therefore,

$$
\begin{aligned}
{\left[\begin{array}{c}
S_{1} \\
S_{21}
\end{array}\right]^{\mathrm{T}} J_{n} \mathcal{H}\left[\begin{array}{c}
S_{1} \\
S_{21}
\end{array}\right] } & =\left[\begin{array}{c}
S_{1} \\
S_{21}
\end{array}\right]^{\mathrm{T}} J_{n}\left[\begin{array}{c}
S_{1} \\
S_{21}
\end{array}\right] Z_{1} \\
& =\left[\begin{array}{ll}
S_{1}^{\mathrm{T}} & S_{21}^{\mathrm{T}}
\end{array}\right]\left[\begin{array}{c}
S_{21} \\
-S_{1}
\end{array}\right] Z_{1} \\
& =L Z_{1},
\end{aligned}
$$

where $L \triangleq S_{1}^{\mathrm{T}} S_{21}-S_{21}^{\mathrm{T}} S_{1}$. Since $J_{n} \mathcal{H}=\left(J_{n} \mathcal{H}\right)^{\mathrm{T}}$, it follows that $L Z_{1}$ is symmetric, that is, $L Z_{1}=Z_{1}^{\mathrm{T}} L^{\mathrm{T}}$. Since, in addition, L is skew symmetric, it follws that $0=Z_{1}^{\mathrm{T}} L+L Z_{1}$. Now, since Z_{1} is asymptotically stable, it follows that $L=0$. Hence, $S_{1}^{\mathrm{T}} S_{21}=S_{21}^{\mathrm{T}} S_{1}$, which shows that $S_{21}^{\mathrm{T}} S_{1}$ is symmetric.

To show that S_{1} is invertible, note that it follows from the identity $\left[\begin{array}{ll}I & 0\end{array}\right] \mathcal{H}\left[\begin{array}{c}S_{1} \\ S_{21}\end{array}\right]=\left[\begin{array}{ll}I & 0\end{array}\right]\left[\begin{array}{c}S_{1} \\ S_{21}\end{array}\right] Z_{1}$ that $A S_{1}+\Sigma S_{21}=S_{1} Z_{1}$. Now, let $x \in \mathbb{R}^{n}$ satisfy $S_{1} x=0$. We thus have

$$
\begin{aligned}
x^{\mathrm{T}} S_{21} \Sigma S_{21} x & =x^{\mathrm{T}} S_{21}^{\mathrm{T}}\left[A S_{1}+\Sigma S_{21}\right] x=x^{\mathrm{T}} S_{21}^{\mathrm{T}} S_{1} Z_{1} x \\
& =x^{\mathrm{T}} S_{1}^{\mathrm{T}} S_{21} Z_{1} x=0,
\end{aligned}
$$

which implies that $B^{\mathrm{T}} S_{21} x=0$. Hence, $S_{1} Z_{1} x=\left(A S_{1}+\Sigma S_{21}\right) x=0$. Thus, $Z_{1}: \mathcal{N}\left(S_{1}\right) \mapsto \mathcal{N}\left(S_{1}\right)$.

Now, suppose that S_{1} is singular. Since $Z_{1}: \mathcal{N}\left(S_{1}\right) \mapsto \mathcal{N}\left(S_{1}\right)$, it follows that there exists $\lambda \in \operatorname{spec}\left(Z_{1}\right)$ and $x \in \mathbb{C}^{n}$ such that $Z_{1} x=\lambda x$ and $S_{1} x=0$. Forming $\left[\begin{array}{ll}0 & I\end{array}\right] \mathcal{H}\left[\begin{array}{c}S_{1} \\ S_{21}\end{array}\right] x=\left[\begin{array}{ll}0 & I\end{array}\right]\left[\begin{array}{c}S_{1} \\ S_{21}\end{array}\right] Z_{1} x$ yields $-A^{\mathrm{T}} S_{21} x=S_{21} \lambda Z$ and thus $\left(\lambda I+A^{\mathrm{T}}\right) S_{21} x=0$. Since, in addition, as shown above, $B^{\mathrm{T}} S_{21} x=$ 0 , it follows that $x^{*} S_{21}^{\mathrm{T}}\left[\begin{array}{ll}-\bar{\lambda} I-A & B\end{array}\right]=0$. Since $\lambda \in \operatorname{spec}\left(Z_{1}\right)$, it follows that $\operatorname{Re}(-\bar{\lambda})>0$. Furthermore, since, by assumption (A, B) is stabilizable, it follows that rank $\left[\begin{array}{cc}\bar{\lambda} I-A & B\end{array}\right]=n$. Therefore, $S_{21} x=0$. Combining this fact with $S_{1} x=0$ yields $\left[\begin{array}{c}S_{1} \\ S_{21}\end{array}\right] x=0$. Since x is nonzero, it follows that S is singular, which is a contradiction. Consequently, S_{1} is invertible. Next, define $P \triangleq-S_{21} S_{1}^{-1}$ and note that, since $S_{1}^{\mathrm{T}} S_{21}$ is symmetric, it follows that $P=-S_{1}^{-\mathrm{T}}\left(S_{1}^{\mathrm{T}} S_{21}\right) S_{1}^{-1}$ is also symmetric.

Since $\mathcal{H}\left[\begin{array}{c}S_{1} \\ S_{21}\end{array}\right]=\left[\begin{array}{c}S_{1} \\ S_{21}\end{array}\right] Z_{1}$, it follows that

$$
\mathcal{H}\left[\begin{array}{c}
I \\
S_{21} S_{1}^{-1}
\end{array}\right]=\left[\begin{array}{c}
I \\
S_{21} S_{1}^{-1}
\end{array}\right] S_{1} Z_{1} S_{1}^{-1}
$$

and thus

$$
\mathcal{H}\left[\begin{array}{c}
I \\
-P
\end{array}\right]=\left[\begin{array}{c}
I \\
-P
\end{array}\right] S_{1} Z_{1} S_{1}^{-1}
$$

Multiplying on the left by $\left[\begin{array}{ll}P & I\end{array}\right]$ yields

$$
0=\left[\begin{array}{ll}
P & I
\end{array}\right] \mathcal{H}\left[\begin{array}{c}
I \\
-P
\end{array}\right]=A^{\mathrm{T}} P+P A+R_{1}-P \Sigma P
$$

which shows that P is a solution to (12.14.23). Similarly, multiplying on the left by [$\left.\begin{array}{ll}I & 0\end{array}\right]$ yields $A-\Sigma P=S_{1} Z_{1} S_{1}^{-1}$. Since Z_{1} is asymptotically stable, it follows that $A-\Sigma P$ is also asymptotically stable.

Conversely, to prove that $i i$) implies i), note that, since $A-\Sigma P$ is asymptotically stable, it follows that (A, B) is stabilizable. Furthermore, since P is a solution to (12.14.23), it follows that $\operatorname{mspec}(\mathcal{H})=\operatorname{mspec}(A-$ $\Sigma P) \cup \operatorname{mspec}(-(A-\Sigma P))$, which implies that \mathcal{H} has no imaginary eigenvalues. Thus, Lemma 12.16.4 implies that $\left(A, E_{1}\right)$ has no unobservable imaginary eigenvalues. Therefore, $\left(A, B, E_{1}\right)$ has no imaginary eigenvalues that are controllable and unobservable.

To prove iii), (TO BE ADDED).
Theorem 12.16.8. Suppose (A, B) is stabilizable. Then, there exists a solution to (12.14.23). Furthermore, the maximal solution P to (12.14.23) exists, is unique, and is nonnegative semidefinite. If $\lambda \in \operatorname{spec}(\mathcal{H})$ is imaginary, then λ has even-dimensional Jordan blocks. In addition,the following statements hold:
i) $\left(A, E_{1}\right)$ observable implies P is positive definite.
ii) $\left(A, E_{1}\right)$ is detectable if and only if P is nonnegative semidefinite.
iii) If $\lambda \in \operatorname{spec}(A)$ is imaginary, then λ is E_{1}-observable.
iv) λ is E_{1}-observable if and only if there are no eigenvalues of \mathcal{H}.
v) λ is E_{1}-observable if and only if $\operatorname{Re} \lambda<0$.

12.17 Facts on Linear System Theory

Fact 12.17.1. If two of the following three conditions are satisfied, then the third condition is also satisfied:
i) A is asymptotically stable.
ii) (A, C) is observable.
iii) There exists a positive-definite solution $P \in \mathbb{R}^{n \times n}$ to (12.4.3).

Fact 12.17.2. The step response $y(t)=\int_{0}^{t} C e^{t A} \mathrm{~d} \tau B v+D v$ is bounded for all $v \in \mathbb{F}^{m}$ if and only if A is Lyapunov stable and nonsingular.

Fact 12.17.3. Let $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}$, and assume that A is skew symmetric and (A, B) is controllable. Then, $A-\alpha B B^{\mathrm{T}}$ is asymptotically stable for all $\alpha>0$.

Fact 12.17.4. Let $A \in \mathbb{R}^{n \times n}, C \in \mathbb{R}^{p \times n}$, assume that (A, C) is detectable, and assume that $y(t) \rightarrow 0$ as $t \rightarrow \infty$, where $\dot{x}(t)=A x(t)$ and $y(t)=C x(t)$. Then, $x(t) \rightarrow 0$ as $t \rightarrow \infty$.

Fact 12.17.5. Let $x(0)=x_{0}$, and let $x_{\mathrm{f}}-e^{t_{\mathrm{f}} A} x_{0} \in \mathcal{C}(A, B)$. Then, for all $t \in\left[0, t_{\mathrm{f}}\right]$, the control $u:\left[0, t_{\mathrm{f}}\right] \mapsto \mathbb{R}^{m}$ defined by

$$
u(t) \triangleq B^{\mathrm{T}} e^{\left(t_{\mathrm{f}}-t\right) A^{\mathrm{T}}}\left(\int_{0}^{t_{\mathrm{f}}} e^{\tau A} B B^{\mathrm{T}} e^{\tau A^{\mathrm{T}}} \mathrm{~d} \tau\right)^{+}\left(x_{\mathrm{f}}-e^{t_{\mathrm{f}} A} x_{0}\right)
$$

yields $x\left(t_{\mathrm{f}}\right)=x_{\mathrm{f}}$.
Fact 12.17.6. Let $x(0)=x_{0}$, let $x_{\mathrm{f}} \in \mathbb{R}^{n}$, and assume that (A, B) is controllable. Then, for all $t \in\left[0, t_{\mathrm{f}}\right]$, the control u : $\left[0, t_{\mathrm{f}}\right] \mapsto \mathbb{R}^{m}$ defined by

$$
u(t) \triangleq B^{\mathrm{T}} e^{\left(t_{\mathrm{f}}-t\right) A^{\mathrm{T}}}\left(\int_{0}^{t_{\mathrm{f}}} e^{\tau A} B B^{\mathrm{T}} e^{\tau A^{\mathrm{T}}} \mathrm{~d} \tau\right)^{-1}\left(x_{\mathrm{f}}-e^{t_{\mathrm{f}} A} x_{0}\right)
$$

yields $x\left(t_{\mathrm{f}}\right)=x_{\mathrm{f}}$.
Fact 12.17.7. Let $A \in \mathbb{R}^{n \times n}$ be asymptotically stable, let $V \in \mathbb{R}^{n \times n}$ be nonnegative semidefinite, and let $Q \in \mathbb{R}^{n \times n}$ be the unique, positivedefinite solution to $A Q+Q A^{\mathrm{T}}+V=0$. Furthermore, let $C \in \mathbb{R}^{p \times n}$, and assume that $C V C^{\mathrm{T}}$ is positive definite. Then, $C Q C^{\mathrm{T}}$ is positive definite.

Fact 12.17.8. Let $A \in \mathbb{R}^{n \times n}$ be asymptotically stable, let $R \in \mathbb{R}^{n \times n}$ be nonnegative semidefinite, and let $P \in \mathbb{R}^{n \times n}$ satisfy $A^{\mathrm{T}} P+P A+R=0$. Then, there exist $\alpha_{i j} \in \mathbb{R}$ for all $i, j=1, \ldots, n$, such that

$$
P=\sum_{i, j=1}^{n} \alpha_{i j} A^{(i-1) \mathrm{T}} R A^{j-1}
$$

In particular, $\alpha_{i j}=\hat{P}_{(i, j)}$, where $\hat{P} \in \mathbb{R}^{n \times n}$ satisfies $\hat{A}^{\mathrm{T}} \hat{P}+\hat{P} \hat{A}+\hat{R}=0$, where $\hat{A}=C\left(\chi_{A}\right)$ and $\hat{R}=E_{1,1}$. (Proof: See [511].) (Remark: This identity is Smith's method. See [178] for finite series solutions of linear matrix equations.)

Fact 12.17.9. Let $A \in \mathbb{R}^{n \times n}$ be asymptotically stable. Then,

$$
(A \oplus A)^{-1}=\int_{-\infty}^{\infty}(\jmath \omega I-A)^{-1} \otimes(\jmath \omega I-A)^{-1} \mathrm{~d} \omega
$$

and

$$
\int_{-\infty}^{\infty}\left(\omega^{2} I+A^{2}\right) \mathrm{d} \omega=-\pi A^{-1} .
$$

(Hint: Use $(\jmath \omega I-A)^{-1}+(-\jmath \omega I-A)^{-1}=-2 A\left(\omega^{2} I+A^{2}\right)^{-1}$.)
Fact 12.17.10. Let $G_{1} \in \mathbb{R}^{p_{1} \times m}(s)$ and $G_{2} \in \mathbb{R}^{p_{2} \times m}(s)$ be strictly proper. Then,

$$
\left\|\left[\begin{array}{l}
G_{1} \\
G_{2}
\end{array}\right]\right\|_{\mathrm{H}_{2}}^{2}=\left\|G_{1}\right\|_{\mathrm{H}_{2}}^{2}+\left\|G_{2}\right\|_{\mathrm{H}_{2}}^{2} .
$$

Fact 12.17.11. Let $G_{1}, G_{2} \in \mathbb{R}^{m \times m}(s)$ be strictly proper. Then,

$$
\left\|\left[\begin{array}{l}
G_{1} \\
G_{2}
\end{array}\right]\right\|_{\mathrm{H}_{2}}=\left\|\left[\begin{array}{ll}
G_{1} & G_{2}
\end{array}\right]\right\|_{\mathrm{H}_{2}} .
$$

Fact 12.17.12. Let $H(t)=C e^{t A} B$, where $C(s I-A)^{-1} B=\frac{\alpha}{s+\beta}$ and $\beta>0$. Then,

$$
\|H\|_{\mathrm{L}_{2}}=\frac{\alpha}{\sqrt{2 \beta}}
$$

Fact 12.17.13. Let $H(t)=C e^{t A} B$, where $C(s I-A)^{-1} B=\frac{\alpha_{1} s+\alpha_{0}}{s^{2}+\beta_{1} s+\beta_{0}}$ and $\beta_{1}, \beta_{0}>0$. Then,

$$
\|H\|_{\mathrm{L}_{2}}=\sqrt{\frac{\alpha_{0}^{2}}{2 \beta_{0} \beta_{1}}+\frac{\alpha_{1}^{2}}{2 \beta_{1}}}
$$

Fact 12.17.14. Let $G_{1}(s)=\frac{\alpha_{1} s}{s+\beta_{1}}$ and $G_{2}(s)=\frac{\alpha_{2} s}{s+\beta_{2}}$, where $\beta_{1}>0$ and $\beta_{2}>0$. Then,

$$
\left\|G_{1} G_{2}\right\|_{\mathrm{H}_{2}} \leq\left\|G_{1}\right\|_{\mathrm{H}_{2}}\left\|G_{2}\right\|_{\mathrm{H}_{2}}
$$

if and only if $\beta_{1}+\beta_{2} \geq 2$. (Remark: The H_{2} norm is not submultiplicative.)
Fact 12.17.15. Let $A \in \mathbb{R}^{n \times n}$. Then, there exists a symmetric matrix $P \in \mathbb{R}^{n \times n}$ such that $A^{\mathrm{T}} P+P A$ is positive definite if and only if A has no eigenvalues on the imaginary axis. (Proof: See [446].)

Fact 12.17.16. Let $A, P \in \mathbb{R}^{n \times n}$, and assume that all of the eigenvalues of A are on the imaginary axis and P is nonnegative semidefinite. Then, $A^{\mathrm{T}} P+P A$ is either zero or has at least one positive eigenvalue and one negative eigenvalue. (Proof: See [561].)

Fact 12.17.17. Let $A \in \mathbb{R}^{n \times n}$, let $P \in \mathbb{R}^{n \times n}$ be symmetric, let $R \in$ $\mathbb{R}^{n \times n}$ be nonnegative semidefinite, and assume that $A^{\mathrm{T}} P+P A+R=0$. Then,

$$
\left|\nu_{+}(A)-\nu_{+}(P)\right| \leq n-\operatorname{rank} \mathcal{O}(A, R)
$$

and

$$
\left|\nu_{0}(A)-\nu_{0}(P)\right| \leq n-\operatorname{rank} \mathcal{O}(A, R)
$$

(Proof: See [380].) (Remark: For related results, see [446] and references given in [380]. See also [162].)

Fact 12.17.18. Let $A_{1}, A_{2} \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n}, C \in \mathbb{R}^{1 \times n}$, assume that $A_{1} \oplus A_{2}$ is nonsingular, and let $P \in \mathbb{R}^{n \times n}$ satisfy $A_{1} P+P A_{2}+B C=0$. If $\left(A_{1}, B\right)$ is controllable and $\left(A_{2}, C\right)$ is observable, then P is nonsingular.

Fact 12.17.19. Let $A_{1} \in \mathbb{R}^{n_{1} \times n_{1}}, A_{2} \in \mathbb{R}^{n_{2} \times n_{2}}, B \in \mathbb{R}^{n_{1} \times m}$, and $C \in \mathbb{R}^{m \times n_{2}}$, assume that $A_{1} \oplus A_{2}$ is nonsingular, and assume that $\operatorname{rank} B=$ $\operatorname{rank} C=m$. Furthermore, let $X \in \mathbb{R}^{n_{1} \times n_{2}}$ be the unique solution to $A_{1} X+$ $X A_{2}+B C=0$. Then,

$$
\operatorname{rank} X \leq \min \left\{\operatorname{rank} \mathcal{K}\left(A_{1}, B\right), \operatorname{rank} \mathcal{O}\left(A_{2}, C\right)\right\} .
$$

Finally, equality holds if $m=1$. (Proof: See [167].) (Remark: Related results are given in $[604,608]$.)

Fact 12.17.20. Let $A \in \mathbb{R}^{n \times n}$, and assume that there exist nonneg-ative-semidefinite matrices $P, R \in \mathbb{R}^{n \times n}$ such that $A^{\mathrm{T}} P+P A+R=0$ is satisfied and such that $\mathcal{N}(\mathcal{O}(A, R))=\mathcal{N}(A)$. Then, A is semistable. (Proof: See [91].)

Fact 12.17.21. Let $A \in \mathbb{R}^{n \times n}$, let $R \in \mathbb{R}^{n \times n}$ be nonnegative semidefinite, and let $q, r \in \mathbb{R}$, where $r>0$. If there exists a positive-definite matrix $P \in \mathbb{R}^{n \times n}$ satisfying

$$
[A-(q+r) I]^{\mathrm{T}} P+P[A-(q+r) I]+\frac{1}{r} A^{\mathrm{T}} P A+R=0,
$$

then the spectrum of A is contained in disk centered at $q+\jmath 0$ with radius r. (Remark: See [61,255] for related results concerning elliptical and parabolic regions.)

Fact 12.17.22. Let $G \sim\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$, let $a, b \in \mathbb{R}$, where $a \neq 0$, and define $H(s) \triangleq G(a s+b)$. Then,

$$
H \sim\left[\begin{array}{c|c}
a^{-1}(A-b I) & B \\
\hline a^{-1} C & D
\end{array}\right] .
$$

Fact 12.17.23. Let $G \sim\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$, where A is nonsingular, and define
$H(s) \triangleq G(1 / s)$. Then,

$$
H \sim\left[\begin{array}{c|c}
A^{-1} & -A^{-1} B \\
\hline C A^{-1} & D-C A^{-1} B
\end{array}\right]
$$

Fact 12.17.24. Let $G(s)=C(s I-A)^{-1} B$. Then,

$$
G(\jmath \omega)=-C A\left(\omega^{2} I+A^{2}\right)^{-1} B-\jmath \omega C\left(\omega^{2} I+A^{2}\right)^{-1} B .
$$

Fact 12.17.25. Let $G \sim\left[\begin{array}{c|c}A & B \\ \hline C & 0\end{array}\right]$ and $H(s)=s G(s)$. Then,

$$
H \sim\left[\begin{array}{c|c}
A & B \\
\hline C A & C B
\end{array}\right] .
$$

Consequently,

$$
s C(s I-A)^{-1} B=C A(s I-A)^{-1} B+C B .
$$

Fact 12.17.26. Let $G=\left[\begin{array}{ll}G_{11} & G_{12} \\ G_{21} & G_{22}\end{array}\right]$, where $G_{i j} \sim\left[\begin{array}{l|l}A_{i j} & B_{i j} \\ \hline C_{i j} & D_{i j}\end{array}\right]$ for all $i, j=1,2$. Then,

$$
\left[\begin{array}{ll}
G_{11} & G_{12} \\
G_{21} & G_{22}
\end{array}\right] \sim\left[\begin{array}{cccc|cc}
A_{11} & 0 & 0 & 0 & B_{11} & 0 \\
0 & A_{12} & 0 & 0 & 0 & B_{12} \\
0 & 0 & A_{21} & 0 & B_{21} & 0 \\
0 & 0 & 0 & A_{22} & 0 & B_{22} \\
\hline C_{11} & C_{12} & 0 & 0 & D_{11} & D_{12} \\
0 & 0 & C_{21} & C_{22} & D_{21} & D_{22}
\end{array}\right] .
$$

Fact 12.17.27. Let $G \sim\left[\begin{array}{l|l}A & B \\ \hline C & 0\end{array}\right]$, where $G \in \mathbb{R}^{l \times m}(s)$, and let $M \in$ $\mathbb{R}^{m \times p}$. Then,

$$
[I+G M]^{-1} \sim\left[\begin{array}{c|c}
A-B M C & B \\
\hline-C & I
\end{array}\right]
$$

and

$$
[I+G M]^{-1} G \sim\left[\begin{array}{c|c}
A-B M C & B \\
\hline C & 0
\end{array}\right]
$$

Fact 12.17.28. Let $G \sim\left[\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right]$. If D has a left inverse D^{L}, then

$$
G^{\mathrm{L}} \sim\left[\begin{array}{c|c}
A-B D^{\mathrm{L}} C & B D^{\mathrm{L}} \\
\hline-D^{\mathrm{L}} C & D^{\mathrm{L}}
\end{array}\right]
$$

satisfies $G^{\mathrm{L}} G=I$. If D has a right inverse D^{R}, then

$$
G^{\mathrm{R}} \sim\left[\begin{array}{c|c}
A-B D^{\mathrm{R}} C & B D^{\mathrm{R}} \\
\hline-D^{\mathrm{R}} C & D^{\mathrm{R}}
\end{array}\right]
$$

satisfies $G G^{\mathrm{R}}=I$.
Fact 12.17.29. Let $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times m}$. Then, (A, B) is (controllable, stabilizable) if and only if $\left(A, B B^{\mathrm{T}}\right)$ is (controllable, stabilizable). In particular, if $A, B \in \mathbb{R}^{n \times n}$, where B is nonnegative semidefinite, then (A, B) is (controllable, stabilizable) if and only if $\left(A, B^{1 / 2}\right)$ is (controllable, stabilizable).

Fact 12.17.30. Let $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}$, and $\hat{B} \in \mathbb{R}^{n \times \hat{m}}$, and assume that (A, B) is (controllable, stabilizable) and $\mathcal{R}(B) \subseteq \mathcal{R}(\hat{B})$. Then, (A, \hat{B}) is also (controllable, stabilizable).

Fact 12.17.31. Let $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times m}$. Then, the following statements are equivalent:
i) (A, B) is controllable.
ii) There exists $\alpha \in \mathbb{R}$ such that $(A+\alpha I, B)$ is controllable.
iii) $(A+\alpha I, B)$ is controllable for all $\alpha \in \mathbb{R}$.

Fact 12.17.32. Let $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times m}$. Then, the following statements are equivalent:
i) (A, B) is stabilizable.
ii) There exists $\alpha \leq \max \{0,-\operatorname{spabs}(A)\}$ such that $(A+\alpha I, B)$ is stabilizable.
iii) $(A+\alpha I, B)$ is stabilizable for all $\alpha \leq \max \{0,-\operatorname{spabs}(A)\}$.

Fact 12.17.33. Let $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times m}$, assume that (A, B) is (controllable, stabilizable), and let $D \in \mathbb{R}^{n \times l}, E \in \mathbb{R}^{l \times n}$ and $R \in \mathbb{R}^{l \times l}$, where R is positive definite. Then, $\left(A+D E,\left[B B^{\mathrm{T}}+D R D^{\mathrm{T}}\right]^{1 / 2}\right)$ is also (controllable, stabilizable). (Proof: See [615, p. 79].)

Fact 12.17.34. Let $A \in \mathbb{R}^{n \times n}$ be diagonal and let $B \in \mathbb{R}^{n \times 1}$. Then, (A, B) is controllable if and only if the diagonal entries of A are distinct and all of the entries of B are nonzero. (Proof: Note that

$$
\begin{aligned}
\operatorname{det}\left[\begin{array}{llll}
B & A B & \cdots & A^{n-1} B
\end{array}\right] & =\operatorname{det}\left[\begin{array}{ccc}
b_{1} & & 0 \\
& \ddots & \\
0 & & b_{n}
\end{array}\right]\left[\begin{array}{cccc}
1 & a_{1} & \cdots & a_{1}^{n-1} \\
\vdots & \vdots & \cdots & \vdots \\
1 & a_{n} & \cdots & a_{n}^{n-1}
\end{array}\right] \\
& \left.=\left(\prod_{i=1}^{n} b_{i}\right) \prod_{i<j}\left(a_{i}-a_{j}\right) .\right)
\end{aligned}
$$

Fact 12.17.35. Let $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times 1}$, and assume that (A, B) is controllable. Then, A is cyclic.

Fact 12.17.36. Let $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times m}$. Then, the following conditions are equivalent:
i) (A, B) is (controllable, stabilizable) and A is nonsingular.
ii) $(A, A B)$ is (controllable, stabilizable).

Fact 12.17.37. Let $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times m}$, and assume that (A, B) is controllable. Then, $\left(A, B^{\mathrm{T}} S^{-\mathrm{T}}\right)$ is observable, where $S \in \mathbb{R}^{n \times n}$ is a nonsingular matrix satisfying $A^{\mathrm{T}}=S^{-1} A S$.

Fact 12.17.38. Let $G \sim\left[\begin{array}{l|l}A & B \\ \hline C & 0\end{array}\right]$ be a SISO rational transfer function, and let $\lambda \in \mathbb{C}$. Then, there exists a rational function H such that

$$
G(s)=\frac{1}{(s+\lambda)^{r}} H(s)
$$

and such that λ is neither a pole nor a zero of H if and only if the Jordan form of A has exactly one block associated with λ, which is of size $r \times r$.

Fact 12.17.39. Let $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}$, and $C \in \mathbb{R}^{m \times n}$. Then,

$$
\operatorname{det}[s I-(A+B C)]=\left[I-C(s I-A)^{-1} B\right] \operatorname{det}(s I-A) .
$$

(Proof: Note that

$$
\begin{aligned}
{\left[I-C(s I-A)^{-1} B\right] \operatorname{det}(s I-A) } & =\operatorname{det}\left[\begin{array}{cc}
s I-A & B \\
C & I
\end{array}\right] \\
& =\operatorname{det}\left[\begin{array}{cc}
s I-A & B \\
C & I
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
-C & I
\end{array}\right] \\
& =\operatorname{det}\left[\begin{array}{cc}
s I-A-B C & B \\
0 & I
\end{array}\right] \\
& =\operatorname{det}(s I-A-B C) .)
\end{aligned}
$$

Fact 12.17.40. Let $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{m \times n}$, and $K \in \mathbb{R}^{m \times n}$, and assume that $A+B K$ is nonsingular. Then,

$$
\operatorname{det}\left[\begin{array}{cc}
A & B \\
C & 0
\end{array}\right]=(-1)^{m} \operatorname{det}(A+B K) \operatorname{det}\left[C(A+B K)^{-1} B\right] .
$$

Hence, $\left[\begin{array}{cc}A & B \\ C & 0\end{array}\right]$ is nonsingular if and only if $C(A+B K)^{-1} B$ is nonsingular.
(Proof:

$$
\begin{aligned}
\operatorname{det}\left[\begin{array}{cc}
A & B \\
C & 0
\end{array}\right] & =\operatorname{det}\left[\begin{array}{cc}
A & B \\
C & 0
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
K & I
\end{array}\right] \\
& =\operatorname{det}\left[\begin{array}{cc}
A+B K & B \\
C & 0
\end{array}\right] \\
& \left.=\operatorname{det}(A+B K) \operatorname{det}\left[-C(A+B K)^{-1} B\right] .\right)
\end{aligned}
$$

Fact 12.17.41. Let $A, B \in \mathbb{C}^{n \times n}$, and assume that the $2 n \times 2 n$ matrix

$$
\left[\begin{array}{cc}
A & -2 I \\
2 B-\frac{1}{2} A^{2} & A
\end{array}\right]
$$

is simple. Then, there exists $X \in \mathbb{C}^{n \times n}$ satisfying

$$
X^{2}+A X+B=0
$$

(Proof: See [557].)
Fact 12.17.42. Let $P_{0} \in \mathbb{R}^{n \times n}$ be positive definite and, for all $t \geq 0$, let $P(t) \in \mathbb{R}^{n \times n}$ satisfy

$$
\begin{gathered}
\dot{P}(t)=A^{\mathrm{T}} P(t)+P(t) A+P(t) V P(t) \\
P(0)=P_{0}
\end{gathered}
$$

Then, for all $t \geq 0$,

$$
P(t)=e^{t A^{\mathrm{T}}}\left[P_{0}^{-1}-\int_{0}^{t} e^{\tau A} V e^{\tau A^{\mathrm{T}}} \mathrm{~d} \tau\right]^{-1} e^{t A}
$$

(Remark: $P(t)$ satisfies a Riccati differential equation.)

12.18 Notes

Linear system theory is treated in $[112,556,611]$. The PBH test is proved in [270]. Spectral factorization results are given in [146].

Zeros are treated in [199, 321, 385, 453, 495,501].
Matrix-based methods for linear system identification are developed in [570].

Solutions of the LQR problem under weak conditions are given in [225]. Solutions of the Riccati equation are considered in $[341,343,351,352,402$, $480,602,607,609]$. There are numerous extensions to the results given in this chapter to various generalizations of (12.14.23). These include the case
in which R_{1} is indefinite $[232,605,606]$ as well as the case in which Σ is indefinite [497]. The latter case is relevant to H_{∞} optimal control theory [86]. Additional extensions include the Riccati inequality $A^{\mathrm{T}} P+P A+R_{1}-P \Sigma P \geq$ 0 [475] as well as the discrete-time Riccati equation [306] and extensions to fixed-order controllers [302]. Monotonicity properties are studied in [607]. Riccati equations for discrete-time systems are discussed in [1].

Bibliography

[1] C. D. Ahlbrandt and A. C. Peterson, Discrete Hamiltonian Systems: Difference Equations, Continued Fractions, and Riccati Equations. Dordrecht: Kluwer, 1996.
[2] A. C. Aitken, Determinants and Matrices, 9th ed. Edinburgh: Oliver and Boyd, 1956.
[3] M. Al Ahmar, "An Identity of Jacobi," Amer. Math. Monthly, Vol. 103, pp. 78-79, 1996.
[4] A. A. Albert and B. Muckenhoupt, "On Matrices of Trace Zero," Michigan Math. J., Vol. 4, pp. 1-3, 1957.
[5] A. E. Albert, "Conditions for Positive and Nonnegative Definiteness in Terms of Pseudoinverses," SIAM J. Appl. Math., Vol. 17, pp. 434-440, 1969.
[6] A. E. Albert, Regression and the Moore-Penrose Pseudoinverse. New York: Academic Press, 1972.
[7] R. Aldrovandi, Special Matrices of Mathematical Physics: Stochastic, Circulant and Bell Matrices. Singapore: World Scientific, 2001.
[8] M. Alic, B. Mond, J. E. Pecaric, and V. Volenec, "Bounds for the Differences of Matrix Means," SIAM J. Matrix Anal. Appl., Vol. 18, pp. 119-123, 1997.
[9] G. Alpargu and G. P. H. Styan, "Some Remarks and a Bibliography on the Kantorovich Inequality," in Multidimensional Statistical Analysis and Theory of Random Matrices. Utrecht: VSP, 1996, pp. 1-13.
[10] R. C. Alperin, "The Matrix of a Rotation," College Math. J., Vol. 20, p. 230, 1989.
[11] S. L. Altmann, Rotations, Quaternions, and Double Groups. New York: Oxford University Press, 1986.
[12] H. Alzer, "A Lower Bound for the Difference Between the Arithmetic and Geometric Means," Nieuw. Arch. Wisk., Vol. 8, pp. 195-197, 1990.
[13] B. D. O. Anderson, "Orthogonal Decomposition Defined by a Pair of Skew-Symmetric Forms," Lin. Alg. Appl., Vol. 8, pp. 91-93, 1974.
[14] B. D. O. Anderson, "Weighted Hankel-Norm Approximation: Calculation of Bounds," Sys. Contr. Lett., Vol. 7, pp. 247-255, 1986.
[15] B. D. O. Anderson, E. I. Jury, and M. Mansour, "Schwarz Matrix Properties for Continuous and Discrete Time Systems," Int. J. Contr., Vol. 23, pp. 1-16, 1976.
[16] B. D. O. Anderson and J. B. Moore, "A Matrix Kronecker Lemma," Lin. Alg. Appl., Vol. 15, pp. 227-234, 1976.
[17] W. N. Anderson, "Shorted Operators," SIAM J. Appl. Math., Vol. 20, pp. 520-525, 1971.
[18] W. N. Anderson and R. J. Duffin, "Series and Parallel Addition of Matrices," J. Math. Anal. Appl., Vol. 26, pp. 576-594, 1969.
[19] W. N. Anderson, E. J. Harner, and G. E. Trapp, "Eigenvalues of the Difference and Product of Projections," Lin. Multilin. Alg., Vol. 17, pp. 295-299, 1985.
[20] W. N. Anderson and M. Schreiber, "On the Infimum of Two Projections," Acta Sci. Math., Vol. 33, pp. 165-168, 1972.
[21] W. N. Anderson and G. E. Trapp, "Shorted Operators II," SIAM J. Appl. Math., Vol. 28, pp. 60-71, 1975.
[22] W. N. Anderson and G. E. Trapp, "Symmetric Positive Definite Matrices," Amer. Math. Monthly, Vol. 95, pp. 261-262, 1988.
[23] T. Ando, "Concavity of Certain Maps on Positive Definite Matrices and Applications to Hadamard Products," Lin. Alg. Appl., Vol. 26, pp. 203-241, 1979.
[24] T. Ando, "Majorizations and Inequalities in Matrix Theory," Lin. Alg. Appl., Vol. 199, pp. 17-67, 1994.
[25] T. Ando, "Majorization Relations for Hadamard Products," Lin. Alg. Appl., Vol. 223-224, pp. 57-64, 1995.
[26] T. Ando and F. Hiai, "Log-Majorization and Complementary GoldenThompson Type Inequalities," Lin. Alg. Appl., Vol. 197/198, pp. 113131, 1994.
[27] T. Ando and F. Hiai, "Holder Type Inequalities for Matrices," Math. Ineq. Appl., Vol. 1, pp. 1-30, 1998.
[28] T. Ando, C.-K. Li, and R. Mathias, "Geometric Means."
[29] T. Ando and X. Zhan, "Norm Inequalities Related to Operator Monotone Functions," Math. Ann., Vol. 315, pp. 771-780, 1999.
[30] E. Andruchow, G. Corach, and D. Stojanoff, "Geometric Operator Inequalities," Lin. Alg. Appl., Vol. 258, pp. 295-310, 1997.
[31] J. D. Aplevich, Implicit Linear Systems. Berlin: Springer, 1991.
[32] T. M. Apostol, "Some Explicit Formulas for the Exponential Matrix," Amer. Math. Monthly, Vol. 76, pp. 289-292, 1969.
[33] H. Araki, "On an Inequality of Lieb and Thirring," Lett. Math. Phys., Vol. 19, pp. 167-170, 1990.
[34] A. Arimoto, "A Simple Proof of the Classification of Normal Toeplitz Matrices," Elec. J. Lin. Alg., Vol. 9, pp. 108-111, 2002.
[35] T. Arponen, "A Matrix Approach to Polynomials," Lin. Alg. Appl., Vol. 359, pp. 181-196, 2003.
[36] M. Artin, Algebra. Englewood Cliffs: Prentice-Hall, 1991.
[37] H. Aslaksen, "Laws of Trigonometry on SU(3)," Trans. Amer. Math. Soc., Vol. 317, pp. 127-142, 1990.
[38] H. Aslaksen, "Quaternionic Determinants," Math. Intell., Vol. 18(3), pp. 57-65, 1996.
[39] B. A. Asner, "On the Total Nonnegativity of the Hurwitz Matrix," SIAM J. Appl. Math., Vol. 18, pp. 407-414, 1970.
[40] Y.-H. Au Yeung, "Some Inequalities for the Rational Power of a Nonnegative Definite Matrix," Lin. Alg. Appl., Vol. 7, pp. 347-350, 1973.
[41] J. S. Aujla, "Some Norm Inequalities for Completely Monotone Functions," SIAM J. Matrix Anal. Appl., Vol. 22, pp. 569-573, 2000.
[42] J. S. Aujla and F. C. Silva, "Weak Majorization Inequalities and Convex Functions," Lin. Alg. Appl., Vol. 369, pp. 217-233, 2003.
[43] B. Aupetit and J. Zemanek, "A Characterization of Normal Matrices by Their Exponentials," Lin. Alg. Appl., Vol. 132, pp. 119-121, 1990.
[44] O. Axelsson, Iterative Solution Methods. Cambridge: Cambridge University Press, 1994.
[45] A. Baker, Matrix Groups: An Introduction to Lie Group Theory. New York: Springer, 2001.
[46] J. K. Baksalary, F. Pukelsheim, and G. P. H. Styan, "Some Properties of Matrix Partial Orderings," Lin. Alg. Appl., Vol. 119, pp. 57-85, 1989.
[47] J. K. Baksalary and G. P. H. Styan, "Generalized Inverses of Bordered Matrices," Lin. Alg. Appl., Vol. 354, pp. 41-47, 2002.
[48] C. S. Ballantine, "Products of Positive Semidefinite Matrices," Pac. J. Math., Vol. 23, pp. 427-433, 1967.
[49] C. S. Ballantine, "Products of Positive Definite Matrices II," Pac. J. Math., Vol. 24, pp. 7-17, 1968.
[50] C. S. Ballantine, "Products of Positive Definite Matrices III," J. Algebra, Vol. 10, pp. 174-182, 1968.
[51] C. S. Ballantine, "Products of Positive Definite Matrices IV," Lin. Alg. Appl., Vol. 3, pp. 79-114, 1970.
[52] C. S. Ballantine, "Products of EP Matrices," Lin. Alg. Appl., Vol. 12, pp. 257-267, 1975.
[53] C. S. Ballantine, "Some Involutory Similarities," Lin. Multilin. Alg., Vol. 3, pp. 19-23, 1975.
[54] C. S. Ballantine, "Products of Involutory Matrices I," Lin. Multilin. Alg., Vol. 5, pp. 53-62, 1977.
[55] C. S. Ballantine, "Products of Idempotent Matrices," Lin. Alg. Appl., Vol. 19, pp. 81-86, 1978.
[56] C. S. Ballantine and C. R. Johnson, "Accretive Matrix Products," Lin. Multilin. Alg., Vol. 3, pp. 169-185, 1975.
[57] R. B. Bapat and B. Zheng, "Generalized Inverses of Bordered Matrices," Elec. J. Lin. Alg., Vol. 10, pp. 16-30, 2003.
[58] I. Y. Bar Itzhack, D. Hershkowitz, and L. Rodman, "Pointing in Real Euclidean Space," J. Guid. Contr. Dyn., Vol. 20, pp. 916-922, 1997.
[59] S. Barnett, "A Note on the Bezoutian Matrix," SIAM J. Applied Math., Vol. 22, pp. 84-86, 1972.
[60] S. Barnett, "Inversion of Partitioned Matrices with Patterned Blocks," Int. J. Sys. Sci., Vol. 14, pp. 235-237, 1983.
[61] S. Barnett, Polynomials and Linear Control Systems. New York: Marcel Dekker, 1983.
[62] S. Barnett, Matrices in Control Theory, revised ed. Malabar: Krieger, 1984.
[63] S. Barnett, "Leverrier's Algorithm: A New Proof and Extensions," SIAM J. Matrix Anal. Appl., Vol. 10, pp. 551-556, 1989.
[64] S. Barnett, Matrices: Methods and Applications. Oxford: Clarendon Press, 1990.
[65] S. Barnett and P. Lancaster, "Some Properties of the Bezoutian for Polynomial Matrices," Lin. Multilin. Alg., Vol. 9, pp. 99-110, 1980.
[66] S. Barnett and C. Storey, Matrix Methods in Stability Theory. New York: Barnes and Noble, 1970.
[67] F. L. Bauer, J. Stoer, and C. Witzgall, "Absolute and Monotonic Norms," Numer. Math., Vol. 3, pp. 257-264, 1961.
[68] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming, 2nd ed. John Wiley and Sons, 1993.
[69] N. Bebiano, J. da Providencia, and R. Lemos, "Matrix Inequalities in Statistical Mechanics," Lin. Alg. Appl., 2003.
[70] E. F. Beckenbach and R. Bellman, Inequalities. Berlin: Springer, 1965.
[71] P. A. Bekker, "The Positive Semidefiniteness of Partitioned Matrices," Lin. Alg. Appl., Vol. 111, pp. 261-278, 1988.
[72] J. G. Belinfante, B. Kolman, and H. A. Smith, "An Introduction to Lie Groups and Lie Algebras with Applications," SIAM Rev., Vol. 8, pp. 11-46, 1966.
[73] G. R. Belitskii and Y. I. Lyubich, Matrix Norms and Their Applications. Basel: Birkhauser, 1988.
[74] R. Bellman, Introduction to Matrix Analysis, 2nd ed. New York: McGraw-Hill, 1960, reprinted by SIAM, Philadelphia, 1995.
[75] R. Bellman, "Some Inequalities for the Square Root of a Positive Definite Matrix," Lin. Alg. Appl., Vol. 1, pp. 321-324, 1968.
[76] A. Ben Israel, "A Note on Partitioned Matrices and Equations," SIAM Rev., Vol. 11, pp. 247-250, 1969.
[77] A. Ben-Israel, "The Moore of the Moore-Penrose Inverse," Elect. J. Lin. Alg., Vol. 9, pp. 150-157, 2002.
[78] A. Ben Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications. New York: Wiley, 1973, reprinted by Krieger, Malabar.
[79] A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimization. Philadelphia: SIAM, 2001.
[80] L. D. Berkovitz, Convexity and Optimization in \mathbb{R}^{n}. New York: John Wiley \& Sons, 2002.
[81] A. Berman, M. Neumann, and R. J. Stern, Nonnegative Matrices in Dynamic Systems, 1994th ed., ser. Philadelphia. New York: John Wiley and Sons, 1989, reprinted by SIAM.
[82] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences. New York: Academic Press, 1979, reprinted by SIAM, Philadelphia, 1979.
[83] D. S. Bernstein, "Inequalities for the Trace of Matrix Exponentials," SIAM J. Matrix Anal. Appl., Vol. 9, pp. 156-158, 1988.
[84] D. S. Bernstein, "Some Open Problems in Matrix Theory Arising in Linear Systems and Control," Lin. Alg. Appl., Vol. 162-164, pp. 409432, 1992.
[85] D. S. Bernstein and S. P. Bhat, "Lyapunov Stability, Semistability, and Asymptotic Stability of Matrix Second-Order Systems," ASME Trans. J. Vibr. Acoustics, Vol. 117, pp. 145-153, 1995.
[86] D. S. Bernstein and W. M. Haddad, "LQG Control With an H_{∞} Performance Bound: A Riccati Equation Approach," IEEE Trans. Autom. Contr., Vol. 34, pp. 293-305, 1989.
[87] D. S. Bernstein, W. M. Haddad, D. C. Hyland, and F. Tyan, "Maximum Entropy-Type Lyapunov Functions for Robust Stability and Performance Analysis," Sys. Contr. Lett., Vol. 21, pp. 73-87, 1993.
[88] D. S. Bernstein and D. C. Hyland, "Compartmental Modeling and Second-Moment Analysis of State Space Systems," SIAM J. Matrix Anal. Appl., Vol. 14, pp. 880-901, 1993.
[89] D. S. Bernstein and W. So, "Some Explicit Formulas for the Matrix Exponential," IEEE Trans. Autom. Contr., Vol. 38, pp. 1228-1232, 1993.
[90] K. V. Bhagwat and R. Subramanian, "Inequalities Between Means of Positive Operators," Math. Proc. Camb. Phil. Soc., Vol. 83, pp. 393-401, 1978.
[91] S. P. Bhat and D. S. Bernstein, "Lyapunov Analysis of Semistability," Proc. Amer. Contr. Conf., pp. 1608-1612, 1999, San Diego, CA.
[92] R. Bhatia, Perturbation Bounds for Matrix Eigenvalues. Essex: Longman Scientific and Technical, 1987.
[93] R. Bhatia, Matrix Analysis. New York: Springer, 1997.
[94] R. Bhatia and C. Davis, "More Matrix Forms of the ArithmeticGeometric Mean Inequality," SIAM J. Matrix Anal. Appl., Vol. 14, pp. 132-136, 1993.
[95] R. Bhatia and F. Kittaneh, "Norm Inequalities for Partitioned Operators and an Application," Math. Anal., Vol. 287, pp. 719-726, 1990.
[96] R. Bhatia and F. Kittaneh, "On the Singular Values of a Product of Operators," SIAM J. Matrix Anal. Appl., Vol. 11, pp. 272-277, 1990.
[97] R. Bhatia and F. Kittaneh, "Notes on Matrix Arithmetic-Geometric Mean Inequalities," Lin. Alg. Appl., Vol. 308, pp. 203-211, 2000.
[98] R. Bhatia and P. Semrl, "Orthogonality of Matrices and Some Distance Problems," Lin. Alg. Appl., Vol. 287, pp. 77-85, 1999.
[99] M. R. Bicknell, "The Lambda Number of a Matrix: The Sum of Its n^{2} Cofactors," Amer. Math. Monthly, Vol. 72, pp. 260-264, 1965.
[100] A. Bjorck, Numerical Methods for Least Squares Problems. Philadelphia: SIAM, 1996.
[101] W. Boehm, "An Operator Limit," SIAM Rev., Vol. 36, p. 659, 1994.
[102] A. Borck, Numerical Methods for Least Squares Problems. Philadelphia: SIAM, 1996.
[103] J. M. Borwein and A. M. Lewis, Convex Analysis and Nonlinear Optimization. New York: Springer, 2000.
[104] A. J. Bosch, "The Factorization of a Square Matrix Into Two Symmetric Matrices," Amer. Math. Monthly, Vol. 93, pp. 462-464, 1986.
[105] A. J. Bosch, "Note on the Factorization of a Square Matrix into Two Hermitian or Symmetric Matrices," SIAM Rev., Vol. 29, pp. 463-468, 1987.
[106] T. L. Boullion and P. L. Odell, Generalized Inverse Matrices. New York: John Wiley and Sons, 1971.
[107] J.-C. Bourin, "Some Inequalities for Norms on Matrices and Operators," Lin. Alg. Appl., Vol. 292, pp. 139-154, 1999.
[108] S. Boyd, "Entropy and Random Feedback," in Open Problems in Mathematical Systems and Control Theory, V. D. Blondel and et al, Eds. New York: Springer, 1998, pp. 71-74.
[109] J. L. Brenner, "Expanded Matrices from Matrices with Complex Elements," SIAM Rev., Vol. 3, pp. 165-166, 1961.
[110] J. L. Brenner and J. S. Lim, "The Matrix Equations $A=X Y Z$ and $B=Z Y X$ and Related Ones," Canad. Math. Bull., Vol. 17, pp. 179183, 1974.
[111] J. W. Brewer, "Kronecker Products and Matrix Calculus in System Theory," IEEE Trans. Circ. Sys., Vol. CAS-25, pp. 772-781, 1978, Correction: CAS-26:360, 1979.
[112] R. Brockett, Finite Dimensional Linear Systems. New York: Wiley, 1970.
[113] E. T. Browne, Introduction to the Theory of Determinants and Matrices. Chapel Hill: The University of North Carolina Press, 1958.
[114] R. A. Brualdi and J. Q. Massey, "Some Applications of Elementary Linear Algebra in Combinatorics," College Math. J., Vol. 24, pp. 1019, 1993.
[115] R. A. Brualdi and S. Mellendorf, "Regions in the Complex Plane Containing the Eigenvalues of a Matrix," Amer. Math. Monthly, Vol. 101, pp. 975-985, 1994.
[116] R. A. Brualdi and H. J. Ryser, Combinatorial Matrix Theory. Cambridge: Cambridge University Press, 1991.
[117] P. S. Bullen, A Dictionary of Inequalities. Longman, 1998, Essex.
[118] P. S. Bullen, Handbook of Means and Their Inequalities. Dordrecht: Kluwer Academic Publishers, 2003.
[119] P. S. Bullen, D. S. Mitrinovic, and P. M. Vasic, Means and Their Inequalities. Dordrecht: Reidel Publ. Co., 1988.
[120] A. Bultheel and M. Van Barel, Linear Algebra, Rational Approximation and Orthogonal Polynomials. Amsterdam: Elsevier, 1997.
[121] F. Burns, D. Carlson, E. V. Haynsworth, and T. L. Markham, "Generalized Inverse Formulas Using the Schur-Complement," SIAM J. Appl. Math, Vol. 26, pp. 254-259, 1974.
[122] P. J. Bushell and G. B. Trustrum, "Trace Inequalities for Positive Definite Matrix Power Products," Lin. Alg. Appl., Vol. 132, pp. 173178, 1990.
[123] S. L. Campbell, Singular Systems. London: Pitman, 1980.
[124] S. L. Campbell and C. D. Meyer, Generalized Inverses of Linear Transformations. Pitman, 1979, reprinted by Dover, Mineola, 1991.
[125] S. L. Campbell and N. J. Rose, "Singular Perturbation of Autonomous Linear Systems," SIAM J. Math. Anal., Vol. 10, pp. 542-551, 1979.
[126] E. A. Carlen and E. H. Lieb, "A Minkowski Type Trace Inequality and Strong Subadditivity of Quantum Entropy," Amer. Math. Soc. Transl., Vol. 189, pp. 59-62, 1999.
[127] D. Carlson, "Controllability, Inertia, and Stability for Tridiagonal Matrices," Lin. Alg. Appl., Vol. 56, pp. 207-220, 1984.
[128] D. Carlson, E. V. Haynsworth, and T. L. Markham, "A Generalization of the Schur Complement by Means of the Moore-Penrose Inverse," SIAM J. Appl. Math., Vol. 26, pp. 169-175, 1974.
[129] D. Carlson, C. R. Johnson, D. C. Lay, and A. D. Porter, Eds., Linear Algebra Gems: Assets for Undergraduate Mathematics. Washington, DC: The Mathematical Association of America, 2002.
[130] D. Carlson, C. R. Johnson, D. C. Lay, A. D. Porter, A. E. Watkins, and W. Watkins, Eds., Resources for Teaching Linear Algebra. Washington, DC: The Mathematical Association of America, 1997.
[131] P. Cartier, "Mathemagics, A Tribute to L. Euler and R. Feynman," in Noise, Oscillators and Algebraic Randomness, M. Planat, Ed. New York: Springer, 2000, pp. 6-67.
[132] D. I. Cartwright and M. J. Field, "A Refinement of the Arithmetic Mean-Geometric Mean Inequality," Proc. Amer. Math. Soc., Vol. 71, pp. 36-38, 1978.
[133] F. S. Cater, "Products of Central Collineations," Lin. Alg. Appl., Vol. 19, pp. 251-274, 1978.
[134] N. N. Chan and M. K. Kwong, "Hermitan Matrix Inequalities and a Conjecture," Amer. Math. Monthly, Vol. 92, pp. 533-541, 1985.
[135] H. Chapellat, M. Mansour, and S. P. Bhattacharyya, "Elementary Proofs of Some Classical Stability Criteria," IEEE Trans. Educ., Vol. 33, pp. 232-239, 1990.
[136] F. Chatelin, Eigenvalues of Matrices. New York: John Wiley and Sons, 1993.
[137] J.-J. Chattot, Computational Aerodynamics and Fluid Dynamics. Berlin: Springer, 2002.
[138] V.-S. Chellaboina and W. M. Haddad, "Is the Frobenius Matrix Norm Induced?" IEEE Trans. Autom. Contr., Vol. 40, pp. 2137-2139, 1995.
[139] V.-S. Chellaboina and W. M. Haddad, "Solution to 'Some Matrix Integral Identities'," SIAM Rev., Vol. 39, pp. 763-765, 1997.
[140] V.-S. Chellaboina, W. M. Haddad, D. S. Bernstein, and D. A. Wilson, "Induced Convolution Operator Norms of Linear Dynamical Systems," Math. Contr. Sig. Sys., Vol. 13, pp. 216-239, 2000.
[141] C.-T. Chen, Linear System Theory and Design. New York: Holt, Rhinehart, Winston, 1984.
[142] H.-W. Cheng and S. S.-T. Yau, "More Explicit Formulas for the Matrix Exponential," Lin. Alg. Appl., Vol. 262, pp. 131-163, 1997.
[143] J. Chollet, "Some Inequalities for Principal Submatrices," Amer. Math. Monthly, Vol. 104, pp. 609-617, 1997.
[144] M. T. Chu, R. E. Funderlic, and G. H. Golub, "A Rank-One Reduction Formula and Its Application to Matrix Factorizations," SIAM Rev., Vol. 37, pp. 512-530, 1995.
[145] N. L. C. Chui and J. M. Maciejowski, "Realization of Stable Models with Subspace Methods," Automatica, Vol. 32, pp. 1587-1595, 1996.
[146] D. J. Clements, B. D. O. Anderson, A. J. Laub, and J. B. Matson, "Spectral Factorization with Imaginary-Axis Zeros," Lin. Alg. Appl., Vol. 250, pp. 225-252, 1997.
[147] R. E. Cline, "Representations for the Generalized Inverse of a Partitioned Matrix," SIAM J. Appl. Math., Vol. 12, pp. 588-600, 1964.
[148] R. E. Cline and R. E. Funderlic, "The Rank of a Difference of Matrices and Associated Generalized Inverses," Lin. Alg. Appl., Vol. 24, pp. 185-215, 1979.
[149] M. J. Cloud and B. C. Drachman, Inequalities With Applications to Engineering. New York: Springer, 1998.
[150] J. E. Cohen, "Spectral Inequalities for Matrix Exponentials," Lin. Alg. Appl., Vol. 111, pp. 25-28, 1988.
[151] J. E. Cohen, S. Friedland, T. Kato, and F. P. Kelly, "Eigenvalue Inequalities for Products of Matrix Exponentials," Lin. Alg. Appl., Vol. 45, pp. 55-95, 1982.
[152] D. K. Cohoon, "Sufficient Conditions for the Zero Matrix," Amer. Math. Monthly, Vol. 96, pp. 448-449, 1989.
[153] P. J. Costa and S. Rabinowitz, "Matrix Differentiation Identities," SIAM Rev., Vol. 36, pp. 657-659, 1994.
[154] C. G. Cullen, "A Note on Normal Matrices," Amer. Math. Monthly, Vol. 72, pp. 643-644, 1965.
[155] C. G. Cullen, Matrices and Linear Transformations, 2nd ed. Reading: Addison-Wesley, 1972, reprinted by Dover, Mineola, 1990.
[156] W. J. Culver, "On the Existence and Uniqueness of the Real Logarithm of a Matrix," Proc. Amer. Math. Soc., Vol. 17, pp. 1146-1151, 1966.
[157] M. L. Curtis, Matrix Groups, 2nd ed. New York: Springer-Verlag, 1984.
[158] R. D'Andrea, "Extension of Parrott's Theorem to Nondefinite Scalings," IEEE Trans. Autom. Contr., Vol. 45, pp. 937-940, 2000.
[159] F. M. Dannan, "Matrix and Operator Inequalities," J. Inequal. Pure. Appl. Math., Vol. 2, no. 3/34, pp. 1-7, 2001.
[160] R. Datko and V. Seshadri, "A Characterization and a Canonical Decomposition of Hurwitzian Matrices," Amer. Math. Monthly, Vol. 77, pp. 732-733, 1970.
[161] B. N. Datta, Numerical Linear Algebra and Applications. Pacific Grove: Brooks/Cole, 1995.
[162] B. N. Datta, "Stability and Inertia," Lin. Alg. Appl., Vol. 302-303, pp. 563-600, 1999.
[163] P. J. Davis, Circulant Matrices, 2nd ed. New York: Chelsea, 1994.
[164] P. P. N. de Groen, "A Counterexample on Vector Norms and the Subordinate Matrix Norms," Amer. Math. Monthly, Vol. 97, pp. 406407, 1990.
[165] J. de Pillis, "Transformations on Partitioned Matrices," Duke Math. J., Vol. 36, pp. 511-515, 1969.
[166] J. de Pillis, "Inequalities for Partitioned Semidefinite Matrices," Lin. Alg. Appl., Vol. 4, pp. 79-94, 1971.
[167] E. de Souza and S. P. Bhattacharyya, "Controllability, Observability and the Solution of $A X-X B=C, "$ Lin. Alg. Appl., Vol. 39, pp. 167-188, 1981.
[168] H. P. Decell, "An Application of the Cayley-Hamilton Theorem to Generalized Matrix Inversion," SIAM Rev., Vol. 7, pp. 526-528, 1965.
[169] J. W. Demmel, Applied Numerical Linear Algebra. Philadelphia: SIAM, 1997.
[170] E. D. Denman and A. N. Beavers, "The Matrix Sign Function and Computations in Systems," Appl. Math. Computation, Vol. 2, pp. 6394, 1976.
[171] C. A. Desoer and H. Haneda, "The Measure of a Matrix as a Tool to Analyze Computer Algorithms for Circuit Analysis," IEEE Trans. Circ. Thy., Vol. 19, pp. 480-486, 1972.
[172] E. Deutsch and M. Mlynarski, "Matricial Logarithmic Derivatives," Lin. Alg. Appl., Vol. 19, pp. 17-31, 1978.
[173] L. Dieci, "Real Hamiltonian Logarithm of a Symplectic Matrix," Lin. Alg. Appl., Vol. 281, pp. 227-246, 1998.
[174] J. Ding, "Perturbation of Systems in Linear Algebraic Equations," Lin. Multilin. Alg., Vol. 47, pp. 119-127, 2000.
[175] J. Ding, "Lower and Upper Bounds for the Perturbation of General Linear Algebraic Equations," Appl. Math. Lett., Vol. 14, pp. 49-52, 2001.
[176] J. Ding and W. C. Pye, "On the Spectrum and Pseudoinverse of a Special Bordered Matrix," Lin. Alg. Appl., Vol. 331, pp. 11-20, 2001.
[177] A. Dittmer, "Cross Product Identities in Arbitrary Dimension," Amer. Math. Monthly, Vol. 101, pp. 887-891, 1994.
[178] T. E. Djaferis and S. K. Mitter, "Algebraic Methods for the Study of Some Linear Matrix Equations," Lin. Alg. Appl., Vol. 44, pp. 125-142, 1982.
[179] D. Z. Djokovic, "Product of Two Involutions," Arch. Math., Vol. 18, pp. 582-584, 1967.
[180] D. Z. Djokovic, "On Some Representations of Matrices," Lin. Multilin. Alg., Vol. 4, pp. 33-40, 1976.
[181] D. Z. Djokovic and O. P. Lossers, "A Determinant Inequality," Amer. Math. Monthly, Vol. 83, pp. 483-484, 1976.
[182] D. Z. Djokovic and J. Malzan, "Products of Reflections in the Unitary Group," Proc. Amer. Math. Soc., Vol. 73, pp. 157-160, 1979.
[183] D. Z. Dokovic, "On the Product of Two Alternating Matrices," Amer. Math. Monthly, Vol. 98, pp. 935-936, 1991.
[184] W. F. Donoghue, Monotone Matrix Functions and Analytic Continuation. New York: Springer, 1974.
[185] H. G. Eggleston, Convexity. Cambridge University Press, Cambridge, 1958.
[186] L. Elsner and K. D. Ikramov, "Normal Matrices: An update," Lin. Alg. Appl., Vol. 285, pp. 291-303, 1998.
[187] L. Elsner, C. R. Johnson, and J. A. D. DaSilva, "The Perron Root of a Weighted Geometric Mean of Nonnegative Matrices," Lin. Multilin. Alg., Vol. 24, pp. 1-13, 1988.
[188] L. Elsner and M. H. C. Paardekooper, "On Measures of Nonnormality of Matrices," Lin. Alg. Appl., Vol. 92, pp. 107-124, 1987.
[189] L. Elsner and T. Szulc, "Convex Sets of Schur Stable and Stable Matrices," Lin. Multilin. Alg., Vol. 48, pp. 1-19, 2000.
[190] K. Engo, "On the BCH formula in so(3)," Numerical Mathematics BIT, Vol. 41, pp. 629-632, 2001.
[191] S. Fallat and M. J. Tsatsomeros, "On the Cayley Transform of Positivity Classes of Matrices," Elec. J. Lin. Alg., Vol. 9, pp. 190-196, 2002.
[192] K. Fan, "Generalized Cayley Transforms and Strictly Dissipative Matrices," Lin. Alg. Appl., Vol. 5, pp. 155-172, 1972.
[193] K. Fan, "On Real Matrices with Positive Definite Symmetric Component," Lin. Multilinear Alg., Vol. 1, pp. 1-4, 1973.
[194] K. Fan, "On Strictly Dissipative Matrices," Lin. Alg. Appl., Vol. 9, pp. 223-241, 1974.
[195] Y. Fang, K. A. Loparo, and X. Feng, "Inequalities for the Trace of Matrix Product," IEEE Trans. Autom. Contr., Vol. 39, pp. 24892490, 1994.
[196] A. Fassler and E. Stiefel, Group Theoretical Methods and Their Applications. Boston: Birkhauser, 1992.
[197] A. E. Fekete, Real Linear Algebra. New York: Marcel Dekker, 1985.
[198] B. Q. Feng, "Equivalence Constants for Certain Matrix Norms," Lin. Alg. Appl., Vol. 374, pp. 247-254, 2003.
[199] P. G. Ferreira and S. P. Bhattacharyya, "On Blocking Zeros," IEEE Trans. Autom. Contr., Vol. AC-22, pp. 258-259, 1977.
[200] J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynam$i c s, 3 r d$ ed. Berlin: Springer, 2002.
[201] M. Fiedler, "A Note on the Hadamard Product of Matrices," Lin. Alg. Appl., Vol. 49, pp. 233-235, 1983.
[202] M. Fiedler, Special Matrices and Their Applications in Numerical Mathematics. Dordrecht: Martinus Nijhoff, 1986.
[203] M. Fiedler and T. L. Markham, "A Characterization of the MoorePenrose Inverse," Lin. Alg. Appl., Vol. 179, pp. 129-133, 1993.
[204] M. Fiedler and T. L. Markham, "An Observation on the Hadamard Product of Hermitian Matrices," Lin. Alg. Appl., Vol. 215, pp. 179182, 1995.
[205] M. Fiedler and V. Ptak, "A New Positive Definite Geometric Mean of Two Positive Definite Matrices," Lin. Alg. Appl., Vol. 251, pp. 1-20, 1997.
[206] P. A. Fillmore, "On Similarity and the Diagonal of a Matrix," Amer. Math. Monthly, Vol. 76, pp. 167-169, 1969.
[207] H. Flanders, "Methods of Proof in Linear Algebra," Amer. Math. Monthly, Vol. 63, pp. 1-15, 1956.
[208] H. Flanders, "On the Norm and Spectral Radius," Lin. Multilin. Alg., Vol. 2, pp. 239-240, 1974.
[209] T. M. Flett, Differential Analysis. Cambridge: Cambridge University Press, 1980.
[210] J. Foley, A. van Dam, S. Feiner, and J. Hughes, Computer Graphics Principles and Practice, 2nd ed. Reading: Addison-Wesley, 1990.
[211] E. Formanek, "Polynomial Identities and the Cayley-Hamilton Theorem," Mathematical Intelligencer, Vol. 11, pp. 37-39, 1989.
[212] E. Formanek, The Polynomial Identities and Invariants of $n \times n M a-$ trices. Providence, RI: American Mathematical Society, 1991.
[213] B. A. Francis, A Course in H_{∞} Control Theory. New York: SpringerVerlag, 1987.
[214] J. Franklin, Matrix Theory. Englewood Cliffs: Prentice-Hall, 1968.
[215] M. Frazier, An Introduction to Wavelets Through Linear Algebra. New York: Springer, 1999.
[216] P. A. Fuhrmann, A Polynomial Approach to Linear Algebra. New York: Springer, 1996.
[217] A. T. Fuller, "Conditions for a Matrix to Have Only Characteristic Roots with Negative Real Parts," J. Math. Anal. Appl., Vol. 23, pp. 71-98, 1968.
[218] T. Furuta, " $A \geq B \geq 0$ Assures $\left(B^{r} A^{p} B^{r}\right)^{1 / q} \geq B^{(p+2 r) / q}$ for $r \geq$ $0, p \geq 0, q \geq 1$ with $(1+2 r) q \geq p+2 r, "$ Proc. Amer. Math. Soc., Vol. 101, pp. 85-88, 1987.
[219] T. Furuta, "Norm Inequalities Equivalent to Loewner-Heinz Theorem," Rev. Math. Phys., Vol. 1, pp. 135-137, 1989.
[220] F. Gaines, "A Note on Matrices with Zero Trace," Amer. Math. Monthly, Vol. 73, pp. 630-631, 1966.
[221] F. Gaines, "A Note on Matrices with Zero Trace," Amer. Math. Monthly, Vol. 73, pp. 630-631, 1966.
[222] F. R. Gantmacher, The Theory of Matrices. New York: Chelsea, 1959, Vol. I.
[223] F. R. Gantmacher, The Theory of Matrices. New York: Chelsea, 1959, Vol. II.
[224] J. Garloff and D. G. Wagner, "Hadamard Products of Stable Polynomials Are Stable," J. Math. Anal. Appl., Vol. 202, pp. 797-809, 1996.
[225] T. Geerts, "A Necessary and Sufficient Condition for Solvability of the Linear-Quadratic Control Problem without Stability," Sys. Contr. Lett., Vol. 11, pp. 47-51, 1988.
[226] A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics. New York: Wiley, 1975.
[227] R. Gilmore, Lie Groups, Lie Algebras, and Some of Their Applications. New York: John Wiley and Sons, 1974.
[228] M. L. Glasser, "Exponentials of Certain Hilbert Space Operators," SIAM Rev., Vol. 34, pp. 498-500, 1992.
[229] S. K. Godunov, Modern Aspects of Linear Algebra. Providence: American Mathematical Society, 1998.
[230] I. Gohberg, P. Lancaster, and L. Rodman, Matrix Polynomials. New York: Academic Press, 1982.
[231] I. Gohberg, P. Lancaster, and L. Rodman, Invariant Subspaces of Matrices with Applications. New York: John Wiley and Sons, 1986.
[232] I. Gohberg, P. Lancaster, and L. Rodman, "On Hermitian Solutions of the Symmetric Algebraic Riccati Equation," SIAM J. Contr. Optim., Vol. 24, pp. 1323-1334, 1986.
[233] M. Goldberg, "Mixed Multiplicativity and l_{p} Norms for Matrices," Lin. Alg. Appl., Vol. 73, pp. 123-131, 1986.
[234] M. Goldberg, "Equivalence Constants for l_{p} Norms of Matrices," Lin. Multilin. Alg., Vol. 21, pp. 173-179, 1987.
[235] M. Goldberg, "Multiplicativity Factors and Mixed Multiplicativity," Lin. Alg. Appl., Vol. 97, pp. 45-56, 1987.
[236] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. Baltimore: The Johns Hopkins University Press, 1996.
[237] N. C. Gonzalez, J. J. Koliha, and Y. Wei, "Integral Representation of the Drazin Inverse," Electronic J. Lin. Alg., Vol. 9, pp. 129-131, 2002.
[238] N. Gordon and D. Salmond, "Bayesian Pattern Matching Technique for Target Acquisition," J. Guid. Contr. Dyn., Vol. 22, pp. 68-77, 1999.
[239] W. Govaerts and B. Sijnave, "Matrix Manifolds and the Jordan Structure of the Bialternate Matrix Product," Lin. Alg. Appl., Vol. 292, pp. 245-266, 1999.
[240] R. Gow, "The Equivalence of an Invertible Matrix to its Transpose," Lin. Alg. Appl., Vol. 8, pp. 329-336, 1980.
[241] R. Gow and T. J. Laffey, "Pairs of Alternating Forms and Products of Two Skew-Symmetric Matrices," Lin. Alg. Appl., Vol. 63, pp. 119-132, 1984.
[242] A. Graham, Kronecker Products and Matrix Calculus With Applications. Chichester: Ellis Horwood, 1981.
[243] J. F. Grcar, "A Matrix Lower Bound."
[244] W. Greub, Linear Algebra. New York: Springer, 1981.
[245] T. N. E. Greville, "Solutions of the Matrix Equation $X A X=X$ and Relations Between Oblique and Orthogonal projectors," SIAM J. Appl. Math, Vol. 26, pp. 828-832, 1974.
[246] R. Grone, C. R. Johnson, E. M. Sa, and H. Wolkowicz, "Normal Matrices," Lin. Alg. Appl., Vol. 87, pp. 213-225, 1987.
[247] J. Gross, "On the Product of Orthogonal Projectors," Lin. Alg. Appl., Vol. 289, pp. 141-150, 1999.
[248] J. Gross, G. Trenkler, and S.-O. Troschke, "Quaternions: Further Contributions to a Matrix Oriented Approach," Lin. Alg. Appl., Vol. 326, pp. 205-213, 2001.
[249] A. K. Gupta and D. K. Nagar, Matrix Variate Distributions. Boca Raton: CRC Press, 1999.
[250] K. Gurlebeck and W. Sprossig, Quaternionic and Clifford Calculus for Physicists and Engineers. New York: Chichester, 1997.
[251] K. E. Gustafson, "Matrix Trigonometry," Lin. Alg. Appl., Vol. 217, pp. 117-140, 1995.
[252] K. E. Gustafson and D. K. M. Rao, Numerical Range. New York: Springer, 1997.
[253] W. H. Gustafson, P. R. Halmos, and H. Radjavi, "Products of Involutions," Lin. Alg. Appl., Vol. 13, pp. 157-162, 1976.
[254] W. M. Haddad and D. S. Bernstein, "Robust Stabilization with Positive Real Uncertainty: Beyond the Small Gain Theorem," Sys. Contr. Lett., Vol. 17, pp. 191-208, 1991.
[255] W. M. Haddad and D. S. Bernstein, "Controller Design with Regional Pole Constraints," IEEE Trans. Autom. Contr., Vol. 37, pp. 54-69, 1992.
[256] W. W. Hager, "Updating the Inverse of a Matrix," SIAM Rev., Vol. 31, pp. 221-239, 1989.
[257] W. Hahn, Stability of Motion. Berlin: Springer-Verlag, 1967.
[258] P. R. Halmos, Finite-Dimensional Vector Spaces. Princeton: Van Nostrand, 1958, reprinted by Springer, New York, 1974.
[259] P. R. Halmos, A Hilbert Space Problem Book. New York: Springer, 1980.
[260] P. R. Halmos, "Bad Products of Good Matrices," Lin. Alg. Appl., Vol. 29, pp. 1-20, 1991.
[261] P. R. Halmos, Problems for Mathematicians Young and Old. Washington, D.C.: The Mathematical Association of America, 1991.
[262] P. R. Halmos, Linear Algebra Problem Book. Washington, D.C.: The Mathematical Association of America, 1995.
[263] L. A. Harris, "The Inverse of a Block Matrix," Amer. Math. Monthly, Vol. 102, pp. 656-657, 1995.
[264] W. A. Harris, J. P. Fillmore, and D. R. Smith, "Matrix ExponentialsAnother Approach," SIAM Rev., Vol. 43, pp. 694-706, 2001.
[265] D. J. Hartfiel, Nonhomogeneous Matrix Products. Singapore: World Scientific, 2002.
[266] R. E. Hartwig, "Block Generalized Inverses," Arch. Rat. Mech. Anal., Vol. 61, pp. 197-251, 1976.
[267] R. E. Hartwig, "A Note on the Partial Ordering of Positive SemiDefinite Matrices," Lin. Multilinear Alg., Vol. 6, pp. 223-226, 1978.
[268] R. E. Hartwig and I. J. Katz, "On Products of EP Matrices," Lin. Alg. Appl., Vol. 252, pp. 339-345, 1997.
[269] D. A. Harville, Matrix Algebra from a Statistician's Perspective. New York: Springer, 1997.
[270] M. L. J. Hautus, "Controllability and Observability Conditions of Linear Autonomous Systems," Proc. Koniklijke Akademic Van Wetenshappen, Vol. 72, pp. 443-448, 1969.
[271] T. Haynes, "Stable Matrices, theCayley Transform, and convergent Matrices," Int. J. Math. Math. Sci., Vol. 14, pp. 77-81, 1991.
[272] E. V. Haynsworth, "Applications of an Inequality for the Schur Complement," Proc. Amer. Math. Soc., Vol. 24, pp. 512-516, 1970.
[273] U. Helmke and P. A. Fuhrmann, "Bezoutians," Lin. Alg. Appl., Vol. 122-124, pp. 1039-1097, 1989.
[274] B. W. Helton, "Logarithms of Matrices," Proc. Amer. Math. Soc., Vol. 19, pp. 733-738, 1968.
[275] H. V. Henderson, F. Pukelsheim, and S. R. Searle, "On the History of the Kronecker Product," Lin. Multilin. Alg., Vol. 14, pp. 113-120, 1983.
[276] H. V. Henderson and S. R. Searle, "The Vec-Permutation Matrix, The Vec Operator and Kronecker Products: A Review," Lin. Multilin. Alg., Vol. 9, pp. 271-288, 1981.
[277] N. J. Higham, "Newton's Method for the Matrix Square Root," Math. Computation, Vol. 46, pp. 537-549, 1986.
[278] N. J. Higham, "Matrix Nearness Problems and Applications," in Applications of Matrix Theory, M. J. C. Gover and S. Barnett, Eds. Oxford: Oxford University Press, 1989, pp. 1-27.
[279] N. J. Higham, "Estimating the Matrix p-Norm," Numer. Math., Vol. 62, pp. 539-555, 1992.
[280] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed. Philadelphia: SIAM, 2002.
[281] M. W. Hirsch and S. Smale, Differential Equations, Dynamical Systems and Linear Algebra. New York: Academic Press, 1974.
[282] O. Hirzallah and F. Kittaneh, "Matrix Young Inequalities for the Hilbert-Schmidt Norm," Lin. Alg. Appl., Vol. 308, pp. 77-84, 2000.
[283] O. Hirzallah and F. Kittaneh, "Non-commutative Clarkson Inequalities for Unitarily Invariant Norms," Pacific J. Math., Vol. 202, pp. 363-369, 2002.
[284] A. Hmamed, "A Matrix Inequality," Int. J. Contr., Vol. 49, pp. 363365, 1989.
[285] K. Hoffman and R. Kunze, Linear Algebra, 2nd ed. Englewood Cliffs: Prentice-Hall, 1971.
[286] Y. Hong and R. A. Horn, "The Jordan Canonical form of a Product of a Hermitian and a Positive Semidefinite Matrix," Lin. Alg. Appl., Vol. 147, pp. 373-386, 1991.
[287] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge: Cambridge University Press, 1985.
[288] R. A. Horn and C. R. Johnson, "Hadamard and Conventional Submultiplicativity for Unitarily Invariant Norms on Matrices," Lin. Multilin. Alg., Vol. 20, pp. 91-106, 1987.
[289] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis. Cambridge: Cambridge University Press, 1991.
[290] R. A. Horn and R. Mathias, "An Analog of the Cauchy-Schwarz Inequality for Hadamard Products and Unitarily Invariant Norms," SIAM J. Matrix Anal. Appl., Vol. 11, pp. 481-498, 1990.
[291] R. A. Horn and R. Mathias, "Cauchy-Schwarz Inequalities Associated with Positive Semidefinite Matrices," Lin. Alg. Appl., Vol. 142, pp. 63-82, 1990.
[292] R. A. Horn and R. Mathias, "Block-Matrix Generalizations of Schur's Basic Theorems on Hadamard Products," Lin. Alg. Appl., Vol. 172, pp. 337-346, 1992.
[293] R. A. Horn and I. Olkin, "When Does $a^{*} a=b^{*} b$ and Why Does One Want to Know?" Amer. Math. Monthly, Vol. 103, pp. 470-482, 1996.
[294] R. A. Horn and G. G. Piepmeyer, "Two Applications of the Theory of Primary Matrix Functions," Lin. Alg. Appl., Vol. 361, pp. 99-106, 2003.
[295] B. G. Horne, "Lower Bounds for the Spectral Radius of a Matrix," Lin. Alg. Appl., Vol. 263, pp. 261-273, 1997.
[296] S.-H. Hou, "A Simple Proof of the Leverrier-Faddeev Characteristic Polynomial Algorithm," SIAM Rev., Vol. 40, pp. 706-709, 1998.
[297] A. S. Householder, The Theory of Matrices in Numerical Analysis. New York: Blaisdell Publishing Company, 1964, reprinted by Dover, New York, 1975.
[298] A. S. Householder, "Bezoutiants, Elimination and Localization," SIAM Rev., Vol. 12, pp. 73-78, 1970.
[299] R. Howe, "Very Basic Lie Theory," Amer. Math. Monthly, Vol. 90, pp. 600-623, 1983.
[300] G.-D. Hu and G.-H. Hu, "A Relation between the Weighted Logarithmic Norm of a Matrix and the Lyapunov Equation," Numerical Mathematics BIT, Vol. 40, pp. 606-610, 2000.
[301] C. H. Hung and T. L. Markham, "The Moore-Penrose Inverse of a Partitioned Matrix," Lin. Alg. Appl., Vol. 11, pp. 73-86, 1975.
[302] D. C. Hyland and D. S. Bernstein, "The Optimal Projection Equations for Fixed-Order Dynamic Compensation," IEEE Trans. Autom. Contr., Vol. AC-29, pp. 1034-1037, 1984.
[303] D. C. Hyland and E. G. Collins, "Block Kronecker Products and Block Norm Matrices in Large-Scale Systems Analysis," SIAM J. Matrix Anal. Appl., Vol. 10, pp. 18-29, 1989.
[304] N. H. Ibragimov, Elementary Lie Group Analysis and Ordinary Differential Equations. Chichester: Wiley, 1999.
[305] Y. Ikebe and T. Inagaki, "An Elementary Approach to the Functional Calculus for Matrices," Amer. Math. Monthly, Vol. 93, pp. 390-392, 1986.
[306] V. Ionescu, C. Oar, and M. Weiss, Generalized Riccati Theory and Robust Control. Chichester: John Wiley and Sons, 1999.
[307] A. Iserles, H. Z. Munthe-Kaas, S. P. Norsett, and A. Zanna, "LieGroup Methods," Acta Numerica, Vol. 9, pp. 215-365, 2000.
[308] Y. Ito, S. Hattori, and H. Maeda, "On the Decomposition of a Matrix into the Sum of Stable Matrices," Lin. Alg. Appl., Vol. 297, pp. 177182, 1999.
[309] A. Jennings and J. J. McKeown, Matrix Computation, 2nd ed. New York: John Wiley and Sons, 1992.
[310] C. R. Johnson, "An Inequality for Matrices Whose Symmetric Part is Positive Definite," Lin. Alg. Appl., Vol. 6, pp. 13-18, 1973.
[311] C. R. Johnson, "Closure Properties of Certain Positivity Classes of Matrices under Various Algebraic Operations," Lin. Alg. Appl., Vol. 97, pp. 243-247, 1987.
[312] C. R. Johnson, M. Neumann, and M. J. Tsatsomeros, "Conditions for the Positivity of Determinants," Lin. Multilin. Alg., Vol. 40, pp. 241-248, 1996.
[313] C. R. Johnson and P. Nylen, "Monotonicity Properties of Norms," Lin. Alg. Appl., Vol. 148, pp. 43-58, 1991.
[314] C. R. Johnson, K. Okubo, and R. Beams, "Uniqueness of Matrix Square Roots," Lin. Alg. Appl., Vol. 323, pp. 51-60, 2001.
[315] C. R. Johnson and R. Schreiner, "The Relationship Between AB and BA," Amer. Math. Monthly, Vol. 103, pp. 578-582, 1996.
[316] C. R. Johnson and H. Shapiro, "The Relative Gain Array $A \circ A^{-\mathrm{T}}$," SIAM J. Alg. Disc. Meth., Vol. 7, pp. 627-644, 1986.
[317] M. Jolly, "On the Calculus of Complex Matrices," Int. J. Contr., Vol. 61, pp. 749-755, 1995.
[318] A. Joseph, A. Melnikov, and R. Rentschler, Eds., Studies in Memory of Issai Schur. Cambridge: Birkhauser, 2002.
[319] E. I. Jury, Inners and Stability of Dynamic Systems, 2nd ed. Malabar: Krieger Publishing Co., 1982.
[320] J. B. Kagstrom, "Bounds and Perturbation Bounds for the Matrix Exponential," BIT, Vol. 17, pp. 39-57, 1977.
[321] T. Kailath, Linear Systems. Englewood Cliffs: Prentice-Hall, 1980.
[322] S. Karlin and F. Ost, "Some Monotonicity Properties of Schur Powers of Matrices and Related Inequalities," Lin. Alg. Appl., Vol. 68, pp. 47-65, 1985.
[323] T. Kato, "Spectral Order and a Matrix Limit Theorem," Lin. Multilin. Alg., Vol. 8, pp. 15-19, 1979.
[324] T. Kato, Perturbation Theory for Linear Operators. Berlin: SpringerVerlag, 1980.
[325] J. Y. Kazakia, "Orthogonal Transformation of a Trace Free Symmetric Matrix Into One With Zero diagonal Elements," Int. J. Eng. Sci., Vol. 26, pp. 903-906, 1988.
[326] C. Kenney and A. J. Laub, "Controllability and Stability Radii for Companion Form Systems," Math. Contr. Sig. Sys., Vol. 1, pp. 239256, 1988.
[327] C. Kenney and A. J. Laub, "Rational Iteration Methods for the Matrix Sign Function," SIAM J. Matrix Anal. Appl., Vol. 12, pp. 273-291, 1991.
[328] H. Kestelman, "Eigenvectors of a Cross-Diagonal Matrix," Amer. Math. Monthly, Vol. 93, p. 566, 1986.
[329] N. Keyfitz, Introduction to the Mathematics of Population. Reading: Addison-Wesley, 1968.
[330] C. G. Khatri and S. K. Mitra, "Hermitian and Nonnegative Definite Solutions of Linear Matrix Equations," SIAM J. Appl. Math., Vol. 31, pp. 579-585, 1976.
[331] F. Kittaneh, "Inequalities for the Schatten p-norm III," Comm. Math. Phys., Vol. 104, pp. 307-310, 1986.
[332] F. Kittaneh, "Inequalities for the Schatten p-Norm. IV," Commun. Math. Phys., Vol. 106, pp. 581-585, 1986.
[333] F. Kittaneh, "On Zero-Trace Matrices," Lin. Alg. Appl., Vol. 151, pp. 119-124, 1991.
[334] F. Kittaneh, "Singular Values of Companion Matrices and Bounds on Zeros of Polynomials," SIAM J. Matrix Anal. Appl., Vol. 16, pp. 333-340, 1995.
[335] F. Kittaneh, "Norm Inequalities for Certain Operator Sums," J. Funct. Anal., Vol. 143, pp. 337-348, 1997.
[336] F. Kittaneh, "Commutator Inequalities Associated with the Polar Decomposition," Proc. Amer. Math. Soc., Vol. 130, pp. 1279-1283, 2001.
[337] F. Kittaneh, "Norm Inequalities for Sums of Positive Operators," J. Operator Theory, Vol. 48, pp. 95-103, 2002.
[338] R. H. Koning, H. Neudecker, and T. Wansbeek, "Block Kronecker Products and the vecb Operator," Lin. Alg. Appl., Vol. 149, pp. 165184, 1991.
[339] T. Koshy, Fibonacci and Lucas Numbers with Applications. New York: John Wiley \& Sons, 2001.
[340] O. Krafft, "An Arithmetic-Harmonic-Mean Inequality for Nonnegative Definite Matrices," Lin. Alg. Appl., Vol. 268, pp. 243-246, 1998.
[341] W. Kratz, Quadratic Functionals in Variational Analysis and Control Theory. New York: Wiley, 1995.
[342] E. Kreindler and A. Jameson, "Conditions for Nonnegativeness of Partitioned Matrices," IEEE Trans. Autom. Contr., Vol. AC-17, pp. 147148, 1972.
[343] V. Kucera, "On Nonnegative Definite Solutions to Matrix Quadratic Equations," Automatica, Vol. 8, pp. 413-423, 1972.
[344] J. B. Kuipers, Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace, and Virtual Reality. Princeton: Princeton University Press, 1999.
[345] K. Kwakernaak and R. Sivan, Linear Optimal Control Systems. New York: John Wiley and Sons, 1972.
[346] M. Kwapisz, "The Power of a Matrix," SIAM Rev., Vol. 40, pp. 703705, 1998.
[347] K. R. Laberteaux, "Hermitian Matrices," Amer. Math. Monthly, Vol. 104, p. 277, 1997.
[348] T. J. Laffey, "Products of Skew-Symmetric Matrices," Lin. Alg. Appl., Vol. 68, pp. 249-251, 1985.
[349] S. Lakshminarayanan, S. L. Shah, and K. Nandakumar, "Cramer's Rule for Non-Square Matrices," Amer. Math. Monthly, Vol. 106, p. 865, 1999.
[350] P. Lancaster, Lambda-matrices and Vibrating Systems. Oxford: Pergamon Press, 1966, reprinted by Dover Publications, Mineola, 2002.
[351] P. Lancaster and L. Rodman, "Solutions of the Continuous and Discrete Time Algebraic Riccati Equations: A Review," in The Riccati Equation, S. Bittanti, J. C. Willems, and A. Laub, Eds. New York: Springer, 1991, pp. 11-51.
[352] P. Lancaster and L. Rodman, Algebraic Riccati Equations. Oxford: Clarendon Press, 1995.
[353] P. Lancaster and M. Tismenetsky, The Theory of Matrices, 2nd ed. Orlando: Academic Press, 1985.
[354] A. J. Laub and K. Meyer, "Canonical Forms for Symplectic and Hamiltonian Matrices," Celestial Mechanics, Vol. 9, pp. 213-238, 1974.
[355] C. L. Lawson, Solving Least Squares Problems. Englewood Cliffs: Prentice-Hall, 1974, reprinted by SIAM, Philadelphia,1995.
[356] P. D. Lax, Linear Algebra. New York: John Wiley and Sons, 1997.
[357] S. R. Lay, Convex Sets and Their Applications. New York: John Wiley and Sons, 1982.
[358] K. J. LeCouteur, "Representation of the Function $\operatorname{Tr}(\exp (A-\lambda B))$ as a Laplace Transform with Positive Weight and Some Matrix Inequalities," J. Phys. A, Vol. 13, pp. 3147-3159, 1980.
[359] A. Lee, "Centrohermitian and Skew-Centrohermitian Matrices," Lin. Alg. Appl., Vol. 29, pp. 205-210, 1980.
[360] J. M. Lee and D. A. Weinberg, "A Note on Canonical Forms for Matrix Congruence," Lin. Alg. Appl., Vol. 249, pp. 207-215, 1996.
[361] S. H. Lehnigk, Stability Theorems for Linear Motions. Englewood Cliffs: Prentice-Hall, 1966.
[362] E. Leonard, "The Matrix Exponential," SIAM Rev., Vol. 38, pp. 507512, 1996.
[363] G. Letac, "A Matrix and Its Matrix of Reciprocals Both Positive Semidefinite," Amer. Math. Monthly, Vol. 82, pp. 80-81, 1975.
[364] J. S. Lew, "The Cayley Hamilton Theorem in n Dimensions," Z. Angew. Math. Phys., Vol. 17, pp. 650-653, 1966.
[365] D. C. Lewis, "A Qualitative Analysis of S-Systems: Hopf Bifurcations," in Canonical Nonlinear Modeling, E. O. Voit, Ed. New York: Van Nostrand Reinhold, 1991, pp. 304-344.
[366] A.-L. Li and C.-K. Li, "Isometries for the Vector (p, q) Norm and the Induced (p, q) Norm," Lin. Multilin. Alg., Vol. 21, pp. 315-332, 1995.
[367] C.-K. Li and R. Mathias, "The Determinant of the Sum of Two Matrices," Bull. Austral. Math. Soc., Vol. 52, pp. 425-429, 1995.
[368] C.-K. Li and R. Mathias, "The Lidskii-Mirsky-Wielandt TheoremAdditive and Multiplicative Versions," Numer. Math., Vol. 81, pp. 377-413, 1999.
[369] C.-K. Li and R. Mathias, "Extremal Characterizations of the Schur Complement and Resulting Inequalities," SIAM Rev., Vol. 42, pp. 233-246, 2000.
[370] C.-K. Li and R. Mathias, "Inequalities on Singular Values of Block Triangular Matrices," SIAM J. Matrix Anal. Appl., Vol. 24, pp. 126131, 2002.
[371] C.-K. Li and H. Schneider, "Orthogonality of Matrices," Lin. Alg. Appl., Vol. 347, pp. 115-122, 2002.
[372] E. H. Lieb, "Convex Trace Functions and the Wigner-Yanase-Dyson Conjecture," Advances Math., Vol. 11, pp. 267-288, 1973.
[373] E. H. Lieb and M. B. Ruskai, "Some Operator Inequalities of the Schwarz Type," Adv. Math., Vol. 12, pp. 269-273, 1974.
[374] E. H. Lieb and W. E. Thirring, "Inequalities for the Moments of the Eigenvalues of the Schrodinger Hamiltonian and Their Relation to Sobolev Inequalities," in Studies in Mathematical Physics, E. Lieb, B. Simon, and A. Wightman, Eds. Princeton: Princeton University Press, 1976, pp. 269-303.
[375] T.-P. Lin, "The Power Mean and the Logarithmic Mean," Amer. Math. Monthly, Vol. 81, pp. 879-883, 1974.
[376] R.-W. Liu and R. J. Leake, "Exhaustive Equivalence Classes of Optimal Systems with Separable Controls," SIAM Rev., Vol. 4, pp. 678685, 1966.
[377] S. Liu, "Several Inequalities Involving Khatri-Rao Products of Positive Semidefinite Matrices," Lin. Alg. Appl., Vol. 354, pp. 175-186, 2002.
[378] S. Liu and H. Neudecker, "Several Matrix Kantorovich-Type Inequalities," Math. Anal. Appl., Vol. 197, pp. 23-26, 1996.
[379] E. Liz, "A Note on the Matrix Exponential," SIAM Rev., Vol. 40, pp. 700-702, 1998.
[380] R. Loewy, "An Inertia Theorem for Lyapunov's Equation and the Dimension of a Controllability Space," Lin. Alg. Appl., Vol. 260, pp. $1-7,1997$.
[381] M. Loss and M. B. Ruskai, Eds., Inequalities: Selecta of Elliott H. Lieb. New York: Springer, 2002.
[382] D. G. Luenberger, Optimization by Vector Space Methods. New York: Wiley and Sons, 1969.
[383] H. Lutkepohl, Handbook of Matrices. Chichester: John Wiley and Sons, 1996.
[384] C. C. MacDuffee, The Theory of Matrices. New York: Chelsea, 1956.
[385] A. G. J. Macfarlane and N. Karcanias, "Poles and Zeros of Linear Multivariable Systems: A Survey of the Algebraic, Geometric, and Complex-Variable Theory," Int. J. Contr., Vol. 24, pp. 33-74, 1976.
[386] D. S. Mackey, N. Mackey, and F. Tisseur, "Structured Tools for Structured Matrices," Elec. J. Lin. Alg., Vol. 10, pp. 106-145, 2003.
[387] J. R. Magnus, Linear Structures. London: Griffin, 1988.
[388] J. R. Magnus and H. Neudecker, Matrix Differential Calculus with Applications in Statistics and Econometrics. Chichester: John Wiley and Sons, 1988.
[389] K. N. Majindar, "On Simultaneous Hermitian Congruence Transformations of Matrices," Amer. Math. Monthly, Vol. 70, pp. 842-844, 1963.
[390] A. N. Malyshev and M. Sadkane, "On the Stability of Large Matrices," J. Computational Appl. Math., Vol. 102, pp. 303-313, 1999.
[391] L. E. Mansfield, Linear Algebra With Geometric Application. New York: Marcel-Dekker, 1976.
[392] M. Marcus, "An Eigenvalue Inequality for the Product of Normal Matrices," Amer. Math. Monthly, Vol. 63, pp. 173-174, 1956.
[393] M. Marcus, "Two Determinant Condensation Formulas," Lin. Multilinear Alg., Vol. 22, pp. 95-102, 1987.
[394] M. Marcus and N. A. Khan, "A Note on the Hadamard Product," Canad. Math. J., Vol. 2, pp. 81-83, 1959.
[395] M. Marcus and H. Minc, A Survey of Matrix Theory and Matrix Inequalities. Boston: Prindle, Weber, and Schmidt, 1964, reprinted by Dover, New York, 1992.
[396] T. L. Markham, "An Application of Theorems of Schur and Albert," Proc. Amer. Math. Soc., Vol. 59, pp. 205-210, 1976.
[397] T. L. Markham, "Oppenheim's Inequality for Positive Definite Matrices," Amer. Math. Monthly, Vol. 93, pp. 642-644, 1986.
[398] G. Marsaglia and G. P. H. Styan, "Equalities and Inequalities for Ranks of Matrices," Lin. Multilin. Alg., Vol. 2, pp. 269-292, 1974.
[399] J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry. Springer, 1994.
[400] A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Applications. New York: Academic Press, 1979.
[401] A. W. Marshall and I. Olkin, "Matrix Versions of the Cauchy and Kantorovich Inequalities," Aequationes Math., Vol. 40, pp. 89-93, 1990.
[402] K. Martensson, "On the Matrix Riccati Equation," Information Sciences, Vol. 3, pp. 17-49, 1971.
[403] A. M. Mathai, Jacobians of Matrix Transformations and Functions of Matrix Argument. Singapore: World Scientific, 1997.
[404] R. Mathias, "Evaluating the Frechet Derivative of the Matrix Exponential," Numer. Math., Vol. 63, pp. 213-226, 1992.
[405] R. Mathias, "An Arithmetic-Geometric-Harmonic Mean Inequality Involving Hadamard Products," Lin. Alg. Appl., Vol. 184, pp. 71-78, 1993.
[406] R. Mathias, "A Chain Rule for Matrix Functions and Applications," SIAM J. Matrix. Anal. Appl., Vol. 17, pp. 610-620, 1996.
[407] J. P. McCloskey, "Characterizations of r-Potent Matrices," Math. Proc. Camb. Phil. Soc., Vol. 96, pp. 213-222, 1984.
[408] A. R. Meenakshi and C. Rajian, "On a Product of Positive Semidefinite Matrices," Lin. Alg. Appl., Vol. 295, pp. 3-6, 1999.
[409] Y. A. Melnikov, "Influence Functions and Matrices," Marcel Dekker, 1998.
[410] J. K. Merikoski, H. Sarria, and P. Tarazaga, "Bounds for Singular Values Using Traces," Lin. Alg. Appl., Vol. 210, pp. 227-254, 1994.
[411] R. Merris, "Inequalities Involving the Inverses of Positive Definite Matrices," Proc. Edinburgh Math. Soc., Vol. 22, pp. 11-15, 1979.
[412] R. Merris, Multilinear Algebra. Amsterdam: Gordon and Breach Science Publishers, 1997.
[413] R. Merris and S. Pierce, "Monotonicity of Positive Semidefinite Hermitian Matrices," Proc. Amer. Math. Soc., Vol. 31, pp. 437-440, 1972.
[414] C. D. Meyer, "The Moore-Penrose Inverse of a Bordered Matrix," Lin. Alg. Appl., Vol. 5, pp. 375-382, 1972.
[415] C. D. Meyer, "Generalized Inverses and Ranks of Block Matrices," SIAM J. Appl. Math, Vol. 25, pp. 597-602, 1973.
[416] C. D. Meyer, Matrix Analysis and Applied Linear Algebra. Philadelphia: SIAM, 2000.
[417] J.-M. Miao, "General Expressions for the Moore-Penrose Inverse of a 2×2 Block Matrix," Lin. Alg. Appl., Vol. 151, pp. 1-15, 1991.
[418] L. Mihalyffy, "An Alternative Representation of the Generalized Inverse of Partitioned Matrices," Lin. Alg. Appl., Vol. 4, pp. 95-100, 1971.
[419] K. S. Miller, Some Eclectic Matrix Theory. Malabar: Krieger, 1987.
[420] G. A. Milliken and F. Akdeniz, "A Theorem on the Difference of the Generalized Inverses of Two Nonnegative Marices," Comm. Statist. Theory Methods, Vol. 6, pp. 73-79, 1977.
[421] N. Minamide, "An Extension of the Matrix Inversion Lemma," SIAM J. Alg. Disc. Meth., Vol. 6, pp. 371-377, 1985.
[422] H. Miranda and R. C. Thompson, "A Trace Inequality With a Subtracted Term," Lin. Alg. Appl., Vol. 185, pp. 165-172, 1993.
[423] L. Mirsky, An Introduction to Linear Algebra. Oxford: Clarendon Press, 1972, reprinted by Dover, Mineola, 1990.
[424] D. S. Mitrinovic, J. E. Pecaric, and A. M. Fink, Classical and New Inequalities in Analysis. Dordrecht: Kluwer, 1993.
[425] B. Mityagin, "An Inequality in Linear Algebra," SIAM Rev., Vol. 33, pp. 125-127, 1991.
[426] C. Moler and C. F. Van Loan, "Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later," SIAM Rev., Vol. 45, pp. 3-49, 2000.
[427] B. Mond and J. E. Pecaric, "Inequalities for the Hadamard Product of Matrices," SIAM J. Matrix Anal. Appl., Vol. 19, pp. 66-70, 1998.
[428] V. V. Monov, "On the Spectrum of Convex Sets of Matrices," IEEE Trans. Autom. Contr., Vol. 44, pp. 1009-1012, 1992.
[429] T. Mori, "Comments on "A Matrix Inequality Associated with Bounds on Solutions of Algebraic Riccati and Lyapunov Equation"," IEEE Trans. Autom. Contr., Vol. 33, p. 1088, 1988.
[430] T. Muir, The Theory of Determinants in the Historical Order of Development. New York: Dover, 1966.
[431] W. W. Muir, "Inequalities Concerning the Inverses of Positive Definite Matrices," Proc. Edinburgh Math. Soc., Vol. 19, pp. 109-113, 1974-75.
[432] R. M. Murray, Z. Li, and S. S. Sastry, A Mathematical Introduction to Robotic Manipulation. Boca Raton: CRC Press, 1994.
[433] I. Najfeld and T. F. Havel, "Derivatives of the Matrix Exponential and Their Computation," Adv. Appl. Math., Vol. 16, pp. 321-375, 1995.
[434] A. W. Naylor and G. R. Sell, Linear Operator Theory in Engineering and Science. New York: Springer, 1986.
[435] C. N. Nett and W. M. Haddad, "A System-Theoretic Appropriate Realization of the Empty Matrix Concept," IEEE Trans. Autom. Contr., Vol. 38, pp. 771-775, 1993.
[436] M. F. Neuts, Matrix-Geometric Solutions in Stochastic Models. Baltimore: Johns Hopkins University Press, 1981, reprinted by Dover, Mineola, 1994.
[437] R. W. Newcomb, "On the Simultaneous Diagonalization of Two Semidefinite Matrices," Quart. Appl. Math., Vol. 19, pp. 144-146, 1961.
[438] M. Newman, W. So, and R. C. Thompson, "Convergence Domains for the Campbell-Baker-Hausdorff Formula," Lin. Multilin. Alg., Vol. 24, pp. 301-310, 1989.
[439] K. Nishio, "The Structure of a Real Linear Combination of Two Projections," Lin. Alg. Appl., Vol. 66, pp. 169-176, 1985.
[440] B. Noble and J. W. Daniel, Applied Linear Algebra, 3rd ed. Englewood Cliffs: Prentice-Hall, 1988.
[441] J. Nunemacher, "Which Real Matrices Have Real Logarithms?" Math. Mag., Vol. 62, pp. 132-135, 1989.
[442] H. Ogawa, "An Operator Pseudo-Inversion Lemma," SIAM J. Appl. Math., Vol. 48, pp. 1527-1531, 1988.
[443] I. Olkin, "An Inequality for a Sum of Forms," Lin. Alg. Appl., Vol. 52-53, pp. 529-532, 1983.
[444] J. M. Ortega, Matrix Theory, A Second Course. New York: Plenum Press, 1987.
[445] S. L. Osburn and D. S. Bernstein, "An Exact Treatment of the Achievable Closed-Loop H_{2} Performance of Sampled-Data Controllers: From Continuous-Time to Open-Loop," Automatica, Vol. 31, pp. 617-620, 1995.
[446] A. Ostrowski and H. Schneider, "Some Theorems on the Inertia of General Matrices," J. Math. Anal. Appl., Vol. 4, pp. 72-84, 1962.
[447] D. A. Overdijk, "Skew-symmetric Matrices in Classical Mechanics," Eindhoven University, Memorandum COSOR 89-23, 1989.
[448] C. V. Pao, "Logarithmic Derivatives of a Square Matrix," Lin. Alg. Appl., Vol. 6, pp. 159-164, 1973.
[449] J. G. Papastravridis, Tensor Calculus and Analytical Dynamics. Boca Raton: CRC Press, 1998.
[450] F. C. Park, "Computational Aspects of the Product-of-Exponentials Formula for Robot Kinematies," IEEE Trans. Autom. Contr., Vol. 39, pp. 643-647, 1994.
[451] P. Park, "On theTrace Bound of a Matrix Product," IEEE Trans. Autom. Contr., Vol. 41, pp. 1799-1802, 1996.
[452] P. C. Parks, "A New Proof of the Routh-Hurwitz Stability Criterion Using the Second Method of Liapunov," Proc. Camb. Phil. Soc., Vol. 58, pp. 694-702, 1962.
[453] R. V. Patel, "On Blocking Zeros in Linear Multivariable Systems," IEEE Trans. Autom. Contr., Vol. AC-31, pp. 239-241, 1986.
[454] R. V. Patel and M. Toda, "Trace Inequalities Involving Hermitian Matrices," Lin. Alg. Appl., Vol. 23, pp. 13-20, 1979.
[455] M. C. Pease III, Methods of Matrix Algebra. Academic Press, New York, 1965.
[456] S. Perlis, Theory of Matrices. Reading: Addison-Wesley, 1952, reprinted by Dover, New York, 1991.
[457] I. R. Petersen and C. V. Hollot, "A Riccati Equation Approach to the Stabilization of Uncertain Systems," Automatica, Vol. 22, pp. 397-411, 1986.
[458] L. A. Pipes, "Applications of Laplace Transforms of Matrix Functions," J. Franklin Inst., Vol. 285, pp. 436-451, 1968.
[459] T. Politi, "A Formula for the Exponential of a Real Skew-Symmetric Matrix of Order 4," Numerical Mathematics BIT, Vol. 41, pp. 842-845, 2001.
[460] D. S. G. Pollock, "Tensor Products and Matrix Differential Calculus," Lin. Alg. Appl., Vol. 67, pp. 169-193, 1985.
[461] B. Poonen, "A Unique $(2 k+1)$-th Root of a Matrix," Amer. Math. Monthly, Vol. 98, p. 763, 1991.
[462] B. Poonen, "Positive Deformations of the Cauchy Matrix," Amer. Math. Monthly, Vol. 102, pp. 842-843, 1995.
[463] V. M. Popov, Hyperstability of Control Systems. Berlin: SpringerVerlag, 1973.
[464] G. J. Porter, "Linear Algebra and Affine Planar Transformations," College Math. J., Vol. 24, pp. 47-51, 1993.
[465] B. H. Pourciau, "Modern Multiplier Rules," American Mathematical Monthly, Vol. 87, pp. 433-452, 1980.
[466] V. V. Prasolov, Problems and Theorems in Linear Algebra. Providence: American Mathematical Society, 1994.
[467] J. S. Przemieniecki, Theory of Matrix Structural Analysis. New York: McGraw-Hill, 1968.
[468] P. J. Psarrakos, "On the m th Roots of a Complex Matrix," Elec. J. Lin. Alg., Vol. 9, pp. 32-41, 2002.
[469] N. J. Pullman, Matrix Theory and Its Applications: Selected Topics. New York: Marcel Dekker, 1976.
[470] R. X. Qian and C. L. DeMarco, "An Approach to Robust Stability of Matrix Polytopes Through Copositive Homogeneous Polynomials," IEEE Trans. Autom. Contr., Vol. 37, pp. 848-852, 1992.
[471] L. Qiu, B. Bernhardsson, A. Rantzer, E. J. Davison, P. M. Young, and J. C. Doyle, "A Formula for Computation of the Real Stability Radius," Automatica, Vol. 31, pp. 879-890, 1995.
[472] H. Radjavi, "Decomposition of Matrices into Simple Involutions," Lin. Alg. Appl., Vol. 12, pp. 247-255, 1975.
[473] H. Radjavi and P. Rosenthal, Simultaneous Triangularization. New York: Springer, 2000.
[474] H. Radjavi and J. P. Williams, "Products of Self-Adjoint Operators," Michigan Math. J., Vol. 16, pp. 177-185, 1969.
[475] A. C. M. Ran and R. Vreugdenhil, "Existence and Comparison Theorems for Algebraic Riccati Equations for Continuous- and DiscreteTime Systems," Lin. Alg. Appl., Vol. 99, pp. 63-83, 1988.
[476] A. Rantzer, "On the Kalman-Yakubovich-Popov Lemma," Sys. Contr. Lett., Vol. 28, pp. 7-10, 1996.
[477] C. R. Rao and S. K. Mitra, Generalized Inverse of Matrices and its Applications. New York: John Wiley and Sons, 1971.
[478] J. V. Rao, "Some More Representations for the Generalized Inverse of a Partitioned Matrix," SIAM J. Appl. Math., Vol. 24, pp. 272-276, 1973.
[479] P. A. Regalia and S. K. Mitra, "Kronecker Products, Unitary Matrices and Signal Processing Applications," SIAM Rev., Vol. 31, pp. 586-613, 1989.
[480] T. J. Richardson and R. H. Kwong, "On Positive Definite Solutions to the Algebraic Riccati Equation," Sys. Contr. Lett., Vol. 7, pp. 99-104, 1986.
[481] A. N. Richmond, "Expansions for the Exponential of a Sum of Matrices," in Applications of Matrix Theory, M. J. C. Gover and S. Barnett, Eds. Oxford: Oxford University Press, 1989, pp. 283-289.
[482] J. R. Ringrose, Compact Non-Self-Adjoint Operators. Van Nostrand Reinhold, 1971.
[483] R. S. Rivlin, "Further Remarks on the Stress Deformation Relations for Isotropic Materials," J. Rational Mech. Anal., Vol. 4, pp. 681-702, 1955.
[484] J. W. Robbin, Matrix Algebra Using MINImal MATlab. Wellesley: A. K. Peters, 1995.
[485] R. T. Rockafellar, Convex Analysis. Princeton: Princeton University Press, 1990.
[486] R. T. Rockafellar and R. J. B. Wets, Variational Analysis. Berlin: Springer, 1998.
[487] L. Rodman, "Products of Symmetric and Skew Symmetric Matrices," Lin. Multilin. Alg., Vol. 43, pp. 19-34, 1997.
[488] G. S. Rogers, Matrix Derivatives. New York: Marcel Dekker, 1980.
[489] C. A. Rohde, "Generalized Inverses of Partitioned Matrices," SIAM J. Appl. Math., Vol. 13, pp. 1033-1035, 1965.
[490] J. Rohn, "Computing the Norm $\|A\|_{\infty, 1}$ is NP-Hard," Lin. Multilin. Alg., Vol. 47, pp. 195-204, 2000.
[491] O. Rojo, "Further Bounds for the Smallest Singular Value and the Spectral Condition Number," Computers Math. Appl., Vol. 38, pp. 215-228, 1999.
[492] K. H. Rosen, Ed., Handbook of Discrete and Combinatorial Mathematics. Boca Raton: CRC, 2000.
[493] M. Rosenfeld, "A Sufficient Condition for Nilpotence," Amer. Math. Monthly, Vol. 103, pp. 907-909, 1996.
[494] W. J. Rugh, Linear System Theory, 2nd ed. Upper Saddle River: Prentice Hall, 1996.
[495] M. K. Sain and C. B. Schrader, "The Role of Zeros in the Performance of Multiinput, Multioutput Feedback Systems," IEEE Trans. Educ., Vol. 33, pp. 244-257, 1990.
[496] D. H. Sattinger and O. L. Weaver, Lie Groups and Algebras with Applications to Physics, Geometry, and Mechanics. New York: Springer, 1986.
[497] C. W. Scherer, "The Algebraic Riccati Equation and Inequality for Systems with Uncontrollable Modes on the Imaginary Axis," SIAM. J. Matrix Anal. Appl., pp. 1308-1327, 1995.
[498] P. Scherk, "On the Decomposition of Orthogonalities into Symmetries," Proc. Amer. Math. Soc., Vol. 1, pp. 481-491, 1950.
[499] C. Schmoeger, "On the Operator Equation $e^{a}=e^{b}$," Lin. Alg. Appl., Vol. 359, pp. 169-179, 2003.
[500] H. Schneider, "Olga Taussky-Todd's Influence on Matrix Theory and Matrix Theorists," Lin. Multilin. Alg., Vol. 5, pp. 197-224, 1977.
[501] C. B. Schrader and M. K. Sain, "Research on System Zeros: A Survey," Int. J. Contr., Vol. 50, pp. 1407-1433, 1989.
[502] A. J. Schwenk, "Tight Bounds on the Spectral Radius of Asymmetric Nonnegative Matrices," Lin. Alg. Appl., Vol. 75, pp. 257-265, 1986.
[503] S. R. Searle, Matrix Algebra Useful for Statistics. New York: John Wiley and Sons, 1982.
[504] P. Sebastian, "On the Derivatives of Matrix Powers," SIAM J. Matrix Anal. Appl., Vol. 17, pp. 640-648, 1996.
[505] D. Serre, Matrices: Theory and Applications. New York: Springer, 2002.
[506] C. Shafroth, "A Generalization of the Formula for Computing the Inverse of a Matrix," Amer. Math. Monthly, Vol. 88, pp. 614-616, 1981.
[507] H. Shapiro, "Notes from Math 223: Olga Taussky Todd's Matrix Theory Course, 1976-1977," Mathematical Intelligencer, Vol. 19, no. 1, pp. 21-27, 1997.
[508] R. Shaw and F. I. Yeadon, "On $(a \times b) \times c, "$ Amer. Math. Monthly, Vol. 96, pp. 623-629, 1989.
[509] G. E. Shilov, Linear Algebra. Englewood Cliffs: Prentice-Hall, 1971. Reprinted by Dover, New York, 1977.
[510] D. D. Siljak, Large-Scale Dynamic Systems: Stability and Structure. New York: North-Holland, 1978.
[511] R. A. Smith, "Matrix Calculations for Lyapunov Quadratic Forms," J. Diff. Eqns., Vol. 2, pp. 208-217, 1966.
[512] J. Snyders and M. Zakai, "On Nonnegative Solutions of the Equation $A D+D A^{\prime}=C, " S I A M$ J. Appl. Math., Vol. 18, pp. 704-714, 1970.
[513] W. So, "Equality Cases in Matrix Exponential Inequalities," SIAM J. Matrix Anal. Appl., Vol. 13, pp. 1154-1158, 1992.
[514] W. So, "The High Road to an Exponential Formula," Lin. Alg. Appl., Vol. TBD, pp. TBD-TBD, 2003.
[515] W. So and R. C. Thompson, "Product of Exponentials of Hermitian and Complex Symmetric Matrices," Lin. Multilin. Alg., Vol. 29, pp. 225-233, 1991.
[516] W. So and R. C. Thompson, "Singular Values of Matrix Exponentials," Lin. Multilin. Alg., Vol. 47, pp. 249-258, 2000.
[517] A. R. Sourour, "A Factorization Theorem for Matrices," Lin. Multilin. Alg., Vol. 19, pp. 141-147, 1986.
[518] W.-H. Steeb, Matrix Calculus and Kronecker Product with Applications and $C++$ Programs. Singapore: World Scientific, 2001.
[519] W.-H. Steeb and F. Wilhelm, "Exponential Functions of Kronecker Products and Trace Calculation," Lin. Multilin. Alg., Vol. 9, pp. 345346, 1981.
[520] C. Stepniak, "Ordering of Nonnegative Definite Matrices with Application to Comparison of Linear Models," Lin. Alg. Appl., Vol. 70, pp. 67-71, 1985.
[521] G. W. Stewart, Introduction to Matrix Computations. New York: Academic Press, 1973.
[522] G. W. Stewart, Matrix Algorithms Volume I: Basic Decompositions. Philadelphia: SIAM, 1998.
[523] G. W. Stewart, "On the Adjugate Matrix," Lin. Alg. Appl., Vol. 283, pp. 151-164, 1998.
[524] G. W. Stewart, Matrix Algorithms Volume II: Eigensystems. Philadelphia: SIAM, 2001.
[525] G. W. Stewart and J. Sun, Matrix Perturbation Theory. Boston: Academic Press, 1990.
[526] E. U. Stickel, "Fast Computation of Matrix Exponential and Logarithm," Analysis, Vol. 5, pp. 163-173, 1985.
[527] E. U. Stickel, "An Algorithm for Fast High Precision Computation of Matrix Exponential and Logarithm," Analysis, Vol. 10, pp. 85-95, 1990.
[528] J. Stoer, "On the Characterization of Least Upper Bound Norms in Matrix Space," Numer. Math, Vol. 6, pp. 302-314, 1964.
[529] M. G. Stone, "A Mnemonic for Areas of Polygons," Amer. Math. Monthly, Vol. 93, pp. 479-480, 1986.
[530] G. Strang, Linear Algebra and Its Applications, 3rd ed. San Diego: Harcourt, Brace, Jovanovich, 1988.
[531] G. Strang, "The Fundamental Theorem of Linear Algebra," Amer. Math. Monthly, Vol. 100, pp. 848-855, 1993.
[532] T. Strom, "On Logarithmic Norms," SIAM J. Numer. Anal., Vol. 12, pp. 741-753, 1975.
[533] K. N. Swamy, "On Sylvester's Criterion for Positive-Semidefinite Matrices," IEEE Trans. Autom. Contr., Vol. AC-18, p. 306, 1973.
[534] O. Taussky, "Positive-Definite Matrices and Their Role in the Study of the Characteristic Roots of General Matrices," Adv. Math., Vol. 2, pp. 175-186, 1968.
[535] O. Taussky, "The Role of Symmetric Matrices in the Study of General Matrices," Lin. Alg. Appl., Vol. 5, pp. 147-154, 1972.
[536] O. Taussky, "How I Became a Torchbearer for Matrix Theory," Amer. Math. Monthly, Vol. 95, pp. 801-812, 1988.
[537] O. Taussky and J. Todd, "Another Look at a Matrix of Mark Kac," Lin. Alg. Appl., Vol. 150, pp. 341-360, 1991.
[538] O. Taussky and H. Zassenhaus, "On the Similarity Transformation Between a Matrix and Its Transpose," Pacific J. Math., Vol. 9, pp. 893-896, 1959.
[539] W. Tempelman, "The Linear Algebra of Cross Product Operations," J. Astron. Sciences, Vol. 36, pp. 447-461, 1988.
[540] R. E. Terrell, "Solution to 'Exponentials of Certain Hilbert Space Operators'," SIAM Rev., Vol. 34, pp. 498-500, 1992.
[541] R. E. Terrell, "Matrix Exponentials," SIAM Rev., Vol. 38, pp. 313314, 1996.
[542] R. C. Thompson, "On Matrix Commutators," J. Washington Academy of Sciences, Vol. 48, pp. 306-307, 1958.
[543] R. C. Thompson, "A Determinantal Inequality for Positive Definite Matrices," Canad. Math. Bull., Vol. 4, pp. 57-62, 1961.
[544] R. C. Thompson, "Some Matrix Factorization Theorems," Pacific J. Math., Vol. 33, pp. 763-810, 1970.
[545] R. C. Thompson, "A Matrix Inequality," Comment. Math. Univ. Carolinae, Vol. 17, pp. 393-397, 1976.
[546] R. C. Thompson, "Matrix Type Metric Inequalities," Lin. Multilin. Alg., Vol. 5, pp. 303-319, 1978.
[547] R. C. Thompson, "Proof of a Conjectured Exponential Formula," Lin. Multilin. Alg., Vol. 19, pp. 187-197, 1986.
[548] R. C. Thompson, "Pencils of Complex and Real Symmetric and Skew Matrices," Lin. Alg. Appl., Vol. 147, pp. 323-371, 1991.
[549] R. C. Thompson, "High, Low, and Quantitative Roads in Linear Algebra," Lin. Alg. Appl., Vol. 162-164, pp. 23-64, 1992.
[550] Y. Tian, "The moore-penrose Inverse of $m \times n$ Block Matrices and Their Applications," Lin. Alg. Appl., Vol. 283, pp. 35-60, 1998.
[551] Y. Tian and G. P. H. Styan, "How to Establish Universal Block-Matrix Factorizations," Electr. J. Lin. Alg., Vol. 8, pp. 115-127, 2001.
[552] A. Tonge, "Equivalence Constants for Matrix Norms: A Problem of Goldberg," Lin. Alg. Appl., Vol. 306, pp. 1-13, 2000.
[553] G. E. Trapp, "Hermitian Semidefinite Matrix Means and Related Matrix Inequalities-An Introduction," Lin. Multilinear Alg., Vol. 16, pp. 113-123, 1984.
[554] L. N. Trefethen and D. Bau, Numerical Linear Algebra. Philadelphia: SIAM, 1997.
[555] G. Trenkler, "A Trace Inequality," Amer. Math. Monthly, Vol. 102, pp. 362-363, 1995.
[556] H. L. Trentelman, A. A. Stoorvogel, and M. L. J. Hautus, Control Theory for Linear Systems. New York: Springer, 2001.
[557] P. Treuenfels, "The Matrix Equation $X^{2}-2 A X+B=0$," Amer. Math. Monthly, Vol. 66, pp. 145-146, 1959.
[558] S. H. Tung, "On Lower and Upper Bounds of the Difference Between the Arithmetic and the Geometric Mean," Math. Comput., Vol. 29, pp. 834-836, 1975.
[559] D. A. Turkington, Matrix Calculus and Zero-One Matrices. Cambridge: Cambridge University Press, 2002.
[560] H. W. Turnbull, The Theory of Determinants, Matrices and Invariants. London: Blackie, 1950.
[561] F. Tyan and D. S. Bernstein, "Global Stabilization of Systems Containing a Double Integrator Using a Saturated Linaer Controller," Int. J. Robust Nonlinear Contr., Vol. 9, pp. 1143-1156, 1999.
[562] F. E. Udwadia and R. E. Kalaba, Analytical Dynamics: A New Approach. Cambridge: Cambridge University Press, 1996.
[563] F. Uhlig, "A Recurring Theorem About Pairs of Quadratic Forms and Extensions: A Survey," Lin. Alg. Appl., Vol. 25, pp. 219-237, 1979.
[564] F. Uhlig, "Constructive Ways for Generating (Generalized) Real Orthogonal Matrices as Products of (Generalized) Symmetries," Lin. Alg. Appl., Vol. 332-334, pp. 459-467, 2001.
[565] F. A. Valentine, Convex Sets. New York: McGraw-Hill, 1964.
[566] M. Van Barel, V. Ptak, and Z. Vavrin, "Bezout and Hankel Matrices Associated with Row Reduced Matrix Polynomials, Barnett-Type Formulas," Lin. Alg. Appl., Vol. 332-334, pp. 583-606, 2001.
[567] C. F. Van Loan, "Computing Integrals Involving the Matrix Exponential," IEEE Trans. Autom. Contr., Vol. AC-23, pp. 395-404, 1978.
[568] C. F. Van Loan, "How Near is a Stable Matrix to an Unstable Matrix," Contemporary Math., Vol. 47, pp. 465-478, 1985.
[569] C. F. Van Loan, Computational Frameworks for the Fast Fourier Transform. Philadelphia: SIAM, 1992.
[570] P. Van Overschee and B. De Moor, Subspace Identification for Linear Systems: Theory, Implementation, Applications. Dordrecht: Kluwer, 1996.
[571] V. S. Varadarajan, Lie Groups, Lie Algebras, and Their Representations. New York: Springer-Verlag, 1984.
[572] A. I. G. Vardulakis, Linear Multivariable Control: Algebraic Analysis and Synthesis Methods. Chichester: John Wiley and Sons, 1991.
[573] R. S. Varga, Matrix Iterative Analysis. Englewood Cliffs: PrenticeHall, 1962.
[574] R. Vein and P. Dale, Determinants and Their Applications in Mathematical Physics. New York: Springer, 1999.
[575] W. J. Vetter, "Matrix calculus Operations and Taylor Expansions," SIAM Rev., Vol. 15, pp. 352-369, 1973.
[576] M. Vidyasagar, "On Matrix Measures and Convex Liapunov Functions," J. Math. Anal. Appl., Vol. 62, pp. 90-103, 1978.
[577] G. Visick, "A Quantitative Version of the Observation That the Hadamard Product is a Principal Submatrix of the Kronecker Product," Lin. Alg. Appl., Vol. 304, pp. 45-68, 2000.
[578] B.-Y. Wang and M.-P. Gong, "Some Eigenvalue Inequalities for Positive Semidefinite Matrix Power Products," Lin. Alg. Appl., Vol. 184, pp. 249-260, 1993.
[579] B.-Y. Wang, B.-Y. Xi, and F. Zhang, "Some Inequalities for Sum and Product of Positive Semidefinite Matrices," Lin. Alg. Appl., Vol. 293, pp. 39-49, 1999.
[580] B.-Y. Wang and F. Zhang, "A Trace Inequality for Unitary Matrices," Amer. Math. Monthly, Vol. 101, pp. 453-455, 1994.
[581] B.-Y. Wang and F. Zhang, "Trace and Eigenvalue Inequalities for Ordinary and Hadamard Products of Positive Semidefinite Hermitian Matrices," SIAM J. Matrix Anal. Appl., Vol. 16, pp. 1173-1183, 1995.
[582] B.-Y. Wang and F. Zhang, "Schur Complements and Matrix Inequalities of Hadamard Products," Lin. Multilin. Alg., Vol. 43, pp. 315-326, 1997.
[583] D. Wang, "The Polar Decomposition and a Matrix Inequality," Amer. Math. Monthly, Vol. 96, pp. 517-519, 1989.
[584] Q.-G. Wang, "Necessary and Sufficient Conditions for Stability of a Matrix Polytope with Normal Vertex Matrices," Automatica, Vol. 27, pp. 887-888, 1991.
[585] Y. W. Wang and D. S. Bernstein, "L 2_{2} Controller Synthesis with $\mathrm{L}_{\infty^{-}}$ Bounded Closed-Loop Impulse Response," Int. J. Contr., Vol. 60, pp. 1295-1306, 1994.
[586] J. Warga, Optimal Control of Differential and Functional Equations. New York: Academic Press, 1972.
[587] W. E. Waterhouse, "A Determinant Identity with Matrix Entries," Amer. Math. Monthly, Vol. 97, pp. 249-250, 1990.
[588] W. Watkins, "Convex Matrix Functions," Proc. Amer. Math. Soc., Vol. 44, pp. 31-34, 1974.
[589] W. Watkins, "A Determinantal Inequality for Correlation Matrices," Lin. Alg. Appl., Vol. 104, pp. 59-63, 1988.
[590] J. R. Weaver, "Centrosymmetric (Cross-Symmetric) Matrices, Their Basic Properties, Eigenvalues, and Eigenvectors," Amer. Math. Monthly, Vol. 92, pp. 711-717, 1985.
[591] R. Webster, Convexity. Oxford: Oxford University Press, 1994.
[592] M. Wei, "Reverse Order laws for Generalized Inverses of Multiple Matrix Products," Lin. Alg. Appl., Vol. 293, pp. 273-288, 1999.
[593] Y. Wei, "Expressions for the Drazin Inverse of a 2×2 Block Matrix," Lin. Multilin. Alg., Vol. 45, pp. 131-146, 1998.
[594] E. M. E. Wermuth, "Two Remarks on Matrix Exponentials," Lin. Alg. Appl., Vol. 117, pp. 127-132, 1989.
[595] P. Wesseling, Principles of Computational Fluid Dynamics. Berlin: Springer, 2001.
[596] J. R. Westlake, A Handbook of Numerical Matrix Inversion and Solution of Linear Equations. New York: John Wiley, 1968.
[597] N. A. Wiegmann, "Normal Products of Matrices," Duke Math. J., Vol. 15, pp. 633-638, 1948.
[598] Z. Wiener, "An Interesting Matrix Exponent Formula," Lin. Alg. Appl., Vol. 257, pp. 307-310, 1997.
[599] E. P. Wigner and M. M. Yanase, "On the Positive Semidefinite Nature of a Certain Matrix Expression," Canad. J. Math., Vol. 16, pp. 397406, 1964.
[600] R. M. Wilcox, "Exponential Operators and Parameter Differentiation in Quantum Physics," J. Math. Physics, Vol. 8, pp. 962-982, 1967.
[601] J. H. Wilkinson, The Algebraic Eigenvalue Problem. London: Oxford University Press, 1965.
[602] J. C. Willems, "Least Squares Stationary Optimal Control and the Algebraic Riccati Equation," IEEE Trans. Autom. Contr., Vol. AC16, pp. 621-634, 1971.
[603] D. A. Wilson, "Convolution and Hankel Operator Norms for Linear Systems," IEEE Trans. Autom. Contr., Vol. AC-34, pp. 94-97, 1989.
[604] H. K. Wimmer, "Inertia Theorems for Matrices, Controllability and Linear Vibrations," Lin. Alg. Appl., Vol. 8, pp. 337-343, 1974.
[605] H. K. Wimmer, "The Algebraic Riccati Equation Without Complete Controllability," SIAM J. Alg. Disc. Math., Vol. 3, pp. 1-12, 1982.
[606] H. K. Wimmer, "The Algebraic Riccati Equation: Conditions for the Existence and Uniqueness of Solutions," Lin. Alg. Appl., Vol. 58, pp. 441-452, 1984.
[607] H. K. Wimmer, "Monotonicity of Maximal Solutions of Algebraic Riccati Equations," Sys. Contr. Lett., Vol. 5, pp. 317-319, 1985.
[608] H. K. Wimmer, "Linear Matrix Equations, Controllability and Observability, and the Rank of Solutions," SIAM J. Matrix Anal. Appl., Vol. 9, pp. 570-578, 1988.
[609] H. K. Wimmer, "Lattice Properties of Sets of Semidefinite Solutions of Continuous-time Algebraic Riccati Equations," Automatica, Vol. 31, pp. 173-182, 1995.
[610] H. Wolkowicz and G. P. H. Styan, "Bounds for Eigenvalues Using Traces," Lin. Alg. Appl., Vol. 29, pp. 471-506, 1980.
[611] W. A. Wolovich, Linear Multivariable Systems. New York: SpringerVerlag, 1974.
[612] M. J. Wonenburger, "A Decomposition of Orthogonal Transformations," Canad. Math. Bull., Vol. 7, pp. 379-383, 1964.
[613] M. J. Wonenburger, "Transformations Which are Products of Two Involutions," J. Math. Mech., Vol. 16, pp. 327-338, 1966.
[614] C. S. Wong, "Characterizations of Products of Symmetric Matrices," Lin. Alg. Appl., Vol. 42, pp. 243-251, 1982.
[615] W. M. Wonham, Linear Multivariable Control: A Geometric Approach, 2nd ed. New York: Springer, 1979.
[616] P. Y. Wu, "Products of Nilpotent Matrices," Lin. Alg. Appl., Vol. 96, pp. 227-232, 1987.
[617] P. Y. Wu, "Products of Positive Semidefinite Matrices," Lin. Alg. Appl., Vol. 111, pp. 53-61, 1988.
[618] P. Y. Wu, "The Operator Factorization Problems," Lin. Alg. Appl., Vol. 117, pp. 35-63, 1989.
[619] Z.-G. Xiao and Z.-H. Zhang, "The Inequalities $g \leq l \leq i \leq a$ in n Variables," J. Inequal. Pure. Appl. Math., Vol. 4, no. 2/39, pp. 1-6, 2003.
[620] H. Xu, "Two Results About the Matrix Exponential," Lin. Alg. Appl., Vol. 262, pp. 99-109, 1997.
[621] X. Yang, "Necessary Conditions of Hurwitz Polynomials," Lin. Alg. Appl., Vol. 359, pp. 21-27, 2003.
[622] Z. P. Yang and X. X. Feng, "A Note on the Trace Inequality for Products of Hermitian Matrix Power," J. Inequal. Pure. Appl. Math., Vol. 3, no. 5/78, pp. 1-12, 2002.
[623] X. Zhan, "On Some Matrix Inequalities," Lin. Alg. Appl.
[624] X. Zhan, "Inequalities for Unitarily Invariant Norms," SIAM J. Matrix Anal. Appl., Vol. 20, pp. 466-470, 1998.
[625] X. Zhan, Matrix Inequalities. New York: Springer, 2002.
[626] F. Zhang, Linear Algebra: Challenging Problems for Students. Baltimore: Johns Hopkins University Press, 1996.
[627] F. Zhang, "Quaternions and Matrices of Quaternions," Lin. Alg. Appl., Vol. 251, pp. 21-57, 1997.
[628] F. Zhang, "A Compound Matrix with Positive Determinant," Amer. Math. Monthly, Vol. 105, p. 958, 1998.
[629] F. Zhang, Matrix Theory: Basic Results and Techniques. New York: Springer, 1999.
[630] F. Zhang, "Schur Complements and Matrix Inequalities in the Lowner Ordering," Lin. Alg. Appl., Vol. 321, pp. 399-410, 2000.
[631] L. Zhang, "A Characterization of the Drazin Inverse," Lin. Alg. Appl., Vol. 335, pp. 183-188, 2001.
[632] K. Zhou, Robust and Optimal Control. Upper Saddle River: PrenticeHall, 1996.
[633] D. Zwillinger, Standard Mathematical Tables and Formulae, 31st ed. Boca Raton: Chapman and Hall/CRC, 2003.

Author Index

Ahlbrandt, C. D. 499
Aitken, A. C. xviii
Akdeniz, F. 276
Al Ahmar, M. 98
Albert, A. A. 178
Albert, A. E. 301
Aldrovandi, R. xvi, 146, 198

Alic, M. 274
Alpargu, G. 278
Alperin, R. C. 99
Altmann, S. L. xvi, 106
Alzer, H. 8
Anderson, B. D. O. xvi, 191, 275, 278, 417, 498
Anderson, W. N. 191, 221, 271, 277, 301
Ando, T. 260, 273, 288, 289, 297, 299, 302, 337-339, 345, 353, 404, 406, 408, 410
Andruchow, E. 331
Aplevich, J. D. xvi
Apostol, T. M. 398, 430
Araki, H. 283
Arimoto, A. 198
Arponen, T. 398
Artin, M. 109
Aslaksen, H. 73, 91, 106, 138
Asner, B. A. 412, 416
Au Yeung, Y.-H. 272
Aujla, J. S. 293
Aupetit, B. 410
Axelsson, O. xvi

Baker, A. 103, 104, 109 201, 382, 404
Baksalary, J. K. 302
Ballantine, C. S. 85, 203, 204, 302, 415
Bapat, R. B. 53, 219
Bar Itzhack, I. Y. 400
Barnett, S. xvi, 59, 70, 134, 149, 195, 205, 206, 216, 221, 222, 267, 269, 416, 494
Bau, D. xvi
Bauer, F. L. 353
Bazaraa, M. S. 148, 358, 360
Beams, R. 201
Beavers, A. N. 202
Bebiano, N. xvi, 285, 406, 407
Beckenbach, E. F. 11, 305
Bekker, P. A. 285, 301
Belinfante, J. G. 430
Belitskii, G. R. 353
Bellman, R. 11, 69, 149, 267, 273, 305, 403
Ben-Israel, A. 224
Ben-Tal, A. 46, 75
Berkovitz, L. D. 75, 367
Berman, A. 146, 167, 419
Bernhardsson, B. 415
Bernstein, D. S. 86, 188, 353, 399, 408, 409, 413, 415, 430, 493, 494, 499
Bhagwat, K. V. 255, 273, 404
Bhat, S. P. 188, 494

Bhatia, R. 109, 183, 255, 260, 262-264, 283, 285, 291, 292, 300, 301, 323, 327, 333, 334, 336, 338, 345, 353
Bhattacharyya, S. P. 494, 498
Bicknell, M. R. 64
Bjorck, A. 222
Boehm, W. 422
Borck, A. 224
Borwein, J. M. 75
Bosch, A. J. 202, 206
Boullion, T. L. 224
Bourin, J.-C. 284, 285, 331, 348
Boyd, S. 333
Brenner, J. L. 74, 106, 199
Brewer, J. W. 237
Brockett, R. 498
Browne, E. T. 301
Brualdi, R. A. 62, 144, 417
Bullen, P. S. 8, 9, 11, 306
Bultheel, A. 149
Burch, J. M. xvi
Burns, F. 219
Bushell, P. J. 292

Campbell, S. L. 216, 219, 224, 413, 430
Carlen, E. A. 262, 263
Carlson, D. 217, 219, 263, 416
Cartier, P. 430
Cartwright, D. I. 8, 430

Cater, F. S. 201
Chan, N. N. 272
Chapellat, H. 411
Chatelin, F. xvi
Chattot, J.-J. xvi
Chellaboina, V.-S. 335, 353, 462
Chen, C.-T. xvi, 417, 419
Cheng, H.-W. 430
Chollet, J. 271
Chu, M. T. 51
Chui, N. L. C. 421
Clements, D. J. 498
Cline, R. E. 49, 50, 219, 220
Cloud, M. J. 11
Cohen, J. E. 409
Cohoon, D. K. 54
Collins, E. G. 238
Corach, G. 331
Costa, P. J. 370
Cullen, C. G. 191, 363, 369
Culver, W. J. 430
Curtis, M. L. 109
da Providencia, J. xvi, 285, 406, 407
Dale, P. xvi, 75
D'Andrea, R. 350
Daniel, J. W. xviii, 75
Dannan, F. M. 284, 287
DaSilva, J. A. D. 237
Datko, R. 418
Datta, B. N. xvi, 494
Davis, C. 338
Davis, P. J. 198
Davison, E. J. 415
de Groen, P. P. N. 335
De Moor, B. 498
de Pillis, J. 290
de Souza, E. 494
Decell, H. P. 214
DeMarco, C. L. 144
Demmel, J. W. xvi
Denman, E. D. 202
Desoer, C. A. 344
Deutsch, E. 344

Dieci, L. 382
Ding, J. 140, 341
Dittmer, A. 91
Djaferis, T. E. 492
Djokovic, D. Z. 71, 74, 178, 201, 204
Dokovic, D. Z. 191
Donoghue, W. F. 301
Doyle, J. C. 415
Drachman, B. C. 11
Duffin, R. J. 277
Eggleston, H. G. 75
Elsner, L. 144, 237
Engo, K. 404
Fallat, S. 266
Fan, K. 286
Fang, Y. 187
Fassler, A. 109
Feiner, S. 99
Fekete, A. E. 96
Feng, B. Q. 337
Feng, X. 187
Feng, X. X. 282, 283
Ferreira, P. G. 498
Ferziger, J. H. xvi
Fiedler, M. xvi, 70, 132, 134, 146, 185, 196, 215, 218, 235, 274, 295-297, 416
Field, M. J. 8, 430
Fillmore, J. P. 430
Fillmore, P. A. 176
Fink, A. M. 11
Flanders, H. 102, 347
Flett, T. M. 370
Foley, J. 99
Formanek, E. 70, 102, 138
Francis, B. A. xvi
Franklin, J. xviii
Frazier, M. xvi
Friedland, S. 409
Fuhrmann, P. A. 98, 100, $132,134,135,149,176$
Fuller, A. T. 232, 235, 238, 412

Funderlic, R. E. 49-51, 220
Furuta, T. 255, 294

Gaines, F. 178
Gantmacher, F. R. xviii, 301, 413
Garloff, J. 412
Geerts, T. 498
Gerrard, A. xvi
Gilmore, R. 109
Glasser, M. L. 405
Godunov, S. K. xviii, 101, 413
Gohberg, I. 114, 149, 205, 499
Goldberg, M. 337
Golub, G. H. xvi, 51, 351, 376
Gong, M.-P. 292
Gonzalez, N. C. 402
Gordon, N. 62
Govaerts, W. 235, 238
Gow, R. 177, 191, 204
Graham, A. 237
Grcar, J. F. 320, 321
Greub, W. xviii
Greville, T. N. E. 217, 224
Grone, R. 109
Gross, J. 217
Gupta, A. K. xvi
Gurlebeck, K. 106, 400
Gustafson, K. E. 145, 332
Gustafson, W. H. 204
Haddad, W. M. 75, 86, 335, 353, 462, 494, 499
Hager, W. W. 109
Hahn, W. 430
Halmos, P. R. 26, 48, 53, 96, 148, 178, 189, 191, 202-204, 215, 403
Haneda, H. 344
Harner, E. J. 191
Harris, L. A. 69
Harris, W. A. 430
Hartfiel, D. J. xvi, 422

Hartwig, R. E. 216, 219, 276, 302
Harville, D. A. xvi, 95, 280, 370
Hattori, S. 418
Hautus, M. L. J. xvi, 498
Havel, T. F. 403
Haynes, T. 421
Haynsworth, E. V. 217, 219, 263, 273
Helmke, U. 134
Helton, B. W. 430
Henderson, H. V. 237, 238
Hershkowitz, D. 400
Hiai, F. 273, 404, 410
Higham, N. J. xvi, 108, 183, 184, 186, 327-332, 347, 349, 352, 353, 414, 415
Hirsch, M. W. xvi
Hirzallah, O. 338, 353
Hmamed, A. 301
Hoffman, K. xviii
Hollot, C. V. 279
Hong, Y. 203
Horn, R. A. 69, 100, 102, 109, 131, 144-146, 149, 176, 179, 183, 190, 199-201, 203, 205, 230, 232, 233, 251, 264, 266, 267, 271, 281, 290, 291, 294, 295, 299-301, 306, 307, 310, 311, 314, 322, 324, 328, 330, 331, 333, 335, 336, 340, 345, 347, 348, 352, 370, 381, 408, 409, 419
Horne, B. G. 187
Hou, S.-H. 149
Householder, A. S. xvi, 51, 134, 350, 367
Howe, R. 109, 430
Hu, G.-D. 414
Hu, G.-H. 414
Hughes, J. 99
Hung, C. H. 219

Hyland, D. C. 86, 413, 499

Ibragimov, N. H. 430
Ikebe, Y. 370
Ikramov, K. D. 109
Inagaki, T. 370
Ionescu, V. xvi, 499
Iserles, A. 399
Ito, Y. 418

Jameson, A. 301
Jennings, A. xvi
Johnson, C. R. 69, 100 102, 107, 109, 131, 144-146, 149, 176, 179, 183, 190, 199-201, 205, 230, 232, 233, 237, 251, 264, 266, 267, 271, 281, 286, 290, 291, 294, 295, 299-301, 306, 307, 310, 311, 314, 322, 324, 328, 330, 333, 335, 345, 347, 348, 352, 353, 370, 381, 408, 409, 412, 415, 419
Jolly, M. 370
Jury, E. I. 235, 238, 417, 419

Kagstrom, J. B. 413
Kailath, T. 117, 149, 195, 498
Kalaba, R. E. xvi
Karcanias, N. 498
Karlin, S. 237
Kato, T. 273, 345, 353, 409
Katz, I. J. 216
Kazakia, J. Y. 178
Kelly, F. P. 409
Kenney, C. 183, 202
Kestelman, H. 189
Keyfitz, N. xvi, 146
Khan, N. A. 230, 237, 298
Khatri, C. G. 220

Kittaneh, F. 183, 292, 336-338, 342, 347, 349, 353
Koliha, J. J. 402
Kolman, B. 430
Koning, R. H. 238
Koshy, T. xvi, 63, 147
Krafft, O. 277
Kratz, W. 498
Kreindler, E. 301
Kucera, V. 498
Kuipers, J. B. xvi, 106
Kunze, R. xviii
Kwakernaak, K. xvi
Kwapisz, M. 420
Kwong, M. K. 272
Kwong, R. H. 498
Laberteaux, K. R. 87
Laffey, T. J. 191, 204, 205
Lakshminarayanan, S. 57
Lancaster, P. xvi, 114, 134, 149, 180, 205, 232, 321, 335, 353, 498, 499
Laub, A. J. 109, 498
Lawson, C. L. 224
Lax, P. D. 137, 272, 345
Lay, S. R. 28, 75, 367
Leake, R. J. 93
LeCouteur, K. J. 292, 403
Lee, A. 109, 215
Lee, J. M. 206
Lehnigk, S. H. 430
Lemos, R. xvi, 285, 406, 407
Leonard, E. 376
Letac, G. 295
Lew, J. S. 138
Lewis, A. M. 75
Lewis, D. C. 236
Li, A.-L. 337
Li, C.-K. 184, 257, 263, 274, 296, 337, 345, 350, 351
Li, Z. xvi, 430
Lieb, E. H. 292

Lim, J. S. 199
Lin, T.-P. 7
Liu, R.-W. 93
Liu, S. 238
Liz, E. 376
Loewy, R. 494
Loparo, K. A. 187
Lossers, O. P. 74
Luenberger, D. G. xvi
Lutkepohl, H. xviii
Lyubich, Y. I. 353
MacDuffee, C. C. 232, 235, 238
Macfarlane, A. G. J. 498
Maciejowski, J. M. 421
Mackey, D. S. 109
Mackey, N. 109
Maeda, H. 418
Magnus, J. R. xvi, 219, 220, 224, 237, 238, 370
Majindar, K. N. 281
Malyshev, A. N. 413
Malzan, J. 201
Mansfield, L. E. xviii
Mansour, M. 417
Marcus, M. xviii, 8, 11, 60, 185, 230, 237, 298, 305, 343
Markham, T. L. 70, 215, 217, 219, 263, 296, 297, 300
Marsaglia, G. 52, 75, 217, 218
Marsden, J. E. xvi
Marshall, A. W. 11, 109, 263, 264, 270, 300-302
Martensson, K. 498
Massey, J. Q. 62
Mathai, A. M. 370
Mathias, R. 184, 238, 257, 263, 274, 296, 345, $350,351,370,403$
Matson, J. B. 498
McCloskey, J. P. 96
McKeown, J. J. xvi
Meenakshi, A. R. 277
Mellendorf, S. 144, 417

Melnikov, Y. A. xvi
Merikoski, J. K. 347
Merris, R. 237, 274, 297, 302
Meyer, C. D. 75, 122, 149, 166, 167, 198, 214, $216,219,224,421,430$
Meyer, K. 109
Miao, J.-M. 219
Mihalyffy, L. 219
Miller, K. S. 131, 233, 280
Milliken, G. A. 276
Minamide, N. 219
Minc, H. xviii, 8, 11, 185, 305, 343
Miranda, H. 301
Mirsky, L. xviii
Mitra, S. K. 237
Mitrinovic, D. S. 8, 11
Mitter, S. K. 492
Mityagin, B. 272, 301
Mlynarski, M. 344
Moler, C. 430
Mond, B. 274, 299
Monov, V. V. 144
Moore, J. B. 275
Mori, T. 301
Muckenhoupt, B. 178
Muir, T. 75
Muir, W. W. 302
Munthe-Kaas, H. Z. 399
Murray, R. M. xvi, 430
Nagar, D. K. xvi
Najfeld, I. 403
Nandakumar, K. 57
Naylor, A. W. 11, 357-359, 370
Nemirovski, A. 46, 75
Nett, C. N. 75
Neudecker, H. 238
Neumann, M. 107, 146, 419
Neuts, M. F. xvi
Newcomb, R. W. 301
Newman, M. 384
Nishio, K. 95

Noble, B. xviii, 75
Norsett, S. P. 399
Nunemacher, J. 430
Nylen, P. 353
Oar, C. xvi, 499
Odell, P. L. 224
Ogawa, H. 220
Okubo, K. 201
Olkin, I. 179, 271
Ortega, J. M. xviii
Osburn, S. L. 403
Ost, F. 237
Ostrowski, A. 493, 494
Overdijk, D. A. 91
Paardekooper, M. H. C. 109
Pao, C. V. 344
Papastravridis, J. G. xvi
Park, F. C. 430
Park, P. 187
Parks, P. C. 417
Patel, R. V. 285, 290, 409, 498
Pease III, M. C. 109
Pecaric, J. E. 11, 274, 299
Peric, M. xvi
Perlis, S. 75, 113, 114, 117, 149, 206
Petersen, I. R. 279
Peterson, A. C. 499
Piepmeyer, G. G. 370
Pierce, S. 274
Pipes, L. A. 397, 430
Plemmons, R. J. 167
Politi, T. 400, 430
Pollock, D. S. G. 370
Poonen, B. 202, 268
Popov, V. M. xvi, 430
Porter, G. J. 99
Pourciau, B. H. 367
Prasolov, V. V. xviii, 64, 71, 91, 92, 95, 101, $103,132,134,137,144$, 147, 175, 176, 180, 184, 188, 189, 191, 199, 202,

204, 222, 235, 263, 274, Sadkane, M. 413
281, 286, 287, 289, 291, Sain, M. K. 498
296, 329, 339, 343, 345, Salmond, D. 62
348, 369, 382
Przemieniecki, J. S. xvi
Psarrakos, P. J. 201
Ptak, V. 274
Pukelsheim, F. 237, 302
Pullman, N. J. 430
Pye, W. C. 140

Qian, R. X. 144
Qiu, L. 415

Rabinowitz, S. 370
Radjavi, H. 179, 201, 204, 215
Rajian, C. 277
Ran, A. C. M. 499
Rantzer, A. 415
Rao, C. R. 224, 277, 301
Rao, D. K. M. 145
Rao, J. V. 219
Ratiu, T. S. xvi
Regalia, P. A. 237
Richardson, T. J. 498
Richmond, A. N. 406
Ringrose, J. R. 353
Rivlin, R. S. 138
Robbin, J. W. 11, 49, 75, 101, 106, 109, 149, 151, 179, 199, 369
Rockafellar, R. T. 75, 358, 366, 370
Rodman, L. xvi, 114, 149, 205, 400, 498, 499
Rogers, G. S. 370
Rohde, C. A. 219
Rohn, J. 328
Rojo, O. 347
Rose, N. J. 413
Rosenfeld, M. xvi, 102
Rosenthal, P. 179
Rugh, W. J. 448, 457
Ruskai, M. B. 273, 302
Ryser, H. J. 62
Sa, E. M. 109

Sarria, H. 347
Sastry, S. S. xvi, 430
Sattinger, D. H. 71, 84, 382, 383, 430
Scherer, C. W. 499
Scherk, P. 201
Schmoeger, C. 404
Schneider, H. 144, 327, 493, 494
Schrader, C. B. 498
Schreiber, M. 221
Schreiner, R. 199
Schwenk, A. J. 237
Searle, S. R. xvi, 237, 238
Sebastian, P. 370
Sell, G. R. 11, 357-359, 370
Semrl, P. 327
Serre, D. 84, 103, 138, 218
Seshadri, V. 418
Shafroth, C. 69, 98
Shah, S. L. 57
Shapiro, H. 204, 237, 295
Shaw, R. 91
Sherali, H. D. 148, 358, 360
Shetty, C. M. 148, 358, 360
Shilov, G. E. xviii
Sijnave, B. 235, 238
Siljak, D. D. xvi
Silva, F. C. 293
Sivan, R. xvi
Smale, S. xvi
Smith, D. R. 430
Smith, H. A. 430
Smith, R. A. 492
Snyders, J. 430
So, W. 290, 384, 399, 408, 409, 430
Sourour, A. R. 204
Sprossig, W. 106, 400
Steeb, W.-H. 237, 408
Stepniak, C. 275

Stern, R. J. 146, 419
Stewart, G. W. xiv, xvi, $75,178,301,326,333$, 334, 345, 351-353, 367
Stickel, E. U. 418, 430
Stiefel, E. 109
Stoer, J. 335, 353
Stojanoff, D. 331
Stone, M. G. 75
Stoorvogel, A. A. xvi, 498
Storey, C. xvi, 59, 206, 269, 416
Strang, G. xvi, xviii, 76
Strom, T. 344
Styan, G. P. H. 52, 58, $73,75,106,186,217$, 218, 278, 302
Subramanian, R. 255, 273, 404
Sun, J. 178, 301, 326, 333, 334, 345, 351-353, 367
Swamy, K. N. 301
Szulc, T. 144

Tarazaga, P. 347
Taussky, O. 76, 185, 206
Tempelman, W. 91
Terrell, R. E. 405
Thirring, W. E. 292
Thompson, R. C. 11, 76, 92, 204, 206, 288, 290, 301, 337, 384, 407, 409
Tian, Y. 219
Tismenetsky, M. 180, 232, 321, 335, 353
Tisseur, F. 109
Toda, M. 285, 290, 409
Todd, J. 185
Tonge, A. 337
Trapp, G. E. 191, 271, 274, 277, 301
Trefethen, L. N. xvi
Trenkler, G. 282
Trentelman, H. L. xvi, 498
Treuenfels, P. 498

Troschke, S.-O. 106
Trustrum, G. B. 292
Tsatsomeros, M. J. 266
Tung, S. H. 8
Turkington, D. A. 238
Turnbull, H. W. 75
Tyan, F. 86, 493
Udwadia, F. E. xvi
Uhlig, F. 201, 279, 281
Valentine, F. A. 75
Van Barel, M. 149
van Dam, A. 99
Van Loan, C. F. xvi, 198, 351, 376, 403, 415, 430
Van Overschee, P. 498
Varadarajan, V. S. 109, 383, 430
Vardulakis, A. I. G. xvi, 149, 457
Varga, R. S. xvi
Vasic, P. M. 8, 11
Vavrin, Z. 134
Vein, R. xvi, 75
Vetter, W. J. 237
Vidyasagar, M. 344
Visick, G. 295, 299, 300
Volenec, V. 274
Vreugdenhil, R. 499
Wagner, D. G. 412
Wang, B.-Y. 93, 276, 292, 296, 300, 352
Wang, D. 255

Wang, Q.-G. 145
Wang, Y. W. 408
Wansbeek, T. 238
Warga, J. 359, 360
Waterhouse, W. E. 60
Watkins, W. 287, 296, 297
Weaver, J. R. 109, 177
Weaver, O. L. 71, 84, 382, 383, 430
Webster, R. 75
Wei, M. 224
Wei, Y. 402
Weinberg, D. A. 206
Weiss, M. xvi, 499
Wermuth, E. M. E. 403, 410
Wesseling, P. xvi
Westlake, J. R. xvi
Wets, R. J. B. 366, 370
Wiegmann, N. A. 191
Wiener, Z. 422
Wigner, E. P. 272
Wilcox, R. M. xvi, 406
Wilhelm, F. 408
Wilkinson, J. H. xvi
Willems, J. C. 498
Williams, J. P. 179, 201, 215
Wilson, D. A. 353
Wimmer, H. K. 494, 498, 499
Witzgall, C. 353
Wolkowicz, H. 109, 186
Wolovich, W. A. 498

Wonenburger, M. J. 204
Wong, C. S. 203
Wonham, W. M. xvi, 139, 376, 496
Wu, P. Y. 203, 204, 302, 415

Xi, B.-Y. 276, 352
Xiao, Z.-G. 7
Xu, H. 402, 415

Yanase, M. M. 272
Yang, X. 411
Yang, Z. P. 282, 283
Yau, S. S.-T. 430
Yeadon, F. I. 91
Young, P. M. 415

Zakai, M. 430
Zanna, A. 399
Zassenhaus, H. 206
Zemanek, J. 410
Zhan, X. 183, 256, 263, 268, 277, 291-293, 295, 297, 299-301, 310, 337, 350, 353, 406
Zhang, F. 54, 74, 91-93, 106, 198, 276, 288, 292, 296, 300, 326, 352
Zhang, L. 223
Zhang, Z.-H. 7
Zheng, B. 53, 219
Zhou, K. xvi, 149
Zwillinger, D. 132, 255

Index

Symbols

2×2 matrices commutator
Fact 2.14.1, 70
2×2 matrix
discrete-time asymptotically stable matrix

Fact 11.15.2, 419
singular value
Fact 5.9.15, 183
square root
Fact 2.11.1, 53

M-matrix

asymptotically stable matrix
Fact 11.14.33, 418
definition
Fact 11.14.33, 418
equivalent conditions
Fact 11.14.33, 418

Z-matrix

definition
Fact 11.14.33, 418
k th Frechet derivative
definition, 361
(1)-inverse
definition, 208
determinant
Fact 6.4.26, 221
left inverse
Proposition 6.1.3, 208
right inverse

Proposition 6.1.2, 208
(1,2)-inverse
definition, 208

A

absolute norm
monotone norm
Proposition 9.1.2, 303
absolute sum norm
definition, 305
absolute value
Holder-induced norm
Fact 9.8.17, 331
maximum singular value
Fact 9.11.12, 347
norm, 303
spectral radius
Fact 4.11.6, 148
vector, 303
absolutely convergent series
definition
Definition 10.2.6, 357
additive decomposition
Hermitian matrix
Fact 3.4.23, 90
adjoint norm
definition
Fact 9.8.5, 328
dual norm

Fact 9.8.5, 328
Holder-induced norm
Fact 9.8.8, 328
adjoint operator
commutator
Fact 2.14.4, 71
Fact 2.14.5, 71
adjugate
basic properties, 42
characteristic
polynomial
Fact 4.9.5, 138
defect
Fact 2.13.6, 64
definition, 41
derivative Fact 10.8.11, 369
Fact 10.8.13, 369
determinant
Fact 2.13.2, 63
Fact 2.13.4, 64
Fact 2.13.5, 64
diagonalizable matrix
Fact 5.11.2, 189
eigenvalue Fact 4.10.3, 141
elementary matrix Fact 2.13.1, 63
factor
Fact 2.13.8, 64
Frobenius norm
Fact 9.8.11, 329
Hermitian matrix
Fact 3.4.6, 87
iterated
Fact 2.13.4, 64 matrix powers Fact 4.9.5, 138 matrix product Fact 2.13.9, 64 null space Fact 2.13.6, 64 outer-product perturbation Fact 2.13.2, 63 range
Fact 2.13.6, 64 rank
Fact 2.13.6, 64
Fact 2.13.7, 64
scalar factor Fact 2.13.4, 64 singular value Fact 5.9.19, 184 skew-Hermitian matrix
Fact 3.4.6, 87
Fact 3.4.7, 87
spectrum
Fact 4.10.3, 141
trace
Fact 4.9.5, 138
transpose
Fact 2.13.4, 64
affine closed half space
closed half space
Fact 2.9.3, 47
definition, 26
affine function
definition, 17
affine hull
constructive characterization Theorem 2.3.5, 27 convex hull
Fact 2.9.1, 46
definition, 25
affine hyperplane
affine subspace
Fact 2.9.3, 47
definition, 26
affine open half space
definition, 26
open half space
Fact 2.9.3, 47
affine subspace
affine hyperplane
Fact 2.9.3, 47
definition, 25
algebraic multiplicity
block-triangular matrix
Proposition 5.5.19, 170
definition
Definition 4.4.3, 120
geometric
multiplicity
Proposition 5.5.3, 166
index of an
eigenvalue
Proposition 5.5.12, 168

Ando

convex function
Proposition 8.5.13, 302
antieigenvalue definition
Fact 9.8.28, 332

antisymmetric relation

definition
Definition 1.2.1, 3
nonnegative-
semidefinite
matrix
Proposition 8.1.1, 240
one-sided cone
induced by
Proposition 2.3.6, 28

Araki

nonnegative-
semidefinite matrix
inequality
Fact 8.12.8, 283
norm equality
Fact 9.9.19, 338
area
polygon
Fact 2.16.3, 74
triangle
Fact 2.16.2, 74
Fact 2.16.4, 75
arithmetic-mean-geometric-mean inequality
alternative form
Fact 1.4.12, 9
main form
Fact 1.4.9, 8
scalar case
Fact 1.4.8, 7
weighted Fact 1.4.11, 8

associative identities,

 18asymptotic stability
eigenvalue
Proposition 11.6.2, 386
linear dynamical system
Proposition 11.6.2, 386
Lyapunov equation Corollary 11.7.1, 390
matrix exponential Proposition 11.6.2, 386
nonlinear system Theorem 11.5.2, 384
asymptotically stable equilibrium
definition
Definition 11.5.1, 384
asymptotically stable matrix
2×2 matrix
Fact 11.14.30, 418
M-matrix
Fact 11.14.33, 418
asymptotically stable polynomial
Proposition 11.6.4, 387
Cayley transform

Fact 11.15.9, 421
cyclic matrix
Fact 11.14.23, 416 definition
Definition 11.6.1, 386
diagonalizable over \mathbb{R} matrix
Fact 11.13.8, 412
discrete-time
asymptotically
stable matrix
Fact 11.15.9, 421
dissipative matrix
Fact 11.14.19, 415
Fact 11.14.32, 418
factorization
Fact 11.14.20, 415
integral
Lemma 11.7.2, 392
inverse matrix
Fact 11.14.14, 414
Kronecker sum
Fact 11.14.28, 418
Fact 11.14.29, 418
linear matrix
equation
Proposition 11.7.3, 392
logarithmic
derivative
Fact 11.14.10, 413
Lyapunov equation
Corollary 11.7.4, 392
matrix exponential
Fact 11.14.8, 413
Fact 11.14.9, 413
Fact 11.14.14, 414
Fact 11.14.17, 415
Fact 11.15.8, 420
Lemma 11.7.2, 392
negative-definite matrix
Fact 11.14.26, 417
normal matrix
Fact 11.14.32, 418
perturbation
Fact 11.14.15, 414
positive-definite matrix

Fact 11.14.19, 415
skew-Hermitian matrix
Fact 11.14.26, 417
spectrum
Fact 11.14.12, 414
square root
Fact 11.14.31, 418
stability radius
Fact 11.14.16, 414
subdeterminant
Fact 11.14.7, 413
trace
Fact 11.14.27, 418
tridiagonal matrix
Fact 11.14.22, 416
Fact 11.14.23, 416
Fact 11.14.24, 416
Fact 11.14.25, 417
asymptotically stable polynomial
asymptotically stable matrix
Proposition 11.6.4, 387
definition
Definition 11.6.3, 387
Kronecker sum
Fact 11.13.9, 412
polynomial coefficients
Fact 11.13.1, 410
Fact 11.13.2, 410
Fact 11.13.5, 411
Fact 11.13.6, 411
Fact 11.13.8, 412
Fact 11.13.9, 412
reciprocal argument
Fact 11.13.3, 411
Schur product of polynomials
Fact 11.13.7, 411
subdeterminant
Fact 11.14.21, 415
asymptotically stable subspace
definition, 389

averaged limit

integral
Fact 10.8.3, 368

B

Baker-Campbell-

Hausdorff series
matrix exponential
Proposition 11.4.8, 383
balancing transformation
existence
Corollary 8.3.3, 245

Barnett factorization

Bezout matrix
Fact 4.8.6, 132

barycentric

coordinates
definition, 24
basis
definition, 25
Ben-Israel
generalized inverse
Fact 6.3.18, 215
Bendixson's theorem
eigenvalue bound
Fact 5.9.21, 184
Fact 9.10.6, 343

Bergstrom

positive-definite matrix determinant Fact 8.13.7, 286

Bernstein's inequality matrix exponential Fact 11.12.3, 408

Bezout equation
coprime polynomials
Fact 4.8.5, 132
Bezout matrix
coprime polynomials

Fact 4.8.6, 132
Fact 4.8.7, 134
definition
Fact 4.8.6, 132
distinct roots
Fact 4.8.8, 135
factorization
Fact 5.13.22, 202
polynomial roots
Fact 4.8.8, 135

Bhatia

Schatten norm inequality
Fact 9.9.22, 339
unitarily invariant norm inequality Fact 9.9.21, 339
bialternate product, 238
compound matrix
Fact 7.4.32, 234
biequivalent matrices
definition
Definition 3.2.1, 82
Kronecker product
Fact 7.4.11, 231
rank
Proposition 5.1.3, 151
Smith form
Corollary 5.1.2, 151
Theorem 5.1.1, 151
bilinear function
definition, 361
Binet-Cauchy formula definition
Fact 2.12.10, 57
block
definition, 16
block-circulant matrix
circulant matrix
Fact 3.12.11, 107
block-diagonal matrix
companion matrix
Lemma 5.2.2, 153
Proposition 5.2.8, 155
definition
Definition 3.1.3, 79
diagonally located blocks
Fact 3.6.9, 98
geometric
multiplicity
Proposition 5.5.19, 170
least common multiple
Lemma 5.2.7, 155
matrix exponential
Proposition 11.1.4, 373
minimal polynomial
Lemma 5.2.7, 155
similar matrices
Theorem 5.3.2, 157
Theorem 5.3.3, 157
block-Hankel matrix
definition
Definition 3.1.3, 79
Hankel matrix
Fact 3.12.11, 107
block-Kronecker product, 238
block-Toeplitz matrix definition

Definition 3.1.3, 79
Toeplitz matrix
Fact 3.12.11, 107
block-triangular matrix
algebraic multiplicity
Proposition 5.5.19, 170
inverse matrix
Fact 2.13.27, 67
maximum singular value
Fact 5.9.16, 184
spectrum
Proposition 5.5.19, 170
blocking zero
definition
Definition 4.7.6, 130
Borobia
asymptotically stable polynomial Fact 11.13.6, 411

both

definition, 1
boundary
definition, 356
boundary relative to a set
definition, 356

bounded set

definition, 356
open ball
Fact 10.7.2, 365

Brauer

spectrum bounds
Fact 4.10.13, 144
Browne's theorem
eigenvalue bound Fact 5.9.21, 184

Brownian motion

nonnegativesemidefinite matrix
Fact 8.7.22, 267

C

campanion matrix

cyclic matrix
Fact 5.12.6, 196
similar matrices
Fact 5.12.6, 196
Cartesian product definition, 3

Cauchy interlacing

 theoremHermitian matrix eigenvalue Lemma 8.4.4, 248

Cauchy matrix

Hankel matrix

Fact 3.12.13, 108
nonnegativesemidefinite matrix
Fact 8.7.23, 267
Fact 8.7.29, 268
Cauchy-Schwarz inequality
inner product bound
Corollary 9.1.7, 306
nonnegative-
semidefinite
matrix
Fact 8.8.12, 272
Fact 8.10.4, 278
scalar case
Fact 1.4.15, 9
Cayley transform
asymptotically stable matrix
Fact 11.15.9, 421
cross product
Fact 11.9.8, 399
definition
Fact 3.6.23, 100
discrete-time asymptotically stable matrix
Fact 11.15.9, 421
Hamiltonian matrix Fact 3.9.8, 104
Hermitian matrix Fact 3.6.23, 100 orthogonal matrix Fact 11.9.8, 399
positive-definite matrix
Fact 8.7.18, 266
skew-Hermitian
matrix
Fact 3.6.24, 100
skew-symmetric matrix
Fact 11.9.8, 399
symplectic matrix
Fact 3.9.8, 104

Cayley-Hamilton theorem
characteristic
polynomial
Theorem 4.4.6, 123
centrohermitian matrix
complex conjugate transpose
Fact 3.12.1, 106
definition
Definition 3.1.2, 78
generalized inverse
Fact 6.3.14, 215
matrix product
Fact 3.12.2, 106
centrosymmetric matrix
definition
Definition 3.1.2, 78
matrix product Fact 3.12.2, 106
matrix transpose
Fact 3.12.1, 106
Cesaro summable
discrete-time
Lyapunov-stable
matrix
Fact 11.15.12, 421
characteristic equation
definition, 120
characteristic polynomial
2×2 matrix
Fact 4.9.1, 137
3×3 matrix
Fact 4.9.3, 138
adjugate
Fact 4.9.5, 138
Cayley-Hamilton theorem
Theorem 4.4.6, 123
companion matrix
Corollary 5.2.4, 154
Corollary 5.2.5, 154
Proposition 5.2.1, 152
cyclic matrix
Proposition 5.5.20, 171
definition
Definition 4.4.1, 119
degree
Proposition 4.4.2, 120
derivative
Lemma 4.4.7, 123
eigenvalues
Proposition 4.4.5, 122
generalized inverse
Fact 6.3.4, 214
Hamiltonian matrix
Fact 4.9.14, 140
Fact 4.9.16, 140
identities
Proposition 4.4.4, 121
inverse matrix
Fact 4.9.6, 138
Leverrier's algorithm
Proposition 4.4.8, 123
matrix product
Corollary 4.4.10, 124
Proposition 4.4.9, 124
monic
Proposition 4.4.2, 120
outer-product
matrix
Fact 4.9.12, 139
Fact 4.9.13, 140
partitioned matrix
Fact 4.9.10, 139
Fact 4.9.11, 139
Fact 4.9.13, 140
Fact 4.9.15, 140
Fact 4.9.16, 140
similar matrices
Fact 4.9.7, 138
similarity invariant
Proposition 4.6.2, 127
skew-symmetric
matrix
Fact 4.9.9, 139
Fact 5.11.21, 191
sum of derivatives
Fact 4.9.8, 139
upper block
triangular

Fact 4.10.7, 142

Chen form

tridiagonal matrix
Fact 11.14.24, 417
Cholesky decomposition
existence
Fact 8.7.33, 269
circulant matrix
block-circulant
matrix
Fact 3.12.11, 107
companion matrix
Fact 5.12.7, 197
Fourier matrix
Fact 5.12.7, 197
spectrum
Fact 5.12.7, 197

Clarkson inequalities

Schatten norm
Fact 9.9.18, 338

Cline

generalized inverse of a matrix product Fact 6.4.3, 216
closed half space
affine closed half space
Fact 2.9.3, 47
definition, 26
closed relative to a set
continuous function
Theorem 10.3.4, 358
definition
Definition 10.1.4, 356
closed set
continuous function
Corollary 10.3.5, 358
Theorem 10.3.9, 359
definition
Definition 10.1.3, 355
nonnegative-definite matrix
Fact 10.7.16, 367
subspace
Fact 10.7.15, 367
closure
complement
Fact 10.7.5, 366
convex hull
Fact 10.7.9, 366
Fact 10.7.10, 366
convex set
Fact 10.7.6, 366
Fact 10.7.17, 367
smallest closed set
Fact 10.7.4, 366
subset
Fact 10.7.3, 366
closure point
definition
Definition 10.1.3, 355
closure point relative to a set
definition
Definition 10.1.4, 356
closure relative to a set definition

Definition 10.1.4, 356
codomain
definition, 4
cofactor
definition, 41
determinant
expansion
Proposition 2.7.5, 41
cogredient diagonalization
commuting matrices
Fact 8.11.2, 281
definition, 245
diagonalizable matrix
Fact 8.11.3, 281
Fact 8.11.4, 281
nonnegativesemidefinite matrix

Theorem 8.3.4, 246
positive-definite matrix
Fact 8.11.7, 281
Theorem 8.3.1, 245
unitary matrix
Fact 8.11.2, 281
cogredient transformation
Hermitian matrix
Fact 8.11.6, 281
simultaneous diagonalization
Fact 8.11.6, 281
simultaneous triangularization Fact 8.11.5, 281
colinear
determinant
Fact 2.16.1, 74
column
definition, 15
column norm
definition, 317
Holder-induced norm
Fact 9.8.13, 330
Fact 9.8.15, 330
Kronecker product
Fact 9.9.29, 340
partitioned matrix
Fact 9.8.9, 328
row norm
Fact 9.8.8, 328
column vector
definition, 14
column-stacking operator, see vec
common divisor
definition, 113
common multiple
definition, 114
commutator
2×2 matrices
Fact 2.14.1, 70
adjoint operator Fact 2.14.4, 71 Fact 2.14.5, 71
convergent sequence Fact 11.11.10, 404
definition, 18
derivative of a matrix
Fact 11.11.12, 405
determinant
Fact 2.14.6, 71
factorization
Fact 5.13.30, 204
Hermitian matrix
Fact 3.4.26, 91
Fact 3.4.28, 91
idempotent matrix Fact 3.5.17, 95
identities
Fact 2.11.19, 55
Fact 2.14.3, 70
matrix exponential Fact 11.11.10, 404
Fact 11.11.12, 405
Fact 11.11.13, 405
Fact 11.11.14, 405
Fact 11.11.15, 405
Fact 11.11.16, 406
Fact 11.11.17, 406
Fact 11.11.18, 406
maximum singular value
Fact 9.12.5, 349
nilpotent matrix Fact 3.8.1, 102
Fact 3.8.2, 102
Fact 3.8.3, 102
normal matrix
Fact 3.4.31, 92
powers
Fact 2.14.2, 70
series
Fact 11.11.18, 406
skew-Hermitian matrix
Fact 3.4.26, 91

Fact 3.4.29, 92
skew-symmetric matrix
Fact 3.4.30, 92
submultiplicative norm

Fact 9.9.5, 335
trace
Fact 2.14.1, 70
Fact 5.7.18, 178
upper triangular matrix
Fact 3.8.1, 102
zero diagonal
Fact 3.4.27, 91
commutator realization
Shoda's theorem
Fact 5.7.18, 178
commuting matrices
cogredient diagonalization
Fact 8.11.2, 281
cyclic matrix
Fact 5.11.16, 190
diagonalizable
matrix
Fact 5.8.8, 179
Drazin generalized inverse
Fact 6.5.6, 223
eigenvector
Fact 5.11.17, 190
Hermitian matrix
Fact 5.11.18, 190
idempotent matrix
Fact 3.5.22, 96
Fact 3.5.23, 96
matrix exponential
Corollary 11.1.7, 374
Fact 11.11.2, 403
Fact 11.11.5, 404
Proposition 11.1.6, 374
nilpotent matrix
Fact 3.8.9, 103
Fact 3.8.10, 103
normal matrix
Fact 3.4.22, 89

Fact 3.4.23, 90
Fact 5.8.7, 179
Fact 5.11.18, 190
Fact 11.11.5, 404
polynomial
representation
Fact 5.11.16, 190
simultaneous
triangularization
Fact 5.8.6, 179
spectral radius
Fact 5.10.4, 188
square root
Fact 8.7.15, 266
upper triangular matrix
Fact 5.8.6, 179

compact domain

existence of
minimizer
Corollary 10.3.8, 359
compact set
continuous function Theorem 10.3.7, 358
convergent subsequence
Theorem 10.2.5, 357
convex hull
Fact 10.7.12, 366
definition, 356
companion matrix
block-diagonal matrix
Lemma 5.2.2, 153
Proposition 5.2.8, 155
bottom, right, top, left
Fact 5.12.1, 193
characteristic
polynomial
Corollary 5.2.4, 154
Corollary 5.2.5, 154
Proposition 5.2.1, 152
circulant matrix
Fact 5.12.7, 197
definition, 152
elementary divisor
Theorem 5.2.9, 156
example
Example 5.3.6, 160
Example 5.3.7, 161
hypercompanion matrix
Corollary 5.3.4, 158
Lemma 5.3.1, 157
inverse matrix
Fact 5.12.2, 195
minimal polynomial
Corollary 5.2.4, 154
Corollary 5.2.5, 154
Proposition 5.2.1, 152
nonnegative matrix
Fact 4.11.3, 148
oscillator
Fact 5.11.23, 191
singular value
Fact 5.9.14, 183
Vandermonde matrix
Fact 5.12.5, 196
compatible norm
induced norm
Proposition 9.4.3, 314
submultiplicative
norm
Proposition 9.3.1, 311
compatible norms
definition, 310
Holder norm
Proposition 9.3.5, 311
Schatten norm
Proposition 9.3.6, 312
complement
closure
Fact 10.7.5, 366
definition, 2
interior
Fact 10.7.5, 366
complement relative to definition, 2
complementary
subspaces
definition, 26
idempotent matrix
Fact 3.5.15, 95
Proposition 5.5.8, 167
index
Proposition 5.5.6, 167
simultaneous
Fact 2.9.12, 47
stable subspace
Proposition 11.6.8, 389
sum of dimensions
Corollary 2.3.2, 26
unstable subspace
Proposition 11.6.8, 389
completely solid set
convex set
Fact 10.7.7, 366
definition, 356
nonnegative-definite matrix
Fact 10.7.16, 367
open ball
Fact 10.7.1, 365
complex conjugate
determinant
Fact 2.15.7, 74
Fact 2.15.8, 74
partitioned matrix Fact 2.15.8, 74
similar matrices
Fact 5.7.17, 178
complex conjugate of a matrix
definition, 23
complex conjugate of a vector
definition, 21
complex conjugate transpose
definition, 23
diagonalizable matrix
Fact 5.11.2, 189
Drazin generalized inverse

Fact 6.5.3, 223
factorization
Fact 5.13.21, 202
generalized inverse Fact 6.3.2, 213
Fact 6.3.11, 214
Kronecker product
Proposition 7.1.3, 226
left inverse
Fact 2.13.23, 66
matrix exponential
Fact 11.12.3, 408
Fact 11.12.5, 409
nonsingular matrix Fact 2.13.38, 70
norm
Fact 9.8.5, 328
normal matrix Fact 5.11.19, 191
singular value Fact 5.9.17, 184
unitarily invariant norm
Fact 9.8.21, 331
unitarily
left-equivalent matrices
Fact 5.8.9, 179
Fact 5.8.10, 179
unitarily
right-equivalent
matrices
Fact 5.8.9, 179
unitarily similar matrices
Fact 8.11.1, 281
complex conjugate transpose of a vector
definition, 21

complex matrix

block 2×2
representation
Fact 2.15.3, 72
determinant
Fact 2.15.3, 72
Fact 2.15.9, 74
nonnegativesemidefinite matrix
Fact 3.4.5, 86
partitioned matrix
Fact 2.15.4, 73
Fact 2.15.5, 73
Fact 2.15.6, 73
Fact 3.6.12, 98
positive-definite matrix
Fact 3.4.5, 86
rank
Fact 2.15.3, 72
complex numbers
2×2 representation Fact 2.15.1, 71
identities
Fact 1.4.18, 10
complex-symmetric matrix
T-congruence Fact 5.7.10, 176
T-congruent diagonalization Fact 5.7.10, 176
unitary matrix Fact 5.7.10, 176
component
definition, 14
composition
definition, 4
compound matrix
matrix product Fact 7.4.32, 234
concave function definition
Definition 8.5.11, 257
function composition Lemma 8.5.12, 257
nonincreasing function
Lemma 8.5.12, 257
condition number
linear system
solution
Fact 9.9.31, 340
Fact 9.9.32, 340
Fact 9.9.33, 341
cone
constructive characterization
Theorem 2.3.5, 27
definition, 25
intersection
Fact 2.9.4, 47
one-sided definition, 25
pointed definition, 25
sum
Fact 2.9.4, 47
variational
definition, 359

congruence

equivalence relation
Fact 5.8.2, 178
congruent matrices definition
Definition 3.2.2, 82
Hermitian matrix
Corollary 5.4.7, 165 inertia
Corollary 5.4.7, 165
Fact 5.7.11, 176
Kronecker product Fact 7.4.12, 232
matrix classes Proposition 3.2.3, 83
nonnegative-
semidefinite matrix
Corollary 8.1.3, 241
positive-definite matrix
Corollary 8.1.3, 241
skew-symmetric matrix
Fact 3.9.7, 103
conical hull
definition, 25
constant polynomial definition, 111
contained
definition, 2

continuous function

closed relative to a set
Theorem 10.3.4, 358
closed set
Corollary 10.3.5, 358
Theorem 10.3.9, 359
compact set
Theorem 10.3.7, 358
convex function
Theorem 10.3.2, 358
convex set
Theorem 10.3.9, 359
definition
Definition 10.3.1, 358
differentiable
function
Proposition 10.4.4, 360
existence of minimizer
Corollary 10.3.8, 359
linear function
Corollary 10.3.3, 358
maximization
Fact 10.8.2, 368
open relative to a set Theorem 10.3.4, 358
open set
Corollary 10.3.5, 358
continuously differentiable function
definition, 361
contractive matrix
complex conjugate transpose
Fact 3.12.3, 106
definition
Definition 3.1.2, 78
contragedient diagonalization
positive-definite matrix
Theorem 8.3.2, 245
contragredient diagonalization
definition, 245
nonnegative-
semidefinite
matrix
Corollary 8.3.7, 247
Theorem 8.3.5, 246
positive-definite
matrix
Corollary 8.3.3, 245
contrapositive
definition, 1
convergent sequence
closure point
Proposition 10.2.4, 357
commutator
Fact 11.11.10, 404
discrete-time
semistable matrix
Fact 11.15.15, 421
generalized inverse
Fact 6.3.18, 215
Hermitian matrix
Fact 11.11.7, 404
Fact 11.11.8, 404
inverse matrix
Fact 2.13.37, 70
Fact 4.10.19, 145
matrix exponential
Corollary 11.4.9, 384
Fact 11.11.7, 404
Fact 11.11.8, 404
Fact 11.11.10, 404
Fact 11.15.15, 421
Proposition 11.1.3, 372
matrix sign function
Fact 5.13.18, 202
spectral radius
Fact 4.10.19, 145
Fact 9.8.1, 327
square root
Fact 5.13.18, 202
Fact 8.7.20, 266
unitary matrix
Fact 8.7.21, 267
vectors
Fact 10.8.1, 368
convergent sequence of matrices
definition
Definition 10.2.3, 357
convergent sequence of scalars
definition
Definition 10.2.2, 357
convergent sequence of vectors
definition
Definition 10.2.3, 357
convergent series
definition
Definition 10.2.6, 357
matrix exponential
Proposition 11.1.2, 372
convergent
subsequence
compact set
Theorem 10.2.5, 357
converse
definition, 1
convex combination
definition, 24
determinant Fact 8.13.8, 287
nonnegativesemidefinite matrix
Fact 8.13.8, 287
convex cone
definition, 25
induced by transitive relation
Proposition 2.3.6, 28
inner product

Fact 10.7.20, 367
intersection
Fact 2.9.4, 47
nonnegativesemidefinite matrix, 240
separation theorem Fact 10.7.20, 367
sum
Fact 2.9.4, 47
union
Fact 2.9.5, 47
convex conical hull
constructive
characterization
Theorem 2.3.5, 27
convex hull
Fact 2.9.1, 46
definition, 25
dual cone
Fact 2.9.1, 46
convex function
continuous function
Theorem 10.3.2, 358
convex set
Fact 10.8.5, 368
Fact 10.8.6, 368
definition
Definition 8.5.11, 257
determinant
Proposition 8.5.13, 258
eigenvalue
Corollary 8.5.15, 263
Fact 8.14.10, 293
function composition Lemma 8.5.12, 257
Kronecker product
Proposition 8.5.13, 258
log majorization
Fact 8.16.4, 301
logarithm of
determinant
Proposition 8.5.13, 258
logarithm of trace
Proposition 8.5.13, 258
matrix exponential
Fact 11.11.25, 407
matrix functions
Proposition 8.5.13, 258
minimizer
Fact 8.10.16, 280
nondecreasing
function
Lemma 8.5.12, 257
nonnegative-
semidefinite
matrix
Fact 8.10.16, 280
one-sided directional
differential
Proposition 10.4.1, 360
Schur complement
Lemma 8.5.12, 257
Proposition 8.5.13, 258
strong majorization
Fact 8.16.1, 300
Fact 8.16.2, 300
trace
Proposition 8.5.13, 258
weak majorization
Fact 8.14.10, 293
Fact 8.16.1, 300
Fact 8.16.2, 300
Fact 8.16.3, 300

convex hull

affine hull
Fact 2.9.1, 46
closure
Fact 10.7.9, 366
Fact 10.7.10, 366
compact set
Fact 10.7.12, 366
constructive
characterization
Theorem 2.3.5, 27
definition, 25
open set
Fact 10.7.11, 366
solid set
Fact 10.7.8, 366
spectrum
Fact 4.10.17, 145
convex set
closure

Fact 10.7.6, 366
Fact 10.7.17, 367
completely solid set
Fact 10.7.7, 366
continuous function
Theorem 10.3.9, 359
convexity of image
Fact 2.9.2, 46
definition, 24
interior
Fact 10.7.6, 366
Fact 10.7.17, 367
intersection
Fact 2.9.4, 47
norm
Fact 9.7.9, 326
open ball
Fact 10.7.1, 365
solid set
Fact 10.7.7, 366
sum
Fact 2.9.4, 47
convex sets
proper separation theorem
Fact 10.7.21, 367
convexity
matrix exponential
Fact 11.12.11, 410
singular value
Fact 11.12.11, 410
coprime
definition, 113
polynomial
Fact 4.8.3, 131
Fact 4.8.4, 131
coprime polynomials
Bezout matrix
Fact 4.8.6, 132
Fact 4.8.7, 134
resultant
Fact 4.8.4, 131
Smith-McMillan form
Fact 4.8.13, 137
Sylvester matrix

Fact 4.8.4, 131

corollary

definition, 1
cosine law
vector identity
Fact 9.7.4, 325

Cramer's rule

linear system
solution
Fact 2.12.11, 57

Crimmins

product of projectors
Fact 6.3.15, 215

cross product

Cayley transform Fact 11.9.8, 399
identities
Fact 3.4.24, 90
matrix exponential
Fact 11.9.9, 399
orthogonal matrix
Fact 11.9.8, 399
outer-product matrix
Fact 11.9.8, 399
CS decomposition
unitary matrix
Fact 5.7.16, 178

cube root

identity
Fact 2.11.2, 53

cyclic eigenvalue

definition
Definition 5.5.10, 167
semisimple
eigenvalue
Proposition 5.5.11, 168
simple eigenvalue
Proposition 5.5.11, 168
cyclic matrix
asymptotically stable
matrix
Fact 11.14.23, 416
campanion matrix
Fact 5.12.6, 196
characteristic
polynomial
Proposition 5.5.20, 171
commuting matrices
Fact 5.11.16, 190
definition
Definition 5.5.10, 167
determinant
Fact 5.11.5, 189
diagonalizable over \mathbb{R}
Fact 5.11.6, 189
linear independent vectors
Fact 5.11.5, 189
matrix power
Fact 5.11.5, 189
minimal polynomial
Proposition 5.5.20, 171
similar matrices
Fact 5.12.6, 196
simple matrix
Fact 5.11.6, 189
tridiagonal matrix
Fact 11.14.23, 416

D

damped natural frequency, 380
definition
Fact 5.11.23, 191
damping, 380
damping ratio, 380
definition
Fact 5.11.23, 191
Decell
generalized inverse Fact 6.4.8, 216

decreasing

definition Definition 8.5.9, 256
defect
adjugate

Fact 2.13.6, 64
definition, 31
group-invertible matrix
Fact 3.3.3, 85
identity
Fact 2.10.2, 48
identity involving defect
Corollary 2.5.5, 33
identity with powers
Proposition 2.5.7, 33
identity with
transpose
Corollary 2.5.3, 32
partitioned matrix
Fact 2.10.24, 51
Fact 2.10.25, 51
product of matrices
Fact 2.10.8, 49
product with full rank matrix
Proposition 2.6.2, 35
semisimple
eigenvalue
Proposition 5.5.14, 168
Sylvester's law of nullity
Fact 2.10.9, 49
defective eigenvalue
definition
Definition 5.5.10, 167
defective matrix
definition
Definition 5.5.10, 167
degree of a matrix polynomial
definition, 114
degree of a polynomial definition, 111

derivative

adjugate
Fact 10.8.11, 369
Fact 10.8.13, 369
determinant

Fact 10.8.11, 369
Fact 10.8.13, 369
Fact 10.8.14, 370
Fact 10.8.15, 370
matrix
definition, 373
matrix exponential
Fact 11.11.3, 403
Fact 11.11.4, 403
Fact 11.12.1, 408
matrix inverse
Fact 10.8.11, 369
maximum singular value
Fact 11.12.1, 408
trace
Fact 11.11.3, 403

derivative of a matrix

commutator
Fact 11.11.12, 405 matrix exponential
Fact 11.11.12, 405
matrix product
Fact 11.10.6, 401
derivative of integral
Liebniz rule
Fact 10.8.4, 368

derogatory eigenvalue

definition
Definition 5.5.10, 167
derogatory matrix definition
Definition 5.5.10, 167

determinant

(1)-inverse

Fact 6.4.26, 221
adjugate
Fact 2.13.2, 63
Fact 2.13.4, 64
basic properties
Proposition 2.7.2, 39
bound
Fact 8.13.21, 289
cofactor expansion
Proposition 2.7.5, 41
colinear
Fact 2.16.1, 74
column interchange
Proposition 2.7.2, 39
commutator
Fact 2.14.6, 71
complex conjugate
Fact 2.15.7, 74
Fact 2.15.8, 74
complex conjugate transpose
Proposition 2.7.1, 39
complex matrix
Fact 2.15.3, 72
Fact 2.15.9, 74
convex combination
Fact 8.13.8, 287
convex function
Proposition 8.5.13, 258
cyclic matrix
Fact 5.11.5, 189
definition, 38
derivative
Fact 10.8.11, 369
Fact 10.8.13, 369
Fact 10.8.14, 370
Fact 10.8.15, 370
dissipative matrix
Fact 8.13.1, 285
Fact 8.13.5, 286
Fact 8.13.17, 288
eigenvalue
Fact 5.9.13, 183
elementary matrix
Fact 2.13.1, 63
factorization
Fact 5.13.4, 199
Fact 5.13.31, 204
Frobenius norm
Fact 9.8.30, 333
generalized inverse
Fact 6.4.25, 221
Fact 6.4.26, 221
group
Proposition 3.2.7, 84
Hankel matrix
Fact 3.12.12, 107
Fact 3.12.13, 108

Hermitian matrix
Corollary 8.4.10, 250
Fact 3.4.15, 89
identity
Fact 2.12.22, 61
Fact 2.12.23, 61
Fact 2.12.24, 61
inequality
Fact 8.13.13, 287
Fact 8.13.15, 288
Fact 8.13.16, 288
Fact 8.13.18, 288
Fact 8.13.19, 288
Fact 8.13.20, 289
Fact 8.15.12, 297
integral
Fact 11.10.13, 402
inverse function
theorem
Theorem 10.4.5, 361
involutory
Fact 3.6.21, 100
involutory matrix
Fact 5.13.28, 204
Kronecker product
Proposition 7.1.11, 228
Kronecker sum
Fact 7.4.28, 233
linear combination
Fact 8.13.10, 287
logarithm
Fact 8.7.44, 271
Fact 9.8.30, 333
lower block
triangular
Proposition 2.7.1, 39
lower
reverse-triangular
matrix
Fact 2.12.20, 60
matrix derivative
Proposition 10.6.3, 365
matrix exponential
Corollary 11.2.3, 377
Corollary 11.2.4, 377
Fact 11.10.13, 402
Fact 11.12.4, 408
Proposition 11.4.7, 383
maximum singular value
Fact 9.11.6, 346
Fact 9.11.7, 346
Fact 9.12.11, 350
Fact 9.12.12, 350
minimum singular value
Fact 9.11.7, 346
Fact 9.12.12, 350
nilpotent matrix
Fact 3.8.9, 103
nonnegative-
semidefinite
matrix
Corollary 8.4.15, 252
Fact 5.10.6, 188
Fact 8.13.12, 287
Fact 8.13.8, 287
Fact 8.13.10, 287
Fact 8.14.5, 291
Fact 8.15.5, 296
Fact 8.15.11, 297
Fact 8.15.12, 297
Fact 9.8.30, 333
nonsingular matrix
Corollary 2.7.4, 40
Lemma 2.8.6, 44
ones matrix
Fact 2.12.3, 55
ones matrix
perturbation
Fact 2.13.5, 64
orthogonal
Fact 3.6.20, 100
outer-product
perturbation
Fact 2.13.2, 63
partitioned matrix
Fact 2.12.1, 55
Fact 2.12.5, 55
Fact 2.12.6, 56
Fact 2.12.7, 56
Fact 2.12.8, 56
Fact 2.12.13, 57
Fact 2.12.14, 58
Fact 2.12.16, 59
Fact 2.12.17, 59

Fact 2.12.18, 60
Fact 2.12.19, 60
Fact 2.12.25, 62
Fact 2.13.31, 68
Fact 2.15.3, 72
Fact 2.15.8, 74
Fact 5.10.5, 188
Fact 6.4.25, 221
Fact 6.4.26, 221
Fact 8.13.22, 289
Fact 8.13.23, 289
Lemma 8.2.5, 243
permutation matrix
Fact 2.12.21, 60
positive-definite
matrix
Fact 5.10.6, 188
Fact 8.7.44, 271
Fact 8.13.2, 286
Fact 8.13.3, 286
Fact 8.13.6, 286
Fact 8.13.7, 286
Fact 8.13.9, 287
Fact 8.13.11, 287
Fact 8.13.14, 287
Fact 8.13.22, 289
Proposition 8.4.14, 251
product
Proposition 2.7.3, 40
rank-deficient matrix
Fact 2.12.9, 57
reverse identity
Fact 2.12.2, 55
row interchange
Proposition 2.7.2, 39
singular value
Fact 5.9.13, 183
skew-Hermitian
matrix
Fact 3.4.7, 87
Fact 3.4.10, 87
skew-symmetric
matrix
Fact 3.4.9, 87
Fact 4.8.12, 136
Fact 4.10.4, 141
strongly increasing function

Proposition 8.5.10, 256 subdeterminant
Fact 2.12.10, 57
Fact 2.12.15, 58
Fact 2.13.34, 69
subdeterminant expansion
Corollary 2.7.6, 42
symplectic matrix Fact 3.9.2, 103
trace
Corollary 11.2.3, 377
Corollary 11.2.4, 377
Fact 8.13.12, 287
Fact 11.11.19, 406
Proposition 8.4.14, 251
transpose
Proposition 2.7.1, 39
tridiagonal
Fact 2.12.26, 62
Fact 3.12.5, 107
unimodular matrix
Proposition 4.3.5, 118
unitary
Fact 3.6.6, 98
unitary matrix
Fact 3.6.7, 98
Fact 3.6.18, 99
Vandermonde matrix
Fact 5.12.3, 195
determinant of
outer-product
perturbation
Sherman-Morrison-
Woodbury
formula
Fact 2.13.2, 63
determinant of the
product of dissipative matrices
positivity
Fact 8.13.17, 288
determinantal
compression
partitioned matrix Fact 8.13.23, 289

diagonal

zero
Fact 5.7.18, 178
diagonal dominance
rank Fact 4.10.15, 144
diagonal dominance theorem
nonsingular matrix Fact 4.10.14, 144
diagonal entries
definition, 16
similar matrices Fact 5.7.7, 176
unitarily similar matrices Fact 5.7.6, 176
diagonal entry
Hermitian matrix
Corollary 8.4.7, 249
Fact 8.14.4, 291
nonnegativesemidefinite matrix
Fact 8.8.7, 272
diagonal matrix
definition
Definition 3.1.3, 79
Hermitian matrix Corollary 5.4.5, 164
Kronecker product Fact 7.4.2, 231
unitary matrix Theorem 5.6.3, 174
diagonalizable
eigenvector Fact 5.11.3, 189
factorization Fact 5.13.25, 203
diagonalizable matrix
adjugate
Fact 5.11.2, 189
cogredient diagonalization

Fact 8.11.3, 281
Fact 8.11.4, 281
commuting matrices
Fact 5.8.8, 179
complex conjugate
transpose
Fact 5.11.2, 189
example
Example 5.5.22, 171
idempotent matrix
Fact 5.11.11, 190
involutory matrix
Fact 5.11.13, 190
transpose
Fact 5.11.2, 189
diagonalizable over \mathbb{C} definition
Definition 5.5.10, 167
diagonalizable over \mathbb{R}
cyclic matrix
Fact 5.11.6, 189
definition
Definition 5.5.10, 167
factorization
Proposition 5.5.18, 170
similar matrices
Proposition 5.5.18, 170
simple matrix
Fact 5.11.6, 189
diagonalizable over \mathbb{R} matrix
asymptotically stable matrix
Fact 11.13.8, 412
diagonally dominant matrix
nonsingular matrix Fact 4.10.14, 144
diagonally located block
definition, 16
difference equation
golden mean
Fact 4.11.2, 147
nonnegative matrix

Fact 4.11.2, 147
difference of logarithms
relative entropy
Fact 8.12.19, 285
differentiable function
continuous function Proposition 10.4.4, 360 definition
Definition 10.4.3, 360

dimension

product of matrices
Fact 2.10.8, 49
rank inequality
Fact 2.10.10, 49
solid set
Fact 10.7.14, 367
subspace
Fact 2.9.13, 48
variational cone
Fact 10.7.18, 367
dimension of a subspace
definition, 25
dimension of an arbitrary set
definition, 26
dimension theorem
subspace dimension Theorem 2.3.1, 26
discrete Fourier analysis
circulant matrix
Fact 5.12.7, 197
discrete-time
asymptotic stability
eigenvalue
Proposition 11.8.2, 395
linear dynamical
system
Proposition 11.8.2, 395
matrix exponential
Proposition 11.8.2, 395
discrete-time asymptotically stable matrix
2×2 matrix Fact 11.15.2, 419
asymptotically stable matrix Fact 11.15.9, 421
Cayley transform Fact 11.15.9, 421
definition
Definition 11.8.1, 395
discrete-time asymptotically stable polynomial Proposition 11.8.4, 396
dissipative matrix Fact 11.15.5, 420
Kronecker product
Fact 11.15.6, 420
Fact 11.15.7, 420
matrix exponential Fact 11.15.8, 420
matrix limit Fact 11.15.13, 421
matrix power Fact 11.15.3, 419
normal matrix Fact 11.15.5, 420 partitioned matrix Fact 11.15.10, 421
positive-definite matrix
Fact 11.15.10, 421
Fact 11.15.17, 422
discrete-time asymptotically stable polynomial definition
Definition 11.8.3, 396
discrete-time asymptotically stable matrix Proposition 11.8.4, 396
polynomial
coefficients
Fact 11.15.1, 419
discrete-time dynamics
matrix power
Fact 11.15.4, 419
discrete-time Lyapunov equation
discrete-time asymptotically stable matrix Fact 11.15.17, 422
discrete-time Lyapunov stability
eigenvalue
Proposition 11.8.2, 395
linear dynamical system
Proposition 11.8.2, 395
matrix exponential
Proposition 11.8.2, 395
discrete-time Lyapunov stable polynomial
definition
Definition 11.8.3, 396
discrete-time Lyapunov-stable matrix
definition
Definition 11.8.1, 395
discrete-time
Lyapunov-stable polynomial
Proposition 11.8.4, 396
group generalized inverse
Fact 11.15.12, 421
Kronecker product
Fact 11.15.6, 420
Fact 11.15.7, 420
matrix exponential Fact 11.15.8, 420
matrix limit
Fact 11.15.12, 421
nonnegative-
semidefinite
matrix
Fact 11.15.17, 422
semidissipative
matrix
Fact 11.15.5, 420
unitary matrix
Fact 11.15.14, 421
discrete-time
Lyapunov-stable polynomial
discrete-time
Lyapunov-stable matrix
Proposition 11.8.4, 396
discrete-time
Lyapunov-stable
stable matrix
matrix power
Fact 11.15.16, 422
normal matrix
Fact 11.15.5, 420
discrete-time semistability
eigenvalue
Proposition 11.8.2, 395
linear dynamical system
Proposition 11.8.2, 395
matrix exponential
Proposition 11.8.2, 395
discrete-time
semistable matrix
convergent sequence
Fact 11.15.15, 421
definition
Definition 11.8.1, 395
discrete-time
semistable
polynomial
Proposition 11.8.4, 396
group generalized inverse
Fact 11.15.11, 421
idempotent matrix Fact 11.15.16, 422
Kronecker product
Fact 11.15.6, 420
Fact 11.15.7, 420
limit
Fact 11.15.16, 422
matrix exponential
Fact 11.15.8, 420
Fact 11.15.15, 421
matrix limit
Fact 11.15.11, 421
discrete-time
semistable
polynomial
definition
Definition 11.8.3, 396
discrete-time
semistable matrix
Proposition 11.8.4, 396
discrete-time time-varying system
state convergence
Fact 11.15.18, 422

discriminant

compound matrix
Fact 7.4.32, 234
disjoint
definition, 2
dissipative matrix
asymptotically stable matrix
Fact 11.14.19, 415
Fact 11.14.32, 418
definition
Definition 3.1.1, 77
determinant
Fact 8.13.1, 285
Fact 8.13.5, 286
Fact 8.13.17, 288
discrete-time asymptotically stable matrix
Fact 11.15.5, 420
Frobenius norm
Fact 11.12.2, 408
matrix exponential
Fact 11.12.2, 408
nonsingular matrix Fact 3.12.4, 106
normal matrix
Fact 11.14.32, 418
positive-definite matrix
Fact 11.14.19, 415
range-Hermitian matrix
Fact 3.3.5, 86
semidissipative matrix
Fact 8.13.17, 288
spectrum
Fact 8.13.17, 288
unitary matrix
Fact 8.13.4, 286
distance to singularity
nonsingular matrix
Fact 9.12.3, 349
distinct eigenvalues eigenvector
Proposition 4.5.3, 125
distinct roots
Bezout matrix
Fact 4.8.8, 135
distributive identities, 18
divides
definition, 113
division of matrix polynomials
quotient and remainder Lemma 4.2.1, 114

Dixmier
projector
Fact 5.8.5, 179
Djokovic
rank of a Kronecker product
Fact 8.15.9, 296
domain
definition, 4
Dormido
asymptotically stable polynomial
Fact 11.13.6, 411
doubly stochastic matrix
strong majorization
Fact 3.12.18, 109
Douglas-FillmoreWilliams lemma matrix factorization Theorem 8.5.2, 253

Drazin

real eigenvalues Fact 5.11.8, 189

Drazin generalized inverse
commuting matrices
Fact 6.5.6, 223
complex conjugate transpose
Fact 6.5.3, 223
definition, 211
idempotent matrix
Fact 6.5.1, 223
integral
Fact 11.10.10, 402
Fact 11.10.12, 402
matrix exponential
Fact 11.10.10, 402
Fact 11.10.12, 402
matrix power
Fact 6.5.4, 223
nonnegative-
semidefinite matrix
Fact 8.9.1, 275
partitioned matrix Fact 6.5.5, 223
tripotent matrix
Fact 6.5.2, 223
uniqueness
Theorem 6.2.1, 212
dual cone
convex conical hull

Fact 2.9.1, 46 definition, 26

dual norm

adjoint norm
Fact 9.8.5, 328
definition
Fact 9.7.8, 326
induced norm
Fact 9.7.8, 326
quadratic form
Fact 9.8.25, 331

E

eigenvalue

adjugate
Fact 4.10.3, 141
asymptotic stability
Proposition 11.6.2, 386
bound
Fact 5.9.21, 184
bounds
Fact 4.10.12, 144
convex function
Corollary 8.5.15, 263
Fact 8.14.10, 293
definition, 120
determinant
Fact 5.9.13, 183
discrete-time
asymptotic stability
Proposition 11.8.2, 395
discrete-time
Lyapunov stability
Proposition 11.8.2, 395
discrete-time
semistability
Proposition 11.8.2, 395
group-invertible
matrix
Fact 5.11.15, 190
Hermitian matrix
Corollary 8.4.2, 247
Corollary 8.4.6, 249
Corollary 8.4.7, 249
Fact 8.10.8, 278
Fact 8.14.4, 291

Fact 8.14.12, 293
Fact 8.14.13, 294
Fact 8.15.16, 298
Lemma 8.4.3, 248
Lemma 8.4.4, 248
Theorem 8.4.5, 249
Theorem 8.4.9, 250
Theorem 8.4.11, 251
Kronecker product
Fact 7.4.19, 232
Fact 7.4.22, 233
Fact 7.4.23, 233
Fact 7.4.24, 233
Proposition 7.1.10, 228
Kronecker sum
Fact 7.4.26, 233
Fact 7.4.27, 233
Proposition 7.2.3, 229
Lyapunov stability
Proposition 11.6.2, 386
majorization
Fact 8.14.3, 290
maximum singular value
Fact 9.11.6, 346
nonnegative-
semidefinite
matrix
Fact 8.9.8, 276
Fact 8.14.6, 292
Fact 8.14.7, 292
Fact 8.14.11, 293
Fact 8.15.11, 297
normal matrix
Fact 5.11.10, 190
partitioned matrix
Fact 5.10.5, 188
Fact 5.10.7, 188
Proposition 5.6.5, 175
positive-definite matrix
Fact 8.10.8, 278
quadratic form
Fact 8.10.8, 278
Lemma 8.4.3, 248
semistability
Proposition 11.6.2, 386
singular value

Fact 8.14.3, 290
Fact 9.11.17, 348
skew-Hermitian matrix
Fact 5.9.4, 181
spectral abscissa
Fact 5.9.28, 187
strong majorization
Corollary 8.5.15, 263
trace
Fact 5.9.6, 181
Fact 8.14.3, 290
Proposition 8.4.13, 251
weak log
majorization
Fact 8.14.7, 292
weak majorization
Fact 8.14.7, 292
Fact 8.14.10, 293
Fact 8.14.11, 293
eigenvalue bound
Bendixson's theorem
Fact 9.10.6, 343
Frobenius norm
Fact 9.10.7, 343
Hermitian matrix
Fact 9.10.7, 343
Hirsch's theorems
Fact 9.10.6, 343
Holder norm
Fact 9.10.6, 343
trace
Fact 5.9.26, 186
eigenvalue bounds
ovals of Cassini
Fact 4.10.13, 144
eigenvalue
characterization
minimum principle
Fact 8.14.13, 294
eigenvalue inequality
Hermitian matrix
Lemma 8.4.1, 247
Poincare separation
theorem
Fact 8.14.12, 293
eigenvalue of Hermitian part
singular value
Fact 8.14.2, 290
eigenvalue
perturbation
Frobenius norm
Fact 9.10.9, 344
Fact 9.10.10, 345
Fact 9.10.11, 345
maximum singular value
Fact 9.10.9, 344
unitarily invariant norm
Fact 9.10.9, 344
eigenvalues
subscript convention, 120
eigenvector
commuting matrices
Fact 5.11.17, 190
definition, 125
diagonalizable
Fact 5.11.3, 189
distinct eigenvalues
Proposition 4.5.3, 125
Kronecker product
Fact 7.4.19, 232
Proposition 7.1.10, 228
Kronecker sum
Proposition 7.2.3, 229
linear system
solution
Fact 11.10.5, 401
normal matrix
Lemma 4.5.2, 125
Proposition 4.5.3, 125
similarity
transformation
Fact 5.11.3, 189
Fact 5.11.4, 189
either
definition, 1
element
definition, 2
elementary divisor companion matrix Theorem 5.2.9, 156
factorization Fact 5.13.34, 204 hypercompanion matrix
Lemma 5.3.1, 157
elementary divisors definition, 156
elementary matrix definition
Definition 3.1.2, 78
inverse matrix
Fact 3.4.14, 88
nonsingular matrix Fact 5.13.9, 200 properties and matrix types Fact 3.4.13, 88
spectrum Proposition 5.5.25, 172
elementary matrix polynomial
definition, 117
elementary multi-companion form
definition, 156
elementary projector definition
Definition 3.1.1, 77
elementary reflector
Fact 3.5.6, 93
Fact 3.7.2, 101
hyperplane
Fact 3.5.8, 94
maximum singular value
Fact 5.9.25, 186
reflector
Fact 5.13.10, 200
spectrum
Proposition 5.5.25, 172
trace
Fact 3.5.7, 94
elementary reflector
definition
Definition 3.1.1, 77
elementary projector
Fact 3.5.6, 93
Fact 3.7.2, 101
hyperplane
Fact 3.7.4, 101
null space
Fact 3.5.6, 93
range
Fact 3.5.6, 93
rank
Fact 3.5.6, 93
reflection theorem
Fact 3.7.3, 101
reflector
Fact 5.13.11, 200
spectrum
Proposition 5.5.25, 172
trace
Fact 3.5.7, 94
unitary matrix
Fact 5.13.12, 200
ellipsoid
positive-definite
matrix
Fact 3.4.36, 93
empty matrix
definition, 19
empty set
definition, 2
entry
definition, 15
EP matrix, see
range-Hermitian matrix
equi-induced norm
definition
Definition 9.4.1, 314
normalized norm
Theorem 9.4.2, 314
spectral radius
Corollary 9.4.5, 315
submultiplicative norm
Corollary 9.4.4, 315
Fact 9.9.6, 335
equi-induced self-adjoint norm
maximum singular value
Fact 9.11.5, 346
equi-induced unitarily
invariant norm
maximum singular value
Fact 9.11.4, 346
equilibrium
definition, 384
equivalence
equivalence relation
Fact 5.8.2, 178
equivalence class
equivalent matrices
Fact 5.8.1, 178
induced by equivalence relation
Theorem 1.2.2, 3
similar matrices
Fact 5.8.1, 178
unitarily similar matrices
Fact 5.8.1, 178
equivalence class induced by
definition, 3
equivalence relation
congruence
Fact 5.8.2, 178
definition
Definition 1.2.1, 3
equivalence
Fact 5.8.2, 178
equivalence class
Theorem 1.2.2, 3
group
Proposition 3.2.8, 85
left equivalence Fact 5.8.2, 178
right equivalence Fact 5.8.2, 178 similar matrices Fact 5.8.2, 178
unitarily similar matrices Fact 5.8.2, 178
equivalent matrices
equivalence class
Fact 5.8.1, 178
equivalent norms
equivalence
Theorem 9.1.8, 307
norms
Fact 9.8.10, 329
ergodic theorem
unitary matrix limit
Fact 6.3.17, 215
essentially nonnegative matrix
definition
Fact 11.14.7, 413
Euclidean norm
Cauchy-Schwarz inequality Corollary 9.1.7, 306
definition, 305
inequality
Fact 9.7.4, 325
Fact 9.7.5, 325
Kronecker product
Fact 9.7.13, 327
outer-product
matrix
Fact 9.7.13, 327
Euclidean-norm
inequality
Fact 9.7.6, 326
even polynomial
definition, 112
exactly proper rational function
definition
Definition 4.7.1, 129
exactly proper rational transfer function
definition
Definition 4.7.2, 129
existence of transformation
Hermitian matrix Fact 3.4.33, 92
orthogonal matrix Fact 3.6.17, 99
outer-product matrix
Fact 2.11.12, 54
skew-Hermitian matrix Fact 3.4.35, 93
existential statement
definition, 2
exponential function convex function Fact 1.4.3, 6

F

factorization

asymptotically stable matrix
Fact 11.14.20, 415
Bezout matrix
Fact 5.13.22, 202
commutator
Fact 5.13.30, 204
complex conjugate transpose
Fact 5.13.21, 202
determinant
Fact 5.13.4, 199
Fact 5.13.31, 204
diagonalizable
Fact 5.13.25, 203
diagonalizable over \mathbb{R}

Proposition 5.5.18, 170
elementary divisor Fact 5.13.34, 204
full rank
Fact 5.13.37, 205
generalized inverse
Fact 6.4.24, 221
Hermitian matrices
Fact 5.13.23, 203
Fact 5.13.24, 203
Hermitian matrix
Fact 3.4.8, 87
Fact 5.13.14, 201
Fact 8.11.2, 281
Fact 8.11.8, 281
idempotent matrix
Fact 5.13.29, 204
involutory matrix
Fact 5.13.15, 201
Fact 5.13.27, 204
Fact 5.13.28, 204
Jordan form
Fact 5.13.2, 199
lower triangular matrix
Fact 5.13.7, 199
nilpotent matrix Fact 5.13.26, 203
nonnegativesemidefinite matrix
Fact 5.13.20, 202
Fact 5.13.38, 205
Fact 5.13.39, 205
Fact 5.13.40, 205
Fact 8.7.32, 269
Fact 8.7.33, 269
nonsingular matrix
Fact 5.13.9, 200
Fact 5.13.19, 202
Fact 5.13.33, 204
orthogonal matrix
Fact 5.13.13, 201
Fact 5.13.27, 204
Fact 5.13.32, 204
partitioned matrix, 242
Fact 2.12.4, 55

Fact 2.12.13, 57
Fact 2.13.29, 67
Fact 2.13.30, 68
Fact 2.13.31, 68
Fact 6.4.24, 221
Proposition 2.8.3, 43
Proposition 2.8.4, 43
positive-definite matrix
Fact 5.13.41, 205
Fact 5.13.42, 205
projector
Fact 5.13.10, 200
Fact 5.13.14, 201
Fact 6.3.15, 215
range
Theorem 8.5.2, 253
range-Hermitian matrix
Fact 5.13.8, 200
reflector
Fact 5.13.11, 200
rotation-dilation
Fact 2.15.2, 72
similar matrices
Fact 5.13.3, 199
skew-symmetric
matrix
Fact 5.13.34, 204
Fact 5.13.35, 204
symmetric matrices
Fact 5.13.22, 202
symmetric matrix
Corollary 5.3.9, 162
unitary matrix
Fact 5.13.5, 199
Fact 5.13.12, 200
Fact 5.13.41, 205
upper triangular
matrix
Fact 5.13.5, 199
Fact 5.13.7, 199

Fan

convex function
Proposition 8.5.13, 302
Farkas' theorem
linear system solution Fact 4.11.4, 148
fast Fourier transform circulant matrix Fact 5.12.7, 197

Fibonacci numbers nonnegative matrix Fact 4.11.2, 147

field of values

spectrum of convex hull
Fact 4.10.17, 145
Finsler's Iemma
positive-definite linear combination Fact 8.10.12, 279

Fischer's inequality positive-definite matrix determinant Fact 8.13.22, 289

Fourier matrix circulant matrix Fact 5.12.7, 197
Vandermonde matrix Fact 5.12.7, 197

Frame
finite sequence for inverse matrix Fact 2.13.36, 69

Franck
maximum singular value lower bound on distance to singularity Fact 9.12.2, 348

Frechet derivative
definition
Definition 10.4.3, 360
uniqueness
Proposition 10.4.2, 360
Frobenius
similar to transpose

Corollary 5.3.8, 161
singular value
Corollary 9.6.7, 324
symmetric matrix
factorization
Fact 5.13.22, 202
Frobenius canonical form, see multi-companion form

Frobenius norm
adjugate
Fact 9.8.11, 329
definition, 308
determinant
Fact 9.8.30, 333
dissipative matrix
Fact 11.12.2, 408
eigenvalue bound
Fact 9.10.7, 343
eigenvalue
perturbation
Fact 9.10.9, 344
Fact 9.10.10, 345
Fact 9.10.11, 345
Hermitian matrix Fact 9.9.23, 339
inequality
Fact 9.9.19, 338
Fact 9.9.20, 338
Kronecker product
Fact 9.12.18, 352
matrix exponential
Fact 11.12.2, 408
maximum singular value bound
Fact 9.11.13, 347
nonnegative-
semidefinite
matrix
Fact 9.8.30, 333
Fact 9.9.12, 337
Fact 9.9.13, 337
Fact 9.9.20, 338
Fact 9.9.9, 336
normal matrix
Fact 9.10.10, 345
outer-product matrix
Fact 9.7.12, 327
polar decomposition
Fact 9.9.24, 339
Schatten norm, 309
spectral radius
Fact 5.9.27, 186
trace
Fact 9.10.2, 342
Fact 9.10.5, 343
trace norm
Fact 9.9.11, 336
unitary matrix
Fact 9.9.24, 339
Frobenius' inequality
rank of partitioned
matrix
Fact 2.10.28, 52
full column rank
definition, 31
equivalent properties
Theorem 2.6.1, 34
nonsingular
equivalence
Corollary 2.6.4, 36
full rank
definition, 31
full row rank
definition, 31
equivalent properties
Theorem 2.6.1, 34
nonsingular
equivalence
Corollary 2.6.4, 36
function
definition, 4
function composition matrix multiplication Theorem 2.1.2, 17
fundamental theorem of algebra
definition, 112
fundamental theorem of linear algebra
rank and defect Corollary 2.5.5, 33

Furuta's inequality
nonnegative-
semidefinite matrix inequality
Proposition 8.5.4, 254

G

generalized inverse
basic properties
Proposition 6.1.6, 209
centrohermitian matrix
Fact 6.3.14, 215
characteristic polynomial
Fact 6.3.4, 214
complex conjugate transpose
Fact 6.3.2, 213
Fact 6.3.11, 214
convergent sequence
Fact 6.3.18, 215
definition, 207
determinant
Fact 6.4.25, 221
Fact 6.4.26, 221
factorization Fact 6.4.24, 221
Hermitian matrix Fact 6.3.5, 214
Fact 6.4.16, 219
idempotent matrix
Fact 6.3.8, 214
Fact 6.3.9, 214
Fact 6.3.10, 214
Fact 6.4.10, 217
identity
Fact 6.3.16, 215
inertia
Fact 6.3.5, 214
integral
Fact 11.10.8, 401

Kronecker product
Fact 7.4.31, 234
least squares solution
Fact 6.4.31, 222
Fact 6.4.32, 222
Fact 6.4.33, 222
left inverse
Corollary 6.1.4, 208
Fact 6.4.22, 220
Fact 6.4.23, 221
left-invertible matrix
Proposition 6.1.5, 209
linear matrix
equation
Fact 6.4.21, 220
linear system
Proposition 6.1.7, 210
matrix exponential
Fact 11.10.8, 401
matrix inversion lemma
Fact 6.4.17, 220
matrix limit
Fact 6.3.3, 214
matrix product
Fact 6.4.1, 216
Fact 6.4.2, 216
Fact 6.4.3, 216
Fact 6.4.4, 216
Fact 6.4.5, 216
Fact 6.4.7, 216
Fact 6.4.8, 216
matrix sum
Fact 6.4.18, 220
Fact 6.4.19, 220
Fact 6.4.20, 220
maximum singular value
Fact 9.12.4, 349
Fact 9.12.16, 352
Newton-Raphson
algorithm
Fact 6.3.18, 215
nonnegative-
semidefinite
matrix
Fact 6.4.17, 220
Fact 8.9.1, 275

Fact 8.9.2, 275
Fact 8.9.3, 275
Fact 8.9.4, 275
Fact 8.9.5, 276
Fact 8.9.6, 276
Fact 8.9.7, 276
Fact 8.9.8, 276
Fact 8.9.9, 276
Fact 8.9.11, 277
Proposition 6.1.6, 209
normal matrix
Proposition 6.1.6, 209
null space
Proposition 6.1.6, 209
outer-product
matrix
Fact 6.3.1, 213
partitioned matrix
Fact 6.3.13, 215
Fact 6.4.13, 218
Fact 6.4.14, 218
Fact 6.4.15, 219
Fact 8.9.11, 277
positive-definite
matrix
Proposition 6.1.6, 209
projector
Fact 6.3.6, 214
Fact 6.3.15, 215
Fact 6.4.9, 217
Fact 6.4.10, 217
Fact 6.4.27, 221
range
Fact 6.4.28, 221
Fact 6.4.29, 221
Proposition 6.1.6, 209
range-Hermitian matrix
Fact 6.4.6, 216
Proposition 6.1.6, 209
rank
Fact 6.4.11, 217
Fact 6.4.12, 218
Fact 6.4.30, 222
right inverse
Corollary 6.1.4, 208
right-invertible matrix

Proposition 6.1.5, 209
singular value
Fact 6.3.12, 214
tripotent matrix
Fact 6.3.7, 214
uniqueness
Theorem 6.1.1, 208
unitary matrix
Fact 6.3.17, 215
geometric mean
positive-definite matrix product
Fact 8.8.20, 274
geometric multiplicity
algebraic multiplicity Proposition 5.5.3, 166
block-diagonal matrix
Proposition 5.5.19, 170
definition
Definition 4.5.1, 125
similar matrices
Proposition 5.5.16, 169
Gershgorin circle theorem
eigenvalue bounds
Fact 4.10.12, 144
Givens rotation
orthogonal matrix Fact 5.13.13, 201
global asymptotic stability
nonlinear system Theorem 11.5.2, 384
globally asymptotically stable equilibrium
definition
Definition 11.5.1, 384
Gohberg-Semencul formulas
Bezout matrix
Fact 4.8.6, 132
golden mean difference equation

Fact 4.11.2, 147
Golden-Thompson inequality matrix exponential Fact 11.12.7, 409

Gordan's theorem
positive vector
Fact 4.11.5, 148

gradient

definition, 361
Gram matrix
nonnegative-
semidefinite
matrix
Fact 8.7.32, 269
Gram-Schmidt orthonormalization
upper triangular matrix factorization Fact 5.13.6, 199
greatest common divisor
definition, 113
Greville
generalized inverse of a matrix product
Fact 6.4.4, 216
generalized inverse of a partitioned matrix
Fact 6.4.13, 218

group

definition
Definition 3.2.6, 84
equivalence relation Proposition 3.2.8, 85
matrix exponential
Proposition 11.4.6, 382
real numbers
Fact 3.10.1, 104
transpose
Fact 3.10.4, 104
unipotent matrix Fact 3.10.3, 104
upper triangular matrix
Fact 3.10.3, 104
group generalized inverse
definition, 213
discrete-time
Lyapunov-stable matrix
Fact 11.15.12, 421
discrete-time semistable matrix
Fact 11.15.11, 421
idempotent
Proposition 6.2.2, 213
integral
Fact 11.10.11, 402
Fact 11.10.12, 402
matrix exponential
Fact 11.10.11, 402
Fact 11.10.12, 402
Fact 11.14.4, 412
Fact 11.14.5, 412
matrix limit
Fact 6.5.9, 224
null space
Proposition 6.2.2, 213
range
Proposition 6.2.2, 213
range-Hermitian
matrix
Fact 6.5.8, 223
trace
Fact 6.5.7, 223
group-invertible matrix definition
Definition 3.1.1, 77
eigenvalue
Fact 5.11.15, 190
equivalent characterizations
Fact 3.3.3, 85
idempotent matrix
Proposition 3.1.5, 81
Proposition 5.5.9, 167
Proposition 6.2.2, 213
index

Corollary 5.5.7, 167
Corollary 5.5.15, 169
Kronecker product
Fact 7.4.13, 232
Lyapunov-stable matrix
Fact 11.14.2, 412
matrix exponential
Fact 11.14.13, 414
nonnegative-
semidefinite
matrix
Fact 8.8.5, 272
positive-definite
matrix
Fact 8.8.5, 272
range-Hermitian matrix
Fact 3.3.4, 86
Proposition 3.1.5, 81
semistable matrix
Fact 11.14.3, 412
similar matrices
Fact 5.7.12, 176
spectrum
Proposition 5.5.25, 172
square root
Fact 5.13.17, 202
stable subspace
Proposition 11.6.8, 389
tripotent matrix
Proposition 3.1.5, 81

groups

classical
Proposition 3.2.7, 84

H

Hadamard product, see Schur product

Hadamard's inequality nonnegativesemidefinite matrix determinant
Fact 8.14.5, 291
Hahn-Banach theorem
inner product
inequality
Fact 10.7.19, 367

half-vectorization

operator, 238
Hamiltonian matrix
Cayley transform
Fact 3.9.8, 104
characteristic
polynomial
Fact 4.9.14, 140
Fact 4.9.16, 140
definition
Definition 3.1.4, 81
identity
Fact 3.9.4, 103
inverse matrix
Fact 3.9.3, 103
matrix sum
Fact 3.9.3, 103
partitioned matrix
Fact 3.9.6, 103
Fact 4.9.15, 140
skew-involutory
matrix
Fact 3.9.1, 103
skew-symmetric
matrix
Fact 3.9.1, 103
Fact 3.9.6, 103
Fact 3.9.7, 103
spectrum
Proposition 5.5.25, 172
symplectic matrix
Fact 3.9.8, 104
symplectic similarity
Fact 3.9.5, 103

Hankel matrix

block-Hankel matrix
Fact 3.12.11, 107
Cauchy matrix
Fact 3.12.13, 108
definition
Definition 3.1.3, 79
Hilbert matrix
Fact 3.12.12, 107
rational function Fact 4.8.7, 134 symmetric matrix Fact 3.12.10, 107
Toeplitz matrix Fact 3.12.9, 107

Hardy-Littlewood-Polya theorem

doubly stochastic matrix
Fact 3.12.18, 109
Haynsworth
nonnegativesemidefinite matrix Fact 5.11.8, 189
Schur complement of a partitioned matrix Fact 6.4.35, 222

Hermitian matrices

factorization
Fact 5.13.23, 203
Fact 5.13.24, 203
Hermitian matrix additive decomposition Fact 3.4.23, 90
adjugate Fact 3.4.6, 87
cogredient transformation Fact 8.11.6, 281
commutator Fact 3.4.26, 91
Fact 3.4.28, 91
commuting matrices Fact 5.11.18, 190
congruent matrices Corollary 5.4.7, 165
convergent sequence Fact 11.11.7, 404 Fact 11.11.8, 404
definition
Definition 3.1.1, 77
determinant

Corollary 8.4.10, 250
Fact 3.4.15, 89
diagonal entry
Corollary 8.4.7, 249
Fact 8.14.4, 291
diagonal matrix
Corollary 5.4.5, 164
eigenvalue
Corollary 8.4.2, 247
Corollary 8.4.6, 249
Corollary 8.4.7, 249
Fact 8.10.8, 278
Fact 8.14.4, 291
Fact 8.14.12, 293
Fact 8.14.13, 294
Fact 8.15.16, 298
Lemma 8.4.3, 248
Lemma 8.4.4, 248
Theorem 8.4.5, 249
Theorem 8.4.9, 250
Theorem 8.4.11, 251
eigenvalue bound Fact 9.10.7, 343
eigenvalue inequality
Lemma 8.4.1, 247
existence of transformation
Fact 3.4.33, 92
factorization
Fact 3.4.8, 87
Fact 5.13.14, 201
Fact 8.11.2, 281
Fact 8.11.8, 281
Frobenius norm
Fact 9.9.23, 339
generalized inverse
Fact 6.3.5, 214
Fact 6.4.16, 219
inequality
Fact 8.7.7, 265
Fact 8.7.8, 265
Fact 8.7.11, 266
Fact 8.13.18, 288
Fact 8.13.19, 288
Fact 8.13.20, 289
inertia
Fact 5.7.9, 176
Proposition 5.4.6, 164

Kronecker product
Fact 7.4.13, 232
Fact 8.15.16, 298
Kronecker sum
Fact 7.4.15, 232
matrix exponential
Fact 11.11.7, 404
Fact 11.11.8, 404
Fact 11.11.9, 404
Fact 11.11.20, 406
Fact 11.11.21, 406
Fact 11.11.22, 407
Fact 11.11.24, 407
Fact 11.12.8, 410
Proposition 11.1.4, 373
maximum singular value
Fact 9.9.23, 339
nonnegative-
semidefinite
matrix
Fact 8.7.4, 265
Fact 8.11.8, 281
normal matrix
Fact 3.6.8, 98
Proposition 3.1.5, 81
outer-product
matrix
Fact 3.4.12, 88
Fact 3.4.33, 92
partitioned matrix
Fact 3.4.21, 89
positive-definite
matrix
Fact 8.8.6, 272
Fact 8.11.8, 281
product
Example 5.5.23, 171
projector
Fact 3.5.28, 97
Fact 5.13.14, 201
properties of $<$ and \leq
Proposition 8.1.2, 240
quadratic form
Fact 3.4.4, 86
Fact 8.10.12, 279
quadratic matrix equation
Fact 5.9.2, 180
range
Lemma 8.5.1, 253
rank
Fact 3.4.16, 89
reflector
Fact 3.7.1, 101
Schur decomposition Corollary 5.4.5, 164
Schur product
Fact 8.15.16, 298
simultaneous diagonalization Fact 8.11.6, 281
skew-Hermitian matrix
Fact 3.4.5, 86
Fact 3.4.22, 89
skew-symmetric matrix
Fact 3.4.5, 86
spectral abscissa Fact 5.9.3, 181
spectral radius
Fact 5.9.3, 181
spectrum
Lemma 8.4.8, 249
Proposition 5.5.25, 172
strong majorization
Fact 8.14.4, 291
submatrix
Corollary 8.4.6, 249
Lemma 8.4.4, 248
Theorem 8.4.5, 249
symmetric matrix
Fact 3.4.5, 86
trace
Corollary 8.4.10, 250
Fact 3.4.16, 89
Lemma 8.4.12, 251
Proposition 8.4.13, 251
unitarily invariant norm
Fact 9.9.7, 335
Fact 11.12.8, 410
unitarily similar matrices
Corollary 5.4.5, 164
unitary matrix
Fact 3.6.23, 100
Fact 11.11.24, 407
upper bound Fact 8.8.15, 273

Hermitian matrix eigenvalue
Cauchy interlacing theorem
Lemma 8.4.4, 248
inclusion principle Theorem 8.4.5, 249

Hermitian matrix eigenvalues
monotonicity
theorem
Theorem 8.4.9, 250
Weyl's inequality Theorem 8.4.9, 250

Hermitian matrix product
trace
Fact 5.10.1, 187
Fact 8.12.1, 282
Fact 8.12.6, 282
Hermitian perturbation
Lidskii-Mirsky-
Wielandt
theorem
Fact 9.10.9, 344
Hessenberg matrix
lower or upper
Definition 3.1.3, 79
Hessian
definition, 361
Hestenes
rank identity
Fact 2.10.6, 48
Hilbert matrix
Hankel matrix
Fact 3.12.12, 107

Hirsch's theorem
eigenvalue bound
Fact 5.9.21, 184

Hirsch's theorems

eigenvalue bound Fact 9.10.6, 343

Hoffman

eigenvalue perturbation Fact 9.10.10, 345

Hoffman-Wielandt theorem
eigenvalue perturbation Fact 9.10.10, 345

Holder matrix norm

Schatten norm
Proposition 9.2.5, 310
trace
Fact 9.10.3, 342

Holder norm

compatible norms
Proposition 9.3.5, 311
complex conjugate
Fact 9.7.19, 327
definition, 304
eigenvalue bound
Fact 9.10.6, 343
Holder-induced norm

Fact 9.7.14, 327
Fact 9.8.7, 328
Fact 9.8.10, 329
Fact 9.8.20, 331
Proposition 9.4.8, 317
inequality
Fact 9.7.6, 326
Fact 9.7.15, 327
Proposition 9.1.5, 305
Proposition 9.1.6, 306
Kronecker product
Fact 9.9.29, 340
matrix
definition, 307

Minkowski's
inequality
Lemma 9.1.3, 304
monotonicity
Proposition 9.1.5, 305
power sum
inequality
Fact 1.4.13, 9
submultiplicativity
Fact 9.9.14, 337
vector norm
Proposition 9.1.4, 305
Holder's inequality
nonnegativesemidefinite matrix trace
Fact 8.12.4, 282
scalar case
Fact 1.4.16, 9
vector inequality Proposition 9.1.6, 306

Holder-induced lower bound
definition, 320
Holder-induced norm
absolute value
Fact 9.8.17, 331
adjoint norm
Fact 9.8.8, 328
column norm
Fact 9.8.13, 330
Fact 9.8.15, 330
Fact 9.8.16, 330
complex conjugate
Fact 9.8.18, 331
complex conjugate
transpose
Fact 9.8.19, 331
definition, 315
formulas
Proposition 9.4.7, 315
Holder norm
Fact 9.7.14, 327
Fact 9.8.7, 328
Fact 9.8.10, 329
Fact 9.8.20, 331

Proposition 9.4.8, 317
inequality
Fact 9.8.13, 330
Fact 9.8.14, 330
maximum singular value
Fact 9.8.13, 330
monotonicity
Proposition 9.4.6, 315
partitioned matrix
Fact 9.8.9, 328
quadratic form
Fact 9.8.26, 332
Fact 9.8.27, 332
row norm
Fact 9.8.13, 330
Fact 9.8.15, 330
Fact 9.8.16, 330
Holder-norm
inequality
Fact 9.7.7, 326
Hopf's theorem eigenvalues of a positive matrix Fact 4.11.8, 149

Householder matrix, see elementary reflector

Householder reflection, see elementary reflector

Hua's inequalities
determinant
inequality
Fact 8.13.20, 289
Hurwitz matrix, see asymptotically stable matrix

Hurwitz polynomial, see asymptotically stable polynomial
asymptotically stable polynomial Fact 11.14.21, 415
hypercompanion form
existence
Theorem 5.3.2, 157
Theorem 5.3.3, 157
hypercompanion matrix
companion matrix
Corollary 5.3.4, 158
Lemma 5.3.1, 157
definition, 156
elementary divisor
Lemma 5.3.1, 157
example
Example 5.3.6, 160
Example 5.3.7, 161
hyperplane
definition, 26
elementary projector Fact 3.5.8, 94
elementary reflector Fact 3.7.4, 101

I

idempotent
group generalized inverse
Proposition 6.2.2, 213
idempotent matrix
commutator
Fact 3.5.17, 95
commuting matrices
Fact 3.5.22, 96
Fact 3.5.23, 96
complementary
idempotent matrix
Fact 3.5.25, 96
complementary
subspaces
Fact 3.5.15, 95
Proposition 5.5.8, 167
complex conjugate
Fact 3.5.14, 95
complex conjugate
transpose
Fact 3.5.14, 95
definition
Definition 3.1.1, 77
diagonalizable matrix
Fact 5.11.11, 190
discrete-time
semistable matrix
Fact 11.15.16, 422
Drazin generalized inverse
Fact 6.5.1, 223
factorization
Fact 5.13.29, 204
generalized inverse
Fact 6.3.8, 214
Fact 6.3.9, 214
Fact 6.3.10, 214
Fact 6.4.10, 217
group-invertible matrix
Proposition 3.1.5, 81
Proposition 5.5.9, 167
Proposition 6.2.2, 213
identities
Fact 3.5.19, 96
identity perturbation
Fact 3.5.26, 96
involutory matrix
Fact 3.5.27, 97
left inverse
Fact 3.5.20, 96
matrix exponential
Fact 11.9.1, 397
matrix product
Fact 3.5.21, 96
nonsingular
Fact 3.5.24, 96
null space
Fact 3.5.12, 95
outer-product
matrix
Fact 3.4.12, 88
Fact 3.5.13, 95
partitioned matrix
Fact 3.5.18, 95
projector
Fact 3.5.28, 97
Fact 6.4.10, 217
quadratic form
Fact 3.5.11, 95
range
Fact 3.5.12, 95
rank
Fact 3.5.13, 95
Fact 3.5.16, 95
right inverse
Fact 3.5.20, 96
semisimple matrix
Fact 5.11.14, 190
spectrum
Fact 5.11.11, 190
stable subspace
Proposition 11.6.8, 389
submultiplicative norm
Fact 9.8.3, 328
transpose
Fact 3.5.14, 95
tripotent matrix
Fact 3.5.23, 96
unstable subspace
Proposition 11.6.8, 389
idempotent matrix onto a subspace along another subspace
definition, 167

identity

cube root
Fact 2.11.2, 53
identity function
definition, 4
identity matrix
definition, 19
symplectic matrix Fact 3.9.1, 103
identity perturbation
inverse matrix
Fact 4.8.11, 136
spectrum
Fact 4.10.9, 143
Fact 4.10.10, 143
identity theorem
matrix function evaluation
Theorem 10.5.2, 363

image

definition, 4
imaginary vector definition, 21
implication
definition, 1
improper rational function
definition
Definition 4.7.1, 129
improper rational transfer function
definition
Definition 4.7.2, 129
inclusion principle
Hermitian matrix eigenvalue Theorem 8.4.5, 249
increasing
definition Definition 8.5.9, 256
increasing function log majorization Fact 8.16.4, 301
logarithm
Proposition 8.5.10, 256
matrix functions Proposition 8.5.10, 256
Schur complement Proposition 8.5.10, 256
weak majorization Fact 8.16.3, 300
increasing sequence
nonnegativesemidefinite matrix Proposition 8.5.3, 254
index complementary subspaces

Proposition 5.5.6, 167
group-invertible matrix
Corollary 5.5.7, 167
Corollary 5.5.15, 169
Kronecker product
Fact 7.4.25, 233
semisimple
eigenvalue
Proposition 5.5.14, 168
index of a matrix
definition
Definition 5.5.1, 165
range
Fact 5.11.1, 189
rank
Proposition 5.5.2, 166
index of an eigenvalue
algebraic multiplicity
Proposition 5.5.12, 168
index of eigenvalue definition
Definition 5.5.1, 165
Jordan block
Proposition 5.5.3, 166
minimal polynomial
Proposition 5.5.20, 171
rank
Proposition 5.5.2, 166
induced lower bound definition
Definition 9.5.1, 319
Proposition 9.5.2, 319
lower bound
Fact 9.8.34, 334
maximum singular value
Corollary 9.5.5, 321
minimum singular value
Corollary 9.5.5, 321
properties
Proposition 9.5.2, 319
Proposition 9.5.3, 320
singular value

Proposition 9.5.4, 321
supermultiplicativity Proposition 9.5.6, 321
induced norm
compatible norm Proposition 9.4.3, 314 definition
Definition 9.4.1, 314
dual norm
Fact 9.7.8, 326
norm
Theorem 9.4.2, 314
quadratic form
Fact 9.8.25, 331
spectral radius
Corollary 9.4.5, 315
induced norms
symmetry property
Fact 9.8.12, 329
inequality
Hermitian matrix
Fact 8.7.11, 266
nonnegative-
semidefinite
matrix
Fact 8.8.14, 273
unitarily invariant norm
Fact 9.9.16, 337
inertia
congruent matrices
Corollary 5.4.7, 165
Fact 5.7.11, 176
definition, 126
generalized inverse
Fact 6.3.5, 214
Hermitian matrix
Fact 5.7.9, 176
Proposition 5.4.6, 164
infinite matrix product
convergence
Fact 11.15.18, 422
infinity norm
definition, 305
Kronecker product

Fact 9.9.29, 340
submultiplicative norm
Fact 9.9.1, 335
Fact 9.9.2, 335
inner product
convex cone
Fact 10.7.20, 367
inequality
Fact 3.4.37, 93
open ball
Fact 9.7.10, 326
separation theorem
Fact 10.7.20, 367
Fact 10.7.21, 367
subspace
Fact 10.7.19, 367
inner product of complex matrices
definition, 23
inner product of complex vectors
definition, 21
inner product of real matrices
definition, 23
inner product of real vectors
definition, 21
inner-product minimization positive-definite matrix Fact 8.10.6, 278

integral

asymptotically stable matrix
Lemma 11.7.2, 392
averaged limit Fact 10.8.3, 368
determinant Fact 11.10.13, 402
Drazin generalized inverse

Fact 11.10.10, 402
Fact 11.10.12, 402
generalized inverse Fact 11.10.8, 401
group generalized inverse
Fact 11.10.11, 402
Fact 11.10.12, 402
inverse matrix
Fact 11.10.9, 401
matrix
definition, 373
matrix exponential
Fact 11.10.8, 401
Fact 11.10.9, 401
Fact 11.10.10, 402
Fact 11.10.11, 402
Fact 11.10.12, 402
Fact 11.10.13, 402
Fact 11.11.1, 403
Fact 11.14.4, 412
Fact 11.14.5, 412
Lemma 11.7.2, 392
Proposition 11.1.5, 373
nonnegative-
semidefinite
matrix
Proposition 8.5.7, 255
positive-definite
matrix
Fact 8.10.13, 280
Fact 8.10.14, 280
Fact 8.10.15, 280
quadratic form
Fact 8.10.14, 280
Fact 8.10.15, 280
interior
complement
Fact 10.7.5, 366
convex set
Fact 10.7.6, 366
Fact 10.7.17, 367
definition
Definition 10.1.1, 355
largest open set
Fact 10.7.4, 366
subset

Fact 10.7.3, 366
interior point
definition
Definition 10.1.1, 355
interior point relative to a set
definition
Definition 10.1.2, 355
interior relative to a set
definition
Definition 10.1.2, 355
interpolation
polynomial
Fact 4.8.10, 136
intersection
definition, 2
invariant polynomial
nonsingular matrix transformation Proposition 4.3.7, 118
invariant polynomials
definition
Definition 4.3.4, 118
invariant subspace
definition, 30
lower triangular matrix
Fact 5.7.4, 175
stable subspace Proposition 11.6.8, 389
unstable subspace Proposition 11.6.8, 389
upper triangular matrix
Fact 5.7.4, 175
inverse
definition, 4
matrix polynomial definition, 116
uniqueness
Theorem 1.2.3, 4
inverse function theorem
determinant
Theorem 10.4.5, 361
existence of local inverse
Theorem 10.4.5, 361
inverse image
definition, 4
inverse matrix
2×2
Fact 2.13.11, 65
2×2 block triangular Lemma 2.8.2, 43
3×3
Fact 2.13.11, 65
asymptotically stable matrix
Fact 11.14.14, 414
block-triangular matrix
Fact 2.13.27, 67
characteristic polynomial Fact 4.9.6, 138
companion matrix Fact 5.12.2, 195
convergent sequence
Fact 2.13.37, 70
Fact 4.10.19, 145
elementary matrix
Fact 2.13.1, 63
Fact 3.4.14, 88
finite sequence
Fact 2.13.36, 69
Hamiltonian matrix
Fact 3.9.3, 103
Hankel matrix
Fact 3.12.12, 107
Fact 3.12.13, 108
identity
Fact 2.13.12, 65
Fact 2.13.13, 65
Fact 2.13.14, 65
Fact 2.13.15, 65
Fact 2.13.16, 66
Fact 2.13.17, 66
Fact 2.13.18, 66
Fact 2.13.19, 66

Fact 2.13.20, 66
Fact 2.13.21, 66
Fact 2.13.22, 66
identity perturbation
Fact 4.8.11, 136
integral
Fact 11.10.9, 401
Kronecker product
Proposition 7.1.7, 227
matrix derivative
Proposition 10.6.3, 365
matrix exponential
Fact 11.10.9, 401
Proposition 11.1.4, 373
maximum singular value
Fact 9.12.4, 349
Newton-Raphson
algorithm
Fact 2.13.37, 70
outer-product
perturbation
Fact 2.13.2, 63
partitioned matrix
Fact 2.13.3, 63
Fact 2.13.28, 67
Fact 2.13.29, 67
Fact 2.13.30, 68
Fact 2.13.31, 68
Fact 2.13.33, 69
Fact 5.10.5, 188
positive-definite
matrix
Fact 8.7.36, 269
Lemma 8.1.4, 241
Proposition 8.1.5, 241
product
Proposition 2.6.7, 38
rank
Fact 2.10.21, 51
Fact 2.13.39, 70
series
Proposition 9.4.10, 318
similar matrices
Fact 5.13.27, 204
spectral radius
Proposition 9.4.10, 318
spectrum

Fact 5.9.9, 182
unimodular matrix
Proposition 4.3.6, 118
upper block
triangular matrix
Fact 2.13.35, 69
upper-block triangular
Fact 2.13.32, 68
inverse of a matrix
definition, 36
inverse operation
composition
Fact 1.3.7, 6
iterated
Fact 1.3.6, 6
invertible function
definition, 4
involutory
determinant
Fact 3.6.21, 100
involutory matrix
definition
Definition 3.1.1, 77
determinant
Fact 5.13.28, 204
diagonalizable matrix
Fact 5.11.13, 190
factorization
Fact 5.13.15, 201
Fact 5.13.27, 204
Fact 5.13.28, 204
idempotent matrix
Fact 3.5.27, 97
identity
Fact 3.12.16, 109
matrix exponential
Fact 11.9.1, 397
normal matrix
Fact 5.7.13, 177
reflector
Fact 3.7.1, 101
semisimple matrix
Fact 5.11.12, 190
similar matrices
Fact 5.13.27, 204
spectrum
Proposition 5.5.25, 172
symmetric matrix
Fact 5.13.33, 204
transpose
Fact 5.7.14, 177
tripotent matrix
Fact 3.12.15, 108

irreducible

definition, 114
irreducible matrix
definition
Fact 4.11.1, 145

J

Jacobi identity

commutator
Fact 2.14.3, 70

Jacobi's identity

determinant
Fact 2.13.34, 69
matrix differential equation
Fact 11.10.4, 401

Jacobian

definition, 361
Jacobson
nilpotent commutator
Fact 3.8.2, 102
Jensen's inequality
power sum inequality
Fact 1.4.13, 9

Jordan block

index of eigenvalue
Proposition 5.5.3, 166

Jordan form

existence
Theorem 5.3.2, 157

Theorem 5.3.3, 157
factorization
Fact 5.13.2, 199
minimal polynomial
Proposition 5.5.20, 171
normal matrix
Fact 5.7.2, 175
Schur form
Fact 5.7.2, 175
square root
Fact 5.13.16, 201

Jordan matrix

example
Example 5.3.6, 160
Example 5.3.7, 161
Jury test
discrete-time
asymptotically
stable polynomial
Fact 11.15.1, 419

K

Kantorovich inequality
nonnegativesemidefinite
matrix
Fact 8.10.5, 278
scalar case
Fact 1.4.14, 9
Khatri-Rao product, 238

Kittaneh
Schatten norm inequality
Fact 9.9.22, 339

Kosaki

Schatten norm inequality Fact 9.9.22, 339
unitarily invariant norm inequality
Fact 9.9.21, 339

Kronecker permutation matrix
definition, 228
Kronecker product Fact 7.4.29, 233
orthogonal matrix Fact 7.4.29, 233
trace
Fact 7.4.29, 233
transpose
Proposition 7.1.13, 228
vec
Fact 7.4.29, 233
Kronecker product
biequivalent matrices
Fact 7.4.11, 231
column norm
Fact 9.9.29, 340
complex conjugate transpose
Proposition 7.1.3, 226
congruent matrices
Fact 7.4.12, 232
convex function Proposition 8.5.13, 258
definition
Definition 7.1.2, 226
determinant
Proposition 7.1.11, 228
diagonal matrix
Fact 7.4.2, 231
discrete-time asymptotically stable matrix Fact 11.15.6, 420
Fact 11.15.7, 420
discrete-time
Lyapunov-stable matrix
Fact 11.15.6, 420
Fact 11.15.7, 420
discrete-time semistable matrix
Fact 11.15.6, 420
Fact 11.15.7, 420
eigenvalue
Fact 7.4.19, 232

Fact 7.4.22, 233
Fact 7.4.23, 233
Fact 7.4.24, 233
Proposition 7.1.10, 228
eigenvector
Fact 7.4.19, 232
Proposition 7.1.10, 228
Euclidean norm
Fact 9.7.13, 327
Frobenius norm
Fact 9.12.18, 352
generalized inverse
Fact 7.4.31, 234
group-invertible matrix
Fact 7.4.13, 232
Hermitian matrix
Fact 7.4.13, 232
Fact 8.15.16, 298
Holder norm
Fact 9.9.29, 340
index
Fact 7.4.25, 233
infinity norm
Fact 9.9.29, 340
inverse matrix
Proposition 7.1.7, 227
Kronecker permutation matrix
Fact 7.4.29, 233
Kronecker sum
Fact 11.11.28, 407
left-equivalent matrices
Fact 7.4.11, 231
lower triangular matrix
Fact 7.4.2, 231
matrix exponential
Fact 11.11.28, 407
Fact 11.11.29, 408
Proposition 11.1.8, 374
matrix
multiplication
Proposition 7.1.6, 226
matrix power
Fact 7.4.3, 231
Fact 7.4.9, 231

Fact 7.4.19, 232
maximum singular value
Fact 9.12.18, 352
nonnegativesemidefinite matrix
Fact 7.4.13, 232
Fact 8.15.9, 296
Fact 8.15.13, 297
Fact 8.15.14, 297
Fact 8.15.15, 297
normal matrix
Fact 7.4.13, 232
outer-product
matrix
Proposition 7.1.8, 227
partitioned matrix
Fact 7.4.16, 232
Fact 7.4.17, 232
positive-definite matrix
Fact 7.4.13, 232
range-Hermitian matrix
Fact 7.4.13, 232
rank
Fact 7.4.20, 232
Fact 8.15.9, 296
right-equivalent
matrices
Fact 7.4.11, 231
row norm
Fact 9.9.29, 340
Schatten norm
Fact 9.12.18, 352
Schur product
Proposition 7.3.1, 230
semisimple matrix
Fact 7.4.13, 232
similar matrices
Fact 7.4.12, 232
singular matrix
Fact 7.4.21, 232
skew-Hermitian matrix
Fact 7.4.14, 232
submatrix

Proposition 7.3.1, 230
sum of matrices
Proposition 7.1.4, 226
trace
Fact 11.11.29, 408
Proposition 7.1.12, 228
transpose
Proposition 7.1.3, 226
triple product
Fact 7.4.6, 231
Proposition 7.1.5, 226
unitarily similar matrices
Fact 7.4.12, 232
upper triangular matrix
Fact 7.4.2, 231
vec
Fact 7.4.4, 231
Fact 7.4.5, 231
Fact 7.4.7, 231
vector
Fact 7.4.1, 231

Kronecker sum

associativity
Proposition 7.2.2, 229
asymptotically stable matrix
Fact 11.14.28, 418
Fact 11.14.29, 418
asymptotically stable polynomial
Fact 11.13.9, 412
definition
Definition 7.2.1, 229
determinant
Fact 7.4.28, 233
eigenvalue
Fact 7.4.26, 233
Fact 7.4.27, 233
Proposition 7.2.3, 229
eigenvector
Proposition 7.2.3, 229
Hermitian matrix
Fact 7.4.15, 232
Kronecker product
Fact 11.11.28, 407
linear matrix
equation
Proposition 11.7.3, 392
linear system
Fact 7.4.30, 234
Lyapunov equation
Corollary 11.7.4, 392
Lyapunov-stable matrix
Fact 11.14.28, 418
Fact 11.14.29, 418
matrix exponential
Fact 11.11.27, 407
Fact 11.11.28, 407
Proposition 11.1.8, 374
matrix power
Fact 7.4.10, 231
nonnegative-
semidefinite matrix
Fact 7.4.15, 232
normal matrix
Fact 7.4.18, 232
positive matrix Fact 7.4.15, 232
range-Hermitian matrix
Fact 7.4.18, 232
semistable matrix
Fact 11.14.28, 418
Fact 11.14.29, 418
skew-Hermitian matrix
Fact 7.4.15, 232
trace
Fact 11.11.27, 407

L
Lagrange interpolation
formula formula
polynomial
interpolation
Fact 4.8.10, 136
Lagrange-Hermite
interpolation
polynomial
matrix function
Theorem 10.5.1, 362
Lancaster's formulas
quadratic form integral
Fact 8.10.14, 280
leading principal submatrix
definition, 41
least common multiple
block-diagonal matrix
Lemma 5.2.7, 155
definition, 114
least squares solution
generalized inverse
Fact 6.4.31, 222
Fact 6.4.32, 222
Fact 6.4.33, 222
singular value
decomposition
Fact 6.4.34, 222
left divides
definition, 114
left equivalence
equivalence relation
Fact 5.8.2, 178
left inverse
(1)-inverse

Proposition 6.1.3, 208
complex conjugate
transpose
Fact 2.13.23, 66
definition, 4 generalized inverse
Corollary 6.1.4, 208
Fact 6.4.22, 220
Fact 6.4.23, 221
idempotent matrix
Fact 3.5.20, 96
left-inner matrix
Fact 3.6.4, 98
matrix product
Fact 2.13.26, 67
positive-definite matrix
Fact 3.4.19, 89
representation
Fact 2.13.24, 67
uniqueness
Theorem 1.2.3, 4
left invertible
definition, 4
left-equivalent matrices
definition
Definition 3.2.1, 82
group-invertible matrix
Fact 3.3.3, 85
Kronecker product
Fact 7.4.11, 231
nonnegativesemidefinite matrix
Fact 5.8.10, 179
null space Proposition 5.1.3, 151
left-inner matrix
definition
Definition 3.1.2, 78
left inverse
Fact 3.6.4, 98
left-invertible matrix
definition, 34
equivalent properties
Theorem 2.6.1, 34
generalized inverse
Proposition 6.1.5, 209
nonsingular
equivalence
Corollary 2.6.4, 36
Leibniz rule
derivative of integral Fact 10.8.4, 368
lemma
definition, 1
Leverrier's algorithm
characteristic polynomial Proposition 4.4.8, 123

Lidskii-Mirsky-Wielandt theorem
 Hermitian
 perturbation
 Fact 9.10.9, 344

Lie algebra

definition
Definition 3.2.4, 83
matrix exponential Proposition 11.4.6, 382
strictly upper triangular matrix Fact 3.10.2, 104
upper triangular matrix Fact 3.10.2, 104

Lie algebras

classical examples Proposition 3.2.5, 83
Lieb concavity theorem, 302

Lieb-Thirring inequality
nonnegativesemidefinite matrix
Fact 8.12.9, 283
Fact 8.14.6, 292
limit
discrete-time semistable matrix Fact 11.15.16, 422
matrix exponential Fact 11.14.4, 412 Fact 11.14.5, 412
Fact 11.14.6, 413
nonnegativesemidefinite matrix
Fact 8.8.21, 275
Proposition 8.5.3, 254
positive-definite matrix

Fact 8.8.21, 275
semistable matrix Fact 11.14.6, 413
linear combination determinant Fact 8.13.10, 287 nonnegativesemidefinite matrix Fact 8.13.10, 287
linear combination of two vectors
definition, 15
linear dependence triangle inequality Fact 9.7.3, 325
linear dependence of two matrices
definition, 16
linear dependence of two vectors
definition, 15
linear dependence of vectors
definition, 25
linear dynamical system
asymptotically stable Proposition 11.6.2, 386 discrete-time asymptotically stable
Proposition 11.8.2, 395
discrete-time
Lyapunov stable
Proposition 11.8.2, 395
discrete-time
semistable
Proposition 11.8.2, 395
Lyapunov stable
Proposition 11.6.2, 386
semistable
Proposition 11.6.2, 386
linear function
continuous function
Corollary 10.3.3, 358
definition, 17
linear independence of vectors
definition, 25
linear independent vectors
cyclic matrix
Fact 5.11.5, 189
linear matrix equation
asymptotically stable matrix
Proposition 11.7.3, 392
existence of solutions
Fact 5.8.11, 180
Fact 5.8.12, 180
generalized inverse
Fact 6.4.21, 220
Kronecker sum
Proposition 11.7.3, 392
matrix exponential
Proposition 11.7.3, 392
skew-symmetric
matrix
Fact 2.11.21, 55
solution
Fact 6.4.21, 220
Sylvester's equation
Fact 5.8.11, 180
Fact 5.8.12, 180
Proposition 11.7.3, 392
Proposition 7.2.4, 229
symmetric matrix
Fact 2.11.21, 55
linear system
generalized inverse
Proposition 6.1.7, 210
Kronecker sum
Fact 7.4.30, 234
solutions
Fact 2.10.12, 49
Proposition 6.1.7, 210
linear system solution
Cramer's rule

Fact 2.12.11, 57
eigenvector
Fact 11.10.5, 401
nonnegative vector
Fact 4.11.4, 148
norm
Fact 9.9.31, 340
Fact 9.9.32, 340
Fact 9.9.33, 341
rank
Corollary 2.6.5, 37
Theorem 2.6.3, 35
right-invertible
matrix
Fact 2.12.12, 57
linearly dependent vectors
absolute value
Fact 9.7.1, 324
linearly independent rational functions definition, 130
log majorization
convex function
Fact 8.16.4, 301
increasing function
Fact 8.16.4, 301
logarithm
determinant
Fact 8.7.44, 271
Fact 9.8.30, 333
increasing function
Proposition 8.5.10, 256
positive-definite
matrix
Fact 8.7.44, 271
Fact 8.12.19, 285
scalar inequalities for
Fact 1.4.4, 7
Schur product
Fact 8.15.21, 299
trace
Fact 8.12.19, 285
logarithm of determinant
convex function
Proposition 8.5.13, 258
matrix derivative
Proposition 10.6.3, 365
logarithm of trace convex function Proposition 8.5.13, 258
logarithmic derivative asymptotically stable matrix
Fact 11.14.10, 413
Lyapunov equation Fact 11.14.10, 413
properties
Fact 9.10.8, 343
logical equivalents
implication
Fact 1.3.1, 5
Fact 1.3.2, 5
Fact 1.3.3, 5
lower block-triangular matrix
definition
Definition 3.1.3, 79
lower bound
induced lower bound Fact 9.8.34, 334
lower Hessenberg matrix
definition
Definition 3.1.3, 79
Iower
reverse-triangular matrix
definition Fact 2.12.20, 60
determinant Fact 2.12.20, 60
lower triangular matrix
definition
Definition 3.1.3, 79
factorization Fact 5.13.7, 199
invariant subspace

Fact 5.7.4, 175
Kronecker product
Fact 7.4.2, 231
matrix exponential
Fact 11.10.1, 400
matrix power
Fact 3.12.8, 107
Toeplitz matrix
Fact 3.12.8, 107
Fact 11.10.1, 400
Lowner-Heinz inequality
nonnegativesemidefinite matrix inequality
Corollary 8.5.8, 256
LU decomposition
existence
Fact 5.13.7, 199
Lucas numbers
nonnegative matrix
Fact 4.11.2, 147
Lyapunov equation
asymptotic stability
Corollary 11.7.1, 390
asymptotically stable matrix
Corollary 11.7.4, 392
Kronecker sum
Corollary 11.7.4, 392
logarithmic
derivative
Fact 11.14.10, 413
Lyapunov stability
Corollary 11.7.1, 390
matrix exponential
Corollary 11.7.4, 392
Fact 11.14.17, 415
nonnegativesemidefinite matrix
Fact 8.7.23, 267
Schur power
Fact 8.7.23, 267
semistability
Corollary 11.7.1, 390
skew-Hermitian
matrix
Fact 11.14.11, 414
Lyapunov stability
eigenvalue Proposition 11.6.2, 386
linear dynamical system
Proposition 11.6.2, 386
Lyapunov equation
Corollary 11.7.1, 390
matrix exponential
Proposition 11.6.2, 386
nonlinear system
Theorem 11.5.2, 384
Lyapunov stable polynomial
definition
Definition 11.6.3, 387
Lyapunov's direct method stability theory Theorem 11.5.2, 384

Lyapunov-stable equilibrium definition Definition 11.5.1, 384

Lyapunov-stable matrix definition Definition 11.6.1, 386
group-invertible matrix
Fact 11.14.2, 412
Kronecker sum
Fact 11.14.28, 418
Fact 11.14.29, 418
Lyapunov-stable polynomial
Proposition 11.6.4, 387
matrix exponential Fact 11.14.5, 412
Fact 11.15.8, 420
nonnegativesemidefinite matrix

Proposition 11.7.5, 393 positive-definite matrix
Proposition 11.7.5, 393
semidissipative matrix
Fact 11.14.32, 418
semistable matrix
Fact 11.14.1, 412
Lyapunov-stable polynomial
Lyapunov-stable matrix
Proposition 11.6.4, 387
subdeterminant
Fact 11.14.21, 415
Lyapunov-stable stable matrix
normal matrix
Fact 11.14.32, 418

M

majorization
eigenvalue
Fact 8.14.3, 290
singular value
Fact 8.14.3, 290

Marcus

similar matrices and nonzero diagonal entries
Fact 5.7.8, 176
mass, 380
matrix
definition, 15
matrix derivative
definition, 364
determinant
Proposition 10.6.3, 365
inverse matrix
Fact 10.8.10, 369
Proposition 10.6.3, 365
logarithm of determinant Proposition 10.6.3, 365
matrix exponential
Fact 11.11.11, 404
matrix power Proposition 10.6.3, 365
squared matrix
Fact 10.8.9, 368
trace
Proposition 10.6.2, 364
matrix differential equation
Jacobi's identity
Fact 11.10.4, 401
matrix exponential Fact 11.10.3, 400
matrix exponential
2×2 matrix
Corollary 11.3.3, 377
Example 11.3.4, 378
Example 11.3.5, 378
Example 11.3.6, 378
Lemma 11.3.1, 377
Proposition 11.3.2, 377
3×3 matrix
Fact 11.9.5, 398
3×3 skew-symmetric matrix
Fact 11.9.6, 398
Fact 11.9.7, 399
3×3 unitary matrix
Fact 11.9.7, 399
$\mathrm{SO}(n)$
Fact 11.9.3, 397
asymptotic stability
Proposition 11.6.2, 386
asymptotically stable matrix
Fact 11.14.8, 413
Fact 11.14.9, 413
Fact 11.14.14, 414
Fact 11.14.17, 415
Fact 11.15.8, 420
Lemma 11.7.2, 392
block-diagonal matrix

Proposition 11.1.4, 373
commutator
Fact 11.11.10, 404
Fact 11.11.12, 405
Fact 11.11.13, 405
Fact 11.11.14, 405
Fact 11.11.15, 405
Fact 11.11.16, 406
Fact 11.11.17, 406
Fact 11.11.18, 406
commuting matrices
Corollary 11.1.7, 374
Fact 11.11.2, 403
Fact 11.11.5, 404
Proposition 11.1.6, 374
complex conjugate
transpose
Fact 11.12.3, 408
Fact 11.12.5, 409
convergence in time
Proposition 11.6.7, 389
convergent sequence
Corollary 11.4.9, 384
Fact 11.11.7, 404
Fact 11.11.8, 404
Fact 11.11.10, 404
Fact 11.15.15, 421
Proposition 11.1.3, 372
convergent series
Proposition 11.1.2, 372
convex function
Fact 11.11.25, 407
convexity
Fact 11.12.11, 410
cross product
Fact 11.9.9, 399
definition
Definition 11.1.1, 371
derivative
Fact 11.11.3, 403
Fact 11.11.4, 403
Fact 11.12.1, 408
derivative of a
matrix
Fact 11.11.12, 405
determinant
Corollary 11.2.3, 377
Corollary 11.2.4, 377

Fact 11.10.13, 402
Fact 11.12.4, 408
Proposition 11.4.7, 383
discrete-time
asymptotic stability
Proposition 11.8.2, 395
discrete-time
asymptotically
stable matrix
Fact 11.15.8, 420
discrete-time
Lyapunov stability
Proposition 11.8.2, 395
discrete-time
Lyapunov-stable matrix
Fact 11.15.8, 420
discrete-time
semistability
Proposition 11.8.2, 395
discrete-time
semistable matrix
Fact 11.15.8, 420
Fact 11.15.15, 421
dissipative matrix Fact 11.12.2, 408
Drazin generalized inverse
Fact 11.10.10, 402
Fact 11.10.12, 402
Frobenius norm
Fact 11.12.2, 408
generalized inverse
Fact 11.10.8, 401
group
Proposition 11.4.6, 382
group generalized inverse
Fact 11.10.11, 402
Fact 11.10.12, 402
Fact 11.14.4, 412
Fact 11.14.5, 412
group-invertible matrix
Fact 11.14.13, 414
Hermitian matrix
Fact 11.11.7, 404
Fact 11.11.8, 404

Fact 11.11.9, 404
Fact 11.11.20, 406
Fact 11.11.21, 406
Fact 11.11.22, 407
Fact 11.11.24, 407
Fact 11.12.8, 410
Proposition 11.1.4, 373
idempotent matrix
Fact 11.9.1, 397
integral
Fact 11.10.8, 401
Fact 11.10.9, 401
Fact 11.10.10, 402
Fact 11.10.11, 402
Fact 11.10.12, 402
Fact 11.10.13, 402
Fact 11.11.1, 403
Fact 11.14.4, 412
Fact 11.14.5, 412
Lemma 11.7.2, 392
Proposition 11.1.5, 373
inverse matrix
Fact 11.10.9, 401
Proposition 11.1.4, 373
involutory matrix
Fact 11.9.1, 397
Jordan structure
Corollary 11.4.5, 382
Kronecker product
Fact 11.11.28, 407
Fact 11.11.29, 408
Proposition 11.1.8, 374
Kronecker sum
Fact 11.11.27, 407
Fact 11.11.28, 407
Proposition 11.1.8, 374
Lie algebra
Proposition 11.4.6, 382
limit
Fact 11.14.4, 412
Fact 11.14.5, 412
Fact 11.14.6, 413
linear matrix
equation
Proposition 11.7.3, 392
lower triangular
matrix
Fact 11.10.1, 400

Lyapunov equation
Corollary 11.7.4, 392
Fact 11.14.17, 415
Lyapunov stability
Proposition 11.6.2, 386
Lyapunov-stable matrix
Fact 11.14.5, 412
Fact 11.15.8, 420
matrix derivative
Fact 11.11.11, 404
matrix differential equation
Fact 11.10.3, 400
matrix logarithm
Fact 11.11.20, 406
Fact 11.11.22, 407
Proposition 11.4.2, 381
Proposition 11.4.3, 381
matrix polynomial
Proposition 11.2.1, 375
matrix power
Fact 11.9.11, 400
maximum eigenvalue
Fact 11.12.7, 409
maximum singular value
Fact 11.12.1, 408
Fact 11.12.4, 408
Fact 11.12.10, 410
nilpotent matrix Fact 11.9.1, 397 nonnegative matrix
Fact 11.14.7, 413
nonnegativesemidefinite matrix
Fact 11.11.19, 406
norm bound
Fact 11.14.9, 413
normal matrix
Fact 11.11.5, 404
Fact 11.12.10, 410
orthogonal matrix
Fact 11.10.14, 402
outer-product matrix
Fact 11.9.1, 397
partitioned matrix
Fact 11.9.2, 397
Fact 11.11.1, 403
polar decomposition
Fact 11.10.7, 401
positive-definite matrix
Fact 11.11.19, 406
Proposition 11.1.4, 373
Schur product Fact 11.11.20, 406
semistability
Proposition 11.6.2, 386
semistable matrix Fact 11.14.4, 412
Fact 11.14.6, 413
Fact 11.15.8, 420
series
Fact 11.11.18, 406
Proposition 11.4.8, 383
similar matrices
Proposition 11.1.4, 373
singular value
Fact 11.12.4, 408
Fact 11.12.11, 410
skew-Hermitian matrix
Fact 11.11.6, 404
Fact 11.11.23, 407
Proposition 11.1.4, 373
skew-involutory matrix
Fact 11.9.1, 397
skew-symmetric matrix
Example 11.3.7, 379
Fact 11.9.3, 397
Fact 11.9.9, 399
Fact 11.9.10, 400
Fact 11.10.14, 402
spectral abscissa
Fact 11.10.2, 400
Fact 11.14.8, 413
spectral radius
Fact 11.10.2, 400
spectrum
Proposition 11.2.2, 376
stable subspace

Proposition 11.6.8, 389 strong log majorization Fact 11.12.7, 409
submultiplicative norm
Fact 11.12.9, 410
Fact 11.14.8, 413
Proposition 11.1.2, 372
sum of integer
powers
Fact 11.9.4, 397
thermodynamic inequality
Fact 11.11.22, 407
trace
Corollary 11.2.3, 377
Corollary 11.2.4, 377
Fact 11.11.3, 403
Fact 11.11.11, 404
Fact 11.11.21, 406
Fact 11.11.22, 407
Fact 11.11.25, 407
Fact 11.11.26, 407
Fact 11.11.27, 407
Fact 11.11.29, 408
Fact 11.12.3, 408
Fact 11.12.4, 408
Fact 11.12.6, 409
Fact 11.12.7, 409
transpose
Proposition 11.1.4, 373
unitarily invariant norm
Fact 11.11.9, 404
Fact 11.12.5, 409
Fact 11.12.7, 409
Fact 11.12.8, 410
unitary matrix
Fact 11.11.6, 404
Fact 11.11.23, 407
Fact 11.11.24, 407
Proposition 11.1.4, 373
upper triangular matrix
Fact 11.9.4, 397
Fact 11.10.1, 400
vibration equation

Example 11.3.8, 379
weak majorization
Fact 11.12.7, 409
matrix factorization
Douglas-FillmoreWilliams lemma
Theorem 8.5.2, 253
matrix function
definition, 362
Lagrange-Hermite interpolation polynomial
Theorem 10.5.1, 362
spectrum
Corollary 10.5.3, 363
matrix function defined at a point
definition, 362
matrix function evaluation
identity theorem
Theorem 10.5.2, 363
matrix inverse
derivative
Fact 10.8.11, 369
matrix inversion lemma
Corollary 2.8.8, 45
normalized
submultiplicative
norm
Fact 9.9.25, 339
Fact 9.9.26, 339
Fact 9.9.27, 339
perturbation
Fact 9.9.28, 340
sum of matrices
Corollary 2.8.10, 46
matrix inversion lemma
generalized inverse
Fact 6.4.17, 220
matrix inverse
Corollary 2.8.8, 45
matrix limit
projector
Fact 6.4.27, 221
matrix logarithm
complex matrix Definition 11.4.1, 380
convergent series
Proposition 11.4.2, 381
matrix exponential
Fact 11.11.20, 406
Fact 11.11.22, 407
Proposition 11.4.2, 381
Proposition 11.4.3, 381
nonsingular matrix
Proposition 11.4.3, 381
norm
Proposition 11.4.2, 381
real matrix
Proposition 11.4.4, 381
trace
Fact 11.11.22, 407
matrix measure
properties
Fact 9.10.8, 343
matrix multiplication
definition, 17
function composition
Theorem 2.1.2, 17
Kronecker product
Proposition 7.1.6, 226
matrix norm
partitioned matrix
Fact 9.9.34, 341
spectral radius Proposition 9.2.6, 310
matrix polynomial definition, 114
matrix exponential
Proposition 11.2.1, 375
matrix polynomial division
linear divisor
Corollary 4.2.3, 115
Lemma 4.2.2, 115
matrix power
cyclic matrix
Fact 5.11.5, 189
discrete-time asymptotically stable matrix Fact 11.15.3, 419
discrete-time dynamics Fact 11.15.4, 419
discrete-time
Lyapunov-stable
stable matrix
Fact 11.15.16, 422
Drazin generalized
inverse
Fact 6.5.4, 223
identities
Fact 7.5.9, 236
Kronecker product
Fact 7.4.3, 231
Fact 7.4.9, 231
Fact 7.4.19, 232
Kronecker sum
Fact 7.4.10, 231
lower triangular matrix
Fact 3.12.8, 107
matrix derivative
Proposition 10.6.3, 365
matrix exponential
Fact 11.9.11, 400
maximum singular value
Fact 8.14.17, 294
Fact 9.11.9, 346
Fact 9.11.11, 347
nonnegativesemidefinite
matrix
Corollary 8.5.8, 256
Fact 8.7.6, 265
normal matrix
Fact 9.11.9, 346
outer-product
matrix
Fact 2.11.11, 54
Schur product

Fact 7.5.9, 236
similar matrices
Fact 5.7.1, 175
singular value inequality Fact 9.11.16, 348
skew-Hermitian matrix
Fact 8.7.6, 265
strictly lower triangular matrix Fact 3.12.8, 107
strictly upper triangular matrix Fact 3.12.8, 107
symmetric matrix Fact 3.4.2, 86
trace
Fact 2.11.15, 54
Fact 2.11.18, 55
upper triangular matrix
Fact 3.12.8, 107
matrix powers
adjugate
Fact 4.9.5, 138
matrix classes Fact 3.4.32, 92
matrix product
adjugate
Fact 2.13.9, 64
characteristic polynomial Corollary 4.4.10, 124
compound matrix Fact 7.4.32, 234
generalized inverse Fact 6.4.1, 216
Fact 6.4.2, 216
Fact 6.4.3, 216
Fact 6.4.4, 216
Fact 6.4.5, 216
Fact 6.4.7, 216
induced lower bound
Proposition 9.5.3, 320
left inverse
Fact 2.13.26, 67
nonnegativesemidefinite matrix
Corollary 8.3.6, 246
positive-definite matrix
Corollary 8.3.6, 246
quadruple
Fact 2.13.10, 65
right inverse
Fact 2.13.25, 67
singular value
Fact 8.14.16, 294
Proposition 9.6.1, 322
Proposition 9.6.2, 322
Proposition 9.6.3, 322
Proposition 9.6.4, 323
singular value
inequality
Fact 9.11.15, 347
skew-symmetric
matrix
Fact 5.13.34, 204
trace
Fact 8.12.5, 282
vec
Fact 7.4.5, 231
matrix root
nonnegativesemidefinite matrix
Fact 8.7.19, 266
matrix sign function convergent sequence
Fact 5.13.18, 202
square root
Fact 5.13.18, 202
matrix squared trace
Fact 5.9.5, 181
matrix sum
generalized inverse
Fact 6.4.18, 220
Fact 6.4.19, 220
Fact 6.4.20, 220
Hamiltonian matrix

Fact 3.9.3, 103
singular value Fact 9.12.13, 351
maximization
continuous function Fact 10.8.2, 368
maximum eigenvalue
matrix exponential Fact 11.12.7, 409
nonnegative-
semidefinite matrix
Fact 8.14.8, 292
Fact 8.14.9, 292
maximum singular value
absolute value
Fact 9.11.12, 347
block-triangular matrix
Fact 5.9.16, 184
bound
Fact 5.9.18, 184
commutator
Fact 9.12.5, 349
derivative
Fact 11.12.1, 408
determinant
Fact 9.11.6, 346
Fact 9.11.7, 346
Fact 9.12.11, 350
Fact 9.12.12, 350
eigenvalue
Fact 9.11.6, 346
eigenvalue
perturbation
Fact 9.10.9, 344
elementary projector
Fact 5.9.25, 186
equi-induced
self-adjoint norm
Fact 9.11.5, 346
equi-induced
unitarily invariant
norm
Fact 9.11.4, 346
generalized inverse
Fact 9.12.4, 349
Fact 9.12.16, 352
Hermitian matrix Fact 9.9.23, 339
Holder-induced norm
Fact 9.8.13, 330
induced lower bound
Corollary 9.5.5, 321
inequality
Corollary 9.6.5, 323
Corollary 9.6.9, 324
Fact 9.12.9, 350
Fact 9.12.10, 350
Proposition 9.2.2, 308
inverse matrix
Fact 9.12.4, 349
Kronecker product
Fact 9.12.18, 352
matrix exponential
Fact 11.12.1, 408
Fact 11.12.4, 408
Fact 11.12.10, 410
matrix power
Fact 8.14.17, 294
Fact 9.11.9, 346
Fact 9.11.11, 347
nonnegative-
semidefinite
matrix
Fact 8.14.15, 294
normal matrix
Fact 9.11.9, 346
Fact 9.11.10, 346
Fact 9.12.1, 348
Fact 11.12.10, 410
outer-product matrix
Fact 5.9.12, 182
Fact 9.7.12, 327
partitioned matrix
Fact 8.14.14, 294
Fact 8.14.15, 294
Fact 9.12.6, 349
Fact 9.12.7, 349
Fact 9.12.8, 350
positive-definite matrix
Fact 8.14.17, 294
projector
Fact 9.12.16, 352
quadratic form
Fact 9.11.1, 345
Fact 9.11.2, 345
Schur product
Fact 9.12.17, 352
spectral radius
Fact 9.11.11, 347
square root
Fact 9.8.23, 331
unitarily invariant norm
Fact 9.9.10, 336
maximum singular value bound
Frobenius norm Fact 9.11.13, 347
minimum singular value bound Fact 9.11.14, 347
polynomial root Fact 9.11.14, 347
trace
Fact 9.11.13, 347
maximum singular value of a partitioned matrix
Parrott's theorem Fact 9.12.7, 349

McCarthy inequality nonnegativesemidefinite matrix Fact 8.12.15, 285
minimal polynomial block-diagonal matrix
Lemma 5.2.7, 155
companion matrix
Corollary 5.2.4, 154
Corollary 5.2.5, 154
Proposition 5.2.1, 152
cyclic matrix
Proposition 5.5.20, 171
definition, 127
existence
Theorem 4.6.1, 127
index of eigenvalue
Proposition 5.5.20, 171
Jordan form
Proposition 5.5.20, 171
null space
Corollary 11.6.6, 389
partitioned matrix
Fact 4.10.8, 142
range
Corollary 11.6.6, 389
similar matrices
Fact 11.16.3, 424
Fact 11.16.4, 425
Fact 11.16.5, 425
Fact 11.16.6, 426
Fact 11.16.7, 427
Fact 11.16.8, 427
Fact 11.16.9, 428
Fact 11.16.10, 428
Fact 11.16.11, 429
Proposition 4.6.3, 128
spectrum
Fact 4.10.5, 141
stable subspace
Fact 11.16.1, 423
Fact 11.16.2, 423
Proposition 11.6.5, 388
upper-block-
triangular
matrix
Fact 4.10.8, 142
minimum principle
eigenvalue characterization
Fact 8.14.13, 294
minimum singular value
determinant
Fact 9.11.7, 346
Fact 9.12.12, 350
induced lower bound
Corollary 9.5.5, 321
inequality
Corollary 9.6.6, 323
Fact 9.11.8, 346
quadratic form
Fact 9.11.1, 345
minimum singular value bound
maximum singular value bound
Fact 9.11.14, 347
polynomial root
Fact 9.11.14, 347

Minkowski

set-defined norm Fact 10.7.13, 366

Minkowski's

 determinant theorem nonnegativesemidefinite matrix determinant Corollary 8.4.15, 252
Minkowski’s inequality

Holder norm Lemma 9.1.3, 304
nonnegativesemidefinite matrix
Fact 8.12.15, 285
scalar case
Fact 1.4.17, 10
minor, see subdeterminant

Mirsky
fixed-rank approximation Fact 9.12.14, 351
singular value trace bound Fact 5.10.3, 188

Mirsky's theorem

singular value perturbation Fact 9.12.15, 352
monic matrix polynomial
definition, 114
monic polynomial definition, 111
monotone norm
absolute norm
Proposition 9.1.2, 303
definition, 303
monotonicity
power mean inequality
Fact 1.4.10, 8
monotonicity theorem
Hermitian matrix eigenvalues Theorem 8.4.9, 250

Moore-Penrose generalized inverse, see generalized inverse

multi-companion form definition, 154
existence Theorem 5.2.3, 154
similar matrices Corollary 5.2.6, 154
similarity invariant Corollary 5.2.6, 154
multiple
definition, 113
multiplicative commutator
realization
Fact 5.13.31, 204
reflector realization Fact 5.13.32, 204
multiplicity of a root definition, 112
multiset
definition, 2
multispectrum
definition
Definition 4.4.3, 120
properties
Proposition 4.4.4, 121

N

natural frequency, 380
definition
Fact 5.11.23, 191
necessity
definition, 1
negation
definition, 1
negative-definite matrix
asymptotically stable matrix
Fact 11.14.26, 417
definition
Definition 3.1.1, 77

Newcomb

simultaneous
cogredient
diagonalization, 301
Newton's identities
polynomial roots
Fact 4.8.2, 131
spectrum
Fact 4.10.2, 141
Newton-Raphson
algorithm
generalized inverse
Fact 6.3.18, 215
inverse matrix
Fact 2.13.37, 70
square root
Fact 5.13.18, 202
nilpotent matrix
commutator
Fact 3.8.1, 102
Fact 3.8.2, 102
Fact 3.8.3, 102
commuting matrices
Fact 3.8.9, 103

Fact 3.8.10, 103
definition
Definition 3.1.1, 77
determinant
Fact 3.8.9, 103
factorization
Fact 5.13.26, 203
identity perturbation
Fact 3.8.7, 102
Fact 3.8.8, 102
matrix exponential
Fact 11.9.1, 397
outer-product
matrix
Fact 3.8.6, 102
partitioned matrix
Fact 3.5.18, 95
rank
Fact 3.8.4, 102
Fact 3.8.5, 102
Fact 3.8.6, 102
semisimple matrix
Fact 5.13.19, 202
spectrum
Proposition 5.5.25, 172
Toeplitz matrix
Fact 3.12.7, 107
trace
Fact 3.8.11, 103
nondecreasing
convex function
Lemma 8.5.12, 257
definition
Definition 8.5.9, 256
function composition
Lemma 8.5.12, 257
nondecreasing function
matrix functions
Proposition 8.5.10, 256
Schur complement
Proposition 8.5.10, 256
nonempty
definition, 2
nonincreasing
concave function

Lemma 8.5.12, 257
definition
Definition 8.5.9, 256
function composition
Lemma 8.5.12, 257
nonnegative matrix
companion matrix
Fact 4.11.3, 148
definition, 16
Definition 3.1.4, 81
difference equation Fact 4.11.2, 147
eigenvalue
Fact 4.11.1, 145
Fibonacci numbers
Fact 4.11.2, 147
limit of matrix powers
Fact 4.11.9, 149
Lucas numbers
Fact 4.11.2, 147 matrix exponential Fact 11.14.7, 413 spectral radius
Fact 4.11.1, 145
Fact 4.11.6, 148
Fact 7.5.11, 237
spectral radius monotonicity
Fact 4.11.7, 149
nonnegative matrix eigenvalues
Perron-Frobenius theorem
Fact 4.11.1, 145
nonnegative vector
definition, 14
linear system solution
Fact 4.11.4, 148
null space
Fact 4.11.5, 148
nonnegative-definite
matrix, see
nonnegative-
semidefinite matrix
closed set Fact 10.7.16, 367
completely solid set Fact 10.7.16, 367
nonnegativesemidefinite matrix
antisymmetric relation
Proposition 8.1.1, 240
Brownian motion
Fact 8.7.22, 267
Cauchy matrix
Fact 8.7.23, 267
Fact 8.7.29, 268
Cauchy-Schwarz inequality
Fact 8.8.12, 272
Fact 8.10.4, 278
cogredient
diagonalization
Theorem 8.3.4, 246
complex matrix
Fact 3.4.5, 86
congruent matrices
Corollary 8.1.3, 241
contragredient diagonalization
Corollary 8.3.7, 247
Theorem 8.3.5, 246
convex combination
Fact 8.13.8, 287
convex cone, 240
convex function
Fact 8.10.16, 280
definition
Definition 3.1.1, 77
determinant
Corollary 8.4.15, 252
Fact 5.10.6, 188
Fact 8.13.12, 287
Fact 8.13.8, 287
Fact 8.13.10, 287
Fact 8.14.5, 291
Fact 8.15.5, 296

Fact 8.15.11, 297
Fact 8.15.12, 297
Fact 9.8.30, 333
diagonal entries
Fact 8.7.1, 265
Fact 8.7.2, 265
diagonal entry
Fact 8.8.7, 272
discrete-time
Lyapunov-stable
matrix
Fact 11.15.17, 422
Drazin generalized inverse
Fact 8.9.1, 275
eigenvalue
Fact 8.9.8, 276
Fact 8.14.6, 292
Fact 8.14.7, 292
Fact 8.14.11, 293
Fact 8.15.11, 297
factorization
Fact 5.13.20, 202
Fact 5.13.38, 205
Fact 5.13.39, 205
Fact 5.13.40, 205
Fact 8.7.32, 269
Fact 8.7.33, 269
Frobenius norm
Fact 9.8.30, 333
Fact 9.9.12, 337
Fact 9.9.13, 337
Fact 9.9.20, 338
Fact 9.9.9, 336
generalized inverse
Fact 6.4.17, 220
Fact 8.9.1, 275
Fact 8.9.2, 275
Fact 8.9.3, 275
Fact 8.9.4, 275
Fact 8.9.5, 276
Fact 8.9.6, 276
Fact 8.9.7, 276
Fact 8.9.8, 276
Fact 8.9.9, 276
Fact 8.9.11, 277
Proposition 6.1.6, 209
group-invertible
matrix
Fact 8.8.5, 272
Hermitian matrix
Fact 8.7.4, 265
Fact 8.11.8, 281
identity
Fact 8.8.1, 271
increasing sequence
Proposition 8.5.3, 254
inequality
Corollary 8.5.5, 255
Corollary 8.5.6, 255
Fact 8.7.3, 265
Fact 8.7.10, 266
Fact 8.7.12, 266
Fact 8.7.35, 269
Fact 8.8.8, 272
Fact 8.8.9, 272
Fact 8.8.10, 272
Fact 8.8.13, 272
Fact 8.8.14, 273
Fact 8.10.9, 279
Fact 8.10.10, 279
Fact 9.12.19, 353
Proposition 8.5.4, 254
integral
Proposition 8.5.7, 255
Kantorovich
inequality
Fact 8.10.5, 278
Kronecker product
Fact 7.4.13, 232
Fact 8.15.9, 296
Fact 8.15.13, 297
Fact 8.15.14, 297
Fact 8.15.15, 297
Kronecker sum
Fact 7.4.15, 232
left-equivalent
matrices
Fact 5.8.10, 179
limit
Fact 8.8.21, 275
Proposition 8.5.3, 254
linear combination
Fact 8.13.10, 287
Lyapunov equation

Fact 8.7.23, 267
Lyapunov-stable matrix
Proposition 11.7.5, 393
matrix exponential
Fact 11.11.19, 406
matrix power
Corollary 8.5.8, 256
Fact 8.7.6, 265
Fact 8.10.7, 278
matrix product
Corollary 8.3.6, 246
matrix root
Fact 8.7.19, 266
maximum eigenvalue
Fact 8.14.8, 292
Fact 8.14.9, 292
maximum singular value
Fact 8.14.15, 294
normal matrix
Fact 8.7.13, 266
Fact 8.8.4, 272
null space
Fact 8.6.2, 264
Fact 8.6.3, 264
Fact 8.10.11, 279
one-sided cone, 240
outer-product
matrix
Fact 8.7.34, 269
Fact 8.10.1, 278
Fact 8.10.2, 278
partial ordering
Proposition 8.1.1, 240
partitioned matrix
Corollary 8.2.2, 242
Fact 5.10.7, 188
Fact 8.6.4, 264
Fact 8.7.38, 270
Fact 8.7.39, 270
Fact 8.7.40, 270
Fact 8.7.41, 270
Fact 8.7.42, 271
Fact 8.8.17, 273
Fact 8.9.11, 277
Fact 8.12.17, 285
Fact 8.12.18, 285

Fact 8.13.23, 289
Fact 8.14.14, 294
Fact 8.14.15, 294
Fact 9.8.24, 331
Lemma 8.2.1, 241
Lemma 8.2.5, 243
Proposition 8.2.3, 242
pointed cone, 240
positive-definite
matrix
Fact 8.7.30, 268
Fact 8.8.11, 272
projector
Fact 3.5.5, 93
properties of $<$ and \leq
Proposition 8.1.2, 240
quadratic form
Fact 8.10.7, 278
Fact 8.10.11, 279
quadratic form
inequality
Fact 8.10.3, 278
range
Corollary 8.2.2, 242
Fact 8.6.1, 264
Fact 8.6.2, 264
Fact 8.6.3, 264
Fact 8.9.3, 275
Fact 8.9.4, 275
Theorem 8.5.2, 253
range-Hermitian
matrix
Fact 8.9.10, 277
rank
Fact 8.6.1, 264
Fact 8.6.3, 264
Fact 8.6.4, 264
Fact 8.15.9, 296
real eigenvalues
Fact 5.11.8, 189
reflexive relation
Proposition 8.1.1, 240
right inverse Fact 3.4.20, 89
Schatten norm
Fact 9.9.17, 338
Schur complement

Corollary 8.5.14, 263
Fact 8.7.37, 270
Fact 8.15.4, 295
Schur inverse
Fact 8.15.1, 295
Schur power
Fact 8.15.2, 295
Fact 8.15.17, 298
Schur product
Fact 8.15.4, 295
Fact 8.15.6, 296
Fact 8.15.8, 296
Fact 8.15.10, 296
Fact 8.15.11, 297
Fact 8.15.13, 297
Fact 8.15.18, 298
Fact 8.15.19, 299
Fact 8.15.24, 300
semisimple matrix
Corollary 8.3.6, 246
skew-Hermitian
matrix
Fact 8.7.5, 265
spectral radius
Fact 8.9.3, 275
spectrum
Fact 8.9.7, 276
Proposition 5.5.25, 172
square root
Fact 9.8.23, 331
structured matrix
Fact 8.7.22, 267
Fact 8.7.24, 267
Fact 8.7.25, 267
Fact 8.7.26, 268
Fact 8.7.27, 268
Fact 8.7.28, 268
Fact 8.7.29, 268
subdeterminant
Proposition 8.2.6, 243
submatrix
Corollary 8.2.8, 245
Proposition 8.2.6, 243
trace
Fact 8.9.8, 276
Fact 8.12.2, 282
Fact 8.12.3, 282
Fact 8.12.4, 282

Fact 8.12.7, 282
Fact 8.12.8, 283
Fact 8.12.9, 283
Fact 8.12.10, 284
Fact 8.12.11, 284
Fact 8.12.12, 284
Fact 8.12.14, 284
Fact 8.12.15, 285
Fact 8.12.16, 285
Fact 8.12.17, 285
Fact 8.12.18, 285
Fact 8.13.12, 287
Fact 8.14.6, 292
Proposition 8.4.13, 251
trace norm
Fact 9.9.13, 337
transitive relation
Proposition 8.1.1, 240
triangle inequality
Fact 9.9.15, 337
unitarily invariant norm
Fact 9.9.8, 336
Fact 9.9.9, 336
unitarily
left-equivalent matrices
Fact 5.8.9, 179
Fact 5.8.10, 179
unitarily right-equivalent matrices
Fact 5.8.9, 179
upper bound
Fact 8.8.16, 273
upper triangular matrix
Fact 8.7.33, 269
weak majorization Fact 8.14.11, 293
zero matrix
Fact 8.8.3, 271
nonnegativesemidefinite matrix determinant

Minkowski's determinant theorem
Corollary 8.4.15, 252
nonnegativesemidefinite matrix inequality
Furuta's inequality
Proposition 8.5.4, 254
nonnegativesemidefinite matrix root
definition, 254
nonnegativesemidefinite matrix square root
definition, 254
nonnegativesemidefinite matrix trace
Holder's inequality
Fact 8.12.4, 282
nonpositive-
semidefinite
matrix
definition
Definition 3.1.1, 77
nonsingular
idempotent matrix
Fact 3.5.24, 96
nonsingular matrix
complex conjugate
Proposition 2.6.6, 37
complex conjugate transpose
Fact 2.13.38, 70
Proposition 2.6.6, 37
definition, 36
determinant
Corollary 2.7.4, 40
Lemma 2.8.6, 44
diagonal dominance
theorem
Fact 4.10.14, 144
diagonally dominant matrix
Fact 4.10.14, 144
dissipative matrix
Fact 3.12.4, 106
distance to
singularity
Fact 9.12.3, 349
elementary matrix
Fact 5.13.9, 200
factorization
Fact 5.13.9, 200
Fact 5.13.19, 202
Fact 5.13.33, 204
group
Proposition 3.2.7, 84
inverse matrix
Fact 3.6.11, 98
matrix logarithm
Proposition 11.4.3, 381
norm
Fact 9.7.18, 327
perturbation
Fact 9.12.2, 348
Fact 9.12.12, 350
range-Hermitian matrix
Proposition 3.1.5, 81
similar matrices
Fact 5.8.4, 179
submultiplicative norm

Fact 9.8.2, 328
transpose
Proposition 2.6.6, 37
nonsingular matrix polynomial
Definition 4.2.5, 115
regular matrix polynomial Proposition 4.2.5, 116
nonsingular matrix transformation
invariant polynomial
Proposition 4.3.7, 118
nonzero diagonal entries
similar matrices
Fact 5.7.8, 176
norm
absolute
definition, 303
absolute sum
definition, 305
column
definition, 317
compatible
definition, 310
complex conjugate
transpose
Fact 9.8.5, 328
convex set
Fact 9.7.9, 326
equi-induced
Definition 9.4.1, 314
equivalent
Theorem 9.1.8, 307
Euclidean
definition, 305
Euclidean-norm
inequality
Fact 9.7.4, 325
Fact 9.7.5, 325
Fact 9.7.6, 326
Frobenius
definition, 308
Holder-norm inequality
Fact 9.7.6, 326
induced
Definition 9.4.1, 314
induced norm
Theorem 9.4.2, 314
inequality
Fact 9.7.2, 325
Fact 9.7.4, 325
infinity definition, 305
linear combination of norms
Fact 9.7.17, 327
linear system
solution
Fact 9.9.31, 340
Fact 9.9.32, 340
Fact 9.9.33, 341
matrix
Definition 9.2.1, 307
matrix logarithm
Proposition 11.4.2, 381
monotone
definition, 303
nonsingular matrix
Fact 9.7.18, 327
normalized
definition, 308
positive-definite
matrix
Fact 9.7.16, 327
quadratic form
Fact 9.7.16, 327
row
definition, 317
self adjoint
definition, 308
set-defined
Fact 10.7.13, 366
spectral
definition, 309
submultiplicative definition, 311
trace
definition, 309
triangle inequality
Definition 9.1.1, 303
unitarily invariant definition, 308
vector
Definition 9.1.1, 303
weakly unitarily invariant definition, 308
norm bound
matrix exponential
Fact 11.14.9, 413
norm inequalities
Schatten norm
Fact 9.9.18, 338
norm inequality
orthogonal vectors
Fact 9.7.11, 327
norm monotonicity
power sum inequality
Fact 1.4.13, 9
normal matrix
asymptotically stable matrix
Fact 11.14.32, 418
commutator
Fact 3.4.31, 92
commuting matrices
Fact 3.4.22, 89
Fact 3.4.23, 90
Fact 5.8.7, 179
Fact 5.11.18, 190
Fact 11.11.5, 404
complex conjugate transpose
Fact 5.11.19, 191
definition
Definition 3.1.1, 77
discrete-time
asymptotically
stable matrix
Fact 11.15.5, 420
discrete-time
Lyapunov-stable matrix
Fact 11.15.5, 420
dissipative matrix
Fact 11.14.32, 418
eigenvalue
Fact 5.11.10, 190
eigenvector
Lemma 4.5.2, 125
Proposition 4.5.3, 125
example
Example 5.5.21, 171
Frobenius norm
Fact 9.10.10, 345
generalized inverse
Proposition 6.1.6, 209
Hermitian matrix
Fact 3.6.8, 98

Proposition 3.1.5, 81
involutory matrix
Fact 5.7.13, 177
Jordan form
Fact 5.7.2, 175
Kronecker product
Fact 7.4.13, 232
Kronecker sum
Fact 7.4.18, 232
Lyapunov-stable stable matrix
Fact 11.14.32, 418
matrix exponential
Fact 11.11.5, 404
Fact 11.12.10, 410
matrix power Fact 9.11.9, 346
maximum singular value
Fact 9.11.9, 346
Fact 9.11.10, 346
Fact 9.12.1, 348
Fact 11.12.10, 410
nonnegativesemidefinite matrix
Fact 8.7.13, 266
Fact 8.8.4, 272
orthogonal eigenvectors
Corollary 5.4.8, 165
partitioned matrix
Fact 3.5.18, 95
polar decomposition
Fact 11.10.7, 401
Putnam-Fuglede theorem
Fact 5.11.19, 191
range-Hermitian matrix
Proposition 3.1.5, 81
Schatten norm
Fact 9.12.1, 348
Schur form
Corollary 5.4.4, 163
Fact 5.7.2, 175
semidissipative matrix

Fact 11.14.32, 418
semisimple matrix
Proposition 5.5.17, 169
similar matrices
Fact 5.8.3, 178
Proposition 5.5.17, 169
singular value
Fact 5.11.10, 190
skew-Hermitian
matrix
Fact 3.6.8, 98
Proposition 3.1.5, 81
spectral
decomposition
Fact 5.11.9, 189
spectrum
Fact 4.10.16, 144
Fact 4.10.17, 145
transpose
Fact 5.7.13, 177
unitarily similar matrices
Corollary 5.4.4, 163
Fact 5.8.3, 178
unitary matrix
Fact 3.6.8, 98
Fact 3.6.10, 98
Fact 5.13.1, 199

normal matrix product

trace
Fact 5.10.1, 187
normal product and Schatten norm
Simon
Fact 9.12.1, 348
normal rank, see rank of a polynomial or rational function
rational transfer function Definition 4.7.3, 129
normal rank of a matrix polynomial
definition
Definition 4.2.4, 115
normalized norm
definition, 308
equi-induced norm
Theorem 9.4.2, 314
normalized submultiplicative norm
matrix inverse
Fact 9.9.25, 339
Fact 9.9.26, 339
Fact 9.9.27, 339
null space
adjugate
Fact 2.13.6, 64
definition, 29
generalized inverse
Proposition 6.1.6, 209
group generalized inverse
Proposition 6.2.2, 213
group-invertible matrix
Fact 3.3.3, 85
idempotent matrix
Fact 3.5.12, 95
identity
Fact 2.10.2, 48
inclusion
Fact 2.10.11, 49
Fact 2.10.13, 49
inclusion for a matrix power Corollary 2.4.2, 30
inclusion for a matrix product
Lemma 2.4.1, 30
intersection
Fact 2.10.3, 48
left-equivalent matrices
Proposition 5.1.3, 151
matrix sum
Fact 2.10.4, 48
minimal polynomial Corollary 11.6.6, 389
nonnegativesemidefinite matrix
Fact 8.6.2, 264
Fact 8.6.3, 264
range inclusions
Theorem 2.4.3, 30
range-Hermitian matrix
Fact 3.3.1, 85
semisimple
eigenvalue
Proposition 5.5.14, 168
skew-Hermitian
matrix
Fact 8.6.2, 264
symmetric matrix Fact 3.4.2, 86
nullity, see defect
numerical radius
weakly unitarily invariant norm
Fact 9.8.29, 332
numerical range
spectrum of convex hull
Fact 4.10.17, 145

0

oblique projector, see idempotent matrix
odd polynomial definition, 112
off-diagonal entries definition, 16
off-diagonally located block
definition, 16
one-sided cone
definition, 25 induced by antisymmetric relation

Proposition 2.3.6, 28
nonnegativesemidefinite matrix, 240
one-sided directional differential
convex function
Proposition 10.4.1, 360
definition, 359
example
Fact 10.8.8, 368
homogeneity
Fact 10.8.7, 368

one-to-one

definition, 4
function inverse Theorem 1.2.3, 4
one-to-one matrix
equivalent properties
Theorem 2.6.1, 34
nonsingular
equivalence
Corollary 2.6.4, 36
ones matrix
definition, 20
rank
Fact 2.10.1, 48
onto
definition, 4
function inverse Theorem 1.2.3, 4
onto matrix
equivalent properties
Theorem 2.6.1, 34
nonsingular
equivalence
Corollary 2.6.4, 36
open ball
bounded set
Fact 10.7.2, 365
completely solid set Fact 10.7.1, 365
convex set
Fact 10.7.1, 365
definition, 355
inner product
Fact 9.7.10, 326
open half space
affine open half space
Fact 2.9.3, 47
definition, 26
open mapping theorem
open set image Theorem 10.3.6, 358
open relative to a set continuous function Theorem 10.3.4, 358
open set
continuous function
Corollary 10.3.5, 358
convex hull
Fact 10.7.11, 366
definition
Definition 10.1.1, 355
right-invertible
matrix
Theorem 10.3.6, 358
open set relative to a set
definition
Definition 10.1.2, 355
Oppenheim's inequality
determinant
inequality
Fact 8.15.12, 297
order
definition, 15
ordered elements
definition, 3
orthogonal
determinant
Fact 3.6.20, 100
orthogonal complement
definition, 26
intersection

Fact 2.9.9, 47
projector
Proposition 5.5.5, 167
subspace
Fact 2.9.10, 47
Proposition 5.5.5, 167
sum
Fact 2.9.9, 47
orthogonal eigenvectors
normal matrix
Corollary 5.4.8, 165
orthogonal matrix
2×2
parameterization
Fact 3.6.14, 98
Cayley transform
Fact 11.9.8, 399
cross product
Fact 11.9.8, 399
definition
Definition 3.1.1, 77
existence of transformation
Fact 3.6.17, 99
factorization
Fact 5.13.13, 201
Fact 5.13.27, 204
Fact 5.13.32, 204
group
Proposition 3.2.7, 84
Kronecker
permutation matrix
Fact 7.4.29, 233
matrix exponential
Fact 11.10.14, 402
parameterization Fact 3.6.19, 100
partitioned matrix
Fact 3.6.12, 98
permutation matrix
Fact 3.6.5, 98
Proposition 3.1.5, 81
reflector
Fact 5.13.27, 204
Fact 5.13.32, 204
skew-symmetric matrix
Fact 3.6.25, 100
Fact 3.6.26, 101
Fact 11.10.14, 402
trace
Fact 3.6.2, 97
orthogonal projector, see projector
orthogonal similarity transformation
symmetric matrix Fact 5.7.3, 175
orthogonal vectors
norm inequality Fact 9.7.11, 327
unitary matrix Fact 3.6.3, 97
vector sum and difference Fact 2.11.6, 53
orthogonality
single complex matrix
Lemma 2.2.4, 23
single complex vector
Lemma 2.2.2, 21
single real matrix Lemma 2.2.3, 23
single real vector Lemma 2.2.1, 21
orthogonality of complex matrices definition, 23
orthogonality of complex vectors
definition, 21
orthogonality of real matrices
definition, 23
orthogonality of real vectors
definition, 21

orthogonally complementary subspaces

definition, 26
orthogonal
complement
Proposition 2.3.3, 26
orthogonally similar skew-symmetric matrix
Fact 5.11.20, 191
orthogonally similar matrices
definition
Definition 3.2.2, 82
projector
Fact 5.8.5, 179
upper block-triangular matrix
Corollary 5.4.2, 163
upper triangular matrix
Corollary 5.4.3, 163
oscillator, 380
companion matrix Fact 5.11.23, 191

Ostrowski-Taussky inequality determinant Fact 8.13.1, 285
outer product matrix singular value Fact 5.9.11, 182
outer-product matrix characteristic polynomial
Fact 4.9.12, 139
Fact 4.9.13, 140
cross product
Fact 11.9.8, 399
definition, 22
Definition 3.1.2, 78
Euclidean norm
Fact 9.7.13, 327
existence of transformation
Fact 2.11.12, 54
Frobenius norm
Fact 9.7.12, 327
generalized inverse
Fact 6.3.1, 213
Hermitian matrix
Fact 3.4.12, 88
Fact 3.4.33, 92
idempotent matrix
Fact 3.4.12, 88
Fact 3.5.13, 95
identity
Fact 2.11.7, 53
Fact 2.11.9, 54
Fact 2.11.10, 54
Kronecker product
Proposition 7.1.8, 227
linearly independent vectors
Fact 2.11.8, 54
matrix exponential
Fact 11.9.1, 397
matrix power
Fact 2.11.11, 54
maximum singular value
Fact 5.9.12, 182
Fact 9.7.12, 327
nilpotent matrix
Fact 3.8.6, 102
nonnegative-
semidefinite matrix
Fact 8.7.34, 269
Fact 8.10.1, 278
Fact 8.10.2, 278
partitioned matrix
Fact 4.9.13, 140
positive-definite matrix
Fact 3.4.34, 92
quadratic form
Fact 9.11.3, 346
rank
Fact 2.10.18, 50
Fact 2.10.19, 50

Fact 3.4.11, 88
Fact 3.5.13, 95
Fact 3.8.6, 102
singular value
Fact 5.9.8, 182
Fact 5.9.10, 182
skew-Hermitian
matrix
Fact 3.4.11, 88
Fact 3.4.35, 93
spectral abscissa
Fact 5.9.8, 182
spectral radius
Fact 5.9.8, 182
spectrum
Fact 5.9.8, 182
sum
Fact 2.10.19, 50
unitarily invariant norm
Fact 9.8.31, 333
outer-product perturbation
adjugate
Fact 2.13.2, 63
determinant
Fact 2.13.2, 63
inverse matrix
Fact 2.13.2, 63
rank
Fact 2.10.20, 50
ovals of Cassini
spectrum bounds
Fact 4.10.13, 144

P

pairwise connected
 relation
 definition
 Definition 1.2.1, 3

parallel affine
subspaces
definition, 25
parallel sum
definition
Fact 8.9.9, 276
parallelepiped
volume
Fact 2.16.6, 75
Fact 2.16.7, 75
parallelogram law
vector identity
Fact 9.7.4, 325
Parker
equal diagonal entries by unitary similarity Fact 5.7.6, 176

Parrott's theorem maximum singular value of a partitioned matrix Fact 9.12.7, 349
partial derivative definition, 359
partial ordering definition Definition 1.2.1, 3
nonnegativesemidefinite matrix
Proposition 8.1.1, 240
planar example
Fact 1.3.5, 6
partition
definition, 2
partitioned matrix
characteristic
polynomial
Fact 4.9.10, 139
Fact 4.9.11, 139
Fact 4.9.13, 140
Fact 4.9.15, 140
Fact 4.9.16, 140
column norm
Fact 9.8.9, 328
complex conjugate
Fact 2.15.8, 74
complex conjugate transpose
Proposition 2.8.1, 42
complex matrix
Fact 2.15.4, 73
Fact 2.15.5, 73
Fact 2.15.6, 73
Fact 3.6.12, 98
defect
Fact 2.10.24, 51
Fact 2.10.25, 51
definition, 16
determinant
Fact 2.12.1, 55
Fact 2.12.5, 55
Fact 2.12.6, 56
Fact 2.12.7, 56
Fact 2.12.8, 56
Fact 2.12.13, 57
Fact 2.12.14, 58
Fact 2.12.16, 59
Fact 2.12.17, 59
Fact 2.12.18, 60
Fact 2.12.19, 60
Fact 2.12.25, 62
Fact 2.13.31, 68
Fact 2.15.3, 72
Fact 2.15.8, 74
Fact 5.10.5, 188
Fact 6.4.25, 221
Fact 6.4.26, 221
Fact 8.13.22, 289
Fact 8.13.23, 289
Lemma 8.2.5, 243
determinant of block
2×2
Corollary 2.8.5, 44
Proposition 2.8.3, 43
Proposition 2.8.4, 43
determinant of lower
block triangular
Proposition 2.8.1, 42
discrete-time
asymptotically
stable matrix
Fact 11.15.10, 421
Drazin generalized inverse

Fact 6.5.5, 223
eigenvalue
Fact 5.10.5, 188
Fact 5.10.7, 188
Proposition 5.6.5, 175
factorization, 242
Fact 2.12.4, 55
Fact 2.12.13, 57
Fact 2.13.29, 67
Fact 2.13.30, 68
Fact 2.13.31, 68
Fact 6.4.24, 221
factorization of block
2×2
Proposition 2.8.3, 43
Proposition 2.8.4, 43
generalized inverse
Fact 6.3.13, 215
Fact 6.4.13, 218
Fact 6.4.14, 218
Fact 6.4.15, 219
Fact 8.9.11, 277
Hamiltonian matrix
Fact 3.9.6, 103
Fact 4.9.15, 140
Hermitian matrix
Fact 3.4.21, 89
Holder-induced norm
Fact 9.8.9, 328
idempotent matrix
Fact 3.5.18, 95
inverse matrix
Fact 2.13.3, 63
Fact 2.13.28, 67
Fact 2.13.29, 67
Fact 2.13.30, 68
Fact 2.13.31, 68
Fact 2.13.33, 69
Fact 2.13.35, 69
Fact 5.10.5, 188
inverse of block 2×2
Corollary 2.8.9, 45
Proposition 2.8.7, 44
Kronecker product
Fact 7.4.16, 232
Fact 7.4.17, 232
matrix exponential

Fact 11.9.2, 397
Fact 11.11.1, 403
matrix norm
Fact 9.9.34, 341
maximum singular value
Fact 8.14.14, 294
Fact 8.14.15, 294
Fact 9.12.6, 349
Fact 9.12.7, 349
Fact 9.12.8, 350
minimal polynomial
Fact 4.10.8, 142
multiplicative
identities, 18
nilpotent matrix
Fact 3.5.18, 95
nonnegative-
semidefinite
matrix
Corollary 8.2.2, 242
Fact 5.10.7, 188
Fact 8.6.4, 264
Fact 8.7.38, 270
Fact 8.7.39, 270
Fact 8.7.40, 270
Fact 8.7.41, 270
Fact 8.7.42, 271
Fact 8.8.17, 273
Fact 8.9.11, 277
Fact 8.12.17, 285
Fact 8.12.18, 285
Fact 8.13.23, 289
Fact 8.14.14, 294
Fact 8.14.15, 294
Fact 9.8.24, 331
Lemma 8.2.1, 241
Lemma 8.2.5, 243
Proposition 8.2.3, 242
normal matrix
Fact 3.5.18, 95
orthogonal matrix
Fact 3.6.12, 98
outer-product matrix
Fact 4.9.13, 140
positive-definite matrix

Fact 8.7.39, 270
Fact 8.7.40, 270
Fact 8.7.41, 270
Fact 8.7.42, 271
Fact 8.7.45, 271
Fact 8.8.17, 273
Fact 8.13.22, 289
Fact 8.14.14, 294
Fact 11.15.10, 421
Lemma 8.2.5, 243
Proposition 8.2.4, 243
Proposition 8.2.3, 242
product
Fact 2.11.14, 54
range
Fact 2.10.22, 51
rank
Fact 2.10.24, 51
Fact 2.10.25, 51
Fact 2.10.26, 52
Fact 2.10.27, 52
Fact 2.10.28, 52
Fact 2.10.29, 53
Fact 2.12.7, 56
Fact 2.12.8, 56
Fact 2.12.14, 58
Fact 2.13.31, 68
Fact 2.13.39, 70
Fact 5.10.5, 188
Fact 6.3.13, 215
Fact 6.4.11, 217
Fact 6.4.12, 218
Fact 6.5.5, 223
Fact 8.6.4, 264
rank of block 2×2
Proposition 2.8.3, 43
Proposition 2.8.4, 43
row norm
Fact 9.8.9, 328
Schatten norm
Fact 9.9.34, 341
Schur complement
Fact 6.4.35, 222
semicontractive matrix
Fact 3.6.13, 98
singular value
Proposition 5.6.5, 175
skew-Hermitian
matrix
Fact 3.4.21, 89
skew-symmetric
matrix
Fact 3.6.12, 98
spectrum
Fact 2.15.3, 72
Fact 4.10.18, 145
symmetric matrix
Fact 3.6.12, 98
trace
Fact 8.12.17, 285
Fact 8.12.18, 285
Fact 8.13.23, 289
Proposition 2.8.1, 42
transpose
Proposition 2.8.1, 42
unitarily invariant norm
Fact 9.8.24, 331
unitarily similar matrices
Fact 5.7.5, 175
unitary matrix
Fact 3.6.13, 98
Fact 3.6.22, 100

Penrose

matrix sum
Fact 6.4.18, 220

permutation matrix

definition
Definition 3.1.1, 77
determinant
Fact 2.12.21, 60
orthogonal matrix
Fact 3.6.5, 98
Proposition 3.1.5, 81
Perron-Frobenius theorem
nonnegative matrix eigenvalues Fact 4.11.1, 145

perturbation

asymptotically stable matrix

Fact 11.14.15, 414
matrix inverse Fact 9.9.28, 340
nonsingular matrix Fact 9.12.12, 350

Pfaff's theorem
determinant of a skew-symmetric matrix
Fact 4.8.12, 136
Poincare separation theorem
eigenvalue inequality Fact 8.14.12, 293
pointed cone
definition, 25
induced by reflexive relation
Proposition 2.3.6, 28
nonnegativesemidefinite matrix, 240
polar decomposition
existence
Corollary 5.6.4, 175
Frobenius norm
Fact 9.9.24, 339
matrix exponential
Fact 11.10.7, 401
normal matrix
Fact 5.13.42, 205
Fact 11.10.7, 401
uniqueness
Fact 5.13.38, 205
Fact 5.13.39, 205
Fact 5.13.40, 205
Fact 5.13.41, 205
polarization identity vector identity Fact 9.7.4, 325
polarized Cayley-Hamilton theorem
triple product identity

Fact 4.9.4, 138
pole of a rational function
definition
Definition 4.7.1, 129
pole of a transfer function
definition
Definition 4.7.6, 130
polygon
area
Fact 2.16.3, 74
polyhedral convex cone
definition, 25
polynomial
asymptotically stable
Definition 11.6.3, 387
Bezout matrix
Fact 4.8.6, 132
Fact 4.8.7, 134
coprime
Fact 4.8.3, 131
Fact 4.8.4, 131
Fact 4.8.5, 132
definition, 111
discrete-time asymptotically stable
Definition 11.8.3, 396
discrete-time
Lyapunov stable
Definition 11.8.3, 396
discrete-time
semistable
Definition 11.8.3, 396
greatest common divisor
Fact 4.8.5, 132
interpolation
Fact 4.8.10, 136
least common multiple
Fact 4.8.3, 131
Lyapunov stable

Definition 11.6.3, 387
roots
Fact 4.8.1, 131
Fact 4.8.2, 131
semistable
Definition 11.6.3, 387
spectrum
Fact 4.10.1, 141
Fact 4.10.6, 141
Vandermonde matrix Fact 5.12.4, 196
polynomial coefficients
asymptotically stable polynomial
Fact 11.13.1, 410
Fact 11.13.2, 410
Fact 11.13.5, 411
Fact 11.13.6, 411
Fact 11.13.8, 412
Fact 11.13.9, 412
discrete-time asymptotically stable polynomial
Fact 11.15.1, 419
polynomial division quotient and remainder Lemma 4.1.2, 113

polynomial

 multiplicationToeplitz matrix Fact 4.8.9, 135
polynomial representation commuting matrices Fact 5.11.16, 190
polynomial root maximum singular value bound Fact 9.11.14, 347
minimum singular value bound Fact 9.11.14, 347

polynomial roots

Bezout matrix

Fact 4.8.8, 135
Newton's identities
Fact 4.8.2, 131
polytope
definition, 25
positive diagonal upper triangular matrix
Fact 5.13.6, 199
positive matrix
definition, 16
Definition 3.1.4, 81
eigenvalues
Fact 4.11.8, 149
Kronecker sum
Fact 7.4.15, 232
Schur product
Fact 7.5.11, 237
Fact 7.5.12, 237
spectral radius Fact 7.5.12, 237
spectrum
Fact 5.9.7, 181
unstable matrix
Fact 11.14.18, 415
positive vector definition, 14 null space Fact 4.11.5, 148
positive-definite matrix asymptotically stable matrix
Fact 11.14.19, 415
Cayley transform Fact 8.7.18, 266 cogredient diagonalization Fact 8.11.7, 281
Theorem 8.3.1, 245
complex matrix Fact 3.4.5, 86 congruent matrices Corollary 8.1.3, 241
contragedient diagonalization

Theorem 8.3.2, 245
contragredient diagonalization Corollary 8.3.3, 245
definition
Definition 3.1.1, 77
determinant
Fact 5.10.6, 188
Fact 8.7.44, 271
Fact 8.13.2, 286
Fact 8.13.3, 286
Fact 8.13.6, 286
Fact 8.13.7, 286
Fact 8.13.9, 287
Fact 8.13.11, 287
Fact 8.13.14, 287
Fact 8.13.22, 289
Proposition 8.4.14, 251
discrete-time
asymptotically
stable matrix
Fact 11.15.10, 421
Fact 11.15.17, 422
dissipative matrix
Fact 11.14.19, 415
eigenvalue
Fact 8.10.8, 278
ellipsoid
Fact 3.4.36, 93
factorization
Fact 5.13.41, 205
Fact 5.13.42, 205
generalized inverse
Proposition 6.1.6, 209
group-invertible matrix
Fact 8.8.5, 272
Hermitian matrix
Fact 8.8.6, 272
Fact 8.11.8, 281
inequality
Fact 8.7.9, 266
Fact 8.7.36, 269
Fact 8.8.2, 271
Fact 8.8.8, 272
Fact 8.8.9, 272
Fact 8.8.13, 272
Fact 8.8.19, 274

Fact 8.8.18, 273
Fact 8.10.9, 279
Fact 8.10.10, 279
inner-product
minimization
Fact 8.10.6, 278
integral
Fact 8.10.13, 280
Fact 8.10.14, 280
Fact 8.10.15, 280
inverse matrix
Fact 8.7.36, 269
Lemma 8.1.4, 241
Proposition 8.1.5, 241
Kronecker product
Fact 7.4.13, 232
left inverse
Fact 3.4.19, 89
limit
Fact 8.8.21, 275
logarithm
Fact 8.7.44, 271
Fact 8.12.19, 285
Lyapunov-stable matrix
Proposition 11.7.5, 393
matrix exponential
Fact 11.11.19, 406
Proposition 11.1.4, 373
matrix product
Corollary 8.3.6, 246
maximum singular value
Fact 8.14.17, 294
nonnegative-
semidefinite
matrix
Fact 8.7.30, 268
Fact 8.8.11, 272
norm
Fact 9.7.16, 327
outer-product
matrix
Fact 3.4.34, 92
partitioned matrix
Fact 8.7.39, 270
Fact 8.7.40, 270
Fact 8.7.41, 270

Fact 8.7.42, 271
Fact 8.7.45, 271
Fact 8.8.17, 273
Fact 8.13.22, 289
Fact 8.14.14, 294
Fact 11.15.10, 421
Lemma 8.2.5, 243
Proposition 8.2.4, 243
Proposition 8.2.3, 242
properties of $<$ and
\leq
Proposition 8.1.2, 240
quadratic form
Fact 8.10.12, 279
Fact 9.8.28, 332
Schur complement
Fact 8.7.37, 270
Schur product
Fact 8.15.3, 295
Fact 8.15.7, 296
Fact 8.15.8, 296
Fact 8.15.20, 299
Fact 8.15.22, 300
Fact 8.15.23, 300
skew-Hermitian matrix
Fact 11.14.11, 414
spectrum
Proposition 5.5.25, 172
subdeterminant
Fact 8.13.9, 287
Proposition 8.2.7, 244
submatrix
Corollary 8.2.8, 245
Fact 8.7.43, 271
Proposition 8.2.7, 244
trace
Fact 8.8.20, 274
Fact 8.12.11, 284
Fact 8.12.13, 284
Fact 8.12.19, 285
Proposition 8.4.14, 251
tridiagonal matrix
Fact 8.7.31, 269
positive-definite matrix determinant
Fischer's inequality

Fact 8.13.22, 289
positive-definite matrix product
geometric mean
Fact 8.8.20, 274
inequality
Fact 8.8.20, 274
power difference
expansion
Fact 2.11.20, 55
power inequality
monotonic
Fact 1.4.6, 7
Fact 1.4.7, 7
one-variable
Fact 1.4.1, 6
two-variable
Fact 1.4.2, 6
power mean
monotonicity
Fact 1.4.10, 8
power sum inequality
Holder norm
Fact 1.4.13, 9
norm monotonicity Fact 1.4.13, 9
primitive matrix definition
Fact 4.11.1, 145
principal submatrix definition, 41
problem
adjoint norm
Fact 9.8.5, 328
adjugate of a dissipative matrix Fact 8.13.5, 286
adjugate of a normal matrix
Fact 3.4.6, 87
bialternate product and compound matrix
Fact 7.4.32, 234

Cauchy matrix
Fact 8.7.29, 268
Cayley transform of a Lyapunov-stable matrix
Fact 11.15.9, 421
commutator realization Fact 3.4.27, 91
complex partitioned matrix
Fact 2.15.6, 73
convergence of the Baker-CampbellHausdorff
series
Fact 11.11.6, 404
convergent sequence
for the generalized
inverse
Fact 6.3.18, 215
determinant lower bound
Fact 4.10.14, 144
Fact 8.13.17, 288
determinant of a
Kronecker sum
Fact 7.4.28, 233
determinant of partitioned matrix Fact 2.12.16, 59
determinant of the geometric mean Fact 8.15.12, 297
discrete-time Lyapunov-stable matrix and the matrix exponential Fact 11.15.5, 420
equality in the triangle inequality Fact 9.7.3, 325
Euclidean norm inequality Fact 9.7.5, 325
exponential representation of a discrete-time

Lyapunov-stable matrix
Fact 11.15.8, 420
factorization of a partitioned matrix
Fact 6.4.24, 221
factorization of a unitary matrix Fact 5.13.13, 201
factorization of an orthogonal matrix by reflectors
Fact 5.13.27, 204
factorization of an outer-product matrix
Fact 5.13.29, 204
factorization of nonsingular matrix by elementary matrices
Fact 5.13.9, 200
Frobenius norm
lower bound
Fact 9.9.11, 336
Fact 9.9.13, 337
generalized inverse
least squares
solution
Fact 6.4.32, 222
Hahn-Banach
theorem
interpretation
Fact 10.7.19, 367
Hermitian matrix upper bound
Fact 8.8.15, 273
Holder-induced
norm inequality
Fact 9.8.13, 330
Hurwitz stability
test
Fact 11.14.21, 415
inverse matrix
Fact 2.13.3, 63
Fact 2.13.33, 69
Kronecker product of nonnegative-
semidefinite matrices
Fact 8.15.13, 297
Lyapunov-stable matrix and the matrix exponential
Fact 11.14.32, 418
majorization and singular values Fact 8.14.3, 290 matrix exponential and proper rotation Fact 11.9.9, 399
matrix exponential formula
Fact 11.11.24, 407
matrix exponential representation Fact 11.9.8, 399
noninteger matrix root
Fact 8.7.19, 266
nonnegativesemidefinite matrix trace upper bound Fact 8.12.8, 283
nonnegativesemidefinite matrix upper bound
Fact 8.8.16, 273
norm of a
partitioned matrix
Fact 8.14.15, 294
normal matrix
Fact 3.4.8, 87
orthogonal complement
Fact 2.9.9, 47
orthogonal matrix
Fact 3.6.17, 99
polar decomposition
of a matrix
exponential
Fact 11.10.7, 401
positive-definite matrix
Fact 8.7.27, 268
positive-definite partitioned matrix Fact 8.7.40, 270
rank of a
nonnegative-
semidefinite
matrix
Fact 8.7.22, 267
reflector
Fact 3.7.5, 101
right inverse and
linear system
Fact 2.13.23, 66
Schur product of positive-definite matrices
Fact 8.15.20, 299
solutions of a matrix identity
Fact 3.5.29, 97
spectrum of a partitioned nonnegativesemidefinite matrix
Fact 5.10.7, 188
spectrum of a sum of outer products Fact 5.9.8, 182
strict inequality of the geometric mean Fact 8.8.20, 274
trace of a positive-definite matrix
Fact 8.12.13, 284
product
identities
Fact 2.11.19, 55
product of matrices
definition, 17
projector
definition
Definition 3.1.1, 77
elementary reflector Fact 5.13.10, 200

factorization

Fact 5.13.10, 200
Fact 5.13.14, 201
Fact 6.3.15, 215
generalized inverse
Fact 6.3.6, 214
Fact 6.3.15, 215
Fact 6.4.9, 217
Fact 6.4.10, 217
Fact 6.4.27, 221
Hermitian matrix
Fact 3.5.28, 97
Fact 5.13.14, 201
idempotent matrix
Fact 3.5.28, 97
Fact 6.4.10, 217
identity
Fact 3.5.4, 93
Fact 3.5.9, 94
inequality
Fact 8.7.14, 266
matrix limit
Fact 6.4.27, 221
maximum singular value
Fact 9.12.16, 352
nonnegativesemidefinite matrix
Fact 3.5.5, 93
orthogonal
complement
Proposition 5.5.5, 167
orthogonally similar matrices
Fact 5.8.5, 179
quadratic form
Fact 3.5.10, 94
Fact 3.5.11, 95
range
Fact 3.5.1, 93
Fact 3.5.2, 93
Proposition 5.5.4, 166
rank
Fact 3.5.9, 94
reflector
Fact 3.5.27, 97
right inverse

Fact 3.5.3, 93
spectrum
Fact 5.11.22, 191
Proposition 5.5.25, 172
subspace
Proposition 5.5.5, 167
trace
Fact 3.5.7, 94
projector onto a subspace
definition, 166
proper rational function
definition
Definition 4.7.1, 129
proper rational transfer function
definition
Definition 4.7.2, 129
proper rotation
matrix exponential Fact 11.9.9, 399
proper separation theorem
convex sets
Fact 10.7.21, 367
proper subset
definition, 2
proposition
definition, 1
Ptak
maximum singular value
Fact 9.11.11, 347
Purves
similar matrices and nonzero diagonal entries
Fact 5.7.8, 176
Putnam-Fuglede theorem
normal matrix
Fact 5.11.19, 191

Pythagorean theorem
vector identity
Fact 9.7.4, 325

QR decomposition
existence
Fact 5.13.5, 199
quadratic form
definition, 78
dual norm
Fact 9.8.25, 331
eigenvalue
Fact 8.10.8, 278
Lemma 8.4.3, 248
Hermitian matrix
Fact 3.4.4, 86
Fact 8.10.12, 279
Holder-induced
norm
Fact 9.8.26, 332
Fact 9.8.27, 332
idempotent matrix
Fact 3.5.11, 95
induced norm
Fact 9.8.25, 331
inequality
Fact 8.10.3, 278
Fact 8.10.4, 278
Fact 8.10.7, 278
Fact 8.10.9, 279
Fact 8.10.10, 279
integral
Fact 8.10.14, 280
Fact 8.10.15, 280
maximum singular value
Fact 9.11.1, 345
Fact 9.11.2, 345
minimum singular value
Fact 9.11.1, 345
nonnegative-
semidefinite
matrix
Fact 8.10.7, 278
norm
Fact 9.7.16, 327
null space
Fact 8.10.11, 279
outer-product matrix
Fact 9.11.3, 346
positive-definite matrix
Fact 8.10.12, 279
Fact 9.8.28, 332
projector
Fact 3.5.10, 94
Fact 3.5.11, 95
skew-Hermitian
matrix
Fact 3.4.4, 86
skew-symmetric
matrix
Fact 3.4.3, 86
symmetric matrix
Fact 3.4.3, 86
vector derivative
Proposition 10.6.1, 364
quadratic form inequality
nonnegative-
semidefinite
matrix
Fact 8.10.3, 278
quadratic matrix equation
spectrum
Fact 5.9.1, 180
Fact 5.9.2, 180
quadruple product
trace
Fact 7.4.8, 231
vec
Fact 7.4.8, 231
quaternions
2×2 matrix representation Fact 3.11.1, 105
real matrix representation

Fact 3.11.3, 106 unitary
Fact 3.11.2, 106

quotient

definition, 113

R

range

adjugate
Fact 2.13.6, 64
definition, 4, 29
factorization
Theorem 8.5.2, 253
generalized inverse
Fact 6.4.28, 221
Fact 6.4.29, 221
Proposition 6.1.6, 209
group generalized inverse
Proposition 6.2.2, 213
group-invertible matrix
Fact 3.3.3, 85
Hermitian matrix
Lemma 8.5.1, 253
idempotent matrix
Fact 3.5.12, 95
identity
Fact 2.10.2, 48
Fact 2.10.14, 50
Fact 2.10.16, 50
inclusion
Fact 2.10.13, 49
Fact 2.10.14, 50
inclusion for a matrix power Corollary 2.4.2, 30
inclusion for a matrix product Lemma 2.4.1, 30 index of a matrix Fact 5.11.1, 189
minimal polynomial
Corollary 11.6.6, 389
nonnegative-
semidefinite matrix
Corollary 8.2.2, 242
Fact 8.6.1, 264
Fact 8.6.2, 264
Fact 8.6.3, 264
Fact 8.9.3, 275
Fact 8.9.4, 275
Theorem 8.5.2, 253
null space inclusions
Theorem 2.4.3, 30
partitioned matrix
Fact 2.10.22, 51
projector
Fact 3.5.2, 93
Proposition 5.5.4, 166
rank
Fact 2.10.23, 51
right-equivalent matrices
Proposition 5.1.3, 151
skew-Hermitian
matrix
Fact 8.6.2, 264
symmetric matrix
Fact 3.4.2, 86
range-Hermitian matrix
definition
Definition 3.1.1, 77
dissipative matrix
Fact 3.3.5, 86
factorization
Fact 5.13.8, 200
generalized inverse
Fact 6.4.6, 216
Proposition 6.1.6, 209
group generalized inverse
Fact 6.5.8, 223
group-invertible matrix
Fact 3.3.4, 86
Proposition 3.1.5, 81
Kronecker product
Fact 7.4.13, 232
Kronecker sum

Fact 7.4.18, 232
nonnegativesemidefinite matrix
Fact 8.9.10, 277
nonsingular matrix
Proposition 3.1.5, 81
normal matrix
Proposition 3.1.5, 81
null space
Fact 3.3.1, 85
rank
Fact 3.3.2, 85
Schur form
Corollary 5.4.4, 163
unitarily similar
matrices
Corollary 5.4.4, 163
rank
adjugate
Fact 2.13.6, 64
Fact 2.13.7, 64
biequivalent matrices
Proposition 5.1.3, 151
complex matrix
Fact 2.15.3, 72
definition, 31
diagonal dominance
Fact 4.10.15, 144
dimension inequality
Fact 2.10.10, 49
factorization
Fact 5.13.37, 205
generalized inverse
Fact 6.4.11, 217
Fact 6.4.12, 218
Fact 6.4.30, 222
group-invertible matrix
Fact 3.3.3, 85
Hermitian matrix
Fact 3.4.16, 89
idempotent matrix
Fact 3.5.13, 95
Fact 3.5.16, 95
identities with defect
Corollary 2.5.1, 31
identities with
transpose
Corollary 2.5.3, 32
identity
Fact 2.10.2, 48
Fact 2.10.16, 50
Fact 2.10.17, 50
identity with defect
Corollary 2.5.5, 33
identity with powers
Proposition 2.5.7, 33
inverse matrix
Fact 2.10.21, 51
Fact 2.13.39, 70
Kronecker product
Fact 7.4.20, 232
Fact 8.15.9, 296
linear system solution
Corollary 2.6.5, 37
Theorem 2.6.3, 35
lower bound for product
Corollary 2.5.9, 34
Proposition 2.5.8, 33
matrix difference
Fact 2.10.5, 48
matrix powers
Corollary 2.5.6, 33
Fact 3.8.4, 102
matrix sum
Fact 2.10.5, 48
Fact 2.10.6, 48
nilpotent matrix
Fact 3.8.4, 102
Fact 3.8.5, 102
Fact 3.8.6, 102
nonnegativesemidefinite matrix
Fact 8.6.1, 264
Fact 8.6.3, 264
Fact 8.6.4, 264
Fact 8.15.9, 296
nonsingular
submatrices
Proposition 2.7.7, 42
ones matrix

Fact 2.10.1, 48
outer-product
matrix
Fact 2.10.18, 50
Fact 3.5.13, 95
Fact 3.8.6, 102
outer-product
perturbation
Fact 2.10.20, 50
partitioned matrix
Fact 2.10.24, 51
Fact $2.10 .25,51$
Fact 2.10.26, 52
Fact 2.10.27, 52
Fact 2.10.28, 52
Fact 2.10.29, 53
Fact 2.12.7, 56
Fact 2.12.8, 56
Fact 2.12.14, 58
Fact 2.13.31, 68
Fact 2.13.39, 70
Fact 5.10.5, 188
Fact 6.3.13, 215
Fact 6.4.11, 217
Fact 6.4.12, 218
Fact 6.5.5, 223
Fact 8.6.4, 264
product of matrices
Fact 2.10.7, 49
Fact 2.10.8, 49
product with full rank matrix
Proposition 2.6.2, 35
range
Fact 2.10.23, 51
range-Hermitian matrix
Fact 3.3.2, 85
rational transfer function
Definition 4.7.3, 129
Schur product
Fact 7.5.5, 235
Fact 8.15.9, 296
singular value
Proposition 5.6.2, 173
skew-Hermitian matrix

Fact 3.4.11, 88 submatrix

Fact 2.10.30, 53 sum of matrices Fact 2.10.15, 50 tripotent matrix Fact 3.12.14, 108 upper bound for product
Corollary 2.5.9, 34
upper bound on rank of a product Lemma 2.5.2, 32
upper bound with dimensions
Corollary 2.5.4, 33
rank of a matrix polynomial
definition
Definition 4.2.4, 115
submatrix
Proposition 4.2.7, 116
rank of a rational function
linearly independent columns
Proposition 4.7.5, 130
rank-deficient matrix
determinant
Fact 2.12.9, 57
rank-one perturbation
unitary matrix
Fact 3.6.18, 99
rational canonical form, see multi-companion form or elementary multi-companion form
rational function
definition
Definition 4.7.1, 129
Hankel matrix
Fact 4.8.7, 134
rational transfer function
definition
Definition 4.7.2, 129
normal rank
Definition 4.7.3, 129
rank
Definition 4.7.3, 129
real eigenvalues
nonnegative-
semidefinite
matrix
Fact 5.11.8, 189
real hypercompanion form
definition, 158
real Jordan form
existence
Theorem 5.3.5, 159
real Jordan matrix
definition, 158
real normal form
existence
Corollary 5.4.9, 165
real Schur form
existence
Corollary 5.4.2, 163
Corollary 5.4.3, 163
real vector
definition, 21
redundant assumptions
definition, 1
reflection theorem
elementary reflector
Fact 3.7.3, 101
reflector
definition
Definition 3.1.1, 77
elementary reflector
Fact 5.13.11, 200
factorization
Fact 5.13.11, 200

Hermitian matrix
Fact 3.7.1, 101
identity
Fact 3.7.6, 102
involutory matrix
Fact 3.7.1, 101
orthogonal matrix
Fact 5.13.27, 204
Fact 5.13.32, 204
projector
Fact 3.5.27, 97
skew-Hermitian
matrix
Fact 3.7.5, 101
spectrum
Proposition 5.5.25, 172
trace
Fact 3.5.7, 94
tripotent matrix
Proposition 3.1.5, 81
unitary matrix
Fact 3.7.1, 101

reflexive relation

definition
Definition 1.2.1, 3
nonnegative-
semidefinite
matrix
Proposition 8.1.1, 240
pointed cone
induced by
Proposition 2.3.6, 28
regular matrix
polynomial
definition, 114
nonsingular matrix
polynomial
Proposition 4.2.5, 116

relation

definition, 3
relative degree
definition
Definition 4.7.1, 129
relative entropy
difference of logarithms Fact 8.12.19, 285
relative gain array
definition
Fact 8.15.3, 295
remainder
definition, 113
resultant
coprime polynomials
Fact 4.8.4, 131
reverse complex conjugate transpose
definition, 24
reverse identity
determinant Fact 2.12.2, 55
reverse identity matrix
definition, 20
spectrum
Fact 5.7.15, 177
symmetric
permutation matrix
Fact 3.9.1, 103
reverse transpose
definition, 24
reverse triangle inequality
Holder-norm
Fact 9.7.7, 326
reverse-diagonal entries
definition, 16
reverse-diagonal matrix definition
Definition 3.1.3, 79
semisimple matrix
Fact 5.11.7, 189
reverse-Hermitian matrix
definition
Definition 3.1.1, 77
reverse-symmetric matrix
definition
Definition 3.1.1, 77
Toeplitz matrix Fact 3.12.6, 107

right divides

definition, 114
right equivalence
equivalence relation Fact 5.8.2, 178
right inverse
(1)-inverse

Proposition 6.1.2, 208
definition, 4
generalized inverse Corollary 6.1.4, 208
idempotent matrix Fact 3.5.20, 96
matrix product Fact 2.13.25, 67
nonnegativesemidefinite matrix
Fact 3.4.20, 89
projector Fact 3.5.3, 93
right-inner matrix Fact 3.6.4, 98
uniqueness
Theorem 1.2.3, 4
right invertible definition, 4
right-equivalent matrices
definition Definition 3.2.1, 82
group-invertible matrix Fact 3.3.3, 85
Kronecker product Fact 7.4.11, 231
range
Proposition 5.1.3, 151
right-inner matrix
definition
Definition 3.1.2, 78
right inverse
Fact 3.6.4, 98
right-invertible matrix
definition, 34
equivalent properties
Theorem 2.6.1, 34
generalized inverse
Proposition 6.1.5, 209
linear system
solution
Fact 2.12.12, 57
nonsingular
equivalence
Corollary 2.6.4, 36
open set
Theorem 10.3.6, 358
rigid body rotation
matrix exponential Fact 11.9.6, 398

Rodrigues

orthogonal matrix
Fact 3.6.19, 100

roots

polynomial
Fact 4.8.1, 131
Fact 4.8.2, 131
rotation
vector
Fact 3.6.15, 99
Fact 3.6.16, 99

rotation-dilation

factorization
Fact 2.15.2, 72

Roth

solutions of
Sylvester's equation
Fact 5.8.11, 180
Fact 5.8.12, 180

Roup

positive-definite matrix
Fact 8.7.30, 268

Routh criterion

asymptotically stable polynomial
Fact 11.13.2, 410

Routh form

tridiagonal matrix
Fact 11.14.24, 416

row

definition, 15
row norm
column norm
Fact 9.8.8, 328
definition, 317
Holder-induced norm
Fact 9.8.13, 330
Fact 9.8.15, 330
Kronecker product Fact 9.9.29, 340
partitioned matrix Fact 9.8.9, 328

S

Schatten norm
compatible norms
Proposition 9.3.6, 312
definition
Proposition 9.2.3, 309
Holder matrix norm Proposition 9.2.5, 310
inequalities
Fact 9.9.18, 338
inequality
Fact 9.9.22, 339
Kronecker product Fact 9.12.18, 352
monotonicity
Proposition 9.2.4, 310
nonnegative-
semidefinite
matrix
Fact 9.9.17, 338
normal matrix
Fact 9.12.1, 348
partitioned matrix

Fact 9.9.34, 341
trace
Fact 9.10.3, 342
Fact 9.10.4, 342
unitarily invariant norm
Fact 9.8.6, 328
Schauder fixed point theorem
image of a continuous function Theorem 10.3.9, 359

Schmidt

fixed-rank approximation Fact 9.12.14, 351

Schur complement

 convex functionLemma 8.5.12, 257
Proposition 8.5.13, 258
definition
Definition 6.1.8, 211
increasing function
Proposition 8.5.10, 256
nondecreasing
function
Proposition 8.5.10, 256
nonnegative-
semidefinite
matrix
Corollary 8.5.14, 263
Fact 8.7.37, 270
Fact 8.15.4, 295
partitioned matrix
Fact 6.4.35, 222
positive-definite matrix
Fact 8.7.37, 270
Schur product
Fact 8.15.4, 295
Schur decomposition
Hermitian matrix
Corollary 5.4.5, 164
Schur form
definition, 162
existence
Theorem 5.4.1, 162
Jordan form
Fact 5.7.2, 175
normal matrix
Corollary 5.4.4, 163
Fact 5.7.2, 175
range-Hermitian matrix
Corollary 5.4.4, 163
Schur inverse
nonnegativesemidefinite matrix
Fact 8.15.1, 295
Schur power
definition, 230
Lyapunov equation Fact 8.7.23, 267
nonnegative-
semidefinite
matrix
Fact 8.15.2, 295
Fact 8.15.17, 298

Schur product

associative identities, 230
commutative
identities, 230
definition, 230
distributive
identities, 230
Hermitian matrix Fact 8.15.16, 298
Kronecker product
Proposition 7.3.1, 230
logarithm
Fact 8.15.21, 299
matrix exponential
Fact 11.11.20, 406
matrix identity
Fact 7.5.3, 235
Fact 7.5.4, 235
Fact 7.5.6, 236
Fact 7.5.8, 236
matrix power

Fact 7.5.9, 236
matrix-vector identity
Fact 7.5.7, 236
maximum singular value
Fact 9.12.17, 352
nonnegative matrix
Fact 7.5.11, 237
nonnegative-
semidefinite matrix
Fact 8.15.4, 295
Fact 8.15.6, 296
Fact 8.15.8, 296
Fact 8.15.10, 296
Fact 8.15.11, 297
Fact 8.15.13, 297
Fact 8.15.18, 298
Fact 8.15.19, 299
Fact 8.15.24, 300
positive matrix
Fact 7.5.12, 237
positive-definite matrix
Fact 8.15.3, 295
Fact 8.15.7, 296
Fact 8.15.8, 296
Fact 8.15.20, 299
Fact 8.15.22, 300
Fact 8.15.23, 300
rank
Fact 7.5.5, 235
Fact 8.15.9, 296
Schur complement Fact 8.15.4, 295
singular value
Fact 9.12.17, 352
spectral radius
Fact 7.5.11, 237
Fact 7.5.12, 237
trace
Fact 8.15.10, 296
transpose
Fact 7.5.10, 236
unitarily invariant norm
Fact 9.9.30, 340
vector identity
Fact 7.5.1, 235
Fact 7.5.2, 235
weak majorization Fact 9.12.17, 352

Schur product of polynomials
asymptotically stable polynomial Fact 11.13.7, 411

Schur's formulas
determinant of partitioned matrix Fact 2.12.16, 59

Schur's inequality
trace of matrix squared
Fact 8.14.3, 290
Schur's theorem eigenvalue inequality Fact 8.14.4, 291
Schur product of nonnegativesemidefinite matrices
Fact 8.15.6, 296

Schwarz form

tridiagonal matrix Fact 11.14.23, 416
second derivative definition, 361

Segal's inequality Hermitian matrix Fact 11.12.8, 410

Seiler

determinant inequality
Fact 8.13.19, 288
self-adjoint norm
definition, 308
unitarily invariant norm
Fact 9.8.4, 328
self-conjugate set
definition, 112
semicontractive matrix
complex conjugate transpose
Fact 3.12.3, 106
definition
Definition 3.1.2, 78
partitioned matrix
Fact 3.6.13, 98
unitary matrix Fact 3.6.13, 98
semidissipative matrix
definition
Definition 3.1.1, 77
discrete-time
Lyapunov-stable
matrix
Fact 11.15.5, 420
dissipative matrix
Fact 8.13.17, 288
Lyapunov-stable matrix
Fact 11.14.32, 418
normal matrix
Fact 11.14.32, 418
semisimple eigenvalue
cyclic eigenvalue
Proposition 5.5.11, 168
defect
Proposition 5.5.14, 168
definition
Definition 5.5.10, 167
index
Proposition 5.5.14, 168
null space
Proposition 5.5.14, 168
simple eigenvalue
Proposition 5.5.11, 168
semisimple matrix
definition
Definition 5.5.10, 167
idempotent matrix
Fact 5.11.14, 190
involutory matrix
Fact 5.11.12, 190

Kronecker product
Fact 7.4.13, 232
nilpotent matrix
Fact 5.13.19, 202
nonnegative-
semidefinite matrix
Corollary 8.3.6, 246
normal matrix Proposition 5.5.17, 169
reverse-diagonal matrix
Fact 5.11.7, 189
similar matrices
Proposition 5.5.17, 169
skew-involutory
matrix
Fact 5.11.12, 190
semistability
eigenvalue
Proposition 11.6.2, 386
linear dynamical system
Proposition 11.6.2, 386
Lyapunov equation
Corollary 11.7.1, 390
matrix exponential
Proposition 11.6.2, 386
semistable matrix definition
Definition 11.6.1, 386
group-invertible matrix
Fact 11.14.3, 412
Kronecker sum
Fact 11.14.28, 418
Fact 11.14.29, 418
limit
Fact 11.14.6, 413
Lyapunov-stable matrix
Fact 11.14.1, 412
matrix exponential
Fact 11.14.4, 412
Fact 11.14.6, 413
Fact 11.15.8, 420
semistable
polynomial
Proposition 11.6.4, 387
unstable subspace
Proposition 11.6.8, 389
semistable polynomial
definition
Definition 11.6.3, 387
reciprocal argument
Fact 11.13.4, 411
semistable matrix
Proposition 11.6.4, 387
separation theorem
convex cone
Fact 10.7.20, 367
inner product
Fact 10.7.20, 367
Fact 10.7.21, 367

sequence

definition
Definition 10.2.1, 356
series
commutator
Fact 11.11.18, 406
definition
Definition 10.2.6, 357
inverse matrix Proposition 9.4.10, 318
matrix exponential
Fact 11.11.18, 406
set
definition, 2
set identities
intersection
Fact 1.3.4, 5
union
Fact 1.3.4, 5
Sherman-MorrisonWoodbury formula
determinant of outer-product perturbation Fact 2.13.2, 63

Shoda

matrix factorization
Fact 5.13.4, 199
Shoda's theorem
commutator
realization
Fact 5.7.18, 178
zero trace
Fact 5.7.18, 178
signature
definition, 164
similar matrices
block-diagonal matrix
Theorem 5.3.2, 157
Theorem 5.3.3, 157
campanion matrix
Fact 5.12.6, 196
characteristic polynomial Fact 4.9.7, 138 complex conjugate Fact 5.7.17, 178
cyclic matrix Fact 5.12.6, 196
definition
Definition 3.2.2, 82
diagonal entries Fact 5.7.7, 176
diagonalizable over \mathbb{R}
Proposition 5.5.18, 170
equivalence class
Fact 5.8.1, 178
equivalence relation
Fact 5.8.2, 178
example
Example 5.5.24, 172
factorization
Fact 5.13.3, 199
geometric
multiplicity
Proposition 5.5.16, 169
group-invertible
matrix
Fact 5.7.12, 176
inverse matrix

Fact 5.13.27, 204
involutory matrix
Fact 5.13.27, 204
Kronecker product
Fact 7.4.12, 232
matrix classes
Proposition 3.2.3, 83
matrix exponential
Proposition 11.1.4, 373
matrix power
Fact 5.7.1, 175
minimal polynomial
Fact 11.16.3, 424
Fact 11.16.4, 425
Fact 11.16.5, 425
Fact 11.16.6, 426
Fact 11.16.7, 427
Fact 11.16.8, 427
Fact 11.16.9, 428
Fact 11.16.10, 428
Fact 11.16.11, 429
Proposition 4.6.3, 128
multi-companion
form
Corollary 5.2.6, 154
nonsingular matrix
Fact 5.8.4, 179
nonzero diagonal entries
Fact 5.7.8, 176
normal matrix
Fact 5.8.3, 178
Proposition 5.5.17, 169
semisimple matrix
Proposition 5.5.17, 169
similarity invariant
Corollary 5.2.6, 154
Theorem 4.3.9, 119
simultaneous
diagonalizability
Fact 5.8.8, 179
skew-symmetric
matrix
Fact 5.13.36, 205
symmetric matrix
Fact 5.13.36, 205
transpose
Corollary 5.3.8, 161

Proposition 5.5.18, 170
unitarily similar matrices
Fact 5.8.3, 178
Vandermonde matrix Fact 5.12.6, 196
similarity invariant
characteristic polynomial
Proposition 4.6.2, 127
definition
Definition 4.3.8, 119
multi-companion form
Corollary 5.2.6, 154
similar matrices
Corollary 5.2.6, 154
Theorem 4.3.9, 119
similarity transformation
eigenvector
Fact 5.11.3, 189
Fact 5.11.4, 189

Simon

determinant inequality
Fact 8.13.19, 288
normal product and Schatten norm Fact 9.12.1, 348
simple eigenvalue cyclic eigenvalue
Proposition 5.5.11, 168
definition
Definition 5.5.10, 167
semisimple
eigenvalue
Proposition 5.5.11, 168
simple matrix
cyclic matrix
Fact 5.11.6, 189
definition
Definition 5.5.10, 167
diagonalizable over \mathbb{R} Fact 5.11.6, 189
simultaneous diagonalizability
similar matrices
Fact 5.8.8, 179
unitarily similar matrices
Fact 5.8.7, 179
simultaneous diagonalization
cogredient transformation
Fact 8.11.6, 281
definition, 245
Hermitian matrix Fact 8.11.6, 281
simultaneous triangularization cogredient transformation
Fact 8.11.5, 281
commuting matrices
Fact 5.8.6, 179
simultaneous upper triangularizability
unitarily similar matrices Fact 5.8.6, 179
singular matrix
definition, 37
Kronecker product
Fact 7.4.21, 232
spectrum
Proposition 5.5.25, 172
singular matrix polynomial
Definition 4.2.5, 115
singular value
2×2 matrix
Fact 5.9.15, 183
adjugate
Fact 5.9.19, 184
companion matrix
Fact 5.9.14, 183
complex conjugate transpose

Fact 5.9.17, 184
convexity
Fact 11.12.11, 410
definition
Definition 5.6.1, 173
determinant
Fact 5.9.13, 183
eigenvalue
Fact 8.14.3, 290
Fact 9.11.17, 348
eigenvalue of
Hermitian part
Fact 8.14.2, 290
Frobenius
Corollary 9.6.7, 324
generalized inverse
Fact 6.3.12, 214
induced lower bound
Proposition 9.5.4, 321
inequality
Corollary 9.6.5, 323
Fact 9.12.20, 353
Proposition 9.2.2, 308
inequality for matrix
sum
Proposition 9.6.8, 324
majorization Fact 8.14.3, 290
matrix exponential Fact 11.12.4, 408
Fact 11.12.11, 410
matrix product
Proposition 9.6.1, 322
Proposition 9.6.2, 322
Proposition 9.6.3, 322
Proposition 9.6.4, 323
matrix sum
Fact 9.12.13, 351
normal matrix
Fact 5.11.10, 190
outer product matrix Fact 5.9.11, 182
outer-product matrix
Fact 5.9.8, 182
Fact 5.9.10, 182
partitioned matrix Proposition 5.6.5, 175
perturbation
Fact 9.12.2, 348
rank
Proposition 5.6.2, 173
strong log
majorization
Fact 9.11.16, 348
trace
Fact 5.10.3, 188
Fact 8.14.1, 290
unitarily invariant norm
Fact 9.12.14, 351
unitary matrix
Fact 5.9.20, 184
weak log
majorization
Proposition 9.6.3, 322
weak majorization
Fact 8.14.16, 294
Fact 9.12.13, 351
Fact 9.12.17, 352
Proposition 9.2.2, 308
Proposition 9.6.2, 322
singular value decomposition
existence
Theorem 5.6.3, 174
least squares solution
Fact 6.4.34, 222
singular value inequality
matrix power
Fact 9.11.16, 348
matrix product
Fact 8.14.16, 294
Fact 9.11.15, 347
Schur product
Fact 9.12.17, 352
weak majorization Fact 9.11.15, 347
singular value perturbation
unitarily invariant norm
Fact 9.12.15, 352
singular values
unitarily
biequivalent
matrices
Fact 5.8.9, 179
size
definition, 15
skew-Hermitian matrix
adjugate
Fact 3.4.6, 87
Fact 3.4.7, 87
asymptotically stable matrix
Fact 11.14.26, 417
commutator
Fact 3.4.26, 91
Fact 3.4.29, 92
definition
Definition 3.1.1, 77
determinant
Fact 3.4.7, 87
Fact 3.4.10, 87
eigenvalue
Fact 5.9.4, 181
existence of transformation Fact 3.4.35, 93
Hermitian matrix
Fact 3.4.5, 86
Fact 3.4.22, 89
Kronecker product
Fact 7.4.14, 232
Kronecker sum
Fact 7.4.15, 232
Lyapunov equation
Fact 11.14.11, 414
matrix exponential
Fact 11.11.6, 404
Fact 11.11.23, 407
Proposition 11.1.4, 373
matrix power
Fact 8.7.6, 265
nonnegativesemidefinite matrix
Fact 8.7.5, 265
normal matrix

Fact 3.6.8, 98
Proposition 3.1.5, 81
null space
Fact 8.6.2, 264
outer-product matrix
Fact 3.4.11, 88
Fact 3.4.35, 93
partitioned matrix
Fact 3.4.21, 89
positive-definite matrix
Fact 11.14.11, 414
quadratic form Fact 3.4.4, 86
range
Fact 8.6.2, 264
rank
Fact 3.4.11, 88
reflector
Fact 3.7.5, 101
skew-involutory matrix
Fact 3.7.5, 101
skew-symmetric
matrix
Fact 3.4.5, 86
spectrum
Proposition 5.5.25, 172
symmetric matrix
Fact 3.4.5, 86
trace
Fact 3.4.18, 89
unitary matrix
Fact 3.5.29, 97
Fact 3.6.24, 100
Fact 3.7.5, 101
Fact 11.11.23, 407
skew-Hermitian matrix product
trace
Fact 8.12.1, 282
skew-involutory matrix
definition
Definition 3.1.1, 77
Hamiltonian matrix Fact 3.9.1, 103
matrix exponential
Fact 11.9.1, 397
semisimple matrix
Fact 5.11.12, 190
size
Fact 3.12.17, 109
skew-Hermitian matrix
Fact 3.7.5, 101
skew-symmetric matrix
Fact 3.9.1, 103
spectrum
Proposition 5.5.25, 172
unitary matrix
Fact 3.7.5, 101

skew-symmetric matrix

Cayley transform
Fact 11.9.8, 399
characteristic polynomial
Fact 4.9.9, 139
Fact 5.11.21, 191
commutator
Fact 3.4.30, 92
congruent matrices
Fact 3.9.7, 103
definition
Definition 3.1.1, 77
determinant
Fact 3.4.9, 87
Fact 4.8.12, 136
Fact 4.10.4, 141
factorization
Fact 5.13.34, 204
Fact 5.13.35, 204
Hamiltonian matrix
Fact 3.9.1, 103
Fact 3.9.6, 103
Fact 3.9.7, 103
Hermitian matrix
Fact 3.4.5, 86
linear matrix equation
Fact 2.11.21, 55
matrix exponential
Example 11.3.7, 379

Fact 11.9.3, 397
Fact 11.9.6, 398
Fact 11.9.7, 399
Fact 11.9.9, 399
Fact 11.9.10, 400
Fact 11.10.14, 402
matrix product
Fact 5.13.34, 204
orthogonal matrix
Fact 3.6.25, 100
Fact 3.6.26, 101
Fact 11.10.14, 402
orthogonally similar
Fact 5.11.20, 191
partitioned matrix
Fact 3.6.12, 98

Pfaffian

Fact 4.8.12, 136
quadratic form
Fact 3.4.3, 86
similar matrices
Fact 5.13.36, 205
skew-Hermitian
matrix
Fact 3.4.5, 86
skew-involutory
matrix
Fact 3.9.1, 103
spectrum
Fact 4.10.4, 141
Fact 5.11.20, 191
symmetric matrix
Fact 5.13.36, 205
trace
Fact 3.4.17, 89
Fact 3.4.25, 91
unitary matrix
Fact 11.9.7, 399

Smith form

biequivalent matrices
Corollary 5.1.2, 151
Theorem 5.1.1, 151
existence
Theorem 4.3.2, 117
unimodular matrix
Corollary 4.3.3, 117
Smith-McMillan form
coprime polynomials
Fact 4.8.13, 137
existence
Theorem 4.7.4, 130
SO(2)
parameterization
Fact 3.6.14, 98
solid set
completely solid set Fact 10.7.7, 366
convex hull
Fact 10.7.8, 366
convex set
Fact 10.7.7, 366
definition, 356
dimension
Fact 10.7.14, 367
solid solid set
convex set
Fact 10.7.7, 366

span

constructive characterization Theorem 2.3.5, 27
convex conical hull Fact 2.9.1, 46
definition, 25
spectral abscissa
definition, 126
eigenvalue
Fact 5.9.28, 187
Hermitian matrix
Fact 5.9.3, 181
matrix exponential
Fact 11.10.2, 400
Fact 11.14.8, 413
outer-product
matrix
Fact 5.9.8, 182
spectral radius
Fact 11.10.2, 400
spectral factorization
definition, 112
polynomial roots Proposition 4.1.1, 112
spectral norm
definition, 309
spectral radius
commuting matrices Fact 5.10.4, 188
convergent sequence
Fact 4.10.19, 145
Fact 9.8.1, 327
definition, 126
equi-induced norm Corollary 9.4.5, 315
Frobenius norm Fact 5.9.27, 186
Hermitian matrix Fact 5.9.3, 181
induced norm Corollary 9.4.5, 315
inverse matrix Proposition 9.4.10, 318
lower bound
Fact 5.9.27, 186
matrix exponential Fact 11.10.2, 400
matrix norm Proposition 9.2.6, 310
maximum singular value
Fact 9.11.11, 347
nonnegative matrix
Fact 4.11.6, 148
Fact 7.5.11, 237
nonnegative-
semidefinite matrix
Fact 8.9.3, 275
outer-product matrix
Fact 5.9.8, 182
perturbation
Fact 9.12.2, 348
positive matrix
Fact 7.5.12, 237
Schur product
Fact 7.5.11, 237
Fact 7.5.12, 237
spectral abscissa
Fact 11.10.2, 400
submultiplicative
norm
Corollary 9.3.4, 311
Fact 9.8.1, 327
Fact 9.9.3, 335
Proposition 9.3.2, 311
Proposition 9.3.3, 311
trace
Fact 5.9.27, 186
spectral radius monotonicity
nonnegative matrix
Fact 4.11.7, 149
spectrum
adjugate
Fact 4.10.3, 141
asymptotically stable matrix
Fact 11.14.12, 414
block-triangular matrix
Proposition 5.5.19, 170
bounds
Fact 4.10.12, 144
Fact 4.10.13, 144
circulant matrix
Fact 5.12.7, 197
convex hull
Fact 4.10.17, 145
definition
Definition 4.4.3, 120
dissipative matrix
Fact 8.13.17, 288
elementary matrix
Proposition 5.5.25, 172
elementary projector
Proposition 5.5.25, 172
elementary reflector
Proposition 5.5.25, 172
group-invertible matrix
Proposition 5.5.25, 172
Hamiltonian matrix
Proposition 5.5.25, 172
Hermitian matrix
Lemma 8.4.8, 249
Proposition 5.5.25, 172
idempotent matrix
Fact 5.11.11, 190
identity perturbation
Fact 4.10.9, 143
Fact 4.10.10, 143
inverse matrix
Fact 5.9.9, 182
involutory matrix
Proposition 5.5.25, 172
matrix exponential
Proposition 11.2.2, 376
matrix function
Corollary 10.5.3, 363
minimal polynomial
Fact 4.10.5, 141
nilpotent matrix
Proposition 5.5.25, 172
nonnegative-
semidefinite
matrix
Fact 8.9.7, 276
Proposition 5.5.25, 172
normal matrix
Fact 4.10.16, 144
Fact 4.10.17, 145
outer-product
matrix
Fact 5.9.8, 182
partitioned matrix
Fact 2.15.3, 72
Fact 4.10.18, 145
polynomial
Fact 4.10.1, 141
Fact 4.10.6, 141
positive matrix
Fact 5.9.7, 181
positive-definite matrix
Proposition 5.5.25, 172
projector
Fact 5.11.22, 191
Proposition 5.5.25, 172
properties
Proposition 4.4.4, 121
quadratic matrix equation
Fact 5.9.1, 180
Fact 5.9.2, 180
reflector
Proposition 5.5.25, 172
reverse identity
matrix
Fact 5.7.15, 177
singular matrix
Proposition 5.5.25, 172
skew-Hermitian
matrix
Proposition 5.5.25, 172
skew-involutory
matrix
Proposition 5.5.25, 172
skew-symmetric
matrix
Fact 4.10.4, 141
Fact 5.11.20, 191
subspace
decomposition
Proposition 5.5.13, 168
symplectic matrix
Proposition 5.5.25, 172
Toeplitz matrix
Fact 4.10.11, 143
trace
Fact 4.10.2, 141
tridiagonal matrix
Fact 5.9.22, 185
Fact 5.9.23, 185
Fact 5.9.24, 186
tripotent matrix
Proposition 5.5.25, 172
unitary matrix
Proposition 5.5.25, 172

spectrum bounds

ovals of Cassini
Fact 4.10.13, 144
spectrum of convex hull
field of values
Fact 4.10.17, 145
numerical range
Fact 4.10.17, 145
sphere of radius ε
definition, 355
square
definition, 15
square root
2×2 matrix
Fact 2.11.1, 53
asymptotically stable matrix
Fact 11.14.31, 418
commuting matrices Fact 8.7.15, 266
convergent sequence
Fact 5.13.18, 202
Fact 8.7.20, 266
definition, 254
group-invertible
matrix
Fact 5.13.17, 202
identity
Fact 8.7.16, 266
Jordan form
Fact 5.13.16, 201
matrix sign function
Fact 5.13.18, 202
maximum singular value
Fact 9.8.23, 331
Newton-Raphson
algorithm
Fact 5.13.18, 202
nonnegative-
semidefinite
matrix
Fact 9.8.23, 331
submultiplicative norm
Fact 9.8.23, 331
sum of squares
Fact 2.14.7, 71
unitary matrix
Fact 8.7.17, 266
stability radius
asymptotically stable matrix
Fact 11.14.16, 414
stable subspace
complementary subspaces

Proposition 11.6.8, 389 group-invertible
matrix
Proposition 11.6.8, 389
idempotent matrix
Proposition 11.6.8, 389
invariant subspace
Proposition 11.6.8, 389
matrix exponential
Proposition 11.6.8, 389 minimal polynomial
Fact 11.16.1, 423
Fact 11.16.2, 423
Proposition 11.6.5, 388
standard nilpotent matrix
definition, 78
state convergence discrete-time time-varying system Fact 11.15.18, 422
statement definition, 1

Stein equation

 discrete-time Lyapunov equation Fact 11.15.17, 422stiffness, 380
strengthening
definition, 1
strictly lower triangular matrix
definition
Definition 3.1.3, 79
matrix power Fact 3.12.8, 107
strictly proper rational function
definition Definition 4.7.1, 129
strictly proper rational transfer function
definition
Definition 4.7.2, 129
strictly upper triangular matrix
definition
Definition 3.1.3, 79
Lie algebra
Fact 3.10.2, 104
matrix power
Fact 3.12.8, 107
strong log majorization
definition
Definition 2.1.1, 14
matrix exponential
Fact 11.12.7, 409
singular value
inequality
Fact 9.11.16, 348
strong majorization
convex function
Fact 8.16.1, 300
Fact 8.16.2, 300
definition
Definition 2.1.1, 14
doubly stochastic matrix
Fact 3.12.18, 109
eigenvalue
Corollary 8.5.15, 263
Hermitian matrix
Fact 8.14.4, 291
strongly decreasing
definition
Definition 8.5.9, 256
strongly increasing
definition
Definition 8.5.9, 256
strongly increasing function
determinant
Proposition 8.5.10, 256
matrix functions
Proposition 8.5.10, 256
structured matrix
nonnegative-
semidefinite matrix
Fact 8.7.22, 267
Fact 8.7.24, 267
Fact 8.7.25, 267
Fact 8.7.26, 268
Fact 8.7.27, 268
Fact 8.7.28, 268
Fact 8.7.29, 268

SU(2)

quaternions
Fact 3.11.1, 105
subdeterminant
asymptotically stable matrix
Fact 11.14.7, 413
asymptotically stable polynomial
Fact 11.14.21, 415
definition, 41
Lyapunov-stable polynomial
Fact 11.14.21, 415
nonnegative-
semidefinite
matrix
Proposition 8.2.6, 243
positive-definite
matrix
Fact 8.13.9, 287
Proposition 8.2.7, 244
subdiagonal
definition, 16
submatrix
definition, 41
Hermitian matrix
Corollary 8.4.6, 249
Lemma 8.4.4, 248
Theorem 8.4.5, 249
Kronecker product
Proposition 7.3.1, 230
nonnegative-
semidefinite
matrix
Corollary 8.2.8, 245

Proposition 8.2.6, 243
positive-definite matrix
Corollary 8.2.8, 245
Proposition 8.2.7, 244
rank
Fact 2.10.30, 53
submultiplicative norm
commutator
Fact 9.9.5, 335
compatible norm
Proposition 9.3.1, 311
equi-induced norm
Corollary 9.4.4, 315
Fact 9.9.6, 335
idempotent matrix
Fact 9.8.3, 328
infinity norm
Fact 9.9.1, 335
Fact 9.9.2, 335
matrix exponential
Fact 11.12.9, 410
Fact 11.14.8, 413
Proposition 11.1.2, 372
matrix norm
Fact 9.9.4, 335
nonsingular matrix
Fact 9.8.2, 328
spectral radius
Corollary 9.3.4, 311
Fact 9.8.1, 327
Fact 9.9.3, 335
Proposition 9.3.2, 311
Proposition 9.3.3, 311
square root
Fact 9.8.23, 331
submultiplicative norms
definition, 311
submultiplicativity
Holder norm
Fact 9.9.14, 337
subset
closure
Fact 10.7.3, 366
definition, 2
interior
Fact 10.7.3, 366
subset operation
induced partial ordering
Fact 1.3.8, 6
transitivity
Fact 1.3.8, 6
subspace
affine
definition, 25
closed set
Fact 10.7.15, 367
complementary
Fact 2.9.11, 47
Fact 2.9.12, 47
definition, 25
dimension
Fact 2.9.13, 48
inclusion
Fact 2.9.6, 47
Fact 2.9.8, 47
inner product
Fact 10.7.19, 367
intersection
Fact 2.9.4, 47
Fact 2.9.10, 47
orthogonal complement
Fact 2.9.8, 47
Fact 2.9.10, 47
Fact 2.9.11, 47
Proposition 5.5.5, 167
projector
Proposition 5.5.4, 166
Proposition 5.5.5, 167
range
Proposition 5.5.4, 166
span
Fact 2.9.7, 47
sum
Fact 2.9.4, 47
Fact 2.9.7, 47
Fact 2.9.10, 47
union
Fact 2.9.6, 47
Fact 2.9.7, 47

subspace decomposition

spectrum
Proposition 5.5.13, 168

subspace dimension

dimension theorem
Theorem 2.3.1, 26
subspaces
inclusion and dimension ordering Lemma 2.3.4, 27
sum of dimensions
Theorem 2.3.1, 26
sufficiency
definition, 1
sum of integer powers
matrix exponential Fact 11.9.4, 397

sum of matrices

Kronecker product
Proposition 7.1.4, 226
matrix inverse Corollary 2.8.10, 46
sum of squares
square root
Fact 2.14.7, 71
superdiagonal entries
definition, 16
supermultiplicativity
induced lower bound
Proposition 9.5.6, 321

Sylvester matrix

coprime polynomials Fact 4.8.4, 131
Sylvester's equation
linear matrix equation
Fact 5.8.11, 180
Fact 5.8.12, 180
Proposition 11.7.3, 392
Proposition 7.2.4, 229
Sylvester's inequality
rank of a product, 33
Sylvester's law of nullity defect
Fact 2.10.9, 49
symmetric cone
induced by symmetric relation Proposition 2.3.6, 28
symmetric gauge function
unitarily invariant norm
Fact 9.8.33, 334
weak majorization Fact 8.16.6, 301
symmetric matrices
factorization
Fact 5.13.22, 202
symmetric matrix
definition
Definition 3.1.1, 77
factorization
Corollary 5.3.9, 162
Hankel matrix Fact 3.12.10, 107
Hermitian matrix
Fact 3.4.5, 86
involutory matrix
Fact 5.13.33, 204
linear matrix equation
Fact 2.11.21, 55
matrix power Fact 3.4.2, 86
matrix transpose
Fact 3.4.1, 86
orthogonal similarity transformation Fact 5.7.3, 175
partitioned matrix Fact 3.6.12, 98 quadratic form Fact 3.4.3, 86 similar matrices

Fact 5.13.36, 205
skew-Hermitian matrix
Fact 3.4.5, 86
skew-symmetric matrix
Fact 5.13.36, 205
trace
Fact 5.10.2, 187
symmetric permutation matrix
reverse identity matrix
Fact 3.9.1, 103
symmetric relation
definition
Definition 1.2.1, 3
symmetric cone induced by
Proposition 2.3.6, 28
symmetric set
definition, 24
symplectic group
determinant
Fact 3.9.2, 103
symplectic matrix
Cayley transform
Fact 3.9.8, 104
definition
Definition 3.1.4, 81
determinant
Fact 3.9.2, 103
group
Proposition 3.2.7, 84
Hamiltonian matrix
Fact 3.9.8, 104
identity
Fact 3.9.4, 103
identity matrix
Fact 3.9.1, 103
spectrum
Proposition 5.5.25, 172
symplectic similarity
Hamiltonian matrix
Fact 3.9.5, 103

T

T-congruence
complex-symmetric matrix
Fact 5.7.10, 176
T-congruent diagonalization
complex-symmetric matrix
Fact 5.7.10, 176
T-congruent matrices definition
Definition 3.2.2, 82
Tao
Holder-induced
norm
Fact 9.8.7, 328

Taussky-Todd

matrix factorization Fact 5.13.4, 199

tetrahedron

volume
Fact 2.16.5, 75

theorem

definition, 1
thermodynamic inequality
matrix exponential
Fact 11.11.22, 407
relative entropy
Fact 8.12.19, 285
Toeplitz matrix
block-Toeplitz matrix
Fact 3.12.11, 107
definition
Definition 3.1.3, 79
Hankel matrix
Fact 3.12.9, 107
lower triangular matrix
Fact 3.12.8, 107

Fact 11.10.1, 400
nilpotent matrix
Fact 3.12.7, 107
polynomial
multiplication
Fact 4.8.9, 135
reverse-symmetric matrix
Fact 3.12.6, 107
spectrum
Fact 4.10.11, 143
upper triangular matrix
Fact 3.12.8, 107
Fact 11.10.1, 400

Tomiyama

maximum singular value of a partitioned matrix Fact 9.12.6, 349
total ordering
definition
Definition 1.2.1, 3
totally nonnegative matrix
definition
Fact 11.14.21, 415
trace
2×2 matrix identity Fact 4.9.2, 137
3×3 matrix identity
Fact 4.9.4, 138
adjugate
Fact 4.9.5, 138
asymptotically stable matrix
Fact 11.14.27, 418
commutator
Fact 2.14.1, 70
Fact 5.7.18, 178
convex function
Proposition 8.5.13, 258
definition, 22
derivative
Fact 11.11.3, 403
determinant

Corollary 11.2.3, 377
Corollary 11.2.4, 377
Fact 8.13.12, 287
Fact 11.11.19, 406
Proposition 8.4.14, 251
eigenvalue
Fact 5.9.6, 181
Fact 8.14.3, 290
Proposition 8.4.13, 251
eigenvalue bound
Fact 5.9.26, 186
elementary projector
Fact 3.5.7, 94
elementary reflector Fact 3.5.7, 94
Frobenius norm
Fact 9.10.2, 342
Fact 9.10.5, 343
group generalized inverse
Fact 6.5.7, 223
Hermitian matrix
Corollary 8.4.10, 250
Fact 3.4.16, 89
Lemma 8.4.12, 251
Proposition 8.4.13, 251
Hermitian matrix product
Fact 5.10.1, 187
Fact 8.12.1, 282
Fact 8.12.6, 282
Holder matrix norm
Fact 9.10.3, 342
identities, 22
Kronecker permutation matrix Fact 7.4.29, 233
Kronecker product
Fact 11.11.29, 408
Proposition 7.1.12, 228
Kronecker sum
Fact 11.11.27, 407
logarithm
Fact 8.12.19, 285
matrix derivative
Proposition 10.6.2, 364
matrix exponential
Corollary 11.2.3, 377

Corollary 11.2.4, 377
Fact 11.11.3, 403
Fact 11.11.11, 404
Fact 11.11.21, 406
Fact 11.11.22, 407
Fact 11.11.25, 407
Fact 11.11.26, 407
Fact 11.11.27, 407
Fact 11.11.29, 408
Fact 11.12.3, 408
Fact 11.12.4, 408
Fact 11.12.6, 409
Fact 11.12.7, 409
matrix logarithm
Fact 11.11.22, 407
matrix power
Fact 2.11.15, 54
Fact 2.11.18, 55
matrix product
Fact 8.12.5, 282
matrix squared
Fact 5.9.5, 181
maximum singular
value bound
Fact 9.11.13, 347
nilpotent matrix
Fact 3.8.11, 103
nonnegative-
semidefinite
matrix
Fact 8.9.8, 276
Fact 8.12.2, 282
Fact 8.12.3, 282
Fact 8.12.4, 282
Fact 8.12.7, 282
Fact 8.12.8, 283
Fact 8.12.9, 283
Fact 8.12.10, 284
Fact 8.12.11, 284
Fact 8.12.12, 284
Fact 8.12.14, 284
Fact 8.12.15, 285
Fact 8.12.16, 285
Fact 8.12.17, 285
Fact 8.12.18, 285
Fact 8.13.12, 287
Fact 8.14.6, 292
Proposition 8.4.13, 251
normal matrix product
Fact 5.10.1, 187
orthogonal matrix Fact 3.6.2, 97
partitioned matrix
Fact 8.12.17, 285
Fact 8.12.18, 285
Fact 8.13.23, 289
positive-definite matrix
Fact 8.8.20, 274
Fact 8.12.11, 284
Fact 8.12.13, 284
Fact 8.12.19, 285
Proposition 8.4.14, 251
projector
Fact 3.5.7, 94
quadruple product
Fact 7.4.8, 231
reflector
Fact 3.5.7, 94
Schatten norm
Fact 9.10.3, 342
Fact 9.10.4, 342
Schur product Fact 8.15.10, 296
singular value
Fact 5.10.3, 188
Fact 8.14.1, 290
skew-Hermitian matrix
Fact 3.4.18, 89
skew-Hermitian matrix product Fact 8.12.1, 282
skew-symmetric matrix
Fact 3.4.17, 89
Fact 3.4.25, 91
spectral radius Fact 5.9.27, 186
spectrum
Fact 4.10.2, 141
symmetric matrix
Fact 5.10.2, 187
trace norm
Fact 9.10.1, 342
triple product
Fact 2.11.4, 53
Fact 7.4.6, 231
tripotent matrix Fact 3.12.14, 108
unitary matrix
Fact 3.4.37, 93
vec
Fact 7.4.6, 231
Fact 7.4.8, 231
Proposition 7.1.1, 225
zero matrix
Fact 2.11.13, 54
Fact 2.11.16, 54
Fact 2.11.17, 54
trace norm
definition, 309
Frobenius norm
Fact 9.9.11, 336
nonnegativesemidefinite matrix
Fact 9.9.13, 337
trace
Fact 9.10.1, 342
Tracy-Singh product, 238
transitive relation
convex cone induced by
Proposition 2.3.6, 28
definition
Definition 1.2.1, 3
nonnegative-
semidefinite
matrix
Proposition 8.1.1, 240
transmission zero
definition
Definition 4.7.6, 130
null space
Fact 4.8.14, 137
transpose
diagonalizable matrix

Fact 5.11.2, 189
involutory matrix
Fact 5.7.14, 177
Kronecker
permutation matrix
Proposition 7.1.13, 228
Kronecker product
Proposition 7.1.3, 226
similar matrices
Corollary 5.3.8, 161
Proposition 5.5.18, 170
transpose of a matrix definition, 22
transpose of a vector
definition, 20

triangle

area
Fact 2.16.2, 74
Fact 2.16.4, 75
triangle inequality
definition
Definition 9.1.1, 303
equality
Fact 9.7.3, 325
linear dependence
Fact 9.7.3, 325
nonnegative-
semidefinite
matrix
Fact 9.9.15, 337

tridiagonal

determinant
Fact 2.12.26, 62
Fact 3.12.5, 107
tridiagonal matrix
asymptotically stable matrix
Fact 11.14.22, 416
Fact 11.14.23, 416
Fact 11.14.24, 416
Fact 11.14.25, 417
cyclic matrix
Fact 11.14.23, 416
definition
Definition 3.1.3, 79
positive-definite matrix
Fact 8.7.31, 269
Routh form
Fact 11.14.24, 416
Schwarz form
Fact 11.14.23, 416
spectrum
Fact 5.9.22, 185
Fact 5.9.23, 185
Fact 5.9.24, 186
triple product
identity
Fact 2.11.3, 53
Kronecker product
Fact 7.4.6, 231
Proposition 7.1.5, 226
trace
Fact 4.9.4, 138
Fact 7.4.6, 231
vec
Proposition 7.1.9, 227
tripotent matrix
definition
Definition 3.1.1, 77
Drazin generalized inverse
Fact 6.5.2, 223
generalized inverse
Fact 6.3.7, 214
group-invertible matrix
Proposition 3.1.5, 81
idempotent matrix
Fact 3.5.23, 96
involutory matrix
Fact 3.12.15, 108
rank
Fact 3.12.14, 108
reflector
Proposition 3.1.5, 81
spectrum
Proposition 5.5.25, 172
trace
Fact 3.12.14, 108
two-sided directional differential
definition, 359

U

Umegaki

relative entropy
Fact 8.12.19, 285
unimodular
definition
Definition 4.3.1, 117
unimodular matrix
determinant
Proposition 4.3.5, 118
inverse matrix
Proposition 4.3.6, 118
Smith form
Corollary 4.3.3, 117
union
definition, 2
unipotent matrix
group
Fact 3.10.3, 104
unitarily biequivalent matrices
definition
Definition 3.2.1, 82
singular values Fact 5.8.9, 179
unitarily invariant norm complex conjugate transpose
Fact 9.8.21, 331
definition, 308
Hermitian matrix
Fact 9.9.7, 335
Fact 11.12.8, 410
Hermitian
perturbation
Fact 9.10.9, 344
inequality
Fact 9.9.11, 336
Fact 9.9.16, 337

Fact 9.9.21, 339
matrix exponential
Fact 11.11.9, 404
Fact 11.12.5, 409
Fact 11.12.7, 409
Fact 11.12.8, 410
maximum singular value
Fact 9.9.10, 336
nonnegative-
semidefinite
matrix
Fact 9.9.8, 336
Fact 9.9.9, 336
outer-product matrix
Fact 9.8.31, 333
partitioned matrix
Fact 9.8.24, 331
properties
Fact 9.8.32, 333
Schatten norm
Fact 9.8.6, 328
Schur product
Fact 9.9.30, 340
self-adjoint norm
Fact 9.8.4, 328
similarity
transformation
Fact 9.8.22, 331
singular value Fact 9.12.14, 351
singular value perturbation Fact 9.12.15, 352
symmetric gauge
function
Fact 9.8.33, 334
unitarily left-equivalent matrices
complex conjugate transpose
Fact 5.8.9, 179
Fact 5.8.10, 179
definition
Definition 3.2.1, 82
nonnegativesemidefinite matrix
Fact 5.8.9, 179
Fact 5.8.10, 179
unitarily
right-equivalent matrices
complex conjugate transpose
Fact 5.8.9, 179
definition
Definition 3.2.1, 82
nonnegativesemidefinite matrix
Fact 5.8.9, 179
unitarily similar matrices
complex conjugate
transpose
Fact 8.11.1, 281
definition
Definition 3.2.2, 82
diagonal entries
Fact 5.7.6, 176
equivalence class
Fact 5.8.1, 178
equivalence relation
Fact 5.8.2, 178
Hermitian matrix
Corollary 5.4.5, 164
Kronecker product
Fact 7.4.12, 232
matrix classes
Proposition 3.2.3, 83
normal matrix
Corollary 5.4.4, 163
Fact 5.8.3, 178
partitioned matrix
Fact 5.7.5, 175
range-Hermitian matrix
Corollary 5.4.4, 163
similar matrices
Fact 5.8.3, 178
simultaneous diagonalizability Fact 5.8.7, 179
simultaneous upper triangularizability Fact 5.8.6, 179
upper triangular matrix
Theorem 5.4.1, 162
unitary
determinant
Fact 3.6.6, 98
quaternions
Fact 3.11.2, 106
unitary matrix
3×3 skew-symmetric matrix
Fact 11.9.7, 399
cogredient
diagonalization
Fact 8.11.2, 281
complex-symmetric matrix
Fact 5.7.10, 176
convergent sequence
Fact 8.7.21, 267
CS decomposition
Fact 5.7.16, 178
definition
Definition 3.1.1, 77
determinant
Fact 3.6.7, 98
Fact 3.6.18, 99
diagonal matrix
Theorem 5.6.3, 174
discrete-time
Lyapunov-stable matrix
Fact 11.15.14, 421
dissipative matrix
Fact 8.13.4, 286
elementary reflector
Fact 5.13.12, 200
factorization
Fact 5.13.5, 199
Fact 5.13.12, 200
Fact 5.13.41, 205

Frobenius norm
Fact 9.9.24, 339
group
Proposition 3.2.7, 84
group generalized inverse
Fact 6.3.17, 215
Hermitian matrix
Fact 3.6.23, 100
Fact 11.11.24, 407
identities
Fact 3.6.1, 97
matrix exponential
Fact 11.9.7, 399
Fact 11.11.6, 404
Fact 11.11.23, 407
Fact 11.11.24, 407
Proposition 11.1.4, 373
matrix limit
Fact 6.3.17, 215
normal matrix
Fact 3.6.8, 98
Fact 3.6.10, 98
Fact 5.13.1, 199
orthogonal vectors
Fact 3.6.3, 97
partitioned matrix
Fact 3.6.13, 98
Fact 3.6.22, 100
rank-one perturbation
Fact 3.6.18, 99
reflector
Fact 3.7.1, 101
semicontractive
matrix
Fact 3.6.13, 98
singular value Fact 5.9.20, 184
skew-Hermitian
matrix
Fact 3.5.29, 97
Fact 3.6.24, 100
Fact 3.7.5, 101
Fact 11.11.23, 407
skew-involutory
matrix
Fact 3.7.5, 101
spectrum
Proposition 5.5.25, 172
square root
Fact 8.7.17, 266
trace
Fact 3.4.37, 93
upper triangular matrix
Fact 5.13.5, 199
universal statement definition, 2
unstable equilibrium definition
Definition 11.5.1, 384
unstable matrix
positive matrix
Fact 11.14.18, 415
unstable stable subspace
definition, 389
unstable subspace
complementary
subspaces
Proposition 11.6.8, 389
idempotent matrix
Proposition 11.6.8, 389
invariant subspace
Proposition 11.6.8, 389
semistable matrix
Proposition 11.6.8, 389
upper block triangular
characteristic
polynomial
Fact 4.10.7, 142
upper block-triangular matrix
definition
Definition 3.1.3, 79
orthogonally similar matrices
Corollary 5.4.2, 163
upper Hessenberg matrix
definition

Definition 3.1.3, 79
upper triangular matrix commutator
Fact 3.8.1, 102
commuting matrices
Fact 5.8.6, 179
definition
Definition 3.1.3, 79
factorization
Fact 5.13.5, 199
Fact 5.13.7, 199
group
Fact 3.10.3, 104
invariant subspace
Fact 5.7.4, 175
Kronecker product
Fact 7.4.2, 231
Lie algebra
Fact 3.10.2, 104
matrix exponential
Fact 11.9.4, 397
Fact 11.10.1, 400
matrix power
Fact 3.12.8, 107
nonnegative-
semidefinite
matrix
Fact 8.7.33, 269
orthogonally similar
matrices
Corollary 5.4.3, 163
positive diagonal
Fact 5.13.6, 199
Toeplitz matrix Fact 3.12.8, 107
Fact 11.10.1, 400
unitarily similar matrices
Theorem 5.4.1, 162
unitary matrix
Fact 5.13.5, 199
upper-block triangular
inverse matrix
Fact 2.13.32, 68
upper-block-triangular matrix
minimal polynomial
Fact 4.10.8, 142

V

Vandermonde matrix

companion matrix
Fact 5.12.5, 196
determinant
Fact 5.12.3, 195
Fourier matrix
Fact 5.12.7, 197
polynomial
Fact 5.12.4, 196
similar matrices
Fact 5.12.6, 196
variational cone
definition, 359
dimension
Fact 10.7.18, 367
vec
definition, 225
Kronecker permutation matrix Fact 7.4.29, 233
Kronecker product
Fact 7.4.4, 231
Fact 7.4.5, 231
Fact 7.4.7, 231
matrix product
Fact 7.4.5, 231
quadruple product
Fact 7.4.8, 231
trace
Fact 7.4.6, 231
Fact 7.4.8, 231
Proposition 7.1.1, 225
triple product
Proposition 7.1.9, 227

vector

definition, 14
vector derivative
quadratic form
Proposition 10.6.1, 364
vector identity
cosine law
Fact 9.7.4, 325
parallelogram law
Fact 9.7.4, 325
polarization identity
Fact 9.7.4, 325
Pythagorean
theorem
Fact 9.7.4, 325
vector inequality
Holder's inequality
Proposition 9.1.6, 306
vibration equation
matrix exponential
Example 11.3.8, 379
volume
parallelepiped
Fact 2.16.6, 75
Fact 2.16.7, 75
tetrahedron
Fact 2.16.5, 75
transformed set
Fact 2.16.8, 75

W

weak log majorization definition
Definition 2.1.1, 14
eigenvalue
Fact 8.14.7, 292
singular value
Proposition 9.6.3, 322
weak majorization
Fact 8.16.5, 301
weak majorization convex function
Fact 8.14.10, 293
Fact 8.16.1, 300
Fact 8.16.2, 300
Fact 8.16.3, 300
definition
Definition 2.1.1, 14
eigenvalue
Fact 8.14.7, 292

Fact 8.14.10, 293
Fact 8.14.11, 293
increasing function
Fact 8.16.3, 300
matrix exponential
Fact 11.12.7, 409
nonnegative-
semidefinite
matrix
Fact 8.14.11, 293
powers
Fact 8.16.6, 301
Schur product
Fact 9.12.17, 352
singular value
Fact 9.12.13, 351
Proposition 9.2.2, 308
Proposition 9.6.2, 322
singular value inequality
Fact 8.14.16, 294
Fact 9.11.15, 347
Fact 9.12.17, 352
symmetric gauge function
Fact 8.16.6, 301
weak log majorization
Fact 8.16.5, 301
weakly unitarily invariant norm
definition, 308
matrix power
Fact 9.8.29, 332
numerical radius
Fact 9.8.29, 332

Weierstrass

cogredient diagonalization of positive-definite matrices
Fact 8.11.3, 281

Weyl, 251

singular value inequality
Fact 5.9.13, 183

Weyl's inequality

Hermitian matrix eigenvalues
Theorem 8.4.9, 250

Wielandt

eigenvalue perturbation Fact 9.10.10, 345
positive power of a primitive matrix Fact 4.11.1, 145

X

Xie

asymptotically stable polynomial Fact 11.13.5, 411

Y

Yamagami
norm equality
Fact 9.9.19, 338

Yamamoto

singular value limit Fact 9.11.17, 348

Young's inequality nonnegativesemidefinite matrix inequality
Fact 9.12.19, 353
scalar case
Fact 1.4.5, 7

Z

zero diagonal
commutator
Fact 3.4.27, 91
zero matrix
definition, 18

