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Notes to Readers

This version was created on November 19, 2003.

I welcome and appreciate all comments, criticisms, and suggestions.

Some relevant points:

1. Chapter 12 is a work in progress. The index does not include Chapter

12.

2. I provide references for most of the nontrivial Facts. If you happen to

know of additional relevant references, please let me know.

3. A few nontrivial facts lack a reference mainly because I have lost track of

the original reference. I would like to find a reference or at least verify the

correctness of the following facts:

Fact 5.9.25

Fact 9.8.26

4. About 60 problems are included. These problems concern extensions of

known results or gaps in the literature. If you should know of any relevant

literature (or solutions!), please advise.

5. A few more topics may be added such as: matrix pencils, matrices with

block-tridiagonal or block-companion structure, and series (Fer-Magnus-

Wei) representations of solutions of the matrix equation Ẋ(t) = A(t)X(t).

6. Please note errors of any kind.

7. Please feel free to suggest any additional facts or augmentations of exist-

ing facts.
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Special Symbols

General Notation

π 3.14159 · · ·
e 2.71828 · · ·
4

= equals by definition
(

n
m

)

n!
m!(n−m)!

bac largest integer less than or equal to a

δij 1 if i = j, 0 if i 6= j (Kronecker delta)

log logarithm with base e

signα 1 if α > 0, −1 if α < 0, 0 if α = 0

sinhx, coshx 1
2(e

x − e−x) , 1
2(e

x + e−x)

Chapter 1

{ } set (p. 2)

{ }m multiset (p. 2)

∅ empty set (p. 2)

∈ is an element of (p. 2)

6∈ is not an element of (p. 2)

∩ intersection (p. 2)

∪ union (p. 2)

S∼ complement of S (p. 2)

S\S′ {x ∈ S : x /∈ S′} for sets S, S′ (p. 2)

⊆ is a subset of (p. 2)

⊂ is a proper subset of (p. 2)

f : X 7→ Y f is a function with domain X and
codomain Y (p. 4)

f−1(S) inverse image of S (p. 4)

f • g composition of functions f and g (p. 4)
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Chapter 2

Z integers (p. 13)

N nonnegative integers (p. 13)

P positive integers (p. 13)

R real numbers (p. 13)

C complex numbers (p. 13)

F R or C (p. 13)


√
−1 (p. 13)

z complex conjugate of z ∈ C (p. 13)

Re z real part of z ∈ C (p. 13)

Im z imaginary part of z ∈ C (p. 13)

|z| absolute value of z ∈ C (p. 13)

CLHP closed left half plane in C (p. 14)

OLHP open left half plane in C (p. 14)

CRHP closed right half plane in C (p. 14)

ORHP open right half plane in C (p. 14)

R imaginary numbers (p. 14)

Rn Rn×1 (real column vectors) (p. 14)

Cn Cn×1 (complex column vectors) (p. 14)

Fn Rn or Cn (p. 14)

x(i) ith component of x ∈ Fn (p. 14)

x ≥≥ y x(i) ≥ y(i) for all i (x− y is nonnegative)
(p. 14)

x >> y x(i) > y(i) for all i (x− y is positive)
(p. 14)

Rn×m n×m real matrices (p. 15)

Cn×m n×m complex matrices (p. 15)

Fn×m Rn×m or Cn×m (p. 15)

rowi(A) ith row of A (p. 15)

coli(A) ith column of A (p. 15)
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A(i,j) (i, j) entry of A (p. 15)

A ≥≥B A(i,j) ≥ B(i,j) for all i, j (A−B is
nonnegative) (p. 16)

A >>B A(i,j) > B(i,j) for all i, j (A−B is
positive) (p. 16)

A
i← b matrix obtained from A ∈ Fn×m by

replacing coli(A) with b ∈ Fn or rowi(A)
with b ∈ F1×m (p. 16)

dmax(A)
4

= d1(A) largest diagonal entry of A ∈ Fn×n having
real diagonal entries (p. 16)

di(A) ith largest diagonal entry of A ∈ Fn×n

having real diagonal entries (p. 16)

dmin(A)
4

= dn(A) smallest diagonal entry of A ∈ Fn×n

having real diagonal entries (p. 16)

[A,B] commutator AB −BA (p. 18)

adA(X) adjoint operator [A,X] (p. 18)

x× y cross product of vectors x, y ∈ R3 (p. 18)

0n×m, 0 n×m zero matrix (p. 18)

In, I n× n identity matrix (p. 19)

ei,n, ei coli(In) (p. 19)

Ei,j,n×m, Ei,j ei,ne
T
j,m (p. 20)

1n×m, 1 n×m ones matrix (p. 20)

În, Î n× n reverse identity matrix

[

0 1

. .
.

1 0

]

(p. 20)

AT transpose of A (p. 22)

trA trace of A (p. 22)

Z complex conjugate of Z ∈ Cn×m (p. 23)

A∗ A
T

conjugate transpose of A (p. 23)

ReA real part of A ∈ Fn×m (p. 23)

ImA imaginary part of A ∈ Fn×m (p. 23)

S {Z : Z ∈ S} or {Z : Z ∈ S}m (p. 23)

AT̂ ÎATÎ reverse transpose of A (p. 24)
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A∗̂ ÎA∗Î reverse conjugate transpose of A
(p. 24)

co S convex hull of S (p. 25)

cone S conical hull of S (p. 25)

coco S convex conical hull of S (p. 25)

span S span of S (p. 25)

aff S affine hull of S (p. 25)

dim S dimension of S (p. 26)

dcone S dual cone of S (p. 26)

S⊥ orthogonal complement of S (p. 26)

R(A) range of A (p. 29)

N(A) null space of A (p. 29)

rankA rank of A (p. 31)

def A defect of A (p. 31)

AL left inverse of A (p. 34)

AR right inverse of A (p. 34)

A−1 inverse of A (p. 37)

A−T
(

AT
)−1

(p. 38)

A−∗ (A∗)−1 (p. 38)

detA determinant of A (p. 38)

A[i,j] submatrix of A obtained by deleting
rowi(A) and colj(A) (p. 41)

AA adjugate of A (p. 41)

Chapter 3

diag(a1, . . . , an)

[

a1 0

. . .

0 an

]

(p. 79)

revdiag(a1, . . . , an)

[

0 a1

. .
.

an 0

]

(p. 79)

Nn, N n× n standard nilpotent matrix (p. 78)
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diag(A1, . . . , Ak) block-diagonal matrix





A1 0

. . .

0 Ak



,

where Ai ∈ Fni×mj (p. 79)

J2n, J
[

0 In
−In 0

]

(p. 81)

glF(n), plC(n), slF(n),
u(n), su(n), so(n), sp(n),
affF(n), seF(n), transF(n)

Lie algebras (p. 83)

GLF(n), PLF(n), SLF(n),
U(n), O(n), U(n,m),
O(n,m), SU(n), SO(n),
Sp(n), AffF(n), SEF(n),
TransF(n)

groups (p. 84)

Chapter 4

F[s] polynomials with coefficients in F (p. 111)

deg p degree of p ∈ F[s] (p. 111)

mroots(p) multiset of roots of p ∈ F[s] (p. 112)

roots(p) set of roots of p ∈ F[s] (p. 112)

mp(λ) multiplicity of λ as a root of p ∈ F[s]
(p. 112)

Fn×m[s] n×m matrices with entries in F[s] (n×m
matrix polynomials with coefficients in F)
(p. 114)

rankP rank of P ∈ Fn×m[s] (p. 115)

χA characteristic polynomial of A (p. 120)

λmax(A)
4

= λ1(A) largest eigenvalue of A ∈ Fn×n having real
eigenvalues (p. 120)

λi(A) ith largest eigenvalue of A ∈ Fn×n having
real eigenvalues (p. 120)

λmin(A)
4

= λn(A) smallest eigenvalue of A ∈ Fn×n having
real eigenvalues
(p. 120)
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amA(λ) algebraic multiplicity of λ ∈ spec(A)
(p. 120)

spec(A) spectrum of A (p. 120)

mspec(A) multispectrum of A (p. 120)

gmA(λ) geometric multiplicity of λ ∈ spec(A)
(p. 125)

spabs(A) spectral abscissa of A (p. 126)

sprad(A) spectral radius of A (p. 126)

In(A) inertia of A (p. 126)

ν−(A), ν0(A), ν+(A) number of eigenvalues of A counting
algebraic multiplicity having negative,
zero, and positive real part, respectively
(p. 126)

µA minimal polynomial of A (p. 127)

F(s) rational functions with coefficients in F
(p. 129)

reldeg g relative degree of g ∈ F(s) (p. 129)

Fn×m(s) n×m matrices with entries in F(s) (p. 129)

rankG rank of G ∈ F(s) (p. 129)

B(p, q) Bezout matrix of p, q ∈ F[s] (p. 132, Fact
4.8.6)

H(g) Hankel matrix of g ∈ F(s) (p. 134, Fact
4.8.7)

Chapter 5

C(p) companion matrix for monic polynomial p
(p. 152)

Hl(q) l × l or 2l × 2l hypercompanion matrix
(p. 156)

Jl(q) l × l or 2l × 2l real Jordan matrix (p. 158)

sig(A) signature of A, that is, ν+(A)− ν−(A)
(p. 164)
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indA(λ) index of λ with respect to A (p. 165)

indA index of A, that is, indA(0) (p. 165)

A⊥ complementary idempotent matrix or
projector I −A corresponding to the
idempotent matrix or projector A (p. 167)

σmax(A)
4

= σ1(A) largest singular value of A ∈ Fn×m

(p. 173)

σi(A) ith largest singular value of A ∈ Fn×m

(p. 173)

σmin(A)
4

= σn(A) minimum singular value of A ∈ Fn×n

(p. 173)

V (λ1, . . . , λn) Vandermonde matrix (p. 195, Fact 5.12.1)

circ(a0, . . . , an−1) circulant matrix of a0, . . . , an−1 ∈ F (p. 197,
Fact 5.12.7)

Chapter 6

A+ (Moore-Penrose) generalized inverse of A
(p. 207)

D|A Schur complement of D with respect to A

(p. 211)

AD Drazin generalized inverse of A (p. 211)

A# group generalized inverse of A (p. 213)

Chapter 7

vecA vector formed by stacking columns of A
(p. 225)

⊗ Kronecker product (p. 226)

Pn,m Kronecker permutation matrix (p. 228)

⊕ Kronecker sum (p. 229)

A ◦B Schur product of A and B (p. 230)

A{α} Schur power of A,
(

A{α})
(i,j)

=
(

A(i,j)

)α

(p. 230)
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Chapter 8

H
n n× n Hermitian matrices (p. 239)

N
n n× n nonnegative-semidefinite matrices

(p. 239)

P
n n× n positive-definite matrices (p. 239)

A ≥ B A−B ∈ N
n (p. 239)

A > B A−B ∈ P
n (p. 239)

〈A〉 (A∗A)1/2 (p. 254)

A#B geometric mean of A and B (p. 274, Fact
8.8.20)

A :B parallel sum of A and B (p. 276, Fact
8.9.9)

Chapter 9

|x| absolute value of x ∈ Fn (p. 303)

|A| absolute value of A ∈ Fn×m (p. 303)

‖x‖p Holder norm

[

n
∑

i=1
|x(i)|p

]1/p

(p. 304)

‖A‖F Frobenius norm
√

trA∗A (p. 308)

‖A‖p Holder norm

[

n,m
∑

i,j=1
|A(i,j)|p

]1/p

(p. 307)

‖A‖σp Schatten norm

[

rankA
∑

i=1
σpi (A)

]1/p

(p. 309)

‖A‖q,p Holder-induced norm (p. 315)

‖A‖col column norm ‖A‖1,1 =
maxi∈{1,...,m}‖coli(A)‖1 (p. 317)

‖A‖row row norm ‖A‖∞,∞ =
maxi∈{1,...,n}‖rowi(A)‖1 (p. 317)

`(A) induced lower bound of A (p. 319)
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`q,p(A) Holder-induced lower bound of A (p. 320)

‖ · ‖D dual norm (p. 326, Fact 9.7.8)

Chapter 10

Bε(x) open ball of radius ε centered at x (p. 355)

Sε(x) sphere of radius ε centered at x (p. 355)

int S interior of S (p. 355)

cl S closure of S (p. 355)

intS′ S interior of S relative to S′ (p. 355)

clS′ S closure of S relative to S′ (p. 356)

bd S boundary of S (p. 356)

bdS′ S boundary of S relative to S′ (p. 356)

vcone D variational cone of D (p. 359)

D+f(x0; ξ) one-sided directional derivative of f at x0

in the direction ξ (p. 359)

∂f(x0)
∂x(i)

partial derivative of f with respect to x(i)

at x0 (p. 359)

f ′(x) Frechet derivative of f at x (p. 360)

df(x0)
dx(i)

f ′(x0) (p. 360)

f (k)(x) kth Frechet derivative of f at x (p. 361)

Chapter 11

eA or exp(A) matrix exponential (p. 372)

Ss(A) asymptotically stable subspace of A
(p. 389)

Su(A) unstable subspace of A (p. 389)

OUD open unit disk in C (p. 395)

CUD closed unit disk in C (p. 395)
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Chapter 12

L Laplace transform (p. 434)

U(A,C) unobservable subspace of (A,C) (p. 436)

O(A,C)





C
CA
CA2

...
CAn−1



 (p. 437)

C(A,B) controllable subspace of (A,B) (p. 442)

K(A,B)
[

B AB A2B · · · An−1B
]

(p. 443)
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Conventions, Notation, and Terminology

When a word is defined, it is italicized.

The definition of a word, phrase, or symbol should always be understood as
an “if and only if” statement, although for brevity “only if” is omitted. The
symbol

4

= means equal by definition.

Analogous statements are written in parallel using the following style: If n
is (even, odd), then n+ 1 is (odd, even).

i, j, k, l,m, n always denote integers. Hence, k ≥ 1 denotes a positive integer,
and the limit limk→∞Ak is taken over positive integers.

The prefix “non” means “not” in the words nonempty, nonzero, non-real,
nonnegative, nonunique, nonsingular, nonpositive, nonconstant, and non-
normal. In some traditional usage, “non” may mean “not necessarily.”

“Increasing” and “decreasing” indicate strict change for a change in the ar-
gument. The word “strict” is superfluous and thus is omitted. Nonincreasing
means nowhere increasing, while nondecreasing means nowhere decreasing.

Multisets can have repeated elements so that {x}m and {x, x}m are different.
Multisets help account for repeated eigenvalues. The listed elements α, β, γ
of the conventional set {α, β, γ} are not necessarily distinct.

S1⊂ S2 means that S1 is a proper subset of S2, that is, S1⊆ S2 and S1 6= S2.
S1 ⊆ S2 means that either S1 ⊂ S2 or S1 = S2. This notation is consistent
with < and ≤ for real numbers.

1/∞ 4

= 0.

0!
4

= 1.

A0 4

= I for all square matrices A. In particular, 00
n×n = In. With this

convention, it is possible to write
∞
∑

i=0

αi =
1

1− α

for all −1 < α < 1. Of course, limx→0+ 0x = 0, limx→0+ x0 = 1, and
limx→0+ xx = 1.

√
−1 is always denoted by dotless . Although i is traditional in mathemat-

ics, this notation is common in electrical engineering.
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The imaginary numbers are R. Hence, 0 is both a real number and an
imaginary number.

s always represents a complex scalar.

For the scalar ordering “≤”, if x ≤ y, then x < y if and only if x 6= y. For a
vector or matrix ordering, x ≤ y and x 6= y do not imply that x < y.

Operations denoted by superscripts are applied before operations repre-
sented by preceding operators. For example, tr (A+B)2 means tr

[

(A+B)2
]

and cl S∼ means cl(S∼). This convention simplifies many formulas.

“Vector” means column vector. A vector is a matrix with one column.

Sets have elements, vectors have components, and matrices have entries.
This terminology is traditional and has no mathematical consequence.

A(i,j) is the scalar (i, j) entry of A. Ai,j or Aij denotes a block or submatrix
of A.

All matrices have nonnegative integral dimensions. If at least one of the
dimensions of a matrix is zero, then the matrix is empty.

The entries of a submatrix Â of a matrix A are the entries of A lying in
specified rows and columns. Â is a block of A if Â is a submatrix of A
whose entries are entries of adjacent rows and columns of A. Every matrix
is both a submatrix and block of itself.

The determinant of a submatrix is a subdeterminant. (Some books use
“minor.”) The determinant of a matrix is also a subdeterminant of the
matrix.

The dimension of the null space of a matrix is its defect. Some books use
“nullity.”

A block of a square matrix is diagonally located if the block is square and the
diagonal entries of the block are also diagonal entries of the matrix; other-
wise, the block is off-diagonally located. This terminology avoids confusion
with a “diagonal block,” which is block that is also a a square, diagonal
submatrix.

F denotes either R or C consistently in every result. For example, in Theorem
5.6.3, the three appearances of “F” can be read as either all “C” or all “R.”

If F = R, then A becomes A, A∗ becomes AT, “Hermitian” becomes “sym-
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metric,” “unitary” becomes “orthogonal,” “unitarily” becomes “orthogo-
nally,” and “congruence” becomes “T-congruence.” A square complex ma-
trix A is symmetric if AT = A and orthogonal if ATA = I.

The adjugate of A ∈ Fn×n is denoted by AA. The traditional notation is
adjA. AA is used in [523].

The diagonal entries of a matrix A ∈ Fn×n all of whose diagonal entries are
real are ordered as dmax(A) = d1(A) ≥ d2(A) ≥ · · · ≥ dmin(A) = dn(A).

The eigenvalues of a matrix A ∈ Fn×n all of whose eigenvalues are real are
ordered as λmax(A) = λ1(A) ≥ λ2(A) ≥ · · · ≥ λmin(A) = λn(A).

For A ∈ Fn×n, amA(λ) is the number of copies of λ in the multispectrum
of A, gmA(λ) is the number of Jordan blocks of A associated with λ, and
indA(λ) is the size of the largest Jordan block of A associated with λ.

An n ×m matrix has exactly min{n,m} singular values, exactly rankA of
which are positive.

The min{n,m} singular values of a matrix A ∈ Fn×m are ordered as σmax(A)
4

= σ1(A) ≥ σ2(A) ≥ · · · ≥ σmin{n,m}(A). If n = m, then σmin(A)
4

= σn(A).
The notation σmin(A) is defined only for square matrices.

Nonnegative-semidefinite and positive-definite matrices are Hermitian.

A matrix that can be diagonalized by a similarity transformation is diag-
onalizable and thus semisimple since all of its eigenvalues are semisimple.
If the matrix is real and all of its eigenvalues are real, then the matrix is
diagonalizable over R.

An idempotent matrix A ∈ Fn×n satisfies A2 = A, while a projector is a
Hermitian, idempotent matrix. Some books use “projector” for idempotent
and “orthogonal projector” for projector. A reflector is a Hermitian, invo-
lutory matrix. A projector is a normal matrix whose eigenvalues are 1 or 0,
while a reflector is a normal matrix whose eigenvalues are 1 or −1.

An elementary matrix is a nonsingular matrix formed by adding an outer-
product matrix to the identity matrix. An elementary reflector is a reflec-
tor exactly one of whose eigenvalues is −1. An elementary projector is a
projector exactly one of whose eigenvalues is 0. Elementary reflectors are
elementary matrices. However, elementary projectors are not elementary
matrices since elementary projectors are singular.

The rank of a matrix polynomial or rational transfer function P is the max-
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imum rank of P (s) over C. Some books call this “normal rank.” We denote
this quantity by rankP as distinct from rankP (s), which denotes the rank
of the matrix P (s), where s ∈ C.

The symbol ⊕ denotes the Kronecker sum. (Some books use ⊕ to denote
the direct sum of matrices.)

The Holder norms for vectors and matrices are denoted by ‖·‖p. The matrix
norm induced by ‖ · ‖q on the domain and ‖ · ‖p on the codomain is denoted
by ‖ · ‖p,q.

The Schatten norms for matrices are denoted by ‖ · ‖σp, and the Frobenius
norm is denoted by ‖·‖F. Hence, ‖·‖σ∞ = ‖·‖2,2 = σmax(·) and ‖·‖σ2 = ‖·‖F.
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Preface

The idea for this book began with the realization that at the heart
of the solution to many problems in science, mathematics, and engineering
often lies a “matrix fact,” that is, an identity, inequality, or property of
matrices that is crucial to the solution of the problem. Although there are
numerous excellent books on linear algebra and matrix theory, no one book
contains all or even most of the vast number of matrix facts that appear
throughout the mathematical, scientific, and engineering literature. This
book is an attempt to organize many of these facts into a reference source
for users of matrix theory in diverse applications areas.

Matrix mathematics, which can be viewed as a significant extension of
scalar mathematics, provides powerful tools for analyzing physical problems
in science and engineering. Discretization of partial differential equations
by means of finite differencing and finite elements yields linear algebraic or
differential equations whose matrix structure reflects the nature of physical
solutions [530]. Multivariate probability theory and statistical analysis use
matrix methods to represent probability distributions, to compute moments,
and to perform linear regression for data analysis [215, 249, 269, 387, 503].
The study of linear differential equations [281] depends heavily on matrix
analysis, while linear systems theory and control theory are matrix-intensive
areas of engineering [31,62,66,141,161,213,306,345,352,382,463,493,510,556,
572,615,632]. In addition, matrices are widely used in rigid body mechanics
[11,344,399,432,449,562], structural dynamics [350,409,467], fluid dynamics
[137,200,595], circuit theory [13], queuing and stochastic systems [265,436],
graph theory [202], signal processing [569], statistical mechanics [7,69,574],
demography [329], optics [226], and number theory [339].

In all applications involving matrices, computational techniques are
essential for obtaining numerical solutions. The development of efficient
and reliable algorithms for matrix computations is therefore an important
area of research that has been extensively developed [44, 136, 169, 236, 280,
297, 309, 521, 522, 524, 554, 573, 596, 600, 601]. To facilitate the solution of
matrix problems, entire computer packages have been developed using the
language of matrices. However, this book is concerned with the analytical
properties of matrices rather than their computational aspects.

This book encompasses a broad range of fundamental questions in
matrix theory, which, in many cases can be viewed as extensions of related
questions in scalar mathematics. A few such questions are:
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What are the basic properties of matrices? How can matrices be
characterized, classified, and quantified?

How can a matrix be decomposed into simpler matrices? A
matrix decomposition may involve addition, multiplication,
and partition. Decomposing a matrix into its fundamental
components provides insight into its algebraic and geometric
properties. For example, the polar decomposition states that
every square matrix can be written as the product of a rotation
and a dilation analogous to the polar representation of a complex
number.

Given a pair of matrices having certain properties, what can
be inferred about the sum, product, and concatenation of these
matrices? In particular, if a matrix has a given property, to
what extent does that property change or remain unchanged
if the matrix is perturbed by another matrix of a certain type
by means of addition, multiplication, or concatenation? For
example, if a matrix is nonsingular, how large can an additive
perturbation to that matrix be without the sum becoming
singular?

How can properties of a matrix be determined by means of
simple operations? For example, how can the location of the
eigenvalues of a matrix be estimated directly in terms of the
entries of the matrix?

To what extent do matrices satisfy the formal properties of
the real numbers? For example, while 0 ≤ a ≤ b implies that
ar ≤ br for real numbers a, b and a positive integer r, when does
0 ≤ A ≤ B imply Ar ≤ Br for nonnegative-semidefinite matrices
A and B and with the nonnegative-semidefinite ordering?

Questions of these types have occupied matrix theorists for at least
a century, with motivation from diverse applications. The existing scope
and depth of knowledge are enormous. Taken together, this body of knowl-
edge provides a powerful framework for developing and analyzing models for
scientific and engineering applications.

This book is intended to be useful for at least four groups of readers.
Since linear algebra is a standard course in the mathematical sciences and
engineering, graduate students in these fields can use this book to expand
the scope of their linear algebra text. For instructors, many of the Facts
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can be used as exercises to augment standard material in matrix courses.
For researchers in the mathematical sciences, including statistics, physics,
and engineering, this book can be used as a general reference on matrix
theory. Finally, for users of matrices in the applied sciences, this book will
provide access to a large body of results in matrix theory. By collecting
these results in a single source, it is my hope that this book will prove to
be convenient and useful for a broad range of applications. The material
in this book is thus intended to complement the large number of classical
and modern texts and reference works on linear algebra and matrix theory
[2, 214,222,223,229,244,285,383,391,395,423,440,444,466,492,509,530].

After a review of mathematical preliminaries in Chapter 1, fundamen-
tal properties of matrices are described in Chapter 2. Chapter 3 summarizes
the major classes of matrices and various matrix transformations. In Chap-
ter 4 we turn to polynomial and rational matrices whose basic properties
are essential for understanding the structure of constant matrices. Chapter
5 is concerned with various decompositions of matrices including the Jor-
dan, Schur, and singular value decompositions. Chapter 6 provides a brief
treatment of generalized inverses, while Chapter 7 describes the Kronecker
and Schur product operations. Chapter 8 is concerned with the properties
of nonnegative-semidefinite matrices. A detailed treatment of vector and
matrix norms is given in Chapter 9, while formulas for matrix derivatives
are given in Chapter 10. Next, Chapter 11 focuses on the matrix exponen-
tial and stability theory, which are central to the study of linear differential
equations. In Chapter 12 we apply matrix theory to the analysis of linear
systems, their state space realizations, and their transfer function represen-
tation. This chapter also includes a discussion of the matrix Riccati equation
of control theory.

Each chapter provides a core of results with, in many cases, complete
proofs. Sections at the end of each chapter provide a collection of Facts
organized to correspond to the order of topics in the chapter. These Facts
include corollaries and special cases of results presented in the chapter, as
well as related results that go beyond the results of the chapter. In a few
cases the Facts include open problems, illuminating remarks, and hints re-
garding proofs. The Facts are intended to provide the reader with a useful
reference collection of matrix results as well as a gateway to the matrix
theory literature.

The literature on matrix theory is enormous and includes numerous
excellent textbooks and monographs as well as innumerable papers. The
material in this book has been drawn from many sources, and these appear
in the reference list. An attempt has been made to give appropriate credit
wherever possible. However, there are surely omissions in this regard, and I
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regret all such oversights.

The author is indebted to many individuals who, over the years, pro-
vided helpful suggestions as well as material for this book.
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Chapter One

Preliminaries

In this chapter we review some basic terminology and results con-
cerning logic, sets, functions, and related concepts. This material is used
throughout the book.

1.1 Logic and Sets

Let A and B be conditions. The negation of A is (not A), the both of
A and B is (A and B), and the either of A and B is (A or B).

Let A and B be conditions. The implication or statement “if A is
satisfied, then B is satisfied” or, equivalently, “A implies B,” is written as
A =⇒ B, while A ⇐⇒ B is equivalent to [(A =⇒ B) and (A ⇐= B)]. Of
course, A⇐= B means B =⇒ A.

Suppose A⇐⇒ B. Then, A is satisfied if and only if B is satisfied. By
convention, the implication A =⇒ B (the “only if” part) is necessity, while
B =⇒ A (the “if” part) is sufficiency. The converse of A =⇒ B is B =⇒ A.
The statement A =⇒ B is equivalent to its contrapositive (not B) =⇒ (not
A).

A theorem is a significant result, while a proposition is less signifi-
cant. The primary role of a lemma is to support the proof of a theorem
or proposition. Finally, a corollary is a direct consequence of a theorem or
proposition.

Suppose that A′ =⇒ A =⇒ B =⇒ B′. Then, A′ =⇒ B′ is a corollary
of A =⇒ B.

Let A, B, and C be conditions, and assume that A =⇒ B. Then,
A =⇒ B is a strengthening of (A and C) =⇒ B. If, in addition, A =⇒ C,
then the statement (A and C) =⇒ B has redundant assumptions.
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Let X
4

= {x, y, z} be a set. Then,

x ∈ X (1.1.1)

means that x is an element of X. If w is not an element of X, then we write

w 6∈ X. (1.1.2)

The set with no elements, denoted by ∅, is the empty set. If X 6= ∅, then
X is nonempty.

A set cannot have repeated elements. For example, {x, x} = {x}.
However, a multiset is a collection of elements that allows for repetition.
The multiset consisting of two copies of x is written as {x, x}m. However,
we do not assume that the listed elements x, y of the conventional set {x, y}
are distinct.

There are two basic types of mathematical statements involving quan-
tifiers. An existential statement is of the form

there exists x ∈ X such that condition Z is satisfied, (1.1.3)

while a universal statement has the structure

condition Z is satisfied for all x ∈ X. (1.1.4)

Let X and Y be sets. The intersection of X and Y is the set of common
elements of X and Y given by

X ∩ Y
4

= {x: x ∈ X and x ∈ Y} = {x ∈ X: x ∈ Y} (1.1.5)

= {x ∈ Y: x ∈ X} = Y ∩ X, (1.1.6)

while the set of elements in either X or Y (the union of X and Y) is

X ∪ Y
4

= {x: x ∈ X or x ∈ Y} = Y ∪ X. (1.1.7)

The complement of X relative to Y is

Y\X 4

= {x ∈ Y: x 6∈ X}. (1.1.8)

If Y is specified, then the complement of X is

X∼ 4

= Y\X. (1.1.9)

If x ∈ X implies that x ∈ Y, then X is contained in Y (X is a subset of Y),
which is written as

X ⊆ Y. (1.1.10)

The statement X = Y is equivalent to the validity of both X ⊆ Y and Y ⊆ X.
If X ⊆ Y and X 6= Y, then X is a proper subset of Y and we write X ⊂ Y.
The sets X and Y are disjoint if X ∩ Y = ∅. A partition of X is a collection
of pairwise disjoint subsets of X whose union is equal to X.
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The operations “∩”,“∪”, and “\” and the relations “⊂” and “⊆” ex-
tend directly to multisets. For example,

{x, x}m ∪ {x}m = {x, x, x}m. (1.1.11)

By ignoring repetitions, a multiset can be converted to a set, while a set can
be viewed as a multiset with distinct elements.

1.2 Relations and Functions

The Cartesian product X1× · · · ×Xn of sets X1, . . . ,Xn is the set con-
sisting of ordered elements of the form (x1, . . . , xn), where xi ∈ Xi for all
i = 1, . . . , n. A relation R on a set X is a subset of X× X. For convenience,
(x1, x2) ∈ R is denoted by x1≤ x2, whereas x1 � x2 denotes (x1, x2) 6∈ R.

Definition 1.2.1. Let R be a relation on X. Then, the following ter-
minology is defined:

i) R is reflexive if x ≤ x for all x ∈ X.

ii) R is antisymmetric if x1≤ x2 and x2 ≤ x1 imply that x1 = x2.

iii) R is symmetric if x1≤ x2 implies that x2 ≤ x1.

iv) R is transitive if x1≤ x2 and x2 ≤ x3 imply that x1≤ x3.

v) R is pairwise connected if x1, x2 ∈ X implies that either x1 ≤ x2 or
x2 ≤ x1.

vi) R is a partial ordering if it is reflexive, antisymmetric, and transitive.

vii) R is a total ordering if it is a pairwise connected partial ordering.

viii) R is an equivalence relation if it is reflexive, symmetric, and transi-
tive.

For an equivalence relation R, x1≤ x2 is denoted by x1≡ x2, whereas
x1 6≡ x2 denotes x1 � x2. If R is an equivalence relation and x ∈ X, then the
subset {y ∈ X: y ≡ x} of X is the equivalence class of x induced by R.

Theorem 1.2.2. Let R be an equivalence relation on a set X. Then,
the collection of equivalence classes of X induced by R is a partition of X.
Conversely, given a partition of X, the relation R defined by

(x, y) ∈ R⇐⇒ x and y belong to the same partition subset of X (1.2.1)

is an equivalence relation.

Proof. For x ∈ X, let Sx denote the equivalence class of x induced by
R. Clearly, X =

⋃

x∈XSx. It remains to be shown that if x, y ∈ X, then
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either Sx = Sy or Sx∩ Sy = ∅. Hence, let x, y ∈ X, and suppose that Sx and
Sy are not disjoint so that there exists z ∈ Sx ∩ Sy. Thus, (x, z) ∈ R and
(z, y) ∈ R. Now, let w ∈ Sx. Then, (w, x) ∈ R, (x, z) ∈ R, and (z, y) ∈ R

imply that (w, y) ∈ R. Hence, w ∈ Sy, which implies that Sx ⊆ Sy. By a
similar argument, Sy ⊆ Sx. Consequently, Sx = Sy. Finally, the proof of the
second statement is immediate.

Let X and Y be sets. Then, a function f that maps X into Y is a
rule f : X 7→ Y that assigns a unique element f(x) (the image of x) of Y to
every element x in X. Equivalently, a function f : X 7→ Y can be viewed as
a subset F of X × Y such that, for all x ∈ X, there exists y ∈ Y such that
(x, y) ∈ F and, if (x1, y1) ∈ F, (x2, y2) ∈ F, and x1 = x2, then y1 = y2. In

this case, F = graph(f)
4

= {(x, f(x)): x ∈ X}. The set X is the domain of f,
while the set Y is the codomain of f. For X1 ⊆ X, it is convenient to define
f(X1)

4

= {f(x): x ∈ X1}. The set f(X), which is denoted by R(f), is the
range of f. If, in addition, Z is a set and g : Y 7→ Z, then g • f : X 7→ Z (the

composition of g and f) is the function (g • f)(x)
4

= g(f(x)). If x1, x2 ∈ X

and f(x1) = f(x2) implies that x1 = x2, then f is one-to-one; if R(f) = Y,

then f is onto. The function IX: X 7→ X defined by IX(x)
4

= x for all x ∈ X

is the identity on X.

Let f : X 7→ Y. Then, f is left invertible if there exists a function
g : Y 7→ X (a left inverse of f) such that g • f = IX, whereas f is right
invertible if there exists a function h: Y 7→ X (a right inverse of f) such that
f • h = IY. In addition, the function f : X 7→ Y is invertible if there exists
f−1: Y 7→ X (the inverse of f) such that f−1 • f = IX and f • f−1 = IY. The
inverse image f−1(S) of S ⊆ Y is defined by

f−1(S)
4

= {x ∈ X: f(x) ∈ S}. (1.2.2)

Theorem 1.2.3. Let X and Y be sets, and let f : X 7→ Y. Then, the
following statements hold:

i) f is left invertible if and only if f is one-to-one.

ii) f is right invertible if and only if f is onto.

Furthermore, the following statements are equivalent:

iii) f is invertible.

iv) f has a unique inverse.

v) f is one-to-one and onto.

vi) f is left invertible and right invertible.

vii) f has a unique left inverse.
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viii) f has a unique right inverse.

Proof. To prove i), suppose that f is left invertible with left inverse
g : Y 7→ X. Furthermore, suppose that x1, x2 ∈ X satisfy f(x1) = f(x2).
Then, x1 = g(f(x1)) = g(f(x2)) = x2, which shows that f is one-to-one.
Conversely, suppose that f is one-to-one so that, for all y ∈ R(f), there
exists a unique x ∈ X such that f(x) = y. Hence, define the function

g : Y 7→ X by g(y)
4

= x for all y = f(x) ∈ R(f) and by g(y) arbitrary for all
y ∈ Y\R(f). Consequently, g(f(x)) = x for all x ∈ X, which shows that g is
a left inverse of f.

To prove ii), suppose that f is right invertible with right inverse
g : Y 7→ X. Then, for all y ∈ Y, it follows that f(g(y)) = y, which shows
that f is onto. Conversely, suppose that f is onto so that, for all y ∈ Y,
there exists at least one x ∈ X such that f(x) = y. Selecting one such x

arbitrarily, define g : Y 7→ X by g(y)
4

= x. Consequently, f(g(y)) = y for all
y ∈ Y, which shows that g is a right inverse of f.

1.3 Facts on Logic, Sets, and Functions

Fact 1.3.1. Let A and B be conditions. Then, the following statements
hold:

i) (A or B)⇐⇒ (not A =⇒B).

ii) (A =⇒B)⇐⇒ (not A or B).

iii) [not (A or B)]⇐⇒ (not A and not B).

iv) [not (A =⇒B)]⇐⇒ (A and not B).

Fact 1.3.2. The following statements are equivalent:

i) A =⇒ (B or C).

ii) (A and not B) =⇒ C.

Fact 1.3.3. The following statements are equivalent:

i) A⇐⇒ B.

ii) (A or not B) and [not (A and not B)].

Fact 1.3.4. Let A,B,C be subsets of a set X. Then, the following
identities hold:

i) A ∩A = A ∪A = A.
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ii) (A ∪B)∼ = A∼ ∩B∼.

iii) A∼ ∪B∼ = (A ∩B)∼.

iv) [A\(A ∩B)] ∪B = A ∪B.

v) (A ∪B)\(A ∩B) = (A ∩B∼) ∪ (A∼ ∩B).

vi) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

vii) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

viii) (A ∩B)\C = (A\C) ∩ (B\C).

ix) (A ∪B)\C = (A\C) ∪ (B\C).

x) (A ∪B) ∩ (A ∪B∼) = A.

xi) (A ∪B) ∩ (A∼ ∪B) ∩ (A ∪B∼) = A ∩B.

Fact 1.3.5. Let (x1, y1), (x2, y2) ∈ R×R. Then, the relation (x1, y1) ≤
(x2, y2) defined by x1≤ x2 and y1≤ y2 is a partial ordering.

Fact 1.3.6. Let f : X 7→ Y be invertible. Then,

(f−1)−1 = f.

Fact 1.3.7. Let f : X 7→ Y and g : Y 7→ Z, and assume that f and g
are invertible. Then, g • f is invertible and

(g • f)−1 = f−1 • g−1.

Fact 1.3.8. Let X be a set, and let X denote the class of subsets of
X. Then, “⊂” and “⊆” are transitive relations on X, and “⊆” is a partial
ordering on X.

1.4 Facts on Scalar Inequalities

Fact 1.4.1. Let x be a positive number. Then,

xα

{

≤ αx+ 1− α, 0 ≤ α ≤ 1,

≥ αx+ 1− α, α ≤ 0 or α ≥ 1.

Fact 1.4.2. Let x and y be nonnegative numbers, and let α ∈ [0, 1].
Then,

xαy1−α ≤ αx+ (1− α)y.

(Remark: See Fact 8.12.12 and Fact 8.12.13.)
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Fact 1.4.3. Let x and y be real numbers, and let α ∈ [0, 1]. Then,

eαx+(1−α)y ≤ αex + (1− α)ey.

(Proof: Replace x and y by ex and ey, respectively, in Fact 1.4.2.) (Re-
mark: This inequality is a convexity condition. See Definition 8.5.11 for the
convexity of matrix-valued functions.)

Fact 1.4.4. Let x be a positive number. Then,

1− x−1 ≤ log x ≤ x− 1.

Furthermore, equality holds if and only if x = 1.

Fact 1.4.5. Let x and y be nonnegative numbers, and let p, q ∈ [1,∞)
satisfy 1/p+ 1/q = 1. Then,

xy ≤ xp

p
+
yq

q
.

(Remark: This result is Young’s inequality. A matrix version is given by
Fact 9.12.19.)

Fact 1.4.6. Let x and y be positive numbers, and let 0 ≤ p ≤ q. Then,

xp + yp

(xy)p/2
≤ xq + yq

(xy)q/2
.

(Remark: This inequality is a monotonicity property. See Fact 8.7.27.)

Fact 1.4.7. Let x and y be distinct positive numbers, and let p and q
be real numbers such that p < q. Then,

(

xp + yp

2

)1/p

<

(

xq + yq

2

)1/q

.

(Proof: See [375].) (Remark: This result is a power mean inequality. Letting
q = 1 and p → 0 yields the arithmetic-mean-geometric-mean inequality√
xy ≤ 1

2(x+ y).)

Fact 1.4.8. Let x and y be distinct positive numbers, let 1/3 ≤ p <
1 < q. Then,

√
xy <

y − x
log y − log x

<

(

xp + yp

2

)1/p

<
x+ y

2
<

(

xq + yq

2

)1/q

.

(Proof: See [375].) (Remark: These inequalities are a refinement of the
arithmetic-mean-geometric-mean inequality. Additional inequalities in n
variables and related references are given in [619].)
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Fact 1.4.9. Let x1, . . . , xn be nonnegative numbers. Then,
(

n
∏

i=1

xi

)1/n

≤ 1
n

n
∑

i=1

xi.

Furthermore, equality holds if and only if x1 = x2 = · · · = xn. (Remark:
This result is the arithmetic-mean-geometric-mean inequality. Several proofs
are given in [119]. Bounds for the difference between these quantities are
given in [12,132,558].)

Fact 1.4.10. Let x1, . . . , xn be nonnegative real numbers, let p be a
real number, and define

Mp
4

=























(

n
∏

i=1
xi

)1/n

, p = 0,

(

1
n

n
∑

i=1
xpi

)1/p

, p 6= 0.

Now, let p, q be real numbers such that p ≤ q. Then,

Mp ≤Mq.

Furthermore, p < q and at least two of the numbers x1, . . . , xn are distinct
if and only if

Mp < Mq.

(Proof: See [117, p. 210] and [395, p. 105].) (Remark: If p and q are nonzero
and p ≤ q, then,

(

n
∑

i=1

xpi

)1/p

≤
(

1
n

)1/q−1/p

(

n
∑

i=1

xqi

)1/q

,

which is a reverse form of Fact 1.4.13. (Remark: This result is a power mean
inequality. M0 ≤ M1 is the arithmetic-mean-geometric-mean inequality
given by Fact 1.4.9.)

Fact 1.4.11. Let x1, . . . , xn be nonnegative numbers, and let α1, . . . , αn
be nonnegative numbers such that

∑n
i=1 αi = 1. Then,

n
∏

i=1

xαi

i ≤
n
∑

i=1

αixi.

Furthermore, equality holds if and only if x1 = x2 = · · · = xn. (Re-
mark: This result is the weighted arithmetic-mean geometric-mean inequal-
ity.) (Proof: Since f(x) = − log x is convex, it follows that log

∏n
i=1 x

αi

i =
∑n

i=1 αi log xi ≤ log
∑n

i=1 αixi. To prove the second statement, define

f : [0,∞)n 7→ [0,∞) by f(µ1, . . . , µn)
4

=
∑n

i=1 αiµi −
∏n
i=1 µ

αi

i . Note that
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f(µ, . . . , µ) = 0 for all µ ≥ 0. If x1, . . . , xn minimizes f, then ∂f/∂µi(x1, . . . ,
xn) = 0 for all i = 1, . . . , n, which implies that x1 = x2 = · · · = xn.)

Fact 1.4.12. Let x1, . . . , xn be nonnegative numbers. Then,

1 +

(

n
∏

i=1

xi

)1/n

≤
[

n
∏

i=1

(1 + xi)

]1/n

.

Furthermore, equality holds if and only if x1 = x2 = · · · = xn. (Proof: Use
Fact 1.4.9.) (Remark: This inequality is used to prove Corollary 8.4.15.)

Fact 1.4.13. Let x1, . . . , xn be nonnegative real numbers, and let p, q
be real numbers such that p ≤ q. Then,

(

n
∑

i=1

xqi

)1/q

≤
(

n
∑

i=1

xpi

)1/p

.

Furthermore, the inequality is strict if and only if p < q and at least two
of the numbers x1, . . . , xn are nonzero. (Proof: See Proposition 9.1.5.) (Re-
mark: This result is a power sum inequality or Jensen’s inequality. See [117,
p. 213]. The result implies that the Holder norm is a monotonic function of
the exponent.)

Fact 1.4.14. Let 0 < x1 < · · · < xn, and let α1, . . . , αn ≥ 0 satisfy
∑n

i=1αi = 1. Then,
(

n
∑

i=1

αixi

)(

n
∑

i=1

αi
xi

)

≤ (x1 + xn)
2

4x1xn
.

(Remark: This result is the Kantorovich inequality. See Fact 8.10.5 and
[378].)

Fact 1.4.15. Let x1, . . . , xn and y1, . . . , yn be nonnegative numbers.
Then,

n
∑

i=1

xiyi ≤
(

n
∑

i=1

x2
i

)1/2( n
∑

i=1

y2
i

)1/2

.

Furthermore, equality holds if and only if
[

x1 · · · xn
]T

and
[

y1 · · · yn
]T

are linearly dependent. (Remark: This result is the Cauchy-Schwarz inequal-
ity.)

Fact 1.4.16. Let x1, . . . , xn and y1, . . . , yn be nonnegative numbers,
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and let α ∈ [0, 1]. Then,

n
∑

i=1

xαi y
1−α
i ≤

(

n
∑

i=1

xi

)α( n
∑

i=1

yi

)1−α

.

Now, let p, q ∈ [1,∞] satisfy 1/p+ 1/q = 1. Then, equivalently,

n
∑

i=1

xiyi ≤
(

n
∑

i=1

xpi

)1/p( n
∑

i=1

yqi

)1/q

.

Furthermore, equality holds if and only if
[

xp1 · · · x
p
n

]T
and

[

yq1 · · · y
q
n

]T

are linearly dependent. (Remark: This result is Holder’s inequality.) (Re-
mark: Note the relationship between the conjugate parameters p, q and the
barycentric coordinates α, 1− α. See Fact 8.15.23.)

Fact 1.4.17. Let x1, . . . , xn and y1, . . . , yn be nonnegative numbers.
Then,

[

n
∑

i=1

(xi + yi)
p

]1/p



























≥
(

n
∑

i=1
xpi

)1/p

+

(

n
∑

i=1
ypi

)1/p

, 0 < p ≤ 1,

≤
(

n
∑

i=1
xpi

)1/p

+

(

n
∑

i=1
ypi

)1/p

, p ≥ 1.

Furthermore, equality holds if and only if either p = 1 or
[

x1 · · · xn
]T

and
[

y1 · · · yn
]T

are linearly dependent. (Remark: This result is Minkowski’s
inequality.)

Fact 1.4.18. Let z be a complex scalar with complex conjugate z, real
part Re z, and imaginary part Im z. Then, the following statements hold:

i) |Re z| ≤ |z|.
ii) If z 6= 0, then z−1 = z/|z|2.
iii) If z 6= 0, then Re z−1 = (Re z)/|z|2.
iv) If |z| = 1, then z−1 = z.

v) If Re z 6= 0, then Re z−1 6= 0 |z| =
√

(Re z)/(Re z−1).

vi) |z2| = |z|2 = zz.

vii) z2 + z2 + 4(Im z)2 = 2|z|2.
viii) z2 + z2 + 2|z|2 = 4(Re z)2.

ix) |z2 + z2| ≤ 2|z|2.
x) |ez| ≤ e|z|.
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Now, let z1 and z2 be complex scalars. Then, the following statements
hold:

x) |z1z2| = |z1| |z2|.
xi) |z1 + z2| ≤ |z1|+ |z2|.
xii) |z1+z2| = |z1|+ |z2| if and only if there exists α ≥ 0 such that either

z1 = αz2 or z2 = αz1.

(Remark: Matrix analogues of some of these results are given in [548].)

1.5 Notes

Most of the preliminary material in this chapter can be found in [434].
A related treatment of mathematical preliminaries is given in [484]. Refer-
ence works on inequalities include [70,117–119,149,395,400,424].
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Chapter Two

Basic Matrix Properties

In this chapter we provide a detailed treatment of the basic proper-
ties of matrices such as range, null space, rank, and invertibility. We also
consider properties of convex sets, cones, and subspaces.

2.1 Matrix Algebra

The symbols Z, N, and P denote the sets of integers, nonnegative
integers, and positive integers, respectively. The symbols R and C denote
the real and complex number fields, respectively, whose elements are scalars.
Since R is a proper subset of C, we state many results for C. In other cases,
it is either desirable to treat R and C separately or simply not to make a
distinction. To do this efficiently, we use the symbol F to consistently denote
either R or C.

Let x ∈ C. Then, x = y+ z, where y, z ∈ R and 
4

=
√
−1. Define the

complex conjugate x of x by

x
4

= y − z (2.1.1)

and the real and imaginary parts Rex and Imx of x by

Rex
4

= 1
2(x+ x) = y (2.1.2)

and
Imx

4

= 1
2(x− x) = z. (2.1.3)

Furthermore, the absolute value |x| of x is defined by

|x| 4

=
√

x2 + y2. (2.1.4)

The closed left half plane (CLHP), open left half plane (OLHP), closed right
half plane (CRHP), and open right half plane (ORHP) are the subsets of C
defined by
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CLHP
4

= {s ∈ C: Re s ≤ 0}, (2.1.5)

OLHP
4

= {s ∈ C: Re s < 0}, (2.1.6)

CRHP
4

= {s ∈ C: Re s ≥ 0}, (2.1.7)

ORHP
4

= {s ∈ C: Re s > 0}. (2.1.8)

The imaginary numbers are represented by R. Note that 0 is both a real
number and an imaginary number.

The set Fn consists of vectors x of the form

x =







x(1)
...

x(n)






, (2.1.9)

where x(1), . . . , x(n) ∈ F are the components of x. Hence, the elements of Fn

are column vectors. Since F1 = F, it follows that every scalar is also a vector.
If x ∈ Rn and every component of x is nonnegative, then x is nonnegative,
which is written as x ≥≥ 0. If x ∈ Rn and every component of x is positive,
then x is positive, which is written as x >> 0. If x, y ∈ Rn, then x ≥≥ y
means that x− y ≥≥ 0, while x >> y means that x− y >> 0.

Definition 2.1.1. Let x, y ∈ Rn, and assume that x(1) ≥ · · · ≥ x(n)

and y(1) ≥ · · · ≥ y(n). Then, the following terminology is defined:

i) y weakly majorizes x if, for all k = 1, . . . , n,

k
∑

i=1

x(i) ≤
k
∑

i=1

y(i). (2.1.10)

ii) y strongly majorizes x if y weakly majorizes x and

n
∑

i=1

x(i) =
n
∑

i=1

y(i). (2.1.11)

Now, assume that x and y are nonnegative. Then, the following terminology
is defined:

iii) y weakly log majorizes x if, for all k = 1, . . . , n,

k
∏

i=1

x(i) ≤
k
∏

i=1

y(i). (2.1.12)

iv) y strongly log majorizes x if y weakly log majorizes x and

n
∏

i=1

x(i) =
n
∏

i=1

y(i). (2.1.13)
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If α ∈ F and x ∈ Fn, then αx ∈ Fn is given by

αx =







αx(1)
...

αx(n)






. (2.1.14)

If x, y ∈ Fn, then x and y are linearly dependent if there exists α ∈ F such
that either x = αy or y = αx. Linear dependence for a set of two or more
vectors is defined in Section 2.3. Furthermore, vectors add component by
component, that is, if x, y ∈ Fn, then

x+ y =







x(1) + y(1)
...

x(n) + y(n)






. (2.1.15)

Thus, if α, β ∈ F, then the linear combination αx+ βy is given by

αx+ βy =







αx(1) + βy(1)
...

αx(n) + βy(n)






. (2.1.16)

The vectors x1, . . . , xm ∈ Fn placed side by side form the matrix

A
4

=
[

x1 · · · xm
]

, (2.1.17)

which has n rows and m columns. The components of the vectors x1, . . . , xm
are the entries of A. We write A ∈ Fn×m and say that A has size n ×m.
Since Fn = Fn×1, it follows that every vector is also a matrix. Note that
F1×1 = F1 = F. If n = m, then n is the order of A, and A is square. The
ith row of A and the jth column of A are denoted by rowi(A) and colj(A),
respectively. Hence,

A =







row1(A)
...

rown(A)






=
[

col1(A) · · · colm(A)
]

. (2.1.18)

The entry xj(i) of A in both the ith row of A and the jth column of A is
denoted by A(i,j). Therefore, x ∈ Fn can be written as

x =







x(1)
...

x(n)






=







x(1,1)
...

x(n,1)






. (2.1.19)

Let A ∈ Fn×m. For b ∈ Fn, the matrix obtained from A by replacing
coli(A) with b is denoted by

A
i← b. (2.1.20)
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Likewise, for b ∈ F1×m, the matrix obtained from A by replacing rowi(A)
with b is denoted by (2.1.20).

Let A ∈ Rn×m. If every entry of A is nonnegative, then A is nonnega-
tive, which is written as A ≥≥ 0. If A ∈ Rn and every entry of x is positive,
then x is positive, which is written as A >> 0. If A,B ∈ Rn×m, then
A ≥≥ B means that A−B ≥≥ 0, while A >> B means that A−B >> 0.

Let A ∈ Fn×m, and let l
4

= min{n,m}. Then, the entries A(i,i) for all
i = 1, . . . , l and A(i,j) for all i 6= j are the diagonal entries and off-diagonal
entries of A, respectively. Moreover, for all i = 1, . . . , l − 1, the entries
A(i,i+1) and A(i+1,i) are the superdiagonal entries and subdiagonal entries of
A, respectively. In addition, the entries A(i,l+1−i) for all i = 1, . . . , l are the
reverse-diagonal entries of A. If the diagonal entries A(1,1), . . . , A(l,l) of A
are real, then dmin(A) and dmax(A) denote the smallest and largest diagonal
entries of A, respectively, and the diagonal entries of A are relabeled from
largest to smallest as

dmax(A)
4

= d1(A) ≥ · · · ≥ dmin(A)
4

= dl(A). (2.1.21)

Partitioned matrices are of the form






A11 · · · A1l
... · · ·.. ...

Ak1 · · · Akl






, (2.1.22)

where, for all i = 1, . . . , k and j = 1, . . . , l, the block Aij of A is a matrix of
size ni ×mj . If ni = mj and the diagonal entries of Aij lie on the diagonal
of A, then the square matrix Aij is a diagonally located block; otherwise, Aij
is an off-diagonally located block.

Matrices of the same size add entry by entry, that is, if A,B ∈ Fn×m,
then, for all i = 1, . . . , n and j = 1, . . . ,m, (A + B)(i,j) = A(i,j) + B(i,j).
Furthermore, for all i = 1, . . . , n and j = 1, . . . ,m, (αA)(i,j) = αA(i,j) for
all α ∈ F so that (αA + βB)(i,j) = αA(i,j) + βB(i,j) for all α, β ∈ F. If

A,B ∈ Fn×m, then A and B are linearly dependent if there exists α ∈ F
such that either A = αB or B = αA.

Let A ∈ Fn×m and x ∈ Fm. Then, the matrix-vector product Ax is
defined by

Ax
4

=







row1(A)x
...

rown(A)x






. (2.1.23)
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It can be seen that Ax is a linear combination of the columns of A, that is,

Ax =

m
∑

i=1

x(i)coli(A). (2.1.24)

The matrix A can be associated with the function f : Fm 7→ Fn defined by
f(x)

4

= Ax for all x ∈ Fm. The function f : Fm 7→ Fn is linear since, for all
α, β ∈ F and x, y ∈ Fm, it follows that

f(αx+ βy) = αAx+ βAy. (2.1.25)

The function f : Fm 7→ Fn defined by

f(x)
4

= Ax+ z, (2.1.26)

where z ∈ Fn, is affine.

Theorem 2.1.2. Let A ∈ Fn×m and B ∈ Fm×l, and define f : Fm 7→ Fn

and g : Fl 7→ Fm by f(x)
4

= Ax and g(y)
4

= By. Furthermore, define the

composition h
4

= f • g : Fl 7→ Fn. Then, for all y ∈ Rl,

h(y) = (AB)y, (2.1.27)

where, for all i = 1, . . . , n and j = 1, . . . , l, AB ∈ Fn×l is defined by

(AB)(i,j)
4

=

m
∑

k=1

A(i,k)B(k,j). (2.1.28)

Let A ∈ Fn×m and B ∈ Fm×l. Then, AB ∈ Fn×l is the product of A
and B. The matrices A and B are conformable, and the product (2.1.28)
defines matrix multiplication.

Let A ∈ Fn×m and B ∈ Fm×l. Then, AB can be written as

AB =
[

Acol1(B) · · · Acoll(B)
]

=







row1(A)B
...

rown(A)B






. (2.1.29)

Thus, for all i = 1, . . . , n and j = 1, . . . , l,

(AB)(i,j) = rowi(A)colj(B), (2.1.30)

colj(AB) = Acolj(B), (2.1.31)

rowi(AB) = rowi(A)B. (2.1.32)

As a special case, note that if x ∈ F1×n and y ∈ Fn = Fn×1, then the scalar
xy ∈ F is given by

xy =
n
∑

i=1

x(1,i)y(i). (2.1.33)
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For conformable matrices A, B, C, the associative and distributive
identities

(AB)C = A(BC), (2.1.34)

A(B + C) = AB +AC, (2.1.35)

(A+B)C = AC +BC (2.1.36)

are valid. Hence, we write ABC for (AB)C and A(BC).

Let A,B ∈ Fn×n. Then, the commutator [A,B] ∈ Fn×n of A and B is
the matrix

[A,B]
4

= AB −BA. (2.1.37)

The adjoint operator adA : Fn×n 7→ Fn×n is defined by

adA(X)
4

= [A,X]. (2.1.38)

Let x, y ∈ R3. Then, the cross product x×y ∈ R3 of x and y is defined
by

x× y 4

=





x(2)y(3) − x(3)y(2)

x(3)y(1) − x(1)y(3)

x(1)y(2) − x(2)y(1)



 . (2.1.39)

Multiplication of partitioned matrices is analogous to matrix multi-
plication with scalar entries. For example, for matrices with conformable
blocks,

[

A B
]

[

C
D

]

= AC +BD, (2.1.40)

[

A
B

]

C =

[

AC
BC

]

, (2.1.41)

[

A
B

]

[

C D
]

=

[

AC AD
BC BD

]

, (2.1.42)

[

A B
C D

][

E F
G H

]

=

[

AE +BG AF +BH
CE +DG CF +DH

]

. (2.1.43)

The n × m zero matrix, all of whose entries are zero, is written as
0n×m. If the dimensions are unambiguous, then we write just 0. Let x ∈ Fm

and A ∈ Fn×m. Then, the zero matrix satisfies

0k×mx = 0k, (2.1.44)

A0m×l = 0n×l, (2.1.45)

0k×nA = 0k×m. (2.1.46)
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Another special matrix is the empty matrix. For n ∈ N, the 0 × n
empty matrix, which is written as 00×n, has zero rows and n columns, while
the n × 0 empty matrix, which is written as 0n×0, has n rows and zero
columns. For A ∈ Fn×m, where n,m ∈ N, the empty matrix satisfies the
multiplication rules

00×nA = 00×m (2.1.47)

and
A0m×0 = 0n×0. (2.1.48)

Although empty matrices have no entries, it is useful to define the product

0n×000×m
4

= 0n×m. (2.1.49)

Also, we define
I0

4

= Î0
4

= 00×0. (2.1.50)

For n,m ∈ N, we define F0×m 4

= {00×m}, Fn×0 4

= {0n×0}, and F0 4

= F0×1.
The empty matrix can be viewed as a useful device for matrices just as 0 is
for real numbers and ∅ is for sets.

The n × n identity matrix, which has ones on the diagonal and zeros
elsewhere, is denoted by In or just I. Let x ∈ Fn and A ∈ Fn×m. Then, the
identity matrix satisfies

Inx = x (2.1.51)

and
AIm = InA = A. (2.1.52)

Let A ∈ Fn×n. Then, A2 4

= AA and, for all k ∈ P, Ak
4

= AAk−1. We
use the convention A0 4

= I even if A is the zero matrix. If k ∈ N, then

AkT
4

=
(

Ak
)T

=
(

AT
)k

(2.1.53)

and
Ak∗ 4

=
(

Ak
)∗

= (A∗)k. (2.1.54)

The vector ei,n ∈ Rn, or just ei, has 1 as its ith component and zeros
elsewhere. Thus,

ei,n = coli(In). (2.1.55)

Let A ∈ Fn×m. Then, eTiA = rowi(A) and Aei = coli(A). Furthermore, the
(i, j) entry of A can be written as

A(i,j) = eTiAej = eTjA
Tei. (2.1.56)

The n × m matrix Ei,j,n×m ∈ Rn×m, or just Ei,j , has 1 as its (i, j)
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entry and zeros elsewhere. Thus,

Ei,j,n×m = ei,ne
T
j,m. (2.1.57)

Note that Ei,1,n×1 = ei,n and

In = E1,1 + · · ·+ En,n =
n
∑

i=1

eie
T
i . (2.1.58)

Finally, the n×m ones matrix, all of whose entries are 1, is written as 1n×m
or just 1. Thus,

1n×m =

n,m
∑

i,j=1

Ei,j,n×m. (2.1.59)

Note that

1n×1 =
n
∑

i=1

ei,n =





1
...
1



 (2.1.60)

and
1n×m = 1n×111×m. (2.1.61)

The n×n reverse identity matrix, which has ones on the reverse diag-
onal and zeros elsewhere, is denoted by În or just Î. Left multiplication of
A ∈ Fn×m by În reverses the rows of A, while right multiplication of A by
Îm reverses the columns of A.

2.2 Transpose and Inner Product

A fundamental vector and matrix operation is the transpose. If x ∈ Fn,
then the transpose xT of x is defined to be the row vector

xT 4

=
[

x(1) · · · x(n)

]

∈ F1×n. (2.2.1)

Similarly, if x =
[

x(1,1) · · · x(1,n)

]

∈ F1×n, then

xT =







x(1,1)
...

x(1,n)






∈ Fn×1. (2.2.2)

Let x, y ∈ Fn. Then, xTy ∈ F is a scalar, and

xTy =
(

xTy
)T

= yTx =
n
∑

i=1

x(i)y(i). (2.2.3)



matrix2 November 19, 2003

BASIC MATRIX PROPERTIES 21

Note that

xTx =
n
∑

i=1

x2
(i). (2.2.4)

Lemma 2.2.1. Let x ∈ R. Then, xTx = 0 if and only if x = 0.

Let x, y ∈ Rn. Then, xTy ∈ R is the inner product of x and y. Fur-
thermore, x is orthogonal to y if xTy = 0.

Let x ∈ Cn. Then, x = y + z, where y, z ∈ Rn. Therefore, the
transpose xT of x is given by

xT = yT + zT. (2.2.5)

The complex conjugate x of x is defined by

x
4

= y − z, (2.2.6)

while the complex conjugate transpose x∗ of x is defined by

x∗ 4

= xT = yT − zT. (2.2.7)

The vectors y and z are the real and imaginary parts Rex and Imx of x,
respectively, which are denoted by

Rex
4

= 1
2(x+ x) = y (2.2.8)

and
Imx

4

= 1
2(x− x) = z. (2.2.9)

Note that

x∗x =
n
∑

i=1

x(i)x(i) =
n
∑

i=1

|x(i)|2 =
n
∑

i=1

[

y2
(i) + z2

(i)

]

. (2.2.10)

If w, x ∈ Cn, then wTx = xTw.

Lemma 2.2.2. Let x ∈ Cn. Then, x∗x = 0 if and only if x = 0.

Let x, y ∈ Cn. Then, x∗y ∈ C is the inner product of x and y, which
is given by

x∗y =

n
∑

i=1

x(i)y(i). (2.2.11)

Furthermore, x is orthogonal to y if x∗y = 0.
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Let A ∈ Fn×m. Then, the transpose AT ∈ Fm×n of A is defined by

AT 4

=
[

[row1(A)]T · · · [rown(A)]T
]

=







[col1(A)]T

...

[colm(A)]T






, (2.2.12)

that is, coli
(

AT
)

= [rowi(A)]T for all i = 1, . . . , n and rowi
(

AT
)

= [coli(A)]T

for all i = 1, . . . ,m. Hence,
(

AT
)

(i,j)
= A(j,i) and

(

AT
)T

= A. If B ∈ Fm×l,
then

(AB)T = BTAT. (2.2.13)

In particular, if x ∈ Fm, then

(Ax)T = xTAT, (2.2.14)

while if, in addition, y ∈ Fn, then yTAx is a scalar and

yTAx =
(

yTAx
)T

= xTATy. (2.2.15)

If B ∈ Fn×m, then, for all α, β ∈ F,

(αA+ βB)T = αAT + βBT. (2.2.16)

Let x ∈ Fn and y ∈ Fn. Then, the matrix xyT ∈ Fn×m is the outer
product of x and y. The outer product xyT is nonzero if and only if both x
and y are nonzero.

The trace of a square matrix A ∈ Fn×n, denoted by trA, is defined to
be the sum of its diagonal entries, that is,

trA
4

=

n
∑

i=1

A(i,i). (2.2.17)

Note that
trA = trAT. (2.2.18)

Let A ∈ Fn×m and B ∈ Fm×n. Then, AB and BA are square,

trAB = trBA = trATBT = trBTAT =

n,m
∑

i,j=1

A(i,j)B(j,i), (2.2.19)

and

trAAT = trATA =

n,m
∑

i,j=1

A2
(i,j). (2.2.20)

Furthermore, if n = m, then, for all α, β ∈ F,

tr(αA+ βB) = αtrA+ β trB. (2.2.21)
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Lemma 2.2.3. Let A ∈ Rn×m. Then, trATA = 0 if and only if A = 0.

Let A,B ∈ Rn×m. Then, the inner product of A and B is trATB.
Furthermore, A is orthogonal to B if trATB = 0.

Let C ∈ Cn×m. Then, C = A + B, where A,B ∈ Rn×m. Therefore,
the transpose CT of C is given by

CT = AT + BT. (2.2.22)

The complex conjugate C of C is

C
4

= A− B, (2.2.23)

while the complex conjugate transpose C∗ of C is

C∗ 4

= C
T

= AT− BT. (2.2.24)

Note that C = C if and only if B = 0, and that
(

CT
)T

= C = (C∗)∗ = C. (2.2.25)

The matrices A and B are the real and imaginary parts ReC and ImC of
C, respectively, which are denoted by

ReC
4

= 1
2

(

C + C
)

= A, (2.2.26)

and
ImC

4

= 1
2

(

C − C
)

= B. (2.2.27)

If C is square, then
trC = trA+ trB. (2.2.28)

If S ⊆ Cn×m, then
S

4

=
{

A: A ∈ S
}

. (2.2.29)

If S is a multiset with elements in Cn×m, then

S =
{

A: A ∈ S
}

m
. (2.2.30)

Lemma 2.2.4. Let A ∈ Cn×m. Then, trA∗A = 0 if and only if A = 0.

Let A,B ∈ Cn×m. Then, the inner product of A and B is trA∗B.
Furthermore, A is orthogonal to B if trA∗B = 0.

If A,B ∈ Cn×m, then, for all α, β ∈ C,

(αA+ βB)∗ = αA∗ + βB∗, (2.2.31)

while, if A ∈ Cn×m and B ∈ Cm×l, then

AB = AB (2.2.32)
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and
(AB)∗ = B∗A∗. (2.2.33)

In particular, if A ∈ Cn×m and x ∈ Cm, then

(Ax)∗ = x∗A∗, (2.2.34)

while if, in addition, y ∈ Cn, then

y∗Ax = (y∗Ax)T = xTATy (2.2.35)

and
(y∗Ax)∗ =

(

y∗Ax
)T

=
(

yTAx
)T

= x∗A∗y. (2.2.36)

For A ∈ Fn×m define the reverse transpose of A by

AT̂ 4

= ÎmA
TÎn (2.2.37)

and the reverse complex conjugate transpose of A by

A∗̂ 4

= ÎmA
∗În. (2.2.38)

For example,
[

1 2 3
4 5 6

]T̂

=





6 3
5 2
4 1



 . (2.2.39)

In general,

(A∗)∗̂ =
(

A∗̂
)∗

=
(

AT
)̂T

=
(

AT̂
)T

= ÎnAÎm (2.2.40)

and
(

A∗̂
)∗̂

=
(

AT̂
)T̂

= A. (2.2.41)

Note that if B ∈ Fm×l, then

(AB)∗̂ = B∗̂A∗̂ (2.2.42)

and
(AB)T̂ = BT̂AT̂. (2.2.43)

2.3 Convex Sets, Cones, and Subspaces

Let S ⊆ Fn. If α ∈ F, then αS
4

= {αx: x ∈ S} and, if y ∈ Fn, then
y + S = {y + x: x ∈ S}. We write −S for (−1)S. The set S is symmetric
if S = −S, that is, x ∈ S if and only if −x ∈ S. For S1, S2 ⊆ Fn define
S1 + S2

4

= {x+ y: x ∈ S1 and y ∈ S2}.

If x, y ∈ Fn and α ∈ [0, 1], then αx+ (1−α)y is a convex combination
of x and y with barycentric coordinates α and 1−α. S ⊆ Fn is convex if, for
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all x, y ∈ S, every convex combination of x and y is an element of S.

Let S ⊆ Fn. Then, S is a cone if, for all x ∈ S and all α > 0, the vector
αx is an element of S. Now, assume that S is a cone. Then, S is pointed
if 0 ∈ S, while S is one-sided if x,−x ∈ S implies that x = 0. Hence, S is
one-sided if and only if S ∩ −S ⊆ {0}. Finally, S is a convex cone if it is
convex.

Let S ⊆ Fn be nonempty. Then, S is a subspace if, for all x, y ∈ S and
α, β ∈ F, the vector αx+βy is an element of S. Note that if {x1, . . . , xr} ⊂ Fn,
then the set {∑r

i=1 αixi: α1, . . . , αr ∈ F} is a subspace. In addition, S is an
affine subspace if there exists z ∈ Fn such that S + z is a subspace. Affine
subspaces S1, S2 ⊆ Fn are parallel if there exists z ∈ Fn such that S1+z = S2.
If S is an affine subspace, then there exists a unique subspace parallel to S.
Trivially, the empty set is a convex cone, although it is neither a subspace
nor an affine subspace. All of these definitions also apply to subsets of Fn×m.

Let S ⊆ Fn. The convex hull of S, denoted by co S, is the smallest
convex set containing S. Hence, co S is the intersection of all convex subsets
of Fn that contain S. The conical hull of S, denoted by cone S, is the smallest
cone in Fn containing S, while the convex conical hull of S, denoted by coco S,
is the smallest convex cone in Fn containing S. If S has a finite number of
elements, then co S is a polytope and coco is a polyhedral convex cone. The
span of S, denoted by span S, is the smallest subspace in Fn containing S,
while, if S is nonempty, then the affine hull of S, denoted by aff S, is the
smallest affine subspace in Fn containing S. Note that S is convex if and
only if S = co S, while similar statements hold for cone S, coco S, span S, and
aff S. Trivially, co ∅ = cone ∅ = coco ∅ = ∅, whereas, viewing ∅ ⊂ Fn,
it follows that span ∅ = {0n×1}. We define aff ∅ 4

= {0n×1}. All of these
definitions also apply to subsets of Fn×m.

Let x1, . . . , xr ∈ Fn. Then, x1, . . . , xr are linearly independent if
α1, . . . , αr ∈ F and

r
∑

i=1

αixi = 0, (2.3.1)

imply that α1 = α2 = · · · = αr = 0. Clearly, x1, . . . , xr is linearly inde-
pendent if and only if x1, . . . , xr are linearly independent. If x1, . . . , xr are
not linearly independent, then x1, . . . , xr are linearly dependent. Note that
{0n×1} is linearly dependent.

Let S ⊆ Fn. If S is a subspace not equal to {0n×1}, then there exist
x1, . . . , xr ∈ Fn such that x1, . . . , xr are linearly independent over F and such
that span{x1, . . . , xr} = S. The set of vectors {x1, . . . , xr} is a basis for S.
The positive integer r, which is the dimension of the subspace S, is uniquely
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defined. The dimension of S = {0n×1} is defined to be zero since span ∅ =
{0n×1}. The dimension of an arbitrary set S ⊆ Fn, denoted by dim S, is the

dimension of the subspace parallel to aff S. We define dim ∅ 4

= −∞.

The following result is the dimension theorem.

Theorem 2.3.1. Let S1, S2 ⊆ Fn be subspaces. Then,

dim(S1 + S2) + dim(S1∩ S2) = dim S1 + dim S2. (2.3.2)

Proof. See [262, p. 227].

Let S1, S2 ⊆ Fn be subspaces. Then, S1 and S2 are complementary if
S1∩S2 = {0} and S1+S2 = Fn. In this case, we say that S1 is complementary
to S2, or vice versa.

Corollary 2.3.2. Let S1, S2 ⊆ Fn be subspaces. Then, S1, S2 are com-
plementary if and only if S1∩ S2 = {0} and

dim S1 + dim S2 = n. (2.3.3)

Let S ⊆ Fn be nonempty. Then, the orthogonal complement S⊥ of S is
defined by

S⊥ 4

= {x ∈ Fn: x∗y = 0 for all y ∈ S}. (2.3.4)

The orthogonal complement S⊥ of S is a subspace even if S is not.

Let y ∈ Fn be nonzero. Then, the subspace {y}⊥, whose dimension is
n−1, is a hyperplane. Furthermore, S is an affine hyperplane if there exists
z ∈ Fn such that S + z is a hyperplane. The set {x ∈ Fn: Rex∗y ≤ 0} is a
closed half space, while the set {x ∈ Fn: Rex∗y < 0} is an open half space.
Finally, S is an affine (closed, open) half space if there exists z ∈ Fn such
that S + z is a (closed, open) half space.

Let S ⊆ Fn. Then,

dcone S
4

= {x ∈ Fn: Rex∗y ≤ 0 for all y ∈ S} (2.3.5)

is the dual cone of S. Note that dcone S is a pointed convex cone and that
dcone S = dcone cone S = dcone coco S.

Let S1, S2 ⊆ Fn be subspaces. Then, S1 and S2 are orthogonally com-
plementary if S1 and S2 are complementary and x∗y = 0 for all x ∈ S1 and
y ∈ S2.

Proposition 2.3.3. Let S1, S2 ⊆ Fn be subspaces. Then, S1 and S2 are
orthogonally complementary if and only if S1 = S⊥

2 .
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For the next result, note that “⊂” indicates proper inclusion.

Lemma 2.3.4. Let S1, S2 ⊆ Fn be subspaces such that S1⊆ S2. Then,
S1 ⊂ S2 if and only if dimS1 < dim S2. Equivalently, S1 = S2 if and only if
dim S1 = dim S2.

The following result provides constructive characterizations of co S,
cone S, coco S, span S, and aff S.

Theorem 2.3.5. Let S ⊆ Rn be nonempty. Then,

co S =
⋃

k∈P

{

k
∑

i=1

αixi: αi ≥ 0, xi ∈ S, and

k
∑

i=1

αi = 1

}

(2.3.6)

=

{

n+1
∑

i=1

αixi: αi ≥ 0, xi ∈ S, and
n+1
∑

i=1

αi = 1

}

, (2.3.7)

cone S = {αx: x ∈ S and α > 0}, (2.3.8)

coco S =
⋃

k∈P

{

k
∑

i=1

αixi: αi ≥ 0, xi ∈ S, and
k
∑

i=1

αi > 0

}

(2.3.9)

=

{

n
∑

i=1

αixi: αi ≥ 0, xi ∈ S, and
n
∑

i=1

αi > 0

}

, (2.3.10)

span S =
⋃

k∈P

{

k
∑

i=1

αixi: αi ∈ R and xi ∈ S

}

(2.3.11)

=

{

n
∑

i=1

αixi: αi ∈ R and xi ∈ S

}

, (2.3.12)

aff S =
⋃

k∈P

{

k
∑

i=1

αixi: αi ∈ R, xi ∈ S, and
k
∑

i=1

αi = 1

}

(2.3.13)

=

{

n+1
∑

i=1

αixi: αi ∈ R, xi ∈ S, and
n+1
∑

i=1

αi = 1

}

. (2.3.14)

(2.3.15)



matrix2 November 19, 2003

28 CHAPTER 2

Now, let S ⊆ Cn. Then,

co S =
⋃

k∈P

{

k
∑

i=1

αixi: αi ≥ 0, xi ∈ S, and
k
∑

i=1

αi = 1

}

(2.3.16)

=

{

2n+1
∑

i=1

αixi: αi ≥ 0, xi ∈ S, and
2n+1
∑

i=1

αi = 1

}

, (2.3.17)

cone S = {αx: x ∈ S and α > 0}, (2.3.18)

coco S =
⋃

k∈P

{

k
∑

i=1

αixi: αi ≥ 0, xi ∈ S, and
k
∑

i=1

αi > 0

}

(2.3.19)

=

{

2n
∑

i=1

αixi: αi ≥ 0, xi ∈ S, and
2n
∑

i=1

αi > 0

}

, (2.3.20)

span S =
⋃

k∈P

{

k
∑

i=1

αixi: αi ∈ C and xi ∈ S

}

(2.3.21)

=

{

n
∑

i=1

αixi: αi ∈ C and xi ∈ S

}

, (2.3.22)

aff S =
⋃

k∈P

{

k
∑

i=1

αixi: αi ∈ C, xi ∈ S, and
k
∑

i=1

αi = 1

}

(2.3.23)

=

{

n+1
∑

i=1

αixi: αi ∈ C, xi ∈ S, and
n+1
∑

i=1

αi = 1

}

. (2.3.24)

Proof. Result (2.3.6) is immediate, while (2.3.7) is proved in [357,
p. 17]. Furthermore, (2.3.8) is immediate. Next, note that, since coco S =
co cone S, it follows that (2.3.6) and (2.3.8) imply (2.3.10) with n replaced
by n + 1. However, every element of coco S lies in the convex hull of n + 1
points one of which is the origin. It thus follows that we can set xn+1 = 0,
which yields (2.3.10). Similar arguments yield (2.3.12). Finally, note that all
vectors of the form x1+β(x2−x1), where x1, x2 ∈ S and β ∈ R, are elements
of aff S. Forming the convex hull of these vectors yields (2.3.14).

The following result shows that cones can be used to induce relations
on Fn.

Proposition 2.3.6. Let S ⊆ Fn be a cone and, for x, y ∈ Fn, let x ≤ y
denote the relation y − x ∈ S. Then, the following statements hold:
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i) “≤” is reflexive if and only if S is a pointed cone.

ii) “≤” is antisymmetric if and only if S is a one-sided cone.

iii) “≤” is symmetric if and only if S is a symmetric cone.

iv) “≤” is transitive if and only if S is a convex cone.

Proof. The proofs of i), ii) and iii) are immediate. To prove iv),
suppose that “≤” is transitive, and let x, y ∈ S so that 0 ≤ αx ≤ αx+(1−α)y
for all α ∈ [0, 1]. Hence, αx + (1 − α)y ∈ S for all α ∈ [0, 1], and thus S

is convex. Conversely, suppose that S is a convex cone, and assume that
x ≤ y and y ≤ z. Then, y − x ∈ S and z − y ∈ S imply that z − x =
2
[

1
2(y − x) + 1

2(z − y)
]

∈ S. Hence, x ≤ z, and thus “≤” is transitive.

2.4 Range and Null Space

Two important features of a matrix A ∈ Fn×m are its range and null
space, denoted by R(A) and N(A), respectively. The range of A is defined
by

R(A)
4

= {Ax: x ∈ Fm}. (2.4.1)

Note that R(0n×0) = {0n×1} and R(00×m) = {00×1}. Letting αi denote x(i),
it can be seen that

R(A) =

{

m
∑

i=1

αicoli(A): α1, . . . , αm ∈ F

}

, (2.4.2)

which shows that R(A) is a subspace of Fn. It thus follows from Theorem
2.3.5 that

R(A) = span{col1(A), . . . , colm(A)}. (2.4.3)

By viewing A as a function from Fm into Fn, we can also write R(A) = AFm.

The null space of A ∈ Fn×m is defined by

N(A)
4

= {x ∈ Fm: Ax = 0}. (2.4.4)

Note that N(0n×0) = F0 = {00×1} and N(00×m) = Fm. Equivalently,

N(A) =
{

x ∈ Fm: xT[rowi(A)]T = 0 for all i = 1, . . . , n
}

(2.4.5)

=
{

[row1(A)]T, . . . , [rown(A)]T
}⊥
, (2.4.6)

which shows that N(A) is a subspace of Fm. Note that if α ∈ F is nonzero,
then R(αA) = R(A) and N(αA) = N(A). Finally, if F = C, then R(A) and

R(A) are not necessarily identical. For example, let A
4

= [ 1 ].
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Let A ∈ Fn×n, and let S ⊆ Fn be a subspace. Then, S is an invariant
subspace of A if AS ⊆ S. Note that AR(A) ⊆ AFm = R(A) and AN(A) =
{0n} ⊆ N(A). Hence, R(A) and N(A) are invariant subspaces of A.

If A ∈ Fn×m and B ∈ Fm×l, then it is easy to see that

R(AB) = AR(B). (2.4.7)

Hence, the following result is not surprising.

Lemma 2.4.1. Let A ∈ Fn×m, B ∈ Fm×l, and C ∈ Fk×n. Then,

R(AB) ⊆ R(A) (2.4.8)

and
N(A) ⊆ N(CA). (2.4.9)

Proof. Since R(B) ⊆ Fm, it follows that R(AB) = AR(B) ⊆ AFm =
R(A). Furthermore, y ∈ N(A) implies that Ay = 0, and thus CAy = 0.

Corollary 2.4.2. Let A ∈ Fn×n, and let k ∈ P. Then,

R

(

Ak
)

⊆ R(A) (2.4.10)

and
N(A) ⊆ N

(

Ak
)

. (2.4.11)

Although R(AB) ⊆ R(A) for arbitrary conformable matrices A,B, we
now show that equality holds in the special case B = A∗. This result, along
with others, is the subject of the following basic theorem.

Theorem 2.4.3. Let A ∈ Fn×m. Then, the following identities hold:

i) R(A)⊥ = N(A∗).

ii) R(A) = R(AA∗).

iii) N(A) = N(A∗A).

Proof. To prove i), we first show that R(A)⊥ ⊆ N(A∗). Let x ∈ R(A)⊥.
Then, x∗z = 0 for all z ∈ R(A). Hence, x∗Ay = 0 for all y ∈ Rm. Equiva-
lently, y∗A∗x = 0 for all y ∈ Rm. Letting y = A∗x, it follows that x∗AA∗x = 0.
Now, Lemma 2.2.2 implies that A∗x = 0. Thus, x ∈ N(A∗). Conversely, let
us show that N(A∗) ⊆ R(A)⊥. Letting x ∈ N(A∗), it follows that A∗x = 0,
and, hence, y∗A∗x = 0 for all y ∈ Rm. Equivalently, x∗Ay = 0 for all y ∈ Rm.
Hence, x∗z = 0 for all z ∈ R(A). Thus, x ∈ R(A)⊥, which proves i).

To prove ii), note that Lemma 2.4.1 with B = A∗ implies that R(AA∗)
⊆ R(A). To show that R(A) ⊆ R(AA∗), let x ∈ R(A), and suppose that
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x 6∈ R(AA∗). Then, it follows from Proposition 2.3.3 that x = x1 + x2,
where x1 ∈ R(AA∗) and x2 ∈ R(AA∗)⊥ with x2 6= 0. Thus, x∗2AA

∗y = 0 for
all y ∈ Rn, and setting y = x2 yields x∗2AA

∗x2 = 0. Hence, Lemma 2.2.2
implies that A∗x2 = 0, so that, by i), x2 ∈ N(A∗) = R(A)⊥. Since x ∈ R(A),
it follows that 0 = x∗2x = x∗2x1 + x∗2x2. However, x∗2x1 = 0 so that x∗2x2 = 0
and x2 = 0, which is a contradiction. This proves ii).

To prove iii), note that ii) with A replaced by A∗ implies that R(A∗A)⊥

= R(A∗)⊥. Furthermore, replacing A by A∗ in i) yields R(A∗)⊥ = N(A).
Hence, N(A) = R(A∗A)⊥. Now, i) with A replaced by A∗A implies that
R(A∗A)⊥ = N(A∗A). Hence, N(A) = N(A∗A), which proves iii).

Result i) of Theorem 2.4.3 can be written equivalently as

N(A)⊥ = R(A∗), (2.4.12)

N(A) = R(A∗)⊥, (2.4.13)

N(A∗)⊥ = R(A), (2.4.14)

while replacing A by A∗ in ii) and iii) of Theorem 2.4.3 yields

R(A∗) = R(A∗A), (2.4.15)

N(A∗) = N(AA∗). (2.4.16)

Using ii) of Theorem 2.4.3 and (2.4.15) it follows that

R(AA∗A) = AR(A∗A) = AR(A∗) = R(AA∗) = R(A). (2.4.17)

Letting A
4

=
[

1 
]

shows that R(A) and R
(

AAT
)

are generally
different.

2.5 Rank and Defect

The rank of A ∈ Fn×m is defined by

rankA
4

= dimR(A). (2.5.1)

It can be seen that the rank of A is equal to the number of linearly in-
dependent columns of A. Hence, rankA = rankA, rankAT = rankA∗,
rankA ≤ m, and rankAT≤ n. If rankA = m, then A has full column rank,
while if rankAT = n, then A has full row rank. If A has either full column
rank or full row rank, then A has full rank. Finally, the defect of A is

def A
4

= dimN(A). (2.5.2)

The following result follows from Theorem 2.4.3.
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Corollary 2.5.1. Let A ∈ Fn×m. Then, the following identities hold:

i) rankA∗ + def A = m.

ii) rankA = rankAA∗.

iii) def A = def A∗A.

Proof. It follows from (2.4.12) and Proposition 2.3.2 that rankA∗ =
dimR(A∗) = dimN(A)⊥ = m − dim N(A) = m − def A, which proves i).
Results ii) and iii) follow from of ii) and iii) of Theorem 2.4.3.

Replacing A by A∗ in Corollary 2.5.1 yields

rankA+ def A∗ = n, (2.5.3)

rankA∗ = rankA∗A, (2.5.4)

def A∗ = def AA∗. (2.5.5)

Furthermore, note that
def A = def A (2.5.6)

and
def AT = def A∗. (2.5.7)

Lemma 2.5.2. Let A ∈ Fn×m and B ∈ Fm×l. Then,

rankAB ≤ min{rankA, rankB}. (2.5.8)

Proof. Since, by Lemma 2.4.1, R(AB) ⊆ R(A), it follows that rankAB
≤ rankA. Next, suppose that rankB < rankAB. Let {y1, . . . , yr} ⊂ Fn be

a basis for R(AB), where r
4

= rankAB, and, since yi ∈ AR(B) for all
i = 1, . . . , r, let xi ∈ R(B) be such that yi = Axi for all i = 1, . . . , r. Since
rankB < r, it follows that x1, . . . , xr are linearly dependent. Hence, there
exist α1, . . . , αr ∈ F, not all zero, such that

∑r
i=1 αixi = 0, which implies

that
∑r

i=1 αiAxi =
∑r

i=1 αiyi = 0. Thus, y1, . . . , yr are linearly dependent,
which is a contradiction.

Corollary 2.5.3. Let A ∈ Fn×m. Then,

rankA = rankA∗ (2.5.9)

and
def A = def A∗+m− n. (2.5.10)

If, in addition, n = m, then

def A = def A∗. (2.5.11)

Proof. It follows from (2.5.8) with B = A∗ that rankAA∗ ≤ rankA∗.
Furthermore, ii) of Corollary 2.5.1 implies that rankA = rankAA∗. Hence,
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rankA ≤ rankA∗. Interchanging A and A∗ and repeating this argument
yields rankA∗ ≤ rankA. Hence, rankA = rankA∗. Next, using i) of
Corollary 2.5.1, (2.5.9), and (2.5.3) it follows that def A = m − rankA∗ =
m− rankA = m− (n− def A∗), which proves (2.5.10).

Corollary 2.5.4. Let A ∈ Fn×m. Then,

rankA ≤ min{m,n}. (2.5.12)

Proof. By definition, rankA ≤ m, while it follows from (2.5.9) that
rankA = rankA∗ ≤ n.

The fundamental theorem of linear algebra is given by (2.5.13) in the
following result.

Corollary 2.5.5. Let A ∈ Fn×m. Then,

rankA+ def A = m (2.5.13)

and
rankA = rankA∗A. (2.5.14)

Proof. The result (2.5.13) follows from i) of Corollary 2.5.1 and (2.5.9),
while (2.5.14) follows from (2.5.4) and (2.5.9).

Corollary 2.5.6. Let A ∈ Fn×n and k ∈ P. Then,

rankAk ≤ rankA (2.5.15)

and
def A ≤ def Ak. (2.5.16)

Proposition 2.5.7. Let A ∈ Fn×n. If rankA2 = rankA, then rankAk

= rankA for all k ∈ P. Equivalently, if def A2 = def A, then def Ak = def A
for all k ∈ P.

Proof. Since rankA2 = rankA and R
(

A2
)

⊆ R(A), it follows from

Lemma 2.3.4 that R
(

A2
)

= R(A). Hence, R
(

A3
)

= AR
(

A2
)

= AR(A) =

R
(

A2
)

. Thus, rankA3 = rankA. Similar arguments yield rankAk = rankA
for all k ∈ P.

We now prove Sylvester’s inequality, which provides a lower bound for
the rank of the product of two matrices.

Proposition 2.5.8. Let A ∈ Fn×m and B ∈ Fm×l. Then,

rankA+ rankB ≤ m+ rankAB. (2.5.17)
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Proof. Using (2.5.8) it follows that

rankA+ rankB ≤ rank

[

0 A
B I

]

= rank

[

I A
0 I

] [

−AB 0
B I

]

≤ rank

[

−AB 0
B I

]

≤ rank
[

−AB 0
]

+ rank
[

B I
]

= rankAB +m. �

Combining (2.5.8) with (2.5.17) yields the following result.

Corollary 2.5.9. Let A ∈ Fn×m and B ∈ Fm×l. Then,

rankA+ rankB −m ≤ rankAB ≤ min{rankA, rankB}. (2.5.18)

2.6 Invertibility

Let A ∈ Fn×m. Then, A is left invertible if there exists AL ∈ Fm×n

such that ALA = Im, while A is right invertible if there exists AR ∈ Fm×n

such that AAR = In. These definitions are consistent with the definitions
of left and right invertibility given in Chapter 1 applied to the function
f : Fm 7→ Fn given by f(x) = Ax.

Theorem 2.6.1. Let A ∈ Fn×m. Then, the following statements are
equivalent:

i) A is left invertible.

ii) A is one-to-one.

iii) def A = 0.

iv) rankA = m.

v) A has full column rank.

The following statements are also equivalent:

vi) A is right invertible.

vii) A is onto.

viii) def A = m− n.

ix) rankA = n.
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x) A has full row rank.

Note that A is left invertible if and only if A∗ is right invertible.

The following result shows that the rank and defect of a matrix are
not affected by either left multiplication by a left invertible matrix or right
multiplication by a right invertible matrix.

Proposition 2.6.2. Let A ∈ Fn×m, and let C ∈ Fk×n be left invertible
and B ∈ Fm×l be right invertible. Then,

rankA = rankCA = rankAB (2.6.1)

and
def A = def CA = def AB +m− l. (2.6.2)

Proof. Let CL be a left inverse of C. Using both inequalities in (2.5.18)
and the fact that rankA ≤ n, it follows that

rankA = rankA+ rankCLC − n ≤ rankCLCA ≤ rankCA ≤ rankA,

which implies that rankA = rankCA. A similar argument implies that
rankA = rankAB. Next, (2.5.13) and (2.6.1) imply that m − def A = m −
def CA = l − def AB, which yields (2.6.2).

In general, left and right inverses are not unique. For example, the
matrix A = [ 0

1 ] is left invertible and has left inverses
[

0 1
]

and
[

1 1
]

.
In spite of this nonuniqueness, however, left inverses are useful for solving
equations of the form Ax = b, where A ∈ Fn×m, x ∈ Fm, and b ∈ Fn. If A
is left invertible, then one can formally (but not rigorously) solve Ax = b
by noting that x = ALAx = ALb, where AL ∈ Rm×n is a left inverse of
A. However, it is necessary to determine beforehand whether or not there
actually exists a vector x satisfying Ax = b. For example, if A = [ 0

1 ]
and b = [ 1

0 ], then A is left invertible but there does not exist x satisfying
Ax = b. The following result addresses the various possibilities that can
arise. One interesting feature of this result is that if there exists a solution
to Ax = b and A is left invertible, then the solution is unique even if A
does not have a unique left inverse. For this result,

[

A b
]

denotes the
n × (m + 1) partitioned matrix formed from A and b. Note that rankA ≤
rank

[

A b
]

≤ m + 1, while rankA = rank
[

A b
]

is equivalent to b ∈
R(A).

Theorem 2.6.3. Let A ∈ Fn×m and b ∈ Fn. Then, the following
statements hold:

i) There does not exist x ∈ Fm satisfying Ax = b if and only if
rankA < rank

[

A b
]

.
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ii) There exists a unique x ∈ Fm satisfying Ax = b if and only if
rankA = rank

[

A b
]

= m. In this case, if AL ∈ Fm×n is a left

inverse of A, then the solution is given by x = ALb.

iii) There exist infinitely many x ∈ Fm satisfying Ax = b if and only
if rankA = rank

[

A b
]

< m. In this case, let x̂ ∈ Fm satisfy
Ax̂ = b. Then, the set of solutions of Ax = b is given by x̂+ N(A).

iv) Assume that rankA = n. Then, there exists at least one x ∈ Fm

satisfying Ax = b. Furthermore, if AR ∈ Fm×n is a right inverse of
A, then x = ARb satisfies Ax = b. If n = m, then x = ARb is the
unique solution of Ax = b. If n < m and x̂ ∈ Fn satisfies Ax̂ = b,
then the set of solutions of Ax = b is given by x̂+ N(A).

Proof. To prove i) note that rankA < rank
[

A b
]

is equivalent to
the fact that b cannot be represented as a linear combination of columns of
A, that is, Ax = b does not have a solution x ∈ Fm. To prove ii), suppose
that rankA = rank

[

A b
]

= m so that, by i), Ax = b has a solution
x ∈ Fm. If x̂ ∈ Fm satisfies Ax̂ = b, then A(x− x̂) = 0. Since rankA = m,
it follows from Theorem 2.6.1 that A has a left inverse AL ∈ Fm×n. Hence,
x − x̂ = ALA(x − x̂) = 0, which proves that Ax = b has a unique solution.
Conversely, suppose that rankA = rank

[

A b
]

= m and there exist x, x̂ ∈
Fm, where x 6= x̂, such that Ax = b and Ax̂ = b. Then, A(x− x̂) = 0, which
implies that def A ≥ 1. Therefore, rankA = m− def A ≤ m−1, which is a
contradiction. This proves the first statement of ii). Assuming Ax = b has
a unique solution x ∈ Fm, multiplying by AL yields x = ALb. To prove iii)
note that it follows from i) that Ax = b has at least one solution x̂ ∈ Fm.
Hence, x ∈ Fm is a solution of Ax = b if and only if A(x − x̂) = 0, or,
equivalently, x ∈ x̂ + N(A). To prove iv) note that since rankA = n, it
follows that rankA = rank

[

A b
]

and thus either ii) or iii) applies.

The set of solutions x ∈ Fm to Ax = b is explicitly characterized by
Proposition 6.1.7.

Let A ∈ Fn×m. Then, A is nonsingular if there exists B ∈ Fm×n,
the inverse of A, such that AB = In and BA = Im, that is, B is both
a left and right inverse for A. It follows from Theorem 2.6.1 that if A is
nonsingular, then rankA = m and rankA = n so that m = n. Hence, only
square matrices can be nonsingular. Furthermore, the inverse B ∈ Fn×n

of A ∈ Fn×n is unique since, if C ∈ Fn×n is a left inverse of A, then C =
CIn = CAB = InB = B, while if D ∈ Fn×n is a right inverse of A, then
D = InD = BAD = BIn = B. The following result follows from similar
arguments and Theorem 2.6.1. This result can be viewed as a specialization
of Theorem 1.2.3 to the function f : Fn 7→ Fn, where f(x) = Ax.
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Corollary 2.6.4. Let A ∈ Fn×n. Then, the following statements are
equivalent:

i) A is nonsingular.

ii) A has a unique inverse.

iii) A is one-to-one.

iv) A is onto.

v) A is left invertible.

vi) A is right invertible.

vii) A has a unique left inverse.

viii) A has a unique right inverse.

ix) rankA = n.

x) def A = 0.

Let A ∈ Fn×n be nonsingular. Then, the inverse of A, denoted by A−1,
is a unique n× n matrix with entries in F. If A is not nonsingular, then A
is singular.

The following result is a specialization of Theorem 2.6.3 to the case
n = m.

Corollary 2.6.5. Let A ∈ Fn×n and b ∈ Fn. Then, the following
statements hold:

i) A is nonsingular if and only if there exists a unique x ∈ Fn satisfying
Ax = b. In this case, x = A−1b.

ii) A is singular and rankA = rank
[

A b
]

if and only if there exist
infinitely many x ∈ Rn satisfying Ax = b. In this case, let x̂ ∈ Fm

satisfy Ax̂ = b. Then, the set of solutions of Ax = b is given by
x̂+ N(A).

Proposition 2.6.6. Let A ∈ Fn×n. Then, the following statements are
equivalent:

i) A is nonsingular.

ii) A is nonsingular.

iii) AT is nonsingular.

iv) A∗ is nonsingular.

In this case,
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(A)−1 = A−1, (2.6.3)
(

AT
)−1

=
(

A−1
)T
, (2.6.4)

(A∗)−1 =
(

A−1
)∗
. (2.6.5)

Proof. Since AA−1 = I, it follows that
(

A−1
)∗
A∗ = I. Hence,

(

A−1
)∗

=
(A∗)−1.

We thus use A−T to denote
(

AT
)−1

or
(

A−1
)T

and A−∗ to denote (A∗)−1

or
(

A−1
)∗
.

Proposition 2.6.7. Let A,B ∈ Fn×n be nonsingular. Then,

(AB)−1 = B−1A−1, (2.6.6)

(AB)−T = A−TB−T, (2.6.7)

(AB)−∗ = A−∗B−∗. (2.6.8)

Proof. Note that ABB−1A−1 = AIA−1 = I, which shows that B−1A−1

is the inverse of AB. Similarly, (AB)∗A−∗B−∗ = B∗A∗A−∗B−∗ = B∗IB−∗ = I,
which shows that A−∗B−∗ is the inverse of (AB)∗.

For a nonsingular matrix A ∈ Fn×n and r ∈ Z we write

A−r 4

= (Ar)−1 =
(

A−1
)r
, (2.6.9)

A−rT 4

= (Ar)−T =
(

A−T
)r

= (A−r)T =
(

AT
)−r

, (2.6.10)

A−r∗ 4

= (Ar)−∗ = (A−∗)r = (A−r)∗ = (A∗)−r. (2.6.11)

For example, A−2∗ = (A−∗)2.

2.7 Determinants

One of the most important quantities associated with a square matrix
is its determinant. In this section we develop some basic results pertaining
to the determinant of a matrix.

The determinant of A ∈ Fn×n is defined by

detA
4

=
∑

σ

(−1)Nσ

n
∏

i=1

A(i,σ(i)), (2.7.1)

where the sum is taken over all n permutations σ = (σ(1), . . . , σ(n)) of the
column indices 1, . . . , n, and where Nσ is the minimal number of pairwise
transpositions needed to transform σ(1), . . . , σ(n) to 1, . . . , n. The following
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result is an immediate consequence of this definition.

Proposition 2.7.1. Let A ∈ Fn×n. Then,

detAT = detA, (2.7.2)

detA = detA, (2.7.3)

detA∗ = detA, (2.7.4)

and, for all α ∈ F,

detαA = αndetA. (2.7.5)

If, in addition, B ∈ Fm×n and C ∈ Fm×m, then

det

[

A 0
B C

]

= (detA)(detC). (2.7.6)

The following observations are immediate consequences of the defini-
tion of the determinant.

Proposition 2.7.2. Let A,B ∈ Fn×n. Then, the following statements
hold:

i) If all of the off-diagonal entries of A are zero, then

detA =
n
∏

i=1

A(i,i). (2.7.7)

In particular, det In = 1.

ii) If A has a row or column consisting entirely of zeros, then detA = 0.

iii) If A has two identical rows or two identical columns, then detA = 0.

iv) If x ∈ Fn and i ∈ {1, . . . , n}, then

det
(

A+ xeTi
)

= detA+ det
(

A
i← x
)

. (2.7.8)

v) If x ∈ F1×n and i ∈ {1, . . . , n}, then

det(A+ eix) = detA+ det
(

A
i← x
)

. (2.7.9)

vi) If B is identical to A except that, for some i ∈ {1, . . . , n} and α ∈ F,
coli(B) = αcoli(A) or rowi(B) = αrowi(A), then detB = αdetA.

vii) If B is formed from A by interchanging two rows or two columns of
A, then detB = −detA.

viii) If B is formed from A by adding a multiple of a (row, column) of A
to another (row, column) of A, then detB = detA.
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Statements vi)-viii) correspond, respectively, to multiplying the matrix
A on the left or right by matrices of the form

In + (α− 1)Ei,i =





Ii−1 0 0
0 α 0
0 0 In−i



 , (2.7.10)

In + Ei,j + Ej,i − Ei,i − Ej,j =













Ii−1 0 0 0 0
0 0 0 1 0
0 0 Ij−i−1 0 0
0 1 0 0 0
0 0 0 0 In−j













, (2.7.11)

where i 6= j, and

In + βEi,j =













Ii−1 0 0 0 0
0 1 0 β 0
0 0 Ij−i−1 0 0
0 0 0 1 0
0 0 0 0 In−j













, (2.7.12)

where β ∈ F and i 6= j. The matrices shown in (2.7.11) and (2.7.12) illustrate
the case i < j. Since I+(α− 1)Ei,i = I+(α− 1)eie

T
i , I+Ei,j +Ej,i−Ei,i−

Ej,j = I − (ei − ej)(ei − ej)T, and I + βEi,j = I + βeie
T
j , it follows that all of

these matrices are of the form I − xyT. If α 6= 0 and i 6= j, then these are
elementary matrices (see Definition 3.1.2).

Proposition 2.7.3. Let A,B ∈ Fn×n. Then,

detAB = detBA = (detA)(detB). (2.7.13)

Proof. First note the identity
[

A 0
I B

]

=

[

I A
0 I

] [

−AB 0
0 I

] [

I 0
B I

] [

0 I
I 0

]

.

The first and third matrices on the right-hand side of this identity add
multiples of rows and columns of

[−AB 0
0 I

]

to other rows and columns of
[−AB 0

0 I

]

. As already noted, these operations do not affect the determinant

of
[−AB 0

0 I

]

. In addition, the fourth matrix on the right-hand side of this

identity interchanges n pairs of columns of
[

0 A
B I

]

. Using (2.7.5), (2.7.6) and

the fact that every interchange of a pair of columns of
[

0 A
B I

]

entails a factor

of−1, it thus follows that (detA)(detB) = det
[

A 0
I B

]

= (−1)ndet
[−AB 0

0 I

]

=
(−1)ndet(−AB) = detAB.

Corollary 2.7.4. Let A ∈ Fn×n be nonsingular. Then, detA 6= 0 and

detA−1 = (detA)−1. (2.7.14)
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Proof. Since AA−1 = In, it follows that detAA−1 = (detA)
(

detA−1
)

=
1. Hence, detA 6= 0. In addition, detA−1 = 1/detA.

Let A ∈ Fn×m. Then, a submatrix of A is formed by deleting rows
and columns of A. By convention, A is a submatrix of A. If A is a parti-
tioned matrix, then every block of A is a submatrix of A. A block is thus a
submatrix whose entries are entries of adjacent rows and adjacent columns.
The determinant of a square submatrix of A is a subdeterminant of A. By
convention, the determinant of A is a subdeterminant of A.

Let A ∈ Fn×n. If like-numbered rows and columns of A are deleted,
then the resulting square submatrix of A is a principal submatrix of A. If, in
particular, rows and columns j+1, . . . , n of A are deleted, then the resulting
j× j submatrix of A is a leading principal submatrix of A. Every diagonally
located block is a principal submatrix. Finally, the determinant of a j × j
(principal, leading principal) submatrix of A is a j × j (principal, leading
principal) subdeterminant of A.

Let A ∈ Fn×n. Then, the cofactor of A(i,j), denoted by A[i,j], is the
(n −1) × (n −1) submatrix of A obtained by deleting the ith row and jth
column of A. The following result provides a cofactor expansion of detA.

Proposition 2.7.5. Let A ∈ Fn×n. Then, for all i = 1, . . . , n,

detA =
n
∑

k=1

(−1)i+kA(i,k)detA[i,k]. (2.7.15)

Furthermore, for all i, j = 1, . . . , n such that j 6= i,

0 =
n
∑

k=1

(−1)i+kA(j,k)detA[i,k]. (2.7.16)

Proof. Identity (2.7.15) is an equivalent recursive form of the definition
detA, while the right-hand side of (2.7.16) is equal to detB, where B is
obtained from A by replacing rowi(A) by rowj(A). As already noted, detB =
0.

Let A ∈ Fn×n. To simplify (2.7.15) and (2.7.16) it is useful to define
the adjugate of A, denoted by AA ∈ Fn×n, where, for all i, j = 1, . . . , n,

(

AA
)

(i,j)
4

= (−1)i+jdetA[j,i]. (2.7.17)

Then, (2.7.15) and (2.7.16) imply that, for all i = 1, . . . , n,
(

AAA
)

(i,i)
=
(

AAA
)

(i,i)
= detA (2.7.18)
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and, for all i, j = 1, . . . , n such that j 6= i,
(

AAA
)

(i,j)
=
(

AAA
)

(i,j)
= 0. (2.7.19)

Thus,
AAA = AAA = (detA)I. (2.7.20)

Consequently, if detA 6= 0, then

A−1 = (detA)−1AA. (2.7.21)

The following result provides the converse of Corollary 2.7.4 by using (2.7.21)
to explicitly construct A−1 in terms of (n−1)× (n−1) subdeterminants of
A.

Corollary 2.7.6. Let A ∈ Fn×n. Then, A is nonsingular if and only if
detA 6= 0. In this case, for all i, j = 1, . . . , n, the (i, j) entry of A−1 is given
by

(

A−1
)

(i,j)
= (−1)i+j

detA[j,i]

detA
. (2.7.22)

Finally, the following result uses the nonsingularity of submatrices to
characterize the rank of a matrix.

Proposition 2.7.7. Let A ∈ Fn×m. Then, rankA is the largest order
of all nonsingular submatrices of A.

2.8 Properties of Partitioned Matrices

Partitioned matrices were used to state or prove several results in this
chapter including Proposition 2.5.8, Theorem 2.6.3, Proposition 2.7.1, and
Proposition 2.7.3. In this section we give several useful identities involving
partitioned matrices.

Proposition 2.8.1. Let Aij ∈ Fni×mj for all i = 1, . . . , k and j =
1, . . . , l. Then,







A11 · · · A1l
... · · ·.. ...

Ak1 · · · Akl







T

=







AT
11 · · · AT

k1
... · · ·.. ...

AT
1l · · · AT

kl






(2.8.1)

and 





A11 · · · A1l
... · · ·.. ...

Ak1 · · · Akl







∗

=







A∗
11 · · · A∗

k1
... · · ·.. ...

A∗
1l · · · A∗

kl






. (2.8.2)
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If, in addition, k = l and ni = mi for all i = 1, . . . ,m, then

tr







A11 · · · A1k
... · · ·.. ...

Ak1 · · · Akk






=

k
∑

i=1

trAii (2.8.3)

and

det











A11 A12 · · · A1k

0 A22 · · · A2k
...

. . .
. . .

...
0 0 · · · Akk











=

k
∏

i=1

detAii. (2.8.4)

Lemma 2.8.2. Let B ∈ Fn×m and C ∈ Fm×n. Then,
[

I B
0 I

]−1

=

[

I −B
0 I

]

(2.8.5)

and
[

I 0
C I

]−1

=

[

I 0
−C I

]

. (2.8.6)

Let A ∈ Fn×n and D ∈ Fm×m be nonsingular. Then,
[

A 0
0 D

]−1

=

[

A−1 0
0 D−1

]

. (2.8.7)

Proposition 2.8.3. Let A ∈ Fn×n, B ∈ Fn×m, C ∈ Fl×n, and D ∈
Fl×m, and assume that A is nonsingular. Then,

[

A B
C D

]

=

[

I 0
CA−1 I

] [

A 0
0 D − CA−1B

] [

I A−1B
0 I

]

(2.8.8)

and

rank

[

A B
C D

]

= n+ rank
(

D − CA−1B
)

. (2.8.9)

If, furthermore, l = m, then

det

[

A B
C D

]

= (detA) det
(

D − CA−1B
)

. (2.8.10)

Proposition 2.8.4. Let A ∈ Fn×m, B ∈ Fn×l, C ∈ Fl×m, and D ∈
Fl×l, and assume that D is nonsingular. Then,
[

A B
C D

]

=

[

I BD−1

0 I

] [

A−BD−1C 0
0 D

] [

I 0
D−1C I

]

(2.8.11)

and

rank

[

A B
C D

]

= l + rank
(

A−BD−1C
)

. (2.8.12)
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If, furthermore, n = m, then

det

[

A B
C D

]

= (detD) det
(

A−BD−1C
)

. (2.8.13)

Corollary 2.8.5. Let A ∈ Fn×m and B ∈ Fm×n. Then,

det

[

In A
−B Im

]

= det(In +AB) = det(Im +BA). (2.8.14)

Hence, In +AB is nonsingular if and only if Im +BA is nonsingular.

Lemma 2.8.6. Let A ∈ Fn×n, B ∈ Fn×m, C ∈ Fm×n, and D ∈ Fm×m.
If A and D are nonsingular, then

(detA)det(D − CA−1B) = (detD)det
(

A−BD−1C
)

, (2.8.15)

and thus D−CA−1B is nonsingular if and only if A−BD−1C is nonsingular.

Proposition 2.8.7. Let A ∈ Fn×n, B ∈ Fn×m, C ∈ Fm×n, and D ∈
Fm×m. If A and D − CA−1B are nonsingular, then

[

A B
C D

]−1

=





A−1 +A−1B
(

D − CA−1B
)−1
CA−1 −A−1B

(

D − CA−1B
)−1

−
(

D − CA−1B
)−1
CA−1

(

D − CA−1B
)−1



 .

(2.8.16)

If D and A−BD−1C are nonsingular, then
[

A B
C D

]−1

=





(

A−BD−1C
)−1 −

(

A−BD−1C
)−1
BD−1

−D−1C
(

A−BD−1C
)−1

D−1 +D−1C
(

A−BD−1C
)−1
BD−1



 .

(2.8.17)

If A, D, and D − CA−1B are nonsingular, then A − BD−1C is nonsingular
and

[

A B
C D

]−1

=





(

A−BD−1C
)−1 −

(

A−BD−1C
)−1
BD−1

−
(

D − CA−1B
)−1
CA−1

(

D − CA−1B
)−1



 . (2.8.18)

The following result is the matrix inversion lemma.
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Corollary 2.8.8. Let A ∈ Fn×n, B ∈ Fn×m, C ∈ Fm×n, and D ∈
Fm×m. If A, D − CA−1B, and D are nonsingular, then, A − BD−1C is non-
singular and

(

A−BD−1C
)−1

= A−1 +A−1B
(

D − CA−1B
)−1
CA−1. (2.8.19)

If A and I − CA−1B are nonsingular, then A−BC is nonsingular and

(A−BC)−1 = A−1 +A−1B
(

I − CA−1B
)−1
CA−1. (2.8.20)

If D − CB, and D are nonsingular, then, In −BD−1C is nonsingular and
(

In −BD−1C
)−1

= In +B(D − CB)−1C. (2.8.21)

If I − CB is nonsingular, then I −BC is nonsingular and

(I −BC)−1 = I +B(I − CB)−1C. (2.8.22)

Corollary 2.8.9. Let A,B,C,D ∈ Fn×n. If A, B, C − DB−1A, and
D − CA−1B are nonsingular, then

[

A B
C D

]−1

=





A−1 −
(

C −DB−1A
)−1
CA−1

(

C −DB−1A
)−1

−
(

D − CA−1B
)−1
CA−1

(

D − CA−1B
)−1



 .

(2.8.23)

If A, C, B −AC−1D, and D − CA−1B are nonsingular, then

[

A B
C D

]−1

=





A−1 −A−1B
(

B −AC−1D
)−1 −A−1B

(

D − CA−1B
)−1

(

B −AC−1D
)−1 (

D − CA−1B
)−1



 .

(2.8.24)

If A, B, C, B−AC−1D, and D−CA−1B are nonsingular, then C −DB−1A is
nonsingular and

[

A B
C D

]−1

=





A−1 −A−1B
(

B −AC−1D
)−1 (

C −DB−1A
)−1

(

B −AC−1D
)−1 (

D − CA−1B
)−1



 .

(2.8.25)

If B, D, A−BD−1C, and C −DB−1A are nonsingular, then

[

A B
C D

]−1

=





(

A−BD−1C
)−1 (

C −DB−1A
)−1

−D−1C
(

A−BD−1C
)−1

D−1 −D−1C
(

C −DB−1A
)−1



 .

(2.8.26)
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If C, D, A−BD−1C, and B −AC−1D are nonsingular, then

[

A B
C D

]−1

=





(

A−BD−1C
)−1 −

(

A−BD−1C
)−1
BD−1

(

B −AC−1D
)−1

D−1 −
(

B −AC−1D
)−1
BD−1



 .

(2.8.27)

If B, C, D, A− BD−1C, and C −DB−1A are nonsingular, then B − AC−1D
is nonsingular and

[

A B
C D

]−1

=





(

A−BD−1C
)−1 (

C −DB−1A
)

(

B −AC−1D
)−1

D−1 −D−1C
(

C −DB−1A
)−1



 .

(2.8.28)

Finally, if A, B, C, D, A − BD−1C, and B − AC−1D, are nonsingular, then
C −DB−1A and D − CA−1B are nonsingular and

[

A B
C D

]−1

=





(

A−BD−1C
)−1 (

C −DB−1A
)−1

(

B −AC−1D
)−1 (

D − CA−1B
)−1



 . (2.8.29)

Corollary 2.8.10. Let A,B ∈ Fn×n, and assume that A and I −A−1B
are nonsingular. Then, A−B is nonsingular and

(A−B)−1 = A−1 +A−1B
(

I −A−1B
)−1
A−1. (2.8.30)

If, in addition, B is nonsingular, then

(A−B)−1 = A−1 +A−1
(

B−1 −A−1
)−1
A−1. (2.8.31)

2.9 Facts on Cones, Convex Hulls, and Subspaces

Fact 2.9.1. Let S ⊆ Fn. Then, the following statements hold:

i) coco S = co cone S = cone co S.

ii) S⊥⊥ = span S = coco(S ∪ −S).

iii) S ⊆ co S ⊆ (aff S ∩ coco S) ⊆
{

aff S
cocoS

}

⊆ span S.

iv) S ⊆ (co S ∩ cone S) ⊆
{

co S
cone S

}

⊆ coco S ⊆ span S.

v) dcone dcone S = coco S.

(Proof: See [79, p. 52] for the proof of v). Note that “pointed” in [79] means
one-sided.)

Fact 2.9.2. Let S ⊆ Fm and A ∈ Fn×m. If S is convex, then AS is
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convex. Conversely, if A is left invertible and AS is convex, then S is convex.

Fact 2.9.3. Let S ⊂ Fn. Then, S is an affine hyperplane if and only if
there exist a nonzero vector x ∈ Fn and α ∈ R such that S = {x: Rex∗y =
α}. Furthermore, S is an affine closed half space if and only if there exist
a nonzero vector x ∈ Fn and α ∈ R such that S = {x ∈ Fn: Rex∗y ≤ α}.
Finally, S is an affine open half space if and only if there exist a nonzero
vector x ∈ Fn and α ∈ R such that S = {x ∈ Fn: Rex∗y ≤ α}. (Proof: Let
z ∈ Fn satisfy z∗y = α. Then, {x: x∗y = α} = {y}⊥ + z.)

Fact 2.9.4. Let S1, S2 ⊆ Fn be (cones, convex sets, convex cones,
subspaces). Then, so are S1∩ S2 and S1 + S2.

Fact 2.9.5. Let S1, S2 ⊆ Fn be pointed convex cones. Then,

co(S1∪ S2) = S1 + S2.

Fact 2.9.6. Let S1, S2 ⊆ Fn be subspaces. Then, S1∪ S2 is a subspace
if and only if either S1⊆ S2 or S2 ⊆ S1.

Fact 2.9.7. Let S1, S2 ⊆ Fn be subspaces. Then,

span(S1∪ S2) = S1+ S2.

Fact 2.9.8. Let S1, S2 ⊆ Fn be subspaces. Then, S1⊆ S2 if and only if
S⊥

2 ⊆ S⊥
1 . Furthermore, S1 ⊂ S2 if and only if S⊥

2 ⊂ S⊥
1 . (Remark: S1⊂ S2

denotes proper inclusion.)

Fact 2.9.9. Let S1, S2 ⊆ Fn. Then,

S⊥
1 ∩ S⊥

2 ⊆ (S1 + S2)
⊥.

(Problem: Determine necessary and sufficient conditions under which equal-
ity holds.)

Fact 2.9.10. Let S1, S2 ⊆ Fn be subspaces. Then,

(S1∩ S2)
⊥ = S⊥

1 + S⊥
2

and
(S1+ S2)

⊥ = S⊥
1 ∩ S⊥

2 .

Fact 2.9.11. Let S1, S2 ⊆ Fn be subspaces. Then, S1, S2 are com-
plementary if and only if S⊥

1 , S
⊥
2 are complementary. (Remark: See Fact

3.5.15.)

Fact 2.9.12. Let S1, . . . , Sk ⊆ Fn be subspaces having the same dimen-
sion. Then, there exists a subspace Ŝ ⊆ Fn such that, for all i = 1, . . . , k, Ŝ
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and Ŝi are complementary. (Proof: See [261, pp. 78, 79, 259, 260].)

Fact 2.9.13. Let S1, S2 ⊆ Fn be subspaces. Then,

dim(S1 ∩ S2) ≤ min{dim S1,dim S2}

≤
{

dim S1

dim S2

}

≤ max{dim S1,dim S2}
≤ dim(S1 + S2)

≤ min{dim S1 + dim S2, n}.

2.10 Facts on Range, Null Space, Rank, and Defect

Fact 2.10.1. Let n,m, k ∈ P. Then, rank 1n×m = 1 and 1kn×n =

nk−11n×n.

Fact 2.10.2. Let A ∈ Fn×n, k ∈ P, and l ∈ N. Then, the following
identities hold:

i) R

[

(AA∗)k
]

= R

[

(AA∗)lA
]

.

ii) N

[

(A∗A)k
]

= N

[

A(A∗A)l
]

.

iii) rank (AA∗)k = rank (AA∗)lA.

iv) def (A∗A)k = def A(A∗A)l.

Fact 2.10.3. Let A,B ∈ Fn×n, and assume there exists α ∈ F such
that αA + B is nonsingular. Then, N(A) ∩ N(B) = {0}. (Remark: The

converse is not true. Let A
4

= [ 1 0
2 0 ] and B

4

= [ 0 1
0 2 ] .)

Fact 2.10.4. Let A,B ∈ Fn×m. Then,

N(A) ∩N(B) = N(A) ∩N(A+B) = N(A+B) ∩N(B).

Fact 2.10.5. Let A,B ∈ Fn×m. Then,

|rankA− rankB| ≤ rank(A+B) ≤ rankA+ rankB.

If, in addition, rankB ≤ k, then

(rankA)− k ≤ rank(A+B) ≤ (rankA) + k.

Fact 2.10.6. Let A,B ∈ Fn×m, and assume that A∗B = 0 and BA∗ =
0. Then,

rank(A+B) = rankA+ rankB.



matrix2 November 19, 2003

BASIC MATRIX PROPERTIES 49

(Remark: This result is due to Hestenes. See [148].) (Proof: Use Fact
2.10.15 and Proposition 6.1.6.)

Fact 2.10.7. Let A
4

= [ 1 0
0 0 ] and B

4

= [ 0 1
0 0 ]. Then, rankAB = 1 and

rankBA = 0.

Fact 2.10.8. Let A ∈ Fn×m and B ∈ Fm×l. Then, the following
statements hold:

i) rankAB + def A = dim[N(A) + R(B)].

ii) rankAB + dim[N(A) ∩ R(B)] = rankB.

iii) def AB + rankA+ dim[N(A) + R(B)] = l +m.

iv) def AB = def B + dim[N(A) ∩ R(B)].

(Remark: rankB− rankAB = dim[N(A)∩R(B)] ≤ dim N(A) = m− rankA
yields (2.5.17).)

Fact 2.10.9. Let A ∈ Fn×m and B ∈ Fm×l. Then,

max{def A+ l −m,def B} ≤ def AB ≤ def A+ def B.

If, in addition, m = l, then

max{def A,def B} ≤ def AB.

(Remark: The first inequality is Sylvester’s law of nullity.)

Fact 2.10.10. Let S ⊆ Fm, and let A ∈ Fn×m. Then, the following
statements hold:

i) rankA+ dim S−m ≤ dimAS ≤ min{rankA,dim S}.
ii) dim(AS) + dim(N(A) ∩ S) = dim S.

iii) If A is left invertible, then dimAS = dim S.

(Proof: For ii), see [484, p. 413].)

Fact 2.10.11. Let A ∈ Fn×m and B ∈ F1×m. Then, N(A) ⊆ N(B) if
and only if there exists λ ∈ Fn such that B = λ∗A.

Fact 2.10.12. Let A ∈ Fn×m and b ∈ Fn. Then, there exists x ∈ Fn

satisfying Ax = b if and only if b∗λ = 0 for all λ ∈ N(A∗). (Proof: Assume
that A∗λ = 0 implies that b∗λ = 0. Then, N(A∗) ⊆ R(b∗). Hence, b ∈ R(b) ⊆
R(A).)

Fact 2.10.13. Let A ∈ Fn×m and B ∈ Fl×m. Then, N(B) ⊆ N(A) if
and only if there exists C ∈ Fn×l such that A = CB. Now, let A ∈ Fn×m
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and B ∈ Fn×l. Then, R(A) ⊆ R(B) if and only if there exists C ∈ Fl×m

such that A = BC.

Fact 2.10.14. Let A,B ∈ Fn×m, and let C ∈ Fm×l be right invertible.
If R(A) ⊆ R(B), then R(AC) ⊆ R(BC). Furthermore, R(A) = R(B) if and
only if R(AC) = R(BC).

Fact 2.10.15. Let A,B ∈ Fn×m, and assume that A∗B = 0 and BA∗ =
0. Then,

rank(A+B) = rankA+ rankB

if and only if there exists C ∈ Fm×n such that ACA = A, CB = 0, and
BC = 0. (Proof: See [148].)

Fact 2.10.16. Let A ∈ Fn×m and B ∈ Fm×l. Then, rankAB = rankA
if and only if R(AB) = R(A). (Proof: If R(AB) ⊂ R(A) (note proper
inclusion), then rankAB < rankA.)

Fact 2.10.17. Let A ∈ Fn×m, B ∈ Fm×l, and C ∈ Fl×k. If rankAB =
rankB, then rankABC = rankBC. (Proof: rankBTAT = rankBT implies
that R

(

CTBTAT
)

= R
(

CTBT
)

.)

Fact 2.10.18. Let A ∈ Fn×m. Then, rankA = 1 if and only if there
exist x ∈ Fn and y ∈ Fm such that x 6= 0, y 6= 0, and A = xyT. In this case,
trA = yTx.

Fact 2.10.19. Let x, y ∈ Fn. Then,

rank
(

xyT+ yxT
)

≤ 2.

Furthermore, rank
(

xyT+ yxT
)

= 1 if and only if there exists α ∈ F such
that x = αy 6= 0.

Fact 2.10.20. Let A ∈ Fn×m, x ∈ Fn, and y ∈ Fm. Then,

(rankA)− 1 ≤ rank
(

A+ xyT
)

≤ (rankA) + 1.

In addition, the following statements hold:

i) rank
(

A+ xyT
)

= (rankA)− 1 if and only if there exist x̂ ∈ Fm and

ŷ ∈ Fn such that ŷTAx̂ 6= 0, x = −
(

ŷTAx̂
)−1
Ax̂, and y = ATŷ.

ii) If there exists x̂ ∈ Fm such that x = Ax̂ and x̂Ty 6= −1, then
rank

(

A+ xyT
)

= rankA.

iii) If xyT 6= 0, A∗x = 0, and Ay = 0, then rank
(

A+ xyT
)

= (rankA)+
1.

(Proof: To prove ii), note that A + xyT = A
(

I + xyT
)

and I + xyT is
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nonsingular. To prove iii) use Fact 2.10.21. See [297, p. 33] and [144].)

Fact 2.10.21. Let A ∈ Fn×m, B ∈ Fn×l, C ∈ Fl×n, D ∈ Fl×l, and
assume that D is nonsingular. Then,

rank
(

A−BD−1C
)

= rankA− rankBD−1C

if and only if there exist X ∈ Fm×l and Y ∈ Fl×n such that B = AX,
C = YA, and D = YAX. (Proof: See [144].)

Fact 2.10.22. Let A ∈ Fn×m and B ∈ Fn×l. Then,

R
([

A B
])

= R(A) + R(B).

Fact 2.10.23. Let A ∈ Fn×m and B ∈ Fn×l. Then,

R(A) = R(B)

if and only if
rankA = rankB = rank

[

A B
]

.

Fact 2.10.24. Let A ∈ Fn×m and B ∈ Fn×l. Then,

rankA+ rankB = rank
[

A B
]

+ dim[R(A) ∩ R(B)]

and
def
[

A B
]

= def A+ def B + dim[R(A) ∩ R(B)].

Hence,

max{rankA, rankB} ≤ rank
[

A B
]

≤ rankA+ rankB

and

def A+ def B ≤ def
[

A B
]

≤ min{l + def A,m+ def B}.
If, in addition, A∗B = 0, then

rank
[

A B
]

= rankA+ rankB

and
def
[

A B
]

= def A+ def B.

(Proof: Use Fact 2.9.13. Assume A∗B = 0. Then,

rank
[

A B
]

= rank

[

A∗

B∗

]

[

A B
]

=

[

A∗A 0
0 B∗B

]

= rankA∗A+ rankB∗B = rankA+ rankB.)

Fact 2.10.25. Let A ∈ Fn×m and B ∈ Fl×m. Then,

max{rankA, rankB} ≤ rank

[

A
B

]

≤ rankA+ rankB
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and

def A− rankB ≤ def

[

A
B

]

≤ min{def A,def B}.

If, in addition, AB∗ = 0, then

rank

[

A
B

]

= rankA+ rankB

and

def

[

A
B

]

= def A− rankB.

(Proof: Use Fact 2.10.24 and Fact 2.9.13.)

Fact 2.10.26. Let A,B ∈ Fn×m. Then,







max{rankA, rankB}

rank(A+B)







≤















rank
[

A B
]

rank

[

A
B

]















≤ rankA+ rankB

and

def A+ def B ≤















def
[

A B
]

def

[

A
B

]

+m















≤







m+ min{def A,def B}

def(A+B) +m







.

(Proof: rank(A+B) = rank
[

A B
] [

I
I

]

≤ rank
[

A B
]

, and rank(A+

B) = rank
[

I I
] [

A
B

]

≤ rank
[

A
B

]

.)

Fact 2.10.27. Let A ∈ Fn×m, B ∈ Fl×k, and C ∈ Fl×m. Then,

rankA+ rankB = rank

[

A 0
0 B

]

≤ rank

[

A 0
C B

]

and

rankA+ rankB = rank

[

0 A
B 0

]

≤ rank

[

0 A
B C

]

.

Fact 2.10.28. Let A ∈ Fn×m, B ∈ Fm×l, and C ∈ Fl×k. Then,

rankAB + rankBC ≤ rank

[

0 AB
BC B

]

= rankB + rankABC.

Consequently,

rankAB + rankBC − rankB ≤ rankABC.

(Remark: This result is Frobenius’ inequality.) (Proof: Use Fact 2.10.27
and

[

0 AB
BC B

]

=
[

I A
0 I

] [−ABC 0
0 B

] [

I 0
C I

]

.) (Remark: See [398] for the case of
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equality.)

Fact 2.10.29. Let A,B ∈ Fn×m. Then,

rank
[

A B
]

+ rank

[

A
B

]

≤ rank





0 A B
A A 0
B 0 B





= rankA+ rankB + rank(A+B).

(Proof: Use Frobenius’ inequality with A
4

= CT 4

=
[

I I
]

and with B

replaced by
[

A 0
0 B

]

.)

Fact 2.10.30. Let A ∈ Fn×m, and let B ∈ Fk×l be a submatrix of A.
Then,

k + l − rankB ≤ n+m− rankA.

(Proof: See [57].)

2.11 Facts on Identities

Fact 2.11.1. Let A ∈ F2×2, assume that trA + 2
√

detA 6= 0, and
define B ∈ F2×2 by

B
4

=
(

trA+ 2
√

detA
)−1/2(

A+
√

detAI
)

.

Then, B2 = A. (Proof: See [261, pp. 84, 266, 267].)

Fact 2.11.2.
[

− 1

2

√
3

2

−
√

3

2
− 1

2

]3

=
[−1 −1

1 0

]3
= I2.

Fact 2.11.3. Let A ∈ Fn×m and B ∈ Fl×k. Then, AEi,j,m×lB =
coli(A)rowj(B).

Fact 2.11.4. Let A ∈ Fn×m, B ∈ Fm×l, and C ∈ Fl×n. Then,

trABC =
n
∑

i=1

rowi(A)Bcoli(C).

Fact 2.11.5. Let A ∈ Fn×m. Then, Ax = 0 for all x ∈ Fm if and only
if A = 0.

Fact 2.11.6. Let x, y ∈ Fn. Then, x∗x = y∗y and Imx∗y = 0 if and
only if x− y is orthogonal to x+ y.

Fact 2.11.7. Let x, y ∈ Rn. Then, xxT = yyT if and only if either
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x = y or x = −y.

Fact 2.11.8. Let x, y ∈ Rn. Then, xyT = yxT if and only if x and y
are linearly dependent.

Fact 2.11.9. Let x, y ∈ Rn. Then, xyT = −yxT if and only if either
x = 0 or y = 0. (Proof: If x(i) 6= 0 and y(j) 6= 0, then x(j) = y(i) = 0 and
0 6= x(i)y(j) 6= x(j)y(i) = 0.)

Fact 2.11.10. Let x, y ∈ Rn. Then, yxT + xyT = yTyxxT if and only
if either x = 0 or y = 1

2y
Tyx.

Fact 2.11.11. Let x, y ∈ Fn. Then,

(xy∗)r = (y∗x)r−1xy∗.

Fact 2.11.12. Let y ∈ Fn and x ∈ Fm. Then, there exists a matrix
A ∈ Fn×m such that y = Ax if and only if either y = 0 or x 6= 0. If y = 0,
then one such matrix is A = 0. If x 6= 0, then one such matrix is

A = (x∗x)−1yx∗.

(Remark: See Fact 3.4.33.)

Fact 2.11.13. Let A ∈ Fn×m. Then, A = 0 if and only if trAA∗ = 0.

Fact 2.11.14. Let A,B ∈ Fn×n, and define A
4

=
[

A A
A A

]

and B
4

=
[

B −B
−B B

]

. Then,
AB = BA = 0.

Fact 2.11.15. Let A ∈ Fn×n and k ∈ P. Then,

Re trA2k ≤ trAkAk∗ ≤ tr (AA∗)k.

(Remark: To prove the left-hand inequality consider tr (Ak−Ak∗)(Ak∗−Ak).
For the right-hand inequality when k = 2, consider tr (AA∗ −A∗A)2.)

Fact 2.11.16. Let A ∈ Fn×n. Then, trAk = 0 for all k = 1, . . . , n
if and only if An = 0. (Proof: For sufficiency, Fact 4.10.2 implies that
spec(A) = {0}, and thus the Jordan form of A is a block-diagonal matrix
each of whose diagonally located blocks is a standard nilpotent matrix. For
necessity, see [629, p. 112].)

Fact 2.11.17. Let A ∈ Fn×n, and assume that trA = 0. If A2 = A,
then A = 0. If Ak = A, where k ≥ 4 and 2 ≤ n < p, where p is the smallest
prime divisor of k −1, then A = 0. (Proof: See [152].)
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Fact 2.11.18. Let A,B ∈ Fn×n, and assume that AB = 0. Then, for
all k ∈ P,

tr (A+B)k = trAk + trBk.

Fact 2.11.19. Let A,B ∈ Fn×n. Then, the following statements hold:

i) AB +BA = 1
2

[

(A+B)2 − (A−B)2
]

.

ii) (A+B)(A−B) = A2 −B2 − [A,B].

iii) (A−B)(A+B) = A2 −B2 + [A,B].

iv) A2 −B2 = 1
2 [(A+B)(A−B) + (A−B)(A+B)].

Fact 2.11.20. Let A,B ∈ Fn×n and k ∈ P. Then,

Ak −Bk =

k−1
∑

i=0

Ai(A−B)Bk−1−i.

Fact 2.11.21. Let α ∈ R and A ∈ Rn×n. Then, the matrix equation
αA+AT = 0 has a nonzero solution A if and only if α = 1 or α = −1.

2.12 Facts on Determinants

Fact 2.12.1. det
[

0 In
Im 0

]

= (−1)nm.

Fact 2.12.2. det În = (−1)bn/2c = (−1)n(n−1)/2.

Fact 2.12.3. det(In + α1n×n) = 1 + αn.

Fact 2.12.4. Let A ∈ Fn×n, x, y ∈ Fn, and a ∈ F. Then,

[

A x
yT a

]

=



























[

I 0

yTA−1 1

][

A 0

0 a− yTA−1x

][

I A−1x

0 1

]

, detA 6= 0,

[

I A−1x

0 1

][

A−A−1xyT 0

0 a

][

I 0

a−1yT 1

]

, a 6= 0.

(Remark: See Fact 6.4.24.)

Fact 2.12.5. Let A ∈ Fn×n, x, y ∈ Fn, and a ∈ F. Then,

det

[

A x
yT a

]

= a(detA)− yTAAx.
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Hence,

det

[

A x
yT a

]

=















(detA)
(

a− yTA−1x
)

, detA 6= 0,

adet
(

A−A−1xyT
)

, a 6= 0,

−yTAAx, a = 0.

In particular,

det

[

A Ax
yTA yTAx

]

= 0.

Finally,

det
(

A+ xyT
)

= detA+ yTAAx = −det

[

A x
yT −1

]

.

(Remark: See Fact 2.12.6 and Fact 2.13.3.)

Fact 2.12.6. Let A ∈ Rn×n, b ∈ Rn, and a ∈ R. Then,

det

[

A b
bT a

]

= a(detA)− bTAAb.

In particular,

det

[

A b
bT a

]

=



















(detA)
(

a− bTA−1b
)

, detA 6= 0,

adet
(

A− a−1bbT
)

, a 6= 0,

−bTAAb, a = 0.

(Remark: This identity is a specialization of Fact 2.12.5.)

Fact 2.12.7. Let A ∈ Fn×n. Then,

rank

[

A A
A A

]

= rank

[

A −A
−A A

]

= rankA,

rank

[

A A
−A A

]

= 2 rankA,

det

[

A A
A A

]

= det

[

A −A
−A A

]

= 0,

det

[

A A
−A A

]

= 2n(detA)2.

(Remark: See Fact 2.12.8.)

Fact 2.12.8. Let a, b, c, d ∈ F, let A ∈ Fn×n, and define A
4

=
[

aA bA
cA dA

]

.
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Then,

rankA =

(

rank

[

a b
c d

])

rankA

and
det A = (ad− bc)n(detA)2.

(Remark: See Fact 2.12.7.) (Proof: See Proposition 7.1.11 and Fact 7.4.20.)

Fact 2.12.9. Let A∈Fn×m, B ∈Fm×n, and m<n. Then, detAB = 0.

Fact 2.12.10. Let A ∈ Fn×m, B ∈ Fm×n, and n ≤ m. Then, detAB
is equal to the sum of all

(

n
m

)

products of pairs of subdeterminants of A
and B formed by choosing n columns of A and the corresponding n rows
of B. (Remark: This identity is the Binet-Cauchy formula, which yields
Proposition 2.7.1 in the case n = m.)

Fact 2.12.11. Let A ∈ Fn×n be nonsingular, and let b ∈ Fn. Then,
the solution x ∈ Fn of Ax = b is given by

x =























det
(

A
1← b
)

detA

...

det
(

A
n← b
)

detA























.

(Proof: Note that A
(

I
i← x
)

= A
i← b. Since det

(

I
i← x
)

= x(i), it follows

that (detA)x(i) = det
(

A
i← b
)

.) (Remark: This identity is Cramer’s rule.)

Fact 2.12.12. Let A ∈ Fn×m be right invertible, and let b ∈ Fn. Then,
a solution x ∈ Fm of Ax = b is given by

x(i) =
det
[(

A
i← b
)

A∗
]

− det
[(

A
i← 0
)

A∗
]

det(AA∗)
,

for all i = 1, . . . ,m. (Proof: See [349].)

Fact 2.12.13. Let A,B,C,D be conformable matrices with entries in
F. Then,

[

A AB
C D

]

=

[

I 0
C I

]

[

A 0

C − CA D − CB

][

I B

0 I

]

,
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det

[

A AB
C D

]

= (detA)det(D − CB),

[

A B
CA D

]

=

[

I 0
C I

]

[

A B −AB
0 D − CB

]

[

I B
0 I

]

,

det

[

A B
CA D

]

= (detA)det(D − CB),

[

A BD
C D

]

=

[

I B
0 I

]

[

A−BC 0

C −DC D

]

[

I 0
C I

]

,

det

[

A BD
C D

]

= det(A−BC)detD,

[

A B
DC D

]

=

[

I B
0 I

]

[

A−BC B −BD
0 D

]

[

I 0
C I

]

,

det

[

A B
DC D

]

= det(A−BC)det D.

(Remark: See Fact 6.4.24.)

Fact 2.12.14. Let A1, A2, B1, B2 ∈ Fn×m, and define A
4

=
[

A1 A2

A2 A1

]

and

B
4

=
[

B1 B2

B2 B1

]

. Then,

rank

[

A B

B A

]

=
4
∑

i=1

rankCi,

where C1
4

= A1+A2+B1+B2, C2
4

= A1+A2−B1−B2, C3
4

= A1−A2+B1−B2,
and C4

4

= A1−A2 −B1 +B2. If, in addition, n = m, then

det

[

A B

B A

]

=
4
∏

i=1

detCi.

(Proof: See [551].) (Remark: See Fact 3.11.3.)

Fact 2.12.15. Let A,B,C,D ∈ Fn×n, and assume that rank
[

A B
C D

]

=
n. Then,

det

[

detA detB

detC detD

]

= 0.
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Fact 2.12.16. Let A,B,C,D ∈ Fn×n. Then,

det

[

A B
C D

]

=



























det(DA− CB), AB = BA,

det(AD − CB), AC = CA,

det(AD −BC), DC = CD,

det(DA−BC), DB = BD.

(Remark: These identities are Schur’s formulas. See [66, p. 11].) (Proof: If
A is nonsingular, then

det

[

A B
C D

]

= (detA)det
(

D − CA−1B
)

= det
(

DA− CA−1BA
)

= det(DA− CB).

Alternatively, note the identity
[

A B
C D

]

=

[

A 0

C DA− CB

][

I BA−1

0 A−1

]

.

If A is singular, then replace A by A + εI and use continuity.) (Problem:
Find a direct proof for the case in which A is singular.)

Fact 2.12.17. Let A,B,C,D ∈ Fn×n. Then,

det

[

A B
C D

]

=























































































det
(

DAT − CBT
)

, ABT = BAT,

det
(

ATD − CTB
)

, ATC = CTA,

det
(

ADT −BCT
)

, DCT = CDT,

det
(

DTA−BTC
)

, DTB = BTD,

(−1)rankBdet
(

ADT +BCT
)

, ABT = −BAT,

(−1)rankAdet
(

ATD + CTB
)

, ATC = −CTA,

(−1)rankCdet
(

ADT +BCT
)

, DCT = −CDT,

(−1)rankDdet
(

DAT +BCT
)

, DTB = −BTD.

(Proof: If A is nonsingular and ABT = BAT, then

det

[

A B
C D

]

= (detA)det
(

D − CA−1B
)

= det
(

DAT − CA−1BAT
)

= det
(

DAT − CBT
)

.

If A is singular, then a continuity argument can be used with B symmetrized
by means of pre- and post-multiplication if necessary. If A is nonsingular
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and ABT = −BAT, then ABT is skew symmetric, B has even rank, and
det
[

A B
C D

]

= det
(

DAT + CBT
)

. See [393,587].)

Fact 2.12.18. Let A,B,C,D ∈ Fn×n. Then,

det

[

A B
C D

]2

=











































































det
(

A2 +BC
)

det
(

CB +D2
)

, AB = −BD or CA = −DC,

(−1)ndet(AC +BA)det(CD +DB), AD = −B2 or C2 = −DA,

(−1)ndet(AB +BD)det(CA+DC), A2 = −BC or CB = −D2,

det
(

AD +B2
)

det
(

C2 +DA
)

, AC = −BA or CD = −DB,

det
(

AAT +BBT
)

det
(

CCT +DDT
)

, ACT = −BDT or CAT = −DBT,

(−1)ndet
(

ABT +BAT
)

det
(

CDT +DCT
)

,ADT = −BCT or CBT = −DAT,

[

det
(

ADT +BCT
)]2

, ABT = −BAT or CDT = −DCT.

(Proof: Form
[

A B
C D

]2
,
[

A B
C D

] [

C D
A B

]

, etc.)

Fact 2.12.19. Let A ∈ Fn×m and B ∈ Fn×l. Then,

det

[

A∗A A∗B

B∗A B∗B

]

=



















det(A∗A) det[B∗B −B∗A(A∗A)−1A∗B], rankA = m,

det(B∗B) det[A∗A−A∗B(B∗B)−1B∗A], rankB = l,

0, n < m+ l.

Fact 2.12.20. Let A ∈ Fn×n, and assume that either A(i,j) = 0 for all
i, j such that i+ j < n+ 1 or A(i,j) = 0 for all i, j such that i+ j > n+ 1.
Then,

detA = (−1)bn/2c
n
∏

i=1

A(i,n+1−i).

(Remark: A is lower reverse triangular.)
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Fact 2.12.21. Define A ∈ Rn×n by

A
4

=























0 1 0 · · · 0 0

0 0 1 · · · 0 0

0 0 0
. . . 0 0

...
...

...
. . .

. . .
...

0 0 0 · · · 0 1

1 0 0 · · · 0 0























.

Then,
detA = (−1)n+1.

Fact 2.12.22. Let a1, . . . , an ∈ F. Then,

det















1 + a1 a2 · · · an

a1 1 + a2 · · · an
...

...
. . .

...

a1 a2 · · · 1 + an















= 1 +
n
∑

i=1

ai.

Fact 2.12.23. Let a1, . . . , an ∈ F be nonzero. Then,

det















1+a1

a1
1 · · · 1

1 1+a2

a2
· · · 1

...
...

. . .
...

1 1 · · · 1+an

an















=
1 +

∑n
i=1 ai

∏n
i=1 ai

.

Fact 2.12.24. Let a, b, c1, . . . , cn ∈ F, define A ∈ Fn×n by

A
4

=















c1 a a · · · a

b c2 a · · · a

b b c3
. . . a

...
...

. . .
. . .

...
b b b · · · cn















,

and let p(x) = (c1− x)(c2 − x) · · · (cn − x) and pi(x) = p(x)/(ci − x) for all
i = 1, . . . , n. Then,

detA =



















bp(a)− ap(b)
b− a , b 6= a,

a
n−1
∑

i=1
pi(a) + cnpn(a), b = a.
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In particular,

det

















a b b · · · b

b a b · · · b

b b a
. . . b

...
...

. . .
. . .

...

b b b · · · a

















= (a− b)n−1[a+ (n−1)b]

and
det(aIn + b1n×n) = an−1(a+ bn).

(Remark: See Fact 4.10.11.) (Remark: The matrix aIn + b1n×n arises in
combinatorics. See [114,116].)

Fact 2.12.25. Let A,B ∈ Fn×n, and define A ∈ Fkn×kn by

A
4

=



















A B B · · · B

B A B · · · B

B B A
. . . B

...
...

. . .
. . .

...

B B B · · · A



















.

Then,
det A =[det(A−B)]k−1det[A+ (k −1)B].

If k = 2, then

det

[

A B
B A

]

= det[(A+B)(A−B)] = det
(

A2 −B2 − [A,B]
)

.

(Proof: See [238].)

Fact 2.12.26. Define the tridiagonal matrix A ∈ Fn×n by

A
4

=



























a+ b ab 0 · · · 0 0

1 a+ b ab · · · 0 0

0 1 a+ b
. . . 0 0

...
...

. . .
. . .

. . .
...

0 0 0
. . . a+ b ab

0 0 0 · · · 1 a+ b



























.
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Then,

detA =















(n+ 1)an, a = b,

an+1 − bn+1

a− b , a 6= b.

(Proof: See [339, pp. 401, 621].)

2.13 Facts on Adjugates and Inverses

Fact 2.13.1. Let x, y ∈ Fn. Then,
(

I + xyT
)A

=
(

1 + yTx
)

I − xyT

and
det
(

I + xyT
)

= det
(

I + yxT
)

= 1 + xTy = 1 + yTx.

If, in addition, xTy 6= −1, then
(

I + xyT
)−1

= I −
(

1 + xTy
)−1
xyT.

Fact 2.13.2. Let A ∈ Fn×n be nonsingular, and let x, y ∈ Fn. Then,

det
(

A+ xyT
)

=
(

1 + yTA−1x
)

detA

and
(

A+ xyT
)A

=
(

1 + yTA−1x
)

(detA)I −AAxyT.

Furthermore, det
(

A+ xyT
)

6= 0 if and only if yTA−1x 6= −1. In this case,

(

A+ xyT
)−1

= A−1 −
(

1 + yTA−1x
)−1
A−1xyTA−1.

(Remark: This identity is the Sherman-Morrison-Woodbury formula.)

Fact 2.13.3. Let A ∈ Fn×n be nonsingular, let x, y ∈ Fn, let a ∈ F,
and assume that yTA−1x 6= a. Then,
[

A x
yT a

]−1

=
1

a− yTA−1x

[ (

a− yTA−1x
)

A−1 +A−1xyTA−1 −A−1x

−yTA−1 1

]

=
1

adetA− yTAAx





[(

a− yTA−1x
)

I +A−1xyT
]

AA −AAx

−yTAA 1



.

(Problem: Find an expression for
[

A x
yT a

]−1
in the case detA = 0 and

yTAAx 6= 0. See Fact 2.12.5.)
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Fact 2.13.4. Let A ∈ Fn×n. Then, the following statements hold:

i)
(

A
)A

=AA.

ii)
(

AT
)A

=
(

AA
)T
.

iii) (A∗)A =
(

AA
)∗
.

iv) If α ∈ F, then (αA)A = αn−1AA.

v) detAA = (detA)n−1.

vi)
(

AA
)A

= (detA)n−2A.

vii) det
(

AA
)A

= (detA)(n−1)2.

Fact 2.13.5. Let A ∈ Fn×n. Then,

det(A+ 1n×n)− detA = 1T
1×nA

A1 =
n
∑

i=1

det
(

A
i← 1n×1

)

.

(Proof: See [99].) (Remark: See Fact 2.12.5, Fact 2.13.8, and Fact 10.8.13.)

Fact 2.13.6. Let A ∈ Fn×n, and assume that A is singular. Then,

R(A) ⊆ N
(

AA
)

.

Hence,
rankA ≤ def AA

and
rankA+ rankAA ≤ n.

Furthermore, if n ≥ 2, then R(A) = N
(

AA
)

if and only if rankA = n−1.

Fact 2.13.7. Let A ∈ Fn×n and n ≥ 2. Then, the following statements
hold:

i) rankAA = n if and only if rankA = n.

ii) rankAA = 1 if and only if rankA = n−1.

iii) AA = 0 if and only if rankA < n−1.

(Proof: See [466, p. 12].) (Remark: See Fact 4.10.3.)

Fact 2.13.8. Let A,B ∈ Fn×n. Then,
(

AAB
)

(i,j)
= det

(

A
i← colj(B)

)

.

(Remark: See Fact 10.8.13.)

Fact 2.13.9. Let A,B ∈ Fn×n. Then, the following statements hold:
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i) (AB)A = BAAA.

ii) If B is nonsingular, then
(

BAB−1
)A

= BAAB−1.

iii) If AB = BA, then AAB = BAA, ABA = BAA, and AABA = BAAA.

Fact 2.13.10. Let A,B,C,D ∈ Fn×n and ABCD = I. Then, ABCD
= DABC = CDAB = BCDA.

Fact 2.13.11. Let A =
[

a b
c d

]

∈ F2×2, where ad− bc 6= 0. Then,

A−1 = (ad− bc)−1

[

d −b
−c a

]

.

Furthermore, if A =

[

a b c
d e f
g h i

]

∈ F3×3 and β = a(ei−fh)−b(di−fg)+c(dh−
eg) 6= 0, then

A−1 = β−1





ei− fh −(bi− ch) bf − ce
−(di− fg) ai− cg −(af − cd)
ah− eg −(ah− bg) ae− bd



 .

Fact 2.13.12. Let A,B ∈ Fn×n, and assume that A+B is nonsingular.
Then,

A(A+B)−1B = B(A+B)−1A = A−A(A+B)−1A = B −B(A+B)−1B.

Fact 2.13.13. Let A,B ∈ Fn×n be nonsingular. Then,

A−1 +B−1 = A−1(A+B)B−1.

Furthermore, A−1 +B−1 is nonsingular if and only if A+B is nonsingular.
In this case,

(

A−1 +B−1
)−1

= A(A+B)−1B

= B(A+B)−1A

= A−A(A+B)−1A

= B −B(A+B)−1B.

Fact 2.13.14. Let A,B ∈ Fn×n be nonsingular, and assume that A−B
is nonsingular. Then,

(

A−1 −B−1
)−1

= A−A(A−B)−1A.

Fact 2.13.15. Let A ∈ Fn×m and B ∈ Fm×n, and assume that I+AB
is nonsingular. Then, I +BA is nonsingular and

(In +AB)−1A = A(Im +BA)−1.
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(Remark: This result is the push-through identity.) Furthermore,

(I +AB)−1 = I − (I +AB)−1AB.

Fact 2.13.16. Let A,B ∈ Fn×n, and assume that I+BA is nonsingular.
Then,

(I +AB)−1 = I −A(I +BA)−1B.

Fact 2.13.17. Let A ∈ Fn×n, and assume that A and A + I are non-
singular. Then,

(A+ I)−1 +
(

A−1 + I
)−1

= (A+ I)−1 + (A+ I)−1A = I.

Fact 2.13.18. Let A ∈ Fn×m. Then,

(I +AA∗)−1 = I −A(I +A∗A)−1A∗.

Fact 2.13.19. Let A ∈ Fn×n be nonsingular, let B ∈ Fn×m, let C ∈
Fm×n, and assume that A+BC and I + CA−1B are nonsingular. Then,

(A+BC)−1B = A−1B
(

I + CA−1B
)−1

.

Fact 2.13.20. Let A,B ∈ Fn×n, and assume that B is nonsingular.
Then,

A = B
[

I +B−1(A−B)
]

.

Fact 2.13.21. Let A,B ∈ Fn×n, and assume that A and A + B are
nonsingular. Then, for all k ∈ N,

(A+B)−1 =
k
∑

i=0

A−1
(

−BA−1
)i

+
(

−A−1B
)k+1

(A+B)−1

=
k
∑

i=0

A−1
(

−BA−1
)i

+A−1
(

−BA−1
)k+1(

I +BA−1
)−1

.

Fact 2.13.22. Let A,B ∈ Fn×n and α ∈ F, and assume that A, B,
αA−1 + (1− α)B−1, and αB + (1− α)A are nonsingular. Then,

αA+ (1− α)B −
[

αA−1 + (1− α)B−1
]−1

= α(1− α)(A−B)[αB + (1− α)A]−1(A−B).

Fact 2.13.23. Let A ∈ Fn×m. If rankA = m, then (A∗A)−1A∗ is a left
inverse of A. If rankA = n, then A∗(AA∗)−1 is a right inverse of A. (Remark:
See Fact 3.4.19, Fact 3.4.20, and Fact 3.5.3.) (Problem: If rankA = n and
b ∈ Rn, then, for every solution x ∈ Rm of Ax = b, does there exist a right
inverse AR of A such that x = ARb?)



matrix2 November 19, 2003

BASIC MATRIX PROPERTIES 67

Fact 2.13.24. Let A ∈ Fn×m, and assume that rankA = m. Then,
AL ∈ Fm×n is a left inverse of A if and only if there exists B ∈ Fm×n such
that BA is nonsingular and

AL = (BA)−1B.

(Proof: For necessity, let B = AL.)

Fact 2.13.25. Let A ∈ Fn×m and B ∈ Fm×l, and assume that A and
B are right invertible. Then, AB is right invertible. If, in addition, AR is
a right inverse of A and BR is a right inverse of B, then BRAR is a right
inverse of AB.

Fact 2.13.26. Let A ∈ Fn×m and B ∈ Fm×l, and assume that A and
B are left invertible. Then, AB is left invertible. If, in addition, AL is a left
inverse of A and BL is a left inverse of B, then BLAL is a left inverse of AB.

Fact 2.13.27. Let A ∈ Fn×n, B ∈ Fn×m, C ∈ Fm×n, and D ∈ Fm×m,
and assume that A and D are nonsingular. Then,

[

A B
0 D

]−1

=

[

A−1 −A−1BD−1

0 D−1

]

and
[

A 0
C D

]−1

=

[

A−1 0

−D−1CA−1 D−1

]

.

Fact 2.13.28. Let A ∈ Fn×n, B ∈ Fm×m, and C ∈ Fm×n. Then,

det

[

0 A
B C

]

= det

[

C B
A 0

]

= (−1)nm(detA)(detB).

If, in addition, A and B are nonsingular, then
[

0 A
B C

]−1

=

[

−B−1CA−1 B−1

A−1 0

]

and
[

C B
A 0

]−1

=

[

0 A−1

B−1 −B−1CA−1

]

.

Fact 2.13.29. Let A ∈ Fn×n, B ∈ Fn×m, and C ∈ Fm×m, and assume
that C is nonsingular. Then,

[

A B
BT C

]

=

[

A−BC−1BT B

0 C

][

I 0

C−1BT I

]

.
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If, in addition, A − BC−1BT is nonsingular, then
[

A B

BT C

]

is nonsingular

and
[

A B
BT C

]−1

=





(

A−BC−1BT
)−1 −

(

A−BC−1BT
)−1
BC−1

−C−1BT
(

A−BC−1BT
)−1

C−1BT
(

A−BC−1BT
)−1
BC−1 + C−1



 .

Fact 2.13.30. Let A,B ∈ Fn×n. Then,

det

[

I A
B I

]

= det(I −AB) = det(I −BA).

If det(I −BA) 6= 0, then
[

I A
B I

]−1

=

[

I +A(I −BA)−1B −A(I −BA)−1

−(I −BA)−1B (I −BA)−1

]

=

[

(I −AB)−1 −(I −AB)−1A

−B(I −AB)−1 I +B(I −AB)−1A

]

.

Fact 2.13.31. Let A,B ∈ Fn×n. Then,
[

A B
B A

]

=
1

2

[

I I
I −I

] [

A+B 0
0 A−B

] [

I I
I −I

]

.

Therefore,

rank

[

A B
B A

]

= rank(A+B) + rank(A−B).

Now, assume that n = m. Then,

det

[

A B
B A

]

= det[(A+B)(A−B)] = det
(

A2 −B2 − [A,B]
)

.

If, in addition, A+B and A−B are nonsingular, then

[

A B
B A

]−1

=

[

(A+B)−1 + (A−B)−1 (A+B)−1 − (A−B)−1

(A+B)−1 − (A−B)−1 (A+B)−1 + (A−B)−1

]

.

Fact 2.13.32. Let A
4

=
[

A B
0m×m C

]

, where A ∈ Fn×m, B ∈ Fn×n, and

C ∈ Fm×n, and assume that CA is nonsingular. Furthermore, define P
4

=
A(CA)−1C and P⊥

4

= I−P . then A is nonsingular if and only if P +P⊥BP⊥
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is nonsingular. In this case,

A−1 =

[

(CA)−1(C − CBD) −(CA)−1CB(A−DBA)(CA)−1

D (A−DBA)(CA)−1

]

,

where D
4

= (P + P⊥BP⊥)−1P⊥. (Proof: See [263].)

Fact 2.13.33. Let A ∈ Fn×m and B ∈ Fn×(n−m), and assume that
[

A B
]

is nonsingular and A∗B = 0. Then,

[

A B
]−1

=

[

(A∗A)−1A∗

(B∗B)−1B∗

]

.

(Remark: See Fact 6.4.14.) (Problem: Find an expression for
[

A B
]−1

without assuming A∗B = 0.)

Fact 2.13.34. Let M
4

=
[

A B
C D

]

∈ F(n+m)×(n+m) be nonsingular, where

A ∈ Fn×n and D ∈ Fm×m, and let
[

A′ B′

C′ D′

]

4

= M−1, where A′ ∈ Fn×n and
D′ ∈ Fm×m. Then,

detD′ =
detA

detM

and

detA′ =
detD

detM
.

Consequently, A is nonsingular if and only if D′ is nonsingular, and D is
nonsingular if and only if A′ is nonsingular. (Proof: Use M

[

I B′

0 D′

]

=
[

A 0
C I

]

.
See [506].) (Remark: This identity is a special case of Jacobi’s identity.
See [287, p. 21].) (Remark: See Fact 3.6.7.)

Fact 2.13.35. Let A ∈ Fn×m, B ∈ Fn×l, and C ∈ Fm×l. Then,




In A B
0 Im C
0 0 Il





−1

=





In −A AC −B
0 Im −C
0 0 Il



 .

Fact 2.13.36. Let A ∈ Fn×n be nonsingular, and define A0
4

= In.
Furthermore, for all k = 1, . . . , n, let

αk = 1
k trAAk−1,

and, for all k = 1, . . . , n−1, let

Ak = AAk−1 − αkI.
Then,

A−1 = 1
αn
An−1.

(Remark: This result is due to Frame. See [74, p. 99].)
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Fact 2.13.37. Let A ∈ Fn×n be nonsingular and define {Bi}∞i=1 by

Bi+1
4

= 2Bi −BiABi,
where B0 ∈ Fn×n satisfies sprad(I −B0A) < 1. Then,

Bi → A−1

as i→ ∞. (Proof: See [64, p. 167].) (Remark: This sequence is a Newton-
Raphson algorithm.) (Remark: See Fact 6.3.18 for the case in which A is
singular or not square.)

Fact 2.13.38. Let A ∈ Fn×n be nonsingular. Then, A + A−∗ is non-
singular. (Proof: Note that AA∗ + I is positive definite.)

Fact 2.13.39. Let A ∈ Fn×n be nonsingular. Then, X = A−1 is the
unique matrix satisfying

rank

[

A I
I X

]

= rankA.

(Remark: See Fact 6.3.13 and Fact 6.5.5.) (Proof: See [203].)

2.14 Facts on Commutators

Fact 2.14.1. Let A,B ∈ F2×2. Then,

[A,B]2 = 1
2tr[A,B]2I2.

(Remark: See [211,212].)

Fact 2.14.2. Let A,B ∈ Fn×n, and assume that [A,B] = 0. Then,
[

Ak, Bl
]

= 0 for all k, l ∈ N.

Fact 2.14.3. Let A,B,C ∈ Fn×n. Then, the following identities hold:

i) [A,A] = 0.

ii) [A,B] = [−A,−B] = −[B,A].

iii) [A,B + C] = [A,B] + [A,C].

iv) [αA,B] = [A,αB] = α[A,B] for all α ∈ F.

v) [A, [B,C]] + [B, [A,C]] + [C, [A,B]] = 0.

vi) [A,B]T =
[

BT, AT
]

= −
[

AT, BT
]

.

vii) tr [A,B] = 0.

viii) tr Ak[A,B] = tr Bk[A,B] = 0 for all k ∈ P.
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ix) [[A,B], B −A] = [[B,A], A−B].

x) [A, [A,B]] = −[A, [B,A]].

(Remark: v) is the Jacobi identity.)

Fact 2.14.4. Let A,B ∈ Fn×n. Then, for all X ∈ Fn×n,

ad[A,B] = [adA, adB],

that is,
ad[A,B](X) = adA[adB(X)]− adB[adA(X)]

or
[[A,B], X] = [A, [B,X]]− [B, [A,X]].

Fact 2.14.5. Let A ∈ Fn×n and, for all X ∈ Fn×n, define

adkA(X)
4

=

{

adA(X), k = 1,

adk−1
A [adA(X)], k ≥ 2.

Then, for all X ∈ Fn×n and for all k ≥ 1,

ad2
A(X) = [A, [A,X]]− [[A,X], A]

and

adkA(X) =

k
∑

i=0

(−1)k−i
(

k

i

)

AiXAk−i.

(Remark: The proof of Proposition 11.4.8 is based on g
(

etadAetadB
)

, where

g(z)
4

= (log z)/(z−1). See [496, p. 35].) (Remark: See Fact 11.11.4.) (Proof:
For the last identity, see [466, pp. 176, 207].)

Fact 2.14.6. Let A,B ∈ Fn×n, and assume that [A,B] = A. Then, A
is singular. (Proof: If A is nonsingular, then trB = trABA−1 = trB + n.)

Fact 2.14.7. Let A,B ∈ Rn×n be such that AB = BA. Then, there
exists C ∈ Rn×n such that A2 +B2 = C2. (Proof: See [180].) (Remark: The
result applies to real matrices only.)

2.15 Facts on Complex Matrices

Fact 2.15.1. Let a, b ∈ R. Then,
[

a b
−b a

]

is a representation of the
complex number a+ b that preserves addition, multiplication and inversion
of complex numbers. In particular, if a2 + b2 6= 0, then

[

a b
−b a

]−1

=

[

a
a2+b2

−b
a2+b2

b
a2+b2

a
a2+b2

]
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and

(a+ b)−1 =
a

a2 + b2
−  b

a2 + b2
.

(Remark:
[

a b
−b a

]

is a rotation-dilation. See Fact 3.11.1.)

Fact 2.15.2. Let ν, ω ∈ R. Then,
[

ν ω
−ω ν

]

= 1√
2

[

1 1
 −

] [

ν + ω 0
0 ν − ω

]

1√
2

[

1 1
 −

]∗

and
[

ν ω
−ω ν

]−1

=
1

ν2 + ω2

[

ν −ω
ω ν

]

.

(Remark: See Fact 2.15.1.)

Fact 2.15.3. Let A,B ∈ Rn×m. Then,
[

A B
−B A

]

= 1
2

[

I I
I −I

][

A+ B 0
0 A− B

][

I −I
I I

]

= 1
2

[

I I
−I −I

][

A− B 0
0 A+ B

][

I I
−I −I

]

=

[

I 0
I I

][

A+ B B
0 A− B

][

I 0
−I I

]

and

rank(A+ B) = rank(A− B) = 1
2rank

[

A B
−B A

]

.

Now, assume that n = m. Then,

det

[

A B
−B A

]

= det(A+ B) det(A− B)

= |det(A+ B)|2

= det
[

A2 +B2 + (AB −BA)
]

≥ 0

and

mspec

([

A B
−B A

])

= mspec(A+ B) ∪mspec(A− B).

If A is nonsingular, then

det

[

A B
−B A

]

= det
(

A2 +ABA−1B
)

.
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If AB = BA, then

det

[

A B
−B A

]

= det
(

A2 +B2
)

.

(Proof: If A is nonsingular, then use
[

A B
−B A

]

=

[

A 0
0 A

] [

I A−1B
−A−1B I

]

and

det

[

I A−1B
−A−1B I

]

= det
[

I +
(

A−1B
)2
]

.

(Remark: See Fact 4.10.18 and [37,551].)

Fact 2.15.4. Let A,B ∈ Rn×m and C,D ∈ Rm×l. Then,
[

A B
−B A

]

,
[

C D
−D C

]

, and
[

A+C B+D
−(B+D) A+C

]

are representations of the complex matrices

A+ B, C + D, and their sum that preserve addition.

Fact 2.15.5. Let A,B ∈ Rn×m and C,D ∈ Rm×l. Then,
[

A B
−B A

]

,
[

C D
−D C

]

, and
[

AC−BD AD+BC
−(AD+BC) AC−BD

]

are representations of the complex ma-

trices A+ B, C + D, and their product that preserve multiplication.

Fact 2.15.6. Let A,B ∈ Rn×n. Then,
[

A B
−B A

]

is a representation
of the complex matrix A + B that preserves addition, multiplication, and
inversion of complex matrices. In particular, A + B is nonsingular if and
only if

[

A B
−B A

]

is nonsingular. Furthermore, if A is nonsingular, then A+B

is nonsingular if and only if A+BA−1B is nonsingular. In this case,

[

A B
−B A

]−1

=

[
(

A+BA−1B
)−1 −A−1B

(

A+BA−1B
)−1

A−1B
(

A+BA−1B
)−1 (

A+BA−1B
)−1

]

and
(A+ B)−1 =

(

A+BA−1B
)−1− A−1B

(

A+BA−1B
)−1

.

Finally, assume that B is nonsingular. Then, A + B is nonsingular if and
only if B +AB−1A is nonsingular. In this case,

[

A B
−B A

]−1

=

[

B−1A
(

B +AB−1A
)−1 −

(

B +AB−1A
)−1

(

B +AB−1A
)−1

B−1A
(

B +AB−1A
)−1

]

and
(A+ B)−1 = B−1A

(

B +AB−1A
)−1− 

(

B +AB−1A
)−1

.

(Problem: Consider the case in which A and B are singular.)
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Fact 2.15.7. Let A ∈ Fn×n. Then,

det
(

I +AA
)

≥ 0.

(Proof: See [181].)

Fact 2.15.8. Let A,B ∈ Fn×n. Then,

det

[

A B
−B A

]

≥ 0.

If, in addition, A is nonsingular, then

det

[

A B
−B A

]

= |detA|det
(

I +A−1BA−1B
)

.

(Proof: See [628].)

Fact 2.15.9. Let A,B ∈ Rn×n, and define C ∈ R2n×2n by C
4

=








C11 C12 · · ·

C21 · · ·

.

.

.









, where Cij
4

=
[

A(i,j) B(i,j)

−B(i,j) A(i,j)

]

for all i, j = 1, . . . , n. Then,

detC = |det(A+ B)|2.
(Proof: Note that

C = A⊗ I2 +B⊗ J2 = P2,n(I2⊗A+ J2⊗B)P2,n = P2,n

[

A B
−B A

]

P2,n.

See [109].)

2.16 Facts on Geometry

Fact 2.16.1. The points x, y, z ∈ R2 lie on one line if and only if

det

[

x y z
1 1 1

]

= 0.

The points x, y, z ∈ R3 lie on one line if and only if

det
[

x y z
]

= 0.

Fact 2.16.2. Let S ⊂ R2 denote the triangle with vertices [ 0
0 ] , [ x1

y1 ] ,
[ x2
y2 ] ∈ R2. Then,

area(S) = 1
2

∣

∣

∣

∣

det

[

x1 x2

y1 y2

]∣

∣

∣

∣

.

Fact 2.16.3. Let S ⊂ R2 denote the polygon with vertices [ x1
y1 ] , . . . ,
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[ xn
yn ] ∈ R2 arranged in counterclockwise order. Then,

area(S) = 1
2det

[

x1 x2

y1 y2

]

+ 1
2det

[

x2 x3

y2 y3

]

+ · · ·

+ 1
2det

[

xn−1 xn
yn−1 yn

]

+ 1
2det

[

xn x1

yn y1

]

.

(Remark: The polygon need not be convex, where “counterclockwise” is
determined with respect to the inside of the polygon. See [529].)

Fact 2.16.4. Let S ⊂ R3 denote the triangle with vertices x, y, z ∈ R3.
Then,

area(S) = 1
2

√

[(y − x)× (z − x)]T[(y − x)× (z − x)].

Fact 2.16.5. Let S ⊂ R3 denote the tetrahedron with vertices x, y, z, w
∈ R3. Then,

volume(S) = 1
6

∣

∣(x− w)T[(y − w)× (z − w)]
∣

∣ .

Fact 2.16.6. Let S ⊂ R3 denote the parallelepiped with vertices x, y, z,
y + z − x,w,w + y − x,w + z − x,w + z + y − 2x ∈ R3. Then,

volume(S) =
∣

∣(w − x)T[(y − x)× (z − x)]
∣

∣ .

Fact 2.16.7. Let A ∈ Rn×m, assume that rankA = m, and let S ⊂ Rn

denote the parallelepiped in Rn generated by the columns of A. Then,

volume(S) =
[

det
(

ATA
)]1/2

.

If, in addition, m = n, then

volume(S) = |detA|.

Fact 2.16.8. Let S ⊂ Rn and A ∈ Rn×n. Then,

volume(AS) = |detA|volume(S).

(Remark: See [416, p. 468].)

2.17 Notes

The theory of determinants is discussed in [430, 560, 574]. The empty
matrix is discussed in [435] and [484]. Convexity is the subject of [80, 103,
185,357,485,565,591]. Convex optimization theory is the subject of [79]. Our
development of rank properties is based on [398]. Theorem 2.6.3 is based
on [440]. The term “subdeterminant” is used in [456] and is equivalent to
minor. The notation AA for adjugate is used in [523]. Numerous papers on
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basic topics in matrix theory and linear algebra are collected in [129,130]. A
geometric interpretation of N(A), R(A), N(AT), and R(AT) is given in [531].
Some reflections on matrix theory are given in [536,549].
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Chapter Three

Matrix Classes and Transformations

This chapter presents definitions of various types of matrices as well
as transformations needed to analyze matrices.

3.1 Matrix Classes

In this section we categorize various types of matrices based upon their
algebraic and structural properties.

The following definition introduces various types of square matrices.

Definition 3.1.1. For A ∈ Fn×n define the following types of matrices:

i) A is group invertible if R(A) = R
(

A2
)

.

ii) A is range Hermitian if R(A) = R(A∗).

iii) A is range symmetric if R(A) = R
(

AT
)

.

iv) A is Hermitian if A = A∗.

v) A is symmetric if A = AT.

vi) A is skew Hermitian if A = −A∗.

vii) A is skew symmetric if A = −AT.

viii) A is normal if AA∗ = A∗A.

ix) A is nonnegative semidefinite (A ≥ 0) if A is Hermitian and x∗Ax ≥
0 for all x ∈ Fn.

x) A is nonpositive semidefinite (A ≤ 0) if −A is nonnegative semidef-
inite.

xi) A is positive definite (A > 0) if A is Hermitian and x∗Ax > 0 for all
x ∈ Fn such that x 6= 0.

xii) A is negative definite (A < 0) if −A is positive definite.
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xiii) A is semidissipative if A+A∗ is nonpositive semidefinite.

xiv) A is dissipative if A+A∗ is negative definite.

xv) A is unitary if A∗A = I.

xvi) A is orthogonal if ATA = I.

xvii) A is a projector if A is Hermitian and idempotent.

xviii) A is a reflector if A is Hermitian and unitary.

xix) A is an elementary projector if there exists nonzero x ∈ Fn such
that A = I − (x∗x)−1xx∗.

xx) A is an elementary reflector if there exists nonzero x ∈ Fn such that
A = I − 2(x∗x)−1xx∗.

xxi) A is an elementary matrix if there exist x, y ∈ Fn such that A =
I − xyT and xTy 6= 1.

xxii) A is involutory if A2 = I.

xxiii) A is skew involutory if A2 = −I.
xxiv) A is idempotent if A2 = A.

xxv) A is tripotent if A3 = A.

xxvi) A is nilpotent if there exists k ∈ P such that Ak = 0.

xxvii) A is reverse Hermitian if A = A∗̂.

xxviii) A is reverse symmetric if A = AT̂.

xxix) A is a permutation matrix if every row of A and every column of A
possesses one 1 and zeros otherwise.

Let A ∈ Fn×n be Hermitian. Then, the function f : Fn 7→ R defined
by

f(x)
4

= x∗Ax (3.1.1)

is a quadratic form.

The n×n standard nilpotent matrix, which has ones on the superdiag-
onal and zeros elsewhere, is denoted by Nn or just N. We define N1

4

= 0 and
N0

4

= 00×0.

The following definition considers matrices that are not necessarily
square.

Definition 3.1.2. For A ∈ Fn×m define the following types of matrices:

i) A is semicontractive if In −AA∗ is nonnegative semidefinite.



matrix2 November 19, 2003

MATRIX CLASSES AND TRANSFORMATIONS 79

ii) A is contractive if In −AA∗ is positive definite.

iii) A is left inner if A∗A = Im.

iv) A is right inner if AA∗ = In.

v) A is centrohermitian if A = ÎnAÎm.

vi) A is centrosymmetric if A = ÎnAÎm.

vii) A is an outer product if there exist x ∈ Fn and y ∈ Fm such that
A = xyT.

The following definition introduces various types of structured matri-
ces.

Definition 3.1.3. For A ∈ Fn×m with l
4

= min{n,m} define the follow-
ing types of matrices:

i) A is diagonal if A(i,j) = 0 for all i 6= j. If n = m, then

A = diag
(

A(1,1), . . . , A(n,n)

)

.

ii) A is tridiagonal if A(i,j) = 0 for all |i− j| > 1.

iii) A is reverse diagonal if A(i,j) = 0 for all i + j 6= l + 1. If n = m,
then

A = revdiag
(

A(1,n), . . . , A(n,1)

)

.

iv) A is (upper triangular, strictly upper triangular) if A(i,j) = 0 for all
(i ≥ j, i > j).

v) A is (lower triangular, strictly lower triangular) if A(i,j) = 0 for all
(i ≤ j, i < j).

vi) A is (upper Hessenberg, lower Hessenberg) if A(i,j) = 0 for all (i >
j + 1, i < j + 1).

vii) A is Toeplitz if A(i,j) = A(k,l) for all k − i = l − j, that is,

A =













a b c · · ·
d a b

. . .

e d a
. . .

...
. . .

. . .
. . .













.
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viii) A is Hankel if A(i,j) = A(k,l) for all i+ j = k + l, that is,

A =













a b c · · ·
b c d . .

.

c d e . .
.

... . .
.

. .
.

. .
.













.

ix) A is block diagonal if

A =





A1 0
. . .

0 Ak



 = diag(A1, . . . , An),

where Ai ∈ Fni×ni for all i = 1, . . . , k.

x) A is upper block triangular if

A =









A11 A12 · · · A1k

0 A22 · · · A2k
...

. . .
. . .

...
0 0 · · · Akk









,

where Aij ∈ Fni×nj for all i, j = 1, . . . , k.

xi) A is lower block triangular if

A =











A11 0 · · · 0

A21 A22
. . . 0

...
...

. . .
...

Ak1 Ak2 · · · Akk











,

where Aij ∈ Fni×nj for all i, j = 1, . . . , k.

xii) A is block Toeplitz if A(i,j) = A(k,l) for all k − i = l − j, that is,

A =













A1 A2 A3 · · ·
A4 A1 A2

. . .

A5 A4 A1
. . .

...
. . .

. . .
. . .













,

where Ai ∈ Fni×mi .



matrix2 November 19, 2003

MATRIX CLASSES AND TRANSFORMATIONS 81

xiii) A is block Hankel if A(i,j) = A(k,l) for all i+ j = k + l, that is,

A =













A1 A2 A3 · · ·
A2 A3 A4 . .

.

A3 A4 A5 . .
.

... . .
.

. .
.

. .
.













,

where Ai ∈ Fni×mi .

Define the matrix Jn ∈ R2n×2n (or just J) by

J2n
4

=

[

0 In
−In 0

]

. (3.1.2)

In particular,

J2 =

[

0 1
−1 0

]

. (3.1.3)

The following definition introduces various types of real matrices.

Definition 3.1.4. For A ∈ Rn×m define the following types of matrices:

i) A is nonnegative (A ≥≥ 0) if A(i,j) ≥ 0 for all i = 1, . . . , n and
j = 1, . . . ,m.

ii) A is positive (A >> 0) if A(i,j) > 0 for all i = 1, . . . , n and j =
1, . . . ,m.

For A ∈ R2n×2n define the following types of real matrices:

iii) A is Hamiltonian if J−1ATJ = −A.
iv) A is symplectic if A is nonsingular and J−1ATJ = A−1.

Proposition 3.1.5. Let A ∈ Fn×n. Then, the following statements
hold:

i) If A is Hermitian or skew Hermitian, then A is normal.

ii) If A is nonsingular or normal, then A is range Hermitian.

iii) If A is range Hermitian, idempotent, or tripotent, then A is group
invertible.

iv) If A is a reflector, then A is tripotent.

v) If A is a permutation matrix, then A is orthogonal.

Proof. i) is immediate. To prove ii) note that if A is nonsingular, then



matrix2 November 19, 2003

82 CHAPTER 3

R(A) = R(A∗) = Fn, and thus A is range Hermitian. If A is normal, then
it follows from Theorem 2.4.3 that R(A) = R(AA∗) = R(A∗A) = R(A∗),
which proves that A is range Hermitian. To prove iii) note that if A is range
Hermitian, then R(A) = R(AA∗) = AR(A∗) = AR(A) = R(A2), while, if A
is idempotent, then R(A) = R(A2). If A is tripotent, then R(A) = R(A3) =
A2R(A) ⊆ R(A2) = AR(A) ⊆ R(A). Hence, R(A) = R(A2).

3.2 Matrix Transformations

A variety of transformations can be employed for analyzing matrices.

Definition 3.2.1. Let A,B ∈ Fn×m. Then, the following terminology
is defined:

i) A and B are left equivalent if there exists a nonsingular matrix
S1 ∈ Fn×n such that A = S1B.

ii) A and B are right equivalent if there exists a nonsingular matrix
S2 ∈ Fm×m such that A = BS2.

iii) A and B are biequivalent if there exist nonsingular matrices S1 ∈
Fn×n and S2 ∈ Fm×m such that A = S1BS2.

iv) A and B are unitarily left equivalent if there exists a unitary matrix
S1 ∈ Fn×n such that A = S1B.

v) A and B are unitarily right equivalent if there exists a unitary matrix
S2 ∈ Fm×m such that A = BS2.

vi) A and B are unitarily biequivalent if there exist unitary matrices
S1 ∈ Fn×n and S2 ∈ Fm×m such that A = S1BS2.

Definition 3.2.2. Let A,B ∈ Fn×n. Then, the following terminology
is defined:

i) A and B are similar if there exists a nonsingular matrix S ∈ Fn×n

such that A = SBS−1.

ii) A and B are congruent if there exists a nonsingular matrix S ∈ Fn×n

such that A = SBS∗.

iii) A and B are T-congruent if there exists a nonsingular matrix S ∈
Fn×n such that A = SBST.

iv) A and B are unitarily similar if there exists a unitary matrix S ∈
Fn×n such that A = SBS∗ = SBS−1.

The following results summarize some matrix properties that are pre-
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served under left equivalence, right equivalence, biequivalence, similarity,
congruence, and unitary similarity.

Proposition 3.2.3. Let A,B ∈ Fn×n. If A and B are similar, then the
following statements hold:

i) A and B are biequivalent.

ii) trA = trB.

iii) detA = detB.

iv) Ak and Bk are similar for all k ∈ P.

v) Ak∗ and Bk∗ are similar for all k ∈ P.

vi) A is nonsingular if and only if B is; in this case, A−k and B−k are
similar for all k ∈ P.

vii) A is (group invertible, involutory, skew involutory, idempotent, tri-
potent, nilpotent) if and only if B is.

If A and B are congruent, then the following statements hold:

viii) A and B are biequivalent.

ix) A∗ and B∗ are congruent.

x) A is nonsingular if and only if B is; in this case, A−1 and B−1 are
congruent.

xi) A is (range Hermitian, group invertible, Hermitian, skew Hermitian,
nonnegative semidefinite, positive definite) if and only if B is.

If A and B are unitarily similar, then the following statements hold:

xii) A and B are similar.

xiii) A and B are congruent.

xiv) A is (range Hermitian, group invertible, normal, Hermitian, skew
Hermitian, nonnegative semidefinite, positive definite, orthogonal,
involutory, skew involutory, idempotent, tripotent, nilpotent) if and
only if B is.

Definition 3.2.4. Let S ⊆ Fn×n. Then, S is a Lie algebra if the follow-
ing conditions are satisfied:

i) S is a subspace.

ii) If A,B ∈ S, then [A,B] ∈ S.

Proposition 3.2.5. The following sets are Lie algebras:
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i) glF(n)
4

= Fn×n.

ii) plC(n)
4

= {A ∈ Cn×n : trA ∈ R}.
iii) slF(n)

4

= {A ∈ Fn×n: trA = 0}.
iv) u(n)

4

= {A ∈ Cn×n: A is skew Hermitian}.
v) su(n)

4

= {A ∈ Cn×n: A is skew Hermitian and trA = 0}.
vi) so(n)

4

= {A ∈ Rn×n: A is skew symmetric}.
vii) sp(n)

4

= {A ∈ R2n×2n: A is Hamiltonian}.

viii) affF(n)
4

=

{[

A b
0 0

]

: A ∈ glF(n), b ∈ Fn
}

.

ix) seC(n)
4

=

{[

A b
0 0

]

: A ∈ su(n), b ∈ Cn

}

.

x) seR(n)
4

=

{[

A b
0 0

]

: A ∈ so(n), b ∈ Rn

}

.

xi) transF(n)
4

=

{[

0 b
0 0

]

: b ∈ Fn
}

.

Definition 3.2.6. Let S ⊂ Fn×n. Then, S is a group if the following
conditions are satisfied:

i) If A ∈ S, then A is nonsingular.

ii) If A ∈ S, then A−1 ∈ S.

iii) If A,B ∈ S, then AB ∈ S.

Note that if S ⊂ Fn×n is a group, then In ∈ S.

The following result lists several classical groups that are of importance
in physics and engineering. In particular, O(1, 3) is the Lorentz group, see,
for example, [505, p. 126] or [496, p. 16].

Proposition 3.2.7. The following sets are groups:

i) GLF(n)
4

= {A ∈ Fn×n : detA 6= 0}.
ii) PLF(n)

4

= {A ∈ Fn×n : detA > 0}.
iii) SLF(n)

4

= {A ∈ Fn×n : detA = 1}.
iv) U(n)

4

= {A ∈ Cn×n: A is unitary}.
v) O(n)

4

= {A ∈ Rn×n: A is orthogonal}.
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vi) U(n,m)
4

= {A∈C(n+m)×(n+m):A∗diag(In,−Im)A = diag(In,−Im)}.
vii) O(n,m)

4

= {A∈R(n+m)×(n+m):ATdiag(In,−Im)A = diag(In,−Im)}.
viii) SU(n)

4

= {A ∈ U(n): detA = 1}.
ix) SO(n)

4

= {A ∈ O(n) : detA = 1}.
x) Sp(n)

4

= {A ∈ R2n×2n: A is symplectic}.

xi) AffF(n)
4

=

{[

A b
0 1

]

: A ∈ GLF(n), b ∈ Fn
}

.

xii) SEC(n)
4

=

{[

A b
0 1

]

: A ∈ SU(n), b ∈ Cn

}

.

xiii) SER(n)
4

=

{[

A b
0 1

]

: A ∈ SO(n), b ∈ Rn

}

.

xiv) TransF(n)
4

=

{[

I b
0 1

]

: b ∈ Fn
}

.

The following result shows that groups can be used to define equiva-
lence relations on Fn×m.

Proposition 3.2.8. Let S1⊂ Rn×n and S2 ⊂ Rm×m be groups. Then,
the relation R defined on Fn×m by

(A,B) ∈ R⇐⇒ there exist S1 ∈ S1 and S2 ∈ S2 such that A = S1BS2

is an equivalence relation.

3.3 Facts on Range-Hermitian and Group-Invertible
Matrices

Fact 3.3.1. Let A ∈ Fn×n. Then, A is range Hermitian if and only if
N(A) = N(A∗).

Fact 3.3.2. Let A,B ∈ Fn×n be range Hermitian. Then,

rankAB = rankBA.

(Proof: See [52].)

Fact 3.3.3. Let A ∈ Fn×n. Then, the following statements are equiv-
alent:

i) A is group invertible.

ii) A∗ is group invertible.
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iii) N(A) = N
(

A2
)

.

iv) N(A) ∩ R(A) = {0}.
v) N(A) + R(A) = Fn.

vi) A and A2 are left equivalent.

vii) A and A2 are right equivalent.

viii) rankA = rankA2.

ix) def A = def A2.

Fact 3.3.4. Let A ∈ Fn×n. If A is range Hermitian, then A is group
invertible.

Fact 3.3.5. Let A,B ∈ Fn×n, and assume that A is dissipative and B
is range Hermitian. Then, indB = indAB. (Proof: See [87].)

3.4 Facts on Hermitian and Skew-Hermitian Matrices

Fact 3.4.1. Let A ∈ Fn×m. Then, AAT ∈ Fn×n and ATA ∈ Fm×m are
symmetric.

Fact 3.4.2. Let A ∈ Fn×n, let k ∈ P, and assume that A is Hermitian.
Then, R(A) = R

(

Ak
)

and N(A) = N
(

Ak
)

.

Fact 3.4.3. Let A ∈ Rn×n. Then, the following statements hold:

i) xTAx = 0 for all x ∈ Rn if and only if A is skew symmetric.

ii) A is symmetric and xTAx = 0 for all x ∈ Rn if and only if A = 0.

Fact 3.4.4. Let A ∈ Cn×n. Then, the following statements hold:

i) x∗Ax is real for all x ∈ Cn if and only if A is Hermitian.

ii) x∗Ax is imaginary for all x ∈ Cn if and only if A is skew Hermitian.

iii) x∗Ax = 0 for all x ∈ Cn if and only if A = 0.

Fact 3.4.5. Let A ∈ Cn×n. Then, the following statements hold:

i) A is skew Hermitian if and only if A is Hermitian.

ii) A is Hermitian if and only if A is skew Hermitian.

iii) A is Hermitian if and only if ReA is symmetric and ImA is skew
symmetric.
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iv) A is skew Hermitian if and only if ReA is skew symmetric and ImA
is symmetric.

v) A is nonnegative semidefinite if and only if ReA is nonnegative
semidefinite.

vi) A is positive definite if and only if ReA is positive definite.

Fact 3.4.6. Let A ∈ Fn×n. Then, the following statements hold:

i) If A is (Hermitian, nonnegative semidefinite, positive definite), then
so is AA.

ii) If A is skew Hermitian and n is odd, then AA is Hermitian.

iii) If A is skew Hermitian and n is even, then AA is skew Hermitian.

iv) If A is normal, then so is AA.

v) If A is diagonal, then so is AA, and, for all i = 1, . . . , n,

(

AA
)

(i,i)
=

n
∏

j=1
j 6=i

A(j,j).

(Proof: Use Fact 2.13.9.) (Remark: See Fact 5.11.2.)

Fact 3.4.7. Let A ∈ Fn×n, assume that n is even, let x ∈ Fn, and let
α ∈ F. Then,

det(A+ αxx∗) = detA.

(Proof: Use Fact 2.13.2 and Fact 3.4.6.)

Fact 3.4.8. Let A ∈ Fn×n. Then, the following statements are equiv-
alent:

i) A is Hermitian.

ii) A2 = A∗A.

iii) trA2 = trA∗A.

(Proof: Use the Schur decomposition Theorem 5.4.1. See [347].) (Problem:
If AA∗A = A∗A2, then does it follow that A is normal?)

Fact 3.4.9. Let A ∈ Rn×n be skew symmetric, and let α > 0. Then,
−A2 is nonnegative semidefinite, detA ≥ 0, and det(αI + A) > 0. If, in
addition, n is odd, then detA = 0.

Fact 3.4.10. Let A ∈ Fn×n be skew Hermitian. If n is even, then
detA ≥ 0. If n is odd, then detA is imaginary. (Proof: The first statement
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follows from Proposition 5.5.25.)

Fact 3.4.11. Let x, y ∈ Fn and define

A
4

=
[

x y
]

.

Then,
xy∗ − yx∗ = AJ2A

∗.

Furthermore, xy∗ − yx∗ is skew Hermitian and has rank 0 or 2.

Fact 3.4.12. Let x, y ∈ Fn. Then, the following statements hold:

i) xyT is idempotent if and only if either xyT = 0 or xTy = 1.

ii) xyT is Hermitian if and only if there exists α ∈ R such that either
y = αx or x = αy.

Fact 3.4.13. Let x, y ∈ Fn, and define A
4

= I−xyT. Then, the following
statements hold:

i) detA = 1− xTy.

ii) A is nonsingular if and only if xTy 6= 1.

iii) A is nonsingular if and only if A is elementary.

iv) rankA = n−1 if and only if xTy = 1.

v) A is Hermitian if and only if there exists α ∈ R such that either
y = αx or x = αy.

vi) A is nonnegative semidefinite if and only if A is Hermitian and
xTy ≤ 1.

vii) A is positive definite if and only if A is Hermitian and xTy < 1.

viii) A is idempotent if and only if either xyT = 0 or xTy = 1.

ix) A is orthogonal if and only if either x = 0 or y = 1
2y

Tyx.

x) A is involutory if and only if xTy = 2.

xi) A is a projector if and only if either y = 0 or x = x∗xy.

xii) A is a reflector if and only if either y = 0 or 2x = x∗xy.

xiii) A is an elementary projector if and only if x 6= 0 and y = (x∗x)−1x.

xiv) A is an elementary reflector if and only if x 6= 0 and y = 2(x∗x)−1x.

(Remark: See Fact 3.5.9.)

Fact 3.4.14. Let x, y ∈ Fn×n satisfy xTy 6= 1. Then, I − xyT is



matrix2 November 19, 2003

MATRIX CLASSES AND TRANSFORMATIONS 89

nonsingular and
(

I − xyT
)−1

= I − 1

xTy − 1
xyT.

(Remark: The inverse of an elementary matrix is an elementary matrix.)

Fact 3.4.15. Let A ∈ Fn×n be Hermitian. Then, detA is real.

Fact 3.4.16. Let A ∈ Fn×n be Hermitian. Then,

(trA)2 ≤ (rankA) trA2.

Furthermore, equality holds if and only if there exists α ∈ R such that
A2 = αA. (Remark: See Fact 5.9.27.)

Fact 3.4.17. Let A ∈ Rn×n, and assume that A is skew symmetric.
Then, trA = 0. If, in addition, B ∈ Rn×n is symmetric, then trAB = 0.

Fact 3.4.18. Let A ∈ Fn×n, and assume that A is skew Hermitian.
Then, Re trA = 0. If, in addition, B ∈ Fn×n is Hermitian, then Re trAB =
0.

Fact 3.4.19. Let A ∈ Fn×m. Then, A∗A is nonnegative semidefinite.
Furthermore, A∗A is positive definite if and only if A is left invertible. In
this case, AL defined by

AL 4

= (A∗A)−1A∗

is a left inverse of A. (Remark: See Fact 2.13.23, Fact 3.4.20, and Fact
3.5.3.)

Fact 3.4.20. Let A ∈ Fn×m. Then, AA∗ is nonnegative semidefinite.
Furthermore, AA∗ is positive definite if and only if A is right invertible. In
this case, AR defined by

AR 4

= A∗(AA∗)−1

is a right inverse of A. (Remark: See Fact 2.13.23, Fact 3.5.3, and Fact
3.4.19.)

Fact 3.4.21. Let A ∈ Fn×m. Then, A∗A, AA∗, A+A∗, and
[

0 A∗

A 0

]

are

Hermitian, and
[

0 A∗

−A 0

]

and A−A∗ are skew Hermitian.

Fact 3.4.22. Let A ∈ Fn×n. Then, there exist a unique Hermitian
matrix B ∈ Fn×n and a unique skew-Hermitian matrix C ∈ Fn×n such that
A = B + C. Specifically, if A = B̂ + Ĉ, where B̂, Ĉ ∈ Rn×n, then B̂ and Ĉ
are given by

B = 1
2(A+A∗) = 1

2

(

B̂ + B̂T
)

+ 1
2

(

Ĉ − ĈT
)
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and
C = 1

2(A−A
∗) = 1

2

(

B̂ − B̂T
)

+ 1
2

(

Ĉ + ĈT
)

.

Furthermore, A is normal if and only if BC = CB. (Remark: See Fact
11.10.7.)

Fact 3.4.23. Let A ∈ Fn×n. Then, there exist unique Hermitian ma-
trices B,C ∈ Cn×n such that A = B+ C. Specifically, if A = B̂+ Ĉ, where
B̂, Ĉ ∈ Rn×n, then B̂ and Ĉ are given by

B = 1
2(A+A∗) = 1

2

(

B̂ + B̂T
)

+ 1
2

(

Ĉ − ĈT
)

and
C = 1

2(A−A
∗) = 1

2

(

Ĉ + ĈT
)

− 1
2

(

B̂ − B̂T
)

.

Furthermore, A is normal if and only if BC = CB. (Remark: This result is
the Cartesian decomposition.)

Fact 3.4.24. Let x, y, z, w ∈ R3, and define

C(x)
4

=





0 −x(3) x(2)

x(3) 0 −x(1)

−x(2) x(1) 0



 .

Then, the following statements hold:

i) x× y = C(x)y.

ii) x× x = C(x)x = 0.

iii) x× y = −(y × x) = C(x)y = −C(y)x.

iv) If x× y 6= 0, then N
[

(x× y)T
]

= R
([

x y
])

.

v) C(x× y) = C[C(x)y] = [C(x), C(y)] = yxT − xyT.
vi) C2(x) = xxT −

(

xTx
)

I.

vii) If xTx = 1, then C3(x) = −C(x).

viii) If xTx = 1, then C[(x× y)× x] =
(

I − xxT
)

y.

ix) det
[

x y z
]

= (x× y)Tz = xT(y × z).
x) (x× y)T(x× y) = det

[

x y x× y
]

.

xi) (x× y)× z =
(

xTz
)

y −
(

yTz
)

x.

xii) x× (y × z) =
(

xTz
)

y −
(

xTy
)

z.

xiii) (x× y)T(x× y) = xTxyTy −
(

xTy
)2
.

xiv)
√

(x× y)T(x× y) =
√

xTxyTy sin θ, where θ is the angle between x
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and y.

xv) (x× y)T(z × w) = xTzyTw − xTwyTz = det
[

xTz xTw
yTz yTw

]

.

xvi) (x×y)×(z×w) = xT(y×w)z−xT(y×z)w = xT(z×w)y−yT(z×w)x.

xvii) x× [y × (z × w)] = (yTw)(x× z)− (yTz)(x× w).

xviii) x× [y × (y × x)] = y × [x× (y × x)] = (yTx)(x× y).
xix) If A ∈ R3×3, then AT(Ax×Ay) = (detA)(x× y).
xx) If A ∈ R3×3 is orthogonal and detA = 1, then A(x× y) = Ax×Ay.

(Proof: Using ix), eTiA
T(Ax×Ay) = det

[

Ax Ay Aei
]

= (detA)eTi (x×y)
for all i = 1, 2, 3, which proves xvii).) (Remark: See [177,447,508,539].)

Fact 3.4.25. Let A,B ∈ R3 be skew symmetric. Then,

trAB3 = 1
2(trAB)

(

trB2
)

and
trA3B3 = 1

4

(

trA2
)

(trAB)
(

trB2
)

+ 1
3

(

trA3
)(

trB3
)

.

(Proof: See [37].)

Fact 3.4.26. Let A,B ∈ Fn×n. If either A and B are Hermitian or
A and B are skew Hermitian, then [A,B] is skew Hermitian. Furthermore,
if A is Hermitian and B is skew Hermitian, or vice versa, then [A,B] is
Hermitian.

Fact 3.4.27. Let A ∈ Fn×n. Then, the following statements are equiv-
alent:

i) trA = 0

ii) There exist B,C ∈ Fn×n such that A is Hermitian, trB = 0, and
A = [B,C].

(Proof: See [221] and Fact 5.7.18. If all of the diagonal entries of A are zero,

then let B
4

= diag(1, . . . , n), C(i,i)
4

= 0, and, for i 6= j, C(i,j)
4

= A(i,j)/(i− j).
See [626, p. 110]. See also [466, p. 172].)

Fact 3.4.28. Let A ∈ Fn×n. Then, the following statements are equiv-
alent:

i) A is Hermitian and trA = 0.

ii) There exists a nonsingular matrix B ∈ Fn×n such that A = [B,B∗].

iii) There exist a Hermitian matrix B ∈ Fn×n and a skew-Hermitian
matrix C ∈ Fn×n such that A = [B,C]
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iv) There exist a skew-Hermitian matrix B ∈ Fn×n and a Hermitian
matrix C ∈ Fn×n such that A = [B,C]

(Proof: See [542] and [221].)

Fact 3.4.29. Let A ∈ Fn×n. Then, the following statements are equiv-
alent:

i) A is skew Hermitian and trA = 0.

ii) There exists a nonsingular matrix B ∈ Fn×n such that A = [B,B∗].

iii) If A ∈ Cn×n is skew Hermitian, then there exist Hermitian matrices
B,C ∈ Fn×n such that A = [B,C].

(Proof: See [221] or use Fact 3.4.28.)

Fact 3.4.30. Let A ∈ Fn×n, and assume that A is skew symmetric.
Then, there exist symmetric matrices B,C ∈ Fn×n such that A = [B,C].
(Proof: Use Fact 5.13.22. See [466, pp. 83, 89].) (Remark: All matrices can
be complex.)

Fact 3.4.31. Let A ∈ Fn×n, and assume that [A, [A,A∗]] = 0. Then,
A is normal. (Remark: See [626, p. 32].)

Fact 3.4.32. Let A ∈ Fn×n and k ∈ P. If A is (normal, Hermitian,
unitary, involutory, nonnegative semidefinite, positive definite, idempotent,
nilpotent), then so is Ak. If A is (skew Hermitian, skew involutory), then
so is A2k+1. If A is Hermitian, then A2k is nonnegative semidefinite. If A is
tripotent, then so is A3k.

Fact 3.4.33. Let x, y ∈ Fn, and assume that x 6= 0. Then, there exists
a Hermitian matrix A ∈ Fn×n such that y = Ax if and only if x∗y is real.
One such matrix is

A = (x∗x)−1[yx∗ + xy∗ − x∗yI] .
(Remark: See Fact 2.11.12.)

Fact 3.4.34. Let x, y ∈ Fn, and assume that x 6= 0. Then, there exists
a positive-definite matrix A ∈ Fn×n such that y = Ax if and only if x∗y is
real and positive. One such matrix is

A = I + (x∗y)−1yy∗ − (x∗x)−1xx∗.

(Proof: To show that A is positive definite, note that the elementary pro-
jector I− (x∗x)−1xx∗ is nonnegative semidefinite and rank[I− (x∗x)−1xx∗] =
n −1. Since (x∗y)−1yy∗ is nonnegative semidefinite, it follows that N(A) ⊆
N[I − (x∗x)−1xx∗]. Next, since x∗y > 0, it follows that y∗x 6= 0 and y 6= 0,
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and thus x /∈ N(A). Consequently, N(A) ⊂ N[I − (x∗x)−1xx∗] (note proper
inclusion), and thus def A < 1. Hence, A is nonsingular.)

Fact 3.4.35. Let x, y ∈ Fn. Then, there exists a skew-Hermitian ma-
trix A ∈ Fn×n such that y = Ax if and only if either y = 0 or x 6= 0 and
x∗y = 0. If x 6= 0 and x∗y = 0, then one such matrix is

A = (x∗x)−1(yx∗ − xy∗).
(Proof: See [376].)

Fact 3.4.36. Let A ∈ Rn×n be positive definite. Then,

{x ∈ Rn: xTAx ≤ 1}
is an ellipsoid.

Fact 3.4.37. Let x, y, z ∈ Fn satisfy x∗x = y∗y = z∗z = 1. Then,
√

1− |x∗y|2 ≤
√

1− |x∗z|2 +
√

1− |y∗z|2.
Furthermore, if A,B ∈ Fn×n are unitary, then

√

1−
∣

∣

1
n trAB

∣

∣

2 ≤
√

1−
∣

∣

1
n trA

∣

∣

2
+

√

1−
∣

∣

1
n trB

∣

∣

2
.

(Proof: See [580].)

3.5 Facts on Projectors and Idempotent Matrices

Fact 3.5.1. Let A ∈ Fn×n be a projector, and let x ∈ Fn. Then,
x ∈ R(A) if and only if x = Ax.

Fact 3.5.2. Let A,B ∈ Fn×n be projectors, and assume that R(A) =
R(B). Then, A = B.

Fact 3.5.3. Let A ∈ Fn×m. If rankA = m, then B
4

= A(A∗A)−1A∗ is

a projector and rankB = m. If rankA = n, then B
4

= A∗(AA∗)−1A is a
projector and rankB = n. (Remark: See Fact 2.13.23, Fact 3.4.19, and Fact
3.4.20.)

Fact 3.5.4. Let A ∈ Fn×n. Then, A is a projector if and only if
A = A∗A.

Fact 3.5.5. Let A ∈ Fn×m, and assume that A is a projector. Then,
A is nonnegative semidefinite.

Fact 3.5.6. Let x ∈ Fn be nonzero and define the elementary projector
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A
4

= I − (x∗x)−1xx∗. Then, the following statements hold:

i) rankA = n−1.

ii) N(A) = span{x}.
iii) R(A) = {x}⊥.
iv) 2A− I is the elementary reflector I − 2(x∗x)−1xx∗.

(Remark: If y ∈ Fn, then Ay is the projection of y on {x}⊥.

Fact 3.5.7. Let A ∈ Fn×n. Then, A is an elementary reflector if and
only if A is a reflector and trA = n − 2. Furthermore, A is an elementary
projector if and only if A is a projector and trA = n − 1. (Proof: See
Proposition 5.5.25.)

Fact 3.5.8. Let n > 1, and let S ⊂ Fn be a hyperplane. Then, there
exists a unique elementary projector A ∈ Fn×n such that R(A) = S and

N(A) = S⊥. Furthermore, if x ∈ Fn is nonzero and S
4

= {x}⊥, then A =
I − (x∗x)−1xx∗. (Remark: See Proposition 5.5.4.)

Fact 3.5.9. Let A ∈ Fn×n. Then, A is a projector and rankA = n−1
if and only if there exists nonzero x ∈ N(A) such that

A = I − (x∗x)−1xx∗.

In this case, it follows that, for all y ∈ Fn,

y∗y − y∗Ay =
(y∗x)2

x∗x
.

Furthermore, for y ∈ Fn, the following statements are equivalent:

i) y∗Ay = y∗y.

ii) y∗x = 0.

iii) Ay = y.

(Remark: See Fact 3.4.13.)

Fact 3.5.10. Let A ∈ Fn×n be a projector, and let x ∈ Fn. Then,

x∗Ax ≤ x∗x.
Furthermore, the following statements are equivalent:

i) x∗Ax = x∗x.

ii) Ax = x.

iii) x ∈ R(A).
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Fact 3.5.11. Let A ∈ Fn×n, and assume that A is idempotent. Then,
A is a projector if and only if, for all x ∈ Fn, x∗Ax ≤ x∗x. (Proof: See [466, p.
105].)

Fact 3.5.12. Let A ∈ Fn×n. Then,

N(A) ⊆ R(I −A)

and
R(A) ⊆ N(I −A).

Furthermore, the following statements are equivalent:

i) A is idempotent.

ii) N(A) = R(I −A).

iii) R(A) = N(I −A).

(Proof: See [269, p. 146].)

Fact 3.5.13. Let A ∈ Fn×n. Then, A is idempotent and rankA = 1 if
and only if there exist x, y ∈ Fn such that yTx = 1 and A = xyT.

Fact 3.5.14. Let A ∈ Fn×n, and assume that A is idempotent. Then,
AT, A, and A∗ are idempotent.

Fact 3.5.15. Let S1, S2 ⊆ Fn be complementary subspaces, and let
A ∈ Fn×n be the idempotent matrix associated with S1, S2. Then, AT is the
idempotent matrix associated with S⊥

2 , S
⊥
1 . (Remark: See Fact 2.9.11.)

Fact 3.5.16. Let A ∈ Fn×n. Then, A is idempotent if and only if
rankA+ rank(I −A) = n.

Fact 3.5.17. Let A,B ∈ Rn×n be idempotent and define A⊥
4

= I − A
and B⊥

4

= I −B. Then, the following identities hold:

i) (A−B)2 + (A⊥−B)2 = I.

ii) [A,B] = [B,A⊥] = [B⊥, A] = [A⊥, B⊥].

iii) A−B = AB⊥−A⊥B.

iv) AB⊥+BA⊥ = AB⊥A+A⊥BA⊥.

v) A[A,B] = [A,B]A⊥.

vi) B[A,B] = [A,B]B⊥.

(Proof: See [439].)

Fact 3.5.18. Let A ∈ Fn×n and α ∈ F, where α 6= 0. Then, the
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matrices
[

A A∗

A∗ A

]

,

[

A α−1A
α(I −A) I −A

]

,

[

A α−1A
−αA −A

]

are, respectively, normal, idempotent, and nilpotent.

Fact 3.5.19. Let A,B ∈ Rn×n. Then, the following statements hold:

i) Assume that A3 = −A. Then, B
4

= I + A + A2 satisfies B4 = I,
B−1 = I − A + A2, B3 − B2 + B − I = 0, and A = 1

2

(

B −B3
)

.
Furthermore, I +A2 is idempotent.

ii) Assume that B4 = I. Then, A
4

= 1
2

(

B −B−1
)

satisfies B3 = −B.
Furthermore, 1

4

(

I +B +B2 +B3
)

is idempotent.

iii) Assume that B3 −B2 +B − I = 0. Then, A
4

= 1
2

(

B −B3
)

satisfies
A3 = −A and B = I +A+A2.

(Remark: The geometrical interpretation of these results is discussed in
[197].)

Fact 3.5.20. Let A ∈ Fn×m. If AL ∈ Fm×n is a left inverse of A, then
AAL is idempotent and rankAL = rankA. Furthermore, if AR ∈ Fm×n is a
right inverse of A, then ARA is idempotent and rankAR = rankA.

Fact 3.5.21. Let A ∈ Fn×m and B ∈ Fm×n, and assume that AB is
nonsingular. Then, B(AB)−1A is idempotent.

Fact 3.5.22. Let A,B ∈ Fn×n be idempotent. Then, A + B is idem-
potent if and only if AB = BA = 0. (Proof: AB + BA = 0 implies
AB + ABA = ABA + BA = 0, which implies that AB − BA = 0 and
hence AB = 0. See [262, p. 250].)

Fact 3.5.23. If A,B ∈ Fn×n are idempotent and AB = 0, then A +
B−BA is idempotent and C

4

= A−B is tripotent. Conversely, if C ∈ Fn×n

is tripotent, then A
4

= 1
2

(

C2 + C
)

and B
4

= 1
2

(

C2 − C
)

are idempotent and
satisfy C = A−B and AB = BA = 0. (Proof: See [407, p. 114].)

Fact 3.5.24. Let A ∈ Fn×n be nonsingular and idempotent. Then,
A = In.

Fact 3.5.25. Let A ∈ Fn×n be idempotent. Then, so is A⊥
4

= I − A,
and, furthermore, AA⊥ = A⊥A = 0.

Fact 3.5.26. Let A ∈ Fn×n be idempotent. Then,

det(I +A) = 2trA
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and
(I +A)−1 = I − 1

2A.

Fact 3.5.27. If A ∈ Fn×n is idempotent, then B
4

= 2A − I is invo-
lutory, while if B ∈ Fn×n is involutory, then A

4

= 1
2(B + I) is idempotent.

Furthermore, if A ∈ Fn×n is a projector, then B
4

= 2A − I is a reflector,
while if B ∈ Fn×n is a reflector, then A

4

= 1
2(B + I) is a projector.

Fact 3.5.28. Let A ∈ Fn×n, and assume that A satisfies two out of the
three properties (Hermitian, idempotent, A+A∗ = 2AA∗). Then, A satisfies
the remaining property. (Proof: If A is idempotent and 2AA∗ = A + A∗,
then (2A− I)−1 = 2A− I = (2A∗− I)−1. Hence, A is Hermitian.) (Remark:
These matrices are the projectors.) (Remark: The condition A+A∗ = 2AA∗

is considered in Fact 3.5.29.) (Remark: See Fact 3.7.1 and Fact 3.7.5.)

Fact 3.5.29. If B ∈ Fn×n is unitary and skew Hermitian, then A
4

=
1
2(B + I) satisfies

A+A∗ = 2AA∗.

Conversely, if A ∈ Fn×n satisfies this equation, then B
4

= 2A− I is unitary.
(Remark: See Fact 3.5.28.) (Remark: This equation has normal solutions

such that B
4

= 2A−I is not skew Hermitian, for example, A = 1/3+
√

2/3.)
(Problem: Characterize all normal and nonnormal solutions.)

3.6 Facts on Unitary Matrices

Fact 3.6.1. Let A ∈ Fn×n be unitary. Then, the following statements
hold:

i) U = U−∗.

ii) UT = U
−1

= U
∗
.

iii) U = U−T = U
−∗
.

iv) U∗ = U−1.

Fact 3.6.2. Let A ∈ Fn×n be unitary. Then,

−n ≤ Re trA ≤ n,
−n ≤ Im trA ≤ n,

and
|trA| ≤ n.

Fact 3.6.3. Let x, y ∈ Fn, and let A ∈ Fn×n be unitary. Then, x∗y = 0
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if and only if (Ax)∗Ay = 0.

Fact 3.6.4. Let A ∈ Fn×m. If A is (left inner, right inner), then A is
(left invertible, right invertible) and A∗ is a (left inverse, right inverse).

Fact 3.6.5. Let A ∈ Rn×n be a permutation matrix. Then, A is
orthogonal.

Fact 3.6.6. Let A ∈ Cn×n be unitary. Then, |detA| = 1.

Fact 3.6.7. Let M
4

=
[

A B
C D

]

∈ F(n+m)×(n+m) be unitary. Then,

detA = (detM)detD.

(Proof: Let
[

Â B̂
Ĉ D̂

]

4

= A−1 and take the determinant of A
[

I B̂
0 D̂

]

=
[

A 0
C I

]

.

See [3] or [506].) (Remark: See Fact 2.13.34.)

Fact 3.6.8. Let A ∈ Fn×n, and assume that A is Hermitian, skew
Hermitian, or unitary. Then, A is normal.

Fact 3.6.9. Let A ∈ Fn×n, and assume that A is block diagonal. Then,
A is (normal, Hermitian, unitary) if and only if every diagonally located
block has the same property.

Fact 3.6.10. Let A ∈ Fn×n be nonsingular. Then, A is normal if and
only if A−1A∗ is unitary.

Fact 3.6.11. Let A ∈ Fn×n be nonsingular and assume that A is
(normal, Hermitian, skew Hermitian, unitary). Then, so is A−1.

Fact 3.6.12. Let A,B ∈ Rn×n. Then, A + B is (Hermitian, skew
Hermitian, unitary) if and only if

[

A B
−B A

]

is (symmetric, skew symmetric,
orthogonal).

Fact 3.6.13. Let A ∈ Fn×n be semicontractive. Then, B ∈ F2n×2n

defined by

B
4

=

[

A (I −AA∗)1/2

(I −A∗A)1/2 −A∗

]

is unitary. (Remark: See [216, p. 180].)

Fact 3.6.14. Let θ ∈ R, and define the orthogonal matrix

A(θ)
4

=

[

cos θ sin θ
− sin θ cos θ

]

.
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Now, let θ1, θ2 ∈ R. Then,

A(θ1)A(θ2) = A(θ1 + θ2).

Consequently,

cos(θ1 + θ2) = (cos θ1)cos θ2 − (sin θ1)sin θ2,

sin(θ1 + θ2) = (cos θ1)sin θ2 + (sin θ1)cos θ2.

Furthermore,
SO(2) = {A(θ): θ ∈ R}.

(Remark: See Proposition 3.2.7 and Fact 11.9.3.)

Fact 3.6.15. Let x, y, z ∈ R2. If x is rotated according to the right
hand rule through an angle θ ∈ R about y, then the resulting vector x̂ ∈ R2

is given by

x̂ =

[

cos θ − sin θ
sin θ cos θ

]

x+

[

y(1)(1− cos θ) + y(2) sin θ
y(2)(1− cos θ) + y(1) sin θ

]

.

If x is reflected across the line passing through 0 and z and parallel to the
line passing through 0 and y, then the resulting vector x̂ ∈ R2 is given by

x̂ =

[

y2
(1) − y2

(2) 2y(1)y(2)

2y(1)y(2) y2
(2) − y2

(1)

]

x+





−z(1)
(

y2
(1) − y2

(2) − 1
)

− 2z(2)y(1)y(2)

−z(2)
(

y2
(1) − y2

(2) − 1
)

− 2z(1)y(1)y(2)



.

(Remark: These affine planar transformations are used in computer graph-
ics. See [210,464].)

Fact 3.6.16. Let x, y ∈ R3, and assume that yTy = 1. If x is rotated
according to the right hand rule through an angle θ ∈ R about the line
passing through 0 and y, then the resulting vector x̂ ∈ R3 is given by

x̂ = x+ (sin θ)(y × x) + (1− cos θ)[y × (y × x)].
(Proof: See [10].)

Fact 3.6.17. Let x, y ∈ Rn. Then, there exists an orthogonal matrix
A ∈ Rn×n such that y = Ax if and only if xTx = yTy. (Remark: One such
matrix is given by a product of n plane rotations given by Fact 5.13.13. An-
other is given by the product of elementary reflectors given by Fact 5.13.12.
See Fact 11.9.9 and Fact 3.7.3.) (Problem: Extend this result to C.)

Fact 3.6.18. Let A ∈ Fn×n be unitary, and let x ∈ Fn be such that
x∗x = 1 and Ax = −x. Then, the following statements hold:

i) det(A+ I) = 0.

ii) A+ 2xx∗ is unitary.
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iii) A = (A+ 2xx∗)(In − 2xx∗) = (In − 2xx∗)(A+ 2xx∗).

iv) det(A+ 2xx∗) = −detA.

Fact 3.6.19. Let A ∈ R3×3. Then, A is an orthogonal matrix if and
only if there exist real numbers a, b, c, d, not all zero, such that

A =
±1

α







a2 + b2 − c2 − d2 2(bc+ da) 2(bd− ca)
2(bc− da) a2 − b2 + c2 − d2 2(cd+ ba)

2(bd+ ca) 2(cd− ba) a2 − b2 − c2 + d2






,

where α
4

= a2 + b2 + c2 + d2. (Remark: This result is due to Rodrigues.)

Fact 3.6.20. Let A ∈ Rn×n, and assume that A is orthogonal. Then,
either detA = 1 or detA = −1.

Fact 3.6.21. Let A ∈ Fn×n and assume that A is involutory. Then,
either detA = 1 or detA = −1.

Fact 3.6.22. Let A ∈ Fn×n be unitary. Then, 1√
2

[

A −A
A A

]

is also uni-

tary.

Fact 3.6.23. If A ∈ Fn×n is Hermitian, then I+ A is nonsingular and
B

4

= (A − I)(A + I)−1 is unitary and B − I is nonsingular. Conversely, if

B ∈ Fn×n is unitary and B−I is nonsingular, then A
4

= (I+B)(I−B)−1 is
Hermitian. (Proof: See [216, pp. 168, 169].) (Remark: (A− I)(A+ I)−1 is
the Cayley transform of A. See Fact 3.6.24, Fact 3.6.25, Fact 3.9.8, and Fact
8.7.18, and Fact 11.15.9.) (Remark: The linear fractional transformation

f(s)
4

= (s − )(s + ) maps the upper half plane of C onto the unit disk in
C, and the real line onto the unit circle in C.)

Fact 3.6.24. If A ∈ Fn×n is skew Hermitian, then I+A is nonsingular,
B

4

= (I − A)(I + A)−1 = (I + A)−1(I − A) is unitary, and |detB| = 1.

Conversely, if B ∈ Fn×n is unitary and I + B is nonsingular, then A
4

=
(I+B)−1(I−B) is skew Hermitian. Furthermore, if B is unitary, then there
exist λ ∈ C and a skew-Hermitian matrix A ∈ Fn×n such that |λ| = 1 and

B
4

= (I −A)(I +A)−1. (Proof: See [289, p. 440] and [216, p. 184].)

Fact 3.6.25. If A ∈ Rn×n is skew symmetric, then I+A is nonsingular,
B

4

= (I − A)(I + A)−1 = (I + A)−1(I − A) is orthogonal, and I + B is
nonsingular. Equivalently, if A ∈ Rn×n is skew symmetric, then there exists
an orthogonal matrix B ∈ Rn×n such that I + B is nonsingular and A =
(I + B)−1(I − B). Conversely, if B ∈ Rn×n is orthogonal and I + B is

nonsingular, then detB = 1 and A
4

= (I + B)−1(I − B) is skew symmetric.
Equivalently, if B ∈ Rn×n is orthogonal and I+B is nonsingular, then there
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exists a skew-symmetric matrix A ∈ Rn×n such that B = (I −A)(I +A)−1.

Fact 3.6.26. Let A ∈ Rn×n be orthogonal. Then, there exist a skew-
symmetric matrix B ∈ Rn×n and a diagonal matrix C ∈ Rn×n, each of
whose diagonal entries is either 1 or −1, such that

A = C(I −B)(I +B)−1.

(Proof: See [466, p. 101].) (Remark: This result is due to Hsu.)

3.7 Facts on Reflectors

Fact 3.7.1. Let A ∈ Fn×n, and assume that A satisfies two out of the
three properties (Hermitian, unitary, involutory). Then, A also satisfies the
remaining property. (Remark: These matrices are the reflectors.) (Remark:
See Fact 3.5.28 and Fact 3.7.5.)

Fact 3.7.2. Let x ∈ Fn be nonzero and define the elementary reflector
A

4

= I − 2(x∗x)−1xx∗. Then, the following statements hold:

i) detA = −1.

ii) If y ∈ Fn, then Ay is the reflection of y across {x}⊥.

iii) Ax = −x.
iv) 1

2(A+ I) is the elementary projector I − (x∗x)−1xx∗.

Fact 3.7.3. Let x, y ∈ Fn. Then, there exists a unique elementary
reflector A ∈ Fn×n such that y = Ax if and only if x∗y is real and x∗x = y∗y.
If x 6= y, then A is given by

A = I − 2[(x− y)∗(x− y)]−1(x− y)(x− y)∗.
(Remark: This result is the reflection theorem. See [229, pp. 16–18] and [484,
p. 357]. See Fact 3.6.17 and Fact 11.9.9.)

Fact 3.7.4. Let n > 1, and let S ⊂ Fn be a hyperplane. Then, there
exists a unique elementary reflector A ∈ Fn×n such that, for all y = y1+y2 ∈
Fn, where y1 ∈ S and y2 = S⊥, it follows that Ay = y1− y2. Furthermore, if
S = {x}⊥, then A = I − 2(x∗x)−1xx∗.

Fact 3.7.5. Let A ∈ Fn×n, and assume that A satisfies two out of
the three properties (skew Hermitian, unitary, skew involutory). Then, A
also satisfies the remaining property. In particular, Jn satisfies all three
properties. In addition, A2 is a reflector. (Problem: Does every reflector
have a skew-Hermitian, unitary square root?) (Remark: See Fact 3.5.28 and
Fact 3.7.1.)
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Fact 3.7.6. Let A ∈ Fn×n. Then, A is a reflector if and only if A =
AA∗+A∗−I. (Proof: This condition is equivalent to A = 1

2(A+I)(A∗+I)−I.)

3.8 Facts on Nilpotent Matrices

Fact 3.8.1. Let A,B ∈ Fn×n, and assume that A and B are upper
triangular. Then,

[A,B]n−1 = 0.

Hence, [A,B] is nilpotent. (Remark: See [211,212].)

Fact 3.8.2. Let A,B ∈ Fn×n, and assume that [A, [A,B]] = 0. Then,
[A,B] is nilpotent. (Remark: This result is due to Jacobson. See [207]
or [287, p. 98].)

Fact 3.8.3. Let A,B ∈ Fn×n, and assume that
[

A,B2
]

= B. Then, B
is nilpotent. (Proof: See [493].)

Fact 3.8.4. Let A ∈ Rn×n. Then, rankAk is a nonincreasing function
of k ∈ P. Furthermore, if there exists k ∈ {1, . . . , n} such that rankAk+1 =
rankAk, then rankAl = rankAk for all l ≥ k. Finally, if A is nilpotent and
Al 6= 0, then rankAk+1 < rankAk for all k = 1, . . . , l.

Fact 3.8.5. Let n ∈ P and k ∈ {0, . . . , n}. Then, rankNk
n = n− k.

Fact 3.8.6. Let A ∈ Fn×n. Then, A is nilpotent and rankA = 1 if and
only if there exist nonzero x, y ∈ Fn such that yTx = 0 and A = xyT.

Fact 3.8.7. Let A ∈ Rn×n be nilpotent and assume that Ak = 0, where
k ∈ P. Then,

det(I −A) = 1

and

(I −A)−1 =
k−1
∑

i=0

Ai.

Fact 3.8.8. Let λ ∈ F and n, k ∈ P. Then,

(λIn +Nn)
k =







λkIn +
(

k
1

)

λk−1Nn + · · ·+
(

k
k

)

Nk
n , k < n−1,

λkIn +
(

k
1

)

λk−1Nn + · · ·+
(

k
n−1

)

λk−n+1Nn−1
n , k ≥ n−1,
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that is, for k ≥ n−1,















λ 1 · · · 0 0

0 λ
. . . 0 0

...
. . .

. . .
. . .

...

0 0
. . . λ 1

0 0 · · · 0 λ















k

=



























λk
(

k

1

)

λk−1
· · ·

(

k

n−2

)

λk−n+1
(

k

n−1

)

λk−n+1

0 λk
. . .

(

k

n−3

)

λk−n+2
(

k

n−2

)

λk−n+2

...
. . .

. . .
. . .

...

0 0
. . . λk

(

k

1

)

λk−1

0 0 · · · 0 λk



























.

Fact 3.8.9. Let A,B ∈ Fn×n, and assume that A is nilpotent and
AB = BA. Then, det(A+B) = detB. (Proof: Use Fact 5.8.6.)

Fact 3.8.10. Let A,B ∈ Rn×n be nilpotent and assume that AB =
BA. Then, A+B is nilpotent. (Proof: If Ak = Bl = 0, then (A+B)k+l = 0.)

Fact 3.8.11. Let A ∈ Fn×n. Then, A is nilpotent if and only if, for all
k = 1, . . . , n, trAk = 0. (Proof: See [466, p. 103].)

3.9 Facts on Hamiltonian and Symplectic Matrices

Fact 3.9.1. Jn is skew symmetric, skew involutory, and Hamiltonian,
In is symplectic, and În is a symmetric permutation matrix.

Fact 3.9.2. Let A ∈ R2n×2n be symplectic. Then, detA = 1. Further-
more, A ∈ R2×2 is symplectic if and only if detA = 1, that is, SLR(2) =
Sp(1). (Proof: See [45, p. 27] or [505, p. 128].)

Fact 3.9.3. Let A ∈ R2n×2n. If A is Hamiltonian and nonsingular,
then A−1 is Hamiltonian. Now let B ∈ R2n×2n. If A and B are Hamiltonian,
the A+B is Hamiltonian.

Fact 3.9.4. Let A ∈ R2n×2n. Then, A is Hamiltonian if and only if
JA = (JA)T. Furthermore, A is symplectic if and only if ATJA = J.

Fact 3.9.5. Let A ∈ R2n×2n be Hamiltonian, and let S ∈ R2n×2n be
symplectic. Then, SAS−1 is Hamiltonian.

Fact 3.9.6. Let A ∈ R2n×2n. Then, A is skew symmetric and Hamil-
tonian if and only if there exist a skew-symmetric matrix A ∈ Rn×n and a
symmetric matrix B ∈ Rn×n such that A =

[

A B
−B A

]

.
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Fact 3.9.7. Let A ∈ R2n×2n be skew symmetric. Then, there exists a
nonsingular matrix S ∈ R2n×2n such that STAS = Jn. (Proof: See [45, p.
231].)

Fact 3.9.8. IfA ∈ R2n×2n is Hamiltonian andA+I is nonsingular, then
B

4

= (A− I)(A+ I)−1 is symplectic and I −B is nonsingular. Conversely, if
B ∈ R2n×2n is symplectic and I−B is nonsingular, then A = (I+B)(I−B)−1

is Hamiltonian. (Remark: See Fact 3.6.23, Fact 3.6.24, and Fact 3.6.25.)

3.10 Facts on Groups

Fact 3.10.1. The following subsets of R are groups:

i) {x ∈ R: x 6= 0}.
ii) {x ∈ R: x > 0}.
iii) {x ∈ R: x 6= 0 and x is rational}.
iv) {x ∈ R: x > 0 and x is rational}.
v) {−1, 1}.
vi) {1}.

Fact 3.10.2. The following subsets of Fn×n are Lie algebras:

i) ut(n)
4

= {A ∈ glF(n): A is upper triangular}.
ii) sut(n)

4

= {A ∈ glF(n): A is strictly upper triangular}.
iii) {0n×n}.

Fact 3.10.3. The following subsets of Fn×n are groups:

i) UT(n)
4

= {A ∈ GLF(n): A is upper triangular}.
ii) UT+(n)

4

= {A ∈ UT(n): A(i,i) > 0 for all i = 1, . . . , n}.

iii) UT±1(n)
4

= {A ∈ UT(n): A(i,i) = ±1 for all i = 1, . . . , n}.

iv) SUT(n)
4

= {A ∈ UT(n): A(i,i) = 1 for all i = 1, . . . , n}.
v) {In}.

(Remark: The matrices in UT1(n) are unipotent. See Fact 5.13.6.)

Fact 3.10.4. Let S ⊂ Fn×n, and assume that S is a group. Then,
{

AT: A ∈ S
}

and
{

A: A ∈ S
}

are groups.
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3.11 Facts on Quaternions

Fact 3.11.1. Define Q0, Q2, Q3 ∈ C2×2 by

Q0
4

= I2, Q1
4

=

[

0 1
−1 0

]

, Q2
4

=

[

 0
0 −

]

, Q3
4

=

[

0 −
− 0

]

.

Then, the following statements hold:

i) Q∗
0 = Q0 and Q∗

i = −Qi for all i = 1, 2, 3.

ii) Q2
0 = Q0 and Q2

i = −Q0 for all i = 1, 2, 3.

iii) QiQj = −QjQi for all 1 ≤ i < j ≤ 3.

iv) Q1Q2 = Q3, Q2Q3 = Q1, and Q3Q1 = Q2.

v) {±Q0,±Q1,±Q2,±Q3} is a group.

For β
4

=
[

β0 β1 β2 β3

]T∈ R4 define

Q(β)
4

=
3
∑

i=0

βiQi.

Then,
Q(β)Q∗(β) = βTβI2

and
detQ(β) = βTβ.

Hence, if βTβ = 1, then Q(β) is unitary. Furthermore, the complex matrices
Q0, Q1, Q2, Q3, and Q(β) have the real representations

Q0 = I4, Q1 =

[

J2 0
0 J2

]

,

Q2 =









0 0 1 0
0 0 0 −1
−1 0 0 0

0 1 0 0









, Q3 =









0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0









,

Q(β) =









β0 β1 β2 −β3

−β1 β0 −β3 −β2

−β2 β3 β0 β1

β3 β2 −β1 β0









.

Hence,
Q(β)QT(β) = βTβI4

and
detQ(β) =

(

βTβ
)2
.

(Remark: Q0, Q1, Q2, Q3 represent the quaternions 1, ı, , k. See Fact 3.11.3.
The quaternion group v) is isomorphic to SU(2).) (Remark: Matrices with
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quaternion entries and 4 × 4 matrix representations are considered in [38,
109, 248, 627]. For applications of quaternions, see [11, 250, 344].) (Remark:

Q(β) has the form
[

A B
−B A

]

, where A and ÎB are rotation-dilations. See Fact
2.15.1.)

Fact 3.11.2. Let A ∈ C2×2. Then, A is unitary if and only if there
exist θ ∈ R and β ∈ R4 such that A = eθQ(β), where Q(β) is defined in
Fact 3.11.1. (Proof: See [484, p. 228].)

Fact 3.11.3. Let A0, A1, A2, A3 ∈ Rn×n, let ı, , k satisfy

ı2 = 2 = k2 = −1,

ı = k = −ı,
k = ı = −k,
kı =  = −ık,

and let A
4

= A0 + ıA1 + A2 + kA3. Then,








A0 −A1 −A2 −A3

A1 A0 −A3 A2

A2 A3 A0 −A1

A3 −A2 A1 A0









= Udiag(A,A,A,A)U,

where

U
4

= 1
2









I ıI I kI
−ıI I kI −I
−I −kI I ıI
−kI I −ıI I









.

(Proof: See [551].) (Remark: k is not an integer here. ı, , k are the unit
quaternions. This identity uses a similarity transformation to construct a
real representation of quaternions. See Fact 2.12.14.)

3.12 Facts on Miscellaneous Types of Matrices

Fact 3.12.1. Let A ∈ Fn×m. Then, A is centrosymmetric if and only

if AT = AT̂. Furthermore, A is centrohermitian if and only if A∗ = A∗̂.

Fact 3.12.2. Let A ∈ Fn×m and B ∈ Fm×l. If A and B are both
(centrohermitian, centrosymmetric), then so is AB.

Fact 3.12.3. Let A ∈ Fn×m. Then, A is (semicontractive, contractive)
if and only if A∗ is.

Fact 3.12.4. Let A ∈ Fn×n, and assume that A is dissipative. Then,
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A is nonsingular. (Proof: Suppose that A is singular, and let x ∈ N(A).
Then, x∗(A + A∗)x = 0.) (Remark: If A + A∗ is nonsingular, then A is not
necessarily nonsingular. Let A = [ 0 1

0 0 ].)

Fact 3.12.5. Let A ∈ Rn×n be tridiagonal with positive diagonal en-
tries, and assume that, for all i = 2, . . . , n,

A(i,i−1)A(i−1,i) <
1
4(cos π

n+1)−2A(i,i)A(i−1,i−1).

Then, detA > 0. (Proof: See [312].)

Fact 3.12.6. Let A ∈ Fn×n be Toeplitz. Then, A is reverse symmetric.

Fact 3.12.7. Let A ∈ Fn×n. Then, A is Toeplitz if and only if there
exist a0, . . . , an ∈ F and b1, . . . , bn ∈ F such that

A =
n
∑

i=1

biN
iT
n +

n
∑

i=0

aiN
i
n.

Fact 3.12.8. Let A ∈ Fn×n, let k ∈ P, and assume that A is (lower
triangular, strictly lower triangular, upper triangular, strictly upper trian-
gular). Then, so is Ak. If, in addition, A is Toeplitz, then so is Ak. (Remark:
See Fact 11.10.1.)

Fact 3.12.9. Let A ∈ Fn×m. Then, the following statements hold:

i) If A is Toeplitz, then ÎA and AÎ are Hankel.

ii) If A is Hankel, then ÎA and AÎ are Toeplitz.

iii) A is Toeplitz if and only if ÎAÎ is Toeplitz.

iv) A is Hankel if and only if ÎAÎ is Hankel.

Fact 3.12.10. Let A ∈ Fn×n, assume that A is Hankel, and consider
the following conditions:

i) A is Hermitian.

ii) A is real.

iii) A is symmetric.

Then, i) =⇒ ii) =⇒ iii).

Fact 3.12.11. Let A ∈ Fn×n be a partitioned matrix, each of whose
blocks is a k× k (circulant, Hankel, Toeplitz) matrix. Then, A is similar to
a block-(circulant, Hankel, Toeplitz) matrix. (Proof: See [60].)

Fact 3.12.12. For all i, j = 1, . . . , n, define A ∈ Rn×n by A(i,j)
4

=
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1/(i+ j − 1). Then, A is Hankel and

detA =
[1!2! · · · (n−1)!]4

1!2! · · · (2n−1)!
.

Furthermore, for all i, j = 1, . . . , n, A−1 has integer entries given by

(

A−1
)

(i,j)
= (−1)i+j(i+ j − 1)

(

n+ i−1

n− j

)(

n+ j − 1

n−1

)(

i+ j − 2

i−1

)2

.

Finally, for large n,
detA ≈ 2−2n2

.

(Remark: A is the Hilbert matrix, which is a Cauchy matrix. See [280, pp.
513], Fact 1.4.8, Fact 3.12.13, and Fact 8.7.29.)

Fact 3.12.13. Let a1, . . . , an, b1, . . . , bn ∈ R, assume that ai + bj 6= 0
for all i, j = 1, . . . , n, and, for all i, j = 1, . . . , n, define A ∈ Rn×n by
A(i,j)

4

= 1/(ai + bj). Then, A is Hankel and

detA =

∏

1≤i<j≤n
(aj − ai)(bj − bi)
∏

1≤i,j≤n
(ai + bj)

.

Now, assume that a1, . . . , an are distinct and b1, . . . , bn are distinct. Then,
A is nonsingular and

(

A−1
)

(i,j)
=

∏

1≤k≤n
(aj + bk)(ak + bi)

(aj + bi)
∏

1≤k≤n
k 6=j

(aj − ak)
∏

1≤k≤n
k 6=i

(bi − bk)
.

Furthermore,

11×nA
−11n×1 =

n
∑

i=1

(ai + bi).

(Remark: A is a Cauchy matrix. See [280, p. 515], Fact 8.7.23, and Fact
1.4.8.)

Fact 3.12.14. Let A ∈ Rn×n be tripotent. Then,

rankA = rankA2 = trA2.

Fact 3.12.15. Let A ∈ Fn×n. Then, A is nonsingular and tripotent if
and only if A is involutory.
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Fact 3.12.16. Let A ∈ Fn×n. Then, A is involutory if and only if
(A+ I)(A− I) = 0.

Fact 3.12.17. A ∈ Rn×n, and assume that A is skew involutory. Then,
n is even.

Fact 3.12.18. Let x, y ∈ Rn, and assume that x(1) ≥ · · · ≥ x(n) and

y(1) ≥ · · · ≥ y(n). Then, there exists a doubly stochastic matrix A ∈ Rn×n

such that y = Ax if and only if y strongly majorizes x. (Remark: The matrix
A is doubly stochastic if it is nonnegative, 11×nA = 11×n, and A1n×1 = 1n×1.
This result is the Hardy-Littlewood-Polya theorem. See [93, p. 33], [287, p.
197], and [400, p. 22].)

3.13 Notes

In the literature on generalized inverses, range Hermitian matrices
are traditionally called EP matrices. Elementary reflectors are traditionally
called Householder matrices or Householder reflections.

Left equivalence, right equivalence, and biequivalence are treated in
[484]. Each of the groups defined in Proposition 3.2.7 is actually a Lie
group. Elementary treatments of Lie algebras and Lie groups are given in
[36,45,157,196,227,299,455], while an advanced treatment appears in [571].
Some additional groups of structured matrices are given in [386].

Applications of the matrix inversion lemma are discussed in [256]. The
terminology “idempotent” and “projector” is not standardized in the liter-
ature. Some writers use “projector” or “oblique projector” for idempotent,
and “orthogonal projector” for projector. Centrosymmetric and centroher-
mitian matrices are discussed in [359,590]. Several characterizations of nor-
mal and almost normal matrices are given in [186,188,246]. Symplectic and
Hamiltonian matrices are discussed in [354].
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Chapter Four

Matrix Polynomials and Rational
Transfer Functions

In this chapter we consider matrices whose entries are polynomials or
rational functions. The decomposition of polynomial matrices in terms of
the Smith form provides the foundation for developing canonical forms in
Chapter 4. In this chapter we also present some basic properties of eigenval-
ues and eigenvectors as well as the minimal and characteristic polynomials
of a square matrix. Finally, we consider the extension of the Smith form to
the Smith-McMillan form for rational transfer functions.

4.1 Polynomials

A function p: C 7→ C of the form

p(s) = βks
k + βk−1s

k−1 + · · ·+ β1s+ β0, (4.1.1)

where k ∈ N and β0, . . . , βk ∈ F, is a polynomial. The set of polynomials is
denoted by F[s]. If the leading coefficient βk ∈ F is nonzero, then the degree
of p, denoted by deg p, is k. If, in addition, βk = 1, then p is monic. If
k = 0, then p is constant. The degree of a nonzero constant polynomial is
zero, while the degree of the zero polynomial is defined to be −∞.

Let p1 and p2 be polynomials. Then,

deg p1p2 = deg p1 + deg p2. (4.1.2)

If p1 = 0 or p2 = 0, then deg p1p2 = deg p1+deg p2 = −∞. If p2 is a nonzero
constant, then deg p2 = 0 and thus deg p1p2 = deg p1. Furthermore,

deg(p1 + p2) ≤ max{deg p1,deg p2}. (4.1.3)

Therefore, deg(p1 + p2) = max{deg p1,deg p2} if and only if either deg p1 6=
deg p2 or p1 = p2 = 0 or deg p1 = deg p2 6= −∞ and dk

dsk [p1(s) + p2(s)] 6= 0,
where k = deg p1 = deg p2.
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Let p ∈ F[s] be a polynomial of degree k ≥ 1. Then, it follows from
the fundamental theorem of algebra that p has k possibly repeated complex
roots λ1, . . . , λk so that p can be factored as

p(s) = β
k
∏

i=1

(s− λi), (4.1.4)

where β ∈ F. The multiplicity of a root λ ∈ C of p is denoted by mp(λ). If λ
is not a root of p, then mp(λ) = 0. The multiset consisting of the roots of p
including multiplicity is mroots(p) = {λ1, . . . λk}m, while the set of roots of

p ignoring multiplicity is roots(p) = {λ̂1, . . . λ̂l}, where
∑l

i=1mp(λ̂i) = k. If
F = R, then the multiplicity of a non-real root λi is equal to the multiplicity
of its complex conjugate λi. Hence, mroots(p) is self conjugate, that is,

mroots(p) = mroots(p).

Let p ∈ F[s]. If p(−s) = p(s) for all s ∈ C, then p is even, while, if
p(−s) = −p(s) for all s ∈ C, then p is odd. If p is either odd or even, then
mroots(p) = −mroots(p). If p ∈ R[s] and there exists q ∈ R[s] such that
p(s) = q(s)q(−s) for all s ∈ C, then p has a spectral factorization. If p has
a spectral factorization, then p is even.

Proposition 4.1.1. Let p ∈ R[s]. Then, the following statements are
equivalent:

i) p has a spectral factorization.

ii) p is even and every imaginary root of p has even multiplicity.

iii) p is even and p(ω) ≥ 0 for all ω ∈ R.

Proof. The equivalence of i) and ii) is immediate. To prove i) =⇒ iii)
note that, for all ω ∈ R,

p(ω) = q(ω)q(−ω) = |q(ω)|2 ≥ 0.

Conversely, to prove iii) =⇒ i) write p = p1p2, where all of the roots of p1 are
imaginary and none of the roots of p2 are imaginary. Now, let z be a root of
p2. Then, −z, z, and −z are also roots of p2 with the same multiplicity as z.
Hence, there exists a polynomial p20 ∈ R[s] such that p2(s) = p20(s)p20(−s)
for all s ∈ C.

Next, write p1(s) =
∏k
i=1

(

s2 + ω2
i

)mi , where 0 ≤ ω1 < · · · < ωk and

mi
4

= mpi
(ωi). Let ωi0 denote the smallest element of the set {ω1, . . . , ωk}

such that mi is odd. Then, it follows that p1(ω) =
∏k
i=1

(

ω2
i − ω2

)mi < 0

for all ω ∈ (ωi0 , ωi0+1), where ωk+1
4

= ∞. However, note that p1(ω) =
p(ω)/p2(ω) = p(ω)/|p20(ω)|2 ≥ 0 for all ω ∈ R, which is a contradiction.
Therefore, mi is even for all i = 1, . . . , k, and thus p1(s) = p10(s)p10(−s)
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for all s ∈ C, where p10(s)
4

=
∏r
i=1

(

s2 + ω2
i

)mi/2. Consequently, p(s) =
p10(s)p20(s)p10(−s)p20(−s) for all s ∈ C.

The following division algorithm is essential to the study of polynomi-
als.

Lemma 4.1.2. Let p1, p2 ∈ F[s], and assume that p2 is not the zero
polynomial. Then, there exist unique polynomials q, r ∈ F[s] such that
deg r < deg p2 and

p1 = qp2 + r. (4.1.5)

Proof. First note that if deg p1 < deg p2, then q = 0 and r = p1.
Hence, assume that deg p1 = n ≥ m = deg p2 and write p1(s) = βns

n + · · ·+
β0 and p2(s) = γms

m + · · · + γ0. If n = 1, then (4.1.5) is satisfied with
q(s) = β1/γ1 and r(s) = β0 − β1γ0/γ1. Now, suppose that n = 2. Then,
p̂1(s) = p1(s) − (β2/γm)s2−mp2(s) has degree 1. Applying (4.1.5) with p1

replaced by p̂1, it follows that there exist q1, r1 ∈ F[s] such that p̂1 = q1p2+r1
and such that deg r1< deg p2. It thus follows that p1(s) = q1(s)p2(s)+r1(s)+
(β2/γm)s2−mp2(s) = q(s)p2(s)+r(s), where q(s) = q1(s)+(β2/γm)sn−m and
r = r1, which verifies (4.1.5). Similar arguments apply to successively larger
values of n.

To prove uniqueness, suppose there exist polynomials q̂ and r̂ such
that deg r̂ < deg p2 and p1 = q̂p2 + r̂. Then, it follows that (q̂− q)p2 = r− r̂.
Next, note that deg(r − r̂) < deg p2. If q̂ 6= q, then deg p2 ≤ deg[(q̂ − q)p2]
so that deg(r − r̂) < deg[(q̂ − q)p2], which is a contradiction. Thus, q̂ = q,
and, hence, r = r̂.

In Lemma 4.1.2, q is the quotient of p1 and p2, while r is the remainder.
If deg p1 < deg p2, then (4.1.5) is satisfied with q = 0 and r = p1 so that
deg r < deg p2. Furthermore, if p2 is a nonzero constant so that deg p2 = 0,
then Lemma 4.1.2 implies that q = p1/p2 and r = 0, in which case −∞ =
deg r < deg p2 = 0. Finally, if p2(s) = s − α, where α ∈ F, then r is
constant and thus r(s) = p1(α). In general, if r = 0, then p2 divides p1, or,
equivalently, p1 is a multiple of p2.

If a polynomial p3 ∈ F[s] divides two polynomials p1, p2 ∈ F[s], then
p3 is a common divisor of p1 and p2. Given polynomials p1, p2 ∈ F[s], there
exists a unique monic polynomial p3 ∈ F[s], the greatest common divisor
of p1 and p2, such that p3 is a common divisor of p1 and p2 and such that
every common divisor of p1 and p2 divides p3. In addition, there exist
polynomials q1, q2 ∈ F[s] such that the greatest common divisor p3 of p1 and
p2 is given by p3 = q1p1+ q2p2. See [456, p. 113], for proofs of these results.
Finally, p1 and p2 are coprime if their greatest common divisor is p3 = 1,
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while a polynomial p ∈ F[s] is irreducible if there do not exist nonconstant
polynomials p1, p2 ∈ F[s] such that p = p1p2. For example, if F = R, then
p(s) = s2 + s+ 1 is irreducible.

If a polynomial p3 ∈ F[s] is a multiple of two polynomials p1, p2 ∈ F[s],
then p3 is a common multiple of p1 and p2. Given nonzero polynomials p1

and p2, there exists (see [456, p. 113]) a unique monic polynomial p3 ∈ F[s],
called the least common multiple of p1 and p2, that is a common multiple of
p1 and p2 and that divides every common multiple of p1 and p2.

The polynomial p ∈ F[s] given by (4.1.1) can be evaluated with a
square matrix argument A ∈ Fn×n by defining

p(A)
4

= βkA
k + βk−1A

k−1 + · · ·+ β1A+ β0I. (4.1.6)

4.2 Matrix Polynomials

The set Fn×m[s] of matrix polynomials consists of matrix functions
P : C 7→ Cn×m all of whose entries are elements of F[s]. A matrix polynomial
P ∈ Fn×m[s] can thus be written as

P (s) = skBk + sk−1Bk−1 + · · ·+ sB1 +B0, (4.2.1)

where B0, . . . , Bk ∈ Fn×m. If Bk is nonzero, then the degree of P , denoted
by degP , is k, while if P = 0, then degP = −∞. If n = m and Bk is
nonsingular, then P is regular, while if Bk = I, then P is monic.

The following result, which generalizes Lemma 4.1.2, provides a divi-
sion algorithm for matrix polynomials.

Lemma 4.2.1. Let P1, P2 ∈ Fn×n[s], where P2 is regular. Then, there

exist unique matrix polynomials Q,R, Q̂, R̂ ∈ Fn×n[s] such that degR <

degP2, deg R̂ < degP2,
P1 = QP2 +R (4.2.2)

and
P1 = P2Q̂+ R̂. (4.2.3)

Proof. See [456, pp. 134–135] or [230, p. 90].

If R = 0, then P2 right divides P1, while if R̂ = 0, then P2 left divides
P1.

Let the matrix polynomial P ∈ Fn×m[s] be given by (4.2.1). Then,
P can be evaluated with a square matrix argument in two different ways,
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either from the right or from the left. For A ∈ Cm×m define

PR(A)
4

= BkA
k +Bk−1A

k−1 + · · ·+B1A+B0, (4.2.4)

while, for A ∈ Cn×n, define

PL(A)
4

= AkBk +Ak−1Bk−1 + · · ·+AB1 +B0. (4.2.5)

If n = m, then PR(A) and PL(A) can be evaluated for all A ∈ Fn×n,
but are generally different.

The following result is useful.

Lemma 4.2.2. Let Q, Q̂ ∈ Fn×n[s] and A ∈ Fn×n. Furthermore, define

P, P̂ ∈ Fn×n[s] by P (s)
4

= Q(s)(sI − A) and P̂ (s)
4

= (sI − A)Q̂(s). Then,

PR(A) = 0 and P̂L(A) = 0.

Let p ∈ F[s] be given by (4.1.1) and define P (s)
4

= p(s)In = skβkIn +
sk−1βk−1In + · · · + sβ1In + β0In ∈ Fn×n[s]. For A ∈ Cn×n it follows that
p(A) = P (A) = PR(A) = PL(A).

The following result specializes Lemma 4.2.1 to the case of matrix
polynomial divisors of degree 1.

Corollary 4.2.3. Let P ∈ Fn×n[s] and A ∈ Fn×n. Then, there exist

unique matrix polynomials Q, Q̂ ∈ Fn×n[s] and unique matrices R, R̂ ∈ Fn×n

such that
P (s) = Q(s)(sI −A) +R, (4.2.6)

and
P (s) = (sI −A)Q̂(s) + R̂. (4.2.7)

Furthermore, R = PR(A) and R̂ = PL(A).

Proof. In Lemma 4.2.1 set P1 = P and P2(s) = sI−A. Since degP2 =

1, it follows that degR = deg R̂ = 0 and thus R and R̂ are constant. Finally,
the last statement follows from Lemma 4.2.2.

Definition 4.2.4. Let P ∈ Fn×m[s]. Then, the rank of P is the non-
negative integer

rankP
4

= max
s∈C

rankP (s). (4.2.8)

Let P ∈ Fn×n[s]. Then, P (s) ∈ Cn×n for all s ∈ C. Furthermore,
detP is a polynomial in s, that is, detP ∈ F[s].
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Definition 4.2.5. Let P ∈ Fn×n[s]. Then, P is nonsingular if detP is
not the zero polynomial; otherwise, P is singular.

Proposition 4.2.6. Let P ∈ Fn×n[s], and assume that P is regular.
Then, P is nonsingular.

Let P ∈ Fn×n[s]. If P is nonsingular, then the inverse P−1 of P can be
constructed according to (2.7.21). In general, the entries of P−1 are rational
functions of s (see Definition 4.7.1). For example, if P (s) =

[

s+2 s+1
s−2 s−1

]

, then

P−1(s) = 1
2

[

1 −

s+1
s−1

−

s−2
s−1

s+1
s−1

]

. In certain cases P−1 is also a matrix polynomial.

For example, if P (s) =
[

s 1
s2+s−1 s+1

]

, then P−1(s) =
[

s+1 −1
−s2−s+1 s

]

.

The following result is an extension of Proposition 2.7.7 from constant
to matrix polynomials.

Proposition 4.2.7. Let P ∈ Fn×m[s]. Then, rankP is the order of the
largest nonsingular matrix polynomial that is a submatrix of P .

Proof. For all s ∈ C it follows from Proposition 2.7.7 that rankP (s)
is the order of the largest nonsingular submatrix of P (s). Now, let s0 ∈ C
be such that rankP (s0) = rankP . Then, P (s0) has a nonsingular subma-
trix of maximal order rankP . Therefore, P has a nonsingular submatrix
polynomial of maximal order rankP .

A matrix polynomial can be transformed by performing elementary
row and column operations of the following types:

i) Multiply a row or a column by a nonzero constant.

ii) Interchange two rows or two columns.

iii) Add a polynomial multiple of one (row, column) to another (row,
column).

These operations correspond to left multiplication or right multiplication by
the elementary matrices

In + (α− 1)Ei,i =





Ii−1 0 0
0 α 0
0 0 In−i



 , (4.2.9)

where α ∈ F is nonzero,

In + Ei,j + Ej,i − Ei,i − Ej,j =













Ii−1 0 0 0 0
0 0 0 1 0
0 0 Ij−i−1 0 0
0 1 0 0 0
0 0 0 0 In−j













, (4.2.10)
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where i 6= j, and as well as the elementary matrix polynomial

In + pEi,j =













Ii−1 0 0 0 0
0 1 0 p 0
0 0 Ij−i−1 0 0
0 0 0 1 0
0 0 0 0 In−j













, (4.2.11)

where i 6= j and p ∈ F[s]. The matrices shown in (4.2.10) and (4.2.11) il-
lustrate the case i < j. Applying these operations sequentially corresponds
to forming products of elementary matrices and elementary matrix polyno-
mials. Note that the elementary matrix polynomial I + pEi,j is nonsingular
and that (I+pEi,j)

−1 = I−pEi,j so that the inverse of an elementary matrix
polynomial is an elementary matrix polynomial.

4.3 The Smith Decomposition and Similarity
Invariants

Definition 4.3.1. Let P ∈ Fn×n[s]. Then, P is unimodular if P is the
product of elementary matrices and elementary matrix polynomials.

The following result provides a canonical form, known as the Smith
form, for matrix polynomials under unimodular transformation.

Theorem 4.3.2. Let P ∈ Fn×m[s], and let r
4

= rankP . Then, there
exist unimodular matrices S1 ∈ Fn×n[s] and S2 ∈ Fm×m[s] and monic poly-
nomials p1, . . . , pr ∈ F[s] such that pi divides pi+1 for all i = 1, . . . , r−1 and
such that

P = S1











p1

. . .

pr
0(n−r)×(m−r)











S2. (4.3.1)

Furthermore, for all i = 1, . . . , r, pi is uniquely determined by

∆i = p1 · · · pi, (4.3.2)

where ∆i is the greatest common divisor of all i× i subdeterminants of P .

Proof. The result is obtained by sequentially applying elementary row
and column operations to P . For details, see [321, pp. 390–392] or [456, pp.
125–128].

Corollary 4.3.3. Let P ∈ Rn×n[s] be unimodular. Then, the Smith
form of P is the identity.
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Definition 4.3.4. The monic polynomials p1, . . . , pr ∈F[s] of the Smith
form of P ∈ Fn×n[s] are the invariant polynomials of P .

Proposition 4.3.5. Let P ∈ Fn×n[s]. Then, P is unimodular if and
only if detP is a nonzero constant.

Proof. Necessity is immediate since every elementary matrix and ev-
ery elementary matrix polynomial has a constant nonzero determinant. To
prove sufficiency, note that, since detP is a nonzero constant, it follows from
Theorem 4.3.2 that every invariant polynomial of P is also a nonzero con-
stant. Consequently, P is a product of elementary matrices and elementary
matrix polynomials and thus is unimodular.

Proposition 4.3.6. Let P ∈ Fn×n[s]. Then, the following statements
are equivalent:

i) P is unimodular.

ii) P is nonsingular, and P−1 is a matrix polynomial.

iii) P is nonsingular, and P−1 is unimodular.

Proof. To prove i) =⇒ ii) suppose that P is unimodular. Then, it
follows from Proposition 4.3.5 that detP is a nonzero constant. Therefore,
P is nonsingular. Furthermore, since PA is a matrix polynomial, it follows
that P−1 = (detP )−1PA is a matrix polynomial. To prove ii) =⇒ iii) sup-
pose that P is nonsingular and P−1 is a matrix polynomial so that detP−1

is a polynomial. Since detP is a nonzero constant and detP−1 = 1/detP ,
it follows that detP−1 is also a nonzero constant. Thus, Proposition 4.3.5
implies that P−1 is unimodular. Finally, to prove iii) =⇒ i), suppose that P
is nonsingular and P−1 is unimodular. Then, since detP−1 is a nonzero con-
stant, it follows that detP = 1/detP−1 is a nonzero constant. Proposition
4.3.5 thus implies that P is unimodular.

Proposition 4.3.7. Let A1, B1, A2, B2 ∈ Fn×n, where A2 is nonsingu-

lar, and define the matrix polynomials P1, P2 ∈ Fn×n[s] by P1(s)
4

= sA1+B1

and P2(s)
4

= sA2 +B2. Then, P1 and P2 have the same invariant polynomi-
als if and only if there exist nonsingular matrices S1, S2 ∈ Fn×n such that
P2 = S1P1S2.

Proof. The sufficiency result is immediate. To prove necessity, note
that it follows from Theorem 4.3.2 that there exist unimodular matrices
T1, T2 ∈ Fn×n[s] such that P2 = T2P1T1. Now, since P2 is regular, it follows

from Lemma 4.2.1 that there exist matrix polynomials Q, Q̂ ∈ Fn×n[s] and

constant matrices R, R̂ ∈ Fn×n such that T1 = QP2 +R and T2 = P2Q̂+ R̂.
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Next, we have

P2 = T2P1T1

= (P2Q̂+ R̂)P1T1

= R̂P1T1 + P2Q̂T
−1
2 P2

= R̂P1(QP2 +R) + P2Q̂T
−1
2 P2

= R̂P1R+ (T2 − P2Q̂)P1QP2 + P2Q̂T
−1
2 P2

= R̂P1R+ T2P1QP2 + P2

(

−Q̂P1Q+ Q̂T−1
2

)

P2

= R̂P1R+ P2

(

T−1
1 Q− Q̂P1Q+ Q̂T−1

2

)

P2.

Since P2 is regular and has degree 1, it follows that if T−1
1 Q−Q̂P1Q+Q̂T−1

2 is

not zero, then degP2

(

T−1
1 Q− Q̂P1Q+ Q̂T−1

2

)

P2 ≥ 2. However, since P2 and

R̂P1R have degree less than two, it follows that T−1
1 Q− Q̂P1Q+ Q̂T−1

2 = 0.

Hence, P2 = R̂P1R.

Next, to show that R̂ and R are nonsingular, note that, for all s ∈ C,

P2(s) = R̂P1(s)R = sR̂A1R+ R̂B1R,

which implies that A2 = S1A1S2, where S1 = R̂ and S2 = R. Since A2 is
nonsingular, it follows that S1 and S2 are nonsingular.

Definition 4.3.8. Let A ∈ Fn×n. Then, the invariant polynomials of
sI −A are the similarity invariants of A.

The following result provides necessary and sufficient conditions for
two matrices to be similar.

Theorem 4.3.9. Let A,B ∈ Fn×n. Then, A and B are similar if and
only if they have the same similarity invariants.

Proof. To prove necessity, assume that A and B are similar. Then,
the matrices sI − A and sI − B have the same Smith form and thus the
same similarity invariants. To prove sufficiency, it follows from Proposition
4.3.7 that there exist nonsingular matrices S1, S2 ∈ Fn×n such that sI−A =
S1(sI −B)S2. Thus, S1 = S−1

2 , and, hence, A = S1BS
−1
1 .

4.4 Eigenvalues

Let A ∈ Fn×n. Then, the matrix polynomial sI−A ∈ Fn×n[s] is monic
and has degree 1.
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Definition 4.4.1. Let A ∈ Fn×n. Then, the characteristic polynomial
of A is the polynomial χA ∈ F[s] given by

χA(s)
4

= det(sI −A). (4.4.1)

Proposition 4.4.2. Let A ∈ Fn×n. Then, χA is monic and degχA = n.

Let A ∈ Fn×n and write the characteristic polynomial of A as

χA(s) = sn + βn−1s
n−1 + · · ·+ β1s+ β0, (4.4.2)

where β0, . . . , βn−1 ∈ F. The eigenvalues of A are the n possibly repeated
roots λ1, . . . , λn ∈ C of χA, that is, the solutions of the characteristic equa-
tion

χA(s) = 0. (4.4.3)

It is often convenient to denote the eigenvalues of A by λ1(A), . . . ,
λn(A) or just λ1, . . . , λn. This notation may be ambiguous, however, since
it does not uniquely specify which eigenvalue is denoted by λi. If, however,
every eigenvalue of A is real, then we employ the notational convention

λ1 ≥ · · · ≥ λn, (4.4.4)

and we define
λmax(A)

4

= λ1, λmin(A)
4

= λn. (4.4.5)

Definition 4.4.3. Let A ∈ Fn×n. The algebraic multiplicity of an eigen-
value λ of A, denoted by amA(λ), is the algebraic multiplicity of λ as a root
of χA, that is,

amA(λ)
4

= mχA
(λ). (4.4.6)

The multiset consisting of the eigenvalues of A including their algebraic
multiplicity, denoted by mspec(A), is the multispectrum of A, that is,

mspec(A)
4

= mroots(χA). (4.4.7)

Ignoring algebraic multiplicity, spec(A) denotes the spectrum of A, that is,

spec(A)
4

= roots(χA). (4.4.8)

If λ /∈ spec(A), then λ /∈ roots(χA), and thus amA(λ) = mχA
(λ) = 0.

Let A ∈ Fn×n and mroots(χA) = {λ1, . . . , λn}m. Then,

χA(s) =
n
∏

i=1

(s− λi). (4.4.9)
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If F = R, then χA(s) has real coefficients, and thus the eigenvalues of A occur

in complex conjugate pairs, that is, mroots(χA) = mroots(χA). Now, let
spec(A) = {λ1, . . . , λr}, and, for all i = 1, . . . , r, let ni denote the algebraic
multiplicity of λi. Then,

χA(s) =
r
∏

i=1

(s− λi)ni . (4.4.10)

The following result gives some basic properties of the spectrum of a
matrix.

Proposition 4.4.4. Let A,B ∈ Fn×n. Then, the following statements
hold:

i) χAT = χA.

ii) χ−A = (−1)nχA.

iii) mspec
(

AT
)

= mspec(A).

iv) mspec
(

A
)

= mspec(A).

v) mspec(A∗) = mspec(A).

vi) 0 ∈ spec(A) if and only if detA = 0.

vii) If either k ∈ N or A is nonsingular and k ∈ Z, then

mspec
(

Ak
)

=
{

λk: λ ∈ mspec(A)
}

m
. (4.4.11)

viii) If α ∈ F, then mspec(αI +A) = α+ mspec(A).

ix) If α ∈ F, then mspec(αA) = αmspec(A).

x) If A = A∗, then spec(A) ⊂ R.

xi) If A and B are similar, then χA = χB and mspec(A) = mspec(B).

Proof. To prove i) note that det
(

sI −AT
)

= det
[

(sI −A)T
]

= det(sI
− A). To prove ii) note that χ−A = det(sI + A) = (−1)ndet(−sI − A) =
(−1)nχA(−s). Next, iii) follows from i). Next, iv) follows from det(sI−A) =

det(sI −A) = det(sI −A), while v) follows from iii) and iv). Next, vi)
follows from the fact that χA(0) = (−1)ndetA. To prove vii) note that, if
λ ∈ spec(A) and x ∈ Cn is an eigenvector of A associated with λ, then A2x =
A(Ax) = A(λx) = λAx = λ2x. Similarly, if A is nonsingular, then Ax = λx
implies that A−1x = λ−1x, and thus A−2x = λ−2x. Next, if λ ∈ spec(A) and
α ∈ F, then det[(α+ λ)I − (αI +A)] = det(λI −A) = 0, which implies that
α+ λ ∈ spec(αI +A) and thus proves viii). If λ ∈ spec(A) and α ∈ F, then
det(αλI − αA) = αndet(λI − A) = 0, which implies that αλ ∈ spec(αA),
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which proves ix). To prove x), assume A = A∗, let λ ∈ spec(A), and let
x ∈ Cn be an eigenvector of A associated with λ. Then, λ = x∗Ax/x∗x,
which is real. Finally, the proof of xi) is immediate.

The following result characterizes the coefficients of χA in terms of the
eigenvalues of A.

Proposition 4.4.5. Let A ∈ Fn×n, let mspec(A) = {λ1, . . . , λn}m, and,
for all i = 1, . . . , n, let γi denote the sum of all i×i principal subdeterminants
of A. Then, for all i = 1, . . . , n−1,

γi =
∑

λj1 · · ·λji , (4.4.12)

where the summation in (4.4.12) is taken over all multisubsets of mspec(A)
having i elements. Furthermore, for all i = 0, . . . , n−1, the coefficient βi of
si in (4.4.2) is given by

βi = (−1)n−iγn−i. (4.4.13)

In particular,

βn−1 = − trA = −
n
∑

i=1

λi, (4.4.14)

βn−2 = 1
2

[

(trA)2 − trA2
]

=
∑

λj1λj2 , (4.4.15)

β1 = (−1)n−1trAA = (−1)n−1
∑

λj1 · · ·λjn−1
, (4.4.16)

β0 = (−1)ndetA = (−1)n
n
∏

i=1

λi. (4.4.17)

Proof. The expression for γi given by (4.4.12) follows from the factored
form of χA(s) given by (4.4.9), while the expression for βi given by (4.4.13)
follows by examining the cofactor expansion (2.7.15) of det(sI − A). For
details, see [416, p. 495]. Equation (4.4.14) follows from (4.4.13) and the
fact that the (n−1)×(n−1) principal subdeterminants of A are the diagonal
entries A(i,i). Using

n
∑

i=1

λ2
i =

(

n
∑

i=1

λi

)2

− 2
∑

λj1λj2

and (4.4.14) yields (4.4.15). Next, if A is nonsingular, then χA−1(s) =
(−s)n

(

detA−1
)

χA(1/s). Using (4.4.2) with s replaced by 1/s and (4.4.14),

it follows that trA−1 = (−1)n−1
(

detA−1
)

β1, and, hence, (4.4.16) is satisfied.
Using continuity for the case in which A is singular yields (4.4.16) for ar-
bitrary A. Finally, β0 = χA(0) = det(0I − A) = (−1)ndetA, which verifies
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(4.4.17).

From the definition the adjugate of a matrix it follows that (sI−A)A ∈
Fn×n[s] is a monic matrix polynomial of degree n−1 of the form

(sI −A)A = sn−1I + sn−2Bn−2 + · · ·+ sB1 +B0, (4.4.18)

where B0, B1, . . . , Bn−2 ∈ Fn×n. Since (sI − A)A is regular it follows from
Proposition 4.2.6 that (sI −A)A is a nonsingular polynomial matrix.

The next result is the Cayley-Hamilton theorem, which shows that
every matrix is a “root” of its characteristic polynomial.

Theorem 4.4.6. Let A ∈ Fn×n. Then,

χA(A) = 0. (4.4.19)

Proof. Define P,Q ∈ Fn×n[s] by P (s)
4

= χA(s)I and Q(s)
4

= (sI−A)A.
Then, (4.7.2) implies that P (s) = Q(s)(sI−A). It thus follows from Lemma
4.2.2 that PR(A) = 0. Furthermore, χA(A) = P (A) = PR(A). Hence,
χA(A) = 0.

In the notation of (4.4.10), it thus follows from Theorem 4.4.6 that

r
∏

i=1

(λiI −A)ni = 0. (4.4.20)

Lemma 4.4.7. Let A ∈ Fn×n. Then,

d

ds
χA(s) = tr

[

(sI −A)A
]

=
n
∑

i=1

det
(

sI −A[i,i]

)

. (4.4.21)

Proof. It follows from (4.4.16) that d
dsχA(s)

∣

∣

s=0
= β1 = (−1)n−1trAA.

Hence,

d

ds
χA(s) =

d

dz
det[(s+ z)I −A]

∣

∣

∣

∣

z=0

=
d

dz
det[zI − (−sI +A)]

∣

∣

∣

∣

z=0

= (−1)n−1tr
[

(−sI +A)A
]

= tr
[

(sI −A)A
]

. �

The following result, known as Leverrier’s algorithm, provides a re-
cursive formula for the coefficients β0, . . . , βn−1 of χA and B0, . . . , Bn−2 of
(sI −A)A.

Proposition 4.4.8. Let A ∈ Fn×n, let χA be given by (4.4.2), and let
(sI − A)A be given by (4.4.18). Then, βn−1, . . . , β0 and Bn−2, . . . , B0 are
given by
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βk = 1
k−n trABk, k = n−1, . . . , 0, (4.4.22)

Bk−1 = ABk + βkI, k = n−1, . . . , 1, (4.4.23)

where Bn−1 = I.

Proof. Since (sI −A)(sI −A)A = χA(s)I, it follows that

snI + sn−1(Bn−2 −A) + sn−2(Bn−3 −ABn−2) + · · ·+ s(B0 −AB1)−AB0

= (sn + βn−1s
n−1 + · · ·+ β1s+ β0)I.

Equating coefficients of powers of s yields (4.4.23) along with −AB0 = β0I.
Taking the trace of this last identity yields β0 = − 1

n trAB0, which confirms
(4.4.22) for k = 0. Next, using (4.4.21) and (4.4.18), it follows that

d

ds
χA(s) =

n
∑

k=1

kβks
k−1 =

n
∑

k=1

(trBk−1)s
k−1,

where Bn−1
4

= In and βn
4

= 1. Equating powers of s, it follows that kβk =
trBk−1 for all k = 1, . . . , n. Now, (4.4.23) implies that kβk = tr(ABk +βkI)
for all k = 1, . . . , n−1, which implies (4.4.22).

Proposition 4.4.9. Let A ∈ Fn×m and B ∈ Fm×n, and assume that
m ≤ n. Then,

χAB(s) = sn−mχBA(s). (4.4.24)

Consequently,

mspec(AB) = mspec(BA) ∪ {0, . . . , 0}m, (4.4.25)

where the multiset {0, . . . , 0}m contains n−m zeros.

Proof. First note that
[

0m×m 0m×n
A AB

]

=

[

Im −B
0n×m In

] [

BA 0m×n
A 0n×n

] [

Im B
0n×m In

]

,

which shows that
[

0m×m 0m×n

A AB

]

and
[

BA 0m×n

A 0n×n

]

are similar. It thus follows

from xi) of Proposition 4.4.4 that smχAB(s) = snχBA(s), which implies
(4.4.24). Finally, (4.4.25) follows immediately from (4.4.24).

If n = m, then Proposition 4.4.9 specializes to the following result.

Corollary 4.4.10. Let A,B ∈ Fn×n. Then,

χAB = χBA. (4.4.26)

Consequently,
mspec(AB) = mspec(BA). (4.4.27)
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4.5 Eigenvectors

Let A ∈ Fn×n, and let λ ∈ C be an eigenvalue of A. Then, χA(λ) =
det(λI−A) = 0, and thus λI−A ∈ Cn×n is singular. Furthermore, N(λI−A)
is a nontrivial subspace of Cn, that is, def(λI − A) > 0. If x ∈ N(λI − A),
that is, Ax = λx, and x 6= 0, then x is an eigenvector of A associated with λ.
Note that if A and λ are real, then there exists a real eigenvector associated
with λ.

Definition 4.5.1. The geometric multiplicity of λ ∈ spec(A), denoted
by gmA(λ), is the number of linearly independent eigenvectors associated
with λ, that is,

gmA(λ)
4

= def(λI −A). (4.5.1)

By convention, if λ /∈ spec(A), then gmA(λ)
4

= 0.

The spectral properties of normal matrices deserve special attention.

Lemma 4.5.2. Let A ∈ Fn×n be normal, let λ ∈ spec(A), and let
x ∈ Cn be an eigenvector of A associated with λ. Then, x is an eigenvector
of A∗ associated with λ ∈ spec(A∗).

Proof. Since λ ∈ spec(A), iii) of Proposition 4.4.4 implies that λ ∈
spec(A∗). Next, note that, since Ax = λx, x∗A∗ = λx∗, and AA∗ = A∗A, it
follows that

(A∗x− λx)∗(A∗x− λx) = x∗AA∗x− λx∗Ax− λx∗A∗x+ λλx∗x

= x∗A∗Ax− λλx∗x− λλx∗x+ λλx∗x

= λλx∗x− λλx∗x = 0.

Hence, A∗x = λx.

Proposition 4.5.3. Let A ∈ Fn×n. Then, eigenvectors associated with
distinct eigenvalues of A are linearly independent. If, in addition, A is
normal, then these eigenvectors are mutually orthogonal.

Proof. Let λ1, λ2 ∈ spec(A) be distinct with associated eigenvectors
x1, x2 ∈ Cn. Suppose that x1 and x2 are linearly dependent, that is,
x1 = αx2, where α ∈ C and α 6= 0. Then, Ax1 = λ1x1 = λ1αx2, but
also Ax1 = Aαx2 = αλ2x2. Hence, α(λ1− λ2)x2 = 0, which contradicts
α 6= 0. Since pairwise linearly independence does not imply the linear in-
dependence of larger sets, next, let λ1, λ2, λ3 ∈ spec(A) be distinct with
associated eigenvectors x1, x2, x3 ∈ Cn. Suppose that x1, x2, x3 are linearly
dependent. In this case, there exist a1, a2, a3 ∈ C, not all zero, such that
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a1x1 + a2x2 + a3x3 = 0. If a1 = 0, then a2x2 + a3x3 = 0. But λ2 6= λ3

implies that x2 and x3 are linearly independent, which in turn implies that
a2 = 0 and a3 = 0. Since a1, a2, a3 are not all zero, it follows that a1 6= 0.
Therefore, x1 = αx2 +βx3, where α

4

= −a2/a1 and β
4

= −a3/a1 are not both
zero. Thus, Ax1 = A(αx2 + βx3) = αAx2 + βAx3 = αλ2x2 + βλ3x3. But,
Ax1 = λ1x1 = λ1(αx2 + βx3) = αλ1x2 + βλ1x3. Subtracting these relations
yields 0 = α(λ1 − λ2)x2 + β(λ1− λ3)x3. Since x2 and x3 are linearly inde-
pendent, it follows that α(λ1− λ2) = 0 and β(λ1− λ3) = 0. Since α and β
are not both zero, it follows that λ1 = λ2 or λ1 = λ3, which contradicts the
assumption that λ1, λ2, λ3 are distinct. The same arguments apply to sets
of four or more eigenvectors.

Now, suppose that A is normal and let λ1, λ2 ∈ spec(A) be distinct
eigenvalues with associated eigenvectors x1, x2 ∈ Cn. Then, by Lemma
4.5.2, Ax1 = λ1x1 implies that A∗x1 = λ1x1. Consequently, x∗1A = λ1x

∗
1,

which implies that x∗1Ax2 = λ1x
∗
1x2. Furthermore, x∗1Ax2 = λ2x

∗
1x2. It thus

follows that 0 = (λ1− λ2)x
∗
1x2. Hence, λ1 6= λ2 implies that x∗1x2 = 0.

If A ∈ Rn×n is symmetric, then Lemma 4.5.2 is not needed and the
proof of Proposition 4.5.3 is simpler. In this case, it follows from x) of
Proposition 4.4.4 that λ1, λ2 ∈ spec(A) are real and thus associated eigen-
vectors x1 ∈ N(λ1I − A) and x2 ∈ N(λ1I − A) can be chosen to be real.
Hence, Ax1 = λ1x1 and Ax2 = λ2x2 imply that xT

2Ax1 = λ1x
T
2x1 and

xT
1Ax2 = λ2x

T
1x2. Since xT

1Ax2 = xT
2A

Tx1 = xT
2Ax1 and xT

1x2 = xT
2x1, it

follows that (λ1− λ2)x
T
1x2 = 0. Since λ1 6= λ2, it follows that xT

1x2 = 0.

We define the spectral abscissa of A ∈ Fn×n by

spabs(A)
4

= max{Reλ: λ ∈ spec(A)} (4.5.2)

and the spectral radius of A ∈ Fn×n by

sprad(A)
4

= max{|λ|: λ ∈ spec(A)}. (4.5.3)

Let A ∈ Fn×n. Then, ν−(A), ν0(A), and ν+(A) denote the number of
eigenvalues of A counting algebraic multiplicity having, respectively, nega-
tive, zero, and positive real part. Define the inertia of A by

In(A)
4

=





ν−(A)
ν0(A)
ν+(A)



 . (4.5.4)

Note that spabs(A) < 0 if and only if ν−(A) = n.
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4.6 Minimal Polynomial

As we showed in Theorem 4.4.6, every square matrix A ∈ Fn×n is a
root of its characteristic polynomial. However, there may be polynomials of
degree less than n having A as a root. In fact, the following result shows
that there exists a unique monic polynomial that has A as a root and that
divides all polynomials that have A as a root.

Theorem 4.6.1. Let A ∈ Fn×n. Then, there exists a unique monic
polynomial µA ∈ F[s] of minimal degree such that µA(A) = 0. Furthermore,
degµA ≤ n, and µA divides every polynomial p ∈ F[s] satisfying p(A) = 0.

Proof. Since χA(A) = 0 and degχA = n, it follows that there exists a
minimal positive integer n0 ≤ n such that there exists a monic polynomial
p0 ∈ F[s] satisfying p0(A) = 0 and deg p0 = n0. Let p ∈ F[s] satisfy p(A) = 0.
Then, by Lemma 4.1.2, there exist q, r ∈ F[s] such that p = qp0 + r and
deg r < deg p0. However, p(A) = p0(A) = 0 implies that r(A) = 0. If r 6= 0,
then r can be normalized to obtain a monic polynomial of degree less than
n0, which contradicts the definition n0. Hence, r = 0, which implies that p0

divides p. This proves existence.

Now, suppose there exist two monic polynomials p0, p̂0 ∈ F[s] of degree
n0 and such that p0(A) = p̂0(A) = 0. By the previous argument, p0 divides
p̂0, and vice versa. Therefore, p0 is a constant multiple of p̂0. Since p0 and
p̂0 are both monic, it follows that p0 = p̂0. This proves uniqueness. Denote
this polynomial by µA.

The monic polynomial µA of least order having A as a root is the
minimal polynomial of A.

The following result relates the characteristic and minimal polynomials
of A ∈ Fn×n to the similarity invariants of A. Note that rank(sI − A) = n,
so that A has n similarity invariants p1, . . . , pn ∈ F[s]. In this case, (4.3.1)
becomes

sI −A = S1(s)







p1(s)
. . .

pn(s)






S2(s), (4.6.1)

where S1, S2 ∈ Fn×n[s] are unimodular and pi divides pi+i for all i =
1, . . . , n−1.

Proposition 4.6.2. Let A ∈ Fn×n, and let p1, . . . , pn ∈ F[s] be the
similarity invariants of A, where pi divides pi+1 for all i = 1, . . . , n − 1.
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Then,

χA =
n
∏

i=1

pi (4.6.2)

and
µA = pn. (4.6.3)

Proof. Using Theorem 4.3.2 and (4.6.1) it follows that

χA(s) = det(sI −A) = [detS1(s)] [detS2(s)]

n
∏

i=1

pi(s).

Since S1 and S2 are unimodular and χA and p1, . . . , pn are monic, it follows
that [detS1(s)][detS2(s)] = 1, which proves (4.6.2).

To prove (4.6.3), first note that it follows from Theorem 4.3.2 that
χA = ∆n−1pn, where ∆n−1 ∈ F[s] is the greatest common divisor of all
(n − 1) × (n − 1) subdeterminants of sI − A. Since the (n − 1) × (n − 1)
subdeterminants of sI − A are the entries of ±(sI − A)A, it follows that
∆n−1 divides every entry of (sI − A)A. Hence, there exists a polynomial
matrix P ∈ Fn×n[s] such that (sI −A)A = ∆n−1(s)P (s). Furthermore, since
(sI−A)A(sI−A) = χA(s)I, it follows that ∆n−1(s)P (s)(sI−A) = χA(s)I =
∆n−1(s)pn(s)I, and thus P (s)(sI − A) = pn(s)I. Lemma 4.2.2 now implies
that pn(A) = 0.

Since pn(A) = 0, it follows from Theorem 4.6.1 that µA divides pn.
Hence, let q ∈ F[s] be the monic polynomial satisfying pn = qµA. Further-
more, since µA(A) = 0, it follows from Corollary 4.2.3 that there exists a
polynomial matrix Q ∈ Fn×n[s] such that µA(s)I = Q(s)(sI − A). Thus,
P (s)(sI −A) = pn(s)I = q(s)µA(s)I = q(s)Q(s)(sI −A), which implies that
P = qQ. Thus, q divides every entry of P . However, since P was obtained
by dividing (sI − A)A by the greatest common divisor of all of its entries,
it follows that the greatest common divisor of the entries of P is 1. Hence,
q = 1, which implies that pn = µA, which proves (4.6.3).

Proposition 4.6.2 shows that µA divides χA, which is also a consequence
of Theorem 4.4.6 and Theorem 4.6.1. Proposition 4.6.2 also shows that
µA = χA if and only if p1 = · · · = pn−1 = 1, that is, if and only if pn = χA
is the only nonconstant similarity invariant of A. Note that, in general, it
follows from (4.6.2) that

∑n
i=1 deg pi = n.

Finally, note that the similarity invariants of the n×n identity matrix
In are given by pi(s) = s−1 for all i = 1, . . . , n. Thus, χIn(s) = (s−1)n and
µIn(s) = s−1.

Proposition 4.6.3. Let A ∈ Fn×n, and assume that A and B are
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similar. Then,
µA = µB. (4.6.4)

4.7 Rational Transfer Functions and the
Smith-McMillan Decomposition

We now turn our attention to rational functions.

Definition 4.7.1. The set F(s) of rational functions consists of func-
tions g : C\S 7→ C, where g(s) = p(s)/q(s), p, q ∈ F[s] are coprime, q 6= 0,

and S
4

= roots(q). The rational function g is strictly proper, proper, exactly
proper, improper, respectively, if deg p < deg q, deg p ≤ deg q, deg p = deg q,
deg p > deg q. The relative degree of g, denoted by reldeg g, is deg q− deg p.
Finally, the roots of p are the zeros of g, while the roots of the denominator
q are the poles of g.

Definition 4.7.2. The set Fn×m(s) of rational transfer functions con-
sists of matrices whose entries are elements of F(s). The rational transfer
function G ∈ Fn×m(s) is strictly proper if every entry of G is strictly proper,
proper if every entry of G is proper, exactly proper if every entry of G is
proper and at least one entry of G is exactly proper, and improper if at least
one entry of G is improper. The relative degree of G ∈ Fn×m(s), denoted by
reldegG, is defined by

reldegG
4

= min
i=1,...,n
j=1,...,m

reldegG(i,j). (4.7.1)

By writing (sI −A)−1 as

(sI −A)−1 =
1

χA(s)
(sI −A)A, (4.7.2)

it follows from (4.4.18) that (sI −A)−1 is a strictly proper rational transfer
function. In fact, for all i = 1, . . . , n,

reldeg
[

(sI −A)−1
]

(i,i)
= n− 1, (4.7.3)

and thus
reldeg (sI −A)−1 = n− 1. (4.7.4)

The following result provides a canonical form, known as the Smith-
McMillan form, for rational transfer functions under unimodular transfor-
mation. The following definition is an extension of Definition 4.2.4 for matrix
polynomials.
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Definition 4.7.3. Let G ∈ Fn×m(s), and let S be as defined in Defini-
tion 4.7.2. Then, the rank of G is the nonnegative integer

rankG
4

= max
s∈C\S

rankG(s). (4.7.5)

Theorem 4.7.4. Let G ∈ Fn×m(s) and let r
4

= rankG. Then, there
exist unimodular matrices S1 ∈ Fn×n[s] and S2 ∈ Fm×m[s] and monic poly-
nomials p1, . . . , pr, q1, . . . , qr ∈ F[s] such that pi and qi are coprime for all
i = 1, . . . , r, pi divides pi+1 for all i = 1, . . . , r − 1, qi+1 divides qi for all
i = 1, . . . , r −1, and

G = S1











p1/q1
. . .

pr/qr
0(n−r)×(m−r)











S2. (4.7.6)

Proof. Let nij/dij denote the (i, j) entry of G, where nij , dij ∈ F[s]
are coprime, and let d ∈ F[s] denote the least common multiple of dij for
all i = 1, . . . , n, and j = 1, . . . ,m. From Theorem 4.3.2 it follows that the
polynomial matrix dG has a Smith form diag(p̂1, . . . , p̂r, 0, . . . , 0), where
p̂1, . . . , p̂r ∈ F[s] and p̂i divides p̂i+1 for all i = 1, . . . , r−1. Now, divide this
Smith form by d and express every rational function p̂i/d in coprime form
pi/qi so that pi divides pi+1 for all i = 1, . . . , r−1 and qi+1 divides qi for all
i = 1, . . . , r −1.

Let g1, . . . , gr ∈ Fn(s). Then, g1, . . . , gr are linearly independent if
α1, . . . , αr ∈ F[s] and

∑r
n=1 αigi = 0 imply that α1 = · · · = αr = 0. It can

be seen that this definition is unchanged if α1, . . . , αr ∈ F(s).

Proposition 4.7.5. Let G ∈ Fn×m(s). Then, rankG is equal to the
number of linearly independent columns of G.

As a special case, Proposition 4.7.5 applies to polynomial matrices
G ∈ Fn×m[s].

Definition 4.7.6. Let G ∈ Fn×m(s), let r
4

= rankG, and let p1, . . . , pr,
q1, . . . , qr ∈ F[s] be given by Theorem 4.7.4. Then, the McMillan degree
of G is

∑r
i=1 deg qi. Furthermore, the poles of G are the roots of q1, the

transmission zeros of G are the roots of pr, and the blocking zeros of G are
the roots of p1.
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4.8 Facts on Polynomials

Fact 4.8.1. Let p ∈ R[s] be monic and define q(s)
4

= snp(1/s), where

n
4

= deg p. If 0 /∈ roots(p), then deg(q) = n and

mroots(q) = {1/λ: λ ∈ mroots(p)}m.
If 0 ∈ roots(p) with multiplicity r, then deg(q) = n− r and

mroots(q) = {1/λ: λ 6= 0 and λ ∈ mroots(p)}m.
(Remark: See Fact 11.13.3 and Fact 11.13.4.)

Fact 4.8.2. Let p ∈ Fn be given by

p(s) = sn + βn−1s
n−1 + · · ·+ β1s+ β0,

let βn
4

= 1, let mroots(p) = {λ1, . . . , λn}m, and define µ1, . . . , µn by

µi
4

= λi1 + · · ·+ λin.

Then, for all k = 1, . . . , n,

kβn−k + µ1βn−k+1 + µ2βn−k+2 + · · ·µkβn = 0.

That is,






















n µ1 µ2 µ3 µ4 · · · µn

0 n− 1 µ1 µ2 µ3 · · · µn−1

...
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

0 0 · · · 0 2 µ1 µ2

0 0 · · · 0 0 1 µ1





































β0

β1
...

βn−1

βn















= 0.

Consequently, β1, . . . , βn−1 are uniquely determined by µ1, . . . , µn. In par-
ticular,

βn−1 = −µ1

and
βn−2 = 1

2

[

µ2
1 − µ2

]

.

(Proof: See [287, p. 44] and [419, p. 9].) (Remark: These equations are
Newton’s identities.)

Fact 4.8.3. Let p, q ∈ F[s] be monic. Then, p and q are coprime if and
only if their least common multiple is pq.

Fact 4.8.4. Let p, q ∈ F[s], where p(s) = ans
n + · · ·+ a1s+ a0, q(s) =

bms
m + · · · + b1s + b0, deg p = n, and deg q = m. Furthermore, define the
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Toeplitz matrices [p](m) ∈ Fm×(n+m) and [q](n) ∈ Fn×(n+m) by

[p](m) 4

=







an an−1 · · · a1 a0 0 0 · · · 0

0 an an−1 · · · a1 a0 0 · · · 0
...

. . .
. . .

. . . · · · . . .
. . .

. . .
...







and

[q](n) 4

=







bm bm−1 · · · b1 b0 0 0 · · · 0

0 bm bm−1 · · · b1 b0 0 · · · 0
...

. . .
. . .

. . . · · · . . .
. . .

. . .
...






.

Then, p and q are coprime if and only if

det

[

[p](m)

[q](n)

]

6= 0.

(Proof: See [202, p. 162] or [466, pp. 187–191].) (Remark:
[

A
B

]

is the

Sylvester matrix, and det
[

A
B

]

is the resultant of p and q.) (Remark: The

form
[

[p](m)

[q](n)

]

appears in [466, pp. 187–191]. The result is given in [202, p.

162] in terms of
[

Î[p](m)

Î[q](n)

]

Î and in [633, p. 85] in terms of
[

[p](m)

Î[q](n)

]

.)

Fact 4.8.5. Let p1, . . . , pn ∈ F[s], and let d ∈ F[s] be the greatest
common divisor of p1, . . . , pn. Then, there exist q1, . . . , qn ∈ F[s] such that

d =
n
∑

i=1

qipi.

In addition, p1, . . . , pn are coprime if and only if there exist q1, . . . , qn ∈ F[s]
such that

1 =
n
∑

i=1

qipi.

(Proof: See [216, p. 16].) (Remark: The polynomial d is given by the Bezout
equation.)

Fact 4.8.6. Let p, q ∈ F[s], where p(s) = ans
n + · · · + a1s + a0 and

q(s) = bns
n + · · ·+ b1s+ b0, and define [p](n), [q](n) ∈ Fn×2n as in Fact 4.8.4.

Furthermore, define

R(p, q)
4

=

[

[p](m)

[q](n)

]

=

[

A1 A2

B1 B2

]

,

where A1, A2, B1, B2 ∈ Fn×n, and define p̂(s)
4

= snp(−s) and q̂(s)
4

= snq(−s).
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Then,
[

A1 A2

B1 B2

]

=

[

p̂
(

NT
)

p(N)

q̂
(

NT
)

q(N)

]

,

A1B1 = B1A1,

A2B2 = B2A2,

A1B2 +A2B1 = B1A2 +B2A1.

Therefore,
[

I 0
−B1 A1

] [

A1 A2

B1 B2

]

=

[

A1 A2

0 A1B2 −B1A2

]

,

[

−B2 A2

0 I

] [

A1 A2

B1 B2

]

=

[

A2B1 −B2A1 0
B1 B2

]

,

and
detR(p, q) = det(A1B2 −B1A2) = det(B2A1 −A2B1).

Now, define B(p, q) ∈ Fn×n by

B(p, q)
4

= (A1B2 −B1A2)Î .

Then, the following statements hold:

i) For all s, ŝ ∈ C,

p(s)q(ŝ)− q(s)p(ŝ) = (s− ŝ)











1
s
...

sn−1











T

B(p, q)











1
ŝ
...

ŝn−1











ii) B(p, q) = (B2A1−A2B1)Î = Î
(

AT
1B

T
2 −BT

1A
T
2

)

= Î
(

BT
1A

T
2 −AT

1B
T
2

)

.

iii)

[

0 B(p, q)
−B(p, q)

]

= QRT(p, q)QR(p, q)Q, where Q
4

=
[

0 Î
−Î 0

]

.

iv) |detB(p, q)| = |detR(p, q)| = |det q[C(p)]|.
v) B(p, q) and B̂(p, q) are symmetric.

vi) B(p, q) is a linear function of (p, q).

vii) B(p, q) = −B(q, p).

Now, assume that deg q ≤ deg p = n and p is monic. Then, the following
statements hold:

viii) def B(p, q) is equal to the degree of the greatest common divisor of
p and q.

ix) p and q are coprime if and only if B(p, q) is nonsingular.
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x) If B(p, q) is nonsingular, then [B(p, q)]−1 is Hankel. In fact,

[B(p, q)]−1 = H(a/p),

where a, b ∈ F[s] satisfy the Bezout equation aq + bp = 1.

xi) If q = q1q2, where q1, q2 ∈ F[s], then

B(p, q) = B(p, q1)q2[C(p)] = q1
[

CT(p)
]

B(p, q2).

xii) B(p, q) = B(p, q)C(p) = CT(p)B(p, q).

xiii) B(p, q) = B(p, 1)q[C(p)] = q[CT(p)]B(p, 1), where B(p, 1) is the
Hankel matrix

B(p, 1) =



















a1 a2 · · · an−1 1

a2 a3 . .
.

1 0
... . .

.
. .

.
. .

. ...

an−1 1 . .
.

0 0

1 0 · · · 0 0



















.

In particular, for n = 3 and q(s) = s, it follows that




−a0 0 0
0 a2 1
0 1 0



 =





a1 a2 1
a2 1 0
1 0 0









0 1 0
0 0 1
−a0 −a1 −a2



 .

xiv)

[

A1 A2

B1 B2

]

=

[

0 I

A−1
2 Î B2A

−1
2

] [

B(p, q) 0
0 I

] [

I 0
A1 A2

]

.

xv) If p has distinct roots λ1, . . . , λn, then

V T(λ1, . . . , λn)B(p, q)V (λ1, . . . , λn) = diag[q(λ1)p
′(λ1), . . . , q(λn)p

′(λn)].

(Proof: See [202, pp. 164–167], [273], and [216, pp. 200–207]. To prove ii),
note that A1, A2, B1, B2 are square and Toeplitz, and thus reverse symmetric,

that is, A1 = AT̂
1 . See Fact 3.12.6.) (Remark: B(p, q) is a Bezout matrix.

See [65, 298], [466, p. 189], [566], and Fact 5.13.22.) (Remark: xiii) is the
Barnett factorization. See [59,566]. The definition of B(p, q) and ii) are the
Gohberg-Semencul formulas. See [216, p. 206].) (Remark: It follows from
continuity that the determinant expressions are valid if A1 or B2 is singular.
See Fact 2.12.16.) (Remark: The inverse of a Hankel matrix is a Bezout
matrix. See [202, p. 174].)

Fact 4.8.7. Let p, q ∈ F[s], assume that q is monic, and deg p < deg q =
n. Furthermore, define g ∈ F(s) by

g(s)
4

=
p(s)

q(s)
=

∞
∑

i=1

gi
si
.
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Finally, define the Hankel matrix

H(g)
4

=



















g1 g2 · · · gn−1 gn

g2 g3 . .
.

gn gn+1

... . .
.

. .
.

. .
. ...

gn−1 gn . .
.

g2n−3 g2n−2

gn gn+1 · · · g2n−2 g2n−1



















.

Then, the following statements hold:

i) p and q are coprime if and only if H(g) is nonsingular.

ii) If p and q are coprime, then [H(g)]−1 = B(q, a), where a, b ∈ F[s]
satisfy the Bezout equation ap+ bq = 1.

iii) B(q, p) = B(q, 1)H(g)B(q, 1).

iv) B(q, p) and H(g) are congruent.

v) InB(q, p) = InH(g).

vi) detH(g) = detB(q, p).

(Proof: See [216, pp. 215–221].)

Fact 4.8.8. Let p ∈ R[s], and define g ∈ F(s) by g
4

= q′/q. Then, the
following statements hold:

i) The number of distinct roots of q is rankB(q, q′).

ii) q has n distinct roots if and only if B(q, q′) is nonsingular.

iii) The number of distinct real roots of q is sigB(q, q′).

iv) q has n distinct, real roots if and only if B(q, q′) is positive definite.

v) The number of distinct complex roots of q is 2ν−[B(q, q′)].

vi) q has n distinct, complex roots if and only if n is even and ν−[B(q,q′)]
= n/2.

vii) q has n real roots if and only if B(q, q′) is nonnegative semidefinite.

(Proof: See [216, p. 252].) (Remark: q′(s) 4

= (d/ds)q(s).)

Fact 4.8.9. Let q ∈ F[s], where q(s) =
∑n

i=0 bis
i, and define

coeff(q)
4

=







bn
...
b0






.
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Now, let p ∈ F[s], where p(s) =
∑n

i=0 ais
i. Then,

coeff(pq) = Acoeff(q),

where A ∈ F2n×(n+1) is the Toeplitz matrix

A =

























an 0 0 · · · 0
an−1 an 0 · · · 0

...
...

. . .
...

a0 a1 · · · · · · an

0 a0
. . . · · · an−1

...
...

. . .
. . .

...
0 0 · · · a0 a1

























.

In particular, if n = 3, then

A =









a2 0 0
a1 a2 0
a0 a1 a2

0 a0 a1









.

Fact 4.8.10. Let λ1, . . . , λn ∈ C be distinct and, for all i = 1, . . . , n,
define

pi(s)
4

=
n
∏

j=1
j 6=i

s− λi
λi − λj

.

Then, for all i = 1, . . . , n,

pi(λj) =

{

1, i = j,

0, i 6= j.

(Remark: This identity is the Lagrange interpolation formula.)

Fact 4.8.11. Let A ∈ Fn×n, and assume that det(I + A) 6= 0. Then,
there exists a polynomial p of degree less than or equal to n −1 such that
(I +A)−1 = p(A).

Fact 4.8.12. indexPfaffian!skew-symmetric matrix!Fact 4.8.12Let A ∈
Rn×n be skew symmetric and let the components of xA ∈ Rn(n−1)/2 be
the entries A(i,j) for all i > j. Then, there exists a polynomial function

p : Rn(n−1)/2 7→ R such that, for all α ∈ R and x ∈ Rn(n−1)/2,

p(αx) = αn/2p(x)

and
detA = p2(xA).
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In particular,

det

[

0 a
−a 0

]

= a2

and

det









0 a b c
−a 0 d e
−b −d 0 f
−c −e −f 0









= (af − be+ cd)2.

(Proof: See [356, p. 224] and [466, pp. 125–127].) (Remark: The polynomial
p is the Pfaffian, and this result is Pfaff’s theorem.)

Fact 4.8.13. Let G ∈ Fn×m(s), and let G(i,j) = nij/dij , where nij ∈
F[s] and dij ∈ F[s] are coprime for all i = 1, . . . , n and j = 1, . . . ,m.
Then, q1 given by the Smith-McMillan form is the least common multiple
of d11, d12, . . . , dnm.

Fact 4.8.14. Let G ∈ Fn×m(s), assume that rankG = m, and let
λ ∈ C, where λ is not a pole of G. Then, λ is a transmission zero of G if
and only if there exists u ∈ Cm such that G(λ)u = 0. Furthermore, if G is
square, then λ is a transmission zero of G if and only if detG(λ) = 0.

4.9 Facts on the Characteristic and Minimal
Polynomials

Fact 4.9.1. Let A =
[

a b
c d

]

∈ R2×2. Then, the following identities hold:

i) mspec(A) =
{

1
2

[

a+ d±
√

(a− d)2 + 4bc
]}

m

=
{

1
2

[

trA±
√

(trA)2 − 4 detA
]}

m
.

ii) χA(s) = s2 − (trA)s+ detA.

iii) detA = 1
2

[

(trA)2 − trA2
]

.

iv) (sI −A)A = sI +A− (trA)I.

v) A−1 = (detA)−1[(trA)I −A].

vi) AA = (trA)I −A.

vii) trA−1 = trA/detA.

Fact 4.9.2. Let A,B ∈ F2×2. Then,

AB +BA− (trA)B − (trB)A+ [(trA)(trB)− trAB]I = 0.
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Furthermore,

det(A+B)− detA− detB = (trA)(trB)− tr(AB).

(Proof: Apply the Cayley-Hamilton theorem to A + xB, differentiate with
respect to x, and set x = 0. For the second identity, evaluate the Cayley-
Hamilton theorem with A+B. See [211,212,364,483] or [505, p. 37].)

Fact 4.9.3. Let A ∈ R3×3. Then, the following identities hold:

i) χA(s) = s3 − (trA)s2 +
(

trAA
)

s− detA.

ii) trAA = 1
2

[

(trA)2 − trA2
]

.

iii) detA = 1
3trA3 − 1

2(trA)trA2 + 1
6(trA)3.

iv) (sI−A)A = s2I+s[A−(trA)I]+A2−(trA)A+ 1
2

[

(trA)2 − trA2
]

I.

Fact 4.9.4. Let A,B,C ∈ F3×3. Then,
∑

[

A′B′C ′ −
(

trA′)B′C ′ +
(

trA′)(trB′)C ′ −
(

trA′B′)C ′]

− [(trA)(trB)trC − (trA)trBC − (trB)trCA− (trC)trAB + trABC

+ trCBA]I = 0,

where the sum is taken over all six permutations A′, B′, C ′ of A,B,C. (Re-
mark: This identity is the polarized Cayley-Hamilton theorem. See [37,364,
483].)

Fact 4.9.5. Let A ∈ Fn×n, and let χA(s) = sn + βn−1s
n−1 + · · · + β0.

Then,
AA = (−1)n−1

(

An−1 + βn−1A
n−2 + · · ·+ β1I

)

.

Furthermore,
trAA = (−1)n−1χ′

A(0) = (−1)n−1β1.

(Proof: Use A−1χA(A) = 0. The second identity follows from (4.4.16) or
Lemma 4.4.7.)

Fact 4.9.6. Let A ∈ Fn×n be nonsingular, and let χA(s) = sn +
βn−1s

n−1 + · · ·+ β0. Then,

χA−1(s) =
1

detA
(−s)nχA(1/s)

= sn + (β1/β0)s
n−1 + · · ·+ (βn−1/β0)s+ 1/β0.

(Remark: See Fact 5.12.2.)

Fact 4.9.7. Let A ∈ Fn×n, and assume that either A and −A are
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similar or AT and −A are similar. Then,

χA(s) = (−1)nχA(−s).
Furthermore, if n is even, then χA is even, whereas, if n is odd, then χA is
odd.

Fact 4.9.8. Let A ∈ Fn×n. Then, for all s ∈ C,

(sI −A)A = χA(s)(sI −A)−1 =
n−1
∑

i=0

χ
[i]
A(s)Ai,

where
χA(s) = sn + βn−1s

n−1 + · · ·+ β1s+ β0

and, for all i = 0, . . . , n− 1, the polynomial χ
[i]
A is defined by

χ
[i]
A(s)

4

= sn−i + βn−1s
n−1−i + · · ·+ βi+1.

Note that
χ

[n−1]
A (s) = s+ βn−1, χ

[n]
A (s) = 1,

and that, for all i = 0, . . . , n − 1 and with χ
[0]
A

4

= χA, the polynomials χ
[i]
A

satisfy the recursion
sχ

[i+1]
A (s) = χ

[i]
A(s)− βi.

(Proof: See [615, p. 31].)

Fact 4.9.9. Let A ∈ Rn×n be skew symmetric. If n is even, then χA
is even, whereas, if n is odd, then χA is odd.

Fact 4.9.10. Let A ∈ Fn×n. Then, χA is even for all of the matrices
A given by

[

0 A
A∗ 0

]

,
[

A 0
0 −A

]

, and
[

A 0
0 −A∗

]

.

Fact 4.9.11. Let A,B ∈ Fn×n, and define A
4

=
[

0 A
B 0

]

. Then, χA(s) =

χAB
(

s2
)

= χBA
(

s2
)

. Consequently, χA is even. (Proof: Use Fact 2.12.16
and Proposition 4.4.9.)

Fact 4.9.12. Let x, y, z, w ∈ Fn, and define A
4

= xyT and B
4

= xyT +
zwT. Then,

χA(s) = sn−1
(

s− xTy
)

and
χB(s) = sn−2

[

s2 −
(

xTy + zTw
)

s+ xTyzTw − yTzxTw
]

.

(Remark: See Fact 5.9.8.)
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Fact 4.9.13. Let x, y, z, w ∈ Fn−1, and define A ∈ Fn×n by

A
4

=

[

1 xT

y zwT

]

.

Then,

χA(s) = sn−3
[

s3 −
(

1 + wTz
)

s2 +
(

wTz − xTy
)

s+ wTzxTy − xTzwTy
]

.

(Proof: See [176].)

Fact 4.9.14. Let A ∈ R2n×2n be Hamiltonian. Then, χA is even.

Fact 4.9.15. Let A,B,C ∈ Rn×n and define A
4

=
[

A B
C −AT

]

. If B and C
are symmetric, then A is Hamiltonian. If B and C are skew symmetric, then
χA is even, but A is not necessarily Hamiltonian. (Proof: For the second
result replace Jn by

[

0 In
In 0

]

.)

Fact 4.9.16. Let A ∈ Rn×n, R ∈ Rn×n, and B ∈ Rn×m, and define
A ∈ R2n×2n by

A
4

=

[

A BBT

R −AT

]

.

Then,

χA(s) = (−1)nχA(s)χA(−s) det
[

I +BT
(

−sI −AT
)−1
R(sI −A)−1B

]

.

(Remark: If R is symmetric, then A is Hamiltonian, and it can be seen
directly that χA is even.) If, in addition, R is nonnegative semidefinite, then
(−1)nχA has a spectral factorization. (Proof: Using (2.8.10) and (2.8.14) it
follows that, for all s 6∈ ± spec(A),

χA(s) = det(sI −A) det
[

sI +AT −R(sI −A)−1BBT
]

= (−1)nχA(s)χA(−s) det
[

I −BT
(

sI +AT
)−1
R(sI −A)−1B

]

.

To prove the second statement, note that, for ω ∈ R such that ω 6∈ spec(A),
it follows that

χA(ω) = (−1)nχA(ω)χA(ω) det
[

I +BT(ωI −A)−∗R(ωI −A)−1B
]

and thus (−1)nχA(ω) ≥ 0. By continuity, this inequality holds for all
ω ∈ R. Now, Proposition 4.1.1 implies that (−1)nχA has a spectral fac-
torization.) (Remark: Not all Hamiltonian matrices have this property.

Consider

[

0 0 1 0
0 0 0 1
−1 0 0 0
0 −3 0 0

]

, which has spectrum {,−,
√

3,−
√

3}.)
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4.10 Facts on the Spectrum

Fact 4.10.1. Let A ∈ Fn×n, let p ∈ F[s], and define B
4

= p(A). Then,
B is nonsingular if and only if spec(A) ∩ roots(p) = ∅.

Fact 4.10.2. Let A ∈ Fn×n and B ∈ Fm×m. If trAk = trBk for all
k ∈ {1, . . . ,max{m,n}}, then A and B have the same nonzero eigenvalues
with the same algebraic multiplicity. Now, assume that n = m. Then,
trAk = trBk for all k ∈ {1, . . . , n} if and only if mspec(A) = mspec(B).
(Proof: Use Newton’s identities. See Fact 4.8.2.) (Remark: This result
yields Proposition 4.4.9 since tr (AB)k = tr (BA)k for all k ∈ P and for all
matrices A and B that are not square.) (Remark: Setting B = 0n×n yields
necessity in Fact 2.11.16.)

Fact 4.10.3. Let A ∈ Fn×n and let mspec(A) = {λ1, . . . , λn}m. Then,

mspec
(

AA
)

=



































{

detA

λ1
, . . . ,

detA

λn

}

m

, rankA = n,

{

n
∑

i=1

detA[i,i], 0, . . . , 0

}

m

, rankA = n−1,

{0, . . . , 0}m, rankA < n−1.

(Remark: See Fact 2.13.7 and Fact 5.9.19.)

Fact 4.10.4. Let a, b, c, d, ω ∈ R, and define the skew-symmetric ma-
trix A ∈ R4×4 by

A
4

=









0 ω a b
−ω 0 c d
−a −c 0 ω
−b −d −ω 0









.

Then,
detA =

[

ω2 − (ad− bc)
]2
.

Furthermore, A has a repeated eigenvalue if and only if either i) A is sin-
gular or ii) a = −d and b = c. In case i), A has the repeated eigenvalue
0, while in case ii), A has the repeated eigenvalues 

√
ω2 + a2 + b2 and

−
√
ω2 + a2 + b2.

Fact 4.10.5. Let A ∈ Fn×n, and let p ∈ F[s]. Then, µA divides p if
and only if spec(A) ⊆ roots(p) and, for all λ ∈ spec(A), indA(λ) ≤ mp(λ).

Fact 4.10.6. Let A ∈ Fn×n, let mspec(A) = {λ1, . . . , λn}m, and let
p ∈ F[s]. Then,

mspec[p(A)] = {p(λ1), . . . , p(λn)}m.
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Furthermore, roots(p) ∩ spec(A) = ∅ if and only if p(A) is nonsingular.
Finally, µA divides p if and only if p(A) = 0.

Fact 4.10.7. Let A1 ∈ Fn×n, A12 ∈ Fn×m, and A2 ∈ Fm×m, and define
A ∈ F(n+m)×(n+m) by

A
4

=

[

A1 A12

0 A2

]

.

Then,
χA = χA1

χA2
.

Now, write

Ak =

[

Ak1 Bk

0 Ak2

]

,

where Bk ∈ Fn×m for all k ∈ N. Then,

χA1
(A) =

[

0 B̂1

0 χA1
(A2)

]

and

χA2
(A) =

[

χA2
(A1) B̂2

0 0

]

,

where B̂1, B̂2 ∈ Fn×m. Therefore,

R[χA2
(A)] ⊆ R

([

In
0

])

⊆ N[χA1
(A)]

and
χA2

(A1)B̂1 + B̂2χA1
(A2) = 0.

Hence, χA(A) = χA1
(A)χA2

(A) = χA2
(A)χA1

(A) = 0.

Fact 4.10.8. Let A1 ∈ Fn×n, A12 ∈ Fn×m, and A2 ∈ Fm×m, assume
that spec(A1) ∩ spec(A2) = ∅, and define A ∈ F(n+m)×(n+m) by

A
4

=

[

A1 A12

0 A2

]

.

Furthermore, let µ1, µ2 ∈ F[s] be such that

µA = µ1µ2,

roots(µ1) = spec(A1),

roots(µ2) = spec(A2).

Now, write

Ak =

[

Ak1 Bk

0 Ak2

]

,
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where Bk ∈ Fn×m for all k ∈ N. Then,

µ1(A) =

[

0 B̂1

0 µ1(A2)

]

and

µ2(A) =

[

µ2(A1) B̂2

0 0

]

,

where B̂1, B̂2 ∈ Fn×m. Therefore,

R[µ2(A)] ⊆ R

([

In
0

])

⊆ N[µ1(A)]

and
µ2(A1)B̂1 + B̂2µ1(A2) = 0.

Hence, µA(A) = µ1(A)µ2(A) = µ2(A)µ1(A) = 0.

Fact 4.10.9. Let A1, A2, A3, A4, B1, B2 ∈ Fn×n, and define A ∈ F4n×4n

by

A
4

=









A1 B1 0 0
0 A2 0 0
0 0 A3 0
0 0 B2 A4









.

Then,

mspec(A) =
4
⋃

i=1

mspec(Ai).

Fact 4.10.10. Let A ∈ Fn×m and B ∈ Fm×n, and assume that m < n.
Then,

mspec(In +AB) = mspec(Im +BA) ∪ {1, . . . , 1}m.

Fact 4.10.11. Let a, b ∈ F, and define the Toeplitz matrix A ∈ Fn×n

by

A
4

=















a b b · · · b
b a b · · · b
b b a · · · b
...

...
...

. . .
...

b b b · · · a















.

Then,
mspec(A) = {a+ (n−1)b, a− b, . . . , a− b}m

and
A2 + a1A+ a0I = 0,
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where a1
4

= −2a+(2−n)b and a0
4

= a2 +(n−2)ab+(1−n)b2. Furthermore,
if A is nonsingular, then

A−1 =
1

a− bIn +
b

(b− a)[a+ b(n−1)]
1n×n.

(Remark: See Fact 2.12.24.)

Fact 4.10.12. Let A ∈ Fn×n. Then,

spec(A) ⊂
n
⋃

i=1







λ ∈ C: |λ−A(i,i)| ≤
n
∑

j=1,j 6=i
|A(i,j)|







.

(Remark: This result is the Gershgorin circle theorem. See [115] for a proof
and related results.)

Fact 4.10.13. Let A ∈ Fn×n. Then,

spec(A)⊂
n
⋃

i,j=1
i6=j















λ ∈ C: |λ−A(i,i)||λ−A(j,j)| ≤
n
∑

k=1
k 6=i

|A(i,k)|
n
∑

k=1
k 6=j

|A(j,k)|















.

(Remark: The inclusion region is the ovals of Cassini. The result is due to
Brauer. See [287, p. 380].)

Fact 4.10.14. Let A ∈ Fn×n, and assume that, for all i = 1, . . . , n,
n
∑

j=1,j 6=i
|A(i,j)| < |A(i,i)|.

Then, A is nonsingular. (Proof: Apply the Gershgorin circle theorem.)
(Remark: This result is the diagonal dominance theorem and A is diagonally
dominant. See [500] for a history of this result.) (Remark: For related
results, see [189, 428, 470].) (Problem: Determine a lower bound for |detA|
in terms of the difference between these quantities.)

Fact 4.10.15. Let A ∈ Fn×n, and, for j = 1, . . . , n, define bj
4

=
∑n

i=1 |A(i,j)|. Then,
n
∑

j=1

|A(j,j)|/bj ≤ rankA.

(Proof: See [466, p. 67].) (Remark: See Fact 4.10.14.)

Fact 4.10.16. Let A1, . . . , Ar ∈ Fn×n be normal and let A ∈ co{A1,
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. . . , Ar}. Then,
spec(A)⊆ co

⋃

i=1,...,r

spec(Ai).

(Proof: See [584].)

Fact 4.10.17. Let A ∈ Fn×n, and define the numerical range of A by

Θ(A)
4

= {x∗Ax: x ∈ Cn and x∗x = 1}.
Then, Θ(A) is a closed, convex subset of C. Furthermore,

co spec(A) ⊆ Θ(A) ⊆ co{ν1 + µ1, ν1 + µn, νn + µ1, νn + µn},
where

ν1 = λmax

(

1
2(A+A∗)

)

, νn = λmin

(

1
2(A+A∗)

)

,

µ1 = λmax

(

1
2(A−A

∗)
)

, µn = λmin

(

1
2(A−A

∗)
)

.

If, in addition, A is normal, then

Θ(A) = co spec(A).

Conversely, if n ≤ 4 and Θ(A) = co spec(A), then A is normal. (Proof:
See [252] or [289, pp. 11, 52].) (Remark: Θ(A) is called the field of values
in [289, p. 5].)

Fact 4.10.18. Let A,B ∈ Rn×n. Then,

mspec

([

A B
−B A

])

= mspec(A+ B) ∪mspec(A− B).

(Remark: See Fact 2.15.3.)

Fact 4.10.19. Let A ∈ Fn×n be nonsingular and assume that sprad(I−
A) < 1. Then,

A−1 =
∞
∑

k=0

(I −A)k.

4.11 Facts on Nonnegative Matrices

Fact 4.11.1. Let A ∈ Rn×n, where n > 1, and assume that A is
nonnegative. Then, the following statements hold:

i) sprad(A) is an eigenvalue of A.

ii) There exists a nonnegative vector x∈Rn such that Ax= sprad(A)x.

Furthermore, the following statements are equivalent:

iii) (I +A)n−1 is positive.
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iv) There do not exist k > 0 and a permutation matrix S ∈ Rn×n such
that

SAST =

[

B C
0k×(n−k) D

]

.

v) No eigenvector of A has a zero component.

vi) A has exactly one nonnegative eigenvector whose components sum
to 1, and this eigenvector is positive.

A is irreducible if iii)-vi) are satisfied. If A is irreducible, then the following
statements hold:

vii) sprad(A) > 0.

viii) sprad(A) is a simple eigenvalue of A.

ix) There exists a positive vector x ∈ Rn such that Ax = sprad(A)x.

x) A has exactly one positive eigenvector whose components sum to 1.

xi) Assume that {λ1, . . . , λk}m = {λ ∈ mspec(A): |λ| = sprad(A)}m.
Then, λ1, . . . , λk are distinct, and

{λ1, . . . , λk} = {e2πi/k sprad(A): i = 1, . . . , k}.
Furthermore,

mspec(A) = e2π/kmspec(A).

xii) If at least one diagonal entry of A is positive, then sprad(A) is the
only eigenvalue of A whose absolute value is sprad(A).

In addition, the following statements are equivalent:

xiii) There exists k > 0 such that Ak is positive.

xiv) A is irreducible and |λ| < sprad(A) for all λ ∈ spec(A)\{sprad(A)}.
xv) An

2−2n+2 is positive.

A is primitive if xiii)-xiv) are satisfied. (Example: [ 0 1
1 0 ] is irreducible but not

primitive.) Finally, assume that A is irreducible and let x ∈ Rn be positive
and satisfy Ax = sprad(A)x. Then, for all positive x0 ∈ Rn, there exists a
positive real number γ such that

lim
k→∞

(

Akx0 − γ[sprad(A)]kx
)

= 0.

(Remark: For an arbitrary positive initial condition, the state of the dif-
ference equation xk+1 = Axk approaches a distribution that is identical to
the distribution of the eigenvector associated with the positive eigenvalue
of maximum absolute value. In demography, this eigenvector is interpreted
as the stable age distribution. See [329, pp. 47, 63].) (Proof: See [7, pp.
45–49], [81, pp. 26–28, 32, 55], [287, pp. 507–511], and [202].) (Remark:
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This result is the Perron-Frobenius theorem.) (Remark: See Fact 11.14.18.)
(Remark: Statement xv) is due to Wielandt. See [466, p. 157].)

Fact 4.11.2. Let A
4

= [ 1 1
1 0 ]. Then, χA(s) = s2 − s− 1 and spec(A) =

{α, β}, where α
4

= 1
2(1 +

√
5) and β

4

= 1
2(1−

√
5) satisfy

α− 1 = 1/α, β − 1 = 1/β.

Furthermore, [ α1 ] is an eigenvector of A associated with α. Now, for k ≥ 0,
consider the difference equation

xk+1 = Axk.

Then, for all k ≥ 0,
xk = Akx0

and
xk+2(1) = xk+1(1) + xk(1).

Furthermore, if x0 is positive, then

lim
k→∞

xk(1)

xk(2)
= α.

In particular, if x0
4

= [ 1
1 ], then, for all k ≥ 0,

xk =

[

Fk+2

Fk+1

]

,

where F1
4

= F2
4

= 1 and, for all k ≥ 1, Fk satisfies

Fk+2 = Fk+1 + Fk.

Furthermore,

Ak =

[

Fk+1 Fk
Fk Fk−1

]

.

On the other hand, if x0
4

= [ 3
1 ], then, for all k ≥ 0,

xk =

[

Lk+2

Lk+1

]

,

where L1
4

= 1, L2
4

= 3, and, for all k ≥ 1, Lk satisfies

Lk+2 = Lk+1 + Lk.

Furthermore,

lim
k→∞

Fk+1

Fk
=
Lk+1

Lk
= α.

(Proof: Use the last statement of Fact 4.11.1.) (Remark: Fk is the kth
Fibonacci number, Lk is the kth Lucas number, and α is the golden mean.
See [339, pp. 6–8, 239–241, 362, 363].)
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Fact 4.11.3. Consider the nonnegative companion matrix A ∈ Rn×n

defined by

A
4

=



























0 1 0 · · · 0 0

0 0 1
. . . 0 0

0 0 0
. . . 0 0

...
...

...
. . .

. . .
...

0 0 0 · · · 0 1

1/n 1/n 1/n · · · 1/n 1/n



























.

Then, A is irreducible, 1 is a simple eigenvalue of A with associated eigen-
vector 1n×1, and |λ| < 1 for all λ ∈ spec(A)\{1}. Furthermore, if x ∈ Rn,
then

lim
k→∞

Akx =

[

2

n(n+ 1)

n
∑

i=1

ix(i−1)

]

1n×1.

(Proof: See [261, pp. 82, 83, 263–266].) (Remark: The result also follows
from Fact 4.11.1.)

Fact 4.11.4. Let A ∈ Rn×m and b ∈ Rm. Then, the following state-
ments are equivalent:

i) If x ∈ Rm and Ax ≥≥ 0, then bTx ≥ 0.

ii) There exists y ∈ Rn such that y ≥≥ 0 and ATy = b.

Equivalently, exactly one of the following two statements is satisfied:

i) There exists x ∈ Rm such that Ax ≥≥ 0 and bTx < 0.

ii) There exists y ∈ Rn such that y ≥≥ 0 and ATy = b.

(Proof: See [68, p. 47].) (Remark: This result is Farkas’ theorem.)

Fact 4.11.5. Let A ∈ Rn×m. Then, the following statements are equiv-
alent:

i) There exists x ∈ Rm such that Ax >> 0.

ii) If y ∈ Rn is nonzero and y ≥≥ 0, then ATy 6= 0.

Equivalently, exactly one of the following two statements is satisfied:

i) There exists x ∈ Rm such that Ax >> 0.

ii) There exists nonzero y ∈ Rn such that y ≥≥ 0 and ATy = 0.

(Proof: See [68, p. 47].) (Remark: This result is Gordan’s theorem.)

Fact 4.11.6. Let A ∈ Cn×n, and define |A| ∈ Rn×n by |A|(i,j) 4

= |A(i,j)|
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for all i, j = 1, . . . , n. Then,

sprad(A) ≤ sprad(|A|).
(Proof: See [416, p. 619].)

Fact 4.11.7. Let A,B ∈ Rn×n, where 0 ≤≤ A ≤≤ B. Then,

sprad(A) ≤ sprad(B).

If, in addition, B 6= A and A+B is irreducible, then

sprad(A) < sprad(B).

(Proof: See [74, p. 27].)

Fact 4.11.8. Let A ∈ Rn×n, assume that A >> 0, and let λ ∈
spec(A)\{sprad(A)}. Then,

|λ| ≤ Amax −Amin

Amax +Amin
sprad(A),

where
Amax

4

= max
{

A(i,j): i, j = 1, . . . , n
}

and
Amin

4

= min
{

A(i,j): i, j = 1, . . . , n
}

.

(Remark: This result is Hopf’s theorem.)

Fact 4.11.9. Let A ∈ Rn×n, assume that A is nonnegative and primi-
tive, and let x, y ∈ Rn, where x > 0 and y > 0 satisfy Ax = sprad(A)x and
ATy = sprad(A)y. Then,

lim
i→∞

[

1

sprad(A)
A

]i

= xyT.

(Proof: See [287, p. 516].)

4.12 Notes

Much of the development in this chapter is based upon [456]. Addi-
tional discussions of the Smith and Smith-McMillan forms are given in [321]
and [632]. The proofs of Lemma 4.4.7 and Leverrier’s algorithm Proposition
4.4.8 are based on [484, p. 432, 433], where it is called the Souriau-Frame
algorithm. Alternative proofs of Leverrier’s algorithm are given in [63,296].
The proof of Theorem 4.6.1 is based on [287]. Polynomial-based approaches
to linear algebra are given in [120, 216], while polynomial matrices and ra-
tional transfer functions are studied in [230,572].



matrix2 November 19, 2003



matrix2 November 19, 2003

Chapter Five

Matrix Decompositions

In this chapter we present several matrix decompositions, namely,
the Smith, multi-companion, hypercompanion, Jordan, Schur, and singu-
lar value decompositions.

5.1 Smith Form

Our first decomposition involves rectangular matrices subject to a
biequivalence transformation. This result is the specialization of the Smith
decomposition given by Theorem 4.3.2 to constant matrices.

Theorem 5.1.1. Let A ∈ Fn×m and r
4

= rankA. Then, there exist
nonsingular matrices S1 ∈ Fn×n and S2 ∈ Fm×m such that

A = S1

[

Ir 0r×(m−r)

0(n−r)×r 0(n−r)×(m−r)

]

S2. (5.1.1)

Corollary 5.1.2. Let A,B ∈ Fn×m. Then, A and B are biequivalent
if and only if A and B have the same Smith form.

Proposition 5.1.3. Let A,B ∈ Fn×m. Then, the following statements
hold:

i) A and B are left equivalent if and only if N(A) = N(B).

ii) A and B are right equivalent if and only R(A) = R(B).

iii) A and B are biequivalent if and only if rankA = rankB.

Proof. The proof of necessity is immediate in i)-iii). Sufficiency in
iii) follows from Corollary 5.1.2. For sufficiency in i) and ii), see [484, pp.
179–181].



matrix2 November 19, 2003

152 CHAPTER 5

5.2 Multi-Companion Form

For the monic polynomial p(s) = sn + βn−1s
n−1 + · · ·+ β1s+ β0 ∈ F[s]

of degree n ≥ 1, the companion matrix C(p) ∈ Fn×n associated with p is
defined to be

C(p)
4

=



























0 1 0 · · · 0 0

0 0 1
. . . 0 0

0 0 0
. . . 0 0

...
...

...
. . .

. . .
...

0 0 0 · · · 0 1

−β0 −β1 −β2 · · · −βn−2 −βn−1



























. (5.2.1)

If n = 1, then p(s) = s + β0 and C(p) = −β0. Furthermore, if n = 0 and

p = 1, then we define C(p)
4

= 00×0. Note that if n ≥ 1, then trC(p) = −βn−1

and detC(p) = (−1)nβ0 = (−1)np(0).

It is easy to see that the characteristic polynomial of the companion
matrix C(p) is p. For example, let n = 3 so that

C(p) =





0 1 0
0 0 1
−β0 −β1 −β2



 (5.2.2)

and thus

sI − C(p) =





s −1 0
0 s −1
β0 β1 s+ β2



 . (5.2.3)

Adding s times the second column and s2 times the third column to the first
column leaves the determinant of sI − C(p) unchanged and yields





0 −1 0
0 s −1
p(s) β1 s+ β2



 , (5.2.4)

Hence, χC(p) = p. If n = 0 and p = 1, then we define χC(p)
4

= χ00×0
= 1. The

following result shows that companion matrices have the same characteristic
and minimal polynomials.

Proposition 5.2.1. Let p ∈ F[s] be a monic polynomial having degree
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n. Then, there exist unimodular matrices S1, S2 ∈ Fn×n[s] such that

sI − C(p) = S1(s)

[

In−1 0(n−1)×1

01×(n−1) p(s)

]

S2(s). (5.2.5)

Furthermore,
χC(p)(s) = µC(p)(s) = p(s). (5.2.6)

Proof. Since χC(p) = p, it follows that rank[sI−C(p)] = n. Next, since

det
(

[sI − C(p)][n,1]
)

= (−1)n−1, it follows that ∆n−1 = 1, where ∆n−1 is the
greatest common divisor (which is monic by definition) of all (n−1)×(n−1)
subdeterminants of sI − C(p). Furthermore, since ∆i−1 divides ∆i for all
i = 2, . . . , n −1, it follows that ∆1 = · · · = ∆n−2 = 1. Consequently, p1 =
· · · = pn−1 = 1. Since, by Proposition 4.6.2, χC(p) =

∏n
i=1 pi = pn and

µC(p) = pn, it follows that χC(p) = µC(p) = p.

Next, we consider block-diagonal matrices all of whose diagonally lo-
cated blocks are companion matrices.

Lemma 5.2.2. Let p1, . . . , pn ∈ F[s] be monic polynomials such that
pi divides pi+1 for all i = 1, . . . , n −1 and n =

∑n
i=1 deg pi. Furthermore,

define C
4

= diag[C(p1), . . . , C(pn)] ∈ Fn×n. Then, there exist unimodular
matrices S1, S2 ∈ Fn×n[s] such that

sI − C = S1(s)







p1(s) 0
. . .

0 pn(s)






S2(s). (5.2.7)

Proof. Letting ki = deg pi, Proposition 5.2.1 implies that the Smith
form of sIki

− C(pi) is 00×0 if ki = 0 and diag(Iki−1, pi) if ki ≥ 1. By
combining these Smith forms it follows that there exist unimodular matrices
S1, S2 ∈ Fn×n[s] such that

sI − C =







sIk1
− C(p1)

. . .

sIkn
− C(pn)







= S1(s)







p1(s) 0
. . .

0 pn(s)






S2(s).

Since pi divides pi+1 for all i = 1, . . . , n − 1, it follows that this diagonal
matrix is the Smith form of sI − C.

The following result uses Lemma 5.2.2 to construct a canonical form,
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known as the multi-companion form, for square matrices under a similarity
transformation.

Theorem 5.2.3. Let A ∈ Fn×n, and let p1, . . . , pn ∈ F[s] denote the
similarity invariants of A, where pi divides pi+1 for all i = 1, . . . , n−1. Then,
there exists a nonsingular matrix S ∈ Fn×n such that

A = S







C(p1)
. . .

C(pn)






S−1. (5.2.8)

Proof. Lemma 5.2.2 implies that the n × n matrix sI − C, where
C

4

= diag[C(p1), . . . , C(pn)], has the Smith form diag(p1, . . . , pn). Now, since
sI−A has the same similarity invariants as C, it follows from Theorem 4.3.9
that A and C are similar.

Corollary 5.2.4. Let A ∈ Fn×n. Then, µA = χA if and only if A is
similar to C(χA).

Proof. Suppose that µA = χA. Then, it follows from Proposition 4.6.2
that pi = 1 for all i = 1, . . . , n − 1 and pn = χA is the only nonconstant
similarity invariant of A. Thus, C(pi) = 00×0 for all i = 1, . . . , n−1, and it
follows from Theorem 5.2.3 that A is similar to C(χA). The converse can be
verified directly.

Corollary 5.2.5. Let A ∈ Fn×n be a companion matrix. Then, µA =
χA.

Proof. The result is an immediate consequence of Corollary 5.2.5.
Alternatively, if p is monic with degree n−1, then [p(A)](1,n) = 1.

Note that if A = In, then the similarity invariants of A are pi(s) = s−1
for all i = 1, . . . , n. Thus, C(pi) = 1 for all i = 1, . . . , n, as expected.

Corollary 5.2.6. Let A,B ∈ Fn×n. Then, the following statements are
equivalent:

i) A and B are similar.

ii) A and B have the same similarity invariants.

iii) A and B have the same multi-companion form.

The multi-companion form given by Theorem 5.2.3 provides a canon-
ical form for A in terms of a block-diagonal matrix of companion matri-
ces. As will be seen, however, the multi-companion form is only one such
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decomposition. The goal of the remainder of this section is to obtain an
additional canonical form by applying a similarity transformation to the
multi-companion form.

To begin, note that if Ai is similar to Bi for all i = 1, . . . , r, then
diag(A1, . . . , Ar) is similar to diag(B1, . . . , Br). Therefore, it follows from
Corollary 5.2.6 that, if sI − Ai and sI − Bi have the same Smith form for
all i = 1, . . . , r, then sI − diag(A1, . . . , Ar) and sI − diag(B1, . . . , Br) have
the same Smith form. The following lemma is needed.

Lemma 5.2.7. Let A = diag(A1, A2), where Ai ∈ Fni×ni for i = 1, 2.
Then, µA is the least common multiple of µA1

and µA2
. In particular, if µA1

and µA2
are coprime, then µA = µA1

µA2
.

Proof. Since µA(A) = 0, it follows that µA(A1) = 0 and µA(A2) = 0.
Therefore, Theorem 4.1.5 implies that µA1

and µA2
both divide µA. Con-

sequently, the least common multiple q of µA1
and µA2

also divides µA.
Since q(A1) = 0 and q(A2) = 0, it follows that q(A) = 0. Therefore, µA
divides q. Hence, q = µA. If, in addition, µA1

and µA2
are coprime, then

µA = µA1
µA2

.

Proposition 5.2.8. Let p ∈ F[s] be a monic polynomial of positive
degree n, and let p = p1 · · · pr, where p1, . . . , pr ∈ F[s] are monic and pairwise
coprime polynomials. Then, the matrices C(p) and diag[C(p1), . . . , C(pr)]
are similar.

Proof. Let p̂2 = p2 · · · pr and Ĉ
4

= diag[C(p1), C(p̂2)]. Since p1 and
q̂2 are coprime, it follows from Lemma 5.2.7 that µĈ = µC(p1)µC(p̂2). Fur-

thermore, χĈ = χC(p1)χC(p̂2) = µĈ . Hence, Corollary 5.2.4 implies that Ĉ is

similar to C(χĈ). However, χĈ = p1 · · · pr = p, so that Ĉ is similar to C(p).
If r > 2, then the same argument can be used to decompose C(p̂2) to show
that C(p) is similar to diag[C(p1), . . . , C(pr)].

Proposition 5.2.8 can be used to decompose every companion block of
a multi-companion form into smaller companion matrices. This procedure
can be carried out for every companion block whose characteristic poly-
nomial has coprime factors. For example, suppose that A ∈ R10×10 has
the similarity invariants pi(s) = 1 for all i = 1, . . . , 7, p8(s) = (s + 1)2,
p9(s) = (s + 1)2(s + 2), and p10(s) = (s + 1)2(s + 2)(s2 + 3), so that, by
Theorem 5.2.3 the multi-companion form of A is diag[C(p8), C(p9), C(p10)],
where C(p8) ∈ R2×2, C(p9) ∈ R3×3, and C(p10) ∈ R5×5. According to
Proposition 5.2.8, the companion matrices C(p9) and C(p10) can be fur-
ther decomposed. For example, C(p9) is similar to diag[C(p9,1), C(p9,2)],
where p9,1(s) = (s + 1)2 and p9,2(s) = s + 2 are coprime. Furthermore,
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C(p10) is similar to four different diagonal matrices, three of which have
two companion blocks while the fourth has three companion blocks. Since
p8(s) = (s+ 1)2 does not have nonconstant coprime factors, however, it fol-
lows that the companion matrix C(p8) cannot be decomposed into smaller
companion matrices.

The largest number of companion blocks achievable by similarity trans-
formation is obtained by factoring every similarity invariant into elementary
divisors, which are powers of irreducible polynomials that are nonconstant,
monic, and pairwise coprime. In the above example, this factorization is
given by p9(s) = p9,1(s)p9,2(s), where p9,1(s) = (s+ 1)2 and p9,2(s) = s+ 2,
and by p10 = p10,1p10,2p10,3, where p10,1(s) = (s+ 1)2, p10,2(s) = s+ 2, and
p10,3(s) = s2 + 3. The elementary divisors of A are thus (s + 1)2, (s + 1)2,
s+2, (s+1)2, s+2, and s2 +3, which yields six companion blocks. Viewing
A ∈ Cn×n we can further factor p10,3(s) = (s+

√
3)(s−

√
3), which yields a

total of seven companion blocks. From Proposition 5.2.8 and Theorem 5.2.3
we obtain the elementary multi-companion form, which provides another
canonical form for A.

Theorem 5.2.9. Let A ∈ Fn×n, and let ql11 , . . . , q
lh
h ∈ F[s] be the ele-

mentary divisors of A, where l1, . . . , lh ∈ P. Then, there exists a nonsingular
matrix S ∈ Fn×n such that

A = S











C
(

ql11

)

. . .

C
(

qlhh

)











S−1. (5.2.9)

5.3 Hypercompanion Form and Jordan Form

In this section we present an alternative form of the companion blocks
of the elementary multi-companion form (5.2.9). To do this we define the
hypercompanion matrix Hl(q) associated with the elementary divisor ql ∈
F[s], where l ∈ P, as follows. For q(s) = s − λ ∈ C[s], define the l × l
Toeplitz hypercompanion matrix

Hl(q)
4

= λIl +Nl =



















λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
...

...
. . .

. . .
...

...

0 0 0
. . . 1 0

0 0 0 · · · λ 1
0 0 0 · · · 0 λ



















, (5.3.1)
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while, for q(s) = s2 − β1s − β0 ∈ R[s], define the 2l × 2l real, tridiagonal
hypercompanion matrix

Hl(q)
4

=























0 1
β0 β1 1 0

0 0 1
β0 β1 1

. . .
. . .

. . .

0
. . . 0 1

β0 β1























. (5.3.2)

The following result shows that the hypercompanion matrix Hl(q) is
similar to the companion matrix C(ql) associated with the elementary divi-
sor ql of Hl(q).

Lemma 5.3.1. Let l ∈ P, and let q(s) = s − λ ∈ C[s] or q(s) =
s2 − β1s − β0 ∈ R[s]. Then, ql is the only elementary divisor of Hl(q), and
Hl(q) is similar to C

(

ql
)

.

Proof. Let k denote the order of Hl(q). Then, χHl(q) = ql and

det
(

[sI − Cl(q)][k,1]
)

= (−1)k−1. Hence, as in the proof of Proposition 5.2.1,
it follows that χHl(q) = µHl(q). Corollary 5.2.4 now implies that Hl(q) is

similar to C
(

ql
)

.

Proposition 5.2.8 and Lemma 5.3.1 yield the following canonical form,
which is known as the hypercompanion form.

Theorem 5.3.2. Let A ∈ Fn×n, and let ql11 , . . . , q
lh
h ∈ F[s] be the ele-

mentary divisors of A, where l1, . . . , lh ∈ P. Then, there exists a nonsingular
matrix S ∈ Fn×n such that

A = S







Hl1(q1)
. . .

Hlh(qh)






S−1. (5.3.3)

Next, consider Theorem 5.3.3 with F = C. In this case, every ele-
mentary divisor qlii is of the form (s − λi)li , where λi ∈ C. Furthermore,
S ∈ Cn×n, and the hypercompanion form (5.3.4) is a block-diagonal matrix
all of whose diagonally located blocks are of the form (5.3.1). The hypercom-
panion form (5.3.4) with every diagonally located block of the form (5.3.1)
is the Jordan form given by the following result.

Theorem 5.3.3. Let A ∈ Fn×n, and let ql11 , . . . , q
lh
h ∈ C[s] be the
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elementary divisors of A, where l1, . . . , lh ∈ P and q1, . . . , qh ∈ C[s] are
linear. Then, there exists a nonsingular matrix S ∈ Cn×n such that

A = S







Hl1(q1)
. . .

Hlh(qh)






S−1. (5.3.4)

Corollary 5.3.4. Let p ∈ F[s], let λ1, . . . , λr denote the distinct roots

of p, and, for i = 1, . . . , r, let li
4

= mp(λi) and pi(s)
4

= s− λi. Then, C(p) is
similar to diag[Hl1(p1), . . . ,Hlr(pr)].

To illustrate the structure of the Jordan form, let li = 3 and qi(s) =
s− λi, where λi ∈ C. Then, Hli(qi) is the 3× 3 matrix

Hli(qi) = λiI3 +N3 =





λi 1 0
0 λi 1
0 0 λi



 (5.3.5)

so that mspec[Hli(qi)] = {λi, λi, λi}m. If Hli(qi) is the only diagonally lo-
cated block of the Jordan form associated with the eigenvalue λi, then the
algebraic multiplicity of λi is equal to 3 while its geometric multiplicity is
equal to 1.

Now, consider Theorem 5.3.3 with F = R. In this case, every elemen-
tary divisor qlii is either of the form (s−λi)li or of the form (s2−β1is−β0i)

li ,
where β0i, β1i ∈ R. Furthermore, S ∈ Rn×n and the hypercompanion form
(5.3.4) is a block-diagonal matrix whose diagonally located blocks are real
matrices of the form (5.3.1) or (5.3.2). In this case, (5.3.4) is the real hyper-
companion form.

Applying an additional real similarity transformation to each diago-
nally located block of the real hypercompanion form yields the real Jordan
form. To do this, define the real Jordan matrix Jl(q) for l ∈ P as follows. For

q(s) = s− λ ∈ F[s] define Jl(q)
4

= Hl(q), while if q(s) = s2 − β1s− β0 ∈ F[s]
is irreducible with a nonreal root λ = ν + ω, then define the 2l× 2l upper-
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Hessenberg matrix

Jl(q)
4

=





































ν ω 1 0

−ω ν 0 1
. . . 0

ν ω 1
. . .

−ω ν 0
. . .

. . .
. . .

. . . 1 0

. . . 0 1

0 ν ω

−ω ν





































. (5.3.6)

Theorem 5.3.5. Let A ∈ Rn×n, and let ql11 , . . . , q
lh
h ∈ R[s], where

l1, . . . , lh ∈ P are the elementary divisors of A. Then, there exists a nonsin-
gular matrix S ∈ Rn×n such that

A = S







Jl1(q1) 0
. . .

0 Jlh(qh)






S−1. (5.3.7)

Proof. It need only be shown that Jl(q) and Hl(q) are similar in the
case that q(s) = s2 − β1s − β0 is an irreducible quadratic. Let λ = ν + ω
denote a root of q so that β1 = 2ν and β0 = −(ν2 + ω2). Then,

H1(q) =

[

0 1
β0 β1

]

=

[

1 0
ν ω

] [

ν ω
−ω ν

] [

1 0
−ν/ω 1/ω

]

= SJ1(q)S
−1.

The transformation matrix S = [ 1 0
ν ω ] is not unique; an alternative choice is

S = [ ω ν
0 ν2+ω2 ]. Similarly,

H2(q) =









0 1 0 0
β0 β1 1 0
0 0 0 1
0 0 β0 β1









= S









ν ω 1 0
−ω ν 0 1
0 0 ν ω
0 0 −ω ν









S−1 = SJ2(q)S
−1,

where

S
4

=









ω ν ω ν
0 ν2 + ω2 ω ν2 + ω2 + ν
0 0 −2ων 2ω2

0 0 −2ω(ν2 + ω2) 0









. �

Finally, we relate the real Jordan form (5.3.7) to the Jordan form
(5.3.4) by showing that every diagonally located block of the form (5.3.6)
is similar to a pair of Jordan blocks of the form (5.3.1). For example, if
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q(s) = s2 − 2νs+ ν2 + ω2 with roots λ = ν + ω and λ = ν − ω, then

H1(q) =

[

ν ω
−ω ν

]

= 1√
2

[

1 1
 −

] [

λ 0
0 λ

]

1√
2

[

1 −
1 

]

, (5.3.8)

while

H2(q) =









ν ω 1 0
−ω ν 0 1
0 0 ν ω
0 0 −ω ν









= S









λ 1 0 0
0 λ 0 0

0 0 λ 1

0 0 0 λ









S−1, (5.3.9)

where

S =
1√
2









1 0 1 0
 0 − 0
0 1 0 1
0  0 −









(5.3.10)

and

S−1 =
1√
2









1 − 0 0
0 0 1 −
1  0 0
0 0 1 









. (5.3.11)

Example 5.3.6. Let A,B ∈ R4×4 and C ∈ C4×4 be given by

A =









0 1 0 0
0 0 1 0
0 0 0 1
−16 0 −8 0









, (5.3.12)

B =









0 1 0 0
−4 0 1 0
0 0 0 1
0 0 −4 0









, (5.3.13)

and

C =









2 1 0 0
0 2 0 0
0 0 −2 1
0 0 0 −2









. (5.3.14)

Then, A is in companion form, B is in real hypercompanion form, and C is
in Jordan form. Furthermore, A, B, and C are similar.
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Example 5.3.7. Let A,B ∈ R6×6 and C ∈ C6×6 be given by

A =

















0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−27 54 −63 44 −21 6

















(5.3.15)

B =

















0 1 0 0 0 0
−3 2 1 0 0 0
0 0 0 1 0 0
0 0 −3 2 1 0
0 0 0 0 0 1
0 0 0 0 −3 2

















, (5.3.16)

and

C =

















1 + 
√

2 1 0 0 0 0

0 1 + 
√

2 1 0 0 0

0 0 1 + 
√

2 0 0 0

0 0 0 1− 
√

2 1 0

0 0 0 0 1− 
√

2 1

0 0 0 0 0 1− 
√

2

















.

(5.3.17)
Then, A is in companion form, B is in real hypercompanion form, and C is
in Jordan form. Furthermore, A, B, and C are similar.

The next result shows that every matrix is similar to its transpose
by means of a symmetric similarity transformation. This result is due to
Frobenius.

Corollary 5.3.8. Let A ∈ Fn×n. Then, there exists a symmetric non-
singular matrix S ∈ Fn×n such that A = SATS−1.

Proof. It follows from Theorem 5.3.3 that there exists a nonsingular
matrix Ŝ ∈ Cn×n such that A = ŜBŜ−1, where B = diag(B1, . . . , Br) is the
Jordan form of A and Bi ∈ Cni×ni for all i = 1, . . . , r. Now, define the

symmetric nonsingular matrix S
4

= ŜĨŜT, where Ĩ
4

= diag
(

În1
, . . . , Înr

)

is

symmetric and involutory. Furthermore, note that Îni
BiÎni

= BT
i for all i

= 1, . . . , r so that ĨBĨ = BT and thus ĨBTĨ = B. Hence, it follows that

SATS−1 = SŜ−TBTŜTS−1 = ŜĨŜTŜ−TBTŜTŜ−TĨŜ−1

= ŜĨBTĨŜ−1 = ŜBŜ−1 = A.
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If A is real, then a similar argument based on the real Jordan form shows
that S can be chosen to be real.

Corollary 5.3.9. Let A ∈ Fn×n. Then, there exist symmetric matrices
S1, S2 ∈ Fn×n such that S2 is nonsingular and A = S1S2.

Proof. From Corollary 5.3.8 it follows that there exists a symmetric,
nonsingular matrix S ∈ Fn×n such that A = SATS−1. Now, let S1 = SAT

and S2 = S−1. Note that S2 is symmetric and nonsingular. Furthermore,
ST

1 = AS = SAT = S1, which shows that S1 is symmetric.

Note that Corollary 5.3.9 follows from Corollary 5.3.8. If A = S1S2,
where S1, S2 are symmetric and S2 is nonsingular, then A = S−1

2 S2S1S2 =
S−1

2 A
TS2.

5.4 Schur Form

Next, we consider a decomposition involving a unitary transformation
and an upper triangular matrix called the Schur form.

Theorem 5.4.1. Let A ∈ Cn×n. Then, there exists a unitary matrix
S ∈ Cn×n and an upper triangular matrix B ∈ Cn×n such that

A = SBS∗. (5.4.1)

Proof. Let λ1 ∈ C be an eigenvalue of A with associated eigenvector
x ∈ Cn chosen such that x∗x = 1. Furthermore, let S1

4

=
[

x Ŝ1

]

∈ Cn×n

be unitary, where Ŝ1 ∈ Cn×(n−1) satisfies Ŝ∗
1S1 = In−1 and x∗Ŝ1 = 01×(n−1).

Then, S1e1 = x and

col1(S
−1
1 AS1) = S−1

1 Ax = λ1S
−1
1 x = λ1e1.

Consequently,

A = S1

[

λ1 C1

0(n−1)×1 A1

]

S−1
1 ,

where C1 ∈ C1×(n−1) and A1 ∈ C(n−1)×(n−1). Next, let S20 ∈ C(n−1)×(n−1) be
a unitary matrix such that

A1 = S20

[

λ2 C2

0(n−2)×1 A2

]

S−1
20 ,
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where C2 ∈ C1×(n−2) and A2 ∈ C(n−2)×(n−2). Hence,

A = S1S2





λ1 C11 C12

0 λ2 C2

0 0 A2



S−1
2 S1,

where C1 =
[

C11 C12

]

, C11 ∈ C, and S2
4

=
[

1 0
0 S20

]

is unitary. Pro-

ceeding in a similar manner yields (5.4.1) with S
4

= S1S2 · · ·Sn−1, where
S1, . . . , Sn−1 ∈ Cn×n are unitary.

It can be seen that the diagonal entries of B are the eigenvalues of A.

As with the real Jordan form, there exists a real Schur form.

Corollary 5.4.2. Let A ∈ Rn×n, and let mspec(A) = {λ1, . . . , λr}m ∪
{ν1+ ω1, ν1− ω1, . . . , νl + ωl, νl − ωl}m, where λ1, . . . , λr ∈ R and, for all
i = 1, . . . , l, νi, ωi ∈ R and ωi 6= 0. Then, there exists an orthogonal matrix
S ∈ Rn×n such that

A = SBST, (5.4.2)

where B is upper block triangular and the diagonally located blocks B1, . . . ,
Br ∈ R and B̂1, . . . , B̂l ∈ R2×2 of B are Bi

4

= [λi] for all i = 1, . . . , r and

B̂i
4

= [ νi ωi

ωi −νi
] for all i = 1, . . . , l.

Corollary 5.4.3. Let A ∈ Rn×n, and assume that A has real spectrum.
Then, there exist an orthogonal matrix S ∈ Rn×n and an upper triangular
matrix B ∈ Rn×n such that

A = SBST. (5.4.3)

The Schur decomposition reveals the structure of range-Hermitian ma-
trices and thus, as a special case, normal matrices.

Corollary 5.4.4. Let A ∈ Fn×n. Then, A is range Hermitian if and
only if there exist a unitary matrix S ∈ Fn×n and a nonsingular matrix
B ∈ Fr×r, where r

4

= rankA, such that

A = S

[

B 0
0 0

]

S∗. (5.4.4)

In addition, A is normal if and only if there exist a unitary matrix S ∈ Cn×n

and a diagonal matrix B ∈ Cn×n such that

A = SBS∗. (5.4.5)

Proof. Suppose that A is range Hermitian and let A = SBS∗, where
B is the real Schur form of A and S ∈ Fn×n is unitary. Assume A is
singular and choose S such that B(j,j) = B(j+1,j+1) = · · · = B(n,n) = 0 and
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such that all other diagonal entries of B are nonzero. Thus, rown(B) = 0,
which implies that en 6∈ R(B). Since A is range Hermitian, it follows that
R(B) = R(B∗) so that en 6∈ R(B∗). Thus, coln(B) = rown(B

∗) = 0. If,
in addition, B(n−1,n−1) = 0, then coln−1(B) = 0. Repeating this argument

shows that B has the form
[

B̂ 0
0 0

]

, where B̂ is nonsingular.

Now, suppose that A is normal and let A = SBS∗, where B ∈ Cn×n

is upper triangular and S ∈ Cn×n is unitary. Since A is normal, it fol-
lows that AA∗ = A∗A, which implies that BB∗ = B∗B. Since B is upper
triangular, it follows that (B∗B)(1,1) = B(1,1)B(1,1), whereas (BB∗)(1,1) =

row1(B)[row1(B)]∗ =
∑n

i=1B(1,i)B(1,i). Since (B∗B)(1,1) = (BB∗)(1,1), it fol-
lows that B(1,i) = 0 for all i = 2, . . . , n. Continuing in a similar fashion row
by row, it follows that B is diagonal.

Corollary 5.4.5. Let A ∈ Fn×n be Hermitian. Then, there exist a
unitary matrix S ∈ Fn×n and a diagonal matrix B ∈ Rn×n such that

A = SBS∗. (5.4.6)

If, in addition, A is (nonnegative semidefinite, positive definite), then the
diagonal entries of B are (nonnegative, positive).

Proof. It follows from Corollary 5.4.4 that there exists a unitary ma-
trix S ∈ Fn×n and a diagonal matrix B ∈ Fn×n such that A = SBS∗. If A
is nonnegative semidefinite, then x∗Ax ≥ 0 for all x ∈ Fn. Choosing x = Sei
it follows that B(i,i) = eTiBei = eTiS

∗ASei ≥ 0 for all i = 1, . . . , n. If A is
positive definite, then B(i,i) > 0 for all i = 1, . . . , n.

Proposition 5.4.6. Let A ∈ Fn×n be Hermitian. Then, there exists a
nonsingular matrix S ∈ Fn×n such that

A = S







−Iν−(A) 0 0

0 0ν0(A)×ν0(A) 0

0 0 Iν+(A)






S∗. (5.4.7)

Furthermore,
rankA = ν+(A) + ν−(A). (5.4.8)

Let A ∈ Fn×n be Hermitian. Then, the quantity

sig(A)
4

= ν+(A)− ν−(A) (5.4.9)

is the signature of A.

Proof. Since A is Hermitian, it follows from Corollary 5.4.5 that there
exist a unitary matrix Ŝ ∈ Fn×n and a diagonal matrix B ∈ Rn×n such
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that A = ŜBŜ∗. Choose S to order the diagonal entries of B such that
B = diag(B1, 0,−B2), where the diagonal matrices B1, B2 are both positive

definite. Now, define B̂
4

= diag(B1, I, B2). Then, B = B̂1/2DB̂1/2, where

D = diag
(

Iν−(A), 0ν0(A)×ν0(A),−Iν+(A)

)

. Consequently, A = ŜB̂1/2DB̂1/2Ŝ∗.

Corollary 5.4.7. Let A,B ∈ Fn×n be Hermitian. Then, A and B are
congruent if and only if In(A) = In(B).

In Proposition 4.5.3 it was shown that eigenvectors associated with a
collection of distinct eigenvalues of a normal matrix are mutually orthogonal.
Thus, a normal matrix will have at least as many mutually orthogonal eigen-
vectors as it has distinct eigenvalues. The next result, which is an immediate
consequence of Corollary 5.4.4, shows that every n × n normal matrix ac-
tually has n mutually orthogonal eigenvectors. In fact, the converse is also
true.

Corollary 5.4.8. Let A ∈ Cn×n. Then, A is normal if and only if A
has n mutually orthogonal eigenvectors.

There is also a real normal form, which is analogous to the real Schur
form.

Corollary 5.4.9. Let A ∈ Rn×n be range symmetric. Then, there exist
an orthogonal matrix S ∈ Rn×n and a nonsingular matrix B ∈ Rr×r, where
r

4

= rankA, such that

A = S

[

B 0
0 0

]

ST. (5.4.10)

In addition, assume that A is normal and let mspec(A) = {λ1, . . . , λr}m ∪
{ν1+ ω1, ν1− ω1, . . . , νl + ωl, νl − ωl}m, where λ1, . . . , λr ∈ R and, for all
i = 1, . . . , l, νi, ωi ∈ R and ωi 6= 0. Then, there exists an orthogonal matrix
S ∈ Rn×n such that

A = SBST, (5.4.11)

where B
4

= diag(B1, . . . , Br, B̂1, . . . , B̂l), Bi
4

= [λi] for all i = 1, . . . , r, and

B̂i
4

= [ νi ωi

−ωi νi
] for all i = 1, . . . , l.

5.5 Eigenstructure Properties

Definition 5.5.1. Let A ∈ Fn×n, and let λ ∈ C. Then, the index of λ
with respect to A, denoted by indA(λ), is the smallest nonnegative integer k
such that

R

[

(λI −A)k
]

= R

[

(λI −A)k+1
]

. (5.5.1)
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Furthermore, the index of A, denoted by indA, is the smallest nonnegative
integer k such that

R

(

Ak
)

= R

(

Ak+1
)

, (5.5.2)

that is, indA = indA(0).

Note that λ 6∈ spec(A) if and only if indA(λ) = 0. Hence, 0 6∈ spec(A)
if and only if indA = indA(0) = 0. Hence, A is nonsingular if and only if
indA = 0.

Proposition 5.5.2. Let A ∈ Fn×n, and let λ ∈ C. Then, indA(λ) is
the smallest nonnegative integer k such that

rank
[

(λI −A)k
]

= rank
[

(λI −A)k+1
]

. (5.5.3)

Furthermore, indA is the smallest nonnegative integer k such that

rank
(

Ak
)

= rank
(

Ak+1
)

. (5.5.4)

Proof. Corollary 2.4.2 implies that R
[

(λI −A)k
]

⊆ R
[

(λI −A)k+1
]

.

Now, Lemma 2.3.4 implies that R
[

(λI −A)k
]

= R
[

(λI −A)k+1
]

if and only

if rank
[

(λI −A)k
]

= rank
[

(λI −A)k+1
]

.

Proposition 5.5.3. Let A ∈ Fn×n, and let λ ∈ spec(A). Then, the
following statements hold:

i) indA(λ) is the order of the largest Jordan block of A associated with
λ.

ii) gmA(λ) is equal to the number of Jordan blocks of A associated with
λ.

iii) indA(λ) ≤ amA(λ).

iv) gmA(λ) ≤ amA(λ).

v) indA(λ) + gmA(λ) ≤ amA(λ) + 1.

vi) rankA = n− gmA(0).

Proposition 5.5.4. Let S ⊆ Fn be a subspace. Then, there exists a
unique projector A ∈ Fn×n such that S = R(A). Furthermore, x ∈ S if and
only if x = Ax.

Proof. See [416, p. 386].

For a subspace S ⊆ Fn, the matrix A ∈ Fn×n given by Proposition
5.5.4 is the projector onto S.
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Let A ∈ Fn×n be an idempotent matrix. Then, the complementary
idempotent matrix defined by

A⊥
4

= I −A (5.5.5)

is also idempotent. If A is a projector, then A⊥ is the complementary pro-
jector.

Proposition 5.5.5. Let S ⊆ Fn be a subspace and let A ∈ Fn×n be
the projector onto S. Then, A⊥ is the projector onto S⊥. Furthermore,

R(A)⊥ = N(A) = R(A⊥). (5.5.6)

Proposition 5.5.6. Let A ∈ Fn×n, and let k be a positive integer.
Then, indA ≤ k if and only if R

(

Ak
)

and N
(

Ak
)

are complementary sub-
spaces.

Corollary 5.5.7. Let A ∈ Fn×n. Then, A is group invertible if and
only if R(A) and N(A) are complementary subspaces.

Proposition 5.5.8. Let A ∈ Fn×n, and let S1, S2 ⊆ Fn be complemen-
tary subspaces. Then, there exists a unique idempotent matrix A ∈ Fn×n

such that R(A) = S1 and N(A) = S2. Furthermore, R(A⊥) = S2 and
N(A⊥) = S1.

Proof. See [82, p. 118] or [416, p. 386].

For complementary subspaces S1, S2 ⊆ Fn, the unique idempotent ma-
trix A ∈ Fn×n given by Proposition 5.5.8 is the idempotent matrix onto
S1 = R(A) along S2 = N(A).

Proposition 5.5.9. Let A ∈ Fn×n, and let r
4

= rankA. Then, A is
group invertible if and only if there exist B ∈ Fn×r and C ∈ Fr×n such that
rankB = rankC = r. Furthermore, the idempotent matrix P

4

= B(CB)−1C
is the idempotent matrix onto R(A) along N(A).

Proof. See [416, p. 634].

An alternative expression for the idempotent matrix onto R(A) along
N(A) is given by Proposition 6.2.2.

Definition 5.5.10. Let A ∈ Fn×n, and let λ ∈ spec(A). Then, the
following terminology is defined:

i) λ is simple if amA(λ) = 1.

ii) A is simple if every eigenvalue of A is simple.



matrix2 November 19, 2003

168 CHAPTER 5

iii) λ is cyclic if gmA(λ) = 1.

iv) A is cyclic if every eigenvalue of A is cyclic.

v) λ is derogatory if gmA(λ) > 1.

vi) A is derogatory if A has at least one derogatory eigenvalue.

vii) λ is semisimple if gmA(λ) = amA(λ).

viii) A is semisimple if every eigenvalue of A is semisimple.

ix) λ is defective if gmA(λ) < amA(λ).

x) A is defective if A has at least one defective eigenvalue.

xi) A is diagonalizable over C if A is semisimple.

xii) A ∈ Rn×n is diagonalizable over R if A is semisimple and every
eigenvalue of A is real.

Proposition 5.5.11. Let A ∈ Fn×n and λ ∈ spec(A). Then, λ is
simple if and only if λ is cyclic and semisimple.

Proposition 5.5.12. Let A ∈ Fn×n, and let λ ∈ spec(A). Then,

def
[

(λI −A)indA(λ)
]

= amA(λ). (5.5.7)

Theorem 5.3.3 yields the following result, which shows that the sub-
spaces N

[

(λI −A)k
]

, where λ ∈ spec(A) and k = indA(λ), provide a de-
composition of Fn.

Proposition 5.5.13. Let A ∈ Fn×n, let spec(A) = {λ1, . . . , λr}, and,

for all i = 1, . . . , r, let ki
4

= indA(λi). Then, the following statements hold:

i) N
[

(λiI −A)ki
]

∩ N
[

(λjI −A)kj
]

= {0} for all i, j = 1, . . . , r such
that i 6= j.

ii)
∑r

i=1 N
[

(λiI −A)ki
]

= Fn.

Proposition 5.5.14. Let A ∈ Fn×n, and let λ ∈ spec(A). Then, the
following statements are equivalent:

i) λ is semisimple.

ii) def(λI −A) = def
[

(λI −A)2
]

.

iii) N(λI −A) = N
[

(λI −A)2
]

.

iv) indA(λ) = 1.

Proof. To prove that i) implies ii), suppose that λ is semisimple so
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that gmA(λ) = amA(λ) and thus def(λI − A) = amA(λ). Then, it follows

from Proposition 5.5.12 that def
[

(λI −A)k
]

= amA(λ), where k
4

= indA(λ).
Therefore, it follows from Corollary 2.5.6 that amA(λ) = def(λI − A) ≤
def
[

(λI −A)2
]

≤ def
[

(λI −A)k
]

= amA(λ), which implies that def(λI −
A) = def

[

(λI −A)2
]

.

To prove that ii) implies iii), note that it follows from Corollary 2.5.6
that N(λI − A) ⊆ N

[

(λI −A)2
]

. Since, by ii), these subspaces have equal
dimension, it follows from Lemma 2.3.4 that these subspaces are equal.
Conversely, iii) implies ii).

Finally, iv) is equivalent to the fact that every Jordan block of A asso-
ciated with λ has order 1, which is equivalent to the fact that the geometric
multiplicity of λ is equal to the algebraic multiplicity of λ, that is, that λ is
semisimple.

Corollary 5.5.15. Let A ∈ Fn×n. Then, A is group invertible if and
only if indA ≤ 1.

Proposition 5.5.16. Suppose A,B ∈ Fn×n are similar. Then, the
following statements hold:

i) mspec(A) = mspec(B).

ii) For all λ ∈ spec(A), gmA(λ) = gmB(λ).

Proposition 5.5.17. Let A ∈ Fn×n. Then, A is semisimple if and only
if A is similar to a normal matrix.

The following result is an extension of Corollary 5.3.9.
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Proposition 5.5.18. Let A ∈ Fn×n. Then, the following statements
are equivalent:

i) A is diagonalizable over R.

ii) There exists a positive-definite matrix S ∈ Fn×n such that A =
SA∗S−1.

iii) There exist a Hermitian matrix S1 ∈ Fn×n and a positive-definite
matrix S2 ∈ Fn×n such that A = S1S2.

Proof. To prove that i) implies ii), let nonsingular Ŝ ∈ Fn×n be such

that A = ŜBŜ−1, where B ∈ Rn×n is diagonal. Then, B = Ŝ−1AŜ =

Ŝ∗A∗Ŝ−∗. Hence, A = ŜBŜ−1 = Ŝ
(

Ŝ∗A∗Ŝ−∗
)

Ŝ−1 =
(

ŜŜ∗
)

A∗
(

ŜŜ∗
)−1

= SA∗S−1,

where S
4

= ŜŜ∗ is positive definite. To show that ii) implies iii), note

that A = SA∗S−1 = S1S2, where S1
4

= SA∗ and S2 = S−1. Since S∗
1 =

(SA∗)∗ = AS∗ = AS = SA∗ = S1, it follows that S1 is Hermitian. Fur-
thermore, since S is positive definite, it follows that S−1, and hence S2,
is also positive definite. Finally, to prove that iii) implies i), note that

A = S1S2 = S
−1/2
2

(

S
1/2
2 S1S

1/2
2

)

S
1/2
2 . Since S

1/2
2 S1S

1/2
2 is Hermitian, it follows

from Corollary 5.4.5 that S
1/2
2 S1S

1/2
2 is diagonalizable over R. Consequently,

A is diagonalizable over R.

If a matrix is block triangular, then the following result shows that
its eigenvalues and their algebraic multiplicity are determined by the diag-
onally located blocks. If, in addition, the matrix is block diagonal, then the
geometric multiplicities of its eigenvalues are determined by the diagonally
located blocks.

Proposition 5.5.19. Let A ∈ Fn×n be either upper block triangular
or lower block triangular with diagonally located blocks A11, . . . , Arr, where
Aii ∈ Fni×ni for all i = 1, . . . , r. Then,

amA(λ) =
r
∑

i=1

amAii
(λ). (5.5.8)

Hence,

mspec(A) =

r
⋃

i=1

mspec(Aii). (5.5.9)

Now, assume that A is block diagonal. Then,

gmA(λ) =
r
∑

i=1

gmAii
(λ). (5.5.10)
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Proposition 5.5.20. Let A ∈ Fn×n, let spec(A) = {λ1, . . . , λr}, and

let ki
4

= indA(λi) for all i = 1, . . . , r. Then,

µA(s) =
r
∏

i=1

(s− λi)ki (5.5.11)

and

degµA =
r
∑

i=1

ki. (5.5.12)

Furthermore, the following statements are equivalent:

i) µA = χA.

ii) A is cyclic.

iii) For all λ ∈ spec(A), the Jordan form of A contains exactly one block
associated with λ.

Proof. Let A = SBS−1, where B = diag(B1, . . . , Bnh
) denotes the

Jordan form of A given by (5.3.4). Let λi ∈ spec(A), and let Bj be a Jordan
block associated with λi. Then, the order of Bj is less than or equal to ki.
Consequently, (Bj − λiI)ki = 0.

Next, let p(s) denote the right-hand side of (5.5.11). Thus,

p(A) =
r
∏

i=1

(A− λiI)ki = S

[

r
∏

i=1

(B − λiI)ki

]

S−1

= Sdiag

(

r
∏

i=1

(B1− λiI)ki , . . . ,
r
∏

i=1

(Bnh
− λiI)ki

)

S−1 = 0.

Therefore, it follows from Theorem 4.6.1 that µA divides p. Furthermore,
note that if ki is replaced by k̂i < ki, then p(A) 6= 0. Hence, p is the minimal
polynomial of A. The equivalence of i) and ii) is now immediate, while the
equivalence of ii) and iii) follows from Theorem 5.3.5.

Example 5.5.21. The matrix
[

1 1
−1 1

]

is normal but is neither symmet-

ric nor skew symmetric, while the matrix
[

0 1
−1 0

]

is normal but is neither
symmetric nor semisimple with real eigenvalues.

Example 5.5.22. The matrices
[

1 0
2 −1

]

and [ 1 1
0 2 ] are diagonalizable

over R but not normal, while the matrix
[−1 1
−2 1

]

is diagonalizable but is
neither normal nor diagonalizable over R.

Example 5.5.23. The product of the Hermitian matrices [ 1 2
2 1 ] and

[

2 1
1 −2

]

has has no real eigenvalues.
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Example 5.5.24. The matrices [ 1 0
0 2 ] and

[

0 1
−2 3

]

are similar, whereas

[ 1 0
0 1 ] and

[

0 1
−1 2

]

have the same spectrum but are not similar.

Proposition 5.5.25. Let A ∈ Fn×n. Then, the following statements
hold:

i) A is singular if and only if 0 ∈ spec(A).

ii) A is group invertible if and only if either A is nonsingular or 0 ∈
spec(A) is semisimple.

iii) A is Hermitian if and only if A is normal and spec(A) ⊂ R.

iv) A is skew Hermitian if and only if A is normal and spec(A) ⊂ R.
v) A is nonnegative semidefinite if and only if A is normal and spec(A)
⊂ [0,∞).

vi) A is positive definite if and only if A is normal and spec(A) ⊂ (0,∞).

vii) A is unitary if and only if A is normal and spec(A) ⊂ {λ ∈ C: |λ| =
1}.

viii) A is involutory if and only if A is semisimple and spec(A) ⊆ {−1, 1}.
ix) A is skew involutory if and only if A is semisimple and spec(A) ⊆
{−, }.

x) A is idempotent if and only if A is semisimple and spec(A) ⊆ {0, 1}.
xi) A is tripotent if and only ifA is semisimple and spec(A) ⊆{−1, 0, 1}.
xii) A is nilpotent if and only if spec(A) = {0}.
xiii) A is a projector if and only if A is normal and spec(A) = {0, 1}.
xiv) A is a reflector if and only if A is normal and spec(A) = {−1, 1}.
xv) A is an elementary projector if and only if A is normal and mspec(A)

= {0, 1, . . . , 1}m.
xvi) A is an elementary reflector if and only if A is normal and mspec(A)

= {−1, 1, . . . , 1}m.
xvii) A is an elementary matrix if and only if A is normal and mspec(A) =

{α, 1, . . . , 1}m, where α 6= 0.

If, furthermore, A ∈ R2n×2n, then the following statements hold:

xviii) If A is Hamiltonian, then mspec(A) = −mspec(A).

ix) If A is symplectic, then mspec(A) = {1/λ: λ ∈ mspec(A)}m.
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5.6 Singular Value Decomposition

The third matrix decomposition that we consider is the singular value
decomposition. Unlike the Jordan and Schur decompositions, the singular
value decomposition applies to matrices that are not necessarily square. Let
A ∈ Fn×m, where A 6= 0, and consider the nonnegative-semidefinite matri-
ces AA∗ ∈ Fn×n and A∗A ∈ Fm×m. It follows from Proposition 4.4.9 that
AA∗ and A∗A have the same nonzero eigenvalues with the same algebraic
multiplicities. Since AA∗ and A∗A are nonnegative semidefinite, it follows
that they have the same positive eigenvalues with the same algebraic multi-
plicities. Furthermore, since AA∗ is Hermitian, it follows that the number
of positive eigenvalues of AA∗ (or A∗A) counting algebraic multiplicity is
equal to the rank of AA∗ (or A∗A). Since rankA = rankAA∗ = rankA∗A,
it thus follows that AA∗ and A∗A both have r positive eigenvalues, where
r

4

= rankA.

Definition 5.6.1. Let A ∈ Fn×m. Then, the singular values of A are
the min{n,m} nonnegative numbers σ1(A), . . . , σmin{n,m}(A), where, for all
i = 1, . . . ,min{n,m},

σi(A)
4

=







[λi(AA
∗)]1/2, n ≤ m,

[λi(A
∗A)]1/2, m ≤ n.

(5.6.1)

Let A ∈ Fn×m. Then,

σ1(A) ≥ · · · ≥ σmin{n,m}(A) ≥ 0. (5.6.2)

If A 6= 0, then

σ1(A) ≥ · · · ≥ σr(A) > σr+1(A) = · · · = σmin{n,m}(A) = 0, (5.6.3)

where r
4

= rankA. For convenience, define

σmax(A)
4

= σ1(A), (5.6.4)

and, if n = m,
σmin(A)

4

= σn(A). (5.6.5)

Note that
σmax(0n×n) = σmin(0n×n) = 0, (5.6.6)

and, for all i = 1, . . . ,min{n,m},
σi(A) = σi(A

∗) = σi(A) = σi
(

AT
)

. (5.6.7)

Proposition 5.6.2. Let A ∈ Fn×m, where A 6= 0. Then, the following
statements are equivalent:

i) rankA = n.
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ii) σn(A) > 0.

The following statements are also equivalent:

iii) rankA = m.

iv) σm(A) > 0.

Now, assume that n = m. Then, the following statements are also equiva-
lent:

v) A is nonsingular.

vi) σmin(A) > 0.

We now state the singular value decomposition.

Theorem 5.6.3. Let A ∈ Fn×m where A 6= 0, let r
4

= rankA, and
define B

4

= diag[σ1(A), . . . , σr(A)]. Then, there exist unitary matrices S1 ∈
Fn×n and S2 ∈ Fm×m such that

A = S1

[

B 0r×(m−r)

0(n−r)×r 0(n−r)×(m−r)

]

S2. (5.6.8)

Proof. For convenience, assume r < min{n,m}, since otherwise the
zero matrices become empty matrices. By Corollary 5.4.5 there exists a
unitary matrix U ∈ Fn×n such that

AA∗ = U

[

B2 0
0 0

]

U∗.

Partition U =
[

U1 U2

]

, where U1 ∈ Fn×r and U2 ∈ Fn×(n−r). Since

U∗U = In, it follows that U∗
1U1 = Ir and U∗

1U =
[

Ir 0r×(n−r)
]

. Now,

define V1
4

= A∗U1B
−1 ∈ Fm×r and note that

V ∗
1 V1 = B−1U∗

1AA
∗U1B

−1 = B−1U∗
1U

[

B2 0
0 0

]

U∗U1B
−1 = Ir.

Next, note that, since U∗
2U =

[

0(n−r)×r In−r
]

, it follows that

U∗
2AA

∗ =
[

0 I
]

[

B2 0
0 0

]

U∗ = 0.

However, since R(A) = R(AA∗), it follows that U∗
2A = 0. Finally, let V2 ∈

Fm×(m−r) be such that V
4

=
[

V1 V2

]

∈ Fm×m is unitary. Hence, we have

U

[

B 0
0 0

]

V ∗ =
[

U1 U2

]

[

B 0
0 0

][

V ∗
1

V ∗
2

]

= U1BV
∗
1 = U1BB

−1U∗
1A

= U1U
∗
1A = (U1U

∗
1 + U2U

∗
2 )A = UU∗A = A,

which yields (5.6.8) with S1 = U and S2 = V ∗.
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An immediate corollary of the singular value decomposition is the polar
decomposition.

Corollary 5.6.4. Let A ∈ Fn×n. Then, there exists a nonnegative-
semidefinite matrix M ∈ Fn×n and a unitary matrix S ∈ Fn×n such that

A = MS. (5.6.9)

Proof. It follows from the singular value decomposition that there
exist unitary matrices S1, S2 ∈ Fn×n and a diagonal positive-definite matrix
B ∈ Fr×r, where r

4

= rankA, such that A = S1

[

B 0
0 0

]

S2. Hence,

A = S1

[

B 0
0 0

]

S∗
1S1S2 = MS,

where M
4

= S1

[

B 0
0 0

]

S∗
1 is nonnegative semidefinite and S

4

= S1S2 is unitary.

Proposition 5.6.5. Let A ∈ Fn×m, let r
4

= rankA, and define the

Hermitian matrix A
4

=
[

0 A
A∗ 0

]

∈ F(n+m)×(n+m). Then, rankA = 2r, and the
2r nonzero eigenvalues of A are the r positive singular values of A and their
negatives.

Proof. Since χA(s) = s2I −A∗A, it follows that

mspec(A)\{0, . . . , 0}m = {σ1(A),−σ1(A), . . . , σr(A),−σr(A)}m. �

5.7 Facts on Matrix Transformations Involving One
Matrix

Fact 5.7.1. Let A ∈ Fn×n, and assume that spec(A) = {1}. Then, Ak

is similar to A for all k ∈ P.

Fact 5.7.2. Let A ∈ Fn×n be normal. Then, the Schur form of A is
equal to the Jordan form of A.

Fact 5.7.3. Let A ∈ Rn×n. Then, there exists an orthogonal matrix
S ∈ Rn×n such that−1 /∈ spec(S) and SAST is diagonal. (Proof: See [466, p.
101].) (Remark: This result is due to Hsu.)

Fact 5.7.4. Let A ∈ Fn×n, and assume there exists a nonsingular
matrix S ∈ Fn×n such that S−1AS is upper triangular. Then, for all
r = 1, . . . , n, R

(

S
[

Ir

0

])

is an invariant subspace of A. (Remark: Analogous
results hold for lower triangular matrices and for block-triangular matrices.)
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Fact 5.7.5. Let A ∈ Fn×n. Then,
[

A 0
0 −A

]

and
[

0 A
A 0

]

are unitarily

similar. (Proof: Use the unitary transformation 1√
2

[

I −I
I I

]

.)

Fact 5.7.6. Let A ∈ Fn×n. Then, there exists a unitary matrix S ∈
Fn×n such that S∗AS has equal diagonal entries. (Remark: The diagonal
entries are equal to (1/n) trA.) (Proof: See [206] or [466, p. 78]. This result
is due to Parker. See [221].)

Fact 5.7.7. Let A ∈ Rn×n, and assume that A is not of the form
aI, where a ∈ R. Then, A is similar to a matrix with diagonal entries
0, . . . , 0, trA. (Proof: See [466, p. 77].) (Remark: This result is due to
Gibson.)

Fact 5.7.8. Let A ∈ Rn×n, and assume that A is not zero. Then,
A is similar to a matrix all of whose diagonal entries are nonzero. (Proof:
See [466, p. 79].) (Remark: This result is due to Marcus and Purves.)

Fact 5.7.9. Let A ∈ Fn×n be Hermitian, let S ∈ Fm×n, and as-
sume that rankS = n. Then, ν+(SAST) = ν+(A) and ν−(SAST) = ν−(A).
(Proof: See [216, p. 194].)

Fact 5.7.10. Let A ∈ Fn×n be symmetric. Then, there exists a unitary
matrix S ∈ Fn×n such that

A = SBST,

where
B

4

= diag[σ1(A), . . . , σn(A)].

(Proof: See [287, p. 207].) (Remark: A is symmetric, complex, and T-
congruent to B.)

Fact 5.7.11. Let A ∈ Fn×n. Then, there exists a nonsingular matrix
S ∈ Fn×n and a skew-Hermitian matrix B ∈ Fn×n such that

A = S













Iν+(A+A∗) 0 0

0 0ν0(A+A∗)×ν0(A+A∗) 0

0 0 −Iν−(A+A∗)






+B






S∗.

(Proof: Write A = 1
2(A + A∗) + 1

2(A − A∗) and apply Proposition 5.4.6 to
1
2(A+A∗).)

Fact 5.7.12. Let A ∈ Fn×n, and let r
4

= rankA. Then, A is group
invertible if and only if there exist a nonsingular matrix B ∈ Fr×r and a
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nonsingular matrix S ∈ Rn×n such that

A = S

[

B 0
0 0

]

S−1.

Fact 5.7.13. Let A ∈ Fn×n be normal. Then, there exists a nonsingu-
lar matrix S ∈ Fn×n such that

AT = SAS−1

and such that S = ST and S−1 = S. (Remark: If F = R, then S is a re-
flector.) (Proof: For F = C, let A = UBU∗, where U is unitary and B is

diagonal. Then, AT = SAS, where S
4

= UU−1. For F = R, use the real nor-
mal form and let S

4

= UĨUT, where U is orthogonal and Ĩ
4

= diag(Î, . . . , Î).)

Fact 5.7.14. Let A ∈ Fn×n be nonsingular. Then, there exists an
involutory matrix S ∈ Fn×n such that

AT = SAST.

(Remark: AT, not A∗.) (Proof: See [240].)

Fact 5.7.15. Let n ∈ P. Then,

În =



































S

[

−In/2 0

0 −In/2

]

ST, n even,

S







−In/2 0 0

0 1 0

0 0 In/2






ST, n odd,

where

S
4

=



































1√
2

[

In/2 −În/2
În/2 In/2

]

, n even,

1√
2







In/2 0 −În/2
0

√
2 0

În/2 0 In/2






, n odd.

Therefore,

mspec
(

În

)

=







{−1, 1, . . . ,−1, 1}m, n even,

{1,−1, 1, . . . ,−1, 1}m, n odd.

(Remark: See [590].)
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Fact 5.7.16. Let A ∈ Fn×n be unitary and let m ≤ n/2. Then, there
exist unitary matrices U, V ∈ Fn×n such that

A = U







Γ −Σ 0

Σ Γ 0

0 0 In−2m






V,

where Γ,Σ ∈ Rm×m are diagonal and nonnegative semidefinite and satisfy

Γ 2 +Σ2 = Im.

(Proof: See [525, p. 37].) (Remark: This result is the CS decomposition.)

Fact 5.7.17. Let A ∈ Cn×n. Then, there exists B ∈ Rn×n such that
AA and B2 are similar. (Proof: See [180].)

Fact 5.7.18. Let A ∈ Fn×n. Then, the following statements are equiv-
alent:

i) trA = 0.

ii) There exist B,C ∈ Fn×n such that A = [B,C].

iii) A is unitarily similar to a matrix whose diagonal entries are zero.

(Remark: This result is Shoda’s theorem. See [4, 220, 325, 333] or [258, p.
146].)

5.8 Facts on Matrix Transformations Involving Two
or More Matrices

Fact 5.8.1. Let A,B ∈ Fn×m. Then, A and B are in the same equiv-
alence class of Fn×m induced by equivalence if and only if A and B are
equivalent to

[

I 0
0 0

]

. Now, let n = m. Then, A and B are in the same equiv-
alence class of Fn×n induced by (similarity, unitary similarity) if and only if
A and B have the same (Jordan, Schur) form.

Fact 5.8.2. Left equivalence, right equivalence, biequivalence, unitary
left equivalence, unitary right equivalence, and unitary biequivalence are
equivalence relations on Fn×m. Similarity, congruence, and unitary similar-
ity are equivalence relations on Fn×n.

Fact 5.8.3. Let A,B ∈ Fn×n be normal and assume that A and B are
similar. Then, A and B are unitarily similar. (Proof: Since A and B are
similar, it follows that mspec(A) = mspec(B). Since A and B are normal,
it follows that they are unitarily similar to the same diagonal matrix.)
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Fact 5.8.4. Let A,B ∈ Fn×n, and assume that either A or B is non-
singular. Then, AB and BA are similar. (Proof: If A is nonsingular, then
AB = A(BA)A−1.)

Fact 5.8.5. Let A,B ∈ Rn×n be projectors. Then, AB and BA are
unitarily similar. (Remark: This result is due to Dixmier. See [474].)

Fact 5.8.6. Let S ⊂ Fn×n, and assume that AB = BA for all A,B ∈ S.
Then, there exists a unitary matrix S ∈ Fn×n such that, for all A ∈ S, SAS∗

is upper triangular. (Proof: See [287, p. 81] and [473].) (Remark: See Fact
8.11.5.)

Fact 5.8.7. Let S ⊂ Fn×n, and assume that every matrix A ∈ S is
normal. Then, AB = BA for all A,B ∈ S if and only if there exists a unitary
matrix S ∈ Fn×n such that, for all A ∈ S, SAS∗ is diagonal. (Remark: See
Fact 8.11.2 and [287, pp. 103, 172].)

Fact 5.8.8. Let S ⊂ Fn×n, and assume that every matrix A ∈ S is
diagonalizable over F. Then, AB = BA for all A,B ∈ S if and only if there
exists a nonsingular matrix S ∈ Fn×n such that, for all A ∈ S, SAS−1 is
diagonal. (Proof: See [287, p. 52].)

Fact 5.8.9. Let A,B ∈ Fn×m. Then, the following statements hold:

i) The matrices A and B are unitarily left equivalent if and only if
A∗A = B∗B.

ii) The matrices A and B are unitarily right equivalent if and only if
AA∗ = BB∗.

iii) The matrices A and B are unitarily biequivalent if and only if A
and B have the same singular values with the same multiplicity.

(Proof: See [293] and [484, pp. 372, 373].) (Remark: In [293] A and B
need not be the same size.) (Remark: The singular value decomposition
provides a canonical form under unitary biequivalence in analogy with the
Smith form under biequivalence.) (Remark: Note that AA∗ = BB∗ implies
R(A) = R(B), which implies that right equivalence, which is an alternative
proof of the immediate fact that unitary right equivalence implies right
equivalence.)

Fact 5.8.10. Let A,B ∈ Fn×n. Then, the following statements hold:

i) A∗A = B∗B if and only if there exists a unitary matrix S ∈ Fn×n

such that A = SB.

ii) A∗A ≤ B∗B if and only if there exists S ∈ Fn×n such that A = SB
and S∗S ≤ I.
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iii) A∗B+B∗A = 0 if and only if there exists a unitary matrix S ∈ Fn×n

such that (I − S)A = (I + S)B.

iv) A∗B + B∗A ≥ 0 if and only if there exists S ∈ Fn×n such that
(I − S)A = (I + S)B and S∗S ≤ I.

(Proof: See [476].) (Remark: Statements iii) and iv) follow from i) and ii)
by replacing A and B with A−B and A+B, respectively.)

Fact 5.8.11. Let A ∈ Fn×n, B ∈ Fm×m, and C ∈ Fn×m. Then, there
exists X ∈ Fn×m satisfying

AX +XB + C = 0

if and only if the matrices
[

A 0
0 −B

]

,

[

A C
0 −B

]

are similar. (Proof: See [353, pp. 422–424] or [466, pp. 194–195]. For
necessity, the similarity transformation is given by

[

I X
0 I

]

.) (Remark: AX+
XB + C = 0 is Sylvester’s equation. See Proposition 7.2.4 and Proposition
11.7.3.) (Remark: This result is due to Roth.)

Fact 5.8.12. Let A ∈ Fn×n, B ∈ Fm×m, and C ∈ Fn×m. Then, there
exist X,Y ∈ Fn×m satisfying

AX + YB + C = 0

if and only if

rank

[

A 0
0 −B

]

= rank

[

A C
0 −B

]

.

(Proof: See [466, pp. 194–195].) (Remark: AX + YB + C = 0 is a gener-
alization of Sylvester’s equation. See Fact 5.8.11.) (Remark: This result is
due to Roth.)

5.9 Facts on Eigenvalues and Singular Values
Involving One Matrix

Fact 5.9.1. Let A ∈ Fn×n, let α ∈ F, and assume that A2 = αA. Then,
spec(A) ⊆ {0, α}.

Fact 5.9.2. Let A ∈ Fn×n be Hermitian and let α ∈ R. Then, A2 = αA
if and only if spec(A) ⊆ {0, α}. (Remark: See Fact 3.4.16.)
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Fact 5.9.3. Let A ∈ Fn×n be Hermitian. Then,

spabs(A) = λmax(A),

sprad(A) = σmax(A) = max{|λmin(A)|, λmax(A)},
and

spabs(A) = λmax(A).

If, in addition, A is nonnegative semidefinite, then

sprad(A) = σmax(A) = spabs(A) = λmax(A).

Fact 5.9.4. Let A ∈ Fn×n be skew Hermitian. Then, the eigenvalues
of A are imaginary. (Proof: Let λ ∈ spec(A). Since 0 ≤ AA∗ = −A2, it
follows that −λ2 ≥ 0 and thus λ2 ≤ 0.)

Fact 5.9.5. Let A ∈ Fn×n, assume that every eigenvalue of A is real,
and assume that exactly r eigenvalues of A, including algebraic multiplicity,
are nonzero. Then,

(trA)2 ≤ rtrA2.

Furthermore, equality holds if and only if the nonzero eigenvalues of A are
equal. (Remark: For arbitrary A ∈ Fn×n with r nonzero eigenvalues, it is
not generally true that |trA|2 ≤ r|trA2|. For example, consider mspec(A) =
{1, 1, ,−}m.)

Fact 5.9.6. Let A ∈ Rn×n, and let mspec(A) = {λ1, . . . , λn}m. Then,

n
∑

i=1

(Reλi)(Imλi) = 0

and

trA2 =
n
∑

i=1

(Reλi)
2 −

n
∑

i=1

(Imλi)
2.

Fact 5.9.7. Let a1, . . . , an > 0, and define the symmetric matrix A ∈
Rn×n by A(i,j)

4

= ai + aj for all i, j = 1, . . . , n. Then,

rankA = 2,

spec(A) =







(

n
∑

i=1

ai

)

+

√

√

√

√

n
∑

i=1

a2
i ,

(

n
∑

i=1

ai

)

−

√

√

√

√

n
∑

i=1

a2
i , 0







,

and

λmin(A) < 0 < trA = 2
n
∑

i=1

ai < λmax(A).
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(Proof: A = a11×n + 1n×1a
T, where a

4

=
[

a1 · · · an
]T

.) (Remark: See
Fact 8.7.25.)

Fact 5.9.8. Let x, y ∈ Rn. Then,

mspec
(

xyT + yxT
)

=
{

xTy +
√

xTxyTy, xTy −
√

xTxyTy, 0, . . . , 0
}

m
,

sprad
(

xyT + yxT
)

=







xTy +
√

xTxyTy, xTy ≥ 0,
∣

∣

∣
xTy −

√

xTxyTy
∣

∣

∣
, xTy ≤ 0,

and
sprad

(

xyT + yxT
)

= xTy +
√

xTxyTy.

(Problem: Extend this result to C and xyT + zwT. See Fact 4.9.12.)

Fact 5.9.9. Let A ∈ Fn×n, and let mspec(A) = {λ1, . . . , λn}m. Then,

mspec
(

A−1
)

=
{

λ−1
1 , . . . , λ−1

n

}

m
,

mspec
[

(I +A)−1
]

=
{

(1 + λ1)
−1, . . . , (1 + λn)

−1
}

m
,

mspec
[

(I +A)2
]

=
{

(1 + λ1)
2, . . . , (1 + λn)

2
}

m
,

mspec
[

A(I +A)−1
]

=
{

λ1(1 + λ1)
−1, . . . , λn(1 + λn)

−1
}

m
.

Fact 5.9.10. Let x ∈ Fn and y ∈ Fm. Then,

σmax(xy
∗) =

√

x∗xy∗y.

If, in addition, m = n, then

mspec(xy∗) = {x∗y, 0, . . . , 0}m ,

mspec(I + xy∗) = {1 + x∗y, 1, . . . , 1}m ,

sprad(xy∗) = |x∗y|,

spabs(xy∗) = max{0,Rex∗y}.

Fact 5.9.11. Let A ∈ Fn×n and rankA = 1. Then,

σmax(A) = σmin(A) = (trAA∗)1/2.

Fact 5.9.12. Let x, y ∈ Fn, and assume that x∗y 6= 0. Then,

σmax

[

(x∗y)−1xy∗
]

≥ 1.
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Fact 5.9.13. Let A ∈ Fn×n, and let mspec(A) = {λ1, · · · , λn}m, where
λ1, . . . , λn are ordered such that |λ1| ≥ · · · ≥ |λn|. Then, for all k = 1, . . . , n,

k
∏

i=1

|λi| ≤
k
∏

i=1

σi(A)

with equality for k = n, that is,

|detA| =
n
∏

i=1

|λi| =
n
∏

i=1

σi(A).

Hence, for all k = 1, . . . , n,
n
∏

i=k

σi(A) ≤
n
∏

i=k

|λi|.

(Proof: See [93, p. 43], [289, p. 171], or [625, p. 19].) (Remark: This result
is due to Weyl.) (Remark: See Fact 8.14.16 and Fact 9.11.16.)

Fact 5.9.14. Let β0, . . . , βn−1 ∈ R, define A ∈ Fn×n by

A
4

=



























0 1 0 · · · 0 0

0 0 1
. . . 0 0

0 0 0
. . . 0 0

...
...

...
. . .

. . .
...

0 0 0 · · · 0 1

−β0 −β1 −β2 · · · −βn−2 −βn−1



























,

and define α
4

= 1 +
∑n−1

i=1 β
2
i . Then,

σ1(A) =

√

1
2

(

α+
√

α2 + 4β2
0

)

,

σ2(A) = · · · = σn−1(A) = 1,

σn(A) =

√

1
2

(

α−
√

α2 + 4β2
0

)

.

(Proof: See [326,334] or [280, p. 523].)

Fact 5.9.15. Let β ∈ C. Then,

σmax

([

1 2β
0 1

])

= |β|+
√

1 + |β|2
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and

σmin

([

1 2β
0 1

])

=
√

1 + |β|2 − |β|.

(Proof: See [370].) (Remark: Inequalities involving the singular values of
block-triangular matrices are given in [370].)

Fact 5.9.16. Let A ∈ Fn×m. Then,

σmax

([

I 2A
0 I

])

= σmax(A) +
√

1 + σ2
max(A).

(Proof: See [280, p. 116].)

Fact 5.9.17. Let A ∈ Fn×m, and let r = rankA. Then, for all i =
1, . . . , r,

σi(AA
∗) = σi(A

∗A) = σ2
i (A).

In particular,
σmax(AA

∗) = σ2
max(A),

and, if n = m, then
σmin(AA

∗) = σ2
min(A).

Furthermore, for all i = 1, . . . , r,

σi(AA
∗A) = σ3

i (A).

Fact 5.9.18. Let A ∈ Fn×n. Then, σmax(A) ≤ 1 if and only if A∗A ≤ I.

Fact 5.9.19. Let A ∈ Fn×n. Then, for all i = 1, . . . , n,

σi
(

AA
)

=
n
∏

j=1
j 6=n+1−i

σj(A).

(Proof: See Fact 4.10.3 and [466, p. 149].)

Fact 5.9.20. Let A ∈ Fn×n. Then, σ1(A) = σn(A) if and only if there
exist λ ∈ F and a unitary matrix B ∈ Fn×n such that A = λB. (Proof:
See [466, pp. 149, 165].)

Fact 5.9.21. Let A ∈ Rn×n, and let λ ∈ spec(A). Then, the following
inequalities hold:

i) σmin(A) ≤ |λ| ≤ σmax(A).

ii) λmin

[

1
2

(

A+AT
)]

≤ Reλ ≤ λmax

[

1
2

(

A+AT
)]

.

iii) λmin

[

1
2

(

A−AT
)

]

≤ Imλ ≤ λmax

[

1
2

(

A−AT
)

]

.
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(Remark: i) is Browne’s theorem, ii) is Bendixson’s theorem, and iii) is
Hirsch’s theorem. See [395, pp. 140–144]. See Fact 9.10.6.)

Fact 5.9.22. Let A ∈ Rn×n, where n ≥ 2, be the tridiagonal matrix

A
4

=

























b1 c1 0 · · · 0 0

a1 b2 c2 · · · 0 0

0 a2 b3
. . . 0 0

...
...

. . .
. . .

. . .
...

0 0 0
. . . bn−1 cn−1

0 0 0 · · · an−1 bn

























,

and assume that aici > 0 for all i = 1, . . . , n − 1. Then, A is simple and
every eigenvalue of A is real. (Proof: SAS−1 is symmetric, where S

4

=

diag(d1, . . . , dn), d1
4

= 1, and di+1
4

= (ci/ai)
1/2di for all i = 1, . . . , n −1. For

a proof of the fact that A is simple, see [202, p. 198].)

Fact 5.9.23. Let A ∈ Rn×n be the tridiagonal matrix

A
4

=



































0 1 0

n−1 0 2 0

0 n− 2 0
. . .

. . .
. . .

. . .
. . .

. . .
. . . 0 n− 2 0

0
. . . 2 0 n−1

0 1 0



































.

Then,

χA(s) =
n
∏

i=1

[s− (n+ 1− 2i)].

Hence,

spec(A) =

{

{n−1,−(n−1), . . . , 1,−1}, n even,

{n−1,−(n−1), . . . , 2,−2, 0}, n odd.

(Proof: See [537].)
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Fact 5.9.24. Let A ∈ Rn×n, where n ≥ 1, be the tridiagonal matrix

A
4

=























b c 0 · · · 0 0

a b c · · · 0 0

0 a b
. . . 0 0

...
...

. . .
. . .

. . .
...

0 0 0
. . . b c

0 0 0 · · · a b























,

and assume that ab > 0. Then,

spec(A) = {b+
√
ac cos[iπ/(n+ 1)]: i = 1, . . . , n}.

(Remark: See [280, p. 522].)

Fact 5.9.25. Let a1, . . . , an ∈ Rn be linearly independent and, for all
i = 1, . . . , n, define

Ai
4

= I −
(

aTiai
)−1

aia
T
i .

Then,
σmax(AnAn−1 · · ·A1) < 1.

Fact 5.9.26. Let A ∈ Rn×n, and assume that A has real eigenvalues.
Then,

λmin(A) ≤ 1
ntrA−

√

1
n2−n

[

trA2 − 1
n(trA)2

]

≤ 1
ntrA+

√

1
n2−n

[

trA2 − 1
n(trA)2

]

≤ λmax(A)

≤ 1
ntrA+

√

n−1
n

[

trA2 − 1
n(trA)2

]

.

Furthermore, for all i = 1, . . . , n,

∣

∣λi(A)− 1
ntrA

∣

∣ ≤
√

n−1
n

[

trA2 − 1
n(trA)2

]

.

(Proof: See [610].)

Fact 5.9.27. Let A ∈ Rn×n, and assume that r
4

= rankA ≥ 2. If
r trA2 ≤ (trA)2, then

sprad(A) ≥
√

(trA)2 − trA2

r(r −1)
.
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If (trA)2 ≤ r trA2, then

sprad(A) ≥ |trA|
r

+

√

r trA2 − (trA)2

r2(r −1)
.

If rankA = 2, then equality holds in both cases. Finally, if A is skew
symmetric, then

sprad(A) ≥
√

3

r(r −1)
‖A‖F.

(Proof: See [295].)

Fact 5.9.28. Let A ∈ Fn×n. Then,

spabs(A) ≤ 1
2λmax(A+A∗).

Furthermore, equality holds if and only if A is normal. (Proof: See xii) and
xiv) of Fact 9.10.8.)

5.10 Facts on Eigenvalues and Singular Values
Involving Two or More Matrices

Fact 5.10.1. Let A,B ∈ Fn×n be normal. Then,

min Re
n
∑

i=1

λi(A)λσ(i)(B) ≤ Re trAB ≤ max Re
n
∑

i=1

λi(A)λσ(i)(B),

where “max” and “min” are taken over all permutations σ of the eigenvalues
of B. If, in addition, A and B are Hermitian, then

n
∑

i=1

λi(A)λi(B) ≤ trAB ≤
n
∑

i=1

λi(A)λi(B).

(Proof: See [392].) (Remark: See Proposition 8.4.13 and Fact 8.12.14.)

Fact 5.10.2. Let A,B ∈ Rn×n, assume that B is symmetric, and define
C

4

= 1
2(A+AT). Then,

λmin(C)trB−λmin(B)[nλmin(C)− trA]

≤ trAB ≤ λmax(C)trB − λmax(B)[nλmax(C)− trA].

(Proof: See [195].) (Remark: See Fact 5.10.1, Proposition 8.4.13, and Fact
8.12.14. Extensions are given in [451].)
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Fact 5.10.3. Let A,B ∈ Fn×n. Then,

|trAB| ≤
n
∑

i=1

σi(A)σi(B).

(Proof: See [466, p. 148].) (Remark: This result is due to Mirsky.)

Fact 5.10.4. Let A,B ∈ Rn×n, and assume that AB = BA. Then,

sprad(AB) ≤ sprad(A) sprad(B),

sprad(A+B) ≤ sprad(A) + sprad(B).

(Remark: If AB 6= BA, then both of these inequalities may be violated.
Consider A = [ 0 1

0 0 ] and B = [ 0 0
1 0 ].)

Fact 5.10.5. Let M ∈ Rr×r be positive definite, let C,K ∈ Rr×r be
nonnegative semidefinite, and consider the equation

Mq̈ + Cq̇ +Kq = 0.

Then, x(t)
4

=
[

q(t)
q̇(t)

]

, satisfies ẋ(t) = Ax(t), where A is the 2r × 2r matrix

A
4

=

[

0 I

−M−1K −M−1C

]

.

Furthermore,

detA =
detK

detM

and
rankA = r + rankK.

Hence, A is nonsingular if and only if K is positive definite. In this case,

A−1 =

[

−K−1C −K−1M

I 0

]

.

Finally, let λ ∈ C. Then, λ ∈ spec(A) if and only if det(λ2M +λC+K) = 0.
(Remark: M,C,K are mass, damping, and stiffness matrices. See [85].)

Fact 5.10.6. Let M,C,K ∈ Rr×r, and assume that M is positive
definite and C and K are nonnegative semidefinite. Furthermore, let λ ∈ C
satisfy det(λ2M + λC +K) = 0. Then, Reλ ≤ 0. Furthermore, if C and K
are positive definite, then Reλ < 0.

Fact 5.10.7. Let A,B ∈ Rn×n be nonnegative semidefinite. Then,
every eigenvalue λ of

[

0 B
−A 0

]

satisfies Reλ = 0. (Proof: Square this ma-
trix.) (Problem: What happens if A and B have different dimensions?)
In addition, let C ∈ Rn×n be (nonnegative semidefinite, positive definite).
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Then, every eigenvalue of
[

0 A
−B −C

]

satisfies (Reλ ≤ 0, Reλ < 0). (Problem:

Consider also
[−C A
−B −C

]

and
[−C A
−A −C

]

.)

5.11 Facts on Matrix Eigenstructure

Fact 5.11.1. Let A ∈ Fn×n. Then, R(A) = R
(

A2
)

if and only if
indA ≤ 1.

Fact 5.11.2. Let A ∈ Fn×n, and assume that A is diagonalizable.
Then, are AA, A∗, A, and AT are diagonalizable. If, in addition, A is
nonsingular, then A−1 is diagonalizable. (Proof: See Fact 2.13.9 and Fact
3.4.6.)

Fact 5.11.3. Let A ∈ Fn×n be diagonalizable over F with eigenvalues
λ1, . . . , λn, and let B

4

= diag(λ1, . . . , λn). If, for all i = 1, . . . , n, xi ∈ Fn

is an eigenvector of A associated with λi, then A = SBS−1, where S
4

=
[

x1 · · · xn
]

. Conversely, if S ∈ Fn×n is nonsingular and A = SBS−1,
then, for all i = 1, . . . , n, coli(S) is an associated eigenvector.

Fact 5.11.4. Let A ∈ Fn×n, let S ∈ Fn×n, assume that S is nonsin-
gular, let λ ∈ C, and assume that row1(S

−1AS) = λeT1 . Then, λ ∈ spec(A),
and col1(S) is an associated eigenvector.

Fact 5.11.5. Let A ∈ Fn×n. Then, A is cyclic if and only if there exists
x ∈ Fn such that

[

x Ax · · · An−1x
]

is nonsingular.

Fact 5.11.6. Let A ∈ Rn×n. Then, A is cyclic and diagonalizable over
R if and only if A is simple.

Fact 5.11.7. Let A = revdiag(a1, . . . , an) ∈ Rn×n. Then, A is semisim-
ple if and only if, for all i = 1, . . . , n, ai and an+1−i are either both zero or
both nonzero. (Proof: See [258, p. 116], [328], or [466, pp. 68, 86].)

Fact 5.11.8. Let A ∈ Fn×n. The A has at least m real eigenvalues and
m associated linearly independent eigenvectors if and only if there exists a
nonsingular matrix S ∈ Fn×n such that AS = SA∗. (Proof: See [466, pp.
68, 86].) (Remark: See Proposition 5.5.18.) (Remark: This result is due to
Drazin and Haynsworth.)

Fact 5.11.9. LetA∈Fn×n be normal and let mspec(A)= {λ1, . . . ,λn}m.
Then, there exist x1, . . . , xn ∈ Cn such that x∗ixj = δij for all i, j = 1, . . . , n
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and

A =
n
∑

i=1

λixix
∗
i .

Fact 5.11.10. LetA∈Fn×n, assume that A is normal, and let mspec(A)
= {λ1, . . . , λn}m. Then, the singular values of A are |λ1|, . . . , |λn|.

Fact 5.11.11. Let A ∈ Fn×n be idempotent. Then, A is diagonalizable
over R, spec(A) ⊂ {0, 1}, and trA = rankA.

Fact 5.11.12. Let A ∈ Fn×n be either involutory or skew involutory.
Then, A is semisimple.

Fact 5.11.13. Let A ∈ Rn×n be involutory. Then, A is diagonalizable
over R.

Fact 5.11.14. Let A ∈ Fn×n be semisimple and assume that A3 = A2.
Then, A is idempotent.

Fact 5.11.15. Let A ∈ Fn×n, and let spec(A) = {0, λ1, . . . , λr}. Then,
A is group invertible if and only if rankA =

∑r
i=1 amA(λi).

Fact 5.11.16. Let A ∈ Fn×n. Then, every matrix B ∈ Fn×n satisfying
AB = BA is a polynomial in A if and only if A is cyclic.

Fact 5.11.17. Let A,B ∈ Cn×n, and assume that AB = BA. Then,
there exists a nonzero vector x ∈ Cn that is an eigenvector of both A and
B. (Proof: See [287, p. 51].)

Fact 5.11.18. Let A,B ∈Fn×n. Then, the following statements hold:

i) If A and B are Hermitian, then AB is Hermitian if and only if
AB = BA.

ii) If A is normal and AB = BA, then A∗B = BA∗.

iii) If B is Hermitian and AB = BA, then A∗B = BA∗.

iv) If A and B are normal and AB = BA, then AB is normal.

v) If A, B, and AB are normal, then BA is normal.

vi) If A and B are normal and either A or B has the property that dis-
tinct eigenvalues have unequal absolute values, then AB is normal
if and only if AB = BA.

vii) If A and B are normal, either A or B is nonnegative semidefinite,
and AB is normal, then AB is normal if and only if AB = BA.
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(Proof: See [154,597], [259, p. 157], [262, p. 157], and [466, p. 102].)

Fact 5.11.19. Let A,B,C ∈ Fn×n, and assume that A and B are
normal and AC = CB. Then, A∗C = CB∗. (Proof: Consider

[

A 0
0 B

]

and
[

0 C
0 0

]

in ii) of Fact 5.11.18. See [259, p. 104] or [262, p. 321].) (Remark:
This result is the Putnam-Fuglede theorem.)

Fact 5.11.20. Let A,B ∈ Rn×n be skew symmetric. Then, there exists
an orthogonal matrix S ∈ Rn×n such that

A = S

[

0(n−l)×(n−l) A12

−AT
12 A22

]

ST

and

B = S

[

B11 B12

−BT
12 0l×l

]

ST,

where l
4

= bn/2c. Consequently,

mspec(AB) = mspec
(

−A12B
T
12

)

∪mspec
(

−AT
12B12

)

,

and thus every nonzero eigenvalue of AB has even algebraic multiplicity.
(Proof: See [13].)

Fact 5.11.21. Let A,B ∈ Rn×n be skew symmetric. If n is even,
then there exists a monic polynomial p of degree n/2 such that χAB(s) =
p2(s) and p(AB) = 0. If n is odd, then there exists a monic polynomial
p(s) of degree (n − 1)/2 such that χAB(s) = sp2(s) and ABp(AB) = 0.
Consequently, if n is (even, odd), then χAB is (even, odd) and (every, every
nonzero) eigenvalue of AB has even algebraic multiplicity and geometric
multiplicity of at least 2. (Proof: See [183,241].)

Fact 5.11.22. Let A,B ∈ Fn×n be projectors. Then, spec(AB) ⊂ [0, 1]
and spec(A−B) ⊂ [−1, 1]. (Proof: See [19] or [466, p. 147].) (Remark: The
first result is due to Afriat.)

Fact 5.11.23. Let q(t) denote the displacement of a mass m > 0 con-
nected to a spring k ≥ 0 and dashpot c ≥ 0 and subject to a force f(t).
Then, q(t) satisfies

mq̈(t) + cq̇(t) + kq(t) = f(t)

or

q̈(t) +
c

m
q̇(t) +

k

m
q(t) =

1

m
f(t).

Now, define the natural frequency ωn
4

=
√

k/m and, if k > 0, the damping
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ratio ζ
4

= c/2
√
km to obtain

q̈(t) + 2ζωnq̇(t) + ω2
nq(t) =

1

m
f(t).

If k = 0, then set ωn = 0, and ζωn = c/2m. Next, define x1(t)
4

= q(t) and

x2(t)
4

= q̇(t) so that this equation can be written as
[

ẋ1(t)
ẋ2(t)

]

=

[

0 1
−ω2

n −2ζωn

] [

x1(t)
x2(t)

]

+

[

0
1/m

]

f(t).

The eigenvalues of the companion matrix Ac
4

=
[

0 1
−ω2

n −2ζωn

]

are given by

mspec(Ac) =











{−ζωn − ωd,−ζωn + ωd}m, 0 ≤ ζ ≤ 1,

{

(−ζ −
√

ζ2 − 1)ωn, (−ζ +
√

ζ2 − 1)ωn

}

, ζ > 1,

where ωd
4

= ωn

√

1− ζ2 is the damped natural frequency. The matrix Ac has
repeated eigenvalues in exactly two cases, namely,

mspec(Ac) =

{

{0, 0}m, ωn = 0,

{−ωn,−ωn}m, ζ = 1.

In both of these cases the matrix Ac is defective. In the case ωn = 0,
the matrix Ac is also in Jordan form, while in the case ζ = 1, it follows
that Ac = SAJS

−1, where S
4

=
[−1 0
ωn −1

]

and AJ is the Jordan form matrix

AJ
4

=
[−ωn 1

0 −ωn

]

. If Ac is not defective, that is, if ωn 6= 0 and ζ 6= 1, then
the Jordan form AJ of Ac is given by

AJ
4

=































[

−ζωn + ωd 0

0 −ζωn − ωd

]

, 0 ≤ ζ < 1, ωn 6= 0,





(

−ζ −
√

ζ2 − 1
)

ωn 0

0
(

−ζ +
√

ζ2 − 1
)

ωn



 , ζ > 1, ωn 6= 0.

In the case 0 ≤ ζ < 1 and ωn 6= 0, define the real normal form

An
4

=

[

−ζωn ωd

−ωd −ζωn

]

.

The matrices Ac, AJ, and An are related by the similarity transformations

Ac = S1AJS
−1
1 = S2AnS

−1
2 , AJ = S3AnS

−1
3 ,
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where

S1
4

=

[

1 1

−ζωn + ωd −ζωn − ωd

]

, S−1
1 =



2ωd

[

−ζωn − ωd −1

ζωn − ωd 1

]

,

S2
4

=
1

ωd

[

1 0
−ζωn ωd

]

, S−1
2 =

[

ωd 0
ζωn 1

]

,

S3
4

=
1

2ωd

[

1 −
1 

]

, S−1
3 = ωd

[

1 1
 −

]

.

In the case ζ > 1 and ωn 6= 0, the matrices Ac and AJ are related by

Ac = S4AJS
−1
4 ,

where

S4
4

=

[

1 1

−ζωn + ωd −ζωn − ωd

]

, S−1
4 =



2ωd

[

−ζωn − ωd −1

ζωn − ωd 1

]

.

Finally, define the energy coordinates matrix

Ae
4

=

[

0 ωn

−ωn −2ζωn

]

.

Then, Ae = S5AcS
−1
5 , where

S5
4

=
√

m
2

[

1/ωn 0
0 1

]

.

5.12 Facts on Companion, Vandermonde, and
Circulant Matrices

Fact 5.12.1. Let p ∈ F[s], where p(s) = sn + βn−1s
n−1 + · · ·+ β0, and

define Cb(p), Cr(p), Ct(p), Cl(p) ∈ Fn×n by

Cb(p)
4

=



























0 1 0 · · · 0 0

0 0 1
. . . 0 0

0 0 0
. . . 0 0

...
...

...
. . .

. . .
...

0 0 0 · · · 0 1

−β0 −β1 −β2 · · · −βn−2 −βn−1



























,
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Cr(p)
4

=























0 0 0 · · · 0 −β0

1 0 0 · · · 0 −β1

0 1 0 · · · 0 −β2

...
. . .

. . .
. . .

...
...

0 0 0
. . . 0 −βn−2

0 0 0 · · · 1 −βn−1























,

Ct(p)
4

=



























−βn−1 −βn−2 · · · −β2 −β1 −β0

1 0 · · · 0 0 0

...
. . .

. . .
...

...
...

0 0
. . . 0 0 0

0 0
. . . 1 0 0

0 0 · · · 0 1 0



























,

Cl(p)
4

=























−βn−1 1 · · · 0 0 0

−βn−2 0
. . . 0 0 0

...
...

. . .
. . .

. . .
...

−β2 0 · · · 0 1 0

−β1 0 · · · 0 0 1

−β0 0 · · · 0 0 0























.

Then,
Cr(p) = CT

b (p), Cl(p) = CT
t (p),

Ct(p) = ÎCb(p)Î, Cl(p) = ÎCr(p)Î,

Cl(p) = CT̂
b (p), Ct(p) = CT̂

r (p),

and
χCb(p) = χCr(p) = χCt(p) = χCl(p) = p.

Furthermore,
Cr(p) = SCb(p)S

−1

and
Ct(p) = ŜCl(p)Ŝ

−1
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where S, Ŝ ∈ Fn×n are the Hankel matrices

S
4

=



















β1 β2 · · · βn−1 1

β2 β3 . .
.

1 0
... . .

.
. .

.
. .

. ...

βn−1 1 . .
.

0 0

1 0 · · · 0 0



















.

and

Ŝ
4

= ÎSÎ =



















0 0 · · · 0 1

0 0 . .
.

1 βn−1
... . .

.
. .

.
. .

. ...

0 1 . .
.

β3 β2

1 βn−1 · · · β2 β1



















.

(Remark: (Cb(p), Cr(p), Ct(p), Cl(p)) are the (bottom, right, top, left) com-
panion matrices. See [64, p. 282] and [321, p. 659].) (Remark: S = B(p, 1),
where B(p, 1) is a Bezout matrix. See Fact 4.8.6.)

Fact 5.12.2. Let p ∈ F[s], where p(s) = sn + βn−1s
n−1 + · · · + β0,

assume that β0 6= 0, and let

Cb(p)
4

=



























0 1 0 · · · 0 0

0 0 1
. . . 0 0

0 0 0
. . . 0 0

...
...

...
. . .

. . .
...

0 0 0 · · · 0 1

−β0 −β1 −β2 · · · −βn−2 −βn−1



























.

Then,

C−1
b (p) = Ct(p̂) =



















−β1/β0 · · · −βn−2/β0 −βn−1/β0 −1/β0

1 · · · 0 0 0
...

. . .
...

...
...

0 · · · 1 0 0

0 · · · 0 1 0



















,

where p̂(s)
4

= β−1
0 s

np(1/s). (Remark: See Fact 4.9.6.)

Fact 5.12.3. Let λ1, . . . , λn ∈ F, and define the Vandermonde matrix
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V (λ1, . . . , λn) ∈ Fn×n by

V (λ1, . . . , λn)
4

=





















1 1 · · · 1
λ1 λ2 · · · λn

λ2
1 λ2

2 · · · λ2
n

λ3
1 λ3

2 · · · λ3
n

...
... · · ·.. ...

λn−1
1 λn−1

2 · · · λn−1
n





















.

Then,
detV (λ1, . . . , λn) =

∏

i>j

(λi − λj).

Thus, V (λ1, . . . , λn) is nonsingular if and only if λ1, . . . , λn are distinct. (Re-
mark: This result yields Proposition 4.5.3. Let x1, . . . , xk be eigenvectors of
V (λ1, . . . , λn) associated with distinct eigenvalues λ1, . . . , λk of V (λ1, . . . , λn).
Assume α1x1 + · · · + αkxk = 0 so that V i(λ1, . . . , λn)(α1x1 + · · · + αkxk) =

α1λ
i
1xi+· · ·+αkλikxk = 0 for all i = 0, 1, . . . , k−1. LetX

4

=
[

x1 · · · xk
]

∈
Fn×k and D

4

= diag(α1, . . . , αk). Then, XDV T(λ1, . . . , λk) = 0, which
implies that XD = 0. Hence, αixi = 0 for all i = 1, . . . , k, and thus
α1 = α2 = · · · = αk = 0.)

Fact 5.12.4. Let λ1, . . . , λn ∈ F and, for i = 1, . . . , n, define

pi(s)
4

=
n
∏

j=1
j 6=i

(s− λj).

Furthermore, define A ∈ Fn×n by

A
4

=















p1(0) 1
1!p

′
1(0) · · · 1

(n−1)!p
(n−1)
1 (0)

... · · ·.. · · ·.. ...

pn(0) 1
1!p

′
n(0) · · · 1

(n−1)!p
(n−1)
n (0)















.

Then,
diag[p1(s), . . . , pn(s)] = AV (s, . . . , s).

(Proof: See [202, p. 159].)

Fact 5.12.5. Let p ∈ F[s], where p(s) = sn+βn−1s
n−1 + · · ·+β1s+β0,

and assume that p has distinct roots λ1, . . . , λn ∈ C. Then,

C(p) = V −1(λ1, . . . , λn)diag(λ1, . . . , λn)V (λ1, . . . , λn).

Fact 5.12.6. Let A ∈ Fn×n. Then, A is cyclic if and only if A is
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similar to a companion matrix. (Proof: The result follows from Corollary
5.3.4. Alternatively, let spec(A) = {λ1, . . . , λr} and A = SBS−1, where
S ∈ Cn×n is nonsingular and B = diag(B1, . . . , Br) is the Jordan form of A,
where, for all i = 1, . . . , r, Bi ∈ Cni×ni and λi, . . . , λi are the diagonal entries
of Bi. Now, define R ∈ Cn×n by R

4

=
[

R1 · · · Rr
]

∈ Cn×n, where, for
all i = 1, . . . , r, Ri ∈ Cn×ni is the matrix

Ri
4

=



















1 0 · · · 0
λi 1 · · · 0
...

... · · ·.. ...

λn−2
i

(

n−2
1

)

λn−3
i · · ·

(

n−2
ni−1

)

λn−ni−1
i

λn−1
i

(

n−1
1

)

λn−2
i · · ·

(

n−1
ni−1

)

λn−ni

i



















.

Then, since λ1, . . . , λr are distinct, it follows that R is nonsingular. Further-
more, C = RBR−1 is in companion form and thus A = SR−1CRS. If ni = 1
for all i = 1, . . . , r, then R is a Vandermonde matrix. See Fact 5.12.3 and
Fact 5.12.5.)

Fact 5.12.7. Let a0, . . . , an−1 ∈ F, and define circ(a0, . . . , an−1) ∈ Fn×n

by

circ(a0, . . . , an−1)
4

=























a0 a1 a2 · · · an−2 an−1

an−1 a0 a1 · · · an−3 an−2

an−2 an−1 a0
. . . an−4 an−3

...
...

. . .
. . .

. . .
...

a2 a3 a4
. . . a0 a1

a1 a2 a3 · · · an−1 a0























.

A matrix of this form is circulant. Furthermore, define the primary circulant

P
4

= circ(0, 1, 0, . . . , 0)
4

=

























0 1 0 · · · 0 0

0 0 1
. . . 0 0

0 0 0
. . . 0 0

...
. . .

. . .
. . .

. . .
...

0 0 0
. . . 0 1

1 0 0 · · · 0 0

























.

Finally, define p(s)
4

= an−1s
n−1+· · ·+a1s+a0. Then, the following statements

hold:

i) circ(a0, . . . , an−1) = p(P ).

ii) If A,B ∈ Fn×n are circulant, then A and B commute and AB is
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circulant.

iii) If A is circulant, then A∗ is circulant.

iv) If A is circulant and k ≥ 0, then Ak is circulant.

v) If A is nonsingular and circulant, then A−1 is circulant.

vi) A ∈ Fn×n is circulant if and only if A = PAPT.

vii) P is an orthogonal matrix, and Pn = In.

viii) P = C(p), where p ∈ F[s] is defined by p(s)
4

= sn − 1.

ix) If A ∈ Fn×n is circulant, then A is reverse symmetric, Toeplitz, and
normal.

x) A ∈ Fn×n is normal if and only if A is unitarily similar to a normal
matrix.

Next, let θ
4

= e2π/n, and define the Fourier matrix S ∈ Cn×n by

S
4

= n−1/2V
(

1, θ, . . . , θn−1
)

=
1√
n















1 1 1 · · · 1
1 θ θ2 · · · θn−1

1 θ2 θ4 · · · θn−2

...
...

... · · ·.. ...
1 θn−1 θn−2 · · · θ















.

Then, the following statements hold:

i) S is symmetric and unitary.

ii) S4 = In.

iii) spec(S) = {1,−1, ,−}.
iv) ReS and ImS are symmetric, commute, and satisfy (ReS)2 +

(ImS)2 = In.

v) SPS−1 = diag
(

1, θ, . . . , θn−1
)

.

vi) Scirc(a0, . . . , an−1)S
−1 = diag

[

p(1), p(θ), . . . , p
(

θn−1
)]

.

vii) mspec[circ(a0, . . . , an−1)] =
{

p(1), p(θ), p
(

θ2
)

, . . . , p
(

θn−1
)}

m
.

viii) spec(P ) =
{

1, θ, θ2, . . . , θn−1
}

.

(Proof: See [7, pp. 81–98], [163, p. 81], and [629, pp. 106–110].) (Remark:
Circulant matrices play an important role in digital signal processing, specif-
ically, in the efficient implementation of the fast Fourier transform. See [415,
pp. 356–380] and [569, pp. 206, 207].) (Remark: If a real Toeplitz matrix
is normal, then it must be either symmetric, skew-symmetric, circulant, or
skew circulant. See [34] and the references therein.)
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5.13 Facts on Matrix Factorizations

Fact 5.13.1. Let A ∈ Fn×n. Then, A is normal if and only if there
exists a unitary matrix S ∈ Fn×n such that A∗ = AS. (Proof: See [466, pp.
102, 113].)

Fact 5.13.2. Let A ∈ Fm×m and B ∈ Fn×n. Then, there exist C ∈
Fm×n and D ∈ Fn×m such that A = CD and B = DC if and only if the
following statements hold:

i) The Jordan blocks associated with nonzero eigenvalues are identical
in A and B.

ii) Let n1 ≥ n2 ≥ · · · ≥ nr denote the sizes of the Jordan blocks of A
associated with 0 ∈ spec(A), and let m1 ≥ m2 ≥ · · · ≥ mr denote
the sizes of the Jordan blocks of B associated with 0 ∈ spec(B),
where ni = 0 or mi = 0 as needed. Then, |ni − mi| ≤ 1 for all
i = 1, . . . , r.

(Proof: See [315].) (Remark: See Fact 5.13.3.)

Fact 5.13.3. Let A,B ∈ Fn×n be nonsingular. Then, A and B are
similar if and only if there exist nonsingular matrices C,D ∈ Fn×n such that
A = CD and B = DC. (Proof: Sufficiency follows from Fact 5.8.4. Necessity
is a special case of Fact 5.13.2.)

Fact 5.13.4. Let A,B ∈ Fn×n be nonsingular. Then, detA = detB
if and only if there exist nonsingular matrices C,D,E ∈ Rn×n such that
A = CDE and B = EDC. (Remark: This result is due to Shoda and
Taussky-Todd. See [110].)

Fact 5.13.5. Let A ∈ Fn×n. Then, there exist B,C ∈ Fn×n such that
B is unitary, C is upper triangular, and A = BC. If, in addition, A is nonsin-
gular, then there exist unique B,C ∈ Fn×n such that B is unitary, C is upper
triangular with positive diagonal entries, and A = BC. (Proof: See [287, p.
112] or [484, p. 362].) (Remark: This result is the QR decomposition. The
orthogonal matrix B is constructed as a product of elementary reflectors.)

Fact 5.13.6. Let A ∈ Fn×m, and assume that rankA = m. Then, there
a unique matrix B ∈ Fn×m and a matrix C ∈ Fm×m such that B∗B = Im,
C is upper triangular with positive diagonal entries, and A = BC. (Proof:
See [287, p. 15] or [484, p. 206].) (Remark: C ∈ UT+(n). See Fact 3.10.3.)
(Remark: This result is Gram-Schmidt orthonormalization.)

Fact 5.13.7. Let A ∈ Fn×n, let r
4

= rankA, and assume that the first
r leading principal subdeterminants of A are nonzero. Then, there exist
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B,C ∈ Fn×n such that B is lower triangular, C is upper triangular, and
A = BC. Either B or C can be chosen to be nonsingular. Furthermore,
both B and C are nonsingular if and only if A is nonsingular. (Proof:
See [287, p. 160].) (Remark: This result is the LU decomposition.)

Fact 5.13.8. Let A ∈ Fn×n, and let r
4

= rankA. Then, A is range
Hermitian if and only if there exist a nonsingular matrix S ∈ Fn×n and a
nonsingular matrix B ∈ Fr×r such that

A = S

[

B 0
0 0

]

S∗.

(Remark: S need not be unitary for sufficiency. See Corollary 5.4.4.) (Proof:

Use the QR decomposition Fact 5.13.5 to let S
4

= ŜR, where Ŝ is unitary
and R is upper triangular.)

Fact 5.13.9. Let A ∈ Fn×n. Then, A is nonsingular if and only if A
is the product of elementary matrices. (Problem: How many factors are
needed?)

Fact 5.13.10. Let A ∈ Fn×n be a projector, and let r
4

= rankA. Then,
there exist nonzero x1, . . . , xn−r ∈ Fn such that x∗ixj = 0 for all i 6= j and
such that

A =
n−r
∏

i=1

[

I − (x∗ixi)
−1xix

∗
i

]

.

(Remark: Every projector is the product of mutually orthogonal elementary
projectors.) (Proof: A is unitarily similar to diag(1, . . . , 1, 0, . . . , 0), which
can be written as the product of elementary projectors.)

Fact 5.13.11. Let A ∈ Fn×n. Then, A is a reflector if and only if there
exist m ≤ n nonzero vectors x1, . . . , xm ∈ Fn such that x∗ixj = 0 for all i 6= j
and such that

A =
m
∏

i=1

[

I − 2(x∗ixi)
−1xix

∗
i

]

.

In this case, m is the algebraic multiplicity of −1 ∈ spec(A). (Remark:
Every reflector is the product of mutually orthogonal elementary reflectors.)
(Proof: A is unitarily similar to diag(±1, . . . ,±1), which can be written as
the product of elementary reflectors.)

Fact 5.13.12. Let A ∈ Fn×n. Then, A is unitary if and only if there
exist nonzero vectors x1, . . . , xm ∈ Fn such that

A =
m
∏

i=1

[

I − 2(x∗ixi)
−1xix

∗
i

]

.
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(Remark: Every unitary matrix is the product of elementary reflectors. This
factorization is a result of Cartan and Dieudonne. See [45, p. 24] and
[498, 564]. The minimal number of factors is unsettled; see Fact 3.7.3. See
Fact 3.6.17.)

Fact 5.13.13. Let A ∈ Rn×n, where n ≥ 2. Then, A is orthogonal if
and only if there exist θ1, . . . , θn ∈ R and j1, . . . , jn, k1, . . . , kn ∈ {1, . . . , n}
such that

A = sign(detA)
n
∏

i=1

P (θi, ji, ki),

where

P (θ, j, k)
4

= In + [(cos θ)− 1](Ej,j + Ek,k) + (sin θ)(Ej,k − Ek,j).
(Remark: P (θ, j, k) is a plane or Givens rotation. See Fact 3.6.17.) (Prob-
lem: Generalize this result to Cn×n.)

Fact 5.13.14. Let A ∈ Fn×n. Then, A2∗A = A∗A2 if and only if there
exist a projector B ∈ Fn×n and a Hermitian matrix C ∈ Fn×n such that
A = BC. (Proof: See [474].)

Fact 5.13.15. Let A ∈ Rn×n. Then, |detA| = 1 if and only if A is the
product of n+2 or fewer involutory matrices that have exactly one negative
eigenvalue. In addition, the following statements hold:

i) If n = 2, then 3 or fewer factors are needed.

ii) If A 6= αI for all α ∈ R and detA = (−1)n, then n or fewer factors
are needed.

iii) If detA = (−1)n+1, then n+ 1 or fewer factors are needed.

(Proof: See [133,472].) (Remark: The minimal number of factors for unitary
A is given in [182].)

Fact 5.13.16. Let A ∈ Fn×n, and define r0
4

= n and rk
4

= rankAk for
all k = 1, 2, . . .. Then, there exists B ∈ Cn×n such that A = B2 if and only
if the sequence {rk − rk+1}∞k=0 does not contain two successive occurrences
of the same odd integer and, if r0 − r1 is odd, then r0 + r2 ≥ 1 + 2r1. Now,
assume that A ∈ Rn×n. Then, there exists B ∈ Rn×n such that A = B2 if
and only if the above condition holds and, for every negative eigenvalue λ of
A and for every positive integer k, the Jordan form of A has an even number
of k× k blocks associated with λ. (Proof: See [289, p. 472].) (Remark: See

Fact 11.14.31.) (Remark: For all l ≥ 2, A
4

= Nl does not have a complex
square root.) (Remark: Uniqueness is discussed in [314]. mth roots are
considered in [468].)
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Fact 5.13.17. Let A ∈ Cn×n be group invertible. Then, there exists
B ∈ Cn×n such that A = B2.

Fact 5.13.18. Let A ∈ Fn×n be nonsingular and define {Pk}∞k=0 ⊂
Fn×n and {Qk}∞k=0 ⊂ Fn×n by

P0
4

= A, Q0
4

= I,

and, for k ∈ P,

Pk+1
4

= 1
2

(

Pk +Q−1
k

)

,

Qk+1
4

= 1
2

(

Qk + P−1
k

)

.

Then,
B

4

= lim
k→∞

Pk

exists and satisfies B2 = A. Furthermore,

lim
k→∞

Qk = A−1.

(Proof: See [170, 277].) (Remark: This sequence is a modified Newton-
Raphson algorithm based on the matrix sign function. See [327].) (Remark:
See Fact 8.7.20.)

Fact 5.13.19. Let A ∈ Cn×n be nonsingular. Then, there exist a
semisimple matrix S1 ∈ Cn×n and a nilpotent matrix S2 ∈ Cn×n such that
S1S2 = S2S1 and A = S1(I+S2). (Proof: The result follows from the Jordan
decomposition.)

Fact 5.13.20. Let A ∈ Fn×n be nonnegative semidefinite and let r
4

=
rankA. Then, there exists B ∈ Fn×r such that A = BB∗.

Fact 5.13.21. Let A ∈ Fn×n, and let k ∈ P. Then, there exists a
unique matrix B ∈ Fn×n such that

A = B(B∗B)k .

(Proof: See [461].)

Fact 5.13.22. Let A ∈ Fn×n. Then, there exist symmetric matrices
B,C ∈ Fn×n, one of which is singular, such thatA = BC. (Proof: See [466, p.
82].) (Remark: Note that





β1 β2 1
β2 1 0
1 0 0









0 1 0
0 0 1
−β0 −β1 −β2



 =





−β0 0 0
0 β2 1
0 1 0





and use Theorem 5.2.3.) (Remark: This result is due to Frobenius. The
identity is a Bezout matrix factorization; see Fact 4.8.6. See [104,105,260].)
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(Remark: Symmetric, not Hermitian.)

Fact 5.13.23. Let A ∈ Cn×n. Then, detA is real if and only if A is
the product of four Hermitian matrices. Furthermore, four is the smallest
number of factors in general. (Proof: See [618].)

Fact 5.13.24. Let A ∈ Rn×n. Then, the following statements hold:

i) A is the product of two nonnegative-semidefinite matrices if and
only if A is similar to a nonnegative-semidefinite matrix.

ii) If A is nilpotent, then A is the product of three nonnegative-semidef-
inite matrices.

iii) If A is singular, then A is the product of four nonnegative-semidef-
inite matrices.

iv) detA > 0 and A 6= αI for all α ≤ 0 if and only if A is the product
of four positive-definite matrices.

v) detA > 0 if and only if A is the product of five positive-definite
matrices.

(Proof: [48,260,617,618].) (Remark: See [618] for factorizations of complex
matrices and operators.) (Example:
[

−1 0
0 −1

]

=
[

2 0
0 1/2

] [

5 7
7 10

] [

13/2 −5
−5 4

] [

8 5
5 13/4

] [

25/8 −11/2
−11/2 10

]

.)

Fact 5.13.25. Let A ∈ Rn×n. Then, the following statements hold:

i) A = BC, where B ∈ S
n and C ∈ N

n, if and only if A2 is diagonal-
izable over R and spec(A) ⊂ [0,∞).

ii) A = BC, where B ∈ S
n and C ∈ P

n, if and only if A is diagonaliz-
able over R.

iii) A = BC, where B,C ∈ N
n, if and only if A = DE, where D ∈ N

n

and E ∈ P
n.

iv) A = BC, where B ∈ N
n and C ∈ P

n, if and only if A is diagonal-
izable over R and spec(A) ⊂ [0,∞).

v) A = BC, where B,C ∈ P
n, if and only if A is diagonalizable over R

and spec(A) ⊂ [0,∞).

(Proof: See [286,614,617].)

Fact 5.13.26. Let A ∈ Rn×n be singular and assume that A is not a
2 × 2 nilpotent matrix. Then, there exist nilpotent matrices B,C ∈ Rn×n

such that A = BC and rankA = rankB = rankA. (Proof: See [616].)
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Fact 5.13.27. Let A ∈ Rn×n be nonsingular. Then, A is similar to A−1

if and only if A is the product of two involutory matrices. If, in addition,
A is orthogonal, then A is the product of two reflectors. (Proof: See [53,
179, 612, 613] or [466, p. 108].) (Problem: Construct these reflectors for
A =

[

cos θ sin θ
− sin θ cos θ

]

.)

Fact 5.13.28. Let A ∈ Rn×n. Then, |detA| = 1 if and only if A is the
product of four or fewer involutory matrices. (Proof: [54, 253,517].)

Fact 5.13.29. Let A ∈ Rn×n. Then, A is the identity or singular if and
only if A is the product of n or fewer idempotent matrices. Furthermore,
rank(A − I) ≤ kdef(A), where k ∈ N, if and only if A is the product of k
idempotent matrices. (Proof: See [55].) (Problem: Explicitly construct the
two factors when rankA = 1 and A is not idempotent. Example: [ 2 0

0 0 ] =
[ 1 1
0 0 ] [ 1 0

1 0 ] .)

Fact 5.13.30. Let A ∈ Rn×n, where n ≥ 2. Then, A is the product of
two commutators. (Proof: See [618].)

Fact 5.13.31. Let A ∈ Rn×n, and assume that detA = 1. Then, there
exist nonsingular matrices B,C ∈ Rn×n such that A = BCB−1C−1. (Proof:
See [507].) (Remark: The product is a multiplicative commutator. This
result is due to Shoda.)

Fact 5.13.32. Let A ∈ Rn×n be orthogonal and assume that detA = 1.
Then, there exist reflectors B,C ∈ Rn×n such that A = BCB−1C−1. (Proof:
See [544].)

Fact 5.13.33. Let A ∈ Fn×n be nonsingular. Then, there exists an
involutory matrix B ∈ Fn×n and a symmetric matrix C ∈ Fn×n such that
A = BC. (Proof: See [240].)

Fact 5.13.34. Let A ∈ Fn×n, and assume that n is even. Then, the
following statements are equivalent:

i) A is the product of two skew-symmetric matrices.

ii) Every elementary divisor of A has even algebraic multiplicity.

iii) There exists B ∈ Fn/2×n/2 such that A is similar to
[

B 0
0 B

]

.

(Remark: In i) the factors are skew symmetric even when A is complex.)
(Proof: See [241,618].)

Fact 5.13.35. Let A ∈ Rn×n be skew symmetric. If n = 4, 8, 12 . . . ,
then A is the product of five or fewer skew-symmetric matrices. If n =
6, 10, 14, . . ., then A is the product of seven or fewer skew-symmetric matri-
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ces. (Proof: See [348].)

Fact 5.13.36. Let A ∈ Fn×n. Then, there exist a symmetric matrix
B ∈ Fn×n and a skew-symmetric matrix C ∈ Fn×n such that A = BC if and
only if A is similar to −A. (Proof: See [487].)

Fact 5.13.37. Let A ∈ Fn×m, and let r
4

= rankA. Then, there exist
B ∈ Fn×r and C ∈ Rr×m such that A = BC. Furthermore, rankB =
rankC = r.

Fact 5.13.38. Let A ∈ Fn×m, where n ≤ m. Then, there exist
M ∈ Fn×n and S ∈ Fn×m such that M is nonnegative semidefinite, S
satisfies SS∗ = In, and A = MS. Furthermore, M is given uniquely by

M = (AA∗)1/2. If, in addition, rankA = n, then S is given uniquely by
S = (AA∗)−1/2A.

Fact 5.13.39. Let A ∈ Fn×m, where m ≤ n. Then, there exist M ∈
Fm×m and S ∈ Fn×m such that M is nonnegative semidefinite, S satisfies

S∗S = Im, and A = SM. Furthermore, M is given uniquely byM = (A∗A)1/2.
If, in addition, rankA = m, then S is given uniquely by S = A(A∗A)−1/2.

Fact 5.13.40. Let A ∈ Fn×n be nonsingular. Then, these exist unique
matrices M,S ∈ Fn×n such that A = MS, M is nonnegative semidefinite,
and S is unitary. Furthermore, S is given uniquely by S = (AA∗)−1/2A. In
addition, A is nonsingular if and only if M is unique. In this case, M is
given by M = (AA∗)1/2.

Fact 5.13.41. Let M1,M2 ∈ Fn×n be positive definite, let S1, S2 ∈
Fn×n be unitary, and assume that M1S1 = S2M2. Then, S1 = S2. (Proof:

Let A = M1S1 = S2M2. Then, S1 =
(

S2M
2
2S

∗
2

)−1/2
S2M2 = S2.)

Fact 5.13.42. Let A ∈ Fn×n be nonsingular and let M,S ∈ Fn×n be
such that A = MS, M is nonnegative semidefinite, and S is unitary. Then,
A is normal if and only if MS = SM. (Proof: See [287, p. 414].)

5.14 Notes

It is sometimes useful to define block-companion form matrices in
which the scalars are replaced by matrix blocks [231]. The companion form
illustrates but one connection between matrices and polynomials. Addi-
tional connections are given by the comrade form, Leslie form, Schwarz
form, Routh form, confederate form, and congenial form. See [61, 64] and
Fact 11.14.23 and Fact 11.14.24 for the Schwarz and Routh forms.
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The multi-companion form and the elementary multi-companion form
are generally know as rational canonical forms, while the multi-companion
form is traditionally called the Frobenius canonical form [66]. The derivation
of the Jordan form by means of the elementary multi-companion form and
the hypercompanion form follows [456]. Corollary 5.3.8, Corollary 5.3.9,
and Proposition 5.5.18 are given in [104, 105, 534, 535, 538]. Corollary 5.3.9
is due to Frobenius. Canonical forms for congruence transformations are
given in [360,548].
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Chapter Six

Generalized Inverses

Generalized inverses provide a useful extension of the matrix inverse
to singular matrices and to rectangular matrices that are neither left nor
right invertible.

6.1 Moore-Penrose Generalized Inverse

Let A ∈ Fn×m. If A is nonzero, then, by the singular value decom-
position Theorem 5.6.3, there exist orthogonal matrices S1 ∈ Fn×n and
S2 ∈ Fm×m such that

A = S1

[

B 0
0 0

]

S2, (6.1.1)

where B
4

= diag[σ1(A), . . . , σr(A)], r
4

= rankA, and σ1(A) ≥ σ2(A) ≥ · · · ≥
σr(A) > 0 are the positive singular values of A. In (6.1.1), some of the bor-
dering zero matrices may be empty. Then, the (Moore-Penrose) generalized
inverse A+ of A is the m× n matrix

A+ 4

= S∗
2

[

B−1 0
0 0

]

S∗
1 . (6.1.2)

If A = 0n×m, then A+ 4

= 0m×n, while if m = n and detA 6= 0, then
A+ = A−1. In general, it is helpful to remember that A+ and A∗ are the
same size. It is easy to verify that A+ satisfies

AA+A = A, (6.1.3)

A+AA+ = A+, (6.1.4)

(AA+)∗ = AA+, (6.1.5)

(A+A)∗ = A+A. (6.1.6)

Hence, for all A ∈ Fn×m there exists a matrix X ∈ Fm×n satisfying the four
conditions
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AXA = A, (6.1.7)

XAX = X, (6.1.8)

(AX)∗ = AX, (6.1.9)

(XA)∗ = XA. (6.1.10)

We now show that X is uniquely defined by (6.1.7)-(6.1.10).

Theorem 6.1.1. Let A ∈ Fn×m. Then, X = A+ is the unique matrix
X ∈ Fm×n satisfying (6.1.7)-(6.1.10).

Proof. Suppose there exists X ∈ Fm×n satisfying (6.1.7)-(6.1.10).
Then,

X = XAX = X(AX)∗ = XX∗A∗ = XX∗(AA+A)∗ = XX∗A∗A+∗A∗

= X(AX)∗(AA+)∗ = XAXAA+ = XAA+ = (XA)∗A+ = A∗X∗A+

= (AA+A)∗X∗A+ = A∗A+∗A∗X∗A+ = (A+A)∗(XA)∗A+

= A+AXAA+ = A+AA+ = A+. �

Given A ∈ Fn×m, X ∈ Fm×n is a (1)-inverse of A if (6.1.7) holds, a
(1,2)-inverse of A if (6.1.7) and (6.1.8) hold, etc.

Proposition 6.1.2. Let A ∈ Fn×m, and assume that A is right invert-
ible. Then, X ∈ Fm×n is a right inverse of A if and only if X is a (1)-inverse
of A. Furthermore, every right inverse (or, equivalently, every (1)-inverse)
of A is also a (2,3)-inverse of A.

Proof. Suppose that AX = In, that is, X ∈ Fm×n is a right inverse of
A. Then, AXA = A, which implies that X is a (1)-inverse of A. Conversely,

let X be a (1)-inverse of A, that is, AXA = A. Then, letting X̂ ∈ Fm×n

denote a right inverse of A, it follows that AX = AXAX̂ = AX̂ = In.
Hence, X is a right inverse of A. Finally, if X is a right inverse of A, then
it is also a (2,3)-inverse of A.

Proposition 6.1.3. Let A ∈ Fn×m, and assume that A is left invertible.
Then, X ∈ Fm×n is a left inverse of A if and only if X is a (1)-inverse of A.
Furthermore, every left inverse (or, equivalently, every (1)-inverse) of A is
also a (2,4)-inverse of A.

It can now be seen that A+ is a particular (right, left) inverse when A
is (right, left) invertible.

Corollary 6.1.4. Let A ∈ Fn×m. If A is right invertible, then A+ is
a right inverse of A. Furthermore, if A is left invertible, then A+ is a left



matrix2 November 19, 2003

GENERALIZED INVERSES 209

inverse of A.

The following result provides an explicit expression for A+ when A is
right or left invertible. It is helpful to note that A is (right, left) invertible
if and only if (AA∗, A∗A) is positive definite.

Proposition 6.1.5. Let A ∈ Fn×m. If A is right invertible, then

A+ = A∗(AA∗)−1. (6.1.11)

If A is left invertible, then

A+ = (A∗A)−1A∗. (6.1.12)

Proof. The result follows by verifying (6.1.7)-(6.1.10) with X = A+.

Proposition 6.1.6. Let A ∈ Fn×m. Then, the following statements
hold:

i) A = 0 if and only if A+ = 0.

ii) (A+)+ = A.

iii) A
+

= A+.

iv)
(

AT
)+

= (A+)T = A+T.

v) (A∗)+ = (A+)∗ 4

= A+∗.

vi) R(A) = R(AA+) = R(AA∗) = N(I −AA+).

vii) R(A∗) = R(A∗A) = R(A+) = R(A+A).

viii) N(A) = N(A+A) = N(A∗A) = R(I −A+A).

ix) N(A∗) = N(A+) = N(AA+) = R(I −AA+).

x) AA+ is the projector onto R(A).

xi) A+A is the projector onto R(A∗).

xii) I −A+A is the projector onto N(A).

xiii) I −AA+ is the projector onto N(A∗).

xiv) x ∈ R(A) if and only if x = AA+x.

xv) rankA = rankA+ = rankAA+ = rankA+A = trAA+ = trA+A.

xvi) (A∗A)+ = A+A+∗.

xvii) (AA∗)+ = A+∗A+.

xviii) AA+ = A(A∗A)+A∗.
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xix) A+A = A∗(AA∗)+A.

xx) A = AA∗A∗+ = A∗+A∗A.

xxi) A∗ = A∗AA+ = A+AA∗.

xxii) A+ = A∗(AA∗)+ = (A∗A)+A∗.

xxiii) A+∗ = (AA∗)+A = A(A∗A)+.

xxiv) A = A(A∗A)+A∗A = AA∗A(A∗A)+.

xxv) A = AA∗(AA∗)+A = (AA∗)+AA∗A.

xxvi) If S1 ∈ Fn×n and S2 ∈ Fm×m are unitary, then (S1AS2)
+ = S∗

2A
+S∗

1 .

xxvii) If A is (normal, Hermitian, nonnegative semidefinite, positive defi-
nite), then so is A+.

xxviii) A is range Hermitian if and only if AA+ = A+A.

Theorem 2.6.3 showed that the equation Ax = b, where A ∈ Fn×m

and b ∈ Fn, has a solution x ∈ Fm if and only if rankA = rank
[

A b
]

.
In particular, Ax = b has a unique solution x ∈ Fm if and only if rankA =
rank

[

A b
]

= m, while Ax = b has infinitely many solutions if and only

if rankA = rank
[

A b
]

< m. We are now prepared to characterize these
nonunique solutions.

Proposition 6.1.7. Let A ∈ Fn×m and b ∈ Fn. Then, the following
statements are equivalent:

i) There exists x ∈ Fm satisfying Ax = b.

ii) rankA = rank
[

A b
]

.

iii) b ∈ R(A).

iv) AA+b = b.

Now, assume that i)-iv) are satisfied. Then, the following statements hold:

v) If x ∈ Fm satisfies Ax = b, then

x = A+b+ (I −A+A)x. (6.1.13)

vi) For all y ∈ Fm, x ∈ Fm given by

x = A+b+ (I −A+A)y (6.1.14)

satisfies Ax = b.

vii) Let x ∈ Fm be given by (6.1.14), where y ∈ Fm. Then, y = 0
minimizes x∗x.

viii) Assume rankA = m. Then, there exists a unique x ∈ Fm satisfying
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Ax = b given by x = A+b. If, in addition, AL ∈ Fm×m is a left
inverse of A, then ALb = A+b.

ix) Assume rankA = n, and let AR ∈ Fm×n be a right inverse of A.
Then, x = ARb satisfies Ax = b.

Proof. The equivalence of i)-iii) is immediate. To prove the equiv-
alence of iv), note that if there exists x ∈ Fn satisfying Ax = b, then
b = Ax = AA+Ax = AA+b. Conversely, if b = AA+b, then x = A+b satisfies
Ax = b.

Now, suppose that i)-iv) are satisfied. To prove v) let x ∈ Fm satisfy
Ax = b so that A+Ax = A+b. Hence, x = x+A+b−A+Ax = A+b+(I−A+A)x.
To prove vi) let y ∈ Fm, and let x ∈ Fm be given by (6.1.14). Then,
Ax = AA+b = b. To prove vii) let y ∈ Fm, and let x ∈ Fn be given by
(6.1.14). Then, x∗x = b∗A+∗A+b+ y∗(I −A+A)y. Therefore, x∗x is minimized
by y = 0. To prove viii) suppose that rankA = m. Then, A is left invertible,
and it follows from Corollary 6.1.4 that A+ is a left inverse of A. Hence,
it follows from (6.1.13) that x = A+b is the unique solution to Ax = b. In
addition, x = ALb. To prove ix) let x = ARb and note that AARb = b.

Definition 6.1.8. Let A ∈ Fn×m, B ∈ Fn×l, C ∈ Fk×m, and D ∈ Fk×l,

and define A
4

=

[

A B
C D

]

∈ F(n+k)×(m+l). Then, the Schur complement

D|A of D with respect to A is defined by

D|A 4

= A−BD+C. (6.1.15)

Likewise, the Schur complement A|A of A with respect to A is defined by

A|A 4

= D − CA+B. (6.1.16)

6.2 Drazin Generalized Inverse

We now introduce a different type of generalized inverse, which applies
only to square matrices but which is more useful in certain applications. Let
A ∈ Fn×n. Then, A has a decomposition

A = S

[

J1 0
0 J2

]

S−1, (6.2.1)

where S ∈ Fn×n is nonsingular, J1 ∈ Fm×m is nonsingular, and J2 ∈
F(n−m)×(n−m) is nilpotent. Then, the Drazin generalized inverse AD of A is
the matrix

AD 4

= S

[

J−1
1 0
0 0

]

S−1. (6.2.2)
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Let A ∈ Fn×n. Then, it follows from Definition 5.5.1 that indA =
indA(0). If A is nonsingular, then ind A = 0, whereas indA = 1 if and only
if A is singular and the zero eigenvalue of A is semisimple. In particular,
ind 0n×n = 1. Note that ind A is the size of the largest Jordan block of A
associated with the zero eigenvalue of A.

It can be seen that AD satisfies

ADAAD = AD, (6.2.3)

AAD = ADA, (6.2.4)

Ak+1AD = Ak, (6.2.5)

where k = indA. Hence, for all A ∈ Fn×n such that indA = k there exists
a matrix X ∈ Fn×n satisfying the three conditions

XAX = X, (6.2.6)

AX = XA, (6.2.7)

Ak+1X = Ak. (6.2.8)

We now show that X is uniquely defined by (6.2.6)-(6.2.8).

Theorem 6.2.1. Let A ∈ Fn×n, and let k
4

= indA. Then, X = AD is
the unique matrix X ∈ Fn×n satisfying (6.2.6)-(6.2.8).

Proof. Let X ∈ Fn×n satisfy (6.2.6)-(6.2.8). If k = 0, then it fol-
lows from (6.2.8) that X = A−1. Hence, let A = S

[

J1 0
0 J2

]

S−1, where

k = indA ≥ 1, S ∈ Fn×n is nonsingular, J1 ∈ Fm×m is nonsingular, and

J2 ∈ F(n−m)×(n−m) is nilpotent. Now, let X̂
4

= S−1XS =
[

X̂1 X̂12

X̂21 X̂2

]

be parti-

tioned conformably with S−1AS =
[

J1 0
0 J2

]

. Since, by (6.2.7), ÂX̂ = X̂Â, it

follows that J1X̂1 = X̂1J1, J1X̂12 = X̂12J2, J2X̂21 = X̂21J1, and J2X̂2 = X̂2J2.
Since Jk2 = 0, it follows that J1X̂12J

k−1
2 = 0, and thus X̂12J

k−1
2 = 0. By

repeating this argument, it follows that J1X̂12J2 = 0, and thus X̂12J2 = 0,
which implies that J1X̂12 = 0 and thus X̂12 = 0. Similarly, X̂21 = 0, so that

X̂ =
[

X̂1 0

0 X̂2

]

. Now, (6.2.8) implies that Jk+1
1 X̂1 = Jk1 and hence X̂1 = J−1

1 .

Next, (6.2.6) implies that X̂2J2X̂2 = X̂2, which, together with J2X̂2 = X̂2J2,

yields X̂2
2 J2 = X̂2. Consequently, 0 = X̂2

2 J
k
2 = X̂2J

k−1
2 and thus, by repeat-

ing this argument, X̂2 = 0. Therefore, AD = S
[

J−1
1 0
0 0

]

S−1 = S
[

X̂1 0
0 0

]

S−1 =

SX̂S−1 = X.

Let A ∈ Fn×n, and assume that ind A ≤ 1 so that A is group invertible.
In this case, the Drazin inverse AD is denoted by A#, which is the group
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generalized inverse of A. Therefore, A# satisfies

A#AA# = A#, (6.2.9)

AA# = A#A, (6.2.10)

AA#A = A, (6.2.11)

while A# is the unique matrix X ∈ Fn×n satisfying

XAX = X, (6.2.12)

AX = XA, (6.2.13)

AXA = A. (6.2.14)

Proposition 6.2.2. Let A ∈ Fn×n, and assume that A is group invert-
ible. Then, the following statements hold:

i) A = 0 if and only if A# = 0.

ii) (A#)# = A.

iii) If A is idempotent, then A# = A.

iv) AA# and A#A are idempotent.

v)
(

AT
)#

= (A#)T.

vi) rankA = rankA# = rankAA# = rankA#A.

vii) R(A) = R(AA#) = N(I −AA#) = R(AA+) = N(I −AA+).

viii) N(A) = N(AA#) = R(I −AA#) = N(A+A) = R(I −A+A).

ix) AA# is the idempotent matrix onto R(A) along N(A).

An alternative expression for the idempotent matrix onto R(A) along
N(A) is given by Proposition 5.5.9.

6.3 Facts on the Moore-Penrose Generalized Inverse
Involving One Matrix

Fact 6.3.1. Let A ∈ Fn×m, and assume that rankA = 1. Then,

A+ = (trAA∗)−1A∗.

Consequently, if x ∈ Fn and y ∈ Fn are nonzero, then

(xy∗)+ = (x∗xy∗y)−1yx∗.

Fact 6.3.2. Let A ∈ Fn×m, and assume that rankA = m. Then,

(AA∗)+ = A(A∗A)−2A∗.
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Fact 6.3.3. Let A ∈ Fn×m. Then,

A+ = lim
α↓0

A∗(AA∗ + αI)−1 = lim
α↓0

(A∗A+ αI)−1A∗.

Fact 6.3.4. Let A ∈ Fn×m, let χAA∗(s) = sn+βn−1s
n−1+ · · ·+β1s+β0,

and let n− k denote the smallest integer in {0, . . . , n− 1} such that βk 6= 0.
Then,

A+ = −β−1
n−kA

∗
[

(AA∗)k−1 + βn−1(AA
∗)k−2 + · · ·+ βn−k+1I

]

.

(Proof: See [168].)

Fact 6.3.5. Let A ∈ Fn×n and assume that A is Hermitian. Then,
InA = InA+.

Fact 6.3.6. Let A ∈ Fn×n be a projector. Then, A+ = A.

Fact 6.3.7. Let A ∈ Fn×n. Then, A+ = A if and only if A is tripotent
and A2 is Hermitian.

Fact 6.3.8. Let A ∈ Fn×n, and assume that A is idempotent. Then,

A+A+ (I −A)(I −A)+ = I.

(Proof: N(A) = R(I −A+A) = R(I −A) = R[(I −A)(I −A+)].)

Fact 6.3.9. Let A ∈ Fn×n, and assume that A is idempotent. Then,

A∗A+A = A+A

and
AA+A∗ = AA+.

(Proof: Note that A∗A+A is a projector and R(A∗A+A) = R(A∗) = R(A+A).)

Fact 6.3.10. Let A ∈ Fn×n, and assume that A is idempotent. Then,
A+A∗ − I is nonsingular, and

(A+A∗ − I)−1 = AA+ +A+A− I.
(Proof: Use Fact 6.3.9.) (Remark: See [416, p. 457] for a geometric inter-
pretation of this identity.)

Fact 6.3.11. Let A ∈ Fn×n, and let r
4

= rankA. Then, A+ = A∗ if
and only if σ1(A) = σr(A) = 1.

Fact 6.3.12. Let A ∈ Fn×m where A 6= 0, and let r
4

= rankA. Then,
for all i = 1, . . . , r, the singular values of A+ are given by

σi(A
+) = σ−1

r+1−i(A).
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In particular,
σr(A) = 1/σmax(A

+).

If, in addition, A ∈ Fn×n and A is nonsingular, then

σmin(A) = 1/σmax

(

A−1
)

.

Fact 6.3.13. Let A ∈ Fn×m. Then, X = A+ is the unique matrix
satisfying

rank

[

A AA+

A+A X

]

= rankA.

(Remark: See Fact 2.13.39 and Fact 6.5.5.) (Proof: See [203].)

Fact 6.3.14. Let A ∈ Fn×n be centrohermitian. Then, A+ is centro-
hermitian. (Proof: See [359].)

Fact 6.3.15. Let A ∈ Fn×n. Then, the following statements are equiv-
alent:

i) A2 = AA∗A.

ii) A is the product of two projectors.

iii) A = A(A+)2A.

(Remark: This result is due to Crimmins. See [474].)

Fact 6.3.16. Let A ∈ Fn×m. Then,

A+ = 4(I +A+A)+A+(I +AA+)+.

(Proof: Use Fact 6.4.20 with B = A.)

Fact 6.3.17. Let A ∈ Fn×n be unitary. Then,

lim
k→∞

1
k

k−1
∑

i=0

Ai = I − (A− I)(A− I)+.

(Remark: I−(A−I)(A−I)+ is the projector onto {x: Ax = x} = N(A−I).)
(Remark: This result is the ergodic theorem.) (Proof: Use Fact 11.15.12 and
Fact 11.15.14 and note that (A− I)∗ = (A− I)+. See [258, p. 185].)

Fact 6.3.18. Let A ∈ Fn×m, and define {Bi}∞i=1 by

Bi+1
4

= 2Bi −BiABi,
where B0

4

= αA∗ and α ∈ (0, 2/σ2
max(A)). Then,

lim
i→∞

Bi = A+.
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(Proof: See [64, p. 259] or [124, p. 250]. This result is due to Ben-Israel.)
(Remark: This sequence is a Newton-Raphson algorithm.) (Remark: B0

satisfies sprad(I − B0A) < 1.) (Remark: For the case in which A is square
and nonsingular, see Fact 2.13.37.) (Problem: Does convergence hold for all
B0 ∈ Fn×n satisfying sprad(I −B0A) < 1?)

6.4 Facts on the Moore-Penrose Generalized Inverse
Involving Two or More Matrices

Fact 6.4.1. Let A ∈ Fn×m and B ∈ Fm×l. Then, AB = 0 if and only
if B+A+ = 0.

Fact 6.4.2. Let A ∈ Fn×m and B ∈ Fn×l. Then, A+B = 0 if and only
if A∗B = 0.

Fact 6.4.3. Let A ∈ Fn×m and B ∈ Fm×l. Then,

(AB)+ = B+
1A

+
1 ,

where B1
4

= A+AB and A1
4

= AB1B
+
1 . That is,

(AB)+ = (A+AB)+
[

AB(A+AB)+
]+
.

(Proof: See [6, p. 55].) (Remark: This result is due to Cline.)

Fact 6.4.4. Let A ∈ Fn×m and B ∈ Fm×l. Then,

(AB)+ = B+A+

if and only if R(BB∗A∗) ⊆ R(A∗) and R(A∗AB) ⊆ R(B). (Proof: See [6, p.
53].) (Remark: This result is due to Greville.)

Fact 6.4.5. Let A ∈ Fn×r and B ∈ Fr×m, and assume that rankA =
rankB = r. Then,

(AB)+ = B+A+ = B∗(BB∗)−1(A∗A)−1A∗.

Fact 6.4.6. Let A,B ∈ Fn×n be range Hermitian. If (AB)+ = A+B+,
then AB is range Hermitian. (Proof: See [268].) (Remark: See Fact 8.9.10.)

Fact 6.4.7. Let A ∈ Fn×m and B ∈ Fm×l, and assume that rankB =
m. Then,

AB(AB)+ = AA+.

Fact 6.4.8. Let A ∈ Fn×m, let B ∈ Fm×n satisfy BAA∗ = A∗, and let
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C ∈ Fm×n satisfy A∗AC = A∗. Then,

A+ = BAC.

(Proof: See [6, p. 36].) (Remark: This result is due to Decell.)

Fact 6.4.9. Let A ∈ Fn×m. Then, there exists B ∈ Fm×m satisfying
BAB = B if and only if there exist projectors C ∈ Fn×n and D ∈ Fm×m

such that B = (CAD)+. (Proof: See [245].)

Fact 6.4.10. Let A ∈ Fn×n. Then, A is idempotent if and only if there
exist projectors B,C ∈ Fn×n such that A = (BC)+. (Proof: Let A = I in
Fact 6.4.9.) (Remark: See [247].)

Fact 6.4.11. Let A ∈ Fn×m, B ∈ Fn×l, C ∈ Fk×m, D ∈ Fk×l. Then,

rank
[

A B
]

= rankA+ rank
(

B −AA+B
)

= rankB + rank
(

A−BB+A
)

,

rank

[

A
C

]

= rankA+ rank
(

C − CA+A
)

= rankC + rank
(

A−AC+C
)

,

rank

[

A B
C 0

]

= rankB + rankC + rank
[(

In −BB+
)

A
(

Im − C+C
)]

.

Now, define A
4

=
[

A B
C D

]

. Then,

rankA = rankA+ rankX + rankY

+ rank
[(

Ik − Y Y +
)

(D|A)
(

Ip −X+X
)]

,

where X
4

= B −AA+B and Y
4

= C − CA+A. Consequently,

rankA+ rank(D|A) ≤ rankA.

Furthermore, if AA+B = B and CA+A = C, then

rankA+ rank(D|A) = rankA.

Finally, if n = m and A is nonsingular, then

rankA+ rank
(

D − CA−1B
)

≤ rankA.

(Proof: See [128, 398].) (Remark: With certain restrictions the generalized
inverses can be replaced by (1)-inverses.) (Remark: See Proposition 2.8.3.)
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Fact 6.4.12. Let A,B ∈ Fn×n. Then,

rank

[

0 A
B I

]

= rankA+ rank
[

B I −A+A
]

= rank

[

A
I −BB+

]

+ rankB

= rankA+ rankB + rank
[(

I −BB+
)(

I −A+A
)]

= n+ rankAB.

Hence, the following statements hold:

i) rankAB = rankA+rankB−n if and only if (I−BB+)(I−A+A) = 0.

ii) rankAB = rankA if and only if
[

B I −A+A
]

is right invertible.

iii) rankAB = rankB if and only if
[

A
I−BB+

]

is left invertible.

(Proof: See [398].) (Remark: The generalized inverses can be replaced by
arbitrary (1)-inverses.)

Fact 6.4.13. Let A ∈ Fn×m and b ∈ Fn. Then,

[

A b
]+

=

[

A+[I − bc]
c

]

,

where

c
4

=















(b−AA+b)+, b 6= AA+b,

b∗(AA∗)+

1 + b∗(AA∗)+b
, b = AA+b.

(Proof: See [6, p. 44], [202, p. 270], or [505, p. 148].) (Remark: This result
is due to Greville.)

Fact 6.4.14. Let A ∈ Fn×m and B ∈ Fn×l. Then,

[

A B
]+

=

[

A+ −A+B(C+ +D)

C+ +D

]

,

where
C

4

= (I −AA+)B

and

D
4

= (I−C+C)[I+(I−C+C)B∗(AA∗)+B(I−C+C)]−1B∗(AA∗)+(I−BC+).
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Furthermore,

[

A B
]+

=



















































[

A∗(AA∗ +BB∗)−1

B∗(AA∗ +BB∗)−1

]

, rank
[

A B
]

= n,

[

A∗A A∗B

B∗A B∗B

]−1[

A∗

B∗

]

, rank
[

A B
]

= m+ l,

[

A∗(AA∗)−1(I −BE)

E

]

, rankA = n,

where
E

4

=
[

I +B∗(AA∗)−1B
]−1
B∗(AA∗)−1.

(Proof: See [147] or [387, p. 14].) (Remark: If
[

A B
]

is square and
nonsingular and A∗B = 0, then the second expression yields Fact 2.13.33.)

Fact 6.4.15. Let A ∈ Fn×n be nonnegative semidefinite, let B ∈ Fn×m,
and define

A
4

=

[

A B
B∗ 0

]

.

Then,

A+ =

[

C+ − C+BD+B∗C+ C+BD+

(C+BD+)∗ DD+ −D+

]

,

where
C

4

= A+BB∗, D
4

= B+C+C.

(Proof: See [388, p. 58].) (Remark: Representations for the generalized
inverse of a partitioned matrix are given in [47,57,76,121,124,266,301,414,
415,417,418,478,489,550,593].)

Fact 6.4.16. Let A ∈ Fn×n be Hermitian, let b ∈ Fn, and define
S

4

= I −A+A. Then,

(A+ bb∗)+

=























[

I − (b∗Sb)−1Sbb∗
]

A+
[

I − (b∗Sb)−1bb∗S
]

+ (b∗Sb)−2Sbb∗S, Sb 6= 0,

A+ − (1 + b∗A+b)A+bb∗A+, 1 + b∗A+b 6= 0,

[

I − (b∗A2+b)−1A+bb∗A+
]

A+
[

I − (b∗A2+b)−1A+bb∗A+
]

, b∗A+b = 0.

(Proof: See [421].) (Remark: Expressions for (A+BB∗)+, where B ∈ Fn×l,
are given in [421].)



matrix2 November 19, 2003

220 CHAPTER 6

Fact 6.4.17. Let A ∈ Fn×n be nonnegative semidefinite, let C ∈ Fm×m

be positive definite, and let B ∈ Fn×m. Then,

(A+BCB∗)+ = A+ −A+B
(

C−1 +B∗A+B
)−1
B∗A+

if and only if
AA+B = B.

(Proof: See [442].) (Remark: AA+B = B is equivalent to R(B) ⊆ R(A).)

Fact 6.4.18. Let A,B ∈ Fn×m, and assume that A∗B = 0 and BA∗ =
0. Then,

(A+B)+ = A+ +B+.

(Proof: Use Fact 2.10.6 and Fact 6.4.19. See [148].) (Remark: This result
is due to Penrose.)

Fact 6.4.19. Let A,B ∈ Fn×m, and assume that rank(A + B) =
rankA+ rankB. Then,

(A+B)+ = (I − C+B)A+(I −BC+) + C+,

where C
4

= (I −AA+)B(I −A+A). (Proof: See [148].)

Fact 6.4.20. Let A,B ∈ Fn×m. Then,

(A+B)+ = (I +A+B)+(A+ +A+BA+)(I +BA+)+

if and only if AA+B = B = BA+A. Furthermore, if n = m and A is
nonsingular, then

(A+B)+ =
(

I +A−1B
)+(
A−1 +A−1BA−1

)(

I +BA−1
)+
.

(Proof: See [148].) (Remark: If A and A+B are nonsingular, then the last
statement yields (A + B)−1 = (A + B)−1(A + B)(A + B)−1 for which the
assumption that A is nonsingular is superfluous.)

Fact 6.4.21. Let A ∈ Fn×m, B ∈ Fl×k, and C ∈ Fn×k. Then, there
exists X ∈ Fm×l satisfying AXB = C if and only if AA+CB+B = C.
Furthermore, X satisfies AXB = C if and only if there exists Y ∈ Fm×l

such that
X = A+CB+ + Y −A+AYBB+.

Finally, if Y = 0, then trX∗X is minimized. (Proof: Use Proposition 6.1.7.
See [388, p. 37] and, for Hermitian solutions, see [330].)

Fact 6.4.22. Let A ∈ Fn×m, and assume that rankA = m. Then,
AL ∈ Fm×n is a left inverse of A if and only if there exists B ∈ Fm×n such
that

AL = A+ +B(I −AA+).
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(Proof: Use Fact 6.4.16 with A = C = Im.)

Fact 6.4.23. Let A ∈ Fn×m, and assume that rankA = n. Then,
AR ∈ Fm×n is a right inverse of A if and only if there exists B ∈ Fm×n such
that

AR = A+ + (I −A+A)B.

(Proof: Use Fact 6.4.21 with B = C = In.)

Fact 6.4.24. Let A ∈ Fn×n, x, y ∈ Fn, and a ∈ F, and assume that
x ∈ R(A). Then,

[

A x
yT a

]

=

[

I 0
yT 1

]

[

A 0

yT − yTA a− yTA+x

]

[

I A+x
0 1

]

.

(Remark: See Fact 2.12.4 and Fact 2.12.13 and note that x = AA+x.)
(Problem: Obtain a factorization for the case x /∈ R(A).)

Fact 6.4.25. Let A ∈ Fn×m and B ∈ Fn×l. Then,

det

[

A∗A B∗A
B∗A B∗B

]

= det(A∗A)det[B∗(I −AA+)B]

= det(B∗B)det[A∗(I −BB+)A].

Fact 6.4.26. Let A ∈ Fn×n, B ∈ Fn×m, C ∈ Fm×n, and D ∈ Fm×m,
assume that either rank

[

A B
]

= rankA or rank
[

A
C

]

= rankA, and let
A− be a (1)-inverse of A. Then,

det

[

A B
C D

]

= (detA)det(D − CA−B).

(Proof: See [64, p. 266].)

Fact 6.4.27. Let A,B ∈ Fn×n be projectors. Then,

lim
k→∞

A(BA)k = 2A(A+B)+B.

Furthermore, 2A(A + B)+B is the projector onto R(A) ∩ R(B). (Proof:
See [20].) (Remark: See Fact 6.4.28 and Fact 8.9.9.)

Fact 6.4.28. Let A ∈ Rn×m and B ∈ Rn×l. Then,

R(A) ∩ R(B) = R[AA+(AA++BB+)+BB+].

(Remark: See Theorem 2.3.1, and Fact 8.9.9.)

Fact 6.4.29. Let A ∈ Rn×m and B ∈ Rn×l. Then, R(A) ⊆ R(B) if
and only if BB+A = A. (Proof: See [6, p. 35].)
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Fact 6.4.30. Let A ∈ Rn×m and B ∈ Rn×l. Then,

rankAA+(AA+ +BB+)+BB+ = rankA+ rankB − rank
[

A B
]

.

(Proof: Use Fact 6.4.28, Fact 2.10.26, and Fact 2.10.22.)

Fact 6.4.31. Let A ∈ Fn×m and b ∈ Fn, and define f(x)
4

= (Ax −
b)∗(Ax− b), where x ∈ Fm. Then, x minimizes f if and only if there exists
y ∈ Fm such that

x = A+b+ (I −A+A)y.

In this case,
f(x) = b∗(I −AA+)b.

Finally, f has a unique minimizer if and only if A is left invertible. (Remark:
The minimization of f is the least squares problem. See [6, 100].)

Fact 6.4.32. Let A ∈ Fn×m, B ∈ Fn×l, and define

f(X)
4

= tr[(AX −B)∗(AX −B)] ,

where X ∈ Fm×l. Then, X = A+B minimizes f. (Problem: Determine all
minimizers.) (Problem: Consider f(X) = tr[(AX −B)∗C(AX −B)], where
C ∈ Fn×n is positive definite.)

Fact 6.4.33. Let A ∈ Fn×m and B ∈ Fl×m, and define

f(X)
4

= tr[(XA−B)∗(XA−B)] ,

where X ∈ Fl×n. Then, X = BA+ minimizes f.

Fact 6.4.34. Let A,B ∈ Fn×m, and define

f(X)
4

= tr[(AX −B)∗(AX −B)] ,

where X ∈ Fm×m is unitary. Then, X = S1S2 minimizes f, where S1

[

B̂ 0
0 0

]

S2

is the singular value decomposition of A∗B. (Proof: See [64, p. 224].)

Fact 6.4.35. Let A
4

=
[

A11 A12

A21 A22

]

∈ F(n+m)×(n+m), B ∈ F(n+m)×l, C ∈
Fl×(n+m), D ∈ Fl×l, and A

4

=
[

A B
C D

]

, and assume that A and A11 are
nonsingular. Then,

A|A = (A11|A)|(A11|A).

(Proof: See [466, pp. 18, 19].) (Remark: This result is due to Haynsworth.)
(Problem: Is the result true if either A or A11 is singular?)
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6.5 Facts on the Drazin and Group Generalized
Inverses

Fact 6.5.1. Let A ∈ Fn×n. Then, AAD is idempotent.

Fact 6.5.2. Let A ∈ Fn×n. Then, A = AD if and only if A is tripotent.

Fact 6.5.3. Let A ∈ Fn×n. Then,

(A∗)D =
(

AD
)∗
.

Fact 6.5.4. Let A ∈ Fn×n, and let r ∈ P. Then,
(

AD
)r

= (Ar)D.

Fact 6.5.5. Let A ∈ Fn×n. Then, X = AD is the unique matrix
satisfying

rank

[

A AAD

ADA X

]

= rankA.

(Remark: See Fact 2.13.39 and Fact 6.3.13.) (Proof: See [631].)

Fact 6.5.6. Let A,B ∈ Fn×n, and assume that AB = BA. Then,

(AB)D = BDAD,

ADB = BAD,

ABD = BDA.

Fact 6.5.7. Let A ∈ Fn×n, and assume that indA = rankA = 1.
Then,

A# =
(

trA2
)−1
A.

Consequently, if x, y ∈ Fn satisfy x∗y 6= 0, then

(xy∗)# = (x∗y)−2xy∗.

In particular, 1#
n×n = n−21n×n.

Fact 6.5.8. Let A ∈ Fn×n. Then, the following statements are equiv-
alent:

i) A is range Hermitian.

ii) A+A = AA+.

iii) A+ = AD.

iv) indA ≤ 1 and A+ = A#.

v) indA ≤ 1 and (A+)2 =
(

A2
)+

.
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vi) There exists a nonsingular matrix B ∈ Fn×n such that A = A∗B.

(Proof: To prove i) =⇒ vi) use Corollary 5.4.4 and B = S
[

B−∗
0 B0 0
0 I

]

S∗.)

Fact 6.5.9. Let A ∈ Fn×n. Then, A is group invertible if and only if
limα→0(A+ αI)−1A exists. In this case,

lim
α→0

(A+ αI)−1A = AA#.

6.6 Notes

The proof of the uniqueness of A+ is given in [388]. Most of the
results given in this chapter can be found in [124]. Reverse order laws for
the generalized inverse of a product are discussed in [592]. Additional books
on generalized inverses include [78,106,477]. Generalized inverses are widely
used in least squares methods; see [102, 124, 355]. Applications to singular
differential equations are considered in [123]. Historical remarks are given
in [77].
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Chapter Seven

Kronecker and Schur Algebra

In this chapter we introduce Kronecker matrix algebra, which is useful
for analyzing linear matrix equations.

7.1 Kronecker Product

For A ∈ Fn×m define the vec operator as

vecA
4

=







col1(A)
...

colm(A)






∈ Fnm, (7.1.1)

which is the column vector of size nm× 1 obtained by stacking the columns
of A. We recover A from vecA by writing

A = vec−1(vecA) (7.1.2)

Proposition 7.1.1. Let A ∈ Fn×m and B ∈ Fm×n. Then,

trAB =
(

vecAT
)T

vecB =
(

vecBT
)T

vecA. (7.1.3)

Proof. Note that

trAB =
n
∑

i=1

eTiABei =
n
∑

i=1

rowi(A)coli(B)

=
n
∑

i=1

[

coli
(

AT
)]T

coli(B)

=
[

colT1
(

AT
)

· · · colTn
(

AT
) ]







col1(B)
...

coln(B)







=
(

vecAT
)T

vecB. �

Next, we introduce the Kronecker product.
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Definition 7.1.2. Let A ∈ Fn×m and B ∈ Fl×k. Then, the Kronecker
product A⊗B ∈ Fnl×mk of A is the partitioned matrix

A⊗B 4

=







A(1,1)B A(1,2)B · · · A(1,m)B
...

... · · · ...
A(n,1)B A(n,2)B · · · A(n,m)B






. (7.1.4)

Unlike matrix multiplication, the Kronecker product A⊗B does not
entail a restriction on either the size of A or the size of B.

The following results are immediate consequences of the definition of
the Kronecker product.

Proposition 7.1.3. Let α ∈ F, A ∈ Fn×m, and B ∈ Fl×k. Then,

A⊗ (αB) = (αA)⊗B = α(A⊗B), (7.1.5)

A⊗B = A⊗B, (7.1.6)

(A⊗B)T = AT⊗BT, (7.1.7)

(A⊗B)∗ = A∗⊗B∗. (7.1.8)

Proposition 7.1.4. Let A,B ∈ Fn×m and C ∈ Fl×k. Then,

(A+B)⊗C = A⊗C +B⊗C (7.1.9)

and
C ⊗ (A+B) = C ⊗A+ C ⊗B. (7.1.10)

Proposition 7.1.5. Let A ∈ Fn×m, B ∈ Fl×k, and C ∈ Fj×i. Then,

A⊗ (B⊗C) = (A⊗B)⊗C. (7.1.11)

Hence, we write A⊗B⊗C for A⊗ (B⊗C) and (A⊗B)⊗C.

The next result illustrates an important form of compatibility between
matrix multiplication and the Kronecker product.

Proposition 7.1.6. Let A ∈ Fn×m, B ∈ Fl×k, C ∈ Fm×j , and D ∈
Fk×i, and assume that mj = lk. Then,

(A⊗B)(C ⊗D) = AC ⊗BD. (7.1.12)
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Proof. Note that the ij block of (A⊗B)(C ⊗D) is given by

[(A⊗B)(C ⊗D)]ij =
[

A(i,1)B · · · A(i,m)B
]







C(1,j)D
...

C(m,j)D







=

m
∑

k=1

A(i,k)C(k,j)BD = (AC)(i,j)BD

= (AC ⊗BD)ij . �

Next, we consider the inverse of a Kronecker product.

Proposition 7.1.7. Suppose A ∈ Fn×n and B ∈ Fm×m are nonsingu-
lar. Then,

(A⊗B)−1 = A−1⊗B−1. (7.1.13)

Proof. Note that

(A⊗B)
(

A−1⊗B−1
)

= AA−1⊗BB−1 = In⊗ Im = Inm. �

Proposition 7.1.8. Let x ∈ Fn and y ∈ Fm. Then,

xyT = x⊗ yT = yT⊗x (7.1.14)

and
vecxyT = y⊗x (7.1.15)

The following result concerns the vec of the product of three matrices.

Proposition 7.1.9. Let A ∈ Fn×m, B ∈ Fm×l, and C ∈ Fl×k. Then,

vec(ABC) =
(

CT⊗A
)

vecB. (7.1.16)

Proof. Using (7.1.12) and (7.1.15), it follows that

vecABC = vec
l
∑

i=1

Acoli(B)eTiC =
l
∑

i=1

vec
[

Acoli(B)
(

CTei
)T
]

=
l
∑

i=1

[

CTei
]

⊗ [Acoli(B)] =
(

CT⊗A
)

l
∑

i=1

ei⊗ coli(B)

=
(

CT⊗A
)

l
∑

i=1

vec
[

coli(B)eTi
]

=
(

CT⊗A
)

vecB. �

The following result concerns eigenvalues and eigenvectors of the Kro-
necker product of two matrices.
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Proposition 7.1.10. Let A ∈ Fn×n and B ∈ Fm×m. Then,

mspec(A⊗B) = {λµ: λ ∈ mspec(A), µ ∈ mspec(B)}m. (7.1.17)

If, in addition, x ∈ Cn is an eigenvector of A associated with λ ∈ spec(A)
and y ∈ Cn is an eigenvector of B associated with µ ∈ spec(B), then x⊗ y
is an eigenvector of A⊗B associated with λµ.

Proof. Using (7.1.12), we have

(A⊗B)(x⊗ y) = (Ax)⊗ (By) = (λx)⊗ (µy) = λµ(x⊗ y). �

Proposition 7.1.10 shows that mspec(A⊗B) = mspec(B⊗A). Conse-
quently, it follows that det(A⊗B) = det(B⊗A) and tr(A⊗B) = tr(B⊗A).
The following results are generalizations of these identities.

Proposition 7.1.11. Let A ∈ Fn×n and B ∈ Fm×m. Then,

det(A⊗B) = det(B⊗A) = (detA)m(detB)n. (7.1.18)

Proof. Let mspec(A) = {λ1, . . . , λn}m and mspec(B) = {µ1, . . . , µm}m.
Then, Proposition 7.1.10 implies that

det(A⊗B) =

n,m
∏

i,j=1

λiµj =



λm1

m
∏

j=1

µj



 · · ·



λmn

m
∏

j=1

µj





= (λ1 · · ·λn)m(µ1 · · ·µm)n = (detA)m(detB)n. �

Proposition 7.1.12. Let A ∈ Fn×n and B ∈ Fm×m. Then,

tr(A⊗B) = tr(B⊗A) = (trA)(trB). (7.1.19)

Proof. Note that

tr(A⊗B) = tr(A(1,1)B) + · · ·+ tr(A(n,n)B)

= [A(1,1) + · · ·+A(n,n)] trB = (trA)(trB). �

Next, define the Kronecker permutation matrix Pn,m ∈ Fnm×nm by

Pn,m
4

=

n,m
∑

i,j=1

Ei,j,n×m⊗Ej,i,m×n. (7.1.20)

Proposition 7.1.13. Let A ∈ Fn×m. Then,

vecAT = Pn,mvecA. (7.1.21)
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7.2 Kronecker Sum and Linear Matrix Equations

Next, we define the Kronecker sum of two square matrices.

Definition 7.2.1. Let A ∈ Fn×n and B ∈ Fm×m. Then, the Kronecker
sum A⊕B ∈ Fnm×nm of A and B is

A⊕B 4

= A⊗ Im + In⊗B. (7.2.1)

Proposition 7.2.2. Let A ∈ Fn×n, B ∈ Fm×m, and C ∈ Fl×l. Then,

A⊕ (B ⊕ C) = (A⊕B)⊕ C. (7.2.2)

Hence, we write A⊕B ⊕ C for A⊕ (B ⊕ C) and (A⊕B)⊕ C.

In Proposition 7.1.10 it was shown that if λ ∈ spec(A) and µ ∈
spec(B), then λµ ∈ spec(A ⊗ B). Next, we present an analogous result
involving Kronecker sums.

Proposition 7.2.3. Let A ∈ Fn×n and B ∈ Fm×m. Then,

mspec(A⊕B) = {λ+ µ: λ ∈ mspec(A), µ ∈ mspec(B)}m. (7.2.3)

Now, let x ∈ Cn be an eigenvector of A associated with λ ∈ spec(A), and
let y ∈ Cm be an eigenvector of B associated with µ ∈ spec(B). Then, x⊗y
is an eigenvector of A⊕B associated with λ+ µ.

Proof. Note that

(A⊕B)(x⊗ y) = (A⊗ Im)(x⊗ y) + (In⊗B)(x⊗ y)
= (Ax⊗ y) + (x⊗By) = (λx⊗ y) + (x⊗µy)
= λ(x⊗ y) + µ(x⊗ y) = (λ+ µ)(x⊗ y). �

The next result concerns the existence and uniqueness of solutions to
Sylvester’s equation. See Fact 5.8.11 and Proposition 11.7.3.

Proposition 7.2.4. Let A ∈ Fn×n, B ∈ Fm×m, and C ∈ Fn×m. Then,
X ∈ Fn×m satisfies

AX +XB + C = 0 (7.2.4)

if and only if X satisfies
(

BT⊕A
)

vecX + vecC = 0. (7.2.5)

Consequently, BT⊕ A is nonsingular if and only if there exists a unique
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matrix X ∈ Fn×m satisfying (7.2.4). In this case, X is given by

X = − vec−1
[

(

BT⊕A
)−1

vecC
]

. (7.2.6)

Furthermore, BT⊕A is singular and rankBT⊕A = rank
[

BT⊕A vecC
]

if and only if there exist infinitely many matrices X ∈ Fn×m satisfying
(7.4.15). Then, the set of solutions of (7.2.4) is given by X + N

(

BT⊕A
)

.

Proof. Note that (7.2.4) is equivalent to

0 = vec(AXI + IXB) + vecC = (I ⊗A) vecX + (B∗⊗ I) vecX + vecC

= (B∗⊗ I + I ⊗A) vecX + vecC = (B∗⊕A) vecX + vecC,

which yields (7.2.5). The remaining results follow from Corollary 2.6.5.

7.3 Schur Product

An alternative form of vector and matrix multiplication is given by the
Schur product. If A ∈ Fn×m and B ∈ Fn×m, then A ◦B ∈ Fn×m is defined
by

(A ◦B)(i,j)
4

= A(i,j)B(i,j), (7.3.1)

that is, A ◦ B is formed by means of entry-by-entry multiplication. For
matrices A,B,C ∈ Fn×m, the commutative, associative, and distributive
identities

A ◦B = B ◦A, (7.3.2)

A ◦ (B ◦C) = (A ◦B) ◦C, (7.3.3)

A ◦ (B + C) = A ◦B +A ◦C (7.3.4)

are valid. For a real scalar α ≥ 0 and A ∈ Fn×m, the Schur power A{α} is
defined by

(

A{α}
)

(i,j)

4

=
(

A(i,j)

)α
. (7.3.5)

Thus, A{2} = A◦A. Note that A{0} = 1n×m, while α < 0 is allowed if A has
no zero entries. Finally, for all A ∈ Fn×m,

A ◦ 1n×m = 1n×m ◦A = A. (7.3.6)

Proposition 7.3.1. Let A,∈ Fn×n. Then, A◦B is a submatrix of A⊗B
consisting of rows row1(A⊗B), rown+2(A⊗B), row2n+3(A⊗B), . . . , rown2(A⊗
B) and columns col1(A⊗B), colm+2(A⊗B), col2m+3(A⊗B), . . . , colm2(A⊗B).
If, in addition, n = m, then A ◦B is a principal submatrix of A⊗B.

Proof. See [394] or [289, p. 304].
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7.4 Facts on the Kronecker Product

Fact 7.4.1. Let x, y ∈ Fn. Then,

x⊗ y = (x⊗ In)y = (In⊗ y)x.

Fact 7.4.2. Let A ∈ Fn×n and B ∈ Fm×m be (diagonal, upper trian-
gular, lower triangular). Then, so is A⊗B.

Fact 7.4.3. Let A ∈ Fn×n, B ∈ Fm×m, and l ∈ P. Then,

(A⊗B)l = Al⊗Bl.

Fact 7.4.4. Let A ∈ Fn×m. Then,

vecA = (Im⊗A) vec Im =
(

AT⊗ In
)

vec In.

Fact 7.4.5. Let A ∈ Fn×m and B ∈ Fm×l. Then,

vecAB = (Il⊗A) vecB =
(

BT⊗A
)

vec Im =
m
∑

i=1

coli
(

BT
)

⊗ coli(A).

Fact 7.4.6. Let A ∈ Fn×m, B ∈ Fm×l, and C ∈ Fl×n. Then,

trABC = (vecA)T(B⊗ I)vecCT.

Fact 7.4.7. Let A,B,C ∈ Fn×n, where C is symmetric. Then,

(vecC)T(A⊗B)vecC = (vecC)T(B⊗A)vecC.

Fact 7.4.8. Let A ∈ Fn×m, B ∈ Fm×l, C ∈ Fl×k, and D ∈ Fk×n.
Then,

trABCD = (vecA)T
(

B⊗DT
)

vecCT.

Fact 7.4.9. Let A ∈ Fn×m, B ∈ Fm×l, and k ∈ P. Then,

(AB)⊗k = A⊗kB⊗k,

where A⊗k 4

= A⊗A⊗ · · ·⊗A, with A appearing k times.

Fact 7.4.10. Let A ∈ Fn×n. Then,

(A⊕A)2 = A2 ⊕A2 + 2A⊗A.

Fact 7.4.11. Let A,C ∈ Fn×m and B,D ∈ Fl×k, and assume that A is
(left equivalent, right equivalent, biequivalent) to C and B is (left equivalent,
right equivalent, biequivalent) to D. Then, A⊗B is (left equivalent, right
equivalent, biequivalent) to C ⊗D.
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Fact 7.4.12. Let A,B,C,D ∈ Fn×n, and assume that A is (similar,
congruent, unitarily similar) to C and B is (similar, congruent, unitarily
similar) to D. Then, A⊗B is (similar, congruent, unitarily similar) to C⊗D.

Fact 7.4.13. Let A1, . . . , Ar ∈ Fn×n be (Hermitian, nonnegative semi-
definite, positive definite, range Hermitian, normal, semisimple, group in-
vertible). Then, so is A1⊗ · · ·⊗Ar.

Fact 7.4.14. Let A1, . . . , Al ∈ Fn×n be skew Hermitian. If l is (even,
odd), then A1⊗ · · ·⊗Al is (Hermitian, skew Hermitian).

Fact 7.4.15. Let A1, . . . , Al ∈ Fn×n be (Hermitian, nonnegative semi-
definite, positive definite, skew Hermitian). Then, so is A1⊕ · · · ⊕Al.

Fact 7.4.16. Let Ai,j ∈ Fni×nj for all i = 1, . . . , k and j = 1, . . . , l.
Then,







A11 A22 · · ·
A21 A22 · · ·
... · · ·.. · · ·..






⊗B =







A11 ⊗B A22 ⊗B · · ·
A21 ⊗B A22 ⊗B · · ·

... · · ·.. · · ·..






.

Fact 7.4.17. Let x ∈ Fk, and let Ai ∈ Fn×ni for all i = 1, . . . , l. Then,

x⊗
[

A1 · · · Al
]

=
[

x⊗A1 · · · x⊗Al
]

.

Fact 7.4.18. Let A ∈ Fn×n be (range Hermitian, normal). Then, so is
A⊕A.

Fact 7.4.19. Let A ∈ Fn×n and B ∈ Fm×m. Then, the eigenvalues

of
∑k,l

i,j=1,1 γijA
i ⊗Bj are of the form

∑k,l
i,j=1,1 γijλ

iµj , where λ ∈ spec(A)

and µ ∈ spec(B) and an associated eigenvector is given by x ⊗ y, where
x ∈ Fn is an eigenvector of A associated with λ ∈ spec(A) and y ∈ Fn is an
eigenvector ofB associated with µ ∈ spec(B). (Remark: This result is due to
Stephanos.) (Proof: Let Ax = λx and By = µy. Then, γij(A

i⊗Bj)(x⊗y) =
γijλ

iµj(x⊗ y). See [217], [353, p. 411], or [384, p. 83].)

Fact 7.4.20. Let A ∈ Fn×m and B ∈ Fl×k. Then,

rank(A⊗B) = (rankA)(rankB).

(Proof: Use the singular value decomposition of A⊗B.) (Remark: See Fact
8.15.9.)

Fact 7.4.21. Let A ∈ Fn×m and B ∈ Fl×k, and assume that nl = mk
and n 6= m. Then, A⊗B is singular. (Proof: See [289, p. 250].)
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Fact 7.4.22. Let A ∈ Fn×m and B ∈ Fm×n. Then, the algebraic
multiplicity of the zero eigenvalue of A ⊗ B is greater than or equal to
|n−m|min{n,m}. (Proof: See [289, p. 249].)

Fact 7.4.23. Let A ∈ Fn×n, B ∈ Fm×m, and let γ ∈ spec(A ⊗ B).
Then,
∑

gmA(λ)gmB(µ) ≤ gmA⊗B(γ) ≤ amA⊗B(γ) =
∑

amA(λ)amB(µ),

where both sums are taken over all λ ∈ spec(A) and µ ∈ spec(B) such that
λµ = γ.

Fact 7.4.24. Let A ∈ Fn×n, B ∈ Fm×m, and let γ ∈ spec(A ⊗ B).
Then, indA⊗B(γ) ≤ 1 if and only if indA(λ) ≤ 1 and indB(µ) ≤ 1 for all
λ ∈ spec(A) and µ ∈ spec(B) such that λµ = γ.

Fact 7.4.25. Let A ∈ Fn×n and B ∈ Fm×m. Then,

indA⊗B = max{indA, indB}.

Fact 7.4.26. Let A ∈ Fn×n, B ∈ Fm×m, and let γ ∈ spec(A ⊕ B).
Then,
∑

gmA(λ)gmB(µ) ≤ gmA⊕B(γ) ≤ amA⊕B(γ) =
∑

amA(λ)amB(µ),

where both sums are taken over all λ ∈ spec(A) and µ ∈ spec(B) such that
λ+ µ = γ.

Fact 7.4.27. Let A ∈ Fn×n, B ∈ Fm×m, and let γ ∈ spec(A ⊕ B).
Then, indA⊕B(γ) ≤ 1 if and only if indA(λ) ≤ 1 and indB(µ) ≤ 1 for all
λ ∈ spec(A) and µ ∈ spec(B) such that λ+ µ = γ.

Fact 7.4.28. Let A ∈ Fn×n and B ∈ Fm×m, where B is nonnegative
semidefinite, and let mspec(B) = {λ1, . . . , λm}m. Then,

det(A⊕B) =
n
∏

i=1

det(λiI +A).

(Proof: See [419, p. 40].) (Remark: Expressions for det(A⊗B+C⊗D) are
given in [419].) (Problem: Weaken the assumption that B is nonnegative
semidefinite.)

Fact 7.4.29. The Kronecker permutation matrix has the following
properties:

i) Pn,m is a permutation matrix.

ii) PT
n,m = Pm,n.
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iii) Pn,m is orthogonal.

iv) Pn,mPm,n = Inm.

v) P1,m = Im and Pn,1 = In.

vi) If x ∈ Fn and y ∈ Fm, then

Pn,m(y⊗x) = x⊗ y.
vii) If A ∈ Fn×m, then

Pn,l(Il⊗A) = (A⊗ Il)Pm,l.
viii) If A ∈ Fn×m and B ∈ Fl×k, then

Pn,l(A⊗B)Pm,k = B⊗A
and

vec(A⊗B) = (Im⊗Pk,n⊗ Il)[(vecA)⊗ (vecB)].

ix) If A ∈ Fn×m and B ∈ Fm×n, then

trAB = tr[Pm,n(A⊗B)].

Fact 7.4.30. Let A ∈ Fn×n, B ∈ Fm×m, and C ∈ Fn×m, and assume
that det(BT⊕A) 6= 0. Then, X ∈ Fn×m satisfies

A2X + 2AXB +XB2 + C = 0

if and only if

X = − vec−1
[

(

BT⊕A
)−2

vecC
]

.

Fact 7.4.31. Let A ∈ Fn×m and B ∈ Fl×k. Then,

(A⊗B)+ = A+⊗B+.

Fact 7.4.32. Let A ∈ Fn×m, and let k ∈ P satisfy 1 ≤ k ≤ min{n,m}.
Furthermore, define the kth compound A(k) to be the

(

n
k

)

×
(

m
k

)

matrix whose
entries are k×k subdeterminants of A, ordered lexicographically. (Example:
For n = k = 3, subsets of the rows and columns of A are chosen in the order
(1, 1, 1), (1, 1, 2), (1, 1, 3), (1, 2, 1), (1, 2, 2), . . ..) Specifically,

(

A(k)
)

(i,j)
is the

k × k subdeterminant of A corresponding to the ith selection of k rows of
A and the jth selection of k columns of A. Then, the following statements
hold:

i)
[

A(k)
]T

=
[

AT
](k)

.

ii) detA(k) = (detA)(
n−1

k−1).

iii) If n = m and A is nonsingular, then
[

A(k)
]−1

=
[

A−1
](k)

.
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iv) If B ∈ Fm×l, then (AB)(k) = A(k)B(k).

Now, assume that n = m, let mspec(A) = {λ1, . . . , λn}m, and, for i =
0, . . . , k, define A(k,i) by

(A+ sI)(k) = skA(k,0) + sk−1A(k,1) + · · ·+ sA(k,k−1) +A(k,k).

Then,

mspec
[

A(2,1)
]

= {λi + λj : i, j = 1, . . . , n, i < j}m,

mspec
(

A(2)
)

= {λiλj : i, j = 1, . . . , n, i < j}m,

and

mspec

(

[

A(2,1)
]2
− 4A(2)

)

=
{

(λi − λj)2: i, j = 1, . . . , n, i < j
}

m
.

(Proof: See [202, pp. 142–155] and [466, p. 124].) (Remark:
(

A(2,1)
)2−4A(2)

is the discriminant of A. The discriminant of A is singular if and only
if A has a repeated eigenvalue.) (Remark: The compound operation is
related to the bialternate product since mspec(2A · I) = mspec

(

A(2,1)
)

and

mspec(A·A) = mspec
(

A(2)
)

. See [217,239], [319, pp. 313–320], and [384, pp.
84, 85].) (Problem: Express A ·B in terms of compounds.)

7.5 Facts on the Schur Product

Fact 7.5.1. Let x, y, z ∈ Fn. Then,

xT(y ◦ z) = zT(x ◦ y) = yT(x ◦ z).

Fact 7.5.2. Let w, y ∈ Fn and x, z ∈ Fm. Then,
(

wxT
)

◦
(

yzT
)

= (w ◦ y)(x ◦ z)T.

Fact 7.5.3. Let A ∈ Fn×n and d ∈ Fn. Then,

diag(d)A = A ◦ d11×n.

Fact 7.5.4. Let A ∈ Fn×m, D1 ∈ Fn×n, and D2 ∈ Fm×m, where D1

and D2 are diagonal. Then,

(D1A) ◦ (BD2) = D1(A ◦B)D2.

Fact 7.5.5. Let A ∈ Fn×m and B ∈ Fl×k. Then,

rank(A ◦B) ≤ rank(A⊗B) = (rankA)(rankB).

(Proof: Use Proposition 7.3.1.) (Remark: See Fact 8.15.9.)
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Fact 7.5.6. Let A,B ∈ Fn×m. Then,

tr
[

(A ◦B)(A ◦B)T
]

= tr
[

(A ◦A)(B ◦B)T
]

.

Fact 7.5.7. Let A ∈ Fn×m, B ∈ Fm×n, a ∈ Fm, and b ∈ Fn. Then,

tr
[

A
(

B ◦ abT
)]

= bT
(

A ◦BT
)

a.

Fact 7.5.8. Let A,B ∈ Fn×m and C ∈ Fm×n. Then,

I ◦
[

A
(

BT◦C
)]

= I ◦ [(A ◦B)C] = I ◦
[(

A ◦CT
)

BT
]

.

Hence,
tr
[

A
(

BT◦C
)]

= tr[(A ◦B)C] = tr
[(

A ◦CT
)

BT
]

.

Fact 7.5.9. Let x ∈ Rm, A ∈ Rn×m, and define xA ∈ Rn by

xA
4

=











x
A(1,1)

(1) · · ·xA(1,m)

(m)

...

x
A(n,1)

(1) · · ·xA(n,m)

(m)











,

where every entry is assumed to exist. Then, the following statements hold:

i) If a ∈ R, then ax =

[

a
x(1)

...
a

x(m)

]

.

ii) x−A =
(

xA
){−1}

.

iii) If y ∈ Rm, then (x ◦ y)A = xA ◦ yA.
iv) If B ∈ Rn×m, then xA+B = xA ◦xB.

v) If B ∈ Rl×n, then
(

xA
)B

= xBA.

vi) If a ∈ R, then (ax)A = aAx.

vii) If AL ∈ Rm×n is a left inverse of A and y = xA, then x = yA
L

.

viii) If A ∈ Rn×n is nonsingular and y = xA, then x = yA
−1

.

ix) Define f(x)
4

= xA. Then, f ′(x) = diag
(

xA
)

Adiag
(

x{−1}).

(Remark: These operations arise in modeling chemical reaction kinetics.
See [365].)

Fact 7.5.10. Let A ∈ Rn×n be nonsingular. Then,
(

A ◦A−T
)

1n×1 = 1n×1

and
11×n

(

A ◦A−T
)

= 11×n.
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(Proof: See [316].)

Fact 7.5.11. Let A ∈ Rn×n, and assume that A ≥≥ 0. Then,

sprad
[

(

A ◦AT
){1/2}] ≤ sprad(A) ≤ sprad

[

1
2

(

A+AT
)]

.

(Proof: See [502].)

Fact 7.5.12. Let A1, . . . , Ar ∈ Rn×n and α1, . . . , αr ∈ R, where Ai ≥≥
0 for all i = 1, . . . , r, αi > 0 for all i = 1, . . . , r, and

∑r
i=1αi ≥ 1. Then,

sprad
(

A
{α1}
1 ◦ · · · ◦A{αr}

r

)

≤
r
∏

i=1

[sprad(Ai)]
αi .

In particular, let A ∈ Rn×n be such that A ≥≥ 0. Then, for all α ≥ 1,

sprad
(

A{α}
)

≤ [sprad(A)]α

and, for all α ≤ 1,

[sprad(A)]α ≤ sprad
(

A{α}
)

.

Furthermore,

sprad
(

A{1/2} ◦AT{1/2}
)

≤ sprad(A)

and
[sprad(A ◦A)]1/2 ≤ sprad(A).

If, in addition, B ∈ Rn×n is such that B ≥≥ 0, then

sprad(A ◦B) ≤ [sprad(A ◦A) sprad(B ◦B)]1/2 ≤ sprad(A) sprad(B)

and
sprad

(

A{1/2} ◦B{1/2}
)

≤
√

sprad(A) sprad(B).

If, in addition, A >> 0 and B >> 0, then

sprad(A ◦B) < sprad(A) sprad(B).

(Proof: See [187,322].)

7.6 Notes

A history of the Kronecker product is given in [275]. Kronecker matrix
algebra is discussed in [111,242,276,388,412,518,575]. Applications to signal
processing are considered in [479].

The fact that the Schur product is a principal submatrix of the Kro-
necker product is noted in [394]. A variation of Kronecker matrix algebra
for symmetric matrices can be developed in terms of the half-vectorization
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operator “vech” and associated elimination and duplication matrices [276,
387,559].

Generalizations of the Schur and Kronecker products, known as the
block-Kronecker, Khatri-Rao, and Tracy-Singh products, are discussed in
[292, 303, 338, 377]. Another related operation is the bialternate product,
which is a variation of the compound operation discussed in Fact 7.4.32.
See [217,239], [319, pp. 313–320], and [384, pp. 84, 85]. The Schur product
is also called the Hadamard product.
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Chapter Eight

Nonnegative-Semidefinite Matrices

In this chapter we focus on nonnegative-semidefinite and positive-
definite matrices. These matrices arise in a variety of applications, such
as covariance analysis in signal processing and controllability analysis in
linear system theory, and they have many special properties.

8.1 Nonnegative-Semidefinite and Positive-Definite
Orderings

Let A ∈ Fn×n be a Hermitian matrix. As shown in Corollary 5.4.5, A
is unitarily similar to a real diagonal matrix whose diagonal entries are the
eigenvalues of A. We denote these eigenvalues by λ1, . . . , λn or, for clarity,
by λ1(A), . . . , λn(A). As in Chapter 3, we employ the convention

λ1≥ λ2 ≥ · · · ≥ λn, (8.1.1)

and, for convenience, we define

λmax(A)
4

= λ1, λmin(A)
4

= λn. (8.1.2)

Then, A is nonnegative semidefinite if and only if λmin(A) ≥ 0, while A is
positive definite if and only if λmin(A) > 0.

For convenience, let H
n,Nn, and P

n denote, respectively, the Her-
mitian, nonnegative-semidefinite, and positive-definite matrices in Fn×n.
Hence, P

n ⊂ N
n ⊂ H

n. If A ∈ N
n, then we write A ≥ 0, while if A ∈ P

n,
then we write A > 0. If A,B ∈ H

n, then A − B ∈ N
n is possible even if

neither A nor B is nonnegative semidefinite. In this case, we write A ≥ B
or B ≤ A. Similarly, A − B ∈ P

n is denoted by A > B or B < A. This
notation is consistent with the case n = 1, where H

1 = R, N
1 = [0,∞), and

P
1 = (0,∞).

Note that, since 0 ∈ N
n, it follows that N

n is a pointed cone. Fur-
thermore, if A,−A ∈ N

n, then x∗Ax = 0 for all x ∈ Fn, which implies that
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A = 0. Hence, N
n is a one-sided cone. Finally, N

n and P
n are convex cones

since, if A,B ∈ N
n, then αA + βB ∈ N

n for all α, β > 0 and likewise for
P
n. The following result shows that the relation “≤” is a partial ordering

on H
n.

Proposition 8.1.1. The relation “≤” is reflexive, antisymmetric, and
transitive on H

n, that is, if A,B,C ∈ H
n, then the following statements

hold:

i) A ≤ A.

ii) If A ≤ B and B ≤ A, then A = B.

iii) If A ≤ B and B ≤ C, then A ≤ C.

Proof. Since N
n is a pointed, one-sided, and convex cone, it follows

from Proposition 2.3.6 that the relation “≤” is reflexive, antisymmetric, and
transitive.

Additional properties of “≤” and “<” are given by the following result.

Proposition 8.1.2. Let A,B,C,D ∈ H
n. Then, the following state-

ments hold:

i) If A ≥ 0, then αA ≥ 0 for all α ≥ 0, and αA ≤ 0 for all α ≤ 0.

ii) If A > 0, then αA > 0 for all α > 0, and αA < 0 for all α < 0.

iii) If A ≥ 0 and B ≥ 0, then αA+ βB ≥ 0 for all α, β ≥ 0.

iv) If A ≥ 0 and B > 0, then A+B > 0.

v) A2 ≥ 0.

vi) A2 > 0 if and only if detA 6= 0.

vii) If A ≤ B and B < C, then A < C.

viii) If A < B and B ≤ C, then A < C.

ix) If A ≤ B and C ≤ D, then A+ C ≤ B +D.

x) If A ≤ B and C < D, then A+ C < B +D.

Furthermore, let S ∈ Fm×n. Then, the following statements hold:

xi) If A ≤ B, then SAS∗ ≤ SBS∗.

xii) If A < B and rankS = m, then SAS∗ < SBS∗.

xiii) If SAS∗ ≤ SBS∗ and rankS = n, then A ≤ B.
xiv) If SAS∗ < SBS∗ and rankS = n, then m = n and A < B.
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Proof. Results i) – xi) are immediate. To prove xii) note that A < B
implies that (B − A)1/2 is positive definite. Thus, rankS(A − B)1/2 = m,
which implies that S(A−B)S∗ is positive definite. To prove xiii) note that,
since rankS = n, it follows that S has a left inverse SL ∈ Fn×m. Thus, xi)
implies that A = SLSAS∗SL∗ ≤ SLSBS∗SL∗ = B. To prove xiv), note that,
since S(B − A)S∗ is positive definite, it follows that rankS = m. Hence,
m = n and S is nonsingular. Thus, xii) implies that A = S−1SAS∗S−∗ <
S−1SBS∗S−∗ = B.

The following result is an immediate consequence of Corollary 5.4.7.

Corollary 8.1.3. Let A,B ∈ H
n and assume that A and B are con-

gruent. Then, A is nonnegative semidefinite if and only if B is nonnegative
semidefinite. Furthermore, A is positive definite if and only if B is positive
definite.

Lemma 8.1.4. Let A ∈ P
n. If A ≤ I, then A−1 ≥ I. Furthermore, if

A < I, then A−1 > I.

Proof. Since A ≤ I, it follows from xi) of Proposition 8.1.2 that I =
A−1/2AA−1/2 ≤ A−1/2IA−1/2 = A−1. Similarly, A < I implies that I =
A−1/2AA−1/2 < A−1/2IA−1/2 = A−1.

Proposition 8.1.5. Let A,B ∈ H
n be both positive definite or both

negative definite. If A ≤ B, then B−1 ≤ A−1. If, in addition, A < B, then
B−1 < A−1.

8.2 Submatrices

We first consider some identities involving a partitioned nonnegative-
semi-definite matrix.

Lemma 8.2.1. Let A =
[

A11 A12

AT
12 A22

]

∈ N
n+m. Then,

A12 = A11A
+
11A12, (8.2.1)

A12 = A12A22A
+
22. (8.2.2)

Proof. Since A ≥ 0, it follows from Corollary 5.4.5 that A = BB∗,
where B =

[

B1

B2

]

∈ F(n+m)×r and r
4

= rankA. Thus, A11 = B1B
∗
1 , A12 =

B1B
∗
2 , and A22 = B2B

∗
2 . Since A11 is Hermitian, it follows that A+

11 is

also Hermitian. Next, defining S
4

= B1− B1B
∗
1(B1B

∗
1)+B1, it follows that

SS∗ = 0 and thus trSS∗ = 0. Hence, Lemma 2.2.3 implies that S = 0, and
thus B1 = B1B

∗
1(B1B

∗
1)+B1. Consequently, B1B

∗
2 = B1B

∗
1(B1B

∗
1)+B1B2, that
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is, A12 = A11A
+
11A12. The second result is analogous.

Corollary 8.2.2. Let A =
[

A11 A12

A∗
12 A22

]

∈ N
n+m. Then, the following

statements hold:

i) R(A12) ⊆ R(A11).

ii) R(A∗
12) ⊆ R(A22).

iii) rank
[

A11 A12

]

= rankA11.

iv) rank
[

A∗
12 A22

]

= rankA22.

Proof. Results i) and ii) follow from (8.2.1) and (8.2.2), while iii) and
iv) are consequences of i) and ii).

Next, if (8.2.1) holds, then the partitioned matrix A
4

=
[

A11 A12

A∗
12 A22

]

can

be factored as
[

A11 A12

A∗
12 A22

]

=

[

I 0
A∗

12A
+
11 I

] [

A11 0
0 A11|A

] [

I A+
11A12

0 I

]

, (8.2.3)

while if (8.2.2) holds, then
[

A11 A12

A∗
12 A22

]

=

[

I A12A
+
22

0 I

] [

A22|A 0
0 A22

] [

I 0
A+

22A
∗
12 I

]

, (8.2.4)

where
A11|A = A22 −A∗

12A
+
11A12 (8.2.5)

and
A22|A = A11 −A12A

+
22A

∗
12. (8.2.6)

Hence, it follows from Lemma 8.2.1 that, if A is nonnegative semidefinite,
then (8.2.3) and (8.2.4) are valid, and, furthermore, the Schur complements
A11|A and A22|A are both nonnegative semidefinite. Consequently, we have
the following result.

Proposition 8.2.3. Let A
4

=
[

A11 A12

A∗
12 A22

]

∈ H
n+m. Then, the following

statements are equivalent:

i) A ≥ 0.

ii) A11 ≥ 0, A12 = A11A
+
11A12, and A∗

12A
+
11A12 ≤ A22.

iii) A22 ≥ 0, A12 = A12A22A
+
22, and A12A

+
22A

∗
12 ≤ A11.

The following statements are also equivalent:

iv) A > 0.

v) A11 > 0 and A∗
12A

−1
11A12 < A22.
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vi) A22 > 0 and A12A
−1
22A

∗
12 < A11.

The following result follows from (2.8.16) and (2.8.17).

Proposition 8.2.4. Let A
4

=
[

A11 A12

A∗
12 A22

]

∈ P
n+m. Then,

A−1 =





A−1
11 +A−1

11A12(A11|A)−1A∗
12A

−1
11 −A−1

11A12(A11|A)−1

−(A11|A)−1A∗
12A

−1
11 (A11|A)−1



 (8.2.7)

and

A−1 =





(A22|A)−1 −(A22|A)−1A12A
−1
22

−A−1
22A

∗
12(A22|A)−1 A−1

22A
∗
12(A22|A)−1A12A

−1
22 +A−1

22



, (8.2.8)

where

A11|A = A22 −A∗
12A

−1
11A12 (8.2.9)

and
A22|A = A11 −A12A

−1
22A

∗
12. (8.2.10)

Now, let A−1 =
[

B11 B12

B∗
12 B22

]

. Then,

B11|A−1 = A−1
22 (8.2.11)

and
B22|A−1 = A−1

11 . (8.2.12)

Lemma 8.2.5. Let A ∈ Fn×n, b ∈ Fn, and a ∈ R. Then, B
4

=
[

A b
b∗ a

]

is nonnegative semidefinite if and only if A is nonnegative semidefinite, b =
AA+b, and b∗A+b ≤ a. Furthermore, B is positive definite if and only if A is
positive definite and b∗A−1b < a. In this case,

detB = (detA)
(

a− b∗A−1b
)

. (8.2.13)

For the following result note that a matrix is a principal submatrix of
itself and the determinant of a matrix is also a principal subdeterminant.

Proposition 8.2.6. Let A ∈ H
n. Then, the following statements are

equivalent:

i) A is nonnegative semidefinite.

ii) Every principal submatrix of A is nonnegative semidefinite.

iii) Every principal subdeterminant of A is nonnegative.

iv) For all i = 1, . . . , n, the sum of all i × i principal subdeterminants
of A is nonnegative.
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Proof. To prove i) =⇒ ii), let Â ∈ Fm×m be the principal submatrix
of A obtained from A by retaining rows and columns i1, . . . , im. Then,
Â = STAS, where S

4

=
[

ei1 · · · eim
]

∈ Rn×m. Now, let x̂ ∈ Fm. Since A

is nonnegative semidefinite, it follows that x̂∗Âx̂ = x̂∗STASx̂ ≥ 0, and thus
Â is nonnegative semidefinite.

Next, the implications ii) =⇒ iii) =⇒ iv) are immediate. To prove iv)
=⇒ i), note that it follows from Proposition 4.4.5 that

χA(s) =
n
∑

i=0

βis
i =

n
∑

i=0

(−1)n−iγn−is
i = (−1)n

n
∑

i=0

γn−i(−s)i, (8.2.14)

where, for all i = 1, . . . , n, γi is the sum of all i × i principal subdetermi-
nants of A, and βn = γ0 = 1. By assumption, γi ≥ 0 for all i = 1, . . . , n.
Now, suppose that there exists λ ∈ spec(A) such that λ < 0. Then,
0 = (−1)nχA(λ) =

∑n
i=0 γn−i(−λ)i > 0, which is a contradiction.

Proposition 8.2.7. Let A ∈ H
n. Then, the following statements are

equivalent:

i) A is positive definite.

ii) Every principal submatrix of A is positive definite.

iii) Every principal subdeterminant of A is positive.

iv) Every leading principal submatrix of A is positive definite.

v) Every leading principal subdeterminant of A is positive.

Proof. To prove i) =⇒ ii), let Â ∈ Fm×m and S be as in the proof
of Proposition 8.2.6 and let x̂ be nonzero so that Sx̂ is nonzero. Since A is
positive definite, it follows that x̂∗Âx̂ = x̂∗STASx̂ > 0 and hence Â is positive
definite.

Next, the implications i) =⇒ ii) =⇒ iii) =⇒ v) and ii) =⇒ iv) =⇒
v) are immediate. To prove v) =⇒ i), suppose that the leading principal
submatrix Ai ∈ Fi×i has positive determinant for all i = 1, . . . , n,. The result
is true for n = 1. For n ≥ 2, we show that if Ai is positive definite, then so is

Ai+1. Writing Ai+1 =
[

Ai bi

b∗i ai

]

, it follows from Lemma 8.2.5 that detAi+1 =

(detAi)
(

ai − b∗iA−1
i bi
)

> 0 and hence ai − b∗iA
−1
i bi = detAi+1/detAi > 0.

Lemma 8.2.5 now implies that Ai+1 is positive definite. Using this argument
for all i = 2, . . . , n implies that A is positive definite.

The example A =
[

0 0
0 −1

]

shows that every principal subdeterminant
of A, rather than just the leading principal subdeterminants of A, must be
checked to determine whether A is nonnegative semidefinite. A less obvious
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example is A =
[

1 1 1
1 1 1
1 1 0

]

, whose eigenvalues are 0, 1 +
√

3, and 1 −
√

3. In

this case, the principal subdeterminant detA[1,1] = det [ 1 1
1 0 ] < 0.

Corollary 8.2.8. Let A ∈ N
n. Then, every diagonally located square

submatrix of A is nonnegative semidefinite. If, in addition, A is positive
definite, then every diagonally located square submatrix of A is positive
definite.

8.3 Simultaneous Diagonalization

This section considers the simultaneous diagonalization of a pair of
matrices A,B ∈ H

n. There are two types of simultaneous diagonalization.
Cogredient diagonalization involves a nonsingular matrix S ∈ Fn×n such
that SAS∗ and SBS∗ are both diagonal, whereas contragredient diagonal-
ization involves finding a nonsingular matrix S ∈ Fn×n such that SAS∗ and
S−∗BS−1 are both diagonal. Both types of simultaneous transformation in-
volve only congruence transformations. We begin by assuming that one of
the matrices is positive definite, in which case the results are quite simple
to prove. Our first result involves cogredient diagonalization.

Theorem 8.3.1. Let A,B ∈ H
n and assume that A is positive definite.

Then, there exists a nonsingular matrix S ∈ Fn×n such that SAS∗ = I and
SBS∗ is diagonal.

Proof. Setting S1 = A−1/2 it follows that S1AS
∗
1 = I. Now, since S1BS

∗
1

is Hermitian, it follows from Corollary 5.4.5 that there exists a unitary
matrix S2 ∈ Fn×n such that SBS∗ = S2S1BS

∗
1S

∗
2 is diagonal, where S =

S2S1. Finally, SAS∗ = S2S1AS
∗
1S

∗
2 = S2IS

∗
2 = I.

An analogous result holds for contragedient diagonalization.

Theorem 8.3.2. LetA,B ∈ H
n, and assume thatA is positive definite.

Then, there exists a nonsingular matrix S ∈ Fn×n such that SAS∗ = I and
S−∗BS−1 is diagonal.

Proof. Setting S1 = A−1/2 it follows that S1AS
∗
1 = I. Since S−∗

1 BS−1
1

is Hermitian, it follows that there exists a unitary matrix S2 ∈ Fn×n such
that S−∗BS−1 = S−∗

2 S−∗
1 BS−1

1 S−1
2 = S2

(

S−∗
1 BS−1

1

)

S∗
2 is diagonal, where S =

S2S1. Finally, SAS∗ = S2S1AS
∗
1S

∗
2 = S2IS

∗
2 = I.

Corollary 8.3.3. Let A,B ∈ P
n. Then, there exists a nonsingular

matrix S ∈ Fn×n such that SAS∗ and S−∗BS−1 are equal and diagonal.
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Proof. By Theorem 8.3.2 there exists a nonsingular matrix S1 ∈ Fn×n

such that S1AS
∗
1 = I and B1 = S−∗

1 BS−1
1 is diagonal. Defining S

4

= B
1/4
1 S1

yields SAS∗ = S−∗BS−1 = B
1/2
1 .

The transformation S of Corollary 8.3.3 is a balancing transformation.

Next, we weaken the requirement in Theorem 8.3.1 and Theorem 8.3.2
that A be positive definite by assuming only that A is nonnegative semidef-
inite. In this case, however, we assume that B is also nonnegative semidefi-
nite.

Theorem 8.3.4. Let A,B ∈ N
n. Then, there exists a nonsingular

matrix S ∈ Fn×n such that SAS∗ =
[

I 0
0 0

]

and SBS∗ is diagonal.

Proof. Let the nonsingular matrix S1 ∈ Fn×n be such that S1AS
∗
1 =

[

I 0
0 0

]

, and similarly partition S1BS
∗
1 =

[

B11 B12

B∗
12 B22

]

, which is nonnegative

semidefinite. Letting S2
4

=
[

I −B12B
+
22

0 I

]

it follows from Lemma 8.2.1 that

S2S1BS
∗
1S

∗
2 =

[

B11 −B12B
+
22B

∗
12 0

0 B22

]

.

Next, let U1 and U2 be unitary matrices such that U1(B11 −B12B
+
22B

∗
12)U

∗
1

and U2B22U
∗
2 are diagonal. Then, defining S3

4

=
[

U1 0
0 U2

]

and S
4

= S3S2S1,

it follows that SAS∗ =
[

I 0
0 0

]

and SBS∗ = S3S2S1BS
∗
1S

∗
2S

∗
3 is diagonal.

Theorem 8.3.5. Let A,B ∈ N
n. Then, there exists a nonsingular

matrix S ∈ Fn×n such that SAS∗ =
[

I 0
0 0

]

and S−∗BS−1 is diagonal.

Proof. Let S1 ∈ Fn×n be a nonsingular matrix such that S1AS
∗
1 =

[

I 0
0 0

]

, and similarly partition S−∗
1 BS−1

1 =
[

B11 B12

B∗
12 B22

]

, which is nonnegative

semidefinite. Letting S2
4

=
[

I B+
11B12

0 I

]

, it follows that

S−∗
2 S−∗

1 BS−1
1 S−1

2 =

[

B11 0
0 B22 −B∗

12B
+
11B12

]

.

Now, let U1 and U2 be unitary matrices such that U1B11U
∗
1 and U2(B22 −

B∗
12B

+
11B12)U

∗
2 are diagonal. Then, defining S3

4

=
[

U1 0
0 U2

]

and S
4

= S3S2S1,

it follows that SAS∗ =
[

I 0
0 0

]

and S−∗BS−1 = S−∗
3 S−∗

2 S−∗
1 BS−1

1 S−1
2 S

−1
3 is

diagonal.

Corollary 8.3.6. Let A,B ∈ N
n. Then, AB is semisimple, and every

eigenvalue of AB is nonnegative. If, in addition, A and B are positive
definite, then every eigenvalue of AB is positive.
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Proof. It follows from Theorem 8.3.5 that there exists a nonsingular
matrix S ∈ Rn×n such that A1 = SAS∗ and B1 = S−∗BS−1 are diagonal
with nonnegative diagonal entries. Hence, AB = S−1A1B1S is semisimple
and has nonnegative eigenvalues.

A more direct approach to showing that AB has nonnegative eigenval-
ues is to use Corollary 4.4.10 and note that λi(AB) = λi

(

B1/2AB1/2
)

≥ 0.

Corollary 8.3.7. Let A,B ∈ N
n and assume that rankA = rankB =

rankAB. Then, there exists a nonsingular matrix S ∈ Fn×n such that
SAS∗ = S−∗BS−1 and such that SAS∗ is diagonal.

Proof. By Theorem 8.3.5 there exists a nonsingular matrix S1 ∈ Fn×n

such that S1AS
∗
1 =

[

Ir 0
0 0

]

, where r
4

= rankA, and such that B1 = S−∗
1 BS−1

1 is

diagonal. Hence, AB = S−1
1

[

Ir 0
0 0

]

B1S1. Since rankA = rankB = rankAB =

r, it follows that B1 =
[

B̂1 0
0 0

]

, where B̂1 ∈ Fr×r is positive diagonal. Hence,

S−∗
1 BS−1

1 =
[

B̂1 0
0 0

]

. Now, define S2
4

=
[

B̂
1/4
1 0
0 I

]

and S
4

= S2S1. Then,

SAS∗ = S2S1AS
∗
1S

∗
2 =

[

B̂
1/2
1 0
0 0

]

= S−∗
2 S−∗

1 BS−1
1 S

−1
2 = S−∗BS−1.

8.4 Eigenvalue Inequalities

Next, we turn our attention to inequalities involving eigenvalues. We
begin with a series of lemmas.

Lemma 8.4.1. Let A ∈ H
n and let β ∈ R. Then, the following state-

ments hold:

i) βI ≤ A if and only if β ≤ λmin(A).

ii) βI < A if and only if β < λmin(A).

iii) A ≤ βI if and only if λmax(A) ≤ β.

iv) A < βI if and only if λmax(A) < β.

Proof. To prove i) assume that βI ≤ A, and let S ∈ Fn×n be a
unitary matrix such that B = SAS∗ is diagonal. Then, βI ≤ B, which
yields β ≤ λmin(B) = λmin(A). Conversely, let S ∈ Fn×n be a unitary
matrix such that B = SAS∗ is diagonal. Since the diagonal entries of B
are the eigenvalues of A, it follows that λmin(A)I ≤ B, which implies that
βI ≤ λmin(A)I ≤ S∗BS = A. Results ii), iii) and iv) are proved in a similar
manner.
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Corollary 8.4.2. Let A ∈ H
n. Then,

λmin(A)I ≤ A ≤ λmax(A)I. (8.4.1)

Proof. The result follows from i) and ii) of Lemma 8.4.1 with β =
λmin(A) and β = λmax(A), respectively.

Lemma 8.4.3. Let A ∈ H
n. Then,

λmin(A) = min
x∈Fn\{0}

x∗Ax
x∗x

(8.4.2)

and

λmax(A) = max
x∈Fn\{0}

x∗Ax
x∗x

. (8.4.3)

Proof. It follows from (8.4.1) that λmin(A) ≤ x∗Ax/x∗x for all nonzero
x ∈ Fn. Letting x ∈ Fn be an eigenvector of A associated with λmin(A), it
follows that this lower bound is attained. This proves (8.4.2). An analogous
argument yields (8.4.3).

The following result is the Cauchy interlacing theorem.

Lemma 8.4.4. Let A ∈ H
n and let A0 be an (n−1)× (n−1) principal

submatrix of A. Then, for all i = 1, . . . , n−1,

λi+1(A) ≤ λi(A0) ≤ λi(A). (8.4.4)

Proof. Suppose that the chain of inequalities (8.4.4) does not hold.
In particular, first suppose that the right-most inequality in (8.4.4) that
is not true is λi(A0) ≤ λi(A), so that λi(A) < λi(A0). Choose δ such
that λi(A) < δ < λi(A0) and such that δ is not an eigenvalue of A0. If
i = 1, then A − δI is negative definite, while if i ≥ 2, then λi(A) < δ <
λi(A0) ≤ λi−1(A0) ≤ λi−1(A), so that A− δI has i−1 positive eigenvalues.
Thus, ν+(A − δI) = i − 1. Furthermore, since δ < λi(A0), it follows that
ν+(A0 − δI) ≥ i.

Now, assume for convenience that the rows and columns of A are
ordered so that A0 is the (n−1)× (n−1) leading principal submatrix of A.

Thus, A =
[

A0 β
β∗ γ

]

, where β ∈ Fn−1 and γ ∈ F. Next, note the identity

A− δI (8.4.5)

=

[

I 0

β∗(A0 − δI)−1 1

] [

A0 − δI 0

0 γ − δ − β∗(A0 − δI)−1β

] [

I (A0 − δI)−1β

0 1

]

,

where A0 − δI is nonsingular since δ was chosen to not be an eigenvalue of
A0. Since the right-hand side of this identity involves a congruence trans-
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formation and, since ν+(A0 − δI) ≥ i, it follows from Corollary 5.4.7 that
ν+(A− δI) ≥ i. However, this contradicts the fact that ν+(A− δI) = i−1.

Finally, suppose that the right-most inequality in (8.4.4) that is not
true is λi+1(A) ≤ λi(A0), so that λi(A0) < λi+1(A). Choose δ such that
λi(A0) < δ < λi+1(A) and such that δ is not an eigenvalue of A0. Then, it
follows that ν+(A−δI) ≥ i+1 and ν+(A0−δI) = i−1. Using the congruence
transformation as in the previous case, it follows that ν+(A− δI) ≤ i, which
contradicts the fact that ν+(A− δI) ≥ i+ 1.

The following result is the inclusion principle.

Theorem 8.4.5. Let A ∈ H
n and let A0 ∈ H

k be a k × k principal
submatrix of A. Then, for all i = 1, . . . , k,

λi+n−k(A) ≤ λi(A0) ≤ λi(A). (8.4.6)

Proof. If k = n−1, then the result is given by Lemma 8.4.4. Hence,
let k = n−2, and let A1 denote an (n−1)× (n−1) principal submatrix of A
such that the (n−2)×(n−2) principal submatrix A0 of A is also a principal
submatrix of A1. Therefore, Lemma 8.4.4 implies that λn(A) ≤ λn−1(A1) ≤
· · · ≤ λ2(A1) ≤ λ2(A) ≤ λ1(A1) ≤ λ1(A) and λn−1(A1) ≤ λn−2(A0) ≤ · · · ≤
λ2(A0) ≤ λ2(A1) ≤ λ1(A0) ≤ λ1(A1). Combining these inequalities yields
λi+2(A) ≤ λi(A0) ≤ λi(A) for all i = 1, . . . , n − 2, while proceeding in a
similar manner with k < n− 2 yields (8.4.6).

Corollary 8.4.6. Let A ∈ H
n and let A0 ∈ H

k be a k × k principal
submatrix of A. Then,

λmin(A) ≤ λmin(A0) ≤ λmax(A0) ≤ λmax(A) (8.4.7)

and
λmin(A0) ≤ λk(A). (8.4.8)

Corollary 8.4.7. Let A ∈ H
n. Then,

λmin(A) ≤ dmin(A) ≤ dmax(A) ≤ λmax(A). (8.4.9)

Lemma 8.4.8. Let A,B ∈ H
n, and assume that A ≤ B and mspec(A)

= mspec(B). Then, A = B.

Proof. Let α ≥ 0 be such that 0 < Â ≤ B̂, where Â
4

= A+αI and B̂
4

=
B + αI. Note that mspec(Â) = mspec(B̂) and thus det Â = det B̂. Next, it

follows that I ≤ Â−1/2B̂Â−1/2. Hence, it follows from i) of Lemma 8.4.1 that

λmin

(

Â−1/2B̂Â−1/2
)

≥ 1. Furthermore, det
(

Â−1/2B̂Â−1/2
)

= det B̂/det Â =

1, which implies that λi(Â
−1/2B̂Â−1/2) = 1 for all i = 1, . . . , n. Hence,
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Â−1/2B̂Â−1/2 = I and thus Â = B̂. Hence, A = B.

The following result is the monotonicity theorem or Weyl’s inequality.

Theorem 8.4.9. Let A,B ∈ H
n, and assume that A ≤ B. Then, for

all i = 1, . . . , n,
λi(A) ≤ λi(B). (8.4.10)

If A 6= B, then there exists i ∈ {1, . . . , n} such that

λi(A) < λi(B). (8.4.11)

If A < B, then (8.4.11) holds for all i = 1, . . . , n.

Proof. Since A ≤ B, it follows from Corollary 8.4.2 that λmin(A)I ≤
A ≤ B ≤ λmax(B)I. Hence, by iii) and i) of Lemma 8.4.1 it follows that
λmin(A) ≤ λmin(B) and λmax(A) ≤ λmax(B). Next, let S ∈ Fn×n be a
unitary matrix such that SAS∗ = diag[λ1(A), . . . , λn(A)]. Furthermore, for
2 ≤ i ≤ n−1, let A0 = diag[λ1(A), . . . , λi(A)] and B0 denote the i× i leading
principal submatrices of SAS∗ and SBS∗, respectively. Since A ≤ B, it
follows that A0 ≤ B0, which implies that λmin(A0) ≤ λmin(B0). It now
follows from (8.4.8) that

λi(A) = λmin(A0) ≤ λmin(B0) ≤ λi(SBS∗) = λi(B),

which proves (8.4.10). If A 6= B, then it follows from Lemma 8.4.8 that
mspec(A) 6= mspec(B) and thus there exists i ∈ {1, . . . , n} such that (8.4.11)
holds. If A < B, then λmin(A0) < λmin(B0), which implies that (8.4.11) holds
for all i = 1, . . . , n.

Corollary 8.4.10. Let A,B ∈ H
n. Then, the following statements

hold:

i) If A ≤ B, then trA ≤ trB.

ii) If A ≤ B and trA = trB, then A = B.

iii) If A < B, then trA < trB.

iv) If 0 ≤ A ≤ B, then 0 ≤ detA ≤ detB.

v) If 0 ≤ A < B, then 0 ≤ detA < detB.

vi) If 0 < A ≤ B and detA = detB, then A = B.

Proof. Statements i), iii), iv), v) follow from Theorem 8.4.9. To prove
ii) note that, since A ≤ B and trA = trB, it follows from Theorem 8.4.9
that mspec(A) = mspec(B). Now, Lemma 8.4.8 implies that A = B. A
similar argument yields vi).
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The following result, which is a generalization of Theorem 8.4.9, is due
to Weyl.

Theorem 8.4.11. Let A,B ∈ H
n. If i+ j ≥ n+ 1, then

λi(A) + λj(B) ≤ λi+j−n(A+B). (8.4.12)

If i+ j ≤ n+ 1, then

λi+j−1(A+B) ≤ λi(A) + λj(B). (8.4.13)

In particular, for all i = 1, . . . , n,

λi(A) + λmin(B) ≤ λi(A+B) ≤ λi(A) + λmax(B), (8.4.14)

λmin(A) + λmin(B) ≤ λmin(A+B) ≤ λmin(A) + λmax(B), (8.4.15)

λmax(A) + λmin(B) ≤ λmax(A+B) ≤ λmax(A) + λmax(B). (8.4.16)

Proof. See [287, p. 182].

Lemma 8.4.12. Let A,B,C ∈ H
n. If A ≤ B and C is nonnegative

semidefinite, then
trAC ≤ trBC. (8.4.17)

If A < B and C is positive definite, then

trAC < trBC. (8.4.18)

Proof. Since C1/2AC1/2 ≤ C1/2BC1/2, it follows from i) of Corollary
8.4.10 that

trAC = trC1/2AC1/2 ≤ trC1/2BC1/2 = trBC.

Result (8.4.18) follows from ii) of Corollary 8.4.10 in a similar fashion.

Proposition 8.4.13. Let A,B ∈ Fn×n, and assume that B is nonneg-
ative semidefinite. Then,

1
2λmin(A+A∗)trB ≤ trAB ≤ 1

2λmax(A+A∗)trB. (8.4.19)

If, in addition, A is Hermitian, then

λmin(A)trB ≤ trAB ≤ λmax(A)trB. (8.4.20)

Proof. It follows from Corollary 8.4.2 that 1
2λmin(A+A∗)I ≤ 1

2(A+A∗),
while Lemma 8.4.12 implies that 1

2λmin(A+A∗)trB = tr 1
2λmin(A+A∗)IB ≤

tr 1
2(A + A∗)B = trAB, which proves the left-hand inequality of (8.4.19).

Similarly, the right-hand inequality holds.

Proposition 8.4.14. Let A,B ∈ P
n, and assume that detB = 1.
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Then,
(detA)1/n ≤ 1

ntrAB. (8.4.21)

Furthermore, equality holds if and only if B = (detA)1/nA−1.

Proof. Using the arithmetic-mean-geometric-mean inequality given by
Fact 1.4.9 it follows that

(detA)1/n =
(

detB1/2AB1/2
)1/n

=

[

n
∏

i=1

λi

(

B1/2AB1/2
)

]1/n

≤ 1
n

n
∑

i=1

λi

(

B1/2AB1/2
)

= 1
ntrAB.

Equality holds if and only if there exists β > 0 such that B1/2AB1/2 = βI.
In this case, β = (detA)1/n and B = (detA)1/nA−1.

The following corollary of Proposition 8.4.14 is Minkowski’s determi-
nant theorem.

Corollary 8.4.15. Let A,B ∈ N
n. Then,

detA+ detB ≤
[

(detA)1/n + (detB)1/n
]n
≤ det(A+B). (8.4.22)

If B = 0 or det(A + B) = 0, then both inequalities become identities.
If there exists α ≥ 0 such that B = αA, then the right-hand inequality
becomes an identity. Conversely, if A+B is positive definite and the right-
hand inequality holds as an identity, then there exists α ≥ 0 such that either
B = αA or A = αB. Finally, if A is positive definite and both inequalities
hold as identities, then B = 0.

Proof. The left-hand inequality is immediate. To prove the right-hand
inequality, note that it follows from Proposition 8.4.14 that

(detA)1/n + (detB)1/n ≤ 1
n tr
[

A[det(A+B)]1/n(A+B)−1
]

+ 1
n tr
[

B[det(A+B)]1/n(A+B)−1
]

= [det(A+B)]1/n.

If B = 0 or det(A+B) = 0, then both inequalities become identities, while
if there exists α ≥ 0 such that B = αA, then

[

(detA)1/n + (detB)1/n
]n

= (1 + α)ndetA = det[(1 + α)A].

Now, suppose that A+ B is positive definite and the right-hand inequality
holds as an identity. Then, either A or B is positive definite. Hence, suppose
that A is positive definite. Multiplying the identity (detA)1/n+(detB)1/n =
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[det(A+B)]1/n by (detA)−1/n yields

1 +
(

detA−1/2BA−1/2
)1/n

=
[

det
(

I +A−1/2BA−1/2
)]1/n

.

Letting λ1, . . . , λn denote the eigenvalues of A−1/2BA−1/2 it follows that 1 +
(λ1 · · ·λn)1/n = [(1 + λ1) · · · (1 + λn)]

1/n. It now follows from Fact 1.4.12
that λ1 = · · · = λn. Now, suppose that A is positive definite and both
inequalities hold as identities. Then, it follows that 1 + detA−1/2BA−1/2 =
det
(

1 +A−1/2BA−1/2
)

, which implies that 1+λ1 · · ·λn = (1+λ1) · · · (1+λn),

where λ1, . . . , λn are the eigenvalues of A−1/2BA−1/2. Consequently, B = 0.

Finally, suppose that A is positive definite and both inequalities hold
as identities. Since detA > 0, it follows from the left-hand identity that
detB = 0. Hence, the right-hand identity implies that detA = det(A+B).
Since A ≤ A+B, it follows from v) of Corollary 8.4.10 that B = 0.

8.5 Matrix Inequalities

Lemma 8.5.1. Let A,B ∈ H
n and assume that 0 ≤ A ≤ B. Then,

R(A) ⊆ R(B).

Proof. Let x ∈ N(B). Then, x∗Bx = 0 and thus x∗Ax = 0, which
implies Ax = 0. Hence, N(B) ⊆ N(A) and thus N(A)⊥ ⊆ N(B)⊥. Since
A and B are Hermitian, it follows from Theorem 2.4.3 that R(A) = N(A)⊥

and R(B) = N(B)⊥. Hence, R(A) ⊆ R(B).

The following result is the Douglas-Fillmore-Williams lemma.

Theorem 8.5.2. Let A ∈ Fn×m and B ∈ Fn×l. Then, the following
statements are equivalent:

i) There exists a matrix C ∈ Fl×m such that A = BC.

ii) There exists α > 0 such that AA∗ ≤ αBB∗.

iii) R(A) ⊆ R(B).

Proof. First we prove that i) implies ii). Since A = BC, it follows
that AA∗ = BCC∗B∗. Since CC∗ ≤ λmax(CC

∗)I, it follows that AA∗ ≤
αBB∗, where α

4

= λmax(CC
∗). To prove that ii) implies iii), first note

that Lemma 8.5.1 implies that R(AA∗) ⊆ R(αBB∗) = R(BB∗). Since,
by Theorem 2.4.3, R(AA∗) = R(A) and R(BB∗) = R(B), it follows that
R(A) ⊆ R(B). Finally, to prove that iii) implies i), use Theorem 5.6.3
to write B = S1

[

D 0
0 0

]

S2, where S1 ∈ Fn×n and S2 ∈ Fl×l are unitary and

D ∈ Rr×r is diagonal with positive diagonal entries, where r
4

= rankB. Since
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R(S∗
1A) ⊆ R(S∗

1B) and S∗
1B =

[

D 0
0 0

]

S2, it follows that S∗
1A =

[

A1

0

]

, where
A1 ∈ Fr×m. Consequently,

A = S1

[

A1

0

]

= S1

[

D 0
0 0

]

S2S
∗
2

[

D−1 0
0 0

][

A1

0

]

= BC,

where C
4

= S∗
2

[

D−1 0
0 0

][

A1

0

]

∈ Fl×m.

Proposition 8.5.3. Let {Ai}∞i=1 ⊂ N
n satisfy 0 ≤ Ai ≤ Aj for all

i ≤ j, and assume that there exists B ∈ N
n satisfying Ai ≤ B for all i ∈ P.

Then, A
4

= limi→∞Ai exists and satisfies 0 ≤ A ≤ B.

Proof. Let k ∈ {1, . . . , n}. Then, the sequence {Ai(k,k)}∞i=1 is nonde-

creasing and bounded from above. Hence, A(k,k)
4

= limi→∞Ai(k,k) exists.
Now, let k, l ∈ {1, . . . , n}, where k 6= l. Since Ai ≤ Aj for all i < j, it follows
that (ek + el)

∗Ai(ek + el) ≤ (ek + el)
∗Aj(ek + el), which implies that Ai(k,l) −

Aj(k,l) ≤ 1
2

[

Aj(k,k) −Ai(k,k) +Aj(l,l) −Ai(l,l)
]

. Alternatively, replacing ek+el
by ek−el yields Aj(k,l)−Ai(k,l) ≤ 1

2

[

Aj(k,k) −Ai(k,k) +Aj(l,l) −Ai(l,l)
]

. Thus,

Ai(k,l) − Aj(k,l) → 0 as i, j → ∞, which implies that A(k,l)
4

= limi→∞Ai(k,l)

exists. Hence, A
4

= limi→∞Ai exists. Since Ai ≤ B for all i = 1, 2, . . . , it
follows that A ≤ B.

Let A = SBS∗ ∈ Fn×n be Hermitian, where S ∈ Fn×n is unitary, B ∈
Rn×n is diagonal, spec(A) ⊂ D, and D ⊂ R. Furthermore, let f : D 7→ R.
Then, we define f(A) ∈ H

n by

f(A)
4

= Sf(B)S∗, (8.5.1)

where [f(B)](i,i)
4

= f(B(i,i)). In particular, suppose that A is nonnega-
tive semidefinite. Then, for all r ≥ 0 (not necessarily an integer), Ar =
SBrS∗ is nonnegative semidefinite, where, for all i = 1, . . . , n, (Br)(i,i) =
(

B(i,i)

)r
. Note that A0 4

= I. In particular, A1/2 = SB1/2S∗ is a nonnegative-

semidefinite square root of A since A1/2A1/2 = SB1/2S∗SB1/2S∗ = SBS∗ = A.
Hence, if C ∈ Fn×m, then C∗C is nonnegative semidefinite, and we define

〈C 〉 4

= tr (C∗C)1/2. (8.5.2)

If A is positive definite, then Ar is positive definite for all r ∈ R, and,
if r 6= 0, then (Ar)1/r = A. If, in addition, A is positive definite, then
logA = S(logB)S∗ ∈ H

n, where (logB)(i,i) = logB(i,i).

If 0 ≤ A ≤ B, then it does not necessarily follow that A2 ≤ B2.
Consider A

4

= [ 1 2
2 4 ] and B

4

= [ 2 0
0 8 ]. However, the following result, known as

Furuta’s inequality, is valid.

Proposition 8.5.4. Let A,B ∈ N
n, and assume that 0 ≤ A ≤ B.
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Furthermore, let p, q, r ∈ R satisfy p ≥ 0, q ≥ 1, r ≥ 0, and p+2r ≤ (1+2r)q.
Then,

A(p+2r)/q ≤ (ArBpAr)1/q (8.5.3)

and
(BrApBr)1/q ≤ B(p+2r)/q. (8.5.4)

Proof. See [218].

Corollary 8.5.5. Let A,B ∈ N
n, and assume that 0 ≤ A ≤ B. Then,

A2 ≤
(

AB2A
)1/2

(8.5.5)

and
(

BA2B
)1/2≤ B2. (8.5.6)

Proof. In Proposition 8.5.4 set r = 1, p = 2, and q = 2.

Corollary 8.5.6. Let A,B,C ∈ N
n, and assume that 0 ≤ A ≤ C ≤ B.

Then,
(

CA2C
)1/2 ≤ C2≤

(

CB2C
)1/2

. (8.5.7)

Proof. The result follows directly from Corollary 8.5.5. See also [583].

The following result provides representations for Ar, where r ∈ [0, 1).

Proposition 8.5.7. Let A ∈ P
n and r ∈ (0, 1). Then,

Ar =
(

cos
rπ

2

)

I +
sin rπ

π

∞
∫

0

[

xr+1

1 + x2
I − (A+ xI)−1xr

]

dx (8.5.8)

and

Ar =
sin rπ

π

∞
∫

0

(A+ xI)−1Axr−1 dx. (8.5.9)

Proof. Let t ≥ 0. As shown in [90], [93, p. 143],

∞
∫

0

[

xr+1

1 + x2
− xr

t+ x

]

dx =
π

sin rπ

(

tr − cos
rπ

2

)

.

Solving for tr and replacing t by A yields (8.5.8). Likewise, it follows from
[633, p. 448, formula 589] that

∞
∫

0

txr−1

t+ x
dx =

trπ

sin rπ
.
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Replacing t by A yields (8.5.9).

The following result is the Lowner-Heinz inequality.

Corollary 8.5.8. Let A,B ∈ N
n, assume that 0 ≤ A ≤ B, and let

r ∈ [0, 1]. Then, Ar ≤ Br. If, in addition, A < B and r ∈ (0, 1], then
Ar < Br.

Proof. Let 0 < A ≤ B, and let r ∈ (0, 1). In Proposition 8.5.4, replace
p, q, r with r, 1, 0. The first result now follows from (8.5.3). Alternatively, it
follows from (8.5.8) of Proposition 8.5.7 that

Br−Ar =
sin rπ

π

∞
∫

0

[

(A+ xI)−1 − (B + xI)−1
]

xr dx.

Since A ≤ B, it follows from Proposition 8.1.5 that, for all x ≥ 0, (B +
xI)−1 ≤ (A + xI)−1. Hence, Ar ≤ Br. By continuity, the result holds for
A,B ∈ N

n and r ∈ [0, 1]. In the case A < B, it follows from Proposition
8.1.5 that, for all x ≥ 0, (B + xI)−1 < (A+ xI)−1, so that Ar < Br.

Alternatively, it follows from (8.5.9) of Proposition 8.5.7 that

Br−Ar =
sin rπ

π

∞
∫

0

[

(A+ xI)−1A− (B + xI)−1B
]

xr−1 dx.

Since A ≤ B, it follows that, for all x ≥ 0, (B + xI)−1B ≤ (A + xI)−1A.
Hence, Ar ≤ Br. For yet another proof, see [625, p. 2].

Many of the results already given involve functions that are nonde-
creasing or increasing on suitable sets of matrices.

Definition 8.5.9. Let D ⊆ H
n, and let φ: D 7→ H

m. The function
φ is nondecreasing if φ(A) ≤ φ(B) for all A,B ∈ D such that A ≤ B,
it is increasing if it is nondecreasing and φ(A) < φ(B) for all A,B ∈ D

such that A < B, and it is strongly increasing if it is nondecreasing and
φ(A) < φ(B) for all A,B ∈ D such that A ≤ B and A 6= B. The function φ
is (nonincreasing, decreasing, strongly decreasing) if −φ is (nondecreasing,
increasing, strongly increasing).

Proposition 8.5.10. The following functions are nondecreasing:

i) φ: H
n 7→ H

n defined by φ(A)
4

= BAB∗, where B ∈ Fm×n.

ii) φ: H
n 7→ R defined by φ(A)

4

= trAB, where B ∈ N
n.

iii) φ: N
n+m 7→ N

n defined by φ(A)
4

= A22|A, where A
4

=
[

A11 A12

A∗
12 A22

]

.
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The following functions are increasing:

iv) φ: H
n 7→ R defined by φ(A)

4

= λi(A), where i ∈ {1, . . . , n}.
v) φ: N

n 7→ N
n defined by φ(A)

4

= Ar, where r ∈ [0, 1].

vi) φ: N
n 7→ N

n defined by φ(A)
4

= A1/2.

vii) φ: P
n 7→ −P

n defined by φ(A)
4

= −A−r, where r ∈ [0, 1].

viii) φ: P
n 7→ −P

n defined by φ(A)
4

= −A−1.

ix) φ: P
n 7→ −P

n defined by φ(A)
4

= −A−1/2.

x) φ: −P
n 7→ P

n defined by φ(A)
4

= (−A)−r, where r ∈ [0, 1].

xi) φ: −P
n 7→ P

n defined by φ(A)
4

= −A−1.

xii) φ: −P
n 7→ P

n defined by φ(A)
4

= −A−1/2.

xiii) φ: H
n 7→ H

m defined by φ(A)
4

= BAB∗, where B ∈ Fm×n and
rankB = m.

xiv) φ: P
n+m 7→ P

n defined by φ(A)
4

= A22|A, where A
4

=
[

A11 A12

A∗
12 A22

]

.

xv) φ: P
n+m 7→P

n defined by φ(A)
4

=−(A22|A)−1, whereA
4

=
[

A11 A12

A∗
12 A22

]

.

xvi) φ: P
n 7→ H

m defined by φ(A)
4

= logA.

The following functions are strongly increasing:

xvii) φ: H
n 7→ [0,∞) defined by φ(A)

4

= trBAB∗, where B ∈ Fm×n and
rankB = m.

xviii) φ: H
n 7→ R defined by φ(A)

4

= trAB, where B ∈ P
n.

xix) φ: N
n 7→ [0,∞) defined by φ(A)

4

= detA.

Proof. For the proof of iii), see [369].

Finally, we consider convex functions defined with respect to matrix
inequalities.

Definition 8.5.11. Let D ⊆ Fn×m be a convex set and let φ: D 7→ H
p.

The function φ is convex if

φ[αA1 + (1− α)A2] ≤ αφ(A1) + (1− α)φ(A2) (8.5.10)

for all α ∈ [0, 1] and A1, A2 ∈ D. The function φ is concave if −φ is convex.

Lemma 8.5.12. Let D ⊆ Fn×m and S ⊆ H
p be convex sets, and let

φ1: D 7→ S and φ2: S 7→ H
q. Then, the following statements hold:
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i) If φ1 is convex and φ2 is nondecreasing and convex, then φ2 •
φ1: D 7→ H

q is convex.

ii) If φ1 is concave and φ2 is nonincreasing and convex, then φ2 •
φ1: D 7→ H

q is convex.

iii) If S is symmetric, φ2(−A) = −φ2(A) for all A ∈ S, φ1 is concave,
and φ2 is nonincreasing and concave, then φ2 • φ1: D 7→ H

q is
convex.

iv) If S is symmetric, φ2(−A) = −φ2(A) for all A ∈ S, φ1 is convex, and
φ2 is nondecreasing and concave, then φ2 • φ1: D 7→ H

q is convex.

Proof. To prove i) and ii), let α ∈ [0, 1] and A1, A2 ∈ D. In both cases
it follows that

φ2(φ1[αA1 + (1− α)A2]) ≤ φ2[αφ1(A1) + (1− α)φ1(A2)]

≤ αφ2[φ1(A1)] + (1− α)φ2[φ1(A2)].

Statements iii) and iv) follow from i) and ii), respectively.

Proposition 8.5.13. The following functions are convex:

i) φ: N
n 7→ N

n defined by φ(A)
4

= Ar, where r ∈ [1, 2].

ii) φ: N
n 7→ N

n defined by φ(A)
4

= A2.

iii) φ: P
n 7→ P

n defined by φ(A)
4

= A−r, where r ∈ [0, 1].

iv) φ: P
n 7→ P

n defined by φ(A)
4

= A−1.

v) φ: P
n 7→ P

n defined by φ(A)
4

= A−1/2.

vi) φ: N
n 7→ −N

n defined by φ(A)
4

= −Ar, where r ∈ [0, 1].

vii) φ: N
n 7→ −N

n defined by φ(A)
4

= −A1/2.

viii) φ: N
n 7→ H

m defined by φ(A)
4

= γBAB∗, where γ ∈ R and B ∈
Fm×n.

ix) φ: N
n 7→ N

m defined by φ(A)
4

= BArB∗, where B ∈ Fm×n and
r ∈ [1, 2].

x) φ: P
n 7→ N

m defined by φ(A)
4

= BA−rB∗, where B ∈ Fm×n and
r ∈ [0, 1].

xi) φ: N
n 7→ −N

m defined by φ(A)
4

= −BArB∗, where B ∈ Fm×n and
r ∈ [0, 1].

xii) φ: P
n 7→ −P

m defined by φ(A)
4

= −(BA−rB∗)−p, where B ∈ Fm×n

has rankm and r, p ∈ [0, 1].
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xiii) φ: Fn×m 7→ N
n defined by φ(A)

4

= ABA∗, where B ∈ N
m.

xiv) φ: P
n × Fm×n 7→ N

m defined by φ(A,B)
4

= BA−1B∗.

xv) φ: N
n+m 7→ N

n defined by φ(A)
4

= −A22|A, where A
4

=
[

A11 A12

A∗
12 A22

]

.

xvi) φ: P
n+m 7→P

n defined by φ(A)
4

=(A22|A)−1, where A
4

=
[

A11 A12

A∗
12 A22

]

.

xvii) φ: P
n 7→ (0,∞) defined by φ(A)

4

= trA−r, where r > 0.

xviii) φ: P
n 7→ (−∞, 0) defined by φ(A)

4

= − (trA−r)−p , where r, p ∈
[0, 1].

xix) φ: N
n × N

n 7→ (−∞, 0] defined by φ(A,B)
4

= − tr (Ar +Br)1/r,
where r ∈ [0, 1].

xx) φ: N
n ×N

n 7→ [0,∞) defined by φ(A,B)
4

= tr
(

A2 +B2
)1/2

.

xxi) φ: N
n × N

m 7→ R defined by φ(A,B)
4

= − trArXBpX∗, where
X ∈ Fn×m, r, p ≥ 0, and r + p ≤ 1.

xxii) φ: N
n 7→ (−∞, 0) defined by φ(A)

4

= − trArXApX∗, where X ∈
Fn×n, r, p ≥ 0, and r + p ≤ 1.

xxiii) φ: P
n×P

m×Fm×n 7→ R defined by φ(A,B,X)
4

= (trA−pXB−rX∗)q,
where r, p ≥ 0, r + p ≤ 1, and q ≥ (2− r − p)−1.

xxiv) φ: P
n×Fn×n 7→ [0,∞) defined by φ(A,X)

4

= trA−pXA−rX∗, where
r, p ≥ 0 and r + p ≤ 1.

xxv) φ: P
n × Fn×n 7→ [0,∞) defined by φ(A)

4

= trA−pXA−rX∗, where
r, p ∈ [0, 1] and X ∈ Fn×n.

xxvi) φ: P
n 7→ R defined by φ(A)

4

= tr([Ar, X][A1−r, X]), where X ∈ H
n.

xxvii) φ: P
n 7→ H

m defined by φ(A)
4

= AlogA.

xxviii) φ: N
n\{0} 7→ R defined by φ(A)

4

= − log trAr, where r ∈ [0, 1].

xxix) φ: P
n ×P

n 7→ (0,∞) defined by φ(A,B)
4

= tr[A(logA− logB)].

xxx) φ: N
n 7→ (−∞, 0] defined by φ(A)

4

= −(detA)1/n.

xxxi) φ: P
n 7→ R defined by φ(A)

4

= − log detA.

xxxii) φ: P
n 7→ (0,∞) defined by φ(A)

4

= detA−1.

xxxiii) φ: N
n × N

m 7→ −N
nm defined by φ(A,B)

4

= −Ar⊗B1−r, where
r ∈ [0, 1].

xxxiv) φ: N
n × N

n 7→ −N
n defined by φ(A,B)

4

= −Ar ◦B1−r, where
r ∈ [0, 1].
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xxxv) φ: H
n 7→ R defined by φ(A)

4

=
∑k

i=1λi(A), where k ∈ {1, . . . , n}.

xxxvi) φ: H
n 7→ R defined by φ(A)

4

= −∑n
i=kλi(A), where k ∈ {1, . . . , n}.

Proof. Statements i) and iii) are proved in [23] and [93, p. 123].

Let α ∈ [0, 1] for the remainder of the proof.

To prove ii) directly, let A1, A2 ∈ H
n. Since

α(1− α) =
(

α− α2
)1/2[

(1− α)− (1− α)2
]1/2

,

it follows that

0 ≤
[

(

α− α2
)1/2
A1−

[

(1− α)− (1− α)2
]1/2
A2

]2

=
(

α− α2
)

A2
1 +

[

(1− α)− (1− α)2
]

A2
2 − α(1− α)(A1A2 +A2A1).

Hence,
[αA1 + (1− α)A2]

2 ≤ αA2
1 + (1− α)A2

2,

which shows that φ(A) = A2 is convex.

To prove iv) directly, let A1, A2 ∈ P
n. Then,

[

A−1
1 I
I A1

]

and
[

A−1
2 I
I A2

]

are nonnegative semidefinite, and thus

α

[

A−1
1 I

I A1

]

+ (1− α)

[

A−1
2 I

I A2

]

=

[

αA−1
1 + (1− α)A−1

2 I

I αA1 + (1− α)A2

]

is nonnegative semidefinite. It now follows from Proposition 8.2.3 that [αA1+
(1− α)A2]

−1 ≤ αA−1
1 + (1− α)A−1

2 , which shows that φ(A) = A−1 is convex.

To prove v) directly, note that φ(A) = A−1/2 = φ2[φ1(A)], where

φ1(A)
4

= A1/2 and φ2(B)
4

= B−1. It follows from vii) that φ1 is concave,
while it follows from iv) that φ2 is convex. Furthermore, viii) of Proposition
8.5.10 implies that φ2 is nonincreasing. It thus follows from ii) of Lemma
8.5.12 that φ(A) = A−1/2 is convex.

To prove vi), let A ∈ P
n and note that φ(A) = −Ar = φ2[φ1(A)],

where φ1(A)
4

= A−r and φ2(B)
4

= −B−1. It follows from iii) that φ1 is
convex, while it follows from iv) that φ2 is concave. Furthermore, viii) of
Proposition 8.5.10 implies that φ2 is nondecreasing. It thus follows from iv)
of Lemma 8.5.12 that φ(A) = Ar is convex on P

n. Continuity implies that
φ(A) = Ar is convex on N

n.
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To prove vii) directly, let A1, A2 ∈ N
n. Then,

0 ≤ α(1− α)
(

A
1/2
1 −A1/2

2

)2
,

which is equivalent to
[

αA
1/2
1 + (1− α)A

1/2
2

]2
≤ αA1 + (1− α)A2.

Using vi) of Proposition 8.5.10 yields

αA
1/2
1 + (1− α)A

1/2
2 ≤ [αA1 + (1− α)A2]

1/2.

Finally, multiplying by −1 shows that φ(A) = −A1/2 is convex.

The proof of viii) is immediate. Statements ix), x), xi) follow from i),
iii), and vi), respectively.

To prove xii), note that φ(A) = − (BA−rB∗)−p = φ2[φ1(A)], where
φ1(A) = −BA−rB∗ and φ2(C) = C−p. Statement x) implies that φ1 is
concave, while iii) implies that φ2 is convex. Furthermore, vii) of Proposition
8.5.10 implies that φ2 is nonincreasing. It thus follows from ii) of Lemma

8.5.12 that φ(A) = −(BA−rB∗)−p is convex.

To prove xiii), let A1, A2 ∈ Fn×m, and let B ∈ N
m. Then,

0 ≤ α(1− α)(A1−A2)B(A1−A2)
∗

= αA1BA
∗
1 + (1− α)A2BA

∗
2 − [αA1 + (1− α)A2]B[αA1 + (1− α)A2]

∗.

Thus,

[αA1 + (1− α)A2]B[αA1 + (1− α)A2]
∗ ≤ αA1BA

∗
1 + (1− α)A2BA

∗
2,

which shows that φ(A) = ABA∗ is convex.

To prove xiv), let A1, A2 ∈ P
n and B1, B2 ∈ Fm×n. Then, it follows

from Proposition 8.2.3 that
[

B1A
−1
1 B

∗
1 B1

B∗
1 A1

]

and
[

B2A
−1
2 B

∗
2 B2

B∗
2 A2

]

are nonnegative

semidefinite and thus

α

[

B1A
−1
1 B

∗
1 B1

B∗
1 A1

]

+ (1− α)

[

B2A
−1
2 B

∗
2 B2

B∗
2 A2

]

=

[

αB1A
−1
1 B

∗
1 + (1− α)B2A

−1
2 B

∗
2 αB1 + (1− α)B2

αB∗
1 + (1− α)B∗

2 αA1 + (1− α)A2

]
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is nonnegative semidefinite. It thus follows from Proposition 8.2.3 that

[αB1 + (1− α)B2][αA1 + (1− α)A2]
−1[αB1 + (1− α)B2]

∗

≤ αB1A
−1
1 B

∗
1 + (1− α)B2A

−1
2 B

∗
2 ,

which shows that φ(A,B) = BA−1B∗ is convex.

To prove xv), let A
4

=
[

A11 A12

A∗
12 A22

]

∈ P
n+m and B

4

=
[

B11 B12

B12 B22

]

∈ P
n+m.

Then, it follows from xiv) with A1, B1, A2, B2 replaced by A22, A12, B22, B12,
respectively, that

[αA12 + (1− α)B12][αA22 + (1− α)B22]
−1[αA12 + (1− α)B12]

∗

≤ αA12A
−1
22A

∗
12 + (1− α)B12B

−1
22B

∗
12.

Hence,

−[αA22+(1− α)B22]|[αA+ (1− α)B]

= [αA12 + (1− α)B12][αA22 + (1− α)B22]
−1[αA12 + (1− α)B12]

∗

− [αA11 + (1− α)B11]

≤ α
(

A12A
−1
22A

∗
12 −A11

)

+ (1− α)(B12B
−1
22B

∗
12 −B11)

= α(−A22|A) + (1− α)(−B22|B),

which shows that φ(A)
4

= −A22|A is convex. By continuity, the result holds
for A ∈ N

n+m.

To prove xvi), note that φ(A) =(A22|A)−1 = φ2[φ1(A)], where φ1(A) =
A22|A and φ2(B) = B−1. It follows from xv) that φ1 is concave, while it
follows from iv) that φ2 is convex. Furthermore, viii) of Proposition 8.5.10
implies that φ2 is nonincreasing. It thus follows from Lemma 8.5.12 that
φ(A)

4

=(A22|A)−1 is convex.

Result xvii) is given in by Theorem 9 of [372].

To prove xviii), note that φ(A) = −(trA−r)−p = φ2[φ1(A)], where
φ1(A) = trA−r and φ2(B) = −B−p. Statement iii) implies that φ1 is convex
and that φ2 is concave. Furthermore, vii) of Proposition 8.5.10 implies
that φ2 is nondecreasing. It thus follows from iv) of Lemma 8.5.12 that
φ(A) = −(trA−r)−p is convex.

Results xix) and xx) are proved in [126].

Results xxi)–xxv) are given by Corollary 1.1, Theorem 1, Corollary 2.1,
Theorem 2, and Theorem 8, respectively, of [126]. A proof of xxi) in the case
p = 1− r is given in [93, p. 273].
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Result xxvi) is proved in [126] and [93, p. 274].

Result xxvii) is given in [93, p. 123].

To prove xviii), note that φ(A) = − log trAr = φ2[φ1(A)], where
φ1(A) = trAr and φ2(x) = − log x. Statement vi) implies that φ1 is con-
cave. Furthermore, φ2 is convex and nonincreasing. It thus follows from ii)
of Lemma 8.5.12 that φ(A) = − log trAr is convex.

Result xxix) is given in [93, p. 275].

To prove xxx), let A1, A2 ∈ N
n. From Corollary 8.4.15 it follows

that (detA1)
1/n + (detA2)

1/n ≤ [det(A1 + A2)]
1/n. Replacing A1 and A2

by αA1 and (1 − α)A2, respectively, and multiplying by −1 shows that
φ(A) = −(detA)1/n is convex.

To prove xxxi), note that φ(A) = −nlog
[

(detA)1/n
]

= φ2[φ1(A)],

where φ1(A) = (detA)1/n and φ2(x) = −nlog x. It follows from xix) that
φ1 is concave. Since φ2 is nonincreasing and convex, it follows from ii) of
Lemma 8.5.12 that φ(A) = − log detA is convex.

To prove xxxii), note that φ(A) = detA−1 = φ2[φ1(A)], where φ1(A) =
log detA−1 and φ2(x) = ex. It follows from xx) that φ1 is convex. Since
φ2 is nondecreasing and convex, it follows from i) of Lemma 8.5.12 that
φ(A) = detA−1 is convex.

Next, xxxiii) is given in [93, p. 273] and [625, p. 9]. Statement xxxiv)
is given in [625, p. 9].

Finally, xxxv) is given in [400, p. 478]. Statement xxxvi) follows im-
mediately from xxxv).

The following result is a corollary of xv) of Proposition 8.5.13 for the
caseα = 1/2. Versions of this result appear in [128, 272, 369] and [466, p.
152].

Corollary 8.5.14. Let A
4

=
[

A11 A12

A∗
12 A22

]

∈ Fn+m and B
4

=
[

B11 B12

B∗
12 B22

]

∈
Fn+m, and assume that A and B are nonnegative semidefinite. Then,

A11|A+B11|B ≤ (A11 +B11)|(A+B).

The following corollary of xxxv) gives a strong majorization condition
for the eigenvalues of a pair of Hermitian matrices.
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Corollary 8.5.15. Let A,B ∈ H
n. Then, for all k = 1, . . . , n,

k
∑

i=1

λi(A+B) ≤
k
∑

i=1

[λi(A) + λi(B)] (8.5.11)

with equality for k = n.

Proof. See [93, p. 69], [289, p. 201], or [400, p. 478].

8.6 Facts on Range and Rank

Fact 8.6.1. Let A,B ∈ Fn×n be nonnegative semidefinite. Then, there
exists α > 0 such that A ≤ αB if and only if R(A) ⊆ R(B). In this case,
rankA ≤ rankB. (Proof: Use Theorem 8.5.2 and Corollary 8.5.8.)

Fact 8.6.2. Let A,B ∈ Fn×n, and assume that A is nonnegative semi-
definite and B is either nonnegative semidefinite or skew Hermitian. Then,
the following identities hold:

i) N(A+B) = N(A) ∩N(B).

ii) R(A+B) = R(A) + R(B).

(Proof: Use [(N(A) ∩N(B)]⊥ = R(A) + R(B).)

Fact 8.6.3. Let A ∈ Fn×n, and assume that A + A∗ ≥ 0. Then, the
following identities hold:

i) N(A) = N(A+A∗) ∩N(A−A∗).

ii) R(A) = R(A+A∗) + R(A−A∗).

iii) rankA = rank
[

A+A∗ A−A∗ ] .

Fact 8.6.4. Let A,B ∈ Fn×n be nonnegative semidefinite. Then,

rank
[

A B
]

= rank(A+B)

and

rank

[

A B
0 A

]

= rankA + rank(A+B).

(Proof: Using Fact 8.6.2,

R
([

A B
])

= R

(

[

A B
]

[

A
B

])

= R
(

A2 +B2
)

= R
(

A2
)

+ R
(

B2
)

= R(A) + R(B) = R(A+B).
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Alternatively, it follows from Fact 6.4.11 that

rank
[

A B
]

= rank
[

A+B B
]

= rank(A+B) + rank[B − (A+B)(A+B)+B].

Next, note that

rank[B − (A+B)(A+B)+B] = rank
(

B1/2
[

I − (A+B)(A+B)+
]

B1/2
)

≤ rank
(

B1/2
[

I −BB+
]

B1/2
)

= 0.

For the second result use Theorem 8.3.4 to simultaneously diagonalize A
and B.)

8.7 Facts on Identities and Inequalities Involving
One Matrix

Fact 8.7.1. Let A ∈ Fn×n be nonnegative semidefinite, and assume
that there exists i ∈ {1, . . . , n} such that A(i,i) = 0. Then, rowi(A) = 0 and
coli(A) = 0.

Fact 8.7.2. Let A ∈ Fn×n be nonnegative semidefinite. Then, A(i,i) ≥
0 for all i = 1, . . . , n, and |A(i,j)|2 ≤ A(i,i)A(j,j) for all i, j = 1, . . . , n.

Fact 8.7.3. Let A ∈ Fn×n. Then, A ≥ 0 if and only if A ≥ −A.

Fact 8.7.4. Let A ∈ Fn×n be Hermitian. Then, A2 ≥ 0.

Fact 8.7.5. Let A ∈ Fn×n be skew Hermitian. Then, A2 ≤ 0.

Fact 8.7.6. Let A ∈ Fn×n. Then,

(A+A∗)2 ≥ 0

and
(A−A∗)2 ≤ 0.

Fact 8.7.7. Let A ∈ Fn×n. Then,

A2 +A2∗ ≤ AA∗ +A∗A.

Equality holds if and only if A = A∗.

Fact 8.7.8. Let A ∈ Fn×n, and let α > 0. Then,

A+A∗ ≤ αI + α−1AA∗.

Equality holds if and only if A = αI.
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Fact 8.7.9. Let A ∈ Fn×n be positive definite. Then,

2I ≤ A+A−1.

Equality holds if and only if A = I.

Fact 8.7.10. Let A ∈ Fn×n be Hermitian. Then, A2 ≤ A if and only
if 0 ≤ A ≤ I.

Fact 8.7.11. Let A ∈ Fn×n be Hermitian. Then, αI + A ≥ 0 if and
only if α ≥ −λmin(A). Furthermore,

A2 +A+ 1
4I ≥ 0.

Fact 8.7.12. Let A ∈ Fn×m. Then, AA∗ ≤ In if and only if A∗A ≤ Im.

Fact 8.7.13. Let A ∈ Fn×n, and assume that either AA∗ ≤ A∗A or
A∗A ≤ AA∗. Then, A is normal. (Proof: Use the Schur decomposition.)

Fact 8.7.14. Let A ∈ Fn×n be a projector. Then,

0 ≤ A ≤ I.

Fact 8.7.15. Let A ∈ Fn×m. Then,

(AA∗)1/2A = A(A∗A)1/2.

Fact 8.7.16. Let A ∈ Fn×m, and assume that A∗A is nonsingular.
Then,

(AA∗)1/2 = A(A∗A)−1/2A∗.

Fact 8.7.17. Let A ∈ Fn×n be nonsingular. Then, (AA∗)−1/2A is uni-
tary.

Fact 8.7.18. Let A ∈ Fn×n. Then, A is positive definite if and only if
I +A is nonsingular and the matrices I −B and I +B are positive definite,
where B

4

= (I + A)−1(I − A). (Proof: See [191].) (Remark: For additional
results on the Cayley transform, see Fact 3.6.23, Fact 3.6.24, Fact 3.6.25,
Fact 3.9.8, and Fact 11.15.9.)

Fact 8.7.19. Let A ∈ Fn×n be nonnegative semidefinite and let k ∈ P.
Then, there exists a unique nonnegative-semidefinite matrix B ∈ Fn×n such
that Bk = A. (Proof: See [287, p. 405].) (Problem: Find a direct proof of
uniqueness for k = 2 and extend to nonintegral powers.)

Fact 8.7.20. Let A ∈ Rn×n be positive definite, assume that A ≤ I,
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and define {Bk}∞k=0 by B0
4

= 0 and

Bk+1
4

= Bk + 1
2

(

A−B2
k

)

.

Then,
lim
k→∞

Bk = A1/2.

(Proof: See [74, p. 181].) (Remark: See Fact 5.13.18.)

Fact 8.7.21. Let A ∈ Rn×n be nonsingular and define {Bk}∞k=0 by

B0
4

= A and
Bk+1

4

= 1
2

(

Bk +B−T
k

)

.

Then,

lim
k→∞

Bk =
(

AAT
)−1/2

A.

(Remark: The limit is unitary. See Fact 8.7.17. See [64, p. 224].)

Fact 8.7.22. Let 0 ≤ α1 ≤ · · · ≤ αn, and define A ∈ Rn×n by
A(i,j)

4

= min{αi, αj} for all i, j = 1, . . . , n. Then, A is nonnegative semidefi-
nite. (Problem: Determine rankA. When is A positive definite?) (Remark:
When αi = i for all i = 1, . . . , n, the matrix A is a covariance matrix arising
in the theory of Brownian motion.)

Fact 8.7.23. Let λ1, . . . , λn ∈ C be such that Reλi < 0 for all i =
1, . . . , n, and, for all i, j = 1, . . . , n, define A ∈ Cn×n by

A(i,j)
4

=
−1

λi + λj
.

Then, A is nonnegative semidefinite. (Proof: Note that A = 2B ◦ (1n×n −
C){−1}, where B(i,j) = 1

(λi−1)(λj−1)
and C(i,j) = (λi+1)(λj+1)

(λi−1)(λj−1)
. Then, note that

B is nonnegative semidefinite and that (1n×n−C){−1} = 1n×n+C+C{2} +
C{3} + · · · . Alternatively, A satisfies a Lyapunov equation with coefficient
diag(λ1, . . . , λn). See [289, p. 348].) (Remark: A is a Cauchy matrix. See
Fact 3.12.13 and Fact 8.7.29.)

Fact 8.7.24. Let a1, . . . , an ≥ 0 and p ∈ R, assume that either a1, . . . ,
an are positive or p is positive, and, for all i, j = 1, . . . , n, define A ∈ Rn×n

by
A(i,j)

4

= (aiaj)
p.

Then, A is nonnegative semidefinite. (Proof: A = a{p}a{p}T, where a
4

=
[

a1 · · · an
]T

.)

Fact 8.7.25. Let a1, . . . , an > 0, let α > 0, and, for all i, j = 1, . . . , n,
define A ∈ Rn×n by
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A(i,j)
4

=
1

(ai + aj)α
.

Then, A is nonnegative semidefinite. (Proof: See [462].) (Remark: See Fact
5.9.7.)

Fact 8.7.26. Let a1, . . . , an > 0, let r ∈ [−1, 1], and, for all i, j =
1, . . . , n, define A ∈ Rn×n by

A(i,j)
4

=
ari + arj
ai + aj

.

Then, A is nonnegative semidefinite. (Proof: See [625, p. 74].)

Fact 8.7.27. Let a1, . . . , an > 0, let q > 0, let p ∈ [−q, q], and, for all
i, j = 1, . . . , n, define A ∈ Rn×n by

A(i,j)
4

=
api + apj
aqi + aqj

.

Then, A is nonnegative semidefinite. (Proof: In Fact 8.7.26, replace ai by
1/ai, and let r = p/q. See [405] for the case q ≥ p ≥ 0.) (Remark: The case
q = 1 and p = 0 yields a Cauchy matrix. In the case n = 2, A ≥ 0 yields
Fact 1.4.6.) (Problem: When is A positive definite?)

Fact 8.7.28. Let a1, . . . , an > 0, let p ∈ [−1, 1] and q ∈ (−2, 2], and,
for all i, j = 1, . . . , n, define A ∈ Rn×n by

A(i,j)
4

=
api + apj

a2
i + qaiaj + a2

j

.

Then, A is nonnegative semidefinite. (Proof: See [624] or [625, p. 76].)

Fact 8.7.29. Let a1, . . . , an, b1, . . . , bn ∈ R be positive and, for all i, j =
1, . . . , n, define the Cauchy matrix A ∈ Rn×n by A(i,j)

4

= 1/(ai + bj). Then,
A is nonnegative semidefinite. If, in addition, a1 < · · · < an are distinct
and b1 < · · · < bn are distinct, then A is positive definite. In particular,
the Hilbert matrix is positive definite. (Remark: See Fact 3.12.12 and Fact
3.12.13.) (Problem: Extend this result to complex entries and generalize
Fact 8.7.23.)

Fact 8.7.30. Let A ∈ Fn×n be Hermitian, assume that A(i,i) > 0 for
all i = 1, . . . , n, and assume that, for all i, j = 1, . . . , n,

|A(i,j)| < 1
n−1

√

A(i,i)A(j,j).
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Then, A is positive definite. (Proof: Note that

x∗Ax =
n−1
∑

i=1

n
∑

j=i+1

[

x(i)

x(j)

]∗[ 1
n−1A(i,i) A(i,j)

A(i,j)
1
n−1A(j,j)

]

[

x(i)

x(j)

]

.)

(Remark: This result is due to Roup.)

Fact 8.7.31. Let α0, . . . , αn > 0, and define the tridiagonal matrix
A ∈ Rn×n by

A
4

=















α0 + α1 −α1 0 0 · · · 0
−α1 α1 + α2 −α2 0 · · · 0

0 −α2 α2 + α3 −α3 · · · 0
...

...
...

...
...

0 0 0 0 · · · αn−1 + αn















.

Then, A is positive definite. (Proof: For k = 2, . . . , n, the k × k leading

principal subdeterminant of A is given by
[

∑k
i=0 α

−1
i

]

α0α1 · · ·αk. See [66, p.

115].) (Remark: A a stiffness matrix arising in structural analysis.)

Fact 8.7.32. Let x1, . . . , xn ∈ Fn, and define A ∈ Fn×n by A(i,j)
4

= x∗ixj
for all i, j = 1, . . . , n, and B

4

=
[

x1 · · · xn
]

. Then, A = B∗B. Conse-
quently, A is nonnegative semidefinite and rankA = rankB. Conversely, let
A ∈ Fn×n be nonnegative semidefinite. Then, there exist x1, . . . , xn ∈ Fn

such that A = B∗B, where B =
[

x1 · · · xn
]

. (Proof: The converse is an
immediate consequence of Corollary 5.4.5.) (Remark: A is the Gram matrix
of x1, . . . , xn.)

Fact 8.7.33. Let A ∈ Fn×n be nonnegative semidefinite. Then, there
exists B ∈ Fn×n such that B is upper triangular, B has nonnegative diagonal
entries, and A = BB∗. If, in addition, A is positive definite, then B is unique
and has positive diagonal entries. (Remark: This result is the Cholesky
decomposition.)

Fact 8.7.34. Let x ∈ Fn. Then,

xx∗ ≤ x∗xI.

Fact 8.7.35. Let A ∈ Fn×m, and assume that rankA = m. Then,

0 ≤ A(A∗A)−1A∗ ≤ I.

Fact 8.7.36. Let A ∈ Fn×n be positive definite. Then,

A−1 ≤ α+ β

αβ
I − 1

αβ
A ≤ (α+ β)2

4αβ
A−1,
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where α
4

= λmax(A) and β
4

= λmin(A). (Proof: See [401].)

Fact 8.7.37. Let A =
[

A11 A12

A∗
12 A22

]

∈ Fn×n be Hermitian, assume that

A22 is nonsingular, and let S
4

=
[

I −A12A
−1
22

]

. Then,

A11 −A12A
−1
22A

∗
12 = SAS∗.

If, in addition, A is (nonnegative semidefinite, positive definite), then so is
A11 −A12A

−1
22A

∗
12.

Fact 8.7.38. Let A ∈ Fn×m, and define

A
4

=

[

(AA∗)1/2 A

A∗ (A∗A)1/2

]

.

Then, A is nonnegative semidefinite.

Fact 8.7.39. Let A ∈ Fn×n be nonnegative semidefinite. Then,
[

A A
A A

]

and
[

A −A
−A A

]

are nonnegative semidefinite. Furthermore, if
[

α β

β γ

]

∈ F2×2

is nonnegative semidefinite, then so is
[

αA βA
βA γA

]

. Finally, if A and
[

α β

β γ

]

are

positive definite, then
[

αA βA
βA γA

]

is positive definite. (Proof: Use Fact 7.4.13.)

Fact 8.7.40. Let A11, A12, A22 ∈ Fn×n, assume that
[

A11 A12

A∗
12 A22

]

∈F2n×2n

is nonnegative semidefinite, and assume that
[

α β

β γ

]

∈ F2×2 is nonnegative

semidefinite. Then,
[

αA11 βA12

βA∗
12 γA22

]

is nonnegative semidefinite. If, in addition,
[

A11 A12

A∗
12 A22

]

is positive definite and α, β > 0, then
[

αA11 βA12

βA∗
12 γA22

]

is positive def-

inite. (Proof: Note that
[

αA11 βA12

βA∗
12 γA22

]

=
([

α β

β γ

]

⊗ 1n×n
)

◦
[

A11 A12

A∗
12 A22

]

and use

Fact 8.15.6 and Fact 7.4.13.) (Problem: Extend this result to nonsquare
A12.)

Fact 8.7.41. Let
[

A11 A12

A∗
12 A22

]

∈ F2n×2n be nonnegative semidefinite,

where A11, A22 ∈ Fn×n. Then,

−A11 −A22 ≤ A12 +A∗
12 ≤ A11 +A22.

If, in addition,
[

A11 A12

A∗
12 A22

]

is positive definite, then

−A11 −A22 < A12 +A∗
12 < A11 +A22.

(Proof: Consider S
[

A11 A12

A∗
12 A22

]

ST, where S
4

=
[

I I
]

and S
4

=
[

I −I
]

.)
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Fact 8.7.42. Let A,B ∈ Fn×n be Hermitian. Then, −A ≤ B ≤ A if
and only if

[

A B
B A

]

is nonnegative semidefinite. Furthermore, −A < B < A

if and only if
[

A B
B A

]

is positive definite.

Fact 8.7.43. Let A ∈ Rn×n be positive definite, let S ⊆ {1, . . . , n}, and
let A[S] denote the principal submatrix of A obtained by deleting rowi(A)
and coli(A) for all i ∈ S. Then,

(

A[S]

)−1 ≤
(

A−1
)

[S]
.

(Proof: See [287, p. 474].) (Remark: Generalizations of this result are given
in [143].)

Fact 8.7.44. Let A ∈ Fn×n be positive definite. Then,

n+ log detA ≤ n(detA)1/n ≤ trA ≤
(

ntrA2
)1/2

,

with equality if and only if A = I.

Fact 8.7.45. Let A
4

=

[ A11 · · · A1k

... · · ·.. ...
A1k · · · Akk

]

, where Aij ∈ Fni×nj for all i, j =

1, . . . , k, and assume that A is positive definite. Furthermore, define Â
4

=




Â11 · · · Â1k

... · · ·.. ...

Â1k · · · Âkk



, where Âij = 11×ni
Aij1nj×1 is the sum of the entries of Aij

for all i, j = 1, . . . , k. Then, Â is positive definite. (Proof: Â = BABT,
where the entries of B ∈ Rn×n are zeros and ones. See [22].)

8.8 Facts on Identities and Inequalities Involving
Two or More Matrices

Fact 8.8.1. Let A,B ∈ Fn×n be positive definite. Then,
(

A−1 +B−1
)−1

= A(A+B)−1B.

Fact 8.8.2. Let A ∈ Fn×n be positive semidefinite, let A ∈ Fn×n be
Hermitian, and assume that A+B is nonsingular. Then,

(A+B)−1 + (A+B)−1B(A+B)−1 ≤ A−1.

If, in addition, B is nonsingular, the inequality is strict. (Proof: The in-
equality is equivalent to BA−1B ≥ 0. See [443].)

Fact 8.8.3. Let A ∈ Fn×m and B ∈ Fm×m, and assume that B is
nonnegative semidefinite. Then, ABA∗ = 0 if and only if AB = 0.
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Fact 8.8.4. Let A,B ∈ Fn×n be nonnegative semidefinite. Then, AB
is nonnegative semidefinite if and only if AB is normal.

Fact 8.8.5. Let A,B ∈ Fn×n be Hermitian and assume that either i) A
and B are nonnegative semidefinite or ii) either A or B is positive definite.
Then, AB is group invertible. (Proof: Use Theorem 8.3.2 and Theorem
8.3.5.)

Fact 8.8.6. Let A,B ∈ Fn×n be Hermitian and assume that A and
AB+BA are positive definite. Then, B is positive definite. (Proof: See [356,
p. 120] or [599]. Alternatively, the result follows from Corollary 11.7.4.)

Fact 8.8.7. Let A,B ∈ Fn×n be Hermitian and assume that A ≤ B.
Then, A(i,i) ≤ B(i,i) for all i = 1, . . . , n.

Fact 8.8.8. Let A ∈ Fn×n be positive definite and let B ∈ Fn×n be
nonnegative semidefinite. Then, B ≤ A if and only if BA−1B ≤ B.

Fact 8.8.9. Let A,B,C,D ∈ Fn×n be nonnegative semidefinite, and
assume that 0 < D ≤ C and BCB ≤ ADA. Then, B ≤ A. (Proof:
See [40,134].)

Fact 8.8.10. Let A,B ∈ Fn×n be nonnegative semidefinite and assume
that 0 ≤ A ≤ B. Then,

(

A+ 1
4A

2
)1/2 ≤

(

B + 1
4B

2
)1/2

.

(Proof: See [425].)

Fact 8.8.11. Let A ∈ Fn×n be nonnegative semidefinite and let B ∈
Fl×n. Then, BAB∗ is positive definite if and only if B

(

A+A2
)

B∗ is positive
definite. (Proof: Diagonalize A using a unitary transformation and note

that BA1/2 and B
(

A+A2
)1/2

have the same rank.)

Fact 8.8.12. Let A ∈ Fn×m and B ∈ Fn×l, and assume that rankB =
l. Then,

0 ≤ A∗B(B∗B)−1B∗A ≤ A∗A.

If, in particular, m = l = 1, then

|A∗B|2 ≤ A∗AB∗B.

(Remark: This result is the Cauchy-Schwarz inequality. See Fact 8.13.13.)

Fact 8.8.13. Let A ∈ Fn×n be positive definite and let B ∈ Fm×n,
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where rankB = m. Then,

0 ≤ B∗(BAB∗)−1B ≤ A−1

and A−1 − B∗(BAB∗)−1B is nonnegative semidefinite and has rank n −m.
(Proof: I −A1/2B∗(BAB∗)−1BA1/2 is a projector.)

Fact 8.8.14. Let A1, . . . , Ak ∈ Fn×n be nonnegative semidefinite and
let p, q ∈ R satisfy 1 ≤ p ≤ q. Then,

(

1
k

k
∑

i=1

Api

)1/p

≤
(

1
k

k
∑

i=1

Aqi

)1/q

.

(Proof: See [90].)

Fact 8.8.15. Let A,B ∈ Fn×n be Hermitian. Then, there exists a
Hermitian matrix C ∈ Fn×n that is a least upper bound for A and B in the
sense that A ≤ C, B ≤ C, and, if D ∈ Fn×n is a Hermitian matrix satisfying
A ≤ D and B ≤ D, then C ≤ D. (Proof: First consider the case in which
A and B are both nonnegative semidefinite.) (Problem: Generalize to three
or more matrices.)

Fact 8.8.16. Let A,B ∈ Fn×n be nonnegative semidefinite, and let
p, q ∈ R satisfy p ≥ q ≥ 0. Then,

[

1
2(A

q +Bq)
]1/q ≤

[

1
2(A

p +Bp)
]1/p

.

Furthermore,
µ(A,B)

4

= lim
r→∞

[

1
2(A

r +Br)
]1/r

exists and satisfies
A ≤ µ(A,B), B ≤ µ(A,B).

(Proof: See [75].) (Problem: If A ≤ C and B ≤ C, then does it follow that
µ(A,B) ≤ C? See [27,323].)

Fact 8.8.17. Let
[

A B
B∗ C

]

∈ Fn×n be nonnegative semidefinite, where C

is positive definite, and let D be positive definite. Then,
[

A+D B
B∗ C

]

is positive
definite.

Fact 8.8.18. Let A,B ∈ Fn×n, and assume that C,D ∈ Fn×n are
positive definite. Then,

(A+B)(C +D)−1(A+B)∗ ≤ AC−1A∗ +BD−1B∗.

(Proof: Form the Schur complement of A + B with respect to the nonneg-
ative-semidefinite matrices

[

AC−1A∗ A
A∗ C

]

+
[

BD−1B∗ B
B∗ D

]

. See [272, 373] or [466,
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p. 151].) (Remark: Replacing A,B,C,D by αB1, (1− α)B2, αA1, (1− α)A2

yields xiv) of Proposition 8.5.13.)

Fact 8.8.19. Let A,B ∈ Fn×n be positive definite, let C ∈ Fn×n satisfy
B = C∗C, and let α ∈ [0, 1]. Then,

C∗(C−∗AC−1
)α
C ≤ αA+ (1− α)B.

If, in addition, α ∈ (0, 1), then equality holds if and only if A = B. (Proof:
See [413].)

Fact 8.8.20. Let A,B ∈ Fn×n be positive definite. Then,

A1/2
(

A−1/2BA−1/2
)1/2
A1/2 = A

(

A−1B
)1/2

= (A+B)
[

(A+B)−1A(A+B)−1B
]1/2

,

where
(

A−1B
)1/2

has positive eigenvalues and satisfies
[

(A−1B)1/2
]2

= A−1B.
Denote the above quantity by A#B. Then,

A#B = B#A,

2
(

A−1 +B−1
)−1≤ A#B ≤ 1

2(A+B),

(A#B)B−1(A#B) = A−1,
[

A A#B
A#B B

]

≥ 0.

Furthermore, if X ∈ H
n and

[

A X
X B

]

is nonnegative semidefinite, then X ≤
A#B. Finally, if α ∈ [0, 1], then

[

αA−1 + (1− α)B−1
]−1 ≤ A1/2

(

A−1/2BA−1/2
)1−α

A1/2 ≤ αA+ (1− α)B,

or, equivalently,

[αA+ (1− α)B]−1 ≤ A−1/2
(

A−1/2BA−1/2
)α−1

A−1/2 ≤ αA−1 + (1− α)B−1.

Hence,

tr [αA+ (1− α)B]−1≤ tr

[

A−1
(

A−1/2BA−1/2
)α−1

]

≤ tr
[

αA−1 + (1− α)B−1
]

.

(Proof: See [553].) (Remark: These inequalities improve iv) of Proposition
8.5.13. Alternative means and their differences are considered in [8]. A#B
is the geometric mean of A and B. A related mean is defined in [205].)
(Problem: Does

[

A X
X B

]

> 0 imply that −(A#B) < X < A#B?) (Remark:
A geometric mean for an arbitrary number of positive-definite matrices is
given in [28].)



matrix2 November 19, 2003

NONNEGATIVE-SEMIDEFINITE MATRICES 275

Fact 8.8.21. Let {xi}∞i=1 ⊂ Rn be such that
∑∞

i=1xi exists, and let
{Ai}∞i=1 ⊂ N

n be such that Ai ≤ Ai+1 for all i ∈ P and limi→∞ trAi = ∞.
Then,

lim
k→∞

(trAk)
−1

k
∑

i=1

Aixi = 0.

If, in addition Ai is positive definite for all i ∈ P and {λmax(Ai)/λmin(Ai)}∞i=1
is bounded, then

lim
k→∞

A−1
k

k
∑

i=1

Aixi = 0.

(Proof: See [16].) (Remark: These identities are matrix versions of the
Kronecker lemma.)

8.9 Facts on Generalized Inverses

Fact 8.9.1. Let A ∈ Fm×m be nonnegative semidefinite. Then, the
following statements hold:

i) A+ = AD = A# ≥ 0.

ii) rankA = rankA+.

iii)
(

A1/2
)+

= (A+)
1/2

.

iv) A1/2 = A(A+)
1/2

= (A+)
1/2
A.

v) AA+ = A1/2
(

A1/2
)+
.

Fact 8.9.2. Let A,B ∈ Fn×n be nonnegative semidefinite. Then,

A = (A+B)(A+B)+A.

Fact 8.9.3. Let A,B ∈ Fn×n be nonnegative semidefinite. Then, A ≤
B if and only if R(A) ⊆ R(B) and sprad(B+A) ≤ 1. (Proof: See [520].)

Fact 8.9.4. Let A,B ∈ Rn×n be nonnegative semidefinite, and assume
that A ≤ B. Then, the following statements are equivalent:

i) B+≤ A+.

ii) R(A) = R(B).

iii) rankA = rankB.

Furthermore, the following statements are equivalent:

iv) A+≤ B+.
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v) A2 = AB.

(Proof: See [267,420].)

Fact 8.9.5. Let A,B ∈ Fn×n be nonnegative semidefinite and assume
that A ≤ B. Then,

0 ≤ AA+ ≤ BB+.

If, in addition, rankA = rankB, then

AA+ = BB+.

Fact 8.9.6. Let A,B ∈ Fn×n be nonnegative semidefinite and assume
that A ≤ B. Then,

0 ≤ AB+A ≤ A ≤ A+B
[(

I −AA+
)

B
(

I −AA+
)]+

B ≤ B.
(Proof: See [267].)

Fact 8.9.7. Let A,B ∈ Fn×n be nonnegative semidefinite. Then,

spec
[

(A+B)+A
]

⊂ [0, 1].

(Proof: Let C be positive definite and satisfy B ≤ C. Then, (A + C)−1/2C
(A+ C)−1/2 ≤ I. The result now follows from Fact 8.9.8.)

Fact 8.9.8. Let A,B,C ∈ Fn×n be nonnegative semidefinite and as-
sume that B ≤ C. Then, for all i = 1, . . . , n,

λi
[

(A+B)+B
]

≤ λi
[

(A+ C)+C
]

.

Consequently,
tr
[

(A+B)+B
]

≤ tr
[

(A+ C)+C
]

.

(Proof: See [579].) (Remark: See Fact 8.9.7.)

Fact 8.9.9. Let A,B ∈ Fn×n be nonnegative semidefinite and define

A :B
4

= A(A+B)+B.

Then,
A :B = B −B(A+B)+A = A−A(A+B)+B = B :A,

R(A :B) = R(A) ∩ R(B),

for all α, β > 0,
(

α−1A
)

:
(

β−1B
)

≤ αA+ βB,

A :B ≥ X for all nonnegative-semidefinite matrices X ∈ Fn×n such that
[

A+B A

A A−X

]

≥ 0,
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and φ: N
n ×N

n 7→ −N
n defined by φ(A,B)

4

= −A :B is convex. If A and
B are projectors, then

A :B = (A+ +B+)+

and 2(A :B) is the projector onto R(A)∩R(B). If A+B is positive definite,
then

A :B = A(A+B)−1B.

If A and B are positive definite, then

A :B =
(

A−1 +B−1
)−1
.

Let C,D ∈ Fn×n be nonnegative semidefinite. Then,

(A :B) :C = A : (B :C)

and
A :C +B :D ≤ (A+B) : (C +D).

(Proof: See [17, 18, 21, 340], [477, p. 189], and [625, p. 9].) (Remark: A :B
is the parallel sum of A and B.) (Remark: See Fact 6.4.27 and Fact 6.4.28.)

Fact 8.9.10. Let A,B ∈ Fn×n be nonnegative semidefinite. If (AB)+

= B+A+, then AB is range Hermitian. Furthermore, the following state-
ments are equivalent:

i) AB is range Hermitian.

ii) (AB)# = B+A+.

iii) (AB)+ = B+A+.

(Proof: See [408].) (Remark: See Fact 6.4.6.)

Fact 8.9.11. Let A ∈ Fn×n and C ∈ Fm×m be nonnegative semidef-
inite, let B ∈ Fn×m, and define X

4

= A+1/2BC+1/2. Then, the following
statements are equivalent:

i)
[

A B
B∗ C

]

is nonnegative semidefinite.

ii) AA+B = B and X∗X ≤ Im.
iii) BC+C = B and X∗X ≤ Im.
iv) B = A1/2XC1/2 and X∗X ≤ Im.

(Remark: This result provides an explicit expression for X given in [625, p.
15].)
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8.10 Facts on Identities and Inequalities Involving
Quadratic Forms

Fact 8.10.1. Let x, y ∈ Fn. Then, xx∗ ≤ yy∗ if and only if there exists
α ∈ F such that |α| ∈ [0, 1] and x = αy.

Fact 8.10.2. Let x, y ∈ Fn. Then, xy∗+yx∗ ≥ 0 if and only x and y are
linearly dependent. (Proof: Evaluate the product of the nonzero eigenvalues
of xy∗ + yx∗ and use the Cauchy-Schwarz inequality |x∗y|2 ≤ x∗xy∗y.)

Fact 8.10.3. Let A ∈ Fn×n be positive definite, and let x, y ∈ Fn.
Then,

2Rex∗y ≤ x∗Ax+ y∗A−1y.

(Proof:
(

A1/2x−A−1/2y
)∗(
A1/2x−A−1/2y

)

≥ 0.)

Fact 8.10.4. Let A ∈ Fn×n be positive definite, and let x, y ∈ Fn.
Then,

|x∗y|2 ≤ (x∗Ax)
(

y∗A−1y
)

.

(Proof: Use Fact 8.8.12 with A replaced by A1/2x and B replaced by A−1/2y.)

Fact 8.10.5. Let A ∈ Fn×n be positive definite and let x ∈ Fn. Then,

(x∗x)2 ≤ (x∗Ax)
(

x∗A−1x
)

≤ (α+ β)2

4αβ
(x∗x)2,

where α
4

= λmin(A) and β
4

= λmax(A). (Remark: The second inequality is
the Kantorovich inequality. See Fact 1.4.14 and [9]. See also [378].)

Fact 8.10.6. Let A ∈ Fn×n be positive definite, let y ∈ Fn, let α > 0,
and define f : Fn 7→ R by f(x)

4

= |x∗y|2. Then,

x0 =

√

α

y∗A−1y
A−1y

minimizes f(x) subject to x∗Ax ≤ α. Furthermore, f(x0) = αy∗A−1y. (Proof:
See [14].)

Fact 8.10.7. Let A ∈ Fn×n be nonnegative semidefinite and let x ∈ Fn.
Then,

(

x∗A2x
)2 ≤ (x∗Ax)

(

x∗A3x
)

and
(x∗Ax)2 ≤ (x∗x)

(

x∗A2x
)

.

Fact 8.10.8. Let A,B ∈ Rn, and assume that A is Hermitian is B is
positive definite. Then,
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λmax

(

AB−1
)

= max{λ ∈ R: det(A− λB) = 0} = min
x∈Fn\{0}

x∗Ax
x∗Bx

.

(Proof: Use Lemma 8.4.3.)

Fact 8.10.9. Let A,B ∈ Fn×n, and assume that A is positive definite
and B is nonnegative semidefinite. Then,

4(x∗x)(x∗Bx) < (x∗Ax)2

for all nonzero x ∈ Rn if and only if there exists α > 0 such that

αI + α−1B < A.

In this case, 4B < A2 and hence 2B1/2 < A. (Proof: Sufficiency follows
from αx∗x+ α−1x∗Bx < x∗Ax. Necessity follows from Fact 8.10.10. The last
result follows from (A− 2αI)2 ≥ 0 or 2B1/2 ≤ αI + α−1B.)

Fact 8.10.10. Let A,B,C ∈ Fn×n be nonnegative semidefinite and
assume that

4(x∗Cx)(x∗Bx) < (x∗Ax)2

for all nonzero x ∈ Rn. Then, there exists α > 0 such that

αC + α−1B < A.

(Proof: See [457].)

Fact 8.10.11. Let A,B ∈ Fn×n, where A is Hermitian and B is non-
negative semidefinite. Then, x∗Ax < 0 for all x ∈ Fn such that Bx = 0 and
x 6= 0 if and only if there exists α > 0 such that A < αB. (Proof: Suppose
that for every α > 0 there exists x 6= 0 such that x∗Ax ≥ αx∗Bx. Now,
Bx = 0 implies that x∗Ax ≥ 0.)

Fact 8.10.12. Let A,B ∈ Fn×n be Hermitian and linearly indepen-
dent. Then, the following statements are equivalent:

i) There exist α, β ∈ R such that αA+ βB is positive definite.

ii) Either x∗Ax ≥ 0 for all x ∈ {y ∈ Fn: y∗By = 0} or x∗Ax ≤ 0 for all
x ∈ {y ∈ Fn: y∗By = 0}.

Now, assume that F = R and n ≥ 3. Then, the following statement is
equivalent to i) and ii):

iii) {x ∈ Rn: xTAx = xTBx = 0} = {0}.
(Remark: The equivalence of i) and ii) is Finsler’s lemma. A history of this
result is given in [563].)
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Fact 8.10.13. Let A ∈ Rn×n be positive definite. Then,
∫

Rn

e−x
TAx dx =

πn/2√
detA

.

Fact 8.10.14. Let A,B ∈ Rn×n be positive definite and, for k =
0, 1, 2, 3, define

Ik
4

=
1

(2π)n/2
√

detA

∫

Rn

(

xTBx
)k
e−

1
2x

TA−1x dx.

Then,

I0 = 1,

I1 = trAB,

I2 = (trAB)2 + 2 tr (AB)2,

I3 = (trAB)3 + 6(trAB)
[

tr (AB)2
]

+ 8 tr (AB)3.

(Proof: See [419, p. 80].) (Remark: These identities are Lancaster’s formu-
las.)

Fact 8.10.15. Let A ∈ Rn×n be positive definite, let B ∈ Rn×n, let
a, b ∈ Rn, and let α, β ∈ R. Then,

∫

Rn

(

xTBx+ bTx+ β
)

e−(xTAx+aTx+α) dx

=
πn/2

2
√

detA

[

2β + tr
(

A−1B
)

− bTA−1a+ 1
2a

TA−1BA−1a
]

e
1

4
aTA−1a−α.

(Proof: See [269, p. 322].)

Fact 8.10.16. Let A ∈ Rn×n be symmetric, let b ∈ Rn and a ∈ R, and
define f : Rn 7→ R by f(x)

4

= xTAx+ bTx+ a. Then, f is convex if and only
if A is nonnegative semidefinite, while f is strictly convex if and only if A is
positive definite. (Remark: Strictly convex means that f(αx1+(1−α)x2) <
αf(x1) + (1 − α)f(x2) for all α ∈ (0, 1) and for all x1, x2 ∈ Rn such that
x1 6= x2.) Furthermore, f has a minimizer if and only if b ∈ R(A). The point
x0 ∈ Rn is a minimizer of f if and only if x0 satisfies 2xT

0A + bT = 0. The
minimum of f is given by f(x0) = c− xT

0Ax0. Furthermore, if A is positive
definite, then x0 = −1

2A
−1b is the unique minimizer of f, and the minimum

of f is given by f(x0) = c− 1
4b

TA−1b.
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8.11 Facts on Matrix Transformations

Fact 8.11.1. Let A ∈ Fn×n. Then, AA∗ and A∗A are unitarily similar.

Fact 8.11.2. Let A,B ∈ Fn×n be Hermitian, and assume that A is
nonsingular. Then, the following statements are equivalent:

i) There exists a unitary matrix S ∈ Fn×n such that SAS∗ and SBS∗

are diagonal.

ii) AB = BA.

iii) A−1B is Hermitian.

(Proof: See [287, p. 229].) (Remark: The equivalence of i) and ii) is given
by Fact 5.8.7.)

Fact 8.11.3. Let A,B ∈ Fn×n be Hermitian, and assume that A is
nonsingular. Then, there exists a nonsingular matrix S ∈ Fn×n such that
SAS∗ and SBS∗ are diagonal if and only if A−1B is diagonalizable over R.
(Proof: See [287, p. 229] or [466, p. 95].)

Fact 8.11.4. Let A,B ∈ Fn×n be symmetric, and assume that A is
nonsingular. Then, there exists a nonsingular matrix S ∈ Fn×n such that
SAST and SBST are diagonal if and only if A−1B is diagonalizable. (Proof:
See [287, p. 229] and [563].) (Remark: A and B are complex symmetric.)

Fact 8.11.5. Let A,B ∈ Fn×n, and assume that {x ∈ Fn: x∗Ax =
x∗Bx = 0} = {0}. Then, there exists a nonsingular matrix S ∈ Fn×n such
that SAS∗ and SBS∗ are upper triangular. (Proof: See [466, p. 96].) (Re-
mark: See Fact 8.11.6 and Fact 5.8.6.)

Fact 8.11.6. Let A,B ∈ Fn×n be Hermitian, and assume that {x ∈
Fn: x∗Ax = x∗Bx = 0} = {0}. Then, there exists a nonsingular matrix
S ∈ Fn×n such that SAS∗ and SBS∗ are diagonal. (Proof: The result
follows from Fact 8.11.6. See [389] or [466, p. 96].)

Fact 8.11.7. Let A,B ∈ Rn×n be symmetric and nonsingular, and
assume there exist α, β ∈ R such that αA + βB is positive definite. Then,
there exists a nonsingular matrix S ∈ Rn×n such that SAST and SBST are
diagonal. (Remark: This result is due to Weierstrass. See [563].) (Remark:
Suppose that B is positive definite. Then, by necessity of Fact 8.11.3, it
follows that A−1B is diagonalizable over R. This proves iii) =⇒ i) of Propo-
sition 5.5.18.)

Fact 8.11.8. Let A ∈ Fn×n. Then, A is diagonalizable over F with
(nonnegative, positive) eigenvalues if and only if there exist (nonnegative-
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semidefinite, positive-definite) matrices B,C ∈ Fn×n such that A = BC.
(Proof: To prove sufficiency, use Theorem 8.3.5 and note that A = S−1

· (SBS∗)
(

S−∗CS−1
)

S.)

8.12 Facts on the Trace

Fact 8.12.1. Let A,B ∈ Fn×n, and assume that A and B are both
Hermitian or both skew Hermitian. Then, trAB is real.

Fact 8.12.2. Let A,B ∈ Fn×n be Hermitian, and assume that −A ≤
B ≤ A. Then,

trB2 ≤ trA2.

(Proof: 0 ≤ tr[(A−B)(A+B)] = trA2 − trB2. See [555].)

Fact 8.12.3. Let A,B ∈ Fn×n be nonnegative semidefinite. Then,
AB = 0 if and only if trAB = 0.

Fact 8.12.4. Let A,B ∈ Fn×n be nonnegative semidefinite, and let
p, q ≥ 1 satisfy 1/p+ 1/q = 1. Then,

trAB ≤ (trAp)1/p(trBq)1/q .

Furthermore, equality holds if and only ifAp−1 and B are linearly dependent.
(Remark: This result is a matrix version of Holder’s inequality.)

Fact 8.12.5. Let A,B ∈ Fn×n, and let k ∈ N. Then,

| tr (AB)2k| ≤ tr (A∗ABB∗)k ≤ tr(A∗A)k(BB∗)k.

(Proof: See [622].)

Fact 8.12.6. Let A,B ∈ Fn×n be Hermitian, and let k ∈ P. Then,

|tr (AB)2k| ≤ tr
(

A2B2
)2 ≤

{

trA2kB2k

(

trA2B2
)k
.

(Proof: See [622].)

Fact 8.12.7. Let A,B ∈ Fn×n be nonnegative semidefinite. Then,

trAB ≤
[

tr
(

A1/2BA1/2
)1/2

]2

≤ (trA)(trB) ≤ 1
4(trA+ trB)2,

(Remark: Note that

tr
(

A1/2BA1/2
)1/2

=
n
∑

i=1

λ
1/2
i (AB)
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and

trAB = trA1/2BA1/2 = tr

[

(

A1/2BA1/2
)1/2(

A1/2BA1/2
)1/2

]

.

The second inequality follows from Proposition 9.3.6 with p = q = 2, r = 1,
and A and B replaced by A1/2 and B1/2.)

Fact 8.12.8. Let A,B ∈ Fn×n be nonnegative semidefinite, and let
p ≥ 0 and r ≥ 1. Then,

tr
(

A1/2BA1/2
)pr
≤ tr

(

Ar/2BrAr/2
)p
.

In particular,

tr
(

A1/2BA1/2
)2p
≤ tr

(

AB2A
)p

and
trAB ≤ tr (AB2A)1/2.

(Proof: Use Fact 8.14.6 and Fact 8.14.7.) (Remark: This inequality is due
to Araki. See [33] and [93, p. 258].) (Problem: Compare the upper bounds

trAB ≤
[

tr
(

A1/2BA1/2
)1/2

]2

and
trAB ≤ tr

(

AB2A
)1/2

.)

Fact 8.12.9. Let A,B ∈ Fn×n be nonnegative semidefinite, and let
k,m ∈ P, where m ≥ k. Then,

tr
(

AkBk
)m
≤ tr (AmBm)k.

In particular,
tr (AB)m ≤ trAmBm.

If, in addition, m is even, then

tr (AB)m ≤ tr
(

A2B2
)m/2 ≤ trAmBm.

(Proof: Use Fact 8.14.6 and Fact 8.14.7.) (Remark: The result tr (AB)m ≤
trAmBm is the Lieb-Thirring inequality. See [93, p. 279]. The inequality

tr (AB)m ≤ tr
(

A2B2
)m/2

follows from Fact 8.12.8. See [622].) (Problem:
Compare the upper bounds

trAB ≤
[

tr
(

A1/2BA1/2
)1/2

]2

and
trAB ≤ tr

(

AB2A
)1/2

.)
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Fact 8.12.10. Let A,B ∈ Fn×n be nonnegative semidefinite, and let
p ≥ r ≥ 0. Then,

[

tr
(

A1/2BA1/2
)p]1/p

≤
[

tr
(

A1/2BA1/2
)r]1/r

.

In particular,

[

tr
(

A1/2BA1/2
)2
]1/2

≤ trAB ≤











tr
(

AB2A
)1/2

[

tr
(

A1/2BA1/2
)1/2
]2
.

(Proof: The result follows from the power sum inequality Fact 1.4.13. See
[159].)

Fact 8.12.11. Let A,B ∈ Fn×n be nonnegative semidefinite, assume
that A ≤ B, and let p, q ≥ 0. Then,

trApBq ≤ trBp+q.

If, in addition, A and B are positive definite, then this inequality holds for
all p, q ∈ R satisfying q ≥ −1 and p+ q ≥ 0. (Proof: See [107].)

Fact 8.12.12. Let A,B ∈ Fn×n be nonnegative semidefinite, and let
α ∈ [0, 1]. Then,

trAαB1−α ≤ (trA)α(trB)1−α ≤ tr[αA+ (1− α)B].

Furthermore, the first inequality is an equality if and only if A and B are
linearly dependent, while the second inequality is an equality if and only if
A = B. (Remark: See Fact 1.4.2 and Fact 8.12.13.)

Fact 8.12.13. Let A,B ∈ Fn×n be positive definite, and let α ∈ [0, 1].
Then,

trA−αBα−1 ≤
(

trA−1
)α(

trB−1
)1−α ≤ tr

[

αA−1 + (1− α)B−1
]

and

tr [αA+ (1− α)B]−1 ≤
(

trA−1
)α(

trB−1
)1−α ≤ tr

[

αA−1 + (1− α)B−1
]

.

(Remark: The lower inequalities refine the convexity of φ(A) = trA−1. See
Fact 1.4.2 and Fact 8.12.12.) (Problem: Compare this result to Fact 8.8.20.)

Fact 8.12.14. Let A,B ∈ Fn×n, and assume that B is nonnegative
semidefinite. Then,

|trAB| ≤ σmax(A)trB.

(Proof: Use Proposition 8.4.13 and σmax(A + A∗) ≤ 2σmax(A).) (Remark:
See Fact 5.10.1.)
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Fact 8.12.15. Let A,B ∈ Fn×n be nonnegative semidefinite, and let
p ≥ 1. Then,

[tr(Ap +Bp)]1/p ≤ [tr (A+B)p]1/p ≤ (trAp)1/p + (trBp)1/p .

(Proof: See [107].) (Remark: The first inequality is the McCarthy inequality.
The second inequality is a special case of the triangle inequality for the norm
‖ · ‖σp and a matrix version of Minkowski’s inequality.)

Fact 8.12.16. Let A,B ∈ Fn×n, assume that B is nonnegative semidef-
inite, and assume that A∗A ≤ B. Then,

trA ≤ trB1/2.

(Proof:
∑n

i=1 |λi| ≤
∑n

i=1σi(A) = tr (A∗A)1/2 ≤ trB1/2. See [71].)

Fact 8.12.17. Let A =
[

A11 A12

A∗
12 A22

]

∈ F(n+m)×(n+m) be Hermitian. Then,

A is nonnegative semidefinite if and only if

trBA∗
12 ≤ tr

(

A
1/2
11BA22B

∗A1/2
11

)1/2

for all B ∈ Fn×m. (Proof: See [71].)

Fact 8.12.18. Let A =
[

A11 A12

A∗
12 A22

]

∈ F(n+m)×(n+m) be nonnegative

semidefinite. Then,

trA∗
12A12 ≤ (trA11)(trA22).

(Proof: See [454].)

Fact 8.12.19. Let A,B ∈ Fn×n be positive definite. Then,

tr(A−B) ≤ tr[A(logA− logB)]

and
(log trA− log trB)trA ≤ tr[A(logA− logB)].

(Proof: See [93, p. 281] and [69].) (Remark: The second inequality is
equivalent to the thermodynamic inequality. See Fact 11.11.22.) (Remark:
tr[A(logA− logB)] is the relative entropy of Umegaki.)

8.13 Facts on the Determinant

Fact 8.13.1. Let A ∈ Fn×n be such that A + A∗ is positive definite.
Then,

det 1
2(A+A∗) ≤ |detA|.
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Furthermore, equality holds if and only if A is Hermitian. (Remark: This
result is the Ostrowski-Taussky inequality.)

Fact 8.13.2. Let A,B ∈ Fn×n, and assume that A is positive definite
and B is Hermitian. Then,

detA ≤ |det(A+ B)|.
Furthermore, equality holds if and only if B = 0. (Proof: See [466, pp. 146,
163].)

Fact 8.13.3. Let A,B ∈ Fn×n, assume that A and B are positive
definite, and assume that B ≤ A. Then,

detA+ ndetB ≤ det(A+B).

(Proof: See [466, pp. 154, 166].)

Fact 8.13.4. Let A ∈ Fn×n be such that 1
2(A−A∗) is positive definite.

Then,
B

4

=
[

1
2(A+A∗)

]1/2
A−1A∗[1

2(A+A∗)
]−1/2

is unitary. (Proof: See [194].) (Remark: A is strictly dissipative if 1
2(A−A∗)

is positive definite. A is strictly dissipative if and only if −A is dissipative.
See [192, 193].) (Remark: A−1A∗ is similar to a unitary matrix. See Fact
3.6.10.)

Fact 8.13.5. Let A ∈ Rn×n be such that A + AT is positive definite.
Then,

[

det 1
2

(

A+AT
)][

1
2

(

A+AT
)]−1≤ (detA)

[

1
2

(

A−1 +A−T
)]

.

Furthermore,
[

det 1
2

(

A+AT
)] [

1
2

(

A+AT
)]−1

< (detA)
[

1
2

(

A−1 +A−T
)]

if and only if rank
(

A−AT
)

≥ 4. Finally, if n ≥ 4 and A−AT is nonsingular,
then

(detA)
[

1
2

(

A−1 +A−T
)]

<
[

detA− det 1
2

(

A−AT
)][

1
2

(

A+AT
)]−1

.

(Proof: See [193, 310].) (Remark: This result does not hold for complex
matrices.) (Problem: If A + AT is nonnegative semidefinite, does it follow

that
[

1
2

(

A+AT
)]A≤ 1

2

(

AA +AAT
)

?)

Fact 8.13.6. Let A,B ∈ Fn×n, assume that B is Hermitian, and as-
sume that A∗BA < A+A∗. Then, detA 6= 0.

Fact 8.13.7. Let A,B ∈ Fn×n be positive definite and let α ∈ [0, 1].
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Then,
(detA)α(detB)1−α ≤ det[αA+ (1− α)B].

Furthermore, equality holds if and only if A = B. (Remark: This result is
due to Bergstrom.)

Fact 8.13.8. Let A,B ∈ Fn×n, assume that A and B are nonnegative
semidefinite, assume that 0 ≤ A ≤ B, and let α ∈ [0, 1]. Then,

det[αA+ (1− α)B] ≤ αdetA+ (1− α)detB.

(Proof: See [588].)

Fact 8.13.9. Let A,B ∈ Fn×n, and assume that A and B are positive
definite. Then,

detA

detA[1,1]
+

detB

detB[1,1]
≤ det(A+B)

det
(

A[1,1] +B[1,1]

) .

(Proof: See [466, p. 145].)

Fact 8.13.10. Let A1, . . . , Ak ∈ Fn×n be nonnegative semidefinite, and
let λ1, . . . , λk ∈ C. Then,

det

(

k
∑

i=1

λiAi

)

≤ det

(

k
∑

i=1

|λi|Ai
)

.

(Proof: See [466, p. 144].)

Fact 8.13.11. Let A,B,C ∈ Rn×n, let D
4

= A + B, and assume that
CB +BTCT < D +D∗. Then, detA 6= 0.

Fact 8.13.12. Let A,B ∈ Fn×n, assume that A and B are nonnegative
semidefinite, and let m ∈ P. Then,

n1/m(detAB)1/n ≤ (trAmBm)1/m.

(Proof: See [159].) (Remark: Assuming detB = 1 and setting m = 1 yields
Proposition 8.4.14.)

Fact 8.13.13. Let A,B ∈ Fn×m. Then,

|detAB∗|2 ≤ (detAA∗)(detBB∗).

(Proof: Apply Fact 8.13.23 to
[

AA∗ AB∗

BA∗ BB∗

]

.) (Remark: See Fact 8.8.12.)

Fact 8.13.14. Let A ∈ Fn×n be positive definite and let B ∈ Fm×n,
where rankB = m. Then,

(detBB∗)2 ≤ (detBAB∗)detBA−1B∗.
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(Proof: Use Fact 8.8.13.)

Fact 8.13.15. Let A ∈ Fn×m, B ∈ Fn×l, C ∈ Fm×n, and D ∈ Fl×n.
Then,

|det(AC +BD)|2 ≤ det(AA∗+BB∗)det(C∗C +D∗D).

(Proof: Use SS∗ ≥ 0, where S
4

=
[

A B
C∗ D∗

]

.)

Fact 8.13.16. Let A,B ∈ Fn×m. Then,

|det(I +AB∗)|2 ≤ det(I +AA∗)det(I +BB∗).

(Proof: Specialize Fact 8.13.15.)

Fact 8.13.17. Let A,B ∈ Fn×n, assume that A+A∗ > 0 and B+B∗ ≥
0, and let α > 0. Then,

mspec(αI +AB) ∩ (−∞, 0] = ∅.

Hence,
det(αI +AB) > 0.

(Proof: See [254].) (Remark: Equivalently, −A is dissipative and −B is
semidissipative.) (Problem: Find a positive lower bound for det(αI + AB)
in terms of α, A, and B.)

Fact 8.13.18. Let A,B ∈ Fn×m. Then,
[

I +A∗A (A+B)∗

A+B I +BB∗

]

=

[

I A∗

B I

] [

I B∗

A I

]

≥ 0

and
(A+B)∗(I +BB∗)−1(A+B) ≤ I +A∗A.

If, in addition, n = m, then

|det(A+B)|2 ≤ det(I +A∗A)det(I +BB∗).

(Proof: See [630].)

Fact 8.13.19. Let A,B ∈ Fn×m. Then, there exist unitary matrices
S1, S2 ∈ Fn×n such that

I + 〈A+B〉 ≤ S1(I + 〈A〉)1/2S2(I + 〈B〉)S∗
2(I + 〈A〉)1/2S∗

1 .

Therefore,

det(I + 〈A+B〉) ≤ det(I + 〈A〉)det(I + 〈B〉).
(Proof: See [24,545].) (Remark: This result is due to Seiler and Simon.)
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Fact 8.13.20. Let A,B ∈ Fn×m, and assume that I−A∗A and I−B∗B
are positive definite. Then,

[

(I −A∗A)−1 (I −B∗A)−1

(I −A∗B)−1 (I −B∗B)−1

]

≥ 0,

I −B∗B ≤ (I −B∗A)(I −A∗A)−1(I −A∗B),

0 < det(I −A∗A)det(I −B∗B) ≤ [det(I −A∗B)]2.

(Remark: These results are Hua’s inequalities. See [24].)

Fact 8.13.21. Let A ∈ Fn×n. Then,

|detA| ≤
n
∏

i=1





n
∑

j=1

|A(i,j)|2




1/2

.

Furthermore, equality holds if and only if AA∗ is diagonal. (Remark: Re-
place A with AA∗ in Fact 8.14.5.)

Fact 8.13.22. Let A =
[

A11 A12

A∗
12 A22

]

∈ F(n+m)×(n+m) be positive definite.

Then,
detA = (detA11)det

(

A22 −A∗
12A

−1
11A12

)

≤ (detA11)detA22

≤
n+m
∏

i=1

A(i,i).

If, in addition, n = m, then

0 < (detA11)detA22 − |detA12|2 ≤ detA ≤ (detA11)detA22.

(Proof: Since 0 ≤ A∗
12A

−1
11A12 < A22, it follows that |detA12|2/detA11 <

detA22. Use Fact 8.13.23. Also, see [466, p. 142].) (Remark: detA ≤
(detA11)detA22 is Fischer’s inequality.)

Fact 8.13.23. Let A =





A11 · · · A1k

... · · ·.. ...
AT

1k · · · Akk



 be nonnegative semidefinite,

where Aij ∈ Fn×n for all i, j = 1, . . . , k. Then,

det







detA11 · · · detA1k
... · · ·.. ...

detA1k · · · detAkk






≤ detA
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and 





trA11 · · · trA1k
... · · ·.. ...

trA1k · · · trAkk






≥ 0.

(Remark: The matrix whose (i, j) entry is detAij is a determinantal com-
pression of A. See [165,166,454,543].)

8.14 Facts on Eigenvalues and Singular Values

Fact 8.14.1. Let A ∈ Fn×m. Then,

tr 〈A〉 =

min{n,m}
∑

i=1

σi(A).

Fact 8.14.2. Let A ∈ Fn×n. Then, for all i = 1, . . . , n,
∣

∣λi
[

1
2(A+A∗)

]∣

∣ ≤ σi(A).

Hence,
|trA| ≤ tr 〈A〉.

(Proof: See [289, p. 151] or [516].)

Fact 8.14.3. Let A ∈ Fn×n, and let mspec(A) = {λ1, · · · , λn}m, where
λ1, . . . , λn are ordered such that |λ1| ≥ · · · ≥ |λn|. If r > 0 or r ∈ R and A
is nonsingular, then, for all k = 1, . . . , n,

k
∑

i=1

|λi|r ≤
k
∑

i=1

σri (A).

In particular, for all k = 1, . . . , n,

k
∑

i=1

|λi| ≤
k
∑

i=1

σi(A).

Hence,

|trA| ≤
n
∑

i=1

|λi| ≤
n
∑

i=1

σi(A) = tr 〈A〉.

Furthermore, for all k = 1, . . . , n,

k
∑

i=1

|λi|2 ≤
k
∑

i=1

σ2
i (A).
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Hence,

|trA2| ≤
n
∑

i=1

|λi|2 ≤
n
∑

i=1

σi
(

A2
)

= tr
〈

A2
〉

≤
n
∑

i=1

σ2
i (A) = trA∗A.

(Proof: The result follows from Fact 8.16.5 and Fact 5.9.13. See [93, p.
42], [289, p. 176], or [625, p. 19]. See Fact 9.11.15 for the inequality

tr 〈A2〉 = tr
(

A2∗A2
)1/2 ≤ trA∗A.) Finally,

n
∑

i=1

|λi|2 = trA∗A

if and only if A is normal. (Proof: See [466, p. 146].) (Remark:
∑n

i=1 |λi|2 ≤
trA∗A is Schur’s inequality. See Fact 9.10.2.) (Problem: Determine when
equality holds for the remaining inequalities.)

Fact 8.14.4. Let A ∈ Fn×n be Hermitian. Then, for all k = 1, . . . , n,

k
∑

i=1

di(A) ≤
k
∑

i=1

λi(A)

with equality for k = n, that is,

trA =
n
∑

i=1

di(A) =
n
∑

i=1

λi(A).

Hence, for all k = 1, . . . , n,
n
∑

i=k

λi(A) ≤
n
∑

i=k

di(A).

(Proof: See [93, p. 35], [287, p. 193], or [625, p. 18].) (Remark: This result
is Schur’s theorem.)

Fact 8.14.5. Let A ∈ Fn×n be nonnegative semidefinite. Then, for all
k = 1, . . . , n,

n
∏

i=k

λi(A) ≤
n
∏

i=k

di(A).

In particular,

detA ≤
n
∏

i=1

A(i,i).

Now, assume that A is positive definite. Then, equality holds if and only if
A is diagonal. (Proof: See [287, p. 200], [625, p. 18], and [287, p. 477].)
(Remark: The case k = n is Hadamard’s inequality.)
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Fact 8.14.6. Let A,B ∈ Fn×n be nonnegative semidefinite. If p ≥ 1,
then

n
∑

i=1

λpi(A)λpn−i+1(B) ≤ tr (AB)p ≤ trApBp ≤
n
∑

i=1

λpi(A)λpi(B).

If 0 ≤ p ≤ 1, then
n
∑

i=1

λpi(A)λpn−i+1(B) ≤ trApBp ≤ tr (AB)p ≤
n
∑

i=1

λpi(A)λpi(B).

Now, suppose that A and B are positive definite. If p ≤ −1, then
n
∑

i=1

λpi(A)λpn−i+1(B) ≤ tr (AB)p ≤ trApBp ≤
n
∑

i=1

λpi(A)λpi(B).

If −1 ≤ p ≤ 0, then
n
∑

i=1

λpi(A)λpn−i+1(B) ≤ trApBp ≤ tr (AB)p ≤
n
∑

i=1

λpi(A)λpi(B).

(Proof: See [578]. See also [122, 358, 374, 581].) (Remark: See Fact 8.12.8.
See Fact 8.12.5 for the indefinite case.)

Fact 8.14.7. Let A,B ∈ Fn×n be nonnegative semidefinite, and let
p ≥ r ≥ 0. Then, [

λ
1/p
1 (ApBp) · · · λ

1/p
n (ApBp)

]

weakly log majorizes and thus weakly majorizes
[

λ
1/r
1 (ArBr) · · · λ

1/r
n (ArBr)

]

.

(Proof: See [93, p. 257] or [625, p. 20] and Fact 8.16.5.)

Fact 8.14.8. Let A,B ∈ Fn×n be nonnegative semidefinite. Then,

λmax(A+B) ≤ max{λmax(A), λmax(B)}+ λmax

(

A1/2B1/2
)

.

(Proof: See [335].)

Fact 8.14.9. Let A,B ∈ Fn×n be nonnegative semidefinite. Then,

λmax(A+B)

≤ 1
2

[

λmax(A) + λmax(B) +
√

[λmax(A)− λmax(B)]2 + 4λ2
max

(

A1/2B1/2
)

]

.

(Proof: See [337].)
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Fact 8.14.10. Let f : R 7→ R be convex, and let A,B ∈ Fn×n be
Hermitian. Then, for all α ∈ [0, 1],

[

αλ1f(A) + (1− α)λ1f(B) · · · αλnf(A) + (1− α)λnf(B)
]

weakly majorizes
[

λ1f(αA+ (1− α)B) · · · λnf(αA+ (1− α)B)
]

.

If, in addition, f is either nonincreasing or nondecreasing, then, for all i =
1, . . . , n,

λif(αA+ (1− α)B) ≤ αλif(A) + (1− α)λif(B).

(Proof: See [42].)

Fact 8.14.11. Let A,B ∈ Fn×n be nonnegative semidefinite. If r ∈
[0, 1], then

[

λ1(A
r +Br) · · · λn(A

r +Br)
]

weakly majorizes
[

λ1[(A+B)r] · · · λn[(A+B)r]
]

,

and, for all i = 1, . . . , n,

21−rλi[(A+B)r] ≤ λi(Ar +Br).

If r ≥ 1, then
[

λ1[(A+B)r] · · · λn[(A+B)r]
]

weakly majorizes
[

λ1(A
r +Br) · · · λn(A

r +Br)
]

,

and, for all i = 1, . . . , n,

λi(A
r +Br) ≤ 2r−1λi[(A+B)r].

(Proof: The result follows from Fact 8.14.10. See [29,41,42].)

Fact 8.14.12. Let A ∈ Fn×n be Hermitian and let S ∈ Rk×n satisfy
SS∗ = Ik. Then, for all i = 1, . . . , k,

λi+n−k(A) ≤ λi(SAS∗) ≤ λi(A).

Consequently,
k
∑

i=1

λi+n−k(A) ≤ trSAS∗ ≤
k
∑

i=1

λi(A)

and
k
∏

i=1

λi+n−k(A) ≤ detSAS∗ ≤
k
∏

i=1

λi(A).
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(Proof: See [287, p. 190].) (Remark: This result is the Poincare separation
theorem.)

Fact 8.14.13. Let A ∈ Fn×n be Hermitian. Then, for all k = 1, . . . , n,
n
∑

i=n+1−i
λi = min{trS∗AS: S ∈ Fn×k and S∗S = Ik}.

(Proof: See [289, p. 191].) (Remark: This result is the minimum principle.)

Fact 8.14.14. Let A ∈ Fn×n. Then,
[

I A
A∗ I

]

is nonnegative semidefinite

if and only if σmax(A) ≤ 1. Furthermore,
[

I A
A∗ I

]

is positive definite if and
only if σmax(A) < 1. (Proof: Note that

[

I A
A∗ I

]

=

[

I 0
A∗ I

] [

I 0
0 I −A∗A

] [

I A
0 I

]

.)

Fact 8.14.15. Let
[

A11 A12

A∗
12 A22

]

∈ F(n+m)×(n+m) be nonnegative semidef-

inite. Then,
σ2
max(A12) ≤ σmax(A11)σmax(A22).

(Proof: Use A22 ≥ A∗
12A

+
11A12 ≥ 0, factor A+

11 = MM∗, where M has full
column rank, and recall that σmax(SS

∗) = σ2
max(S).) (Problem: Consider

alternative norms.)

Fact 8.14.16. Let A,B ∈ Fn×m be nonnegative semidefinite. Then,
for all k = 1, . . . , n,

k
∏

i=1

λi(AB) ≤
k
∏

i=1

σi(AB) ≤
k
∏

i=1

λi(A)λi(B)

with equality for k = n. Furthermore, for all k = 1, . . . , n,
n
∏

i=k

λi(A)λi(B) ≤
n
∏

i=k

σi(AB) ≤
n
∏

i=k

λi(AB).

(Proof: Use Fact 5.9.13 and Fact 9.11.16.)

Fact 8.14.17. Let A,B ∈ Fn×n be positive definite. If q ≥ 1, then

σqmax(AB) ≤ σmax(A
qBq).

If p ≥ q > 0, then
σ1/q

max(A
qBq) ≤ σ1/p

max(A
pBp).

(Proof: See [219].)
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8.15 Facts on the Schur and Kronecker Products

Fact 8.15.1. Let A ∈ Fn×n be nonnegative semidefinite, and assume
that every entry of A is nonzero. Then, A{−1} is nonnegative semidefinite if
and only if rankA = 1. (Proof: See [363].)

Fact 8.15.2. Let A ∈ Fn×n be nonnegative semidefinite and let k ∈ P.
If r ∈ [0, 1], then

(Ar){k} ≤
(

A{k}
)r
.

If r ∈ [1, 2], then
(

A{k}
)r
≤ (Ar){k}.

If A is positive definite and r ∈ [0, 1], then
(

A{k}
)−r
≤
(

A−r){k}.

(Proof: See [625, p. 8].)

Fact 8.15.3. Let A ∈ Fn×n be nonnegative semidefinite. Then,

(I ◦A)2 ≤ 1
2(I ◦A2 +A ◦A) ≤ I ◦A2.

Now, assume that A is positive definite. Then,

(

A ◦A−1
)−1 ≤ I ≤

(

A1/2 ◦A−1/2
)2
≤ 1

2

(

I +A ◦A−1
)

≤ A ◦A−1,

(A ◦A)−1 ≤ A−1 ◦A−1,

and
1 ∈ spec

(

A ◦A−1
)

.

Define Φ(A)
4

= A ◦A−1 and, for all k ∈ P, define

Φ(k+1)(A)
4

= Φ
[

Φ(k)(A)
]

,

where Φ(1)(A)
4

= Φ(A). Then, for all k ∈ P,

Φ(k)(A) ≥ I
and

lim
k→∞

Φ(k)(A) = I.

(Proof: See [201, 316, 577] and [287, p. 475].) (Remark: The convergence
result also holds if A is an H-matrix [316]. A◦A−1 is the relative gain array.)

Fact 8.15.4. Let A
4

=
[

A11 A12

A∗
12 A22

]

∈ F(n+m)×(n+m) and B
4

=
[

B11 B12

B12 B22

]

∈
P

(n+m)×(n+m), and assume that A and B are nonnegative semidefinite.
Then,
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(A11|A) ◦ (B11|B) ≤ (A11|A) ◦B22 ≤ (A11 ◦B11)|(A ◦B).

(Proof: See [369].)

Fact 8.15.5. Let A ∈ Fn×n be nonnegative semidefinite and assume
that In ◦A = In. Then,

detA ≤ λmin(A ◦A).

(Proof: See [589].)

Fact 8.15.6. Let A,B ∈ Fn×n, and assume that A and B are nonnega-
tive semidefinite. Then, A◦B is nonnegative semidefinite. If, in addition, B
is positive definite and all of the diagonal entries of A are positive, then A◦B
is positive definite. (Proof: By Fact 7.4.13, A⊗B is nonnegative semidefi-
nite, and the Schur product A◦B is a principal submatrix of the Kronecker
product. If A is positive definite, use Fact 8.15.12 to obtain det(A◦B) > 0.)
(Remark: The first result is Schur’s theorem.)

Fact 8.15.7. Let A ∈ Fn×n, and assume that A is positive definite.
Then, there exist positive-definite matrices B,C ∈ Fn×n such that A = B◦C.
(Remark: See [466, pp. 154, 166].) (Remark: This result is due to Djokovic.)

Fact 8.15.8. Let A ∈ Fn×n be positive definite and let B ∈ Fn×n be
nonnegative semidefinite. Then,

(

11×nA
−11n×1

)−1
B ≤ A ◦B.

(Proof: See [204].)

Fact 8.15.9. Let A ∈ Fn×n be positive definite and let B ∈ Fn×n be
nonnegative semidefinite. Then,

rankB ≤ rank(A ◦B) ≤ rank(A⊗B) = (rankA)(rankB).

(Remark: See Fact 7.4.20, Fact 7.5.5, and Fact 8.15.8.) (Remark: The first
inequality is due to Djokovic. See [466, pp. 154, 166].)

Fact 8.15.10. Let A,B ∈ Fn×n be nonnegative semidefinite. If p ≥ 1,
then

tr (A ◦B)p ≤ trAp ◦Bp.

If 0 ≤ p ≤ 1, then
trAp ◦Bp ≤ tr (A ◦B)p.

Now, assume that A and B are positive definite. If p ≤ 0, then

tr (A ◦B)p ≤ trAp ◦Bp.

(Proof: See [581].)
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Fact 8.15.11. Let A,B ∈ Fn×n be nonnegative semidefinite. Then,
for all k = 1, . . . , n,

n
∏

i=k

λi(A)λi(B) ≤
n
∏

i=k

σi(AB) ≤
n
∏

i=k

λi(AB) ≤
n
∏

i=k

λ2
i(A#B) ≤

n
∏

i=k

λi(A ◦B).

Consequently,
λmin(AB)I ≤ A ◦B

and
detAB = [det(A#B)]2 ≤ det(A ◦B).

(Proof: See [25,201], [625, p. 21], and Fact 8.14.16.)

Fact 8.15.12. Let A,B ∈ Fn×n be nonnegative semidefinite. Then,

detAB ≤
(

n
∏

i=1

A(i,i)

)

detB ≤ det(A ◦B).

If, in addition, A and B are positive definite, then the right-hand inequality
is an equality if and only if B is diagonal. (Proof: See [397].) (Remark:
The left-hand inequality follows from Hadamard’s inequality Fact 8.14.5.
The right-hand inequality is Oppenheim’s inequality.) (Problem: Compare
(
∏n
i=1A(i,i)

)

detB and [det(A#B)]2.)

Fact 8.15.13. Let A1, A2, B1, B2 ∈ Fn×n be nonnegative semidefinite,
and assume that 0 ≤ A1≤ B1 and 0 ≤ A2 ≤ B2. Then,

0 ≤ A1⊗A2 ≤ B1⊗B2

and
0 ≤ A1 ◦A2 ≤ B1 ◦B2.

(Proof: See [23].) (Problem: Under which conditions are these inequalities
strict?)

Fact 8.15.14. Let A1, . . . , Ak, B1, . . . , Bk ∈ Fn×n be nonnegative semi-
definite. Then,

(A1 +B1)⊗ · · ·⊗ (Ak +Bk) ≤ A1⊗ · · ·⊗Ak +B1⊗ · · ·⊗Bk.
(Proof: See [412, p. 143].)

Fact 8.15.15. Let A1, A2, B1, B2 ∈ Fn×n be nonnegative semidefinite,
assume that 0 ≤ A1≤ B1 and 0 ≤ A2 ≤ B2, and let α ∈ [0, 1]. Then,

[αA1 + (1− α)B1]⊗ [αA2 + (1− α)B2] ≤ α(A1⊗A2) + (1− α)(B1⊗B2).

(Proof: See [588].)
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Fact 8.15.16. Let A,B ∈ Fn×n be Hermitian. Then, for all i =
1, . . . , n,

λn(A)λn(B) ≤ λi+n2−n(A⊗B) ≤ λi(A ◦B) ≤ λi(A⊗B) ≤ λ1(A)λ1(B).

(Proof: The result follows from Proposition 7.3.1 and Theorem 8.4.5. For
A,B nonnegative semidefinite, the result is given in [394].)

Fact 8.15.17. Let A,B ∈ Fn×n be nonnegative semidefinite, assume
that 0 ≤ A ≤ B, and let k ∈ P. Then,

A{k} ≤ B{k}.

(Proof: 0 ≤ (B −A) ◦ (B +A) implies A ◦A ≤ B ◦B.)

Fact 8.15.18. Let A,B ∈ Fn×n be nonnegative semidefinite. If r ∈
[0, 1], then

Ar ◦Br ≤ (A ◦B)r.

If r ∈ [1, 2], then
(A ◦B)r ≤ Ar ◦Br.

If A and B are positive definite and r ∈ [0, 1], then

(A ◦B)−r ≤ A−r ◦B−r.

Therefore,

(A ◦B)2 ≤ A2 ◦B2,

A ◦B ≤
(

A2 ◦B2
)1/2

,

A1/2 ◦B1/2 ≤ (A ◦B)1/2.

Furthermore,

A2 ◦B2 − 1
4(β − α)2I ≤ (A ◦B)2 ≤ 1

2

[

A2 ◦B2 + (AB){2}
]

≤ A2 ◦B2

and

A ◦B ≤
(

A2 ◦B2
)1/2 ≤ α+ β

2
√
αβ

A ◦B,
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where α
4

= λmin(A⊗B) and β
4

= λmax(A⊗B). Hence,

A ◦B − 1
4

(

√

β −
√
α
)2
I ≤

(

A1/2 ◦B1/2
)2

≤ 1
2

[

A ◦B +
(

A1/2B1/2
){2}

]

≤ A ◦B
≤
(

A2 ◦B2
)1/2

≤ α+ β

2
√
αβ

A ◦B.

(Proof: See [23,427,577], [287, p. 475], and [625, p. 8].)

Fact 8.15.19. Let A,B ∈ Fn×n be nonnegative semidefinite and let
p, q ∈ [1,∞) be such that p ≤ q. Then,

(Ap ◦Bp)1/p ≤ (Aq ◦Bq)1/q .

(Proof: Since p/q ≤ 1, it follows from Fact 8.15.18 that Ap ◦Bp = (Aq)p/q ◦
(Aq)p/q ≤ (Aq ◦ Bq)p/q. Then, use Corollary 8.5.8 with p replaced by 1/p.
See [625, p. 8].)

Fact 8.15.20. Let A,B ∈ Fn×n be positive definite and let p, q be
nonzero integers such that p ≤ q. Then,

(Ap ◦Bp)1/p ≤ (Aq ◦Bq)1/q .

In particular,
(

A−1 ◦B−1
)−1 ≤ A ◦B,

(A ◦B)−1 ≤ A−1 ◦B−1,

and, for all p ∈ P,
A ◦B ≤ (Ap ◦Bp)1/p,

A1/p ◦B1/p ≤ (A ◦B)1/p.

Furthermore,

(A ◦B)−1 ≤ A−1 ◦B−1 ≤ (α+ β)2

4αβ
(A ◦B)−1,

where α
4

= λmin(A⊗B) and β
4

= λmax(A⊗B). (Proof: See [427].) (Problem:
Consider real numbers p ≤ q ≤ −1 to unify this result with Fact 8.15.19.)

Fact 8.15.21. Let A,B ∈ Fn×n be positive definite. Then,

I ◦ (logA+ logB) ≤ log(A ◦B).

(Proof: See [23,625].) (Remark: See Fact 11.11.20.)
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Fact 8.15.22. Let A,B ∈ Fn×n be positive definite, and let C,D ∈
Fm×n. Then,

(C ◦D)(A ◦B)−1(C ◦D)∗ ≤
(

CA−1C∗)◦
(

DB−1D∗).

In particular,
(A ◦B)−1 ≤ A−1 ◦B−1

and
(C ◦D)(C ◦D)∗ ≤ (CC∗) ◦ (DD∗).

(Proof: Form the Schur complement A22c of the Schur product of the
nonnegative-semidefinite matrices

[

A C∗

C CA−1C∗

]

and
[

B D∗

D DB−1D∗

]

. See [396,582]
or [625, p. 13].)

Fact 8.15.23. Let A,B ∈ Fn×n be nonnegative semidefinite, and let
p, q ∈ (1,∞) satisfy 1/p+ 1/q = 1. Then,

(A ◦B) + (C ◦D) ≤ (Ap + Cp)1/p ◦ (Bq +Dq)1/q.

(Proof: Use xxiv) of Proposition 8.5.13 with r = 1/p. See [625, p. 10].)
(Remark: Note the relationship between the conjugate parameters p, q and
the barycentric coordinates α, 1− α. See Fact 1.4.16.)

Fact 8.15.24. Let A,B ∈ Fn×m. Then,

(A ◦B)(A ◦B)∗ ≤ 1
2(AA∗ ◦BB∗ +AB∗ ◦BA∗) ≤ AA∗ ◦BB∗.

(Proof: See [291,577].)

8.16 Facts on Majorization

Fact 8.16.1. Let x, y ∈ Rn, where x(1) ≥ · · · ≥ x(n) and y(1) ≥ · · · ≥
y(n), assume that y strongly majorizes x, let f : [min{x(n), y(n)}, y(1)] 7→
R, and assume that f is convex. Then,

[

f(y(1)) · · · f(y(n))
]T

weakly

majorizes
[

f(x(1)) · · · f(x(n))
]T

. (Proof: See [93, p. 42], [289, p. 173],
or [400, p. 116].)

Fact 8.16.2. Let x, y ∈ Rn, where x(1) ≥ · · · ≥ x(n) ≥ 0 and y(1) ≥
· · · ≥ y(n) ≥ 0, assume that y strongly log majorizes x, let f : [0,∞) 7→ R,

and assume that g(z)
4

= f(ez) is convex. Then,
[

f(y(1)) · · · f(y(n))
]T

weakly majorizes
[

f(x(1)) · · · f(x(n))
]T

. (Proof: Apply Fact 8.16.1.)

Fact 8.16.3. Let x, y ∈ Rn, where x(1) ≥ · · · ≥ x(n) and y(1) ≥ · · · ≥
y(n), assume that y weakly majorizes x, let f : [min{x(n), y(n)}, y(1)] 7→ R,

and assume that f is convex and increasing. Then,
[

f(y(1)) · · · f(y(n))
]T
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weakly majorizes
[

f(x(1)) · · · f(x(n))
]T

. (Proof: See [93, p. 42], [289, p.
173], or [400, p. 116].)

Fact 8.16.4. Let x, y ∈ Rn, where x(1) ≥ · · · ≥ x(n) ≥ 0 and y(1) ≥
· · · ≥ y(n) ≥ 0, assume that y log majorizes x, let f : [0,∞) 7→ R, and assume

that g(z)
4

= f(ez) is convex and increasing. Then,
[

f(y(1)) · · · f(y(n))
]T

weakly majorizes
[

f(x(1)) · · · f(x(n))
]T

. (Proof: Use Fact 8.16.3.)

Fact 8.16.5. Let x, y ∈ Rn, where x(1) ≥ · · · ≥ x(n) ≥ 0 and y(1) ≥
· · · ≥ y(n) ≥ 0, and assume that y weakly log majorizes x. Then, y weakly

majorizes x. (Proof: Use Fact 8.16.3 with f(t) = et. See [625, p. 19].)

Fact 8.16.6. Let x, y ∈ Rn, where x(1) ≥ · · · ≥ x(n) ≥ 0 and y(1) ≥
· · · ≥ y(n) ≥ 0, assume that y weakly majorizes x, let p ∈ [1,∞), and let
r > 0. Then, for all k = 1, . . . , n,

(

k
∑

i=1

xp(i)

)r

≤
(

k
∑

i=1

yp(i)

)r

.

(Proof: Use Fact 8.16.3. See [400, p. 96].) (Remark: φ(x)
4

=
(

∑k
i=1 x

p
(i)

)1/p

is a symmetric gauge function.)

8.17 Notes

The ordering A ≤ B is traditionally called the Loewner ordering.
Proposition 8.2.3 is given in [5] and [342] with extensions in [71]. The proof
of Proposition 8.2.6 is based on [113, p. 120], as suggested in [533]. The
proof given in [222, p. 307] is incomplete.

Theorem 8.3.4 is due to Newcomb [437].

Proposition 8.4.13 is given in [284, 429]. Special cases such as Fact
8.12.14 appear in numerous papers.

The proofs of Lemma 8.4.4 and Theorem 8.4.5 are based on [525].
Theorem 8.4.9 can also be obtained as a corollary of the Fischer minimax
theorem given in [287, 400], which provides a geometric characterization of
the eigenvalues of a symmetric matrix. Theorem 8.3.5 appears in [477, p.
121]. Theorem 8.5.2 is given in [21]. Additional inequalities appear in [422].

Functions that are nondecreasing on P
n are characterized by the the-

ory of monotone matrix functions [93, 184]. See [425] for a summary of the
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principal results.

The literative on convex maps is extensive. Result xiv) of Proposition
8.5.13 is due to Lieb and Ruskai [373]. Result xxi) is the Lieb concavity
theorem [372]. Result xxxiii) is due to Ando. Results xxxv) and xxxvi) are
due to Fan. Some extensions to strict convexity are considered in [400]. See
also [23,411,431].

Products of positive-definite matrices are studied in [48–51, 617]. Al-
ternative orderings for nonnegative-semidefinite matrices are considered in
[46,267].

Essays on the legacy of Issai Schur appear in [318].
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Chapter Nine

Norms

Norms are used to quantify vectors and norms, and they play a basic
role in convergence analysis. This chapter introduces vector and matrix
norms and their numerous properties.

9.1 Vector Norms

For α ∈ F, let |α| denote the absolute value of α. For x ∈ Fn and
A ∈ Fn×m, every component of x and every entry of A can be replaced by
its absolute value to obtain |x| ∈ Rn and |A| ∈ Rn×m defined by

|x|(i) 4

= |x(i)| (9.1.1)

for all i = 1, . . . , n and
|A|(i,j) 4

= |A(i,j)| (9.1.2)

for all i = 1, . . . , n and j = 1, . . . ,m. For many applications it is useful to
have a scalar measure of the magnitude of x or A. Norms provide such
measures.

Definition 9.1.1. A norm ‖ · ‖ on Fn is a function ‖ · ‖: Fn 7→ R that
satisfies the following conditions:

i) ‖x‖ ≥ 0 for all x ∈ Fn.

ii) ‖x‖ = 0 if and only if x = 0.

iii) ‖αx‖ = |α|‖x‖ for all α ∈ F and x ∈ Fn.

iv) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ Fn.

Condition iv) is the triangle inequality.

A norm ‖ · ‖ on Fn is monotone if |x| ≤≤ |y| implies that ‖x‖ ≤ ‖y‖
for all x, y ∈ Fn, while ‖ · ‖ is absolute if ‖|x|‖ = ‖x‖ for all x ∈ Fn.
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Proposition 9.1.2. Let ‖ · ‖ be a norm on Fn. Then, ‖ · ‖ is monotone
if and only if ‖ · ‖ is absolute.

Proof. First, suppose that ‖ · ‖ is monotone. Let x ∈ Fn, and define

y
4

= |x|. Then, |y| = |x| and thus |y| ≤≤ |x| and |y| ≤≤ |x|. Hence, ‖x‖ ≤
‖y‖ and ‖y‖ ≤ ‖x‖, which implies that ‖x‖ = ‖y‖. Thus, ‖|x|‖ = ‖y‖ = ‖x‖,
which proves that ‖ · ‖ is absolute.

Conversely, suppose that ‖ · ‖ is absolute and, for convenience, let
n = 2. Now, let x, y ∈ F2 be such that |x| ≤≤ |y|. Then, there exist
α1, α2 ∈ [0, 1] and θ1, θ2 ∈ R such that x(i) = αie

θiy(i) for i = 1, 2. Since
‖ · ‖ is absolute, it follows that

‖x‖ =

∣

∣

∣

∣

∣

∣

∣

∣

[

α1e
θ1y(1)

α2e
θ2y(2)

]∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

[

α1 |y(1)|
α2 |y(2)|

]∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

1
2(1− α1)

[

−|y(1)|
|α2||y(2)|

]

+ 1
2(1− α1)

[

|y(1)|
α2|y(2)|

]

+ α1

[

|y(1)|
α2|y(2)|

]∣

∣

∣

∣

∣

∣

∣

∣

≤
[

1
2(1− α1) + 1

2(1− α1) + α1

]

∣

∣

∣

∣

∣

∣

∣

∣

[

|y(1)|
α2|y(2)|

]∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

[

|y(1)|
α2|y(2)|

]∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

1
2(1− α2)

[

|y(1)|
−|y(2)|

]

+ 1
2(1− α2)

[

|y(1)|
|y(2)|

]

+ α2

[

|y(1)|
|y(2)|

]∣

∣

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∣

∣

∣

[

|y(1)|
|y(2)|

]∣

∣

∣

∣

∣

∣

∣

∣

= ||y|| .
Thus, ‖ · ‖ is monotone.

As we shall see, there are many different norms. A useful class of
norms consists of the Holder norms defined by

‖x‖p 4

=























(

n
∑

i=1

|x(i)|p
)1/p

, 1 ≤ p <∞,

max
i∈{1,...,n}

|x(i)|, p =∞.
(9.1.3)

These norms depend on Minkowski’s inequality given by the following result.
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Lemma 9.1.3. Let p ∈ [1,∞], and let x, y ∈ Fn. Then,

‖x+ y‖p ≤ ‖x‖p + ‖y‖p. (9.1.4)

If p = 1, then equality holds if and only if, for all i = 1, . . . , n, there exists
αi ≥ 0 such that either x(i) = αiy(i) or y(i) = αix(i). If p ∈ (1,∞), then
equality holds if and only if there exists α ≥ 0 such that either x = αy or
y = αx.

Proof. See [70,395] and Fact 1.4.17.

Proposition 9.1.4. Let p ∈ [1,∞]. Then, ‖ · ‖p is a norm on Fn.

For p = 1,

‖x‖1 =
n
∑

i=1

|x(i)| (9.1.5)

is the absolute sum norm; for p = 2,

‖x‖2 =

(

n
∑

i=1

|x(i)|2
)1/2

=
√
x∗x (9.1.6)

is the Euclidean norm; and, for p =∞,

‖x‖∞ = max
i∈{1,...,n}

|x(i)| (9.1.7)

is the infinity norm.

Proposition 9.1.5. Let 1 ≤ p ≤ q ≤ ∞, and let x ∈ Fn. Then,

‖x‖∞ ≤ ‖x‖q ≤ ‖x‖p ≤ ‖x‖1. (9.1.8)

Assume, in addition, that 1 ≤ p < q ≤ ∞. Then, x has at least two nonzero
components if and only if

‖x‖∞ < ‖x‖q < ‖x‖p < ‖x‖1. (9.1.9)

Proof. If either p = q or x = 0 or x has exactly one nonzero compo-
nent, then ‖x‖q = ‖x‖p. Hence, to prove both (9.1.8) and (9.1.9) it suffices
to prove (9.1.9) in the case that 1 < p < q < ∞ and x has at least two
nonzero components. Thus, let n ≥ 2, let x ∈ Fn have at least two nonzero
components, and define f : [1,∞)→ [0,∞) by f(β)

4

= ‖x‖β . Hence,

f ′(β) = 1
β‖x‖

1−β
β

n
∑

i=1

γi,
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where, for all i = 1, . . . , n,

γi
4

=

{

|xi|β
(

log |x(i)| − log ‖x‖β
)

, x(i) 6= 0,

0, x(i) = 0.

If x(i) 6= 0, then log |x(i)| < log ‖x‖β . It thus follows that f ′(β) < 0, which
implies that f is decreasing on [1,∞). Hence, (9.1.9) holds.

The following result is Holder’s inequality. For this result we interpret
1/∞ = 0.

Proposition 9.1.6. Let p, q ∈ [0,∞] satisfy 1/p + 1/q = 1, and let
x, y ∈ Fn. Then,

|x∗y| ≤ ‖x‖p‖y‖q. (9.1.10)

Furthermore, equality holds if and only if |x∗y| = |x|T|y| and














|x| ◦ |y| = ‖y‖∞|x|, p = 1,

|x|{p}and|y|{q} are linearly dependent, 1 < p <∞,
|x| ◦ |y| = ‖x‖∞|y|, p =∞.

(9.1.11)

Proof. See [117, p. 127], [287, pp. 534–536], and Fact 1.4.16.

The case p = q = 2 is the Cauchy-Schwarz inequality.

Corollary 9.1.7. Let x, y ∈ Fn. Then,

|x∗y| ≤ ‖x‖2‖y‖2. (9.1.12)

Furthermore, equality holds if and only if x and y are linearly dependent.

Proof. Assume y 6= 0, and define M
4

=
[ √

y∗yI (y∗y)−1/2y
]

. Since

M∗M =
[

y∗yI y
y∗ 1

]

is nonnegative semidefinite, it follows from iii) of Proposi-

tion 8.2.3 that yy∗ ≤ y∗yI. Therefore, x∗yy∗x ≤ x∗xy∗y, which is equivalent
to (9.1.12).

Now, suppose that x and y are linearly dependent. Then, there exists
β ∈ F such that either x = βy or y = βx. In both cases it follows that
|x∗y| = ‖x‖2‖y‖2. Conversely, define f : Fn × Fn → [0,∞) by f(µ, ν)

4

=
µ∗µν∗ν − |µ∗ν|2. Now, suppose that f(x, y) = 0 so that (x, y) minimizes f.
Then, it follows that fµ(x, y) = 0, which implies that y∗yx = y∗xy. Hence,
x and y are linearly dependent.

The norms ‖ · ‖ and ‖ · ‖′ on Fn are equivalent if there exist α, β > 0
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such that
α‖x‖ ≤ ‖x‖′ ≤ β‖x‖ (9.1.13)

for all x ∈ Fn. Note that these inequalities can be written as

1
β‖x‖

′ ≤ ‖x‖ ≤ 1
α‖x‖

′. (9.1.14)

Hence, the word “equivalent” is justified.

Theorem 9.1.8. Let ‖ · ‖ and ‖ · ‖′ be norms on Fn. Then, ‖ · ‖ and
‖ · ‖′ are equivalent.

Proof. See [287, p. 272].

9.2 Matrix Norms

One way to define norms for matrices is by viewing a matrix A ∈ Fn×m

as a vector in Fnm, for example, as vecA.

Definition 9.2.1. A norm ‖ · ‖ on Fn×m is a function ‖ · ‖: Fn×m 7→ R
that satisfies the following conditions:

i) ‖A‖ ≥ 0 for all A ∈ Fn×m.

ii) ‖A‖ = 0 if and only if A = 0.

iii) ‖αA‖ = |α|‖A‖ for all α ∈ F.

iv) ‖A+B‖ ≤ ‖A‖+ ‖B‖ for all A,B ∈ Fn×m.

If ‖ · ‖ is a norm on Fnm, then ‖ · ‖′ defined by ‖A‖′ 4

= ‖vecA‖ is a
norm on Fn×m. For example, Holder norms can be defined for matrices by
choosing ‖ · ‖ = ‖ · ‖p. Hence, for all A ∈ Fn×m define

‖A‖p 4

=



































n
∑

i=1

m
∑

j=1

|A(i,j)|p




1/p

, 1 ≤ p <∞,

max
i∈{1,...,n}
j∈{1,...,m}

|A(i,j)|, p =∞.
(9.2.1)

Note that the same symbol ‖ · ‖p is used to denote the Holder norm for both
vectors and matrices. This notation is consistent since, if A ∈ Fn×1, then
‖A‖p coincides with the vector Holder norm. Furthermore, if A ∈ Fn×m and
1 ≤ p ≤ ∞, then

‖A‖p = ‖vecA‖p. (9.2.2)
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It follows from (9.1.8) that, if A ∈ Fn×m and 1 ≤ p ≤ q, then

‖A‖∞ ≤ ‖A‖q ≤ ‖A‖p ≤ ‖A‖1. (9.2.3)

If, in addition, 1 < p < q <∞ and A has at least two nonzero entries, then

‖A‖∞ < ‖A‖q < ‖A‖p < ‖A‖1. (9.2.4)

The Holder norms in the cases p = 1, 2,∞ are the most commonly
used. Let A ∈ Fn×m. For p = 2 we define the Frobenius norm ‖ · ‖F by

‖A‖F 4

= ‖A‖2. (9.2.5)

Since ‖A‖2 = ‖vecA‖2, it follows that

‖A‖F = ‖A‖2 = ‖vecA‖2 = ‖vecA‖F. (9.2.6)

It is easy to see that
‖A‖F =

√
trA∗A. (9.2.7)

Let ‖ · ‖ be a norm on Fn×m. If ‖S1AS2‖ = ‖A‖ for all A ∈ Fn×m and
for all unitary matrices S1 ∈ Fn×n and S2 ∈ Fm×m, then ‖ · ‖ is unitarily
invariant. Now, let m = n. If ‖A‖ = ‖A∗‖ for all A ∈ Fn×n, then ‖ · ‖ is self
adjoint. If ‖In‖ = 1, then ‖ · ‖ is normalized. Note that the Frobenius norm
is not normalized since ‖In‖F =

√
n. If ‖SAS∗‖ = ‖A‖ for all A ∈ Fn×n and

for all unitary S ∈ Fn×n, then ‖ · ‖ is weakly unitarily invariant.

An important class of norms can be defined in terms of singular values.
Let σ1(A) ≥ σ2(A) ≥ · · · denote the singular values of A ∈ Fn×m. The
following result gives a weak majorization condition for singular values.

Proposition 9.2.2. Let A,B ∈ Fn×m. Then, for all k = 1, . . . ,
min{n,m},

k
∑

i=1

[σi(A)− σi(B)] ≤
k
∑

i=1

σi(A+B) ≤
k
∑

i=1

[σi(A) + σi(B)]. (9.2.8)

In particular,
σmax(A+B) ≤ σmax(A) + σmax(B) (9.2.9)

and
tr〈A+B〉 ≤ tr〈A〉+ tr〈B〉. (9.2.10)

Proof. Define A,B ∈ H
n+m by A

4

=
[

0 A
A∗ 0

]

and B
4

=
[

0 B
B∗ 0

]

. Then,
Corollary 8.5.15 implies that, for all k = 1, . . . , n+m,

k
∑

i=1

λi(A + B) ≤
k
∑

i=1

[λi(A) + λi(B)].
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Now, consider k ≤ min{n,m}. Then, it follows from Proposition 5.6.5 that,
for all i = 1, . . . , k, λi(A) = σi(A). Setting k = 1 yields (9.2.9), while setting
k = min{n,m} and using Fact 8.14.1 yields (9.2.10).

Proposition 9.2.3. Let p ∈ [1,∞], and let A ∈ Fn×m. Then, ‖ · ‖σp
defined by

‖A‖σp 4

=























min{n,m}
∑

i=1

σpi (A)





1/p

, 1 ≤ p <∞,

σmax(A), p =∞,

(9.2.11)

is a norm on Fn×m.

Proof. Let p ∈ [1,∞]. Then, it follows from Proposition 9.2.2 and
Minkowski’s inequality Fact 1.4.17 that

‖A+B‖σp =





min{n,m}
∑

i=1

σpi (A+B)





1/p

≤





min{n,m}
∑

i=1

[σi(A) + σi(B)]p





1/p

≤





min{n,m}
∑

i=1

σpi (A)





1/p

+





min{n,m}
∑

i=1

σpi (B)





1/p

= ‖A‖σp + ‖B‖σp. �

The norm ‖ · ‖σp is a Schatten norm. Let A ∈ Fn×m. Then, for all
p ∈ [1,∞),

‖A‖σp = (tr 〈A〉p)1/p . (9.2.12)

Important special cases are

‖A‖σ1 = σ1(A) + · · ·+ σmin{n,m}(A) = tr 〈A〉, (9.2.13)

‖A‖σ2 =
[

σ2
1(A) + · · ·+ σ2

min{n,m}(A)
]1/2

= (trA∗A)1/2 = ‖A‖F, (9.2.14)

and
‖A‖σ∞ = σ1(A) = σmax(A), (9.2.15)

which are the trace norm, Frobenius norm, and spectral norm, respectively.

By applying Proposition 9.1.5 to the vector
[

σ1(A) · · · σmin{n,m}(A)
]T
,

we obtain the following result.
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Proposition 9.2.4. Let p, q ∈ [1,∞), where p ≤ q, and let A ∈ Fn×m.
Then,

‖A‖σ∞ ≤ ‖A‖σq ≤ ‖A‖σp ≤ ‖A‖σ1. (9.2.16)

Assume, in addition, that 1 < p < q <∞ and rankA ≥ 2. Then,

‖A‖∞ < ‖A‖q < ‖A‖p < ‖A‖1. (9.2.17)

The norms ‖·‖σp are not very interesting when applied to vectors. Let

x ∈ Fn = Fn×1. Then, σmax(x) = (x∗x)1/2 = ‖x‖2, and, since rankx ≤ 1, it
follows that, for all p ∈ [1,∞],

‖x‖σp = ‖x‖2. (9.2.18)

Proposition 9.2.5. Let A ∈ Fn×m. If p ∈ (0, 2], then

‖A‖σp ≤ ‖A‖p. (9.2.19)

If p ≥ 2, then
‖A‖p ≤ ‖A‖σp. (9.2.20)

Proof. See [625, p. 50].

Proposition 9.2.6. Let ‖ · ‖ be a norm on Fn×n, and let A ∈ Fn×n.
Then,

sprad(A) = lim
k→∞

‖Ak‖1/k. (9.2.21)

Proof. See [287, p. 322].

9.3 Compatible Norms

The norms ‖ ·‖, ‖ ·‖′, and ‖ ·‖′′ on Fn×l, Fn×m, and Fm×l, respectively,
are compatible if, for all A ∈ Fn×m and B ∈ Fm×l,

‖AB‖ ≤ ‖A‖′‖B‖′′. (9.3.1)

For l = 1, the norms ‖ ·‖, ‖ ·‖′, and ‖ ·‖′′ on Fn, Fn×m, and Fm, respectively,
are compatible if, for all A ∈ Fn×m and x ∈ Fm,

‖Ax‖ ≤ ‖A‖′‖x‖′′. (9.3.2)

Furthermore, the norm ‖ · ‖ on Fn is compatible with the norm ‖ · ‖′ on Fn×n

if, for all A ∈ Fn×n and x ∈ Fn,

‖Ax‖ ≤ ‖A‖′‖x‖. (9.3.3)
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Note that ‖In‖′ ≥ 1. The norm ‖ · ‖ on Fn×n is submultiplicative if, for all
A,B ∈ Fn×n,

‖AB‖ ≤ ‖A‖‖B‖. (9.3.4)

Hence, the norm ‖ · ‖ on Fn×n is submultiplicative if and only if ‖ · ‖, ‖ · ‖,
and ‖ · ‖ are compatible. In this case, ‖In‖ ≥ 1.

Proposition 9.3.1. Let ‖·‖ be a submultiplicative norm on Fn×n, and

let y ∈ Fn. Then, ‖x‖′ 4

= ‖xy∗‖ is a norm on Fn, and ‖ · ‖′ is compatible
with ‖ · ‖.

Proposition 9.3.2. Let ‖·‖ be a submultiplicative norm on Fn×n, and
let A ∈ Fn×n. Then,

sprad(A) ≤ ‖A‖. (9.3.5)

Proof. Use Proposition 9.3.1 to construct a norm ‖ · ‖′ on Fn that is
compatible with ‖ · ‖. Furthermore, let A ∈ Fn×n, let λ ∈ spec(A), and
let x ∈ Cn be an eigenvector of A associated with λ. Then, Ax = λx
implies that |λ|‖x‖′ = ‖Ax‖′ ≤ ‖A‖‖x‖′, and thus |λ| ≤ ‖A‖, which implies
(9.3.5).

Proposition 9.3.3. Let A ∈ Fn×n, and let ε > 0. Then, there exists a
submultiplicative norm ‖ · ‖ on Fn×n such that

sprad(A) ≤ ‖A‖ ≤ sprad(A) + ε. (9.3.6)

Proof. See [287, p. 297].

Corollary 9.3.4. Let A ∈ Fn×n, and assume that sprad(A) < 1. Then,
there exists a submultiplicative norm ‖ · ‖ on Fn×n such that ‖A‖ < 1.

We now identify some compatible norms. We begin with the Holder
norms.

Proposition 9.3.5. Let A ∈ Fn×m and B ∈ Fm×l. If p ∈ [1, 2], then

‖AB‖p ≤ ‖A‖p‖B‖p. (9.3.7)

If p ∈ [2,∞] and q satisfies 1/p+ 1/q = 1, then

‖AB‖p ≤ ‖A‖p‖B‖q (9.3.8)

and
‖AB‖p ≤ ‖A‖q‖B‖p. (9.3.9)

Proof. First let 1 ≤ p ≤ 2 so that q
4

= p/(p − 1) ≥ 2. Using Holder’s
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inequality (9.1.10) and (9.1.8) with p ≤ q yields

‖AB‖p =





n,l
∑

i,j=1

|rowi(A)colj(B)|p




1/p

≤





n,l
∑

i,j=1

‖rowi(A)‖pp‖colj(B)‖pq





1/p

=

(

n
∑

i=1

‖rowi(A)‖pp

)1/p




l
∑

j=1

‖colj(B)‖pq





1/p

≤
(

n
∑

i=1

‖rowi(A)‖pp

)1/p




l
∑

j=1

‖colj(B)‖pp





1/p

= ‖A‖p‖B‖p.

Next, let 2 ≤ p ≤ ∞ so that q
4

= p/(p − 1) ≤ 2. Using Holder’s
inequality (9.1.10) and (9.1.8) with q ≤ p yields

‖AB‖p ≤
(

n
∑

i=1

‖rowi(A)‖pp

)1/p




l
∑

j=1

‖colj(B)‖pq





1/p

≤
(

n
∑

i=1

‖rowi(A)‖pp

)1/p




l
∑

j=1

‖colj(B)‖qq





1/q

= ‖A‖p‖B‖q.
Similarly, it can be shown that (9.3.9) holds.

Proposition 9.3.6. Let A ∈ Fn×m, B ∈ Fm×l, and p, q ∈ [1,∞], and

let r
4

= 1/(1/p+ 1/q) ≥ 1. Then,

‖AB‖σr ≤ ‖A‖σp‖B‖σq. (9.3.10)

Proof. Using Proposition 9.6.3 and Holder’s inequality with 1/(p/r)+
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1/(q/r) = 1, it follows that

‖AB‖σr =





min{n,m,l}
∑

i=1

σri (AB)





1/r

≤





min{n,m,l}
∑

i=1

σri (A)σri (B)





1/r

≤











min{n,m,l}
∑

i=1

σpi (A)





r/p



min{n,m,l}
∑

i=1

σqi (B)





r/q






1/r

= ‖A‖σp‖B‖σq. �

Let A,B ∈ Fn×m. Using (9.2.16) and (9.3.10) it follows that

‖AB‖σ∞ ≤ ‖AB‖σ2 ≤















‖A‖σ∞‖B‖σ2

‖A‖σ2‖B‖σ∞
‖AB‖σ1















≤ ‖A‖σ2‖B‖σ2 (9.3.11)

or, equivalently,

σmax(AB) ≤ ‖AB‖F ≤















σmax(A)‖B‖F
‖A‖Fσmax(B)

tr 〈AB〉















≤ ‖A‖F‖B‖F. (9.3.12)

Also, for all r ∈ [1,∞],

‖AB‖σr ≤







‖A‖σrσmax(B)

σmax(A)‖B‖σr
. (9.3.13)

In particular, setting r =∞ yields

σmax(AB) ≤ σmax(A)σmax(B). (9.3.14)

Note that the inequality ‖AB‖F ≤ ‖A‖F‖B‖F in (9.3.12) is equivalent to
(9.3.7) with p = 2 as well as (9.3.8) and (9.3.9) with p = q = 2. Finally, it
follows from the Cauchy-Schwarz inequality Corollary 9.1.7 that

|trA∗B| ≤ ‖A‖F‖B‖F. (9.3.15)
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9.4 Induced Norms

In this section we consider the case in which there exists nonzero x ∈
Fm such that (9.3.3) holds as an equality. This condition characterizes a
special class of norms on Fn×n, namely, the induced norms.

Definition 9.4.1. Let ‖ · ‖′′ and ‖ · ‖ be norms on Fm and Fn, respec-
tively. Then, ‖ · ‖′: Fn×m 7→ F defined by

‖A‖′ = max
x∈Fm\{0}

‖Ax‖
‖x‖′′ (9.4.1)

is an induced norm on Fn×m. In this case, ‖ · ‖′ is induced by ‖ · ‖′′ and ‖ · ‖.
If m = n and ‖ · ‖′′ = ‖ · ‖, then ‖ · ‖′ is induced by ‖ · ‖, and ‖ · ‖′ is an
equi-induced norm.

The next result confirms that ‖ ·‖′ defined by (9.4.1) is indeed a norm.

Theorem 9.4.2. Every induced norm is a norm. Furthermore, every
equi-induced norm is normalized.

Proof. See [287, p. 293].

Let A ∈ Fn×m. It can be seen that (9.4.1) is equivalent to

‖A‖′ = max
x∈{y∈Fm: 0<‖y‖′′≤1}

‖Ax‖
‖x‖′′ (9.4.2)

as well as
‖A‖′ = max

x∈{y∈Fm: ‖y‖′′=1}
‖Ax‖. (9.4.3)

Theorem 10.3.7 implies that the maximum in (9.4.3) exists. Since, for all
x 6= 0,

‖A‖′ = max
x∈Fm\{0}

‖Ax‖
‖x‖′′ ≥

‖Ax‖
‖x‖′′ (9.4.4)

it follows that, for all x ∈ Fm,

‖Ax‖ ≤ ‖A‖′‖x‖′′ (9.4.5)

so that ‖ · ‖, ‖ · ‖′, and ‖ · ‖′′ are compatible. If m = n and ‖ · ‖′′ = ‖ · ‖, then
the norm ‖ · ‖ is compatible with the induced norm ‖ · ‖′. The next result
shows that compatible norms can be obtained from induced norms.

Proposition 9.4.3. Let ‖ · ‖, ‖ · ‖′, and ‖ · ‖′′ be norms on Fl, Fm, and
Fn, respectively. Furthermore, let ‖ · ‖′′′ be the norm on Fm×l induced by
‖ · ‖ and ‖ · ‖′, let ‖ · ‖′′′′ be the norm on Fn×m induced by ‖ · ‖′ and ‖ · ‖′′,
and let ‖ · ‖′′′′′ be the norm on Fn×l induced by ‖ · ‖ and ‖ · ‖′′. If A ∈ Fn×m
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and B ∈ Fm×l, then
‖AB‖′′′′′ ≤ ‖A‖′′′′‖B‖′′′. (9.4.6)

Proof. Note that, for all x ∈ Fl, ‖Bx‖′ ≤ ‖B‖′′′‖x‖, and, for all y ∈
Fm, ‖Ay‖′′ ≤ ‖A‖′′′′‖y‖′. Hence, for all x ∈ Fl, ‖ABx‖′′ ≤ ‖A‖′′′′‖Bx‖′ ≤
‖A‖′′′′‖B‖′′′‖x‖, which implies that

‖AB‖′′′′′ = max
x∈Fl\{0}

‖ABx‖′′
‖x‖ ≤ ‖A‖′′′′‖B‖′′′. �

Corollary 9.4.4. Every equi-induced norm is submultiplicative.

The following result is a consequence of Corollary 9.4.4 and Proposi-
tion 9.3.2.

Corollary 9.4.5. Let ‖ · ‖ be an equi-induced norm on Fn×n, and let
A ∈ Fn×n. Then,

sprad(A) ≤ ‖A‖. (9.4.7)

By assigning ‖ · ‖p to Fm and ‖ · ‖q to Fn, the Holder-induced norm on
Fn×m is defined by

‖A‖q,p 4

= max
x∈Fm\{0}

‖Ax‖q
‖x‖p

. (9.4.8)

Proposition 9.4.6. Let p, q, p′, q′ ∈ [1,∞], where p ≤ p′ and q ≤ q′,
and let A ∈ Fn×m. Then,

‖A‖q′,p ≤ ‖A‖q,p ≤ ‖A‖q,p′ . (9.4.9)

Proof. The result follows from Proposition 9.1.5.

The following result gives explicit expressions for several Holder-
induced norms.

Proposition 9.4.7. Let A ∈ Fn×m. Then,

‖A‖2,2 = σmax(A). (9.4.10)

Now, let p ∈ [1,∞]. Then,

‖A‖p,1 = max
i∈{1,...,m}

‖coli(A)‖p. (9.4.11)

Finally, let q ∈ [1,∞] satisfy 1/p+ 1/q = 1. Then,

‖A‖∞,p = max
i∈{1,...,n}

‖rowi(A)‖q. (9.4.12)

Proof. Since A∗A is Hermitian, it follows from Corollary 8.4.2 that,
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for all x ∈ Fm,
x∗A∗Ax ≤ λmax(A

∗A)x∗x,

which implies that, for all x ∈ Fm, ‖Ax‖2 ≤ σmax(A)‖x‖2, and thus ‖A‖2,2 ≤
σmax(A). Now, let x ∈ Fn×n be an eigenvector associated with λmax(A

∗A) so
that ‖Ax‖2 = σmax(A)‖x‖2, which implies that σmax(A) ≤ ‖A‖2,2. Hence,
(9.4.10) holds.

Next, note that, for all x ∈ Fm,

‖Ax‖p =

∥

∥

∥

∥

∥

m
∑

i=1

x(i)coli(A)

∥

∥

∥

∥

∥

p

≤
m
∑

i=1

|x(i)|‖coli(A)‖p ≤ max
i∈{1,...,m}

‖coli(A)‖p‖x‖1,

and hence ‖A‖p,1 ≤ maxi∈{1,...,m}‖coli(A)‖p. Next, let j ∈ {1, . . . ,m} be
such that ‖colj(A)‖p = maxi∈{1,...,m}‖coli(A)‖p. Now, since ‖ej‖1 = 1, it
follows that ‖Aej‖p = ‖colj(A)‖p‖ej‖1, which implies that

max
i∈{1,...,n}

‖coli(A)‖p = ‖colj(A)‖p ≤ ‖A‖p,1,

and hence (9.4.11) holds.

Next, for all x ∈ Fm, it follows from Holder’s inequality (9.1.10) that

‖Ax‖∞ = max
i∈{1,...,n}

|rowi(A)x| ≤ max
i∈{1,...,n}

‖rowi(A)‖q‖x‖p,

which implies that ‖A‖∞,p ≤ maxi∈{1,...,n}‖rowi(A)‖q.Next, let j∈{1, . . . , n}
be such that ‖rowj(A)‖q = maxi∈{1,...,n}‖rowi(A)‖q, and let nonzero x ∈ Fm

be such that |rowj(A)x| = ‖rowj(A)‖q‖x‖p. Hence,

‖Ax‖∞ = max
i∈{1,...,n}

|rowi(A)x| ≥ |rowj(A)x| = ‖rowj(A)‖q‖x‖p,

which implies that

max
i∈{1,...,n}

‖rowi(A)‖q = ‖rowj(A)‖q ≤ ‖A‖∞,p,

and thus (9.4.12) holds.

Note that
max

i∈{1,...,m}
‖coli(A)‖2 = d1/2

max(A
∗A) (9.4.13)

and
max

i∈{1,...,n}
‖rowi(A)‖2 = d1/2

max(AA
∗). (9.4.14)
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Therefore, it follows from Proposition 9.4.7 that

‖A‖1,1 = max
i∈{1,...,m}

‖coli(A)‖1, (9.4.15)

‖A‖2,1 = d1/2
max(A

∗A), (9.4.16)

‖A‖∞,1 = ‖A‖∞ = max
i∈{1,...,n}
j∈{1,...,m}

|A(i,j)|, (9.4.17)

‖A‖∞,2 = d1/2
max(AA

∗), (9.4.18)

‖A‖∞,∞ = max
i∈{1,...,n}

‖rowi(A)‖1. (9.4.19)

For convenience, we define the column norm

‖A‖col 4

= ‖A‖1,1 (9.4.20)

and the row norm
‖A‖row 4

= ‖A‖∞,∞. (9.4.21)

Proposition 9.4.8. Let p, q ∈ [1,∞] be such that 1/p + 1/q = 1, and
let A ∈ Fn×m. Then,

‖A‖q,p ≤ ‖A‖q. (9.4.22)

Proof. For p = 1 and q =∞, (9.4.22) follows from (9.4.17). For q <∞
and x ∈ Fn, it follows from Holder’s inequality (9.1.10) that

‖Ax‖q =

(

n
∑

i=i

|rowi(A)x|q
)1/q

≤
(

n
∑

i=1

‖rowi(A)‖qq‖x‖qp

)1/q

=





n
∑

i=1

m
∑

j=1

|A(i,j)|q




1/q

‖x‖p = ‖A‖q‖x‖p,

which implies (9.4.22).

Next, we specialize Proposition 9.4.3 to the Holder-induced norms.

Corollary 9.4.9. Let 1 ≤ p, q, r ≤ ∞, and let A ∈ Fn×m and A ∈ Fm×l.
Then,

‖AB‖r,p ≤ ‖A‖r,q‖B‖q,p (9.4.23)
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In particular,

‖AB‖col ≤ ‖A‖col‖B‖col, (9.4.24)

σmax(AB) ≤ σmax(A)σmax(B), (9.4.25)

‖AB‖row ≤ ‖A‖row‖B‖row, (9.4.26)

‖AB‖∞ ≤ ‖A‖∞‖B‖col, (9.4.27)

‖AB‖∞ ≤ ‖A‖row‖B‖∞, (9.4.28)

d1/2
max(B

∗A∗AB) ≤ d1/2
max(A

∗A)‖B‖col, (9.4.29)

d1/2
max(B

∗A∗AB) ≤ σmax(A)d1/2
max(B

∗B), (9.4.30)

d1/2
max(ABB

∗A∗) ≤ d1/2
max(AA

∗)σmax(B), (9.4.31)

d1/2
max(ABB

∗A∗) ≤ ‖B‖rowd1/2
max(BB

∗). (9.4.32)

The following result is often useful.

Proposition 9.4.10. Let A ∈ Fn×n, and assume that sprad(A) < 1.
Then, there exists a submultiplicative norm ‖·‖ on Fn×n such that ‖A‖ < 1.
Furthermore, the series

∑∞
k=0A

k converges absolutely, and

(I −A)−1 =
∞
∑

k=0

Ak. (9.4.33)

Finally,

1

1 + ‖A‖ ≤
∥

∥(I −A)−1
∥

∥ ≤ 1

1− ‖A‖ + ‖I‖ − 1. (9.4.34)

If, in addition, ‖ · ‖ is normalized, then

1

1 + ‖A‖ ≤
∥

∥(I −A)−1
∥

∥ ≤ 1

1− ‖A‖ . (9.4.35)

Proof. Corollary 9.3.4 implies that there exists a submultiplicative
norm ‖ · ‖ on Fn×n such that ‖A‖ < 1. It thus follows that

∥

∥

∥

∥

∥

∞
∑

k=0

Ak

∥

∥

∥

∥

∥

≤
∞
∑

k=0

‖Ak‖ ≤ ‖I‖ − 1 +
∞
∑

k=0

‖A‖k =
1

1− ‖A‖ + ‖I‖ − 1,

which proves that the series
∑∞

k=0A
k converges absolutely.

Next, we show that I − A is nonsingular. If I − A is singular, then
there exists a nonzero vector x ∈ Cn such that Ax = x. Hence, 1 ∈ spec(A),



matrix2 November 19, 2003

NORMS 319

which contradicts sprad(A) < 1. Next, to verify (9.4.33), note that

(I −A)
∞
∑

k=0

Ak =
∞
∑

k=0

Ak −
∞
∑

k=1

Ak = I +
∞
∑

k=1

Ak −
∞
∑

k=1

Ak = I,

which implies (9.4.33) and thus the right-hand inequality in (9.4.34). Fur-
thermore,

1 ≤ ‖I‖
=
∥

∥(I −A)(I −A)−1
∥

∥

≤ ‖I −A‖
∥

∥(I −A)−1
∥

∥

≤ (1 + ‖A‖)
∥

∥(I −A)−1
∥

∥,

which yields the left-hand inequality in (9.4.34).

9.5 Induced Lower Bound

We now consider a variation of the induced norm.

Definition 9.5.1. Let ‖ · ‖ and ‖ · ‖′ denote norms on Fm and Fn,
respectively. Then, for A ∈ Fn×m, `: Fn×m 7→ R defined by

`(A)
4

=











min
y∈R(A)\{0}

max
x∈{z∈Fm:Az=y}

‖y‖′

‖x‖ , A 6= 0,

0, A = 0,

(9.5.1)

is the lower bound induced by ‖ · ‖ and ‖ · ‖′. Equivalently,

`(A)
4

=











min
y∈R(A)\{0}

max
z∈N(A)

‖Ax‖′

‖x+z‖, A 6= 0,

0, A = 0.

(9.5.2)

Proposition 9.5.2. Let ‖ · ‖ and ‖ · ‖′ be norms on Fm and Fn, respec-
tively, let ‖ · ‖′′ be the norm induced by ‖ · ‖ and ‖ · ‖′, let ‖ · ‖′′′ be the norm
induced by ‖ · ‖′ and ‖ · ‖, and let ` be the lower bound induced by ‖ · ‖ and
‖ · ‖′. Then, the following statements hold:

i) `(A) exists for all A ∈ Fn×m, that is, the minimum in (9.5.1) is
attained.

ii) If A ∈ Fn×m,then `(A) = 0 if and only if A = 0.

iii) For all A ∈ Fn×m there exists x ∈ Fm such that

`(A)‖x‖ = ‖Ax‖′. (9.5.3)
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iv) For all A ∈ Fn×m,
`(A) ≤ ‖A‖′′. (9.5.4)

v) If A 6= 0 and B is a (1)-inverse of A, then

1/‖B‖′′′ ≤ `(A) ≤ ‖B‖′′′. (9.5.5)

vi) If A,B ∈ Fn×m and either R(A) ⊆ R(A+B) or N(A) ⊆ N(A+B),
then

`(A)− ‖B‖′′′ ≤ `(A+B). (9.5.6)

vii) If A,B ∈ Fn×m and either R(A+B) ⊆ R(A) or N(A+B) ⊆ N(A),
then

`(A+B) ≤ `(A) + ‖B‖′′′. (9.5.7)

viii) If n = m and A ∈ Fn×n is nonsingular, then

`(A) = 1/‖A−1‖′′′. (9.5.8)

Proof. See [243].

Proposition 9.5.3. Let ‖ · ‖, ‖ · ‖′, and ‖ · ‖′′ be norms on Fl, Fm, and
Fn, respectively, let ‖ · ‖′′′ denote the norm on Fm×l induced by ‖ · ‖ and
‖ · ‖′, let ‖ · ‖′′′′ denote the norm on Fn×m induced by ‖ · ‖′ and ‖ · ‖′′, and
let ‖ · ‖′′′′′ denote the norm on Fn×l induced by ‖ · ‖ and ‖ · ‖′′. If A ∈ Fn×m

and B ∈ Fm×l, then
`(A)`′(B) ≤ `′′(AB). (9.5.9)

In addition, the following statements hold:

i) If either rankB = rankAB or def B = def AB, then

`′′(AB) ≤ ‖A‖′′̀ (B). (9.5.10)

ii) If rankA = rankAB, then

`′′(AB) ≤ `(A)‖B‖′′′′. (9.5.11)

iii) If rankB = m, then

‖A‖′′̀ (B) ≤ ‖AB‖′′′′′. (9.5.12)

iv) If rankA = m, then

`(A)‖B‖′′′′ ≤ ‖AB‖′′′′′. (9.5.13)

Proof. See [243].

By assigning ‖ · ‖p to Fm and ‖ · ‖q to Fn, the Holder-induced lower
bound on Fn×m is defined by
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`q,p(A)
4

=











min
y∈R(A)\{0}

max
x∈{z∈Fm:Az=y}

‖y‖′
q

‖x‖p
, A 6= 0,

0, A = 0.

(9.5.14)

The following result shows that `2,2(A) is the smallest positive singular
value of A.

Proposition 9.5.4. Let A ∈ Fn×m, assume that A is nonzero, and let

r
4

= rankA. Then,

`2,2(A) = σr(A). (9.5.15)

Proof. The result follows from the singular value decomposition.

Corollary 9.5.5. Let A ∈ Fn×m. If A is right invertible, then

`2,2(A) = σn(A). (9.5.16)

If A is left invertible, then

`2,2(A) = σm(A). (9.5.17)

Finally, if n = m and A is nonsingular, then

`2,2
(

A−1
)

= σmin

(

A−1
)

=
1

σmax(A)
. (9.5.18)

Proof. Use Proposition 5.6.2 and Fact 6.3.12.

In contrast to the submultiplicativity condition (9.4.5) satisfied by
the induced norm, the induced lower bound satisfies a supermultiplicativity
condition. The following result is analogous to Proposition 9.4.3.

Proposition 9.5.6. Let ‖ · ‖, ‖ · ‖′, and ‖ · ‖′′ be norms on Fl, Fm, and
Fn, respectively. Let `(·) be the lower bound induced by ‖ · ‖ and ‖ · ‖′, let
`′(·) be the lower bound induced by ‖ · ‖′ and ‖ · ‖′′, let `′′(·) be the lower
bound induced by ‖ · ‖ and ‖ · ‖′′, let A ∈ Fn×m and B ∈ Fm×l, and assume
that either A or B is right invertible. Then,

`′(A)`(B) ≤ `′′(AB). (9.5.19)

Furthermore, if 1 ≤ p, q, r ≤ ∞, then

`r,q(A)`q,p(B) ≤ `r,p(AB). (9.5.20)

In particular,
σm(A)σl(B) ≤ σl(AB). (9.5.21)

Proof. See [243] and [353, pp. 369, 370].
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9.6 Singular Value Inequalities

Proposition 9.6.1. Let A ∈ Fn×m and B ∈ Fm×l. Then, for all i ∈
{1, . . . ,min{n,m}} and j ∈ {1, . . . ,min{m, l}} such that i+j ≤ min{n, l}+
1,

σi+j−1(AB) ≤ σi(A)σj(B). (9.6.1)

In particular, for all j = 1, . . . ,min{n,m, l},
σj(AB) ≤ σmax(A)σj(B). (9.6.2)

and, for all i = 1, . . . ,min{n,m, l},
σi(AB) ≤ σi(A)σmax(B). (9.6.3)

Proof. See [289, p. 178].

Proposition 9.6.2. Let A ∈ Fn×m and B ∈ Fm×l. Then, for all
k = 1, . . . ,min{n,m, l},

k
∏

i=1

σi(AB) ≤
k
∏

i=1

σi(A)σi(B).

If, in addition, n = m = l, then
n
∏

i=1

σi(AB) =
n
∏

i=1

σi(A)σi(B).

Proof. See [289, p. 172].

Proposition 9.6.3. Let A ∈ Fn×m and B ∈ Fm×l. If r ≥ 0, then, for
all k = 1, . . . ,min{n,m, l},

k
∑

i=1

σri (AB) ≤
k
∑

i=1

σri (A)σri (B). (9.6.4)

In particular, for all k = 1, . . . ,min{n,m, l},
k
∑

i=1

σi(AB) ≤
k
∑

i=1

σi(A)σi(B). (9.6.5)

If r < 0, n = m = l, and A and B are nonsingular, then
n
∑

i=1

σri (AB) ≤
n
∑

i=1

σri (A)σri (B). (9.6.6)

Proof. The first statement follows from Proposition 9.6.2 and Fact
8.16.2. For the case r < 0, use Fact 8.16.4. See [289, p. 177] or [93, p.
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94].

Proposition 9.6.4. Let A ∈ Fn×m and B ∈ Fm×l. If m ≤ n, then, for
all i = 1, . . . ,min{n,m, l},

σm(A)σi(B) ≤ σi(AB). (9.6.7)

If m ≤ l, then, for all i = 1, . . . ,min{n,m, l},
σi(A)σm(B) ≤ σi(AB). (9.6.8)

Proof. Corollary 8.4.2 implies that σ2
m(A)Im = λmin(A

∗A)Im ≤ A∗A,
which implies that σ2

m(A)B∗B ≤ B∗A∗AB. Hence, it follows from the mono-
tonicity theorem Theorem 8.4.9 that, for all i = 1, . . . ,min{n,m, l},

σm(A)σi(B) = λi
[

σ2
m(A)B∗B

]1/2≤ λ1/2i (B∗A∗AB) = σi(AB),

which proves the left-hand inequality in (9.6.7). Similarly, for all i =
1, . . . ,min{n,m, l},

σi(A)σm(B) = λi
[

σ2
m(B)AA∗]1/2≤ λ1/2i (ABB∗A∗) = σi(AB). �

Corollary 9.6.5. Let A ∈ Fn×m and B ∈ Fm×l. Then,

σm(A)σmin{n,m,l}(B) ≤ σmin{n,m,l}(AB) ≤ σmax(A)σmin{n,m,l}(B), (9.6.9)

σm(A)σmax(B) ≤ σmax(AB) ≤ σmax(A)σmax(B), (9.6.10)

σmin{n,m,l}(A)σm(B) ≤ σmin{n,m,l}(AB) ≤ σmin{n,m,l}(A)σmax(B), (9.6.11)

σmax(A)σm(B) ≤ σmax(AB) ≤ σmax(A)σmax(B). (9.6.12)

Specializing Corollary 9.6.5 to the case in which A or B is square yields
the following result.

Corollary 9.6.6. Let A ∈ Fn×n and B ∈ Fn×l. Then, for all i =
1, . . . ,min{n, l}},

σmin(A)σi(B) ≤ σi(AB) ≤ σmax(A)σi(B). (9.6.13)

In particular,

σmin(A)σmax(B) ≤ σmax(AB) ≤ σmax(A)σmax(B). (9.6.14)

If A ∈ Fn×m and B ∈ Fm×m, then, for all i = 1, . . . ,min{n,m}},
σi(A)σmin(B) ≤ σi(AB) ≤ σi(A)σmax(B). (9.6.15)

In particular,

σmax(A)σmin(B) ≤ σmax(AB) ≤ σmax(A)σmax(B). (9.6.16)
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Corollary 9.6.7. Let A ∈ Fn×m and B ∈ Fm×l. If m ≤ n, then

σm(A)‖B‖F ≤ ‖AB‖F. (9.6.17)

If m ≤ l, then
‖A‖Fσm(B) ≤ ‖AB‖F. (9.6.18)

Proposition 9.6.8. Let A,B ∈ Fn×m. Then, for all i, j ∈ {1, . . . ,
min{n,m}} such that i+ j ≤ min{n,m}+ 1,

σi+j−1(A+B) ≤ σi(A) + σj(B) (9.6.19)

and
σi+j−1(A)− σj(B) ≤ σi(A+B). (9.6.20)

Proof. See [289, p. 178].

Corollary 9.6.9. Let A,B ∈ Fn×m. Then,

σn(A)− σmax(B) ≤ σn(A+B) ≤ σn(A) + σmax(B). (9.6.21)

Proof. The result follows from Proposition 9.6.8. Alternatively, it
follows from Lemma 8.4.3 and the Cauchy-Schwarz inequality Corollary 9.1.7
that, for all x ∈ Fn,

λmin[(A+B)(A+B)∗] ≤ x∗(AA∗ +BB∗ +AB∗ +BA∗)x
x∗x

=
x∗AA∗x

‖x‖22
+
x∗BB∗x

‖x‖22
+

2x∗AB∗x

‖x‖22

≤ x∗AA∗x

‖x‖22
+ σ2

max(B) + 2
(x∗AA∗x)1/2

‖x‖22
σmax(B).

Minimizing with respect to x and using Lemma 8.4.3 yields

σ2
n(A+B) = λmin[(A+B)(A+B)∗]

≤ λmin(AA
∗) + σ2

max(B) + 2λ
1/2
min(AA

∗)σmax(B)

= [σn(A) + σmax(B)]2,

which proves the right-hand inequality of (9.6.21). Finally, the left-hand
inequality follows from the right-hand inequality with A and B replaced by
A+B and −B, respectively.

9.7 Facts on Vector Norms

Fact 9.7.1. Let x, y ∈ Fn. Then, x and y are linearly dependent if and
only if |x|{2} and |y|{2} are linearly dependent and |x∗y| = |x|T|y|. (Remark:
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This equivalence clarifies the relationship between (9.1.11) with p = 2 and
Corollary 9.1.7.)

Fact 9.7.2. Let x, y ∈ Fn, and let ‖ · ‖ be a norm Fn. Then,

|‖x‖ − ‖y‖| ≤ ‖x+ y‖
and

|‖x‖ − ‖y‖| ≤ ‖x− y‖.

Fact 9.7.3. Let x, y ∈ Fn, and let ‖ · ‖ be a norm on Fn. Then, the
following statements hold:

i) If there exists β ≥ 0 such that either x = βy or y = βx, then
‖x+ y‖ = ‖x‖+ ‖y‖.

ii) If ‖x + y‖ = ‖x‖ + ‖y‖ and x and y are linearly dependent, then
there exists β ≥ 0 such that either x = βy or y = βx.

iii) If ‖x+ y‖2 = ‖x‖2 + ‖y‖2, then there exists β ≥ 0 such that either
x = βy or y = βx.

(Proof: For iii) use v) of Fact 9.7.4.) (Problem: Consider iii) with alternative
norms.) (Problem: If x and y are linearly independent, then does it follow
that ‖x+ y‖ < ‖x‖+ ‖y‖?)

Fact 9.7.4. Let x, y ∈ Fn. Then, the following statements hold:

i) 1
2

(

‖x+ y‖22 + ‖x− y‖22
)

= ‖x‖22 + ‖y‖22.
ii) Rex∗y = 1

4

(

‖x+ y‖22 − ‖x− y‖22
)

= 1
2

(

‖x+ y‖22 − ‖x‖22 − ‖y‖22
)

.

iii) ‖x− y‖2 =
√

‖x‖22 + ‖y‖22 − 2Rex∗y.

iv) ‖x+ y‖2‖x− y‖2 ≤ ‖x‖22 + ‖y‖22.
v) If ‖x+ y‖2 = ‖x‖2 + ‖y‖2, then Imx∗y = 0 and Rex∗y ≥ 0.

Furthermore, the following statements are equivalent:

vi) ‖x+ y‖22 = ‖x‖22 + ‖y‖22.
vii) ‖x− y‖2 = ‖x+ y‖2.
viii) Rex∗y = 0.

(Remark: i) is the parallelogram law, which relates the diagonals and the
sides of a parallelogram, ii) is the polarization identity, iii) is the cosine law,
and the equivalence of vi) and viii) is the Pythagorean theorem.)
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Fact 9.7.5. Let x, y ∈ Fn be nonzero. Then,

‖x‖2 + ‖y‖2 ≤
2‖x− y‖

∥

∥

∥

∥

x

‖x‖ −
y

‖y‖

∥

∥

∥

∥

.

(Proof: See [629, p. 28].) (Problem: Interpret this inequality geometrically.)

Fact 9.7.6. Let x ∈ Fn, and let p, q ∈ [1,∞] satisfy 1/p + 1/q = 1.
Then,

‖x‖2 ≤
√

‖x‖p‖x‖q.

Fact 9.7.7. Let x, y ∈ Fn, let p ∈ (0, 1], and define ‖ · ‖p as in (9.1.3).
Then,

‖x‖p + ‖y‖p ≤ ‖x+ y‖p .
(Remark: This result is a reverse triangle inequality.)

Fact 9.7.8. Let y ∈ Fn, let ‖ · ‖ be a norm on Fn, let ‖ · ‖′ be the norm
on Fn×n induced by ‖ · ‖, and define

‖y‖D 4

= max
x∈{z∈Fn: ‖z‖=1}

|y∗x|.

Then, ‖ · ‖D is a norm on Fn. Furthermore,

‖y‖ = max
x∈{z∈Fn: ‖z‖D=1}

|y∗x|.

Hence, for all x ∈ Fn,
|x∗y| ≤ ‖x‖‖y‖D.

In addition,
‖xy∗‖′ = ‖x‖‖y‖D.

Finally, let p ∈ [1,∞], and let 1/p+ 1/q = 1. Then,

‖ · ‖pD = ‖ · ‖q.
Hence, for all x ∈ Fn,

|x∗y| ≤ ‖x‖p‖y‖q
and

‖xy∗‖p,p = ‖x‖p‖y‖q.
(Proof: See [525, p. 57].) (Remark: ‖ · ‖D is the dual norm of ‖ · ‖.)

Fact 9.7.9. Let ‖ · ‖ be a norm on Fn, and let α > 0. Then, {x ∈
Fn: ‖x‖ ≤ α} is convex.

Fact 9.7.10. Let x ∈ Rn, and let ‖·‖ be a norm on Rn. Then, xTy > 0
for all y ∈ B‖x‖(x) = {z ∈ Rn: ‖z − x‖ < ‖x‖}.
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Fact 9.7.11. Let x, y ∈ Rn be nonzero, assume that xTy = 0, and let
‖ · ‖ be a norm on Rn. Then, ‖x‖ ≤ ‖x + y‖. (Proof: If ‖x + y‖ < ‖x‖,
then x + y ∈ B‖x‖(0), and thus y ∈ B‖x‖(−x). By Fact 9.7.10, xTy < 0.)
(Remark: See [98,371] for related results concerning matrices.)

Fact 9.7.12. Let x ∈ Fn and y ∈ Fm. Then,

σmax(xy
∗) = ‖xy∗‖F = ‖x‖2‖y‖2

and
σmax(xx

∗) = ‖xx∗‖F = ‖x‖22.

Fact 9.7.13. Let x ∈ Fn and y ∈ Fm. Then,

‖x⊗ y‖2 =
∥

∥vec
(

x⊗ yT
)∥

∥

2
=
∥

∥vec
(

yxT
)∥

∥

2
=
∥

∥yxT
∥

∥

2
= ‖x‖2‖y‖2.

Fact 9.7.14. Let x ∈ Fn, and let 1 ≤ p, q ≤ ∞. Then,

‖x‖p = ‖x‖p,q.

Fact 9.7.15. Let x ∈ Fn, and let p, q ∈ [1,∞), where p ≤ q. Then,

‖x‖q ≤ ‖x‖p ≤ n1/p−1/q‖x‖q.
(Proof: See [279], [280, p. 107].) (Remark: See Fact 9.8.13.)

Fact 9.7.16. Let A ∈ Fn×n be positive definite. Then,

‖x‖A 4

= (x∗Ax)1/2

is a norm on Fn.

Fact 9.7.17. Let ‖ ·‖ and ‖ ·‖′ be norms on Fn and let α, β > 0. Then,
α‖ · ‖+β‖ · ‖′ is also a norm on Fn. Furthermore, max{‖ · ‖, ‖ · ‖′} is a norm
on Fn. (Remark: min{‖ · ‖, ‖ · ‖′} is not generally a norm.)

Fact 9.7.18. Let A ∈ Fn×n, assume that A is nonsingular, and let ‖ · ‖
be a norm on Fn. Then, ‖x‖′ 4

= ‖Ax‖ is a norm on Fn.

Fact 9.7.19. Let x ∈ Fn, and let p ∈ [1,∞]. Then,

‖x‖p = ‖x‖p.

9.8 Facts on Matrix Norms Involving One Matrix

Fact 9.8.1. Let A ∈ Fn×n, and assume that sprad(A) < 1. Then,
there exists a submultiplicative matrix norm ‖·‖ on Fn×n such that ‖A‖ < 1.
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Furthermore,
lim
k→∞

Ak = 0.

Fact 9.8.2. Let A ∈ Fn×n be nonsingular, and let ‖ · ‖ be a submulti-
plicative norm on Fn×n. Then,

‖A−1‖ ≥ ‖In‖/‖A‖.

Fact 9.8.3. Let A ∈ Fn×n, assume that A is nonzero and idempotent,
and let ‖ · ‖ be a submultiplicative norm on Fn×n. Then,

‖A‖ ≥ 1.

Fact 9.8.4. Let ‖ · ‖ be a unitarily invariant norm on Fn×n. Then, ‖ · ‖
is self adjoint.

Fact 9.8.5. Let A ∈ Fn×m, let ‖ · ‖ be a norm on Fn×m, and define

‖A‖′ 4

= ‖A∗‖. Then, ‖ · ‖′ is a norm on Fm×n. If, in addition, n = m and
‖ · ‖ is induced by ‖ · ‖′′, then ‖ · ‖′ is induced by ‖ · ‖′′D. (Proof: See [287, p.
309] and Fact 9.8.8.) (Remark: See Fact 9.7.8 for the definition of the dual
norm. ‖ · ‖′ is the adjoint norm of ‖ · ‖.) (Problem: Generalize this result
to matrices that are not square and norms that are not equi-induced.)

Fact 9.8.6. Let 1 ≤ p ≤ ∞. Then, ‖ · ‖σp is unitarily invariant.

Fact 9.8.7. Let A ∈ Fn×n, and assume that A is nonnegative semidef-
inite. Then,

‖A‖1,∞ = max
x∈{z∈Fn: ‖z‖∞=1}

x∗Ax.

(Remark: This result is due to Tao. See [490] and [280, p. 116].)

Fact 9.8.8. Let A ∈ Fn×m, and let p, q ∈ [1,∞] be such that 1/p+1/q =
1. Then,

‖A∗‖p,p = ‖A‖q,q.
In particular,

‖A∗‖col = ‖A‖row.
(Proof: See Fact 9.8.5.)

Fact 9.8.9. Let A ∈ Fn×m, and let p, q ∈ [1,∞] be such that 1/p+1/q =
1. Then,

∥

∥

∥

∥

[

0 A
A∗ 0

]∥

∥

∥

∥

p,p

= max{‖A‖p,p, ‖A‖q,q}.
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In particular,
∥

∥

∥

∥

[

0 A
A∗ 0

]∥

∥

∥

∥

col

=

∥

∥

∥

∥

[

0 A
A∗ 0

]∥

∥

∥

∥

row

= max{‖A‖col, ‖A‖row}.

Fact 9.8.10. Let A ∈ Fn×m. Then, the following inequalities hold:

i) ‖A‖F ≤ ‖A‖1≤
√
mn‖A‖F.

ii) ‖A‖∞ ≤ ‖A‖1≤ mn‖A‖∞.

iii) ‖A‖col ≤ ‖A‖1≤ m‖A‖col.
iv) ‖A‖row ≤ ‖A‖1≤ n‖A‖row.

v) σmax(A) ≤ ‖A‖1≤
√
mnrankAσmax(A).

vi) ‖A‖∞ ≤ ‖A‖F ≤
√
mn‖A‖∞.

vii) 1√
n
‖A‖col ≤ ‖A‖F ≤

√
m‖A‖col.

viii) 1√
m
‖A‖row ≤ ‖A‖F ≤

√
n‖A‖row.

ix) σmax(A) ≤ ‖A‖F ≤
√

rankAσmax(A).

x) 1
n‖A‖col ≤ ‖A‖∞ ≤ ‖A‖col.

xi) 1
m‖A‖row ≤ ‖A‖∞ ≤ ‖A‖row.

xii) 1√
mn
σmax(A) ≤ ‖A‖∞ ≤ σmax(A).

xiii) 1
m‖A‖row ≤ ‖A‖col ≤ n‖A‖row.

xiv) 1√
m
σmax(A) ≤ ‖A‖col ≤

√
nσmax(A).

xv) 1√
n
σmax(A) ≤ ‖A‖row ≤

√
mσmax(A).

(Remark: See [280, p. 115] for matrices that attain these bounds.)

Fact 9.8.11. Let A ∈ Fn×n. Then,

‖AA‖F ≤ n(2−n)/2‖A‖n−1
F .

(Proof: See [466, pp. 151, 165].)

Fact 9.8.12. Let A ∈ Fn×n, let ‖ · ‖ and ‖ · ‖′ be norms on Fn, and
define the induced norms

‖A‖′′ 4

= max
x∈{y∈Fm: ‖y‖=1}

‖Ax‖

and
‖A‖′′′ 4

= max
x∈{y∈Fm: ‖y‖′=1}

‖Ax‖′.
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Then,

max
A∈{X∈Fn×n: X 6=0}

‖A‖′′
‖A‖′′′ = max

A∈{X∈Fn×n: X 6=0}

‖A‖′′′
‖A‖′′

= max
x∈{y∈Fn: y 6=0}

‖x‖
‖x‖′ max

x∈{y∈Fn: y 6=0}

‖x‖′
‖x‖ .

(Proof: See [287, p. 303].) (Remark: This symmetry property is evident in
Fact 9.8.10.)

Fact 9.8.13. Let A ∈ Fn×n, and let p, q ∈ [1,∞]. Then,

‖A‖p,p ≤







n1/p−1/q‖A‖q,q, p ≤ q,

n1/q−1/p‖A‖q,q, q ≤ p.
Consequently,

n1/p−1‖A‖col ≤ ‖A‖p,p ≤ n1−1/p‖A‖col,

n−|1/p−1/2|σmax(A) ≤ ‖A‖p,p ≤ n|1/p−1/2|σmax(A),

n−1/p‖A‖col ≤ ‖A‖p,p ≤ n1/p‖A‖row.
(Proof: See [279] and [280, p. 112].) (Remark: See Fact 9.7.15.) (Problem:
Extend these inequalities to matrices that are not square.)

Fact 9.8.14. Let A ∈ Fn×m, p, q ∈ [1,∞], and α ∈ [0, 1], and let

r
4

= pq/[(1− α)p+ αq]. Then,

‖A‖r,r ≤ ‖A‖αp,p‖A‖1−αq,q .

(Proof: See [279] or [280, p. 113].)

Fact 9.8.15. Let A ∈ Fn×m, and let p ∈ [1,∞]. Then,

‖A‖p,p ≤ ‖A‖1/pcol ‖A‖1−1/p
row .

In particular,
σmax(A) ≤

√

‖A‖col‖A‖row.
(Proof: Set α = 1/p, p = 1, and q = ∞ in Fact 9.8.14. See [280, p. 113].
To prove the special case p = 2 directly, note that λmax(A

∗A) ≤ ‖A∗A‖col ≤
‖A∗‖col‖A‖col = ‖A‖row‖A‖col.)

Fact 9.8.16. Let A ∈ Fn×m, and let p ∈ [1, 2]. Then,

‖A‖p,p ≤ ‖A‖2/p−1
col σ2−2/p

max (A).

(Proof: Let α = 2/p− 1, p = 1, and q = 2 in Fact 9.8.14. See [280, p. 113].)
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Fact 9.8.17. Let A ∈ Fn×n, and let p ∈ [1,∞]. Then,

‖A‖p,p ≤ ‖|A|‖p,p ≤ nmin{1/p,1−1/p}‖A‖p,p ≤
√
n‖A‖p,p.

(Remark: See [280, p. 117].)

Fact 9.8.18. Let A ∈ Fn×m, and let p, q ∈ [1,∞]. Then,

‖A‖q,p = ‖A‖q,p.

Fact 9.8.19. Let A ∈ Fn×m, and let p, q ∈ [1,∞]. Then,

‖A∗‖q,p = ‖A‖p/(p−1),q/(q−1).

Fact 9.8.20. Let A ∈ Fn×m, and let p, q ∈ [1,∞]. Then,

‖A‖q,p ≤
{

‖A‖p/(p−1), 1/p+ 1/q ≤ 1,

‖A‖q, 1/p+ 1/q ≥ 1.

Fact 9.8.21. Let A ∈ Fn×n, and let ‖ · ‖ be a unitarily invariant norm
on Fn×n. Then,

‖〈A〉‖ = ‖A‖.

Fact 9.8.22. Let A ∈ Fn×n, let S ∈ Fn×n be nonsingular, and let ‖ · ‖
be a unitarily invariant norm on Fn×n. Then,

‖A‖ ≤ 1
2‖SAS

−1 + S∗AS−∗‖.
(Proof: See [30,107].)

Fact 9.8.23. Let A ∈ Fn×n, assume that A is nonnegative semidefinite,
and let ‖ · ‖ be a submultiplicative norm on Fn×n. Then,

‖A‖1/2 ≤
∥

∥

∥A1/2
∥

∥

∥ .

In particular,

σ1/2
max(A) = σmax

(

A1/2
)

.

Fact 9.8.24. Let
[

A11 A12

A∗
12 A22

]

∈ F(n+m)×(n+m) be nonnegative semidef-

inite, let ‖ · ‖ and ‖ · ‖′ be unitarily invariant norms on Fn×n and Fm×m,
respectively, and let p > 0. Then,

‖〈A12〉p‖′2 ≤ ‖Ap11‖‖A
p
22‖′.

(Proof: See [291].)

Fact 9.8.25. Let A ∈ Fn×n, let ‖ · ‖ be a norm on Fn, let ‖ · ‖D denote
the dual norm on Fn, and let ‖ · ‖′ denote norm induced by ‖ · ‖ on Fn×n.
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Then,

‖A‖′ = max
x,y∈Fn

x,y 6=0

Re y∗Ax
‖y‖D‖x‖

.

(Proof: See [280, p. 115].) (Remark: See Fact 9.7.8 for the definition of
the dual norm.) (Problem: Generalize this result to obtain Fact 9.8.26 as a
special case.)

Fact 9.8.26. Let A ∈ Fn×m, and let p, q ∈ [1,∞]. Then,

‖A‖q,p = max
x∈Fm,y∈Fn

x,y 6=0

|y∗Ax|
‖y‖q/(q−1)‖x‖p

.

Fact 9.8.27. Let A ∈ Fn×m, and let p, q ∈ [1,∞] satisfy 1/p+ 1/q = 1.
Then,

‖A‖p,p = max
x∈Fm,y∈Fn

x,y 6=0

|y∗Ax|
‖y‖q‖x‖p

= max
x∈Fm,y∈Fn

x,y 6=0

|y∗Ax|
‖y‖p/(p−1)‖x‖p

.

(Remark: See Fact 9.11.2 for the case p = 2.)

Fact 9.8.28. Let A ∈ Fn×n, and assume that A is positive definite.
Then,

min
x∈Fn\{0}

x∗Ax
‖Ax‖2‖x‖2

=
2
√
αβ

α+ β

and

min
α≥0

σmax(αA− I) =
α− β
α+ β

.

where α
4

= λmax(A) and β
4

= λmin(A). (Proof: See [251].) (Remark: These
quantities are antieigenvalues.)

Fact 9.8.29. Let A ∈ Fn×n, and define

nrad(A)
4

= max {|x∗Ax|: x ∈ Cn and x∗x ≤ 1}.
Then, the following statements hold:

i) nrad(A) = max{|z| : z ∈ Θ(A)}.
ii) sprad(A) ≤ nrad(A) ≤ nrad(|A|) = 1

2 sprad
(

|A|+ |A|T
)

.

iii) 1
2σmax(A) ≤ nrad(A) ≤ σmax(A).

iv) If A is normal, then sprad(A) = nrad(A) = σmax(A).

v) nrad
(

Ak
)

≤ [nrad(A)]k for all k ∈ N.

vi) nrad(·) is a weakly unitarily invariant norm on Fn×n.
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vii) nrad(·) is not a submultiplicative norm on Fn×n.

viii) ‖ · ‖ 4

= αnrad(·) is a submultiplicative norm on Fn×n if and only if
α ≥ 4.

ix) nrad(AB) ≤ nrad(A)nrad(B) for all A,B ∈ Fn×n such that either
A or B is normal.

x) nrad(A ◦B) ≤ αnrad(A)nrad(B) for all A,B ∈ Fn×n if and only if
α ≥ 2.

xi) nrad(A⊕B) = max{nrad(A),nrad(B)} for all A ∈ Fn×n and B ∈
Fm×m.

(Proof: See [287, p. 331] and [289, pp. 43, 44].) (Remark: nrad(·) is
not submultiplicative. nrad(A) is the numerical radius of A. Θ(A) is the
numerical range. See Fact 4.10.17.) (Remark: vii) is the power inequality.)

Fact 9.8.30. Let A∈ Fn×m, let γ >σmax(A), and define β
4

=σmax(A)/γ.
Then,

‖A‖F ≤
√

− [γ2/(2π)]log det(I − γ−2A∗A) ≤ β−1
√

−log(1− β2)‖A‖F.
(Proof: See [108].)

Fact 9.8.31. Let ‖ · ‖ be a unitarily invariant norm on Fn×n. Then,
‖A‖ = 1 for all A ∈ Fn×n such that rankA = 1 if and only if ‖E1,1‖ = 1.
(Proof: ‖A‖ = ‖E1,1‖σmax(A).) (Remark: These equivalent normalizations
are used in [525, p. 74] and [93], respectively.)

Fact 9.8.32. Let ‖ · ‖ be a unitarily invariant norm on Fn×n. Then,
the following statements are equivalent:

i) σmax(A) ≤ ‖A‖ for all A ∈ Fn×n.

ii) ‖ · ‖ is submultiplicative.

iii)
∥

∥A2
∥

∥ ≤ ‖A‖2 for all A ∈ Fn×n.

iv)
∥

∥Ak
∥

∥ ≤ ‖A‖k for all k ∈ P and A ∈ Fn×n.

v) ‖A ◦B‖ ≤ ‖A‖‖B‖ for all A,B ∈ Fn×n.

vi) sprad(A) ≤ ‖A‖ for all A ∈ Cn×n.

vii) ‖Ax‖2 ≤ ‖A‖‖x‖2 for all A ∈ Cn×n and x ∈ Cn.

viii) ‖A‖∞ ≤ ‖A‖ for all A ∈ Cn×n.

ix) ‖E1,1‖ ≥ 1.

x) σmax(A) ≤ ‖A‖ for all A ∈ Cn×n such that rankA = 1.

(Proof: The equivalence of i) – vii) is given in [288] and [289, p. 211]. Since
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‖A‖ = ‖E1,1‖σmax(A) for all A ∈ Fn×n such that rankA = 1, it follows
that vii) and viii) are equivalent. To prove ix) =⇒ x) let A ∈ Cn×n satisfy
rankA = 1. Then, ‖A‖ = σmax(A)‖E1,1‖ ≥ σmax(A). To show x) =⇒ ii),

define ‖ · ‖′ 4

= ‖E1,1‖−1‖ · ‖. Since ‖E1,1‖′ = 1, it follows from [93, p. 94]
that ‖ · ‖′ is submultiplicative. Since ‖E1,1‖−1 ≤ 1, it follows that ‖ · ‖ is also
submultiplicative. Alternatively, ‖A‖′ = σmax(A) for all A ∈ Fn×n having
rank 1. Then, Corollary 3.10 of [525, p. 80] implies that ‖ · ‖′, and thus ‖ · ‖
is submultiplicative.)

Fact 9.8.33. Let Φ: Fn 7→ F satisfy the following conditions:

i) If x 6= 0, then Φ(x) > 0.

ii) Φ(αx) = |α|Φ(x) for all α ∈ R.

iii) Φ(x+ y) ≤ Φ(x) + Φ(y) for all x, y ∈ Fn.

iv) If A ∈ Fn×n is a permutation matrix, then Φ(Ax) = Φ(x) for all
x ∈ Fn.

v) Φ(|x|) = Φ(x) for all x ∈ Fn.

Furthermore, for A ∈ Fn×m, define

‖A‖ 4

= Φ(σ1(A), . . . , σn(A)).

Then, ‖ · ‖ is a unitarily invariant norm. Conversely, if ‖ · ‖ is a unitarily
invariant norm on Fn×m, where n ≤ m, then Φ: Fn 7→ F defined by

Φ(x)
4

=

∥

∥

∥

∥

∥

∥

∥

∥

∥











x(1) 0
. . .

x(n)

0 0n×(m−n)











∥

∥

∥

∥

∥

∥

∥

∥

∥

satisfies i)-v). (Proof: See [525, pp. 75–76].) (Remark: Φ is a symmetric
gauge function. This result is due to von Neumann. See Fact 8.16.6.)

Fact 9.8.34. Let ‖·‖ and ‖·‖′ denote norms on Fm and Fn, respectively,

and define ˆ̀: Fn×m 7→ R by

ˆ̀(A)
4

= min
x∈Fm\{0}

‖Ax‖′
‖x‖ ,

or, equivalently,
ˆ̀(A)

4

= min
x∈{y∈Fm : ‖y‖=1}

‖Ax‖′.

Then, for A ∈ Fn×n, the following statements hold:

i) ˆ̀(A) ≥ 0.

ii) ˆ̀(A) > 0 if and only if rankA = m
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iii) ˆ̀(A) = `(A) if and only if either A = 0 or rankA = m.

(Proof: See [353, pp. 369, 370].) (Remark: ˆ̀ is a weaker version of `.)

9.9 Facts on Matrix Norms Involving Two or More
Matrices

Fact 9.9.1. ‖ · ‖′∞ 4

= n‖ · ‖∞ is submultiplicative on Fn×n. (Remark:
It is not generally true that ‖AB‖∞ ≤ ‖A‖∞‖B‖∞. For example, let A =
B = [ 1 1

1 1 ] .)

Fact 9.9.2. Let A ∈ Fn×m and B ∈ Fm×l. Then,

‖AB‖∞ ≤ m‖A‖∞‖B‖∞.
Furthermore, if A = 1n×m and B = 1m×l, then ‖AB‖∞ = m‖A‖∞‖B‖∞.

Fact 9.9.3. Let A,B ∈ Fn×n and let ‖ · ‖ be a submultiplicative norm
on Fn×n. Then, ‖AB‖ ≤ ‖A‖‖B‖. Hence, if ‖A‖ ≤ 1 and ‖B‖ ≤ 1, then
‖AB‖ ≤ 1, and if either ‖A‖ < 1 or ‖B‖ < 1, then ‖AB‖ < 1. (Remark:
sprad(A) < 1 and sprad(B) < 1 do not imply that sprad(AB) < 1. Let
A = BT = [ 0 2

0 0 ].)

Fact 9.9.4. Let ‖ · ‖ be a norm on Fm×m, and let

δ > sup

{ ‖AB‖
‖A‖‖B‖ : A,B ∈ Fm×m, A,B 6= 0

}

.

Then, ‖·‖′ = δ‖·‖ is a submultiplicative norm on Fm×m. (Proof: See [287, p.
323].)

Fact 9.9.5. Let A,B ∈ Fn×n, and let ‖ · ‖ be a submultiplicative norm

on Fn×n. Then, ‖ · ‖′ 4

= 2‖ · ‖ is submultiplicative and satisfies

‖[A,B]‖′ ≤ ‖A‖′‖B‖′.

Fact 9.9.6. Let ‖ ·‖ be a normalized, submultiplicative norm on Fn×n.
Then, ‖ · ‖ is equi-induced if and only if ‖A‖ ≤ ‖A‖′ for all A ∈ Fn×n and
for all normalized submultiplicative norms ‖ · ‖′ on Fn×n. (Proof: See [528].)
(Remark: As shown in [138, 164], not every normalized submultiplicative
norm on Fn×n is equi-induced or induced.)

Fact 9.9.7. Let A,B ∈ Fn×n, assume that A and B are Hermitian, let
‖ · ‖ be a unitarily invariant norm on Fn×n, and let k ∈ N. Then,

‖(A−B)2k+1‖ ≤ 22k‖A2k+1 −B2k+1‖.
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(Proof: See [93, p. 294].)

Fact 9.9.8. Let A,B ∈ Fn×n, assume that A and B are nonnegative
semidefinite, and let ‖ · ‖ be a unitarily invariant norm on Fn×n. Then,

‖(A−B)2‖ ≤ ‖A2 −B2‖.
(Proof: See [336].)

Fact 9.9.9. Let A,B ∈ Fn×n, and assume that A and B are nonnega-
tive semidefinite. Then,

‖AB −BA‖2F + ‖(A−B)2‖2F ≤ ‖A2 −B2‖2F.
(Proof: See [336].)

Fact 9.9.10. Let A,B ∈ Fn×n, and let ‖ · ‖ be a unitarily invariant
norm on Fn×n. Then,

‖AB‖ ≤ σmax(A)‖B‖
and

‖AB‖ ≤ ‖A‖σmax(B).

(Proof: See [336].)

Fact 9.9.11. Let A,B ∈ Fn×m, and let ‖ · ‖ be a unitarily invariant
norm on Fn×n. If p > 0, then

‖〈B∗A〉p‖2 ≤ ‖(A∗A)p‖‖(B∗B)p‖.
In particular,

‖(A∗BB∗A)1/4‖2 ≤ ‖A‖‖B‖
and

‖A∗B‖2 ≤ ‖A∗A‖‖B∗B‖.
Furthermore,

tr 〈B∗A〉 ≤ ‖A‖F‖B‖F
and

[

tr (A∗BB∗A)1/4
]2
≤ (tr 〈A〉)(tr 〈B〉).

(Proof: See [291].) (Problem: Noting Fact 9.10.5, compare the lower bounds
for ‖A‖2F‖B‖2F given by

|tr (A∗B)2| ≤ trAA∗BB∗ ≤ ‖A‖2F‖B‖2F
and

[

tr (A∗BB∗A)1/2
]2
≤ ‖A‖2F‖B‖2F.)
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Fact 9.9.12. Let A,B ∈ Fn×n be nonnegative semidefinite. Then,

(2‖A‖F‖B‖F)1/2 ≤
[

‖A‖2F + ‖B‖2F
]1/2 ≤ ‖A+B‖F ≤

√
2
[

‖A‖2F + ‖B‖2F
]1/2

.

Fact 9.9.13. Let A,B ∈ Fn×n be nonnegative semidefinite, and let ‖·‖
be a unitarily invariant norm on Fn×n. Then,

‖AB‖ ≤ 1
4‖(A+B)2‖.

In particular,
trAB ≤ tr

(

AB2A
)1/2 ≤ 1

4tr (A+B)2,

tr (AB)2 ≤ trA2B2 ≤ 1
16tr (A+B)4,

σmax(AB) ≤ 1
4σmax

[

(A+B)2
]

.

(Proof: See [625, p. 77] or [97]. The inequalities trAB ≤ tr
(

AB2A
)1/2

and
tr (AB)2 ≤ trA2B2 follow from Fact 8.12.8.) (Problem: Noting Fact 9.9.12,
compare the lower bounds for ‖A+B‖F given by

(2‖A‖F‖B‖F)1/2 ≤
[

‖A‖2F + ‖B‖2F
]1/2 ≤ ‖A+B‖F

and
2‖AB‖1/2F ≤ ‖(A+B)2‖1/2F ≤ ‖A+B‖F.)

Fact 9.9.14. Let A ∈ Fn×m, B ∈ Fm×l, and p, q, q′, r ∈ [1,∞], and
assume that 1/q + 1/q′ = 1. Then,

‖AB‖p ≤ εpq(n)εpr(l)εq′r(m)‖A‖q‖B‖r,
where

εpq(n)
4

=

{

1, p ≥ q,
n1/p−1/q, q ≥ p.

Furthermore, there exist A ∈ Fn×m and B ∈ Fm×l such that equality holds.
(Proof: See [233].) (Remark: Related results are given in [198,233–235,366,
552]

Fact 9.9.15. Let A,B ∈ Cn×m. Then, there exist unitary matrices
S1, S2 ∈ Cm×m such that

〈A+B〉 ≤ S1〈A〉S∗
1 + S2〈B〉S∗

2 .

(Remark: This result is a matrix version of the triangle inequality. See
[24,546].)

Fact 9.9.16. Let A,X,B ∈ Fn×n, and let ‖ · ‖ be a unitarily invariant
norm on Fn×n. Then,

‖A∗XB‖ ≤ 1
2‖AA

∗X +XBB∗‖.
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In particular,
‖A∗B‖ ≤ 1

2‖AA
∗ +BB∗‖.

(Proof: See [94,96].) (Remark: See Fact 9.12.20.)

Fact 9.9.17. Let A,B ∈ Fn×n be nonnegative semidefinite, and let
p ∈ [1,∞]. Then,

‖A−B‖2σ2p ≤ ‖A2 −B2‖σp .
(Proof: See [332].)

Fact 9.9.18. Let A,B ∈ Fn×n. If p ∈ (0, 2], then

2p−1(‖A‖pσp + ‖B‖pσp) ≤ ‖A+B‖pσp + ‖A−B‖pσp ≤ 2(‖A‖pσp + ‖B‖pσp).
If p ∈ [2,∞), then

2(‖A‖pσp + ‖B‖pσp) ≤ ‖A+B‖pσp + ‖A−B‖pσp ≤ 2p−1(‖A‖pσp + ‖B‖pσp).
If p ∈ (1, 2] and 1/p+ 1/q = 1, then

‖A+B‖qσp + ‖A−B‖qσp ≤ 2(‖A‖pσp + ‖B‖pσp)q/p.
If p ∈ [2,∞) and 1/p+ 1/q = 1, then

2(‖A‖pσp + ‖B‖pσp)q/p ≤ ‖A+B‖qσp + ‖A−B‖qσp.
(Proof: See [283].) (Remark: These inequalities are versions of the Clark-
son inequalities.) (Remark: See [283] for extensions to unitarily invariant
norms.)

Fact 9.9.19. Let A,B ∈ Fn×n. Then,

‖〈A〉 − 〈B〉‖2F + ‖〈A∗〉 − 〈B∗〉‖2F ≤ 2‖A−B‖2F.
If, in addition, A and B are Hermitian, then

‖〈A〉 − 〈B〉‖F ≤ ‖A−B‖F.
(Proof: See [24, 331].) (Remark: This inequality generalizes a result due to
Araki and Yamagami.)

Fact 9.9.20. Let A,B ∈ Fn×n. Then,

‖〈A〉 − 〈B〉‖2F + ‖〈A∗〉 − 〈B∗〉‖2F ≤ 2‖A−B‖2F.
If, in addition, A and B are Hermitian, then

‖〈A〉 − 〈B〉‖F ≤ ‖A−B‖F.
(Proof: See [24,331].)
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Fact 9.9.21. Let A,B ∈ Fn×n, and let ‖ · ‖ be a unitarily invariant
norm on Fn×n. Then,

‖〈A〉 − 〈B〉‖ ≤
√

2‖A+B‖‖A−B‖.
(Proof: See [24].) (Remark: This result is due to Kosaki and Bhatia.)

Fact 9.9.22. Let A,B ∈ Fn×n, and let p ≥ 1. Then,

‖〈A〉 − 〈B〉‖σp ≤ max
{

21/p−1/2, 1
}
√

‖A+B|σp‖A−B‖σp .

(Proof: See [24].) (Remark: This result is due to Kittaneh, Kosaki, and
Bhatia.)

Fact 9.9.23. Let A ∈ Fn×n, let B ∈ Fn×n, and assume that B is
Hermitian. Then,

σmax

[

A− 1
2(A+A∗)

]

≤ σmax(A−B)

and
‖A− 1

2(A+A∗)‖F ≤ ‖A−B‖F.
(Proof: See [466, p. 150].)

Fact 9.9.24. Let A,M,S,B ∈ Fn×n, and assume that A = MS, M is
nonnegative semidefinite, and S and B are unitary. Then,

‖A− S‖F ≤ ‖A−B‖F.
(Proof: See [466, p. 150].) (Remark: A = MS is the polar decomposition of
A. See Corollary 5.6.4.)

Fact 9.9.25. Let A ∈ Fn×n, let ‖ · ‖ be a normalized submultiplicative
norm on Fn×n, and assume that ‖I −A‖ < 1. Then, A is nonsingular.

Fact 9.9.26. Let A,B ∈ Fn×n, assume that A is nonsingular, let ‖·‖ be
a normalized submultiplicative norm on Fn×n, and assume that ‖A−B‖ <
1/
∥

∥A−1
∥

∥. Then, B is nonsingular.

Fact 9.9.27. Let A,B ∈ Fn×n, assume that A and A+B are nonsin-
gular, and let ‖ · ‖ be a normalized submultiplicative norm on Fn×n. Then,

∥

∥A−1 − (A+B)−1
∥

∥ ≤
∥

∥A−1
∥

∥

∥

∥(A+B)−1
∥

∥ ‖B‖.
If, in addition, ‖A−1B‖ < 1, then

∥

∥A−1 + (A+B)−1
∥

∥ ≤ ‖A
−1‖‖A−1B‖

1− ‖A−1B‖ .
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Furthermore, if ‖A−1B‖ < 1 and ‖B‖ < 1/‖A−1‖, then

∥

∥A−1 − (A+B)−1
∥

∥ ≤ ‖A−1‖2‖B‖
1− ‖A−1‖‖B‖ .

Fact 9.9.28. Let A ∈ Fn×n, assume that A is nonsingular, let E ∈
Fn×n, and let ‖ · ‖ be a normalized norm on Fn×n. Then,

(A+ E)−1 = A−1
(

I + EA−1
)−1

= A−1 −A−1EA−1 +O
(

‖E‖2
)

.

Fact 9.9.29. Let A ∈ Fn×m and B ∈ Fl×k. Then,

‖A⊗B‖col = ‖A‖col‖B‖col,

‖A⊗B‖∞ = ‖A‖∞‖B‖∞,

‖A⊗B‖row = ‖A‖row‖B‖row.
Furthermore, if p ∈ [1,∞], then

‖A⊗B‖p = ‖A‖p‖B‖p.

Fact 9.9.30. Let A,B ∈ Fn×n, and let ‖ · ‖ be a unitarily invariant
norm on Fn×m. Then,

‖A ◦B‖2 ≤ ‖A∗A‖‖B∗B‖.
(Proof: See [290].)

Fact 9.9.31. Let A ∈ Rn×n be nonsingular, let b ∈ Rn, and let x̂ ∈ Rn.
Then,

1

κ(A)

‖Ax̂− b‖
‖b‖ ≤ ‖x̂−A

−1b‖
‖A−1b‖ ≤ κ(A)

‖Ax̂− b‖
‖b‖ ,

where κ(A)
4

= ‖A‖‖A−1‖ and the vector and matrix norms are compatible.

Equivalently, letting b̂
4

= Ax̂− b and x
4

= A−1b, it follows that

1

κ(A)

‖b̂‖
‖b‖ ≤

‖x̂− x‖
‖x‖ ≤ κ(A)

‖b̂‖
‖b‖ .

(Remark: This result estimates the accuracy of an approximate solution x̂
to Ax = b. κ(A) is the condition number of A.)

Fact 9.9.32. Let A ∈ Rn×n be nonsingular, let Â ∈ Rn×n, assume that
‖A−1Â‖ < 1, and let b, b̂ ∈ Rn. Furthermore, let x ∈ Rn satisfy Ax = b, and
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let x̂ ∈ Rn satisfy (A+ Â)x̂ = b+ b̂. Then,

‖x̂− x‖
‖x‖ ≤ κ(A)

1− ‖A−1Â‖

(

‖b̂‖
‖b‖ +

‖Â‖
‖A‖

)

,

where κ(A)
4

= ‖A‖‖A−1‖ and the vector and matrix norms are compatible.

If, in addition, ‖A−1‖‖Â‖ < 1, then

1

κ(A) + 1

‖b̂− Âx‖
‖b‖ ≤ ‖x̂− x‖‖x‖ ≤ κ(A)

1− ‖A−1Â‖
‖b̂− Âx‖
‖b‖ .

(Proof: See [174,175].)

Fact 9.9.33. Let A, Â ∈ Rn×n satisfy ‖A+Â‖ < 1, let b ∈ R(A), let

b̂ ∈ Rn, and assume that b+ b̂ ∈ R(A+ Â). Furthermore, let x̂ ∈ Rn satisfy

(A+ Â)x̂ = b+ b̂. Then, x
4

= A+b+ (I −A+A)x̂ satisfies Ax = b and

‖x̂− x‖
‖x‖ ≤ κ(A)

1− ‖A+Â‖

(

‖b̂‖
‖b‖ +

‖Â‖
‖A‖

)

,

where κ(A)
4

= ‖A‖‖A−1‖ and the vector and matrix norms are compatible.
(Proof: See [174].) (Remark: See [175] for a lower bound.)

Fact 9.9.34. Let A ∈ Fn×m be the partitioned matrix

A =









A11 A12 · · · A1k

A21 A22 · · · A2k
...

... · · ·.. ...
Ak1 Ak2 · · · Akk









,

where Aij ∈ Fni×nj for all i, j = 1, . . . , k. Then, the following statements
hold:

i) If p ∈ [1, 2], then

k
∑

i,j=1

‖Aij‖2σp ≤ ‖A‖2σp ≤ k4/p−2
k
∑

i,j=1

‖Aij‖2σp.

ii) If p ∈ [2,∞], then

k4/p−2
k
∑

i,j=1

‖Aij‖2σp ≤ ‖A‖2σp ≤
k
∑

i,j=1

‖Aij‖2σp.

iii) If p ∈ [1, 2], then

‖A‖pσp ≤
k
∑

i,j=1

‖Aij‖pσp ≤ k2−p‖A‖pσp.
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iv) If p ∈ [2,∞), then

k2−p‖A‖pσp ≤
k
∑

i,j=1

‖Aij‖pσp ≤ ‖A‖pσp.

(Proof: See [95].) (Remark: Equality holds for p = 1.)

9.10 Facts on Matrix Norms and Eigenvalues

Fact 9.10.1. Let A ∈ Fn×n, and let mspec(A) = {λ1, . . . , λn}m. Then,

|trA| ≤
n
∑

i=1

|λi| ≤ ‖A‖σ1 = tr 〈A〉.

If, in addition, A is nonnegative semidefinite, then

‖A‖σ1 = trA.

Fact 9.10.2. Let A ∈ Fn×n, and let mspec(A) = {λ1, . . . , λn}m. Then,

|trA2| ≤
n
∑

i=1

|λi|2 ≤ ‖A‖2σ2 = ‖A‖2F = trA∗A.

If, in addition, A is Hermitian, then

‖A‖σ2 =
√

trA2.

(Proof: tr (A+A∗)2 ≥ 0 and tr (A−A∗)2 ≤ 0.) (Remark: See Fact 8.14.3.)

Fact 9.10.3. Let A ∈ Fn×n, let mspec(A) = {λ1, . . . , λn}m, and let
p ∈ (0, 2]. Then,

|trAp| ≤
n
∑

i=1

|λi|p ≤ ‖A‖pσp ≤ ‖A‖pp.

(Proof: See Fact 8.14.3 and Proposition 9.2.5.)

Fact 9.10.4. Let A,B ∈ Fn×m, let mspec(A∗B) = {λ1, . . . , λm}m, and
let p, q ∈ [1,∞] satisfy 1/p+ 1/q = 1. Then,

|trA∗B| ≤
n
∑

i=1

|λi| ≤
n
∑

i=1

σi(A
∗B) = ‖AB‖σ1 ≤ ‖A‖σp‖B‖σq.

In particular,
|trA∗B| ≤ ‖A‖F‖B‖F.

(Proof: Use Proposition 9.3.6.)
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Fact 9.10.5. Let A,B ∈ Fn×m, and let mspec(A∗B) = {λ1, . . . , λm}m.
Then,

|tr (A∗B)2| ≤
n
∑

i=1

|λi|2 ≤
n
∑

i=1

σ2
i (A

∗B) = trAA∗BB∗ = ‖A∗B‖2F ≤ ‖A‖2F‖B‖2F.

(Proof: Use Fact 8.14.3.)

Fact 9.10.6. Let A ∈ Rn×n, and let λ ∈ spec(A). Then, the following
inequalities hold:

i) |λ| ≤ n‖A‖∞.
ii) |Reλ| ≤ n

2

∥

∥A+AT
∥

∥

∞.

iii) |Imλ| ≤
√
n2−n
2
√

2

∥

∥A−AT
∥

∥

∞.

(Proof: See [395, p. 140].) (Remark: i) and ii) are Hirsch’s theorems, while
iii) is Bendixson’s theorem. See Fact 5.9.21.)

Fact 9.10.7. Let A,B ∈ Fn×n, assume that A and B are Hermitian,
and let mspec(A+ B) = {λ1, . . . , λn}m. Then,

n
∑

i=1

|Reλi|2 ≤ ‖B‖2F

and n
∑

i=1

|Imλi|2 ≤ ‖C‖2F.

(Proof: See [466, p. 146].)

Fact 9.10.8. Let A ∈ Fn×n, let ‖ · ‖ be the norm on Fn×n induced by
the norm ‖ · ‖′ on Fn, and define

µ(A)
4

= lim
ε→0+

‖I + εA‖ − 1

ε
,

and let A,B ∈ Fn×n. Then, the following statements hold:

i) µ(A) = D+f(A; I), where f : Fn×n 7→ R is defined by f(A)
4

= ‖A‖.
ii) µ(A) = limε→0+ ε−1 log ‖eεA‖.
iii) µ(I) = 1, µ(−I) = −1, and µ(0) = 0.

iv) −‖A‖ ≤ −µ(−A) ≤ Reλi(A) ≤ µ(A) ≤ ‖A‖ for all i = 1, . . . , n.

v) µ(αA) = |α|µ[(signα)A] for all α ∈ R.

vi) µ(A+ αI) = µ(A) + Reα for all α ∈ F.
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vii) max{µ(A)− µ(−B),−µ(−A) + µ(B)} ≤ µ(A+B) ≤ µ(A) + µ(B).

viii) µ(αA+ (1− α)B) ≤ αµ(A) + (1− α)µ(B) for all α ∈ [0, 1].

ix) |µ(A)− µ(B)| ≤ max{|µ(A−B)|, |µ(B −A)|} ≤ ‖A−B‖.
x) max{−µ(−A),−µ(A)}‖x‖′ ≤ ‖Ax‖′ for all x ∈ Fn.

xi) If A is nonsingular, then max{−µ(−A),−µ(A)} ≤ 1/‖A−1‖.
xii) spabs(A) ≤ µ(A).

xiii) ‖eA‖ ≤ eµ(A).

xiv) If ‖ · ‖ = σmax(·), then

µ(A) = 1
2λmax(A+A∗).

xv) If ‖ · ‖′ = ‖ · ‖1 and thus ‖ · ‖ = ‖ · ‖col, then

µ(A) = max
j∈{1,...,n}






Re ajj +

n
∑

i=1
i6=j

|aij |






.

xvi) If ‖ · ‖′ = ‖ · ‖∞ and thus ‖ · ‖ = ‖ · ‖row, then

µ(A) = max
i∈{1,...,n}









Re aii +
n
∑

j=1
j 6=i

|aij |









.

(Proof: See [171, 172, 448, 532].) (Remark: µ(·) is the matrix measure or
logarithmic derivative. For applications, see [576]. See Fact 9.10.8 for the
logarithmic derivative of an asymptotically stable matrix.)

Fact 9.10.9. Let A,B ∈ Fn×n, assume that A and B are Hermitian,
and let ‖ · ‖ be a weakly unitarily invariant norm on Fn×n. Then,

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣







λ1(A) 0
. . .

0 λn(A)






−







λ1(B) 0
. . .

0 λn(B)







∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ ‖A−B‖

≤

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣







λ1(A) 0
. . .

0 λn(A)






−







λn(B) 0
. . .

0 λ1(B)







∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

In particular,

max
i∈{1,...,n}

|λi(A)− λi(B)| ≤ σmax(A−B) ≤ max
i∈{1,...,n}

|λi(A)− λn−i+1(B)|



matrix2 November 19, 2003

NORMS 345

and
n
∑

i=1

[λi(A)− λi(B)]2 ≤ ‖A−B‖2F ≤
n
∑

i=1

[λi(A)− λn−i+1(B)]2 .

(Proof: See [24], [92, p. 38], [93, p. 63, 69], [324, p. 126], [356, p. 134], [368],
or [525, p. 202].) (Remark: The first inequality is the Lidskii-Mirsky-
Wielandt theorem. The result can be stated without norms using Fact 9.8.33.
See [368].)

Fact 9.10.10. Let A,B ∈ Fn×n, and assume that A and B are normal.
Then, there exists a permutation σ of 1, . . . , n such that

n
∑

i=1

|λσ(i)(A)− λi(B)|2 ≤ ‖A−B‖2F.

(Proof: See [287, p. 368] or [466, pp. 160–161].) (Remark: This inequality
is the Hoffman-Wielandt theorem.)

Fact 9.10.11. Let A,B ∈ Fn×n, and assume that A is Hermitian and
B is normal. Furthermore, let mspec(B) = {λ1(B), . . . , λn(B)}m, where
Reλ1(B) ≥ · · · ≥ Reλn(B). Then,

n
∑

i=1

|λi(A)− λi(B)|2 ≤ ‖A−B‖2F.

(Proof: See [287, p. 370].) (Remark: This result is a special case of Fact
9.10.10.)

9.11 Facts on Singular Values Involving One Matrix

Fact 9.11.1. Let A ∈ Fn×n. Then,

σmin(A) = min
x∈Fn\{0}

(

x∗A∗Ax
x∗x

)1/2

and

σmax(A) = max
x∈Fn\{0}

(

x∗A∗Ax
x∗x

)1/2

.

(Proof: See Lemma 8.4.3.)

Fact 9.11.2. Let A ∈ Fn×n. Then,

σmax(A) = max{|y∗Ax|: x ∈ Fm, y ∈ Fn, ‖x‖2 = ‖y‖2 = 1}

= max{|y∗Ax|: x ∈ Fm, y ∈ Fn, ‖x‖2 ≤ 1, ‖y‖2 ≤ 1}.
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(Remark: See Fact 9.8.27.)

Fact 9.11.3. Let x ∈ Fn and y ∈ Fm, and define S
4

= {A ∈ Fn×m:
σmax(A) ≤ 1}. Then,

max
A∈S

x∗Ay =
√

x∗xy∗y.

Fact 9.11.4. Let ‖ · ‖ be an equi-induced unitarily invariant norm on
Fn×n. Then, ‖ · ‖ = σmax(·).

Fact 9.11.5. Let ‖ · ‖ be an equi-induced self-adjoint norm on Fn×n.
Then, ‖ · ‖ = σmax(·).

Fact 9.11.6. Let A ∈ Fn×n, and let λ ∈ spec(A). Then,

σmin(A) ≤ |λ| ≤ σmax(A).

Hence,
[σmin(A)]n ≤ |detA| ≤ [σmax(A)]n .

(Proof: The second inequality follows from |λ|‖x‖2 ≤ σmax(A)‖x‖2 or Propo-
sition 9.2.6.)

Fact 9.11.7. Let A ∈ Fn×n. Then,

|detA| ≤ σmin(A)σn−1
max(A).

(Proof: Use |detA| =∏n
i=1 σi(A).)

Fact 9.11.8. Let A ∈ Fn×n. Then,

σmin(A)− 1 ≤ σmin(A+ I) ≤ σmin(A) + 1.

(Proof: Use Proposition 9.6.8.)

Fact 9.11.9. Let A ∈ Fn×n be normal and let r ∈ N. Then,

σmax(A
r) = σrmax(A).

(Remark: Nonnormal matrices may also satisfy these conditions. Consider
[

1 0 0
0 0 0
0 1 0

]

.)

Fact 9.11.10. Let A ∈ Fn×n. Then,

σ2
max(A)− σmax

(

A2
)

≤ σmax(A
∗A−AA∗) ≤ σ2

max(A).

If A2 = 0, then
σmax(A

∗A−AA∗) = σ2
max(A).

If A is normal, then
σ2

max(A) = σmax

(

A2
)

.
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(Proof: See [336].)

Fact 9.11.11. Let A ∈ Fn×n. Then, the following statements are equiv-
alent:

i) sprad(A) = σmax(A).

ii) σmax(A
i) = σimax(A) for all i ∈ P.

iii) σmax(A
n) = σnmax(A).

(Proof: See [208] and [289, p. 44].) (Remark: The result iii) =⇒ i) is due
to Ptak.)

Fact 9.11.12. Let A ∈ Fn×n. Then,

σmax(A) ≤ σmax(|A|) ≤
√

rankAσmax(A).

(Proof: See [280, p. 111].)

Fact 9.11.13. Let A ∈ Rn×n. Then,
√

1
2(n2−n)

(

‖A‖2F + trA2
)

≤ σmax(A).

Furthermore, if ‖A‖F ≤ trA, then

σmax(A) ≤ 1
ntrA+

√

n−1
n

[

‖A‖2F − 1
n(trA)2

]

.

(Proof: See [410].) (Proof: The complex case is considered in [410].)

Fact 9.11.14. Let A ∈ Fn×n. Then, the polynomial p ∈ R[s] defined
by

p(s)
4

= sn − ‖A‖2Fs+ (n−1)|detA|2/(n−1) = 0

has either exactly one or exactly two positive roots 0 < α ≤ β. Furthermore,

α(n−1)/2 ≤ σmin(A) ≤ σmax(A) ≤ β(n−1)/2.

(Proof: See [491].)

Fact 9.11.15. Let A ∈ Fn×n. Then, for all k = 1, . . . , n,

k
∑

i=1

σi
(

A2
)

≤
k
∑

i=1

σ2
i (A).

Hence,
tr
(

A2∗A2
)1/2 ≤ trA∗A,

that is,
tr
〈

A2
〉

≤ tr 〈A〉2.
(Proof: Let A = B in Proposition 9.6.3.)
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Fact 9.11.16. Let A ∈ Fn×n, and let mspec(A) = {λ1, . . . , λn}m, where
λ1, . . . , λn are ordered such that |λ1| ≥ · · · ≥ |λn|. Then, for all k = 1, . . . , n,

k
∏

i=1

|λi(A)|2 ≤
k
∏

i=1

σi
(

A2
)

≤
k
∏

i=1

σ2
i (A)

and n
∏

i=1

|λi(A)|2 =

n
∏

i=1

σi
(

A2
)

=

n
∏

i=1

σ2
i (A) = |detA|2.

(Proof: See [289, p. 172] and use Fact 5.9.13.) (Remark: See Fact 5.9.13
and Fact 8.14.16.)

Fact 9.11.17. Let A ∈ Fn×n, and let mspec(A) = {λ1, · · · , λn}m,
where λ1, . . . , λn are ordered such that |λ1| ≥ · · · ≥ |λn|. Then, for all
i = 1, . . . , n,

lim
k→∞

σ
1/k
i

(

Ak
)

= |λi(A)|.

In particular,

lim
k→∞

[

σmax

(

Ak
)]1/k

= sprad(A).

(Proof: See [287, p. 180].) (Remark: This identity is due to Yamamoto.)
(Remark: The expression for sprad(A) is a special case of Proposition 9.2.6.)

9.12 Facts on Singular Values Involving Two or More
Matrices

Fact 9.12.1. Let A ∈ Fn×m, B ∈ Fm×n, and p ∈ [1,∞), and assume
that AB is normal. Then,

‖AB‖σp ≤ ‖BA‖σp.
In particular,

tr 〈AB〉 ≤ tr 〈BA〉,
‖AB‖F ≤ ‖BA‖F,

σmax(AB) ≤ σmax(BA).

(Proof: This result is due to Simon. See [107].)

Fact 9.12.2. Let A ∈ Rn×n be nonsingular and let B ∈ Rn×n be
singular. Then,

σmin(A) ≤ σmax(A−B).

Furthermore, if σmax

(

A−1
)

= sprad
(

A−1
)

, then there exists a singular matrix
C ∈ Rn×n such that σmax(A − C) = σmin(A). (Proof: See [466, p. 151].)
(Remark: This result is due to Franck.)
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Fact 9.12.3. Let A ∈ Cn×n, assume that A is nonsingular, let ‖ ·‖ and
‖ · ‖′ be norms on Cn, let ‖ · ‖′′ be the norm on Cn×n induced by ‖ · ‖ and
‖ · ‖′, and let ‖ · ‖′′′ be the norm on Cn×n induced by ‖ · ‖′ and ‖ · ‖. Then,

min{‖B‖′′: B ∈ Cn×n and A+B is nonsingular} = 1/‖A−1‖′′′.
In particular,

min{‖B‖col: B ∈ Cn×n and A+B is singular} = 1/‖A−1‖col,

min{σmax(B) : B ∈ Cn×n and A+B is singular} = σmin(A),

min{‖B‖row: B ∈ Cn×n and A+B is singular} = 1/‖A−1‖row.
(Proof: See [280, p. 111] and [278].) (Remark: This result is due to Gastinel.
See [278].) (Remark: The result involving σmax(B) is equivalent to the
inequality in Fact 9.12.2.)

Fact 9.12.4. Let A,B ∈ Fn×m, and assume that rankA = rankB and
α

4

= σmax(A
+)σmax(A−B) < 1. Then,

σmax(B
+) <

1

1− ασmax(A
+).

If, in addition, n = m, A and B are nonsingular, and σmax(A−B) < σmin(A),
then

σmax

(

B−1
)

<
σmin(A)

σmin(A)− σmax(A−B)
σmax

(

A−1
)

.

(Proof: See [280, p. 400].)

Fact 9.12.5. Let A,B ∈ Fn×n. Then,

σmax(I − [A,B]) ≥ 1.

(Proof: Since tr[A,B] = 0 it follows that there exists λ ∈ spec(I − [A,B])
such that Reλ ≥ 1, and thus |λ| ≥ 1. Hence, Corollary 9.4.5 implies that
σmax(I − [A,B]) ≥ sprad(I − [A,B]) ≥ |λ| ≥ 1.)

Fact 9.12.6. Let A ∈ Fn×m, B ∈ Fn×l, C ∈ Fk×m, and D ∈ Fk×l.
Then,

σmax

([

A B
C D

])

≤ σmax

([

σmax(A) σmax(B)

σmax(C) σmax(D)

])

.

(Proof: See [337] and references given therein.) (Remark: This is a result
of Tomiyama.)

Fact 9.12.7. Let A ∈ Fn×m, B ∈ Fn×l, and C ∈ Fk×m. Then, for all
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X ∈ Fk×l,

max

{

σmax

([

A B
])

, σmax

([

A
C

])}

≤ σmax

([

A B
C X

])

.

Furthermore, there exists X ∈ Fk×l such that equality holds. (Remark: This
result is Parrott’s theorem. See [158].)

Fact 9.12.8. Let A ∈ Fn×m and B ∈ Fn×l. Then,

max{σmax(A), σmax(B)} ≤ σmax

([

A B
])

≤
[

σ2
max(A) + σ2

max(B)
]1/2

≤
√

2max{σmax(A), σmax(B)}
and

[

σ2
n(A) + σ2

n(B)
]1/2 ≤ σn

([

A B
])

≤







[

σ2
n(A) + σ2

max(B)
]1/2

[

σ2
max(A) + σ2

n(B)
]1/2

.

Fact 9.12.9. Let A,B ∈ Fn×n, and let α > 0. Then,

σmax(A+B) ≤
[(

1 + α2
)

σ2
max(A) +

(

1 + α−2
)

σ2
max(B)

]1/2

and
σmin(A+B) ≤

[(

1 + α2
)

σ2
min(A) +

(

1 + α−2
)

σ2
max(B)

]1/2
.

Fact 9.12.10. Let A,B ∈ Fn×n. Then,

σmax

([

A∗A 0
0 BB∗

])

≤ σmax(A
∗A−BB∗) + σmax(AB).

(Proof: See [623].)

Fact 9.12.11. Let A,B ∈ Fn×n. Then,

σmin(A)− σmax(B) ≤ |det(A+B)|1/n

≤
n
∏

i=1

|σi(A) + σn−i+1(B)|1/n

≤ σmax(A) + σmax(B).

(Proof: See [297, p. 63] and [367].)

Fact 9.12.12. Let A,B ∈ Fn×n, and assume that σmax(B) ≤ σmin(A).
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Then,

0 ≤ [σmin(A)− σmax(B)]n

≤
n
∏

i=1

|σi(A)− σn−i+1(B)|

≤ |det(A+B)|

≤
n
∏

i=1

|σi(A) + σn−i+1(B)|

≤ [σmax(A) + σmax(B)]n.

Hence, if σmax(B) < σmin(A), then A is nonsingular and A + αB is nonsin-
gular for all −1 ≤ α ≤ 1. (Proof: See [367].) (Remark: See Fact 11.14.15.)

Fact 9.12.13. Let A,B ∈ Fn×m. Then,
[

σ1(A+B) · · · σmin{n,m}(A+B)
]

weakly majorizes
[

σ1(A) + σmin{n,m}(B) · · · σmin{n,m}(A) + σ1(B)
]

.

Furthermore, if either σmax(A) < σmin(B) or σmax(B) < σmin(A), then
[

|σ1(A)− σmin{n,m}(B)| · · · |σmin{n,m}(A)− σ1(B)|
]

weakly majorizes
[

σ1(A+B) · · · σmin{n,m}(A+B)
]

.

(Proof: See [367].)

Fact 9.12.14. Let A ∈ Fn×n, let k ∈ P satisfy k < rankA, and let ‖ · ‖
be a unitarily invariant norm on Fn×n. Then,

min
B∈{X∈Fn×n: rankX=k}

‖A−B‖ = ‖A−B0‖,

where B0 is formed by replacing the n − k smallest singular values in the
singular value decomposition of A by zeros. Furthermore,

σmax(A−B0) = σk+1(A)

and

‖A−B0‖F =

√

√

√

√

r
∑

i=k+1

σ2
i (A).

(Proof: The result follows from Fact 9.12.15. See [236] and [525, p. 208].)
(Remark: This result is due to Schmidt and Mirsky.)
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Fact 9.12.15. Let A,B ∈ Fn×m, define Aσ, Bσ ∈ Fn×m by

Aσ
4

=











σ1(A)
. . .

σr(A)
0(n−r)×(m−r)











,

where r
4

= rankA, and

Bσ
4

=











σ1(A)
. . .

σl(A)
0(n−l)×(m−l)











,

where l
4

= rankB, let S1 ∈ Fn×n and S2 ∈ Fm×m be unitary, and let ‖ · ‖ be
a unitarily invariant norm on Fn×m. Then,

‖Aσ −Bσ‖ ≤ ‖A− S1BS2‖ ≤ ‖Aσ +Bσ‖.
In particular,

max
i∈{1,...,max{r,l}}

|σi(A)− σi(B)| ≤ σmax(A−B) ≤ σmax(A) + σmax(B).

(Proof: See [579].) (Remark: In the case S1 = In and S2 = Im, the left-hand
inequality is Mirsky’s theorem. See [525, p. 204].)

Fact 9.12.16. Let A,B ∈ Fn×m, and assume that rankA = rankB.
Then,

σmax[AA
+(I −BB+)] = σmax[BB

+(I −AA+)]

≤ min{σmax(A
+), σmax(B

+)}σmax(A−B).

(Proof: See [280, p. 400] and [525, p. 141].)

Fact 9.12.17. Let A,B ∈ Fn×m. Then, for all k = 1, . . . ,min{n,m},
k
∑

i=1

σi(A ◦B) ≤
k
∑

i=1

σi(A)σi(B).

In particular,
σmax(A ◦B) ≤ σmax(A)σmax(B).

(Proof: See [289, p. 334].)

Fact 9.12.18. Let A ∈ Fn×m, B ∈ Fl×k, and p ∈ [1,∞]. Then,

‖A⊗B‖σp = ‖A‖σp‖B‖σp.
In particular,

σmax(A⊗B) = σmax(A)σmax(B)
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and
‖A⊗B‖F = ‖A‖F‖B‖F.

Fact 9.12.19. Let A ∈ Fn×m and B ∈ Fl×m, and let p, q > 1 satisfy
1/p+ 1/q = 1. Then, for all i = 1, . . . ,min{n,m, l},

σi(AB
∗) ≤ σi

(

1
p〈A〉

p + 1
q〈B〉

q
)

.

Equivalently, there exists a unitary matrix S ∈ Fm×m such that

〈AB∗〉1/2 ≤ S∗
(

1
p〈A〉

p + 1
q〈B〉

q
)

S.

(Proof: See [24] or [625, p. 28].) (Remark: This result is a matrix version
of Young’s inequality. See Fact 1.4.5 and [282].)

Fact 9.12.20. Let A ∈ Fn×m and B ∈ Fl×m. Then, for all i =
1, . . . ,min{n,m, l},

σi(AB
∗) ≤ 1

2σi(A
∗A+B∗B).

(Proof: Set p = q = 2 in Fact 9.12.19. See [96].) (Remark: See Fact 9.9.16.)

9.13 Notes

The equivalence of absolute and monotone norms given by Proposition
9.1.2 is due to [67]. More general monotonicity conditions are considered
in [313]. Induced lower bounds are treated in [353, pp. 369, 370]; see
also [525, pp. 33, 80]. The induced norms (9.4.11) and (9.4.12) are given
in [280, p. 116] and [140]. The dmax norm is related to alternative norms for
the convolution operator given in [603]. Proposition 9.3.6 is given in [482, p.
97]. Norm-related topics are discussed in [73]. Spectral perturbation theory
in finite and infinite dimensions is treated in [324], where the emphasis is on
the regularity of the spectrum as a function of the perturbation rather than
on bounds for finite perturbations.
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Chapter Ten

Functions of Matrices and Their
Derivatives

The notion of a norm on Fn discussed in Chapter 9 provides the foun-
dation for the development of some basic results in topology and analysis.
This chapter provides a brief review of some basic definitions and results.

10.1 Open and Closed Sets

Let ‖ · ‖ be a norm on Fn and, for x ∈ Fn and ε > 0, define the open
ball of radius ε centered at x by

Bε(x)
4

= {y ∈ Fn: ‖x− y‖ < ε} (10.1.1)

and the sphere of radius ε centered at x by

Sε(x)
4

= {y ∈ Fn: ‖x− y‖ = ε}. (10.1.2)

Definition 10.1.1. Let S ⊆ Fn. The vector x ∈ S is an interior point
of S if there exists ε > 0 such that Bε(x) ⊆ S. The interior of S is the set

int S
4

= {x ∈ S: x is an interior point of S}. (10.1.3)

Finally, S is open if every element of S is an interior point, that is, if S = int S.

Definition 10.1.2. Let S ⊆ S′ ⊆ Fn. The vector x ∈ S is an interior
point of S relative to S′ if there exists ε > 0 such that Bε(x) ∩ S′ ⊆ S or,
equivalently, Bε(x) ∩ S = Bε(x) ∩ S′. The interior of S relative to S′ is the
set

intS′ S
4

=
{

x ∈ S: x is an interior point of S relative to S′}. (10.1.4)

Finally, S is open relative to S′ if S = intS′ S.

Definition 10.1.3. Let S ⊆ Fn. The vector x ∈ Fn is a closure point
of S if, for all ε > 0, the set S ∩ Bε(x) is not empty. The closure of S is the
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set
cl S

4

= {x ∈ Fn: x is a closure point of S}. (10.1.5)

Finally, the set S is closed if every closure point of S is an element of S, that
is, if S = cl S.

Definition 10.1.4. Let S ⊆ S′ ⊆ Fn. The vector x ∈ S′ is a closure
point of S relative to S′ if, for all ε > 0, the set S ∩ Bε(x) is not empty. The
closure of S relative to S′ is the set

clS′ S
4

=
{

x ∈ Fn: x is a closure point of S relative to S′}. (10.1.6)

Finally, S is closed relative to S′ if S = clS′ S.

It follows from Theorem 9.1.8 on the equivalence of norms on Fn that
these definitions are independent of the norm assigned to Fn.

Let S ⊆ S′ ⊆ Fn. Then,

clS′ S = (cl S) ∩ S′, (10.1.7)

intS′ S = S′\cl(S′\S), (10.1.8)

and
int S ⊆ intS′ S ⊆ S ⊆ clS′ S ⊆ cl S. (10.1.9)

The set S is solid if int S is not empty, and S is completely solid if cl int S =
cl S. Note that if S is completely solid, then S is solid. The boundary of S is
the set

bd S
4

= cl S\int S, (10.1.10)

while the boundary of S relative to S′ is the set

bdS′ S
4

= clS′ S\intS′ S. (10.1.11)

Note that the empty set is both open and closed, although it is not solid.

The set S ⊂ Fn is bounded if there exists δ > 0 such that, for all
x, y ∈ S,

‖x− y‖ < δ. (10.1.12)

The set S ⊂ Fn is compact if it is both closed and bounded.

10.2 Limits

Definition 10.2.1. A sequence {x1, x2, . . .}m is an ordered multiset
with countably infinite elements. We write {xi}∞i=1 for {x1, x2, . . .}m.
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Definition 10.2.2. The sequence {αi}∞i=1 ⊂ F converges to α ∈ F if,
for all ε > 0, there exists p ∈ P such that |αi − α| < ε for all i > p. In this
case, we write α = limi→∞ αi or αi → α as i→∞, where i ∈ P.

Definition 10.2.3. The sequence {xi}∞i=1 ⊂ Fn converges to x ∈ Fn if
limi→∞ ‖x − xi‖ = 0, where ‖ · ‖ is a norm on Fn. In this case, we write
x = limi→∞ xi or xi → x as i→∞, where i ∈ P. Similarly, {Ai}∞i=1 ⊂ Fn×m

converges to A ∈ Fn×m if limi→∞ ‖A − Ai‖ = 0, where ‖ · ‖ is a norm on
Fn×m. In this case, we write A = limi→∞Ai or Ai → A as i → ∞, where
i ∈ P.

It follows from Theorem 9.1.8 that convergence of a sequence is inde-
pendent of the choice of norm.

Proposition 10.2.4. Let S ⊆ Fn. The vector x ∈ Fn is a closure
point of S if and only if there exists a sequence {xi}∞i=1 ⊆ S such that
x = limi→∞ xi.

Proof. Suppose that x ∈ Fn is a closure point of S. Then, for all i ∈ P,
there exists xi ∈ S such that ‖x− xi‖ < 1/i. Hence, x− xi → 0 as i → ∞.
Conversely, suppose that {xi}∞i=1 ⊆ S is such that xi → x as i → ∞, and
let ε > 0. Then, there exists p ∈ P such that ‖x − xi‖ < ε for all i > p.
Therefore, xp+1 ∈ S∩Bε(x), and thus S∩Bε(x) is not empty. Hence, x is a
closure point of S.

Theorem 10.2.5. Let S ⊂ Fn be compact and let {xi}∞i=1 ⊆ S. Then,
there exists a convergent subsequence {xij}∞j=1 ⊆ {xi}∞i=1 such that limj→∞
xij exists and limj→∞ xij ∈ S.

Proof. See [434, p. 145].

Next, we define convergence for the series
∑∞

i=1xi in terms of the

partial sums
∑k

i=1xi.

Definition 10.2.6. The series
∑∞

i=1xi, where {xi}∞i=1 ⊂ Fn, converges
to x ∈ Fn if

x = lim
k→∞

k
∑

i=1

xi. (10.2.1)

Furthermore,
∑∞

i=1xi converges absolutely if
∑∞

i=1 ‖xi‖ converges, where
‖ · ‖ is a norm on Fn. Similarly, the series

∑∞
i=1Ai, where {Ai}∞i=1 ⊂ Fn×m,

converges to A ∈ Fn×m if

A = lim
k→∞

k
∑

i=1

Ai. (10.2.2)
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Finally,
∑∞

i=1Ai converges absolutely if
∑∞

i=1 ‖Ai‖ converges, where ‖ · ‖ is
a norm on Fn×m.

10.3 Continuity

Definition 10.3.1. Let D ⊆ Fm, f : D 7→ Fn, and x ∈ D. Then,
f is continuous at x if, for every convergent sequence {xi}∞i=1 ⊆ D such
that limi→∞ xi = x, it follows that limi→∞ f(xi) = f(x). Furthermore, let
D0 ⊆ D. Then, f is continuous on D0 if f is continuous at x for all x ∈ D0.
Finally, f is continuous if it is continuous on D.

Theorem 10.3.2. Let D ⊆ Fn be convex and let f : D→ F be convex.
Then, f is continuous on intaff D D.

Proof. See [68, p. 81] and [485, p. 82].

Corollary 10.3.3. Let A ∈ Fn×m, and define f : Fm → Fn by f(x)
4

=
Ax. Then, f is continuous.

Proof. The result is a consequence of Theorem 10.3.2. Alternatively,
let x ∈ Fm, and let {xi}∞i=1 ⊂ Fm be such that xi → x as i → ∞. Further-
more, let ‖ · ‖ and ‖ · ‖′ be compatible norms on Fm and Fm×n, respectively.
Since ‖Ax−Axi‖ ≤ ‖A‖′‖x− xi‖, it follows that Axi → Ax as i→∞.

Theorem 10.3.4. Let D ⊆ Fm, and let f : D 7→ Fn. Then, the
following statements are equivalent:

i) f is continuous.

ii) For all open S ⊆ Fn, the set f−1(S) is open relative to D.

iii) For all closed S ⊆ Fn, the set f−1(S) is closed relative to D.

Proof. See [434, pp. 87, 110].

Corollary 10.3.5. Let A ∈ Fn×m and S ⊆ Fn, and define S′ 4

= {x ∈
Fm: Ax ∈ S}. If S is open, then S′ is open. If S is closed, then S′ is closed.

The following result is the open mapping theorem.

Theorem 10.3.6. Let A ∈ Fn×m be right invertible and let D ⊆ Fm

be open. Then, AD is open.

Theorem 10.3.7. Let D ⊂ Fm be compact and let f : D 7→ Fn be
continuous. Then, f(D) is compact.
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Proof. See [434, p. 146].

Corollary 10.3.8. Let D ⊂ Fm be compact and let f : D 7→ R be
continuous. Then, there exists x ∈ D such that f(D) is compact.

The following result is the Schauder fixed point theorem.

Theorem 10.3.9. Let D ⊆ Fm be closed and convex, let f : D → D

be continuous, and assume that f(D) is bounded. Then, there exists x ∈ D

such that f(x) = x.

Proof. See [586, p. 167].

10.4 Derivatives

Let D ⊆ Fm, and let x0 ∈ D. Then, the variational cone of D with
respect to x0 is the set

vcone(D, x0)
4

= {ξ ∈ Fm: there exists α0 > 0 such that

x0 + αξ ∈ D, α ∈ [0, α0)}. (10.4.1)

Note that vcone(D, x0) is a pointed cone, although it may consist of only
the origin as can be seen from the example x0 = 0 and

D =
{

x ∈ R2: 0 ≤ x(1) ≤ 1, x3
(1) ≤ x(2) ≤ x2

(1)

}

.

Now, let D ⊆ Fm and f : D → Fn. If ξ ∈ vcone(D, x0), then the
one-sided directional differential of f at x0 in the direction ξ is given by

D+f(x0; ξ)
4

= lim
α→0+

1
α [f(x0 + αξ)− f(x0)] (10.4.2)

if the limit exists. Similarly, if ξ ∈ vcone(D, x0) and −ξ ∈ vcone(D, x0), then
the two-sided directional differential Df(x0; ξ) of f at x0 in the direction ξ
is defined by replacing “α → 0+” in (10.4.2) by “α → 0.” If ξ = ei so that
the direction ξ is one of the coordinate axes, then the partial derivative of

f with respect to x(i) at x0, denoted by ∂f(x0)
∂x(i)

, is given by

∂f(x0)

∂x(i)

4

= lim
α→0

1
α [f(x0 + αei)− f(x0)], (10.4.3)

that is,
∂f(x0)

∂x(i)
= Df(x0; ei), (10.4.4)

when the two-sided directional differential Df(x0; ei) exists.
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Proposition 10.4.1. Let D ⊆ Fm be a convex set, let f : D→ Fn be
convex, and let x0 ∈ intD. Then, D+f(x0; ξ) exists for all ξ ∈ Fm.

Proof. See [68, p. 83].

Note that D+f(x0; ξ) = ±∞ is possible if x0 is an element of the bound-
ary of D even if f is continuous at x0. For example, consider f : [0,∞) 7→ R
given by f(x) = 1−√x.

Next, we consider a stronger form of differentiation.

Proposition 10.4.2. Let D ⊆ Fm be solid and convex, let f : D→ Fn,
and let x0 ∈ D. Then, there exists at most one matrix F ∈ Fn×m satisfying

lim
x→x0

x∈D\{x0}
‖x− x0‖−1[f(x)− f(x0)− F (x− x0)] = 0. (10.4.5)

Proof. See [586, p. 170].

In (9.5) the limit is taken over all sequences that are contained in D,
do not include x0, and converge to x0.

Definition 10.4.3. Let D ⊆ Fm be solid and convex, let f : D → Fn,
let x0 ∈ D, and assume there exists F ∈ Fn×m satisfying (9.5). Then, f is
differentiable at x0 and the matrix F is the (Frechet) derivative of f at x0.
In this case, we write f ′(x0) = F and

lim
x→x0

x∈D\{x0}
‖x− x0‖−1

[

f(x)− f(x0)− f ′(x0)(x− x0)
]

= 0. (10.4.6)

Note that Proposition 10.4.2 and Definition 10.4.3 do not require that

x0 lie in the interior of D. Sometimes we write df(x0)
dx for f ′(x0).

Proposition 10.4.4. Let D ⊆ Fm be solid and convex, let f : D→ Fn,
let x ∈ D, and assume that f is differentiable at x0. Then, f is continuous
at x0.

Let D ⊆ Fm be solid and convex and let f : D 7→ Fn. In terms of

its scalar components, f can be written as f =
[

f1 · · · fn
]T

, where

fi: D 7→ F for all i = 1, . . . , n and f(x) =
[

f1(x) · · · fn(x)
]T

for all
x ∈ D. With this notation, f ′(x0) can be written as

f ′(x0) =







f ′1(x0)
...

f ′n(x0)






, (10.4.7)
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where f ′i(x0) ∈ F1×m is the gradient of fi at x0 and f ′(x0) is the Jacobian
of f at x0. Furthermore, if x ∈ intD then f ′(x0) is related to the partial
derivatives of f by

f ′(x0) =

[

∂f(x0)

∂x(1)
· · · ∂f(x0)

∂x(m)

]

, (10.4.8)

where ∂f(x0)
∂x(i)

∈ Fn×1 for all i = 1, . . . ,m. Note that the existence of the

partial derivatives of f at x0 does not imply that f is differentiable at x0,
that is, f ′(x0) given by (10.4.8) may not satisfy (10.4.6). Finally, note that

the (i, j) entry of the n×m matrix f ′(x0) is ∂fi(x0)
∂x(j)

. For example, if x ∈ Fn

and A ∈ Fn×n, then

d

dx
Ax = A, (10.4.9)

Let D ⊆ Fm and f : D 7→ Fn. If f ′(x) exists for all x ∈ D and
f ′: D 7→ Fn×n is continuous, then f is continuously differentiable, or C1.
The second derivative of f at x0 ∈ D, denoted by f ′′(x0), is the derivative of
f ′: D 7→ Fn×n at x0 ∈ D. For x0 ∈ D it can be seen that f ′′(x0): Fm×Fm 7→
Fn is bilinear, that is, for all η̂ ∈ Fm, the mapping η 7→ f ′′(x0)(η, η̂) is
linear and, for all η ∈ Fm, the mapping η̂ 7→ f ′′(x0)(η, η̂) is linear. Letting

f =
[

f1 · · · fn
]T
, it follows that

f ′′(x0)(η, η̂) =







ηTf ′′1(x0)η̂
...

ηTf ′′n(x0)η̂






, (10.4.10)

where, for all i = 1, . . . , n, the matrix f ′′i (x0) is the m×m Hessian of fi at

x0. We write f (2)(x0) for f ′′(x0) and f (k)(x0) for the kth derivative of f at
x0. f is Ck if f (k)(x) exists and is continuous on D.

The following result is the inverse function theorem.

Theorem 10.4.5. Let D ⊆ Fn be open, let f : D 7→ Fn, and assume
that f is Ck. Furthermore, let x0 ∈ D be such that det f ′(x0) 6= 0. Then,
there exists an open set N ⊂ Fn containing f(x0) and a Ck function g : N 7→
D such that f(g(y)) = y for all y ∈ N.
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10.5 Functions of a Matrix

Consider the function f : D ⊆ C 7→ C defined by the power series

f(s) =

∞
∑

i=0

βis
i, (10.5.1)

where βi ∈ C for all i ∈ N, and assume that this series converges for all
|s| < γ. Then, for A ∈ Cn×n, we define

f(A)
4

=
∞
∑

i=1

βiA
i, (10.5.2)

which converges for all A ∈ Cn×n such that sprad(A) < γ. Now, assume that
A = SBS−1, where S ∈ Cn×n is nonsingular, B ∈ Cn×n, and sprad(B) < γ.
Then,

f(A) = Sf(B)S−1. (10.5.3)

If, in addition, B = diag(J1, . . . , Jr) is the Jordan form of A, then

f(A) = Sdiag[f(J1), . . . , f(Jr)]S
−1. (10.5.4)

Letting J = λIk + Nk denote a Jordan block, f(J) is the upper triangular
Toeplitz matrix

f(J) = f(λ)Nk + f ′(λ)Nk + 1
2f

′′(λ)N2
k + · · ·+ 1

(k −1)!
f (k−1)(λ)Nk−1

k

=























f(λ) f ′(λ) 1
2f

′′(λ) · · · 1
(k−1)!f

(k−1)(λ)

0 f(λ) f ′(λ) · · · 1
(k−2)!f

(k−2)(λ)

0 0 f(λ) · · · 1
(k−3)!f

(k−3)(λ)

...
...

. . .
. . .

...

0 0 0 · · · f(λ)























. (10.5.5)

Next, we extend the definition f(A) to functions f : D ⊆ C 7→ C
that are not necessarily of the form (10.5.1). To do this, let A ∈ Cn×n,
where spec(A) ⊂ D, and assume that, for all λi ∈ spec(A), f is ki − 1

times differentiable at λi, where ki
4

= indA(λi) is the order of the largest
Jordan block associated with λi as given by Theorem 5.3.3. In this case, f
is defined at A, and f(A) is given by (10.5.3) and (10.5.4) with f(Ji) defined
as in (10.5.5).

Theorem 10.5.1. Let A ∈ Fn×n, let spec(A) = {λ1, . . . , λr}, and,

for i = 1, . . . , r, let ki
4

= indA(λi). Furthermore, suppose that f : D ⊆
C 7→ C is defined at A. Then, there exists p ∈ F[s] such that f(A) =



matrix2 November 19, 2003

FUNCTIONS OF MATRICES AND THEIR DERIVATIVES 363

p(A). Furthermore, there exists a unique polynomial p of minimal degree
∑r

i=1 ki satisfying f(A) = p(A) and such that, for all i = 1, . . . , r and
j = 0, 1, . . . , ki − 1,

f (j)(λi) = p(j)(λi). (10.5.6)

This polynomial is given by

p(s) =

r
∑

i=1

















r
∏

j=1
j 6=i

(s−λj)nj









ki−1
∑

k=0

1

k!

dk

dsk
f(s)

∏r
l=1
l 6=i

(s−λl)kl

∣

∣

∣

∣

∣

∣

∣

∣

s=λi

(s−λi)k









.

(10.5.7)

If, in addition, A is diagonalizable, then p is given by

p(s) =
r
∑

i=1

f(λi)
r
∏

j=1
j 6=i

s−λj
λi −λj

. (10.5.8)

Proof. See [155, pp. 263, 264].

The polynomial (10.5.7) is the Lagrange-Hermite interpolation poly-
nomial for f.

The following result, which is known as the identity theorem, is a
special case of Theorem 10.5.1.

Theorem 10.5.2. Let A ∈ Fn×n, let spec(A) = {λ1, . . . , λr}, and, for

i = 1, . . . , r, let ki
4

= indA(λi). Furthermore, let f : D ⊆ C 7→ C and g: D ⊆
C 7→ C be analytic on a neighborhood of spec(A). Then, f(A) = g(A) if
and only if, for all i = 1, . . . , r and j = 0, 1, . . . , ki − 1,

f (j)(λi) = g(j)(λi). (10.5.9)

Corollary 10.5.3. Let A ∈ Fn×n, and let f : D ⊂ C → C be analytic
on a neighborhood of mspec(A). Then,

mspec[f(A)] = f [mspec(A)]. (10.5.10)

10.6 Matrix Derivatives

In this section we consider derivatives of differentiable scalar-valued
functions with matrix arguments. Consider the linear function f : Fm×n 7→
F given by f(X) = trAX, where A ∈ Fn×m and X ∈ Fm×n. In terms of

vectors x ∈ Fmn, we can define the linear function f̂(x)
4

= (vecA)Tx so that
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f̂(vecX) = f(X) = (vecA)TvecX. Consequently, for all Y ∈ Fm×n, f ′(X0)
can be represented by f ′(X0)Y = trAY .

These observations suggest that a convenient representation of the
derivative d

dX f(X) of a differentiable scalar-valued differentiable function
f(X) of a matrix argument X ∈ Fm×n is the n×m matrix whose (i, j) entry

is ∂f(X)
∂X(j,i)

. Note the order of indices.

Proposition 10.6.1. Let x ∈ Fn. Then, the following statements hold:

i) If A ∈ Fn×n, then
d

dx
xTAx = xT

(

A+AT
)

. (10.6.1)

ii) If A ∈ Fn×n is symmetric, then

d

dx
xTAx = 2xTA. (10.6.2)

iii) If A ∈ Fn×n is Hermitian, then

d

dx
x∗Ax = 2x∗A. (10.6.3)

Proposition 10.6.2. Let X ∈ Fm×n. Then, the following statements
hold:

i) If A ∈ Fn×m, then
d

dX
trAX = A. (10.6.4)

ii) If A ∈ Fl×m and B ∈ Fn×l, then

d

dX
trAXB = BA. (10.6.5)

iii) If A ∈ Fl×n and B ∈ Fm×l, then

d

dX
trAXTB = ATBT. (10.6.6)

iv) If A ∈ Fl×m and B ∈ Fn×l, then

d

dX
detAXB = B(AXB)AA. (10.6.7)

v) If A ∈ Fk×l, B ∈ Fl×m, C ∈ Fn×l, D ∈ Fl×l, and E ∈ Fl×k, then

d

dX
trA(D +BXC)−1E = −C(D +BXC)−1EA(D +BXC)−1B.

(10.6.8)
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vi) If A ∈ Fk×l, B ∈ Fl×n, C ∈ Fm×l, D ∈ Fl×l, and E ∈ Fl×k, then

d

dX
trA

(

D +BXTC
)−1
E

= −BT
(

D +BXTC
)−T
ATET

(

D +BXTC
)−T

CT. (10.6.9)

vii) If A ∈ Fn×m and A ∈ Fm×n, then

d

dX
trAXBX = AXB +BXA. (10.6.10)

viii) If A ∈ Fm×m and B ∈ Fn×n, then

d

dX
trAXBXT = BXTA+BTXTAT. (10.6.11)

Proposition 10.6.3. Let X ∈ Fn×n. Then, the following statements
hold:

i) For all k ∈ P,
d

dX
trXk = kXk−1. (10.6.12)

ii) If A ∈ Fm×n and B ∈ Fn×m, then, for all k ∈ P,

d

dX
trAXkB =

k−1
∑

i=0

Xk−1−iBAXi. (10.6.13)

iii) If X is nonsingular, A ∈ Fm×n, and B ∈ Fn×m, then

d

dX
trAX−1B = −X−1BAX−1. (10.6.14)

iv) For all X ∈ Fn×n,
d

dX
detX = XA. (10.6.15)

v) If X is nonsingular, then

d

dX
log detX = X−1. (10.6.16)

10.7 Facts on Open, Closed, and Convex Sets

Fact 10.7.1. Let x ∈ Fn and ε > 0. Then, Bε(x) is completely solid
and convex.

Fact 10.7.2. Let S ⊂ Fn be bounded, let δ > 0 satisfy ‖x− y‖ < δ for
all x, y ∈ S, and let x0 ∈ S. Then, S ⊆ Bδ(x0).
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Fact 10.7.3. Let S1 ⊆ S2 ⊆ Fn. Then,

cl S1 ⊆ cl S2

and
int S1 ⊆ int S2.

Fact 10.7.4. Let S ⊆ Fn. Then, cl S is the smallest closed set contain-
ing S, and int S is the largest open set contained in S.

Fact 10.7.5. Let S ⊆ Fn. Then,

(int S)∼ = cl(S∼)

and
bd S = (cl S) ∩ (cl S∼) = [(int S) ∪ int(S∼)]∼.

Fact 10.7.6. Let S ⊆ Fn be convex. Then, cl S, int S, and intaff S S are
also convex. (Proof: See [485, p. 45] and [486, p. 64].)

Fact 10.7.7. Let S ⊆ Fn be convex. Then, S is solid if and only if S is
completely solid.

Fact 10.7.8. Let S ⊆ Fn be solid. Then, co S is solid and completely
solid.

Fact 10.7.9. Let S ⊆ Fn. Then, co cl S ⊆ cl co S. (Remark: Equality
does not generally hold. Consider

S =
{

x ∈ R2: x2
(1)x

2
(2) = 1 for all x(1) > 0

}

.

Hence, if S is closed, then it does not necessarily follow that co S is closed.)

Fact 10.7.10. Let S ⊆ Fn be either bounded or convex. Then,

co cl S = cl co S.

(Proof: Use Fact 10.7.6 and Fact 10.7.9.)

Fact 10.7.11. Let S ⊆ Fn be open. Then, co S is also open.

Fact 10.7.12. Let S ⊆ Fn be compact. Then, co S is also compact.

Fact 10.7.13. Let S ⊂ Fn be symmetric, solid, convex, closed, and
bounded, and, for all x ∈ Fn, define

‖x‖ 4

= min{α ≥ 0: x ∈ αS} = max{α ≥ 0: αx ∈ S}.
Then, ‖ · ‖ is a norm on Fn, and B1(0) = int S. Conversely, let ‖ · ‖ be a
norm on Fn. Then, B1(0) is convex, bounded, symmetric, and solid. (Proof:
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See [297, pp. 38, 39].) (Remark: In all cases, B1(0) is defined with respect
to ‖ · ‖. This result is due to Minkowski.)

Fact 10.7.14. Let S ⊆ Fn be solid. Then, dim S = n.

Fact 10.7.15. Let S ⊆ Fn be a subspace. Then, S is closed.

Fact 10.7.16. N
n is a closed and completely solid subset of Fn(n+1)/2.

Furthermore,
intNn = P

n.

Fact 10.7.17. Let S ⊆ Fn be convex. Then,

int cl S = int S.

Fact 10.7.18. Let D ⊆ Fn, and let x0 belong to a solid, convex subset
of D. Then,

dim vcone(D, x0) = n.

Fact 10.7.19. Let ‖ · ‖ be a norm on Fn, let S be a subspace in Fn, let
y ∈ Fn, and define

µ
4

= max
x∈{z∈S : ‖z‖=1}

|y∗x|.

Then, there exists z ∈ S⊥ such that

max
x∈{z∈Fn : ‖z‖=1}

|(y + z)∗x| = µ.

(Proof: See [525, p. 57].) (Remark: This result is the Hahn-Banach theo-
rem.) (Problem: Find a simple interpretation in R2.)

Fact 10.7.20. Let S ⊂ Rn be a convex cone, let x ∈ Rn, and assume
that x 6∈ int S. Then, there exists nonzero λ ∈ Rn such that λTx ≤ 0 and
λTz ≥ 0 for all z ∈ S. (Remark: This result is a separation theorem. See [357,
p. 37] and [465, p. 443].)

Fact 10.7.21. Let S1, S2 ⊂ Rn be convex. Then, the following state-
ments are equivalent:

i) There exists a nonzero vector λ ∈ Rn and α ∈ R such that λTx ≤ α
for all x ∈ S1, λ

Tx ≥ α for all x ∈ S2, and either S1 or S2 is not
contained in the affine hyperplane {x ∈ Rn: λTx = α}.

ii) intaff S1
S1 and intaff S2

S2 are disjoint.

(Proof: See [80, p. 82].) (Remark: This result is a proper separation theo-
rem.)
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10.8 Facts on Functions and Derivatives

Fact 10.8.1. Let {xi}∞i=1 ⊂ Fn. Then, limi→∞ xi = x if and only if
limi→∞ xi(j) = x(j) for all j = 1, . . . , n.

Fact 10.8.2. Let S1 ⊆ Fn be compact, let S2 ⊂ Fm, and let f : S1 ×
S2 → R be continuous. Then, g : S2 → R defined by g(y)

4

= maxx∈S1
f(x, y)

is continuous.

Fact 10.8.3. Let f : [0,∞)→ R, and assume that limt→∞ f(t) exists.
Then,

lim
t→∞

1
t

t
∫

0

f(τ) dτ = lim
t→∞

f(t).

Fact 10.8.4. Let f : R2 → R, g : R → R, and h: R → R. Then,
assuming each of the following integrals exists,

d

dα

h(α)
∫

g(α)

f(t, α) dt = f(h(α), α)h′(α)− f(g(α), α)g′(α) +

h(α)
∫

g(α)

∂

∂α
f(t, α) dt.

(Remark: This identity is Leibniz’ rule.)

Fact 10.8.5. Let D ⊆ Rm be a convex set and let f : D → R. Then,
f is convex if and only if the set {(x, y) ∈ Rn × R: y ≥ f(x)} is convex.

Fact 10.8.6. Let D ⊆ Rm be a convex set and let f : D → R be
convex. Then, f−1((−∞, α]) = {x ∈ D: f(x) ≤ α} is convex.

Fact 10.8.7. Let f : D ⊆ Fm 7→ Fn, and assume that D+f(0; ξ) exists.
Then, for all β > 0,

D+f(0;βξ) = βD+f(0; ξ).

Fact 10.8.8. Define f : R→ R by f(x)
4

= |x|. Then, for all ξ ∈ R,

D+f(0; ξ) = |ξ|.
Now, define f : Rn → Rn by f(x)

4

=
√
xTx. Then, for all ξ ∈ Rn,

D+f(0; ξ) =
√

ξTξ.

Fact 10.8.9. Let A,B ∈ Fn×n. Then, for all s ∈ F,

d

ds
(A+ sB)2 = AB +BA+ 2sB.
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Hence,
d

ds
(A+ sB)2

∣

∣

∣

∣

s=0

= AB +BA.

Fact 10.8.10. Let A,B ∈ Fn×n, and let D
4

= {s ∈ F: det(A+ sB) 6=
0}. Then, for all s ∈ D,

d

ds
(A+ sB)−1 = −(A+ sB)−1B(A+ sB)−1.

Hence, if A is nonsingular, then

d

ds
(A+ sB)−1

∣

∣

∣

∣

s=0

= −A−1BA−1.

Fact 10.8.11. Let D ⊆ F, and let A: D −→ Fn×n be differentiable.
Then,

d

ds
detA(s) = tr

[

AA(s)
d

ds
A(s)

]

=
1

n−1
tr

[

A(s)
d

ds
AA(s)

]

=
n
∑

i=1

detAi(s),

where Ai(s) is obtained by differentiating the entries of the ith row of A(s).
(Proof: See [155, p. 267], [466, pp. 199, 212], and [484, p. 430].)

Fact 10.8.12. Let D ⊆ F, let A: D −→ Fn×n be differentiable, and
assume that A(s) is nonsingular for all x ∈ D. Then,

d

ds
A−1(s) = −A−1(s)

[

d

ds
A(s)

]

A−1(s)

and

tr

[

A−1(s)
d

ds
A(s)

]

= − tr

[

A(s)
d

ds
A−1(s)

]

.

(Proof: See [466, pp. 198, 212].)

Fact 10.8.13. Let A,B ∈ Fn×n. Then, for all s ∈ F,

d

ds
det(A+ sB) = tr

[

B(A+ sB)A
]

.

Hence,

d

ds
det(A+ sB)

∣

∣

∣

∣

s=0

= tr BAA =
n
∑

i=1

det
[

A
i← coli(B)

]

.

(Proof: Use Fact 10.8.11 and Fact 2.13.8.) (Remark: This result generalizes
Lemma 4.4.7.)
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Fact 10.8.14. Let A ∈ Fn×n, r ∈ R, and k ∈ P. Then, for all s ∈ C,

dk

dsk
[det(I + sA)]r = (rtrA)k[det(I + sA)]r.

Hence,
dk

dsk
[det(I + sA)]r

∣

∣

∣

∣

s=0

= (rtrA)k.

Fact 10.8.15. Let A ∈ Rn×n be symmetric and let X ∈ Rm×n be such
that XAXT is nonsingular. Then,

(

d

dX
detXAXT

)

= 2
(

detXAXT
)

ATXT
(

XAXT
)−1
.

(Proof: See [153].)

10.9 Notes

An introductory treatment of limits and continuity is given in [434].
Frechet and directional derivatives are discussed in [209], while differen-
tiation of matrix functions is considered in [269, 388, 403, 460, 488, 504].
In [485,486] the set intaff S S is called the relative interior of S. An extensive
treatment of matrix functions is given in Chapter 6 of [289]; see also [294].
The identity theorem is discussed in [305]. The chain rule for matrix func-
tions is considered in [388, 406]. Differentiation with respect to complex
matrices is discussed in [317].
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Chapter Eleven

The Matrix Exponential and Stability
Theory

The matrix exponential function is fundamental to the study or linear
ordinary differential equations. This chapter focuses on the properties of
the matrix exponential as well as on stability theory.

11.1 Definition of the Matrix Exponential

The scalar initial value problem

ẋ(t) = ax(t), (11.1.1)

x(0) = x0, (11.1.2)

where t ∈ [0,∞) and a, x(t) ∈ R, has the solution

x(t) = eatx0, (11.1.3)

where t ∈ [0,∞). We are interested in systems of linear differential equations
of the form

ẋ(t) = Ax(t), (11.1.4)

x(0) = x0, (11.1.5)

where t ∈ [0,∞), x(t) ∈ Rn, and A ∈ Rn×n. Here ẋ(t) denotes dx(t)
dt , where

the derivative is one sided for t = 0 and two sided for t > 0. The solution
to (11.1.4), (11.1.5) is given by

x(t) = etAx0, (11.1.6)

where t ∈ [0,∞) and etA is the matrix exponential. The following definition
is based on (10.5.2).

Definition 11.1.1. Let A ∈ Fn×n. Then, the matrix exponential eA ∈
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Fn×n or exp(A) ∈ Fn×n is the matrix

eA
4

=
∞
∑

k=0

1
k!A

k. (11.1.7)

Note that 0!
4

= 1 and e0n×n = In.

Proposition 11.1.2. The series (11.1.7) converges absolutely for all
A ∈ Fn×n. Furthermore, let ‖ · ‖ be a normalized submultiplicative norm on
Fn×n. Then,

‖eA‖ ≤ e‖A‖. (11.1.8)

Proof. Defining the partial sum Sr
4

=
∑r

k=0
1
k!A

k, we need to show

that limr→∞ Sr = eA. We thus have, as r →∞,

‖eA − Sr‖ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞
∑

k=r+1

1
k!A

k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤
∞
∑

k=r+1

1
k!‖A‖

k

= e‖A‖ −
r
∑

k=0

1
k!‖A‖

k → 0.

Furthermore, note that

‖eA‖ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞
∑

k=0

1
k!A

k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤
∞
∑

k=0

1
k!‖A

k‖ ≤
∞
∑

k=0

1
k!‖A‖

k = e‖A‖,

which verifies (11.1.8).

The following result generalizes the well-known scalar result.

Proposition 11.1.3. Let A ∈ Fn×n. Then,

eA = lim
k→∞

(

I + 1
kA
)k
. (11.1.9)

Proof. It follows from the binomial theorem that

(

I + 1
kA
)k

=
k
∑

i=0

αi(k)A
i,

where

αi(k)
4

=
1

ki

(

k

i

)

=
1

ki
k!

i!(k − i)! .
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For all i ∈ P, it follows that αi(k)→ 1/i! as k →∞. Hence,

lim
k→∞

(

I + 1
kA
)k

= lim
k→∞

k
∑

i=0

αi(k)A
i =

∞
∑

i=0

1
i!A

i = eA. �

The following results are immediate consequences of Definition 11.1.1.

Proposition 11.1.4. Let A ∈ Fn×n. Then, the following statements
hold:

i)
(

eA
)T

= eA
T

.

ii) eA is nonsingular, and
(

eA
)−1

= e−A.

iii) If A = diag(A1, . . . , Ak), where Ai ∈ Fni×ni for all i = 1, . . . , k, then
eA = diag

(

eA1, . . . , eAk
)

.

iv) If S ∈ Fn×n is nonsingular, then eSAS
−1

= SeAS−1.

v) If A and B ∈ Fn×n are similar, then eA and eB are similar.

vi) If A and B ∈ Fn×n are unitarily similar, then eA and eB are unitarily
similar.

vii) If A is Hermitian, then eA is positive definite.

viii) If A is skew Hermitian, then eA is unitary.

The converse of v) is not true. For example, A
4

= [ 0 0
0 0 ] and B

4

=
[

0 2π
−2π 0

]

satisfy eA = eB = I, although A and B are not similar. The
converses of vi) and vii) are given by x) and vi) of Proposition 11.4.6.

Let S: [t0, t1] 7→ Fn×m, and assume that every entry of S(t) is differ-

entiable. Then, define Ṡ(t)
4

= dS(t)
dt ∈ Fn×m for all t ∈ [t0, t1] entrywise, that

is, for all i = 1, . . . , n and j = 1, . . . ,m,

[Ṡ(t)](i,j)
4

=
d

dt
S(i,j)(t). (11.1.10)

If t = t0 or t = t1, then “d/dt” denotes a one-sided derivative. Similarly,

define
∫ t1
t0
S(t)dt entrywise, that is, for all i = 1, . . . , n and j = 1, . . . ,m,





t1
∫

t0

S(t) dt





(i,j)

4

=

t1
∫

t0

[S(t)](i,j) dt. (11.1.11)
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Proposition 11.1.5. Let A ∈ Fn×n. Then, for all t ∈ R,

etA − I =

t
∫

0

AeτA dτ (11.1.12)

and
d

dt
etA = AetA. (11.1.13)

Proof. Note that
t
∫

0

AeτA dτ =

t
∫

0

∞
∑

k=0

1
k!τ

kAk+1 dτ =
∞
∑

k=0

1
k!
tk+1

k+1A
k+1 = etA − I,

which yields (11.1.12), while differentiating (11.1.12) with respect to t yields
(11.1.13).

Proposition 11.1.6. Let A,B ∈ Fn×n. Then, AB = BA if and only
if, for all t ∈ [0,∞),

etAetB = et(A+B). (11.1.14)

Proof. Suppose AB = BA. By expanding etA, etB, and et(A+B), it can
be seen that the expansions of etAetB and et(A+B) are identical. Conversely,
differentiating (11.1.14) twice with respect to t and setting t = 0 yields
AB = BA.

Corollary 11.1.7. Let A,B ∈ Fn×n, and assume that AB = BA.
Then,

eAeB = eBeA = eA+B. (11.1.15)

The converse of Corollary 11.1.7 is not true. For example, if A
4

=
[

0 π
−π 0

]

and B
4

=
[

0 (7+4
√

3)π

(−7+4
√

3)π 0

]

, then eA = eB = −I and eA+B = I,

but AB 6= BA. A partial converse is given by Fact 11.11.2.

Proposition 11.1.8. Let A ∈ Fn×n and B ∈ Fm×m. Then,

eA⊗Im = eA⊗ Im, (11.1.16)

eIn⊗B = In⊗ eB, (11.1.17)

eA⊕B = eA⊗ eB. (11.1.18)
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Proof. Note that

eA⊗Im = Inm +A⊗ Im + 1
2!(A⊗ Im)2 + · · ·

= In⊗ Im +A⊗ Im + 1
2!(A

2⊗ Im) + · · ·
= (In +A+ 1

2!A
2 + · · · )⊗ Im

= eA⊗ Im
and similarly for (11.1.17). To prove (11.1.18) note that (A⊗Im)(In⊗B) =
A⊗B and (In⊗B)(A⊗ Im) = A⊗B, which shows that A⊗ Im and In⊗B
commute. Thus, by Corollary 11.1.7,

eA⊕B = eA⊗Im+In⊗B = eA⊗ImeIn⊗B =
(

eA⊗ Im
)(

In⊗ eB
)

= eA⊗ eB. �

11.2 Structure of the Matrix Exponential

To elucidate the structure of the matrix exponential, recall that, by
Theorem 4.6.1, every term Ak in (11.1.7) for k > r

4

= degµA can be expressed
as a linear combination of I, A, . . . , Ar−1. The following result provides an
expression for etA in terms of I, A, . . . , Ar−1.

Proposition 11.2.1. Let A ∈ Fn×n. Then, for all t ∈ R,

etA =

∮

C

(zI −A)−1etz dz =
n−1
∑

i=0

ψi(t)A
i, (11.2.1)

where, for all i = 0, . . . , n−1, ψi(t) is given by

ψi(t)
4

=

∮

C

χ
[i]
A(z)

χA(z)
etz dz, (11.2.2)

where C is a simple, closed contour in the complex plane enclosing spec(A),

χA(s) = sn + βn−1s
n−1 + · · ·+ β1s+ β0, (11.2.3)

and, for all i = 0, . . . , n− 1, the polynomials χ
[i]
A satisfy the recursion

sχ
[i+1]
A (s) = χ

[i]
A(s)− βi,

where χ
[0]
A

4

= χA. Then, for all i = 0, . . . , n−1 and t ≥ 0, ψi(t) satisfies

ψ
(n)
i (t) + βn−1ψ

(n−1)
i (t) + · · ·+ β1ψ

′

i(t) + β0ψi(t) = 0, (11.2.4)

where, for all i = 0, . . . , n−1,

ψ
(j)
i (0) =

{

1, j = i−1,

0, j 6= i−1.
(11.2.5)

(Remark: See Fact 4.9.8.)
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Proof. See [615, p. 31], [236, p. 381], [362,379], and Fact 4.9.8.

To further understand the structure of etA, where A ∈ Fn×n, let A =
SBS−1, where B = diag(B1, . . . , Bk) is the Jordan form of A. Hence, by
Proposition 11.1.4,

etA = SetBS−1, (11.2.6)

where
etB = diag

(

etB1, . . . , etBk
)

. (11.2.7)

The structure of etB can thus be determined by considering the block Bi ∈
Fαi×αi , which, for all i = 1, . . . , k, has the form

Bi = λiIαi
+Nαi

. (11.2.8)

Since λiIαi
and Nαi

commute, it follows from Proposition 11.1.6 that

etBi = et(λiIαi
+Nαi

) = eλitIαietNαi = eλitetNαi. (11.2.9)

Since Nαi
αi

= 0, it follows that etNαi is a finite sum of powers of tNαi
. Specif-

ically,

etNαi = Iαi
+ tNαi

+ 1
2 t

2N2
αi

+ · · ·+ 1
(αi−1)!

tαi−1Nαi−1
αi

(11.2.10)

=

























1 t t2

2 · · · tαi−1

(αi−1)!

0 1 t
. . . tαi−2

(αi−2)!

0 0 1
. . . tαi−3

(αi−3)!
...

...
. . .

. . .
...

0 0 0 · · · 1

























, (11.2.11)

which is a Toeplitz matrix. Note that (11.2.9) follows from (10.5.5) with
f(λ) = eλt. Furthermore, every entry of etBi is of the form 1

r! t
reλit, where

r ∈ {0, αi − 1} and λi is an eigenvalue of A. Reconstructing A by means
of A = SBS−1 shows that every entry of A is a linear combination of the
entries of the blocks etBi . If A is real, then etA is also real. Thus, the term
eλit for complex λi = νi + ωi ∈ spec(A), where νi and ωi are real, yields
terms of the form eνitcosωit and eνitsinωit.

The following result follows from (11.2.11) or Corollary 10.5.3.

Proposition 11.2.2. Let A ∈ Fn×n. Then,

mspec
(

eA
)

=
{

eλ: λ ∈ mspec(A)
}

m
. (11.2.12)
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Proof. It can be seen that every diagonal entry of the Jordan form of
eA is of the form eλ, where λ ∈ spec(A).

Corollary 11.2.3. Let A ∈ Fn×n. Then,

det eA = etrA. (11.2.13)

Corollary 11.2.4. Let A ∈ Fn×n, and assume that trA = 0. Then,
det eA = 1.

11.3 Explicit Expressions

In this section we present explicit expressions for the exponential of
a general 2 × 2 real matrix A. Expressions are given in terms of both the
entries of A and the eigenvalues of A.

Lemma 11.3.1. Let A
4

=
[

a b
0 d

]

∈ C2×2. Then,

eA =































ea

[

1 b

0 1

]

, a = d,

[

ea b e
a−ed

a−d

0 ed

]

, a 6= d.

(11.3.1)

The following result gives an expression for eA in terms of the eigen-
values of A.

Proposition 11.3.2. Let A ∈ C2×2, and let mspec(A) = {λ, µ}m.
Then,

eA =







eλ[(1− λ)I +A], λ = µ,

µeλ−λeµ

µ−λ I + eµ−eλ

µ−λ A, λ 6= µ.
(11.3.2)

Proof. The result follows from Theorem 10.5.1. Alternatively, suppose
that λ = µ. Then, there exists a nonsingular matrix S ∈ C2×2 such that
A = S

[

λ α
0 λ

]

S−1, where α ∈ C. Hence, eA = eλS[ 1 α
0 1 ]S−1 = eλ[(1− λ)I +A].

Now, suppose that λ 6= µ. Then, there exists a nonsingular matrix S ∈ C2×2

such that A = S
[

λ 0
0 µ

]

S−1. Hence, eA = S
[

eλ 0
0 eµ

]

S−1. Then, the identity
[

eλ 0
0 eµ

]

= µeλ−λeµ

µ−λ I + eµ−eλ

µ−λ
[

λ 0
0 µ

]

yields the given result.

Next, we give an expression for eA in terms of the entries of A ∈ R2×2.
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Corollary 11.3.3. Let A
4

=
[

a b
c d

]

∈ R2×2, and define γ
4

= (a−d)2 +4bc

and δ
4

= 1
2 |γ|1/2. Then,

eA =



























































e
a+d

2

[

cos δ + a−d
2δ sin δ b

δ sin δ

c
δ sin δ cos δ − a−d

2δ sin δ

]

, γ < 0,

e
a+d

2

[

1 + a−d
2 b

c 1− a−d
2

]

, γ = 0,

e
a+d

2

[

cosh δ + a−d
2δ sinh δ b

δ sinh δ

c
δ sinh δ cosh δ − a−d

2δ sinh δ

]

, γ > 0.

(11.3.3)

Proof. The eigenvalues of A are λ
4

= 1
2(a + d − √γ) and µ

4

= 1
2(a +

d +
√
γ). Hence, λ = µ if and only if γ = 0. The result now follows from

Proposition 11.3.2.

Example 11.3.4. Let A
4

= [ ν ω
−ω ν ] ∈ R2×2. Then,

etA = eνt
[

cosωt sinωt
− sinωt cosωt

]

. (11.3.4)

On the other hand, if A
4

= [ ν ω
ω −ν ] , then

etA =

[

cosh δt+ ν
δ sinh δt ω

δ sinh δt

ω
δ sinh δt cosh δt− ν

δ sinh δt

]

, (11.3.5)

where δ
4

=
√
ω2 + ν2.

Example 11.3.5. Let α ∈ F, and define A
4

= [ 0 1
0 α ]. Then,

etA =



























[

1 α−1
(

eαt − 1
)

0 eαt

]

, α 6= 0,

[

1 t

0 1

]

, α = 0.
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Example 11.3.6. Let A
4

=
[

α β
0 γ

]

∈ R2×2. Then,

etA =



































eαt β
(eαt−eγt)
α−γ

0 eγt



 , α 6= γ,

[

eαt βteαt

0 eγt

]

, α = γ.

In particular,

e
t
[

1 −1
0 2

]

=

[

et et − e2t

0 e2t

]

.

Example 11.3.7. Let θ ∈ R, and define A
4

=
[

0 θ
−θ 0

]

. Then,

eA =

[

cos θ sin θ
− sin θ cos θ

]

.

Furthermore, define B
4

=
[

0 π

2
−θ

−π

2
+θ 0

]

. Then,

eB =

[

sin θ cos θ
− cos θ sin θ

]

.

Example 11.3.8. Consider the second-order mechanical vibration
equation

mq̈ + cq̇ + kq = 0, (11.3.6)

where m is positive and c and k are nonnegative. Here m, c, and k denote
mass, damping, and stiffness parameters, respectively. Equation (11.3.6)
can be written in companion form as the system

ẋ = Ax, (11.3.7)

where

x
4

=

[

q
q̇

]

, A
4

=

[

0 1
−k/m −c/m

]

. (11.3.8)

The inelastic case k = 0 is the simplest one since A is upper triangular. In
this case,

etA =































[

1 t

0 1

]

, k = c = 0,

[

1 m
c (1− e−ct/m)

0 e−ct/m

]

, k = 0, c > 0,

(11.3.9)

where c = 0 and c > 0 correspond to a rigid body and a damped rigid body,
respectively.
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Next, we consider the elastic case c ≥ 0 and k > 0. In this case, we
define

ωn
4

=

√

k

m
, ζ

4

=
c

2
√
mk

, (11.3.10)

where ωn > 0 denotes the (undamped) natural frequency of vibration and
ζ ≥ 0 denotes the damping ratio. Now, A can be written as

A =

[

0 1
−ω2

n −2ζωn

]

, (11.3.11)

and Corollary 11.3.3 yields

etA (11.3.12)

=



























































































[

cosωnt
1
ωn

sinωnt

−ωnsinωnt cosωnt

]

, ζ = 0,

e−ζωnt





cosωdt+ ζ√
1−ζ2 sinωdt

1
ωd

sinωdt

−ωd

1−ζ2 sinωdt cosωdt− ζ√
1−ζ2 sinωdt



, 0 < ζ < 1,

e−ωnt

[

1 + ωnt t

−ω2
nt 1− ωnt

]

, ζ = 1,

e−ζωnt





coshωdt+ ζ√
ζ2−1

sinhωdt
1
ωd

sinhωdt

−ωd

ζ2−1 sinhωdt coshωdt− ζ√
ζ2−1

sinhωdt



, ζ > 1,

where ζ = 0, 0 < ζ < 1, ζ = 1, and ζ > 1 correspond to undamped,
underdamped, critically damped, and overdamped oscillators, respectively,
and where the damped natural frequency ωd is the positive number

ωd
4

=







ωn

√

1− ζ2, 0 < ζ < 1,

ωn

√

ζ2 − 1, ζ > 1.
(11.3.13)

11.4 Logarithms

Let A ∈ Fn×n be positive definite so that A = SBS∗ ∈ Fn×n, where
S ∈ Fn×n is unitary and B ∈ Rn×n is diagonal with positive diagonal en-
tries. In Section 8.5, logA is defined as logA = S(logB)S∗ ∈ H

n, where

(logB)(i,i)
4

= logB(i,i). It can be seen that logA satisfies A = elogA. The
following definition is not restricted to positive-definite matrices A.
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Definition 11.4.1. Let A ∈ Fn×n. Then, B ∈ Fn×n is a logarithm of A
if eB = A.

Proposition 11.4.2. Let ‖ · ‖ be a normalized submultiplicative norm
on Fn×n, and, for A ∈ Fn×n, define

logA
4

=
∞
∑

i=1

(−1)i−1

i
(A− I)i. (11.4.1)

Then, the following statements hold:

i) The series (11.4.1) converges absolutely for all A ∈ Fn×n such that
‖A− I‖ < 1.

ii) If A ∈ Fn×n and ‖A− I‖ < 1, then ‖logA‖ ≤ log(1 + ‖A− I‖).
iii) If A ∈ Fn×n and ‖A − I‖ < 1, then logA is a logarithm of A, that

is, elogA = A.

iv) If B ∈ Fn×n and ‖eB − I‖ < 1, then log eB = B.

v) exp: Blog 2(0) 7→ Fn×n is one-to-one.

Proof. For α
4

= ‖A − I‖ < 1 it follows from (11.4.1) that ‖logA‖ ≤
∑∞

i=1 (−1)i−1αi/i = log(1 + α), which proves i) and ii). Statements iii)
and iv) can be confirmed by using the series representation of the matrix
exponential. To prove v), let B ∈ Blog 2(0), so that e‖B‖ < 2, and thus

‖eB − I‖ ≤ ∑∞
i=1 ‖B‖i = e‖B‖ − 1 < 1. Now, let B1, B2 ∈ Blog 2(0), and

assume that eB1 = eB2 . Then, it follows from ii) that B1 = log eB1 =
log eB2 = B2.

The following result shows that every complex, nonsingular matrix has
a complex logarithm.

Proposition 11.4.3. Let A ∈ Cn×n. Then, there exists a matrix B ∈
Cn×n such that A = eB if and only if A is nonsingular.

Proof. See [289, p. 474].

However, only certain real matrices have a real logarithm.

Proposition 11.4.4. Let A ∈ Rn×n. Then, there exists a matrix B ∈
Rn×n such that A = eB if and only if A is nonsingular and, for every negative
eigenvalue λ of A and for every positive integer k, the Jordan form of A has
an even number of k × k blocks associated with λ.

Proof. See [289, p. 475].
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Replacing A and B in Proposition 11.4.4 by eA and A, respectively,
yields the following result.

Corollary 11.4.5. Let A ∈ Rn×n. Then, for every negative eigenvalue
λ of eA and for every positive integer k, the Jordan form of eA has an even
number of k × k blocks associated with λ.

Since the matrix A
4

=
[−2π 4π
−2π 2π

]

satisfies eA = I it follows that a
positive-definite matrix can have a logarithm that is not normal. How-
ever, the following result shows that every positive-definite matrix has at
least one Hermitian logarithm. Analogous results are given for several sets
of matrices.

Proposition 11.4.6. Let n ≥ 1. Then, the following functions are
onto:

i) exp: glC(n) 7→ GLC(n).

ii) exp: glR(1) 7→ PLR(1).

iii) exp: plC(n) 7→ PLC(n).

iv) exp: slC(n) 7→ SLC(n).

v) exp: H
n 7→ P

n.

vi) exp: u(n) 7→ U(n).

vii) exp: su(n) 7→ SU(n).

viii) exp: so(n) 7→ SO(n).

Furthermore, the following functions are not onto:

ix) exp: glR(n) 7→ PLR(n), where n ≥ 2.

x) exp: slR(n) 7→ SLR(n).

xi) exp: so(n) 7→ O(n).

xii) exp: sp(n) 7→ Sp(n).

Proof. Statement i) follows from Proposition 11.4.3, while ii) is imme-
diate. Statements iii)-viii) can be verified by construction; see [466, pp. 199,

212] for the proof of vi) and viii). The example A
4

=
[−1 0

0 −2

]

and Proposi-
tion 11.4.4 show that ix) is not onto. For λ < 0, λ 6= −1, Proposition 11.4.4

and the example
[

λ 0
0 1/λ

]

given in [496, p. 39] show that x) is not onto. See

also [45, pp. 84, 85]. Statement viii) shows that xi) is not onto. For xii),
see [173].

Let A ∈ Rn×n. If there exists B ∈ Rn×n such that A = eB, then
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Corollary 11.2.3 implies that detA = det eB = etrB > 0. However, the
converse is not true. Consider, for example, A

4

=
[−1 0

0 −2

]

, which satisfies
detA > 0. However, Proposition 11.4.4 implies that there does not exist
B ∈ R2×2 such that A = eB. On the other hand, note that A = eBeC , where
B

4

=
[

0 π
−π 0

]

and C
4

=
[

0 0
0 log 2

]

. While the product of two exponentials of
real matrices has positive determinant, the following result shows that the
converse is also true.

Proposition 11.4.7. Let A ∈ Rn×n. Then, there exist B,C ∈ Rn×n

such that A = eBeC if and only if detA > 0.

Proof. Suppose that there exist B,C ∈ Rn×n such that A = eBeC.
Then, detA =

(

det eB
)(

det eC
)

> 0. Conversely, suppose that detA > 0. If
A has no negative eigenvalues, then it follows from Proposition 11.4.4 that
there exists B ∈ Rn×n such that A = eB. Hence, A = eBe0n×n. Now, suppose
that A has at least one negative eigenvalue. Then, Theorem 5.3.5 on the real
Jordan form implies that there exists a nonsingular matrix S ∈ Rn×n and
matrices A1 ∈ Rn1×n1 and A2 ∈ Rn2×n2 such that A = S

[

A1 0
0 A2

]

S−1, where
all of the eigenvalues of A1 are negative and where none of the eigenvalues
of A2 are negative. Since detA and detA2 are positive, it follows that n1 is

even. Now, write A = S
[

−In1
0

0 In2

]

[−A1 0
0 A2

]

S−1. Since the eigenvalue −1 of
[

−In1
0

0 In2

]

appears in an even number of 1×1 Jordan blocks, it follows from

Proposition 11.4.4 that there exists B̂ ∈ Rn×n such that
[

−In1
0

0 In2

]

= eB̂.

Furthermore, since
[−A1 0

0 A2

]

has no negative eigenvalues, it follows that

there exists Ĉ ∈ Rn×n such that
[−A1 0

0 A2

]

= eĈ . Hence, eA = SeB̂eĈS−1 =

eSB̂S
−1

eSĈS
−1

.

Although eAeB is generally different from eA+B, the following result,
known as the Baker-Campbell-Hausdorff series, provides an expansion for a
matrix function C(t) that satisfies eC(t) = etAetB.

Proposition 11.4.8. Let A1, . . . , Al ∈ Fn×n. Then, there exists ε > 0
such that, for all t ∈ (−ε, ε),

etA1 · · · etAl = eC(t), (11.4.2)

where

C(t)
4

=
l
∑

i=1

tAi +
∑

1≤i<j≤l

1
2 t

2[Ai, Aj ] +O(t3). (11.4.3)

Proof. See [571, p. 97] or [496, p. 35].

To illustrate (11.4.2), let l = 2, A = A1, and B = A2. Then, the first
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two terms of the series are given by

etAetB = etA+tB+
t2

2 [A,B]+ t3

12
[[B,A],A+B]+···. (11.4.4)

The radius of convergence of this series is discussed in [438].

Corollary 11.4.9. Let A,B ∈ Fn×n. Then,

eA+B = lim
k→∞

(

e
1

k
Ae

1

k
B
)k
. (11.4.5)

Proof. Setting l = 2 and k = 1/t in (11.4.2) yields, as k →∞,
(

e
1

k
Ae

1

k
B
)k

=
[

e
1

k
(A+B)+O( 1

k2)
]k

= eA+B+O(1/k) → eA+B. �

11.5 Lyapunov Stability Theory

Consider the dynamical system

ẋ(t) = f(x(t)), (11.5.1)

where t ≥ 0, x(t) ∈ D ⊆ Rn, and f : D → Rn is continuous. We assume
that, for all x0 ∈ D and for all T > 0, there exists a unique C1 solution
x: [0, T ] 7→ D satisfying (11.5.1). If xe ∈ D satisfies f(xe) = 0, then
x(t) ≡ xe is an equilibrium of (11.5.1). The following definition concerns the
stability of an equilibrium. Throughout this section, let ‖ · ‖ denote a norm
on Rn.

Definition 11.5.1. Let xe ∈ D be an equilibrium of (11.5.1). Then,
xe is Lyapunov stable if, for all ε > 0, there exists δ > 0 such that if
‖x(0) − xe‖ < δ, then ‖x(t) − xe‖ < ε for all t ≥ 0. Furthermore, xe is
asymptotically stable if it is Lyapunov stable and there exists ε > 0 such
that, if ‖x(0) − xe‖ < ε, then limt→∞ x(t) = xe. In addition, xe is globally
asymptotically stable if it is Lyapunov stable, D = Rn, and, for all x(0) ∈ Rn,
limt→∞ x(t) = xe. Finally, xe is unstable if it is not Lyapunov stable.

Note that if xe ∈ Rn is a globally asymptotically stable equilibrium,
then xe is the only equilibrium of (11.5.1).

The following result, known as Lyapunov’s direct method, gives suffi-
cient conditions for Lyapunov stability and asymptotic stability of an equi-
librium of (11.5.1).

Theorem 11.5.2. Let xe ∈ D be an equilibrium of the dynamical
system (11.5.1) and assume that there exists a C1 function V : D 7→ R such
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that
V (xe) = 0, (11.5.2)

such that, for all x ∈ D\{xe},
V (x) > 0, (11.5.3)

and such that, for all x ∈ D,

V ′(x)f(x) ≤ 0. (11.5.4)

Then, xe is Lyapunov stable. If, in addition, for all x ∈ D\{xe},
V ′(x)f(x) < 0, (11.5.5)

then xe is asymptotically stable. Finally, if D = Rn and

lim
‖x‖→∞

V (x) =∞, (11.5.6)

then xe is globally asymptotically stable.

Proof. For convenience, let xe = 0. To prove Lyapunov stability,
let ε > 0 be such that Bε(0) ⊆ D. Since Sε(0) is compact and V (x) is
continuous, it follows from Theorem 10.3.7 that V (Sε(0)) is compact. Since
0 6∈ Sε(0), V (x) > 0 for all x ∈ D\{0}, and V (Sε(0)) is compact, it follows

that α
4

= minV (Sε(0)) is positive. Next, since V is continuous, it follows
that there exists δ ∈ (0, ε] such that V (x) < α for all x ∈ Bδ(0). Now, let
x(t) for all t ≥ 0 satisfy (11.5.1), where ‖x(0)‖ < δ. Hence, V (x(0)) < α. It
thus follows from (11.5.4) that, for all t ≥ 0,

V (x(t))− V (x(0)) =

t
∫

0

V ′(x(s))f(x(s)) ds ≤ 0,

and hence, for all t ≥ 0,

V (x(t)) ≤ V (x(0)) < α.

Now, since V (x) ≥ α for all x ∈ Sε(0), it follows that x(t) 6∈ Sε(0) for all
t ≥ 0. Hence, ‖x(t)‖ < ε for all t ≥ 0, which proves that xe = 0 is Lyapunov
stable.

To prove that xe = 0 is asymptotically stable, let ε > 0 be such
that Bε(0) ⊆ D. Since (11.5.5) implies (11.5.4), it follows that there exists
δ > 0 such that, if ‖x(0)‖ < δ, then ‖x(t)‖ < ε for all t ≥ 0. Furthermore,
d
dtV (x(t)) = V ′(x(t))f(x(t)) < 0 for all t ≥ 0, and thus V (x(t)) is decreasing
and bounded from below by zero. Now, suppose that V (x(t)) does not
converge to zero. Therefore, there exists L > 0 such that V (x(t)) ≥ L for all
t ≥ 0. Now, let δ′ > 0 be such that V (x) < L for all x ∈ Bδ′(0). Therefore,

‖x(t)‖ ≥ δ′ for all t ≥ 0. Next, define γ < 0 by γ
4

= maxδ′≤‖x‖≤εV
′(x)f(x).
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Therefore, since ‖x(t)‖ < ε for all t ≥ 0, it follows that

V (x(t))− V (x(0)) =

t
∫

0

V ′(x(τ))f(x(τ)) dτ ≤ γt,

and hence
V (x(t)) ≤ V (x(0)) + γt.

However, t > −V (x(0))/γ implies that V (x(t)) < 0, which is a contradiction.

To prove that xe = 0 is globally asymptotically stable, let x(0) ∈ Rn,

and let β
4

= V (x(0)). It follows from (11.5.6) that there exists ε > 0 such
that V (x) > 2β for all x ∈ Rn such that ‖x‖ > ε. Therefore, ‖x(0)‖ < ε,
and, since V (x(t)) is decreasing, it follows that ‖x(t)‖ < ε for all t > 0. The
remainder of the proof is identical to the proof of asymptotic stability.

11.6 Linear Stability Theory

We now specialize Definition 11.5.1 to the linear system

ẋ(t) = Ax(t), (11.6.1)

where t ≥ 0, x(t) ∈ Rn, and A ∈ Rn×n. Note that xe = 0 is an equilibrium
of (11.6.1), and that xe ∈ Rn is an equilibrium of (11.6.1) if and only if
xe ∈ N(A). Hence, if xe is the globally asymptotically stable equilibrium of
(11.6.1), then A is nonsingular and xe = 0.

We consider three types of stability for the linear system (11.6.1).
Unlike Definition 11.5.1, these definitions are stated in terms of the dynamics
rather than the equilibrium.

Definition 11.6.1. For A ∈ Fn×n, define the following classes of ma-
trices:

i) A is Lyapunov stable if spec(A) ⊂ CLHP and, if λ ∈ spec(A) and
Reλ = 0, then λ is semisimple.

ii) A is semistable if spec(A) ⊂ OLHP ∪ {0} and, if 0 ∈ spec(A), then
0 is semisimple.

iii) A is asymptotically stable if spec(A) ⊂ OLHP.

The following result concerns Lyapunov stability, semistability, and
asymptotic stability for (11.6.1).

Proposition 11.6.2. Let A ∈ Rn×n. Then, the following statements
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are equivalent:

i) xe = 0 is a Lyapunov stable equilibrium of (11.6.1).

ii) At least one equilibrium of (11.6.1) is Lyapunov stable.

iii) Every equilibrium of (11.6.1) is Lyapunov stable.

iv) A is Lyapunov stable.

v) For every initial condition x(0) ∈ Rn, x(t) is bounded for all t ≥ 0.

vi) ‖etA‖ is bounded for all t ≥ 0, where ‖ · ‖ is a norm on Rn×n.

vii) For every initial condition x(0) ∈ Rn, etAx(0) is bounded for all
t ≥ 0.

The following statements are equivalent:

vii) A is semistable.

viii) limt→∞ etA exists. In fact, limt→∞ etA = I −AA#.

ix) For every initial condition x(0), limt→∞ x(t) exists.

The following statements are equivalent:

x) xe = 0 is an asymptotically stable equilibrium of (11.6.1).

xi) A is asymptotically stable.

xii) spabs(A) < 0.

xiii) For every initial condition x(0) ∈ Rn, limt→∞ x(t) = 0.

xiv) For every initial condition x(0) ∈ Rn, etAx(0)→ 0 as t→∞.
xv) etA → 0 as t→∞.

The following definition concerns the stability of a polynomial.

Definition 11.6.3. Let p ∈ R[s]. Then, define the following termin-
ology:

i) p is Lyapunov stable if roots(p) ⊂ CLHP and, if λ is an imaginary
root of p, then mp(λ) = 1.

ii) p is semistable if roots(p) ⊂ OLHP ∪ {0} and, if 0 ∈ roots(p), then
mp(0) = 1.

iii) p is asymptotically stable if roots(p) ⊂ OLHP.

For the following result, recall Definition 11.6.1.

Proposition 11.6.4. Let A ∈ Rn×n. Then, the following statements
hold:
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i) A is Lyapunov stable if and only if µA is Lyapunov stable.

ii) A is semistable if and only if µA is semistable.

Furthermore, the following statements are equivalent:

iii) A is asymptotically stable

iv) µA is asymptotically stable.

v) χA is asymptotically stable.

Next, consider the factorization of the minimal polynomial µA of A
given by

µA = µs
Aµ

u
A, (11.6.2)

where µs
A and µu

A are monic polynomials such that

roots(µs
A) ⊂ OLHP (11.6.3)

and
roots(µu

A) ⊂ CRHP. (11.6.4)

Proposition 11.6.5. Let A ∈ Rn×n, and let S ∈ Rn×n be a nonsingular
matrix such that

A = S

[

A1 A12

0 A2

]

S−1, (11.6.5)

where A1 ∈ Rr×r is asymptotically stable, A12 ∈ Rr×(n−r), and A2 ∈
R(n−r)×(n−r) satisfies spec(A2) ⊂ CRHP. Then,

µs
A(A) = S

[

0 C12s

0 µs
A(A2)

]

S−1, (11.6.6)

where C12s ∈ Rr×(n−r) and µs
A(A2) is nonsingular, and

µu
A(A) = S

[

µu
A(A1) C12u

0 0

]

S−1, (11.6.7)

where C12u ∈ Rr×(n−r) and µu
A(A1) is nonsingular. Consequently,

N[µs
A(A)] = R[µu

A(A)] = R

(

S

[

Ir
0

])

. (11.6.8)

If, in addition, A12 = 0, then

µs
A(A) = S

[

0 0
0 µs

A(A2)

]

S−1 (11.6.9)

and

µu
A(A) = S

[

µu
A(A1) 0

0 0

]

S−1. (11.6.10)
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Consequently,

R[µs
A(A)] = N[µu

A(A)] = R

(

S

[

0
In−r

])

. (11.6.11)

Corollary 11.6.6. Let A ∈ Rn×n. Then,

N[µs
A(A)] = R[µu

A(A)] (11.6.12)

and
N[µu

A(A)] = R[µs
A(A)]. (11.6.13)

Proof. It follows from Theorem 5.3.5 that there exists a nonsingular
matrix S ∈ Rn×n such that (11.6.5) is satisfied, where A1 ∈ Rr×r is asymp-
totically stable, A12 = 0, and A2 ∈ R(n−r)×(n−r) satisfies spec(A2) ⊂ CRHP.
The result now follows from Proposition 11.6.5.

In view of Corollary 11.6.6 we define the asymptotically stable subspace
Ss(A) of A by

Ss(A)
4

= N[µs
A(A)] = R[µu

A(A)] (11.6.14)

and the unstable subspace Su(A) of A by

Su(A)
4

= N[µu
A(A)] = R[µs

A(A)]. (11.6.15)

Note that

dim Ss(A) = def µs
A(A) = rankµu

A(A) =
∑

λ∈spec(A)
Reλ<0

amA(λ) (11.6.16)

and
dim Su(A) = def µu

A(A) = rankµs
A(A) =

∑

λ∈spec(A)
Reλ≥0

amA(λ). (11.6.17)

Lemma 11.6.7. Let A ∈ Rn×n, assume that spec(A) ⊂ CRHP, let
x ∈ Rn, and assume that limt→∞ etAx = 0. Then, x = 0.

For the following result, note Proposition 11.6.2, Proposition 5.5.8,
Fact 3.5.12, Fact 11.14.3, and Proposition 6.1.7.

Proposition 11.6.8. Let A ∈ Rn×n. Then, the following statements
hold:

i) Ss(A) = {x ∈ Rn: limt→∞ etAx = 0}.
ii) µs

A(A) and µu
A(A) are group invertible.

iii) Ps
4

= I−µs
A(A)[µs

A(A)]# and Pu
4

= I−µu
A(A)[µu

A(A)]# are idempotent.
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iv) Ps + Pu = I.

v) Ps⊥ = Pu and Pu⊥ = Ps.

vi) Ss(A) = R(Ps) = N(Pu).

vii) Su(A) = R(Pu) = N(Ps).

viii) Ss(A) and Su(A) are invariant subspaces of A.

ix) Ss(A) and Su(A) are complementary subspaces.

x) Ps is the idempotent matrix onto Ss(A) along Su(A).

xi) Pu is the idempotent matrix onto Su(A) along Ss(A).

Proof. To prove i) let S ∈ Rn×n be a nonsingular matrix such that

A = S

[

A1 0
0 A2

]

S−1,

where A1 ∈ Rr×r is asymptotically stable and spec(A2) ⊂ CRHP. It then
follows from Proposition 11.6.5 that

Ss(A) = N[µs
A(A)] = R

(

S

[

Ir
0

])

.

Furthermore,

etA = S

[

etA1 0
0 etA2

]

S−1.

To prove Ss(A) ⊆ {x ∈ Rn: limt→∞ etAx = 0}, let x
4

= S[ x1

0 ] ∈ Ss(A),
where x1 ∈ Rr. Then, etAx = S

[

etA1x1

0

]

→ 0 as t → ∞. Hence, x ∈ {x ∈
Rn: limt→∞ etAx = 0}. Conversely, to prove {x ∈ Rn: limt→∞ etAx = 0} ⊆
Ss(A), let x

4

= S[ x1
x2

] ∈ Rn satisfy limt→∞ etAx = 0. Hence, etA2x2 → 0 as
t→∞. Since spec(A2) ⊂ CRHP, it follows from Lemma 11.6.7 that x2 = 0.
Hence, x ∈ R

(

S
[

Ir

0

])

= Ss(A).

The remaining statements follow directly from Proposition 11.6.5.

11.7 The Lyapunov Equation

In this section we specialize Theorem 11.5.2 to the linear system
(11.6.1).

Corollary 11.7.1. Let A ∈ Rn×n and assume that there exists a
nonneg-ative-semidefinite matrix R ∈ Rn×n and a positive-definite matrix
P ∈ Rn×n satisfying

ATP + PA+R = 0. (11.7.1)
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Then, A is Lyapunov stable. If, in addition, for all nonzero ω ∈ R,

rank

[

ωI −A
R

]

= n, (11.7.2)

then A is semistable. Finally, if R is positive definite, then A is asymptoti-
cally stable.

Proof. Define V (x)
4

= xTPx, which satisfies (11.5.2) with xe = 0 and
satisfies (11.5.3) for all nonzero x ∈ D = Rn. Furthermore, Theorem 11.5.2
implies that V ′(x)f(x) = 2xTPAx = xT

(

ATP + PA
)

x = −xTRx, which satis-
fies (11.5.4) for all x ∈ Rn. Thus, Theorem 11.5.2 implies that A is Lyapunov
stable. If, in addition, R is positive definite, then (11.5.5) is satisfied for all
x 6= 0, and thus A is asymptotically stable.

Alternatively, we shall prove the first and third statements without
using Theorem 11.5.2. Letting λ ∈ spec(A) and x ∈ Cn be an associated
eigenvector, it follows that 0 ≥ −x∗Rx = x∗

(

ATP + PA
)

x = (λ + λ)x∗Px.
Therefore, spec(A) ⊂ CLHP. Now, suppose that ω ∈ spec(A), where

ω ∈ R, and let x ∈ N
[

(ωI −A)2
]

. Defining y
4

= (ωI − A)x, it fol-
lows that (ωI − A)y = 0 and thus Ay = ωy. Therefore, −y∗Ry =
y∗
(

ATP + PA
)

y = −ωy∗Py + ωy∗Py = 0, and thus Ry = 0. Hence,

0 = x∗Ry = −x∗
(

ATP + PA
)

y = −x∗
(

AT + ωI
)

Py = y∗Py. Since P is
positive definite, it follows that y = 0, that is, (ωI − A)x = 0. Therefore,
x ∈ N(ωI − A). Now, Proposition 5.5.14 implies that ω is semisimple.
Therefore, A is Lyapunov stable.

Next, to prove that A is asymptotically stable, let λ ∈ spec(A), and
let x ∈ Cn be an associated eigenvector. Thus, 0 > −x∗Rx = (λ + λ)x∗Px,
which implies that A is asymptotically stable.

Finally, to prove that A is semistable, let ω ∈ spec(A), where ω ∈ R
is nonzero, and let x ∈ Cn be an associated eigenvector. Then,

−x∗Rx = x∗
(

ATP + PA
)

x = x∗[(ωI −A)∗P + P (ωI −A]x = 0.

Therefore, Rx = 0 and thus
[

ωI −A
R

]

x = 0,

which implies that x = 0, which contradicts x 6= 0. Consequently, ω 6∈
spec(A) for all nonzero ω ∈ R, and thus A is semistable.

Equation (11.7.1) is a Lyapunov equation. Converse results for Corol-
lary 11.7.1 are given by Corollary 11.7.4, Proposition 11.7.5, Proposition
11.7.6, Proposition 11.7.7, and Proposition 12.7.5. The following lemma
will be useful for analyzing (11.7.1).
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Lemma 11.7.2. Assume that A∈Fn×n is asymptotically stable. Then,
∞
∫

0

etA dt = −A−1. (11.7.3)

Proof. Proposition 11.1.5 implies that
∫ t
0 e

τA dτ = A−1
(

etA − I
)

. Let-
ting t→∞ yields (11.7.3).

The following result concerns Sylvester’s equation. See Fact 5.8.11 and
Proposition 7.2.4.

Proposition 11.7.3. Let A,B,C ∈ Rn×n. Then, there exists a unique
matrix X ∈ Rn×n satisfying

AX +XB + C = 0 (11.7.4)

if and only if BT⊕A is nonsingular. In this case, X is given by

X = − vec−1
[

(

BT⊕A
)−1

vecC
]

. (11.7.5)

If, in addition, BT⊕A is asymptotically stable, then X is given by

X =

∞
∫

0

etACetB dt. (11.7.6)

Proof. The first two statements follow from Proposition 7.2.4. If BT⊕
A is asymptotically stable, then it follows from (11.7.5) using Lemma 11.7.2
and Proposition 11.1.8 that

X =

∞
∫

0

vec−1
(

et(B
T⊕A)vecC

)

dt =

∞
∫

0

vec−1
(

etB
T⊗ etA

)

vecC dt

=

∞
∫

0

vec−1vec
(

etACetB
)

dt =

∞
∫

0

etACetB dt. �

The following result provides a converse to Corollary 11.7.1 for the
case of asymptotic stability.

Corollary 11.7.4. Let A ∈ Rn×n, and let R ∈ Rn×n. Then, there
exists a unique matrix P ∈ Rn×n satisfying (11.7.1) if and only if A⊕A is
nonsingular. In this case, if R is symmetric, then P is symmetric. Now,
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assume that A is asymptotically stable. Then, P ∈ S
n is given by

P =

∞
∫

0

etA
T

RetA dt. (11.7.7)

Finally, if R is (nonnegative semidefinite, positive definite), then P is (non-
negative semidefinite, positive definite).

Proof. First note that A⊕A is nonsingular if and only if (A⊕A)T =
AT ⊕ AT is nonsingular. Now, the first statement follows from Propo-
sition 11.7.3. To prove the second statement note that AT

(

P − PT
)

+
(

P − PT
)

A = 0, which implies that P is symmetric. Now, suppose that A
is asymptotically stable. Then, Fact 11.14.29 implies that A⊕A is asymp-
totically stable. Consequently, (11.7.7) follows from (11.7.6).

The following result provides a converse to Corollary 11.7.1 for the
case of Lyapunov stability.

Proposition 11.7.5. Let A ∈ Rn×n, and assume that A is Lyapunov
stable. Then, there exist a positive-definite matrix P and a nonnegative-
semidefinite matrix R satisfying (11.7.1).

Proof. Let S ∈ Rn×n be a nonsingular matrix such that SAS−1 =
[

A1 0
0 A2

]

is in real Jordan form, where A1 ∈ Rn1×n1 , spec(A1) ⊂ OLHP,

spec(A2) ⊂ R, and A2 is skew symmetric. Let R1 ∈ Rn1×n1 be positive
definite and let P1 ∈ Rn1×n1 be the positive-definite solution toAT

1P1+P1A1+

R1 = 0. Since A2 +AT
2 = 0, it follows that

(

SAS−1
)T
P̂ + P̂SAS−1 + R̂ = 0,

where P̂
4

=
[

P1 0
0 0

]

and R̂
4

=
[

R1 0
0 0

]

. Therefore, (11.7.1) is satisfied with

P
4

= STP̂S and R
4

= STR̂S.

The following results also include converse statements. We first con-
sider asymptotic stability.

Consider the Lyapunov equation

ATP + PA+R = 0. (11.7.8)

Proposition 11.7.6. Let A ∈ Rn×n. The following statements are
equivalent:

i) A is asymptotically stable.

ii) For all positive-definite matrices R ∈ Rn×n there exists a positive-
definite matrix P ∈ Rn×n such that (11.7.8) is satisfied.

iii) There exists a positive-definite matrix R ∈ Rn×n and a positive-



matrix2 November 19, 2003

394 CHAPTER 11

definite matrix P ∈ Rn×n such that (11.7.8) is satisfied.

Proof. The result i) =⇒ ii) follows from Corollary 11.7.1. The im-
plications ii) =⇒ iii) and iii) =⇒ iv) are immediate. To prove iv) =⇒ i)
note that, since there exists a nonnegative-semidefinite matrix P satisfying
(11.7.8), it follows from Proposition 12.4.4 that (A,C) is completely un-
detectable. Thus, there exists a nonsingular matrix S ∈ Rn×n such that
A = S

[

A1 0
A21 A2

]

S−1 and C =
[

C1 0
]

S−1, where (C1, A1) is observable and

A1 is asymptotically stable. Furthermore, since (S−1AS,CS) is detectable,
it follows that A2 is also asymptotically stable. Consequently, A is asymp-
totically stable.

Next, we consider the case of Lyapunov stability.

Proposition 11.7.7. Let A ∈ Rn×n. Then, A is Lyapunov stable if
and only if there exists a nonnegative-semidefinite matrix R ∈ Rn×n and a
positive-definite matrix P ∈ Rn×n such that (11.7.8) is satisfied.

Proof. Suppose that A is Lyapunov stable. Then, there exists a
nonsingular matrix S ∈ Rn×n such that A = S

[

A1 0
0 A2

]

S−1, A1 ∈ Rn1×n1 ,

A2 ∈ Rn2×n2 , spec(A1) ⊂ R, and spec(A2) ⊂ OLHP. Let S1 ∈ Rn1×n1 be
such that A1 = S1J1S

−1
1 , where J1 ∈ Rn1×n1 is skew symmetric. Then, it

follows that AT
1P1 +P1A1 = 0, where P1 = S−T

1 S−1
1 is positive definite. Next,

let R2 ∈ Rn2×n2 be positive definite and let P2 ∈ Rn2×n2 be the positive-
definite solution to AT

2P2 + P2A2 +R2 = 0. Hence, (11.7.8) is satisfied with

P
4

= S−T
[

P1 0
0 P2

]

S−1 and R
4

= S−T
[

0 0
0 R2

]

S−1.

Conversely, suppose that there exist a nonnegative-semidefinite matrix
R ∈ Rn×n and a positive-definite matrix P ∈ Rn×n such that (11.7.8) is
satisfied. Let λ ∈ spec(A), and let x ∈ Rn be an eigenvector of A associated
with λ. It thus follows from (11.7.8) that 0 = x∗ATPx + x∗PAx + x∗Rx =
(λ + λ)x∗Px + x∗Rx. Therefore, Reλ = −x∗Rx/(2x∗Px), which shows that
spec(A) ⊂ CLHP. Now, let ω ∈ spec(A), and suppose that x ∈ Rn satisfies
(ωI −A)2x = 0. Then, (ωI −A)y = 0, where y = (ωI −A)x. Computing
0 = y∗

(

ATP + PA
)

y + y∗Ry yields y∗Ry = 0 and thus Ry = 0. Therefore,
(

ATP + PA
)

y = 0 and thus y∗Py = (AT + ωI)Py = 0. Since P is positive
definite, it follows that y = (ωI − A)x = 0. Therefore, N(ωI − A) =
N
[

(ωI −A)2
]

. Hence, it follows from Corollary TBD that ω is semisimple,

Corollary 11.7.8. Let A ∈ Rn×n. Then, the following statements
hold:

i) A is Lyapunov stable if and only if there exists a positive-definite
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matrix P ∈ Rn×n such that ATP + PA is nonpositive semidefinite.

ii) A is asymptotically stable if and only if there exists a positive-
definite matrix P ∈ Rn×n such that ATP + PA is negative definite.

11.8 Discrete-Time Stability Theory

The theory of difference equations is concerned with the behavior of
discrete-time dynamical systems of the form

xk+1 = f(xk), (11.8.1)

where f : Rn → Rn, k ∈ N, xk ∈ Rn, and x0 is the initial condition. The
solution xk ≡ xe is an equilibrium of (11.8.1) if xe = f(xe).

A linear discrete-time system has the form

xk+1 = Axk, (11.8.2)

where A ∈ Rn×n. For k ∈ N, xk is given by

xk = Akx0. (11.8.3)

The behavior of {xk}∞k=0 is determined by the stability of A. To study the
stability of discrete-time systems it is helpful to define the open unit disk
(OUD) and the closed unit disk (CUD) by

OUD
4

= {x ∈ C: |x| < 1} (11.8.4)

and
CUD

4

= {x ∈ C: |x| ≤ 1}. (11.8.5)

Definition 11.8.1. For A ∈ Fn×n, define the following classes of ma-
trices:

i) A is discrete-time Lyapunov stable if spec(A) ⊂ CUD and, if λ ∈
spec(A) and |λ| = 1, then λ is semisimple.

ii) A is discrete-time semistable if spec(A) ⊂ OUD ∪ {1} and, if 1 ∈
spec(A), then 1 is semisimple.

iii) A is discrete-time asymptotically stable if spec(A) ⊂ OUD.

Proposition 11.8.2. Let A ∈ Rn×n and consider the linear discrete-
time system (11.8.2). Then, the following statements are equivalent:

i) A is discrete-time Lyapunov stable.

ii) For every initial condition x0 ∈ Rn, xk is bounded for all k ∈ N.

iii) ‖Ak‖ is bounded for all k ∈ N, where ‖ · ‖ is a norm on Rn×n.
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iv) For every initial condition x0 ∈ Rn, Akx0 is bounded for all k ∈ N.

The following statements are equivalent:

v) A is discrete-time semistable.

vi) limk→∞Ak exists. In this case, limk→∞Ak = I − (I −A)#(I −A).

vii) For every initial condition x0 ∈ Rn, limk→∞ xk exists.

The following statements are equivalent:

viii) A is discrete-time asymptotically stable.

ix) sprad(A) < 1.

x) For every initial condition x0 ∈ Rn, limk→∞ xk = 0.

xi) For every initial condition x0 ∈ Rn, Akx0 → 0 as k →∞.
xii) Ak → 0 as k →∞.

The following definition concerns the discrete-time stability of a poly-
nomial.

Definition 11.8.3. Let p ∈ R[s]. Then, define the following termin-
ology:

i) p is discrete-time Lyapunov stable if roots(p) ⊂ CUD and, if λ is an
imaginary root of p, then mp(λ) = 1.

ii) p is discrete-time semistable if roots(p) ⊂ OUD ∪ {1} and, if 1 ∈
roots(p), then mp(1) = 1.

iii) p is discrete-time asymptotically stable if roots(p) ⊂ OUD.

Proposition 11.8.4. Let A ∈ Rn×n. Then, the following statements
hold:

i) A is discrete-time Lyapunov stable if and only if µA is discrete-time
Lyapunov stable.

ii) A is discrete-time semistable if and only if µA is discrete-time semi-
stable.

Furthermore, the following statements are equivalent:

i) A is discrete-time asymptotically stable.

ii) µA is discrete-time asymptotically stable.

iii) χA is discrete-time asymptotically stable.



matrix2 November 19, 2003

THE MATRIX EXPONENTIAL AND STABILITY THEORY 397

11.9 Facts on Matrix Exponential Formulas

Fact 11.9.1. Let A ∈ Rn×n. Then, the following statements hold:

i) If A2 = 0, then etA = I + tA.

ii) If A2 = I, then etA = (cosh t)I + (sinh t)A.

iii) If A2 = −I, then etA = (cos t)I + (sin t)A.

iv) If A2 = A, then etA = I −A+ etA.

v) If A2 = −A, then etA = I +A− e−tA.
vi) If rankA = 1 and trA = 0, then etA = I + tA.

vii) If rankA = 1 and trA 6= 0, then etA = I + e(tr A)t−1
trA A.

(Remark: See [458].)

Fact 11.9.2. Let A
4

=
[

0 In
In 0

]

. Then,

etA = (cosh t)I2n + (sinh t)A.

Furthermore,
etJ2n = (cos t)I2n + (sin t)J2n.

Fact 11.9.3. Let A ∈ Rn×n be skew symmetric. Then, {eθA: θ ∈
R} ⊆ SO(n) is a group. If, in addition, n = 2, then

{eθJ2 : θ ∈ R} = SO(2).

(Remark: Note that eθJ2 =
[

cos θ sin θ
− sin θ cos θ

]

. See Fact 3.6.14.)

Fact 11.9.4. Let A ∈ Rn×n, where

A
4

=





















0 1 0 0 · · · 0
0 0 2 0 · · · 0
0 0 0 3 · · · 0
...

...
...

. . .
. . .

...

0 0 0 0
. . . n−1

0 0 0 0 · · · 0





















.
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Then,

eA =

























(

0
0

) (

1
0

) (

2
0

) (

3
0

)

· · ·
(

n−1
0

)

0
(

1
1

) (

2
1

) (

3
1

)

· · ·
(

n−1
1

)

0 0
(

2
2

) (

3
2

)

· · ·
(

n−1
2

)

...
...

...
. . .

. . .
...

0 0 0 0
. . .

(

n−1
n−2

)

0 0 0 0 · · ·
(

n−1
n−1

)

























.

Furthermore, if k ≥ n, then

k
∑

i=1

in−1 =
[

1n−1 2n−1 · · · nn−1
]

e−A







(

k
1

)

...
(

k
n

)






.

(Proof: See [35].)

Fact 11.9.5. Let A ∈ F3×3. If spec(A) = {λ}, then

etA = eλt
[

I + t(A− λI) + 1
2 t

2(A− λI)2
]

.

If mspec(A) = {λ, λ, µ}m, where µ 6= λ, then

etA = eλt[I + t(A− λI)] +

[

eµt − eλt
(µ− λ)2

− teλt

µ− λ

]

(A− λI)2.

If spec(A) = {λ, µ, ν}, then

etA =
eλt

(λ− µ)(λ− ν)(A− µI)(A− νI) +
eµt

(µ− λ)(µ− ν)(A− λI)(A− νI)

+
eνt

(ν − λ)(ν − µ)
(A− λI)(A− µI).

(Proof: See [32].)

Fact 11.9.6. Let z1, z2, z3 ∈ R, and define

A
4

=





0 −z3 z2
z3 0 −z1
−z2 z1 0



.

Then,

eA = I +
sin θ

θ
A+

1− cos θ

θ2
A2

= I +
sin θ

θ
A+ 1

2

[

sin(θ/2)

θ/2

]2

A2

= (cos θ)I +
sin θ

θ
A+

1− cos θ

θ2
zzT,
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where z
4

=
[

z1 z2 z3
]T

and θ
4

= ‖z‖2. (Remark: For x ∈ R3, eAx is

the rotation of x about the vector
[

z1 z2 z3
]T

through the angle θ.
See [89]. See Fact 11.9.8.) (Proof: The Cayley-Hamilton theorem implies
A3 + θ2A = 0. Then, every term Ak in the expansion of eA can be expressed
in terms of A or A2. Finally, θ2I +A2 = zzT.)

Fact 11.9.7. Let A ∈ F3×3 be unitary and assume there exists θ ∈ R
such that trA = 1 + 2 cos θ and |θ| < π. Then,

e
θ

2 sin θ
(A−AT) = A.

(Proof: See [307, p. 364].)

Fact 11.9.8. Let x, y ∈ Rn satisfy xTy = 0, let θ ∈ [0, 2π], and define
A ∈ Fn×n by

A
4

= I + (sin θ)
(

xyT − yxT
)

− (1− cos θ)
(

xxT + yyT
)

.

Then, A is orthogonal and detA = 1. Now, let n = 3 and z
4

= y × x. Then,

A = (cos θ)I + (sin θ)C(z) + (1− cos θ)zzT,

where

C(z)
4

=





0 −z(3) z(2)
z(3) 0 −z(1)
−z(2) z(1) 0



.

If, in addition, θ 6= π, then

A = (I −B)(I +B)−1,

where
B

4

= − tan(θ/2)C(z).

(Remark: See Fact 11.9.6.) (Problem: Represent A as a matrix exponential.)

Fact 11.9.9. Let x, y ∈ R3 be nonzero. Then, there exists a skew-
symmetric matrix A ∈ R3×3 such that y = eAx if and only if xTx = yTy. If
x 6= −y, then one such matrix is A = φC(z), where

z
4

= ‖x× y‖−1
2 x× y,

C(z)
4

=





0 −z(3) z(2)
z(3) 0 −z(1)
−z(2) z(1) 0



,

and
φ

4

= cos−1
(

xTy
)

.



matrix2 November 19, 2003

400 CHAPTER 11

If x = −y, then one such matrix is A = πC(z), where z
4

= ν × y and
ν ∈ {y}⊥ satisfies νTν = 1. (Remark: Since det eA = etrA, it follows that
vectors in R3 having the same Euclidean length are always related by a
proper rotation. See Fact 3.6.17 and Fact 3.7.3.) (Problem: Extend this
result to Rn. See [58].)

Fact 11.9.10. Let A ∈ R4×4 be skew symmetric with mspec(A) =
{ω,−ω, µ,−µ}m. If ω 6= µ, then

eA = a3A
3 + a2A

2 + a1A+ a0I,

where
a3 =

(

ω2− µ2
)−1
(

1
µ sinµ− 1

ω sinω
)

,

a2 =
(

ω2− µ2
)−1

(cosµ− cosω),

a1 =
(

ω2− µ2
)−1
(

ω2

µ sinµ− µ2

ω sinω
)

,

a0 =
(

ω2− µ2
)−1(

ω2cosµ− µ2cosω
)

.

If ω = µ, then
eA = (cosω)I +

sinω

ω
A.

(Proof: See [250, p. 18] and [459].) (Remark: There are typographical errors
in [250, p. 18] and [459].)

Fact 11.9.11. Let C ∈ Rn×n be nonsingular and let k ∈ P. Then,
there exists B ∈ Rn×n such that C2k = eB. (Proof: Use Proposition 11.4.4
with A = C2 and note that every negative eigenvalue −α < 0 of C2 arises
as the square of complex conjugate eigenvalues ±√α of C.)

11.10 Facts on Matrix Exponential Identities
Involving One Matrix

Fact 11.10.1. Let A ∈ Fn×n, and assume that A is (lower triangular,
upper triangular). Then, so is eA. If, in addition, A is Toeplitz, then so is
eA. (Remark: See Fact 3.12.7.)

Fact 11.10.2. Let A ∈ Fn×n. Then,

sprad
(

eA
)

= espabs(A).

Fact 11.10.3. Let A ∈ Rn×n. Then, the matrix differential equation

Ẋ(t) = AX(t),
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where t ≥ 0 and X(t) ∈ Rn×n, has the solution

X(t) = etAX(0).

Fact 11.10.4. Let A: [0, T ] → Rn×n be continuous and assume that
the matrix differential equation

Ẋ(t) = A(t)X(t),

has a solution X(t) ∈ Rn×n. Then,

detX(t) = e
∫ t

0
trA(τ) dτdetX(0).

(Remark: This result is Jacobi’s identity.)

Fact 11.10.5. Let A ∈ Rn×n, let λ ∈ spec(A), and let v ∈ Cn be an
eigenvector of A associated with λ. Then, for all t ≥ 0,

x(t)
4

= Re
(

eλtv
)

satisfies ẋ(t) = Ax(t).

Fact 11.10.6. Let S: [t0, t1] → Rn×n be differentiable. Then, for all
t ∈ [t0, t1],

d

dt
S2(t) = Ṡ(t)S(t) + S(t)Ṡ(t).

Let S1: [t0, t1] → Rn×m and S2: [t0, t1] → Rm×l be differentiable. Then,
for all t ∈ [t0, t1],

d

dt
S1(t)S2(t) = Ṡ1(t)S2(t) + S1(t)Ṡ2(t).

Fact 11.10.7. Let A ∈ Fn×n, and let A1 = 1
2(A + A∗) and A2 =

1
2(A−A∗). Then, A1A2 = A2A1 if and only if A is normal. In this case, eA1eA2

is the polar decomposition of eA. (Remark: See Fact 3.4.22.) (Problem:
Obtain the polar decomposition of eA when A is not normal.)

Fact 11.10.8. Let A ∈ Fn×m, and assume that rankA = m. Then,

A+ =

∞
∫

0

e−tA
∗AA∗ dt.

Fact 11.10.9. Let A ∈ Fn×n, and assume that A is nonsingular. Then,

A−1 =

∞
∫

0

e−tA
∗A dtA∗.
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Fact 11.10.10. Let A ∈ Fn×n and let k
4

= indA. Then,

AD =

∞
∫

0

e−tA
kA(2k+1)∗Ak+1

dtAkA(2k+1)∗Ak.

(Proof: See [237].)

Fact 11.10.11. Let A ∈ Fn×n and assume that indA = 1. Then,

A# =

∞
∫

0

e−tAA
3∗A2

dtAA3∗A.

(Proof: See Fact 11.10.10.)

Fact 11.10.12. Let A ∈ Fn×n and let k
4

= indA. Then,

t
∫

0

eτA dτ = AD
(

etA − I
)

+
(

I −AAD
)

(

tI + 1
2! t

2A+ · · ·+ 1
k! t

kAk−1
)

.

If, in particular, A is group invertible, then

t
∫

0

eτA dτ = A#
(

etA − I
)

+
(

I −AA#
)

t.

Fact 11.10.13. Let A ∈ Fn×n, let mspec(A) = {λ1, . . . , λr, 0, . . . , 0}m,
where λ1, . . . , λr are nonzero, and let t > 0. Then,

det

t
∫

0

eτA dτ = tn−r
r
∏

i=1

λ−1
i

(

eλit − 1
)

.

Hence, det
∫ t
0 e

τA dτ 6= 0 if and only if 2πk/t 6∈ spec(A) for all k ∈ P.

Finally, det
(

etA − I
)

6= 0 if and only if detA 6= 0 and det
∫ t
0 e

τA dτ 6= 0.

Fact 11.10.14. Let A ∈ Fn×n, and assume that eA is orthogonal.
Then, either A is skew symmetric or two eigenvalues of A differ by a nonzero
integer multiple of 2π. (Remark: See [620].)
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11.11 Facts on Matrix Exponential Identities
Involving Two or More Matrices

Fact 11.11.1. Let A ∈ Fn×n, B ∈ Fn×m, and C ∈ Fm×m. Then,

e
t
[

A B
0 C

]

=

[

etA
∫ t
0 e

(t−τ)ABeτC dτ

0 etC

]

.

Furthermore,
t
∫

0

eτA dτ =
[

I 0
]

e
t
[

A I
0 0

]
[

0
I

]

.

(Remark: The result can be extended to block-k × k matrices. See [567].
For an application, see [445].)

Fact 11.11.2. Let A,B ∈ Fn×n, assume that eAeB = eBeA, and assume
that either A and B are Hermitian or all of the entries of A and B are
algebraic numbers (roots of polynomials with rational coefficients). Then,
AB = BA. (Proof. See [261, pp. 88, 89, 270–272] and [594].) (Remark:

The matrices A
4

=
[

0 1
0 2π

]

and B
4

=
[

2π 0
0 −2π

]

do not commute but satisfy

eA = eB = eA+B = I.)

Fact 11.11.3. Let A,B ∈ Rn×n. Then,

d

dt
eA+tB =

1
∫

0

eτ(A+tB)Be(1−τ)(A+tB) dτ.

Hence,

Dexp
(

etA;B
)

=
d

dt
eA+tB

∣

∣

∣

∣

∣

t=0

=

1
∫

0

eτABe(1−τ)A dτ.

Furthermore,
d

dt
tr eA+tB = tr

(

eA+tBB
)

.

Hence,
d

dt
tr eA+tB

∣

∣

∣

∣

t=0

= tr
(

eAB
)

.

(Proof: See [74, p. 175] and [358,404,433].)

Fact 11.11.4. Let A,B ∈ Rn×n. Then,

d

dt
eA+tB

∣

∣

∣

∣

t=0

=
∞
∑

k=0

1
(k+1)!

adkA(B)eA.
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(Proof: See [45, p. 49].) (Remark: See Fact 2.14.5.)

Fact 11.11.5. Let A,B ∈ Fn×n, and assume that eA = eB. Then, the
following statements hold:

i) If λ − µ 6= 2kπ for all λ ∈ spec(A), µ ∈ spec(B), and k ∈ Z, then
[A,B] = 0.

ii) If A is normal and σmax(A) < π, then [A,B] = 0.

iii) If A is normal and σmax(A) = π, then [A2, B] = 0.

(Proof: See [499].) (Remark: If [A,B] = 0, then [A2, B] = 0.)

Fact 11.11.6. Let A,B ∈ Fn×n be skew Hermitian. Then, etAetB is
unitary and there exists a skew-Hermitian matrix C(t) such that etAetB =
eC(t). (Problem: Does (11.4.2) converge in this case? See [190].)

Fact 11.11.7. Let A,B ∈ Fn×n be Hermitian. Then,

lim
p→0

(

e
p

2
AepBe

p

2
A
)1/p

= eA+B.

(Proof: See [26].)

Fact 11.11.8. Let A,B ∈ Fn×n be Hermitian. Then

lim
p→∞

[

1
2

(

epA + epB
)]1/p

= e
1

2
(A+B).

(Proof: See [90].)

Fact 11.11.9. Let A,B ∈ Fn×n be Hermitian, let q, p > 0, where
q ≤ p, and let ‖ · ‖ be a unitarily invariant norm on Fn×n. Then,

∥

∥

∥

∥

(

e
q

2
AeqBe

q

2
A
)1/q
∥

∥

∥

∥

≤
∥

∥

∥

∥

(

e
p

2
AepBe

p

2
A
)1/p
∥

∥

∥

∥

.

(Proof: See [26].)

Fact 11.11.10. Let A,B ∈ Fn×n. Then,

lim
k→∞

(

e
1

k
Ae

1

k
Be−

1

k
Ae−

1

k
B
)k2

= e[A,B].

Fact 11.11.11. Let A ∈ Fn×m, X ∈ Fm×l, and B ∈ Fl×n. Then,

d

dX
tr eAXB = BeAXBA.
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Fact 11.11.12. Let A,B ∈ Fn×n. Then,

d

dt
etAetBe−tAe−tB

∣

∣

∣

∣

t=0

= 0

and
d

dt
e
√
tAe

√
tBe−

√
tAe−

√
tB

∣

∣

∣

∣

t=0

= AB −BA.

Fact 11.11.13. Let A,B,C ∈ Fn×n, assume that there exists β ∈ F
such that [A,B] = βB + C, and assume that [A,C] = [B,C] = 0. Then,

eA+B = eAeφ(β)Beψ(β)C ,

where

φ(β)
4

=

{

1
β

(

1− e−β
)

, β 6= 0,

1, β = 0,

and

ψ(β)
4

=

{

1
β2

(

1− β − e−β
)

, β 6= 0,

−1
2 , β = 0.

(Proof: See [228,540].)

Fact 11.11.14. Let A,B ∈ Fn×n and assume there exist α, β ∈ F such
that [A,B] = αA+ βB. Then,

et(A+B) = eφ(t)Aeψ(t)B,

where

φ(t)
4

=



















t, α = β = 0,

α−1log(1 + αt), α = β 6= 0, 1 + αt > 0,
∫ t
0

α−β
αe(α−β)τ−β dτ, α 6= β,

and

ψ(t)
4

=

t
∫

0

e−βφ(τ) dτ.

(Proof: See [541].)

Fact 11.11.15. Let A,B ∈ Fn×n, and assume that there exists nonzero
β ∈ F such that [A,B] = αB. Then, for all t > 0,

et(A+B) = etAe
1−e−αt

α
B.

(Proof: Apply Fact 11.11.13 with [tA, tB] = αt(tB) and β = αt.)
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Fact 11.11.16. Let A,B ∈ Fn×n and assume that [[A,B], A] = 0 and
[[A,B], B] = 0. Then,

eAeB = eA+B+ 1

2
[A,B] = eA+Be

1

2
[A,B]

and
eBe2AeB = e2A+2B.

(Proof: See [600].)

Fact 11.11.17. Let A,B ∈ Fn×n, and assume that [A,B] = B2. Then,

eA+B = eA(I +B).

Fact 11.11.18. Let A,B ∈ Fn×n. Then, for all t ∈ [0,∞),

et(A+B) = etAetB +
∞
∑

k=2

Ckt
k,

where, for all k ∈ N,

Ck+1
4

= 1
k+1 ([A+B]Ck + [B,Dk]), C0

4

= 0,

Dk+1
4

= 1
k+1 (ADk +DkB) , D0

4

= I.

(Proof: See [481].)

Fact 11.11.19. Let A ∈ Fn×n be positive definite and let B ∈ Fn×n

be nonnegative semidefinite. Then,

A+B ≤ A1/2eA
−1/2BA−1/2

A1/2.

Hence,
det(A+B)

detA
≤ etrA−1B.

Furthermore, for each inequality, equality holds if and only if B = 0. (Proof:
For nonnegative semi-definite A it follows that eA ≤ I +A.)

Fact 11.11.20. Let A,B ∈ Fn×n be Hermitian. Then,

I ◦ (A+B) ≤ log
(

eA ◦ eB
)

.

(Proof: See [23,625].) (Remark: See Fact 8.15.21.)

Fact 11.11.21. Let A,B ∈ Fn×n be Hermitian. Then,
(

tr eA
)

etr(e
AB)/tr eA ≤ tr eA+B.

(Proof: See [69].) (Remark: This inequality is equivalent to the thermody-
namic inequality. See Fact 11.11.22.)
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Fact 11.11.22. Let A,B ∈ Fn×n, and assume that A is positive defi-
nite, trA = 1, and B is Hermitian. Then,

trAB ≤ tr(A logA) + log tr eB.

Furthermore, equality holds if and only if

A =
(

tr eB
)−1
eB.

(Proof: See [69].) (Remark: This result is the thermodynamic inequality.
Equivalent forms are given by Fact 8.12.19 and Fact 11.11.21.)

Fact 11.11.23. Let A,B ∈ Fn×n be skew Hermitian. Then, there exist
unitary matrices S1, S2 ∈ Fn×n such that

eAeB = eS1AS
−1
1 +S2BS

−1
2 .

(Proof: See [515,547].)

Fact 11.11.24. Let A,B ∈ Fn×n be Hermitian. Then, there exist
unitary matrices S1, S2 ∈ Fn×n such that

e
1

2
AeBe

1

2
A = eS1AS

−1
1 +S2BS

−1
2 .

(Proof: See [514, 515, 547].) (Problem: Determine the relationship between
this result and Fact 11.11.23.)

Fact 11.11.25. Let B ∈ Fn×n be Hermitian. Then, φ: P
n → [0,∞)

defined by
φ(A)

4

= − tr eB+logA

is convex. (Proof: See [372,381].)

Fact 11.11.26. Let A,B,C ∈ Fn×n be positive definite. Then,

tr elogA−logB+logC ≤ tr

∞
∫

0

A(B + xI)−1C(B + xI)−1 dx.

(Proof: See [372, 381].) (Remark: − logB is correct.) (Remark: tr eA+B+C

≤ |tr eAeBeC | is not generally true.)

Fact 11.11.27. Let A ∈ Fn×n and B ∈ Fm×m. Then,

tr eA⊕B =
(

tr eA
)(

tr eB
)

.

Fact 11.11.28. Let A ∈ Fn×n, B ∈ Fm×m, and C ∈ Fl×l. Then,

eA⊕B⊕C = eA⊗ eB⊗ eC.
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Fact 11.11.29. Let A ∈ Fn×n, B ∈ Fm×m, C ∈ Fk×k, and D ∈ Fl×l.
Then,

tr eA⊗I⊗B⊗I+I⊗C⊗I⊗C = tr eA⊗Btr eC⊗D.

(Proof: By Fact 7.4.29, a similarity transformation involving the Kronecker
permutation matrix can be used to reorder the inner two terms. See [519].)

11.12 Facts on Eigenvalues, Singular Values, and
Norms

Fact 11.12.1. Let A ∈ Fn×n. Then,

d

dt
σmax

(

eAt
)

∣

∣

∣

∣

t=0+

= 1
2λmax(A+A∗).

Hence, σmax

(

etA
)

is decreasing for all sufficiently small t > 0 if and only if
A is dissipative. (Proof: See [585].)

Fact 11.12.2. Let A ∈ Rn×n. Then, for all t ≥ 0,

d

dt
‖etA‖2F = tr etA(A+A∗)etA

∗

.

Hence, if A is dissipative, then ‖etA‖F is decreasing for all t > 0. (Proof:
See [585].)

Fact 11.12.3. Let A ∈ Fn×n. Then,

∣

∣tr e2A
∣

∣ ≤ tr eAeA
∗ ≤ tr eA+A∗ ≤

[

ntr e2(A+A∗)
]1/2
≤ n

2 + 1
2tr e2(A+A∗).

In addition, tr eAeA
∗

= tr eA+A∗
if and only if A is normal. (Proof: See

[83], [289, p. 515], and [513].) (Remark: tr eAeA
∗ ≤ tr eA+A∗

is Bernstein’s
inequality. See [24].)

Fact 11.12.4. Let A ∈ Fn×n. Then, for all k = 1, . . . , n,

k
∏

i=1

σi
(

eA
)

≤
k
∏

i=1

λi

(

e
1

2
(A+A∗)

)

=
k
∏

i=1

eλi( 1

2
(A+A∗)) ≤

k
∏

i=1

eσi(A).

Furthermore, for all k = 1, . . . , n,

k
∑

i=1

σi
(

eA
)

≤
k
∑

i=1

λi

(

e
1

2
(A+A∗)

)

=
k
∑

i=1

eλi( 1

2
(A+A∗)) ≤

k
∑

i=1

eσi(A).

In particular,

σmax

(

eA
)

≤ λmax

(

e
1

2
(A+A∗)

)

= e
1

2
λmax(A+A∗) ≤ eσmax(A)
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or, equivalently,

λmax

(

eAeA
∗) ≤ λmax

(

eA+A∗)

= eλmax(A+A∗) ≤ e2σmax(A).

Furthermore,
∣

∣det eA
∣

∣ =
∣

∣etrA
∣

∣ ≤ e|trA| ≤ etr 〈A〉

and

tr
〈

eA
〉

≤
n
∑

i=1

eσi(A).

(Proof: See [516], Fact 8.14.2, Fact 8.14.3, and Fact 8.16.5.)

Fact 11.12.5. Let A ∈ Fn×n, and let ‖·‖ be a unitarily invariant norm.
Then,

∥

∥eAeA
∗∥
∥ ≤

∥

∥eA+A∗∥
∥ .

In particular,
λmax

(

eAeA
∗) ≤ λmax

(

eA+A∗)

and
tr eAeA

∗ ≤ tr eA+A∗

.

(Proof: See [150].)

Fact 11.12.6. Let A,B ∈ Fn×n. Then,
∣

∣tr eA+B
∣

∣ ≤ tr e
1

2
(A+B)e

1

2
(A+B)∗≤ tr e

1

2
(A+A∗+B+B∗) ≤ tr e

1

2
(A+A∗)e

1

2
(B+B∗)

≤
(

tr eA+A∗)1/2(
tr eB+B∗)1/2 ≤ 1

2tr
(

eA+A∗

+ eB+B∗)

and

tr eAeB

1
2tr
(

e2A + e2B
)

}

≤ 1
2tr
(

eAeA
∗

+ eBeB
∗) ≤ 1

2tr
(

eA+A∗

+ eB+B∗)

.

(Proof: See [83,151,454] and [289, p. 514].)

Fact 11.12.7. Let A,B ∈ Fn×n be Hermitian. If ‖ · ‖ is a unitarily
invariant norm on Fn×n, then

∥

∥eA+B
∥

∥ ≤
∥

∥

∥
e

1

2
AeBe

1

2
A
∥

∥

∥
≤
∥

∥eAeB
∥

∥ .

Furthermore, for all k = 1, . . . , n,

k
∏

i=1

λi
(

eA+B
)

≤
k
∏

i=1

λi
(

eAeB
)

≤
k
∏

i=1

σi
(

eAeB
)

with equality for k = n, that is,
n
∏

i=1

λi
(

eA+B
)

=
n
∏

i=1

λi
(

eAeB
)

=
n
∏

i=1

σi
(

eAeB
)

= det
(

eAeB
)

.
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Furthermore, for all k = 1, . . . , n,

k
∑

i=1

λi
(

eA+B
)

≤
k
∑

i=1

λi
(

eAeB
)

≤
k
∑

i=1

σi
(

eAeB
)

.

In particular,

λmax

(

eA+B
)

≤ λmax

(

eAeB
)

≤ σmax

(

eAeB
)

and
tr eA+B ≤ tr eAeB ≤ tr

〈

eAeB
〉

.

(Proof: See [26], Fact 5.9.13, and Fact 8.16.5.) (Remark: tr eA+B ≤ tr eAeB

is the Golden-Thompson inequality.)

Fact 11.12.8. Let A,B ∈ Fn×n be Hermitian and let ‖·‖ be a unitarily
invariant norm. Then,

∥

∥eA+B
∥

∥ ≤
∥

∥

∥
e

1

2
AeBe

1

2
A
∥

∥

∥
≤
∥

∥eAeB
∥

∥ .

(Remark: The left-hand inequality is Segal’s inequality. See [24].)

Fact 11.12.9. Let ‖ · ‖ be a submultiplicative norm on Fn×n, and let
A,B ∈ Fn×n. Then, for all t ≥ 0,

∥

∥etA − etB
∥

∥ ≤ e‖A‖t
(

e‖A−B‖t − 1
)

.

Fact 11.12.10. Let A,B ∈ Rn×n, and assume that A is normal. Then,
for all t ≥ 0,

σmax

(

etA − etB
)

≤ σmax

(

etA
)

[

eσmax(A−B)t − 1
]

.

(Proof: See [594].)

Fact 11.12.11. Let A ∈ Fn×n, and define fi: R 7→ R by fi(t)
4

=
log σi

(

etA
)

. Then, A is normal if and only if, for all i = 1, . . . , n, fi is convex.
(Proof: See [43].)

11.13 Facts on Stable Polynomials

Fact 11.13.1. Let p ∈ R[s] be asymptotically stable and let p(s) =
sn + βn−1s

n−1 + · · ·+ β1s+ β0. Then, βi > 0 for all i = 0, . . . , n−1.

Fact 11.13.2. Let p ∈ R[s], where p(s) = sn + an−1s
n−1 + · · ·+ a0. If

p is asymptotically stable, then a0, . . . , an−1 are positive. Now, assume that
a0, . . . , an−1 are positive. Then, the following statements hold:
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i) If n = 1 or n = 2, then p is asymptotically stable.

ii) If n = 3, then p is asymptotically stable if and only if

a0 < a1a2.

iii) If n = 4, then p is asymptotically stable if and only if

a2
1 + a0a

2
3 < a1a2a3.

iv) If n = 5, then p is asymptotically stable if and only if

a2 < a3a4,

a2
2 + a1a

2
4 < a0a4 + a2a3a4,

a2
0 + a1a

2
2 + a2

1a
2
4 + a0a

2
3a4 < a0a2a3 + 2a0a1a4 + a1a2a3a4.

(Remark: These results are special cases of the Routh criterion, which pro-
vides stability criteria for polynomials of arbitrary degree n. See [135].)

Fact 11.13.3. Let p ∈ R[s] be monic and define q(s)
4

= snp(1/s), where

n
4

= deg p. Then, p is asymptotically stable if and only if q is asymptotically
stable. (Remark: See Fact 4.8.1 and Fact 11.13.4.)

Fact 11.13.4. Let p ∈ R[s] be monic and assume that p is semistable.

Then, q(s)
4

= p(s)/s and q̂(s)
4

= snp(1/s) are asymptotically stable. (Re-
mark: See Fact 4.8.1 and Fact 11.13.3.)

Fact 11.13.5. Let p ∈ R[s] be asymptotically stable and let p(s) =
βns

n+βn−1s
n−1 + · · ·+β1s+β0, where βn > 0. Then, for all i = 1, . . . , n−2,

βi−1βi+2 < βiβi+1.

(Remark: This result is a necessary condition for asymptotic stability, which
can be used to show that a given polynomial with positive coefficients is
unstable.) (Remark: This result is due to Xie. See [621].)

Fact 11.13.6. Let n ∈ P be even, let m
4

= n/2, let p ∈ R[s], where
p(s) = βns

n + βn−1s
n−1 + · · · + β1s + β0 and βn > 0, and assume that p is

asymptotically stable. Then, for all i = 1, . . . ,m−1,
(

m
i

)

β
(m−i)/m
0 βi/mn ≤ β2i.

(Remark: This result is a necessary condition for asymptotic stability, which
can be used to show that a given polynomial with positive coefficients is
unstable.) (Remark: This result is due to Borobia and Dormido. See [621]
for extensions to polynomials of odd degree.)

Fact 11.13.7. Let p, q ∈ R[s], where p(s) = αns
n + αn−1s

n−1 + · · · +



matrix2 November 19, 2003

412 CHAPTER 11

α1s+α0 and q(s) = βms
m+βm−1s

m−1+· · ·+β1s+β0. If p and q are (Lyapunov,

asymptotically) stable, then r(s)
4

= αlβls
l+αl−1βl−1s

l−1+· · ·+α1β1s+α0β0,

where l
4

= min{m,n}, is (Lyapunov, asymptotically) stable. (Proof: See
[224].) (Remark: The polynomial r is the Schur product of p and q. See
[39,311].)

Fact 11.13.8. Let A ∈ Rn×n be diagonalizable over R. Then, χA has
all positive coefficients if and only if χA (equivalently, A) is asymptotically
stable. (Proof: Sufficiency follows from Fact 11.13.1. For necessity, note
that χA has only real roots and that χA(λ) > 0 for all λ ≥ 0. Hence,
roots(χA) ⊂ (−∞, 0).)

Fact 11.13.9. Let A ∈ Rn×n. Then, χA⊕A has all positive coefficients
if and only if χA⊕A (equivalently, A) is asymptotically stable. (Proof: If A
is not asymptotically stable, then Fact 11.14.28 implies that A⊕A has a
positive eigenvalue λ. Since χA⊕A(λ) = 0, it follows that χA⊕A cannot have
all positive coefficients. See [217, Theorem 5].)

11.14 Facts on Stable Matrices

Fact 11.14.1. Let A ∈ Fn×n be semistable. Then, A is Lyapunov
stable.

Fact 11.14.2. Let A ∈ Fn×n be Lyapunov stable. Then, A is group
invertible.

Fact 11.14.3. Let A ∈ Fn×n be semistable. Then, A is group invert-
ible.

Fact 11.14.4. Let A ∈ Fn×n be semistable. Then,

lim
t→∞

etA = I −AA#

and thus

lim
t→∞

1
t

t
∫

0

eτA dτ = I −AA#.

(Remark: See Fact 11.14.1, Fact 11.14.2, and Fact 10.8.3.)

Fact 11.14.5. Let A ∈ Rn×n be Lyapunov stable. Then,

lim
t→∞

1
t

t
∫

0

eτA dτ = I −AA#.
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(Remark: See Fact 11.14.2.)

Fact 11.14.6. Let A,B ∈ Fn×n. Then, limα→∞ eA+αB exists if and
only if B is semistable. In this case,

lim
α→∞

eA+αB = e(I−BB
#)A
(

I −BB#
)

=
(

I −BB#
)

eA(I−BB#).

(Proof: See [125].)

Fact 11.14.7. Let A ∈ Rn×n. Then, etA is nonnegative for all t ≥ 0 if
and only if

A(i,j) ≥ 0

for all i, j = 1, . . . , n such that i 6= j. In this case, A is asymptotically
stable if and only if, for all i = 1, . . . , n, the sign of the ith leading principal
subdeterminant of A is (−1)i. (Proof: See [88] and [223, p. 74].) (Remark:
A is essentially nonnegative.)

Fact 11.14.8. Let ‖ · ‖ be a submultiplicative norm on Fn×n, let A ∈
Fn×n be asymptotically stable, and let β > spabs(A). Then, there exists
γ > 0 such that, for all t ≥ 0,

∥

∥etA
∥

∥ ≤ γeβt.
(Remark: See [229, pp. 201–206] and [320].)

Fact 11.14.9. let A ∈ Fn×n be asymptotically stable, let R ∈ Fn×n

be positive definite, and let P ∈ Fn×n be the positive-definite solution of
A∗P + PA+R = 0. Then,

σmax

(

etA
)

≤
√

σmax(P )

σmin(P )
e−tλmin(RP−1)/2

and
‖etA‖F ≤

√

‖P‖F‖P−1‖Fe−tλmin(RP−1)/2.

If, in addition, A+A∗ is negative definite, then

‖etA‖F ≤ e−tλmin(−A−A∗)/2.

(Proof: See [390].)

Fact 11.14.10. let A ∈ Rn×n be asymptotically stable, let R ∈ Rn×n

be positive definite, and let P ∈ Rn×n be the positive-definite solution of
ATP + PA + R = 0. Furthermore, define the vector norm ‖x‖′ 4

=
√
xTPx

on Rn, let ‖ · ‖ denote the induced norm on Rn×n, and let µ(·) denote the
corresponding logarithmic norm. Then,

µ(A) = −λmin

(

RP−1
)

/2.
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Consequently,
‖etA‖ ≤ e−tλmin(RP−1)/2.

(Proof: See [300] and use xiii) of Fact 9.10.8.) (Remark: See Fact 9.10.8 for
the definition and properties of the logarithmic derivative.)

Fact 11.14.11. Let A ∈ Fn×n. Then, A is similar to a skew-Hermitian
matrix if and only if there exists a positive-definite matrix P ∈ Fn×n such
that A∗P + PA = 0.

Fact 11.14.12. Let A ∈ Rn×n. Then, A and A2 are asymptotically
stable if and only if, for all λ = reθ ∈ spec(A), where θ ∈ [0, 2π], it follows
that θ ∈

(

π
2 ,

3π
4

)

∪
(

5π
4 ,

3π
2

)

.

Fact 11.14.13. Let A ∈ Rn×n. Then, A is group invertible and 2πk /∈
spec(A) for all k ∈ P if and only if

AA# =
(

eA − I
)(

eA − I
)#
.

In particular, if A is semistable, then this identity holds. (Proof: Use ii) of
Fact 11.15.16 and ix) of Proposition 11.6.2.)

Fact 11.14.14. Let A ∈ Fn×n. Then, A is asymptotically stable if and
only if A−1 is asymptotically stable. Hence, etA → 0 as t→∞ if and only if
etA

−1 → 0 as t→∞.

Fact 11.14.15. Let A,B ∈ Rn×n, assume A is asymptotically stable,
and assume that σmax(B⊕B) < σmin(A⊕A). Then, A+B is asymptotically
stable. (Proof: Since A ⊕ A is nonsingular, Fact 9.12.12 implies that A⊕
A + α(B ⊕ B) = (A + αB) ⊕ (A + αB) is nonsingular for all 0 ≤ α ≤
1. Now, suppose that A + B is not asymptotically stable. Then, there
exists α0 ∈ (0, 1] such that A + α0B has an imaginary eigenvalue, and
thus (A + α0B)⊕ (A + α0B) = A⊕A + α0(B ⊕B) is singular, which is a
contradiction.) (Remark: This result provides a suboptimal solution to a
nearness problem. See [278, Section 7] and Fact 9.12.12.)

Fact 11.14.16. Let A ∈ Cn×n be asymptotically, let ‖ · ‖ denote either
σmax(·) or ‖ · ‖F, and define

β(A)
4

= {‖B‖: B ∈ Cn×n and A+B is not asymptotically stable}.
Then,

1
2σmin(A⊗A) ≤ β(A) = min

γ∈R

σmin(A+ γI)

≤ min{spabs(A), σmin(A), 1
2σmax(A+A∗)}.

Furthermore, let R ∈ Fn×n be positive definite, and let P ∈ Fn×n be the
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positive-definite solution of A∗P + PA+R = 0. Then,

1
2σmin(R)/‖P‖ ≤ β(A).

If, in addition, A+A∗ is negative definite, then

−1
2λmin(A+A∗) ≤ β(A).

(Proof: See [278, 568].) (Remark: The analogous problem for real matrices
and real perturbations is discussed in [471].)

Fact 11.14.17. Let A ∈ Fn×n be asymptotically stable, let V ∈ Fn×n

be positive definite, and let Q ∈ P
n satisfy AQ + QA∗ + V = 0. Then, for

all t ≥ 0,
etAetA

∗≤ κ(Q)tr e−tS
−1VS−∗≤ κ(Q)e−(t/σmax(Q))V ,

where S ∈ Fn×n satisfies Q = SS∗ and κ(Q)
4

= σmax(Q)/σmin(Q). (Proof:
See [620].) (Remark: Fact 11.12.3 yields etAetA

∗≤ et(A+A∗). However, A+A∗

may not be asymptotically stable. See [84].)

Fact 11.14.18. Let A ∈ Rn×n, and assume that every entry of A ∈
Rn×n is positive. Then, A is unstable. (Proof: See Fact 4.11.1.)

Fact 11.14.19. Let A ∈ Rn×n. Then, A is asymptotically stable if
and only if there exist B,C ∈ Rn×n such that B is positive definite, C is
dissipative, and A = BC. (Proof: A = P−1

(

−ATP −R
)

.) (Remark: To

reverse the order of factors, consider AT.)

Fact 11.14.20. Let A ∈ Fn×n. Then, the following statements hold:

i) All of the real eigenvalues of A are positive if and only if A is the
product of two dissipative matrices.

ii) A is nonsingular and A 6= αI for all α < 0 if and only if A is the
product of two asymptotically stable matrices.

iii) A is nonsingular if and only if A is the product of three or fewer
asymptotically stable matrices.

(Proof: See [56,618].)

Fact 11.14.21. Let p ∈ R[s], where p(s) = sn+βn−1s
n−1+· · ·+β1s+β0
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and β0, . . . , βn > 0. Furthermore, define A ∈ Rn×n by

A
4

=























βn−1 βn−3 βn−5 βn−7 · · · · · · 0
1 βn−2 βn−4 βn−6 · · · · · · 0
0 βn−1 βn−3 βn−5 · · · · · · 0
0 1 βn−2 βn−4 · · · · · · 0
...

...
...

...
. . .

...
...

0 0 0 · · · · · · β1 0
0 0 0 · · · · · · β2 β0























.

If p is Lyapunov stable, then every subdeterminant of A is nonnegative.
(Remark: A is totally nonnegative.) Furthermore, p is asymptotically stable
if and only if every leading principal subdeterminant of A is positive. (Proof:
See [39].) (Remark: The second statement is due to Hurwitz.) (Remark:
The diagonal entries of A are βn−1, . . . , β0.) (Problem: Show that this con-
dition for stability is equivalent to the condition given in [202, p. 183] in

terms of an alternative matrix Â.)

Fact 11.14.22. Let A ∈ Rn×n be tridiagonal and assume that A(i,i) >
0 for all i = 1, . . . , n and A(i,i+1)A(i+1,i) > 0 for all i = 1, . . . , n −1. Then,
A is asymptotically stable. (Proof: See [127].) (Remark: This result is due
to Barnett and Storey.)

Fact 11.14.23. Let A ∈ Rn×n be cyclic. Then, there exists a nonsin-
gular matrix S ∈ Rn×n such that AS = SAS−1 is given by the tridiagonal
matrix

AS =



















0 1 0 0 · · · 0 0
−αn 0 1 · · · 0 0

0 −αn−1 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1
0 0 0 · · · −α2 −α1



















,

where α1, . . . , αn are real numbers. If α1α2 · · ·αn 6= 0, then the number of
eigenvalues of A in the OLHP is equal to the number of positive elements
in {α1, α1α2, . . . , α1α2 · · ·αn}m. Furthermore, AT

SP + PAS +R = 0, where

P
4

= diag(α1α2 · · ·αn, α1α2 · · ·αn−1, . . . , α1α2, α1)

and
R

4

= diag
(

0, . . . , 0, 2α2
1

)

.

(Remark: AS is in Schwarz form.) (Proof: See [66, pp. 52, 95].)

Fact 11.14.24. Let α1, α2, α3 > 0, and define A,P,R ∈ R3×3 by the
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tridiagonal matrix

AR
4

=







−α1 α
1/2
2 0

−α1/2
2 0 α

1/2
3

0 −α1/2
3 0







and the diagonal matrices

P
4

= I, R
4

= diag(2α1, 0, 0).

Then, AT
RP +PAR +R = 0. (Remark: The matrix AR is in Routh form. The

Routh form AR and the Schwarz form AS are related by AR = SRSASS
−1
RS,

where

SRS
4

=





0 0 α
1/2
1

0 −(α1α2)
1/2 0

(α1α2α3)
1/2 0 0



 .)

Fact 11.14.25. Let α1, α2, α3 > 0, and define AC, P,R ∈ R3×3 by the
tridiagonal matrix

AC
4

=





0 1/a3 0
−1/a2 0 1/a2

0 −1/a1 −1/a1





and the diagonal matrices

P
4

= diag(a3, a2, a1), R
4

= diag(0, 0, 2),

where a1
4

= 1/α1, a2
4

= α1/α2, and a3
4

= α2/(α1α3). Then, AT
CP +PAC +R =

0. (Remark: The matrix AC is in Chen form.) The Schwarz form AS and
the Chen form AC are related by AS = SSCACS

−1
SC, where

SSC
4

=





1/(α1α3) 0 0
0 1/α2 0
0 0 1/α1



 .)

(Proof: See [141, p. 346].) (Remark: The Schwarz, Routh, and Chen forms
provide the basis for the Routh criterion. See [15,115,141,452].)

Fact 11.14.26. Let A ∈ Fn×n. Then, the following statements are
equivalent:

i) A is asymptotically stable.

ii) There exist a negative-definite matrix B ∈ Fn×n, a skew-Hermitian
matrix C ∈ Fn×n, and a nonsingular matrix S ∈ Fn×n such that
A = B + SCS−1.

iii) There exist a negative-definite matrix B ∈ Fn×n, a skew-Hermitian
matrix C ∈ Fn×n, and a nonsingular matrix S ∈ Fn×n such that
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A = S(B + C)S−1.

(Proof: See [160].)

Fact 11.14.27. Let A ∈ Rn×n, and let k ≥ 2. Then, there exist
asymptotically stable matrices A1, . . . , Ak ∈ Rn×n such that A =

∑k
i=1Ai if

and only if trA < 0. (Proof: See [308].)

Fact 11.14.28. Let A ∈ Rn×n. Then, A is (Lyapunov stable, semi-
stable, asymptotically stable) if and only if A⊕A is. (Proof: Use Fact 7.4.27

and the fact that vec
(

etAVetA
∗)

= et(A⊕A)vecV.)

Fact 11.14.29. Let A ∈ Rn×n and B ∈ Rm×m. Then, the following
statements hold:

i) If A and B are (Lyapunov stable, semistable, asymptotically stable),
then A⊕B is (Lyapunov stable, semistable, asymptotically stable).

ii) If A ⊕ B is (Lyapunov stable, semistable, asymptotically stable),
then either A or B is (Lyapunov stable, semistable, asymptotically
stable).

(Proof: Use Fact 7.4.27.)

Fact 11.14.30. Let A ∈ R2×2. Then, A is asymptotically stable if and
only if trA < 0 and detA > 0.

Fact 11.14.31. Let A ∈ Cn×n. Then, there exists a unique asymptot-
ically stable matrix B ∈ Cn×n such that B2 = −A. (Remark: This result is
stated in [526]. The uniqueness of the square root for complex matrices that
have no eigenvalues in (−∞, 0] is implicitly assumed in [527].) (Remark:
See Fact 5.13.16.)

Fact 11.14.32. Let A ∈ Rn×n. Then, the following statements hold:

i) If A is semidissipative, then A is Lyapunov stable.

ii) If A is dissipative, then A is asymptotically stable.

iii) If A is Lyapunov stable and normal, then A is semidissipative.

iv) If A is asymptotically stable and normal, then A is dissipative.

v) If A is discrete-time Lyapunov stable and normal, then A is semi-
contractive.

Fact 11.14.33. Let A ∈ Rn×n, and assume that A(i,j) ≤ 0 for all
i, j = 1, . . . , n such that i 6= j. (Remark: A is a Z-matrix.) Then, the
following conditions are equivalent:
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i) −A is asymptotically stable.

ii) There exists B ∈ Rn×n such that B ≥≥ 0, A = αI − B, and α >
sprad(B).

iii) If λ ∈ spec(A) is real, then λ > 0.

iv) A+ αI is nonsingular for all α ≥ 0.

v) A + B is nonsingular for all nonnegative, diagonal matrices B ∈
Rn×n.

vi) Every principal subdeterminant of A is positive.

vii) Every leading principal subdeterminant of A is positive.

viii) For all k ∈ {1, . . . , n}, the sum of all k×k principal subdeterminants
of A is positive.

ix) There exists x ∈ Rn such that x >> 0 and Ax >> 0.

x) If x ∈ Rn and Ax ≥≥ 0, then x ≥≥ 0.

xi) A is nonsingular and A−1 ≥≥ 0.

(Proof: See [81, pp. 134–140] or [289, pp. 114–116].) (Remark: A is an
M -matrix.)

11.15 Facts on Discrete-Time Stability

Fact 11.15.1. Let p ∈ R[s], where p(s) = sn + an−1s
n−1 + · · · + a0.

Then, the following statements hold:

i) If n = 1, then p is discrete-time asymptotically stable if and only if
|a0| < 1.

ii) If n = 2, then p is discrete-time asymptotically stable if and only if
|a0| < 1 and |a1| < 1 + a0.

iii) If n = 3, then p is discrete-time asymptotically stable if and only if
|a0| < 1, |a2| < 1 + a0, and |a2 − a0a1| < 1.

(Remark: These results are special cases of the Jury test, which provides
stability criteria for polynomials of arbitrary degree n. See [141,319].)

Fact 11.15.2. Let A ∈ R2×2. Then, A is discrete-time asymptotically
stable if and only if |trA| < 1 + detA and |detA| < 1.

Fact 11.15.3. Let A ∈ Fn×n. Then, A is discrete-time asymptotically
stable if and only if A2 is discrete-time asymptotically stable.
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Fact 11.15.4. Let A ∈ Rn×n. Then, for all k ≥ 0,

Ak = x1(k)I + x2(k)A+ · · ·+ xn(k)A
n−1,

where, for all i = 1, . . . , n and for all k ≥ 0, xi satisfies

x(n+ k) + βn−1x(n+ k − 1) + · · ·+ c1x(k + 1) + c0x(k) = 0,

with, for all i, j = 1, . . . , n, the initial conditions

xi(j − 1) = δij .

(Proof: See [346].)

Fact 11.15.5. Let A ∈ Rn×n. Then, the following statements hold:

i) If A is semicontractive, then A is discrete-time Lyapunov stable.

ii) If A is contractive, then A is discrete-time asymptotically stable.

iii) If A is discrete-time Lyapunov stable and normal, then A is semi-
contractive.

iv) If A is discrete-time asymptotically stable and normal, then A is
contractive.

(Problem: Prove these results by using Fact 11.12.5.)

Fact 11.15.6. Let A ∈ Fn×n. Then, A is discrete-time (Lyapunov
stable, semistable, asymptotically stable) if and only if A⊗A is. (Proof:
Use Fact 7.4.24.)

Fact 11.15.7. Let A ∈ Rn×n and B ∈ Rm×m. Then, the following
statements hold:

i) If A and B are discrete-time (Lyapunov stable, semistable, asymp-
totically stable), then A ⊗ B is discrete-time (Lyapunov stable,
semistable, asymptotically stable).

ii) If A⊗B is discrete-time (Lyapunov stable, semistable, asymptoti-
cally stable), then either A or B is discrete-time (Lyapunov stable,
semistable, asymptotically stable).

(Proof: Use Fact 7.4.24.)

Fact 11.15.8. Let A ∈ Rn×n be (Lyapunov stable, semistable, asymp-
totically stable). Then, eA is discrete-time (Lyapunov stable, semistable,
asymptotically stable). (Problem: If B ∈ Rn×n is discrete-time (Lyapunov
stable, semistable, asymptotically stable), when does there exist (Lyapunov
stable, semistable, asymptotically stable) A ∈ Rn×n such that B = eA? See
Proposition 11.4.4.)
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Fact 11.15.9. Let A ∈ Rn×n. If A is discrete-time asymptotically
stable, then B

4

= (A + I)−1(A − I) is asymptotically stable. Conversely, if

B ∈ Rn×n is asymptotically stable, then A
4

= (I+B)(I−B)−1 is discrete-time
asymptotically stable. (Proof: See [271].) (Remark: For additional results
on the Cayley transform, see Fact 3.6.23, Fact 3.6.24, Fact 3.6.25, Fact 3.9.8,
and Fact 8.7.18.) (Problem: Obtain analogous results for Lyapunov-stable
and semistable matrices.)

Fact 11.15.10. Let
[

P1 P12

PT
12 P2

]

∈ R2n×2n be positive definite, where P1,

P12, P2 ∈ Rn×n. If P1 ≥ P2, then A
4

= P−1
1 PT

12 is discrete-time asymptotically

stable, while if P2 ≥ P1, then A
4

= P−1
2 P12 is discrete-time asymptotically

stable. (Proof: If P1 ≥ P2, then P1−P12P
−1
1 P1P

−1
1 PT

12 ≥ P1−P12P
−2
2 PT

12 > 0.
See [145].)

Fact 11.15.11. Let A ∈ Fn×n. Then, A is discrete-time semistable if
and only if

A∞
4

= lim
k→∞

Ak

exists. In this case, A∞ is idempotent and is given by

A∞ = I − (A− I)(A− I)#.
(Proof: See [416, p. 640].) (Remark: See Fact 11.15.16 and Fact 11.15.15.)

Fact 11.15.12. Let A ∈ Fn×n. Then, A is discrete-time Lyapunov
stable if and only if

A∞
4

= lim
k→∞

1
k

k−1
∑

i=0

Ai

exists. In this case,

A∞ = I − (A− I)(A− I)#.
(Proof: See [416, p. 633].) (Remark: A is Cesaro summable.) (Remark: See
Fact 6.3.17.)

Fact 11.15.13. Let A ∈ Fn×n. Then, A is discrete-time asymptotically
stable if and only if

lim
k→∞

Ak = 0.

Fact 11.15.14. Let A ∈ Fn×n, and assume that A is unitary. Then, A
is discrete-time Lyapunov stable.

Fact 11.15.15. Let A,B ∈ Rn×n, assume that A is discrete-time semi-
stable, and let A∞

4

= limk→∞Ak. Then,

lim
k→∞

(

A+ 1
kB
)k

= A∞e
A∞BA∞ .
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(Proof: See [101, 598].) (Remark: If A is idempotent, then A∞ = A. The
existence of A∞ is guaranteed by either Fact 11.15.11 or Fact 11.15.16.)

Fact 11.15.16. Let A ∈ Rn×n, and let ‖ · ‖ be a norm on Rn×n. Then,
the following statements hold:

i) A is discrete-time Lyapunov stable if and only if
{

‖Ak‖
}∞
k=0

is
bounded.

ii) A is discrete-time semistable if and only if A∞
4

= limk→∞Ak exists.
In this case, A∞ = I − (A− I)(A− I)# is idempotent.

iii) A is discrete-time asymptotically stable if and only if limk→∞Ak =
0.

(Remark: ii) is given by Fact 11.15.11. See Fact 11.15.15.)

Fact 11.15.17. Let A ∈ Rn×n. Then, the following statements hold:

i) A is discrete-time Lyapunov stable if and only if there exists a
positive-definite matrix P ∈ Rn×n such that P −ATPA is nonnega-
tive semidefinite.

ii) A is discrete-time asymptotically stable if and only if there exists a
positive-definite matrix P ∈ Rn×n such that P − ATPA is positive
definite.

(Remark: The discrete-time Lyapunov equation or the Stein equation is P =
ATPA+R.)

Fact 11.15.18. Let {Ak}∞k=0 ⊂ Rn×n and, for k ∈ N, consider the
discrete-time, time-varying system

xk+1 = Akxk.

Furthermore, assume that there exist real numbers β ∈ (0, 1), γ > 0, and
ε > 0 such that, for all k ∈ N,

sprad(Ak) < β,

‖Ak‖ < γ,

‖Ak+1 −Ak‖ < ε,

where ‖·‖ is a norm on Rn×n. Then, xk → 0 as k →∞. (Proof: See [265, pp.
170–173].) (Remark: This result arises from the theory of infinite matrix
products.
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11.16 Facts on Subspace Decomposition

Fact 11.16.1. Let A ∈ Rn×n, and let S ∈ Rn×n be a nonsingular
matrix such that

A = S

[

A1 A12

0 A2

]

S−1, (11.16.1)

where A1 ∈ Rr×r is asymptotically stable, A12 ∈ Rr×(n−r), and A2 ∈
R(n−r)×(n−r). Then,

µs
A(A) = S

[

0 B12s

0 µs
A(A2)

]

S−1,

where B12s ∈ Rr×(n−r), and

µu
A(A) = S

[

µu
A(A1) B12u

0 µu
A(A2)

]

S−1,

where B12u ∈ Rr×(n−r) and µu
A(A1) is nonsingular. Consequently,

R

(

S

[

Ir
0

])

⊆ Ss(A).

If, in addition, A12 = 0, then

µs
A(A) = S

[

0 0
0 µs

A(A2)

]

S−1,

µu
A(A) = S

[

µu
A(A1) 0

0 µu
A(A2)

]

S−1,

Su(A) ⊆ R

(

S

[

0
In−r

])

.

(Proof: The result follows from Fact 4.10.8.)

Fact 11.16.2. Let A ∈ Rn×n, and let S ∈ Rn×n be a nonsingular
matrix such that

A = S

[

A1 A12

0 A2

]

S−1,

where A1 ∈ Rr×r, A12 ∈ Rr×(n−r), and A2 ∈ R(n−r)×(n−r) satisfies spec(A2)
⊂ CRHP. Then,

µs
A(A) = S

[

µs
A(A1) C12s

0 µs
A(A2)

]

S−1,

where C12s ∈ Rr×(n−r) and µs
A(A2) is nonsingular, and

µu
A(A) = S

[

µu
A(A1) C12u

0 0

]

S−1,
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where C12u ∈ Rr×(n−r). Consequently,

Ss(A) ⊆ R

(

S

[

Ir
0

])

.

If, in addition, A12 = 0, then

µs
A(A) = S

[

µs
A(A1) 0

0 µs
A(A2)

]

S−1,

µu
A(A) = S

[

µu
A(A1) 0

0 0

]

S−1,

R

(

S

[

0
In−r

])

⊆ Su(A).

Fact 11.16.3. Let A ∈ Rn×n, and let S ∈ Rn×n be a nonsingular
matrix such that

A = S

[

A1 A12

0 A2

]

S−1,

where A1 ∈ Rr×r satisfies spec(A1) ⊂ CRHP, A12 ∈ Rr×(n−r), and A2 ∈
R(n−r)×(n−r). Then,

µs
A(A) = S

[

µs
A(A1) B12s

0 µs
A(A2)

]

S−1,

where µs
A(A1) is nonsingular and B12s ∈ Rr×(n−r), and

µu
A(A) = S

[

0 B12u

0 µu
A(A2)

]

S−1,

where B12u ∈ Rr×(n−r). Consequently,

R

(

S

[

Ir
0

])

⊆ Su(A).

If, in addition, A12 = 0, then

µs
A(A) = S

[

µs
A(A1) 0

0 µs
A(A2)

]

S−1,

µu
A(A) = S

[

0 0
0 µu

A(A2)

]

S−1,

Ss(A) ⊆ R

(

S

[

0
In−r

])

.
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Fact 11.16.4. Let A ∈ Rn×n, and let S ∈ Rn×n be a nonsingular
matrix such that

A = S

[

A1 A12

0 A2

]

S−1,

where A1 ∈ Rr×r, A12 ∈ Rr×(n−r), and A2 ∈ R(n−r)×(n−r) is asymptotically
stable. Then,

µs
A(A) = S

[

µs
A(A1) C12s

0 0

]

S−1,

where C12s ∈ Rr×(n−r), and

µu
A(A) = S

[

µu
A(A1) C12u

0 µu
A(A2)

]

S−1,

where µu
A(A2) is nonsingular and C12u ∈ Rr×(n−r). Consequently,

Su(A) ⊆ R

(

S

[

Ir
0

])

.

If, in addition, A12 = 0, then

µs
A(A) = S

[

µs
A(A1) 0

0 0

]

S−1,

µu
A(A) = S

[

µu
A(A1) 0

0 µu
A(A2)

]

S−1,

R

(

S

[

0
In−r

])

⊆ Ss(A).

Fact 11.16.5. Let A ∈ Rn×n, and let S ∈ Rn×n be a nonsingular
matrix such that

A = S

[

A1 A12

0 A2

]

S−1,

where A1 ∈ Rr×r satisfies spec(A1) ⊂ CRHP, A12 ∈ Rr×(n−r), and A2 ∈
R(n−r)×(n−r) is asymptotically stable. Then,

µs
A(A) = S

[

µs
A(A1) C12s

0 0

]

S−1,

where C12s ∈ Rr×(n−r) and µs
A(A1) is nonsingular, and

µu
A(A) = S

[

0 C12u

0 µu
A(A2)

]

S−1,
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where C12u ∈ Rr×(n−r) and µu
A(A2) is nonsingular. Consequently,

Su(A) = R

(

S

[

Ir
0

])

.

If, in addition, A12 = 0, then

µs
A(A) = S

[

µs
A(A1) 0

0 0

]

S−1

and

µu
A(A) = S

[

0 0
0 µu

A(A2)

]

S−1,

Consequently,

Ss(A) = R

(

S

[

0
In−r

])

.

Fact 11.16.6. Let A ∈ Rn×n, and let S ∈ Rn×n be a nonsingular
matrix such that

A = S

[

A1 0
A21 A2

]

S−1,

where A1 ∈ Rr×r is asymptotically stable, A21 ∈ R(n−r)×r, and A2 ∈
R(n−r)×(n−r). Then,

µs
A(A) = S

[

0 0
B21s µs

A(A2)

]

S−1,

where B21s ∈ R(n−r)×r, and

µu
A(A) = S

[

µu
A(A1) 0
B21u µu

A(A2)

]

S−1,

where B21u ∈ R(n−r)×r and µu
A(A1) is nonsingular. Consequently,

Su(A) ⊆ R

(

S

[

0
In−r

])

.

If, in addition, A21 = 0, then

µs
A(A) = S

[

0 0
0 µs

A(A2)

]

S−1,

µu
A(A) = S

[

µu
A(A1) 0

0 µu
A(A2)

]

S−1,

R

(

S

[

Ir
0

])

⊆ Ss(A).
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Fact 11.16.7. Let A ∈ Rn×n, and let S ∈ Rn×n be a nonsingular
matrix such that

A = S

[

A1 0
A21 A2

]

S−1,

where A1 ∈ Rr×r, A21 ∈ R(n−r)×r, and A2 ∈ R(n−r)×(n−r) satisfies spec(A2)
⊂ CRHP. Then,

µs
A(A) = S

[

µs
A(A1) 0
C21s µs

A(A2)

]

S−1,

where C21s ∈ R(n−r)×r and µs
A(A2) is nonsingular, and

µu
A(A) = S

[

µu
A(A1) 0
C21u 0

]

S−1,

where C21u ∈ R(n−r)×r. Consequently,

R

(

S

[

0
In−r

])

⊆ Su(A).

If, in addition, A21 = 0, then

µs
A(A) = S

[

µs
A(A1) 0

0 µs
A(A2)

]

S−1,

µu
A(A) = S

[

µu
A(A1) 0

0 0

]

S−1,

Ss(A) ⊆ R

(

S

[

Ir
0

])

.

Fact 11.16.8. Let A ∈ Rn×n, and let S ∈ Rn×n be a nonsingular
matrix such that

A = S

[

A1 0
A21 A2

]

S−1,

where A1 ∈ Rr×r is asymptotically stable, A21 ∈ R(n−r)×r, and A2 ∈
R(n−r)×(n−r) satisfies spec(A2) ⊂ CRHP. Then,

µs
A(A) = S

[

0 0
C21s µs

A(A2)

]

S−1,

where C21s ∈ Rn−r×r and µs
A(A2) is nonsingular, and

µu
A(A) = S

[

µu
A(A1) 0
C21u 0

]

S−1,

where C21u ∈ R(n−r)×r and µu
A(A1) is nonsingular. Consequently,

Su(A) = R

(

S

[

0
In−r

])

.
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If, in addition, A21 = 0, then

µs
A(A) = S

[

0 0
0 µs

A(A2)

]

S−1

and

µu
A(A) = S

[

µu
A(A1) 0

0 0

]

S−1.

Consequently,

Ss(A) = R

(

S

[

Ir
0

])

.

Fact 11.16.9. Let A ∈ Rn×n, and let S ∈ Rn×n be a nonsingular
matrix such that

A = S

[

A1 0
A21 A2

]

S−1,

where A1 ∈ Rr×r, A21 ∈ R(n−r)×r, and A2 ∈ R(n−r)×(n−r) is asymptotically
stable. Then,

µs
A(A) = S

[

µs
A(A1) 0
B21s 0

]

S−1,

where B21s ∈ R(n−r)×r, and

µu
A(A) = S

[

µu
A(A1) 0
B21u µu

A(A2)

]

S−1,

where B21u ∈ R(n−r)×r and µu
A(A2) is nonsingular. Consequently,

R

(

S

[

0
In−r

])

⊆ S(A)

If, in addition, A21 = 0, then

µs
A(A) = S

[

µs
A(A1) 0

0 0

]

S−1,

µu
A(A) = S

[

µu
A(A1) 0

0 µu
A(A2)

]

S−1,

Su(A) ⊆ R

(

S

[

Ir
0

])

.

Fact 11.16.10. Let A ∈ Rn×n, and let S ∈ Rn×n be a nonsingular
matrix such that

A = S

[

A1 0
A21 A2

]

S−1,

where A1 ∈ Rr×r satisfies spec(A1) ⊂ CRHP, A21 ∈ R(n−r)×r, and A2 ∈
R(n−r)×(n−r). Then,
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µs
A(A) = S

[

µs
A(A1) 0
C12s µs

A(A2)

]

S−1,

where C21s ∈ R(n−r)×r and µs
A(A1) is nonsingular, and

µu
A(A) = S

[

0 0
C21u µu

A(A2)

]

S−1,

where C21u ∈ R(n−r)×r. Consequently,

Ss(A) ⊆ R

(

S

[

0
In−r

])

.

If, in addition, A21 = 0, then

µs
A(A) = S

[

µs
A(A1) 0

0 µs
A(A2)

]

S−1,

µu
A(A) = S

[

0 0
0 µu

A(A2)

]

S−1,

R

(

S

[

Ir
0

])

⊆ Su(A).

Fact 11.16.11. Let A ∈ Rn×n, and let S ∈ Rn×n be a nonsingular
matrix such that

A = S

[

A1 0
A21 A2

]

S−1,

where A1 ∈ Rr×r satisfies spec(A1) ⊂ CRHP, A21 ∈ R(n−r)×r, and A2 ∈
R(n−r)×(n−r) is asymptotically stable. Then,

µs
A(A) = S

[

µs
A(A1) 0
C21s 0

]

S−1,

where C21s ∈ R(n−r)×r and µs
A(A1) is nonsingular, and

µu
A(A) = S

[

0 0
C21u µu

A(A2)

]

S−1,

where C21u ∈ R(n−r)×r and µu
A(A2) is nonsingular. Consequently,

Ss(A) = R

(

S

[

0
In−r

])

.

If, in addition, A21 = 0, then

µs
A(A) = S

[

µs
A(A1) 0

0 0

]

S−1
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and

µu
A(A) = S

[

0 0
0 µu

A(A2)

]

S−1.

Consequently,

Su(A) = R

(

S

[

Ir
0

])

.

11.17 Notes

Explicit formulas for the matrix exponential are given in [32, 89, 142,
264,458,459]. Computational methods are discussed in [426]. An arithmetic-
mean-geometric-mean iteration for computing the matrix exponential and
matrix logarithm is given in [527].

The exponential function plays a central role in the theory of Lie
groups, see [72, 132, 299, 304, 496, 571]. Applications to robotics and kine-
matics are given in [432,450]. Additional applications are discussed in [131].

The real logarithm is discussed in [156,274,441,469].

An asymptotically stable polynomial is traditionally called Hurwitz.
Semistability was first defined in [124]. Stability theory is treated in [257,
361, 463]. Solutions of the Lyapunov equation under weak conditions are
considered in [512].
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Chapter Twelve

Linear Systems and Control Theory

This chapter considers linear state space systems with inputs and out-
puts. These systems are considered in both the time domain and frequency
(Laplace) domain. Some basic results in control theory are also considered.

12.1 State Space and Transfer Function Models

Let A ∈ Rn×n and B ∈ Rn×m, and, for t ≥ t0, consider the state
equation

ẋ(t) = Ax(t) +Bu(t), (12.1.1)

with the initial condition
x(t0) = x0. (12.1.2)

In (12.1.1), x(t) ∈ Rn is the state and u(t) ∈ Rm is the input.

Proposition 12.1.1. For t ≥ t0 the state x(t) of the dynamical equa-
tion (12.1.1) with initial condition (12.1.2) is given by

x(t) = e(t−t0)Ax0 +

t
∫

t0

e(t−τ)ABu(τ) dτ. (12.1.3)

Proof. Multiplying (12.1.1) by e−tA yields

e−tA[ẋ(t)−Ax(t)] = e−tABu(t),

which is equivalent to

d

dt

[

e−tAx(t)
]

= e−tABu(t).
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Integrating over [t0, t] yields

e−tAx(t) = e−t0Ax(t0) +

t
∫

t0

e−τABu(τ) dτ.

Now, multiplying by etA yields (12.1.3).

Alternatively, let x(t) be given by (12.1.3). Then, it follows from
Liebniz’ rule Fact 10.8.4 that

ẋ(t) =
d

dt
e(t−t0)Ax0 +

d

dt

t
∫

t0

e(t−τ)ABu(τ) dτ

= Ae(t−t0)Ax0 +

t
∫

t0

Ae(t−τ)ABu(τ) dτ +Bu(t)

= Ax(t) +Bu(t). �

For convenience, we can reset the clock and assume without loss of
generality that t0 = 0. In this case, x(t) for all t ≥ 0 is given by

x(t) = etAx0 +

t
∫

0

e(t−τ)ABu(τ) dτ. (12.1.4)

If u(t) = 0 for all t ≥ 0, then, for all t ≥ 0, x(t) is given by

x(t) = etAx0. (12.1.5)

Now, let u(t) = δ(t)v, where δ(t) is the unit impulse at t = 0 and
v ∈ Rm. Then, for all t ≥ 0, x(t) is given by

x(t) = etAx0 + etABv. (12.1.6)

Let a < b. Then, δ(t), which has physical dimensions of 1/time, satisfies
b
∫

a

δ(τ) dτ =

{

0, a > 0 or b ≤ 0,

1, a ≤ 0 < b.
(12.1.7)

More generally, if g : D → Rn, where [a, b] ⊆ D ⊆ R, t0 ∈ D, and g is
continuous at t0, then

b
∫

a

δ(τ − t0)g(τ) dτ =

{

0, a > t0 or b ≤ t0,
g(t0), a ≤ t0 < b.

(12.1.8)
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Alternatively, if the input u(t) is constant, that is, u(t) = v for all
t ≥ 0, where v ∈ Rm, then, by a change of variable of integration, it follows
that, for all t ≥ 0,

x(t) = etAx0 +

t
∫

0

eτA dτBv. (12.1.9)

Using Fact 11.10.12, (12.1.9) can be written for all t ≥ 0 as

x(t) = etAx0 +

[

AD
(

etA − I
)

+
(

I −AAD
)

indA
∑

i=1

(i!)−1tiAi−1

]

Bv. (12.1.10)

If A is group invertible, then, for all t ≥ 0, (12.1.10) becomes

x(t) = etAx0 +
[

A#
(

etA − I
)

+ t(I −AA#)
]

Bv. (12.1.11)

If, in addition, A is nonsingular, then, for all t ≥ 0, (12.1.11) becomes

x(t) = etAx0 +A−1
(

etA − I
)

Bv. (12.1.12)

Next, consider the output equation

y(t) = Cx(t) +Du(t), (12.1.13)

where t ≥ 0, y(t) ∈ Rl is the output, C ∈ Rl×n, and D ∈ Rl×m. Then, for
all t ≥ 0,

y(t) = CetAx0 +

t
∫

0

Ce(t−τ)ABu(τ) dτ +Du(t). (12.1.14)

If u(t) = 0 for all t ≥ 0, then the free response is given by

y(t) = CetAx0, (12.1.15)

while, if x0 = 0, then the forced response is given by

y(t) =

t
∫

0

Ce(t−τ)ABu(τ) dτ +Du(t). (12.1.16)

In particular, setting u(t) = δ(t)v yields, for all t > 0,

y(t) = CetAx0 +H(t)v, (12.1.17)

where, for all t ≥ 0, the impulse response function H(t) is defined by

H(t)
4

= CetAB + δ(t)D, (12.1.18)

and the impulse response is

y(t) = H(t)v. (12.1.19)
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Alternatively, if u(t) = v for all t ≥ 0, then

y(t) = CetAx0 +

t
∫

0

CeτA dτBv +Dv, (12.1.20)

and the step response is

y(t) =

t
∫

0

H(τ) dτv =

t
∫

0

CeτA dτBv +Dv. (12.1.21)

In general, the forced response can be written as

y(t) =

t
∫

0

H(t− τ)u(τ) dτ. (12.1.22)

Proposition 12.1.2. Let D = 0 and m = 1, and assume that x0 = Bv.
Then, the free response and the impulse response are equal and given by

y(t) = CetAx0 = CetABv. (12.1.23)

Now, consider the linear system

ẋ(t) = Ax(t) +Bu(t), (12.1.24)

y(t) = Cx(t) +Du(t), (12.1.25)

with state x(t) ∈ Rn, input u(t) ∈ Rm, and output y(t) ∈ Rl, where t ≥ 0
and x(0) = x0. Taking Laplace transforms yields

sx̂(s)− x0 = Ax̂(s) +Bû(s), (12.1.26)

ŷ(s) = Cx̂(s) +Dû(s), (12.1.27)

where

x̂(s)
4

= L{x(t)} 4

=

∞
∫

0

e−stx(t) dt, (12.1.28)

û(s)
4

= L{u(t)}, (12.1.29)

and
ŷ(s)

4

= L{y(t)}. (12.1.30)

Hence,
x̂(s) = (sI −A)−1x0 + (sI −A)−1Bû(s), (12.1.31)

and thus

ŷ(s) = C(sI −A)−1x0 +
[

C(sI −A)−1B +D
]

û(s). (12.1.32)



matrix2 November 19, 2003

LINEAR SYSTEMS AND CONTROL THEORY 435

We can also obtain (12.1.32) from the time-domain expression for y(t) given
by (12.1.14). To do this, the following result will be needed.

Lemma 12.1.3. Let A ∈ Rn×n. Then, for all s ∈ C\spec(A),

L
{

etA
}

= (sI −A)−1. (12.1.33)

Proof. Let s ∈ C satisfy Re s > spabs(A) so that A− sI is asymptot-
ically stable. Thus, it follows from Lemma 11.7.2 that

L
{

etA
}

=

∞
∫

0

e−stetA dt =

∞
∫

0

et(A−sI) dt = (sI −A)−1.

By analytic continuation, L
{

etA
}

is given by (12.1.33) for all s ∈ C\spec(A).

Using Lemma 12.1.3, it follows from (12.1.14) that

ŷ(s) = L
{

CetAx0

}

+ L







t
∫

0

Ce(t−τ)ABu(τ) dτ







+Dû(s)

= CL
{

etA
}

x0 + CL
{

etA
}

Bû(s) +Dû(s)

= C(sI −A)−1x0 +
[

C(sI −A)−1B +D
]

û(s), (12.1.34)

which coincides with (12.1.32). We define

G(s)
4

= C(sI −A)−1B +D. (12.1.35)

Note that G ∈ Rl×m(s), that is, by Definition 4.7.2, G is a rational transfer
function. Since L{δ(t)} = 1 it follows that

G(s) = L{H(t)}. (12.1.36)

Using (4.7.2), G can be written as

G(s) =
1

χA(s)
C(sI −A)AB +D. (12.1.37)

It follows from (4.7.3) that G is a proper rational transfer function. Fur-
thermore, G is a strictly proper rational transfer function if and only if
D = 0, whereas G is an exactly proper rational transfer function if and only
if D 6= 0. Finally, if A is nonsingular, then

G(0) = −CA−1B +D. (12.1.38)
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Let A ∈ Rn×n. If |s| > sprad(A), then Proposition 9.4.10 implies that

(sI −A)−1 = 1
s

(

I − 1
sA
)−1

=
∞
∑

k=0

1
sk+1A

k, (12.1.39)

where the series is absolutely convergent, and thus

G(s) =

∞
∑

k=−1

1
sk+1Hk, (12.1.40)

where, for k ≥ −1, the Markov parameter Hk ∈ Rl×m is defined by

Hk
4

=

{

D, k = −1,

CAkB, k ≥ 0.
(12.1.41)

It follows from (12.1.39) that lims→∞(sI −A)−1 = 0, and thus

lim
s→∞

G(s) = D. (12.1.42)

Finally, it follows from Definition 4.7.2 that

reldegG = min{k ≥ −1: Hk 6= 0}. (12.1.43)

12.2 Observability

Let A ∈ Rn×n and C ∈ Rl×n, and, for t ≥ 0, consider the linear system

ẋ(t) = Ax(t), (12.2.1)

x(0) = x0, (12.2.2)

y(t) = Cx(t). (12.2.3)

Definition 12.2.1. The unobservable subspace Utf(A,C) of (A,C) at
time tf > 0 is the subspace

Utf(A,C)
4

= {x0 ∈ Rn: y(t) = 0 for all t ∈ [0, tf ]}. (12.2.4)

Let tf > 0. Since y(t) = 0 for all t ∈ [0, tf ] is the free response
corresponding to x0 = 0, it follows that 0 ∈ Utf(A,C). Hence, if x0 6= 0 and
x0 ∈ Utf(A,C), then x0 cannot be determined from knowledge of y(t) for all
t ∈ [0, tf ].

The following result provides explicit expressions for Utf(A,C).

Lemma 12.2.2. Let tf > 0. Then, the following subspaces are equal:

i) Utf(A,C)
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ii)
⋂

t∈[0,tf ]
N
(

CetA
)

iii)
⋂n−1
i=0 N

(

CAi
)

iv) N

([

C
CA...

CAn−1

])

v) N

(

∫ tf
0 etA

T

CTCetA dt
)

Proof. The proof is dual to the proof of Lemma 12.5.2.

Lemma 12.2.2 shows that Utf(A,C) is independent of tf . Hence, we
write U(A,C) for Utf(A,C) and call U(A,C) the unobservable subspace of
(A,C). (A,C) is observable if U(A,C) = {0}. For convenience, define the
observability matrix

O(A,C)
4

=









C
CA
...

CAn−1









(12.2.5)

so that
U(A,C) = N[O(A,C)]. (12.2.6)

Define
p

4

= n− dimU(A,C) = n− def O(A,C). (12.2.7)

The following result shows that the unobservable subspace U(A,C) is
unchanged by replacing ẋ(t) = Ax(t) by ẋ(t) = Ax(t) + Fy(t).

Proposition 12.2.3. Let F ∈ Rn×l. Then,

U(A+ FC,C) = U(A,C). (12.2.8)

In particular, (A,C) is observable if and only if (A+ FC,C) is observable.

Proof. The proof is dual to the proof of Proposition 12.5.3.

Let Ũ(A,C) ⊆ Rn be a subspace that is complementary to U(A,C).

Then, Ũ(A,C) is an observable subspace in the sense that if x0 = x′0 + x′′0,
where x′0 ∈ Ũ(A,C) and x′′0 ∈ U(A,C), then it is possible to determine
x′0 from knowledge of y(t) for t ∈ [0, tf ]. The following result uses y(t) to

determine x′0 for Ũ(A,C)
4

= U(A,C)⊥.
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Lemma 12.2.4. Let tf > 0, and define P ∈ Rn×n by

P
4

=





tf
∫

0

etA
T

CTCetA dt





+ tf
∫

0

etA
T

CTCetA dt. (12.2.9)

Then, P⊥ is the projector onto U(A,C), and P is the projector onto U(A,C)⊥.
Hence,

U(A,C) = N(P) = R(P⊥), (12.2.10)

U(A,C)⊥ = R(P) = N(P⊥), (12.2.11)

n− p = dimU(A,C) = def P = rankP⊥, (12.2.12)

p = dimU(A,C)⊥ = rankP = def P⊥. (12.2.13)

If x0 = x′0 + x′′0, where x′0 ∈ U(A,C)⊥ and x′′0 ∈ U(A,C), then

x′0 = Px0 =





tf
∫

0

etA
T

CTCetA dt





+ tf
∫

0

etA
T

CTy(t) dt. (12.2.14)

Finally, (A,C) is observable if and only if P = In. In this case, for all
x0 ∈ Rn,

x0 =





tf
∫

0

etA
T

CTCetA dt





−1 tf
∫

0

etA
T

CTy(t) dt. (12.2.15)

Lemma 12.2.5. Let α ∈ R. Then,

U(A+ αI,C) = U(A,C). (12.2.16)

The following result uses a coordinate transformation to characterize
U(A,C).

Theorem 12.2.6. There exists an orthogonal matrix S ∈ Rn×n such
that A and C have the form

A = S

[

A1 0
A21 A2

]

S−1, C =
[

C1 0
]

S−1, (12.2.17)

where A1 ∈ Rp×p, C1 ∈ Rl×p, and (A1, C1) is observable.

Proof. The proof is dual to the proof of Theorem 12.5.6.

Proposition 12.2.7. Let S ∈ Rn×n be orthogonal. Then, the following
conditions are equivalent:

i) A and C have the form (12.2.17), where A1 ∈ Rp×p, C1 ∈ Rl×p, and
(A1, C1) is observable.
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ii) U(A,C) = R
(

S
[

0
In−p

])

.

iii) U(A,C)⊥ = R
(

S
[

Ip
0

])

.

iv) P = S

[

Ip 0
0 0

]

ST.

Proposition 12.2.8. Let S ∈ Rn×n be nonsingular. Then, the follow-
ing conditions are equivalent:

i) A and C have the form (12.2.17), where A1 ∈ Rp×p, C1 ∈ Rl×p, and
(A1, C1) is observable.

ii) U(A,C) = R
(

S
[

0
In−p

])

.

iii) U(A,C)⊥ = R
(

S−T
[

Ip

0

])

.

Definition 12.2.9. Let λ ∈ spec(A). Then, λ is an observable eigen-
value of (A,C) if

rank

[

λI −A
C

]

= n. (12.2.18)

Otherwise, λ is an unobservable eigenvalue of (A,C).

Proposition 12.2.10. Let λ ∈ mspec(A) and F ∈ Rn×l. Then, λ is an
observable eigenvalue of (A,C) if and only if λ is an observable eigenvalue
of (A+ FC,C).

Lemma 12.2.11. Let λ ∈ mspec(A). Then,

Re N

([

λI −A
C

])

⊆ U(A,C). (12.2.19)

Proof. Let x ∈ N
([

λI−A
C

])

so that Ax = λx and Cx = 0. Let

x0
4

= Rex. Then, for all t ≥ 0, y(t) = CetAx0 = CetARex = ReCetAx =
ReCeλtx = Re eλtCx = 0. Hence, Rex = x0 ∈ U(A,C).

The next result characterizes observability in several equivalent ways.

Theorem 12.2.12. The following statements are equivalent:

i) (A,C) is observable.

ii) There exists t > 0 such that
∫ t
0 e

τAT

CTCeτA dτ is positive definite.

iii)
∫ t
0 e

τAT

CTCeτA dτ is positive definite for all t > 0.

iv) rankO(A,C) = n.

v) Every eigenvalue of (A,C) is observable.
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vi) For every self-conjugate multiset {λ1, . . . , λn}m ⊂ C, there exists a
matrix F ∈ Rn×l such that mspec(A+ FC) = {λ1, . . . , λn}m.

Proof. The proof is dual to the proof of Theorem 12.5.12.

12.3 Detectability

Let A ∈ Rn×n, C ∈ Rl×n, and p
4

= n− dimU(A,C).

Definition 12.3.1. (A,C) is detectable if

U(A,C) ⊆ Ss(A). (12.3.1)

Proposition 12.3.2. Let F ∈ Rn×l. Then, (A,C) is detectable if and
only if (A+ FC,C) is detectable.

Proposition 12.3.3. The following statements are equivalent:

i) (A,C) is detectable.

ii) There exists a nonsingular matrix S ∈ Rn×n such that

A = S

[

A1 0
A21 A2

]

S−1, C =
[

C1 0
]

S−1, (12.3.2)

where A1 ∈ Rp×p, C1 ∈ Rl×p, (A1, C1) is observable, and A2 ∈
R(n−p)×(n−p) is asymptotically stable.

iii) Every CRHP eigenvalue of (A,C) is observable.

iv) (A+ FC,C) is detectable for all F ∈ Rn×l.

Proof. The proof is dual to the proof of Proposition 12.6.3.

Lemma 12.3.4. Assume that (A,C) is detectable and that

P
4

=

∞
∫

0

etA
T

CTCetA
T

dt

exists. Then, A is asymptotically stable.

12.4 Observable Asymptotic Stability

Definition 12.4.1. (A,C) is observably asymptotically stable if

Su(A) ⊆ U(A,C). (12.4.1)
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Proposition 12.4.2. Let F ∈ Rn×l. Then, (A,C) is observably asymp-
totically stable if and only if (A+FC,C) is observably asymptotically stable.

Lemma 12.4.3. Assume that the nonnegative-semidefinite matrix P ∈
Rn×n defined by

P
4

=

∞
∫

0

etA
T

CTCetA dt (12.4.2)

exists. Then, P satisfies

ATP + PA+ CTC = 0. (12.4.3)

The matrix P defined by (12.4.2) is the observability Gramian, and
equation (12.4.3) is the observation Lyapunov equation. If A ∈ Rn×n is
asymptotically stable, Then, Corollary 11.7.4 implies that the P defined by
(12.4.2) exists and is the unique solution to (12.4.3).

Proposition 12.4.4. The following statements are equivalent:

i) (A,C) is observably asymptotically stable.

ii) There exists a nonsingular matrix S ∈ Rn×n and k ∈ N such that

A = S

[

A1 0
A21 A2

]

S−1, C =
[

C1 0
]

S−1, (12.4.4)

where A1 ∈ Rk×k is asymptotically stable and C1 ∈ Rl×k.

iii) limt→∞CetA = 0.

iv) P
4

=
∫∞
0 etA

T

CTCetA dt exists.

v) There exists a nonnegative-semidefinite matrix P ∈ Rn×n satisfying
(12.4.3).

In this case, one nonnegative-semidefinite solution of (12.4.3) is given by
(12.4.2). Furthermore,

P = PP+, (12.4.5)

R(P) = R(P ) = U(A,C)⊥, (12.4.6)

N(P) = N(P ) = U(A,C), (12.4.7)

rankP = rankP = p. (12.4.8)

Proof. The proof is dual to the proof of Proposition 12.7.4.

Proposition 12.4.5. The following statements are equivalent:

i) A is asymptotically stable.
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ii) (A,C) is detectable and observably asymptotically stable.

Furthermore, if two of the following three conditions are satisfied, then the
third condition is satisfied:

iii) A is asymptotically stable.

iv) (A,C) is observable.

v) P
4

=
∫∞
0 etA

T

CTCetA dt exists and is positive definite.

12.5 Controllability

Let A∈Rn×n and B ∈Rn×m, and, for t≥ 0, consider the linear system

ẋ(t) = Ax(t) +Bu(t), (12.5.1)

x(0) = 0. (12.5.2)

Definition 12.5.1. The controllable subspace Ctf(A,B) of (A,B) at
time tf > 0 is the subspace

Ctf(A,B)
4

= {xf ∈ Rn: there exists a continuous control u: [0, tf ] 7→ Rm

such that the solution x(·) of (12.5.1), (12.5.2) satisfies x(tf) = xf}.
(12.5.3)

Let tf > 0. Then, Definition 12.5.1 states that xf ∈ Ctf(A,B) if and
only if there exists a continuous control u: [0, tf ] 7→ Rm such that

xf =

tf
∫

0

e(tf−t)ABu(t) dt. (12.5.4)

The following result provides explicit expressions for Ctf(A,B).

Lemma 12.5.2. Let tf > 0. Then, the following subspaces are equal:

i) Ctf(A,B)

ii)
[

⋂

t∈[0,tf ]
N

(

BTetA
T
)]⊥

iii)
[

⋂n−1
i=0 N

(

BTAiT
)

]⊥

iv) R
([

B AB · · · An−1B
])

v) R

(

∫ tf
0 e

tABBTetA
T

dt
)
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Proof. To prove that i) ⊆ ii), let η ∈ ⋂t∈[0,tf ]
N

(

BTetA
T
)

so that

ηTetAB = 0 for all t ∈ [0, tf ]. Now, let u: [0, tf ] 7→ Rm be continuous. Then,

ηT
∫ tf
0 e

(tf−t)ABu(t) dt = 0, which implies that η ∈ Ctf(A,B)⊥.

To prove that ii) ⊆ iii), let η ∈ ⋂n−1
i=0 N

(

BTAiT
)

so that ηTAiB = 0 for

all i = 0, 1, . . . , n −1. It follows from Theorem 4.4.6 that ηTAiB = 0 for all
i ≥ 0. Now, let t ∈ [0, tf ]. Then, ηTetAB =

∑∞
i=0 t

i(i!)−1ηTAiB = 0, and thus

η ∈ N

(

BTetA
T
)

.

To show that iii) ⊆ iv), let η ∈ R
([

B AB · · · An−1B
])⊥

. Then,

η ∈ N

(

[

B AB · · · An−1B
]T
)

, which implies that ηTAiB = 0 for all

i = 0, 1, . . . , n−1.

To prove that iv) ⊆ v), let η ∈ N

(

∫ tf
0 e

tABBTetA
T

dt
)

. Then,

ηT

tf
∫

0

etABBTetA
T

dtη = 0,

which implies that ηTetAB = 0 for all t ∈ [0, tf ]. Differentiating with respect
to t and setting t = 0 implies that ηTAiB = 0 for all i = 0, 1, . . . , n−1. Hence,

η ∈ R
([

B AB · · · An−1B
])⊥

.

To prove that v) ⊆ i), let η ∈ Ctf(A,B)⊥. Then, ηT
∫ tf
0 e

(tf−t)ABu(t) dt =

0 for all continuous u: [0, tf ] 7→ Rm. Letting u(t) = BTe(tf−t)A
T

ηT, it follows

that ηT
∫ tf
0 e

tABBTetA
T

dtη = 0, which implies that η ∈ N

(

∫ tf
0 e

tABBTetA
T

dt
)

.

Lemma 12.5.2 shows that the controllable subspace Ctf(A,B) at time
tf > 0 is independent of tf . Hence, we write C(A,B) for Ctf(A,B) and
call C(A,B) the controllable subspace of (A,B). (A,B) is controllable if
C(A,B) = Rn. For convenience, define the controllability matrix

K(A,B)
4

=
[

B AB · · · An−1B
]

(12.5.5)

so that
C(A,B) = R[K(A,B)]. (12.5.6)

Define
q

4

= dimC(A,B) = rankK(A,B). (12.5.7)

The following result shows that the controllable subspace C(A,B) is
unchanged by full-state feedback u(t) = Kx(t) + v(t).
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Proposition 12.5.3. Let K ∈ Rm×n. Then,

C(A+BK,B) = C(A,B). (12.5.8)

In particular, (A,B) is controllable if and only if (A+BK,B) is controllable.

Proof. Note that

C(A+BK,B)

= R[K(A+BK,B)]

= R
([

B AB +BKB A2B +ABKB +BKAB +BKBKB · · ·
])

= R[K(A,B)] = C(A,B). �

Let C̃(A,B) ⊆ Rn be a subspace that is complementary to C(A,B).

Then, C̃(A,B) is an uncontrollable subspace in the sense that if xf = x′f +

x′′f ∈ Rn, where x′f ∈ C(A,B) and x′′f ∈ C̃(A,B) is nonzero, then there is a
continuous control u: [0, tf ] → Rm such that x(tf) = x′f but no continuous
control such that x(tf) = xf . The following result provides a continuous

control u(·) that yields x(tf) = x′f for C̃(A,B)
4

= C(A,B)⊥.

Lemma 12.5.4. Let tf > 0, and define Q ∈ Rn×n by

Q
4

=





tf
∫

0

etABBTetA
T

dt





+ tf
∫

0

etABBTetA
T

dt. (12.5.9)

Then, Q is the projector onto C(A,B), and Q⊥ is the projector onto C(A,B)⊥.
Hence,

C(A,B) = R(Q) = N(Q⊥), (12.5.10)

C(A,B)⊥ = N(Q) = R(Q), (12.5.11)

q = dimC(A,B) = rankQ = def Q⊥, (12.5.12)

n− q = dimC(A,B)⊥ = def Q = rankQ⊥. (12.5.13)

Now, define u: [0, tf ] 7→ Rm by

u(t)
4

= BTe(tf−t)A
T





tf
∫

0

eτABBTeτA
T

dτ





+

xf . (12.5.14)

If, in addition, xf = x′f + x′′f , where x′f ∈ C(A,B) and x′′f ∈ C(A,B)⊥, then

x′f = Qxf =

tf
∫

0

e(tf−t)ABu(t) dt. (12.5.15)
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Finally, (A,B) is controllable if and only if Q = In. In this case, for all
xf ∈ Rn,

xf =

tf
∫

0

e(tf−t)ABu(t) dt, (12.5.16)

where u: [0, tf ] 7→ Rm is defined by

u(t)
4

= BTe(tf−t)A
T





tf
∫

0

eτABBTeτA
T

dτ





−1

xf . (12.5.17)

Lemma 12.5.5. Let α ∈ R. Then,

C(A+ αI,B) = C(A,B). (12.5.18)

The following result uses a coordinate transformation to characterize
C(A,B).

Theorem 12.5.6. There exists an orthogonal matrix S ∈ Rn×n such
that

A = S

[

A1 A12

0 A2

]

S−1, B = S

[

B1

0

]

, (12.5.19)

where A1 ∈ Rq×q, B1 ∈ Rq×m, and (A1, B1) is controllable.

Proof. Let α > 0 be such that Aα
4

= A− αI is asymptotically stable,
and let Q ∈ Rn×n be the nonnegative-semidefinite solution to

AαQ+QAT
α +BBT = 0 (12.5.20)

given by

Q =

∞
∫

0

etAαBBTetA
T
α dt.

It now follows from Lemma 12.5.2 with tf =∞ and Lemma 12.5.5

rankQ = rank

∞
∫

0

etAαBBTetA
T
α dt = dimC(Aα, B) = dimC(A,B) = q,

and let S ∈ Rn×n be an orthogonal matrix such that Q = S
[

Q1 0
0 0

]

ST, where

Q1 ∈ Rq×q is positive definite. Writing Aα = S
[

Â1 Â12

Â21 Â2

]

S−1 and B = S
[

B1

B2

]

,
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where Â1 ∈ Rq×q and B1 ∈ Rq×m, it follows from (12.5.20) that

Â1Q1 +Q1Â
T
1 +B1B

T
1 = 0,

Â21Q1 +B2B
T
1 = 0,

B2B
T
2 = 0.

Therefore, B2 = 0 and Â21 = 0, and thus

Aα = S

[

Â1 Â12

0 Â2

]

S−1, B = S

[

B1

0

]

.

Hence,

A = S

[

Â1 Â12

0 Â2

]

S−1 + αI = S

[

A1 A12

0 A2

]

S−1,

where A1
4

= Â1 + αIq, A12
4

= Â12, and A2
4

= Â2 + αIn−q.

Proposition 12.5.7. Let S ∈ Rn×n be orthogonal. Then, the following
conditions are equivalent:

i) A and B have the form (12.5.19), where A1 ∈ Rq×q, B1 ∈ Rq×m,
and (A1, B1) is controllable.

ii) C(A,B) = R
(

S
[

Iq
0

])

.

iii) C(A,B)⊥ = R
(

S
[

0
In−q

])

.

iv) Q = S

[

Iq 0
0 0

]

ST.

Proposition 12.5.8. Let S ∈ Rn×n be nonsingular. Then, the follow-
ing conditions are equivalent:

i) A and B have the form (12.5.19), where A1 ∈ Rq×q, B1 ∈ Rq×m,
and (A1, B1) is controllable.

ii) C(A,B) = R
(

S
[

Iq
0

])

.

iii) C(A,B)⊥ = R
(

S−T
[

0
In−q

])

.

Definition 12.5.9. Let λ ∈ spec(A). Then, λ is a controllable eigen-
value of (A,B) if

rank
[

λI −A B
]

= n. (12.5.21)

Otherwise, λ is an uncontrollable eigenvalue of (A,B).

Proposition 12.5.10. Let λ ∈ mspec(A) and K ∈ Rn×m. Then, λ is a
controllable eigenvalue of (A,B) if and only if λ is a controllable eigenvalue
of (A+BK,B).
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Proposition 12.5.11. Let λ ∈ mspec(A). Then,

C(A,B) ⊆ R
([

λI −A B
])

. (12.5.22)

Proof. First, note that (12.5.22) is equivalent to

Re R
([

λI −A B
])⊥⊆ C(A,B)⊥.

Let x ∈ R
([

λI −A B
])⊥

= N

([

λI−AT

BT

])

so that λx = ATx and BTx = 0.

Now, let u(·) be given by (12.5.14) with xf
4

= Rex. Then,

tf
∫

0

e(tf−t)ABu(t) dt = Qxf = 0,

which implies that Rex = xf ∈ C(A,B)⊥.

The next result characterizes controllability in several equivalent ways.

Theorem 12.5.12. The following statements are equivalent:

i) (A,B) is controllable.

ii) There exists t > 0 such that
∫ t
0 e

tABBTetA
T

dt is positive definite.

iii)
∫ tf
0 e

tABBTetA
T

dt is positive definite for all t > 0.

iv) rankK(A,B) = n.

v) Every eigenvalue of (A,B) is controllable.

vi) For every self-conjugate multiset {λ1, . . . , λn}m ⊂ C there exists a
matrix K ∈ Rm×n such that mspec(A+BK) = {λ1, . . . , λn}m.

Proof. The equivalence of i)–iv) follows from Lemma 12.5.2. To prove
that iv) implies v), suppose that v) does not hold, that is, there exists
λ ∈ spec(A) and a nonzero vector x ∈ Cn such that xTA = λxT and xTB = 0.
It thus follows that xTAB = λxTB = 0. Similarly, we obtain xTAiB = 0 for
all i = 0, 1, . . . , n−1. Hence, dimC(A,B) < n.

Conversely, to show that v) =⇒ iv), suppose that
rank

[

B AB · · · An−1B
]

< n. Then, there exists nonzero x ∈ Rn such

that xTAiB = 0 for all i = 0, . . . , n−1. Now, let p ∈ R[s] be a nonzero polyno-
mial of minimal degree such that xTp(A) = 0. Note that p is not a constant
polynomial and that xTµA(A) = 0. Thus, 1 ≤ deg p ≤ degµA. Now, let λ ∈ C
be such that p(λ) = 0, and let q ∈ R[s] be such that p(s) = q(s)(s−λ) for all

s ∈ C. Since deg q < deg p, it follows that xTq(A) 6= 0. Therefore, η
4

= q(A)x
is nonzero. Furthermore, ηT(A− λI) = xTp(A) = 0. Since xTAiB = 0 for all
i = 0, . . . , n −1, it follows that ηTB = xTq(A)B = 0. Consequently, v) does
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not hold.

The equivalence of v) and vi) is immediate.

To prove that i) implies vi), assume that m = 1, and let Ac = C(χA)
and Bc = en. Then, Proposition 12.8.3 implies that K(Ac, Bc) is nonsingu-
lar, while Proposition 12.8.6 implies that Ac = S−1AS and Bc = S−1B.
Now, let {λ1, . . . , λn}m ⊂ C be self conjugate and define p ∈ R[s] by

p(s)
4

= Πn
i=1(s− λi). Letting K

4

= eTn [C(p)−Ac]S
−1 it follows that

A+BK = S(Ac +BcKS)S−1

= S(Ac +Bce
T
n [C(p)−Ac])S

−1

= SC(p)S−1.

See [494, p. 248] for the case m > 1. See wonham/kailath.

Conversely, to show that vii) implies i), suppose that (A,B) is not
controllable. Then, it follows from Proposition 12.5.8 that there exists a
nonsingular matrix S ∈ Rn×n such that A and B have the form given by
i) of Proposition 12.5.8. Since the eigenvalues of A2 are not affected by
K ∈ Rm×n, it follows that vi) does not hold.

12.6 Stabilizability

Let A ∈ Rn×n, B ∈ Rn×m, and q
4

= dimC(A,C).

Definition 12.6.1. (A,B) is stabilizable if

Su(A) ⊆ C(A,B). (12.6.1)

Proposition 12.6.2. Let K ∈ Rm×n. Then, (A,B) is stabilizable if
and only if (A+BK,B) is stabilizable.

Proposition 12.6.3. The following statements are equivalent:

i) (A,B) is stabilizable.

ii) There exists a nonsingular matrix S ∈ Rn×n such that

A = S

[

A1 A12

0 A2

]

S−1, B = S

[

B1

0

]

, (12.6.2)

where A1 ∈ Rq×q, B1 ∈ Rq×m, (A1, B1) is controllable, and A2 ∈
R(n−q)×(n−q) is asymptotically stable.

iii) Every CRHP eigenvalue of (A,B) is controllable.
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iv) (A+BK,B) is stabilizable for all K ∈ Rm×n.

Proof. First assume that (A,B) is stabilizable so that Su(A) = N[µu
A(A)] =

R[µs
A(A)] ⊆ C(A,B). Using Proposition 12.5.8 it follows that there exists an

orthogonal matrix S ∈ Rn×n such that (12.6.2) is satisfied, where A1 ∈ Rq×q

and (A1, B1) is controllable. Thus, R[µs
A(A)] ⊆ C(A,B) = R

(

S
[

Iq
0

])

.

Next, note that

µs
A(A) = S

[

µs
A(A1) B12s

0 µs
A(A2)

]

S−1,

where B12s ∈ Rq×(n−q), and suppose that A2 is not asymptotically stable
with CRHP eigenvalue λ. Then, λ /∈ roots(µs

A), and thus µs
A(A2) 6= 0. Let

x2 ∈ In−q satisfy µs
A(A2)x2 6= 0. Then,

µs
A(A)S

[

0
x2

]

/∈ R

(

S

[

Iq
0

])

,

which implies that Su(A) is not contained in C(A,B). Hence, A2 is asymp-
totically stable.

Conversely, assume that there exists a nonsingular matrix S ∈ Rn×n

such that (12.6.2) is satisfied, where A1 ∈ Rq×q, q = dimC(A,B), and
A2 ∈ R(n−q)×(n−q) is asymptotically stable. Using Fact 11.16.4 it follows that
Su(A) ⊆ R

(

S
[

Iq
0

])

= C(A,B), which implies that (A,B) is stabilizable.

Lemma 12.6.4. Assume that (A,B) is stabilizable and

Q
4

=

∞
∫

0

etABBTetA
T

dt

exists. Then, A is asymptotically stable.

Proof. Since (A,B) is stabilizable, it follows from Proposition 12.3.3
that there exists a nonsingular matrix S ∈ Rn×n such thatA = S

[

A1 0
A21 A2

]

S−1

and C =
[

C1 0
]

S−1, where A1 ∈ Rp×p, (A1, C1) is observable, and A2 is
asymptotically stable. Thus, the integral

∞
∫

0

etA
T

CTCetA dt = S

[ ∫∞
0 etA

T
1CT

1C1e
tA1 dt 0

0 0

]

S−1

exists. Now, suppose that A is not asymptotically stable so that A1 is not
asymptotically stable. Let λ ∈ spec(A1) ∩ CRHP, and let x1 ∈ Cp be an
associated eigenvector. Since (A1, C1) is observable, it follows from Propo-
sition 8.5.3 and iii) of Theorem 12.2.12 that

∫∞
0 etA

T
1CT

1C1e
tA1 dt is positive
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definite. Consequently,

α
4

= x∗1

∞
∫

0

etA
T
1CT

1C1e
tA1 dtx1

is positive. However, we also have that

α = x∗1

∞
∫

0

eλtCT
1C1e

λt dtx1 = x∗1C
T
1C1x1

∞
∫

0

e2(Reλ)t dt.

Since Reλ ≥ 0, it follows that
∫∞
0 e2(Reλ)t dt = ∞, which contradicts the

fact that α is finite.

12.7 Controllable Asymptotic Stability

Definition 12.7.1. (A,B) is controllably asymptotically stable if

C(A,B) ⊆ Ss(A). (12.7.1)

Proposition 12.7.2. Let K ∈ Rm×n. Then, (A,B) is controllably
asymptotically stable if and only if (A+BK,B) is controllably asymptoti-
cally stable.

Lemma 12.7.3. Assume that the nonnegative-semidefinite matrix P ∈
Rn×n defined by

Q
4

=

∞
∫

0

etABBTetA
T

dt (12.7.2)

exists. Then, Q satisfies

AQ+QAT +BBT = 0. (12.7.3)

Proposition 12.7.4. The following statements are equivalent:

i) (A,B) is controllably asymptotically stable.

ii) There exists a nonsingular matrix S ∈ Rn×n and k ∈ N such that

A = S

[

A1 A12

0 A2

]

S−1, B = S

[

B1

0

]

, (12.7.4)

where A1 ∈ Rk×k is asymptotically stable and B1 ∈ Rk×m.

iii) limt→∞ etAB = 0.

iv) Q
4

=
∫∞
0 etABBTetA

T

dt exists.
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v) There exists a nonnegative-semidefinite matrix Q ∈ Rn×n satisfying
(12.7.3).

In this case, one nonnegative-semidefinite solution is given by (12.7.2). Fur-
thermore,

Q = QQ+, (12.7.5)

R(Q) = R(Q) = C(A,B), (12.7.6)

R(Q) = R(Q) = C(A,B)⊥, (12.7.7)

rankQ = rankQ = q. (12.7.8)

Proof. To prove that i) implies ii), assume that (A,C) is controllably
asymptotically stable. It then follows that there exists a nonsingular matrix
S ∈ Rn×n such that A = S

[

A1 0
A21 A2

]

S−1 and C =
[

C1 0
]

S−1, where A1 is
asymptotically stable. Thus,

CetA =
[

C1e
tA1 0

]

S → 0

as t → ∞. Next, to prove that ii) implies iii), assume that CetA → 0
as t → ∞. Then, every entry of CetA involves exponentials of t, where
the coefficients of t have negative real part. Hence, so does every entry of
etA

T

CTCetA, which implies that
∫∞
0 etA

T

CTCetA dt exists. To prove that iii)

implies iv), assume that P =
∫∞
0 etA

T

CTCetA dt exists. Then, etA
T

CTCetA → 0
as t→∞, and thus

ATP + PA =

∞
∫

0

[

ATetA
T

CTCetA + etA
T

CTCetAA
]

dt

=

∞
∫

0

d

dt
etA

T

CTCetA dt

= lim
t→∞

etA
T

CTCetA − CTC

= −CTC,

which shows that P satisfies (12.4.3).

To prove that iv) implies i), suppose that there exists a nonnegative-
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semidefinite matrix P ∈ Rn×n satisfying (12.4.3). Then,

t
∫

0

eτA
T

CTCeτA dτ = −
t
∫

0

eτA
T(

ATP + PA
)

eτA dτ

= −
t
∫

0

d

dτ
eτA

T

PeτA dτ

= P − etAT

PetA

≤ P.
Next, it follows from Proposition 12.5.7 that there exists an orthogonal
matrix S ∈ Rn×n such that A = S

[

A1 0
A21 A2

]

ST and C =
[

C1 0
]

ST, where
(A1, C1) is observable. Consequently, we have

t
∫

0

eτA
T
1CT

1C1e
τA1 dτ =

[

I 0
]

S

t
∫

0

eτA
T

CTCeτA dτST

[

I
0

]

≤
[

I 0
]

SPST

[

I
0

]

.

Thus, it follows from Proposition 8.5.3 that
∞
∫

0

etA
T
1CT

1C1e
tA1 dt exists. Since

(A1, C1) is observable, it follows from Lemma 12.4.3 that A1 is asymptoti-
cally stable. Therefore, (A1, C1) is controllably asymptotically stable.

Proposition 12.7.5. The following statements are equivalent:

i) A is asymptotically stable.

ii) (A,B) is stabilizable and controllably asymptotically stable.

Furthermore, if two of the following three conditions are satisfied, then the
third condition is satisfied:

iii) A is asymptotically stable.

iv) (A,B) is controllable.

v)
∫∞
0 etABBTetA

T

dt exists and is positive definite.

12.8 Realization Theory

Given a proper rational transfer function G we wish to determine
(A,B,C,D) such that (12.1.35) holds. The following terminology is stan-
dard.
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Definition 12.8.1. Let G ∈ Rl×m(s). If l = m = 1, then G is a
single-input/single-output (SISO) rational transfer function; if l = 1 and
m > 1, then G is a multiple-input/single-output (MISO) rational transfer
function; if l > 1 and m = 1, then G is a single-input/multiple-output
(SIMO) rational transfer function; and, if l > 1 and m > 1, then G is a
multiple-input/multiple output (MIMO) rational transfer function.

Definition 12.8.2. Let G ∈ Rl×m(s) be proper, and assume that A ∈
Rn×n, B ∈ Rn×m, C ∈ Rl×n, andD ∈ Rl×m satisfy G(s) = C(sI−A)−1B+D.

Then,
[

A B

C D

]

is a realization of G, which is written as

G ∼
[

A B

C D

]

. (12.8.1)

The order of the realization
[

A B

C D

]

is the order of A.

Although realizations are not unique, the matrix D is unique and is
given by

D = G(∞). (12.8.2)

Furthermore, note that G ∼
[

A B

C D

]

if and only if Ĝ ∼
[

A B

C 0

]

, where

Ĝ
4

= G−D. Therefore, it suffices to construct realizations for strictly proper
transfer functions.

Suppose that n = 0. Then, A, B, and C are empty matrices, and G is
given by

G(s) = 0l×0(sI0×0 − 00×0)
−100×m +D = 0l×m +D = D. (12.8.3)

Therefore, the order of the realization
[

00×0 00×m

0l×0 D

]

is zero.

The following result shows that every strictly proper, SISO rational
transfer function has a realization. In fact, two realizations are the control-
lable canonical form and the observable canonical form given by (12.8.6) and
(12.8.8), respectively.

Proposition 12.8.3. Let G ∈ R(s) be strictly proper and given by

G(s) =
αn−1s

n−1 + αn−2s
n−2 + · · ·+ α1s+ α0

sn + βn−1sn−1 + · · ·+ β1s+ β0
. (12.8.4)
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Then, G ∼
[

Ac Bc

Cc 0

]

, where Ac, Bc, Cc are given by

Ac =















0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−β0 −β1 −β2 · · · −βn−1















, Bc =











0
...
0
1











, (12.8.5)

Cc =
[

α0 α1 · · · αn−1

]

, (12.8.6)

and G ∼
[

Ao Bo

Co 0

]

, where Ao, Bo, Co are given by

Ao =















0 0 · · · 0 −β0

1 0 · · · 0 −β1

0 1 · · · 0 −β2
...

...
. . .

...
0 0 · · · 1 −βn−1















, Bo =











α0

α2
...

αn−1











, (12.8.7)

Co =
[

0 · · · 0 1
]

. (12.8.8)

Furthermore, (Ac, Bc) is controllable and (Ao, Co) is observable.

Proof. The realizations can be verified directly. Furthermore, note
that

C(Ac, Bc) = O(Ao, Co) =



















0 0 0 · · · 0 1
...

...
... . .

.
. .

. −βn−1

0 0 0 . .
. ...

0 0 1 · · · · · · −β2

0 1 −βn−1 · · · · · · −β1

1 −βn−1 −βn−2 · · · · · · −β0



















.

Using Fact 2.12.20 it follows that detC(Ac, Bc) = detO(Ao, Co) = (−1)bn/2c,
which shows that (Ac, Bc) is controllable and (Ao, Co) is observable.

The following result shows that every proper rational transfer function
has a realization.

Theorem 12.8.4. Let G ∈ Rl×m(s) be proper. Then, there exist A ∈
Rn×n, B ∈ Rn×m, C ∈ Rl×n, and D ∈ Rl×m such that G ∼

[

A B

C D

]

.

Proof. By Proposition 12.8.3, every entry G(i,j) of G has a realization

G(i,j) ∼
[

Aij Bij

Cij Dij

]

. Combining these realizations yields a realization of
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G.

Let G ∈ Rl×m(s), and let
[

A B

C D

]

be a realization of G, where A ∈

Rn×n. If S ∈ Rn×n is nonsingular, then
[

SAS−1 SB

CS−1 D

]

is also a realization

of G.

Definition 12.8.5. Let G ∈ Rl×m(s) be proper, and let
[

A B

C D

]

and
[

Â B̂

Ĉ D

]

be nth-order realizations of G. Then,
[

A B

C D

]

and
[

Â B̂

Ĉ D

]

are

equivalent if there exists a nonsingular matrix S ∈ Rn×n such that Â =
SAS−1, B̂ = SB, and Ĉ = CS−1.

Proposition 12.8.6. Let G ∈ R(s) be SISO and strictly proper with

nth-order realization
[

A B

C 0

]

. If (A,B) is controllable, then there exists

a nonsingular matrix S ∈ Rn×n such that
[

SAS−1 SB

CS−1 0

]

is in controllable

companion form. Furthermore, if (A,C) is observable, then there exists

a nonsingular matrix S ∈ Rn×n such that
[

SAS−1 SB

CS−1 0

]

is in observable

companion form.

Proof. Defining S
4

= K(A,B)[K(Ac, Bc)]
−1, it follows that SAS−1 =

C(χA) and S−1B = en. Alternatively, defining S
4

= [O(Ao, Co)]
−1O(Ao, Co),

it follows that SAS−1 = C(χA)T and CS−1 = eTn .

Proposition 12.8.7. Let G ∈ Rl×m(s) be proper and have controllable

and observable realizations G ∼
[

A1 B1

C1 D

]

and G ∼
[

A2 B2

C2 D

]

. Then,

these realizations are equivalent.

Proof. For the SISO case l = m = 1, the result is an immediate
consequence of Proposition 12.8.6. In the MIMO case, for i = 1, 2 define
Ki

4

= K(Ai, Bi), Oi
4

= O(Ai, Ci), and S
4

= (OT
2 O2)

−1OT
2 O1. Then, S−1 =

K1K
T
2 (K2K

T
2 )−1 and it follows that A2 = SA1S

−1, B2 = SB1, and C2 =
C1S

−1. NEEDS TO BE CHECKED

A rational transfer function G ∈ Rl×m(s) can have realizations of
different orders. For example, letting

A = 1, B = 1, C = 1, D = 0,

and

Â =

[

1 0
0 1

]

, B̂ =

[

1
0

]

, Ĉ =
[

1 0
]

, D̂ = 0,
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it follows that

G(s) = C(sI −A)−1B +D = Ĉ(sI − Â)−1B̂ + D̂ =
1

s−1
.

Generally, it is desirable to find realizations whose order is as small as pos-
sible.

Definition 12.8.8. Let G ∈ Rl×m(s) be proper. Then, the realization
[

A B

C D

]

is a minimal realization of G if its order is less than or equal to

the order of every realization of G. In this case, we write

G
min∼
[

A B

C D

]

. (12.8.9)

Note that minimality of a realization is independent of D. The follow-
ing result is useful for constructing minimal realizations.

Proposition 12.8.9. Let G ∈ Rl×m(s), where G ∼
[

A B

C D

]

. Then,

there exists a nonsingular matrix S ∈ Rn×n such that

A = S









A1 0 A13 0
A21 A2 A23 A24

0 0 A3 0
0 0 A43 A4









S−1, B = S









B1

B2

0
0









, (12.8.10)

C =
[

C1 0 C3 0
]

S−1, (12.8.11)

where (A1, B1) and (A2, B2) are controllable, and (A1, C1) and (A3, C3) are

observable. Furthermore, G ∼
[

A1 B1

C1 D1

]

.

Proof. The result is obtained by combining Proposition 12.5.7 and
Proposition 12.5.8. More directly, it follows from Theorem 8.3.4 that there
exists a nonsingular matrix S ∈ Rn×n such that the controllability and
observability Gramians (12.7.2) and (12.4.2) satisfy

Q = S









Q1 0
Q2

0
0 0









ST, P = S−T









P1 0
0

P2

0 0









S−1,

where Q1, Q2, P1 and P2 are positive definite and diagonal. The form of
SAS−1, SB, and CS−1 given by (12.8.11) now follows from (12.4.3) and

(12.7.3). Finally, it can be verified directly that
[

A1 B1

C1 D1

]

is a realization

of G.
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The following result show that the controllable and observable realiza-

tion
[

A1 B1

C1 D1

]

of G in Proposition 12.8.9 is, in fact, minimal.

Corollary 12.8.10. Let G ∼
[

A B

C D

]

∈ Rl×m(s). Then,
[

A B

C D

]

is

minimal if and only if it is controllable and observable.

Proof. To prove necessity, suppose that
[

A B

C D

]

is either not control-

lable or not observable. Then, Proposition 12.8.3 can be used to construct

a realization of G of order less than n. Hence,
[

A B

C D

]

is not minimal.

Sufficiency is proved in [494, pp. 172, 173] or [572, p. 50].

Theorem 12.8.11. Let G ∈ Rl×m(s), where G
min∼

[

A B

C 0

]

. Then,

the McMillan degree of G is equal to the order of A.

Proof. See ????.

Definition 12.8.12. Let G ∈ Rl×m(s), where G
min∼

[

A B

C D

]

. Then,

G is (asymptotically stable, semistable, Lyapunov stable) if A is.

Proposition 12.8.13. Let G ∈ Rl×m(s). Then, G is (asymptotically
stable, semistable, Lyapunov stable) if and only if every entry of G has the
same property.

Definition 12.8.14. Let G ∈ Rl×m(s), where G
min∼

[

A B

C D

]

and A

is asymptotically stable. Then, the realization
[

A B

C D

]

is semi-balanced

if the controllability and observability Gramians (12.4.2) and (12.7.2) are
diagonal, and balanced if they are diagonal and equal.

Proposition 12.8.15. Let G ∈ Rl×m(s), where G ∼
[

A B

C D

]

and A

is asymptotically stable. If, in addition, G
min∼
[

A B

C D

]

, then there exists a

nonsingular matrix S ∈ Rn×n such that the realization G ∼
[

SAS−1 SB

CS−1 D

]

is semi-balanced.

Proof. It follows from Corollary 8.3.7 that there exists a nonsingular
matrix S ∈ Rn×n such that SQST and S−TPS−1 are diagonal, where Q and
P are the controllability and observability Gramians. Hence, the realization
[

SAS−1 SB

CS−1 D

]

is semi-balanced.
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12.9 System Zeros

Recall Definition 4.2.4 on the rank of a matrix polynomial.

Definition 12.9.1. Let G ∈ Rl×m(s), where G ∼
[

A B

C D

]

. Then, the

Rosenbrock system matrix Z ∈ R(n+l)×(n+m)[s] is the polynomial matrix

Z(s)
4

=

[

sI −A B
C D

]

. (12.9.1)

Furthermore, z ∈ C is an invariant zero of the realization
[

A B

C D

]

if

rankZ(z) < rankZ. (12.9.2)

It is easy to see that equivalent realizations have the same invariant
zeros. Furthermore, invariant zeros are not changed by full-state feedback.
To see this, let u = Kx+ v, which leads to the rational transfer function

GK ∼
[

A+BK B

C +DK D

]

. (12.9.3)

Since
[

zI − (A+BK) B
−(C +DK) D

]

=

[

zI −A B
−C D

] [

I 0
−K I

]

, (12.9.4)

it follows that
[

A B

C D

]

and
[

A + BK B

C + DK D

]

have the same invariant zeros.

Proposition 12.9.2. Let G ∈ Rl×m(s), where G ∼
[

A B

C D

]

, and

assume that CTD = 0 and DTD is positive definite. Then, the following
statements hold:

i) rankZ = n+m.

ii) z ∈ C is an invariant zero of
[

A B

C D

]

if and only if z is an unob-

servable eigenvalue of (A,C).

Proof. To prove i), assume that rankZ < n + m. Then, for every
s ∈ C, there exists nonzero [ xy ] ∈ N(Z(s)), that is,

[

sI −A B
−C D

][

x
y

]

= 0.

Consequently, −Cx+Dy = 0, which implies that −DTCx+DTDy = 0 and
thus y = 0. Furthermore, since (sI − A)x = 0, it follows that choosing
s 6∈ spec(A) yields x = 0, which is a contradiction. To prove ii), note that
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z is an invariant zero of
[

A B

C D

]

if and only if rankZ(z) < n + m, which

holds if and only if there exists nonzero [ xy ] ∈ N(Z(z)). This condition is
equivalent to y = 0 and

[

zI−A
−C

]

x = 0. Since x 6= 0, this last condition is
equivalent to the fact that z is an unobservable eigenvalue of (A,C).

Corollary 12.9.3. Let (A,C) be observable and assume that CTD = 0

and DTD is positive definite. Then,
[

A B

C D

]

has no invariant zeros.

Definition 12.9.4. Let G ∈ Rp×m. Then, z ∈ C is a transmission zero
of G if rankG(z) < rankG.

Proposition 12.9.5. Let G ∈ Rp×m(s), where G
min∼

[

A B

C D

]

. If

s 6∈ spec(A), then

rankZ(s) = n+ rankG(s). (12.9.5)

Furthermore,

rankZ = n+ rankG. (12.9.6)

Proof. Since s 6∈ spec(A), it follows that
[

sI −A B
−C D

]

=

[

I 0
−C(sI −A)−1 I

] [

sI −A B
0 G(s)

]

,

which implies (12.9.5) and (12.9.6).

Theorem 12.9.6. Let G ∈ Rp×m(s), where G
min∼

[

A B

C D

]

, and let

z 6∈ spec(A). Then, z is a transmission zero of G if and only if z is an

invariant zero of
[

A B

C D

]

.

Proof. Let z 6∈ spec(A) be a transmission zero of G. Then,

rankZ(z) = n+ rankG(z) < n+ rankG = rankZ,

which implies that z is an invariant zero of
[

A B

C D

]

. Conversely, let z 6∈

spec(A) be an invariant zero of
[

A B

C D

]

. Then,

rankG(z) = rankZ(z)− n < rank S− n = rankG,

which implies that z is a transmission zero of G.
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12.10 H2 System Norm

Consider the system

ẋ(t) = Ax(t) +Bu(t), (12.10.1)

y(t) = Cx(t), (12.10.2)

where A ∈ Rn×n is asymptotically stable, B ∈ Rn×m, and C ∈ Rl×n. Then,
for all t ≥ 0, the impulse response function is given by H(t) = CetAB. The
L2 norm of H(·) is given by

‖H‖L2

4

=

[

∞
∫

0

‖H(t)‖2F dt

]1/2

. (12.10.3)

The following result provides expressions for ‖H(·)‖L2
in terms of the con-

trollability and observability Gramians.

Theorem 12.10.1. Let H(t) = CetAB, where A is asymptotically sta-
ble. Then, the L2 norm of H is given by

‖H‖2L2
= trCQCT = trBTPB, (12.10.4)

where Q,P ∈ Rn×n satisfy

AQ+QAT+BBT = 0, (12.10.5)

ATP + PA+ CTC = 0. (12.10.6)

Proof. Note that

‖H‖2L2
=

∞
∫

0

trCetABBTetA
T

CTdt = trCQCT,

where Q satisfies (12.10.5). The dual expression follows in a similar manner
or by noting that

trCQCT = trCTCQ = − tr
(

ATP + PA
)

Q

= − tr
(

AQ+QAT
)

P = trBBTP = trBTPB. �

For the following definition note that

‖G(s)‖F = [trG(s)G∗(s)]1/2 . (12.10.7)

Definition 12.10.2. The H2 norm of G ∈ Rl×m(s) is the nonnegative
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number

‖G‖H2

4

=





1

2π

∞
∫

−∞

‖G(ω)‖2F dω





1/2

. (12.10.8)

The following result is Parseval’s theorem, which relates the L2 norm
of the impulse response function to the H2 norm of its transform.

Theorem 12.10.3. Let G ∼
[

A B

C 0

]

, where A ∈ Rn×n is asymptoti-

cally stable, and let H(t) = CetAB. Then,

∞
∫

0

H(t)HT(t) dt =
1

2π

∞
∫

−∞

G(ω)G∗(ω) dω. (12.10.9)

Therefore,

‖H‖L2
= ‖G‖H2

. (12.10.10)

Proof. First note that

G(s) = L{H(t)} =

∞
∫

0

H(t)e−st dt

and that

H(t) =
1

2π

∞
∫

−∞

G(ω)eωt dω.

Hence,

∞
∫

0

H(t)HT(t)e−st dt =

∞
∫

0





1

2π

∞
∫

−∞

G(ω)eωt dω



HT(t)e−st dt

=
1

2π

∞
∫

−∞

G(ω)





∞
∫

0

HT(t)e−(s−ω)t dt



 dω

=
1

2π

∞
∫

−∞

G(ω)GT(s− ω) dω.

Setting s = 0 yields (12.10.6), while taking the trace of (12.10.9) yields
(12.10.10).

Corollary 12.10.4. Let G ∼
[

A B

C 0

]

, where A ∈ Rn×n is asymptoti-
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cally stable, and let H(t) = CetAB. Then,

‖G‖2H2
= ‖H‖2L2

= CQCT = BTPB, (12.10.11)

where Q,P ∈ Rn×n satisfy (12.10.5) and (12.10.6), respectively.

The following corollary of Theorem 12.10.3 provides a frequency do-
main expression for the solution of the Lyapunov equation.

Corollary 12.10.5. Let A ∈ Rn×n be asymptotically stable and let
B ∈ Rn×m. Then, the matrix Q ∈ Rn×n given by

Q =
1

2π

∞
∫

−∞

(ωI −A)−1BBT(ωI −A)−∗ dω (12.10.12)

satisfies

AQ+QAT+BBT = 0. (12.10.13)

Proof. The result follows directly from Theorem 12.10.3 with H(t) =
etAB and G(s) = (sI −A)−1B. Alternatively, it follows from (12.10.13) that

∞
∫

−∞

(ωI−A)−1 dωQ+Q

∞
∫

−∞

(ωI−A)−∗ dω =

∞
∫

−∞

(ωI−A)−1BBT(ωI−A)−∗ dω.

Assuming A is diagonalizable with eigenvalues λi = −σi + ωi, it follows
that

∞
∫

−∞

dω

ω − λi
=

∞
∫

−∞

σi − ω
σ2
i + ω2

dω =
σiπ

|σi|
−  lim

r→∞

r
∫

−r

ω

σ2
i + ω2

dω = π,

which implies that ∞
∫

−∞

(ωI −A)−1 dω = πIn,

which yields (12.10.12). See [139] for a proof of the general case.

Proposition 12.10.6. Let G1, G2 ∈ Rl×m(s) be asymptotically stable
rational transfer functions. Then,

‖G1 +G2‖H2
≤ ‖G1‖H2

+ ‖G2‖H2
. (12.10.14)

Proof. Let G1
min∼

[

A1 B1

C1 0

]

and G2
min∼

[

A2 B2

C2 0

]

, where A1 ∈

Rn1×n1 and A2 ∈ Rn2×n2 . It thus follows that G1 +G2 ∼
[

A1 0 B1

0 A2 B2

C1 C2 0

]

. It



matrix2 November 19, 2003

LINEAR SYSTEMS AND CONTROL THEORY 463

follows from Theorem 12.10.3 that ‖G1‖H2
=
√

trC1Q1CT
1 and ‖G2‖H2

=
√

trC2Q2CT
2 , where Q1 ∈ Rn1×n1 and Q2 ∈ Rn2×n2 are the unique positive-

definite matrices satisfying A1Q1 +Q1A
T
1 +B1B

T
1 = 0 and A2Q2 +Q2A

T
2 +

B2B
T
2 = 0. Furthermore,

‖G2 +G2‖2H2
= tr

[

C1 C2

]

Q

[

CT
1

CT
2

]

,

where Q ∈ R(n1+n2)×(n1+n2) is the unique, nonnegative-semidefinite matrix
satisfying

[

A1 0
0 A2

]

Q+Q

[

A1 0
0 A2

]T

+

[

B1

B2

] [

B1

B2

]T

= 0.

It can be seen that Q =
[

Q1 Q12

QT
12 Q2

]

, where Q1 and Q2 are as given above and

where Q12 satisfies A1Q12 + Q12A
T
2 + B1B

T
2 = 0. Now, using the Cauchy-

Schwarz inequality (9.3.15) and iii) of Proposition 8.2.3, it follows that

‖G1 +G2‖2H2
= tr

(

C1Q1C
T
1 + C2Q2C

T
2 + C2Q

T
12C

T
1 + C1Q12C

T
2

)

= ‖G1‖2H2
+ ‖G2‖2H2

+ 2 trC1Q12Q
−1/2
2 Q

1/2
2 CT

2

≤ ‖G1‖2H2
+ ‖G2‖2H2

+ 2 tr
(

C1Q12Q
−1
2 Q

T
12C

T
1

)

tr
(

C2Q2C
T
2

)

≤ ‖G1‖2H2
+ ‖G2‖2H2

+ 2 tr
(

C1Q1C
T
1

)

tr
(

C2Q2C
T
2

)

= (‖G1‖H2
+ ‖G2‖H2

)2. �

12.11 Harmonic Steady-State Response

The following result, which is the fundamental theorem of linear sys-
tems theory, concerns the response of a linear system to a harmonic input.

Theorem 12.11.1. For t ≥ 0, consider the linear system

ẋ(t) = Ax(t) +Bu(t), (12.11.1)

with harmonic input

u(t) = Reu0e
ω0t, (12.11.2)

where u0 ∈ Cm and ω0 ∈ R is such that ω0 6∈ spec(A). Then, x(t) is given
by

x(t) = etA
(

x(0)− Re
[

(ω0I −A)−1Bu0

])

+ Re
[

(ω0I −A)−1Bu0e
ω0t
]

.
(12.11.3)
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Proof. We have

x(t) = etAx(0) +

t
∫

0

e(t−τ)ABRe(u0e
ω0τ ) dτ

= etAx(0) + etARe

[∫ t

0
e−τAeω0τ dτBu0

]

= etAx(0) + etARe





t
∫

0

eτ(ω0I−A) dτBu0





= etAx(0) + etARe
[

(ω0I −A)−1
(

eτ(ω0I−A) − I
)

Bu0

]

= etAx(0) + Re
[

(ω0I −A)−1
(

eω0tI − etA
)

Bu0

]

= etAx(0) + Re
[

(ω0I −A)−1
(

−etA
)

Bu0

]

+ Re
[

(ω0I −A)−1eω0tBu0

]

= etA
(

x(0)− Re
[

(ω0I −A)−1Bu0

])

+ Re
[

(ω0I −A)−1Bu0e
ω0t
]

. �

Theorem 12.11.1 shows that the response of a linear system to a har-
monic input consists of two components, namely, a transient component

xtrans(t)
4

= etA
(

x(0)− Re
[

(ω0I −A)−1Bu0

])

, (12.11.4)

which depends on both the initial condition and input, and a harmonic
steady-state component

xhss(t) = Re
[

(ω0I −A)−1Bu0e
ω0t
]

, (12.11.5)

which depends only on the input.

If A is asymptotically stable, then limt→∞ xtrans(t) = 0 and thus x(t)
approaches its harmonic steady-state component xhss(t) for large t. Since
the response is sinusoidal, it follows that x(t) does not converge in the usual
sense. If A is semistable, then it follows from vii) of Proposition 11.6.2 that

lim
t→∞

xtrans(t) =
(

I −AA#
)

(

x(0)− Re
[

(ω0I −A)−1Bu0

])

, (12.11.6)

which represents a constant offset to the harmonic steady-state compo-
nent. Finally, note that the complex amplitude of xhss(t) involves G(ω0) =
(ω0I − A)−1B, that is, the value of the rational transfer function G ∼
[

A B

C 0

]

evaluated at s = ω0, where ω0 is the input frequency.
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12.12 System Interconnections

Let G ∈ Rl×m(s). We define the parahermitian conjugate G∼ of G by

G∼ 4

= GT(−s). The following result provides realizations for GT, G∼ and
G−1.

Proposition 12.12.1. Let G ∼
[

A B

C D

]

. Then,

GT ∼
[

AT CT

BT DT

]

(12.12.1)

and

G∼ ∼
[

−AT −CT

BT DT

]

. (12.12.2)

Furthermore, if G is square and D is nonsingular, then

G−1 ∼
[

A−BD−1C −BD−1

D−1C D−1

]

. (12.12.3)

Proof. Since y = Gu, it follows that G−1 must satisfy u = G−1y. Since
ẋ = Ax + Bu and y = Cx +Du, it follows that u = −D−1Cx +D−1y, and
thus ẋ = Ax+B

(

−D−1Cx+D−1y
)

=
(

A−BD−1C
)

x+BD−1y.

Note that if G is a SISO rational transfer function and G ∼
[

A B

C D

]

,

then G ∼
[

AT BT

CT D

]

.

Let G1 and G2 be l1 × m1 and l2 × m2 rational transfer functions,
respectively. Then, the cascade interconnection of G1 and G2 is the product
G2G1, while the parallel interconnection is the sum G1 + G1. Note that
G2G1 is defined only if m2 = l1 while G1 + G2 requires that m1 = m2 and
l1 = l2.

Proposition 12.12.2. Let G1 ∈ Rl1×m1(s) and G1 ∈ Rl2×m2(s), and

let G1 ∼
[

A1 B1

C1 D1

]

and G2 ∼
[

A2 B2

C2 D2

]

. If m2 = l1, then

G2G1 ∼





A1 0 B1

B2C1 A2 B2D1

D2C1 C2 D2D1



 . (12.12.4)
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If m1 = m2 and l1 = l2, then

G1 +G2 ∼





A1 0 B1

0 A2 B2

C1 C2 D1 +D2



 . (12.12.5)

Proof. Consider the state space equations

ẋ1 = A1x1 +B1u1, ẋ2 = A2x2 +B2u2,

y1 = C1x1 +D1u1, y2 = C2x2 +D2u2.

Since u2 = y1, it follows that

ẋ2 = A2x2 +B2C1x1 +B2D1u1,

y2 = C2x2 +D2C1x1 +D2D1u1,

and thus
[

ẋ1

ẋ2

]

=

[

A1 0
B2C1 A2

] [

x1

x2

]

+

[

B1

B2D1

]

u1,

y2 =
[

D2C1 C2

]

[

x1

x2

]

+D2D1u1,

which yields the realization (12.12.4) of G2G1. The realization (12.12.5) for
G1 +G2 can be obtained by similar techniques.

It is sometimes useful to combine systems by concatenating them in
row, column, or block-diagonal forms.

Proposition 12.12.3. Let G1 ∼
[

A1 B1

C1 D1

]

and G2 ∼
[

A2 B2

C2 D2

]

.

Then,

[

G1 G2

]

∼





A1 0 B1 0
0 A2 0 B2

C1 C2 D1 D2



 , (12.12.6)

[

G1

G2

]

∼









A1 0 B1

0 A2 B2

C1 0 D1

0 C2 D2









, (12.12.7)

[

G1 0
0 G2

]

∼









A1 0 B1 0
0 A2 0 B2

C1 0 D1 0
0 C2 0 D2









. (12.12.8)

Next, we interconnect a pair of systems G1, G2 by means of feedback
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as shown in Figure 2. It can be seen that u and y are related by

ŷ = (I +G1G2)
−1G1û (12.12.9)

or

ŷ = G1(I +G2G1)
−1û. (12.12.10)

The equivalence of (12.12.9) and (12.12.10) follows from the push-through
identity Fact 2.13.15

(I +G1G2)
−1G1 = G1(I +G2G1)

−1. (12.12.11)

A realization of this rational transfer function is given by the following result.

Proposition 12.12.4. Let G1 ∼
[

A1 B1

C1 D1

]

and G2 ∼
[

A2 B2

C2 D2

]

.

Then,

[I +G1G2]
−1G1

∼
[

A1 − B1(I + D2D1)
−1D2C1 −B1(I + D2D1)

−1C2 B1(I + D2D1)
−1

B2(I + D1D2)
−1C1 A2 − B2(I + D1D2)

−1D1C2 B2(I + D1D2)
−1D1

(I + D1D2)
−1C1 −(I + D1D2)

−1D1C2 (I + D1D2)
−1D1

]

.

(12.12.12)

12.13 H2 Standard Problem

The standard problem of feedback control involves four distinct signals,
namely, an exogenous input w, a control input u, a performance variable z,
and a feedback signal y. This system can be written as

[

ẑ(s)
ŷ(s)

]

=

[

G11(s) G12(s)
G21(s) G22(s)

] [

ŵ(s)
û(s)

]

, (12.13.1)

where G11, G12, G21, and G22 are rational transfer functions.

Now, define the two-vector-input, two-vector-output transfer function

G
4

=

[

G11 G12

G21 G22

]

, (12.13.2)

which has a realization

G ∼





A D1 B

E1 E0 E2

C D2 D



 . (12.13.3)

Consequently, it can be seen that

G(s) =

[

E1(sI −A)−1D1 + E0 E1(sI −A)−1B + E2

C(sI −A)−1D1 +D2 C(sI −A)−1B +D

]

, (12.13.4)
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which shows that G11, G12, G21, and G22 have the realizations

G11∼
[

A D1

E1 E0

]

, G12 ∼
[

A B

E1 E2

]

, (12.13.5)

G21∼
[

A D1

C D2

]

, G22 ∼
[

A B

C D

]

. (12.13.6)

Letting Gc denote the feedback controller, we interconnect G and Gc

according to

û(s) = Gc(s)ŷ(s). (12.13.7)

The resulting rational transfer function G̃ satisfying ẑ(s) = G̃(s)ŵ(s) is thus
given by

G̃ = G11 +G12Gc(I −G22Gc)
−1G21 (12.13.8)

or

G̃ = G11 +G12(I −GcG22)
−1GcG21. (12.13.9)

A realization of G̃ is given by the following result.

Proposition 12.13.1. Let G̃ ∼
[

A D1 B

E1 E0 E2

C D2 D

]

and Gc∼
[

Ac Bc

Cc Dc

]

. If

det(I −DDc) 6= 0, then

G̃ ∼
[

A + BDc(I − DDc)
−1C BCc + BDc(I − DDc)

−1DCc D1 + BDc(I + DDc)
−1D2

Bc(I − DDc)
−1C Ac + Bc(I − DDc)

−1DCc Bc(I − DDc)
−1D2

E1 + E2Dc(I − DDc)
−1C E2Cc + E2Dc(I − DDc)

−1DCc E0 + E2Dc(I − DDc)
−1D2

]

.

(12.13.10)

The realization (12.13.10) can be simplified when DDc = 0. For ex-
ample, if D = 0, then

G̃ ∼





A+BDcC BCc D1 +BDcD2

BcC Ac BcD2

E1 + E2DcC E2Cc E0 + E2DcD2



 , (12.13.11)

while if Dc = 0, then

G̃ ∼





A BCc D1

BcC Ac +BcDCc BcD2

E1 E2Cc E0



 . (12.13.12)
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Finally, if both D = 0 and Dc = 0, then

G̃ ∼





A BCc D1

BcC Ac BcD2

E1 E2Cc E0



 . (12.13.13)

The feedback interconnection shown in Figure 4 forms the basis for
the standard problem in feedback control. For this problem the signal w is
interpreted as a disturbance, while the signal z represents the performance
variables, that is, variables whose behavior reflects the performance of the
closed-loop system. The performance variables need not be physically mea-
sured. The controlled input or the control u is driven by the feedback con-
troller Gc, while the measurement signal y serves as the input to the feedback
controller Gc. The standard problem in feedback control theory is the fol-
lowing: Given knowledge of w, determine Gc to minimize a performance
criterion J(Gc).

12.14 Linear-Quadratic Control

Let A ∈ Rn×n and B ∈ Rn×m, and, for all t ∈ [0,∞), consider the
system

ẋ(t) = Ax(t) +Bu(t), (12.14.1)

x(0) = x0. (12.14.2)

Furthermore, let K ∈ Rm×n and consider the full-state-feedback control law

u(t) = Kx(t). (12.14.3)

The objective of the linear-quadratic control problem is to minimize the
quadratic performance measure

J(K,x0) =

∞
∫

0

[xT(t)R1x(t) + xT(t)R12u(t) + uT(t)R2u(t)] dt, (12.14.4)

where R1 ∈ Rn×n, R12 ∈ Rn×m, and R2 ∈ Rm×m. We assume that
[

R1 R12

RT
12 R2

]

is nonnegative semidefinite and R2 is positive definite.

The performance measure (12.14.4) indicates the desire to maintain
the state vector x(t) close to the zero equilibrium without an excessive expen-
diture of control effort. Specifically, the term xT(t)R1x(t) is a measure of the
deviation of the state x(t) from the zero state, where the n×n nonnegative-
semidefinite matrix R1 determines how much weighting is associated with
every component of the state. Likewise, the m×m positive-definite matrix
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R2 weights the magnitude of the control input.

Using (12.14.1) and (12.14.3) the closed-loop dynamic system can be
written as

ẋ(t) = (A+BK)x(t) (12.14.5)

so that

x(t) = etÃx0, (12.14.6)

where Ã
4

= A+BK. Thus, the performance measure (12.14.4) becomes

J(K,x0) =

∞
∫

0

xT(t)
(

R1 + 2R12K +KTR2K
)

x(t) dt

=

∞
∫

0

xT
0 e

tÃT

R̃etÃx0 dt

= trxT0

∞
∫

0

etÃ
T

R̃etÃ
T

dtx(0),

= tr

∞
∫

0

etÃ
T

R̃etÃ dtx0x
T
0 , (12.14.7)

where R̃
4

= R1 + 2R12K +KTR2K.

Consider the standard problem with plant

G ∼





A D1 B

E1 0 E2

In 0 0



 . (12.14.8)

and full-state feedback u = Kx. Then, the closed-loop transfer function is
given by

G̃ ∼
[

A+BK D1

E1 + E2K 0

]

. (12.14.9)

The following result shows that the quadratic performance measure
(12.14.4) is equivalent to an H2 norm.

Proposition 12.14.1. Assume that m = 1, D1 = x0, and
[

R1 R12

RT
12 R2

]

=

[

ET
1

ET
2

]

[

E1 E2

]

, (12.14.10)
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and let G̃ be given by (12.14.9). Then,

J(K,x0) = ‖G̃‖2H2
. (12.14.11)

Proof. The result is a consequence of Proposition 12.1.2.

To develop necessary conditions for the linear-quadratic control prob-
lem, we restrict K to the set of stabilizing gains

S
4

= {K ∈ Rm×n : A+BK is asymptotically stable}. (12.14.12)

Obviously, S is nonempty if and only if (A,B) is stabilizable. The following
result gives necessary conditions for characterizing a stabilizing solution K
of the linear-quadratic control problem.

Theorem 12.14.2. Assume that (A,B) is stabilizable and assume that
K ∈ S solves the linear-quadratic control problem. Then, there exists an
n× n nonnegative-semidefinite matrix P such that K is given by

K = −R−1
2 B

TP (12.14.13)

and such that P satisfies

ATP + PA+R1 − PBR−1
2 B

TP = 0. (12.14.14)

Furthermore, the minimal cost is given by

J(K) = trPV. (12.14.15)

Proof. Since K ∈ S, it follows that Ã is asymptotically stable. It

then follows that J(K) is given by (12.14.15), where P
4

=
∞
∫

0

etÃ
T

R̃etÃ dt is

nonnegative semidefinite and satisfies the Lyapunov equation

ÃTP + PÃ+ R̃ = 0. (12.14.16)

Note that (12.14.16) can be written as

(A+BK)TP + P (A+BK) +R1 +KTR2K = 0. (12.14.17)

To optimize (12.14.15) subject to the constraint (12.14.16) over the
open set S, form the Lagrangian

L(K,P,Q, λ0)
4

= tr
[

λ0PV +Q
(

ÃTP + PÃ+ R̃
)]

, (12.14.18)

where the Lagrange multipliers λ0 ≥ 0 and Q ∈ Rn×n are not both zero.
Note that the n×n Lagrange multiplier Q accounts for the n×n constraint
equation (12.14.16).
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Next, setting ∂L/∂P = 0 yields

ÃQ+QÃT + λ0V = 0. (12.14.19)

Since Ã is asymptotically stable, it follows from Proposition 11.7.3 that,
for all λ0 ≥ 0, (12.14.19) has a unique solution Q and, furthermore, Q is
nonnegative-semidefinite. In particular, if λ0 = 0, then Q = 0. Since λ0 and
Q are not both zero, we can set λ0 = 1 so that (12.14.19) becomes

ÃQ+QÃT + V = 0, (12.14.20)

Since V is positive definite, it follows that Q is positive definite.

Next, evaluating ∂L/∂K yields

R2KQ+BTPQ = 0. (12.14.21)

Since Q is positive definite, it follows from (12.14.21) that (12.14.13) is sat-
isfied. Furthermore, using (12.14.13), it follows that (12.14.16) is equivalent
to (12.14.14).

Note that with K given by (12.14.13) the closed-loop dynamics matrix
Ã = A+BK is given by

Ã = A−BR−1
2 B

TP, (12.14.22)

where P is the solution of the Riccati equation (12.14.14). For convenience

we define Σ
4

= BR−1
2 B

T so that Ã = A−ΣP and (12.14.14) can be written
as

ATP + PA+R1 − PΣP = 0. (12.14.23)

Note that (12.14.23) can be written in the form of the Lyapunov equation

(A−ΣP )TP + P (A−ΣP ) +R1 + PΣP = 0, (12.14.24)

which is equivalent to (12.14.16) with R̃ = R1 + PΣP .

Next, we consider solutions of the Riccati equation (12.14.23). For con-
venience we let R1 = ET

1 E1, where E1 ∈ Rq×n characterizes a performance
variable z(t) = E1x(t). The following examples help to clarify conditions
under which (12.14.23) has a solution.

Example 12.14.3. Let A = 0, B = 0, E1 6= 0, and R2 = I. In this case
(A,B) is not stabilizable, and (12.14.23) becomes R1 = 0. Thus, (12.14.23)
has no solution.

Example 12.14.4. Let A = I, B = 0, E1 = I, and R2 = I. In this
case (A,B) is not stabilizable. Furthermore, (12.14.23) becomes 2P + I = 0
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so that P = −1
2I is the only solution. Thus, (12.14.23) does not have a

nonnegative-semidefinite solution.

Example 12.14.5. Let n > 1, A = 0, B = I, E1 = I and R2 = I.
In this case (A,B) is stabilizable. Furthermore, (12.14.23) becomes P 2 = I,
which is satisfied by infinitely many real symmetric matrices P given by
P = S

[±1 0
0 ±1

]

ST, where S ∈ R2×2 is orthogonal. However, P = I is the
only nonnegative-semidefinite solution. In fact, P is positive definite.

Example 12.14.6. Let A = [ 1 0
0 2 ], B = [ 1

1 ], E1 =
[

0 0
]

and R2 = 1
so that (A,B) is controllable but neither of the states is weighted. In this
case (12.14.23) has four nonnegative-semidefinite solutions given by

P1 =

[

18 −24
−24 36

]

, P2 =

[

2 0
0 0

]

, P3 =

[

0 0
0 4

]

, P4 =

[

0 0
0 0

]

.

The corresponding feedback matrices are given by K1 =
[

6 −12
]

, K2 =
[

−2 0
]

, K3 =
[

0 −4
]

, and K4 =
[

0 0
]

. Letting Ãi = A−ΣPi, it

follows that spec(Ã1) = {−1,−2}, spec(Ã2) = {−1, 2}, spec(Ã3) = {1,−2},
and spec(Ã4) = {1, 2}. Thus, P1 is the only solution that stabilizes the
closed-loop system, while the solutions P2 and P3 partially stabilize the
closed-loop system. Note also that the closed-loop poles that differ from
those of the open-loop system are mirror images of the open-loop poles
as reflected across the imaginary axis. Finally, note that these solutions
satisfy the partial ordering P1 ≥ P2 ≥ P4 and P1 ≥ P3 ≥ P4, and that
“larger” solutions have a more stabilizing effect than “smaller” solutions.
Moreover, letting J(Ki) = trPiV , it can be seen that larger solutions incur
a greater closed-loop cost, with the greatest cost incurred by the stabilizing
solution P4. However, the expression J(K) = trPV requires justification
when A+BK is not asymptotically stable.

Example 12.14.7. Let A =
[−1 0

0 0

]

, B = [ 0
1 ], E1 =

[

0 0
]

and
R2 = 1 so that (A,B) is stabilizable, while only the asymptotically stable
eigenvalue is weighted. Now, P = 0 is the only nonnegative-semidefinite
solution of (12.14.23). This solution is not asymptotically stabilizing since
reflecting the eigenvalue at the origin across the imaginary axis fails to move
it into the open left half plane.

Example 12.14.8. Let A =
[

0 1
−1 0

]

, B = [ 1 0
0 1 ], E1 =

[

0 0
]

, and
R2 = 1. Taking the trace of (12.14.23) yields trP 2 = 0. Thus, the only
nonnegative-semidefinite matrix P satisfying (12.14.23) is P = 0, which im-
plies that K = 0 and Ã = A. Consequently, the open-loop eigenvalues ±
are unmoved by the feedback gain (12.14.13) even though (A,B) is control-
lable. As in the previous example, reflecting these unweighted poles across
the imaginary axis fails to move them into the open left half plane.
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12.15 Solutions of the Riccati Equation

The following definitions will be useful in studying the various solutions
to the Riccati equation.

Definition 12.15.1. A matrix P ∈ Rn×n is a solution of the Riccati
equation (12.14.23) if P is symmetric and satisfies (12.14.23). Furthermore,
P is the stabilizing solution to (12.14.23) if A−ΣP is asymptotically stable.
Finally, a solution P is the maximal solution to (12.14.23) if P ≥ P ′ for
every solution P ′ to (12.14.23).

Theorem 12.15.2. There exists a nonnegative-semidefinite solution
to (12.14.23) if and only if (A,B,E1) has no CRHP eigenvalues that are
uncontrollable and observable.

Proof. To prove necessity, suppose that (12.14.23) has a nonnegative-
semidefinite solution P , let Ã = A−ΣP , and suppose that (A,B,E1) has a
CRHP eigenvalue that is uncontrollable and observable. It thus follows from
Proposition 12.8.9 that there exists an invertible matrix S ∈ Rn×n such that

SAS−1 =

[

A1 A12

0 A2

]

, SB =

[

B1

0

]

, E1S
−1 =

[

E11 E12

]

,

where (A2, E12) is observable and A2 is not asymptotically stable. Next,
note that

t
∫

0

eτÃ
T

ET
1 E1e

τÃ dτ ≤
t
∫

0

eτÃ
T

R̃eτÃ dτ = −
t
∫

0

eτÃ
T
(

ÃTP + PÃ
)

eτÃ dτ

= −
t
∫

0

d

dτ
eτÃ

T

PeτÃ dτ = P − etÃT

PetÃ ≤ P.

Next, it can be seen that the (2,2) block of this inequality in the
transformed basis is given by

t
∫

0

eτA
T
2 ET

12E12e
τA2 dτ ≤

[

0 I
]

STPS

[

0
I

]

.

Since (A2, E12) is observable and the integral is bounded, it follows from
Proposition 12.4.3 that A2 is asymptotically stable, which is a contradiction.

Conversely, suppose that (A,B,E1) has no CRHP eigenvalues that
are uncontrollable and observable. Then, it follows from Theorem 5.4.1
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that there exists an invertible matrix S ∈ Fn×n such that

SAS−1 =

[

A1 0
A21 A2

]

, SB =

[

B1

B2

]

, E1S
−1 =

[

E11 0
]

,

where (A1, B1) is stabilizable and (A1, E11) is observable. Theorem XXX
thus implies that the reduced Riccati equation AT

1 P1 + P1A1 + ET
11E11 −

P1B1R
−1
2 B

T
1 P1 = 0 has a nonnegative-semidefinite solution P1. Finally, the

Riccati equation (12.14.23) is now satisfied by P = ST
[

P1 0
0 0

]

S, which is
nonnegative semidefinite.

where (A2, E12) is observable and λ ∈ spec(A2). Since (12.14.23) has
a nonnegative-semidefinite solution, it follows from Proposition XXX that
(Â−Σ̂P̂ , Ê1) is controllably asymptotically stable, where Σ̂ =

[

Σ1 0
0 0

]

, Σ1 =

B1R
−1
2 B

T
1 , and P̂ = STPS =

[

P1 P12

PT
12 P2

]

. Therefore, Proposition XXX implies

that Ê1e
t(Â−Σ̂P̂ ) → 0 as t → ∞. Consequently, E11e

t(A1−Σ1P1) → 0 as
t→∞ and

E11

t
∫

0

et(A1−Σ1P1)(A12 −Σ1P12)e
(t−τ)Â2 dt+ E12e

tA2 → 0 as t→∞.

(12.15.1)

For large t > 0, the first term has norm proportional to |eλ1t|, where
Reλ1 < Reλ, and the second term has norm proportional to |eλt|. However,
Reλ ≥ 0 contradicts (12.15.1).

Conversely, suppose that (A,B,E1) has no ORHP eigenvalues that are
uncontrollable and observable. Then, it follows from Proposition 12.8.9 that
there exists a nonsingular matrix S ∈ Rn×n such that

SAS−1 =









A1 A13 0 0
0 A3 0 0
A21 A23 A2 A24

0 A43 0 A4









, SB =









B1

0
B2

0









,

E1S
−1 =

[

E11 E13 0 0
]

. (12.15.2)

where (A1, B1, E11) is controllable and observable, (A2, B2) is controllable,
(A3, E13) is observable, and A3 is asymptotically stable. Therefore,

([

A1 A13

0 A3

]

,

[

B1

0

]

,
[

E11 E13

]

)

is stabilizable and detectable, and thus Theorem 1 implies that there exists



matrix2 November 19, 2003

476 CHAPTER 12

a nonnegative-semidefinite solution P̂1 to
[

A1 A13

0 A3

]T

P̂1 + P̂1

[

A1 A13

0 A3

]

+

[

ET
11E11 ET

11E13

ET
13E11 ET

13E13

]

−P̂1

[

B1R
−1
2 B

T
1 0

0 0

]

P̂1 = 0. (12.15.3)

Consequently, P = ST diag(P̂1, 0, 0)S is a nonnegative-semidefinite solution
of (12.14.23).

Corollary 12.15.3. Suppose that (A,B) is stabilizable. Then, (12.14.23)
has a nonnegative-semidefinite solution.

Theorem 12.15.4. Let P be a nonnegative-semidefinite solution to
(12.14.23). Then, P is maximal if and only if spec(A−ΣP ) ⊂ CLHP.

Proof. See

Note that, since the ordering “≤” is antisymmetric, there exists at
most one maximal solution to (12.14.23). Therefore, it follows from Theorem
12.15.2 that (12.14.23) has at most one nonnegative-semidefinite solution P
such that spec(A−ΣP ) ⊂ CLHP.

Corollary 12.15.5. There exists at most one stabilizing solution (12.14.23).
If P is the stabilizing solution to (12.14.23), then P is nonnegative-semidefinite
and it is also the maximal solution (12.14.23).

Proof. Suppose there exist two stabilizing solutions P1 and P2 to
(12.14.23). Then,

ATP1 + P1A+R1 − P1ΣP1 = 0,

ATP2 + P2A+R1 − P2ΣP2 = 0.

Subtracting these equations and rearranging yields

(A−ΣP1)
T(P1 − P2) + (P1 − P2)(A−ΣP2) = 0.

Since A−ΣP1 and A−ΣP2 are asymptotically stable, it follows from Propo-
sition 7.2.3 and Proposition 11.7.3 that P1 − P2 = 0. Hence, there exists at
most one stabilizing solution to (12.14.23).

Next, suppose that there exists a stabilizing P to (12.14.23). Then, it
follows from (12.14.23) that

P =

∞
∫

0

et(A−ΣP )T(R1 + PΣP )et(A−ΣP ) dt,
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which shows that P is nonnegative semidefinite. Next, let P ′ be a solution
to (12.14.23). Then, it follows that

(A−ΣP )T(P − P ′) + (P − P ′)(A−ΣP ) + (P − P ′)Σ(P − P ′) = 0,

which implies that P ′ ≤ P . Thus, P is also the maximal solution to
(12.14.23).

Next, we consider the existence of a maximal solution to (12.14.23).
The following lemma is needed.

Lemma 12.15.6. Let (A,B) be controllable, let t1 > 0, and define

P =





t1
∫

0

e−tAΣe−tA
T

dt





−1

. (12.15.4)

Then, A−ΣP is asymptotically stable.

Proof. It can be seen that P satisfies

(A−ΣP )TP + P (A−ΣP ) + P
(

Σ + et1AΣet1A
T
)

P = 0.

Since
(

A−ΣP,Σ + et1AΣet1A
T
)

is observable and P is positive definite, it

follows from Proposition 11.7.6 that A−ΣP is asymptotically stable.

Theorem 12.15.7. Suppose that (A,B) is stabilizable. Then, there
exists a maximal solution P to (12.14.23). Furthermore, spec(A − ΣP ) ⊂
CLHP.

Proof. Since (A,B) is stabilizable, it follows from Corollary 12.6.3
that there exists an invertible matrix S ∈ Rn×n such that

SAS−1 =

[

A1 A12

0 A2

]

, SB =

[

B1

0

]

, (12.15.5)

where A1 ∈ Rr×r, (A1, B1) is controllable, and A2 is asymptotically stable.
Next, since the pair (A1, B1) is controllable, there exists a positive-definite

matrix P̂0 ∈ Rr×r such that A1 − B1R
−1
2 B

T
1 P̂0 is asymptotically stable. It

follows from Lemma 12.15.6 that one such matrix is given by

P̂0 =





1
∫

0

e−tA1B1ΣB
T
1 e

−tAT
1 dt





−1

. (12.15.6)

Thus, for the nonnegative-semidefinite matrix

P0
4

=

[

P̂0 0
0 0

]
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it follows that A−ΣP0 is asymptotically stable.

Next, it follows from Proposition 12.1? that there exists a nonnegative-
semidefinite matrix P ∈ Fn×n satisfying (12.14.23), that is,

(A−ΣP )TP + P (A−ΣP ) + PΣP +R1 = 0. (12.15.7)

Now, define a sequence of nonnegative-semidefinite matrices {Pk}∞k=0 satis-
fying

(A−ΣPk)TPk+1 + Pk+1(A−ΣPk) + PkΣPk +R′
1 = 0, (12.15.8)

where R′
1 ∈ Rn×n is symmetric and satisfies R′

1 ≥ R1. Assuming now
that A − MSigPk is asymptotically stable, we show that A − ΣPk+1 is
asymptotically stable. To do this, first note that (12.20??) and (12.21??)
imply that

(A−ΣPk)TP + P (A−ΣPk) + PkΣPk − (P − Pk)Σ(P − Pk) +R1 = 0.
(12.15.9)

Subtracting (12.15.9) from (12.15.8) yields

(A−ΣPk)T(Pk+1 − P ) + (Pk+1 − P )(A−ΣPk)
+(P − Pk)Σ(P − Pk) +R′

1 −R1 = 0, (12.15.10)

which, since A−ΣPk is asymptotically stable, implies that

Pk+1 − P =

∞
∫

0

et(A−ΣPk)T [(P − Pk)Σ(P − Pk) +R′
1 −R1]e

t(A−ΣPk) dt ≥ 0.

(12.15.11)

Hence, Pk+1 ≥ P .

Next, note that (12.15.8) is equivalent to

(A−ΣPk+1)
TPk+1 + Pk+1(A−ΣPk+1) + Pk+1ΣPk+1

+(Pk+1 − Pk)Σ(Pk+1 − Pk) +R′
1 = 0. (12.15.12)

Subtracting (12.15.9) with k replaced by k + 1 from (12.15.12) yields

(A−ΣPk+1)
T(Pk+1 − P ) + (Pk+1 − P )(A−ΣPk+1) = M, (12.15.13)

where M
4

= −(Pk+1−Pk)Σ(Pk+1−Pk)−(Pk+1−P )Σ(Pk+1−P )−R′
1+R1 ≤

0.

Now, let λ ∈ C and nonzero x ∈ Cn satisfy (A−ΣPk+1)x = λx. Then,
it follows from (12.15.13) that

(λ+ λ)x∗(Pk+1 − P )x = x∗Mx. (12.15.14)
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Since λ + λ ≥ 0 and Pk+1 ≥ P , it follows from (12.15.14) that x∗Mx = 0,
which in turn implies that

x∗(Pk+1 − Pk)Σ(Pk+1 − Pk)x = 0. (12.15.15)

Furthermore, since Σ is nonnegative semidefinite, it follows that Σ(Pk+1 −
Pk)x = 0, which implies that

(A−ΣPk)x = (A−ΣPk+1)x = λx. (12.15.16)

However, A − ΣPk is asymptotically stable, which implies that Reλ < 0,
which is a contradiction. Hence, A−ΣPk+1 is asymptotically stable.

Next, subtract (12.15.12) with k replaced by k −1 from (12.15.8) to
obtain

(A−ΣPk)T(Pk − Pk+1) + (Pk − Pk+1)(A−ΣPk)
+(Pk − Pk−1)Σ(Pk − Pk−1) = 0, (12.15.17)

which, since A−ΣPk is asymptotically stable, implies that

Pk − Pk+1 =

∞
∫

0

et(A−ΣPk)T(Pk − Pk+1)Σ(Pk − Pk+1)e
t(A−ΣPk) dt ≥ 0.

(12.15.18)

Hence, {Pk}∞k=0 is a nonincreasing sequence of nonnegative-semidefinite ma-

trices bounded from below by P . Thus, P+
4

= limk→∞ Pk exists.

Now, let R′
1 = R1. Letting k → ∞it follows from (12.15.8) that P+

is a solution to (12.14.23). Furthermore, since A − ΣPk is asymptotically
stable for all k ∈ P it follows that spabs(A − ΣP+) ≤ 0. Also note that
P+ ≥ P for every solution P of (12.14.23), which implies that P+ is the
maximal solution of (12.14.23).

Proposition 12.15.8. Suppose that (A,B) is stabilizable, let R′
1 ∈ Nn

satisfy R′
1 ≥ R1, and let P+ and P ′

+ denote, respectively, the maximal
solutions of (12.14.23) and

ATP + PA+R′
1 − PΣP = 0. (12.15.19)

Then, P ′
+ ≥ P+.

Proof. Letting k →∞ in (12.15.8), it follows that P0
4

= limk→∞ Pk is
a solution of (12.15.19) and satisfies P0 ≥ P for every solution of (12.15.8).
Hence, P0 = P ′

+ and thus P0 ≥ P+.

Proposition 12.15.9. Suppose that (A,B) is stabilizable and (A,E1)
is detectable. Then, there exists a nonnegative-semidefinite solution P to
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(12.14.23) such that A−ΣP is asymptotically stable. If, in addition, (A,E1)
is observable, then P is positive definite.

Proof. Define a sequence of nonnegative-semidefinite matrices {Pk}∞k=0
satisfying

(A+BKk)
TPk + Pk(A+BKk) +R1 +KT

k R2Kk = 0, (12.15.20)

where K0 ∈ Rm×n is such that A + BK0 is asymptotically stable, and, for
all k ∈ P, Kk is given by

Kk+1 = −R−1
2 B

TPk. (12.15.21)

Therefore, P0 is nonnegative semidefinite.

Next, note the identity

(A−ΣPk)TPk + Pk(A−ΣPk) + PkΣPk

= (A−ΣPk−1)
TPk + Pk(A−ΣPk−1) + Pk−1ΣPk−1

− (Pk − Pk−1)Σ(Pk − Pk−1), (12.15.22)

or, equivalently,

(A+BKk+1)
TPk + Pk(A+BKk+1) +R1 +KT

k+1R2Kk+1

= (A+BKk)
TPk + Pk(A+BKk) +R1 +KT

k R2Kk −
(Kk −Kk+1)

TR2(Kk −Kk+1). (12.15.23)

Next, using (12.15.20) it follows from (12.15.23) that

(A+BKk+1)
TPk + Pk(A+BKk+1) +R1 +Nk +KT

k+1R2Kk+1 = 0,
(12.15.24)

where

Nk
4

= (Kk −Kk+1)
TR2(Kk −Kk+1) ≥ 0. (12.15.25)

Since, by assumption, (A,E1) is detectable, it follows from Lemma

12.17.33, that the pair
(

A+BKk+1,
[

R1 +Nk +KT
k+1R2Kk+1

]1/2
)

is also

detectable for all k ∈ N. Now, assume that Pk is nonnegative semidefinite
so that Proposition 12.12.4 implies that A+BKk+1 is asymptotically stable.
Next, replacing k by k + 1 in (12.15.20) yields

(A+BKk+1)
TPk+1 + Pk+1(A+BKk+1) +R1 +KT

k+1R2Kk+1 = 0.
(12.15.26)

Since A+BKk+1 is asymptotically stable, it follows that Pk+1 is nonnegative
semidefinite.
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Next, subtracting (12.15.26) from (12.15.24) yields
(

A+BKT
k+1

)

(Pk − Pk+1) + (Pk − Pk+1)(A+BKk+1) +Nk = 0,
(12.15.27)

which, since A + BKk+1 is asymptotically stable, implies that {Pk}∞k=0 is

a nonincreasing sequence of nonnegative-semidefinite matrices. Thus, P
4

=
limk→∞ Pk exists and satisfies

(A+BK)TP + P (A+BK) +R1 +KTR2K = 0. (12.15.28)

Furthermore, K
4

= limk→∞Kk = −R−1
2 B

TP also exists. Next, since
(

A+BK,
[

R1 +KTR2K
]1/2
)

is detectable, Proposition 12.12.4 implies that

A+BK is asymptotically stable.

Next, assume that (A,E1) is observable so that
(

A+BK,
[

R1 +KTR2K
]1/2

)

is observable. SinceA+BK is asymptotically stable, it follows from (12.15.28)
that P is positive definite.

Theorem 12.15.10. (12.14.23) has a nonnegative-semidefinite solution
if and only if every CRHP eigenvalue of (A,B,E1) is either controllable or
unobservable.

Theorem 12.15.11. The following statements hold:

i) (12.14.23) has at most one maximal solution.

ii) (12.14.23) has a nonnegative-semidefinite maximal solution if and
only if it has a nonnegative-semidefinite solution and every unob-
servable eigenvalue of (A,B,E1) is controllable.

Proof. To prove i), suppose that P1 and P2 are maximal solutions of
(12.14.23). Then, P1 ≤ P2 and P2 ≤ P1. Since “≤” is antisymmetric, it
follows that P1 = P2.

To prove the necessity part of ii), suppose that (12.14.23) has a nonnegative-
semidefinite solution P and (A,B,E1) has an imaginary eigenvalue that is
unobservable and uncontrollable. Then, there exists a nonsingular matrix
S ∈ Rn×n such that

SAS−1 =

[

A1 0
A21 A2

]

, SB =

[

B1

0

]

, E1S
−1 =

[

E11 0
]

,

where spec(A2) ⊂ R. Therefore, P = ST
[

P1 P12

PT
12 P2

]

S, where P2 satisfies

AT
2 P2+P2A2 = 0. Letting P̂2 be a nonzero nonnegative-semidefinite solution

of AT
2 P̂2 + P̂2A2 = 0, it follows that P̂ = ST

[

P1 P12

PT
12 P2+αP̂2

]

S is a solution of
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(12.14.23) for all α > 0. Therefore, (12.14.23) does not have a maximal
solution.

To prove the sufficiency part of ii) suppose that (12.14.23) has a
nonnegative-semidefinite solution and every unobservable imaginary eigen-
value of (A,B,E1) is controllable. Then, (TBD).

Theorem 12.15.12. (12.14.23) has a solution such that spec(A −
ΣP ) ⊂ CLHP if and only if (TBD).

Theorem 12.15.13. The following statements are equivalent:

i) (12.14.23) has a maximal solution P satisfying spec(A − ΣP ) ⊂
CLHP.

ii) (12.14.23) has a unique nonnegative-semidefinite solution P satisfy-
ing spec(A−ΣP ) ⊂ CLHP.

iii) (A,B) is stabilizable.

Proof. To prove that ii =⇒ iii), suppose that (A,B) is not stabiliz-
able. If (A,B,E1) has a CRHP eigenvalue that is uncontrollable and ob-
servable, then (12.14.23) does not have a nonnegative-semidefinite solution.
If (12.14.23) has a nonnegative-semidefinite solution but (A,B,E1) has an
imaginary eigenvalue that is uncontrollable and unobservable, then (TBD).

Since (A,B) is stabilizable, it follows from Proposition 12.6.3 that
there exists an invertible matrix S ∈ Rn×n such that

SAS−1 =

[

A1 A12

0 A2

]

, SB =

[

B1

0

]

,

where A1 ∈ Rn×n, (A1, B1) is controllable, and A2 is asymptotically stable.
Next, since the pair (A1, B1) is controllable, it follows that there exists a

positive-definite matrix P̂0 ∈ Rn×n such that A1 − B1R
−1
2 B

T
1 P̂0 is asymp-

totically stable. It follows from Lemma 12.1 that one such matrix is given
by

P̂0 =





1
∫

0

e−tA1B1R
−1
2 B

T
1 e

−tAT
1 dt





−1

.

Thus, A−ΣP0 is asymptotically stable where,

P0
4

=

[

P̂0 0
0 0

]

.

Next, it follows from Proposition 12.1 that there exists a nonnegative-
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semidefinite matrix P ∈ Rn×n satisfying (12.14.23), that is,

(A−ΣP )TP + P (A−ΣP ) + PΣP +R1 = 0. (12.15.29)

Now, define a sequence of nonnegative-semidefinite matrices {Pk}∞k=0 satis-
fying

(A−ΣPk)TPk+1 + Pk+1(A−ΣPk) + PkΣPk +R′
1 = 0, k = 0, 1 . . . ,

(12.15.30)

where R′
1 ∈ Rn×n is symmetric and satisfies R′

1 ≥ R1. Assuming now that
A−ΣPk is asymptotically stable, we show that A−ΣPk+1 is stable. To do
this, first note that 12.15.40 and 12.15.41 imply that

(A−ΣPk)TP + P (A−ΣPk) + PkΣPk − (P − Pk)Σ(P − Pk) +R1 = 0.
(12.15.31)

Subtracting (12.15.31) from (12.15.30) yields

(A−ΣPk)T(Pk+1 − P ) + (Pk+1 − P )(A−ΣPk)
+ (P − Pk)Σ(P − Pk) +R′

1 −R1 = 0, (12.15.32)

which, since A−ΣPk is asymptotically stable, implies that

Pk+1 − P =

∞
∫

0

et(A−ΣPk)T [(P − Pk)Σ(P − Pk) +R′
1 −R1]e

t(A−ΣPk) dt ≥ 0.

(12.15.33)

Hence, Pk+1 ≥ P . Next, note that (12.15.30) is equivalent to

(A−ΣPk+1)
T(Pk+1 + Pk+1(A−ΣPk+1) + Pk+1ΣPk+1+

(Pk+1 − Pk)Σ(Pk+1 − Pk) +R′
1 = 0. (12.15.34)

Subtracting (12.15.31) with k replaced by k + 1 from (12.15.34) yields

(A−ΣPk)T(Pk+1 − P ) + (Pk+1 − P )(A−ΣPk+1) =

−(Pk+1 − Pk)Σ(Pk+1 − Pk)− (Pk+1 − P )Σ(Pk+1 − P )−R′
1 +R1.
(12.15.35)

Now, let (A−ΣPk+1)x = λx for λ ∈ C where Reλ ≥ 0 and nonzero x ∈ Cn.
Then, it follows from (12.15.35) that

(λ+ λ)x∗(Pk+1 − P )x = x∗Mx (12.15.36)

where M ≤ 0 denotes the right hand side of (12.15.35). Since λ+λ ≥ 0 and
Pk+1 ≥ P , it follows from (12.15.36) that x∗Mx = 0, which in turn implies

x∗(Pk+1 − Pk)Σ(Pk+1 − Pk)x = 0. (12.15.37)
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Furthermore, since Σ is nonnegative-semidefinite, it follows that Σ(Pk+1 −
Pk)x = 0, which implies that

(A−ΣPk)x = (A−ΣPk+1)x = λx. (12.15.38)

However, A − ΣPk is asymptotically stable, which implies that Reλ < 0,
which is a contradiction. Hence, A−ΣPk+1 is asymptotically stable.

Next, subtract (12.15.34) with k replaced by k −1 from (12.15.30) to
obtain

(A−ΣPk)T(Pk − Pk+1) + (Pk − Pk+1)(A−ΣPk)+
(Pk − Pk−1)Σ(Pk − Pk−1) = 0, (12.15.39)

which, since A−ΣPk is asymptotically stable, implies that

Pk − Pk+1 =

∞
∫

0

et(A−ΣPk)T(Pk − Pk+1)Σ(Pk − Pk+1)e
t(A−ΣPk) dt ≥ 0.

(12.15.40)

Hence, {Pk}∞k=0 is a nonincreasing sequence of nonnegative-semidefinite

matrices bounded from below by P . Thus, P+
4

= limk→∞ Pk exists.

Now, let R′
1 = R1. Letting k → ∞, it follows from 12.21 that P+

is a solution to (12.14.23). Furthermore, since A − ΣPk is asymptotically
stable for all k = 0, 1, 2, . . . , it follows that Reλ(A − ΣP+) ≤ 0. Also note
that P+ ≥ P for every solution P of (12.14.23), which implies that P+ is
the maximal solution of (12.14.23).

Theorem 12.15.14. The following statements hold:

i) (12.14.23) has at most one stabilizing solution. If it exists, then it
is nonnegative-semidefinite and maximal.

ii) (12.14.23) has a stabilizing solution if and only if (A,B) is stabiliz-
able and every imaginary eigenvalue of (A,E1) is observable.

Proof. To prove i), suppose there exist two stabilizing solutions P1

and P2 to (12.14.23). Then,

ATP1 + P1A+R1 − P1ΣP1 = 0, ATP2 + P2A+R1 − P2ΣP2 = 0.

Subtracting these equations and rearranging yields

(A−ΣP1)
T(P1 − P2) + (P1 − P2)(A−ΣP2) = 0.

Since A−ΣP1 and A−ΣP2 are asymptotically stable, it follows from Propo-
sition 11.2 that P1 − P2 = 0. Hence, there exists at most one stabilizing
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solution to (12.14.23).

Next, suppose that there exists a stabilizing solution P to (12.14.23).
Then, it follows from (12.14.23) that

P =

∞
∫

0

et(A−ΣP )T(R1 + PΣP )et(A−ΣP ) dt,

which shows that P is nonnegative semidefinite. Next, let P ′ be a solution
to (12.14.23). Then, it follows that

(A−ΣP )T(P − P ′) + (P − P ′)(A−ΣP ) + (P − P ′)Σ(P − P ′) = 0,

which implies that P ′ ≤ P. Thus, P is the maximal solution to (12.14.23).

Finally, statement ii) follows from Theorem 1.5.

Proposition 12.15.15. Suppose that (A,B) is stabilizable, let R′
1 ∈

Rn×n satisfy R′
1 ≥ R1, and let P+ and P ′

+ denote, respectively, the maximal
solutions of (12.14.23) and

ATP + PA+R′
1 − PΣP = 0. (12.15.41)

Then, P ′
+ ≥ P+.

Proof. Letting k → ∞ in (12.15.39) it follows that P ′
+

4

= limk→∞ Pk
is a solution of (12.15.41) and satisfies P ′

+ ≥ P for every solution P of
(12.14.23). In particular, P ′

+ ≥ P+.

Proposition 12.15.16. LetR1 = 0, and let P ∈ Rn×n be a nonnegative-
semidefinite solution to (12.15.38). Then, P is the maximal solution to
(12.14.23) if and only if

mspec(A−ΣP ) = [mspec(−A) ∩OLHP] ∪ [mspec(A) ∩ CLHP] .
(12.15.42)

Proof. To prove necessity, let P be the maximal solution to (12.14.23)
with R1 = 0. Therefore, P satisfies

(A−ΣP )TP + PA = 0.

Next, let S be such that

P̂ = STPS =

[

P1 0
0 0

]

,

where P1 is positive definite. Now, define Â = S−1AS and Σ̂ = S−1ΣS−T
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so that

(Â− Σ̂P̂ )TP̂ + P̂ Â = 0. (12.15.43)

Letting

Â =

[

Â1 Â12

Â21 Â2

]

, Σ̂ =

[

Σ̂1 Σ̂12

Σ̂T
12 Σ̂2

]

,

(12.15.43) implies that

(Â1 − Σ̂1P̂1)
TP1 + P1Â1 = 0, (12.15.44)

P1Â12 = 0. (12.15.45)

Since P1 is positive definite it follows from (12.15.44) and (12.15.45) that

(Â1 − Σ̂1P1)
T = −P1Â1P

−1
1 , (12.15.46)

Â12 = 0. (12.15.47)

Hence,

Â− Σ̂P̂ =

[

−P−1
1 ÂT

1 P1 0

Â21 − Σ̂T
21P1 Â2

]

, (12.15.48)

where

Â =

[

Â1 0

Â21 Â2

]

. (12.15.49)

Next, it follows from (12.15.48) that

mspec(A−ΣP ) = mspec(−Â1) ∪mspec(Â2). (12.15.50)

Furthermore, Theorem 4.3.2 implies that spec(A−ΣP ) ⊂ CLHP. Therefore,

mspec(−Â1) ⊂ CLHP (12.15.51)

and

mspec(Â2) ⊂ CLHP, (12.15.52)

and thus

mspec(−Â1) = {−λ ∈ mspec(Â1) : λ ∈ ORHP} ∪
[

mspec(Â1) ∩ R
]

.

(12.15.53)

Next, it follows from (12.15.48) that

mspec(A) = mspec(Â1) ∪mspec(Â2). (12.15.54)

Now, combining (12.15.50)–(12.15.54) yields (12.15.42). Finally, sufficiency
follows from Theorem 12.15.14.

Corollary 12.15.17. Let R1 = 0, and assume that spec(A) ⊂ CLHP.
Then, P = 0 is the only nonnegative-semidefinite solution to (12.14.23).
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12.16 Hamiltonian-Based Analysis of the Riccati
Equation

We now analyze the Riccati equation by means of the 2n× 2n Hamil-
tonian matrix

H
4

=

[

A Σ
R1 −AT

]

.

The Hamiltonian matrix is closely linked to the Riccati equation due to the
fact that P is a solution to (12.14.23) if and only if P is symmetric and

[

P I
]

H

[

P
I

]

= 0. (12.16.1)

It is also useful to note that if P is a solution to (12.14.23), then

H =

[

I 0
−P I

] [

A−ΣP Σ
0 −(A−ΣP )T

] [

I 0
P I

]

. (12.16.2)

It thus follows that

mspec(H) = mspec(A−ΣP ) ∪mspec(−(A−ΣP )) (12.16.3)

and

χH(s) = (−1)nχA−ΣP (s)χA−ΣP (−s). (12.16.4)

The factorization (12.16.4) of the characteristic polynomial of H is
a spectral decomposition. It can be seen that the existence of a spectral
decomposition requires that i) if λ is an element of the spectrum of H,
then −λ is also an element of the spectrum of H with the same algebraic
multiplicity, and ii) if λ is an element of the spectrum of H with Reλ =
0, then λ must have even algebraic multiplicity. Note that the spectral
decomposition (12.16.4) was obtained under the assumption that (12.14.23)
has a solution.

We now show that the characteristic polynomial of the Hamiltonian
matrix associated with the Riccati equation (12.14.23) has a spectral de-
composition.

Corollary 12.16.1. Every imaginary eigenvalue of H has even alge-
braic multiplicity.

It is important to keep in mind that spectral decompositions are not
unique. For example, if χH(s) = (s+1)(s+2)(−s+1)(−s+2), then χH(s) =
p(s)p(−s) = p̂(s)p̂(−s), where p(s) = (s+1)(s+2) and p̂(s) = (s+1)(s−2).
Thus, the spectral factors p(s) and p(−s) can “trade” roots. These roots
are the eigenvalues of H.
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Lemma 12.16.2. Let λ ∈ spec(A) be an uncontrollable eigenvalue of
(A,B). Then, λ ∈ spec(H).

Proof. Since

rank

[

AT − λI
BT

]

< n,

it follows that there exists nonzero x ∈ Rn such that ATx = λx and BTx = 0,
and thus Σx = 0. Now, note that

H

[

0
x

]

=

[

Σx
−ATx

]

=

[

0
−λx

]

= −λ
[

0
x

]

.

Thus, −λ ∈ spec(H). Since H is Hamiltonian, it follows from Fact 4.9.14
that λ ∈ spec(H).

Lemma 12.16.3. Let λ ∈ spec(A) be an unobservable eigenvalue of
(A,E1). Then, λ ∈ spec(H).

Proof. Since

rank

[

A− λI
E1

]

< n,

it follows that there exists nonzero y ∈ Rn such that Ay = λy and E1y = 0.
Now, note that

H

[

y
0

]

=

[

Ay
ET

1 E1y

]

=

[

λy
0

]

= λ

[

y
0

]

.

Thus, λ ∈ spec(H).

Next, we present a partial converse of Lemma 12.16.2 and Lemma
12.16.3.

Lemma 12.16.4. Suppose λ ∈ spec(H) is such that Reλ = 0. Then, λ
is either an uncontrollable eigenvalue of (A,B) or an unobservable eigenvalue
of (A,E1).

Proof. Suppose that λ = ω is an eigenvalue of H, where ω ∈ R. Then,
there exist x, y ∈ Cn such that [ xy ] 6= 0 and H [ xy ] = ω [ xy ] . Consequently,

Ax+Σy = ωx, R1x−ATy = ωy.

Rewriting these identities as

(A− ωI)x = −Σy, (A− ωI)∗y = R1x,

yields
y∗(A− ωI)x = −y∗Σy, x∗(A− ωI)∗y = x∗R1x.
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Hence, −y∗Σy = x∗R1x, and thus y∗Σy = x∗R1x = 0, which implies that
BTy = 0 and E1x = 0. Consequently, we have

(A− ωI)x = 0, (A− ωI)∗y = 0,

and hence [

A− ωI
E1

]

x = 0, y∗
[

A− ωI B
]

= 0.

Since [ xy ] 6= 0, it follows that either x 6= 0 or y 6= 0, and thus either

rank
[

A−ωI
E1

]

< n or rank
[

A− ωI B
]

< n.

Combining Lemmas 12.16.2, 12.16.3, and 12.16.4 yields the following
result.

Proposition 12.16.5. Suppose that λ ∈ C and Reλ = 0. Then, λ is
an eigenvalue of H if and only if λ is either an uncontrollable eigenvalue of
(A,B) or an unobservable eigenvalue of (A,E1).

Corollary 12.16.6. Suppose that (A,B) is stabilizable and every imag-
inary eigenvalue of (A,B,E1) is either uncontrollable or observable. Then,
H has no imaginary eigenvalues.

Theorem 12.16.7. The following statements are equivalent:

i) (A,B) is stabilizable, and every imaginary eigenvalue of (A,E1) is
observable.

ii) H has no imaginary eigenvalues, and, if S =
[

S1 S12

S21 S2

]

∈ R2n×2n is

an invertible matrix such that H = SZS−1, where Z =
[

Z1 Z12

0 Z2

]

∈
R2n×2n and Z1 ∈ Rn×n is asymptotically stable, then S1 is invert-
ible and P

4

= −S21S
−1
1 is the nonnegative-semidefinite stabilizing

solution to (12.14.23).

In this case, the following statements hold:

iii) If (A,E1) is detectable, then P is the only nonnegative-semidefinite
solution to (12.14.23).

iv) rankP is equal to the number of OLHP observable eigenvalues of
(A,E1).

v) If all of the OLHP eigenvalues of (A,E1) are observable, then P is
positive definite.

Proof. To prove that i) implies ii), first note that Corollary ??? implies
that H has no imaginary eigenvalues. Since H is Hamiltonian, it follows

that there exists S =
[

S1 S12

S21 S2

]

∈ R2n×2n such that S is invertible and
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H = SZS−1, where Z =
[

Z1 Z12

0 Z2

]

and Z1 ∈ Rn×n is asymptotically stable.

Next, note that HS = SZ implies that H
[

S1

S21

]

= S
[

Z1

0

]

=
[

S1

S21

]

Z1.
Therefore,

[

S1

S21

]T

JnH

[

S1

S21

]

=

[

S1

S21

]T

Jn

[

S1

S21

]

Z1

=
[

ST
1 ST

21

]

[

S21

−S1

]

Z1

= LZ1,

where L
4

= ST
1 S21 − ST

21S1. Since JnH = (JnH)T, it follows that LZ1 is
symmetric, that is, LZ1 = ZT

1 L
T. Since, in addition, L is skew symmetric,

it follws that 0 = ZT
1 L + LZ1. Now, since Z1 is asymptotically stable, it

follows that L = 0. Hence, ST
1 S21 = ST

21S1, which shows that ST
21S1 is

symmetric.

To show that S1 is invertible, note that it follows from the identity
[

I 0
]

H
[

S1

S21

]

=
[

I 0
] [

S1

S21

]

Z1 that AS1 + ΣS21 = S1Z1. Now, let
x ∈ Rn satisfy S1x = 0. We thus have

xTS21ΣS21x = xTST
21[AS1 +ΣS21]x = xTST

21S1Z1x

= xTST
1 S21Z1x = 0,

which implies that BTS21x = 0. Hence, S1Z1x = (AS1 +ΣS21)x = 0. Thus,
Z1 : N(S1) 7→ N(S1).

Now, suppose that S1 is singular. Since Z1 : N(S1) 7→ N(S1), it follows
that there exists λ ∈ spec(Z1) and x ∈ Cn such that Z1x = λx and S1x = 0.
Forming

[

0 I
]

H
[

S1

S21

]

x =
[

0 I
] [

S1

S21

]

Z1x yields −ATS21x = S21λZ

and thus
(

λI +AT
)

S21x = 0. Since, in addition, as shown above, BTS21x =

0, it follows that x∗ST
21

[

−λI −A B
]

= 0. Since λ ∈ spec(Z1), it follows

that Re(−λ) > 0. Furthermore, since, by assumption (A,B) is stabilizable,
it follows that rank

[

λI −A B
]

= n. Therefore, S21x = 0. Combining

this fact with S1x = 0 yields
[

S1

S21

]

x = 0. Since x is nonzero, it follows that
S is singular, which is a contradiction. Consequently, S1 is invertible. Next,
define P

4

= −S21S
−1
1 and note that, since ST

1 S21 is symmetric, it follows that

P = −S−T
1 (ST

1 S21)S
−1
1 is also symmetric.

Since H
[

S1

S21

]

=
[

S1

S21

]

Z1, it follows that

H

[

I
S21S

−1
1

]

=

[

I
S21S

−1
1

]

S1Z1S
−1
1 ,
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and thus

H

[

I
−P

]

=

[

I
−P

]

S1Z1S
−1
1 .

Multiplying on the left by
[

P I
]

yields

0 =
[

P I
]

H

[

I
−P

]

= ATP + PA+R1 − PΣP,

which shows that P is a solution to (12.14.23). Similarly, multiplying on
the left by

[

I 0
]

yields A − ΣP = S1Z1S
−1
1 . Since Z1 is asymptotically

stable, it follows that A−ΣP is also asymptotically stable.

Conversely, to prove that ii) implies i), note that, since A − ΣP is
asymptotically stable, it follows that (A,B) is stabilizable. Furthermore,
since P is a solution to (12.14.23), it follows that mspec(H) = mspec(A −
ΣP )∪mspec(−(A−ΣP )), which implies that H has no imaginary eigenval-
ues. Thus, Lemma 12.16.4 implies that (A,E1) has no unobservable imag-
inary eigenvalues. Therefore, (A,B,E1) has no imaginary eigenvalues that
are controllable and unobservable.

To prove iii), (TO BE ADDED).

Theorem 12.16.8. Suppose (A,B) is stabilizable. Then, there exists
a solution to (12.14.23). Furthermore, the maximal solution P to (12.14.23)
exists, is unique, and is nonnegative semidefinite. If λ ∈ spec(H) is imagi-
nary, then λ has even-dimensional Jordan blocks. In addition,the following
statements hold:

i) (A,E1) observable implies P is positive definite.

ii) (A,E1) is detectable if and only if P is nonnegative semidefinite.

iii) If λ ∈ spec(A) is imaginary, then λ is E1-observable.

iv) λ is E1-observable if and only if there are no eigenvalues of H.

v) λ is E1-observable if and only if Reλ < 0.

12.17 Facts on Linear System Theory

Fact 12.17.1. If two of the following three conditions are satisfied,
then the third condition is also satisfied:

i) A is asymptotically stable.

ii) (A,C) is observable.

iii) There exists a positive-definite solution P ∈ Rn×n to (12.4.3).
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Fact 12.17.2. The step response y(t) =
∫ t
0Ce

tA dτBv+Dv is bounded
for all v ∈ Fm if and only if A is Lyapunov stable and nonsingular.

Fact 12.17.3. Let A ∈ Rn×n, B ∈ Rn×m, and assume that A is skew
symmetric and (A,B) is controllable. Then, A − αBBT is asymptotically
stable for all α > 0.

Fact 12.17.4. Let A ∈ Rn×n, C ∈ Rp×n, assume that (A,C) is de-
tectable, and assume that y(t) → 0 as t → ∞, where ẋ(t) = Ax(t) and
y(t) = Cx(t). Then, x(t)→ 0 as t→∞.

Fact 12.17.5. Let x(0) = x0, and let xf − etfAx0 ∈ C(A,B). Then, for
all t ∈ [0, tf ], the control u: [0, tf ] 7→ Rm defined by

u(t)
4

= BTe(tf−t)A
T





tf
∫

0

eτABBTeτA
T

dτ





+

(

xf − etfAx0

)

yields x(tf) = xf .

Fact 12.17.6. Let x(0) = x0, let xf ∈ Rn, and assume that (A,B) is
controllable. Then, for all t ∈ [0, tf ], the control u: [0, tf ] 7→ Rm defined by

u(t)
4

= BTe(tf−t)A
T





tf
∫

0

eτABBTeτA
T

dτ





−1

(

xf − etfAx0

)

yields x(tf) = xf .

Fact 12.17.7. Let A ∈ Rn×n be asymptotically stable, let V ∈ Rn×n

be nonnegative semidefinite, and let Q ∈ Rn×n be the unique, positive-
definite solution to AQ + QAT + V = 0. Furthermore, let C ∈ Rp×n, and
assume that CV CT is positive definite. Then, CQCT is positive definite.

Fact 12.17.8. Let A ∈ Rn×n be asymptotically stable, let R ∈ Rn×n

be nonnegative semidefinite, and let P ∈ Rn×n satisfy ATP + PA + R = 0.
Then, there exist αij ∈ R for all i, j = 1, . . . , n, such that

P =

n
∑

i,j=1

αijA
(i−1)TRAj−1.

In particular, αij = P̂(i,j), where P̂ ∈ Rn×n satisfies ÂTP̂ + P̂ Â + R̂ = 0,

where Â = C(χA) and R̂ = E1,1. (Proof: See [511].) (Remark: This
identity is Smith’s method. See [178] for finite series solutions of linear
matrix equations.)
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Fact 12.17.9. Let A ∈ Rn×n be asymptotically stable. Then,

(A⊕A)−1 =

∞
∫

−∞

(ωI −A)−1 ⊗ (ωI −A)−1 dω

and ∞
∫

−∞

(ω2I +A2) dω = −πA−1.

(Hint: Use (ωI −A)−1 + (−ωI −A)−1 = −2A(ω2I +A2)−1.)

Fact 12.17.10. Let G1 ∈ Rp1×m(s) and G2 ∈ Rp2×m(s) be strictly
proper. Then,

∥

∥

∥

∥

[

G1

G2

]∥

∥

∥

∥

2

H2

= ‖G1‖2H2
+ ‖G2‖2H2

.

Fact 12.17.11. Let G1, G2 ∈ Rm×m(s) be strictly proper. Then,
∥

∥

∥

∥

[

G1

G2

]∥

∥

∥

∥

H2

=
∥

∥

[

G1 G2

]∥

∥

H2
.

Fact 12.17.12. Let H(t) = CetAB, where C(sI − A)−1B = α
s+β and

β > 0. Then,
‖H‖L2

=
α√
2β
.

Fact 12.17.13. Let H(t) = CetAB, where C(sI − A)−1B = α1s+α0

s2+β1s+β0

and β1, β0 > 0. Then,

‖H‖L2
=

√

α2
0

2β0β1
+

α2
1

2β1
.

Fact 12.17.14. Let G1(s) = α1s
s+β1

and G2(s) = α2s
s+β2

, where β1 > 0
and β2 > 0. Then,

‖G1G2‖H2
≤ ‖G1‖H2

‖G2‖H2

if and only if β1 +β2 ≥ 2. (Remark: The H2 norm is not submultiplicative.)

Fact 12.17.15. Let A ∈ Rn×n. Then, there exists a symmetric matrix
P ∈ Rn×n such that ATP + PA is positive definite if and only if A has no
eigenvalues on the imaginary axis. (Proof: See [446].)

Fact 12.17.16. Let A,P ∈ Rn×n, and assume that all of the eigen-
values of A are on the imaginary axis and P is nonnegative semidefinite.
Then, ATP + PA is either zero or has at least one positive eigenvalue and
one negative eigenvalue. (Proof: See [561].)
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Fact 12.17.17. Let A ∈ Rn×n, let P ∈ Rn×n be symmetric, let R ∈
Rn×n be nonnegative semidefinite, and assume that ATP + PA + R = 0.
Then,

|ν+(A)− ν+(P )| ≤ n− rankO(A,R)

and
|ν0(A)− ν0(P )| ≤ n− rankO(A,R).

(Proof: See [380].) (Remark: For related results, see [446] and references
given in [380]. See also [162].)

Fact 12.17.18. Let A1, A2 ∈ Rn×n, B ∈ Rn, C ∈ R1×n, assume that
A1 ⊕ A2 is nonsingular, and let P ∈ Rn×n satisfy A1P + PA2 + BC = 0. If
(A1, B) is controllable and (A2, C) is observable, then P is nonsingular.

Fact 12.17.19. Let A1 ∈ Rn1×n1 , A2 ∈ Rn2×n2 , B ∈ Rn1×m, and
C ∈ Rm×n2 , assume that A1⊕A2 is nonsingular, and assume that rankB =
rankC = m. Furthermore, let X ∈ Rn1×n2 be the unique solution to A1X +
XA2 +BC = 0. Then,

rankX ≤ min{rankK(A1, B), rankO(A2, C)}.
Finally, equality holds if m = 1. (Proof: See [167].) (Remark: Related
results are given in [604,608].)

Fact 12.17.20. Let A ∈ Rn×n, and assume that there exist nonneg-
ative-semidefinite matrices P,R ∈ Rn×n such that ATP + PA + R = 0 is
satisfied and such that N(O(A,R)) = N(A). Then, A is semistable. (Proof:
See [91].)

Fact 12.17.21. Let A ∈ Rn×n, let R ∈ Rn×n be nonnegative semidefi-
nite, and let q, r ∈ R, where r > 0. If there exists a positive-definite matrix
P ∈ Rn×n satisfying

[A− (q + r)I]TP + P [A− (q + r)I] + 1
rA

TPA+R = 0,

then the spectrum of A is contained in disk centered at q+ 0 with radius r.
(Remark: See [61,255] for related results concerning elliptical and parabolic
regions.)

Fact 12.17.22. Let G ∼
[

A B

C D

]

, let a, b ∈ R, where a 6= 0, and

define H(s)
4

= G(as+ b). Then,

H ∼
[

a−1(A− bI) B

a−1C D

]

.

Fact 12.17.23. Let G ∼
[

A B

C D

]

, where A is nonsingular, and define
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H(s)
4

= G(1/s). Then,

H ∼
[

A−1 −A−1B

CA−1 D − CA−1B

]

.

Fact 12.17.24. Let G(s) = C(sI −A)−1B. Then,

G(ω) = −CA(ω2I +A2)−1B − ωC(ω2I +A2)−1B.

Fact 12.17.25. Let G ∼
[

A B

C 0

]

and H(s) = sG(s). Then,

H ∼
[

A B

CA CB

]

.

Consequently,

sC(sI −A)−1B = CA(sI −A)−1B + CB.

Fact 12.17.26. Let G =
[

G11 G12

G21 G22

]

, where Gij ∼
[

Aij Bij

Cij Dij

]

for all

i, j = 1, 2. Then,

[

G11 G12

G21 G22

]

∼

















A11 0 0 0 B11 0
0 A12 0 0 0 B12

0 0 A21 0 B21 0
0 0 0 A22 0 B22

C11 C12 0 0 D11 D12

0 0 C21 C22 D21 D22

















.

Fact 12.17.27. Let G ∼
[

A B

C 0

]

, where G ∈ Rl×m(s), and let M ∈
Rm×p. Then,

[I +GM ]−1 ∼
[

A−BMC B

− C I

]

and

[I +GM ]−1G ∼
[

A−BMC B

C 0

]

.

Fact 12.17.28. Let G ∼
[

A B

C D

]

. If D has a left inverse DL, then

GL ∼
[

A−BDLC BDL

−DLC DL

]

satisfies GLG = I. If D has a right inverse DR, then

GR ∼
[

A−BDRC BDR

−DRC DR

]
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satisfies GGR = I.

Fact 12.17.29. Let A ∈ Rn×n and B ∈ Rn×m. Then, (A,B) is (con-
trollable, stabilizable) if and only if (A,BBT) is (controllable, stabilizable).
In particular, if A,B ∈ Rn×n, where B is nonnegative semidefinite, then
(A,B) is (controllable, stabilizable) if and only if (A,B1/2) is (controllable,
stabilizable).

Fact 12.17.30. Let A ∈ Rn×n, B ∈ Rn×m, and B̂ ∈ Rn×m̂, and assume
that (A,B) is (controllable, stabilizable) and R(B) ⊆ R(B̂). Then, (A, B̂)
is also (controllable, stabilizable).

Fact 12.17.31. Let A ∈ Rn×n and B ∈ Rn×m. Then, the following
statements are equivalent:

i) (A,B) is controllable.

ii) There exists α ∈ R such that (A+ αI,B) is controllable.

iii) (A+ αI,B) is controllable for all α ∈ R.

Fact 12.17.32. Let A ∈ Rn×n and B ∈ Rn×m. Then, the following
statements are equivalent:

i) (A,B) is stabilizable.

ii) There exists α ≤ max{0,− spabs(A)} such that (A + αI,B) is sta-
bilizable.

iii) (A+ αI,B) is stabilizable for all α ≤ max{0,− spabs(A)}.

Fact 12.17.33. Let A ∈ Rn×n and B ∈ Rn×m, assume that (A,B)
is (controllable, stabilizable), and let D ∈ Rn×l, E ∈ Rl×n and R ∈ Rl×l,

where R is positive definite. Then,
(

A+DE,
[

BBT +DRDT
]1/2
)

is also

(controllable, stabilizable). (Proof: See [615, p. 79].)

Fact 12.17.34. Let A ∈ Rn×n be diagonal and let B ∈ Rn×1. Then,
(A,B) is controllable if and only if the diagonal entries of A are distinct and
all of the entries of B are nonzero. (Proof: Note that

det
[

B AB · · · An−1B
]

= det







b1 0
. . .

0 bn













1 a1 · · · an−1
1

...
... · · ·.. ...

1 an · · · an−1
n







=

(

n
∏

i=1

bi

)

∏

i<j

(ai − aj).)
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Fact 12.17.35. Let A ∈ Rn×n and B ∈ Rn×1, and assume that (A,B)
is controllable. Then, A is cyclic.

Fact 12.17.36. Let A ∈ Rn×n and B ∈ Rn×m. Then, the following
conditions are equivalent:

i) (A,B) is (controllable, stabilizable) and A is nonsingular.

ii) (A,AB) is (controllable, stabilizable).

Fact 12.17.37. Let A ∈ Rn×n and B ∈ Rn×m, and assume that (A,B)
is controllable. Then, (A,BTS−T) is observable, where S ∈ Rn×n is a non-
singular matrix satisfying AT = S−1AS.

Fact 12.17.38. LetG ∼
[

A B

C 0

]

be a SISO rational transfer function,

and let λ ∈ C. Then, there exists a rational function H such that

G(s) =
1

(s+ λ)r
H(s)

and such that λ is neither a pole nor a zero of H if and only if the Jordan
form of A has exactly one block associated with λ, which is of size r × r.

Fact 12.17.39. Let A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rm×n. Then,

det[sI − (A+BC)] = [I − C(sI −A)−1B]det(sI −A).

(Proof: Note that

[I − C(sI −A)−1B] det(sI −A) = det

[

sI −A B
C I

]

= det

[

sI −A B
C I

] [

I 0
−C I

]

= det

[

sI −A−BC B
0 I

]

= det(sI −A−BC).)

Fact 12.17.40. Let A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, and K ∈ Rm×n,
and assume that A+BK is nonsingular. Then,

det

[

A B
C 0

]

= (−1)mdet(A+BK) det
[

C(A+BK)−1B
]

.

Hence,
[

A B
C 0

]

is nonsingular if and only if C(A + BK)−1B is nonsingular.
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(Proof:

det

[

A B
C 0

]

= det

[

A B
C 0

] [

I 0
K I

]

= det

[

A+BK B
C 0

]

= det(A+BK) det
[

−C(A+BK)−1B
]

.)

Fact 12.17.41. Let A,B ∈ Cn×n, and assume that the 2n×2n matrix
[

A −2I
2B − 1

2A
2 A

]

is simple. Then, there exists X ∈ Cn×n satisfying

X2 +AX +B = 0.

(Proof: See [557].)

Fact 12.17.42. Let P0 ∈ Rn×n be positive definite and, for all t ≥ 0,
let P (t) ∈ Rn×n satisfy

Ṗ (t) = ATP (t) + P (t)A+ P (t)V P (t),

P (0) = P0.

Then, for all t ≥ 0,

P (t) = etA
T



P−1
0 −

t
∫

0

eτAV eτA
T

dτ





−1

etA.

(Remark: P (t) satisfies a Riccati differential equation.)

12.18 Notes

Linear system theory is treated in [112, 556, 611]. The PBH test is
proved in [270]. Spectral factorization results are given in [146].

Zeros are treated in [199,321,385,453,495,501].

Matrix-based methods for linear system identification are developed
in [570].

Solutions of the LQR problem under weak conditions are given in [225].
Solutions of the Riccati equation are considered in [341, 343, 351, 352, 402,
480, 602, 607, 609]. There are numerous extensions to the results given in
this chapter to various generalizations of (12.14.23). These include the case
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in which R1 is indefinite [232, 605, 606] as well as the case in which Σ is
indefinite [497]. The latter case is relevant toH∞ optimal control theory [86].
Additional extensions include the Riccati inequalityATP+PA+R1−PΣP ≥
0 [475] as well as the discrete-time Riccati equation [306] and extensions to
fixed-order controllers [302]. Monotonicity properties are studied in [607].
Riccati equations for discrete-time systems are discussed in [1].
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Theorem 5.2.9, 156

example
Example 5.3.6, 160
Example 5.3.7, 161

hypercompanion
matrix
Corollary 5.3.4, 158
Lemma 5.3.1, 157

inverse matrix
Fact 5.12.2, 195

minimal polynomial
Corollary 5.2.4, 154
Corollary 5.2.5, 154
Proposition 5.2.1, 152

nonnegative matrix
Fact 4.11.3, 148

oscillator
Fact 5.11.23, 191

singular value
Fact 5.9.14, 183

Vandermonde matrix
Fact 5.12.5, 196

compatible norm
induced norm
Proposition 9.4.3, 314

submultiplicative
norm
Proposition 9.3.1, 311

compatible norms
definition, 310
Holder norm
Proposition 9.3.5, 311

Schatten norm
Proposition 9.3.6, 312

complement
closure
Fact 10.7.5, 366

definition, 2
interior
Fact 10.7.5, 366

complement relative to
definition, 2

complementary
subspaces

definition, 26
idempotent matrix
Fact 3.5.15, 95
Proposition 5.5.8, 167

index
Proposition 5.5.6, 167

simultaneous
Fact 2.9.12, 47

stable subspace
Proposition 11.6.8, 389

sum of dimensions
Corollary 2.3.2, 26

unstable subspace
Proposition 11.6.8, 389

completely solid set
convex set
Fact 10.7.7, 366

definition, 356
nonnegative-definite
matrix
Fact 10.7.16, 367

open ball
Fact 10.7.1, 365

complex conjugate
determinant
Fact 2.15.7, 74
Fact 2.15.8, 74

partitioned matrix
Fact 2.15.8, 74

similar matrices
Fact 5.7.17, 178

complex conjugate of a
matrix

definition, 23

complex conjugate of a
vector

definition, 21

complex conjugate
transpose

definition, 23
diagonalizable
matrix
Fact 5.11.2, 189

Drazin generalized
inverse

Fact 6.5.3, 223
factorization
Fact 5.13.21, 202

generalized inverse
Fact 6.3.2, 213
Fact 6.3.11, 214

Kronecker product
Proposition 7.1.3, 226

left inverse
Fact 2.13.23, 66

matrix exponential
Fact 11.12.3, 408
Fact 11.12.5, 409

nonsingular matrix
Fact 2.13.38, 70

norm
Fact 9.8.5, 328

normal matrix
Fact 5.11.19, 191

singular value
Fact 5.9.17, 184

unitarily invariant
norm
Fact 9.8.21, 331

unitarily
left-equivalent
matrices
Fact 5.8.9, 179
Fact 5.8.10, 179

unitarily
right-equivalent
matrices
Fact 5.8.9, 179

unitarily similar
matrices
Fact 8.11.1, 281

complex conjugate
transpose of a vector

definition, 21

complex matrix
block 2× 2
representation
Fact 2.15.3, 72

determinant
Fact 2.15.3, 72
Fact 2.15.9, 74
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nonnegative-
semidefinite
matrix
Fact 3.4.5, 86

partitioned matrix
Fact 2.15.4, 73
Fact 2.15.5, 73
Fact 2.15.6, 73
Fact 3.6.12, 98

positive-definite
matrix
Fact 3.4.5, 86

rank
Fact 2.15.3, 72

complex numbers
2× 2 representation
Fact 2.15.1, 71

identities
Fact 1.4.18, 10

complex-symmetric
matrix

T-congruence
Fact 5.7.10, 176

T-congruent
diagonalization
Fact 5.7.10, 176

unitary matrix
Fact 5.7.10, 176

component
definition, 14

composition
definition, 4

compound matrix
matrix product
Fact 7.4.32, 234

concave function
definition
Definition 8.5.11, 257

function composition
Lemma 8.5.12, 257

nonincreasing
function
Lemma 8.5.12, 257

condition number

linear system
solution
Fact 9.9.31, 340
Fact 9.9.32, 340
Fact 9.9.33, 341

cone
constructive
characterization
Theorem 2.3.5, 27

definition, 25
intersection
Fact 2.9.4, 47

one-sided
definition, 25

pointed
definition, 25

sum
Fact 2.9.4, 47

variational
definition, 359

congruence
equivalence relation
Fact 5.8.2, 178

congruent matrices
definition
Definition 3.2.2, 82

Hermitian matrix
Corollary 5.4.7, 165

inertia
Corollary 5.4.7, 165
Fact 5.7.11, 176

Kronecker product
Fact 7.4.12, 232

matrix classes
Proposition 3.2.3, 83

nonnegative-
semidefinite
matrix
Corollary 8.1.3, 241

positive-definite
matrix
Corollary 8.1.3, 241

skew-symmetric
matrix
Fact 3.9.7, 103

conical hull

definition, 25

constant polynomial
definition, 111

contained
definition, 2

continuous function
closed relative to a
set

Theorem 10.3.4, 358

closed set

Corollary 10.3.5, 358

Theorem 10.3.9, 359

compact set

Theorem 10.3.7, 358

convex function

Theorem 10.3.2, 358

convex set

Theorem 10.3.9, 359

definition

Definition 10.3.1, 358

differentiable
function

Proposition 10.4.4, 360

existence of
minimizer

Corollary 10.3.8, 359

linear function

Corollary 10.3.3, 358

maximization

Fact 10.8.2, 368

open relative to a set

Theorem 10.3.4, 358

open set

Corollary 10.3.5, 358

continuously
differentiable
function

definition, 361

contractive matrix
complex conjugate
transpose

Fact 3.12.3, 106

definition

Definition 3.1.2, 78



matrix2 November 19, 2003

554 INDEX

contragedient
diagonalization

positive-definite
matrix
Theorem 8.3.2, 245

contragredient
diagonalization

definition, 245
nonnegative-
semidefinite
matrix
Corollary 8.3.7, 247
Theorem 8.3.5, 246

positive-definite
matrix
Corollary 8.3.3, 245

contrapositive
definition, 1

convergent sequence
closure point
Proposition 10.2.4, 357

commutator
Fact 11.11.10, 404

discrete-time
semistable matrix
Fact 11.15.15, 421

generalized inverse
Fact 6.3.18, 215

Hermitian matrix
Fact 11.11.7, 404
Fact 11.11.8, 404

inverse matrix
Fact 2.13.37, 70
Fact 4.10.19, 145

matrix exponential
Corollary 11.4.9, 384
Fact 11.11.7, 404
Fact 11.11.8, 404
Fact 11.11.10, 404
Fact 11.15.15, 421
Proposition 11.1.3, 372

matrix sign function
Fact 5.13.18, 202

spectral radius
Fact 4.10.19, 145
Fact 9.8.1, 327

square root
Fact 5.13.18, 202
Fact 8.7.20, 266

unitary matrix
Fact 8.7.21, 267

vectors
Fact 10.8.1, 368

convergent sequence
of matrices

definition
Definition 10.2.3, 357

convergent sequence
of scalars

definition
Definition 10.2.2, 357

convergent sequence
of vectors

definition
Definition 10.2.3, 357

convergent series
definition
Definition 10.2.6, 357

matrix exponential
Proposition 11.1.2, 372

convergent
subsequence

compact set
Theorem 10.2.5, 357

converse
definition, 1

convex combination
definition, 24
determinant
Fact 8.13.8, 287

nonnegative-
semidefinite
matrix
Fact 8.13.8, 287

convex cone
definition, 25
induced by transitive
relation
Proposition 2.3.6, 28

inner product

Fact 10.7.20, 367
intersection
Fact 2.9.4, 47

nonnegative-
semidefinite matrix,
240

separation theorem
Fact 10.7.20, 367

sum
Fact 2.9.4, 47

union
Fact 2.9.5, 47

convex conical hull
constructive
characterization
Theorem 2.3.5, 27

convex hull
Fact 2.9.1, 46

definition, 25
dual cone
Fact 2.9.1, 46

convex function
continuous function
Theorem 10.3.2, 358

convex set
Fact 10.8.5, 368
Fact 10.8.6, 368

definition
Definition 8.5.11, 257

determinant
Proposition 8.5.13, 258

eigenvalue
Corollary 8.5.15, 263
Fact 8.14.10, 293

function composition
Lemma 8.5.12, 257

Kronecker product
Proposition 8.5.13, 258

log majorization
Fact 8.16.4, 301

logarithm of
determinant
Proposition 8.5.13, 258

logarithm of trace
Proposition 8.5.13, 258

matrix exponential
Fact 11.11.25, 407
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matrix functions
Proposition 8.5.13, 258

minimizer
Fact 8.10.16, 280

nondecreasing
function
Lemma 8.5.12, 257

nonnegative-
semidefinite
matrix
Fact 8.10.16, 280

one-sided directional
differential
Proposition 10.4.1, 360

Schur complement
Lemma 8.5.12, 257
Proposition 8.5.13, 258

strong majorization
Fact 8.16.1, 300
Fact 8.16.2, 300

trace
Proposition 8.5.13, 258

weak majorization
Fact 8.14.10, 293
Fact 8.16.1, 300
Fact 8.16.2, 300
Fact 8.16.3, 300

convex hull
affine hull
Fact 2.9.1, 46

closure
Fact 10.7.9, 366
Fact 10.7.10, 366

compact set
Fact 10.7.12, 366

constructive
characterization
Theorem 2.3.5, 27

definition, 25
open set
Fact 10.7.11, 366

solid set
Fact 10.7.8, 366

spectrum
Fact 4.10.17, 145

convex set
closure

Fact 10.7.6, 366
Fact 10.7.17, 367

completely solid set
Fact 10.7.7, 366

continuous function
Theorem 10.3.9, 359

convexity of image
Fact 2.9.2, 46

definition, 24
interior
Fact 10.7.6, 366
Fact 10.7.17, 367

intersection
Fact 2.9.4, 47

norm
Fact 9.7.9, 326

open ball
Fact 10.7.1, 365

solid set
Fact 10.7.7, 366

sum
Fact 2.9.4, 47

convex sets
proper separation
theorem
Fact 10.7.21, 367

convexity
matrix exponential
Fact 11.12.11, 410

singular value
Fact 11.12.11, 410

coprime
definition, 113
polynomial
Fact 4.8.3, 131
Fact 4.8.4, 131

coprime polynomials
Bezout matrix
Fact 4.8.6, 132
Fact 4.8.7, 134

resultant
Fact 4.8.4, 131

Smith-McMillan
form
Fact 4.8.13, 137

Sylvester matrix

Fact 4.8.4, 131

corollary
definition, 1

cosine law
vector identity
Fact 9.7.4, 325

Cramer’s rule
linear system
solution
Fact 2.12.11, 57

Crimmins
product of projectors
Fact 6.3.15, 215

cross product
Cayley transform
Fact 11.9.8, 399

identities
Fact 3.4.24, 90

matrix exponential
Fact 11.9.9, 399

orthogonal matrix
Fact 11.9.8, 399

outer-product
matrix
Fact 11.9.8, 399

CS decomposition
unitary matrix
Fact 5.7.16, 178

cube root
identity
Fact 2.11.2, 53

cyclic eigenvalue
definition
Definition 5.5.10, 167

semisimple
eigenvalue
Proposition 5.5.11, 168

simple eigenvalue
Proposition 5.5.11, 168

cyclic matrix
asymptotically stable
matrix
Fact 11.14.23, 416
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campanion matrix
Fact 5.12.6, 196

characteristic
polynomial
Proposition 5.5.20, 171

commuting matrices
Fact 5.11.16, 190

definition
Definition 5.5.10, 167

determinant
Fact 5.11.5, 189

diagonalizable over R
Fact 5.11.6, 189

linear independent
vectors
Fact 5.11.5, 189

matrix power
Fact 5.11.5, 189

minimal polynomial
Proposition 5.5.20, 171

similar matrices
Fact 5.12.6, 196

simple matrix
Fact 5.11.6, 189

tridiagonal matrix
Fact 11.14.23, 416

D

damped natural
frequency, 380

definition
Fact 5.11.23, 191

damping, 380

damping ratio, 380
definition
Fact 5.11.23, 191

Decell
generalized inverse
Fact 6.4.8, 216

decreasing
definition
Definition 8.5.9, 256

defect
adjugate

Fact 2.13.6, 64
definition, 31
group-invertible
matrix
Fact 3.3.3, 85

identity
Fact 2.10.2, 48

identity involving
defect
Corollary 2.5.5, 33

identity with powers
Proposition 2.5.7, 33

identity with
transpose
Corollary 2.5.3, 32

partitioned matrix
Fact 2.10.24, 51
Fact 2.10.25, 51

product of matrices
Fact 2.10.8, 49

product with full
rank matrix
Proposition 2.6.2, 35

semisimple
eigenvalue
Proposition 5.5.14, 168

Sylvester’s law of
nullity
Fact 2.10.9, 49

defective eigenvalue
definition
Definition 5.5.10, 167

defective matrix
definition
Definition 5.5.10, 167

degree of a matrix
polynomial

definition, 114

degree of a polynomial
definition, 111

derivative
adjugate
Fact 10.8.11, 369
Fact 10.8.13, 369

determinant

Fact 10.8.11, 369
Fact 10.8.13, 369
Fact 10.8.14, 370
Fact 10.8.15, 370

matrix
definition, 373

matrix exponential
Fact 11.11.3, 403
Fact 11.11.4, 403
Fact 11.12.1, 408

matrix inverse
Fact 10.8.11, 369

maximum singular
value
Fact 11.12.1, 408

trace
Fact 11.11.3, 403

derivative of a matrix
commutator
Fact 11.11.12, 405

matrix exponential
Fact 11.11.12, 405

matrix product
Fact 11.10.6, 401

derivative of integral
Liebniz rule
Fact 10.8.4, 368

derogatory eigenvalue
definition
Definition 5.5.10, 167

derogatory matrix
definition
Definition 5.5.10, 167

determinant
(1)-inverse
Fact 6.4.26, 221

adjugate
Fact 2.13.2, 63
Fact 2.13.4, 64

basic properties
Proposition 2.7.2, 39

bound
Fact 8.13.21, 289

cofactor expansion
Proposition 2.7.5, 41
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colinear
Fact 2.16.1, 74

column interchange
Proposition 2.7.2, 39

commutator
Fact 2.14.6, 71

complex conjugate
Fact 2.15.7, 74
Fact 2.15.8, 74

complex conjugate
transpose
Proposition 2.7.1, 39

complex matrix
Fact 2.15.3, 72
Fact 2.15.9, 74

convex combination
Fact 8.13.8, 287

convex function
Proposition 8.5.13, 258

cyclic matrix
Fact 5.11.5, 189

definition, 38
derivative
Fact 10.8.11, 369
Fact 10.8.13, 369
Fact 10.8.14, 370
Fact 10.8.15, 370

dissipative matrix
Fact 8.13.1, 285
Fact 8.13.5, 286
Fact 8.13.17, 288

eigenvalue
Fact 5.9.13, 183

elementary matrix
Fact 2.13.1, 63

factorization
Fact 5.13.4, 199
Fact 5.13.31, 204

Frobenius norm
Fact 9.8.30, 333

generalized inverse
Fact 6.4.25, 221
Fact 6.4.26, 221

group
Proposition 3.2.7, 84

Hankel matrix
Fact 3.12.12, 107
Fact 3.12.13, 108

Hermitian matrix
Corollary 8.4.10, 250
Fact 3.4.15, 89

identity
Fact 2.12.22, 61
Fact 2.12.23, 61
Fact 2.12.24, 61

inequality
Fact 8.13.13, 287
Fact 8.13.15, 288
Fact 8.13.16, 288
Fact 8.13.18, 288
Fact 8.13.19, 288
Fact 8.13.20, 289
Fact 8.15.12, 297

integral
Fact 11.10.13, 402

inverse function
theorem
Theorem 10.4.5, 361

involutory
Fact 3.6.21, 100

involutory matrix
Fact 5.13.28, 204

Kronecker product
Proposition 7.1.11, 228

Kronecker sum
Fact 7.4.28, 233

linear combination
Fact 8.13.10, 287

logarithm
Fact 8.7.44, 271
Fact 9.8.30, 333

lower block
triangular
Proposition 2.7.1, 39

lower
reverse-triangular
matrix
Fact 2.12.20, 60

matrix derivative
Proposition 10.6.3, 365

matrix exponential
Corollary 11.2.3, 377
Corollary 11.2.4, 377
Fact 11.10.13, 402
Fact 11.12.4, 408
Proposition 11.4.7, 383

maximum singular
value
Fact 9.11.6, 346
Fact 9.11.7, 346
Fact 9.12.11, 350
Fact 9.12.12, 350

minimum singular
value
Fact 9.11.7, 346
Fact 9.12.12, 350

nilpotent matrix
Fact 3.8.9, 103

nonnegative-
semidefinite
matrix
Corollary 8.4.15, 252
Fact 5.10.6, 188
Fact 8.13.12, 287
Fact 8.13.8, 287
Fact 8.13.10, 287
Fact 8.14.5, 291
Fact 8.15.5, 296
Fact 8.15.11, 297
Fact 8.15.12, 297
Fact 9.8.30, 333

nonsingular matrix
Corollary 2.7.4, 40
Lemma 2.8.6, 44

ones matrix
Fact 2.12.3, 55

ones matrix
perturbation
Fact 2.13.5, 64

orthogonal
Fact 3.6.20, 100

outer-product
perturbation
Fact 2.13.2, 63

partitioned matrix
Fact 2.12.1, 55
Fact 2.12.5, 55
Fact 2.12.6, 56
Fact 2.12.7, 56
Fact 2.12.8, 56
Fact 2.12.13, 57
Fact 2.12.14, 58
Fact 2.12.16, 59
Fact 2.12.17, 59
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Fact 2.12.18, 60
Fact 2.12.19, 60
Fact 2.12.25, 62
Fact 2.13.31, 68
Fact 2.15.3, 72
Fact 2.15.8, 74
Fact 5.10.5, 188
Fact 6.4.25, 221
Fact 6.4.26, 221
Fact 8.13.22, 289
Fact 8.13.23, 289
Lemma 8.2.5, 243

permutation matrix
Fact 2.12.21, 60

positive-definite
matrix
Fact 5.10.6, 188
Fact 8.7.44, 271
Fact 8.13.2, 286
Fact 8.13.3, 286
Fact 8.13.6, 286
Fact 8.13.7, 286
Fact 8.13.9, 287
Fact 8.13.11, 287
Fact 8.13.14, 287
Fact 8.13.22, 289
Proposition 8.4.14, 251

product
Proposition 2.7.3, 40

rank-deficient matrix
Fact 2.12.9, 57

reverse identity
Fact 2.12.2, 55

row interchange
Proposition 2.7.2, 39

singular value
Fact 5.9.13, 183

skew-Hermitian
matrix
Fact 3.4.7, 87
Fact 3.4.10, 87

skew-symmetric
matrix
Fact 3.4.9, 87
Fact 4.8.12, 136
Fact 4.10.4, 141

strongly increasing
function

Proposition 8.5.10, 256
subdeterminant
Fact 2.12.10, 57
Fact 2.12.15, 58
Fact 2.13.34, 69

subdeterminant
expansion
Corollary 2.7.6, 42

symplectic matrix
Fact 3.9.2, 103

trace
Corollary 11.2.3, 377
Corollary 11.2.4, 377
Fact 8.13.12, 287
Fact 11.11.19, 406
Proposition 8.4.14, 251

transpose
Proposition 2.7.1, 39

tridiagonal
Fact 2.12.26, 62
Fact 3.12.5, 107

unimodular matrix
Proposition 4.3.5, 118

unitary
Fact 3.6.6, 98

unitary matrix
Fact 3.6.7, 98
Fact 3.6.18, 99

Vandermonde matrix
Fact 5.12.3, 195

determinant of
outer-product
perturbation

Sherman-Morrison-
Woodbury
formula
Fact 2.13.2, 63

determinant of the
product of
dissipative matrices

positivity
Fact 8.13.17, 288

determinantal
compression

partitioned matrix
Fact 8.13.23, 289

diagonal
zero
Fact 5.7.18, 178

diagonal dominance
rank
Fact 4.10.15, 144

diagonal dominance
theorem

nonsingular matrix
Fact 4.10.14, 144

diagonal entries
definition, 16
similar matrices
Fact 5.7.7, 176

unitarily similar
matrices
Fact 5.7.6, 176

diagonal entry
Hermitian matrix
Corollary 8.4.7, 249
Fact 8.14.4, 291

nonnegative-
semidefinite
matrix
Fact 8.8.7, 272

diagonal matrix
definition
Definition 3.1.3, 79

Hermitian matrix
Corollary 5.4.5, 164

Kronecker product
Fact 7.4.2, 231

unitary matrix
Theorem 5.6.3, 174

diagonalizable
eigenvector
Fact 5.11.3, 189

factorization
Fact 5.13.25, 203

diagonalizable matrix
adjugate
Fact 5.11.2, 189

cogredient
diagonalization
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Fact 8.11.3, 281
Fact 8.11.4, 281

commuting matrices
Fact 5.8.8, 179

complex conjugate
transpose
Fact 5.11.2, 189

example
Example 5.5.22, 171

idempotent matrix
Fact 5.11.11, 190

involutory matrix
Fact 5.11.13, 190

transpose
Fact 5.11.2, 189

diagonalizable over C
definition
Definition 5.5.10, 167

diagonalizable over R
cyclic matrix
Fact 5.11.6, 189

definition
Definition 5.5.10, 167

factorization
Proposition 5.5.18, 170

similar matrices
Proposition 5.5.18, 170

simple matrix
Fact 5.11.6, 189

diagonalizable over R
matrix

asymptotically stable
matrix
Fact 11.13.8, 412

diagonally dominant
matrix

nonsingular matrix
Fact 4.10.14, 144

diagonally located
block

definition, 16

difference equation
golden mean
Fact 4.11.2, 147

nonnegative matrix

Fact 4.11.2, 147

difference of
logarithms

relative entropy
Fact 8.12.19, 285

differentiable function
continuous function
Proposition 10.4.4, 360

definition
Definition 10.4.3, 360

dimension
product of matrices
Fact 2.10.8, 49

rank inequality
Fact 2.10.10, 49

solid set
Fact 10.7.14, 367

subspace
Fact 2.9.13, 48

variational cone
Fact 10.7.18, 367

dimension of a
subspace

definition, 25

dimension of an
arbitrary set

definition, 26

dimension theorem
subspace dimension
Theorem 2.3.1, 26

discrete Fourier
analysis

circulant matrix
Fact 5.12.7, 197

discrete-time
asymptotic stability

eigenvalue
Proposition 11.8.2, 395

linear dynamical
system
Proposition 11.8.2, 395

matrix exponential
Proposition 11.8.2, 395

discrete-time
asymptotically
stable matrix

2× 2 matrix
Fact 11.15.2, 419

asymptotically stable
matrix
Fact 11.15.9, 421

Cayley transform
Fact 11.15.9, 421

definition
Definition 11.8.1, 395

discrete-time
asymptotically
stable polynomial
Proposition 11.8.4, 396

dissipative matrix
Fact 11.15.5, 420

Kronecker product
Fact 11.15.6, 420
Fact 11.15.7, 420

matrix exponential
Fact 11.15.8, 420

matrix limit
Fact 11.15.13, 421

matrix power
Fact 11.15.3, 419

normal matrix
Fact 11.15.5, 420

partitioned matrix
Fact 11.15.10, 421

positive-definite
matrix
Fact 11.15.10, 421
Fact 11.15.17, 422

discrete-time
asymptotically
stable polynomial

definition
Definition 11.8.3, 396

discrete-time
asymptotically
stable matrix
Proposition 11.8.4, 396

polynomial
coefficients
Fact 11.15.1, 419
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discrete-time dynamics
matrix power
Fact 11.15.4, 419

discrete-time Lyapunov
equation

discrete-time
asymptotically
stable matrix
Fact 11.15.17, 422

discrete-time Lyapunov
stability

eigenvalue
Proposition 11.8.2, 395

linear dynamical
system
Proposition 11.8.2, 395

matrix exponential
Proposition 11.8.2, 395

discrete-time Lyapunov
stable polynomial

definition
Definition 11.8.3, 396

discrete-time
Lyapunov-stable
matrix

definition
Definition 11.8.1, 395

discrete-time
Lyapunov-stable
polynomial
Proposition 11.8.4, 396

group generalized
inverse
Fact 11.15.12, 421

Kronecker product
Fact 11.15.6, 420
Fact 11.15.7, 420

matrix exponential
Fact 11.15.8, 420

matrix limit
Fact 11.15.12, 421

nonnegative-
semidefinite
matrix
Fact 11.15.17, 422

semidissipative
matrix
Fact 11.15.5, 420

unitary matrix
Fact 11.15.14, 421

discrete-time
Lyapunov-stable
polynomial

discrete-time
Lyapunov-stable
matrix
Proposition 11.8.4, 396

discrete-time
Lyapunov-stable
stable matrix

matrix power
Fact 11.15.16, 422

normal matrix
Fact 11.15.5, 420

discrete-time
semistability

eigenvalue
Proposition 11.8.2, 395

linear dynamical
system
Proposition 11.8.2, 395

matrix exponential
Proposition 11.8.2, 395

discrete-time
semistable matrix

convergent sequence
Fact 11.15.15, 421

definition
Definition 11.8.1, 395

discrete-time
semistable
polynomial
Proposition 11.8.4, 396

group generalized
inverse
Fact 11.15.11, 421

idempotent matrix
Fact 11.15.16, 422

Kronecker product
Fact 11.15.6, 420
Fact 11.15.7, 420

limit
Fact 11.15.16, 422

matrix exponential
Fact 11.15.8, 420
Fact 11.15.15, 421

matrix limit
Fact 11.15.11, 421

discrete-time
semistable
polynomial

definition
Definition 11.8.3, 396

discrete-time
semistable matrix
Proposition 11.8.4, 396

discrete-time
time-varying system

state convergence
Fact 11.15.18, 422

discriminant
compound matrix
Fact 7.4.32, 234

disjoint
definition, 2

dissipative matrix
asymptotically stable
matrix
Fact 11.14.19, 415
Fact 11.14.32, 418

definition
Definition 3.1.1, 77

determinant
Fact 8.13.1, 285
Fact 8.13.5, 286
Fact 8.13.17, 288

discrete-time
asymptotically
stable matrix
Fact 11.15.5, 420

Frobenius norm
Fact 11.12.2, 408

matrix exponential
Fact 11.12.2, 408

nonsingular matrix
Fact 3.12.4, 106



matrix2 November 19, 2003

INDEX 561

normal matrix
Fact 11.14.32, 418

positive-definite
matrix
Fact 11.14.19, 415

range-Hermitian
matrix
Fact 3.3.5, 86

semidissipative
matrix
Fact 8.13.17, 288

spectrum
Fact 8.13.17, 288

unitary matrix
Fact 8.13.4, 286

distance to singularity
nonsingular matrix
Fact 9.12.3, 349

distinct eigenvalues
eigenvector
Proposition 4.5.3, 125

distinct roots
Bezout matrix
Fact 4.8.8, 135

distributive identities,
18

divides
definition, 113

division of matrix
polynomials

quotient and
remainder
Lemma 4.2.1, 114

Dixmier
projector
Fact 5.8.5, 179

Djokovic
rank of a Kronecker
product
Fact 8.15.9, 296

domain
definition, 4

Dormido

asymptotically stable
polynomial
Fact 11.13.6, 411

doubly stochastic
matrix

strong majorization
Fact 3.12.18, 109

Douglas-Fillmore-
Williams
lemma

matrix factorization
Theorem 8.5.2, 253

Drazin
real eigenvalues
Fact 5.11.8, 189

Drazin generalized
inverse

commuting matrices
Fact 6.5.6, 223

complex conjugate
transpose
Fact 6.5.3, 223

definition, 211
idempotent matrix
Fact 6.5.1, 223

integral
Fact 11.10.10, 402
Fact 11.10.12, 402

matrix exponential
Fact 11.10.10, 402
Fact 11.10.12, 402

matrix power
Fact 6.5.4, 223

nonnegative-
semidefinite
matrix
Fact 8.9.1, 275

partitioned matrix
Fact 6.5.5, 223

tripotent matrix
Fact 6.5.2, 223

uniqueness
Theorem 6.2.1, 212

dual cone
convex conical hull

Fact 2.9.1, 46
definition, 26

dual norm
adjoint norm
Fact 9.8.5, 328

definition
Fact 9.7.8, 326

induced norm
Fact 9.7.8, 326

quadratic form
Fact 9.8.25, 331

E

eigenvalue
adjugate
Fact 4.10.3, 141

asymptotic stability
Proposition 11.6.2, 386

bound
Fact 5.9.21, 184

bounds
Fact 4.10.12, 144

convex function
Corollary 8.5.15, 263
Fact 8.14.10, 293

definition, 120
determinant
Fact 5.9.13, 183

discrete-time
asymptotic stability
Proposition 11.8.2, 395

discrete-time
Lyapunov stability
Proposition 11.8.2, 395

discrete-time
semistability
Proposition 11.8.2, 395

group-invertible
matrix
Fact 5.11.15, 190

Hermitian matrix
Corollary 8.4.2, 247
Corollary 8.4.6, 249
Corollary 8.4.7, 249
Fact 8.10.8, 278
Fact 8.14.4, 291
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Fact 8.14.12, 293
Fact 8.14.13, 294
Fact 8.15.16, 298
Lemma 8.4.3, 248
Lemma 8.4.4, 248
Theorem 8.4.5, 249
Theorem 8.4.9, 250
Theorem 8.4.11, 251

Kronecker product
Fact 7.4.19, 232
Fact 7.4.22, 233
Fact 7.4.23, 233
Fact 7.4.24, 233
Proposition 7.1.10, 228

Kronecker sum
Fact 7.4.26, 233
Fact 7.4.27, 233
Proposition 7.2.3, 229

Lyapunov stability
Proposition 11.6.2, 386

majorization
Fact 8.14.3, 290

maximum singular
value
Fact 9.11.6, 346

nonnegative-
semidefinite
matrix
Fact 8.9.8, 276
Fact 8.14.6, 292
Fact 8.14.7, 292
Fact 8.14.11, 293
Fact 8.15.11, 297

normal matrix
Fact 5.11.10, 190

partitioned matrix
Fact 5.10.5, 188
Fact 5.10.7, 188
Proposition 5.6.5, 175

positive-definite
matrix
Fact 8.10.8, 278

quadratic form
Fact 8.10.8, 278
Lemma 8.4.3, 248

semistability
Proposition 11.6.2, 386

singular value

Fact 8.14.3, 290
Fact 9.11.17, 348

skew-Hermitian
matrix
Fact 5.9.4, 181

spectral abscissa
Fact 5.9.28, 187

strong majorization
Corollary 8.5.15, 263

trace
Fact 5.9.6, 181
Fact 8.14.3, 290
Proposition 8.4.13, 251

weak log
majorization
Fact 8.14.7, 292

weak majorization
Fact 8.14.7, 292
Fact 8.14.10, 293
Fact 8.14.11, 293

eigenvalue bound
Bendixson’s theorem
Fact 9.10.6, 343

Frobenius norm
Fact 9.10.7, 343

Hermitian matrix
Fact 9.10.7, 343

Hirsch’s theorems
Fact 9.10.6, 343

Holder norm
Fact 9.10.6, 343

trace
Fact 5.9.26, 186

eigenvalue bounds
ovals of Cassini
Fact 4.10.13, 144

eigenvalue
characterization

minimum principle
Fact 8.14.13, 294

eigenvalue inequality
Hermitian matrix
Lemma 8.4.1, 247

Poincare separation
theorem
Fact 8.14.12, 293

eigenvalue of Hermitian
part

singular value
Fact 8.14.2, 290

eigenvalue
perturbation

Frobenius norm
Fact 9.10.9, 344
Fact 9.10.10, 345
Fact 9.10.11, 345

maximum singular
value
Fact 9.10.9, 344

unitarily invariant
norm
Fact 9.10.9, 344

eigenvalues
subscript convention,
120

eigenvector
commuting matrices
Fact 5.11.17, 190

definition, 125
diagonalizable
Fact 5.11.3, 189

distinct eigenvalues
Proposition 4.5.3, 125

Kronecker product
Fact 7.4.19, 232
Proposition 7.1.10, 228

Kronecker sum
Proposition 7.2.3, 229

linear system
solution
Fact 11.10.5, 401

normal matrix
Lemma 4.5.2, 125
Proposition 4.5.3, 125

similarity
transformation
Fact 5.11.3, 189
Fact 5.11.4, 189

either
definition, 1

element
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definition, 2

elementary divisor
companion matrix
Theorem 5.2.9, 156

factorization
Fact 5.13.34, 204

hypercompanion
matrix
Lemma 5.3.1, 157

elementary divisors
definition, 156

elementary matrix
definition
Definition 3.1.2, 78

inverse matrix
Fact 3.4.14, 88

nonsingular matrix
Fact 5.13.9, 200

properties and
matrix types
Fact 3.4.13, 88

spectrum
Proposition 5.5.25, 172

elementary matrix
polynomial

definition, 117

elementary
multi-companion
form

definition, 156

elementary projector
definition
Definition 3.1.1, 77

elementary reflector
Fact 3.5.6, 93
Fact 3.7.2, 101

hyperplane
Fact 3.5.8, 94

maximum singular
value
Fact 5.9.25, 186

reflector
Fact 5.13.10, 200

spectrum
Proposition 5.5.25, 172

trace
Fact 3.5.7, 94

elementary reflector
definition
Definition 3.1.1, 77

elementary projector
Fact 3.5.6, 93
Fact 3.7.2, 101

hyperplane
Fact 3.7.4, 101

null space
Fact 3.5.6, 93

range
Fact 3.5.6, 93

rank
Fact 3.5.6, 93

reflection theorem
Fact 3.7.3, 101

reflector
Fact 5.13.11, 200

spectrum
Proposition 5.5.25, 172

trace
Fact 3.5.7, 94

unitary matrix
Fact 5.13.12, 200

ellipsoid
positive-definite
matrix
Fact 3.4.36, 93

empty matrix
definition, 19

empty set
definition, 2

entry
definition, 15

EP matrix, see
range-Hermitian
matrix

equi-induced norm
definition
Definition 9.4.1, 314

normalized norm
Theorem 9.4.2, 314

spectral radius
Corollary 9.4.5, 315

submultiplicative
norm
Corollary 9.4.4, 315
Fact 9.9.6, 335

equi-induced
self-adjoint norm

maximum singular
value
Fact 9.11.5, 346

equi-induced unitarily
invariant norm

maximum singular
value
Fact 9.11.4, 346

equilibrium
definition, 384

equivalence
equivalence relation
Fact 5.8.2, 178

equivalence class
equivalent matrices
Fact 5.8.1, 178

induced by
equivalence relation
Theorem 1.2.2, 3

similar matrices
Fact 5.8.1, 178

unitarily similar
matrices
Fact 5.8.1, 178

equivalence class
induced by

definition, 3

equivalence relation
congruence
Fact 5.8.2, 178

definition
Definition 1.2.1, 3

equivalence
Fact 5.8.2, 178

equivalence class
Theorem 1.2.2, 3
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group
Proposition 3.2.8, 85

left equivalence
Fact 5.8.2, 178

right equivalence
Fact 5.8.2, 178

similar matrices
Fact 5.8.2, 178

unitarily similar
matrices
Fact 5.8.2, 178

equivalent matrices
equivalence class
Fact 5.8.1, 178

equivalent norms
equivalence
Theorem 9.1.8, 307

norms
Fact 9.8.10, 329

ergodic theorem
unitary matrix limit
Fact 6.3.17, 215

essentially nonnegative
matrix

definition
Fact 11.14.7, 413

Euclidean norm
Cauchy-Schwarz
inequality
Corollary 9.1.7, 306

definition, 305
inequality
Fact 9.7.4, 325
Fact 9.7.5, 325

Kronecker product
Fact 9.7.13, 327

outer-product
matrix
Fact 9.7.13, 327

Euclidean-norm
inequality
Fact 9.7.6, 326

even polynomial
definition, 112

exactly proper rational
function

definition
Definition 4.7.1, 129

exactly proper rational
transfer function

definition
Definition 4.7.2, 129

existence of
transformation

Hermitian matrix
Fact 3.4.33, 92

orthogonal matrix
Fact 3.6.17, 99

outer-product
matrix
Fact 2.11.12, 54

skew-Hermitian
matrix
Fact 3.4.35, 93

existential statement
definition, 2

exponential function
convex function
Fact 1.4.3, 6

F

factorization
asymptotically stable
matrix
Fact 11.14.20, 415

Bezout matrix
Fact 5.13.22, 202

commutator
Fact 5.13.30, 204

complex conjugate
transpose
Fact 5.13.21, 202

determinant
Fact 5.13.4, 199
Fact 5.13.31, 204

diagonalizable
Fact 5.13.25, 203

diagonalizable over R

Proposition 5.5.18, 170
elementary divisor
Fact 5.13.34, 204

full rank
Fact 5.13.37, 205

generalized inverse
Fact 6.4.24, 221

Hermitian matrices
Fact 5.13.23, 203
Fact 5.13.24, 203

Hermitian matrix
Fact 3.4.8, 87
Fact 5.13.14, 201
Fact 8.11.2, 281
Fact 8.11.8, 281

idempotent matrix
Fact 5.13.29, 204

involutory matrix
Fact 5.13.15, 201
Fact 5.13.27, 204
Fact 5.13.28, 204

Jordan form
Fact 5.13.2, 199

lower triangular
matrix
Fact 5.13.7, 199

nilpotent matrix
Fact 5.13.26, 203

nonnegative-
semidefinite
matrix
Fact 5.13.20, 202
Fact 5.13.38, 205
Fact 5.13.39, 205
Fact 5.13.40, 205
Fact 8.7.32, 269
Fact 8.7.33, 269

nonsingular matrix
Fact 5.13.9, 200
Fact 5.13.19, 202
Fact 5.13.33, 204

orthogonal matrix
Fact 5.13.13, 201
Fact 5.13.27, 204
Fact 5.13.32, 204

partitioned matrix,
242
Fact 2.12.4, 55
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Fact 2.12.13, 57
Fact 2.13.29, 67
Fact 2.13.30, 68
Fact 2.13.31, 68
Fact 6.4.24, 221
Proposition 2.8.3, 43
Proposition 2.8.4, 43

positive-definite
matrix
Fact 5.13.41, 205
Fact 5.13.42, 205

projector
Fact 5.13.10, 200
Fact 5.13.14, 201
Fact 6.3.15, 215

range
Theorem 8.5.2, 253

range-Hermitian
matrix
Fact 5.13.8, 200

reflector
Fact 5.13.11, 200

rotation-dilation
Fact 2.15.2, 72

similar matrices
Fact 5.13.3, 199

skew-symmetric
matrix
Fact 5.13.34, 204
Fact 5.13.35, 204

symmetric matrices
Fact 5.13.22, 202

symmetric matrix
Corollary 5.3.9, 162

unitary matrix
Fact 5.13.5, 199
Fact 5.13.12, 200
Fact 5.13.41, 205

upper triangular
matrix
Fact 5.13.5, 199
Fact 5.13.7, 199

Fan
convex function
Proposition 8.5.13, 302

Farkas’ theorem

linear system
solution
Fact 4.11.4, 148

fast Fourier transform
circulant matrix
Fact 5.12.7, 197

Fibonacci numbers
nonnegative matrix
Fact 4.11.2, 147

field of values
spectrum of convex
hull
Fact 4.10.17, 145

Finsler’s lemma
positive-definite
linear combination
Fact 8.10.12, 279

Fischer’s inequality
positive-definite
matrix determinant
Fact 8.13.22, 289

Fourier matrix
circulant matrix
Fact 5.12.7, 197

Vandermonde matrix
Fact 5.12.7, 197

Frame
finite sequence for
inverse matrix
Fact 2.13.36, 69

Franck
maximum singular
value lower bound
on distance to
singularity
Fact 9.12.2, 348

Frechet derivative
definition
Definition 10.4.3, 360

uniqueness
Proposition 10.4.2, 360

Frobenius
similar to transpose

Corollary 5.3.8, 161
singular value
Corollary 9.6.7, 324

symmetric matrix
factorization
Fact 5.13.22, 202

Frobenius canonical
form, see
multi-companion
form

Frobenius norm
adjugate
Fact 9.8.11, 329

definition, 308
determinant
Fact 9.8.30, 333

dissipative matrix
Fact 11.12.2, 408

eigenvalue bound
Fact 9.10.7, 343

eigenvalue
perturbation
Fact 9.10.9, 344
Fact 9.10.10, 345
Fact 9.10.11, 345

Hermitian matrix
Fact 9.9.23, 339

inequality
Fact 9.9.19, 338
Fact 9.9.20, 338

Kronecker product
Fact 9.12.18, 352

matrix exponential
Fact 11.12.2, 408

maximum singular
value bound
Fact 9.11.13, 347

nonnegative-
semidefinite
matrix
Fact 9.8.30, 333
Fact 9.9.12, 337
Fact 9.9.13, 337
Fact 9.9.20, 338
Fact 9.9.9, 336

normal matrix
Fact 9.10.10, 345
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outer-product
matrix
Fact 9.7.12, 327

polar decomposition
Fact 9.9.24, 339

Schatten norm, 309
spectral radius
Fact 5.9.27, 186

trace
Fact 9.10.2, 342
Fact 9.10.5, 343

trace norm
Fact 9.9.11, 336

unitary matrix
Fact 9.9.24, 339

Frobenius’ inequality
rank of partitioned
matrix
Fact 2.10.28, 52

full column rank
definition, 31
equivalent properties
Theorem 2.6.1, 34

nonsingular
equivalence
Corollary 2.6.4, 36

full rank
definition, 31

full row rank
definition, 31
equivalent properties
Theorem 2.6.1, 34

nonsingular
equivalence
Corollary 2.6.4, 36

function
definition, 4

function composition
matrix
multiplication
Theorem 2.1.2, 17

fundamental theorem
of algebra

definition, 112

fundamental theorem
of linear algebra

rank and defect
Corollary 2.5.5, 33

Furuta’s inequality
nonnegative-
semidefinite matrix
inequality
Proposition 8.5.4, 254

G

generalized inverse
basic properties
Proposition 6.1.6, 209

centrohermitian
matrix
Fact 6.3.14, 215

characteristic
polynomial
Fact 6.3.4, 214

complex conjugate
transpose
Fact 6.3.2, 213
Fact 6.3.11, 214

convergent sequence
Fact 6.3.18, 215

definition, 207
determinant
Fact 6.4.25, 221
Fact 6.4.26, 221

factorization
Fact 6.4.24, 221

Hermitian matrix
Fact 6.3.5, 214
Fact 6.4.16, 219

idempotent matrix
Fact 6.3.8, 214
Fact 6.3.9, 214
Fact 6.3.10, 214
Fact 6.4.10, 217

identity
Fact 6.3.16, 215

inertia
Fact 6.3.5, 214

integral
Fact 11.10.8, 401

Kronecker product
Fact 7.4.31, 234

least squares solution
Fact 6.4.31, 222
Fact 6.4.32, 222
Fact 6.4.33, 222

left inverse
Corollary 6.1.4, 208
Fact 6.4.22, 220
Fact 6.4.23, 221

left-invertible matrix
Proposition 6.1.5, 209

linear matrix
equation
Fact 6.4.21, 220

linear system
Proposition 6.1.7, 210

matrix exponential
Fact 11.10.8, 401

matrix inversion
lemma
Fact 6.4.17, 220

matrix limit
Fact 6.3.3, 214

matrix product
Fact 6.4.1, 216
Fact 6.4.2, 216
Fact 6.4.3, 216
Fact 6.4.4, 216
Fact 6.4.5, 216
Fact 6.4.7, 216
Fact 6.4.8, 216

matrix sum
Fact 6.4.18, 220
Fact 6.4.19, 220
Fact 6.4.20, 220

maximum singular
value
Fact 9.12.4, 349
Fact 9.12.16, 352

Newton-Raphson
algorithm
Fact 6.3.18, 215

nonnegative-
semidefinite
matrix
Fact 6.4.17, 220
Fact 8.9.1, 275
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Fact 8.9.2, 275
Fact 8.9.3, 275
Fact 8.9.4, 275
Fact 8.9.5, 276
Fact 8.9.6, 276
Fact 8.9.7, 276
Fact 8.9.8, 276
Fact 8.9.9, 276
Fact 8.9.11, 277
Proposition 6.1.6, 209

normal matrix
Proposition 6.1.6, 209

null space
Proposition 6.1.6, 209

outer-product
matrix
Fact 6.3.1, 213

partitioned matrix
Fact 6.3.13, 215
Fact 6.4.13, 218
Fact 6.4.14, 218
Fact 6.4.15, 219
Fact 8.9.11, 277

positive-definite
matrix
Proposition 6.1.6, 209

projector
Fact 6.3.6, 214
Fact 6.3.15, 215
Fact 6.4.9, 217
Fact 6.4.10, 217
Fact 6.4.27, 221

range
Fact 6.4.28, 221
Fact 6.4.29, 221
Proposition 6.1.6, 209

range-Hermitian
matrix
Fact 6.4.6, 216
Proposition 6.1.6, 209

rank
Fact 6.4.11, 217
Fact 6.4.12, 218
Fact 6.4.30, 222

right inverse
Corollary 6.1.4, 208

right-invertible
matrix

Proposition 6.1.5, 209
singular value
Fact 6.3.12, 214

tripotent matrix
Fact 6.3.7, 214

uniqueness
Theorem 6.1.1, 208

unitary matrix
Fact 6.3.17, 215

geometric mean
positive-definite
matrix product
Fact 8.8.20, 274

geometric multiplicity
algebraic multiplicity
Proposition 5.5.3, 166

block-diagonal
matrix
Proposition 5.5.19, 170

definition
Definition 4.5.1, 125

similar matrices
Proposition 5.5.16, 169

Gershgorin circle
theorem

eigenvalue bounds
Fact 4.10.12, 144

Givens rotation
orthogonal matrix
Fact 5.13.13, 201

global asymptotic
stability

nonlinear system
Theorem 11.5.2, 384

globally asymptotically
stable equilibrium

definition
Definition 11.5.1, 384

Gohberg-Semencul
formulas

Bezout matrix
Fact 4.8.6, 132

golden mean
difference equation

Fact 4.11.2, 147

Golden-Thompson
inequality

matrix exponential
Fact 11.12.7, 409

Gordan’s theorem
positive vector
Fact 4.11.5, 148

gradient
definition, 361

Gram matrix
nonnegative-
semidefinite
matrix
Fact 8.7.32, 269

Gram-Schmidt
orthonormalization

upper triangular
matrix factorization
Fact 5.13.6, 199

greatest common
divisor

definition, 113

Greville
generalized inverse
of a matrix product
Fact 6.4.4, 216

generalized inverse
of a partitioned
matrix
Fact 6.4.13, 218

group
definition
Definition 3.2.6, 84

equivalence relation
Proposition 3.2.8, 85

matrix exponential
Proposition 11.4.6, 382

real numbers
Fact 3.10.1, 104

transpose
Fact 3.10.4, 104

unipotent matrix
Fact 3.10.3, 104
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upper triangular
matrix
Fact 3.10.3, 104

group generalized
inverse

definition, 213
discrete-time
Lyapunov-stable
matrix
Fact 11.15.12, 421

discrete-time
semistable matrix
Fact 11.15.11, 421

idempotent
Proposition 6.2.2, 213

integral
Fact 11.10.11, 402
Fact 11.10.12, 402

matrix exponential
Fact 11.10.11, 402
Fact 11.10.12, 402
Fact 11.14.4, 412
Fact 11.14.5, 412

matrix limit
Fact 6.5.9, 224

null space
Proposition 6.2.2, 213

range
Proposition 6.2.2, 213

range-Hermitian
matrix
Fact 6.5.8, 223

trace
Fact 6.5.7, 223

group-invertible matrix
definition
Definition 3.1.1, 77

eigenvalue
Fact 5.11.15, 190

equivalent
characterizations
Fact 3.3.3, 85

idempotent matrix
Proposition 3.1.5, 81
Proposition 5.5.9, 167
Proposition 6.2.2, 213

index

Corollary 5.5.7, 167
Corollary 5.5.15, 169

Kronecker product
Fact 7.4.13, 232

Lyapunov-stable
matrix
Fact 11.14.2, 412

matrix exponential
Fact 11.14.13, 414

nonnegative-
semidefinite
matrix
Fact 8.8.5, 272

positive-definite
matrix
Fact 8.8.5, 272

range-Hermitian
matrix
Fact 3.3.4, 86
Proposition 3.1.5, 81

semistable matrix
Fact 11.14.3, 412

similar matrices
Fact 5.7.12, 176

spectrum
Proposition 5.5.25, 172

square root
Fact 5.13.17, 202

stable subspace
Proposition 11.6.8, 389

tripotent matrix
Proposition 3.1.5, 81

groups
classical
Proposition 3.2.7, 84

H

Hadamard product, see
Schur product

Hadamard’s inequality
nonnegative-
semidefinite matrix
determinant
Fact 8.14.5, 291

Hahn-Banach theorem

inner product
inequality
Fact 10.7.19, 367

half-vectorization
operator, 238

Hamiltonian matrix
Cayley transform
Fact 3.9.8, 104

characteristic
polynomial
Fact 4.9.14, 140
Fact 4.9.16, 140

definition
Definition 3.1.4, 81

identity
Fact 3.9.4, 103

inverse matrix
Fact 3.9.3, 103

matrix sum
Fact 3.9.3, 103

partitioned matrix
Fact 3.9.6, 103
Fact 4.9.15, 140

skew-involutory
matrix
Fact 3.9.1, 103

skew-symmetric
matrix
Fact 3.9.1, 103
Fact 3.9.6, 103
Fact 3.9.7, 103

spectrum
Proposition 5.5.25, 172

symplectic matrix
Fact 3.9.8, 104

symplectic similarity
Fact 3.9.5, 103

Hankel matrix
block-Hankel matrix
Fact 3.12.11, 107

Cauchy matrix
Fact 3.12.13, 108

definition
Definition 3.1.3, 79

Hilbert matrix
Fact 3.12.12, 107
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rational function
Fact 4.8.7, 134

symmetric matrix
Fact 3.12.10, 107

Toeplitz matrix
Fact 3.12.9, 107

Hardy-Littlewood-Polya
theorem

doubly stochastic
matrix
Fact 3.12.18, 109

Haynsworth
nonnegative-
semidefinite
matrix
Fact 5.11.8, 189

Schur complement of
a partitioned
matrix
Fact 6.4.35, 222

Hermitian matrices
factorization
Fact 5.13.23, 203
Fact 5.13.24, 203

Hermitian matrix
additive
decomposition
Fact 3.4.23, 90

adjugate
Fact 3.4.6, 87

cogredient
transformation
Fact 8.11.6, 281

commutator
Fact 3.4.26, 91
Fact 3.4.28, 91

commuting matrices
Fact 5.11.18, 190

congruent matrices
Corollary 5.4.7, 165

convergent sequence
Fact 11.11.7, 404
Fact 11.11.8, 404

definition
Definition 3.1.1, 77

determinant

Corollary 8.4.10, 250
Fact 3.4.15, 89

diagonal entry
Corollary 8.4.7, 249
Fact 8.14.4, 291

diagonal matrix
Corollary 5.4.5, 164

eigenvalue
Corollary 8.4.2, 247
Corollary 8.4.6, 249
Corollary 8.4.7, 249
Fact 8.10.8, 278
Fact 8.14.4, 291
Fact 8.14.12, 293
Fact 8.14.13, 294
Fact 8.15.16, 298
Lemma 8.4.3, 248
Lemma 8.4.4, 248
Theorem 8.4.5, 249
Theorem 8.4.9, 250
Theorem 8.4.11, 251

eigenvalue bound
Fact 9.10.7, 343

eigenvalue inequality
Lemma 8.4.1, 247

existence of
transformation
Fact 3.4.33, 92

factorization
Fact 3.4.8, 87
Fact 5.13.14, 201
Fact 8.11.2, 281
Fact 8.11.8, 281

Frobenius norm
Fact 9.9.23, 339

generalized inverse
Fact 6.3.5, 214
Fact 6.4.16, 219

inequality
Fact 8.7.7, 265
Fact 8.7.8, 265
Fact 8.7.11, 266
Fact 8.13.18, 288
Fact 8.13.19, 288
Fact 8.13.20, 289

inertia
Fact 5.7.9, 176
Proposition 5.4.6, 164

Kronecker product
Fact 7.4.13, 232
Fact 8.15.16, 298

Kronecker sum
Fact 7.4.15, 232

matrix exponential
Fact 11.11.7, 404
Fact 11.11.8, 404
Fact 11.11.9, 404
Fact 11.11.20, 406
Fact 11.11.21, 406
Fact 11.11.22, 407
Fact 11.11.24, 407
Fact 11.12.8, 410
Proposition 11.1.4, 373

maximum singular
value
Fact 9.9.23, 339

nonnegative-
semidefinite
matrix
Fact 8.7.4, 265
Fact 8.11.8, 281

normal matrix
Fact 3.6.8, 98
Proposition 3.1.5, 81

outer-product
matrix
Fact 3.4.12, 88
Fact 3.4.33, 92

partitioned matrix
Fact 3.4.21, 89

positive-definite
matrix
Fact 8.8.6, 272
Fact 8.11.8, 281

product
Example 5.5.23, 171

projector
Fact 3.5.28, 97
Fact 5.13.14, 201

properties of < and
≤
Proposition 8.1.2, 240

quadratic form
Fact 3.4.4, 86
Fact 8.10.12, 279
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quadratic matrix
equation
Fact 5.9.2, 180

range
Lemma 8.5.1, 253

rank
Fact 3.4.16, 89

reflector
Fact 3.7.1, 101

Schur decomposition
Corollary 5.4.5, 164

Schur product
Fact 8.15.16, 298

simultaneous
diagonalization
Fact 8.11.6, 281

skew-Hermitian
matrix
Fact 3.4.5, 86
Fact 3.4.22, 89

skew-symmetric
matrix
Fact 3.4.5, 86

spectral abscissa
Fact 5.9.3, 181

spectral radius
Fact 5.9.3, 181

spectrum
Lemma 8.4.8, 249
Proposition 5.5.25, 172

strong majorization
Fact 8.14.4, 291

submatrix
Corollary 8.4.6, 249
Lemma 8.4.4, 248
Theorem 8.4.5, 249

symmetric matrix
Fact 3.4.5, 86

trace
Corollary 8.4.10, 250
Fact 3.4.16, 89
Lemma 8.4.12, 251
Proposition 8.4.13, 251

unitarily invariant
norm
Fact 9.9.7, 335
Fact 11.12.8, 410

unitarily similar
matrices
Corollary 5.4.5, 164

unitary matrix
Fact 3.6.23, 100
Fact 11.11.24, 407

upper bound
Fact 8.8.15, 273

Hermitian matrix
eigenvalue

Cauchy interlacing
theorem
Lemma 8.4.4, 248

inclusion principle
Theorem 8.4.5, 249

Hermitian matrix
eigenvalues

monotonicity
theorem
Theorem 8.4.9, 250

Weyl’s inequality
Theorem 8.4.9, 250

Hermitian matrix
product

trace
Fact 5.10.1, 187
Fact 8.12.1, 282
Fact 8.12.6, 282

Hermitian perturbation
Lidskii-Mirsky-
Wielandt
theorem
Fact 9.10.9, 344

Hessenberg matrix
lower or upper
Definition 3.1.3, 79

Hessian
definition, 361

Hestenes
rank identity
Fact 2.10.6, 48

Hilbert matrix
Hankel matrix
Fact 3.12.12, 107

Hirsch’s theorem
eigenvalue bound
Fact 5.9.21, 184

Hirsch’s theorems
eigenvalue bound
Fact 9.10.6, 343

Hoffman
eigenvalue
perturbation
Fact 9.10.10, 345

Hoffman-Wielandt
theorem

eigenvalue
perturbation
Fact 9.10.10, 345

Holder matrix norm
Schatten norm
Proposition 9.2.5, 310

trace

Fact 9.10.3, 342

Holder norm
compatible norms

Proposition 9.3.5, 311
complex conjugate
Fact 9.7.19, 327

definition, 304

eigenvalue bound
Fact 9.10.6, 343

Holder-induced
norm
Fact 9.7.14, 327
Fact 9.8.7, 328
Fact 9.8.10, 329
Fact 9.8.20, 331
Proposition 9.4.8, 317

inequality

Fact 9.7.6, 326
Fact 9.7.15, 327
Proposition 9.1.5, 305
Proposition 9.1.6, 306

Kronecker product
Fact 9.9.29, 340

matrix

definition, 307
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Minkowski’s
inequality
Lemma 9.1.3, 304

monotonicity
Proposition 9.1.5, 305

power sum
inequality
Fact 1.4.13, 9

submultiplicativity
Fact 9.9.14, 337

vector norm
Proposition 9.1.4, 305

Holder’s inequality
nonnegative-
semidefinite matrix
trace
Fact 8.12.4, 282

scalar case
Fact 1.4.16, 9

vector inequality
Proposition 9.1.6, 306

Holder-induced lower
bound

definition, 320

Holder-induced norm
absolute value
Fact 9.8.17, 331

adjoint norm
Fact 9.8.8, 328

column norm
Fact 9.8.13, 330
Fact 9.8.15, 330
Fact 9.8.16, 330

complex conjugate
Fact 9.8.18, 331

complex conjugate
transpose
Fact 9.8.19, 331

definition, 315
formulas
Proposition 9.4.7, 315

Holder norm
Fact 9.7.14, 327
Fact 9.8.7, 328
Fact 9.8.10, 329
Fact 9.8.20, 331

Proposition 9.4.8, 317
inequality
Fact 9.8.13, 330
Fact 9.8.14, 330

maximum singular
value
Fact 9.8.13, 330

monotonicity
Proposition 9.4.6, 315

partitioned matrix
Fact 9.8.9, 328

quadratic form
Fact 9.8.26, 332
Fact 9.8.27, 332

row norm
Fact 9.8.13, 330
Fact 9.8.15, 330
Fact 9.8.16, 330

Holder-norm
inequality
Fact 9.7.7, 326

Hopf’s theorem
eigenvalues of a
positive matrix
Fact 4.11.8, 149

Householder matrix,
see elementary
reflector

Householder reflection,
see elementary
reflector

Hua’s inequalities
determinant
inequality
Fact 8.13.20, 289

Hurwitz matrix, see
asymptotically
stable matrix

Hurwitz polynomial,
see asymptotically
stable polynomial

asymptotically stable
polynomial
Fact 11.14.21, 415

hypercompanion form
existence
Theorem 5.3.2, 157
Theorem 5.3.3, 157

hypercompanion
matrix

companion matrix
Corollary 5.3.4, 158
Lemma 5.3.1, 157

definition, 156
elementary divisor
Lemma 5.3.1, 157

example
Example 5.3.6, 160
Example 5.3.7, 161

hyperplane
definition, 26
elementary projector
Fact 3.5.8, 94

elementary reflector
Fact 3.7.4, 101

I

idempotent
group generalized
inverse
Proposition 6.2.2, 213

idempotent matrix
commutator
Fact 3.5.17, 95

commuting matrices
Fact 3.5.22, 96
Fact 3.5.23, 96

complementary
idempotent matrix
Fact 3.5.25, 96

complementary
subspaces
Fact 3.5.15, 95
Proposition 5.5.8, 167

complex conjugate
Fact 3.5.14, 95

complex conjugate
transpose
Fact 3.5.14, 95
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definition
Definition 3.1.1, 77

diagonalizable
matrix
Fact 5.11.11, 190

discrete-time
semistable matrix
Fact 11.15.16, 422

Drazin generalized
inverse
Fact 6.5.1, 223

factorization
Fact 5.13.29, 204

generalized inverse
Fact 6.3.8, 214
Fact 6.3.9, 214
Fact 6.3.10, 214
Fact 6.4.10, 217

group-invertible
matrix
Proposition 3.1.5, 81
Proposition 5.5.9, 167
Proposition 6.2.2, 213

identities
Fact 3.5.19, 96

identity perturbation
Fact 3.5.26, 96

involutory matrix
Fact 3.5.27, 97

left inverse
Fact 3.5.20, 96

matrix exponential
Fact 11.9.1, 397

matrix product
Fact 3.5.21, 96

nonsingular
Fact 3.5.24, 96

null space
Fact 3.5.12, 95

outer-product
matrix
Fact 3.4.12, 88
Fact 3.5.13, 95

partitioned matrix
Fact 3.5.18, 95

projector
Fact 3.5.28, 97
Fact 6.4.10, 217

quadratic form
Fact 3.5.11, 95

range
Fact 3.5.12, 95

rank
Fact 3.5.13, 95
Fact 3.5.16, 95

right inverse
Fact 3.5.20, 96

semisimple matrix
Fact 5.11.14, 190

spectrum
Fact 5.11.11, 190

stable subspace
Proposition 11.6.8, 389

submultiplicative
norm
Fact 9.8.3, 328

transpose
Fact 3.5.14, 95

tripotent matrix
Fact 3.5.23, 96

unstable subspace
Proposition 11.6.8, 389

idempotent matrix onto
a subspace along
another subspace

definition, 167

identity
cube root
Fact 2.11.2, 53

identity function
definition, 4

identity matrix
definition, 19
symplectic matrix
Fact 3.9.1, 103

identity perturbation
inverse matrix
Fact 4.8.11, 136

spectrum
Fact 4.10.9, 143
Fact 4.10.10, 143

identity theorem

matrix function
evaluation
Theorem 10.5.2, 363

image
definition, 4

imaginary vector
definition, 21

implication
definition, 1

improper rational
function

definition
Definition 4.7.1, 129

improper rational
transfer function

definition
Definition 4.7.2, 129

inclusion principle
Hermitian matrix
eigenvalue
Theorem 8.4.5, 249

increasing
definition
Definition 8.5.9, 256

increasing function
log majorization
Fact 8.16.4, 301

logarithm
Proposition 8.5.10, 256

matrix functions
Proposition 8.5.10, 256

Schur complement
Proposition 8.5.10, 256

weak majorization
Fact 8.16.3, 300

increasing sequence
nonnegative-
semidefinite
matrix
Proposition 8.5.3, 254

index
complementary
subspaces
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Proposition 5.5.6, 167
group-invertible
matrix
Corollary 5.5.7, 167
Corollary 5.5.15, 169

Kronecker product
Fact 7.4.25, 233

semisimple
eigenvalue
Proposition 5.5.14, 168

index of a matrix
definition
Definition 5.5.1, 165

range
Fact 5.11.1, 189

rank
Proposition 5.5.2, 166

index of an eigenvalue
algebraic multiplicity
Proposition 5.5.12, 168

index of eigenvalue
definition
Definition 5.5.1, 165

Jordan block
Proposition 5.5.3, 166

minimal polynomial
Proposition 5.5.20, 171

rank
Proposition 5.5.2, 166

induced lower bound
definition
Definition 9.5.1, 319
Proposition 9.5.2, 319

lower bound
Fact 9.8.34, 334

maximum singular
value
Corollary 9.5.5, 321

minimum singular
value
Corollary 9.5.5, 321

properties
Proposition 9.5.2, 319

Proposition 9.5.3,
320

singular value

Proposition 9.5.4, 321
supermultiplicativity
Proposition 9.5.6, 321

induced norm
compatible norm
Proposition 9.4.3, 314

definition
Definition 9.4.1, 314

dual norm
Fact 9.7.8, 326

norm
Theorem 9.4.2, 314

quadratic form
Fact 9.8.25, 331

spectral radius
Corollary 9.4.5, 315

induced norms
symmetry property
Fact 9.8.12, 329

inequality
Hermitian matrix
Fact 8.7.11, 266

nonnegative-
semidefinite
matrix
Fact 8.8.14, 273

unitarily invariant
norm
Fact 9.9.16, 337

inertia
congruent matrices
Corollary 5.4.7, 165
Fact 5.7.11, 176

definition, 126
generalized inverse
Fact 6.3.5, 214

Hermitian matrix
Fact 5.7.9, 176
Proposition 5.4.6, 164

infinite matrix product
convergence
Fact 11.15.18, 422

infinity norm
definition, 305
Kronecker product

Fact 9.9.29, 340
submultiplicative
norm
Fact 9.9.1, 335
Fact 9.9.2, 335

inner product
convex cone
Fact 10.7.20, 367

inequality
Fact 3.4.37, 93

open ball
Fact 9.7.10, 326

separation theorem
Fact 10.7.20, 367
Fact 10.7.21, 367

subspace
Fact 10.7.19, 367

inner product of
complex matrices

definition, 23

inner product of
complex vectors

definition, 21

inner product of real
matrices

definition, 23

inner product of real
vectors

definition, 21

inner-product
minimization

positive-definite
matrix
Fact 8.10.6, 278

integral
asymptotically stable
matrix
Lemma 11.7.2, 392

averaged limit
Fact 10.8.3, 368

determinant
Fact 11.10.13, 402

Drazin generalized
inverse
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Fact 11.10.10, 402
Fact 11.10.12, 402

generalized inverse
Fact 11.10.8, 401

group generalized
inverse
Fact 11.10.11, 402
Fact 11.10.12, 402

inverse matrix
Fact 11.10.9, 401

matrix
definition, 373

matrix exponential
Fact 11.10.8, 401
Fact 11.10.9, 401
Fact 11.10.10, 402
Fact 11.10.11, 402
Fact 11.10.12, 402
Fact 11.10.13, 402
Fact 11.11.1, 403
Fact 11.14.4, 412
Fact 11.14.5, 412
Lemma 11.7.2, 392
Proposition 11.1.5, 373

nonnegative-
semidefinite
matrix
Proposition 8.5.7, 255

positive-definite
matrix
Fact 8.10.13, 280
Fact 8.10.14, 280
Fact 8.10.15, 280

quadratic form
Fact 8.10.14, 280
Fact 8.10.15, 280

interior
complement
Fact 10.7.5, 366

convex set
Fact 10.7.6, 366
Fact 10.7.17, 367

definition
Definition 10.1.1, 355

largest open set
Fact 10.7.4, 366

subset

Fact 10.7.3, 366

interior point
definition
Definition 10.1.1, 355

interior point relative to
a set

definition
Definition 10.1.2, 355

interior relative to a set
definition
Definition 10.1.2, 355

interpolation
polynomial
Fact 4.8.10, 136

intersection
definition, 2

invariant polynomial
nonsingular matrix
transformation
Proposition 4.3.7, 118

invariant polynomials
definition
Definition 4.3.4, 118

invariant subspace
definition, 30
lower triangular
matrix
Fact 5.7.4, 175

stable subspace
Proposition 11.6.8, 389

unstable subspace
Proposition 11.6.8, 389

upper triangular
matrix
Fact 5.7.4, 175

inverse
definition, 4
matrix polynomial
definition, 116

uniqueness
Theorem 1.2.3, 4

inverse function
theorem

determinant
Theorem 10.4.5, 361

existence of local
inverse
Theorem 10.4.5, 361

inverse image
definition, 4

inverse matrix
2× 2
Fact 2.13.11, 65

2× 2 block triangular
Lemma 2.8.2, 43

3× 3
Fact 2.13.11, 65

asymptotically stable
matrix
Fact 11.14.14, 414

block-triangular
matrix
Fact 2.13.27, 67

characteristic
polynomial
Fact 4.9.6, 138

companion matrix
Fact 5.12.2, 195

convergent sequence
Fact 2.13.37, 70
Fact 4.10.19, 145

elementary matrix
Fact 2.13.1, 63
Fact 3.4.14, 88

finite sequence
Fact 2.13.36, 69

Hamiltonian matrix
Fact 3.9.3, 103

Hankel matrix
Fact 3.12.12, 107
Fact 3.12.13, 108

identity
Fact 2.13.12, 65
Fact 2.13.13, 65
Fact 2.13.14, 65
Fact 2.13.15, 65
Fact 2.13.16, 66
Fact 2.13.17, 66
Fact 2.13.18, 66
Fact 2.13.19, 66
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Fact 2.13.20, 66
Fact 2.13.21, 66
Fact 2.13.22, 66

identity perturbation
Fact 4.8.11, 136

integral
Fact 11.10.9, 401

Kronecker product
Proposition 7.1.7, 227

matrix derivative
Proposition 10.6.3, 365

matrix exponential
Fact 11.10.9, 401
Proposition 11.1.4, 373

maximum singular
value
Fact 9.12.4, 349

Newton-Raphson
algorithm
Fact 2.13.37, 70

outer-product
perturbation
Fact 2.13.2, 63

partitioned matrix
Fact 2.13.3, 63
Fact 2.13.28, 67
Fact 2.13.29, 67
Fact 2.13.30, 68
Fact 2.13.31, 68
Fact 2.13.33, 69
Fact 5.10.5, 188

positive-definite
matrix
Fact 8.7.36, 269
Lemma 8.1.4, 241
Proposition 8.1.5, 241

product
Proposition 2.6.7, 38

rank
Fact 2.10.21, 51
Fact 2.13.39, 70

series
Proposition 9.4.10, 318

similar matrices
Fact 5.13.27, 204

spectral radius
Proposition 9.4.10, 318

spectrum

Fact 5.9.9, 182
unimodular matrix
Proposition 4.3.6, 118

upper block
triangular matrix
Fact 2.13.35, 69

upper-block
triangular
Fact 2.13.32, 68

inverse of a matrix
definition, 36

inverse operation
composition
Fact 1.3.7, 6

iterated
Fact 1.3.6, 6

invertible function
definition, 4

involutory
determinant
Fact 3.6.21, 100

involutory matrix
definition
Definition 3.1.1, 77

determinant
Fact 5.13.28, 204

diagonalizable
matrix
Fact 5.11.13, 190

factorization
Fact 5.13.15, 201
Fact 5.13.27, 204
Fact 5.13.28, 204

idempotent matrix
Fact 3.5.27, 97

identity
Fact 3.12.16, 109

matrix exponential
Fact 11.9.1, 397

normal matrix
Fact 5.7.13, 177

reflector
Fact 3.7.1, 101

semisimple matrix
Fact 5.11.12, 190

similar matrices
Fact 5.13.27, 204

spectrum
Proposition 5.5.25, 172

symmetric matrix
Fact 5.13.33, 204

transpose
Fact 5.7.14, 177

tripotent matrix
Fact 3.12.15, 108

irreducible
definition, 114

irreducible matrix
definition
Fact 4.11.1, 145

J

Jacobi identity
commutator
Fact 2.14.3, 70

Jacobi’s identity
determinant
Fact 2.13.34, 69

matrix differential
equation
Fact 11.10.4, 401

Jacobian
definition, 361

Jacobson
nilpotent
commutator
Fact 3.8.2, 102

Jensen’s inequality
power sum
inequality
Fact 1.4.13, 9

Jordan block
index of eigenvalue
Proposition 5.5.3, 166

Jordan form
existence
Theorem 5.3.2, 157
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Theorem 5.3.3, 157
factorization
Fact 5.13.2, 199

minimal polynomial
Proposition 5.5.20, 171

normal matrix
Fact 5.7.2, 175

Schur form
Fact 5.7.2, 175

square root
Fact 5.13.16, 201

Jordan matrix
example
Example 5.3.6, 160
Example 5.3.7, 161

Jury test
discrete-time
asymptotically
stable polynomial
Fact 11.15.1, 419

K

Kantorovich inequality
nonnegative-
semidefinite
matrix
Fact 8.10.5, 278

scalar case
Fact 1.4.14, 9

Khatri-Rao product,
238

Kittaneh
Schatten norm
inequality
Fact 9.9.22, 339

Kosaki
Schatten norm
inequality
Fact 9.9.22, 339

unitarily invariant
norm inequality
Fact 9.9.21, 339

Kronecker permutation
matrix

definition, 228
Kronecker product
Fact 7.4.29, 233

orthogonal matrix
Fact 7.4.29, 233

trace
Fact 7.4.29, 233

transpose
Proposition 7.1.13, 228

vec
Fact 7.4.29, 233

Kronecker product
biequivalent matrices
Fact 7.4.11, 231

column norm
Fact 9.9.29, 340

complex conjugate
transpose
Proposition 7.1.3, 226

congruent matrices
Fact 7.4.12, 232

convex function
Proposition 8.5.13, 258

definition
Definition 7.1.2, 226

determinant
Proposition 7.1.11, 228

diagonal matrix
Fact 7.4.2, 231

discrete-time
asymptotically
stable matrix
Fact 11.15.6, 420
Fact 11.15.7, 420

discrete-time
Lyapunov-stable
matrix
Fact 11.15.6, 420
Fact 11.15.7, 420

discrete-time
semistable matrix
Fact 11.15.6, 420
Fact 11.15.7, 420

eigenvalue
Fact 7.4.19, 232

Fact 7.4.22, 233
Fact 7.4.23, 233
Fact 7.4.24, 233
Proposition 7.1.10, 228

eigenvector
Fact 7.4.19, 232
Proposition 7.1.10, 228

Euclidean norm
Fact 9.7.13, 327

Frobenius norm
Fact 9.12.18, 352

generalized inverse
Fact 7.4.31, 234

group-invertible
matrix
Fact 7.4.13, 232

Hermitian matrix
Fact 7.4.13, 232
Fact 8.15.16, 298

Holder norm
Fact 9.9.29, 340

index
Fact 7.4.25, 233

infinity norm
Fact 9.9.29, 340

inverse matrix
Proposition 7.1.7, 227

Kronecker
permutation matrix
Fact 7.4.29, 233

Kronecker sum
Fact 11.11.28, 407

left-equivalent
matrices
Fact 7.4.11, 231

lower triangular
matrix
Fact 7.4.2, 231

matrix exponential
Fact 11.11.28, 407
Fact 11.11.29, 408
Proposition 11.1.8, 374

matrix
multiplication
Proposition 7.1.6, 226

matrix power
Fact 7.4.3, 231
Fact 7.4.9, 231
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Fact 7.4.19, 232
maximum singular
value
Fact 9.12.18, 352

nonnegative-
semidefinite
matrix
Fact 7.4.13, 232
Fact 8.15.9, 296
Fact 8.15.13, 297
Fact 8.15.14, 297
Fact 8.15.15, 297

normal matrix
Fact 7.4.13, 232

outer-product
matrix
Proposition 7.1.8, 227

partitioned matrix
Fact 7.4.16, 232
Fact 7.4.17, 232

positive-definite
matrix
Fact 7.4.13, 232

range-Hermitian
matrix
Fact 7.4.13, 232

rank
Fact 7.4.20, 232
Fact 8.15.9, 296

right-equivalent
matrices
Fact 7.4.11, 231

row norm
Fact 9.9.29, 340

Schatten norm
Fact 9.12.18, 352

Schur product
Proposition 7.3.1, 230

semisimple matrix
Fact 7.4.13, 232

similar matrices
Fact 7.4.12, 232

singular matrix
Fact 7.4.21, 232

skew-Hermitian
matrix
Fact 7.4.14, 232

submatrix

Proposition 7.3.1, 230
sum of matrices
Proposition 7.1.4, 226

trace
Fact 11.11.29, 408
Proposition 7.1.12, 228

transpose
Proposition 7.1.3, 226

triple product
Fact 7.4.6, 231
Proposition 7.1.5, 226

unitarily similar
matrices
Fact 7.4.12, 232

upper triangular
matrix
Fact 7.4.2, 231

vec
Fact 7.4.4, 231
Fact 7.4.5, 231
Fact 7.4.7, 231

vector
Fact 7.4.1, 231

Kronecker sum
associativity
Proposition 7.2.2, 229

asymptotically stable
matrix
Fact 11.14.28, 418
Fact 11.14.29, 418

asymptotically stable
polynomial
Fact 11.13.9, 412

definition
Definition 7.2.1, 229

determinant
Fact 7.4.28, 233

eigenvalue
Fact 7.4.26, 233
Fact 7.4.27, 233
Proposition 7.2.3, 229

eigenvector
Proposition 7.2.3, 229

Hermitian matrix
Fact 7.4.15, 232

Kronecker product
Fact 11.11.28, 407

linear matrix
equation
Proposition 11.7.3, 392

linear system
Fact 7.4.30, 234

Lyapunov equation
Corollary 11.7.4, 392

Lyapunov-stable
matrix
Fact 11.14.28, 418
Fact 11.14.29, 418

matrix exponential
Fact 11.11.27, 407
Fact 11.11.28, 407
Proposition 11.1.8, 374

matrix power
Fact 7.4.10, 231

nonnegative-
semidefinite
matrix
Fact 7.4.15, 232

normal matrix
Fact 7.4.18, 232

positive matrix
Fact 7.4.15, 232

range-Hermitian
matrix
Fact 7.4.18, 232

semistable matrix
Fact 11.14.28, 418
Fact 11.14.29, 418

skew-Hermitian
matrix
Fact 7.4.15, 232

trace
Fact 11.11.27, 407

L

Lagrange interpolation
formula

polynomial
interpolation
Fact 4.8.10, 136

Lagrange-Hermite
interpolation
polynomial
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matrix function
Theorem 10.5.1, 362

Lancaster’s formulas
quadratic form
integral
Fact 8.10.14, 280

leading principal
submatrix

definition, 41

least common multiple
block-diagonal
matrix
Lemma 5.2.7, 155

definition, 114

least squares solution
generalized inverse
Fact 6.4.31, 222
Fact 6.4.32, 222
Fact 6.4.33, 222

singular value
decomposition
Fact 6.4.34, 222

left divides
definition, 114

left equivalence
equivalence relation
Fact 5.8.2, 178

left inverse
(1)-inverse
Proposition 6.1.3, 208

complex conjugate
transpose
Fact 2.13.23, 66

definition, 4
generalized inverse
Corollary 6.1.4, 208
Fact 6.4.22, 220
Fact 6.4.23, 221

idempotent matrix
Fact 3.5.20, 96

left-inner matrix
Fact 3.6.4, 98

matrix product
Fact 2.13.26, 67

positive-definite
matrix

Fact 3.4.19, 89

representation

Fact 2.13.24, 67

uniqueness

Theorem 1.2.3, 4

left invertible
definition, 4

left-equivalent matrices
definition

Definition 3.2.1, 82

group-invertible
matrix

Fact 3.3.3, 85

Kronecker product

Fact 7.4.11, 231

nonnegative-
semidefinite
matrix

Fact 5.8.10, 179

null space

Proposition 5.1.3, 151

left-inner matrix
definition

Definition 3.1.2, 78

left inverse

Fact 3.6.4, 98

left-invertible matrix
definition, 34

equivalent properties

Theorem 2.6.1, 34

generalized inverse

Proposition 6.1.5, 209

nonsingular
equivalence

Corollary 2.6.4, 36

Leibniz rule
derivative of integral

Fact 10.8.4, 368

lemma
definition, 1

Leverrier’s algorithm

characteristic
polynomial
Proposition 4.4.8, 123

Lidskii-Mirsky-Wielandt
theorem

Hermitian
perturbation
Fact 9.10.9, 344

Lie algebra
definition
Definition 3.2.4, 83

matrix exponential
Proposition 11.4.6, 382

strictly upper
triangular matrix
Fact 3.10.2, 104

upper triangular
matrix
Fact 3.10.2, 104

Lie algebras
classical examples
Proposition 3.2.5, 83

Lieb concavity
theorem, 302

Lieb-Thirring inequality
nonnegative-
semidefinite
matrix
Fact 8.12.9, 283
Fact 8.14.6, 292

limit
discrete-time
semistable matrix
Fact 11.15.16, 422

matrix exponential
Fact 11.14.4, 412
Fact 11.14.5, 412
Fact 11.14.6, 413

nonnegative-
semidefinite
matrix
Fact 8.8.21, 275
Proposition 8.5.3, 254

positive-definite
matrix
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Fact 8.8.21, 275
semistable matrix
Fact 11.14.6, 413

linear combination
determinant
Fact 8.13.10, 287

nonnegative-
semidefinite
matrix
Fact 8.13.10, 287

linear combination of
two vectors

definition, 15

linear dependence
triangle inequality
Fact 9.7.3, 325

linear dependence of
two matrices

definition, 16

linear dependence of
two vectors

definition, 15

linear dependence of
vectors

definition, 25

linear dynamical
system

asymptotically stable
Proposition 11.6.2, 386

discrete-time
asymptotically
stable
Proposition 11.8.2, 395

discrete-time
Lyapunov stable
Proposition 11.8.2, 395

discrete-time
semistable
Proposition 11.8.2, 395

Lyapunov stable
Proposition 11.6.2, 386

semistable
Proposition 11.6.2, 386

linear function

continuous function
Corollary 10.3.3, 358

definition, 17

linear independence of
vectors

definition, 25

linear independent
vectors

cyclic matrix
Fact 5.11.5, 189

linear matrix equation
asymptotically stable
matrix
Proposition 11.7.3, 392

existence of solutions
Fact 5.8.11, 180
Fact 5.8.12, 180

generalized inverse
Fact 6.4.21, 220

Kronecker sum
Proposition 11.7.3, 392

matrix exponential
Proposition 11.7.3, 392

skew-symmetric
matrix
Fact 2.11.21, 55

solution
Fact 6.4.21, 220

Sylvester’s equation
Fact 5.8.11, 180
Fact 5.8.12, 180
Proposition 11.7.3, 392
Proposition 7.2.4, 229

symmetric matrix
Fact 2.11.21, 55

linear system
generalized inverse
Proposition 6.1.7, 210

Kronecker sum
Fact 7.4.30, 234

solutions
Fact 2.10.12, 49
Proposition 6.1.7, 210

linear system solution
Cramer’s rule

Fact 2.12.11, 57
eigenvector
Fact 11.10.5, 401

nonnegative vector
Fact 4.11.4, 148

norm
Fact 9.9.31, 340
Fact 9.9.32, 340
Fact 9.9.33, 341

rank
Corollary 2.6.5, 37
Theorem 2.6.3, 35

right-invertible
matrix
Fact 2.12.12, 57

linearly dependent
vectors

absolute value
Fact 9.7.1, 324

linearly independent
rational functions

definition, 130

log majorization
convex function
Fact 8.16.4, 301

increasing function
Fact 8.16.4, 301

logarithm
determinant
Fact 8.7.44, 271
Fact 9.8.30, 333

increasing function
Proposition 8.5.10, 256

positive-definite
matrix
Fact 8.7.44, 271
Fact 8.12.19, 285

scalar inequalities for
Fact 1.4.4, 7

Schur product
Fact 8.15.21, 299

trace
Fact 8.12.19, 285

logarithm of
determinant
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convex function
Proposition 8.5.13, 258

matrix derivative
Proposition 10.6.3, 365

logarithm of trace
convex function
Proposition 8.5.13, 258

logarithmic derivative
asymptotically stable
matrix
Fact 11.14.10, 413

Lyapunov equation
Fact 11.14.10, 413

properties
Fact 9.10.8, 343

logical equivalents
implication
Fact 1.3.1, 5
Fact 1.3.2, 5
Fact 1.3.3, 5

lower block-triangular
matrix

definition
Definition 3.1.3, 79

lower bound
induced lower bound
Fact 9.8.34, 334

lower Hessenberg
matrix

definition
Definition 3.1.3, 79

lower
reverse-triangular
matrix

definition
Fact 2.12.20, 60

determinant
Fact 2.12.20, 60

lower triangular matrix
definition
Definition 3.1.3, 79

factorization
Fact 5.13.7, 199

invariant subspace

Fact 5.7.4, 175
Kronecker product
Fact 7.4.2, 231

matrix exponential
Fact 11.10.1, 400

matrix power
Fact 3.12.8, 107

Toeplitz matrix
Fact 3.12.8, 107
Fact 11.10.1, 400

Lowner-Heinz
inequality

nonnegative-
semidefinite matrix
inequality
Corollary 8.5.8, 256

LU decomposition
existence
Fact 5.13.7, 199

Lucas numbers
nonnegative matrix
Fact 4.11.2, 147

Lyapunov equation
asymptotic stability
Corollary 11.7.1, 390

asymptotically stable
matrix
Corollary 11.7.4, 392

Kronecker sum
Corollary 11.7.4, 392

logarithmic
derivative
Fact 11.14.10, 413

Lyapunov stability
Corollary 11.7.1, 390

matrix exponential
Corollary 11.7.4, 392
Fact 11.14.17, 415

nonnegative-
semidefinite
matrix
Fact 8.7.23, 267

Schur power
Fact 8.7.23, 267

semistability
Corollary 11.7.1, 390

skew-Hermitian
matrix
Fact 11.14.11, 414

Lyapunov stability
eigenvalue
Proposition 11.6.2, 386

linear dynamical
system
Proposition 11.6.2, 386

Lyapunov equation
Corollary 11.7.1, 390

matrix exponential
Proposition 11.6.2, 386

nonlinear system
Theorem 11.5.2, 384

Lyapunov stable
polynomial

definition
Definition 11.6.3, 387

Lyapunov’s direct
method

stability theory
Theorem 11.5.2, 384

Lyapunov-stable
equilibrium

definition
Definition 11.5.1, 384

Lyapunov-stable matrix
definition
Definition 11.6.1, 386

group-invertible
matrix
Fact 11.14.2, 412

Kronecker sum
Fact 11.14.28, 418
Fact 11.14.29, 418

Lyapunov-stable
polynomial
Proposition 11.6.4, 387

matrix exponential
Fact 11.14.5, 412
Fact 11.15.8, 420

nonnegative-
semidefinite
matrix
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Proposition 11.7.5, 393
positive-definite
matrix
Proposition 11.7.5, 393

semidissipative
matrix
Fact 11.14.32, 418

semistable matrix
Fact 11.14.1, 412

Lyapunov-stable
polynomial

Lyapunov-stable
matrix
Proposition 11.6.4, 387

subdeterminant
Fact 11.14.21, 415

Lyapunov-stable stable
matrix

normal matrix
Fact 11.14.32, 418

M

majorization
eigenvalue
Fact 8.14.3, 290

singular value
Fact 8.14.3, 290

Marcus
similar matrices and
nonzero diagonal
entries
Fact 5.7.8, 176

mass, 380

matrix
definition, 15

matrix derivative
definition, 364
determinant
Proposition 10.6.3, 365

inverse matrix
Fact 10.8.10, 369
Proposition 10.6.3, 365

logarithm of
determinant
Proposition 10.6.3, 365

matrix exponential
Fact 11.11.11, 404

matrix power
Proposition 10.6.3, 365

squared matrix
Fact 10.8.9, 368

trace
Proposition 10.6.2, 364

matrix differential
equation

Jacobi’s identity
Fact 11.10.4, 401

matrix exponential
Fact 11.10.3, 400

matrix exponential
2× 2 matrix
Corollary 11.3.3, 377
Example 11.3.4, 378
Example 11.3.5, 378
Example 11.3.6, 378
Lemma 11.3.1, 377
Proposition 11.3.2, 377

3× 3 matrix
Fact 11.9.5, 398

3× 3 skew-symmetric
matrix
Fact 11.9.6, 398
Fact 11.9.7, 399

3× 3 unitary matrix
Fact 11.9.7, 399

SO(n)
Fact 11.9.3, 397

asymptotic stability
Proposition 11.6.2, 386

asymptotically stable
matrix
Fact 11.14.8, 413
Fact 11.14.9, 413
Fact 11.14.14, 414
Fact 11.14.17, 415
Fact 11.15.8, 420
Lemma 11.7.2, 392

block-diagonal
matrix

Proposition 11.1.4, 373
commutator
Fact 11.11.10, 404
Fact 11.11.12, 405
Fact 11.11.13, 405
Fact 11.11.14, 405
Fact 11.11.15, 405
Fact 11.11.16, 406
Fact 11.11.17, 406
Fact 11.11.18, 406

commuting matrices
Corollary 11.1.7, 374
Fact 11.11.2, 403
Fact 11.11.5, 404
Proposition 11.1.6, 374

complex conjugate
transpose
Fact 11.12.3, 408
Fact 11.12.5, 409

convergence in time
Proposition 11.6.7, 389

convergent sequence
Corollary 11.4.9, 384
Fact 11.11.7, 404
Fact 11.11.8, 404
Fact 11.11.10, 404
Fact 11.15.15, 421
Proposition 11.1.3, 372

convergent series
Proposition 11.1.2, 372

convex function
Fact 11.11.25, 407

convexity
Fact 11.12.11, 410

cross product
Fact 11.9.9, 399

definition
Definition 11.1.1, 371

derivative
Fact 11.11.3, 403
Fact 11.11.4, 403
Fact 11.12.1, 408

derivative of a
matrix
Fact 11.11.12, 405

determinant
Corollary 11.2.3, 377
Corollary 11.2.4, 377
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Fact 11.10.13, 402
Fact 11.12.4, 408
Proposition 11.4.7, 383

discrete-time
asymptotic stability
Proposition 11.8.2, 395

discrete-time
asymptotically
stable matrix
Fact 11.15.8, 420

discrete-time
Lyapunov stability
Proposition 11.8.2, 395

discrete-time
Lyapunov-stable
matrix
Fact 11.15.8, 420

discrete-time
semistability
Proposition 11.8.2, 395

discrete-time
semistable matrix
Fact 11.15.8, 420
Fact 11.15.15, 421

dissipative matrix
Fact 11.12.2, 408

Drazin generalized
inverse
Fact 11.10.10, 402
Fact 11.10.12, 402

Frobenius norm
Fact 11.12.2, 408

generalized inverse
Fact 11.10.8, 401

group
Proposition 11.4.6, 382

group generalized
inverse
Fact 11.10.11, 402
Fact 11.10.12, 402
Fact 11.14.4, 412
Fact 11.14.5, 412

group-invertible
matrix
Fact 11.14.13, 414

Hermitian matrix
Fact 11.11.7, 404
Fact 11.11.8, 404

Fact 11.11.9, 404
Fact 11.11.20, 406
Fact 11.11.21, 406
Fact 11.11.22, 407
Fact 11.11.24, 407
Fact 11.12.8, 410
Proposition 11.1.4, 373

idempotent matrix
Fact 11.9.1, 397

integral
Fact 11.10.8, 401
Fact 11.10.9, 401
Fact 11.10.10, 402
Fact 11.10.11, 402
Fact 11.10.12, 402
Fact 11.10.13, 402
Fact 11.11.1, 403
Fact 11.14.4, 412
Fact 11.14.5, 412
Lemma 11.7.2, 392
Proposition 11.1.5, 373

inverse matrix
Fact 11.10.9, 401
Proposition 11.1.4, 373

involutory matrix
Fact 11.9.1, 397

Jordan structure
Corollary 11.4.5, 382

Kronecker product
Fact 11.11.28, 407
Fact 11.11.29, 408
Proposition 11.1.8, 374

Kronecker sum
Fact 11.11.27, 407
Fact 11.11.28, 407
Proposition 11.1.8, 374

Lie algebra
Proposition 11.4.6, 382

limit
Fact 11.14.4, 412
Fact 11.14.5, 412
Fact 11.14.6, 413

linear matrix
equation
Proposition 11.7.3, 392

lower triangular
matrix
Fact 11.10.1, 400

Lyapunov equation
Corollary 11.7.4, 392
Fact 11.14.17, 415

Lyapunov stability
Proposition 11.6.2, 386

Lyapunov-stable
matrix
Fact 11.14.5, 412
Fact 11.15.8, 420

matrix derivative
Fact 11.11.11, 404

matrix differential
equation
Fact 11.10.3, 400

matrix logarithm
Fact 11.11.20, 406
Fact 11.11.22, 407
Proposition 11.4.2, 381
Proposition 11.4.3, 381

matrix polynomial
Proposition 11.2.1, 375

matrix power
Fact 11.9.11, 400

maximum eigenvalue
Fact 11.12.7, 409

maximum singular
value
Fact 11.12.1, 408
Fact 11.12.4, 408
Fact 11.12.10, 410

nilpotent matrix
Fact 11.9.1, 397

nonnegative matrix
Fact 11.14.7, 413

nonnegative-
semidefinite
matrix
Fact 11.11.19, 406

norm bound
Fact 11.14.9, 413

normal matrix
Fact 11.11.5, 404
Fact 11.12.10, 410

orthogonal matrix
Fact 11.10.14, 402

outer-product
matrix
Fact 11.9.1, 397



matrix2 November 19, 2003

INDEX 583

partitioned matrix
Fact 11.9.2, 397
Fact 11.11.1, 403

polar decomposition
Fact 11.10.7, 401

positive-definite
matrix
Fact 11.11.19, 406
Proposition 11.1.4, 373

Schur product
Fact 11.11.20, 406

semistability
Proposition 11.6.2, 386

semistable matrix
Fact 11.14.4, 412
Fact 11.14.6, 413
Fact 11.15.8, 420

series
Fact 11.11.18, 406
Proposition 11.4.8, 383

similar matrices
Proposition 11.1.4, 373

singular value
Fact 11.12.4, 408
Fact 11.12.11, 410

skew-Hermitian
matrix
Fact 11.11.6, 404
Fact 11.11.23, 407
Proposition 11.1.4, 373

skew-involutory
matrix
Fact 11.9.1, 397

skew-symmetric
matrix
Example 11.3.7, 379
Fact 11.9.3, 397
Fact 11.9.9, 399
Fact 11.9.10, 400
Fact 11.10.14, 402

spectral abscissa
Fact 11.10.2, 400
Fact 11.14.8, 413

spectral radius
Fact 11.10.2, 400

spectrum
Proposition 11.2.2, 376

stable subspace

Proposition 11.6.8, 389
strong log
majorization
Fact 11.12.7, 409

submultiplicative
norm
Fact 11.12.9, 410
Fact 11.14.8, 413
Proposition 11.1.2, 372

sum of integer
powers
Fact 11.9.4, 397

thermodynamic
inequality
Fact 11.11.22, 407

trace
Corollary 11.2.3, 377
Corollary 11.2.4, 377
Fact 11.11.3, 403
Fact 11.11.11, 404
Fact 11.11.21, 406
Fact 11.11.22, 407
Fact 11.11.25, 407
Fact 11.11.26, 407
Fact 11.11.27, 407
Fact 11.11.29, 408
Fact 11.12.3, 408
Fact 11.12.4, 408
Fact 11.12.6, 409
Fact 11.12.7, 409

transpose
Proposition 11.1.4, 373

unitarily invariant
norm
Fact 11.11.9, 404
Fact 11.12.5, 409
Fact 11.12.7, 409
Fact 11.12.8, 410

unitary matrix
Fact 11.11.6, 404
Fact 11.11.23, 407
Fact 11.11.24, 407
Proposition 11.1.4, 373

upper triangular
matrix
Fact 11.9.4, 397
Fact 11.10.1, 400

vibration equation

Example 11.3.8, 379
weak majorization
Fact 11.12.7, 409

matrix factorization
Douglas-Fillmore-
Williams
lemma
Theorem 8.5.2, 253

matrix function
definition, 362
Lagrange-Hermite
interpolation
polynomial
Theorem 10.5.1, 362

spectrum
Corollary 10.5.3, 363

matrix function defined
at a point

definition, 362

matrix function
evaluation

identity theorem
Theorem 10.5.2, 363

matrix inverse
derivative
Fact 10.8.11, 369

matrix inversion
lemma
Corollary 2.8.8, 45

normalized
submultiplicative
norm
Fact 9.9.25, 339
Fact 9.9.26, 339
Fact 9.9.27, 339

perturbation
Fact 9.9.28, 340

sum of matrices
Corollary 2.8.10, 46

matrix inversion lemma
generalized inverse
Fact 6.4.17, 220

matrix inverse
Corollary 2.8.8, 45
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matrix limit
projector
Fact 6.4.27, 221

matrix logarithm
complex matrix
Definition 11.4.1, 380

convergent series
Proposition 11.4.2, 381

matrix exponential
Fact 11.11.20, 406
Fact 11.11.22, 407
Proposition 11.4.2, 381
Proposition 11.4.3, 381

nonsingular matrix
Proposition 11.4.3, 381

norm
Proposition 11.4.2, 381

real matrix
Proposition 11.4.4, 381

trace
Fact 11.11.22, 407

matrix measure
properties
Fact 9.10.8, 343

matrix multiplication
definition, 17
function composition
Theorem 2.1.2, 17

Kronecker product
Proposition 7.1.6, 226

matrix norm
partitioned matrix
Fact 9.9.34, 341

spectral radius
Proposition 9.2.6, 310

matrix polynomial
definition, 114
matrix exponential
Proposition 11.2.1, 375

matrix polynomial
division

linear divisor
Corollary 4.2.3, 115
Lemma 4.2.2, 115

matrix power
cyclic matrix
Fact 5.11.5, 189

discrete-time
asymptotically
stable matrix
Fact 11.15.3, 419

discrete-time
dynamics
Fact 11.15.4, 419

discrete-time
Lyapunov-stable
stable matrix
Fact 11.15.16, 422

Drazin generalized
inverse
Fact 6.5.4, 223

identities
Fact 7.5.9, 236

Kronecker product
Fact 7.4.3, 231
Fact 7.4.9, 231
Fact 7.4.19, 232

Kronecker sum
Fact 7.4.10, 231

lower triangular
matrix
Fact 3.12.8, 107

matrix derivative
Proposition 10.6.3, 365

matrix exponential
Fact 11.9.11, 400

maximum singular
value
Fact 8.14.17, 294
Fact 9.11.9, 346
Fact 9.11.11, 347

nonnegative-
semidefinite
matrix
Corollary 8.5.8, 256
Fact 8.7.6, 265

normal matrix
Fact 9.11.9, 346

outer-product
matrix
Fact 2.11.11, 54

Schur product

Fact 7.5.9, 236
similar matrices
Fact 5.7.1, 175

singular value
inequality
Fact 9.11.16, 348

skew-Hermitian
matrix
Fact 8.7.6, 265

strictly lower
triangular matrix
Fact 3.12.8, 107

strictly upper
triangular matrix
Fact 3.12.8, 107

symmetric matrix
Fact 3.4.2, 86

trace
Fact 2.11.15, 54
Fact 2.11.18, 55

upper triangular
matrix
Fact 3.12.8, 107

matrix powers
adjugate
Fact 4.9.5, 138

matrix classes
Fact 3.4.32, 92

matrix product
adjugate
Fact 2.13.9, 64

characteristic
polynomial
Corollary 4.4.10, 124

compound matrix
Fact 7.4.32, 234

generalized inverse
Fact 6.4.1, 216
Fact 6.4.2, 216
Fact 6.4.3, 216
Fact 6.4.4, 216
Fact 6.4.5, 216
Fact 6.4.7, 216

induced lower bound
Proposition 9.5.3, 320

left inverse
Fact 2.13.26, 67
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nonnegative-
semidefinite
matrix
Corollary 8.3.6, 246

positive-definite
matrix
Corollary 8.3.6, 246

quadruple
Fact 2.13.10, 65

right inverse
Fact 2.13.25, 67

singular value
Fact 8.14.16, 294
Proposition 9.6.1, 322
Proposition 9.6.2, 322
Proposition 9.6.3, 322
Proposition 9.6.4, 323

singular value
inequality
Fact 9.11.15, 347

skew-symmetric
matrix
Fact 5.13.34, 204

trace
Fact 8.12.5, 282

vec
Fact 7.4.5, 231

matrix root
nonnegative-
semidefinite
matrix
Fact 8.7.19, 266

matrix sign function
convergent sequence
Fact 5.13.18, 202

square root
Fact 5.13.18, 202

matrix squared
trace
Fact 5.9.5, 181

matrix sum
generalized inverse
Fact 6.4.18, 220
Fact 6.4.19, 220
Fact 6.4.20, 220

Hamiltonian matrix

Fact 3.9.3, 103
singular value
Fact 9.12.13, 351

maximization
continuous function
Fact 10.8.2, 368

maximum eigenvalue
matrix exponential
Fact 11.12.7, 409

nonnegative-
semidefinite
matrix
Fact 8.14.8, 292
Fact 8.14.9, 292

maximum singular
value

absolute value
Fact 9.11.12, 347

block-triangular
matrix
Fact 5.9.16, 184

bound
Fact 5.9.18, 184

commutator
Fact 9.12.5, 349

derivative
Fact 11.12.1, 408

determinant
Fact 9.11.6, 346
Fact 9.11.7, 346
Fact 9.12.11, 350
Fact 9.12.12, 350

eigenvalue
Fact 9.11.6, 346

eigenvalue
perturbation
Fact 9.10.9, 344

elementary projector
Fact 5.9.25, 186

equi-induced
self-adjoint norm
Fact 9.11.5, 346

equi-induced
unitarily invariant
norm
Fact 9.11.4, 346

generalized inverse
Fact 9.12.4, 349
Fact 9.12.16, 352

Hermitian matrix
Fact 9.9.23, 339

Holder-induced
norm
Fact 9.8.13, 330

induced lower bound
Corollary 9.5.5, 321

inequality
Corollary 9.6.5, 323
Corollary 9.6.9, 324
Fact 9.12.9, 350
Fact 9.12.10, 350
Proposition 9.2.2, 308

inverse matrix
Fact 9.12.4, 349

Kronecker product
Fact 9.12.18, 352

matrix exponential
Fact 11.12.1, 408
Fact 11.12.4, 408
Fact 11.12.10, 410

matrix power
Fact 8.14.17, 294
Fact 9.11.9, 346
Fact 9.11.11, 347

nonnegative-
semidefinite
matrix
Fact 8.14.15, 294

normal matrix
Fact 9.11.9, 346
Fact 9.11.10, 346
Fact 9.12.1, 348
Fact 11.12.10, 410

outer-product
matrix
Fact 5.9.12, 182
Fact 9.7.12, 327

partitioned matrix
Fact 8.14.14, 294
Fact 8.14.15, 294
Fact 9.12.6, 349
Fact 9.12.7, 349
Fact 9.12.8, 350
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positive-definite
matrix
Fact 8.14.17, 294

projector
Fact 9.12.16, 352

quadratic form
Fact 9.11.1, 345
Fact 9.11.2, 345

Schur product
Fact 9.12.17, 352

spectral radius
Fact 9.11.11, 347

square root
Fact 9.8.23, 331

unitarily invariant
norm
Fact 9.9.10, 336

maximum singular
value bound

Frobenius norm
Fact 9.11.13, 347

minimum singular
value bound
Fact 9.11.14, 347

polynomial root
Fact 9.11.14, 347

trace
Fact 9.11.13, 347

maximum singular
value of a partitioned
matrix

Parrott’s theorem
Fact 9.12.7, 349

McCarthy inequality
nonnegative-
semidefinite
matrix
Fact 8.12.15, 285

minimal polynomial
block-diagonal
matrix
Lemma 5.2.7, 155

companion matrix
Corollary 5.2.4, 154
Corollary 5.2.5, 154
Proposition 5.2.1, 152

cyclic matrix
Proposition 5.5.20, 171

definition, 127
existence
Theorem 4.6.1, 127

index of eigenvalue
Proposition 5.5.20, 171

Jordan form
Proposition 5.5.20, 171

null space
Corollary 11.6.6, 389

partitioned matrix
Fact 4.10.8, 142

range
Corollary 11.6.6, 389

similar matrices
Fact 11.16.3, 424
Fact 11.16.4, 425
Fact 11.16.5, 425
Fact 11.16.6, 426
Fact 11.16.7, 427
Fact 11.16.8, 427
Fact 11.16.9, 428
Fact 11.16.10, 428
Fact 11.16.11, 429
Proposition 4.6.3, 128

spectrum
Fact 4.10.5, 141

stable subspace
Fact 11.16.1, 423
Fact 11.16.2, 423
Proposition 11.6.5, 388

upper-block-
triangular
matrix
Fact 4.10.8, 142

minimum principle
eigenvalue
characterization
Fact 8.14.13, 294

minimum singular
value

determinant
Fact 9.11.7, 346
Fact 9.12.12, 350

induced lower bound
Corollary 9.5.5, 321

inequality

Corollary 9.6.6, 323

Fact 9.11.8, 346

quadratic form

Fact 9.11.1, 345

minimum singular
value bound

maximum singular
value bound

Fact 9.11.14, 347

polynomial root

Fact 9.11.14, 347

Minkowski
set-defined norm

Fact 10.7.13, 366

Minkowski’s
determinant theorem

nonnegative-
semidefinite matrix
determinant

Corollary 8.4.15, 252

Minkowski’s inequality
Holder norm

Lemma 9.1.3, 304

nonnegative-
semidefinite
matrix

Fact 8.12.15, 285

scalar case

Fact 1.4.17, 10

minor, see
subdeterminant

Mirsky
fixed-rank
approximation

Fact 9.12.14, 351

singular value trace
bound

Fact 5.10.3, 188

Mirsky’s theorem
singular value
perturbation

Fact 9.12.15, 352
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monic matrix
polynomial

definition, 114

monic polynomial
definition, 111

monotone norm
absolute norm
Proposition 9.1.2, 303

definition, 303

monotonicity
power mean
inequality
Fact 1.4.10, 8

monotonicity theorem
Hermitian matrix
eigenvalues
Theorem 8.4.9, 250

Moore-Penrose
generalized inverse,
see generalized
inverse

multi-companion form
definition, 154
existence
Theorem 5.2.3, 154

similar matrices
Corollary 5.2.6, 154

similarity invariant
Corollary 5.2.6, 154

multiple
definition, 113

multiplicative
commutator

realization
Fact 5.13.31, 204

reflector realization
Fact 5.13.32, 204

multiplicity of a root
definition, 112

multiset
definition, 2

multispectrum

definition
Definition 4.4.3, 120

properties
Proposition 4.4.4, 121

N

natural frequency, 380
definition
Fact 5.11.23, 191

necessity
definition, 1

negation
definition, 1

negative-definite matrix
asymptotically stable
matrix
Fact 11.14.26, 417

definition
Definition 3.1.1, 77

Newcomb
simultaneous
cogredient
diagonalization, 301

Newton’s identities
polynomial roots
Fact 4.8.2, 131

spectrum
Fact 4.10.2, 141

Newton-Raphson
algorithm

generalized inverse
Fact 6.3.18, 215

inverse matrix
Fact 2.13.37, 70

square root
Fact 5.13.18, 202

nilpotent matrix
commutator
Fact 3.8.1, 102
Fact 3.8.2, 102
Fact 3.8.3, 102

commuting matrices
Fact 3.8.9, 103

Fact 3.8.10, 103
definition
Definition 3.1.1, 77

determinant
Fact 3.8.9, 103

factorization
Fact 5.13.26, 203

identity perturbation
Fact 3.8.7, 102
Fact 3.8.8, 102

matrix exponential
Fact 11.9.1, 397

outer-product
matrix
Fact 3.8.6, 102

partitioned matrix
Fact 3.5.18, 95

rank
Fact 3.8.4, 102
Fact 3.8.5, 102
Fact 3.8.6, 102

semisimple matrix
Fact 5.13.19, 202

spectrum
Proposition 5.5.25, 172

Toeplitz matrix
Fact 3.12.7, 107

trace
Fact 3.8.11, 103

nondecreasing
convex function
Lemma 8.5.12, 257

definition
Definition 8.5.9, 256

function composition
Lemma 8.5.12, 257

nondecreasing
function

matrix functions
Proposition 8.5.10, 256

Schur complement
Proposition 8.5.10, 256

nonempty
definition, 2

nonincreasing
concave function
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Lemma 8.5.12, 257
definition
Definition 8.5.9, 256

function composition
Lemma 8.5.12, 257

nonnegative matrix
companion matrix
Fact 4.11.3, 148

definition, 16
Definition 3.1.4, 81

difference equation
Fact 4.11.2, 147

eigenvalue
Fact 4.11.1, 145

Fibonacci numbers
Fact 4.11.2, 147

limit of matrix
powers
Fact 4.11.9, 149

Lucas numbers
Fact 4.11.2, 147

matrix exponential
Fact 11.14.7, 413

spectral radius
Fact 4.11.1, 145
Fact 4.11.6, 148
Fact 7.5.11, 237

spectral radius
monotonicity
Fact 4.11.7, 149

nonnegative matrix
eigenvalues

Perron-Frobenius
theorem
Fact 4.11.1, 145

nonnegative vector
definition, 14
linear system
solution
Fact 4.11.4, 148

null space
Fact 4.11.5, 148

nonnegative-definite
matrix, see
nonnegative-

semidefinite
matrix

closed set
Fact 10.7.16, 367

completely solid set
Fact 10.7.16, 367

nonnegative-
semidefinite
matrix

antisymmetric
relation
Proposition 8.1.1, 240

Brownian motion
Fact 8.7.22, 267

Cauchy matrix
Fact 8.7.23, 267
Fact 8.7.29, 268

Cauchy-Schwarz
inequality
Fact 8.8.12, 272
Fact 8.10.4, 278

cogredient
diagonalization
Theorem 8.3.4, 246

complex matrix
Fact 3.4.5, 86

congruent matrices
Corollary 8.1.3, 241

contragredient
diagonalization
Corollary 8.3.7, 247
Theorem 8.3.5, 246

convex combination
Fact 8.13.8, 287

convex cone, 240
convex function
Fact 8.10.16, 280

definition
Definition 3.1.1, 77

determinant
Corollary 8.4.15, 252
Fact 5.10.6, 188
Fact 8.13.12, 287
Fact 8.13.8, 287
Fact 8.13.10, 287
Fact 8.14.5, 291
Fact 8.15.5, 296

Fact 8.15.11, 297
Fact 8.15.12, 297
Fact 9.8.30, 333

diagonal entries
Fact 8.7.1, 265
Fact 8.7.2, 265

diagonal entry
Fact 8.8.7, 272

discrete-time
Lyapunov-stable
matrix
Fact 11.15.17, 422

Drazin generalized
inverse
Fact 8.9.1, 275

eigenvalue
Fact 8.9.8, 276
Fact 8.14.6, 292
Fact 8.14.7, 292
Fact 8.14.11, 293
Fact 8.15.11, 297

factorization
Fact 5.13.20, 202
Fact 5.13.38, 205
Fact 5.13.39, 205
Fact 5.13.40, 205
Fact 8.7.32, 269
Fact 8.7.33, 269

Frobenius norm
Fact 9.8.30, 333
Fact 9.9.12, 337
Fact 9.9.13, 337
Fact 9.9.20, 338
Fact 9.9.9, 336

generalized inverse
Fact 6.4.17, 220
Fact 8.9.1, 275
Fact 8.9.2, 275
Fact 8.9.3, 275
Fact 8.9.4, 275
Fact 8.9.5, 276
Fact 8.9.6, 276
Fact 8.9.7, 276
Fact 8.9.8, 276
Fact 8.9.9, 276
Fact 8.9.11, 277
Proposition 6.1.6, 209
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group-invertible
matrix
Fact 8.8.5, 272

Hermitian matrix
Fact 8.7.4, 265
Fact 8.11.8, 281

identity
Fact 8.8.1, 271

increasing sequence
Proposition 8.5.3, 254

inequality
Corollary 8.5.5, 255
Corollary 8.5.6, 255
Fact 8.7.3, 265
Fact 8.7.10, 266
Fact 8.7.12, 266
Fact 8.7.35, 269
Fact 8.8.8, 272
Fact 8.8.9, 272
Fact 8.8.10, 272
Fact 8.8.13, 272
Fact 8.8.14, 273
Fact 8.10.9, 279
Fact 8.10.10, 279
Fact 9.12.19, 353
Proposition 8.5.4, 254

integral
Proposition 8.5.7, 255

Kantorovich
inequality
Fact 8.10.5, 278

Kronecker product
Fact 7.4.13, 232
Fact 8.15.9, 296
Fact 8.15.13, 297
Fact 8.15.14, 297
Fact 8.15.15, 297

Kronecker sum
Fact 7.4.15, 232

left-equivalent
matrices
Fact 5.8.10, 179

limit
Fact 8.8.21, 275
Proposition 8.5.3, 254

linear combination
Fact 8.13.10, 287

Lyapunov equation

Fact 8.7.23, 267
Lyapunov-stable
matrix
Proposition 11.7.5, 393

matrix exponential
Fact 11.11.19, 406

matrix power
Corollary 8.5.8, 256
Fact 8.7.6, 265
Fact 8.10.7, 278

matrix product
Corollary 8.3.6, 246

matrix root
Fact 8.7.19, 266

maximum eigenvalue
Fact 8.14.8, 292
Fact 8.14.9, 292

maximum singular
value
Fact 8.14.15, 294

normal matrix
Fact 8.7.13, 266
Fact 8.8.4, 272

null space
Fact 8.6.2, 264
Fact 8.6.3, 264
Fact 8.10.11, 279

one-sided cone, 240
outer-product
matrix
Fact 8.7.34, 269
Fact 8.10.1, 278
Fact 8.10.2, 278

partial ordering
Proposition 8.1.1, 240

partitioned matrix
Corollary 8.2.2, 242
Fact 5.10.7, 188
Fact 8.6.4, 264
Fact 8.7.38, 270
Fact 8.7.39, 270
Fact 8.7.40, 270
Fact 8.7.41, 270
Fact 8.7.42, 271
Fact 8.8.17, 273
Fact 8.9.11, 277
Fact 8.12.17, 285
Fact 8.12.18, 285

Fact 8.13.23, 289
Fact 8.14.14, 294
Fact 8.14.15, 294
Fact 9.8.24, 331
Lemma 8.2.1, 241
Lemma 8.2.5, 243
Proposition 8.2.3, 242

pointed cone, 240
positive-definite
matrix
Fact 8.7.30, 268
Fact 8.8.11, 272

projector
Fact 3.5.5, 93

properties of < and
≤
Proposition 8.1.2, 240

quadratic form
Fact 8.10.7, 278
Fact 8.10.11, 279

quadratic form
inequality
Fact 8.10.3, 278

range
Corollary 8.2.2, 242
Fact 8.6.1, 264
Fact 8.6.2, 264
Fact 8.6.3, 264
Fact 8.9.3, 275
Fact 8.9.4, 275
Theorem 8.5.2, 253

range-Hermitian
matrix
Fact 8.9.10, 277

rank
Fact 8.6.1, 264
Fact 8.6.3, 264
Fact 8.6.4, 264
Fact 8.15.9, 296

real eigenvalues
Fact 5.11.8, 189

reflexive relation
Proposition 8.1.1, 240

right inverse
Fact 3.4.20, 89

Schatten norm
Fact 9.9.17, 338

Schur complement
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Corollary 8.5.14, 263
Fact 8.7.37, 270
Fact 8.15.4, 295

Schur inverse
Fact 8.15.1, 295

Schur power
Fact 8.15.2, 295
Fact 8.15.17, 298

Schur product
Fact 8.15.4, 295
Fact 8.15.6, 296
Fact 8.15.8, 296
Fact 8.15.10, 296
Fact 8.15.11, 297
Fact 8.15.13, 297
Fact 8.15.18, 298
Fact 8.15.19, 299
Fact 8.15.24, 300

semisimple matrix
Corollary 8.3.6, 246

skew-Hermitian
matrix
Fact 8.7.5, 265

spectral radius
Fact 8.9.3, 275

spectrum
Fact 8.9.7, 276
Proposition 5.5.25, 172

square root
Fact 9.8.23, 331

structured matrix
Fact 8.7.22, 267
Fact 8.7.24, 267
Fact 8.7.25, 267
Fact 8.7.26, 268
Fact 8.7.27, 268
Fact 8.7.28, 268
Fact 8.7.29, 268

subdeterminant
Proposition 8.2.6, 243

submatrix
Corollary 8.2.8, 245
Proposition 8.2.6, 243

trace
Fact 8.9.8, 276
Fact 8.12.2, 282
Fact 8.12.3, 282
Fact 8.12.4, 282

Fact 8.12.7, 282

Fact 8.12.8, 283

Fact 8.12.9, 283

Fact 8.12.10, 284

Fact 8.12.11, 284

Fact 8.12.12, 284

Fact 8.12.14, 284

Fact 8.12.15, 285

Fact 8.12.16, 285

Fact 8.12.17, 285

Fact 8.12.18, 285

Fact 8.13.12, 287

Fact 8.14.6, 292

Proposition 8.4.13, 251

trace norm

Fact 9.9.13, 337

transitive relation

Proposition 8.1.1, 240

triangle inequality

Fact 9.9.15, 337

unitarily invariant
norm

Fact 9.9.8, 336

Fact 9.9.9, 336

unitarily
left-equivalent
matrices

Fact 5.8.9, 179

Fact 5.8.10, 179

unitarily
right-equivalent
matrices

Fact 5.8.9, 179

upper bound

Fact 8.8.16, 273

upper triangular
matrix

Fact 8.7.33, 269

weak majorization

Fact 8.14.11, 293

zero matrix

Fact 8.8.3, 271

nonnegative-
semidefinite matrix
determinant

Minkowski’s
determinant
theorem
Corollary 8.4.15, 252

nonnegative-
semidefinite matrix
inequality

Furuta’s inequality
Proposition 8.5.4, 254

nonnegative-
semidefinite matrix
root

definition, 254

nonnegative-
semidefinite matrix
square root

definition, 254

nonnegative-
semidefinite matrix
trace

Holder’s inequality
Fact 8.12.4, 282

nonpositive-
semidefinite
matrix

definition
Definition 3.1.1, 77

nonsingular
idempotent matrix
Fact 3.5.24, 96

nonsingular matrix
complex conjugate
Proposition 2.6.6, 37

complex conjugate
transpose
Fact 2.13.38, 70
Proposition 2.6.6, 37

definition, 36
determinant
Corollary 2.7.4, 40
Lemma 2.8.6, 44

diagonal dominance
theorem
Fact 4.10.14, 144
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diagonally dominant
matrix

Fact 4.10.14, 144

dissipative matrix

Fact 3.12.4, 106

distance to
singularity

Fact 9.12.3, 349

elementary matrix

Fact 5.13.9, 200

factorization

Fact 5.13.9, 200

Fact 5.13.19, 202

Fact 5.13.33, 204

group

Proposition 3.2.7, 84

inverse matrix

Fact 3.6.11, 98

matrix logarithm

Proposition 11.4.3, 381

norm

Fact 9.7.18, 327

perturbation

Fact 9.12.2, 348

Fact 9.12.12, 350

range-Hermitian
matrix

Proposition 3.1.5, 81

similar matrices

Fact 5.8.4, 179

submultiplicative
norm

Fact 9.8.2, 328

transpose

Proposition 2.6.6, 37

nonsingular matrix
polynomial

Definition 4.2.5, 115

regular matrix
polynomial

Proposition 4.2.5, 116

nonsingular matrix
transformation

invariant polynomial

Proposition 4.3.7, 118

nonzero diagonal
entries

similar matrices
Fact 5.7.8, 176

norm
absolute
definition, 303

absolute sum
definition, 305

column
definition, 317

compatible
definition, 310

complex conjugate
transpose
Fact 9.8.5, 328

convex set
Fact 9.7.9, 326

equi-induced
Definition 9.4.1, 314

equivalent
Theorem 9.1.8, 307

Euclidean
definition, 305

Euclidean-norm
inequality
Fact 9.7.4, 325
Fact 9.7.5, 325
Fact 9.7.6, 326

Frobenius
definition, 308

Holder-norm
inequality
Fact 9.7.6, 326

induced
Definition 9.4.1, 314

induced norm
Theorem 9.4.2, 314

inequality
Fact 9.7.2, 325
Fact 9.7.4, 325

infinity
definition, 305

linear combination of
norms
Fact 9.7.17, 327

linear system
solution
Fact 9.9.31, 340
Fact 9.9.32, 340
Fact 9.9.33, 341

matrix
Definition 9.2.1, 307

matrix logarithm
Proposition 11.4.2, 381

monotone
definition, 303

nonsingular matrix
Fact 9.7.18, 327

normalized
definition, 308

positive-definite
matrix
Fact 9.7.16, 327

quadratic form
Fact 9.7.16, 327

row
definition, 317

self adjoint
definition, 308

set-defined
Fact 10.7.13, 366

spectral
definition, 309

submultiplicative
definition, 311

trace
definition, 309

triangle inequality
Definition 9.1.1, 303

unitarily invariant
definition, 308

vector
Definition 9.1.1, 303

weakly unitarily
invariant
definition, 308

norm bound
matrix exponential
Fact 11.14.9, 413

norm inequalities
Schatten norm
Fact 9.9.18, 338
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norm inequality
orthogonal vectors
Fact 9.7.11, 327

norm monotonicity
power sum
inequality
Fact 1.4.13, 9

normal matrix
asymptotically stable
matrix
Fact 11.14.32, 418

commutator
Fact 3.4.31, 92

commuting matrices
Fact 3.4.22, 89
Fact 3.4.23, 90
Fact 5.8.7, 179
Fact 5.11.18, 190
Fact 11.11.5, 404

complex conjugate
transpose
Fact 5.11.19, 191

definition
Definition 3.1.1, 77

discrete-time
asymptotically
stable matrix
Fact 11.15.5, 420

discrete-time
Lyapunov-stable
matrix
Fact 11.15.5, 420

dissipative matrix
Fact 11.14.32, 418

eigenvalue
Fact 5.11.10, 190

eigenvector
Lemma 4.5.2, 125
Proposition 4.5.3, 125

example
Example 5.5.21, 171

Frobenius norm
Fact 9.10.10, 345

generalized inverse
Proposition 6.1.6, 209

Hermitian matrix
Fact 3.6.8, 98

Proposition 3.1.5, 81
involutory matrix
Fact 5.7.13, 177

Jordan form
Fact 5.7.2, 175

Kronecker product
Fact 7.4.13, 232

Kronecker sum
Fact 7.4.18, 232

Lyapunov-stable
stable matrix
Fact 11.14.32, 418

matrix exponential
Fact 11.11.5, 404
Fact 11.12.10, 410

matrix power
Fact 9.11.9, 346

maximum singular
value
Fact 9.11.9, 346
Fact 9.11.10, 346
Fact 9.12.1, 348
Fact 11.12.10, 410

nonnegative-
semidefinite
matrix
Fact 8.7.13, 266
Fact 8.8.4, 272

orthogonal
eigenvectors
Corollary 5.4.8, 165

partitioned matrix
Fact 3.5.18, 95

polar decomposition
Fact 11.10.7, 401

Putnam-Fuglede
theorem
Fact 5.11.19, 191

range-Hermitian
matrix
Proposition 3.1.5, 81

Schatten norm
Fact 9.12.1, 348

Schur form
Corollary 5.4.4, 163
Fact 5.7.2, 175

semidissipative
matrix

Fact 11.14.32, 418
semisimple matrix
Proposition 5.5.17, 169

similar matrices
Fact 5.8.3, 178
Proposition 5.5.17, 169

singular value
Fact 5.11.10, 190

skew-Hermitian
matrix
Fact 3.6.8, 98
Proposition 3.1.5, 81

spectral
decomposition
Fact 5.11.9, 189

spectrum
Fact 4.10.16, 144
Fact 4.10.17, 145

transpose
Fact 5.7.13, 177

unitarily similar
matrices
Corollary 5.4.4, 163
Fact 5.8.3, 178

unitary matrix
Fact 3.6.8, 98
Fact 3.6.10, 98
Fact 5.13.1, 199

normal matrix product
trace
Fact 5.10.1, 187

normal product and
Schatten norm

Simon
Fact 9.12.1, 348

normal rank, see rank
of a polynomial or
rational function

rational transfer
function
Definition 4.7.3, 129

normal rank of a matrix
polynomial

definition
Definition 4.2.4, 115
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normalized norm
definition, 308

equi-induced norm

Theorem 9.4.2, 314

normalized
submultiplicative
norm

matrix inverse

Fact 9.9.25, 339

Fact 9.9.26, 339

Fact 9.9.27, 339

null space
adjugate

Fact 2.13.6, 64

definition, 29

generalized inverse

Proposition 6.1.6, 209

group generalized
inverse

Proposition 6.2.2, 213

group-invertible
matrix

Fact 3.3.3, 85

idempotent matrix

Fact 3.5.12, 95

identity

Fact 2.10.2, 48

inclusion

Fact 2.10.11, 49

Fact 2.10.13, 49

inclusion for a
matrix power

Corollary 2.4.2, 30

inclusion for a
matrix product

Lemma 2.4.1, 30

intersection

Fact 2.10.3, 48

left-equivalent
matrices

Proposition 5.1.3, 151

matrix sum

Fact 2.10.4, 48

minimal polynomial

Corollary 11.6.6, 389

nonnegative-
semidefinite
matrix
Fact 8.6.2, 264
Fact 8.6.3, 264

range inclusions
Theorem 2.4.3, 30

range-Hermitian
matrix
Fact 3.3.1, 85

semisimple
eigenvalue
Proposition 5.5.14, 168

skew-Hermitian
matrix
Fact 8.6.2, 264

symmetric matrix
Fact 3.4.2, 86

nullity, see defect

numerical radius
weakly unitarily
invariant norm
Fact 9.8.29, 332

numerical range
spectrum of convex
hull
Fact 4.10.17, 145

O

oblique projector, see
idempotent matrix

odd polynomial
definition, 112

off-diagonal entries
definition, 16

off-diagonally located
block

definition, 16

one-sided cone
definition, 25
induced by
antisymmetric
relation

Proposition 2.3.6, 28
nonnegative-
semidefinite matrix,
240

one-sided directional
differential

convex function
Proposition 10.4.1, 360

definition, 359
example
Fact 10.8.8, 368

homogeneity
Fact 10.8.7, 368

one-to-one
definition, 4
function inverse
Theorem 1.2.3, 4

one-to-one matrix
equivalent properties
Theorem 2.6.1, 34

nonsingular
equivalence
Corollary 2.6.4, 36

ones matrix
definition, 20
rank
Fact 2.10.1, 48

onto
definition, 4
function inverse
Theorem 1.2.3, 4

onto matrix
equivalent properties
Theorem 2.6.1, 34

nonsingular
equivalence
Corollary 2.6.4, 36

open ball
bounded set
Fact 10.7.2, 365

completely solid set
Fact 10.7.1, 365

convex set
Fact 10.7.1, 365
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definition, 355
inner product
Fact 9.7.10, 326

open half space
affine open half
space
Fact 2.9.3, 47

definition, 26

open mapping theorem
open set image
Theorem 10.3.6, 358

open relative to a set
continuous function
Theorem 10.3.4, 358

open set
continuous function
Corollary 10.3.5, 358

convex hull
Fact 10.7.11, 366

definition
Definition 10.1.1, 355

right-invertible
matrix
Theorem 10.3.6, 358

open set relative to a
set

definition
Definition 10.1.2, 355

Oppenheim’s inequality
determinant
inequality
Fact 8.15.12, 297

order
definition, 15

ordered elements
definition, 3

orthogonal
determinant
Fact 3.6.20, 100

orthogonal
complement

definition, 26
intersection

Fact 2.9.9, 47
projector
Proposition 5.5.5, 167

subspace
Fact 2.9.10, 47
Proposition 5.5.5, 167

sum
Fact 2.9.9, 47

orthogonal
eigenvectors

normal matrix
Corollary 5.4.8, 165

orthogonal matrix
2× 2
parameterization
Fact 3.6.14, 98

Cayley transform
Fact 11.9.8, 399

cross product
Fact 11.9.8, 399

definition
Definition 3.1.1, 77

existence of
transformation
Fact 3.6.17, 99

factorization
Fact 5.13.13, 201
Fact 5.13.27, 204
Fact 5.13.32, 204

group
Proposition 3.2.7, 84

Kronecker
permutation matrix
Fact 7.4.29, 233

matrix exponential
Fact 11.10.14, 402

parameterization
Fact 3.6.19, 100

partitioned matrix
Fact 3.6.12, 98

permutation matrix
Fact 3.6.5, 98
Proposition 3.1.5, 81

reflector
Fact 5.13.27, 204
Fact 5.13.32, 204

skew-symmetric
matrix
Fact 3.6.25, 100
Fact 3.6.26, 101
Fact 11.10.14, 402

trace
Fact 3.6.2, 97

orthogonal projector,
see projector

orthogonal similarity
transformation

symmetric matrix
Fact 5.7.3, 175

orthogonal vectors
norm inequality
Fact 9.7.11, 327

unitary matrix
Fact 3.6.3, 97

vector sum and
difference
Fact 2.11.6, 53

orthogonality
single complex
matrix
Lemma 2.2.4, 23

single complex
vector
Lemma 2.2.2, 21

single real matrix
Lemma 2.2.3, 23

single real vector
Lemma 2.2.1, 21

orthogonality of
complex matrices

definition, 23

orthogonality of
complex vectors

definition, 21

orthogonality of real
matrices

definition, 23

orthogonality of real
vectors

definition, 21
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orthogonally
complementary
subspaces

definition, 26
orthogonal
complement
Proposition 2.3.3, 26

orthogonally similar
skew-symmetric
matrix
Fact 5.11.20, 191

orthogonally similar
matrices

definition
Definition 3.2.2, 82

projector
Fact 5.8.5, 179

upper
block-triangular
matrix
Corollary 5.4.2, 163

upper triangular
matrix
Corollary 5.4.3, 163

oscillator, 380
companion matrix
Fact 5.11.23, 191

Ostrowski-Taussky
inequality

determinant
Fact 8.13.1, 285

outer product matrix
singular value
Fact 5.9.11, 182

outer-product matrix
characteristic
polynomial
Fact 4.9.12, 139
Fact 4.9.13, 140

cross product
Fact 11.9.8, 399

definition, 22
Definition 3.1.2, 78

Euclidean norm
Fact 9.7.13, 327

existence of
transformation
Fact 2.11.12, 54

Frobenius norm
Fact 9.7.12, 327

generalized inverse
Fact 6.3.1, 213

Hermitian matrix
Fact 3.4.12, 88
Fact 3.4.33, 92

idempotent matrix
Fact 3.4.12, 88
Fact 3.5.13, 95

identity
Fact 2.11.7, 53
Fact 2.11.9, 54
Fact 2.11.10, 54

Kronecker product
Proposition 7.1.8, 227

linearly independent
vectors
Fact 2.11.8, 54

matrix exponential
Fact 11.9.1, 397

matrix power
Fact 2.11.11, 54

maximum singular
value
Fact 5.9.12, 182
Fact 9.7.12, 327

nilpotent matrix
Fact 3.8.6, 102

nonnegative-
semidefinite
matrix
Fact 8.7.34, 269
Fact 8.10.1, 278
Fact 8.10.2, 278

partitioned matrix
Fact 4.9.13, 140

positive-definite
matrix
Fact 3.4.34, 92

quadratic form
Fact 9.11.3, 346

rank
Fact 2.10.18, 50
Fact 2.10.19, 50

Fact 3.4.11, 88
Fact 3.5.13, 95
Fact 3.8.6, 102

singular value
Fact 5.9.8, 182
Fact 5.9.10, 182

skew-Hermitian
matrix
Fact 3.4.11, 88
Fact 3.4.35, 93

spectral abscissa
Fact 5.9.8, 182

spectral radius
Fact 5.9.8, 182

spectrum
Fact 5.9.8, 182

sum
Fact 2.10.19, 50

unitarily invariant
norm
Fact 9.8.31, 333

outer-product
perturbation

adjugate
Fact 2.13.2, 63

determinant
Fact 2.13.2, 63

inverse matrix
Fact 2.13.2, 63

rank
Fact 2.10.20, 50

ovals of Cassini
spectrum bounds
Fact 4.10.13, 144

P

pairwise connected
relation

definition
Definition 1.2.1, 3

parallel affine
subspaces

definition, 25

parallel sum
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definition
Fact 8.9.9, 276

parallelepiped
volume
Fact 2.16.6, 75
Fact 2.16.7, 75

parallelogram law
vector identity
Fact 9.7.4, 325

Parker
equal diagonal
entries by unitary
similarity
Fact 5.7.6, 176

Parrott’s theorem
maximum singular
value of a
partitioned matrix
Fact 9.12.7, 349

partial derivative
definition, 359

partial ordering
definition
Definition 1.2.1, 3

nonnegative-
semidefinite
matrix
Proposition 8.1.1, 240

planar example
Fact 1.3.5, 6

partition
definition, 2

partitioned matrix
characteristic
polynomial
Fact 4.9.10, 139
Fact 4.9.11, 139
Fact 4.9.13, 140
Fact 4.9.15, 140
Fact 4.9.16, 140

column norm
Fact 9.8.9, 328

complex conjugate
Fact 2.15.8, 74

complex conjugate
transpose
Proposition 2.8.1, 42

complex matrix
Fact 2.15.4, 73
Fact 2.15.5, 73
Fact 2.15.6, 73
Fact 3.6.12, 98

defect
Fact 2.10.24, 51
Fact 2.10.25, 51

definition, 16
determinant
Fact 2.12.1, 55
Fact 2.12.5, 55
Fact 2.12.6, 56
Fact 2.12.7, 56
Fact 2.12.8, 56
Fact 2.12.13, 57
Fact 2.12.14, 58
Fact 2.12.16, 59
Fact 2.12.17, 59
Fact 2.12.18, 60
Fact 2.12.19, 60
Fact 2.12.25, 62
Fact 2.13.31, 68
Fact 2.15.3, 72
Fact 2.15.8, 74
Fact 5.10.5, 188
Fact 6.4.25, 221
Fact 6.4.26, 221
Fact 8.13.22, 289
Fact 8.13.23, 289
Lemma 8.2.5, 243

determinant of block
2× 2
Corollary 2.8.5, 44
Proposition 2.8.3, 43
Proposition 2.8.4, 43

determinant of lower
block triangular
Proposition 2.8.1, 42

discrete-time
asymptotically
stable matrix
Fact 11.15.10, 421

Drazin generalized
inverse

Fact 6.5.5, 223
eigenvalue
Fact 5.10.5, 188
Fact 5.10.7, 188
Proposition 5.6.5, 175

factorization, 242
Fact 2.12.4, 55
Fact 2.12.13, 57
Fact 2.13.29, 67
Fact 2.13.30, 68
Fact 2.13.31, 68
Fact 6.4.24, 221

factorization of block
2× 2
Proposition 2.8.3, 43
Proposition 2.8.4, 43

generalized inverse
Fact 6.3.13, 215
Fact 6.4.13, 218
Fact 6.4.14, 218
Fact 6.4.15, 219
Fact 8.9.11, 277

Hamiltonian matrix
Fact 3.9.6, 103
Fact 4.9.15, 140

Hermitian matrix
Fact 3.4.21, 89

Holder-induced
norm
Fact 9.8.9, 328

idempotent matrix
Fact 3.5.18, 95

inverse matrix
Fact 2.13.3, 63
Fact 2.13.28, 67
Fact 2.13.29, 67
Fact 2.13.30, 68
Fact 2.13.31, 68
Fact 2.13.33, 69
Fact 2.13.35, 69
Fact 5.10.5, 188

inverse of block 2× 2
Corollary 2.8.9, 45
Proposition 2.8.7, 44

Kronecker product
Fact 7.4.16, 232
Fact 7.4.17, 232

matrix exponential
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Fact 11.9.2, 397
Fact 11.11.1, 403

matrix norm
Fact 9.9.34, 341

maximum singular
value
Fact 8.14.14, 294
Fact 8.14.15, 294
Fact 9.12.6, 349
Fact 9.12.7, 349
Fact 9.12.8, 350

minimal polynomial
Fact 4.10.8, 142

multiplicative
identities, 18

nilpotent matrix
Fact 3.5.18, 95

nonnegative-
semidefinite
matrix
Corollary 8.2.2, 242
Fact 5.10.7, 188
Fact 8.6.4, 264
Fact 8.7.38, 270
Fact 8.7.39, 270
Fact 8.7.40, 270
Fact 8.7.41, 270
Fact 8.7.42, 271
Fact 8.8.17, 273
Fact 8.9.11, 277
Fact 8.12.17, 285
Fact 8.12.18, 285
Fact 8.13.23, 289
Fact 8.14.14, 294
Fact 8.14.15, 294
Fact 9.8.24, 331
Lemma 8.2.1, 241
Lemma 8.2.5, 243
Proposition 8.2.3, 242

normal matrix
Fact 3.5.18, 95

orthogonal matrix
Fact 3.6.12, 98

outer-product
matrix
Fact 4.9.13, 140

positive-definite
matrix

Fact 8.7.39, 270
Fact 8.7.40, 270
Fact 8.7.41, 270
Fact 8.7.42, 271
Fact 8.7.45, 271
Fact 8.8.17, 273
Fact 8.13.22, 289
Fact 8.14.14, 294
Fact 11.15.10, 421
Lemma 8.2.5, 243
Proposition 8.2.4, 243
Proposition 8.2.3, 242

product
Fact 2.11.14, 54

range
Fact 2.10.22, 51

rank
Fact 2.10.24, 51
Fact 2.10.25, 51
Fact 2.10.26, 52
Fact 2.10.27, 52
Fact 2.10.28, 52
Fact 2.10.29, 53
Fact 2.12.7, 56
Fact 2.12.8, 56
Fact 2.12.14, 58
Fact 2.13.31, 68
Fact 2.13.39, 70
Fact 5.10.5, 188
Fact 6.3.13, 215
Fact 6.4.11, 217
Fact 6.4.12, 218
Fact 6.5.5, 223
Fact 8.6.4, 264

rank of block 2× 2
Proposition 2.8.3, 43
Proposition 2.8.4, 43

row norm
Fact 9.8.9, 328

Schatten norm
Fact 9.9.34, 341

Schur complement
Fact 6.4.35, 222

semicontractive
matrix
Fact 3.6.13, 98

singular value
Proposition 5.6.5, 175

skew-Hermitian
matrix
Fact 3.4.21, 89

skew-symmetric
matrix
Fact 3.6.12, 98

spectrum
Fact 2.15.3, 72
Fact 4.10.18, 145

symmetric matrix
Fact 3.6.12, 98

trace
Fact 8.12.17, 285
Fact 8.12.18, 285
Fact 8.13.23, 289
Proposition 2.8.1, 42

transpose
Proposition 2.8.1, 42

unitarily invariant
norm
Fact 9.8.24, 331

unitarily similar
matrices
Fact 5.7.5, 175

unitary matrix
Fact 3.6.13, 98
Fact 3.6.22, 100

Penrose
matrix sum
Fact 6.4.18, 220

permutation matrix
definition
Definition 3.1.1, 77

determinant
Fact 2.12.21, 60

orthogonal matrix
Fact 3.6.5, 98
Proposition 3.1.5, 81

Perron-Frobenius
theorem

nonnegative matrix
eigenvalues
Fact 4.11.1, 145

perturbation
asymptotically stable
matrix
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Fact 11.14.15, 414
matrix inverse
Fact 9.9.28, 340

nonsingular matrix
Fact 9.12.12, 350

Pfaff’s theorem
determinant of a
skew-symmetric
matrix
Fact 4.8.12, 136

Poincare separation
theorem

eigenvalue inequality
Fact 8.14.12, 293

pointed cone
definition, 25
induced by reflexive
relation
Proposition 2.3.6, 28

nonnegative-
semidefinite matrix,
240

polar decomposition
existence
Corollary 5.6.4, 175

Frobenius norm
Fact 9.9.24, 339

matrix exponential
Fact 11.10.7, 401

normal matrix
Fact 5.13.42, 205
Fact 11.10.7, 401

uniqueness
Fact 5.13.38, 205
Fact 5.13.39, 205
Fact 5.13.40, 205
Fact 5.13.41, 205

polarization identity
vector identity
Fact 9.7.4, 325

polarized
Cayley-Hamilton
theorem

triple product
identity

Fact 4.9.4, 138

pole of a rational
function

definition
Definition 4.7.1, 129

pole of a transfer
function

definition
Definition 4.7.6, 130

polygon
area
Fact 2.16.3, 74

polyhedral convex
cone

definition, 25

polynomial
asymptotically stable
Definition 11.6.3, 387

Bezout matrix
Fact 4.8.6, 132
Fact 4.8.7, 134

coprime
Fact 4.8.3, 131
Fact 4.8.4, 131
Fact 4.8.5, 132

definition, 111
discrete-time
asymptotically
stable
Definition 11.8.3, 396

discrete-time
Lyapunov stable
Definition 11.8.3, 396

discrete-time
semistable
Definition 11.8.3, 396

greatest common
divisor
Fact 4.8.5, 132

interpolation
Fact 4.8.10, 136

least common
multiple
Fact 4.8.3, 131

Lyapunov stable

Definition 11.6.3, 387
roots
Fact 4.8.1, 131
Fact 4.8.2, 131

semistable
Definition 11.6.3, 387

spectrum
Fact 4.10.1, 141
Fact 4.10.6, 141

Vandermonde matrix
Fact 5.12.4, 196

polynomial coefficients
asymptotically stable
polynomial
Fact 11.13.1, 410
Fact 11.13.2, 410
Fact 11.13.5, 411
Fact 11.13.6, 411
Fact 11.13.8, 412
Fact 11.13.9, 412

discrete-time
asymptotically
stable polynomial
Fact 11.15.1, 419

polynomial division
quotient and
remainder
Lemma 4.1.2, 113

polynomial
multiplication

Toeplitz matrix
Fact 4.8.9, 135

polynomial
representation

commuting matrices
Fact 5.11.16, 190

polynomial root
maximum singular
value bound
Fact 9.11.14, 347

minimum singular
value bound
Fact 9.11.14, 347

polynomial roots
Bezout matrix
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Fact 4.8.8, 135
Newton’s identities
Fact 4.8.2, 131

polytope
definition, 25

positive diagonal
upper triangular
matrix
Fact 5.13.6, 199

positive matrix
definition, 16
Definition 3.1.4, 81

eigenvalues
Fact 4.11.8, 149

Kronecker sum
Fact 7.4.15, 232

Schur product
Fact 7.5.11, 237
Fact 7.5.12, 237

spectral radius
Fact 7.5.12, 237

spectrum
Fact 5.9.7, 181

unstable matrix
Fact 11.14.18, 415

positive vector
definition, 14
null space
Fact 4.11.5, 148

positive-definite matrix
asymptotically stable
matrix
Fact 11.14.19, 415

Cayley transform
Fact 8.7.18, 266

cogredient
diagonalization
Fact 8.11.7, 281
Theorem 8.3.1, 245

complex matrix
Fact 3.4.5, 86

congruent matrices
Corollary 8.1.3, 241

contragedient
diagonalization

Theorem 8.3.2, 245
contragredient
diagonalization
Corollary 8.3.3, 245

definition
Definition 3.1.1, 77

determinant
Fact 5.10.6, 188
Fact 8.7.44, 271
Fact 8.13.2, 286
Fact 8.13.3, 286
Fact 8.13.6, 286
Fact 8.13.7, 286
Fact 8.13.9, 287
Fact 8.13.11, 287
Fact 8.13.14, 287
Fact 8.13.22, 289
Proposition 8.4.14, 251

discrete-time
asymptotically
stable matrix
Fact 11.15.10, 421
Fact 11.15.17, 422

dissipative matrix
Fact 11.14.19, 415

eigenvalue
Fact 8.10.8, 278

ellipsoid
Fact 3.4.36, 93

factorization
Fact 5.13.41, 205
Fact 5.13.42, 205

generalized inverse
Proposition 6.1.6, 209

group-invertible
matrix
Fact 8.8.5, 272

Hermitian matrix
Fact 8.8.6, 272
Fact 8.11.8, 281

inequality
Fact 8.7.9, 266
Fact 8.7.36, 269
Fact 8.8.2, 271
Fact 8.8.8, 272
Fact 8.8.9, 272
Fact 8.8.13, 272
Fact 8.8.19, 274

Fact 8.8.18, 273
Fact 8.10.9, 279
Fact 8.10.10, 279

inner-product
minimization
Fact 8.10.6, 278

integral
Fact 8.10.13, 280
Fact 8.10.14, 280
Fact 8.10.15, 280

inverse matrix
Fact 8.7.36, 269
Lemma 8.1.4, 241
Proposition 8.1.5, 241

Kronecker product
Fact 7.4.13, 232

left inverse
Fact 3.4.19, 89

limit
Fact 8.8.21, 275

logarithm
Fact 8.7.44, 271
Fact 8.12.19, 285

Lyapunov-stable
matrix
Proposition 11.7.5, 393

matrix exponential
Fact 11.11.19, 406
Proposition 11.1.4, 373

matrix product
Corollary 8.3.6, 246

maximum singular
value
Fact 8.14.17, 294

nonnegative-
semidefinite
matrix
Fact 8.7.30, 268
Fact 8.8.11, 272

norm
Fact 9.7.16, 327

outer-product
matrix
Fact 3.4.34, 92

partitioned matrix
Fact 8.7.39, 270
Fact 8.7.40, 270
Fact 8.7.41, 270
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Fact 8.7.42, 271
Fact 8.7.45, 271
Fact 8.8.17, 273
Fact 8.13.22, 289
Fact 8.14.14, 294
Fact 11.15.10, 421
Lemma 8.2.5, 243
Proposition 8.2.4, 243
Proposition 8.2.3, 242

properties of < and
≤
Proposition 8.1.2, 240

quadratic form
Fact 8.10.12, 279
Fact 9.8.28, 332

Schur complement
Fact 8.7.37, 270

Schur product
Fact 8.15.3, 295
Fact 8.15.7, 296
Fact 8.15.8, 296
Fact 8.15.20, 299
Fact 8.15.22, 300
Fact 8.15.23, 300

skew-Hermitian
matrix
Fact 11.14.11, 414

spectrum
Proposition 5.5.25, 172

subdeterminant
Fact 8.13.9, 287
Proposition 8.2.7, 244

submatrix
Corollary 8.2.8, 245
Fact 8.7.43, 271
Proposition 8.2.7, 244

trace
Fact 8.8.20, 274
Fact 8.12.11, 284
Fact 8.12.13, 284
Fact 8.12.19, 285
Proposition 8.4.14, 251

tridiagonal matrix
Fact 8.7.31, 269

positive-definite matrix
determinant

Fischer’s inequality

Fact 8.13.22, 289

positive-definite matrix
product

geometric mean
Fact 8.8.20, 274

inequality
Fact 8.8.20, 274

power difference
expansion
Fact 2.11.20, 55

power inequality
monotonic
Fact 1.4.6, 7
Fact 1.4.7, 7

one-variable
Fact 1.4.1, 6

two-variable
Fact 1.4.2, 6

power mean
monotonicity
Fact 1.4.10, 8

power sum inequality
Holder norm
Fact 1.4.13, 9

norm monotonicity
Fact 1.4.13, 9

primitive matrix
definition
Fact 4.11.1, 145

principal submatrix
definition, 41

problem
adjoint norm
Fact 9.8.5, 328

adjugate of a
dissipative matrix
Fact 8.13.5, 286

adjugate of a normal
matrix
Fact 3.4.6, 87

bialternate product
and compound
matrix
Fact 7.4.32, 234

Cauchy matrix
Fact 8.7.29, 268

Cayley transform of
a Lyapunov-stable
matrix
Fact 11.15.9, 421

commutator
realization
Fact 3.4.27, 91

complex partitioned
matrix
Fact 2.15.6, 73

convergence of the
Baker-Campbell-
Hausdorff
series
Fact 11.11.6, 404

convergent sequence
for the generalized
inverse
Fact 6.3.18, 215

determinant lower
bound
Fact 4.10.14, 144
Fact 8.13.17, 288

determinant of a
Kronecker sum
Fact 7.4.28, 233

determinant of
partitioned matrix
Fact 2.12.16, 59

determinant of the
geometric mean
Fact 8.15.12, 297

discrete-time
Lyapunov-stable
matrix and the
matrix exponential
Fact 11.15.5, 420

equality in the
triangle inequality
Fact 9.7.3, 325

Euclidean norm
inequality
Fact 9.7.5, 325

exponential
representation of a
discrete-time
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Lyapunov-stable
matrix
Fact 11.15.8, 420

factorization of a
partitioned matrix
Fact 6.4.24, 221

factorization of a
unitary matrix
Fact 5.13.13, 201

factorization of an
orthogonal matrix
by reflectors
Fact 5.13.27, 204

factorization of an
outer-product
matrix
Fact 5.13.29, 204

factorization of
nonsingular matrix
by elementary
matrices
Fact 5.13.9, 200

Frobenius norm
lower bound
Fact 9.9.11, 336
Fact 9.9.13, 337

generalized inverse
least squares
solution
Fact 6.4.32, 222

Hahn-Banach
theorem
interpretation
Fact 10.7.19, 367

Hermitian matrix
upper bound
Fact 8.8.15, 273

Holder-induced
norm inequality
Fact 9.8.13, 330

Hurwitz stability
test
Fact 11.14.21, 415

inverse matrix
Fact 2.13.3, 63
Fact 2.13.33, 69

Kronecker product
of nonnegative-

semidefinite
matrices
Fact 8.15.13, 297

Lyapunov-stable
matrix and the
matrix exponential
Fact 11.14.32, 418

majorization and
singular values
Fact 8.14.3, 290

matrix exponential
and proper rotation
Fact 11.9.9, 399

matrix exponential
formula
Fact 11.11.24, 407

matrix exponential
representation
Fact 11.9.8, 399

noninteger matrix
root
Fact 8.7.19, 266

nonnegative-
semidefinite matrix
trace upper bound
Fact 8.12.8, 283

nonnegative-
semidefinite matrix
upper bound
Fact 8.8.16, 273

norm of a
partitioned matrix
Fact 8.14.15, 294

normal matrix
Fact 3.4.8, 87

orthogonal
complement
Fact 2.9.9, 47

orthogonal matrix
Fact 3.6.17, 99

polar decomposition
of a matrix
exponential
Fact 11.10.7, 401

positive-definite
matrix
Fact 8.7.27, 268

positive-definite
partitioned matrix
Fact 8.7.40, 270

rank of a
nonnegative-
semidefinite
matrix
Fact 8.7.22, 267

reflector
Fact 3.7.5, 101

right inverse and
linear system
Fact 2.13.23, 66

Schur product of
positive-definite
matrices
Fact 8.15.20, 299

solutions of a matrix
identity
Fact 3.5.29, 97

spectrum of a
partitioned
nonnegative-
semidefinite
matrix
Fact 5.10.7, 188

spectrum of a sum of
outer products
Fact 5.9.8, 182

strict inequality of
the geometric mean
Fact 8.8.20, 274

trace of a
positive-definite
matrix
Fact 8.12.13, 284

product
identities
Fact 2.11.19, 55

product of matrices
definition, 17

projector
definition
Definition 3.1.1, 77

elementary reflector
Fact 5.13.10, 200
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factorization
Fact 5.13.10, 200
Fact 5.13.14, 201
Fact 6.3.15, 215

generalized inverse
Fact 6.3.6, 214
Fact 6.3.15, 215
Fact 6.4.9, 217
Fact 6.4.10, 217
Fact 6.4.27, 221

Hermitian matrix
Fact 3.5.28, 97
Fact 5.13.14, 201

idempotent matrix
Fact 3.5.28, 97
Fact 6.4.10, 217

identity
Fact 3.5.4, 93
Fact 3.5.9, 94

inequality
Fact 8.7.14, 266

matrix limit
Fact 6.4.27, 221

maximum singular
value
Fact 9.12.16, 352

nonnegative-
semidefinite
matrix
Fact 3.5.5, 93

orthogonal
complement
Proposition 5.5.5, 167

orthogonally similar
matrices
Fact 5.8.5, 179

quadratic form
Fact 3.5.10, 94
Fact 3.5.11, 95

range
Fact 3.5.1, 93
Fact 3.5.2, 93
Proposition 5.5.4, 166

rank
Fact 3.5.9, 94

reflector
Fact 3.5.27, 97

right inverse

Fact 3.5.3, 93
spectrum
Fact 5.11.22, 191
Proposition 5.5.25, 172

subspace
Proposition 5.5.5, 167

trace
Fact 3.5.7, 94

projector onto a
subspace

definition, 166

proper rational function
definition
Definition 4.7.1, 129

proper rational transfer
function

definition
Definition 4.7.2, 129

proper rotation
matrix exponential
Fact 11.9.9, 399

proper separation
theorem

convex sets
Fact 10.7.21, 367

proper subset
definition, 2

proposition
definition, 1

Ptak
maximum singular
value
Fact 9.11.11, 347

Purves
similar matrices and
nonzero diagonal
entries
Fact 5.7.8, 176

Putnam-Fuglede
theorem

normal matrix
Fact 5.11.19, 191

Pythagorean theorem
vector identity
Fact 9.7.4, 325

Q

QR decomposition
existence
Fact 5.13.5, 199

quadratic form
definition, 78
dual norm
Fact 9.8.25, 331

eigenvalue
Fact 8.10.8, 278
Lemma 8.4.3, 248

Hermitian matrix
Fact 3.4.4, 86
Fact 8.10.12, 279

Holder-induced
norm
Fact 9.8.26, 332
Fact 9.8.27, 332

idempotent matrix
Fact 3.5.11, 95

induced norm
Fact 9.8.25, 331

inequality
Fact 8.10.3, 278
Fact 8.10.4, 278
Fact 8.10.7, 278
Fact 8.10.9, 279
Fact 8.10.10, 279

integral
Fact 8.10.14, 280
Fact 8.10.15, 280

maximum singular
value
Fact 9.11.1, 345
Fact 9.11.2, 345

minimum singular
value
Fact 9.11.1, 345

nonnegative-
semidefinite
matrix
Fact 8.10.7, 278
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norm
Fact 9.7.16, 327

null space
Fact 8.10.11, 279

outer-product
matrix
Fact 9.11.3, 346

positive-definite
matrix
Fact 8.10.12, 279
Fact 9.8.28, 332

projector
Fact 3.5.10, 94
Fact 3.5.11, 95

skew-Hermitian
matrix
Fact 3.4.4, 86

skew-symmetric
matrix
Fact 3.4.3, 86

symmetric matrix
Fact 3.4.3, 86

vector derivative
Proposition 10.6.1, 364

quadratic form
inequality

nonnegative-
semidefinite
matrix
Fact 8.10.3, 278

quadratic matrix
equation

spectrum
Fact 5.9.1, 180
Fact 5.9.2, 180

quadruple product
trace
Fact 7.4.8, 231

vec
Fact 7.4.8, 231

quaternions
2× 2 matrix
representation
Fact 3.11.1, 105

real matrix
representation

Fact 3.11.3, 106
unitary
Fact 3.11.2, 106

quotient
definition, 113

R

range
adjugate
Fact 2.13.6, 64

definition, 4, 29
factorization
Theorem 8.5.2, 253

generalized inverse
Fact 6.4.28, 221
Fact 6.4.29, 221
Proposition 6.1.6, 209

group generalized
inverse
Proposition 6.2.2, 213

group-invertible
matrix
Fact 3.3.3, 85

Hermitian matrix
Lemma 8.5.1, 253

idempotent matrix
Fact 3.5.12, 95

identity
Fact 2.10.2, 48
Fact 2.10.14, 50
Fact 2.10.16, 50

inclusion
Fact 2.10.13, 49
Fact 2.10.14, 50

inclusion for a
matrix power
Corollary 2.4.2, 30

inclusion for a
matrix product
Lemma 2.4.1, 30

index of a matrix
Fact 5.11.1, 189

minimal polynomial
Corollary 11.6.6, 389

nonnegative-
semidefinite
matrix
Corollary 8.2.2, 242
Fact 8.6.1, 264
Fact 8.6.2, 264
Fact 8.6.3, 264
Fact 8.9.3, 275
Fact 8.9.4, 275
Theorem 8.5.2, 253

null space inclusions
Theorem 2.4.3, 30

partitioned matrix
Fact 2.10.22, 51

projector
Fact 3.5.2, 93
Proposition 5.5.4, 166

rank
Fact 2.10.23, 51

right-equivalent
matrices
Proposition 5.1.3, 151

skew-Hermitian
matrix
Fact 8.6.2, 264

symmetric matrix
Fact 3.4.2, 86

range-Hermitian matrix
definition
Definition 3.1.1, 77

dissipative matrix
Fact 3.3.5, 86

factorization
Fact 5.13.8, 200

generalized inverse
Fact 6.4.6, 216
Proposition 6.1.6, 209

group generalized
inverse
Fact 6.5.8, 223

group-invertible
matrix
Fact 3.3.4, 86
Proposition 3.1.5, 81

Kronecker product
Fact 7.4.13, 232

Kronecker sum
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Fact 7.4.18, 232
nonnegative-
semidefinite
matrix
Fact 8.9.10, 277

nonsingular matrix
Proposition 3.1.5, 81

normal matrix
Proposition 3.1.5, 81

null space
Fact 3.3.1, 85

rank
Fact 3.3.2, 85

Schur form
Corollary 5.4.4, 163

unitarily similar
matrices
Corollary 5.4.4, 163

rank
adjugate
Fact 2.13.6, 64
Fact 2.13.7, 64

biequivalent matrices
Proposition 5.1.3, 151

complex matrix
Fact 2.15.3, 72

definition, 31
diagonal dominance
Fact 4.10.15, 144

dimension inequality
Fact 2.10.10, 49

factorization
Fact 5.13.37, 205

generalized inverse
Fact 6.4.11, 217
Fact 6.4.12, 218
Fact 6.4.30, 222

group-invertible
matrix
Fact 3.3.3, 85

Hermitian matrix
Fact 3.4.16, 89

idempotent matrix
Fact 3.5.13, 95
Fact 3.5.16, 95

identities with defect
Corollary 2.5.1, 31

identities with
transpose
Corollary 2.5.3, 32

identity
Fact 2.10.2, 48
Fact 2.10.16, 50
Fact 2.10.17, 50

identity with defect
Corollary 2.5.5, 33

identity with powers
Proposition 2.5.7, 33

inverse matrix
Fact 2.10.21, 51
Fact 2.13.39, 70

Kronecker product
Fact 7.4.20, 232
Fact 8.15.9, 296

linear system
solution
Corollary 2.6.5, 37
Theorem 2.6.3, 35

lower bound for
product
Corollary 2.5.9, 34
Proposition 2.5.8, 33

matrix difference
Fact 2.10.5, 48

matrix powers
Corollary 2.5.6, 33
Fact 3.8.4, 102

matrix sum
Fact 2.10.5, 48
Fact 2.10.6, 48

nilpotent matrix
Fact 3.8.4, 102
Fact 3.8.5, 102
Fact 3.8.6, 102

nonnegative-
semidefinite
matrix
Fact 8.6.1, 264
Fact 8.6.3, 264
Fact 8.6.4, 264
Fact 8.15.9, 296

nonsingular
submatrices
Proposition 2.7.7, 42

ones matrix

Fact 2.10.1, 48
outer-product
matrix
Fact 2.10.18, 50
Fact 3.5.13, 95
Fact 3.8.6, 102

outer-product
perturbation
Fact 2.10.20, 50

partitioned matrix
Fact 2.10.24, 51
Fact 2.10.25, 51
Fact 2.10.26, 52
Fact 2.10.27, 52
Fact 2.10.28, 52
Fact 2.10.29, 53
Fact 2.12.7, 56
Fact 2.12.8, 56
Fact 2.12.14, 58
Fact 2.13.31, 68
Fact 2.13.39, 70
Fact 5.10.5, 188
Fact 6.3.13, 215
Fact 6.4.11, 217
Fact 6.4.12, 218
Fact 6.5.5, 223
Fact 8.6.4, 264

product of matrices
Fact 2.10.7, 49
Fact 2.10.8, 49

product with full
rank matrix
Proposition 2.6.2, 35

range
Fact 2.10.23, 51

range-Hermitian
matrix
Fact 3.3.2, 85

rational transfer
function
Definition 4.7.3, 129

Schur product
Fact 7.5.5, 235
Fact 8.15.9, 296

singular value
Proposition 5.6.2, 173

skew-Hermitian
matrix
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Fact 3.4.11, 88

submatrix

Fact 2.10.30, 53

sum of matrices

Fact 2.10.15, 50

tripotent matrix

Fact 3.12.14, 108

upper bound for
product

Corollary 2.5.9, 34

upper bound on
rank of a product

Lemma 2.5.2, 32

upper bound with
dimensions

Corollary 2.5.4, 33

rank of a matrix
polynomial

definition

Definition 4.2.4, 115

submatrix

Proposition 4.2.7, 116

rank of a rational
function

linearly independent
columns

Proposition 4.7.5, 130

rank-deficient matrix
determinant

Fact 2.12.9, 57

rank-one perturbation
unitary matrix

Fact 3.6.18, 99

rational canonical form,
see multi-companion
form or elementary
multi-companion
form

rational function
definition

Definition 4.7.1, 129

Hankel matrix

Fact 4.8.7, 134

rational transfer
function

definition
Definition 4.7.2, 129

normal rank
Definition 4.7.3, 129

rank
Definition 4.7.3, 129

real eigenvalues
nonnegative-
semidefinite
matrix
Fact 5.11.8, 189

real hypercompanion
form

definition, 158

real Jordan form
existence
Theorem 5.3.5, 159

real Jordan matrix
definition, 158

real normal form
existence
Corollary 5.4.9, 165

real Schur form
existence
Corollary 5.4.2, 163
Corollary 5.4.3, 163

real vector
definition, 21

redundant
assumptions

definition, 1

reflection theorem
elementary reflector
Fact 3.7.3, 101

reflector
definition
Definition 3.1.1, 77

elementary reflector
Fact 5.13.11, 200

factorization
Fact 5.13.11, 200

Hermitian matrix

Fact 3.7.1, 101

identity

Fact 3.7.6, 102

involutory matrix

Fact 3.7.1, 101

orthogonal matrix

Fact 5.13.27, 204

Fact 5.13.32, 204

projector

Fact 3.5.27, 97

skew-Hermitian
matrix

Fact 3.7.5, 101

spectrum

Proposition 5.5.25, 172

trace

Fact 3.5.7, 94

tripotent matrix

Proposition 3.1.5, 81

unitary matrix

Fact 3.7.1, 101

reflexive relation
definition

Definition 1.2.1, 3

nonnegative-
semidefinite
matrix

Proposition 8.1.1, 240

pointed cone
induced by

Proposition 2.3.6, 28

regular matrix
polynomial

definition, 114

nonsingular matrix
polynomial

Proposition 4.2.5, 116

relation
definition, 3

relative degree
definition

Definition 4.7.1, 129

relative entropy
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difference of
logarithms
Fact 8.12.19, 285

relative gain array
definition
Fact 8.15.3, 295

remainder
definition, 113

resultant
coprime polynomials
Fact 4.8.4, 131

reverse complex
conjugate transpose

definition, 24

reverse identity
determinant
Fact 2.12.2, 55

reverse identity matrix
definition, 20
spectrum
Fact 5.7.15, 177

symmetric
permutation matrix
Fact 3.9.1, 103

reverse transpose
definition, 24

reverse triangle
inequality

Holder-norm
Fact 9.7.7, 326

reverse-diagonal
entries

definition, 16

reverse-diagonal matrix
definition
Definition 3.1.3, 79

semisimple matrix
Fact 5.11.7, 189

reverse-Hermitian
matrix

definition
Definition 3.1.1, 77

reverse-symmetric
matrix

definition
Definition 3.1.1, 77

Toeplitz matrix
Fact 3.12.6, 107

right divides
definition, 114

right equivalence
equivalence relation
Fact 5.8.2, 178

right inverse
(1)-inverse
Proposition 6.1.2, 208

definition, 4
generalized inverse
Corollary 6.1.4, 208

idempotent matrix
Fact 3.5.20, 96

matrix product
Fact 2.13.25, 67

nonnegative-
semidefinite
matrix
Fact 3.4.20, 89

projector
Fact 3.5.3, 93

right-inner matrix
Fact 3.6.4, 98

uniqueness
Theorem 1.2.3, 4

right invertible
definition, 4

right-equivalent
matrices

definition
Definition 3.2.1, 82

group-invertible
matrix
Fact 3.3.3, 85

Kronecker product
Fact 7.4.11, 231

range
Proposition 5.1.3, 151

right-inner matrix

definition
Definition 3.1.2, 78

right inverse
Fact 3.6.4, 98

right-invertible matrix
definition, 34
equivalent properties
Theorem 2.6.1, 34

generalized inverse
Proposition 6.1.5, 209

linear system
solution
Fact 2.12.12, 57

nonsingular
equivalence
Corollary 2.6.4, 36

open set
Theorem 10.3.6, 358

rigid body rotation
matrix exponential
Fact 11.9.6, 398

Rodrigues
orthogonal matrix
Fact 3.6.19, 100

roots
polynomial
Fact 4.8.1, 131
Fact 4.8.2, 131

rotation
vector
Fact 3.6.15, 99
Fact 3.6.16, 99

rotation-dilation
factorization
Fact 2.15.2, 72

Roth
solutions of
Sylvester’s equation
Fact 5.8.11, 180
Fact 5.8.12, 180

Roup
positive-definite
matrix
Fact 8.7.30, 268
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Routh criterion
asymptotically stable
polynomial
Fact 11.13.2, 410

Routh form
tridiagonal matrix
Fact 11.14.24, 416

row
definition, 15

row norm
column norm
Fact 9.8.8, 328

definition, 317
Holder-induced
norm
Fact 9.8.13, 330
Fact 9.8.15, 330

Kronecker product
Fact 9.9.29, 340

partitioned matrix
Fact 9.8.9, 328

S

Schatten norm
compatible norms
Proposition 9.3.6, 312

definition
Proposition 9.2.3, 309

Holder matrix norm
Proposition 9.2.5, 310

inequalities
Fact 9.9.18, 338

inequality
Fact 9.9.22, 339

Kronecker product
Fact 9.12.18, 352

monotonicity
Proposition 9.2.4, 310

nonnegative-
semidefinite
matrix
Fact 9.9.17, 338

normal matrix
Fact 9.12.1, 348

partitioned matrix

Fact 9.9.34, 341
trace
Fact 9.10.3, 342
Fact 9.10.4, 342

unitarily invariant
norm
Fact 9.8.6, 328

Schauder fixed point
theorem

image of a
continuous function
Theorem 10.3.9, 359

Schmidt
fixed-rank
approximation
Fact 9.12.14, 351

Schur complement
convex function
Lemma 8.5.12, 257
Proposition 8.5.13, 258

definition
Definition 6.1.8, 211

increasing function
Proposition 8.5.10, 256

nondecreasing
function
Proposition 8.5.10, 256

nonnegative-
semidefinite
matrix
Corollary 8.5.14, 263
Fact 8.7.37, 270
Fact 8.15.4, 295

partitioned matrix
Fact 6.4.35, 222

positive-definite
matrix
Fact 8.7.37, 270

Schur product
Fact 8.15.4, 295

Schur decomposition
Hermitian matrix
Corollary 5.4.5, 164

Schur form
definition, 162

existence
Theorem 5.4.1, 162

Jordan form
Fact 5.7.2, 175

normal matrix
Corollary 5.4.4, 163
Fact 5.7.2, 175

range-Hermitian
matrix
Corollary 5.4.4, 163

Schur inverse
nonnegative-
semidefinite
matrix
Fact 8.15.1, 295

Schur power
definition, 230
Lyapunov equation
Fact 8.7.23, 267

nonnegative-
semidefinite
matrix
Fact 8.15.2, 295
Fact 8.15.17, 298

Schur product
associative identities,
230

commutative
identities, 230

definition, 230
distributive
identities, 230

Hermitian matrix
Fact 8.15.16, 298

Kronecker product
Proposition 7.3.1, 230

logarithm
Fact 8.15.21, 299

matrix exponential
Fact 11.11.20, 406

matrix identity
Fact 7.5.3, 235
Fact 7.5.4, 235
Fact 7.5.6, 236
Fact 7.5.8, 236

matrix power
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Fact 7.5.9, 236
matrix-vector
identity
Fact 7.5.7, 236

maximum singular
value
Fact 9.12.17, 352

nonnegative matrix
Fact 7.5.11, 237

nonnegative-
semidefinite
matrix
Fact 8.15.4, 295
Fact 8.15.6, 296
Fact 8.15.8, 296
Fact 8.15.10, 296
Fact 8.15.11, 297
Fact 8.15.13, 297
Fact 8.15.18, 298
Fact 8.15.19, 299
Fact 8.15.24, 300

positive matrix
Fact 7.5.12, 237

positive-definite
matrix
Fact 8.15.3, 295
Fact 8.15.7, 296
Fact 8.15.8, 296
Fact 8.15.20, 299
Fact 8.15.22, 300
Fact 8.15.23, 300

rank
Fact 7.5.5, 235
Fact 8.15.9, 296

Schur complement
Fact 8.15.4, 295

singular value
Fact 9.12.17, 352

spectral radius
Fact 7.5.11, 237
Fact 7.5.12, 237

trace
Fact 8.15.10, 296

transpose
Fact 7.5.10, 236

unitarily invariant
norm
Fact 9.9.30, 340

vector identity
Fact 7.5.1, 235
Fact 7.5.2, 235

weak majorization
Fact 9.12.17, 352

Schur product of
polynomials

asymptotically stable
polynomial
Fact 11.13.7, 411

Schur’s formulas
determinant of
partitioned matrix
Fact 2.12.16, 59

Schur’s inequality
trace of matrix
squared
Fact 8.14.3, 290

Schur’s theorem
eigenvalue inequality
Fact 8.14.4, 291

Schur product of
nonnegative-
semidefinite
matrices
Fact 8.15.6, 296

Schwarz form
tridiagonal matrix
Fact 11.14.23, 416

second derivative
definition, 361

Segal’s inequality
Hermitian matrix
Fact 11.12.8, 410

Seiler
determinant
inequality
Fact 8.13.19, 288

self-adjoint norm
definition, 308
unitarily invariant
norm
Fact 9.8.4, 328

self-conjugate set
definition, 112

semicontractive matrix
complex conjugate
transpose
Fact 3.12.3, 106

definition
Definition 3.1.2, 78

partitioned matrix
Fact 3.6.13, 98

unitary matrix
Fact 3.6.13, 98

semidissipative matrix
definition
Definition 3.1.1, 77

discrete-time
Lyapunov-stable
matrix
Fact 11.15.5, 420

dissipative matrix
Fact 8.13.17, 288

Lyapunov-stable
matrix
Fact 11.14.32, 418

normal matrix
Fact 11.14.32, 418

semisimple eigenvalue
cyclic eigenvalue
Proposition 5.5.11, 168

defect
Proposition 5.5.14, 168

definition
Definition 5.5.10, 167

index
Proposition 5.5.14, 168

null space
Proposition 5.5.14, 168

simple eigenvalue
Proposition 5.5.11, 168

semisimple matrix
definition
Definition 5.5.10, 167

idempotent matrix
Fact 5.11.14, 190

involutory matrix
Fact 5.11.12, 190
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Kronecker product
Fact 7.4.13, 232

nilpotent matrix
Fact 5.13.19, 202

nonnegative-
semidefinite
matrix
Corollary 8.3.6, 246

normal matrix
Proposition 5.5.17, 169

reverse-diagonal
matrix
Fact 5.11.7, 189

similar matrices
Proposition 5.5.17, 169

skew-involutory
matrix
Fact 5.11.12, 190

semistability
eigenvalue
Proposition 11.6.2, 386

linear dynamical
system
Proposition 11.6.2, 386

Lyapunov equation
Corollary 11.7.1, 390

matrix exponential
Proposition 11.6.2, 386

semistable matrix
definition
Definition 11.6.1, 386

group-invertible
matrix
Fact 11.14.3, 412

Kronecker sum
Fact 11.14.28, 418
Fact 11.14.29, 418

limit
Fact 11.14.6, 413

Lyapunov-stable
matrix
Fact 11.14.1, 412

matrix exponential
Fact 11.14.4, 412
Fact 11.14.6, 413
Fact 11.15.8, 420

semistable
polynomial
Proposition 11.6.4, 387

unstable subspace
Proposition 11.6.8, 389

semistable polynomial
definition
Definition 11.6.3, 387

reciprocal argument
Fact 11.13.4, 411

semistable matrix
Proposition 11.6.4, 387

separation theorem
convex cone
Fact 10.7.20, 367

inner product
Fact 10.7.20, 367
Fact 10.7.21, 367

sequence
definition
Definition 10.2.1, 356

series
commutator
Fact 11.11.18, 406

definition
Definition 10.2.6, 357

inverse matrix
Proposition 9.4.10, 318

matrix exponential
Fact 11.11.18, 406

set
definition, 2

set identities
intersection
Fact 1.3.4, 5

union
Fact 1.3.4, 5

Sherman-Morrison-
Woodbury
formula

determinant of
outer-product
perturbation
Fact 2.13.2, 63

Shoda
matrix factorization
Fact 5.13.4, 199

Shoda’s theorem
commutator
realization
Fact 5.7.18, 178

zero trace
Fact 5.7.18, 178

signature
definition, 164

similar matrices
block-diagonal
matrix
Theorem 5.3.2, 157
Theorem 5.3.3, 157

campanion matrix
Fact 5.12.6, 196

characteristic
polynomial
Fact 4.9.7, 138

complex conjugate
Fact 5.7.17, 178

cyclic matrix
Fact 5.12.6, 196

definition
Definition 3.2.2, 82

diagonal entries
Fact 5.7.7, 176

diagonalizable over R
Proposition 5.5.18, 170

equivalence class
Fact 5.8.1, 178

equivalence relation
Fact 5.8.2, 178

example
Example 5.5.24, 172

factorization
Fact 5.13.3, 199

geometric
multiplicity
Proposition 5.5.16, 169

group-invertible
matrix
Fact 5.7.12, 176

inverse matrix
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Fact 5.13.27, 204
involutory matrix
Fact 5.13.27, 204

Kronecker product
Fact 7.4.12, 232

matrix classes
Proposition 3.2.3, 83

matrix exponential
Proposition 11.1.4, 373

matrix power
Fact 5.7.1, 175

minimal polynomial
Fact 11.16.3, 424
Fact 11.16.4, 425
Fact 11.16.5, 425
Fact 11.16.6, 426
Fact 11.16.7, 427
Fact 11.16.8, 427
Fact 11.16.9, 428
Fact 11.16.10, 428
Fact 11.16.11, 429
Proposition 4.6.3, 128

multi-companion
form
Corollary 5.2.6, 154

nonsingular matrix
Fact 5.8.4, 179

nonzero diagonal
entries
Fact 5.7.8, 176

normal matrix
Fact 5.8.3, 178
Proposition 5.5.17, 169

semisimple matrix
Proposition 5.5.17, 169

similarity invariant
Corollary 5.2.6, 154
Theorem 4.3.9, 119

simultaneous
diagonalizability
Fact 5.8.8, 179

skew-symmetric
matrix
Fact 5.13.36, 205

symmetric matrix
Fact 5.13.36, 205

transpose
Corollary 5.3.8, 161

Proposition 5.5.18, 170
unitarily similar
matrices
Fact 5.8.3, 178

Vandermonde matrix
Fact 5.12.6, 196

similarity invariant
characteristic
polynomial
Proposition 4.6.2, 127

definition
Definition 4.3.8, 119

multi-companion
form
Corollary 5.2.6, 154

similar matrices
Corollary 5.2.6, 154
Theorem 4.3.9, 119

similarity
transformation

eigenvector
Fact 5.11.3, 189
Fact 5.11.4, 189

Simon
determinant
inequality
Fact 8.13.19, 288

normal product and
Schatten norm
Fact 9.12.1, 348

simple eigenvalue
cyclic eigenvalue
Proposition 5.5.11, 168

definition
Definition 5.5.10, 167

semisimple
eigenvalue
Proposition 5.5.11, 168

simple matrix
cyclic matrix
Fact 5.11.6, 189

definition
Definition 5.5.10, 167

diagonalizable over R
Fact 5.11.6, 189

simultaneous
diagonalizability

similar matrices
Fact 5.8.8, 179

unitarily similar
matrices
Fact 5.8.7, 179

simultaneous
diagonalization

cogredient
transformation
Fact 8.11.6, 281

definition, 245
Hermitian matrix
Fact 8.11.6, 281

simultaneous
triangularization

cogredient
transformation
Fact 8.11.5, 281

commuting matrices
Fact 5.8.6, 179

simultaneous upper
triangularizability

unitarily similar
matrices
Fact 5.8.6, 179

singular matrix
definition, 37
Kronecker product
Fact 7.4.21, 232

spectrum
Proposition 5.5.25, 172

singular matrix
polynomial

Definition 4.2.5, 115

singular value
2× 2 matrix
Fact 5.9.15, 183

adjugate
Fact 5.9.19, 184

companion matrix
Fact 5.9.14, 183

complex conjugate
transpose
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Fact 5.9.17, 184
convexity
Fact 11.12.11, 410

definition
Definition 5.6.1, 173

determinant
Fact 5.9.13, 183

eigenvalue
Fact 8.14.3, 290
Fact 9.11.17, 348

eigenvalue of
Hermitian part
Fact 8.14.2, 290

Frobenius
Corollary 9.6.7, 324

generalized inverse
Fact 6.3.12, 214

induced lower bound
Proposition 9.5.4, 321

inequality
Corollary 9.6.5, 323
Fact 9.12.20, 353
Proposition 9.2.2, 308

inequality for matrix
sum
Proposition 9.6.8, 324

majorization
Fact 8.14.3, 290

matrix exponential
Fact 11.12.4, 408
Fact 11.12.11, 410

matrix product
Proposition 9.6.1, 322
Proposition 9.6.2, 322
Proposition 9.6.3, 322
Proposition 9.6.4, 323

matrix sum
Fact 9.12.13, 351

normal matrix
Fact 5.11.10, 190

outer product matrix
Fact 5.9.11, 182

outer-product
matrix
Fact 5.9.8, 182
Fact 5.9.10, 182

partitioned matrix
Proposition 5.6.5, 175

perturbation
Fact 9.12.2, 348

rank
Proposition 5.6.2, 173

strong log
majorization
Fact 9.11.16, 348

trace
Fact 5.10.3, 188
Fact 8.14.1, 290

unitarily invariant
norm
Fact 9.12.14, 351

unitary matrix
Fact 5.9.20, 184

weak log
majorization
Proposition 9.6.3, 322

weak majorization
Fact 8.14.16, 294
Fact 9.12.13, 351
Fact 9.12.17, 352
Proposition 9.2.2, 308
Proposition 9.6.2, 322

singular value
decomposition

existence
Theorem 5.6.3, 174

least squares solution
Fact 6.4.34, 222

singular value
inequality

matrix power
Fact 9.11.16, 348

matrix product
Fact 8.14.16, 294
Fact 9.11.15, 347

Schur product
Fact 9.12.17, 352

weak majorization
Fact 9.11.15, 347

singular value
perturbation

unitarily invariant
norm
Fact 9.12.15, 352

singular values
unitarily
biequivalent
matrices
Fact 5.8.9, 179

size
definition, 15

skew-Hermitian matrix
adjugate
Fact 3.4.6, 87
Fact 3.4.7, 87

asymptotically stable
matrix
Fact 11.14.26, 417

commutator
Fact 3.4.26, 91
Fact 3.4.29, 92

definition
Definition 3.1.1, 77

determinant
Fact 3.4.7, 87
Fact 3.4.10, 87

eigenvalue
Fact 5.9.4, 181

existence of
transformation
Fact 3.4.35, 93

Hermitian matrix
Fact 3.4.5, 86
Fact 3.4.22, 89

Kronecker product
Fact 7.4.14, 232

Kronecker sum
Fact 7.4.15, 232

Lyapunov equation
Fact 11.14.11, 414

matrix exponential
Fact 11.11.6, 404
Fact 11.11.23, 407
Proposition 11.1.4, 373

matrix power
Fact 8.7.6, 265

nonnegative-
semidefinite
matrix
Fact 8.7.5, 265

normal matrix
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Fact 3.6.8, 98
Proposition 3.1.5, 81

null space
Fact 8.6.2, 264

outer-product
matrix
Fact 3.4.11, 88
Fact 3.4.35, 93

partitioned matrix
Fact 3.4.21, 89

positive-definite
matrix
Fact 11.14.11, 414

quadratic form
Fact 3.4.4, 86

range
Fact 8.6.2, 264

rank
Fact 3.4.11, 88

reflector
Fact 3.7.5, 101

skew-involutory
matrix
Fact 3.7.5, 101

skew-symmetric
matrix
Fact 3.4.5, 86

spectrum
Proposition 5.5.25, 172

symmetric matrix
Fact 3.4.5, 86

trace
Fact 3.4.18, 89

unitary matrix
Fact 3.5.29, 97
Fact 3.6.24, 100
Fact 3.7.5, 101
Fact 11.11.23, 407

skew-Hermitian matrix
product

trace
Fact 8.12.1, 282

skew-involutory matrix
definition
Definition 3.1.1, 77

Hamiltonian matrix
Fact 3.9.1, 103

matrix exponential
Fact 11.9.1, 397

semisimple matrix
Fact 5.11.12, 190

size
Fact 3.12.17, 109

skew-Hermitian
matrix
Fact 3.7.5, 101

skew-symmetric
matrix
Fact 3.9.1, 103

spectrum
Proposition 5.5.25, 172

unitary matrix
Fact 3.7.5, 101

skew-symmetric matrix
Cayley transform
Fact 11.9.8, 399

characteristic
polynomial
Fact 4.9.9, 139
Fact 5.11.21, 191

commutator
Fact 3.4.30, 92

congruent matrices
Fact 3.9.7, 103

definition
Definition 3.1.1, 77

determinant
Fact 3.4.9, 87
Fact 4.8.12, 136
Fact 4.10.4, 141

factorization
Fact 5.13.34, 204
Fact 5.13.35, 204

Hamiltonian matrix
Fact 3.9.1, 103
Fact 3.9.6, 103
Fact 3.9.7, 103

Hermitian matrix
Fact 3.4.5, 86

linear matrix
equation
Fact 2.11.21, 55

matrix exponential
Example 11.3.7, 379

Fact 11.9.3, 397
Fact 11.9.6, 398
Fact 11.9.7, 399
Fact 11.9.9, 399
Fact 11.9.10, 400
Fact 11.10.14, 402

matrix product
Fact 5.13.34, 204

orthogonal matrix
Fact 3.6.25, 100
Fact 3.6.26, 101
Fact 11.10.14, 402

orthogonally similar
Fact 5.11.20, 191

partitioned matrix
Fact 3.6.12, 98

Pfaffian
Fact 4.8.12, 136

quadratic form
Fact 3.4.3, 86

similar matrices
Fact 5.13.36, 205

skew-Hermitian
matrix
Fact 3.4.5, 86

skew-involutory
matrix
Fact 3.9.1, 103

spectrum
Fact 4.10.4, 141
Fact 5.11.20, 191

symmetric matrix
Fact 5.13.36, 205

trace
Fact 3.4.17, 89
Fact 3.4.25, 91

unitary matrix
Fact 11.9.7, 399

Smith form
biequivalent matrices
Corollary 5.1.2, 151
Theorem 5.1.1, 151

existence
Theorem 4.3.2, 117

unimodular matrix
Corollary 4.3.3, 117

Smith-McMillan form
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coprime polynomials
Fact 4.8.13, 137

existence
Theorem 4.7.4, 130

SO(2)
parameterization
Fact 3.6.14, 98

solid set
completely solid set
Fact 10.7.7, 366

convex hull
Fact 10.7.8, 366

convex set
Fact 10.7.7, 366

definition, 356
dimension
Fact 10.7.14, 367

solid solid set
convex set
Fact 10.7.7, 366

span
constructive
characterization
Theorem 2.3.5, 27

convex conical hull
Fact 2.9.1, 46

definition, 25

spectral abscissa
definition, 126
eigenvalue
Fact 5.9.28, 187

Hermitian matrix
Fact 5.9.3, 181

matrix exponential
Fact 11.10.2, 400
Fact 11.14.8, 413

outer-product
matrix
Fact 5.9.8, 182

spectral radius
Fact 11.10.2, 400

spectral factorization
definition, 112
polynomial roots
Proposition 4.1.1, 112

spectral norm
definition, 309

spectral radius
commuting matrices
Fact 5.10.4, 188

convergent sequence
Fact 4.10.19, 145
Fact 9.8.1, 327

definition, 126
equi-induced norm
Corollary 9.4.5, 315

Frobenius norm
Fact 5.9.27, 186

Hermitian matrix
Fact 5.9.3, 181

induced norm
Corollary 9.4.5, 315

inverse matrix
Proposition 9.4.10, 318

lower bound
Fact 5.9.27, 186

matrix exponential
Fact 11.10.2, 400

matrix norm
Proposition 9.2.6, 310

maximum singular
value
Fact 9.11.11, 347

nonnegative matrix
Fact 4.11.6, 148
Fact 7.5.11, 237

nonnegative-
semidefinite
matrix
Fact 8.9.3, 275

outer-product
matrix
Fact 5.9.8, 182

perturbation
Fact 9.12.2, 348

positive matrix
Fact 7.5.12, 237

Schur product
Fact 7.5.11, 237
Fact 7.5.12, 237

spectral abscissa
Fact 11.10.2, 400

submultiplicative
norm
Corollary 9.3.4, 311
Fact 9.8.1, 327
Fact 9.9.3, 335
Proposition 9.3.2, 311
Proposition 9.3.3, 311

trace
Fact 5.9.27, 186

spectral radius
monotonicity

nonnegative matrix
Fact 4.11.7, 149

spectrum
adjugate
Fact 4.10.3, 141

asymptotically stable
matrix
Fact 11.14.12, 414

block-triangular
matrix
Proposition 5.5.19, 170

bounds
Fact 4.10.12, 144
Fact 4.10.13, 144

circulant matrix
Fact 5.12.7, 197

convex hull
Fact 4.10.17, 145

definition
Definition 4.4.3, 120

dissipative matrix
Fact 8.13.17, 288

elementary matrix
Proposition 5.5.25, 172

elementary projector
Proposition 5.5.25, 172

elementary reflector
Proposition 5.5.25, 172

group-invertible
matrix
Proposition 5.5.25, 172

Hamiltonian matrix
Proposition 5.5.25, 172

Hermitian matrix
Lemma 8.4.8, 249
Proposition 5.5.25, 172
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idempotent matrix
Fact 5.11.11, 190

identity perturbation
Fact 4.10.9, 143
Fact 4.10.10, 143

inverse matrix
Fact 5.9.9, 182

involutory matrix
Proposition 5.5.25, 172

matrix exponential
Proposition 11.2.2, 376

matrix function
Corollary 10.5.3, 363

minimal polynomial
Fact 4.10.5, 141

nilpotent matrix
Proposition 5.5.25, 172

nonnegative-
semidefinite
matrix
Fact 8.9.7, 276
Proposition 5.5.25, 172

normal matrix
Fact 4.10.16, 144
Fact 4.10.17, 145

outer-product
matrix
Fact 5.9.8, 182

partitioned matrix
Fact 2.15.3, 72
Fact 4.10.18, 145

polynomial
Fact 4.10.1, 141
Fact 4.10.6, 141

positive matrix
Fact 5.9.7, 181

positive-definite
matrix
Proposition 5.5.25, 172

projector
Fact 5.11.22, 191
Proposition 5.5.25, 172

properties
Proposition 4.4.4, 121

quadratic matrix
equation
Fact 5.9.1, 180
Fact 5.9.2, 180

reflector
Proposition 5.5.25, 172

reverse identity
matrix
Fact 5.7.15, 177

singular matrix
Proposition 5.5.25, 172

skew-Hermitian
matrix
Proposition 5.5.25, 172

skew-involutory
matrix
Proposition 5.5.25, 172

skew-symmetric
matrix
Fact 4.10.4, 141
Fact 5.11.20, 191

subspace
decomposition
Proposition 5.5.13, 168

symplectic matrix
Proposition 5.5.25, 172

Toeplitz matrix
Fact 4.10.11, 143

trace
Fact 4.10.2, 141

tridiagonal matrix
Fact 5.9.22, 185
Fact 5.9.23, 185
Fact 5.9.24, 186

tripotent matrix
Proposition 5.5.25, 172

unitary matrix
Proposition 5.5.25, 172

spectrum bounds
ovals of Cassini
Fact 4.10.13, 144

spectrum of convex
hull

field of values
Fact 4.10.17, 145

numerical range
Fact 4.10.17, 145

sphere of radius ε

definition, 355

square

definition, 15

square root
2× 2 matrix
Fact 2.11.1, 53

asymptotically stable
matrix
Fact 11.14.31, 418

commuting matrices
Fact 8.7.15, 266

convergent sequence
Fact 5.13.18, 202
Fact 8.7.20, 266

definition, 254
group-invertible
matrix
Fact 5.13.17, 202

identity
Fact 8.7.16, 266

Jordan form
Fact 5.13.16, 201

matrix sign function
Fact 5.13.18, 202

maximum singular
value
Fact 9.8.23, 331

Newton-Raphson
algorithm
Fact 5.13.18, 202

nonnegative-
semidefinite
matrix
Fact 9.8.23, 331

submultiplicative
norm
Fact 9.8.23, 331

sum of squares
Fact 2.14.7, 71

unitary matrix
Fact 8.7.17, 266

stability radius
asymptotically stable
matrix
Fact 11.14.16, 414

stable subspace
complementary
subspaces
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Proposition 11.6.8, 389
group-invertible
matrix
Proposition 11.6.8, 389

idempotent matrix
Proposition 11.6.8, 389

invariant subspace
Proposition 11.6.8, 389

matrix exponential
Proposition 11.6.8, 389

minimal polynomial
Fact 11.16.1, 423
Fact 11.16.2, 423
Proposition 11.6.5, 388

standard nilpotent
matrix

definition, 78

state convergence
discrete-time
time-varying
system
Fact 11.15.18, 422

statement
definition, 1

Stein equation
discrete-time
Lyapunov equation
Fact 11.15.17, 422

stiffness, 380

strengthening
definition, 1

strictly lower triangular
matrix

definition
Definition 3.1.3, 79

matrix power
Fact 3.12.8, 107

strictly proper rational
function

definition
Definition 4.7.1, 129

strictly proper rational
transfer function

definition
Definition 4.7.2, 129

strictly upper triangular
matrix

definition
Definition 3.1.3, 79

Lie algebra
Fact 3.10.2, 104

matrix power
Fact 3.12.8, 107

strong log majorization
definition
Definition 2.1.1, 14

matrix exponential
Fact 11.12.7, 409

singular value
inequality
Fact 9.11.16, 348

strong majorization
convex function
Fact 8.16.1, 300
Fact 8.16.2, 300

definition
Definition 2.1.1, 14

doubly stochastic
matrix
Fact 3.12.18, 109

eigenvalue
Corollary 8.5.15, 263

Hermitian matrix
Fact 8.14.4, 291

strongly decreasing
definition
Definition 8.5.9, 256

strongly increasing
definition
Definition 8.5.9, 256

strongly increasing
function

determinant
Proposition 8.5.10, 256

matrix functions
Proposition 8.5.10, 256

structured matrix

nonnegative-
semidefinite
matrix
Fact 8.7.22, 267
Fact 8.7.24, 267
Fact 8.7.25, 267
Fact 8.7.26, 268
Fact 8.7.27, 268
Fact 8.7.28, 268
Fact 8.7.29, 268

SU(2)
quaternions
Fact 3.11.1, 105

subdeterminant
asymptotically stable
matrix
Fact 11.14.7, 413

asymptotically stable
polynomial
Fact 11.14.21, 415

definition, 41
Lyapunov-stable
polynomial
Fact 11.14.21, 415

nonnegative-
semidefinite
matrix
Proposition 8.2.6, 243

positive-definite
matrix
Fact 8.13.9, 287
Proposition 8.2.7, 244

subdiagonal
definition, 16

submatrix
definition, 41
Hermitian matrix
Corollary 8.4.6, 249
Lemma 8.4.4, 248
Theorem 8.4.5, 249

Kronecker product
Proposition 7.3.1, 230

nonnegative-
semidefinite
matrix
Corollary 8.2.8, 245
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Proposition 8.2.6, 243
positive-definite
matrix
Corollary 8.2.8, 245
Proposition 8.2.7, 244

rank
Fact 2.10.30, 53

submultiplicative norm
commutator
Fact 9.9.5, 335

compatible norm
Proposition 9.3.1, 311

equi-induced norm
Corollary 9.4.4, 315
Fact 9.9.6, 335

idempotent matrix
Fact 9.8.3, 328

infinity norm
Fact 9.9.1, 335
Fact 9.9.2, 335

matrix exponential
Fact 11.12.9, 410
Fact 11.14.8, 413
Proposition 11.1.2, 372

matrix norm
Fact 9.9.4, 335

nonsingular matrix
Fact 9.8.2, 328

spectral radius
Corollary 9.3.4, 311
Fact 9.8.1, 327
Fact 9.9.3, 335
Proposition 9.3.2, 311
Proposition 9.3.3, 311

square root
Fact 9.8.23, 331

submultiplicative
norms

definition, 311

submultiplicativity
Holder norm
Fact 9.9.14, 337

subset
closure
Fact 10.7.3, 366

definition, 2

interior
Fact 10.7.3, 366

subset operation
induced partial
ordering
Fact 1.3.8, 6

transitivity
Fact 1.3.8, 6

subspace
affine
definition, 25

closed set
Fact 10.7.15, 367

complementary
Fact 2.9.11, 47
Fact 2.9.12, 47

definition, 25
dimension
Fact 2.9.13, 48

inclusion
Fact 2.9.6, 47
Fact 2.9.8, 47

inner product
Fact 10.7.19, 367

intersection
Fact 2.9.4, 47
Fact 2.9.10, 47

orthogonal
complement
Fact 2.9.8, 47
Fact 2.9.10, 47
Fact 2.9.11, 47
Proposition 5.5.5, 167

projector
Proposition 5.5.4, 166
Proposition 5.5.5, 167

range
Proposition 5.5.4, 166

span
Fact 2.9.7, 47

sum
Fact 2.9.4, 47
Fact 2.9.7, 47
Fact 2.9.10, 47

union
Fact 2.9.6, 47
Fact 2.9.7, 47

subspace
decomposition

spectrum
Proposition 5.5.13, 168

subspace dimension
dimension theorem
Theorem 2.3.1, 26

subspaces
inclusion and
dimension ordering
Lemma 2.3.4, 27

sum of dimensions
Theorem 2.3.1, 26

sufficiency
definition, 1

sum of integer powers
matrix exponential
Fact 11.9.4, 397

sum of matrices
Kronecker product
Proposition 7.1.4, 226

matrix inverse
Corollary 2.8.10, 46

sum of squares
square root
Fact 2.14.7, 71

superdiagonal entries
definition, 16

supermultiplicativity
induced lower bound
Proposition 9.5.6, 321

Sylvester matrix
coprime polynomials
Fact 4.8.4, 131

Sylvester’s equation
linear matrix
equation
Fact 5.8.11, 180
Fact 5.8.12, 180
Proposition 11.7.3, 392
Proposition 7.2.4, 229

Sylvester’s inequality
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rank of a product, 33

Sylvester’s law of
nullity

defect
Fact 2.10.9, 49

symmetric cone
induced by
symmetric relation
Proposition 2.3.6, 28

symmetric gauge
function

unitarily invariant
norm
Fact 9.8.33, 334

weak majorization
Fact 8.16.6, 301

symmetric matrices
factorization
Fact 5.13.22, 202

symmetric matrix
definition
Definition 3.1.1, 77

factorization
Corollary 5.3.9, 162

Hankel matrix
Fact 3.12.10, 107

Hermitian matrix
Fact 3.4.5, 86

involutory matrix
Fact 5.13.33, 204

linear matrix
equation
Fact 2.11.21, 55

matrix power
Fact 3.4.2, 86

matrix transpose
Fact 3.4.1, 86

orthogonal similarity
transformation
Fact 5.7.3, 175

partitioned matrix
Fact 3.6.12, 98

quadratic form
Fact 3.4.3, 86

similar matrices

Fact 5.13.36, 205
skew-Hermitian
matrix
Fact 3.4.5, 86

skew-symmetric
matrix
Fact 5.13.36, 205

trace
Fact 5.10.2, 187

symmetric permutation
matrix

reverse identity
matrix
Fact 3.9.1, 103

symmetric relation
definition
Definition 1.2.1, 3

symmetric cone
induced by
Proposition 2.3.6, 28

symmetric set
definition, 24

symplectic group
determinant
Fact 3.9.2, 103

symplectic matrix
Cayley transform
Fact 3.9.8, 104

definition
Definition 3.1.4, 81

determinant
Fact 3.9.2, 103

group
Proposition 3.2.7, 84

Hamiltonian matrix
Fact 3.9.8, 104

identity
Fact 3.9.4, 103

identity matrix
Fact 3.9.1, 103

spectrum
Proposition 5.5.25, 172

symplectic similarity
Hamiltonian matrix
Fact 3.9.5, 103

T

T-congruence
complex-symmetric
matrix
Fact 5.7.10, 176

T-congruent
diagonalization

complex-symmetric
matrix
Fact 5.7.10, 176

T-congruent matrices
definition
Definition 3.2.2, 82

Tao
Holder-induced
norm
Fact 9.8.7, 328

Taussky-Todd
matrix factorization
Fact 5.13.4, 199

tetrahedron
volume
Fact 2.16.5, 75

theorem
definition, 1

thermodynamic
inequality

matrix exponential
Fact 11.11.22, 407

relative entropy
Fact 8.12.19, 285

Toeplitz matrix
block-Toeplitz
matrix
Fact 3.12.11, 107

definition
Definition 3.1.3, 79

Hankel matrix
Fact 3.12.9, 107

lower triangular
matrix
Fact 3.12.8, 107
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Fact 11.10.1, 400
nilpotent matrix
Fact 3.12.7, 107

polynomial
multiplication
Fact 4.8.9, 135

reverse-symmetric
matrix
Fact 3.12.6, 107

spectrum
Fact 4.10.11, 143

upper triangular
matrix
Fact 3.12.8, 107
Fact 11.10.1, 400

Tomiyama
maximum singular
value of a
partitioned matrix
Fact 9.12.6, 349

total ordering
definition
Definition 1.2.1, 3

totally nonnegative
matrix

definition
Fact 11.14.21, 415

trace
2× 2 matrix identity
Fact 4.9.2, 137

3× 3 matrix identity
Fact 4.9.4, 138

adjugate
Fact 4.9.5, 138

asymptotically stable
matrix
Fact 11.14.27, 418

commutator
Fact 2.14.1, 70
Fact 5.7.18, 178

convex function
Proposition 8.5.13, 258

definition, 22
derivative
Fact 11.11.3, 403

determinant

Corollary 11.2.3, 377
Corollary 11.2.4, 377
Fact 8.13.12, 287
Fact 11.11.19, 406
Proposition 8.4.14, 251

eigenvalue
Fact 5.9.6, 181
Fact 8.14.3, 290
Proposition 8.4.13, 251

eigenvalue bound
Fact 5.9.26, 186

elementary projector
Fact 3.5.7, 94

elementary reflector
Fact 3.5.7, 94

Frobenius norm
Fact 9.10.2, 342
Fact 9.10.5, 343

group generalized
inverse
Fact 6.5.7, 223

Hermitian matrix
Corollary 8.4.10, 250
Fact 3.4.16, 89
Lemma 8.4.12, 251
Proposition 8.4.13, 251

Hermitian matrix
product
Fact 5.10.1, 187
Fact 8.12.1, 282
Fact 8.12.6, 282

Holder matrix norm
Fact 9.10.3, 342

identities, 22
Kronecker
permutation matrix
Fact 7.4.29, 233

Kronecker product
Fact 11.11.29, 408
Proposition 7.1.12, 228

Kronecker sum
Fact 11.11.27, 407

logarithm
Fact 8.12.19, 285

matrix derivative
Proposition 10.6.2, 364

matrix exponential
Corollary 11.2.3, 377

Corollary 11.2.4, 377
Fact 11.11.3, 403
Fact 11.11.11, 404
Fact 11.11.21, 406
Fact 11.11.22, 407
Fact 11.11.25, 407
Fact 11.11.26, 407
Fact 11.11.27, 407
Fact 11.11.29, 408
Fact 11.12.3, 408
Fact 11.12.4, 408
Fact 11.12.6, 409
Fact 11.12.7, 409

matrix logarithm
Fact 11.11.22, 407

matrix power
Fact 2.11.15, 54
Fact 2.11.18, 55

matrix product
Fact 8.12.5, 282

matrix squared
Fact 5.9.5, 181

maximum singular
value bound
Fact 9.11.13, 347

nilpotent matrix
Fact 3.8.11, 103

nonnegative-
semidefinite
matrix
Fact 8.9.8, 276
Fact 8.12.2, 282
Fact 8.12.3, 282
Fact 8.12.4, 282
Fact 8.12.7, 282
Fact 8.12.8, 283
Fact 8.12.9, 283
Fact 8.12.10, 284
Fact 8.12.11, 284
Fact 8.12.12, 284
Fact 8.12.14, 284
Fact 8.12.15, 285
Fact 8.12.16, 285
Fact 8.12.17, 285
Fact 8.12.18, 285
Fact 8.13.12, 287
Fact 8.14.6, 292
Proposition 8.4.13, 251
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normal matrix
product
Fact 5.10.1, 187

orthogonal matrix
Fact 3.6.2, 97

partitioned matrix
Fact 8.12.17, 285
Fact 8.12.18, 285
Fact 8.13.23, 289

positive-definite
matrix
Fact 8.8.20, 274
Fact 8.12.11, 284
Fact 8.12.13, 284
Fact 8.12.19, 285
Proposition 8.4.14, 251

projector
Fact 3.5.7, 94

quadruple product
Fact 7.4.8, 231

reflector
Fact 3.5.7, 94

Schatten norm
Fact 9.10.3, 342
Fact 9.10.4, 342

Schur product
Fact 8.15.10, 296

singular value
Fact 5.10.3, 188
Fact 8.14.1, 290

skew-Hermitian
matrix
Fact 3.4.18, 89

skew-Hermitian
matrix product
Fact 8.12.1, 282

skew-symmetric
matrix
Fact 3.4.17, 89
Fact 3.4.25, 91

spectral radius
Fact 5.9.27, 186

spectrum
Fact 4.10.2, 141

symmetric matrix
Fact 5.10.2, 187

trace norm
Fact 9.10.1, 342

triple product
Fact 2.11.4, 53
Fact 7.4.6, 231

tripotent matrix
Fact 3.12.14, 108

unitary matrix
Fact 3.4.37, 93

vec
Fact 7.4.6, 231
Fact 7.4.8, 231
Proposition 7.1.1, 225

zero matrix
Fact 2.11.13, 54
Fact 2.11.16, 54
Fact 2.11.17, 54

trace norm
definition, 309
Frobenius norm
Fact 9.9.11, 336

nonnegative-
semidefinite
matrix
Fact 9.9.13, 337

trace
Fact 9.10.1, 342

Tracy-Singh product,
238

transitive relation
convex cone induced
by
Proposition 2.3.6, 28

definition
Definition 1.2.1, 3

nonnegative-
semidefinite
matrix
Proposition 8.1.1, 240

transmission zero
definition
Definition 4.7.6, 130

null space
Fact 4.8.14, 137

transpose
diagonalizable
matrix

Fact 5.11.2, 189
involutory matrix
Fact 5.7.14, 177

Kronecker
permutation matrix
Proposition 7.1.13, 228

Kronecker product
Proposition 7.1.3, 226

similar matrices
Corollary 5.3.8, 161
Proposition 5.5.18, 170

transpose of a matrix
definition, 22

transpose of a vector
definition, 20

triangle
area
Fact 2.16.2, 74
Fact 2.16.4, 75

triangle inequality
definition
Definition 9.1.1, 303

equality
Fact 9.7.3, 325

linear dependence
Fact 9.7.3, 325

nonnegative-
semidefinite
matrix
Fact 9.9.15, 337

tridiagonal
determinant
Fact 2.12.26, 62
Fact 3.12.5, 107

tridiagonal matrix
asymptotically stable
matrix
Fact 11.14.22, 416
Fact 11.14.23, 416
Fact 11.14.24, 416
Fact 11.14.25, 417

cyclic matrix
Fact 11.14.23, 416

definition
Definition 3.1.3, 79
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positive-definite
matrix

Fact 8.7.31, 269

Routh form

Fact 11.14.24, 416

Schwarz form

Fact 11.14.23, 416

spectrum

Fact 5.9.22, 185

Fact 5.9.23, 185

Fact 5.9.24, 186

triple product
identity

Fact 2.11.3, 53

Kronecker product

Fact 7.4.6, 231

Proposition 7.1.5, 226

trace

Fact 4.9.4, 138

Fact 7.4.6, 231

vec

Proposition 7.1.9, 227

tripotent matrix
definition

Definition 3.1.1, 77

Drazin generalized
inverse

Fact 6.5.2, 223

generalized inverse

Fact 6.3.7, 214

group-invertible
matrix

Proposition 3.1.5, 81

idempotent matrix

Fact 3.5.23, 96

involutory matrix

Fact 3.12.15, 108

rank

Fact 3.12.14, 108

reflector

Proposition 3.1.5, 81

spectrum

Proposition 5.5.25, 172

trace

Fact 3.12.14, 108

two-sided directional
differential

definition, 359

U

Umegaki
relative entropy
Fact 8.12.19, 285

unimodular
definition
Definition 4.3.1, 117

unimodular matrix
determinant
Proposition 4.3.5, 118

inverse matrix
Proposition 4.3.6, 118

Smith form
Corollary 4.3.3, 117

union
definition, 2

unipotent matrix
group
Fact 3.10.3, 104

unitarily biequivalent
matrices

definition
Definition 3.2.1, 82

singular values
Fact 5.8.9, 179

unitarily invariant norm
complex conjugate
transpose
Fact 9.8.21, 331

definition, 308
Hermitian matrix
Fact 9.9.7, 335
Fact 11.12.8, 410

Hermitian
perturbation
Fact 9.10.9, 344

inequality
Fact 9.9.11, 336
Fact 9.9.16, 337

Fact 9.9.21, 339

matrix exponential

Fact 11.11.9, 404

Fact 11.12.5, 409

Fact 11.12.7, 409

Fact 11.12.8, 410

maximum singular
value

Fact 9.9.10, 336

nonnegative-
semidefinite
matrix

Fact 9.9.8, 336

Fact 9.9.9, 336

outer-product
matrix

Fact 9.8.31, 333

partitioned matrix

Fact 9.8.24, 331

properties

Fact 9.8.32, 333

Schatten norm

Fact 9.8.6, 328

Schur product

Fact 9.9.30, 340

self-adjoint norm

Fact 9.8.4, 328

similarity
transformation

Fact 9.8.22, 331

singular value

Fact 9.12.14, 351

singular value
perturbation

Fact 9.12.15, 352

symmetric gauge
function

Fact 9.8.33, 334

unitarily left-equivalent
matrices

complex conjugate
transpose

Fact 5.8.9, 179

Fact 5.8.10, 179

definition

Definition 3.2.1, 82
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nonnegative-
semidefinite
matrix
Fact 5.8.9, 179
Fact 5.8.10, 179

unitarily
right-equivalent
matrices

complex conjugate
transpose
Fact 5.8.9, 179

definition
Definition 3.2.1, 82

nonnegative-
semidefinite
matrix
Fact 5.8.9, 179

unitarily similar
matrices

complex conjugate
transpose
Fact 8.11.1, 281

definition
Definition 3.2.2, 82

diagonal entries
Fact 5.7.6, 176

equivalence class
Fact 5.8.1, 178

equivalence relation
Fact 5.8.2, 178

Hermitian matrix
Corollary 5.4.5, 164

Kronecker product
Fact 7.4.12, 232

matrix classes
Proposition 3.2.3, 83

normal matrix
Corollary 5.4.4, 163
Fact 5.8.3, 178

partitioned matrix
Fact 5.7.5, 175

range-Hermitian
matrix
Corollary 5.4.4, 163

similar matrices
Fact 5.8.3, 178

simultaneous
diagonalizability
Fact 5.8.7, 179

simultaneous upper
triangularizability
Fact 5.8.6, 179

upper triangular
matrix
Theorem 5.4.1, 162

unitary
determinant
Fact 3.6.6, 98

quaternions
Fact 3.11.2, 106

unitary matrix
3× 3 skew-symmetric
matrix
Fact 11.9.7, 399

cogredient
diagonalization
Fact 8.11.2, 281

complex-symmetric
matrix
Fact 5.7.10, 176

convergent sequence
Fact 8.7.21, 267

CS decomposition
Fact 5.7.16, 178

definition
Definition 3.1.1, 77

determinant
Fact 3.6.7, 98
Fact 3.6.18, 99

diagonal matrix
Theorem 5.6.3, 174

discrete-time
Lyapunov-stable
matrix
Fact 11.15.14, 421

dissipative matrix
Fact 8.13.4, 286

elementary reflector
Fact 5.13.12, 200

factorization
Fact 5.13.5, 199
Fact 5.13.12, 200
Fact 5.13.41, 205

Frobenius norm
Fact 9.9.24, 339

group
Proposition 3.2.7, 84

group generalized
inverse
Fact 6.3.17, 215

Hermitian matrix
Fact 3.6.23, 100
Fact 11.11.24, 407

identities
Fact 3.6.1, 97

matrix exponential
Fact 11.9.7, 399
Fact 11.11.6, 404
Fact 11.11.23, 407
Fact 11.11.24, 407
Proposition 11.1.4, 373

matrix limit
Fact 6.3.17, 215

normal matrix
Fact 3.6.8, 98
Fact 3.6.10, 98
Fact 5.13.1, 199

orthogonal vectors
Fact 3.6.3, 97

partitioned matrix
Fact 3.6.13, 98
Fact 3.6.22, 100

rank-one
perturbation
Fact 3.6.18, 99

reflector
Fact 3.7.1, 101

semicontractive
matrix
Fact 3.6.13, 98

singular value
Fact 5.9.20, 184

skew-Hermitian
matrix
Fact 3.5.29, 97
Fact 3.6.24, 100
Fact 3.7.5, 101
Fact 11.11.23, 407

skew-involutory
matrix
Fact 3.7.5, 101
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spectrum
Proposition 5.5.25, 172

square root
Fact 8.7.17, 266

trace
Fact 3.4.37, 93

upper triangular
matrix
Fact 5.13.5, 199

universal statement
definition, 2

unstable equilibrium
definition
Definition 11.5.1, 384

unstable matrix
positive matrix
Fact 11.14.18, 415

unstable stable
subspace

definition, 389

unstable subspace
complementary
subspaces
Proposition 11.6.8, 389

idempotent matrix
Proposition 11.6.8, 389

invariant subspace
Proposition 11.6.8, 389

semistable matrix
Proposition 11.6.8, 389

upper block triangular
characteristic
polynomial
Fact 4.10.7, 142

upper block-triangular
matrix

definition
Definition 3.1.3, 79

orthogonally similar
matrices
Corollary 5.4.2, 163

upper Hessenberg
matrix

definition

Definition 3.1.3, 79

upper triangular matrix
commutator
Fact 3.8.1, 102

commuting matrices
Fact 5.8.6, 179

definition
Definition 3.1.3, 79

factorization
Fact 5.13.5, 199
Fact 5.13.7, 199

group
Fact 3.10.3, 104

invariant subspace
Fact 5.7.4, 175

Kronecker product
Fact 7.4.2, 231

Lie algebra
Fact 3.10.2, 104

matrix exponential
Fact 11.9.4, 397
Fact 11.10.1, 400

matrix power
Fact 3.12.8, 107

nonnegative-
semidefinite
matrix
Fact 8.7.33, 269

orthogonally similar
matrices
Corollary 5.4.3, 163

positive diagonal
Fact 5.13.6, 199

Toeplitz matrix
Fact 3.12.8, 107
Fact 11.10.1, 400

unitarily similar
matrices
Theorem 5.4.1, 162

unitary matrix
Fact 5.13.5, 199

upper-block triangular
inverse matrix
Fact 2.13.32, 68

upper-block-triangular
matrix

minimal polynomial
Fact 4.10.8, 142

V

Vandermonde matrix
companion matrix
Fact 5.12.5, 196

determinant
Fact 5.12.3, 195

Fourier matrix
Fact 5.12.7, 197

polynomial
Fact 5.12.4, 196

similar matrices
Fact 5.12.6, 196

variational cone
definition, 359
dimension
Fact 10.7.18, 367

vec
definition, 225
Kronecker
permutation matrix
Fact 7.4.29, 233

Kronecker product
Fact 7.4.4, 231
Fact 7.4.5, 231
Fact 7.4.7, 231

matrix product
Fact 7.4.5, 231

quadruple product
Fact 7.4.8, 231

trace
Fact 7.4.6, 231
Fact 7.4.8, 231
Proposition 7.1.1, 225

triple product
Proposition 7.1.9, 227

vector
definition, 14

vector derivative
quadratic form
Proposition 10.6.1, 364

vector identity
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cosine law
Fact 9.7.4, 325

parallelogram law
Fact 9.7.4, 325

polarization identity
Fact 9.7.4, 325

Pythagorean
theorem
Fact 9.7.4, 325

vector inequality
Holder’s inequality
Proposition 9.1.6, 306

vibration equation
matrix exponential
Example 11.3.8, 379

volume
parallelepiped
Fact 2.16.6, 75
Fact 2.16.7, 75

tetrahedron
Fact 2.16.5, 75

transformed set
Fact 2.16.8, 75

W

weak log majorization
definition
Definition 2.1.1, 14

eigenvalue
Fact 8.14.7, 292

singular value
Proposition 9.6.3, 322

weak majorization
Fact 8.16.5, 301

weak majorization
convex function
Fact 8.14.10, 293
Fact 8.16.1, 300
Fact 8.16.2, 300
Fact 8.16.3, 300

definition
Definition 2.1.1, 14

eigenvalue
Fact 8.14.7, 292

Fact 8.14.10, 293
Fact 8.14.11, 293

increasing function
Fact 8.16.3, 300

matrix exponential
Fact 11.12.7, 409

nonnegative-
semidefinite
matrix
Fact 8.14.11, 293

powers
Fact 8.16.6, 301

Schur product
Fact 9.12.17, 352

singular value
Fact 9.12.13, 351
Proposition 9.2.2, 308
Proposition 9.6.2, 322

singular value
inequality
Fact 8.14.16, 294
Fact 9.11.15, 347
Fact 9.12.17, 352

symmetric gauge
function
Fact 8.16.6, 301

weak log
majorization
Fact 8.16.5, 301

weakly unitarily
invariant norm

definition, 308
matrix power
Fact 9.8.29, 332

numerical radius
Fact 9.8.29, 332

Weierstrass
cogredient
diagonalization of
positive-definite
matrices
Fact 8.11.3, 281

Weyl, 251
singular value
inequality
Fact 5.9.13, 183

Weyl’s inequality
Hermitian matrix
eigenvalues
Theorem 8.4.9, 250

Wielandt
eigenvalue
perturbation
Fact 9.10.10, 345

positive power of a
primitive matrix
Fact 4.11.1, 145

X

Xie
asymptotically stable
polynomial
Fact 11.13.5, 411

Y

Yamagami
norm equality
Fact 9.9.19, 338

Yamamoto
singular value limit
Fact 9.11.17, 348

Young’s inequality
nonnegative-
semidefinite matrix
inequality
Fact 9.12.19, 353

scalar case
Fact 1.4.5, 7

Z

zero diagonal
commutator
Fact 3.4.27, 91

zero matrix
definition, 18




