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Preface to the Third Edition (2007)

“I was just going to say, when I was interrupted: : :” begins Oliver Wendell
Holmes in the second series of his famous essays, The Autocrat of the Breakfast
Table. The interruption referred to was a gap of 25 years. In our case, as the autocrats
of Numerical Recipes, the gap between our second and third editions has been “only”
15 years. Scientific computing has changed enormously in that time.

The first edition of Numerical Recipes was roughly coincident with the first
commercial success of the personal computer. The second edition came at about the
time that the Internet, as we know it today, was created. Now, as we launch the third
edition, the practice of science and engineering, and thus scientific computing, has
been profoundly altered by the mature Internet and Web. It is no longer difficult to
find somebody’s algorithm, and usually free code, for almost any conceivable scien-
tific application. The critical questions have instead become, “How does it work?”
and “Is it any good?” Correspondingly, the second edition of Numerical Recipes has
come to be valued more and more for its text explanations, concise mathematical
derivations, critical judgments, and advice, and less for its code implementations
per se.

Recognizing the change, we have expanded and improved the text in many
places in this edition and added many completely new sections. We seriously consid-
ered leaving the code out entirely, or making it available only on the Web. However,
in the end, we decided that without code, it wouldn’t be Numerical Recipes. That is,
without code you, the reader, could never know whether our advice was in fact hon-
est, implementable, and practical. Many discussions of algorithms in the literature
and on the Web omit crucial details that can only be uncovered by actually coding
(our job) or reading compilable code (your job). Also, we needed actual code to
teach and illustrate the large number of lessons about object-oriented programming
that are implicit and explicit in this edition.

Our wholehearted embrace of a style of object-oriented computing for scientific
applications should be evident throughout this book. We say “a style,” because,
contrary to the claims of various self-appointed experts, there can be no one rigid
style of programming that serves all purposes, not even all scientific purposes. Our
style is ecumenical. If a simple, global, C-style function will fill the need, then we
use it. On the other hand, you will find us building some fairly complicated structures
for something as complicated as, e.g., integrating ordinary differential equations. For
more on the approach taken in this book, see �1.3 – �1.5.

In bringing the text up to date, we have luckily not had to bridge a full 15-year
gap. Significant modernizations were incorporated into the second edition versions
in Fortran 90 (1996)� and C++ (2002), in which, notably, the last vestiges of unit-
based arrays were expunged in favor of C-style zero-based indexing. Only with this
third edition, however, have we incorporated a substantial amount (several hundred
pages!) of completely new material. Highlights include:

� a new chapter on classification and inference, including such topics as Gaus-
sian mixture models, hidden Markov modeling, hierarchical clustering (phy-
logenetic trees), and support vector machines

�“Alas, poor Fortran 90! We knew him, Horatio: a programming language of infinite jest, of most
excellent fancy: he hath borne us on his back a thousand times.”

xi
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� a new chapter on computational geometry, including topics like KD trees,
quad- and octrees, Delaunay triangulation and applications, and many useful
algorithms for lines, polygons, triangles, spheres, etc.
� many new statistical distributions, with pdfs, cdfs, and inverse cdfs
� an expanded treatment of ODEs, emphasizing recent advances, and with com-

pletely new routines
� much expanded sections on uniform random deviates and on deviates from

many other statistical distributions
� an introduction to spectral and pseudospectral methods for PDEs
� interior point methods for linear programming
� more on sparse matrices
� interpolation on scattered data in multidimensions
� curve interpolation in multidimensions
� quadrature by variable transformation and adaptive quadrature
� more on Gaussian quadratures and orthogonal polynomials
� more on accelerating the convergence of series
� improved incomplete gamma and beta functions and new inverse functions
� improved spherical harmonics and fast spherical harmonic transforms
� generalized Fermi-Dirac integrals
� multivariate Gaussian deviates
� algorithms and implementations for hash memory functions
� incremental quantile estimation
� chi-square with small numbers of counts
� dynamic programming
� hard and soft error correction and Viterbi decoding
� eigensystem routines for real, nonsymmetric matrices
� multitaper methods for power spectral estimation
� wavelets on the interval
� information-theoretic properties of distributions
� Markov chain Monte Carlo
� Gaussian process regression and kriging
� stochastic simulation of chemical reaction networks
� code for plotting simple graphs from within programs

The Numerical Recipes Web site, www.nr.com, is one of the oldest active sites on
the Internet, as evidenced by its two-letter domain name. We will continue to make
the Web site useful to readers of this edition. Go there to find the latest bug reports, to
purchase the machine-readable source code, or to participate in our readers’ forum.
With this third edition, we also plan to offer, by subscription, a completely electronic
version of Numerical Recipes — accessible via the Web, downloadable, printable,
and, unlike any paper version, always up to date with the latest corrections. Since
the electronic version does not share the page limits of the print version, it will grow
over time by the addition of completely new sections, available only electronically.
This, we think, is the future of Numerical Recipes and perhaps of technical reference
books generally. If it sounds interesting to you, look at http://www.nr.com/electronic.

This edition also incorporates some “user-friendly” typographical and stylistic
improvements: Color is used for headings and to highlight executable code. For
code, a label in the margin gives the name of the source file in the machine-readable
distribution. Instead of printing repetitive #include statements, we provide a con-
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venient Web tool at http://www.nr.com/dependencies that will generate exactly the state-
ments you need for any combination of routines. Subsections are now numbered and
referred to by number. References to journal articles now include, in most cases, the
article title, as an aid to easy Web searching. Many references have been updated;
but we have kept references to the grand old literature of classical numerical analysis
when we think that books and articles deserve to be remembered.

Acknowledgments
Regrettably, over 15 years, we were not able to maintain a systematic record of

the many dozens of colleagues and readers who have made important suggestions,
pointed us to new material, corrected errors, and otherwise improved the Numerical
Recipes enterprise. It is a tired cliché to say that “you know who you are.” Actually,
in most cases, we know who you are, and we are grateful. But a list of names
would be incomplete, and therefore offensive to those whose contributions are no
less important than those listed. We apologize to both groups, those we might have
listed and those we might have missed.

We prepared this book for publication on Windows and Linux machines, gen-
erally with Intel Pentium processors, using LaTeX in the TeTeX and MiKTeX im-
plementations. Packages used include amsmath, amsfonts, txfonts, and graphicx,
among others. Our principal development environments were Microsoft Visual Stu-
dio / Microsoft Visual C++ and GNU C++. We used the SourceJammer cross-
platform source control system. Many tasks were automated with Perl scripts. We
could not live without GNU Emacs. To all the developers: “You know who you are,”
and we thank you.

Research by the authors on computational methods was supported in part by the
U.S. National Science Foundation and the U.S. Department of Energy.
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Our aim in writing the original edition of Numerical Recipes was to provide
a book that combined general discussion, analytical mathematics, algorithmics, and
actual working programs. The success of the first edition puts us now in a difficult,
though hardly unenviable, position. We wanted, then and now, to write a book that is
informal, fearlessly editorial, unesoteric, and above all useful. There is a danger that,
if we are not careful, we might produce a second edition that is weighty, balanced,
scholarly, and boring.

It is a mixed blessing that we know more now than we did six years ago. Then,
we were making educated guesses, based on existing literature and our own research,
about which numerical techniques were the most important and robust. Now, we
have the benefit of direct feedback from a large reader community. Letters to our
alter-ego enterprise, Numerical Recipes Software, are in the thousands per year.
(Please, don’t telephone us.) Our post office box has become a magnet for letters
pointing out that we have omitted some particular technique, well known to be im-
portant in a particular field of science or engineering. We value such letters and digest
them carefully, especially when they point us to specific references in the literature.

The inevitable result of this input is that this second edition of Numerical Recipes
is substantially larger than its predecessor, in fact about 50% larger in both words and
number of included programs (the latter now numbering well over 300). “Don’t let
the book grow in size,” is the advice that we received from several wise colleagues.
We have tried to follow the intended spirit of that advice, even as we violate the letter
of it. We have not lengthened, or increased in difficulty, the book’s principal discus-
sions of mainstream topics. Many new topics are presented at this same accessible
level. Some topics, both from the earlier edition and new to this one, are now set
in smaller type that labels them as being “advanced.” The reader who ignores such
advanced sections completely will not, we think, find any lack of continuity in the
shorter volume that results.

Here are some highlights of the new material in this second edition:

� a new chapter on integral equations and inverse methods
� a detailed treatment of multigrid methods for solving elliptic partial differential

equations
� routines for band-diagonal linear systems
� improved routines for linear algebra on sparse matrices
� Cholesky and QR decomposition
� orthogonal polynomials and Gaussian quadratures for arbitrary weight func-

tions
� methods for calculating numerical derivatives
� Padé approximants and rational Chebyshev approximation
� Bessel functions, and modified Bessel functions, of fractional order and sev-

eral other new special functions
� improved random number routines
� quasi-random sequences
� routines for adaptive and recursive Monte Carlo integration in high-dimensional

spaces
� globally convergent methods for sets of nonlinear equations
� simulated annealing minimization for continuous control spaces

xiv
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� fast Fourier transform (FFT) for real data in two and three dimensions
� fast Fourier transform using external storage
� improved fast cosine transform routines
� wavelet transforms
� Fourier integrals with upper and lower limits
� spectral analysis on unevenly sampled data
� Savitzky-Golay smoothing filters
� fitting straight line data with errors in both coordinates
� a two-dimensional Kolmogorov-Smirnoff test
� the statistical bootstrap method
� embedded Runge-Kutta-Fehlberg methods for differential equations
� high-order methods for stiff differential equations
� a new chapter on “less-numerical” algorithms, including Huffman and arith-

metic coding, arbitrary precision arithmetic, and several other topics

Consult the Preface to the first edition, following, or the Contents, for a list of the
more “basic” subjects treated.
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pecially want to thank George Rybicki, Philip Pinto, Peter Lepage, Robert Lupton,
Douglas Eardley, Ramesh Narayan, David Spergel, Alan Oppenheim, Sallie Baliu-
nas, Scott Tremaine, Glennys Farrar, Steven Block, John Peacock, Thomas Loredo,
Matthew Choptuik, Gregory Cook, L. Samuel Finn, P. Deuflhard, Harold Lewis, Pe-
ter Weinberger, David Syer, Richard Ferch, Steven Ebstein, Bradley Keister, and
William Gould. We have been helped by Nancy Lee Snyder’s mastery of a compli-
cated TEX manuscript. We express appreciation to our editors Lauren Cowles and
Alan Harvey at Cambridge University Press, and to our production editor Russell
Hahn. We remain, of course, grateful to the individuals acknowledged in the Preface
to the first edition.

Special acknowledgment is due to programming consultant Seth Finkelstein,
who wrote, rewrote, or influenced many of the routines in this book, as well as in its
Fortran-language twin and the companion Example books. Our project has benefited
enormously from Seth’s talent for detecting, and following the trail of, even very
slight anomalies (often compiler bugs, but occasionally our errors), and from his
good programming sense. To the extent that this edition of Numerical Recipes in C
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this book) has uncovered compiler bugs in many of the compilers tried. When possi-
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compiler developers to contact us about such arrangements.
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We call this book Numerical Recipes for several reasons. In one sense, this
book is indeed a “cookbook” on numerical computation. However, there is an im-
portant distinction between a cookbook and a restaurant menu. The latter presents
choices among complete dishes in each of which the individual flavors are blended
and disguised. The former — and this book — reveals the individual ingredients and
explains how they are prepared and combined.

Another purpose of the title is to connote an eclectic mixture of presentational
techniques. This book is unique, we think, in offering, for each topic considered,
a certain amount of general discussion, a certain amount of analytical mathematics,
a certain amount of discussion of algorithmics, and (most important) actual imple-
mentations of these ideas in the form of working computer routines. Our task has
been to find the right balance among these ingredients for each topic. You will find
that for some topics we have tilted quite far to the analytic side; this where we have
felt there to be gaps in the “standard” mathematical training. For other topics, where
the mathematical prerequisites are universally held, we have tilted toward more in-
depth discussion of the nature of the computational algorithms, or toward practical
questions of implementation.

We admit, therefore, to some unevenness in the “level” of this book. About half
of it is suitable for an advanced undergraduate course on numerical computation for
science or engineering majors. The other half ranges from the level of a graduate
course to that of a professional reference. Most cookbooks have, after all, recipes at
varying levels of complexity. An attractive feature of this approach, we think, is that
the reader can use the book at increasing levels of sophistication as his/her experience
grows. Even inexperienced readers should be able to use our most advanced routines
as black boxes. Having done so, we hope that these readers will subsequently go
back and learn what secrets are inside.

If there is a single dominant theme in this book, it is that practical methods
of numerical computation can be simultaneously efficient, clever, and — important
— clear. The alternative viewpoint, that efficient computational methods must nec-
essarily be so arcane and complex as to be useful only in “black box” form, we
firmly reject.

Our purpose in this book is thus to open up a large number of computational
black boxes to your scrutiny. We want to teach you to take apart these black boxes
and to put them back together again, modifying them to suit your specific needs. We
assume that you are mathematically literate, i.e., that you have the normal mathe-
matical preparation associated with an undergraduate degree in a physical science,
or engineering, or economics, or a quantitative social science. We assume that you
know how to program a computer. We do not assume that you have any prior formal
knowledge of numerical analysis or numerical methods.

The scope of Numerical Recipes is supposed to be “everything up to, but not
including, partial differential equations.” We honor this in the breach: First, we do
have one introductory chapter on methods for partial differential equations. Second,
we obviously cannot include everything else. All the so-called “standard” topics of
a numerical analysis course have been included in this book: linear equations, in-
terpolation and extrapolation, integration, nonlinear root finding, eigensystems, and
ordinary differential equations. Most of these topics have been taken beyond their

xvii
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standard treatments into some advanced material that we have felt to be particularly
important or useful.

Some other subjects that we cover in detail are not usually found in the standard
numerical analysis texts. These include the evaluation of functions and of particular
special functions of higher mathematics; random numbers and Monte Carlo meth-
ods; sorting; optimization, including multidimensional methods; Fourier transform
methods, including FFT methods and other spectral methods; two chapters on the
statistical description and modeling of data; and two-point boundary value problems,
both shooting and relaxation methods.
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ical and computational experience, in providing us with programs, in commenting
on the manuscript, or with general encouragement. We particularly wish to thank
George Rybicki, Douglas Eardley, Philip Marcus, Stuart Shapiro, Paul Horowitz,
Bruce Musicus, Irwin Shapiro, Stephen Wolfram, Henry Abarbanel, Larry Smarr,
Richard Muller, John Bahcall, and A.G.W. Cameron.

We also wish to acknowledge two individuals whom we have never met: For-
man Acton, whose 1970 textbook Numerical Methods That Work (New York: Harper
and Row) has surely left its stylistic mark on us; and Donald Knuth, both for his
series of books on The Art of Computer Programming (Reading, MA: Addison-
Wesley), and for TEX, the computer typesetting language that immensely aided pro-
duction of this book.

Research by the authors on computational methods was supported in part by the
U.S. National Science Foundation.
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You must read this section if you intend to use the code in this book on a com-
puter. You’ll need to read the following Disclaimer of Warranty, acquire a Numerical
Recipes software license, and get the code onto your computer. Without the license,
which can be the limited, free “immediate license” under terms described below, this
book is intended as a text and reference book, for reading and study purposes only.

For purposes of licensing, the electronic version of the Numerical Recipes book
is equivalent to the paper version. It is not equivalent to a Numerical Recipes soft-
ware license, which must still be acquired separately or as part of a combined elec-
tronic product. For information on Numerical Recipes electronic products, go to
http://www.nr.com/electronic.

Disclaimer of Warranty
We make no warranties, express or implied, that the programs contained

in this volume are free of error, or are consistent with any particular standard
of merchantability, or that they will meet your requirements for any particular
application. They should not be relied on for solving a problem whose incorrect
solution could result in injury to a person or loss of property. If you do use the
programs in such a manner, it is at your own risk. The authors and publisher
disclaim all liability for direct or consequential damages resulting from your use
of the programs.

The Restricted, Limited Free License
We recognize that readers may have an immediate, urgent wish to copy a small

amount of code from this book for use in their own applications. If you personally
keyboard no more than 10 routines from this book into your computer, then we au-
thorize you (and only you) to use those routines (and only those routines) on that
single computer. You are not authorized to transfer or distribute the routines to any
other person or computer, nor to have any other person keyboard the programs into
a computer on your behalf. We do not want to hear bug reports from you, because
experience has shown that virtually all reported bugs in such cases are typing errors!
This free license is not a GNU General Public License.

Regular Licenses
When you purchase a code subscription or one-time code download from the

Numerical Recipes Web site (http://www.nr.com), or when you buy physical Numerical
Recipes media published by Cambridge University Press, you automatically get a
Numerical Recipes Personal Single-User License. This license lets you personally
use Numerical Recipes code on any one computer at a time, but not to allow anyone
else access to the code. You may also, under this license, transfer precompiled,
executable programs incorporating the code to other, unlicensed, users or computers,
providing that (i) your application is noncommercial (i.e., does not involve the selling
of your program for a fee); (ii) the programs were first developed, compiled, and
successfully run by you; and (iii) our routines are bound into the programs in such a
manner that they cannot be accessed as individual routines and cannot practicably be

xix
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unbound and used in other programs. That is, under this license, your program user
must not be able to use our programs as part of a program library or “mix-and-match”
workbench. See the Numerical Recipes Web site for further details.

Businesses and organizations that purchase code subscriptions, downloads, or
media, and that thus acquire one or more Numerical Recipes Personal Single-User
Licenses, may permanently assign those licenses, in the number acquired, to indi-
vidual employees. In most cases, however, businesses and organizations will instead
want to purchase Numerical Recipes licenses “by the seat,” allowing them to be used
by a pool of individuals rather than being individually permanently assigned. See
http://www.nr.com/licenses for information on such licenses.

Instructors at accredited educational institutions who have adopted this book for
a course may purchase on behalf of their students one-semester subscriptions to both
the electronic version of the Numerical Recipes book and to the Numerical Recipes
code. During the subscription term, students may download, view, save, and print all
of the book and code. See http://www.nr.com/licenses for further information.

Other types of corporate licenses are also available. Please see the Numerical
Recipes Web site.

About Copyrights on Computer Programs
Like artistic or literary compositions, computer programs are protected by copy-

right. Generally it is an infringement for you to copy into your computer a program
from a copyrighted source. (It is also not a friendly thing to do, since it deprives the
program’s author of compensation for his or her creative effort.) Under copyright
law, all “derivative works” (modified versions, or translations into another computer
language) also come under the same copyright as the original work.

Copyright does not protect ideas, but only the expression of those ideas in a par-
ticular form. In the case of a computer program, the ideas consist of the program’s
methodology and algorithm, including the necessary sequence of steps adopted by
the programmer. The expression of those ideas is the program source code (partic-
ularly any arbitrary or stylistic choices embodied in it), its derived object code, and
any other derivative works.

If you analyze the ideas contained in a program, and then express those ideas
in your own completely different implementation, then that new program implemen-
tation belongs to you. That is what we have done for those programs in this book
that are not entirely of our own devising. When programs in this book are said to be
“based” on programs published in copyright sources, we mean that the ideas are the
same. The expression of these ideas as source code is our own. We believe that no
material in this book infringes on an existing copyright.

Trademarks
Several registered trademarks appear within the text of this book. Words that

are known to be trademarks are shown with an initial capital letter. However, the
capitalization of any word is not an expression of the authors’ or publisher’s opinion
as to whether or not it is subject to proprietary rights, nor is it to be regarded as
affecting the validity of any trademark.

Numerical Recipes, NR, and nr.com (when identifying our products) are trade-
marks of Numerical Recipes Software.
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Attributions
The fact that ideas are legally “free as air” in no way supersedes the ethical

requirement that ideas be credited to their known originators. When programs in
this book are based on known sources, whether copyrighted or in the public domain,
published or “handed-down,” we have attempted to give proper attribution. Unfor-
tunately, the lineage of many programs in common circulation is often unclear. We
would be grateful to readers for new or corrected information regarding attributions,
which we will attempt to incorporate in subsequent printings.

Routines by Chapter and Section

Previous editions included a table of all the routines in the book, along with a
short description, arranged by chapter and section. This information is now available
as an interactive Web page at http://www.nr.com/routines. The following illustration
gives the idea.
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Preliminaries CHAPTER 1

1.0 Introduction

This book is supposed to teach you methods of numerical computing that are
practical, efficient, and (insofar as possible) elegant. We presume throughout this
book that you, the reader, have particular tasks that you want to get done. We view
our job as educating you on how to proceed. Occasionally we may try to reroute you
briefly onto a particularly beautiful side road; but by and large, we will guide you
along main highways that lead to practical destinations.

Throughout this book, you will find us fearlessly editorializing, telling you what
you should and shouldn’t do. This prescriptive tone results from a conscious deci-
sion on our part, and we hope that you will not find it irritating. We do not claim
that our advice is infallible! Rather, we are reacting against a tendency, in the text-
book literature of computation, to discuss every possible method that has ever been
invented, without ever offering a practical judgment on relative merit. We do, there-
fore, offer you our practical judgments whenever we can. As you gain experience,
you will form your own opinion of how reliable our advice is. Be assured that it is
not perfect!

We presume that you are able to read computer programs in C++. The ques-
tion, “Why C++?”, is a complicated one. For now, suffice it to say that we wanted a
language with a C-like syntax in the small (because that is most universally readable
by our audience), which had a rich set of facilities for object-oriented programming
(because that is an emphasis of this third edition), and which was highly backward-
compatible with some old, but established and well-tested, tricks in numerical pro-
gramming. That pretty much led us to C++, although Java (and the closely related
C#) were close contenders.

Honesty compels us to point out that in the 20-year history of Numerical Recipes,
we have never been correct in our predictions about the future of programming
languages for scientific programming, not once! At various times we convinced
ourselves that the wave of the scientific future would be . . . Fortran . . . Pascal . . . C
. . . Fortran 90 (or 95 or 2000) . . . Mathematica . . . Matlab . . . C++ or Java . . . . In-
deed, several of these enjoy continuing success and have significant followings (not
including Pascal!). None, however, currently command a majority, or even a large
plurality, of scientific users.

1
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With this edition, we are no longer trying to predict the future of programming
languages. Rather, we want a serviceable way of communicating ideas about scien-
tific programming. We hope that these ideas transcend the language, C++, in which
we are expressing them.

When we include programs in the text, they look like this:

void flmoon(const Int n, const Int nph, Int &jd, Doub &frac) {calendar.h
Our routines begin with an introductory comment summarizing their purpose and explaining
their calling sequence. This routine calculates the phases of the moon. Given an integer n and
a code nph for the phase desired (nph D 0 for new moon, 1 for first quarter, 2 for full, 3 for
last quarter), the routine returns the Julian Day Number jd, and the fractional part of a day
frac to be added to it, of the nth such phase since January, 1900. Greenwich Mean Time is
assumed.

const Doub RAD=3.141592653589793238/180.0;
Int i;
Doub am,as,c,t,t2,xtra;
c=n+nph/4.0; This is how we comment an individual line.
t=c/1236.85;
t2=t*t;
as=359.2242+29.105356*c; You aren’t really intended to understand

this algorithm, but it does work!am=306.0253+385.816918*c+0.010730*t2;
jd=2415020+28*n+7*nph;
xtra=0.75933+1.53058868*c+((1.178e-4)-(1.55e-7)*t)*t2;
if (nph == 0 || nph == 2)

xtra += (0.1734-3.93e-4*t)*sin(RAD*as)-0.4068*sin(RAD*am);
else if (nph == 1 || nph == 3)

xtra += (0.1721-4.0e-4*t)*sin(RAD*as)-0.6280*sin(RAD*am);
else throw("nph is unknown in flmoon"); This indicates an error condition.
i=Int(xtra >= 0.0 ? floor(xtra) : ceil(xtra-1.0));
jd += i;
frac=xtra-i;

}

Note our convention of handling all errors and exceptional cases with a state-
ment like throw("some error message");. Since C++ has no built-in exception
class for type char*, executing this statement results in a fairly rude program abort.
However we will explain in �1.5.1 how to get a more elegant result without having
to modify the source code.

1.0.1 What Numerical Recipes Is Not
We want to use the platform of this introductory section to emphasize what

Numerical Recipes is not:
1. Numerical Recipes is not a textbook on programming, or on best program-

ming practices, or on C++, or on software engineering. We are not opposed to good
programming. We try to communicate good programming practices whenever we
can — but only incidentally to our main purpose, which is to teach how practical
numerical methods actually work. The unity of style and subordination of function
to standardization that is necessary in a good programming (or software engineering)
textbook is just not what we have in mind for this book. Each section in this book has
as its focus a particular computational method. Our goal is to explain and illustrate
that method as clearly as possible. No single programming style is best for all such
methods, and, accordingly, our style varies from section to section.

2. Numerical Recipes is not a program library. That may surprise you if you are
one of the many scientists and engineers who use our source code regularly. What
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makes our code not a program library is that it demands a greater intellectual com-
mitment from the user than a program library ought to do. If you haven’t read a
routine’s accompanying section and gone through the routine line by line to under-
stand how it works, then you use it at great peril! We consider this a feature, not a
bug, because our primary purpose is to teach methods, not provide packaged solu-
tions. This book does not include formal exercises, in part because we consider each
section’s code to be the exercise: If you can understand each line of the code, then
you have probably mastered the section.

There are some fine commercial program libraries [1,2] and integrated numerical
environments [3-5] available. Comparable free resources are available, both program
libraries [6,7] and integrated environments [8-10]. When you want a packaged solu-
tion, we recommend that you use one of these. Numerical Recipes is intended as a
cookbook for cooks, not a restaurant menu for diners.

1.0.2 Frequently Asked Questions

This section is for people who want to jump right in.

1. How do I use NR routines with my own program?

The easiest way is to put a bunch of #include’s at the top of your program.
Always start with nr3.h, since that defines some necessary utility classes and func-
tions (see �1.4 for a lot more about this). For example, here’s how you compute the
mean and variance of the Julian Day numbers of the first 20 full moons after January
1900. (Now there’s a useful pair of quantities!)

#include "nr3.h"
#include "calendar.h"
#include "moment.h"

Int main(void) {
const Int NTOT=20;
Int i,jd,nph=2;
Doub frac,ave,vrnce;
VecDoub data(NTOT);
for (i=0;i<NTOT;i++) {

flmoon(i,nph,jd,frac);
data[i]=jd;

}
avevar(data,ave,vrnce);
cout << "Average = " << setw(12) << ave;
cout << " Variance = " << setw(13) << vrnce << endl;
return 0;

}

Be sure that the NR source code files are in a place that your compiler can find
them to #include. Compile and run the above file. (We can’t tell you how to do this
part.) Output should be something like this:

Average = 2.41532e+06 Variance = 30480.7

2. Yes, but where do I actually get the NR source code as computer files?

You can buy a code subscription, or a one-time code download, at the Web
site http://www.nr.com, or you can get the code on media published by Cambridge
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Figure 1.0.1. The interactive page located at http://www.nr.com/dependencies sorts out the dependen-
cies for any combination of Numerical Recipes routines, giving an ordered list of the necessary #include
files.

University Press (e.g., from Amazon.com or your favorite online or physical book-
store). The code comes with a personal, single-user license (see License and Legal
Information on p. xix). The reason that the book (or its electronic version) and the
code license are sold separately is to help keep down the price of each. Also, making
these products separate meets the needs of more users: Your company or educational
institution may have a site license — ask them.

3. How do I know which files to #include? It’s hard to sort out the dependen-
cies among all the routines.

In the margin next to each code listing is the name of the source code file
that it is in. Make a list of the source code files that you are using. Then go to
http://www.nr.com/dependencies and click on the name of each source code file. The in-
teractive Web page will return a list of the necessary #includes, in the correct order,
to satisfy all dependencies. Figure 1.0.1 will give you an idea of how this works.

4. What is all this Doub, Int, VecDoub, etc., stuff?

We always use defined types, not built-in types, so that they can be redefined if
necessary. The definitions are in nr3.h. Generally, as you can guess, Doub means
double, Int means int, and so forth. Our convention is to begin all defined types
with an uppercase letter. VecDoub is a vector class type. Details on our types are in
�1.4.

5. What are Numerical Recipes Webnotes?

Numerical Recipes Webnotes are documents, accessible on the Web, that in-
clude some code implementation listings, or other highly specialized topics, that
are not included in the paper version of the book. A list of all Webnotes is at
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Tested Operating Systems and Compilers

O/S Compiler

Microsoft Windows XP SP2 Visual C++ ver. 14.00 (Visual Studio 2005)
Microsoft Windows XP SP2 Visual C++ ver. 13.10 (Visual Studio 2003)
Microsoft Windows XP SP2 Intel C++ Compiler ver. 9.1
Novell SUSE Linux 10.1 GNU GCC (g++) ver. 4.1.0
Red Hat Enterprise Linux 4 (64-bit) GNU GCC (g++) ver. 3.4.6 and ver. 4.1.0
Red Hat Linux 7.3 Intel C++ Compiler ver. 9.1
Apple Mac OS X 10.4 (Tiger) Intel Core GNU GCC (g++) ver. 4.0.1

http://www.nr.com/webnotes. By moving some specialized material into Webnotes, we
are able to keep down the size and price of the paper book. Webnotes are automati-
cally included in the electronic version of the book; see next question.

6. I am a post-paper person. I want Numerical Recipes on my laptop. Where
do I get the complete, fully electronic version?

A fully electronic version of Numerical Recipes is available by annual sub-
scription. You can subscribe instead of, or in addition to, owning a paper copy of
the book. A subscription is accessible via the Web, downloadable, printable, and,
unlike any paper version, always up to date with the latest corrections. Since the
electronic version does not share the page limits of the printed version, it will grow
over time by the addition of completely new sections, available only electronically.
This, we think, is the future of Numerical Recipes and perhaps of technical refer-
ence books generally. We anticipate various electronic formats, changing with time
as technologies for display and rights management continuously improve: We place
a big emphasis on user convenience and usability. See http://www.nr.com/electronic for
further information.

7. Are there bugs in NR?

Of course! By now, most NR code has the benefit of long-time use by a large
user community, but new bugs are sure to creep in. Look at http://www.nr.com for
information about known bugs, or to report apparent new ones.

1.0.3 Computational Environment and Program Validation

The code in this book should run without modification on any compiler that
implements the ANSI/ISO C++ standard, as described, for example, in Stroustrup’s
book [11].

As surrogates for the large number of hardware and software configurations, we
have tested all the code in this book on the combinations of operating systems and
compilers shown in the table above.

In validating the code, we have taken it directly from the machine-readable form
of the book’s manuscript, so that we have tested exactly what is printed. (This does
not, of course, mean that the code is bug-free!)
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1.0.4 About References
You will find references, and suggestions for further reading, listed at the end

of most sections of this book. References are cited in the text by bracketed numbers
like this [12].

We do not pretend to any degree of bibliographical completeness in this book.
For topics where a substantial secondary literature exists (discussion in textbooks,
reviews, etc.) we often limit our references to a few of the more useful secondary
sources, especially those with good references to the primary literature. Where the
existing secondary literature is insufficient, we give references to a few primary
sources that are intended to serve as starting points for further reading, not as com-
plete bibliographies for the field.

Since progress is ongoing, it is inevitable that our references for many topics are
already, or will soon become, out of date. We have tried to include older references
that are good for “forward” Web searching: A search for more recent papers that cite
the references given should lead you to the most current work.

Web references and URLs present a problem, because there is no way for us to
guarantee that they will still be there when you look for them. A date like 2007+
means “it was there in 2007.” We try to give citations that are complete enough for
you to find the document by Web search, even if it has moved from the location listed.

The order in which references are listed is not necessarily significant. It re-
flects a compromise between listing cited references in the order cited, and listing
suggestions for further reading in a roughly prioritized order, with the most useful
ones first.

1.0.5 About “Advanced Topics”
Material set in smaller type, like this, signals an “advanced topic,” either one outside of

the main argument of the chapter, or else one requiring of you more than the usual assumed
mathematical background, or else (in a few cases) a discussion that is more speculative or
an algorithm that is less well tested. Nothing important will be lost if you skip the advanced
topics on a first reading of the book.

Here is a function for getting the Julian Day Number from a calendar date.

Int julday(const Int mm, const Int id, const Int iyyy) {calendar.h
In this routine julday returns the Julian Day Number that begins at noon of the calendar date
specified by month mm, day id, and year iyyy, all integer variables. Positive year signifies A.D.;
negative, B.C. Remember that the year after 1 B.C. was 1 A.D.

const Int IGREG=15+31*(10+12*1582); Gregorian Calendar adopted Oct. 15, 1582.
Int ja,jul,jy=iyyy,jm;
if (jy == 0) throw("julday: there is no year zero.");
if (jy < 0) ++jy;
if (mm > 2) {

jm=mm+1;
} else {

--jy;
jm=mm+13;

}
jul = Int(floor(365.25*jy)+floor(30.6001*jm)+id+1720995);
if (id+31*(mm+12*iyyy) >= IGREG) { Test whether to change to Gregorian Cal-

endar.ja=Int(0.01*jy);
jul += 2-ja+Int(0.25*ja);

}
return jul;

}
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And here is its inverse.

void caldat(const Int julian, Int &mm, Int &id, Int &iyyy) { calendar.h
Inverse of the function julday given above. Here julian is input as a Julian Day Number, and
the routine outputs mm,id, and iyyy as the month, day, and year on which the specified Julian
Day started at noon.

const Int IGREG=2299161;
Int ja,jalpha,jb,jc,jd,je;

if (julian >= IGREG) { Cross-over to Gregorian Calendar produces this correc-
tion.jalpha=Int((Doub(julian-1867216)-0.25)/36524.25);

ja=julian+1+jalpha-Int(0.25*jalpha);
} else if (julian < 0) { Make day number positive by adding integer number of

Julian centuries, then subtract them off
at the end.

ja=julian+36525*(1-julian/36525);
} else

ja=julian;
jb=ja+1524;
jc=Int(6680.0+(Doub(jb-2439870)-122.1)/365.25);
jd=Int(365*jc+(0.25*jc));
je=Int((jb-jd)/30.6001);
id=jb-jd-Int(30.6001*je);
mm=je-1;
if (mm > 12) mm -= 12;
iyyy=jc-4715;
if (mm > 2) --iyyy;
if (iyyy <= 0) --iyyy;
if (julian < 0) iyyy -= 100*(1-julian/36525);

}

As an exercise, you might try using these functions, along with flmoon in �1.0, to search
for future occurrences of a full moon on Friday the 13th. (Answers, in time zone GMT minus
5: 9/13/2019 and 8/13/2049.) For additional calendrical algorithms, applicable to various
historical calendars, see [13].

CITED REFERENCES AND FURTHER READING:

Visual Numerics, 2007+, IMSL Numerical Libraries, at http://www.vni.com.[1]

Numerical Algorithms Group, 2007+, NAG Numerical Library, at http://www.nag.co.uk.[2]

Wolfram Research, Inc., 2007+, Mathematica, at http://www.wolfram.com.[3]

The MathWorks, Inc., 2007+, MATLAB, at http://www.mathworks.com.[4]

Maplesoft, Inc., 2007+, Maple, at http://www.maplesoft.com.[5]

GNU Scientific Library, 2007+, at http://www.gnu.org/software/gsl.[6]

Netlib Repository, 2007+, at http://www.netlib.org.[7]

Scilab Scientific Software Package, 2007+, at http://www.scilab.org.[8]

GNU Octave, 2007+, at http://www.gnu.org/software/octave.[9]

R Software Environment for Statistical Computing and Graphics, 2007+, at
http://www.r-project.org.[10]

Stroustrup, B. 1997, The C++ Programming Language, 3rd ed. (Reading, MA: Addison-
Wesley).[11]

Meeus, J. 1982, Astronomical Formulae for Calculators, 2nd ed., revised and enlarged (Rich-
mond, VA: Willmann-Bell).[12]

Hatcher, D.A. 1984, “Simple Formulae for Julian Day Numbers and Calendar Dates,” Quarterly
Journal of the Royal Astronomical Society, vol. 25, pp. 53–55; see also op. cit. 1985, vol. 26,
pp. 151–155, and 1986, vol. 27, pp. 506–507.[13]
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1.1 Error, Accuracy, and Stability
Computers store numbers not with infinite precision but rather in some approxi-

mation that can be packed into a fixed number of bits (binary digits) or bytes (groups
of 8 bits). Almost all computers allow the programmer a choice among several dif-
ferent such representations or data types. Data types can differ in the number of bits
utilized (the wordlength), but also in the more fundamental respect of whether the
stored number is represented in fixed-point (like int) or floating-point (like float
or double) format.

A number in integer representation is exact. Arithmetic between numbers in
integer representation is also exact, with the provisos that (i) the answer is not outside
the range of (usually, signed) integers that can be represented, and (ii) that division
is interpreted as producing an integer result, throwing away any integer remainder.

1.1.1 Floating-Point Representation
In a floating-point representation, a number is represented internally by a sign

bit S (interpreted as plus or minus), an exact integer exponent E, and an exactly
represented binary mantissa M . Taken together these represent the number

S �M � bE�e (1.1.1)

where b is the base of the representation (b D 2 almost always), and e is the bias of
the exponent, a fixed integer constant for any given machine and representation.

S E F Value

float any 1–254 any .�1/S � 2E�127 � 1:F

any 0 nonzero .�1/S � 2�126 � 0:F *

0 0 0 C 0:0

1 0 0 � 0:0

0 255 0 C1

1 255 0 �1

any 255 nonzero NaN

double any 1–2046 any .�1/S � 2E�1023 � 1:F

any 0 nonzero .�1/S � 2�1022 � 0:F *

0 0 0 C 0:0

1 0 0 � 0:0

0 2047 0 C1

1 2047 0 �1

any 2047 nonzero NaN

*unnormalized values
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Several floating-point bit patterns can in principle represent the same number. If
b D 2, for example, a mantissa with leading (high-order) zero bits can be left-shifted,
i.e., multiplied by a power of 2, if the exponent is decreased by a compensating
amount. Bit patterns that are “as left-shifted as they can be” are termed normalized.

Virtually all modern processors share the same floating-point data representa-
tions, namely those specified in IEEE Standard 754-1985 [1]. (For some discussion
of nonstandard processors, see �22.2.) For 32-bit float values, the exponent is rep-
resented in 8 bits (with e D 127), the mantissa in 23; for 64-bit double values, the
exponent is 11 bits (with e D 1023), the mantissa, 52. An additional trick is used for
the mantissa for most nonzero floating values: Since the high-order bit of a properly
normalized mantissa is always one, the stored mantissa bits are viewed as being pre-
ceded by a “phantom” bit with the value 1. In other words, the mantissa M has the
numerical value 1:F , where F (called the fraction) consists of the bits (23 or 52 in
number) that are actually stored. This trick gains a little “bit” of precision.

Here are some examples of IEEE 754 representations of double values:

0 01111111111 0000 (C 48 more zeros) D C1 � 21023�1023 � 1:02 D 1:

1 01111111111 0000 (C 48 more zeros) D �1 � 21023�1023 � 1:02 D �1:

0 01111111111 1000 (C 48 more zeros) D C1 � 21023�1023 � 1:12 D 1:5

0 10000000000 0000 (C 48 more zeros) D C1 � 21024�1023 � 1:02 D 2:

0 10000000001 1010 (C 48 more zeros) D C1 � 21025�1023 � 1:10102 D 6:5
(1.1.2)

You can examine the representation of any value by code like this:

union Udoub {
double d;
unsigned char c[8];

};

void main() {
Udoub u;
u.d = 6.5;
for (int i=7;i>=0;i--) printf("%02x",u.c[i]);
printf("\n");

}

This is C, and deprecated style, but it will work. On most processors, includ-
ing Intel Pentium and successors, you’ll get the printed result 401a000000000000,
which (writing out each hex digit as four binary digits) is the last line in equation
(1.1.2). If you get the bytes (groups of two hex digits) in reverse order, then your
processor is big-endian instead of little-endian: The IEEE 754 standard does not
specify (or care) in which order the bytes in a floating-point value are stored.

The IEEE 754 standard includes representations of positive and negative infin-
ity, positive and negative zero (treated as computationally equivalent, of course), and
also NaN (“not a number”). The table on the previous page gives details of how these
are represented.

The reason for representing some unnormalized values, as shown in the table,
is to make “underflow to zero” more graceful. For a sequence of smaller and smaller
values, after you pass the smallest normalizable value (with magnitude 2�127 or
2�1023; see table), you start right-shifting the leading bit of the mantissa. Although
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you gradually lose precision, you don’t actually underflow to zero until 23 or 52
bits later.

When a routine needs to know properties of the floating-point representation, it
can reference the numeric_limits class, which is part of the C++ Standard Library.
For example, numeric_limits<double>::min() returns the smallest normalized
double value, usually 2�1022 � 2:23 � 10�308. For more on this, see �22.2.

1.1.2 Roundoff Error
Arithmetic among numbers in floating-point representation is not exact, even if

the operands happen to be exactly represented (i.e., have exact values in the form of
equation 1.1.1). For example, two floating numbers are added by first right-shifting
(dividing by two) the mantissa of the smaller (in magnitude) one and simultaneously
increasing its exponent until the two operands have the same exponent. Low-order
(least significant) bits of the smaller operand are lost by this shifting. If the two
operands differ too greatly in magnitude, then the smaller operand is effectively re-
placed by zero, since it is right-shifted to oblivion.

The smallest (in magnitude) floating-point number that, when added to the
floating-point number 1.0, produces a floating-point result different from 1.0 is term-
ed the machine accuracy �m. IEEE 754 standard float has �m about 1:19 � 10�7,
while double has about 2:22 � 10�16. Values like this are accessible as, e.g.,
numeric _limits <double>::epsilon(). (A more detailed discussion of ma-
chine characteristics is in �22.2.) Roughly speaking, the machine accuracy �m is
the fractional accuracy to which floating-point numbers are represented, correspond-
ing to a change of one in the least significant bit of the mantissa. Pretty much any
arithmetic operation among floating numbers should be thought of as introducing an
additional fractional error of at least �m. This type of error is called roundoff error.

It is important to understand that �m is not the smallest floating-point number
that can be represented on a machine. That number depends on how many bits there
are in the exponent, while �m depends on how many bits there are in the mantissa.

Roundoff errors accumulate with increasing amounts of calculation. If, in the
course of obtaining a calculated value, you perform N such arithmetic operations,
you might be so lucky as to have a total roundoff error on the order of

p
N�m, if

the roundoff errors come in randomly up or down. (The square root comes from
a random-walk.) However, this estimate can be very badly off the mark for two
reasons:

(1) It very frequently happens that the regularities of your calculation, or the
peculiarities of your computer, cause the roundoff errors to accumulate preferentially
in one direction. In this case the total will be of order N�m.

(2) Some especially unfavorable occurrences can vastly increase the roundoff
error of single operations. Generally these can be traced to the subtraction of two
very nearly equal numbers, giving a result whose only significant bits are those (few)
low-order ones in which the operands differed. You might think that such a “co-
incidental” subtraction is unlikely to occur. Not always so. Some mathematical
expressions magnify its probability of occurrence tremendously. For example, in the
familiar formula for the solution of a quadratic equation,

x D
�b C

p
b2 � 4ac

2a
(1.1.3)
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the addition becomes delicate and roundoff-prone whenever b > 0 and jacj � b2.
(In �5.6 we will learn how to avoid the problem in this particular case.)

1.1.3 Truncation Error
Roundoff error is a characteristic of computer hardware. There is another, dif-

ferent, kind of error that is a characteristic of the program or algorithm used, indepen-
dent of the hardware on which the program is executed. Many numerical algorithms
compute “discrete” approximations to some desired “continuous” quantity. For ex-
ample, an integral is evaluated numerically by computing a function at a discrete set
of points, rather than at “every” point. Or, a function may be evaluated by summing
a finite number of leading terms in its infinite series, rather than all infinity terms.
In cases like this, there is an adjustable parameter, e.g., the number of points or of
terms, such that the “true” answer is obtained only when that parameter goes to in-
finity. Any practical calculation is done with a finite, but sufficiently large, choice of
that parameter.

The discrepancy between the true answer and the answer obtained in a practical
calculation is called the truncation error. Truncation error would persist even on a
hypothetical, “perfect” computer that had an infinitely accurate representation and no
roundoff error. As a general rule there is not much that a programmer can do about
roundoff error, other than to choose algorithms that do not magnify it unnecessarily
(see discussion of “stability” below). Truncation error, on the other hand, is entirely
under the programmer’s control. In fact, it is only a slight exaggeration to say that
clever minimization of truncation error is practically the entire content of the field of
numerical analysis!

Most of the time, truncation error and roundoff error do not strongly interact
with one another. A calculation can be imagined as having, first, the truncation error
that it would have if run on an infinite-precision computer, “plus” the roundoff error
associated with the number of operations performed.

1.1.4 Stability
Sometimes an otherwise attractive method can be unstable. This means that

any roundoff error that becomes “mixed into” the calculation at an early stage is
successively magnified until it comes to swamp the true answer. An unstable method
would be useful on a hypothetical, perfect computer; but in this imperfect world it
is necessary for us to require that algorithms be stable — or if unstable that we use
them with great caution.

Here is a simple, if somewhat artificial, example of an unstable algorithm: Sup-
pose that it is desired to calculate all integer powers of the so-called “Golden Mean,”
the number given by

� �

p
5 � 1

2
� 0:61803398 (1.1.4)

It turns out (you can easily verify) that the powers �n satisfy a simple recursion
relation,

�nC1 D �n�1 � �n (1.1.5)

Thus, knowing the first two values �0 D 1 and �1 D 0:61803398, we can suc-
cessively apply (1.1.5) performing only a single subtraction, rather than a slower
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multiplication by �, at each stage.
Unfortunately, the recurrence (1.1.5) also has another solution, namely the

value �1
2
.
p
5C 1/. Since the recurrence is linear, and since this undesired solution

has magnitude greater than unity, any small admixture of it introduced by roundoff
errors will grow exponentially. On a typical machine, using a 32-bit float, (1.1.5)
starts to give completely wrong answers by about n D 16, at which point �n is down
to only 10�4. The recurrence (1.1.5) is unstable and cannot be used for the purpose
stated.

We will encounter the question of stability in many more sophisticated guises
later in this book.

CITED REFERENCES AND FURTHER READING:

IEEE, 1985, ANSI/IEEE Std 754–1985: IEEE Standard for Binary Floating-Point Numbers (New
York: IEEE).[1]

Stoer, J., and Bulirsch, R. 2002, Introduction to Numerical Analysis, 3rd ed. (New York: Springer),
Chapter 1.

Kahaner, D., Moler, C., and Nash, S. 1989, Numerical Methods and Software (Englewood Cliffs,
NJ: Prentice-Hall), Chapter 2.

Johnson, L.W., and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: Addison-
Wesley), �1.3.

Wilkinson, J.H. 1964, Rounding Errors in Algebraic Processes (Englewood Cliffs, NJ: Prentice-
Hall).

1.2 C Family Syntax

Not only C++, but also Java, C#, and (to varying degrees) other computer lan-
guages, share a lot of small-scale syntax with the older C language [1]. By small
scale, we mean operations on built-in types, simple expressions, control structures,
and the like. In this section, we review some of the basics, give some hints on good
programming, and mention some of our conventions and habits.

1.2.1 Operators
A first piece of advice might seem superfluous if it were not so often ignored:

You should learn all the C operators and their precedence and associativity rules.
You might not yourself want to write

n << 1 | 1

as a synonym for 2*n+1 (for positive integer n), but you definitely do need to be able
to see at a glance that

n << 1 + 1

is not at all the same thing! Please study the table on the next page while you brush
your teeth every night. While the occasional set of unnecessary parentheses, for
clarity, is hardly a sin, code that is habitually overparenthesized is annoying and hard
to read.
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Operator Precedence and Associativity Rules in C and C++

:: scope resolution left-to-right

() function call left-to-right
[] array element (subscripting)
. member selection
-> member selection (by pointer)
++ post increment right-to-left
-- post decrement

! logical not right-to-left
~ bitwise complement
- unary minus
++ pre increment
-- pre decrement
& address of
* contents of (dereference)
new create
delete destroy
(type) cast to type

sizeof size in bytes

* multiply left-to-right
/ divide
% remainder

+ add left-to-right
- subtract

<< bitwise left shift left-to-right
>> bitwise right shift

< arithmetic less than left-to-right
> arithmetic greater than
<= arithmetic less than or equal to
>= arithmetic greater than or equal to

== arithmetic equal left-to-right
!= arithmetic not equal

& bitwise and left-to-right

^ bitwise exclusive or left-to-right

| bitwise or left-to-right

&& logical and left-to-right

|| logical or left-to-right

? : conditional expression right-to-left

= assignment operator right-to-left
also += -= *= /= %=

<<= >>= &= ^= |=

, sequential expression left-to-right
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1.2.2 Control Structures
These should all be familiar to you.
Iteration. In C family languages simple iteration is performed with a for

loop, for example

for (j=2;j<=1000;j++) {
b[j]=a[j-1];
a[j-1]=j;

}

It is conventional to indent the block of code that is acted upon by the control struc-
ture, leaving the structure itself unindented. We like to put the initial curly brace on
the same line as the for statement, instead of on the next line. This saves a full line
of white space, and our publisher loves us for it.

Conditional. The conditional or if structure looks, in full generality, like
this:

if (...) {
...

}
else if (...) {

...
}
else {

...
}

However, since compound-statement curly braces are required only when there is
more than one statement in a block, the if construction can be somewhat less ex-
plicit than that shown above. Some care must be exercised in constructing nested if
clauses. For example, consider the following:

if (b > 3)
if (a > 3) b += 1;

else b -= 1; /* questionable! */

As judged by the indentation used on successive lines, the intent of the writer of this
code is the following: ‘If b is greater than 3 and a is greater than 3, then increment
b. If b is not greater than 3, then decrement b.’ According to the rules, however, the
actual meaning is ‘If b is greater than 3, then evaluate a. If a is greater than 3, then
increment b, and if a is less than or equal to 3, decrement b.’ The point is that an else
clause is associated with the most recent open if statement, no matter how you lay it
out on the page. Such confusions in meaning are easily resolved by the inclusion of
braces that clarify your intent and improve the program. The above fragment should
be written as

if (b > 3) {
if (a > 3) b += 1;

} else {
b -= 1;

}

While iteration. Alternative to the for iteration is the while structure, for
example,
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while (n < 1000) {
n *= 2;
j += 1;

}

The control clause (in this case n < 1000) is evaluated before each iteration. If the
clause is not true, the enclosed statements will not be executed. In particular, if this
code is encountered at a time when n is greater than or equal to 1000, the statements
will not even be executed once.

Do-While iteration. Companion to the while iteration is a related control
structure that tests its control clause at the end of each iteration:

do {
n *= 2;
j += 1;

} while (n < 1000);

In this case, the enclosed statements will be executed at least once, independent of
the initial value of n.

Break and Continue. You use the break statement when you have a loop that
is to be repeated indefinitely until some condition tested somewhere in the middle of
the loop (and possibly tested in more than one place) becomes true. At that point you
wish to exit the loop and proceed with what comes after it. In C family languages
the simple break statement terminates execution of the innermost for, while, do,
or switch construction and proceeds to the next sequential instruction. A typical
usage might be

for(;;) {
... (statements before the test)
if (...) break;
... (statements after the test)

}
... (next sequential instruction)

Companion to break is continue, which transfers program control to the end
of the body of the smallest enclosing for, while, or do statement, but just inside
that body’s terminating curly brace. In general, this results in the execution of the
next loop test associated with that body.

1.2.3 How Tricky Is Too Tricky?
Every programmer is occasionally tempted to write a line or two of code that is

so elegantly tricky that all who read it will stand in awe of its author’s intelligence.
Poetic justice is that it is usually that same programmer who gets stumped, later on,
trying to understand his or her own creation. You might momentarily be proud of
yourself at writing the single line

k=(2-j)*(1+3*j)/2;

if you want to permute cyclically one of the values j D .0; 1; 2/ into respectively
k D .1; 2; 0/. You will regret it later, however. Better, and likely also faster, is
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k=j+1;
if (k == 3) k=0;

On the other hand, it can also be a mistake, or at least suboptimal, to be too
ploddingly literal, as in

switch (j) {
case 0: k=1; break;
case 1: k=2; break;
case 2: k=0; break;
default: {

cerr << "unexpected value for j";
exit(1);

}
}

This (or similar) might be the house style if you are one of 105 programmers
working for a megacorporation, but if you are programming for your own research,
or within a small group of collaborators, this kind of style will soon cause you to lose
the forest for the trees. You need to find the right personal balance between obscure
trickery and boring prolixity. A good rule is that you should always write code that
is slightly less tricky than you are willing to read, but only slightly.

There is a fine line between being tricky (bad) and being idiomatic (good). Id-
ioms are short expressions that are sufficiently common, or sufficiently self-explan-
atory, that you can use them freely. For example, testing an integer n’s even- or
odd-ness by

if (n & 1) ...

is, we think, much preferable to
if (n % 2 == 1) ...

We similarly like to double a positive integer by writing
n <<= 1;

or construct a mask of n bits by writing

(1 << n) - 1

and so forth.
Some idioms are worthy of consideration even when they are not so immedi-

ately obvious. S.E. Anderson [2] has collected a number of “bit-twiddling hacks,” of
which we show three here:

The test

if ((v&(v-1))==0) {} Is a power of 2 or zero.

tests whether v is a power of 2. If you care about the case v D 0, you have to write

if (v&&((v&(v-1))==0)) {} Is a power of 2.

The idiom

for (c=0;v;c++) v &= v - 1;

gives as c the number of set (D 1) bits in a positive or unsigned integer v (destroying
v in the process). The number of iterations is only as many as the number of bits set.

The idiom

v--;

v |= v >> 1; v |= v >> 2; v |= v >> 4; v |= v >> 8; v |= v >> 16;

v++;
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rounds a positive (or unsigned) 32-bit integer v up to the next power of 2 that is � v.
When we use the bit-twiddling hacks, we’ll include an explanatory comment in

the code.

1.2.4 Utility Macros or Templated Functions
The file nr3.h includes, among other things, definitions for the functions

MAX(a,b)

MIN(a,b)

SWAP(a,b)

SIGN(a,b)

These are all self-explanatory, except possibly the last. SIGN(a,b) returns a value
with the same magnitude as a and the same sign as b. These functions are all imple-
mented as templated inline functions, so that they can be used for all argument types
that make sense semantically. Implementation as macros is also possible.

CITED REFERENCES AND FURTHER READING:

Harbison, S.P., and Steele, G.L., Jr. 2002, C: A Reference Manual, 5th ed. (Englewood Cliffs,
NJ: Prentice-Hall).[1]

Anderson, S.E. 2006, “Bit Twiddling Hacks,” at http://graphics.stanford.edu/~seander/
bithacks.html.[2]

1.3 Objects, Classes, and Inheritance

An object or class (the terms are interchangeable) is a program structure that
groups together some variables, or functions, or both, in such a way that all the in-
cluded variables or functions “see” each other and can interact intimately, while most
of this internal structure is hidden from other program structures and units. Objects
make possible object-oriented programming (OOP), which has become recognized
as the almost unique successful paradigm for creating complex software. The key
insight in OOP is that objects have state and behavior. The state of the object is
described by the values stored in its member variables, while the possible behavior
is determined by the member functions. We will use objects in other ways as well.

The terminology surrounding OOP can be confusing. Objects, classes, and
structures pretty much refer to the same thing. Member functions in a class are often
referred to as methods belonging to that class. In C++, objects are defined with either
the keyword class or the keyword struct. These differ, however, in the details of
how rigorously they hide the object’s internals from public view. Specifically,

struct SomeName { ...

is defined as being the same as

class SomeName {

public: ...

In this book we always use struct. This is not because we deprecate the use of
public and private access specifiers in OOP, but only because such access control
would add little to understanding the underlying numerical methods that are the focus
of this book. In fact, access specifiers could impede your understanding, because
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you would be constantly moving things from private to public (and back again) as
you program different test cases and want to examine different internal, normally
private, variables.

Because our classes are declared by struct, not class, use of the word “class”
is potentially confusing, and we will usually try to avoid it. So “object” means
struct, which is really a class!

If you are an OOP beginner, it is important to understand the distinction between
defining an object and instantiating it. You define an object by writing code like this:

struct Twovar {
Doub a,b;
Twovar(const Doub aa, const Doub bb) : a(aa), b(bb) {}
Doub sum() {return a+b;}
Doub diff() {return a-b;}

};

This code does not create a Twovar object. It only tells the compiler how to create
one when, later in your program, you tell it to do so, for example by a declaration
like,

Twovar mytwovar(3.,5.);

which invokes the Twovar constructor and creates an instance of (or instantiates)
a Twovar. In this example, the constructor also sets the internal variables a and
b to 3 and 5, respectively. You can have any number of simultaneously existing,
noninteracting, instances:

Twovar anothertwovar(4.,6.);

Twovar athirdtwovar(7.,8.);

We have already promised you that this book is not a textbook in OOP, or the C++

language; so we will go no farther here. If you need more, good references are [1-4].

1.3.1 Simple Uses of Objects
We use objects in various ways, ranging from trivial to quite complex, depend-

ing on the needs of the specific numerical method that is being discussed. As men-
tioned in �1.0, this lack of consistency means that Numerical Recipes is not a useful
examplar of a program library (or, in an OOP context, a class library). It also means
that, somewhere in this book, you can probably find an example of every possible
way to think about objects in numerical computing! (We hope that you will find this
a plus.)

Object for Grouping Functions. Sometimes an object just collects together a
group of closely related functions, not too differently from the way that you might
use a namespace. For example, a simplification of Chapter 6’s object Erf looks
like:

struct Erf { No constructor needed.
Doub erf(Doub x);

Doub erfc(Doub x);

Doub inverf(Doub p);

Doub inverfc(Doub p);

Doub erfccheb(Doub z);

};

As will be explained in �6.2, the first four methods are the ones intended to be called
by the user, giving the error function, complementary error function, and the two
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corresponding inverse functions. But these methods share some code and also use
common code in the last method, erfccheb, which the user will normally ignore
completely. It therefore makes sense to group the whole collection as an Erf object.
About the only disadvantage of this is that you must instantiate an Erf object before
you can use (say) the erf function:

Erf myerf; The name myerf is arbitrary.
...

Doub y = myerf.erf(3.);

Instantiating the object doesn’t actually do anything here, because Erf contains no
variables (i.e., has no stored state). It just tells the compiler what local name you are
going to use in referring to its member functions. (We would normally use the name
erf for the instance of Erf, but we thought that erf.erf(3.) would be confusing
in the above example.)

Object for Standardizing an Interface. In �6.14 we’ll discuss a number of
useful standard probability distributions, for example, normal, Cauchy, binomial,
Poisson, etc. Each gets its own object definition, for example,

struct Cauchydist {

Doub mu, sig;

Cauchydist(Doub mmu = 0., Doub ssig = 1.) : mu(mmu), sig(ssig) {}

Doub p(Doub x);

Doub cdf(Doub x);

Doub invcdf(Doub p);

};

where the function p returns the probability density, the function cdf returns the
cumulative distribution function (cdf), and the function invcdf returns the inverse
of the cdf. Because the interface is consistent across all the different probability
distributions, you can change which distribution a program is using by changing a
single program line, for example from

Cauchydist mydist();

to

Normaldist mydist();

All subsequent references to functions like mydist.p, mydist.cdf, and so on, are
thus changed automatically. This is hardly OOP at all, but it can be very convenient.

Object for Returning Multiple Values. It often happens that a function com-
putes more than one useful quantity, but you don’t know which one or ones the user
is actually interested in on that particular function call. A convenient use of objects
is to save all the potentially useful results and then let the user grab those that are
of interest. For example, a simplified version of the Fitab structure in Chapter 15,
which fits a straight line y D a C bx to a set of data points xx and yy, looks like
this:

struct Fitab {
Doub a, b;
Fitab(const VecDoub &xx, const VecDoub &yy); Constructor.

};

(We’ll discuss VecDoub and related matters below, in �1.4.) The user calculates
the fit by calling the constructor with the data points as arguments,

Fitab myfit(xx,yy);
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Then the two “answers” a and b are separately available as myfit.a and myfit.b.
We will see more elaborate examples throughout the book.

Objects That Save Internal State for Multiple Uses. This is classic OOP,
worthy of the name. A good example is Chapter 2’s LUdcmp object, which (in abbre-
viated form) looks like this:

struct LUdcmp {

Int n;

MatDoub lu;

LUdcmp(const MatDoub &a); Constructor.
void solve(const VecDoub &b, VecDoub &x);

void inverse(MatDoub &ainv);

Doub det();

};

This object is used to solve linear equations and/or invert a matrix. You use it by cre-
ating an instance with your matrix a as the argument in the constructor. The construc-
tor then computes and stores, in the internal matrix lu, a so-called LU decomposi-
tion of your matrix (see �2.3). Normally you won’t use the matrix lu directly (though
you could if you wanted to). Rather, you now have available the methods solve(),
which returns a solution vector x for any right-hand side b, inverse(), which re-
turns the inverse matrix, and det(), which returns the determinant of your matrix.

You can call any or all of LUdcmp’s methods in any order; you might well want
to call solve multiple times, with different right-hand sides. If you have more than
one matrix in your problem, you create a separate instance of LUdcmp for each one,
for example,

LUdcmp alu(a), aalu(aa);

after which alu.solve() and aalu.solve() are the methods for solving linear

equations for each respective matrix, a and aa; alu.det() and aalu.det() return
the two determinants; and so forth.

We are not finished listing ways to use objects: Several more are discussed in
the next few sections.

1.3.2 Scope Rules and Object Destruction

This last example, LUdcmp, raises the important issue of how to manage an
object’s time and memory usage within your program.

For a large matrix, the LUdcmp constructor does a lot of computation. You
choose exactly where in your program you want this to occur in the obvious way, by
putting the declaration

LUdcmp alu(a);

in just that place. The important distinction between a non-OOP language (like C)
and an OOP language (like C++) is that, in the latter, declarations are not passive
instructions to the compiler, but executable statments at run-time.

The LUdcmp constructor also, for a large matrix, grabs a lot of memory, to store
the matrix lu. How do you take charge of this? That is, how do you communicate
that it should save this state for as long as you might need it for calls to methods like
alu.solve(), but not indefinitely?
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The answer lies in C++’s strict and predictable rules about scope. You can start
a temporary scope at any point by writing an open bracket, “{”. You end that scope
by a matching close bracket, “}”. You can nest scopes in the obvious way. Any
objects that are declared within a scope are destroyed (and their memory resources
returned) when the end of the scope is reached. An example might look like this:

MatDoub a(1000,1000); Create a big matrix,
VecDoub b(1000),x(1000); and a couple of vectors.
...
{ Begin temporary scope.

LUdcmp alu(a); Create object alu.
...
alu.solve(b,x); Use alu.
...

} End temporary scope. Resources in alu are freed.
...
Doub d = alu.det(); ERROR! alu is out of scope.

This example presumes that you have some other use for the matrix a later on. If not,
then the the declaration of a should itself probably be inside the temporary scope.

Be aware that all program blocks delineated by braces are scope units. This
includes the main block associated with a function definition and also blocks associ-
ated with control structures. In code like this,

for (;;) {

...

LUdcmp alu(a);

...

}

a new instance of alu is created at each iteration and then destroyed at the end of that

iteration. This might sometimes be what you intend (if the matrix a changes on each
iteration, for example); but you should be careful not to let it happen unintentionally.

1.3.3 Functions and Functors
Many routines in this book take functions as input. For example, the quadrature

(integration) routines in Chapter 4 take as input the function f .x/ to be integrated.
For a simple case like f .x/ D x2, you code such a function simply as

Doub f(const Doub x) {

return x*x;

}

and pass f as an argument to the routine. However, it is often useful to use a more
general object to communicate the function to the routine. For example, f .x/ may
depend on other variables or parameters that need to be communicated from the
calling program. Or the computation of f .x/ may be associated with other sub-
calculations or information from other parts of the program. In non-OOP program-
ing, this communication is usually accomplished with global variables that pass the
information “over the head” of the routine that receives the function argument f.

C++ provides a better and more elegant solution: function objects or functors.
A functor is simply an object in which the operator () has been overloaded to play
the role of returning a function value. (There is no relation between this use of the
word functor and its different meaning in pure mathematics.) The case f .x/ D x2

would now be coded as



�

�

“nr3” — 2007/5/1 — 20:53 — page 22 — #44
�

�

� �

22 Chapter 1. Preliminaries

struct Square {

Doub operator()(const Doub x) {

return x*x;

}

};

To use this with a quadrature or other routine, you declare an instance of Square
Square g;

and pass g to the routine. Inside the quadrature routine, an invocation of g(x) returns
the function value in the usual way.

In the above example, there’s no point in using a functor instead of a plain
function. But suppose you have a parameter in the problem, for example, f .x/ D
cxp , where c and p are to be communicated from somewhere else in your program.
You can set the parameters via a constructor:

struct Contimespow {

Doub c,p;

Contimespow(const Doub cc, const Doub pp) : c(cc), p(pp) {}

Doub operator()(const Doub x) {

return c*pow(x,p);

}

};

In the calling program, you might declare the instance of Contimespow by
Contimespow h(4.,0.5); Communicate c and p to the functor.

and later pass h to the routine. Clearly you can make the functor much more compli-
cated. For example, it can contain other helper functions to aid in the calculation of
the function value.

So should we implement all our routines to accept only functors and not func-
tions? Luckily, we don’t have to decide. We can write the routines so they can accept
either a function or a functor. A routine accepting only a function to be integrated
from a to b might be declared as

Doub someQuadrature(Doub func(const Doub), const Doub a, const Doub b);

To allow it to accept either functions or functors, we instead make it a templated
function:

template <class T>

Doub someQuadrature(T &func, const Doub a, const Doub b);

Now the compiler figures out whether you are calling someQuadrature with a func-
tion or a functor and generates the appropriate code. If you call the routine in one
place in your program with a function and in another with a functor, the compiler
will handle that too.

We will use this capability to pass functors as arguments in many different
places in the book where function arguments are required. There is a tremendous
gain in flexibility and ease of use.

As a convention, when we write Ftor, we mean a functor like Square or
Contimespow above; when we write fbare, we mean a “bare” function like f above;
and when we write ftor (all in lower case), we mean an instantiation of a functor,
that is, something declared like

Ftor ftor(...); Replace the dots by your parameters, if any.

Of course your names for functors and their instantiations will be different.
Slightly more complicated syntax is involved in passing a function to an object
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that is templated to accept either a function or functor. So if the object is

template <class T>

struct SomeStruct {

SomeStruct(T &func, ...); constructor
...

we would instantiate it with a functor like this:

Ftor ftor;

SomeStruct<Ftor> s(ftor, ...

but with a function like this:

SomeStruct<Doub (const Doub)> s(fbare, ...

In this example, fbare takes a single const Doub argument and returns a Doub.
You must use the arguments and return type for your specific case, of course.

1.3.4 Inheritance
Objects can be defined as deriving from other, already defined, objects. In such

inheritance, the “parent” class is called a base class, while the “child” class is called
a derived class. A derived class has all the methods and stored state of its base class,
plus it can add any new ones.

“Is-a” Relationships. The most straightforward use of inheritance is to de-
scribe so-called is-a relationships. OOP texts are full of examples where the base
class is ZooAnimal and a derived class is Lion. In other words, Lion “is-a” ZooAni-
mal. The base class has methods common to all ZooAnimals, for example eat()
and sleep(), while the derived class extends the base class with additional methods
specific to Lion, for example roar() and eat_visitor().

In this book we use is-a inheritance less often than you might expect. Except
in some highly stylized situations, like optimized matrix classes (“triangular matrix
is-a matrix”), we find that the diversity of tasks in scientific computing does not
lend itself to strict is-a hierarchies. There are exceptions, however. For example,
in Chapter 7, we define an object Ran with methods for returning uniform random
deviates of various types (e.g., Int or Doub). Later in the chapter, we define objects
for returning other kinds of random deviates, for example normal or binomial. These
are defined as derived classes of Ran, for example,

struct Binomialdev : Ran {};

so that they can share the machinery already in Ran. This is a true is-a relationship,
because “binomial deviate is-a random deviate.”

Another example occurs in Chapter 13, where objects Daub4, Daub4i, and
Daubs are all derived from the Wavelet base class. Here Wavelet is an abstract
base class or ABC [1,4] that has no content of its own. Rather, it merely specifies
interfaces for all the methods that any Wavelet is required to have. The relationship
is nevertheless is-a: “Daub4 is-a Wavelet”.

“Prerequisite” Relationships. Not for any dogmatic reason, but simply be-
cause it is convenient, we frequently use inheritance to pass on to an object a set of
methods that it needs as prerequisites. This is especially true when the same set of
prerequisites is used by more than one object. In this use of inheritance, the base
class has no particular ZooAnimal unity; it may be a grab-bag. There is not a logical
is-a relationship between the base and derived classes.

An example in Chapter 10 is Bracketmethod, which is a base class for several
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minimization routines, but which simply provides a common method for the initial
bracketing of a minimum. In Chapter 7, the Hashtable object provides prerequisite
methods to its derived classes Hash and Mhash, but one cannot say, “Mhash is-a
Hashtable” in any meaningful way. An extreme example, in Chapter 6, is the base
class Gauleg18, which does nothing except provide a bunch of constants for Gauss-
Legendre integration to derived classes Beta and Gamma, both of which need them.
Similarly, long lists of constants are provided to the routines StepperDopr853 and
StepperRoss in Chapter 17 by base classes to avoid cluttering the coding of the
algorithms.

Partial Abstraction. Inheritance can be used in more complicated or situation-
specific ways. For example, consider Chapter 4, where elementary quadrature rules
such as Trapzd and Midpnt are used as building blocks to construct more elaborate
quadrature algorithms. The key feature these simple rules share is a mechanism for
adding more points to an existing approximation to an integral to get the “next” stage
of refinement. This suggests deriving these objects from an abstract base clase called
Quadrature, which specifies that all objects derived from it must have a next()
method. This is not a complete specification of a common is-a interface; it abstracts
only one feature that turns out to be useful.

For example, in �4.6, the Stiel object invokes, in different situations, two dif-
ferent quadrature objects, Trapzd and DErule. These are not interchangeable. They
have different constructor arguments and could not easily both be made ZooAnimals
(as it were). Stiel of course knows about their differences. However, one of
Stiel’s methods, quad(), doesn’t (and shouldn’t) know about these differences.
It uses only the method next(), which exists, with different definitions, in both
Trapzd and DErule.

While there are several different ways to deal with situations like this, an easy
one is available once Trapzd and DErule have been given a common abstract base
class Quadrature that contains nothing except a virtual interface to next. In a
case like this, the base class is a minor design feature as far as the implementation of
Stiel is concerned, almost an afterthought, rather than being the apex of a top-down
design. As long as the usage is clear, there is nothing wrong with this.

Chapter 17, which discusses ordinary differential equations, has some even
more complicated examples that combine inheritance and templating. We defer fur-
ther discussion to there.

CITED REFERENCES AND FURTHER READING:

Stroustrup, B. 1997, The C++ Programming Language, 3rd ed. (Reading, MA: Addison-
Wesley).[1]

Lippman, S.B., Lajoie, J., and Moo, B.E. 2005, C++ Primer, 4th ed. (Boston: Addison-Wesley).[2]

Keogh, J., and Giannini, M. 2004, OOP Demystified (Emeryville, CA: McGraw-Hill/Osborne).[3]

Cline, M., Lomow, G., and Girou, M. 1999, C++ FAQs, 2nd ed. (Boston: Addison-Wesley).[4]

1.4 Vector and Matrix Objects

The C++ Standard Library [1] includes a perfectly good vector<> template
class. About the only criticism that one can make of it is that it is so feature-rich
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that some compiler vendors neglect to squeeze the last little bit of performance out
of its most elementary operations, for example returning an element by its subscript.
That performance is extremely important in scientific applications; its occasional
absence in C++ compilers is a main reason that many scientists still (as we write)
program in C, or even in Fortran!

Also included in the C++ Standard Library is the class valarray<>. At one
time, this was supposed to be a vector-like class that was optimized for numerical
computation, including some features associated with matrices and multidimensional
arrays. However, as reported by one participant,

The valarray classes were not designed very well. In fact, nobody tried to
determine whether the final specification worked. This happened because no-
body felt “responsible” for these classes. The people who introduced valarrays
to the C++ standard library left the committee a long time before the standard
was finished. [1]

The result of this history is that C++, at least now, has a good (but not always
reliably optimized) class for vectors and no dependable class at all for matrices or
higher-dimensional arrays. What to do? We will adopt a strategy that emphasizes
flexibility and assumes only a minimal set of properties for vectors and matrices.
We will then provide our own, basic, classes for vectors and matrices. For most
compilers, these are at least as efficient as vector<> and other vector and matrix
classes in common use. But if, for you, they’re not, then it is easy to change to a
different set of classes, as we will explain.

1.4.1 Typedefs
Flexibility is achieved by having several layers of typedef type-indirection,

resolved at compile time so that there is no run-time performance penalty. The first
level of type-indirection, not just for vectors and matrices but for virtually all vari-
ables, is that we use user-defined type names instead of C++ fundamental types.
These are defined in nr3.h. If you ever encounter a compiler with peculiar built-
in types, these definitions are the “hook” for making any necessary changes. The
complete list of such definitions is

NR Type Usual Definition Intent

Char char 8-bit signed integer

Uchar unsigned char 8-bit unsigned integer

Int int 32-bit signed integer

Uint unsigned int 32-bit unsigned integer

Llong long long int 64-bit signed integer

Ullong unsigned long long int 64-bit unsigned integer

Doub double 64-bit floating point

Ldoub long double [reserved for future use]

Complex complex<double> 2 � 64-bit floating complex

Bool bool true or false

An example of when you might need to change the typedefs in nr3.h is if your
compiler’s int is not 32 bits, or if it doesn’t recognize the type long long int.
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You might need to substitute vendor-specific types like (in the case of Microsoft)
__int32 and __int64.

The second level of type-indirection returns us to the discussion of vectors and
matrices. The vector and matrix types that appear in Numerical Recipes source
code are as follows. Vectors: VecInt, VecUint, VecChar, VecUchar, VecCharp,
VecLlong, VecUllong, VecDoub, VecDoubp, VecComplex, and VecBool. Matri-
ces: MatInt, MatUint, MatChar, MatUchar, MatLlong, MatUllong, MatDoub,
MatComplex, and MatBool. These should all be understandable, semantically, as
vectors and matrices whose elements are the corresponding user-defined types, above.
Those ending in a “p” have elements that are pointers, e.g., VecCharp is a vector of
pointers to char, that is, char*. If you are wondering why the above list is not
combinatorially complete, it is because we don’t happen to use all possible combi-
nations of Vec, Mat, fundamental type, and pointer in this book. You can add further
analogous types as you need them.

Wait, there’s more! For every vector and matrix type above, we also define types
with the same names plus one of the suffixes “_I”, “_O”, and “_IO”, for example
VecDoub_IO. We use these suffixed types for specifying argument types in function
definitions. The meaning, respectively, is that the argument is “input”, “output”, or
“both input and output”.� The _I types are automatically defined to be const. We
discuss this further in �1.5.2 under the topic of const correctness.

It may seem capricious for us to define such a long list of types when a much
smaller number of templated types would do. The rationale is flexibility: You have a
hook into redefining each and every one of the types individually, according to your
needs for program efficiency, local coding standards, const-correctness, or whatever.
In fact, in nr3.h, all these types are typedef’d to one vector and one matrix class,
along the following lines:

typedef NRvector<Int> VecInt, VecInt_O, VecInt_IO;

typedef const NRvector<Int> VecInt_I;

...

typedef NRvector<Doub> VecDoub, VecDoub_O, VecDoub_IO;

typedef const NRvector<Doub> VecDoub_I;

...

typedef NRmatrix<Int> MatInt, MatInt_O, MatInt_IO;

typedef const NRmatrix<Int> MatInt_I;

...

typedef NRmatrix<Doub> MatDoub, MatDoub_O, MatDoub_IO;

typedef const NRmatrix<Doub> MatDoub_I;

...

So (flexibility, again) you can change the definition of one particular type, like
VecDoub, or else you can change the implementation of all vectors by changing
the definition of NRvector<>. Or, you can just leave things the way we have them
in nr3.h. That ought to work fine in 99.9% of all applications.

1.4.2 Required Methods for Vector and Matrix Classes
The important thing about the vector and matrix classes is not what names they

are typedef’d to, but what methods are assumed for them (and are provided in the
NRvector and NRmatrix template classes). For vectors, the assumed methods are a

�This is a bit of history, and derives from Fortran 90’s very useful INTENT attributes.
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subset of those in the C++ Standard Library vector<> class. If v is a vector of type
NRvector<T>, then we assume the methods:

v() Constructor, zero-length vector.
v(Int n) Constructor, vector of length n.
v(Int n, const T &a) Constructor, initialize all elements to the

value a.
v(Int n, const T *a) Constructor, initialize elements to values in a

C-style array, a[0], a[1], : : :
v(const NRvector &rhs) Copy constructor.
v.size() Returns number of elements in v.
v.resize(Int newn) Resizes v to size newn. We do not assume

that contents are preserved.
v.assign(Int newn, const T &a) Resize v to size newn, and set all elements to

the value a.
v[Int i] Element of v by subscript, either an l-value

and an r-value.
v = rhs Assignment operator. Resizes v if necessary

and makes it a copy of the vector rhs.
typedef T value_type; Makes T available externally (useful in tem-

plated functions or classes).

As we will discuss later in more detail, you can use any vector class you like with
Numerical Recipes, as long as it provides the above basic functionality. For exam-
ple, a brute force way to use the C++ Standard Library vector<> class instead of
NRvector is by the preprocessor directive

#define NRvector vector

(In fact, there is a compiler switch, _USESTDVECTOR_, in the file nr3.h that will do
just this.)

The methods for matrices are closely analogous. If vv is a matrix of type
NRmatrix<T>, then we assume the methods:

vv() Constructor, zero-length vector.
vv(Int n, Int m) Constructor, n� m matrix.
vv(Int n, Int m, const T &a) Constructor, initialize all elements to the

value a.
vv(Int n, Int m, const T *a) Constructor, initialize elements by rows to the

values in a C-style array.
vv(const NRmatrix &rhs) Copy constructor.
vv.nrows() Returns number of rows n.
vv.ncols() Returns number of columns m.
vv.resize(Int newn, Int newm) Resizes vv to newn�newm. We do not assume

that contents are preserved.
vv.assign(Int newn, Int newm, Resizes vv to newn � newm,

const t &a) and sets all elements to the value a.
vv[Int i] Return a pointer to the first element in row i

(not often used by itself).
v[Int i][Int j] Element of vv by subscript, either an l-value

and an r-value.
vv = rhs Assignment operator. Resizes vv if necessary

and makes it a copy of the matrix rhs.
typedef T value_type; Makes T available externally.

For more precise specifications, see �1.4.3.
There is one additional property that we assume of the vector and matrix classes,

namely that all of an object’s elements are stored in sequential order. For a vector,
this means that its elements can be addressed by pointer arithmetic relative to the
first element. For example, if we have
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VecDoub a(100);

Doub *b = &a[0];

then a[i] and b[i] reference the same element, both as an l-value and as an r-
value. This capability is sometimes important for inner-loop efficiency, and it is
also useful for interfacing with legacy code that can handle Doub* arrays, but not
VecDoub vectors. Although the original C++ Standard Library did not guarantee this
behavior, all known implementations of it do so, and the behavior is now required by
an amendment to the standard [2].

For matrices, we analogously assume that storage is by rows within a single
sequential block so that, for example,

Int n=97, m=103;

MatDoub a(n,m);

Doub *b = &a[0][0];

implies that a[i][j] and b[m*i+j] are equivalent.
A few of our routines need the capability of taking as an argument either a vector

or else one row of a matrix. For simplicity, we usually code this using overloading,
as, e.g.,

void someroutine(Doub *v, Int m) { Version for a matrix row.
...

}
inline void someroutine(VecDoub &v) { Version for a vector.

someroutine(&v[0],v.size());
}

For a vector v, a call looks like someroutine(v), while for row i of a matrix vv
it is someroutine(&vv[i][0],vv.ncols()). While the simpler argument vv[i]
would in fact work in our implementation of NRmatrix, it might not work in some
other matrix class that guarantees sequential storage but has the return type for a
single subscript different from T*.

1.4.3 Implementations in nr3.h
For reference, here is a complete declaration of NRvector.

template <class T>
class NRvector {
private:

int nn; Size of array, indices 0..nn-1.
T *v; Pointer to data array.

public:
NRvector(); Default constructor.
explicit NRvector(int n); Construct vector of size n.
NRvector(int n, const T &a); Initialize to constant value a.
NRvector(int n, const T *a); Initialize to values in C-style array a.
NRvector(const NRvector &rhs); Copy constructor.
NRvector & operator=(const NRvector &rhs); Assignment operator.
typedef T value_type; Make T available.
inline T & operator[](const int i); Return element number i.
inline const T & operator[](const int i) const; const version.
inline int size() const; Return size of vector.
void resize(int newn); Resize, losing contents.
void assign(int newn, const T &a); Resize and assign a to every element.
~NRvector(); Destructor.

};
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The implementations are straightforward and can be found in the file nr3.h. The
only issues requiring finesse are the consistent treatment of zero-length vectors and
the avoidance of unnecessary resize operations.

A complete declaration of NRmatrix is

template <class T>
class NRmatrix {
private:

int nn; Number of rows and columns. Index
range is 0..nn-1, 0..mm-1.int mm;

T **v; Storage for data.
public:

NRmatrix(); Default constructor.
NRmatrix(int n, int m); Construct n� m matrix.
NRmatrix(int n, int m, const T &a); Initialize to constant value a.
NRmatrix(int n, int m, const T *a); Initialize to values in C-style array a.
NRmatrix(const NRmatrix &rhs); Copy constructor.
NRmatrix & operator=(const NRmatrix &rhs); Assignment operator.
typedef T value_type; Make T available.
inline T* operator[](const int i); Subscripting: pointer to row i.
inline const T* operator[](const int i) const; const version.
inline int nrows() const; Return number of rows.
inline int ncols() const; Return number of columns.
void resize(int newn, int newm); Resize, losing contents.
void assign(int newn, int newm, const T &a); Resize and assign a to every element.
~NRmatrix(); Destructor.

};

A couple of implementation details in NRmatrix are worth commenting on.
The private variable **v points not to the data but rather to an array of pointers to the
data rows. Memory allocation of this array is separate from the allocation of space
for the actual data. The data space is allocated as a single block, not separately for
each row. For matrices of zero size, we have to account for the separate possibilities
that there are zero rows, or that there are a finite number of rows, but each with zero
columns. So, for example, one of the constructors looks like this:

template <class T>
NRmatrix<T>::NRmatrix(int n, int m) : nn(n), mm(m), v(n>0 ? new T*[n] : NULL)
{

int i,nel=m*n;
if (v) v[0] = nel>0 ? new T[nel] : NULL;
for (i=1;i<n;i++) v[i] = v[i-1] + m;

}

Finally, it matters a lot whether your compiler honors the inline directives in
NRvector and NRmatrix above. If it doesn’t, then you may be doing full function
calls, saving and restoring context within the processor, every time you address a
vector or matrix element. This is tantamount to making C++ useless for most nu-
merical computing! Luckily, as we write, the most commonly used compilers are all
“honorable” in this respect.

CITED REFERENCES AND FURTHER READING:

Josuttis, N.M. 1999, The C++ Standard Library: A Tutorial and Reference (Boston: Addison-
Wesley).[1]

International Standardization Organization 2003, Technical Corrigendum ISO 14882:2003.[2]
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1.5 Some Further Conventions and
Capabilities

We collect in this section some further explanation of C++ language capabilities
and how we use them in this book.

1.5.1 Error and Exception Handling
We already mentioned that we code error conditions with simple throw state-

ments, like this

throw("error foo in routine bah");

If you are programming in an environment that has a defined set of error classes,
and you want to use them, then you’ll need to change these lines in the routines that
you use. Alternatively, without any additional machinery, you can choose between a
couple of different, useful behaviors just by making small changes in nr3.h.

By default, nr3.h redefines throw() by a preprocessor macro,

#define throw(message) \

{printf("ERROR: %s\n in file %s at line %d\n", \

message,__FILE__,__LINE__); \

exit(1);}

This uses standard ANSI C features, also present in C++, to print the source code
file name and line number at which the error occurs. It is inelegant, but perfectly
functional.

Somewhat more functional, and definitely more elegant, is to set nr3.h’s com-
piler switch _USENRERRORCLASS_, which instead substitutes the following code:

struct NRerror {
char *message;
char *file;
int line;
NRerror(char *m, char *f, int l) : message(m), file(f), line(l) {}

};

void NRcatch(NRerror err) {
printf("ERROR: %s\n in file %s at line %d\n",

err.message, err.file, err.line);
exit(1);

}

#define throw(message) throw(NRerror(message,__FILE__,__LINE__));

Now you have a (rudimentary) error class, NRerror, available. You use it by
putting a try : : : catch control structure at any desired point (or points) in your
code, for example (�2.9),

...

try {

Cholesky achol(a);

}

catch (NRerror err) {

NRcatch(err); Executed if Cholesky throws an exception.
}

As shown, the use of the NRcatch function above simply mimics the behavior of the
previous macro in the global context. But you don’t have to use NRcatch at all: You
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can substitute any code that you want for the body of the catch statement. If you
want to distinguish between different kinds of exceptions that may be thrown, you
can use the information returned in err. We’ll let you figure this out yourself. And
of course you are welcome to add more complicated error classes to your own copy
of nr3.h.

1.5.2 Const Correctness
Few topics in discussions about C++ evoke more heat than questions about the

keyword const. We are firm believers in using const wherever possible, to achieve
what is called “const correctness.” Many coding errors are automatically trapped
by the compiler if you have qualified identifiers that should not change with const
when they are declared. Also, using const makes your code much more readable:
When you see const in front of an argument to a function, you know immediately
that the function will not modify the object. Conversely, if const is absent, you
should be able to count on the object being changed somewhere.

We are such strong const believers that we insert const even where it is theo-
retically redundant: If an argument is passed by value to a function, then the function
makes a copy of it. Even if this copy is modified by the function, the original value is
unchanged after the function exits. While this allows you to change, with impunity,
the values of arguments that have been passed by value, this usage is error-prone and
hard to read. If your intention in passing something by value is that it is an input
variable only, then make it clear. So we declare a function f .x/ as, for example,

Doub f(const Doub x);

If in the function you want to use a local variable that is initialized to x but then gets
changed, define a new quantity — don’t use x. If you put const in the declaration,
the compiler will not let you get this wrong.

Using const in your function arguments makes your function more general:
Calling a function that expects a const argument with a non-const variable involves
a “trivial” conversion. But trying to pass a const quantity to a non-const argument
is an error.

A final reason for using const is that it allows certain user-defined conversions
to be made. As discussed in [1], this can be useful if you want to use Numerical
Recipes routines with another matrix/vector class library.

We now need to elaborate on what exactly const does for a nonsimple type
such as a class that is an argument of a function. Basically, it guarantees that the
object is not modified by the function. In other words, the object’s data members are
unchanged. But if a data member is a pointer to some data, and the data itself is not
a member variable, then the data can be changed even though the pointer cannot be.

Let’s look at the implications of this for a function f that takes an NRvec-
tor<Doub> argument a. To avoid unnecessary copying, we always pass vectors
and matrices by reference. Consider the difference between declaring the argument
of a function with and without const:

void f(NRvector<Doub> &a) versus void f(const NRvector<Doub> &a)

The const version promises that f does not modify the data members of a. But a
statement like

a[i] = 4.;
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inside the function definition is in principle perfectly OK — you are modifying the
data pointed to, not the pointer itself.

“Isn’t there some way to protect the data?” you may ask. Yes, there is: You can
declare the return type of the subscript operator, operator[], to be const. This is
why there are two versions of operator[] in the NRvector class,

T & operator[](const int i);
const T & operator[](const int i) const;

The first form returns a reference to a modifiable vector element, while the second re-
turns a nonmodifiable vector element (because the return type has a const in front).

But how does the compiler know which version to invoke when you just write
a[i]? That is specified by the trailing word const in the second version. It
refers not to the returned element, nor to the argument i, but to the object whose
operator[] is being invoked, in our example the vector a. Taken together, the
two versions say this to the compiler: “If the vector a is const, then transfer that
const’ness to the returned element a[i]. If it isn’t, then don’t.”

The remaining question is thus how the compiler determines whether a is const.
In our example, where a is a function argument, it is trivial: The argument is either
declared as const or else it isn’t. In other contexts, a might be const because you
originally declared it as such (and initialized it via constructor arguments), or be-
cause it is a const reference data member in some other object, or for some other,
more arcane, reason.

As you can see, getting const to protect the data is a little complicated. Judg-
ing from the large number of matrix/vector libraries that follow this scheme, many
people feel that the payoff is worthwhile. We urge you always to declare as const
those objects and variables that are not intended to be modified. You do this both at
the time an object is actually created and in the arguments of function declarations
and definitions. You won’t regret making a habit of const correctness.

In �1.4 we defined vector and matrix type names with trailing _I labels, for
example, VecDoub_I and MatInt_I. The _I, which stands for “input to a function,”
means that the type is declared as const. (This is already done in the typedef
statement; you don’t have to repeat it.) The corresponding labels _O and _IO are to
remind you when arguments are not just non-const, but will actually be modified
by the function in whose argument list they appear.

Having rightly put all this emphasis on const correctness, duty compels us
also to recognize the existence of an alternative philosophy, which is to stick with
the more rudimentary view “const protects the container, not the contents.” In this
case you would want only one form of operator[], namely

T & operator[](const int i) const;

It would be invoked whether your vector was passed by const reference or not. In
both cases element i is returned as potentially modifiable. While we are opposed to
this philosophically, it turns out that it does make possible a tricky kind of automatic
type conversion that allows you to use your favorite vector and matrix classes instead
of NRvector and NRmatrix, even if your classes use a syntax completely different
from what we have assumed. For information on this very specialized application,
see [1].
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1.5.3 Abstract Base Class (ABC), or Template?
There is sometimes more than one good way to achieve some end in C++. Heck,

let’s be honest: There is always more than one way. Sometimes the differences
amount to small tweaks, but at other times they embody very different views about
the language. When we make one such choice, and you prefer another, you are going
to be quite annoyed with us. Our defense against this is to avoid foolish consisten-
cies,� and to illustrate as many viewpoints as possible.

A good example is the question of when to use an abstract base class (ABC)
versus a template, when their capabilities overlap. Suppose we have a function func
that can do its (useful) thing on, or using, several different types of objects, call them
ObjA, ObjB, and ObjC. Moreover, func doesn’t need to know much about the object
it interacts with, only that it has some method tellme.

We could implement this setup as an abstract base class:

struct ObjABC { Abstract Base Class for objects with tellme.
virtual void tellme() = 0;

};

struct ObjA : ObjABC { Derived class.
...
void tellme() {...}

};
struct ObjB : ObjABC { Derived class.

...
void tellme() {...}

};
struct ObjC : ObjABC { Derived class.

...
void tellme() {...}

};

void func(ObjABC &x) {
...
x.tellme(); References the appropriate tellme.

}

On the other hand, using a template, we can write code for func without ever
seeing (or even knowing the names of) the objects for which it is intended:

template<class T>

void func(T &x) {

...

x.tellme();

}

That certainly seems easier! Is it better?
Maybe. A disadvantage of templates is that the template must be available to

the compiler every time it encounters a call to func. This is because it actually
compiles a different version of func for every different type of argument T that
it encounters. Unless your code is so large that it cannot easily be compiled as a
single unit, however, this is not much of a disadvantage. On the other side, favoring
templates, is the fact that virtual functions incur a small run-time penalty when they
are called. But this is rarely significant.

The deciding factors in this example relate to software engineering, not per-
formance, and are hidden in the lines with ellipses (...). We haven’t really told
�“A foolish consistency is the hobgoblin of little minds.” —Emerson
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you how closely related ObjA, ObjB, and ObjC are. If they are close, then the ABC
approach offers possibilities for putting more than just tellme into the base class.
Putting things into the base class, whether data or pure virtual methods, lets the com-
piler enforce consistency across the derived classes. If you later write another derived
object ObjD, its consistency will also be enforced. For example, the compiler will
require you to implement a method in every derived class corresponding to every
pure virtual method in the base class.

By contrast, in the template approach, the only enforced consistency will be
that the method tellme exists, and this will only be enforced at the point in the code
where func is actually called with an ObjD argument (if such a point exists), not at
the point where ObjD is defined. Consistency checking in the template approach is
thus somewhat more haphazard.

Laid-back programmers will opt for templates. Up-tight programmers will opt
for ABCs. We opt for. . . both, on different occasions. There can also be other rea-
sons, having to do with subtle features of class derivation or of templates, for choos-
ing one approach over the other. We will point these out as we encounter them in
later chapters. For example, in Chapter 17 we define an abstract base class called
StepperBase for the various “stepper” routines for solving ODEs. The derived
classes implement particular stepping algorithms, and they are templated so they can
accept function or functor arguments (see �1.3.3).

1.5.4 NaN and Floating Point Exceptions
We mentioned in �1.1.1 that the IEEE floating-point standard includes a rep-

resentation for NaN, meaning “not a number.” NaN is distinct from positive and
negative infinity, as well as from every representable number. It can be both a bless-
ing and a curse.

The blessing is that it can be useful to have a value that can be used with mean-
ings like “don’t process me” or “missing data” or “not yet initialized.” To use NaN
in this fashion, you need to be able to set variables to it, and you need to be able to
test for its having been set.

Setting is easy. The “approved” method is to use numeric_limits. In nr3.h
the line

static const Doub NaN = numeric_limits<Doub>::quiet_NaN();

defines a global value NaN, so that you can write things like

x = NaN;

at will. If you ever encounter a compiler that doesn’t do this right (it’s a pretty
obscure corner of the standard library!), then try either

Uint proto_nan[2]=0xffffffff, 0x7fffffff;

double NaN = *( double* )proto_nan;

(which assumes little-endian behavior; cf. �1.1.1) or the self-explanatory

Doub NaN = sqrt(-1.);

which may, however, throw an immediate exception (see below) and thus not work
for this purpose. But, one way or another, you can generally figure out how to get a
NaN constant into your environment.

Testing also requires a bit of (one-time) experimentation: According to the
IEEE standard, NaN is guaranteed to be the only value that is not equal to itself!
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So, the “approved” method of testing whether Doub value x has been set to NaN is

if (x != x) {...} It’s a NaN!

(or test for equality to determine that it’s not a NaN). Unfortunately, at time of writ-
ing, some otherwise perfectly good compilers don’t do this right. Instead, they pro-
vide a macro isnan() that returns true if the argument is NaN, otherwise false.
(Check carefully whether the required #include is math.h or float.h — it varies.)

What, then, is the curse of NaN? It is that some compilers, notably Microsoft,
have poorly thought-out default behaviors in distinguishing quiet NaNs from sig-
nalling NaNs. Both kinds of NaNs are defined in the IEEE floating-point standard.
Quiet NaNs are supposed to be for uses like those above: You can set them, test
them, and propagate them by assignment, or even through other floating operations.
In such uses they are not supposed to signal an exception that causes your program
to abort. Signalling NaNs, on the other hand, are, as the name implies, supposed to
signal exceptions. Signalling NaNs should be generated by invalid operations, such
as the square root or logarithm of a negative number, or pow(0.,0.).

If all NaNs are treated as signalling exceptions, then you can’t make use of
them as we have suggested above. That’s annoying, but OK. On the other hand, if all
NaNs are treated as quiet (the Microsoft default at time of writing), then you will run
long calculations only to find that all the results are NaN — and you have no way of
locating the invalid operation that triggered the propagating cascade of (quiet) NaNs.
That’s not OK. It makes debugging a nightmare. (You can get the same disease if
other floating-point exceptions propagate, for example overflow or division-by-zero.)

Tricks for specific compilers are not within our normal scope. But this one is so
essential that we make it an “exception”: If you are living on planet Microsoft, then
the lines of code,

int cw = _controlfp(0,0);

cw &=~(EM_INVALID | EM_OVERFLOW | EM_ZERODIVIDE );

_controlfp(cw,MCW_EM);

at the beginning of your program will turn NaNs from invalid operations, overflows,
and divides-by-zero into signalling NaNs, and leave all the other NaNs quiet. There
is a compiler switch, _TURNONFPES_ in nr3.h that will do this for you automatically.
(Further options are EM_UNDERFLOW, EM_INEXACT, and EM_DENORMAL, but we think
these are best left quiet.)

1.5.5 Miscellany
� Bounds checking in vectors and matrices, that is, verifying that subscripts are

in range, is expensive. It can easily double or triple the access time to sub-
scripted elements. In their default configuration, the NRvector and NRmatrix
classes never do bounds checking. However, nr3.h has a compiler switch,
_CHECKBOUNDS_, that turns bounds checking on. This is implemented by pre-
processor directives for conditional compilation so there is no performance
penalty when you leave it turned off. This is ugly, but effective.

The vector<> class in the C++ Standard Library takes a different tack. If
you access a vector element by the syntax v[i], there is no bounds checking.
If you instead use the at() method, as v.at(i), then bounds checking is
performed. The obvious weakness of this approach is that you can’t easily
change a lengthy program from one method to the other, as you might want to
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do when debugging.

� The importance to performance of avoiding unnecessary copying of large ob-
jects, such as vectors and matrices, cannot be overemphasized. As already
mentioned, they should always be passed by reference in function arguments.
But you also need to be careful about, or avoid completely, the use of func-
tions whose return type is a large object. This is true even if the return type is a
reference (which is a tricky business anyway). Our experience is that compil-
ers often create temporary objects, using the copy constructor, when the need
to do so is obscure or nonexistent. That is why we so frequently write void
functions that have an argument of type (e.g.) MatDoub_O for returning the
“answer.” (When we do use vector or matrix return types, our excuse is either
that the code is pedagogical, or that the overhead is negligible compared to
some big calculation that has just been done.)

You can check up on your compiler by instrumenting the vector and matrix
classes: Add a static integer variable to the class definition, increment it within
the copy constructor and assignment operator, and look at its value before and
after operations that (you think) should not require any copies. You might be
surprised.

� There are only two routines in Numerical Recipes that use three-dimensional
arrays, rlft3 in �12.6, and solvde in �18.3. The file nr3.h includes a rudi-
mentary class for three-dimensional arrays, mainly to service these two rou-
tines. In many applications, a better way to proceed is to declare a vector of
matrices, for example,

vector<MatDoub> threedee(17);

for (Int i=0;i<17;i++) threedee[i].resize(19,21);

which creates, in effect, a three-dimensional array of size 17 � 19 � 21. You
can address individual components as threedee[i][j][k].

� “Why no namespace?” Industrial-strength programmers will notice that, un-
like the second edition, this third edition of Numerical Recipes does not shield
its function and class names by a NR:: namespace. Therefore, if you are so
bold as to #include every single file in the book, you are dumping on the
order of 500 names into the global namespace, definitely a bad idea!

The explanation, quite simply, is that the vast majority of our users are not
industrial-strength programmers, and most found the NR:: namespace annoy-
ing and confusing. As we emphasized, strongly, in �1.0.1, NR is not a program
library. If you want to create your own personal namespace for NR, please go
ahead.

� In the distant past, Numerical Recipes included provisions for unit- or one-
based, instead of zero-based, array indices. The last such version was pub-
lished in 1992. Zero-based arrays have become so universally accepted that
we no longer support any other option.

CITED REFERENCES AND FURTHER READING:

Numerical Recipes Software 2007, “Using Other Vector and Matrix Libraries,” Numerical Recipes
Webnote No. 1, at http://www.nr.com/webnotes?1 [1]
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Solution of Linear
Algebraic Equations

CHAPTER 2

2.0 Introduction

The most basic task in linear algebra, and perhaps in all of scientific computing,
is to solve for the unknowns in a set of linear algebraic equations. In general, a set
of linear algebraic equations looks like this:

a00x0 C a01x1 C a02x2 C 	 	 	 C a0;N�1xN�1 D b0

a10x0 C a11x1 C a12x2 C 	 	 	 C a1;N�1xN�1 D b1

a20x0 C a21x1 C a22x2 C 	 	 	 C a2;N�1xN�1 D b2

	 	 	 	 	 	

aM�1;0x0 C aM�1;1x1 C 	 	 	 C aM�1;N�1xN�1 D bM�1

(2.0.1)

Here the N unknowns xj , j D 0; 1; : : : ; N � 1 are related by M equations. The
coefficients aij with i D 0; 1; : : : ;M � 1 and j D 0; 1; : : : ; N � 1 are known
numbers, as are the right-hand side quantities bi , i D 0; 1; : : : ;M � 1.

If N D M , then there are as many equations as unknowns, and there is a good
chance of solving for a unique solution set of xj ’s. Otherwise, if N ¤M , things are
even more interesting; we’ll have more to say about this below.

If we write the coefficients aij as a matrix, and the right-hand sides bi as a
column vector,

A D

2664
a00 a01 : : : a0;N�1
a10 a11 : : : a1;N�1

	 	 	

aM�1;0 aM�1;1 : : : aM�1;N�1

3775 b D

2664
b0
b1
	 	 	

bM�1

3775 (2.0.2)

then equation (2.0.1) can be written in matrix form as

A 	 x D b (2.0.3)

Here, and throughout the book, we use a raised dot to denote matrix multiplica-
tion, or the multiplication of a matrix and a vector, or the dot product of two vectors.

37
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This usage is nonstandard, but we think it adds clarity: the dot is, in all of these cases,
a contraction operator that represents the sum over a pair of indices, for example

C D A 	 B ” cik D
X
j

aij bjk

b D A 	 x ” bi D
X
j

aijxj

d D x 	A ” dj D
X
i

xiaij

q D x 	 y ” q D
X
i

xiyi

(2.0.4)

In matrices, by convention, the first index on an element aij denotes its row
and the second index its column. For most purposes you don’t need to know how a
matrix is stored in a computer’s physical memory; you just reference matrix elements
by their two-dimensional addresses, e.g., a34 D a[3][4]. This C++ notation can
in fact hide a variety of subtle and versatile physical storage schemes, see �1.4 and
�1.5.

2.0.1 Nonsingular versus Singular Sets of Equations
You might be wondering why, above, and for the case M D N , we credited

only a “good” chance of solving for the unknowns. Analytically, there can fail to
be a solution (or a unique solution) if one or more of the M equations is a linear
combination of the others, a condition called row degeneracy, or if all equations
contain certain variables only in exactly the same linear combination, called column
degeneracy. It turns out that, for square matrices, row degeneracy implies column
degeneracy, and vice versa. A set of equations that is degenerate is called singular.
We will consider singular matrices in some detail in �2.6.

Numerically, at least two additional things prevent us from getting a good solu-
tion:

� While not exact linear combinations of each other, some of the equations may
be so close to linearly dependent that roundoff errors in the machine render
them linearly dependent at some stage in the solution process. In this case
your numerical procedure will fail, and it can tell you that it has failed.
� Accumulated roundoff errors in the solution process can swamp the true so-

lution. This problem particularly emerges if N is too large. The numerical
procedure does not fail algorithmically. However, it returns a set of x’s that
are wrong, as can be discovered by direct substitution back into the original
equations. The closer a set of equations is to being singular, the more likely
this is to happen, since increasingly close cancellations will occur during the
solution. In fact, the preceding item can be viewed as the special case in which
the loss of significance is unfortunately total.

Much of the sophistication of well-written “linear equation-solving packages”
is devoted to the detection and/or correction of these two pathologies. It is difficult
to give any firm guidelines for when such sophistication is needed, since there is no
such thing as a “typical” linear problem. But here is a rough idea: Linear sets with
N no larger than 20 or 50 are routine if they are not close to singular; they rarely
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require more than the most straightforward methods, even in only single (that is,
float) precision. With double precision, this number can readily be extended toN
as large as perhaps 1000, after which point the limiting factor anyway soon becomes
machine time, not accuracy.

Even larger linear sets, N in the thousands or millions, can be solved when the
coefficients are sparse (that is, mostly zero), by methods that take advantage of the
sparseness. We discuss this further in �2.7.

Unfortunately, one seems just as often to encounter linear problems that, by
their underlying nature, are close to singular. In this case, you might need to resort
to sophisticated methods even for the case of N D 10 (though rarely for N D 5).
Singular value decomposition (�2.6) is a technique that can sometimes turn singular
problems into nonsingular ones, in which case additional sophistication becomes
unnecessary.

2.0.2 Tasks of Computational Linear Algebra
There is much more to linear algebra than just solving a single set of equations

with a single right-hand side. Here, we list the major topics treated in this chapter.
(Chapter 11 continues the subject with discussion of eigenvalue/eigenvector prob-
lems.)

When M D N :

� Solution of the matrix equation A 	 x D b for an unknown vector x (�2.1 –
�2.10).
� Solution of more than one matrix equation A 	xj D bj , for a set of vectors xj ,
j D 0; 1; : : : , each corresponding to a different, known right-hand side vector
bj . In this task the key simplification is that the matrix A is held constant,
while the right-hand sides, the b’s, are changed (�2.1 – �2.10).
� Calculation of the matrix A�1 that is the matrix inverse of a square matrix A,

i.e., A 	 A�1 D A�1 	 A D 1, where 1 is the identity matrix (all zeros except
for ones on the diagonal). This task is equivalent, for an N � N matrix A,
to the previous task with N different bj ’s .j D 0; 1; : : : ; N � 1/, namely the
unit vectors (bj D all zero elements except for 1 in the j th component). The
corresponding x’s are then the columns of the matrix inverse of A (�2.1 and
�2.3).
� Calculation of the determinant of a square matrix A (�2.3).

If M < N , or if M D N but the equations are degenerate, then there are effec-
tively fewer equations than unknowns. In this case there can be either no solution, or
else more than one solution vector x. In the latter event, the solution space consists
of a particular solution xp added to any linear combination of (typically) N � M
vectors (which are said to be in the nullspace of the matrix A). The task of finding
the solution space of A involves

� Singular value decomposition of a matrix A (�2.6).

If there are more equations than unknowns, M > N , there is in general no
solution vector x to equation (2.0.1), and the set of equations is said to be overde-
termined. It happens frequently, however, that the best “compromise” solution is
sought, the one that comes closest to satisfying all equations simultaneously. If
closeness is defined in the least-squares sense, i.e., that the sum of the squares of
the differences between the left- and right-hand sides of equation (2.0.1) be mini-
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mized, then the overdetermined linear problem reduces to a (usually) solvable linear
problem, called the

� Linear least-squares problem.

The reduced set of equations to be solved can be written as theN�N set of equations

.AT 	A/ 	 x D .AT 	 b/ (2.0.5)

where AT denotes the transpose of the matrix A. Equations (2.0.5) are called the
normal equations of the linear least-squares problem. There is a close connection
between singular value decomposition and the linear least-squares problem, and the
latter is also discussed in �2.6. You should be warned that direct solution of the
normal equations (2.0.5) is not generally the best way to find least-squares solutions.

Some other topics in this chapter include

� Iterative improvement of a solution (�2.5)
� Various special forms: symmetric positive-definite (�2.9), tridiagonal (�2.4),

band-diagonal (�2.4), Toeplitz (�2.8), Vandermonde (�2.8), sparse (�2.7)
� Strassen’s “fast matrix inversion” (�2.11).

2.0.3 Software for Linear Algebra
Going beyond what we can include in this book, several good software packages

for linear algebra are available, though not always in C++. LAPACK, a successor
to the venerable LINPACK, was developed at Argonne National Laboratories and
deserves particular mention because it is published, documented, and available for
free use. ScaLAPACK is a version available for parallel architectures. Packages
available commercially include those in the IMSL and NAG libraries.

Sophisticated packages are designed with very large linear systems in mind.
They therefore go to great effort to minimize not only the number of operations,
but also the required storage. Routines for the various tasks are usually provided in
several versions, corresponding to several possible simplifications in the form of the
input coefficient matrix: symmetric, triangular, banded, positive-definite, etc. If you
have a large matrix in one of these forms, you should certainly take advantage of the
increased efficiency provided by these different routines, and not just use the form
provided for general matrices.

There is also a great watershed dividing routines that are direct (i.e., execute
in a predictable number of operations) from routines that are iterative (i.e., attempt
to converge to the desired answer in however many steps are necessary). Iterative
methods become preferable when the battle against loss of significance is in danger
of being lost, either due to large N or because the problem is close to singular. We
will treat iterative methods only incompletely in this book, in �2.7 and in Chapters
19 and 20. These methods are important but mostly beyond our scope. We will,
however, discuss in detail a technique that is on the borderline between direct and
iterative methods, namely the iterative improvement of a solution that has been ob-
tained by direct methods (�2.5).

CITED REFERENCES AND FURTHER READING:

Golub, G.H., and Van Loan, C.F. 1996, Matrix Computations, 3rd ed. (Baltimore: Johns Hopkins
University Press).
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2.1 Gauss-Jordan Elimination
Gauss-Jordan elimination is probably the way you learned to solve linear equa-

tions in high school. (You may have learned it as “Gaussian elimination,” but, strictly
speaking, that term refers to the somewhat different technique discussed in �2.2.) The
basic idea is to add or subtract linear combinations of the given equations until each
equation contains only one of the unknowns, thus giving an immediate solution. You
might also have learned to use the same technique for calculating the inverse of a
matrix.

For solving sets of linear equations, Gauss-Jordan elimination produces both
the solution of the equations for one or more right-hand side vectors b, and also the
matrix inverse A�1. However, its principal deficiencies are (i) that it requires all the
right-hand sides to be stored and manipulated at the same time, and (ii) that when
the inverse matrix is not desired, Gauss-Jordan is three times slower than the best
alternative technique for solving a single linear set (�2.3). The method’s principal
strength is that it is as stable as any other direct method, perhaps even a bit more
stable when full pivoting is used (see �2.1.2).

For inverting a matrix, Gauss-Jordan elimination is about as efficient as any
other direct method. We know of no reason not to use it in this application if you are
sure that the matrix inverse is what you really want.

You might wonder about deficiency (i) above: If we are getting the matrix in-
verse anyway, can’t we later let it multiply a new right-hand side to get an additional
solution? This does work, but it gives an answer that is very susceptible to roundoff
error and not nearly as good as if the new vector had been included with the set of
right-hand side vectors in the first instance.

Thus, Gauss-Jordan elimination should not be your method of first choice for
solving linear equations. The decomposition methods in �2.3 are better. Why do
we discuss Gauss-Jordan at all? Because it is straightforward, solid as a rock, and
a good place for us to introduce the important concept of pivoting which will also
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be important for the methods described later. The actual sequence of operations
performed in Gauss-Jordan elimination is very closely related to that performed by
the routines in the next two sections.

2.1.1 Elimination on Column-Augmented Matrices
For clarity, and to avoid writing endless ellipses (	 	 	 ) we will write out equations

only for the case of four equations and four unknowns, and with three different right-
hand side vectors that are known in advance. You can write bigger matrices and
extend the equations to the case of N � N matrices, with M sets of right-hand side
vectors, in completely analogous fashion. The routine implemented below in �2.1.2
is, of course, general.

Consider the linear matrix equation2664
a00 a01 a02 a03
a10 a11 a12 a13
a20 a21 a22 a23
a30 a31 a32 a33

3775 	
2664
0BB@
x00
x10
x20
x30

1CCA t
0BB@
x01
x11
x21
x31

1CCA t
0BB@
x02
x12
x22
x32

1CCA t
0BB@
y00 y01 y02 y03
y10 y11 y12 y13
y20 y21 y22 y23
y30 y31 y32 y33

1CCA
3775

D

2664
0BB@
b00
b10
b20
b30

1CCA t
0BB@
b01
b11
b21
b31

1CCA t
0BB@
b02
b12
b22
b32

1CCA t
0BB@
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1CCA
3775 (2.1.1)

Here the raised dot (	) signifies matrix multiplication, while the operator t just sig-
nifies column augmentation, that is, removing the abutting parentheses and making
a wider matrix out of the operands of the t operator.

It should not take you long to write out equation (2.1.1) and to see that it simply
states that xij is the i th component (i D 0; 1; 2; 3) of the vector solution of the j th
right-hand side (j D 0; 1; 2), the one whose coefficients are bij ; i D 0; 1; 2; 3; and
that the matrix of unknown coefficients yij is the inverse matrix of aij . In other
words, the matrix solution of

ŒA� 	 Œx0 t x1 t x2 t Y � D Œb0 t b1 t b2 t 1� (2.1.2)

where A and Y are square matrices, the bi ’s and xi ’s are column vectors, and 1 is
the identity matrix, simultaneously solves the linear sets

A 	 x0 D b0 A 	 x1 D b1 A 	 x2 D b2 (2.1.3)

and
A 	 Y D 1 (2.1.4)

Now it is also elementary to verify the following facts about (2.1.1):

� Interchanging any two rows of A and the corresponding rows of the b’s and of
1 does not change (or scramble in any way) the solution x’s and Y . Rather, it
just corresponds to writing the same set of linear equations in a different order.
� Likewise, the solution set is unchanged and in no way scrambled if we replace

any row in A by a linear combination of itself and any other row, as long as
we do the same linear combination of the rows of the b’s and 1 (which then is
no longer the identity matrix, of course).
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� Interchanging any two columns of A gives the same solution set only if we
simultaneously interchange corresponding rows of the x’s and of Y . In other
words, this interchange scrambles the order of the rows in the solution. If we
do this, we will need to unscramble the solution by restoring the rows to their
original order.

Gauss-Jordan elimination uses one or more of the above operations to reduce
the matrix A to the identity matrix. When this is accomplished, the right-hand side
becomes the solution set, as one sees instantly from (2.1.2).

2.1.2 Pivoting

In “Gauss-Jordan elimination with no pivoting,” only the second operation in
the above list is used. The zeroth row is divided by the element a00 (this being a
trivial linear combination of the zeroth row with any other row — zero coefficient
for the other row). Then the right amount of the zeroth row is subtracted from each
other row to make all the remaining ai0’s zero. The zeroth column of A now agrees
with the identity matrix. We move to column 1 and divide row 1 by a11, then subtract
the right amount of row 1 from rows 0, 2, and 3, so as to make their entries in column
1 zero. Column 1 is now reduced to the identity form. And so on for columns 2 and 3.
As we do these operations to A, we of course also do the corresponding operations to
the b’s and to 1 (which by now no longer resembles the identity matrix in any way!).

Obviously we will run into trouble if we ever encounter a zero element on the
(then current) diagonal when we are going to divide by the diagonal element. (The
element that we divide by, incidentally, is called the pivot element or pivot.) Not so
obvious, but true, is the fact that Gauss-Jordan elimination with no pivoting (no use of
the first or third procedures in the above list) is numerically unstable in the presence
of any roundoff error, even when a zero pivot is not encountered. You must never do
Gauss-Jordan elimination (or Gaussian elimination; see below) without pivoting!

So what is this magic pivoting? Nothing more than interchanging rows (partial
pivoting) or rows and columns (full pivoting), so as to put a particularly desirable
element in the diagonal position from which the pivot is about to be selected. Since
we don’t want to mess up the part of the identity matrix that we have already built up,
we can choose among elements that are both (i) on rows below (or on) the one that
is about to be normalized, and also (ii) on columns to the right (or on) the column
we are about to eliminate. Partial pivoting is easier than full pivoting, because we
don’t have to keep track of the permutation of the solution vector. Partial pivoting
makes available as pivots only the elements already in the correct column. It turns
out that partial pivoting is “almost” as good as full pivoting, in a sense that can be
made mathematically precise, but which need not concern us here (for discussion
and references, see [1]). To show you both variants, we do full pivoting in the routine
in this section and partial pivoting in �2.3.

We have to state how to recognize a particularly desirable pivot when we see
one. The answer to this is not completely known theoretically. It is known, both
theoretically and in practice, that simply picking the largest (in magnitude) available
element as the pivot is a very good choice. A curiosity of this procedure, however, is
that the choice of pivot will depend on the original scaling of the equations. If we take
the third linear equation in our original set and multiply it by a factor of a million, it
is almost guaranteed that it will contribute the first pivot; yet the underlying solution
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of the equations is not changed by this multiplication! One therefore sometimes sees
routines which choose as pivot that element which would have been largest if the
original equations had all been scaled to have their largest coefficient normalized to
unity. This is called implicit pivoting. There is some extra bookkeeping to keep track
of the scale factors by which the rows would have been multiplied. (The routines in
�2.3 include implicit pivoting, but the routine in this section does not.)

Finally, let us consider the storage requirements of the method. With a little
reflection you will see that at every stage of the algorithm, either an element of A is
predictably a one or zero (if it is already in a part of the matrix that has been reduced
to identity form) or else the exactly corresponding element of the matrix that started
as 1 is predictably a one or zero (if its mate in A has not been reduced to the identity
form). Therefore the matrix 1 does not have to exist as separate storage: The matrix
inverse of A is gradually built up in A as the original A is destroyed. Likewise, the
solution vectors x can gradually replace the right-hand side vectors b and share the
same storage, since after each column in A is reduced, the corresponding row entry
in the b’s is never again used.

Here is a routine that does Gauss-Jordan elimination with full pivoting, replac-
ing its input matrices by the desired answers. Immediately following is an over-
loaded version for use when there are no right-hand sides, i.e., when you want only
the matrix inverse.

void gaussj(MatDoub_IO &a, MatDoub_IO &b)gaussj.h
Linear equation solution by Gauss-Jordan elimination, equation (2.1.1) above. The input matrix
is a[0..n-1][0..n-1]. b[0..n-1][0..m-1] is input containing the m right-hand side vectors.
On output, a is replaced by its matrix inverse, and b is replaced by the corresponding set of
solution vectors.
{

Int i,icol,irow,j,k,l,ll,n=a.nrows(),m=b.ncols();
Doub big,dum,pivinv;
VecInt indxc(n),indxr(n),ipiv(n); These integer arrays are used for bookkeeping on

the pivoting.for (j=0;j<n;j++) ipiv[j]=0;
for (i=0;i<n;i++) { This is the main loop over the columns to be

reduced.big=0.0;
for (j=0;j<n;j++) This is the outer loop of the search for a pivot

element.if (ipiv[j] != 1)
for (k=0;k<n;k++) {

if (ipiv[k] == 0) {
if (abs(a[j][k]) >= big) {

big=abs(a[j][k]);
irow=j;
icol=k;

}
}

}
++(ipiv[icol]);
We now have the pivot element, so we interchange rows, if needed, to put the pivot
element on the diagonal. The columns are not physically interchanged, only relabeled:
indxc[i], the column of the .iC 1/th pivot element, is the .iC 1/th column that is
reduced, while indxr[i] is the row in which that pivot element was originally located.
If indxr[i] ¤ indxc[i], there is an implied column interchange. With this form of
bookkeeping, the solution b’s will end up in the correct order, and the inverse matrix
will be scrambled by columns.
if (irow != icol) {

for (l=0;l<n;l++) SWAP(a[irow][l],a[icol][l]);
for (l=0;l<m;l++) SWAP(b[irow][l],b[icol][l]);

}
indxr[i]=irow; We are now ready to divide the pivot row by the

pivot element, located at irow and icol.
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indxc[i]=icol;
if (a[icol][icol] == 0.0) throw("gaussj: Singular Matrix");
pivinv=1.0/a[icol][icol];
a[icol][icol]=1.0;
for (l=0;l<n;l++) a[icol][l] *= pivinv;
for (l=0;l<m;l++) b[icol][l] *= pivinv;
for (ll=0;ll<n;ll++) Next, we reduce the rows...

if (ll != icol) { ...except for the pivot one, of course.
dum=a[ll][icol];
a[ll][icol]=0.0;
for (l=0;l<n;l++) a[ll][l] -= a[icol][l]*dum;
for (l=0;l<m;l++) b[ll][l] -= b[icol][l]*dum;

}
}
This is the end of the main loop over columns of the reduction. It only remains to unscram-
ble the solution in view of the column interchanges. We do this by interchanging pairs of
columns in the reverse order that the permutation was built up.
for (l=n-1;l>=0;l--) {

if (indxr[l] != indxc[l])
for (k=0;k<n;k++)

SWAP(a[k][indxr[l]],a[k][indxc[l]]);
} And we are done.

}

void gaussj(MatDoub_IO &a)
Overloaded version with no right-hand sides. Replaces a by its inverse.
{

MatDoub b(a.nrows(),0); Dummy vector with zero columns.
gaussj(a,b);

}

2.1.3 Row versus Column Elimination Strategies
The above discussion can be amplified by a modest amount of formalism. Row opera-

tions on a matrix A correspond to pre- (that is, left-) multiplication by some simple matrix R.
For example, the matrix R with components

Rij D

�
1 if i D j and i ¤ 2; 4
1 if i D 2, j D 4
1 if i D 4, j D 2
0 otherwise

(2.1.5)

effects the interchange of rows 2 and 4. Gauss-Jordan elimination by row operations alone
(including the possibility of partial pivoting) consists of a series of such left-multiplications,
yielding successively

A 	 x D b

.	 	 	R2 	R1 	R0 	A/ 	 x D 	 	 	R2 	R1 	R0 	 b

.1/ 	 x D 	 	 	R2 	R1 	R0 	 b

x D 	 	 	R2 	R1 	R0 	 b

(2.1.6)

The key point is that since the R’s build from right to left, the right-hand side is simply
transformed at each stage from one vector to another.

Column operations, on the other hand, correspond to post-, or right-, multiplications
by simple matrices, call them C. The matrix in equation (2.1.5), if right-multiplied onto a
matrix A, will interchange columns 2 and 4 of A. Elimination by column operations involves
(conceptually) inserting a column operator, and also its inverse, between the matrix A and the
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unknown vector x:

A 	 x D b

A 	C0 	C
�1
0 	 x D b

A 	C0 	C1 	C
�1
1 	C

�1
0 	 x D b

.A 	C0 	C1 	C2 	 	 	 / 	 	 	C
�1
2 	C

�1
1 	C

�1
0 	 x D b

.1/ 	 	 	C�12 	C
�1
1 	C

�1
0 	 x D b

(2.1.7)

which (peeling off the C�1’s one at a time) implies a solution

x D C0 	C1 	C2 	 	 	b (2.1.8)

Notice the essential difference between equation (2.1.8) and equation (2.1.6). In the
latter case, the C’s must be applied to b in the reverse order from that in which they become
known. That is, they must all be stored along the way. This requirement greatly reduces
the usefulness of column operations, generally restricting them to simple permutations, for
example in support of full pivoting.

CITED REFERENCES AND FURTHER READING:

Wilkinson, J.H. 1965, The Algebraic Eigenvalue Problem (New York: Oxford University Press).[1]

Carnahan, B., Luther, H.A., and Wilkes, J.O. 1969, Applied Numerical Methods (New York:
Wiley), Example 5.2, p. 282.

Bevington, P.R., and Robinson, D.K. 2002, Data Reduction and Error Analysis for the Physical
Sciences, 3rd ed. (New York: McGraw-Hill), p. 247.

Westlake, J.R. 1968, A Handbook of Numerical Matrix Inversion and Solution of Linear Equations
(New York: Wiley).

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed.; reprinted
2001 (New York: Dover), �9.3–1.

2.2 Gaussian Elimination with
Backsubstitution

Any discussion of Gaussian elimination with backsubstitution is primarily ped-
agogical. The method stands between full elimination schemes such as Gauss-
Jordan, and triangular decomposition schemes such as will be discussed in the next
section. Gaussian elimination reduces a matrix not all the way to the identity matrix,
but only halfway, to a matrix whose components on the diagonal and above (say)
remain nontrivial. Let us now see what advantages accrue.

Suppose that in doing Gauss-Jordan elimination, as described in �2.1, we at
each stage subtract away rows only below the then-current pivot element. When
a11 is the pivot element, for example, we divide the row 1 by its value (as before),
but now use the pivot row to zero only a21 and a31, not a01 (see equation 2.1.1).
Suppose, also, that we do only partial pivoting, never interchanging columns, so that
the order of the unknowns never needs to be modified.
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Then, when we have done this for all the pivots, we will be left with a reduced
equation that looks like this (in the case of a single right-hand side vector):2664

a000 a001 a002 a003
0 a011 a012 a013
0 0 a022 a023
0 0 0 a033

3775 	
2664
x0
x1
x2
x3

3775 D
2664
b00
b01
b02
b03

3775 (2.2.1)

Here the primes signify that the a’s and b’s do not have their original numerical
values, but have been modified by all the row operations in the elimination to this
point. The procedure up to this point is termed Gaussian elimination.

2.2.1 Backsubstitution
But how do we solve for the x’s? The last x (x3 in this example) is already

isolated, namely
x3 D b

0
3=a
0
33 (2.2.2)

With the last x known we can move to the penultimate x,

x2 D
1

a022
Œb02 � x3a

0
23� (2.2.3)

and then proceed with the x before that one. The typical step is

xi D
1

a0i i

"
b0i �

N�1X
jDiC1

a0ijxj

#
(2.2.4)

The procedure defined by equation (2.2.4) is called backsubstitution. The combi-
nation of Gaussian elimination and backsubstitution yields a solution to the set of
equations.

The advantage of Gaussian elimination and backsubstitution over Gauss-Jordan
elimination is simply that the former is faster in raw operations count: The inner-
most loops of Gauss-Jordan elimination, each containing one subtraction and one
multiplication, are executed N 3 and N 2m times (where there are N equations and
unknowns, and m different right-hand sides). The corresponding loops in Gaussian
elimination are executed only 1

3
N 3 times (only half the matrix is reduced, and the

increasing numbers of predictable zeros reduce the count to one-third), and 1
2
N 2m

times, respectively. Each backsubstitution of a right-hand side is 1
2
N 2 executions of

a similar loop (one multiplication plus one subtraction). For m � N (only a few
right-hand sides) Gaussian elimination thus has about a factor three advantage over
Gauss-Jordan. (We could reduce this advantage to a factor 1.5 by not computing the
inverse matrix as part of the Gauss-Jordan scheme.)

For computing the inverse matrix (which we can view as the case of m D N

right-hand sides, namely the N unit vectors that are the columns of the identity
matrix), Gaussian elimination and backsubstitution at first glance require 1

3
N 3 (ma-

trix reduction)C1
2
N 3 (right-hand side manipulations)C1

2
N 3 (N backsubstitutions)

D 4
3
N 3 loop executions, which is more than theN 3 for Gauss-Jordan. However, the

unit vectors are quite special in containing all zeros except for one element. If this
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is taken into account, the right-side manipulations can be reduced to only 1
6
N 3 loop

executions, and, for matrix inversion, the two methods have identical efficiencies.
Both Gaussian elimination and Gauss-Jordan elimination share the disadvan-

tage that all right-hand sides must be known in advance. The LU decomposition
method in the next section does not share that deficiency, and also has an equally
small operations count, both for solution with any number of right-hand sides and
for matrix inversion.

CITED REFERENCES AND FURTHER READING:

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed.; reprinted
2001 (New York: Dover), �9.3–1.

Isaacson, E., and Keller, H.B. 1966, Analysis of Numerical Methods; reprinted 1994 (New York:
Dover), �2.1.

Johnson, L.W., and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: Addison-
Wesley), �2.2.1.

Westlake, J.R. 1968, A Handbook of Numerical Matrix Inversion and Solution of Linear Equations
(New York: Wiley).

2.3 LU Decomposition and Its Applications

Suppose we are able to write the matrix A as a product of two matrices,

L 	U D A (2.3.1)

where L is lower triangular (has elements only on the diagonal and below) and U
is upper triangular (has elements only on the diagonal and above). For the case of a
4 � 4 matrix A, for example, equation (2.3.1) would look like this:2664
˛00 0 0 0

˛10 ˛11 0 0

˛20 ˛21 ˛22 0

˛30 ˛31 ˛32 ˛33

3775 	
2664
ˇ00 ˇ01 ˇ02 ˇ03
0 ˇ11 ˇ12 ˇ13
0 0 ˇ22 ˇ23
0 0 0 ˇ33

3775 D
2664
a00 a01 a02 a03
a10 a11 a12 a13
a20 a21 a22 a23
a30 a31 a32 a33

3775
(2.3.2)

We can use a decomposition such as (2.3.1) to solve the linear set

A 	 x D .L 	U/ 	 x D L 	 .U 	 x/ D b (2.3.3)

by first solving for the vector y such that

L 	 y D b (2.3.4)

and then solving
U 	 x D y (2.3.5)

What is the advantage of breaking up one linear set into two successive ones?
The advantage is that the solution of a triangular set of equations is quite trivial, as



�

�

“nr3” — 2007/5/1 — 20:53 — page 49 — #71
�

�

� �

2.3 LU Decomposition and Its Applications 49

we have already seen in �2.2 (equation 2.2.4). Thus, equation (2.3.4) can be solved
by forward substitution as follows:

y0 D
b0

˛00

yi D
1

˛i i

�
bi �

i�1X
jD0

˛ijyj

�
i D 1; 2; : : : ; N � 1

(2.3.6)

while (2.3.5) can then be solved by backsubstitution exactly as in equations (2.2.2) –
(2.2.4),

xN�1 D
yN�1

ˇN�1;N�1

xi D
1

ˇi i

�
yi �

N�1X
jDiC1

ˇijxj

�
i D N � 2;N � 3; : : : ; 0

(2.3.7)

Equations (2.3.6) and (2.3.7) total (for each right-hand side b) N 2 executions
of an inner loop containing one multiply and one add. If we have N right-hand sides
that are the unit column vectors (which is the case when we are inverting a matrix),
then taking into account the leading zeros reduces the total execution count of (2.3.6)
from 1

2
N 3 to 1

6
N 3, while (2.3.7) is unchanged at 1

2
N 3.

Notice that, once we have the LU decomposition of A, we can solve with as
many right-hand sides as we then care to, one at a time. This is a distinct advantage
over the methods of �2.1 and �2.2.

2.3.1 Performing the LU Decomposition
How then can we solve for L and U , given A? First, we write out the i ,j th

component of equation (2.3.1) or (2.3.2). That component always is a sum beginning
with

˛i0ˇ0j C 	 	 	 D aij

The number of terms in the sum depends, however, on whether i or j is the smaller
number. We have, in fact, the three cases,

i < j W ˛i0ˇ0j C ˛i1ˇ1j C 	 	 	 C ˛i iˇij D aij (2.3.8)

i D j W ˛i0ˇ0j C ˛i1ˇ1j C 	 	 	 C ˛i i ǰj D aij (2.3.9)

i > j W ˛i0ˇ0j C ˛i1ˇ1j C 	 	 	 C ˛ij ǰj D aij (2.3.10)

Equations (2.3.8) – (2.3.10) total N 2 equations for the N 2 C N unknown ˛’s
and ˇ’s (the diagonal being represented twice). Since the number of unknowns is
greater than the number of equations, we are invited to specify N of the unknowns
arbitrarily and then try to solve for the others. In fact, as we shall see, it is always
possible to take

˛i i � 1 i D 0; : : : ; N � 1 (2.3.11)

A surprising procedure, now, is Crout’s algorithm, which quite trivially solves
the set ofN 2CN equations (2.3.8) – (2.3.11) for all the ˛’s and ˇ’s by just arranging
the equations in a certain order! That order is as follows:
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� Set ˛i i D 1, i D 0; : : : ; N � 1 (equation 2.3.11).
� For each j D 0; 1; 2; : : : ; N � 1 do these two procedures: First, for i D
0; 1; : : : ; j , use (2.3.8), (2.3.9), and (2.3.11) to solve for ˇij , namely

ˇij D aij �

i�1X
kD0

˛ikˇkj (2.3.12)

(When i D 0 in 2.3.12 the summation term is taken to mean zero.) Second,
for i D j C 1; j C 2; : : : ; N � 1 use (2.3.10) to solve for ˛ij , namely

˛ij D
1

ǰj

 
aij �

j�1X
kD0

˛ikˇkj

!
(2.3.13)

Be sure to do both procedures before going on to the next j .

If you work through a few iterations of the above procedure, you will see that
the ˛’s and ˇ’s that occur on the right-hand side of equations (2.3.12) and (2.3.13)
are already determined by the time they are needed. You will also see that every aij
is used only once and never again. This means that the corresponding ˛ij or ˇij can
be stored in the location that the a used to occupy: the decomposition is “in place.”
[The diagonal unity elements ˛i i (equation 2.3.11) are not stored at all.] In brief,
Crout’s method fills in the combined matrix of ˛’s and ˇ’s,2664

ˇ00 ˇ01 ˇ02 ˇ03
˛10 ˇ11 ˇ12 ˇ13
˛20 ˛21 ˇ22 ˇ23
˛30 ˛31 ˛32 ˇ33

3775 (2.3.14)

by columns from left to right, and within each column from top to bottom (see
Figure 2.3.1).

What about pivoting? Pivoting (i.e., selection of a salubrious pivot element for
the division in equation 2.3.13) is absolutely essential for the stability of Crout’s
method. Only partial pivoting (interchange of rows) can be implemented efficiently.
However this is enough to make the method stable. This means, incidentally, that
we don’t actually decompose the matrix A into LU form, but rather we decompose
a rowwise permutation of A. (If we keep track of what that permutation is, this
decomposition is just as useful as the original one would have been.)

Pivoting is slightly subtle in Crout’s algorithm. The key point to notice is that
equation (2.3.12) in the case of i D j (its final application) is exactly the same as
equation (2.3.13) except for the division in the latter equation; in both cases the upper
limit of the sum is k D j � 1 .D i � 1/. This means that we don’t have to commit
ourselves as to whether the diagonal element ǰj is the one that happens to fall on
the diagonal in the first instance, or whether one of the (undivided) ˛ij ’s below it in
the column, i D j C 1; : : : ; N � 1, is to be “promoted” to become the diagonal ˇ.
This can be decided after all the candidates in the column are in hand. As you should
be able to guess by now, we will choose the largest one as the diagonal ˇ (pivot
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c

g
i

b
d

f
h

j

diagonal elements

subdiagonal elements
etc.

etc.

x

x

a

e

Figure 2.3.1. Crout’s algorithm for LU decomposition of a matrix. Elements of the original matrix
are modified in the order indicated by lowercase letters: a, b, c, etc. Shaded boxes show the previously
modified elements that are used in modifying two typical elements, each indicated by an “x”.

element), and then do all the divisions by that element en masse. This is Crout’s
method with partial pivoting. Our implementation has one additional wrinkle: It
initially finds the largest element in each row, and subsequently (when it is looking
for the maximal pivot element) scales the comparison as if we had initially scaled all
the equations to make their maximum coefficient equal to unity; this is the implicit
pivoting mentioned in �2.1.

The inner loop of the LU decomposition, equations (2.3.12) and (2.3.13), re-
sembles the inner loop of matrix multiplication. There is a triple loop over the in-
dices i , j , and k. There are six permutations of the order in which these loops can
be done. The straightforward implementation of Crout’s algorithm corresponds to
the j ik permutation, where the order of the indices is the order of the loops from
outermost to innermost. On modern processors with a hierarchy of cache memory,
and when matrices are stored by rows, the fastest execution time is usually the kij or
ikj ordering. Pivoting is easier with kij ordering, so that is the implementation we
use. This is called “outer product Gaussian elimination” by Golub and Van Loan [1].

LU decomposition is well suited for implementation as an object (a class or
struct). The constructor performs the decomposition, and the object itself stores
the result. Then, a method for forward- and backsubstitution can be called once,
or many times, to solve for one or more right-hand sides. Methods for additional
functionality are also easy to include. The object’s declaration looks like this:
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struct LUdcmpludcmp.h
Object for solving linear equations A � x D b using LU decomposition, and related functions.
{

Int n;
MatDoub lu; Stores the decomposition.
VecInt indx; Stores the permutation.
Doub d; Used by det.
LUdcmp(MatDoub_I &a); Constructor. Argument is the matrix A.
void solve(VecDoub_I &b, VecDoub_O &x); Solve for a single right-hand side.
void solve(MatDoub_I &b, MatDoub_O &x); Solve for multiple right-hand sides.
void inverse(MatDoub_O &ainv); Calculate matrix inverse A�1.
Doub det(); Return determinant of A.
void mprove(VecDoub_I &b, VecDoub_IO &x); Discussed in �2.5.
MatDoub_I &aref; Used only by mprove.

};

Here is the implementation of the constructor, whose argument is the input ma-
trix that is to be LU decomposed. The input matrix is not altered; a copy is made,
on which outer product Gaussian elimination is then done in-place.

LUdcmp::LUdcmp(MatDoub_I &a) : n(a.nrows()), lu(a), aref(a), indx(n) {ludcmp.h
Given a matrix a[0..n-1][0..n-1], this routine replaces it by the LU decomposition of a
rowwise permutation of itself. a is input. On output, it is arranged as in equation (2.3.14)
above; indx[0..n-1] is an output vector that records the row permutation effected by the
partial pivoting; d is output as ˙1 depending on whether the number of row interchanges
was even or odd, respectively. This routine is used in combination with solve to solve linear
equations or invert a matrix.

const Doub TINY=1.0e-40; A small number.
Int i,imax,j,k;
Doub big,temp;
VecDoub vv(n); vv stores the implicit scaling of each row.
d=1.0; No row interchanges yet.
for (i=0;i<n;i++) { Loop over rows to get the implicit scaling infor-

mation.big=0.0;
for (j=0;j<n;j++)

if ((temp=abs(lu[i][j])) > big) big=temp;
if (big == 0.0) throw("Singular matrix in LUdcmp");
No nonzero largest element.
vv[i]=1.0/big; Save the scaling.

}
for (k=0;k<n;k++) { This is the outermost kij loop.

big=0.0; Initialize for the search for largest pivot element.
for (i=k;i<n;i++) {

temp=vv[i]*abs(lu[i][k]);
if (temp > big) { Is the figure of merit for the pivot better than

the best so far?big=temp;
imax=i;

}
}
if (k != imax) { Do we need to interchange rows?

for (j=0;j<n;j++) { Yes, do so...
temp=lu[imax][j];
lu[imax][j]=lu[k][j];
lu[k][j]=temp;

}
d = -d; ...and change the parity of d.
vv[imax]=vv[k]; Also interchange the scale factor.

}
indx[k]=imax;
if (lu[k][k] == 0.0) lu[k][k]=TINY;
If the pivot element is zero, the matrix is singular (at least to the precision of the
algorithm). For some applications on singular matrices, it is desirable to substitute
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TINY for zero.
for (i=k+1;i<n;i++) {

temp=lu[i][k] /= lu[k][k]; Divide by the pivot element.
for (j=k+1;j<n;j++) Innermost loop: reduce remaining submatrix.

lu[i][j] -= temp*lu[k][j];
}

}
}

Once the LUdcmp object is constructed, two functions implementing equations
(2.3.6) and (2.3.7) are available for solving linear equations. The first solves a single
right-hand side vector b for a solution vector x. The second simultaneously solves
multiple right-hand vectors, arranged as the columns of a matrix B. In other words,
it calculates the matrix A�1 	 B.

void LUdcmp::solve(VecDoub_I &b, VecDoub_O &x) ludcmp.h
Solves the set of n linear equations A � x D b using the stored LU decomposition of A.
b[0..n-1] is input as the right-hand side vector b, while x returns the solution vector x; b and
x may reference the same vector, in which case the solution overwrites the input. This routine
takes into account the possibility that b will begin with many zero elements, so it is efficient for
use in matrix inversion.
{

Int i,ii=0,ip,j;
Doub sum;
if (b.size() != n || x.size() != n)

throw("LUdcmp::solve bad sizes");
for (i=0;i<n;i++) x[i] = b[i];
for (i=0;i<n;i++) { When ii is set to a positive value, it will become the

index of the first nonvanishing element of b. We now
do the forward substitution, equation (2.3.6). The
only new wrinkle is to unscramble the permutation
as we go.

ip=indx[i];
sum=x[ip];
x[ip]=x[i];
if (ii != 0)

for (j=ii-1;j<i;j++) sum -= lu[i][j]*x[j];
else if (sum != 0.0) A nonzero element was encountered, so from now on we

will have to do the sums in the loop above.ii=i+1;
x[i]=sum;

}
for (i=n-1;i>=0;i--) { Now we do the backsubstitution, equation (2.3.7).

sum=x[i];
for (j=i+1;j<n;j++) sum -= lu[i][j]*x[j];
x[i]=sum/lu[i][i]; Store a component of the solution vector X .

} All done!
}

void LUdcmp::solve(MatDoub_I &b, MatDoub_O &x)
Solves m sets of n linear equations A �X D B using the stored LU decomposition of A. The
matrix b[0..n-1][0..m-1] inputs the right-hand sides, while x[0..n-1][0..m-1] returns the

solution A�1 �B. b and x may reference the same matrix, in which case the solution overwrites
the input.
{

int i,j,m=b.ncols();
if (b.nrows() != n || x.nrows() != n || b.ncols() != x.ncols())

throw("LUdcmp::solve bad sizes");
VecDoub xx(n);
for (j=0;j<m;j++) { Copy and solve each column in turn.

for (i=0;i<n;i++) xx[i] = b[i][j];
solve(xx,xx);
for (i=0;i<n;i++) x[i][j] = xx[i];

}
}
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The LU decomposition in LUdcmp requires about 1
3
N 3 executions of the inner

loops (each with one multiply and one add). This is thus the operation count for
solving one (or a few) right-hand sides, and is a factor of 3 better than the Gauss-
Jordan routine gaussj that was given in �2.1, and a factor of 1.5 better than a Gauss-
Jordan routine (not given) that does not compute the inverse matrix. For inverting
a matrix, the total count (including the forward- and backsubstitution as discussed
following equation 2.3.7 above) is .1

3
C 1

6
C 1

2
/N 3 D N 3, the same as gaussj.

To summarize, this is the preferred way to solve the linear set of equations
A 	 x D b:

const Int n = ...
MatDoub a(n,n);
VecDoub b(n),x(n);
...
LUdcmp alu(a);
alu.solve(b,x);

The answer will be given back in x. Your original matrix a and vector b are not
altered. If you need to recover the storage in the object alu, then start a temporary
scope with “{” before alu is declared, and end that scope with “}” when you want
alu to be destroyed.

If you subsequently want to solve a set of equations with the same A but a
different right-hand side b, you repeat only

alu.solve(b,x);

2.3.2 Inverse of a Matrix
LUdcmp has a member function that gives the inverse of the matrix A. Simply,

it creates an identity matrix and then invokes the appropriate solve method.

void LUdcmp::inverse(MatDoub_O &ainv)ludcmp.h
Using the stored LU decomposition, return in ainv the matrix inverse A�1.
{

Int i,j;
ainv.resize(n,n);
for (i=0;i<n;i++) {

for (j=0;j<n;j++) ainv[i][j] = 0.;
ainv[i][i] = 1.;

}
solve(ainv,ainv);

}

The matrix ainv will now contain the inverse of the original matrix a. Alternatively,
there is nothing wrong with using a Gauss-Jordan routine like gaussj (�2.1) to invert
a matrix in place, destroying the original. Both methods have practically the same
operations count.

2.3.3 Determinant of a Matrix
The determinant of an LU decomposed matrix is just the product of the diago-

nal elements,
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det D
N�1Y
jD0

ǰj (2.3.15)

We don’t, recall, compute the decomposition of the original matrix, but rather a de-
composition of a rowwise permutation of it. Luckily, we have kept track of whether
the number of row interchanges was even or odd, so we just preface the product
by the corresponding sign. (You now finally know the purpose of d in the LUdcmp
structure.)

Doub LUdcmp::det() ludcmp.h
Using the stored LU decomposition, return the determinant of the matrix A.
{

Doub dd = d;
for (Int i=0;i<n;i++) dd *= lu[i][i];
return dd;

}

For a matrix of any substantial size, it is quite likely that the determinant will
overflow or underflow your computer’s floating-point dynamic range. In such a case
you can easily add another member function that, e.g., divides by powers of ten, to
keep track of the scale separately, or, e.g., accumulates the sum of logarithms of the
absolute values of the factors and the sign separately.

2.3.4 Complex Systems of Equations
If your matrix A is real, but the right-hand side vector is complex, say bC id, then (i)

LU decompose A in the usual way, (ii) backsubstitute b to get the real part of the solution
vector, and (iii) backsubstitute d to get the imaginary part of the solution vector.

If the matrix itself is complex, so that you want to solve the system

.AC iC/ 	 .xC iy/ D .bC id/ (2.3.16)

then there are two possible ways to proceed. The best way is to rewrite LUdcmp with complex
routines. Complex modulus substitutes for absolute value in the construction of the scaling
vector vv and in the search for the largest pivot elements. Everything else goes through in the
obvious way, with complex arithmetic used as needed.

A quick-and-dirty way to solve complex systems is to take the real and imaginary parts
of (2.3.16), giving

A 	 x �C 	 y D b

C 	 xCA 	 y D d
(2.3.17)

which can be written as a 2N � 2N set of real equations,�
A �C
C A

�
	

�
x
y

�
D

�
b
d

�
(2.3.18)

and then solved with LUdcmp’s routines in their present forms. This scheme is a factor of 2
inefficient in storage, since A and C are stored twice. It is also a factor of 2 inefficient in time,
since the complex multiplies in a complexified version of the routines would each use 4 real
multiplies, while the solution of a 2N � 2N problem involves 8 times the work of an N �N
one. If you can tolerate these factor-of-two inefficiencies, then equation (2.3.18) is an easy
way to proceed.

CITED REFERENCES AND FURTHER READING:

Golub, G.H., and Van Loan, C.F. 1996, Matrix Computations, 3rd ed. (Baltimore: Johns Hopkins
University Press), Chapter 4.[1]
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software at 2007+, http://www.netlib.org/lapack.

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical Com-
putations (Englewood Cliffs, NJ: Prentice-Hall), �3.3, and p. 50.

Forsythe, G.E., and Moler, C.B. 1967, Computer Solution of Linear Algebraic Systems (Engle-
wood Cliffs, NJ: Prentice-Hall), Chapters 9, 16, and 18.

Westlake, J.R. 1968, A Handbook of Numerical Matrix Inversion and Solution of Linear Equations
(New York: Wiley).

Stoer, J., and Bulirsch, R. 2002, Introduction to Numerical Analysis, 3rd ed. (New York: Springer),
�4.1.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed.; reprinted
2001 (New York: Dover), �9.11.

Horn, R.A., and Johnson, C.R. 1985, Matrix Analysis (Cambridge: Cambridge University Press).

2.4 Tridiagonal and Band-Diagonal Systems of
Equations

The special case of a system of linear equations that is tridiagonal, that is, has
nonzero elements only on the diagonal plus or minus one column, is one that occurs
frequently. Also common are systems that are band-diagonal, with nonzero elements
only along a few diagonal lines adjacent to the main diagonal (above and below).

For tridiagonal sets, the procedures of LU decomposition, forward- and back-
substitution each take onlyO.N/ operations, and the whole solution can be encoded
very concisely. The resulting routine tridag is one that we will use in later chapters.

Naturally, one does not reserve storage for the full N � N matrix, but only for
the nonzero components, stored as three vectors. The set of equations to be solved is266664

b0 c0 0 	 	 	

a1 b1 c1 	 	 	

	 	 	

	 	 	 aN�2 bN�2 cN�2
	 	 	 0 aN�1 bN�1

377775 	
266664
u0
u1
	 	 	

uN�2
uN�1

377775 D
266664
r0
r1
	 	 	

rN�2
rN�1

377775 (2.4.1)

Notice that a0 and cN�1 are undefined and are not referenced by the routine that
follows.

void tridag(VecDoub_I &a, VecDoub_I &b, VecDoub_I &c, VecDoub_I &r, VecDoub_O &u)tridag.h
Solves for a vector u[0..n-1] the tridiagonal linear set given by equation (2.4.1). a[0..n-1],
b[0..n-1], c[0..n-1], and r[0..n-1] are input vectors and are not modified.
{

Int j,n=a.size();
Doub bet;
VecDoub gam(n); One vector of workspace, gam, is needed.
if (b[0] == 0.0) throw("Error 1 in tridag");
If this happens, then you should rewrite your equations as a set of order N � 1, with u1
trivially eliminated.
u[0]=r[0]/(bet=b[0]);
for (j=1;j<n;j++) { Decomposition and forward substitution.

gam[j]=c[j-1]/bet;
bet=b[j]-a[j]*gam[j];
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if (bet == 0.0) throw("Error 2 in tridag"); Algorithm fails; see below.
u[j]=(r[j]-a[j]*u[j-1])/bet;

}
for (j=(n-2);j>=0;j--)

u[j] -= gam[j+1]*u[j+1]; Backsubstitution.
}

There is no pivoting in tridag. It is for this reason that tridag can fail even
when the underlying matrix is nonsingular: A zero pivot can be encountered even for
a nonsingular matrix. In practice, this is not something to lose sleep about. The kinds
of problems that lead to tridiagonal linear sets usually have additional properties
which guarantee that the algorithm in tridag will succeed. For example, ifˇ̌

bj
ˇ̌
>
ˇ̌
aj
ˇ̌
C
ˇ̌
cj
ˇ̌

j D 0; : : : ; N � 1 (2.4.2)

(called diagonal dominance), then it can be shown that the algorithm cannot en-
counter a zero pivot.

It is possible to construct special examples in which the lack of pivoting in
the algorithm causes numerical instability. In practice, however, such instability is
almost never encountered — unlike the general matrix problem where pivoting is
essential.

The tridiagonal algorithm is the rare case of an algorithm that, in practice, is
more robust than theory says it should be. Of course, should you ever encounter a
problem for which tridag fails, you can instead use the more general method for
band-diagonal systems, described below (the Bandec object).

Some other matrix forms consisting of tridiagonal with a small number of ad-
ditional elements (e.g., upper right and lower left corners) also allow rapid solution;
see �2.7.

2.4.1 Parallel Solution of Tridiagonal Systems
It is possible to solve tridiagonal systems doing many of the operations in parallel. We

illustrate by the special case with N D 7:266666664

b0 c0
a1 b1 c1

a2 b2 c2
a3 b3 c3

a4 b4 c4
a5 b5 c5

a6 b6

377777775
	

266666664

u0
u1
u2
u3
u4
u5
u6

377777775
D

266666664

r0
r1
r2
r3
r4
r5
r6

377777775
(2.4.3)

The basic idea is to partition the problem into even and odd elements, recurse to solve
the latter, and then solve the former in parallel. Specifically, we first rewrite equation (2.4.3)
by permuting its rows and columns,266666664

b0 c0
b2 a2 c2

b4 a4 c4
b6 a6

a1 c1 b1
a3 c3 b3

a5 c5 b5

377777775
	

266666664

u0
u2
u4
u6
u1
u3
u5

377777775
D

266666664

r0
r2
r4
r6
r1
r3
r5

377777775
(2.4.4)

Now observe that, by row operations that subtract multiples of the first four rows from
each of the last three rows, we can eliminate all nonzero elements in the lower-left quad-
rant. The price we pay is bringing some new elements into the lower-right quadrant, whose
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nonzero elements we now call x’s, y’s, and z’s. We call the modified right-hand sides q. The
transformed problem is now266666664

b0 c0
b2 a2 c2

b4 a4 c4
b6 a6

y0 z0
x1 y1 z1

x2 y2

377777775
	

266666664

u0
u2
u4
u6
u1
u3
u5

377777775
D

266666664

r0
r2
r4
r6
q0
q1
q2

377777775
(2.4.5)

Notice that the last three rows form a new, smaller, tridiagonal problem, which we can
solve simply by recursing. Once its solution is known, the first four rows can be solved by a
simple, parallelizable, substitution. For discussion of this and related methods for parallelizing
tridiagonal systems, and references to the literature, see [2].

2.4.2 Band-Diagonal Systems

Where tridiagonal systems have nonzero elements only on the diagonal plus or minus
one, band-diagonal systems are slightly more general and have (say)m1 � 0 nonzero elements
immediately to the left of (below) the diagonal and m2 � 0 nonzero elements immediately to
its right (above it). Of course, this is only a useful classification if m1 and m2 are both� N .
In that case, the solution of the linear system by LU decomposition can be accomplished
much faster, and in much less storage, than for the general N �N case.

The precise definition of a band-diagonal matrix with elements aij is that

aij D 0 when j > i Cm2 or i > j Cm1 (2.4.6)

Band-diagonal matrices are stored and manipulated in a so-called compact form, which results
if the matrix is tilted 45ı clockwise, so that its nonzero elements lie in a long, narrow matrix
with m1 C 1 C m2 columns and N rows. This is best illustrated by an example: The band-
diagonal matrix 0BBBBBBB@

3 1 0 0 0 0 0
4 1 5 0 0 0 0
9 2 6 5 0 0 0
0 3 5 8 9 0 0
0 0 7 9 3 2 0
0 0 0 3 8 4 6
0 0 0 0 2 4 4

1CCCCCCCA
(2.4.7)

which has N D 7, m1 D 2, and m2 D 1, is stored compactly as the 7 � 4 matrix,0BBBBBBB@

x x 3 1
x 4 1 5
9 2 6 5
3 5 8 9
7 9 3 2
3 8 4 6
2 4 4 x

1CCCCCCCA
(2.4.8)

Here x denotes elements that are wasted space in the compact format; these will not be ref-
erenced by any manipulations and can have arbitrary values. Notice that the diagonal of the
original matrix appears in columnm1, with subdiagonal elements to its left and superdiagonal
elements to its right.

The simplest manipulation of a band-diagonal matrix, stored compactly, is to multiply
it by a vector to its right. Although this is algorithmically trivial, you might want to study
the following routine as an example of how to pull nonzero elements aij out of the compact
storage format in an orderly fashion.
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void banmul(MatDoub_I &a, const Int m1, const Int m2, VecDoub_I &x, banded.h
VecDoub_O &b)

Matrix multiply b D A � x, where A is band-diagonal with m1 rows below the diagonal and
m2 rows above. The input vector is x[0..n-1] and the output vector is b[0..n-1]. The ar-
ray a[0..n-1][0..m1+m2] stores A as follows: The diagonal elements are in a[0..n-1][m1].
Subdiagonal elements are in a[j..n-1][0..m1-1] with j > 0 appropriate to the number of
elements on each subdiagonal. Superdiagonal elements are in a[0..j][m1+1..m1+m2] with
j < n-1 appropriate to the number of elements on each superdiagonal.
{

Int i,j,k,tmploop,n=a.nrows();
for (i=0;i<n;i++) {

k=i-m1;
tmploop=MIN(m1+m2+1,Int(n-k));
b[i]=0.0;
for (j=MAX(0,-k);j<tmploop;j++) b[i] += a[i][j]*x[j+k];

}
}

It is not possible to store the LU decomposition of a band-diagonal matrix A quite as
compactly as the compact form of A itself. The decomposition (essentially by Crout’s method;
see �2.3) produces additional nonzero “fill-ins.” One straightforward storage scheme is to store
the upper triangular factor (U ) in a space with the same shape as A, and to store the lower
triangular factor (L) in a separate compact matrix of size N �m1. The diagonal elements of
U (whose product, times dD ˙1, gives the determinant) are in the first column of U .

Here is an object, analogous to LUdcmp in �2.3, for solving band-diagonal linear equa-
tions:

struct Bandec { banded.h
Object for solving linear equations A � x D b for a band-diagonal matrix A, using LU decom-
position.

Int n,m1,m2;
MatDoub au,al; Upper and lower triangular matrices, stored compactly.
VecInt indx;
Doub d;
Bandec(MatDoub_I &a, const int mm1, const int mm2); Constructor.
void solve(VecDoub_I &b, VecDoub_O &x); Solve a right-hand side vector.
Doub det(); Return determinant of A.

};

The constructor takes as arguments the compactly stored matrix A, and the integers m1
and m2. (One could of course define a “band-diagonal matrix object” to encapsulate these
quantities, but in this brief treatment we want to keep things simple.)

Bandec::Bandec(MatDoub_I &a, const Int mm1, const Int mm2) banded.h
: n(a.nrows()), au(a), m1(mm1), m2(mm2), al(n,m1), indx(n)

Constructor. Given an n�n band-diagonal matrix A with m1 subdiagonal rows and m2 superdiag-
onal rows, compactly stored in the array a[0..n-1][0..m1+m2] as described in the comment
for routine banmul, an LU decomposition of a rowwise permutation of A is constructed. The
upper and lower triangular matrices are stored in au and al, respectively. The stored vector
indx[0..n-1] records the row permutation effected by the partial pivoting; d is ˙1 depending
on whether the number of row interchanges was even or odd, respectively.
{

const Doub TINY=1.0e-40;
Int i,j,k,l,mm;
Doub dum;
mm=m1+m2+1;
l=m1;
for (i=0;i<m1;i++) { Rearrange the storage a bit.

for (j=m1-i;j<mm;j++) au[i][j-l]=au[i][j];
l--;
for (j=mm-l-1;j<mm;j++) au[i][j]=0.0;

}
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d=1.0;
l=m1;
for (k=0;k<n;k++) { For each row...

dum=au[k][0];
i=k;
if (l<n) l++;
for (j=k+1;j<l;j++) { Find the pivot element.

if (abs(au[j][0]) > abs(dum)) {
dum=au[j][0];
i=j;

}
}
indx[k]=i+1;
if (dum == 0.0) au[k][0]=TINY;
Matrix is algorithmically singular, but proceed anyway with TINY pivot (desirable in
some applications).
if (i != k) { Interchange rows.

d = -d;
for (j=0;j<mm;j++) SWAP(au[k][j],au[i][j]);

}
for (i=k+1;i<l;i++) { Do the elimination.

dum=au[i][0]/au[k][0];
al[k][i-k-1]=dum;
for (j=1;j<mm;j++) au[i][j-1]=au[i][j]-dum*au[k][j];
au[i][mm-1]=0.0;

}
}

}

Some pivoting is possible within the storage limitations of bandec, and the above routine
does take advantage of the opportunity. In general, when TINY is returned as a diagonal ele-
ment of U , then the original matrix (perhaps as modified by roundoff error) is in fact singular.
In this regard, bandec is somewhat more robust than tridag above, which can fail algorith-
mically even for nonsingular matrices; bandec is thus also useful (with m1 D m2 D 1) for
some ill-behaved tridiagonal systems.

Once the matrix A has been decomposed, any number of right-hand sides can be solved
in turn by repeated calls to the solve method, the forward- and backsubstitution routine anal-
ogous to its same-named cousin in �2.3.

void Bandec::solve(VecDoub_I &b, VecDoub_O &x)banded.h
Given a right-hand side vector b[0..n-1], solves the band-diagonal linear equations A �x D b.
The solution vector x is returned as x[0..n-1].
{

Int i,j,k,l,mm;
Doub dum;
mm=m1+m2+1;
l=m1;
for (k=0;k<n;k++) x[k] = b[k];
for (k=0;k<n;k++) { Forward substitution, unscrambling the permuted rows

as we go.j=indx[k]-1;
if (j!=k) SWAP(x[k],x[j]);
if (l<n) l++;
for (j=k+1;j<l;j++) x[j] -= al[k][j-k-1]*x[k];

}
l=1;
for (i=n-1;i>=0;i--) { Backsubstitution.

dum=x[i];
for (k=1;k<l;k++) dum -= au[i][k]*x[k+i];
x[i]=dum/au[i][0];
if (l<mm) l++;

}
}
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And, finally, a method for getting the determinant:

Doub Bandec::det() { banded.h
Using the stored decomposition, return the determinant of the matrix A.

Doub dd = d;
for (int i=0;i<n;i++) dd *= au[i][0];
return dd;

}

The routines in Bandec are based on the Handbook routines bandet1 and bansol1 in [1].

CITED REFERENCES AND FURTHER READING:
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(New York: Dover), p. 74.
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reprinted 2003 (New York: Dover), Example 5.4.3, p. 166.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed.; reprinted
2001 (New York: Dover), �9.11.

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer), Chapter I/6.[1]

Golub, G.H., and Van Loan, C.F. 1996, Matrix Computations, 3rd ed. (Baltimore: Johns Hopkins
University Press), �4.3.

Hockney, R.W., and Jesshope, C.R. 1988, Parallel Computers 2: Architecture, Programming,
and Algorithms (Bristol and Philadelphia: Adam Hilger), �5.4.[2]

2.5 Iterative Improvement of a Solution to
Linear Equations

Obviously it is not easy to obtain greater precision for the solution of a linear set
than the precision of your computer’s floating-point word. Unfortunately, for large
sets of linear equations, it is not always easy to obtain precision equal to, or even
comparable to, the computer’s limit. In direct methods of solution, roundoff errors
accumulate, and they are magnified to the extent that your matrix is close to singular.
You can easily lose two or three significant figures for matrices that (you thought)
were far from singular.

If this happens to you, there is a neat trick to restore the full machine preci-
sion, called iterative improvement of the solution. The theory is straightforward (see
Figure 2.5.1): Suppose that a vector x is the exact solution of the linear set

A 	 x D b (2.5.1)

You don’t, however, know x. You only know some slightly wrong solution xC ıx,
where ıx is the unknown error. When multiplied by the matrix A, your slightly
wrong solution gives a product slightly discrepant from the desired right-hand side
b, namely

A 	 .xC ıx/ D bC ıb (2.5.2)

Subtracting (2.5.1) from (2.5.2) gives

A 	 ıx D ıb (2.5.3)
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A

A−1

δx

x +
 δx

x b
b + δb

δb

Figure 2.5.1. Iterative improvement of the solution to A �x D b. The first guess xC ıx is multiplied by
A to produce bC ıb. The known vector b is subtracted, giving ıb. The linear set with this right-hand
side is inverted, giving ıx. This is subtracted from the first guess giving an improved solution x.

But (2.5.2) can also be solved, trivially, for ıb. Substituting this into (2.5.3) gives

A 	 ıx D A 	 .xC ıx/ � b (2.5.4)

In this equation, the whole right-hand side is known, since x C ıx is the wrong
solution that you want to improve. It is good to calculate the right-hand side in
higher precision than the original solution, if you can, since there will be a lot of
cancellation in the subtraction of b. Then, we need only solve (2.5.4) for the error
ıx, and then subtract this from the wrong solution to get an improved solution.

An important extra benefit occurs if we obtained the original solution by LU
decomposition. In this case we already have the LU decomposed form of A, and all
we need do to solve (2.5.4) is compute the right-hand side, forward- and backsubsti-
tute.

Because so much of the necessary machinery is already in LUdcmp, we im-
plement iterative improvement as a member function of that class. Since iterative
improvement requires the matrix A (as well as its LU decomposition), we have,
with foresight, caused LUdcmp to save a reference to the matrix a from which it was
constructed. If you plan to use iterative improvement, you must not modify a or let
it go out of scope. (No other method in LUdcmp makes use of this reference to a.)

void LUdcmp::mprove(VecDoub_I &b, VecDoub_IO &x)ludcmp.h
Improves a solution vector x[0..n-1] of the linear set of equations A � x D b. The vectors
b[0..n-1] and x[0..n-1] are input. On output, x[0..n-1] is modified, to an improved set of
values.
{

Int i,j;
VecDoub r(n);
for (i=0;i<n;i++) { Calculate the right-hand side, accumulating

the residual in higher precision.Ldoub sdp = -b[i];
for (j=0;j<n;j++)

sdp += (Ldoub)aref[i][j] * (Ldoub)x[j];
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r[i]=sdp;
}
solve(r,r); Solve for the error term,
for (i=0;i<n;i++) x[i] -= r[i]; and subtract it from the old solution.

}

Iterative improvement is highly recommended: It is a process of order only N 2

operations (multiply vector by matrix, forward- and backsubstitute — see discussion
following equation 2.3.7); it never hurts; and it can really give you your money’s
worth if it saves an otherwise ruined solution on which you have already spent of
order N 3 operations.

You can call mprove several times in succession if you want. Unless you are
starting quite far from the true solution, one call is generally enough; but a second
call to verify convergence can be reassuring.

If you cannot compute the right-hand side in equation (2.5.4) in higher preci-
sion, iterative refinement will still often improve the quality of a solution, although
not in all cases as much as if higher precision is available. Many textbooks assert the
contrary, but you will find the proof in [1].

2.5.1 More on Iterative Improvement
It is illuminating (and will be useful later in the book) to give a somewhat more solid

analytical foundation for equation (2.5.4), and also to give some additional results. Implicit in
the previous discussion was the notion that the solution vector xC ıx has an error term; but
we neglected the fact that the LU decomposition of A is itself not exact.

A different analytical approach starts with some matrix B0 that is assumed to be an
approximate inverse of the matrix A, so that B0 	 A is approximately the identity matrix 1.
Define the residual matrix R of B0 as

R � 1 � B0 	A (2.5.5)

which is supposed to be “small” (we will be more precise below). Note that therefore

B0 	A D 1 �R (2.5.6)

Next consider the following formal manipulation:

A�1 D A�1 	 .B�10 	 B0/ D .A
�1 	 B�10 / 	 B0 D .B0 	A/

�1 	 B0

D .1 �R/�1 	 B0 D .1CRCR2 CR3 C 	 	 	 / 	 B0
(2.5.7)

We can define the nth partial sum of the last expression by

Bn � .1CRC 	 	 	 CRn/ 	 B0 (2.5.8)

so that B1 ! A�1, if the limit exists.
It now is straightforward to verify that equation (2.5.8) satisfies some interesting recur-

rence relations. As regards solving A 	 x D b, where x and b are vectors, define

xn � Bn 	 b (2.5.9)

Then it is easy to show that

xnC1 D xn C B0 	 .b �A 	 xn/ (2.5.10)

This is immediately recognizable as equation (2.5.4), with �ıx D xnC1 � xn, and with B0
taking the role of A�1. We see, therefore, that equation (2.5.4) does not require that the LU
decomposition of A be exact, but only that the implied residual R be small. In rough terms,
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if the residual is smaller than the square root of your computer’s roundoff error, then after one
application of equation (2.5.10) (that is, going from x0 � B0 	 b to x1) the first neglected
term, of order R2, will be smaller than the roundoff error. Equation (2.5.10), like equation
(2.5.4), moreover, can be applied more than once, since it uses only B0, and not any of the
higher B’s.

A much more surprising recurrence that follows from equation (2.5.8) is one that more
than doubles the order n at each stage:

B2nC1 D 2Bn � Bn 	A 	 Bn n D 0; 1; 3; 7; : : : (2.5.11)

Repeated application of equation (2.5.11), from a suitable starting matrix B0, converges quad-
ratically to the unknown inverse matrix A�1 (see �9.4 for the definition of “quadratically”).
Equation (2.5.11) goes by various names, including Schultz’s Method and Hotelling’s Method;
see Pan and Reif [2] for references. In fact, equation (2.5.11) is simply the iterative Newton-
Raphson method of root finding (�9.4) applied to matrix inversion.

Before you get too excited about equation (2.5.11), however, you should notice that it
involves two full matrix multiplications at each iteration. Each matrix multiplication involves
N 3 adds and multiplies. But we already saw in �2.1 – �2.3 that direct inversion of A requires
only N 3 adds and N 3 multiplies in toto. Equation (2.5.11) is therefore practical only when
special circumstances allow it to be evaluated much more rapidly than is the case for general
matrices. We will meet such circumstances later, in �13.10.

In the spirit of delayed gratification, let us nevertheless pursue the two related issues:
When does the series in equation (2.5.7) converge; and what is a suitable initial guess B0 (if,
for example, an initial LU decomposition is not feasible)?

We can define the norm of a matrix as the largest amplification of length that it is able to
induce on a vector,

kRk � max
v¤0

jR 	 v j

jv j
(2.5.12)

If we let equation (2.5.7) act on some arbitrary right-hand side b, as one wants a matrix inverse
to do, it is obvious that a sufficient condition for convergence is

kRk < 1 (2.5.13)

Pan and Reif [2] point out that a suitable initial guess for B0 is any sufficiently small constant
� times the matrix transpose of A, that is,

B0 D �A
T or R D 1 � �AT 	A (2.5.14)

To see why this is so involves concepts from Chapter 11; we give here only the briefest sketch:
AT 	 A is a symmetric, positive-definite matrix, so it has real, positive eigenvalues. In its
diagonal representation, R takes the form

R D diag.1 � ��0; 1 � ��1; : : : ; 1 � ��N�1/ (2.5.15)

where all the �i ’s are positive. Evidently any � satisfying 0 < � < 2=.maxi �i / will give
kRk < 1. It is not difficult to show that the optimal choice for �, giving the most rapid
convergence for equation (2.5.11), is

� D 2=.max
i
�i Cmin

i
�i / (2.5.16)

Rarely does one know the eigenvalues of AT 	A in equation (2.5.16). Pan and Reif derive
several interesting bounds, which are computable directly from A. The following choices
guarantee the convergence of Bn as n!1:

� 
 1
.X
j;k

a2jk or � 
 1
.�

max
i

X
j

jaij j �max
j

X
i

jaij j
�

(2.5.17)
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The latter expression is truly a remarkable formula, which Pan and Reif derive by noting that
the vector norm in equation (2.5.12) need not be the usual L2 norm, but can instead be either
the L1 (max) norm, or the L1 (absolute value) norm. See their work for details.

Another approach, with which we have had some success, is to estimate the largest
eigenvalue statistically, by calculating si � jA	v i j2 for several unit vector v i ’s with randomly
chosen directions inN -space. The largest eigenvalue � can then be bounded by the maximum
of 2max si and 2NVar.si /=�.si /, where Var and � denote the sample variance and mean,
respectively.
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2.6 Singular Value Decomposition

There exists a very powerful set of techniques for dealing with sets of equations
or matrices that are either singular or else numerically very close to singular. In
many cases where Gaussian elimination and LU decomposition fail to give satisfac-
tory results, this set of techniques, known as singular value decomposition, or SVD,
will diagnose for you precisely what the problem is. In some cases, SVD will not
only diagnose the problem, it will also solve it, in the sense of giving you a useful
numerical answer, although, as we shall see, not necessarily “the” answer that you
thought you should get.

SVD is also the method of choice for solving most linear least-squares prob-
lems. We will outline the relevant theory in this section, but defer detailed discussion
of the use of SVD in this application to Chapter 15, whose subject is the parametric
modeling of data.

SVD methods are based on the following theorem of linear algebra, whose proof
is beyond our scope: AnyM�N matrix A can be written as the product of anM�N
column-orthogonal matrix U , an N � N diagonal matrix W with positive or zero
elements (the singular values), and the transpose of an N � N orthogonal matrix
V . The various shapes of these matrices are clearer when shown as tableaus. If
M > N (which corresponds to the overdetermined situation of more equations than
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unknowns), the decomposition looks like this:0BBBBBBBBBB@
A

1CCCCCCCCCCA
D

0BBBBBBBBBB@
U

1CCCCCCCCCCA
	

0BBBB@
w0

w1
	 	 	

	 	 	

wN�1

1CCCCA 	
0BB@ V T

1CCA

(2.6.1)
If M < N (the undetermined situation of fewer equations than unknowns), it looks
like this:

�
A

�
D

�
U

�
	

0BBBB@
w0

w1
	 	 	

	 	 	

wN�1

1CCCCA 	
0BB@ V T

1CCA
(2.6.2)

The matrix V is orthogonal in the sense that its columns are orthonormal,

N�1X
jD0

VjkVjn D ıkn
0 
 k 
 N � 1

0 
 n 
 N � 1
(2.6.3)

that is, V T 	 V D 1. Since V is square, it is also row-orthonormal, V 	 V T D 1.
When M � N , the matrix U is also column-orthogonal,

M�1X
iD0

UikUin D ıkn
0 
 k 
 N � 1

0 
 n 
 N � 1
(2.6.4)

that is, UT 	 U D 1. In the case M < N , however, two things happen: (i) The
singular values wj for j D M; : : : ; N � 1 are all zero, and (ii) the corresponding
columns of U are also zero. Equation (2.6.4) then holds only for k; n 
M � 1.

The decomposition (2.6.1) or (2.6.2) can always be done, no matter how singu-
lar the matrix is, and it is “almost” unique. That is to say, it is unique up to (i) making
the same permutation of the columns of U , elements of W , and columns of V (or
rows of V T ); or (ii) performing an orthogonal rotation on any set of columns of U
and V whose corresponding elements of W happen to be exactly equal. (A special
case is multiplying any column of U , and the corresponding column of V by �1.)
A consequence of the permutation freedom is that for the case M < N , a numerical
algorithm for the decomposition need not return zero wj ’s in the canonical positions
j D M; : : : ; N � 1; the N � M zero singular values can be scattered among all
positions j D 0; 1; : : : ; N � 1, and one needs to perform a sort to get the canonical
order. In any case, it is conventional to sort all the singular values into descending
order.

A Webnote [1] gives the details of the routine that actually performs SVD on
an arbitrary matrix A, yielding U , W , and V . The routine is based on a routine
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by Forsythe et al. [2], which is in turn based on the original routine of Golub and
Reinsch, found, in various forms, in [4-6] and elsewhere. These references include
extensive discussion of the algorithm used. As much as we dislike the use of black-
box routines, we need to ask you to accept this one, since it would take us too far
afield to cover its necessary background material here. The algorithm is very stable,
and it is very unusual for it ever to misbehave. Most of the concepts that enter
the algorithm (Householder reduction to bidiagonal form, diagonalization by QR
procedure with shifts) will be discussed further in Chapter 11.

As we did for LU decomposition, we encapsulate the singular value decom-
position and also the methods that depend on it into an object, SVD. We give its
declaration here. The rest of this section will give the details on how to use it.

struct SVD { svd.h
Object for singular value decomposition of a matrix A, and related functions.

Int m,n;
MatDoub u,v; The matrices U and V .
VecDoub w; The diagonal matrix W .
Doub eps, tsh;
SVD(MatDoub_I &a) : m(a.nrows()), n(a.ncols()), u(a), v(n,n), w(n) {
Constructor. The single argument is A. The SVD computation is done by decompose, and
the results are sorted by reorder.

eps = numeric_limits<Doub>::epsilon();
decompose();
reorder();
tsh = 0.5*sqrt(m+n+1.)*w[0]*eps; Default threshold for nonzero singular

values.}

void solve(VecDoub_I &b, VecDoub_O &x, Doub thresh);
void solve(MatDoub_I &b, MatDoub_O &x, Doub thresh);
Solve with (apply the pseudoinverse to) one or more right-hand sides.

Int rank(Doub thresh); Quantities associated with the range and
nullspace of A.Int nullity(Doub thresh);

MatDoub range(Doub thresh);
MatDoub nullspace(Doub thresh);

Doub inv_condition() { Return reciprocal of the condition num-
ber of A.return (w[0] <= 0. || w[n-1] <= 0.) ? 0. : w[n-1]/w[0];

}

void decompose(); Functions used by the constructor.
void reorder();
Doub pythag(const Doub a, const Doub b);

};

2.6.1 Range, Nullspace, and All That
Consider the familiar set of simultaneous equations

A 	 x D b (2.6.5)

where A is anM �N matrix, and x and b are vectors of dimensionN andM respec-
tively. Equation (2.6.5) defines A as a linear mapping from anN -dimensional vector
space to (generally) an M -dimensional one. But the map might be able to reach
only a lesser-dimensional subspace of the full M -dimensional one. That subspace is
called the range of A. The dimension of the range is called the rank of A. The rank
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of A is equal to its number of linearly independent columns, and also (perhaps less
obviously) to its number of linearly independent rows. If A is not identically zero,
its rank is at least 1, and at most min.M;N /.

Sometimes there are nonzero vectors x that are mapped to zero by A, that is,
A 	 x D 0. The space of such vectors (a subspace of the N -dimensional space that
x lives in) is called the nullspace of A, and its dimension is called A’s nullity. The
nullity can have any value from zero to N . The rank-nullity theorem states that, for
any A, the rank plus the nullity is N , the number of columns.

An important special case is M D N , so the A is square, N � N . If the
rank of A is N , its maximum possible value, then A is nonsingular and invertible:
A 	 x D b has a unique solution for any b, and only the zero vector is mapped to
zero. This is a case where LU decomposition (�2.3) is the preferred solution method
for x. However, if A has rank less than N (i.e., has nullity greater than zero), then
two things happen: (i) most right-hand side vectors b yield no solution, but (ii) some
have multiple solutions (in fact a whole subspace of them). We consider this situation
further, below.

What has all this to do with singular value decomposition? SVD explicitly con-
structs orthonormal bases for the nullspace and range of a matrix! Specifically, the
columns of U whose same-numbered elements wj are nonzero are an orthonormal
set of basis vectors that span the range; the columns of V whose same-numbered
elements wj are zero are an orthonormal basis for the nullspace. Our SVD object has
methods that return the rank or nullity (integers), and also the range and nullspace,
each of these packaged as a matrix whose columns form an orthonormal basis for
the respective subspace.

Int SVD::rank(Doub thresh = -1.) {svd.h
Return the rank of A, after zeroing any singular values smaller than thresh. If thresh is
negative, a default value based on estimated roundoff is used.

Int j,nr=0;
tsh = (thresh >= 0. ? thresh : 0.5*sqrt(m+n+1.)*w[0]*eps);
for (j=0;j<n;j++) if (w[j] > tsh) nr++;
return nr;

}

Int SVD::nullity(Doub thresh = -1.) {
Return the nullity of A, after zeroing any singular values smaller than thresh. Default value as
above.

Int j,nn=0;
tsh = (thresh >= 0. ? thresh : 0.5*sqrt(m+n+1.)*w[0]*eps);
for (j=0;j<n;j++) if (w[j] <= tsh) nn++;
return nn;

}

MatDoub SVD::range(Doub thresh = -1.){
Give an orthonormal basis for the range of A as the columns of a returned matrix. thresh as
above.

Int i,j,nr=0;
MatDoub rnge(m,rank(thresh));
for (j=0;j<n;j++) {

if (w[j] > tsh) {
for (i=0;i<m;i++) rnge[i][nr] = u[i][j];
nr++;

}
}
return rnge;

}
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MatDoub SVD::nullspace(Doub thresh = -1.){
Give an orthonormal basis for the nullspace of A as the columns of a returned matrix. thresh
as above.

Int j,jj,nn=0;
MatDoub nullsp(n,nullity(thresh));
for (j=0;j<n;j++) {

if (w[j] <= tsh) {
for (jj=0;jj<n;jj++) nullsp[jj][nn] = v[jj][j];
nn++;

}
}
return nullsp;

}

The meaning of the optional parameter thresh is discussed below.

2.6.2 SVD of a Square Matrix
We return to the case of a square N � N matrix A. U , V , and W are also

square matrices of the same size. Their inverses are also trivial to compute: U and
V are orthogonal, so their inverses are equal to their transposes; W is diagonal, so
its inverse is the diagonal matrix whose elements are the reciprocals of the elements
wj . From (2.6.1) it now follows immediately that the inverse of A is

A�1 D V 	
�
diag .1=wj /

	
	UT (2.6.6)

The only thing that can go wrong with this construction is for one of the wj ’s to be
zero, or (numerically) for it to be so small that its value is dominated by roundoff
error and therefore unknowable. If more than one of the wj ’s has this problem, then
the matrix is even more singular. So, first of all, SVD gives you a clear diagnosis of
the situation.

Formally, the condition number of a matrix is defined as the ratio of the largest
(in magnitude) of the wj ’s to the smallest of the wj ’s. A matrix is singular if its
condition number is infinite, and it is ill-conditioned if its condition number is too
large, that is, if its reciprocal approaches the machine’s floating-point precision (for
example, less than about 10�15 for values of type double). A function returning
the condition number (or, rather, its reciprocal, to avoid overflow) is implemented in
SVD.

Now let’s have another look at solving the set of simultaneous linear equations
(2.6.5) in the case that A is singular. We already saw that the set of homogeneous
equations, where b D 0, is solved immediately by SVD. The solution is any linear
combination of the columns returned by the nullspace method above.

When the vector b on the right-hand side is not zero, the important question is
whether it lies in the range of A or not. If it does, then the singular set of equations
does have a solution x; in fact it has more than one solution, since any vector in the
nullspace (any column of V with a corresponding zero wj ) can be added to x in any
linear combination.

If we want to single out one particular member of this solution set of vectors as
a representative, we might want to pick the one with the smallest length jxj2. Here
is how to find that vector using SVD: Simply replace 1=wj by zero if wj D 0. (It is
not very often that one gets to set1 D 0 !) Then compute, working from right to
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left,
x D V 	

�
diag .1=wj /

	
	 .UT 	 b/ (2.6.7)

This will be the solution vector of smallest length; the columns of V that are in the
nullspace complete the specification of the solution set.

Proof: Consider jxC x0j, where x0 lies in the nullspace. Then, if W �1 denotes
the modified inverse of W with some elements zeroed,ˇ̌

xC x0
ˇ̌
D
ˇ̌̌
V 	W �1 	UT 	 bC x0

ˇ̌̌
D
ˇ̌̌
V 	 .W �1 	UT 	 bC V T 	 x0/

ˇ̌̌
D
ˇ̌̌
W �1 	UT 	 bC VT 	 x0

ˇ̌̌ (2.6.8)

Here the first equality follows from (2.6.7), and the second and third from the or-
thonormality of V . If you now examine the two terms that make up the sum on
the right-hand side, you will see that the first one has nonzero j components only
where wj ¤ 0, while the second one, since x0 is in the nullspace, has nonzero j
components only where wj D 0. Therefore the minimum length obtains for x0 D 0,
q.e.d.

If b is not in the range of the singular matrix A, then the set of equations (2.6.5)
has no solution. But here is some good news: If b is not in the range of A, then
equation (2.6.7) can still be used to construct a “solution” vector x. This vector x
will not exactly solve A 	 x D b. But, among all possible vectors x, it will do the
closest possible job in the least-squares sense. In other words, (2.6.7) finds

x which minimizes r � jA 	 x � bj (2.6.9)

The number r is called the residual of the solution.
The proof is similar to (2.6.8): Suppose we modify x by adding some arbitrary

x0. Then A 	 x � b is modified by adding some b0 � A 	 x0. Obviously b0 is in the
range of A. We then haveˇ̌

A 	 x � bC b0
ˇ̌
D
ˇ̌̌
.U 	W 	 VT / 	 .V 	W �1 	UT 	 b/ � bC b0

ˇ̌̌
D
ˇ̌̌
.U 	W 	W �1 	UT � 1/ 	 bC b0

ˇ̌̌
D
ˇ̌̌
U 	

�
.W 	W �1 � 1/ 	UT 	 bCUT 	 b0

	ˇ̌̌
D
ˇ̌̌
.W 	W �1 � 1/ 	UT 	 bCUT 	 b0

ˇ̌̌
(2.6.10)

Now, .W 	W �1 � 1/ is a diagonal matrix that has nonzero j components only for
wj D 0, while UT b0 has nonzero j components only for wj ¤ 0, since b0 lies in the
range of A. Therefore the minimum obtains for b0 D 0, q.e.d.

Equation (2.6.7), which is also equation (2.6.6) applied associatively to b, is
thus very general. If no wj ’s are zero, it solves a nonsingular system of linear equa-
tions. If some wj ’s are zero, and their reciprocals are made zero, then it gives a
“best” solution, either the one of shortest length among many, or the one of min-
imum residual when no exact solution exists. Equation (2.6.6), with the singular
1=wj ’s zeroized, is called the Moore-Penrose inverse or pseudoinverse of A.
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Equation (2.6.7) is implemented in the SVD object as the method solve. (As
in LUdcmp, we also include an overloaded form that solves for multiple right-hand
sides simultaneously.) The argument thresh inputs a value below which wj ’s are to
be considered as being zero; if you omit this argument, or set it to a negative value,
then the program uses a default value based on expected roundoff error.

void SVD::solve(VecDoub_I &b, VecDoub_O &x, Doub thresh = -1.) { svd.h
Solve A � x D b for a vector x using the pseudoinverse of A as obtained by SVD. If positive,
thresh is the threshold value below which singular values are considered as zero. If thresh is
negative, a default based on expected roundoff error is used.

Int i,j,jj;
Doub s;
if (b.size() != m || x.size() != n) throw("SVD::solve bad sizes");
VecDoub tmp(n);
tsh = (thresh >= 0. ? thresh : 0.5*sqrt(m+n+1.)*w[0]*eps);

for (j=0;j<n;j++) { Calculate UTB.
s=0.0;
if (w[j] > tsh) { Nonzero result only if wj is nonzero.

for (i=0;i<m;i++) s += u[i][j]*b[i];
s /= w[j]; This is the divide by wj .

}
tmp[j]=s;

}
for (j=0;j<n;j++) { Matrix multiply by V to get answer.

s=0.0;
for (jj=0;jj<n;jj++) s += v[j][jj]*tmp[jj];
x[j]=s;

}
}

void SVD::solve(MatDoub_I &b, MatDoub_O &x, Doub thresh = -1.)
Solves m sets of n equations A �X D B using the pseudoinverse of A. The right-hand sides are
input as b[0..n-1][0..m-1], while x[0..n-1][0..m-1] returns the solutions. thresh as above.
{

int i,j,m=b.ncols();
if (b.nrows() != n || x.nrows() != n || b.ncols() != x.ncols())

throw("SVD::solve bad sizes");
VecDoub xx(n);
for (j=0;j<m;j++) { Copy and solve each column in turn.

for (i=0;i<n;i++) xx[i] = b[i][j];
solve(xx,xx,thresh);
for (i=0;i<n;i++) x[i][j] = xx[i];

}
}

Figure 2.6.1 summarizes the situation for the SVD of square matrices.
There are cases in which you may want to set the value of thresh to larger

than its default. (You can retrieve the default as the member value tsh.) In the
discussion since equation (2.6.5), we have been pretending that a matrix either is
singular or else isn’t. Numerically, however, the more common situation is that
some of the wj ’s are very small but nonzero, so that the matrix is ill-conditioned. In
that case, the direct solution methods of LU decomposition or Gaussian elimination
may actually give a formal solution to the set of equations (that is, a zero pivot
may not be encountered); but the solution vector may have wildly large components
whose algebraic cancellation, when multiplying by the matrix A, may give a very
poor approximation to the right-hand vector b. In such cases, the solution vector x
obtained by zeroing the smallwj ’s and then using equation (2.6.7) is very often better
(in the sense of the residual jA 	 x � bj being smaller) than both the direct-method
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A ⋅ x =  b

SVD “solution”
of A ⋅ x =  c

solutions of
A ⋅ x =  c′solutions of

A ⋅ x =  d

null
space
of A

SVD solution of
A ⋅ x =  d

range of A

d
c

(b)

(a)

A

x b

c′

Figure 2.6.1. (a) A nonsingular matrix A maps a vector space into one of the same dimension. The vector
x is mapped into b, so that x satisfies the equation A � x D b. (b) A singular matrix A maps a vector
space into one of lower dimensionality, here a plane into a line, called the “range” of A. The “nullspace”
of A is mapped to zero. The solutions of A �x D d consist of any one particular solution plus any vector
in the nullspace, here forming a line parallel to the nullspace. Singular value decomposition (SVD) selects
the particular solution closest to zero, as shown. The point c lies outside of the range of A, so A � x D c
has no solution. SVD finds the least-squares best compromise solution, namely a solution of A � x D c0,
as shown.

solution and the SVD solution where the small wj ’s are left nonzero.
It may seem paradoxical that this can be so, since zeroing a singular value cor-

responds to throwing away one linear combination of the set of equations that we are
trying to solve. The resolution of the paradox is that we are throwing away precisely
a combination of equations that is so corrupted by roundoff error as to be at best
useless; usually it is worse than useless since it “pulls” the solution vector way off
toward infinity along some direction that is almost a nullspace vector. In doing this,
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it compounds the roundoff problem and makes the residual jA 	 x � bj larger.
You therefore have the opportunity of deciding at what threshold thresh to zero

the small wj ’s, based on some idea of what size of computed residual jA 	 x � bj is
acceptable.

For discussion of how the singular value decomposition of a matrix is related to
its eigenvalues and eigenvectors, see �11.0.6.

2.6.3 SVD for Fewer Equations than Unknowns
If you have fewer linear equations M than unknowns N , then you are not ex-

pecting a unique solution. Usually there will be an N �M dimensional family of
solutions (which is the nullity, absent any other degeneracies), but the number could
be larger. If you want to find this whole solution space, then SVD can readily do
the job: Use solve to get one (the shortest) solution, then use nullspace to get a
set of basis vectors for the nullspace. Your solutions are the former plus any linear
combination of the latter.

2.6.4 SVD for More Equations than Unknowns
This situation will occur in Chapter 15, when we wish to find the least-squares

solution to an overdetermined set of linear equations. In tableau, the equations to be
solved are 0BBBBBBBBBB@

A

1CCCCCCCCCCA
	

0BB@x
1CCA D

0BBBBBBBBBB@
b

1CCCCCCCCCCA
(2.6.11)

The proofs that we gave above for the square case apply without modification
to the case of more equations than unknowns. The least-squares solution vector x is
given by applying the pseudoinverse (2.6.7), which, with nonsquare matrices, looks
like this,

0BB@x
1CCA D

0BB@ V

1CCA 	
0BB@diag(1=wj )

1CCA 	
0BB@ UT

1CCA 	

0BBBBBBBBBB@
b

1CCCCCCCCCCA
(2.6.12)

In general, the matrix W will not be singular, and no wj ’s will need to be set to
zero. Occasionally, however, there might be column degeneracies in A. In this case
you will need to zero some smallwj values after all. The corresponding column in V
gives the linear combination of x’s that is then ill-determined even by the supposedly
overdetermined set.
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Sometimes, although you do not need to zero any wj ’s for computational rea-
sons, you may nevertheless want to take note of any that are unusually small: Their
corresponding columns in V are linear combinations of x’s that are insensitive to
your data. In fact, you may then wish to zero these wj ’s, by increasing the value
of thresh, to reduce the number of free parameters in the fit. These matters are
discussed more fully in Chapter 15.

2.6.5 Constructing an Orthonormal Basis
Suppose that you have N vectors in an M -dimensional vector space, with

N 
M . Then theN vectors span some subspace of the full vector space. Often you
want to construct an orthonormal set of N vectors that span the same subspace. The
elementary textbook way to do this is by Gram-Schmidt orthogonalization, starting
with one vector and then expanding the subspace one dimension at a time. Nu-
merically, however, because of the build-up of roundoff errors, naive Gram-Schmidt
orthogonalization is terrible.

The right way to construct an orthonormal basis for a subspace is by SVD: Form
an M � N matrix A whose N columns are your vectors. Construct an SVD object
from the matrix. The columns of the matrix U are your desired orthonormal basis
vectors.

You might also want to check the wj ’s for zero values. If any occur, then the
spanned subspace was not, in fact, N -dimensional; the columns of U corresponding
to zero wj ’s should be discarded from the orthonormal basis set. The method range
does this.

QR factorization, discussed in �2.10, also constructs an orthonormal basis;
see [3].

2.6.6 Approximation of Matrices
Note that equation (2.6.1) can be rewritten to express any matrix Aij as a sum

of outer products of columns of U and rows of VT , with the “weighting factors”
being the singular values wj ,

Aij D

N�1X
kD0

wk UikVjk (2.6.13)

If you ever encounter a situation where most of the singular values wj of a
matrix A are very small, then A will be well-approximated by only a few terms in
the sum (2.6.13). This means that you have to store only a few columns of U and
V (the same k ones) and you will be able to recover, with good accuracy, the whole
matrix.

Note also that it is very efficient to multiply such an approximated matrix by a
vector x: You just dot x with each of the stored columns of V , multiply the resulting
scalar by the corresponding wk , and accumulate that multiple of the corresponding
column of U . If your matrix is approximated by a small number K of singular
values, then this computation of A 	 x takes only about K.M C N/ multiplications,
instead of MN for the full matrix.
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2.6.7 Newer Algorithms
Analogous to the newer methods for eigenvalues of symmetric tridiagonal ma-

trices mentioned in �11.4.4, there are newer methods for SVD. There is a divide-and-
conquer algorithm, implemented in LAPACK as dgesdd, which is typically faster by
a factor of about 5 for large matrices than the algorithm we give (which is similar to
the LAPACK routine dgesvd). Another routine based on the MRRR algorithm (see
�11.4.4) promises to be even better, but it is not available in LAPACK as of 2006. It
will appear as routine dbdscr.
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Lawson, C.L., and Hanson, R. 1974, Solving Least Squares Problems (Englewood Cliffs, NJ:
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2.7 Sparse Linear Systems

A system of linear equations is called sparse if only a relatively small number
of its matrix elements aij are nonzero. It is wasteful to use general methods of
linear algebra on such problems, because most of the O.N 3/ arithmetic operations
devoted to solving the set of equations or inverting the matrix involve zero operands.
Furthermore, you might wish to work problems so large as to tax your available
memory space, and it is wasteful to reserve storage for unfruitful zero elements.
Note that there are two distinct (and not always compatible) goals for any sparse
matrix method: saving time and/or saving space.

We considered one archetypal sparse form in �2.4, the band-diagonal matrix.
In the tridiagonal case, e.g., we saw that it was possible to save both time (order
N instead of N 3) and space (order N instead of N 2). The method of solution was
not different in principle from the general method of LU decomposition; it was
just applied cleverly, and with due attention to the bookkeeping of zero elements.
Many practical schemes for dealing with sparse problems have this same character.
They are fundamentally decomposition schemes, or else elimination schemes akin
to Gauss-Jordan, but carefully optimized so as to minimize the number of so-called
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fill-ins, initially zero elements that must become nonzero during the solution process,
and for which storage must be reserved.

Direct methods for solving sparse equations, then, depend crucially on the pre-
cise pattern of sparsity of the matrix. Patterns that occur frequently, or that are useful
as way stations in the reduction of more general forms, already have special names
and special methods of solution. We do not have space here for any detailed review
of these. References listed at the end of this section will furnish you with an “in” to
the specialized literature, and the following list of buzz words (and Figure 2.7.1) will
at least let you hold your own at cocktail parties:

� tridiagonal
� band-diagonal (or banded) with bandwidth M
� band triangular
� block diagonal
� block tridiagonal
� block triangular
� cyclic banded
� singly (or doubly) bordered block diagonal
� singly (or doubly) bordered block triangular
� singly (or doubly) bordered band-diagonal
� singly (or doubly) bordered band triangular
� other (!)

You should also be aware of some of the special sparse forms that occur in the solu-
tion of partial differential equations in two or more dimensions. See Chapter 20.

If your particular pattern of sparsity is not a simple one, then you may wish to
try an analyze/factorize/operate package, which automates the procedure of figuring
out how fill-ins are to be minimized. The analyze stage is done once only for each
pattern of sparsity. The factorize stage is done once for each particular matrix that fits
the pattern. The operate stage is performed once for each right-hand side to be used
with the particular matrix. Consult [2,3] for references on this. The NAG library [4]

has an analyze/factorize/operate capability. A substantial collection of routines for
sparse matrix calculation is also available from IMSL [5] as the Yale Sparse Matrix
Package [6].

You should be aware that the special order of interchanges and eliminations,
prescribed by a sparse matrix method so as to minimize fill-ins and arithmetic op-
erations, generally acts to decrease the method’s numerical stability as compared
to, e.g., regular LU decomposition with pivoting. Scaling your problem so as to
make its nonzero matrix elements have comparable magnitudes (if you can do it)
will sometimes ameliorate this problem.

In the remainder of this section, we present some concepts that are applicable
to some general classes of sparse matrices, and which do not necessarily depend on
details of the pattern of sparsity.

2.7.1 Sherman-Morrison Formula
Suppose that you have already obtained, by herculean effort, the inverse matrix

A�1 of a square matrix A. Now you want to make a “small” change in A, for example
change one element aij , or a few elements, or one row, or one column. Is there any
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(a) (b) (c)

(d) (e) (f ) 

(g) (h) (i)

( j) (k)

zeros

zeros

zeros

Figure 2.7.1. Some standard forms for sparse matrices. (a) Band-diagonal; (b) block triangular; (c) block
tridiagonal; (d) singly bordered block diagonal; (e) doubly bordered block diagonal; (f) singly bordered
block triangular; (g) bordered band-triangular; (h) and (i) singly and doubly bordered band-diagonal; (j)
and (k) other! (after Tewarson) [1].

way of calculating the corresponding change in A�1 without repeating your difficult
labors? Yes, if your change is of the form

A ! .AC u˝ v/ (2.7.1)



�

�

“nr3” — 2007/5/1 — 20:53 — page 78 — #100
�

�

� �

78 Chapter 2. Solution of Linear Algebraic Equations

for some vectors u and v . If u is a unit vector ei , then (2.7.1) adds the components
of v to the i th row. (Recall that u˝ v is a matrix whose i ,j th element is the product
of the i th component of u and the j th component of v .) If v is a unit vector ej , then
(2.7.1) adds the components of u to the j th column. If both u and v are proportional
to unit vectors ei and ej , respectively, then a term is added only to the element aij .

The Sherman-Morrison formula gives the inverse .ACu˝ v/�1 and is derived
briefly as follows:

.AC u˝ v/�1 D .1CA�1 	 u˝ v/�1 	A�1

D .1 �A�1 	 u˝ v CA�1 	 u˝ v 	A�1 	 u˝ v � : : :/ 	A�1

D A�1 �A�1 	 u˝ v 	A�1 .1 � �C �2 � : : :/

D A�1 �
.A�1 	 u/˝ .v 	A�1/

1C �
(2.7.2)

where
� � v 	A�1 	 u (2.7.3)

The second line of (2.7.2) is a formal power series expansion. In the third line, the
associativity of outer and inner products is used to factor out the scalars �.

The use of (2.7.2) is this: Given A�1 and the vectors u and v , we need only
perform two matrix multiplications and a vector dot product,

z � A�1 	 u w � .A�1/T 	 v � D v 	 z (2.7.4)

to get the desired change in the inverse

A�1 ! A�1 �
z˝ w

1C �
(2.7.5)

The whole procedure requires only 3N 2 multiplies and a like number of adds (an
even smaller number if u or v is a unit vector).

The Sherman-Morrison formula can be directly applied to a class of sparse
problems. If you already have a fast way of calculating the inverse of A (e.g., a
tridiagonal matrix or some other standard sparse form), then (2.7.4) – (2.7.5) allow
you to build up to your related but more complicated form, adding for example a row
or column at a time. Notice that you can apply the Sherman-Morrison formula more
than once successively, using at each stage the most recent update of A�1 (equation
2.7.5). Of course, if you have to modify every row, then you are back to an N 3

method. The constant in front of the N 3 is only a few times worse than the bet-
ter direct methods, but you have deprived yourself of the stabilizing advantages of
pivoting — so be careful.

For some other sparse problems, the Sherman-Morrison formula cannot be di-
rectly applied for the simple reason that storage of the whole inverse matrix A�1 is
not feasible. If you want to add only a single correction of the form u˝ v and solve
the linear system

.AC u˝ v/ 	 x D b (2.7.6)

then you proceed as follows. Using the fast method that is presumed available for
the matrix A, solve the two auxiliary problems

A 	 y D b A 	 z D u (2.7.7)
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for the vectors y and z. In terms of these,

x D y �

�
v 	 y

1C .v 	 z/

�
z (2.7.8)

as we see by multiplying (2.7.2) on the right by b.

2.7.2 Cyclic Tridiagonal Systems
So-called cyclic tridiagonal systems occur quite frequently and are a good ex-

ample of how to use the Sherman-Morrison formula in the manner just described.
The equations have the form266664

b0 c0 0 	 	 	 ˇ

a1 b1 c1 	 	 	

	 	 	

	 	 	 aN�2 bN�2 cN�2
˛ 	 	 	 0 aN�1 bN�1

377775 	
266664
x0
x1
	 	 	

xN�2
xN�1

377775 D
266664
r0
r1
	 	 	

rN�2
rN�1

377775 (2.7.9)

This is a tridiagonal system, except for the matrix elements ˛ and ˇ in the corners.
Forms like this are typically generated by finite differencing differential equations
with periodic boundary conditions (�20.4).

We use the Sherman-Morrison formula, treating the system as tridiagonal plus
a correction. In the notation of equation (2.7.6), define vectors u and v to be

u D

2666664
�

0
:::

0

˛

3777775 v D

2666664
1

0
:::

0

ˇ=�

3777775 (2.7.10)

Here � is arbitrary for the moment. Then the matrix A is the tridiagonal part of the
matrix in (2.7.9), with two terms modified:

b00 D b0 � �; b0N�1 D bN�1 � ˛ˇ=� (2.7.11)

We now solve equations (2.7.7) with the standard tridiagonal algorithm and then get
the solution from equation (2.7.8).

The routine cyclic below implements this algorithm. We choose the arbitrary
parameter � D �b0 to avoid loss of precision by subtraction in the first of equations
(2.7.11). In the unlikely event that this causes loss of precision in the second of these
equations, you can make a different choice.

void cyclic(VecDoub_I &a, VecDoub_I &b, VecDoub_I &c, const Doub alpha, tridag.h
const Doub beta, VecDoub_I &r, VecDoub_O &x)

Solves for a vector x[0..n-1] the “cyclic” set of linear equations given by equation (2.7.9). a,
b, c, and r are input vectors, all dimensioned as [0..n-1], while alpha and beta are the corner
entries in the matrix. The input is not modified.
{

Int i,n=a.size();
Doub fact,gamma;
if (n <= 2) throw("n too small in cyclic");
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VecDoub bb(n),u(n),z(n);
gamma = -b[0]; Avoid subtraction error in forming bb[0].
bb[0]=b[0]-gamma; Set up the diagonal of the modified tridi-

agonal system.bb[n-1]=b[n-1]-alpha*beta/gamma;
for (i=1;i<n-1;i++) bb[i]=b[i];
tridag(a,bb,c,r,x); Solve A � x D r.
u[0]=gamma; Set up the vector u.
u[n-1]=alpha;
for (i=1;i<n-1;i++) u[i]=0.0;
tridag(a,bb,c,u,z); Solve A � z D u.
fact=(x[0]+beta*x[n-1]/gamma)/ Form v � x=.1C v � z/.

(1.0+z[0]+beta*z[n-1]/gamma);
for (i=0;i<n;i++) x[i] -= fact*z[i]; Now get the solution vector x.

}

2.7.3 Woodbury Formula
If you want to add more than a single correction term, then you cannot use (2.7.8) re-

peatedly, since without storing a new A�1 you will not be able to solve the auxiliary problems
(2.7.7) efficiently after the first step. Instead, you need the Woodbury formula, which is the
block-matrix version of the Sherman-Morrison formula,

.ACU 	 VT /�1

D A�1 �
h
A�1 	U 	 .1C VT 	A�1 	U/�1 	 VT 	A�1

i (2.7.12)

Here A is, as usual, an N � N matrix, while U and V are N � P matrices with P < N and
usually P � N . The inner piece of the correction term may become clearer if written as the
tableau,26666666666664

U

37777777777775
	

26641C VT 	A�1 	U

3775
�1

	

26664 VT

37775 (2.7.13)

where you can see that the matrix whose inverse is needed is only P � P rather than N �N .
The relation between the Woodbury formula and successive applications of the Sherman-

Morrison formula is now clarified by noting that, if U is the matrix formed by columns out
of the P vectors u0; : : : ;uP�1, and V is the matrix formed by columns out of the P vectors
v0; : : : ; vP�1,

U �

26664u0
37775 	 	 	

26664uP�1
37775 V �

26664v0
37775 	 	 	

26664vP�1
37775 (2.7.14)

then two ways of expressing the same correction to A are 
AC

P�1X
kD0

uk ˝ vk

!
D .ACU 	 VT / (2.7.15)
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(Note that the subscripts on u and v do not denote components, but rather distinguish the
different column vectors.)

Equation (2.7.15) reveals that, if you have A�1 in storage, then you can either make the
P corrections in one fell swoop by using (2.7.12) and inverting a P � P matrix, or else make
them by applying (2.7.5) P successive times.

If you don’t have storage for A�1, then you must use (2.7.12) in the following way: To
solve the linear equation  

AC

P�1X
kD0

uk ˝ vk

!
	 x D b (2.7.16)

first solve the P auxiliary problems

A 	 z0 D u0

A 	 z1 D u1

	 	 	

A 	 zP�1 D uP�1

(2.7.17)

and construct the matrix Z by columns from the z’s obtained,

Z �

26664z0
37775 	 	 	

26664zP�1
37775 (2.7.18)

Next, do the P � P matrix inversion

H � .1C VT 	 Z/�1 (2.7.19)

Finally, solve the one further auxiliary problem

A 	 y D b (2.7.20)

In terms of these quantities, the solution is given by

x D y � Z 	
h
H 	 .VT 	 y/

i
(2.7.21)

2.7.4 Inversion by Partitioning
Once in a while, you will encounter a matrix (not even necessarily sparse) that

can be inverted efficiently by partitioning. Suppose that the N � N matrix A is
partitioned into

A D

�
P Q
R S

�
(2.7.22)

where P and S are square matrices of size p�p and s�s, respectively (pCs D N ).
The matrices Q and R are not necessarily square and have sizes p � s and s � p,
respectively.

If the inverse of A is partitioned in the same manner,

A�1 D

"
zP zQ

zR zS

#
(2.7.23)
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then zP , zQ, zR, zS, which have the same sizes as P , Q, R, S, respectively, can be found
by either the formulas

zP D .P �Q 	 S�1 	R/�1

zQ D �.P �Q 	 S�1 	R/�1 	 .Q 	 S�1/

zR D �.S�1 	R/ 	 .P �Q 	 S�1 	R/�1

zS D S�1 C .S�1 	R/ 	 .P �Q 	 S�1 	R/�1 	 .Q 	 S�1/

(2.7.24)

or else by the equivalent formulas

zP D P�1 C .P�1 	Q/ 	 .S �R 	 P�1 	Q/�1 	 .R 	 P�1/

zQ D �.P�1 	Q/ 	 .S �R 	 P�1 	Q/�1

zR D �.S �R 	 P�1 	Q/�1 	 .R 	 P�1/

zS D .S �R 	 P�1 	Q/�1

(2.7.25)

The parentheses in equations (2.7.24) and (2.7.25) highlight repeated factors that you
may wish to compute only once. (Of course, by associativity, you can instead do the
matrix multiplications in any order you like.) The choice between using equations
(2.7.24) and (2.7.25) depends on whether you want zP or zS to have the simpler for-
mula; or on whether the repeated expression .S�R 	P�1 	Q/�1 is easier to calculate
than the expression .P �Q 	 S�1 	 R/�1; or on the relative sizes of P and S; or on
whether P�1 or S�1 is already known.

Another sometimes useful formula is for the determinant of the partitioned ma-
trix,

detA D detP det.S �R 	 P�1 	Q/ D detS det.P �Q 	 S�1 	R/ (2.7.26)

2.7.5 Indexed Storage of Sparse Matrices
We have already seen (�2.4) that tri- or band-diagonal matrices can be stored in a com-

pact format that allocates storage only to elements that can be nonzero, plus perhaps a few
wasted locations to make the bookkeeping easier. What about more general sparse matrices?
When a sparse matrix of dimension M � N contains only a few times M or N nonzero ele-
ments (a typical case), it is surely inefficient — and often physically impossible — to allocate
storage for all MN elements. Even if one did allocate such storage, it would be inefficient or
prohibitive in machine time to loop over all of it in search of nonzero elements.

Obviously some kind of indexed storage scheme is required, one that stores only nonzero
matrix elements, along with sufficient auxiliary information to determine where an element
logically belongs and how the various elements can be looped over in common matrix opera-
tions. Unfortunately, there is no one standard scheme in general use. Each scheme has its own
pluses and minuses, depending on the application.

Before we look at sparse matrices, let’s consider the simpler problem of a sparse vector.
The obvious data structure is a list of the nonzero values and another list of the corresponding
locations:

struct NRsparseColsparse.h
Sparse vector data structure.
{

Int nrows; Number of rows.
Int nvals; Maximum number of nonzeros.
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VecInt row_ind; Row indices of nonzeros.
VecDoub val; Array of nonzero values.

NRsparseCol(Int m,Int nnvals) : nrows(m), nvals(nnvals),
row_ind(nnvals,0),val(nnvals,0.0) {} Constructor. Initializes vector to zero.

NRsparseCol() : nrows(0),nvals(0),row_ind(),val() {} Default constructor.

void resize(Int m, Int nnvals) {
nrows = m;
nvals = nnvals;
row_ind.assign(nnvals,0);
val.assign(nnvals,0.0);

}

};

While we think of this as defining a column vector, you can use exactly the same data
structure for a row vector — just mentally interchange the meaning of row and column for the
variables. For matrices, however, we have to decide ahead of time whether to use row-oriented
or column-oriented storage.

One simple scheme is to use a vector of sparse columns:

NRvector<NRsparseCol *> a;
for (i=0;i<n;i++) {

nvals=...
a[i]=new NRsparseCol(m,nvals);

}

Each column is filled with statements like

count=0;
for (j=...) {

a[i]->row_ind[count]=...
a[i]->val[count]=...
count++;

}

This data structure is good for an algorithm that primarily works with columns of the matrix,
but it is not very efficient when one needs to loop over all elements of the matrix.

A good general storage scheme is the compressed column storage format. It is sometimes
called the Harwell-Boeing format, after the two large organizations that first systematically
provided a standard collection of sparse matrices for research purposes. In this scheme, three
vectors are used: val for the nonzero values as they are traversed column by column, row_ind
for the corresponding row indices of each value, and col_ptr for the locations in the other
two arrays that start a column. In other words, if val[k]=a[i][j], then row_ind[k]=i.
The first nonzero in column j is at col_ptr[j]. The last is at col_ptr[j+1]-1. Note that
col_ptr[0] is always 0, and by convention we define col_ptr[n] equal to the number of
nonzeros. Note also that the dimension of the col_ptr array is N C 1, not N . The advantage
of this scheme is that it requires storage of only about two times the number of nonzero matrix
elements. (Other methods can require as much as three or five times.)

As an example, consider the matrix

26664
3:0 0:0 1:0 2:0 0:0
0:0 4:0 0:0 0:0 0:0
0:0 7:0 5:0 9:0 0:0
0:0 0:0 0:0 0:0 0:0
0:0 0:0 0:0 6:0 5:0

37775 (2.7.27)

In compressed column storage mode, matrix (2.7.27) is represented by two arrays of length 9
and an array of length 6, as follows
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index k 0 1 2 3 4 5 6 7 8

val[k] 3.0 4.0 7.0 1.0 5.0 2.0 9.0 6.0 5.0

row_ind[k] 0 1 2 0 2 0 2 4 4

index i 0 1 2 3 4 5

col_ptr[i] 0 1 3 5 8 9

(2.7.28)

Notice that, according to the storage rules, the value of N (namely 5) is the maximum valid
index in col_ptr. The value of col_ptr[5] is 9, the length of the other two arrays. The el-
ements 1.0 and 5.0 in column number 2, for example, are located in positions col_ptr[2] 

k < col_ptr[3].

Here is a data structure to handle this storage scheme:

struct NRsparseMatsparse.h
Sparse matrix data structure for compressed column storage.
{

Int nrows; Number of rows.
Int ncols; Number of columns.
Int nvals; Maximum number of nonzeros.
VecInt col_ptr; Pointers to start of columns. Length is ncols+1.
VecInt row_ind; Row indices of nonzeros.
VecDoub val; Array of nonzero values.

NRsparseMat(); Default constructor.
NRsparseMat(Int m,Int n,Int nnvals); Constructor. Initializes vector to zero.
VecDoub ax(const VecDoub &x) const; Multiply A by a vector x[0..ncols-1].
VecDoub atx(const VecDoub &x) const; Multiply AT by a vector x[0..nrows-1].
NRsparseMat transpose() const; Form AT .

};

The code for the constructors is standard:

NRsparseMat::NRsparseMat() : nrows(0),ncols(0),nvals(0),col_ptr(),sparse.h
row_ind(),val() {}

NRsparseMat::NRsparseMat(Int m,Int n,Int nnvals) : nrows(m),ncols(n),
nvals(nnvals),col_ptr(n+1,0),row_ind(nnvals,0),val(nnvals,0.0) {}

The single most important use of a matrix in compressed column storage mode is to
multiply a vector to its right. Don’t implement this by traversing the rows of A, which is
extremely inefficient in this storage mode. Here’s the right way to do it:

VecDoub NRsparseMat::ax(const VecDoub &x) const {sparse.h
VecDoub y(nrows,0.0);
for (Int j=0;j<ncols;j++) {

for (Int i=col_ptr[j];i<col_ptr[j+1];i++)
y[row_ind[i]] += val[i]*x[j];

}
return y;

}

Some inefficiency occurs because of the indirect addressing. While there are other storage
modes that minimize this, they have their own drawbacks.

It is also simple to multiply the transpose of a matrix by a vector to its right, since we just
traverse the columns directly. (Indirect addressing is still required.) Note that the transpose
matrix is not actually constructed.
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VecDoub NRsparseMat::atx(const VecDoub &x) const { sparse.h
VecDoub y(ncols);
for (Int i=0;i<ncols;i++) {

y[i]=0.0;
for (Int j=col_ptr[i];j<col_ptr[i+1];j++)

y[i] += val[j]*x[row_ind[j]];
}
return y;

}

Because the choice of compressed column storage treats rows and columns quite differ-
ently, it is rather an involved operation to construct the transpose of a matrix, given the matrix
itself in compressed column storage mode. When the operation cannot be avoided, it is

NRsparseMat NRsparseMat::transpose() const { sparse.h
Int i,j,k,index,m=nrows,n=ncols;
NRsparseMat at(n,m,nvals); Initialized to zero.
First find the column lengths for AT , i.e. the row lengths of A.
VecInt count(m,0); Temporary counters for each row of A.
for (i=0;i<n;i++)

for (j=col_ptr[i];j<col_ptr[i+1];j++) {
k=row_ind[j];
count[k]++;

}
for (j=0;j<m;j++) Now set at.col_ptr. 0th entry stays 0.

at.col_ptr[j+1]=at.col_ptr[j]+count[j];
for(j=0;j<m;j++) Reset counters to zero.

count[j]=0;
for (i=0;i<n;i++) Main loop.

for (j=col_ptr[i];j<col_ptr[i+1];j++) {
k=row_ind[j];

index=at.col_ptr[k]+count[k]; Element’s position in column of AT .
at.row_ind[index]=i;
at.val[index]=val[j];
count[k]++; Increment counter for next element in that

column.}
return at;

}

The only sparse matrix-matrix multiply routine we give is to form the product ADAT ,
where D is a diagonal matrix. This particular product is used to form the so-called normal
equations in the interior-point method for linear programming (�10.11). We encapsulate the
algorithm in its own structure, ADAT:

struct ADAT { sparse.h
const NRsparseMat &a,&at; Store references to A and AT .

NRsparseMat *adat; This will hold ADAT .

ADAT(const NRsparseMat &A,const NRsparseMat &AT);

Allocates compressed column storage for AAT , where A and AT are input in compressed
column format, and fills in values of col_ptr and row_ind. Each column must be in sorted
order in input matrices. Matrix is output with each column sorted.
void updateD(const VecDoub &D);

Computes ADAT , where D is a diagonal matrix. This function can be called repeatedly

to update ADAT for fixed A.
NRsparseMat &ref();

Returns reference to adat, which holds ADAT .
~ADAT();

};
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The algorithm proceeds in two steps. First, the nonzero pattern of AAT is found by a call
to the constructor. Since D is diagonal, AAT and ADAT have the same nonzero structure.
Algorithms using ADAT will typically have both A and AT available, so we pass them both
to the constructor rather than recompute AT from A. The constructor allocates storage and
assigns values to col_ptr and row_ind. The structure of ADAT is returned with columns in
sorted order because routines like the AMD ordering algorithm used in �10.11 require it.

ADAT::ADAT(const NRsparseMat &A,const NRsparseMat &AT) : a(A), at(AT) {sparse.h
Int h,i,j,k,l,nvals,m=AT.ncols;
VecInt done(m);
for (i=0;i<m;i++) Initialize to not done.

done[i]=-1;
nvals=0; First pass determines number of nonzeros.
for (j=0;j<m;j++) { Outer loop over columns of AT in AAT .

for (i=AT.col_ptr[j];i<AT.col_ptr[j+1];i++) {

k=AT.row_ind[i]; ATkj ¤ 0. Find column k in first matrix, A.
for (l=A.col_ptr[k];l<A.col_ptr[k+1];l++) {

h=A.row_ind[l]; Ahl ¤ 0.
if (done[h] != j) { Test if contribution already included.

done[h]=j;
nvals++;

}
}

}
}
adat = new NRsparseMat(m,m,nvals); Allocate storage for ADAT.
for (i=0;i<m;i++) Re-initialize.

done[i]=-1;
nvals=0;
Second pass: Determine columns of adat. Code is identical to first pass except adat->col_ptr
and adat->row_ind get assigned at appropriate places.
for (j=0;j<m;j++) {

adat->col_ptr[j]=nvals;
for (i=AT.col_ptr[j];i<AT.col_ptr[j+1];i++) {

k=AT.row_ind[i];
for (l=A.col_ptr[k];l<A.col_ptr[k+1];l++) {

h=A.row_ind[l];
if (done[h] != j) {

done[h]=j;
adat->row_ind[nvals]=h;
nvals++;

}
}

}
}
adat->col_ptr[m]=nvals; Set last value.
for (j=0;j<m;j++) { Sort columns

i=adat->col_ptr[j];
Int size=adat->col_ptr[j+1]-i;
if (size > 1) {

VecInt col(size,&adat->row_ind[i]);
sort(col);
for (k=0;k<size;k++)

adat->row_ind[i+k]=col[k];
}

}
}

The next routine, updateD, actually fills in the values in the val array. It can be called
repeatedly to update ADAT for fixed A.
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void ADAT::updateD(const VecDoub &D) { sparse.h
Int h,i,j,k,l,m=a.nrows,n=a.ncols;
VecDoub temp(n),temp2(m,0.0);

for (i=0;i<m;i++) { Outer loop over columns of AT .
for (j=at.col_ptr[i];j< at.col_ptr[i+1];j++) {

k=at.row_ind[j]; Scale elements of each column with D and
store in temp.temp[k]=at.val[j]*D[k];

}
for (j=at.col_ptr[i];j<at.col_ptr[i+1];j++) { Go down column again.

k=at.row_ind[j];
for (l=a.col_ptr[k];l<a.col_ptr[k+1];l++) { Go down column k in

A.h=a.row_ind[l];
temp2[h] += temp[k]*a.val[l]; All terms from temp[k] used here.

}
}
for (j=adat->col_ptr[i];j<adat->col_ptr[i+1];j++) {
Store temp2 in column of answer.

k=adat->row_ind[j];
adat->val[j]=temp2[k];
temp2[k]=0.0; Restore temp2.

}
}

}

The final two functions are simple. The ref routine returns a reference to the matrix
ADAT stored in the structure for other routines that may need to work with it. And the
destructor releases the storage.

NRsparseMat & ADAT::ref() { sparse.h
return *adat;

}

ADAT::~ADAT() {
delete adat;

}

By the way, if you invoke ADAT with different matrices A and BT , everything will work
fine as long as A and B have the same nonzero pattern.

In Numerical Recipes second edition, we gave a related sparse matrix storage mode in
which the diagonal of the matrix is stored first, followed by the off-diagonal elements. We
now feel that the added complexity of that scheme is not worthwhile for any of the uses in
this book. For a discussion of this and other storage schemes, see [7,8]. To see how to work
with the diagonal in the compressed column mode, look at the code for asolve at the end of
this section.

2.7.6 Conjugate Gradient Method for a Sparse System
So-called conjugate gradient methods provide a quite general means for solving the

N �N linear system
A 	 x D b (2.7.29)

The attractiveness of these methods for large sparse systems is that they reference A only
through its multiplication of a vector, or the multiplication of its transpose and a vector. As we
have seen, these operations can be very efficient for a properly stored sparse matrix. You, the
“owner” of the matrix A, can be asked to provide functions that perform these sparse matrix
multiplications as efficiently as possible. We, the “grand strategists,” supply an abstract base
class, Linbcg below, that contains the method for solving the set of linear equations, (2.7.29),
using your functions.

The simplest, “ordinary” conjugate gradient algorithm [9-11] solves (2.7.29) only in the
case that A is symmetric and positive-definite. It is based on the idea of minimizing the
function

f .x/ D 1
2 x 	A 	 x � b 	 x (2.7.30)
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This function is minimized when its gradient

rf D A 	 x � b (2.7.31)

is zero, which is equivalent to (2.7.29). The minimization is carried out by generating a
succession of search directions pk and improved minimizers xk . At each stage a quantity ˛k
is found that minimizes f .xk C ˛kpk/, and xkC1 is set equal to the new point xk C ˛kpk .
The pk and xk are built up in such a way that xkC1 is also the minimizer of f over the whole
vector space of directions already taken, fp0;p1; : : : ;pk�1g. After N iterations you arrive at
the minimizer over the entire vector space, i.e., the solution to (2.7.29).

Later, in �10.8, we will generalize this “ordinary” conjugate gradient algorithm to the
minimization of arbitrary nonlinear functions. Here, where our interest is in solving linear,
but not necessarily positive-definite or symmetric, equations, a different generalization is im-
portant, the biconjugate gradient method. This method does not, in general, have a simple
connection with function minimization. It constructs four sequences of vectors, rk , xrk , pk ,
xpk , k D 0; 1; : : : . You supply the initial vectors r0 and xr0, and set p0 D r0, xp0 D xr0. Then
you carry out the following recurrence:

˛k D
xrk 	 rk
xpk 	A 	 pk

rkC1 D rk � ˛kA 	 pk

xrkC1 D xrk � ˛kA
T 	 xpk

ˇk D
xrkC1 	 rkC1
xrk 	 rk

pkC1 D rkC1 C ˇkpk
xpkC1 D xrkC1 C ˇkxpk

(2.7.32)

This sequence of vectors satisfies the biorthogonality condition

xr i 	 rj D r i 	 xrj D 0; j < i (2.7.33)

and the biconjugacy condition

xpi 	A 	 pj D pi 	A
T 	 xpj D 0; j < i (2.7.34)

There is also a mutual orthogonality,

xr i 	 pj D r i 	 xpj D 0; j < i (2.7.35)

The proof of these properties proceeds by straightforward induction [12]. As long as the recur-
rence does not break down earlier because one of the denominators is zero, it must terminate
after m 
 N steps with rm D xrm D 0. This is basically because after at most N steps you
run out of new orthogonal directions to the vectors you’ve already constructed.

To use the algorithm to solve the system (2.7.29), make an initial guess x0 for the solu-
tion. Choose r0 to be the residual

r0 D b �A 	 x0 (2.7.36)

and choose xr0 D r0. Then form the sequence of improved estimates

xkC1 D xk C ˛kpk (2.7.37)

while carrying out the recurrence (2.7.32). Equation (2.7.37) guarantees that rkC1 from the
recurrence is in fact the residual b � A 	 xkC1 corresponding to xkC1. Since rm D 0, xm is
the solution to equation (2.7.29).

While there is no guarantee that this whole procedure will not break down or become
unstable for general A, in practice this is rare. More importantly, the exact termination in at
most N iterations occurs only with exact arithmetic. Roundoff error means that you should
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regard the process as a genuinely iterative procedure, to be halted when some appropriate error
criterion is met.

The ordinary conjugate gradient algorithm is the special case of the biconjugate gradient
algorithm when A is symmetric, and we choose xr0 D r0. Then xrk D rk and xpk D pk for all
k; you can omit computing them and halve the work of the algorithm. This conjugate gradient
version has the interpretation of minimizing equation (2.7.30). If A is positive-definite as
well as symmetric, the algorithm cannot break down (in theory!). The solve routine Linbcg
below indeed reduces to the ordinary conjugate gradient method if you input a symmetric A,
but it does all the redundant computations.

Another variant of the general algorithm corresponds to a symmetric but non-positive-
definite A, with the choice xr0 D A 	 r0 instead of xr0 D r0. In this case xrk D A 	 rk and
xpk D A 	 pk for all k. This algorithm is thus equivalent to the ordinary conjugate gradient
algorithm, but with all dot products a 	b replaced by a 	A 	b. It is called the minimum residual
algorithm, because it corresponds to successive minimizations of the function

ˆ.x/ D 1
2 r 	 r D 1

2 jA 	 x � bj2 (2.7.38)

where the successive iterates xk minimize ˆ over the same set of search directions pk gener-
ated in the conjugate gradient method. This algorithm has been generalized in various ways
for unsymmetric matrices. The generalized minimum residual method (GMRES; see [13,14])
is probably the most robust of these methods.

Note that equation (2.7.38) gives

rˆ.x/ D AT 	 .A 	 x � b/ (2.7.39)

For any nonsingular matrix A, AT 	A is symmetric and positive-definite. You might therefore
be tempted to solve equation (2.7.29) by applying the ordinary conjugate gradient algorithm
to the problem

.AT 	A/ 	 x D AT 	 b (2.7.40)

Don’t! The condition number of the matrix AT 	 A is the square of the condition number of
A (see �2.6 for definition of condition number). A large condition number both increases the
number of iterations required and limits the accuracy to which a solution can be obtained. It
is almost always better to apply the biconjugate gradient method to the original matrix A.

So far we have said nothing about the rate of convergence of these methods. The ordi-
nary conjugate gradient method works well for matrices that are well-conditioned, i.e., “close”
to the identity matrix. This suggests applying these methods to the preconditioned form of
equation (2.7.29),

.zA
�1
	A/ 	 x D zA

�1
	 b (2.7.41)

The idea is that you might already be able to solve your linear system easily for some zA close
to A, in which case zA�1 	A � 1, allowing the algorithm to converge in fewer steps. The matrix
zA is called a preconditioner [9], and the overall scheme given here is known as the precon-
ditioned biconjugate gradient method or PBCG. In the code below, the user-supplied routine
atimes does sparse matrix multiplication by A, while the user-supplied routine asolve ef-

fects matrix multiplication by the inverse of the preconditioner zA
�1

.
For efficient implementation, the PBCG algorithm introduces an additional set of vectors

zk and xzk defined by
zA 	 zk D rk and zA

T
	 xzk D xrk (2.7.42)

and modifies the definitions of ˛k , ˇk , pk , and xpk in equation (2.7.32):

˛k D
xrk 	 zk
xpk 	A 	 pk

ˇk D
xrkC1 	 zkC1
xrk 	 zk

pkC1 D zkC1 C ˇkpk
xpkC1 D xzkC1 C ˇkxpk

(2.7.43)
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To use Linbcg, below, you will need to supply routines that solve the auxiliary linear systems
(2.7.42). If you have no idea what to use for the preconditioner zA, then use the diagonal part
of A, or even the identity matrix, in which case the burden of convergence will be entirely on
the biconjugate gradient method itself.

Linbcg’s routine solve, below, is based on a program originally written by Anne Green-
baum. (See [11] for a different, less sophisticated, implementation.) There are a few wrinkles
you should know about.

What constitutes “good” convergence is rather application-dependent. The routine solve
therefore provides for four possibilities, selected by setting the flag itol on input. If itol=1,
iteration stops when the quantity jA 	x�bj=jbj is less than the input quantity tol. If itol=2,
the required criterion is

j zA
�1
	 .A 	 x � b/j=j zA

�1
	 bj < tol (2.7.44)

If itol=3, the routine uses its own estimate of the error in x and requires its magnitude,
divided by the magnitude of x, to be less than tol. The setting itol=4 is the same as itol=3,
except that the largest (in absolute value) component of the error and largest component of x
are used instead of the vector magnitude (that is, the L1 norm instead of the L2 norm). You
may need to experiment to find which of these convergence criteria is best for your problem.

On output, err is the tolerance actually achieved. If the returned count iter does not
indicate that the maximum number of allowed iterations itmaxwas exceeded, then err should
be less than tol. If you want to do further iterations, leave all returned quantities as they are
and call the routine again. The routine loses its memory of the spanned conjugate gradient
subspace between calls, however, so you should not force it to return more often than about
every N iterations.

struct Linbcg {linbcg.h
Abstract base class for solving sparse linear equations by the preconditioned biconjugate gradient
method. To use, declare a derived class in which the methods atimes and asolve are defined
for your problem, along with any data that they need. Then call the solve method.

virtual void asolve(VecDoub_I &b, VecDoub_O &x, const Int itrnsp) = 0;
virtual void atimes(VecDoub_I &x, VecDoub_O &r, const Int itrnsp) = 0;
void solve(VecDoub_I &b, VecDoub_IO &x, const Int itol, const Doub tol,

const Int itmax, Int &iter, Doub &err);
Doub snrm(VecDoub_I &sx, const Int itol); Utility used by solve.

};

void Linbcg::solve(VecDoub_I &b, VecDoub_IO &x, const Int itol, const Doub tol,
const Int itmax, Int &iter, Doub &err)

Solves A �x D b for x[0..n-1], given b[0..n-1], by the iterative biconjugate gradient method.
On input x[0..n-1] should be set to an initial guess of the solution (or all zeros); itol is 1,2,3,
or 4, specifying which convergence test is applied (see text); itmax is the maximum number
of allowed iterations; and tol is the desired convergence tolerance. On output, x[0..n-1] is
reset to the improved solution, iter is the number of iterations actually taken, and err is the
estimated error. The matrix A is referenced only through the user-supplied routines atimes,
which computes the product of either A or its transpose on a vector, and asolve, which solves

zA � x D b or zA
T
� x D b for some preconditioner matrix zA (possibly the trivial diagonal part

of A). This routine can be called repeatedly, with itmax.n, to monitor how err decreases;
or it can be called once with a sufficiently large value of itmax so that convergence to tol is
achieved.
{

Doub ak,akden,bk,bkden=1.0,bknum,bnrm,dxnrm,xnrm,zm1nrm,znrm;
const Doub EPS=1.0e-14;
Int j,n=b.size();
VecDoub p(n),pp(n),r(n),rr(n),z(n),zz(n);
iter=0; Calculate initial residual.
atimes(x,r,0); Input to atimes is x[0..n-1], output is r[0..n-1];

the final 0 indicates that the matrix (not its
transpose) is to be used.

for (j=0;j<n;j++) {
r[j]=b[j]-r[j];
rr[j]=r[j];

}
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//atimes(r,rr,0); Uncomment this line to get the “minimum resid-
ual” variant of the algorithm.if (itol == 1) {

bnrm=snrm(b,itol);
asolve(r,z,0); Input to asolve is r[0..n-1], output is z[0..n-1];

the final 0 indicates that the matrix eA (not
its transpose) is to be used.

}
else if (itol == 2) {

asolve(b,z,0);
bnrm=snrm(z,itol);
asolve(r,z,0);

}
else if (itol == 3 || itol == 4) {

asolve(b,z,0);
bnrm=snrm(z,itol);
asolve(r,z,0);
znrm=snrm(z,itol);

} else throw("illegal itol in linbcg");
while (iter < itmax) { Main loop.

++iter;
asolve(rr,zz,1); Final 1 indicates use of transpose matrix eAT .
for (bknum=0.0,j=0;j<n;j++) bknum += z[j]*rr[j];
Calculate coefficient bk and direction vectors p and pp.
if (iter == 1) {

for (j=0;j<n;j++) {
p[j]=z[j];
pp[j]=zz[j];

}
} else {

bk=bknum/bkden;
for (j=0;j<n;j++) {

p[j]=bk*p[j]+z[j];
pp[j]=bk*pp[j]+zz[j];

}
}
bkden=bknum; Calculate coefficient ak, new iterate x, and new

residuals r and rr.atimes(p,z,0);
for (akden=0.0,j=0;j<n;j++) akden += z[j]*pp[j];
ak=bknum/akden;
atimes(pp,zz,1);
for (j=0;j<n;j++) {

x[j] += ak*p[j];
r[j] -= ak*z[j];
rr[j] -= ak*zz[j];

}
asolve(r,z,0); Solve eA � z D r and check stopping criterion.
if (itol == 1)

err=snrm(r,itol)/bnrm;
else if (itol == 2)

err=snrm(z,itol)/bnrm;
else if (itol == 3 || itol == 4) {

zm1nrm=znrm;
znrm=snrm(z,itol);
if (abs(zm1nrm-znrm) > EPS*znrm) {

dxnrm=abs(ak)*snrm(p,itol);
err=znrm/abs(zm1nrm-znrm)*dxnrm;

} else {
err=znrm/bnrm; Error may not be accurate, so loop again.
continue;

}
xnrm=snrm(x,itol);
if (err <= 0.5*xnrm) err /= xnrm;
else {

err=znrm/bnrm; Error may not be accurate, so loop again.
continue;

}
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}
if (err <= tol) break;

}
}

The solve routine uses this short utility for computing vector norms:

Doub Linbcg::snrm(VecDoub_I &sx, const Int itol)linbcg.h
Compute one of two norms for a vector sx[0..n-1], as signaled by itol. Used by solve.
{

Int i,isamax,n=sx.size();
Doub ans;
if (itol <= 3) {

ans = 0.0;
for (i=0;i<n;i++) ans += SQR(sx[i]); Vector magnitude norm.
return sqrt(ans);

} else {
isamax=0;
for (i=0;i<n;i++) { Largest component norm.

if (abs(sx[i]) > abs(sx[isamax])) isamax=i;
}
return abs(sx[isamax]);

}
}

Here is an example of a derived class that solves A	x D b for a matrix A in NRsparseMat’s
compressed column sparse format. A naive diagonal preconditioner is used.

struct NRsparseLinbcg : Linbcg {asolve.h
NRsparseMat &mat;
Int n;
NRsparseLinbcg(NRsparseMat &matrix) : mat(matrix), n(mat.nrows) {}
The constructor just binds a reference to your sparse matrix, making it available to asolve
and atimes. To solve for a right-hand side, you call this object’s solve method, as defined
in the base class.
void atimes(VecDoub_I &x, VecDoub_O &r, const Int itrnsp) {

if (itrnsp) r=mat.atx(x);
else r=mat.ax(x);

}
void asolve(VecDoub_I &b, VecDoub_O &x, const Int itrnsp) {

Int i,j;
Doub diag;
for (i=0;i<n;i++) {

diag=0.0;
for (j=mat.col_ptr[i];j<mat.col_ptr[i+1];j++)

if (mat.row_ind[j] == i) {
diag=mat.val[j];
break;

}
x[i]=(diag != 0.0 ? b[i]/diag : b[i]);

The matrix zA is the diagonal part of A. Since the transpose matrix has the same
diagonal, the flag itrnsp is not used in this example.

}
}

};

For another example of using a class derived from Linbcg to solve a sparse matrix
problem, see �3.8.
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2.8 Vandermonde Matrices and Toeplitz
Matrices

In �2.4 the case of a tridiagonal matrix was treated specially, because that par-
ticular type of linear system admits a solution in only of order N operations, rather
than of order N 3 for the general linear problem. When such particular types exist,
it is important to know about them. Your computational savings, should you ever
happen to be working on a problem that involves the right kind of particular type,
can be enormous.

This section treats two special types of matrices that can be solved in of or-
der N 2 operations, not as good as tridiagonal, but a lot better than the general case.
(Other than the operations count, these two types having nothing in common.) Matri-
ces of the first type, termed Vandermonde matrices, occur in some problems having
to do with the fitting of polynomials, the reconstruction of distributions from their
moments, and also other contexts. In this book, for example, a Vandermonde prob-
lem crops up in �3.5. Matrices of the second type, termed Toeplitz matrices, tend
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to occur in problems involving deconvolution and signal processing. In this book, a
Toeplitz problem is encountered in �13.7.

These are not the only special types of matrices worth knowing about. The
Hilbert matrices, whose components are of the form aij D 1=.i C j C 1/; i; j D

0; : : : ; N � 1, can be inverted by an exact integer algorithm and are very difficult to
invert in any other way, since they are notoriously ill-conditioned (see [1] for details).
The Sherman-Morrison and Woodbury formulas, discussed in �2.7, can sometimes
be used to convert new special forms into old ones. Reference [2] gives some other
special forms. We have not found these additional forms to arise as frequently as the
two that we now discuss.

2.8.1 Vandermonde Matrices

A Vandermonde matrix of sizeN �N is completely determined byN arbitrary numbers
x0; x1; : : : ; xN�1, in terms of which its N 2 components are the integer powers xji ; i; j D
0; : : : ; N � 1. Evidently there are two possible such forms, depending on whether we view
the i’s as rows and j ’s as columns, or vice versa. In the former case, we get a linear system
of equations that looks like this,266664

1 x0 x20 	 	 	 xN�10

1 x1 x21 	 	 	 xN�11
:::

:::
:::

:::

1 xN�1 x2
N�1

	 	 	 xN�1
N�1

377775 	
266664

c0

c1
:::

cN�1

377775 D
266664

y0

y1
:::

yN�1

377775 (2.8.1)

Performing the matrix multiplication, you will see that this equation solves for the unknown
coefficients ci that fit a polynomial to the N pairs of abscissas and ordinates .xj ; yj /. Pre-
cisely this problem will arise in �3.5, and the routine given there will solve (2.8.1) by the
method that we are about to describe.

The alternative identification of rows and columns leads to the set of equations26664
1 1 	 	 	 1
x0 x1 	 	 	 xN�1
x20 x21 	 	 	 x2

N�1
	 	 	

xN�10 xN�11 	 	 	 xN�1
N�1

37775 	
26664

w0
w1
w2
	 	 	

wN�1

37775 D
26664

q0
q1
q2
	 	 	
qN�1

37775 (2.8.2)

Write this out and you will see that it relates to the problem of moments: Given the values of
N points xi , find the unknown weights wi , assigned so as to match the given values qj of the
first N moments. (For more on this problem, consult [3].) The routine given in this section
solves (2.8.2).

The method of solution of both (2.8.1) and (2.8.2) is closely related to Lagrange’s poly-
nomial interpolation formula, which we will not formally meet until �3.2. Notwithstanding,
the following derivation should be comprehensible:

Let Pj .x/ be the polynomial of degree N � 1 defined by

Pj .x/ D

N�1Y
nD0
n¤j

x � xn

xj � xn
D

N�1X
kD0

Ajkx
k (2.8.3)

Here the meaning of the last equality is to define the components of the matrix Aij as the
coefficients that arise when the product is multiplied out and like terms collected.
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The polynomial Pj .x/ is a function of x generally. But you will notice that it is specifi-
cally designed so that it takes on a value of zero at all xi with i ¤ j and has a value of unity
at x D xj . In other words,

Pj .xi / D ıij D

N�1X
kD0

Ajkx
k
i (2.8.4)

But (2.8.4) says that Ajk is exactly the inverse of the matrix of components xki , which
appears in (2.8.2), with the subscript as the column index. Therefore the solution of (2.8.2) is
just that matrix inverse times the right-hand side,

wj D

N�1X
kD0

Ajkqk (2.8.5)

As for the transpose problem (2.8.1), we can use the fact that the inverse of the transpose
is the transpose of the inverse, so

cj D

N�1X
kD0

Akj yk (2.8.6)

The routine in �3.5 implements this.
It remains to find a good way of multiplying out the monomial terms in (2.8.3), in order

to get the components of Ajk . This is essentially a bookkeeping problem, and we will let you
read the routine itself to see how it can be solved. One trick is to define a master P.x/ by

P.x/ �

N�1Y
nD0

.x � xn/ (2.8.7)

work out its coefficients, and then obtain the numerators and denominators of the specific Pj ’s
via synthetic division by the one supernumerary term. (See �5.1 for more on synthetic divi-
sion.) Since each such division is only a process of orderN , the total procedure is of orderN 2.

You should be warned that Vandermonde systems are notoriously ill-conditioned, by
their very nature. (As an aside anticipating �5.8, the reason is the same as that which makes
Chebyshev fitting so impressively accurate: There exist high-order polynomials that are very
good uniform fits to zero. Hence roundoff error can introduce rather substantial coefficients
of the leading terms of these polynomials.) It is a good idea always to compute Vandermonde
problems in double precision or higher.

The routine for (2.8.2) that follows is due to G.B. Rybicki.

void vander(VecDoub_I &x, VecDoub_O &w, VecDoub_I &q) vander.h
Solves the Vandermonde linear system

PN�1
iD0 x

k
i
wi D qk .k D 0; : : : ;N � 1/. Input consists

of the vectors x[0..n-1] and q[0..n-1]; the vector w[0..n-1] is output.
{

Int i,j,k,n=q.size();
Doub b,s,t,xx;
VecDoub c(n);
if (n == 1) w[0]=q[0];
else {

for (i=0;i<n;i++) c[i]=0.0; Initialize array.
c[n-1] = -x[0]; Coefficients of the master polynomial are found

by recursion.for (i=1;i<n;i++) {
xx = -x[i];
for (j=(n-1-i);j<(n-1);j++) c[j] += xx*c[j+1];
c[n-1] += xx;

}
for (i=0;i<n;i++) { Each subfactor in turn
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xx=x[i];
t=b=1.0;
s=q[n-1];
for (k=n-1;k>0;k--) { is synthetically divided,

b=c[k]+xx*b;
s += q[k-1]*b; matrix-multiplied by the right-hand side,
t=xx*t+b;

}
w[i]=s/t; and supplied with a denominator.

}
}

}

2.8.2 Toeplitz Matrices
An N �N Toeplitz matrix is specified by giving 2N � 1 numbers Rk , where the index

k ranges over k D �N C 1; : : : ;�1; 0; 1; : : : ; N � 1. Those numbers are then emplaced as
matrix elements constant along the (upper-left to lower-right) diagonals of the matrix:2666664

R0 R�1 R�2 	 	 	 R�.N�2/ R�.N�1/
R1 R0 R�1 	 	 	 R�.N�3/ R�.N�2/
R2 R1 R0 	 	 	 R�.N�4/ R�.N�3/
	 	 	 	 	 	

RN�2 RN�3 RN�4 	 	 	 R0 R�1
RN�1 RN�2 RN�3 	 	 	 R1 R0

3777775 (2.8.8)

The linear Toeplitz problem can thus be written as

N�1X
jD0

Ri�j xj D yi .i D 0; : : : ; N � 1/ (2.8.9)

where the xj ’s, j D 0; : : : ; N � 1, are the unknowns to be solved for.
The Toeplitz matrix is symmetric if Rk D R�k for all k. Levinson [4] developed an

algorithm for fast solution of the symmetric Toeplitz problem, by a bordering method, that is,
a recursive procedure that solves the .M C 1/-dimensional Toeplitz problem

MX
jD0

Ri�j x
.M/
j D yi .i D 0; : : : ;M/ (2.8.10)

in turn for M D 0; 1; : : : until M D N � 1, the desired result, is finally reached. The vector

x
.M/
j is the result at the M th stage and becomes the desired answer only when N � 1 is

reached.
Levinson’s method is well documented in standard texts (e.g., [5]). The useful fact that

the method generalizes to the nonsymmetric case seems to be less well known. At some risk
of excessive detail, we therefore give a derivation here, due to G.B. Rybicki.

In following a recursion from stepM to stepM C1 we find that our developing solution
x.M/ changes in this way:

MX
jD0

Ri�j x
.M/
j D yi i D 0; : : : ;M (2.8.11)

becomes

MX
jD0

Ri�j x
.MC1/
j C Ri�.MC1/x

.MC1/
MC1

D yi i D 0; : : : ;M C 1 (2.8.12)
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By eliminating yi we find

MX
jD0

Ri�j

 
x
.M/
j � x

.MC1/
j

x
.MC1/
MC1

!
D Ri�.MC1/ i D 0; : : : ;M (2.8.13)

or by letting i !M � i and j !M � j ,

MX
jD0

Rj�iG
.M/
j D R�.iC1/ (2.8.14)

where

G
.M/
j �

x
.M/
M�j

� x
.MC1/
M�j

x
.MC1/
MC1

(2.8.15)

To put this another way,

x
.MC1/
M�j

D x
.M/
M�j

� x
.MC1/
MC1

G
.M/
j j D 0; : : : ;M (2.8.16)

Thus, if we can use recursion to find the order M quantities x.M/ and G.M/ and the single

order M C 1 quantity x.MC1/
MC1

, then all of the other x.MC1/j ’s will follow. Fortunately, the

quantity x.MC1/
MC1

follows from equation (2.8.12) with i DM C 1,

MX
jD0

RMC1�j x
.MC1/
j CR0x

.MC1/
MC1

D yMC1 (2.8.17)

For the unknown order M C 1 quantities x.MC1/j we can substitute the previous order quan-
tities in G since

G
.M/
M�j

D
x
.M/
j � x

.MC1/
j

x
.MC1/
MC1

(2.8.18)

The result of this operation is

x
.MC1/
MC1

D

PM
jD0RMC1�j x

.M/
j � yMC1PM

jD0 RMC1�jG
.M/
M�j

�R0

(2.8.19)

The only remaining problem is to develop a recursion relation for G. Before we do that,
however, we should point out that there are actually two distinct sets of solutions to the original
linear problem for a nonsymmetric matrix, namely right-hand solutions (which we have been
discussing) and left-hand solutions zi . The formalism for the left-hand solutions differs only
in that we deal with the equations

MX
jD0

Rj�iz
.M/
j D yi i D 0; : : : ;M (2.8.20)

Then, the same sequence of operations on this set leads to

MX
jD0

Ri�jH
.M/
j D RiC1 (2.8.21)
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where

H
.M/
j �

z
.M/
M�j

� z
.MC1/
M�j

z
.MC1/
MC1

(2.8.22)

(compare with 2.8.14 – 2.8.15). The reason for mentioning the left-hand solutions now is
that, by equation (2.8.21), the Hj ’s satisfy exactly the same equation as the xj ’s except for
the substitution yi ! RiC1 on the right-hand side. Therefore we can quickly deduce from
equation (2.8.19) that

H
.MC1/
MC1

D

PM
jD0 RMC1�jH

.M/
j �RMC2PM

jD0 RMC1�jG
.M/
M�j

�R0

(2.8.23)

By the same token, G satisfies the same equation as z, except for the substitution yi !
R�.iC1/. This gives

G
.MC1/
MC1

D

PM
jD0 Rj�M�1G

.M/
j �R�M�2PM

jD0 Rj�M�1H
.M/
M�j

�R0

(2.8.24)

The same “morphism” also turns equation (2.8.16), and its partner for z, into the final equa-
tions

G
.MC1/
j D G

.M/
j �G

.MC1/
MC1

H
.M/
M�j

H
.MC1/
j D H

.M/
j �H

.MC1/
MC1

G
.M/
M�j

(2.8.25)

Now, starting with the initial values

x
.0/
0 D y0=R0 G

.0/
0 D R�1=R0 H

.0/
0 D R1=R0 (2.8.26)

we can recurse away. At each stageM we use equations (2.8.23) and (2.8.24) to findH .MC1/
MC1

,

G
.MC1/
MC1

, and then equation (2.8.25) to find the other components of H .MC1/; G.MC1/.

From there the vectors x.MC1/ and/or z.MC1/ are easily calculated.
The program below does this. It incorporates the second equation in (2.8.25) in the form

H
.MC1/
M�j

D H
.M/
M�j

�H
.MC1/
MC1

G
.M/
j (2.8.27)

so that the computation can be done “in place.”
Notice that the above algorithm fails if R0 D 0. In fact, because the bordering method

does not allow pivoting, the algorithm will fail if any of the diagonal principal minors of the
original Toeplitz matrix vanish. (Compare with discussion of the tridiagonal algorithm in
�2.4.) If the algorithm fails, your matrix is not necessarily singular — you might just have to
solve your problem by a slower and more general algorithm such as LU decomposition with
pivoting.

The routine that implements equations (2.8.23) – (2.8.27) is also due to Rybicki. Note
that the routine’s r[n-1+j] is equal to Rj above, so that subscripts on the r array vary from
0 to 2N � 2.

void toeplz(VecDoub_I &r, VecDoub_O &x, VecDoub_I &y)toeplz.h
Solves the Toeplitz system

PN�1
jD0 R.N�1Ci�j/xj D yi .i D 0; : : : ;N � 1/. The Toeplitz

matrix need not be symmetric. y[0..n-1] and r[0..2*n-2] are input arrays; x[0..n-1] is the
output array.
{

Int j,k,m,m1,m2,n1,n=y.size();
Doub pp,pt1,pt2,qq,qt1,qt2,sd,sgd,sgn,shn,sxn;
n1=n-1;
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if (r[n1] == 0.0) throw("toeplz-1 singular principal minor");
x[0]=y[0]/r[n1]; Initialize for the recursion.
if (n1 == 0) return;
VecDoub g(n1),h(n1);
g[0]=r[n1-1]/r[n1];
h[0]=r[n1+1]/r[n1];
for (m=0;m<n;m++) { Main loop over the recursion.

m1=m+1;
sxn = -y[m1]; Compute numerator and denominator for x from eq.

(2.8.19),sd = -r[n1];
for (j=0;j<m+1;j++) {

sxn += r[n1+m1-j]*x[j];
sd += r[n1+m1-j]*g[m-j];

}
if (sd == 0.0) throw("toeplz-2 singular principal minor");
x[m1]=sxn/sd; whence x.
for (j=0;j<m+1;j++) Eq. (2.8.16).

x[j] -= x[m1]*g[m-j];
if (m1 == n1) return;
sgn = -r[n1-m1-1]; Compute numerator and denominator for G and H ,

eqs. (2.8.24) and (2.8.23),shn = -r[n1+m1+1];
sgd = -r[n1];
for (j=0;j<m+1;j++) {

sgn += r[n1+j-m1]*g[j];
shn += r[n1+m1-j]*h[j];
sgd += r[n1+j-m1]*h[m-j];

}
if (sgd == 0.0) throw("toeplz-3 singular principal minor");
g[m1]=sgn/sgd; whence G and H .
h[m1]=shn/sd;
k=m;
m2=(m+2) >> 1;
pp=g[m1];
qq=h[m1];
for (j=0;j<m2;j++) {

pt1=g[j];
pt2=g[k];
qt1=h[j];
qt2=h[k];
g[j]=pt1-pp*qt2;
g[k]=pt2-pp*qt1;
h[j]=qt1-qq*pt2;
h[k--]=qt2-qq*pt1;

}
} Back for another recurrence.
throw("toeplz - should not arrive here!");

}

If you are in the business of solving very large Toeplitz systems, you should find out
about so-called “new, fast” algorithms, which require only on the order of N.logN/2 opera-
tions, compared to N 2 for Levinson’s method. These methods are too complicated to include
here. Papers by Bunch [6] and de Hoog [7] will give entry to the literature.

CITED REFERENCES AND FURTHER READING:

Golub, G.H., and Van Loan, C.F. 1996, Matrix Computations, 3rd ed. (Baltimore: Johns Hopkins
University Press), Chapter 5 [also treats some other special forms].

Forsythe, G.E., and Moler, C.B. 1967, Computer Solution of Linear Algebraic Systems (Engle-
wood Cliffs, NJ: Prentice-Hall), �19.[1]

Westlake, J.R. 1968, A Handbook of Numerical Matrix Inversion and Solution of Linear Equations
(New York: Wiley).[2]
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von Mises, R. 1964, Mathematical Theory of Probability and Statistics (New York: Academic
Press), pp. 394ff.[3]

Levinson, N., Appendix B of N. Wiener, 1949, Extrapolation, Interpolation and Smoothing of
Stationary Time Series (New York: Wiley).[4]

Robinson, E.A., and Treitel, S. 1980, Geophysical Signal Analysis (Englewood Cliffs, NJ: Prentice-
Hall), pp. 163ff.[5]

Bunch, J.R. 1985, “Stability of Methods for Solving Toeplitz Systems of Equations,” SIAM Journal
on Scientific and Statistical Computing, vol. 6, pp. 349–364.[6]

de Hoog, F. 1987, “A New Algorithm for Solving Toeplitz Systems of Equations,” Linear Algebra
and Its Applications, vol. 88/89, pp. 123–138.[7]

2.9 Cholesky Decomposition

If a square matrix A happens to be symmetric and positive-definite, then it has a spe-
cial, more efficient, triangular decomposition. Symmetric means that aij D aj i for i; j D
0; : : : ; N � 1, while positive-definite means that

v 	A 	 v > 0 for all vectors v (2.9.1)

(In Chapter 11 we will see that positive-definite has the equivalent interpretation that A has
all positive eigenvalues.) While symmetric, positive-definite matrices are rather special, they
occur quite frequently in some applications, so their special factorization, called Cholesky
decomposition, is good to know about. When you can use it, Cholesky decomposition is about
a factor of two faster than alternative methods for solving linear equations.

Instead of seeking arbitrary lower and upper triangular factors L and U , Cholesky de-
composition constructs a lower triangular matrix L whose transpose LT can itself serve as the
upper triangular part. In other words we replace equation (2.3.1) by

L 	 LT D A (2.9.2)

This factorization is sometimes referred to as “taking the square root” of the matrix A, though,
because of the transpose, it is not literally that. The components of LT are of course related
to those of L by

LTij D Lj i (2.9.3)

Writing out equation (2.9.2) in components, one readily obtains the analogs of equations
(2.3.12) – (2.3.13),

Li i D

 
ai i �

i�1X
kD0

L2ik

!1=2
(2.9.4)

and

Lj i D
1

Li i

 
aij �

i�1X
kD0

LikLjk

!
j D i C 1; i C 2; : : : ; N � 1 (2.9.5)

If you apply equations (2.9.4) and (2.9.5) in the order i D 0; 1; : : : ; N � 1, you will
see that the L’s that occur on the right-hand side are already determined by the time they are
needed. Also, only components aij with j � i are referenced. (Since A is symmetric, these
have complete information.) If storage is at a premium, it is possible to have the factor L over-
write the subdiagonal (lower triangular but not including the diagonal) part of A, preserving
the input upper triangular values of A; one extra vector of length N is then needed to store the
diagonal part of L. The operations count is N 3=6 executions of the inner loop (consisting of
one multiply and one subtract), with also N square roots. As already mentioned, this is about
a factor 2 better than LU decomposition of A (where its symmetry would be ignored).
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You might wonder about pivoting. The pleasant answer is that Cholesky decomposition
is extremely stable numerically, without any pivoting at all. Failure of the decomposition
simply indicates that the matrix A (or, with roundoff error, another very nearby matrix) is
not positive-definite. In fact, this is an efficient way to test whether a symmetric matrix is
positive-definite. (In this application, you may want to replace the throw in the code below
with some less drastic signaling method.)

By now you should be familiar with, if not bored by, our conventions for objects im-
plementing decomposition methods, so we list the object Cholesky as a single big mouthful.
The methods elmult and elsolve perform manipulations using the matrix L. The first mul-
tiplies L 	 y D c for a given y , returning c. The second solves this same equation, given c and
returning y . These manipulations are useful in contexts such as multivariate Gaussians (�7.4
and �16.5) and in the analysis of covariance matrices (�15.6).

struct Cholesky{ cholesky.h
Object for Cholesky decomposition of a matrix A, and related functions.

Int n;
MatDoub el; Stores the decomposition.
Cholesky(MatDoub_I &a) : n(a.nrows()), el(a) {
Constructor. Given a positive-definite symmetric matrix a[0..n-1][0..n-1], construct

and store its Cholesky decomposition, A D L �LT .
Int i,j,k;
VecDoub tmp;
Doub sum;
if (el.ncols() != n) throw("need square matrix");
for (i=0;i<n;i++) {

for (j=i;j<n;j++) {
for (sum=el[i][j],k=i-1;k>=0;k--) sum -= el[i][k]*el[j][k];
if (i == j) {

if (sum <= 0.0) A, with rounding errors, is not positive-definite.
throw("Cholesky failed");

el[i][i]=sqrt(sum);
} else el[j][i]=sum/el[i][i];

}
}
for (i=0;i<n;i++) for (j=0;j<i;j++) el[j][i] = 0.;

}
void solve(VecDoub_I &b, VecDoub_O &x) {
Solve the set of n linear equations A �x D b, where a is a positive-definite symmetric matrix
whose Cholesky decomposition has been stored. b[0..n-1] is input as the right-hand side
vector. The solution vector is returned in x[0..n-1].

Int i,k;
Doub sum;
if (b.size() != n || x.size() != n) throw("bad lengths in Cholesky");
for (i=0;i<n;i++) { Solve L � y D b, storing y in x.

for (sum=b[i],k=i-1;k>=0;k--) sum -= el[i][k]*x[k];
x[i]=sum/el[i][i];

}
for (i=n-1;i>=0;i--) { Solve LT � x D y.

for (sum=x[i],k=i+1;k<n;k++) sum -= el[k][i]*x[k];
x[i]=sum/el[i][i];

}
}
void elmult(VecDoub_I &y, VecDoub_O &b) {
Multiply L � y D b, where L is the lower triangular matrix in the stored Cholesky decom-
position. y[0..n-1] is input. The result is returned in b[0..n-1].

Int i,j;
if (b.size() != n || y.size() != n) throw("bad lengths");
for (i=0;i<n;i++) {

b[i] = 0.;
for (j=0;j<=i;j++) b[i] += el[i][j]*y[j];

}
}
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void elsolve(VecDoub_I &b, VecDoub_O &y) {
Solve L � y D b, where L is the lower triangular matrix in the stored Cholesky decomposi-
tion. b[0..n-1] is input as the right-hand side vector. The solution vector is returned in
y[0..n-1].

Int i,j;
Doub sum;
if (b.size() != n || y.size() != n) throw("bad lengths");
for (i=0;i<n;i++) {

for (sum=b[i],j=0; j<i; j++) sum -= el[i][j]*y[j];
y[i] = sum/el[i][i];

}
}
void inverse(MatDoub_O &ainv) {
Set ainv[0..n-1][0..n-1] to the matrix inverse of A, the matrix whose Cholesky decom-
position has been stored.

Int i,j,k;
Doub sum;
ainv.resize(n,n);
for (i=0;i<n;i++) for (j=0;j<=i;j++){

sum = (i==j? 1. : 0.);
for (k=i-1;k>=j;k--) sum -= el[i][k]*ainv[j][k];
ainv[j][i]= sum/el[i][i];

}
for (i=n-1;i>=0;i--) for (j=0;j<=i;j++){

sum = (i<j? 0. : ainv[j][i]);
for (k=i+1;k<n;k++) sum -= el[k][i]*ainv[j][k];
ainv[i][j] = ainv[j][i] = sum/el[i][i];

}
}
Doub logdet() {
Return the logarithm of the determinant of A, the matrix whose Cholesky decomposition
has been stored.

Doub sum = 0.;
for (Int i=0; i<n; i++) sum += log(el[i][i]);
return 2.*sum;

}
};

CITED REFERENCES AND FURTHER READING:

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer), Chapter I/1.

Gill, P.E., Murray, W., and Wright, M.H. 1991, Numerical Linear Algebra and Optimization, vol. 1
(Redwood City, CA: Addison-Wesley), �4.9.2.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall);
reprinted 2003 (New York: Dover), �5.3.5.

Golub, G.H., and Van Loan, C.F. 1996, Matrix Computations, 3rd ed. (Baltimore: Johns Hopkins
University Press), �4.2.

2.10 QR Decomposition

There is another matrix factorization that is sometimes very useful, the so-called QR
decomposition,

A D Q 	R (2.10.1)
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Here R is upper triangular, while Q is orthogonal, that is,

QT 	Q D 1 (2.10.2)

where QT is the transpose matrix of Q. Although the decomposition exists for a general
rectangular matrix, we shall restrict our treatment to the case when all the matrices are square,
with dimensions N �N .

Like the other matrix factorizations we have met (LU , SVD, Cholesky), QR decompo-
sition can be used to solve systems of linear equations. To solve

A 	 x D b (2.10.3)

first form QT 	 b and then solve
R 	 x D QT 	 b (2.10.4)

by backsubstitution. Since QR decomposition involves about twice as many operations as
LU decomposition, it is not used for typical systems of linear equations. However, we will
meet special cases where QR is the method of choice.

The standard algorithm for the QR decomposition involves successive Householder
transformations (to be discussed later in �11.3). We write a Householder matrix in the form
1�u˝u=c, where c D 1

2u 	u. An appropriate Householder matrix applied to a given matrix
can zero all elements in a column of the matrix situated below a chosen element. Thus we
arrange for the first Householder matrix Q0 to zero all elements in column 0 of A below the
zeroth element. Similarly, Q1 zeroes all elements in column 1 below element 1, and so on up
to Qn�2. Thus

R D Qn�2 	 	 	Q0 	A (2.10.5)

Since the Householder matrices are orthogonal,

Q D .Qn�2 	 	 	Q0/
�1 D Q0 	 	 	Qn�2 (2.10.6)

In many applications Q is not needed explicitly, and it is sufficient to store only the factored
form (2.10.6). (We do, however, store Q, or rather its transpose, in the code below.) Pivoting
is not usually necessary unless the matrix A is very close to singular. A generalQR algorithm
for rectangular matrices including pivoting is given in [1]. For square matrices and without
pivoting, an implementation is as follows:

struct QRdcmp { qrdcmp.h
Object for QR decomposition of a matrix A, and related functions.

Int n;
MatDoub qt, r; Stored QT and R.
Bool sing; Indicates whether A is singular.
QRdcmp(MatDoub_I &a); Constructor from A.
void solve(VecDoub_I &b, VecDoub_O &x); Solve A � x D b for x.
void qtmult(VecDoub_I &b, VecDoub_O &x); Multiply QT � b D x.
void rsolve(VecDoub_I &b, VecDoub_O &x); Solve R � x D b for x.
void update(VecDoub_I &u, VecDoub_I &v); See next subsection.
void rotate(const Int i, const Doub a, const Doub b); Used by update.

};

As usual, the constructor performs the actual decomposition:

QRdcmp::QRdcmp(MatDoub_I &a) qrdcmp.h
: n(a.nrows()), qt(n,n), r(a), sing(false) {

Construct the QR decomposition of a[0..n-1][0..n-1]. The upper triangular matrix R and
the transpose of the orthogonal matrix Q are stored. sing is set to true if a singularity is
encountered during the decomposition, but the decomposition is still completed in this case;
otherwise it is set to false.

Int i,j,k;
VecDoub c(n), d(n);
Doub scale,sigma,sum,tau;
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for (k=0;k<n-1;k++) {
scale=0.0;
for (i=k;i<n;i++) scale=MAX(scale,abs(r[i][k]));
if (scale == 0.0) { Singular case.

sing=true;
c[k]=d[k]=0.0;

} else { Form Qk and Qk �A.
for (i=k;i<n;i++) r[i][k] /= scale;
for (sum=0.0,i=k;i<n;i++) sum += SQR(r[i][k]);
sigma=SIGN(sqrt(sum),r[k][k]);
r[k][k] += sigma;
c[k]=sigma*r[k][k];
d[k] = -scale*sigma;
for (j=k+1;j<n;j++) {

for (sum=0.0,i=k;i<n;i++) sum += r[i][k]*r[i][j];
tau=sum/c[k];
for (i=k;i<n;i++) r[i][j] -= tau*r[i][k];

}
}

}
d[n-1]=r[n-1][n-1];
if (d[n-1] == 0.0) sing=true;

for (i=0;i<n;i++) { Form QT explicitly.
for (j=0;j<n;j++) qt[i][j]=0.0;
qt[i][i]=1.0;

}
for (k=0;k<n-1;k++) {

if (c[k] != 0.0) {
for (j=0;j<n;j++) {

sum=0.0;
for (i=k;i<n;i++)

sum += r[i][k]*qt[i][j];
sum /= c[k];
for (i=k;i<n;i++)

qt[i][j] -= sum*r[i][k];
}

}
}
for (i=0;i<n;i++) { Form R explicitly.

r[i][i]=d[i];
for (j=0;j<i;j++) r[i][j]=0.0;

}
}

The next set of member functions is used to solve linear systems. In many applications
only the part (2.10.4) of the algorithm is needed, so we put in separate routines the multipli-
cation QT 	 b and the backsubstitution on R.

void QRdcmp::solve(VecDoub_I &b, VecDoub_O &x) {qrdcmp.h
Solve the set of n linear equations A �x D b. b[0..n-1] is input as the right-hand side vector,
and x[0..n-1] is returned as the solution vector.

qtmult(b,x); Form QT � b.

rsolve(x,x); Solve R � x DQT � b.
}

void QRdcmp::qtmult(VecDoub_I &b, VecDoub_O &x) {

Multiply QT � b and put the result in x. Since Q is orthogonal, this is equivalent to solving
Q � x D b for x.

Int i,j;
Doub sum;
for (i=0;i<n;i++) {

sum = 0.;
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for (j=0;j<n;j++) sum += qt[i][j]*b[j];
x[i] = sum;

}
}

void QRdcmp::rsolve(VecDoub_I &b, VecDoub_O &x) {
Solve the triangular set of n linear equations R � x D b. b[0..n-1] is input as the right-hand
side vector, and x[0..n-1] is returned as the solution vector.

Int i,j;
Doub sum;
if (sing) throw("attempting solve in a singular QR");
for (i=n-1;i>=0;i--) {

sum=b[i];
for (j=i+1;j<n;j++) sum -= r[i][j]*x[j];
x[i]=sum/r[i][i];

}
}

See [2] for details on how to use QR decomposition for constructing orthogonal bases,
and for solving least-squares problems. (We prefer to use SVD, �2.6, for these purposes,
because of its greater diagnostic capability in pathological cases.)

2.10.1 Updating a QR decomposition
Some numerical algorithms involve solving a succession of linear systems each of which

differs only slightly from its predecessor. Instead of doing O.N 3/ operations each time to
solve the equations from scratch, one can often update a matrix factorization in O.N 2/ op-
erations and use the new factorization to solve the next set of linear equations. The LU
decomposition is complicated to update because of pivoting. However, QR turns out to be
quite simple for a very common kind of update,

A! AC s˝ t (2.10.7)

(compare equation 2.7.1). In practice it is more convenient to work with the equivalent form

A D Q 	R ! A0 D Q0 	R0 D Q 	 .RC u˝ v/ (2.10.8)

One can go back and forth between equations (2.10.7) and (2.10.8) using the fact that Q is
orthogonal, giving

t D v and either s D Q 	 u or u D QT 	 s (2.10.9)

The algorithm [2] has two phases. In the first we apply N � 1 Jacobi rotations (�11.1) to
reduce RC u˝ v to upper Hessenberg form. Another N � 1 Jacobi rotations transform this
upper Hessenberg matrix to the new upper triangular matrix R0. The matrix Q0 is simply the
product of Q with the 2.N � 1/ Jacobi rotations. In applications we usually want QT , so the
algorithm is arranged to work with this matrix (which is stored in the QRdcmp object) instead
of with Q.

void QRdcmp::update(VecDoub_I &u, VecDoub_I &v) { qrdcmp.h
Starting from the stored QR decomposition A DQ �R, update it to be the QR decomposition
of the matrix Q � .RC u˝ v/. Input quantities are u[0..n-1], and v[0..n-1].

Int i,k;
VecDoub w(u);
for (k=n-1;k>=0;k--) Find largest k such that u[k] ¤ 0.

if (w[k] != 0.0) break;
if (k < 0) k=0;
for (i=k-1;i>=0;i--) { Transform RC u˝ v to upper Hessenberg.

rotate(i,w[i],-w[i+1]);
if (w[i] == 0.0)

w[i]=abs(w[i+1]);
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else if (abs(w[i]) > abs(w[i+1]))
w[i]=abs(w[i])*sqrt(1.0+SQR(w[i+1]/w[i]));

else w[i]=abs(w[i+1])*sqrt(1.0+SQR(w[i]/w[i+1]));
}
for (i=0;i<n;i++) r[0][i] += w[0]*v[i];
for (i=0;i<k;i++) Transform upper Hessenberg matrix to upper tri-

angular.rotate(i,r[i][i],-r[i+1][i]);
for (i=0;i<n;i++)

if (r[i][i] == 0.0) sing=true;
}

void QRdcmp::rotate(const Int i, const Doub a, const Doub b)
Utility used by update. Given matrices r[0..n-1][0..n-1] and qt[0..n-1][0..n-1], carry
out a Jacobi rotation on rows i and iC 1 of each matrix. a and b are the parameters of the

rotation: cos � D a=
p
a2 C b2, sin � D b=

p
a2 C b2.

{
Int j;
Doub c,fact,s,w,y;
if (a == 0.0) { Avoid unnecessary overflow or underflow.

c=0.0;
s=(b >= 0.0 ? 1.0 : -1.0);

} else if (abs(a) > abs(b)) {
fact=b/a;
c=SIGN(1.0/sqrt(1.0+(fact*fact)),a);
s=fact*c;

} else {
fact=a/b;
s=SIGN(1.0/sqrt(1.0+(fact*fact)),b);
c=fact*s;

}
for (j=i;j<n;j++) { Premultiply r by Jacobi rotation.

y=r[i][j];
w=r[i+1][j];
r[i][j]=c*y-s*w;
r[i+1][j]=s*y+c*w;

}
for (j=0;j<n;j++) { Premultiply qt by Jacobi rotation.

y=qt[i][j];
w=qt[i+1][j];
qt[i][j]=c*y-s*w;
qt[i+1][j]=s*y+c*w;

}
}

We will make use of QR decomposition, and its updating, in �9.7.

CITED REFERENCES AND FURTHER READING:

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer), Chapter I/8.[1]

Golub, G.H., and Van Loan, C.F. 1996, Matrix Computations, 3rd ed. (Baltimore: Johns Hopkins
University Press), �5.2, �5.3, �12.5.[2]

2.11 Is Matrix Inversion an N3 Process?
We close this chapter with a little entertainment, a bit of algorithmic prestidig-

itation that probes more deeply into the subject of matrix inversion. We start with a
seemingly simple question:
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How many individual multiplications does it take to perform the matrix multi-
plication of two 2 � 2 matrices,�

a00 a01
a10 a11

�
	

�
b00 b01
b10 b11

�
D

�
c00 c01
c10 c11

�
(2.11.1)

Eight, right? Here they are written explicitly:

c00 D a00 � b00 C a01 � b10

c01 D a00 � b01 C a01 � b11

c10 D a10 � b00 C a11 � b10

c11 D a10 � b01 C a11 � b11

(2.11.2)

Do you think that one can write formulas for the c’s that involve only seven
multiplications? (Try it yourself, before reading on.)

Such a set of formulas was, in fact, discovered by Strassen [1]. The formulas are

Q0 � .a00 C a11/ � .b00 C b11/

Q1 � .a10 C a11/ � b00

Q2 � a00 � .b01 � b11/

Q3 � a11 � .�b00 C b10/

Q4 � .a00 C a01/ � b11

Q5 � .�a00 C a10/ � .b00 C b01/

Q6 � .a01 � a11/ � .b10 C b11/

(2.11.3)

in terms of which

c00 D Q0 CQ3 �Q4 CQ6

c10 D Q1 CQ3

c01 D Q2 CQ4

c11 D Q0 CQ2 �Q1 CQ5

(2.11.4)

What’s the use of this? There is one fewer multiplication than in equation
(2.11.2), but many more additions and subtractions. It is not clear that anything
has been gained. But notice that in (2.11.3) the a’s and b’s are never commuted.
Therefore (2.11.3) and (2.11.4) are valid when the a’s and b’s are themselves ma-
trices. The problem of multiplying two very large matrices (of order N D 2m for
some integer m) can now be broken down recursively by partitioning the matrices
into quarters, sixteenths, etc. And note the key point: The savings is not just a factor
“7/8”; it is that factor at each hierarchical level of the recursion. In total it reduces
the process of matrix multiplication to order N log2 7 instead of N 3.

What about all the extra additions in (2.11.3) – (2.11.4)? Don’t they outweigh
the advantage of the fewer multiplications? For large N , it turns out that there are
six times as many additions as multiplications implied by (2.11.3) – (2.11.4). But, if
N is very large, this constant factor is no match for the change in the exponent from
N 3 to N log2 7.
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With this “fast” matrix multiplication, Strassen also obtained a surprising result
for matrix inversion [1]. Suppose that the matrices�

a00 a01
a10 a11

�
and

�
c00 c01
c10 c11

�
(2.11.5)

are inverses of each other. Then the c’s can be obtained from the a’s by the following
operations (compare equations 2.7.11 and 2.7.25):

R0 D Inverse.a00/

R1 D a10 �R0

R2 D R0 � a01

R3 D a10 �R2

R4 D R3 � a11

R5 D Inverse.R4/

c01 D R2 �R5

c10 D R5 �R1

R6 D R2 � c10

c00 D R0 �R6

c11 D �R5

(2.11.6)

In (2.11.6) the “inverse” operator occurs just twice. It is to be interpreted as the
reciprocal if the a’s and c’s are scalars, but as matrix inversion if the a’s and c’s are
themselves submatrices. Imagine doing the inversion of a very large matrix, of order
N D 2m, recursively by partitions in half. At each step, halving the order doubles
the number of inverse operations. But this means that there are only N divisions in
all! So divisions don’t dominate in the recursive use of (2.11.6). Equation (2.11.6)
is dominated, in fact, by its 6 multiplications. Since these can be done by an N log2 7

algorithm, so can the matrix inversion!
This is fun, but let’s look at practicalities: If you estimate how largeN has to be

before the difference between exponent 3 and exponent log2 7 D 2:807 is substantial
enough to outweigh the bookkeeping overhead, arising from the complicated nature
of the recursive Strassen algorithm, you will find that LU decomposition is in no
immediate danger of becoming obsolete. However, the fast matrix multiplication
routine itself is beginning to appear in libraries like BLAS, where it is typically used
for N & 100.

Strassen’s original result for matrix multiplication has been steadily improved.
The fastest currently known algorithm [2] has an asymptotic order of N 2:376, but it
is not likely to be practical to implement it.

If you like this kind of fun, then try these: (1) Can you multiply the complex
numbers .aCib/ and .cCid/ in only three real multiplications? [Answer: See �5.5.]
(2) Can you evaluate a general fourth-degree polynomial in x for many different
values of x with only three multiplications per evaluation? [Answer: See �5.1.]

CITED REFERENCES AND FURTHER READING:

Strassen, V. 1969, “Gaussian Elimination Is Not Optimal,” Numerische Mathematik, vol. 13,
pp. 354–356.[1]
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Interpolation and
Extrapolation

CHAPTER 3

3.0 Introduction

We sometimes know the value of a function f .x/ at a set of points x0; x1; : : : ;
xN�1 (say, with x0 < : : : < xN�1), but we don’t have an analytic expression for
f .x/ that lets us calculate its value at an arbitrary point. For example, the f .xi /’s
might result from some physical measurement or from long numerical calculation
that cannot be cast into a simple functional form. Often the xi ’s are equally spaced,
but not necessarily.

The task now is to estimate f .x/ for arbitrary x by, in some sense, drawing a
smooth curve through (and perhaps beyond) the xi . If the desired x is in between the
largest and smallest of the xi ’s, the problem is called interpolation; if x is outside
that range, it is called extrapolation, which is considerably more hazardous (as many
former investment analysts can attest).

Interpolation and extrapolation schemes must model the function, between or
beyond the known points, by some plausible functional form. The form should be
sufficiently general so as to be able to approximate large classes of functions that
might arise in practice. By far most common among the functional forms used are
polynomials (�3.2). Rational functions (quotients of polynomials) also turn out to
be extremely useful (�3.4). Trigonometric functions, sines and cosines, give rise to
trigonometric interpolation and related Fourier methods, which we defer to Chapters
12 and 13.

There is an extensive mathematical literature devoted to theorems about what
sort of functions can be well approximated by which interpolating functions. These
theorems are, alas, almost completely useless in day-to-day work: If we know enough
about our function to apply a theorem of any power, we are usually not in the pitiful
state of having to interpolate on a table of its values!

Interpolation is related to, but distinct from, function approximation. That task
consists of finding an approximate (but easily computable) function to use in place of
a more complicated one. In the case of interpolation, you are given the function f at
points not of your own choosing. For the case of function approximation, you are al-
lowed to compute the function f at any desired points for the purpose of developing

110
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your approximation. We deal with function approximation in Chapter 5.
One can easily find pathological functions that make a mockery of any interpo-

lation scheme. Consider, for example, the function

f .x/ D 3x2 C
1

	4
ln
�
.	 � x/2

	
C 1 (3.0.1)

which is well-behaved everywhere except at x D 	 , very mildly singular at x D 	 ,
and otherwise takes on all positive and negative values. Any interpolation based on
the values x D 3:13; 3:14; 3:15; 3:16, will assuredly get a very wrong answer for the
value x D 3:1416, even though a graph plotting those five points looks really quite
smooth! (Try it.)

Because pathologies can lurk anywhere, it is highly desirable that an interpo-
lation and extrapolation routine should provide an estimate of its own error. Such
an error estimate can never be foolproof, of course. We could have a function that,
for reasons known only to its maker, takes off wildly and unexpectedly between two
tabulated points. Interpolation always presumes some degree of smoothness for the
function interpolated, but within this framework of presumption, deviations from
smoothness can be detected.

Conceptually, the interpolation process has two stages: (1) Fit (once) an inter-
polating function to the data points provided. (2) Evaluate (as many times as you
wish) that interpolating function at a target point x.

However, this two-stage method is usually not the best way to proceed in prac-
tice. Typically it is computationally less efficient, and more susceptible to roundoff
error, than methods that construct a functional estimate f .x/ directly from the N
tabulated values every time one is desired. Many practical schemes start at a nearby
point f .xi /, and then add a sequence of (hopefully) decreasing corrections, as in-
formation from other nearby f .xi /’s is incorporated. The procedure typically takes
O.M 2/ operations, whereM � N is the number of local points used. If everything
is well behaved, the last correction will be the smallest, and it can be used as an in-
formal (though not rigorous) bound on the error. In schemes like this, we might also
say that there are two stages, but now they are: (1) Find the right starting position in
the table (xi or i ). (2) Perform the interpolation usingM nearby values (for example,
centered on xi ).

In the case of polynomial interpolation, it sometimes does happen that the co-
efficients of the interpolating polynomial are of interest, even though their use in
evaluating the interpolating function should be frowned on. We deal with this possi-
bility in �3.5.

Local interpolation, using M nearest-neighbor points, gives interpolated values
f .x/ that do not, in general, have continuous first or higher derivatives. That hap-
pens because, as x crosses the tabulated values xi , the interpolation scheme switches
which tabulated points are the “local” ones. (If such a switch is allowed to occur
anywhere else, then there will be a discontinuity in the interpolated function itself at
that point. Bad idea!)

In situations where continuity of derivatives is a concern, one must use the
“stiffer” interpolation provided by a so-called spline function. A spline is a polyno-
mial between each pair of table points, but one whose coefficients are determined
“slightly” nonlocally. The nonlocality is designed to guarantee global smoothness in
the interpolated function up to some order of derivative. Cubic splines (�3.3) are the
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(a)

(b)

Figure 3.0.1. (a) A smooth function (solid line) is more accurately interpolated by a high-order polyno-
mial (shown schematically as dotted line) than by a low-order polynomial (shown as a piecewise linear
dashed line). (b) A function with sharp corners or rapidly changing higher derivatives is less accurately
approximated by a high-order polynomial (dotted line), which is too “stiff,” than by a low-order polyno-
mial (dashed lines). Even some smooth functions, such as exponentials or rational functions, can be badly
approximated by high-order polynomials.

most popular. They produce an interpolated function that is continuous through the
second derivative. Splines tend to be stabler than polynomials, with less possibility
of wild oscillation between the tabulated points.

The number M of points used in an interpolation scheme, minus 1, is called
the order of the interpolation. Increasing the order does not necessarily increase
the accuracy, especially in polynomial interpolation. If the added points are distant
from the point of interest x, the resulting higher-order polynomial, with its additional
constrained points, tends to oscillate wildly between the tabulated values. This os-
cillation may have no relation at all to the behavior of the “true” function (see Figure
3.0.1). Of course, adding points close to the desired point usually does help, but a
finer mesh implies a larger table of values, which is not always available.

For polynomial interpolation, it turns out that the worst possible arrangement
of the xi ’s is for them to be equally spaced. Unfortunately, this is by far the most
common way that tabulated data are gathered or presented. High-order polynomial
interpolation on equally spaced data is ill-conditioned: small changes in the data can
give large differences in the oscillations between the points. The disease is particu-
larly bad if you are interpolating on values of an analytic function that has poles in
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the complex plane lying inside a certain oval region whose major axis is theM -point
interval. But even if you have a function with no nearby poles, roundoff error can, in
effect, create nearby poles and cause big interpolation errors. In �5.8 we will see that
these issues go away if you are allowed to choose an optimal set of xi ’s. But when
you are handed a table of function values, that option is not available.

As the order is increased, it is typical for interpolation error to decrease at first,
but only up to a certain point. Larger orders result in the error exploding.

For the reasons mentioned, it is a good idea to be cautious about high-order
interpolation. We can enthusiastically endorse polynomial interpolation with 3 or 4
points; we are perhaps tolerant of 5 or 6; but we rarely go higher than that unless there
is quite rigorous monitoring of estimated errors. Most of the interpolation methods
in this chapter are applied piecewise using only M points at a time, so that the order
is a fixed value M � 1, no matter how large N is. As mentioned, splines (�3.3) are a
special case where the function and various derivatives are required to be continuous
from one interval to the next, but the order is nevertheless held fixed a a small value
(usually 3).

In �3.4 we discuss rational function interpolation. In many, but not all, cases,
rational function interpolation is more robust, allowing higher orders to give higher
accuracy. The standard algorithm, however, allows poles on the real axis or nearby in
the complex plane. (This is not necessarily bad: You may be trying to approximate
a function with such poles.) A newer method, barycentric rational interpolation
(�3.4.1) suppresses all nearby poles. This is the only method in this chapter for
which we might actually encourage experimentation with high order (say, > 6).
Barycentric rational interpolation competes very favorably with splines: its error is
often smaller, and the resulting approximation is infinitely smooth (unlike splines).

The interpolation methods below are also methods for extrapolation. An impor-
tant application, in Chapter 17, is their use in the integration of ordinary differential
equations. There, considerable care is taken with the monitoring of errors. Other-
wise, the dangers of extrapolation cannot be overemphasized: An interpolating func-
tion, which is perforce an extrapolating function, will typically go berserk when the
argument x is outside the range of tabulated values by more (and often significantly
less) than the typical spacing of tabulated points.

Interpolation can be done in more than one dimension, e.g., for a function
f .x; y; z/. Multidimensional interpolation is often accomplished by a sequence of
one-dimensional interpolations, but there are also other techniques applicable to scat-
tered data. We discuss multidimensional methods in �3.6 – �3.8.

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions (Washington: Na-
tional Bureau of Standards); reprinted 1968 (New York: Dover); online at http://www.nr.
com/aands, �25.2.

Ueberhuber, C.W. 1997, Numerical Computation: Methods, Software, and Analysis, vol. 1 (Berlin:
Springer), Chapter 9.

Stoer, J., and Bulirsch, R. 2002, Introduction to Numerical Analysis, 3rd ed. (New York: Springer),
Chapter 2.

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington, DC:
Mathematical Association of America), Chapter 3.

Johnson, L.W., and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: Addison-
Wesley), Chapter 5.
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Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed.; reprinted
2001 (New York: Dover), Chapter 3.

Isaacson, E., and Keller, H.B. 1966, Analysis of Numerical Methods; reprinted 1994 (New York:
Dover), Chapter 6.

3.1 Preliminaries: Searching an Ordered Table

We want to define an interpolation object that knows everything about interpo-
lation except one thing — how to actually interpolate! Then we can plug mathemati-
cally different interpolation methods into the object to get different objects sharing a
common user interface. A key task common to all objects in this framework is find-
ing your place in the table of xi ’s, given some particular value x at which the function
evaluation is desired. It is worth some effort to do this efficiently; otherwise you can
easily spend more time searching the table than doing the actual interpolation.

Our highest-level object for one-dimensional interpolation is an abstract base
class containing just one function intended to be called by the user: interp(x)
returns the interpolated function value at x. The base class “promises,” by declaring
a virtual function rawinterp(jlo,x), that every derived interpolation class will
provide a method for local interpolation when given an appropriate local starting
point in the table, an offset jlo. Interfacing between interp and rawinterp must
thus be a method for calculating jlo from x, that is, for searching the table. In fact,
we will use two such methods.

struct Base_interpinterp 1d.h
Abstract base class used by all interpolation routines in this chapter. Only the routine interp
is called directly by the user.
{

Int n, mm, jsav, cor, dj;
const Doub *xx, *yy;
Base_interp(VecDoub_I &x, const Doub *y, Int m)
Constructor: Set up for interpolating on a table of x’s and y’s of length m. Normally called
by a derived class, not by the user.

: n(x.size()), mm(m), jsav(0), cor(0), xx(&x[0]), yy(y) {
dj = MIN(1,(int)pow((Doub)n,0.25));

}

Doub interp(Doub x) {
Given a value x, return an interpolated value, using data pointed to by xx and yy.

Int jlo = cor ? hunt(x) : locate(x);
return rawinterp(jlo,x);

}

Int locate(const Doub x); See definitions below.
Int hunt(const Doub x);

Doub virtual rawinterp(Int jlo, Doub x) = 0;
Derived classes provide this as the actual interpolation method.

};

Formally, the problem is this: Given an array of abscissas xj , j D 0; : : : ; N �1,
with the abscissas either monotonically increasing or monotonically decreasing, and
given an integer M 
 N , and a number x, find an integer jlo such that x is centered
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among theM abscissas xjlo ; : : : ; xjloCM�1. By centered we mean that x lies between
xm and xmC1 insofar as possible, where

m D jlo C



M � 2

2

�
(3.1.1)

By “insofar as possible” we mean that jlo should never be less than zero, nor should
jlo CM � 1 be greater than N � 1.

In most cases, when all is said and done, it is hard to do better than bisection,
which will find the right place in the table in about log2N tries.

Int Base_interp::locate(const Doub x) interp 1d.h
Given a value x, return a value j such that x is (insofar as possible) centered in the subrange
xx[j..j+mm-1], where xx is the stored pointer. The values in xx must be monotonic, either
increasing or decreasing. The returned value is not less than 0, nor greater than n-1.
{

Int ju,jm,jl;
if (n < 2 || mm < 2 || mm > n) throw("locate size error");
Bool ascnd=(xx[n-1] >= xx[0]); True if ascending order of table, false otherwise.
jl=0; Initialize lower
ju=n-1; and upper limits.
while (ju-jl > 1) { If we are not yet done,

jm = (ju+jl) >> 1; compute a midpoint,
if (x >= xx[jm] == ascnd)

jl=jm; and replace either the lower limit
else

ju=jm; or the upper limit, as appropriate.
} Repeat until the test condition is satisfied.
cor = abs(jl-jsav) > dj ? 0 : 1; Decide whether to use hunt or locate next time.
jsav = jl;
return MAX(0,MIN(n-mm,jl-((mm-2)>>1)));

}

The above locate routine accesses the array of values xx[] via a pointer stored by the
base class. This rather primitive method of access, avoiding the use of a higher-level vector
class like VecDoub, is here preferable for two reasons: (1) It’s usually faster; and (2) for two-
dimensional interpolation, we will later need to point directly into a row of a matrix. The
peril of this design choice is that it assumes that consecutive values of a vector are stored
consecutively, and similarly for consecutive values of a single row of a matrix. See discussion
in �1.4.2.

3.1.1 Search with Correlated Values
Experience shows that in many, perhaps even most, applications, interpolation

routines are called with nearly identical abscissas on consecutive searches. For ex-
ample, you may be generating a function that is used on the right-hand side of a
differential equation: Most differential equation integrators, as we shall see in Chap-
ter 17, call for right-hand side evaluations at points that hop back and forth a bit, but
whose trend moves slowly in the direction of the integration.

In such cases it is wasteful to do a full bisection, ab initio, on each call. Much
more desirable is to give our base class a tiny bit of intelligence: If it sees two calls
that are “close,” it anticipates that the next call will also be. Of course, there must
not be too big a penalty if it anticipates wrongly.

The hunt method starts with a guessed position in the table. It first “hunts,”
either up or down, in increments of 1, then 2, then 4, etc., until the desired value is
bracketed. It then bisects in the bracketed interval. At worst, this routine is about a
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hunt phase

bisection phase

0 6 9

7

13 21

31

37

310
(a)

(b)

50

63

Figure 3.1.1. Finding a table entry by bisection. Shown here is the sequence of steps that converge to
element 50 in a table of length 64. (b) The routine hunt searches from a previous known position in
the table by increasing steps and then converges by bisection. Shown here is a particularly unfavorable
example, converging to element 31 from element 6. A favorable example would be convergence to an
element near 6, such as 8, which would require just three “hops.”

factor of 2 slower than locate above (if the hunt phase expands to include the whole
table). At best, it can be a factor of log2n faster than locate, if the desired point is
usually quite close to the input guess. Figure 3.1.1 compares the two routines.

Int Base_interp::hunt(const Doub x)interp 1d.h
Given a value x, return a value j such that x is (insofar as possible) centered in the subrange
xx[j..j+mm-1], where xx is the stored pointer. The values in xx must be monotonic, either
increasing or decreasing. The returned value is not less than 0, nor greater than n-1.
{

Int jl=jsav, jm, ju, inc=1;
if (n < 2 || mm < 2 || mm > n) throw("hunt size error");
Bool ascnd=(xx[n-1] >= xx[0]); True if ascending order of table, false otherwise.
if (jl < 0 || jl > n-1) { Input guess not useful. Go immediately to bisec-

tion.jl=0;
ju=n-1;

} else {
if (x >= xx[jl] == ascnd) { Hunt up:

for (;;) {
ju = jl + inc;
if (ju >= n-1) { ju = n-1; break;} Off end of table.
else if (x < xx[ju] == ascnd) break; Found bracket.
else { Not done, so double the increment and try again.

jl = ju;
inc += inc;

}
}

} else { Hunt down:
ju = jl;
for (;;) {

jl = jl - inc;
if (jl <= 0) { jl = 0; break;} Off end of table.
else if (x >= xx[jl] == ascnd) break; Found bracket.
else { Not done, so double the increment and try again.

ju = jl;
inc += inc;
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}
}

}
}
while (ju-jl > 1) { Hunt is done, so begin the final bisection phase:

jm = (ju+jl) >> 1;
if (x >= xx[jm] == ascnd)

jl=jm;
else

ju=jm;
}
cor = abs(jl-jsav) > dj ? 0 : 1; Decide whether to use hunt or locate next

time.jsav = jl;
return MAX(0,MIN(n-mm,jl-((mm-2)>>1)));

}

The methods locate and hunt each update the boolean variable cor in the
base class, indicating whether consecutive calls seem correlated. That variable is
then used by interp to decide whether to use locate or hunt on the next call. This
is all invisible to the user, of course.

3.1.2 Example: Linear Interpolation
You may think that, at this point, we have wandered far from the subject of

interpolation methods. To show that we are actually on track, here is a class that
efficiently implements piecewise linear interpolation.

struct Linear_interp : Base_interp interp linear.h
Piecewise linear interpolation object. Construct with x and y vectors, then call interp for
interpolated values.
{

Linear_interp(VecDoub_I &xv, VecDoub_I &yv)
: Base_interp(xv,&yv[0],2) {}

Doub rawinterp(Int j, Doub x) {
if (xx[j]==xx[j+1]) return yy[j]; Table is defective, but we can recover.
else return yy[j] + ((x-xx[j])/(xx[j+1]-xx[j]))*(yy[j+1]-yy[j]);

}
};

You construct a linear interpolation object by declaring an instance with your
filled vectors of abscissas xi and function values yi D f .xi /,

Int n=...;

VecDoub xx(n), yy(n);

...

Linear_interp myfunc(xx,yy);

Behind the scenes, the base class constructor is called with M D 2 because linear
interpolation uses just the two points bracketing a value. Also, pointers to the data
are saved. (You must ensure that the vectors xx and yy don’t go out of scope while
myfunc is in use.)

When you want an interpolated value, it’s as simple as

Doub x,y;

...

y = myfunc.interp(x);

If you have several functions that you want to interpolate, you declare a separate
instance of Linear_interp for each one.
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We will now use the same interface for more advanced interpolation methods.

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1997, Sorting and Searching, 3rd ed., vol. 3 of The Art of Computer Programming
(Reading, MA: Addison-Wesley), �6.2.1.

3.2 Polynomial Interpolation and Extrapolation

Through any two points there is a unique line. Through any three points there is
a unique quadratic. Et cetera. The interpolating polynomial of degreeM �1 through
the M points y0 D f .x0/; y1 D f .x1/; : : : ; yM�1 D f .xM�1/ is given explicitly
by Lagrange’s classical formula,

P.x/ D
.x � x1/.x � x2/:::.x � xM�1/

.x0 � x1/.x0 � x2/:::.x0 � xM�1/
y0

C
.x � x0/.x � x2/:::.x � xM�1/

.x1 � x0/.x1 � x2/:::.x1 � xM�1/
y1 C 	 	 	

C
.x � x0/.x � x1/:::.x � xM�2/

.xM�1 � x0/.xM�1 � x1/:::.xM�1 � xM�2/
yM�1

(3.2.1)

There are M terms, each a polynomial of degree M � 1 and each constructed to be
zero at all of the xi ’s except one, at which it is constructed to be yi .

It is not terribly wrong to implement the Lagrange formula straightforwardly,
but it is not terribly right either. The resulting algorithm gives no error estimate, and
it is also somewhat awkward to program. A much better algorithm (for constructing
the same, unique, interpolating polynomial) is Neville’s algorithm, closely related to
and sometimes confused with Aitken’s algorithm, the latter now considered obsolete.

Let P0 be the value at x of the unique polynomial of degree zero (i.e., a con-
stant) passing through the point .x0; y0/; so P0 D y0. Likewise define P1; P2; : : : ;
PM�1. Now let P01 be the value at x of the unique polynomial of degree one passing
through both .x0; y0/ and .x1; y1/. LikewiseP12; P23; : : : ; P.M�2/.M�1/. Similarly,
for higher-order polynomials, up to P012:::.M�1/, which is the value of the unique in-
terpolating polynomial through all M points, i.e., the desired answer. The various
P ’s form a “tableau” with “ancestors” on the left leading to a single “descendant” at
the extreme right. For example, with M D 4,

x0 W y0 D P0
P01

x1 W y1 D P1 P012
P12 P0123

x2 W y2 D P2 P123
P23

x3 W y3 D P3

(3.2.2)

Neville’s algorithm is a recursive way of filling in the numbers in the tableau
a column at a time, from left to right. It is based on the relationship between a



�

�

“nr3” — 2007/5/1 — 20:53 — page 119 — #141
�

�

� �

3.2 Polynomial Interpolation and Extrapolation 119

“daughter” P and its two “parents,”

Pi.iC1/:::.iCm/ D
.x � xiCm/Pi.iC1/:::.iCm�1/ C .xi � x/P.iC1/.iC2/:::.iCm/

xi � xiCm
(3.2.3)

This recurrence works because the two parents already agree at points xiC1 : : :
xiCm�1.

An improvement on the recurrence (3.2.3) is to keep track of the small differ-
ences between parents and daughters, namely to define (for m D 1; 2; : : : ;M � 1),

Cm;i � Pi:::.iCm/ � Pi:::.iCm�1/

Dm;i � Pi:::.iCm/ � P.iC1/:::.iCm/:
(3.2.4)

Then one can easily derive from (3.2.3) the relations

DmC1;i D
.xiCmC1 � x/.Cm;iC1 �Dm;i /

xi � xiCmC1

CmC1;i D
.xi � x/.Cm;iC1 �Dm;i /

xi � xiCmC1

(3.2.5)

At each level m, the C ’s and D’s are the corrections that make the interpolation one
order higher. The final answer P0:::.M�1/ is equal to the sum of any yi plus a set of
C ’s and/or D’s that form a path through the family tree to the rightmost daughter.

Here is the class implementing polynomial interpolation or extrapolation. All
of its “support infrastructure” is in the base class Base_interp. It needs only to
provide a rawinterp method that contains Neville’s algorithm.

struct Poly_interp : Base_interp interp 1d.h
Polynomial interpolation object. Construct with x and y vectors, and the number M of points
to be used locally (polynomial order plus one), then call interp for interpolated values.
{

Doub dy;
Poly_interp(VecDoub_I &xv, VecDoub_I &yv, Int m)

: Base_interp(xv,&yv[0],m), dy(0.) {}
Doub rawinterp(Int jl, Doub x);

};

Doub Poly_interp::rawinterp(Int jl, Doub x)
Given a value x, and using pointers to data xx and yy, this routine returns an interpolated
value y, and stores an error estimate dy. The returned value is obtained by mm-point polynomial
interpolation on the subrange xx[jl..jl+mm-1].
{

Int i,m,ns=0;
Doub y,den,dif,dift,ho,hp,w;
const Doub *xa = &xx[jl], *ya = &yy[jl];
VecDoub c(mm),d(mm);
dif=abs(x-xa[0]);
for (i=0;i<mm;i++) { Here we find the index ns of the closest table entry,

if ((dift=abs(x-xa[i])) < dif) {
ns=i;
dif=dift;

}
c[i]=ya[i]; and initialize the tableau of c’s and d’s.
d[i]=ya[i];

}
y=ya[ns--]; This is the initial approximation to y.
for (m=1;m<mm;m++) { For each column of the tableau,
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for (i=0;i<mm-m;i++) { we loop over the current c’s and d’s and update
them.ho=xa[i]-x;

hp=xa[i+m]-x;
w=c[i+1]-d[i];
if ((den=ho-hp) == 0.0) throw("Poly_interp error");
This error can occur only if two input xa’s are (to within roundoff) identical.
den=w/den;
d[i]=hp*den; Here the c’s and d’s are updated.
c[i]=ho*den;

}
y += (dy=(2*(ns+1) < (mm-m) ? c[ns+1] : d[ns--]));
After each column in the tableau is completed, we decide which correction, c or d, we
want to add to our accumulating value of y, i.e., which path to take through the tableau
— forking up or down. We do this in such a way as to take the most “straight line”
route through the tableau to its apex, updating ns accordingly to keep track of where
we are. This route keeps the partial approximations centered (insofar as possible) on
the target x. The last dy added is thus the error indication.

}
return y;

}

The user interface to Poly_interp is virtually the same as for Linear_interp
(end of �3.1), except that an additional argument in the constructor setsM , the num-
ber of points used (the order plus one). A cubic interpolator looks like this:

Int n=...;

VecDoub xx(n), yy(n);

...

Poly_interp myfunc(xx,yy,4);

Poly_interp stores an error estimate dy for the most recent call to its interp
function:

Doub x,y,err;

...

y = myfunc.interp(x);

err = myfunc.dy;

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions (Washington: Na-
tional Bureau of Standards); reprinted 1968 (New York: Dover); online at http://www.nr.
com/aands, �25.2.

Stoer, J., and Bulirsch, R. 2002, Introduction to Numerical Analysis, 3rd ed. (New York: Springer),
�2.1.

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall), �6.1.

3.3 Cubic Spline Interpolation

Given a tabulated function yi D y.xi /; i D 0:::N � 1, focus attention on one
particular interval, between xj and xjC1. Linear interpolation in that interval gives
the interpolation formula

y D Ayj C ByjC1 (3.3.1)
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where
A �

xjC1 � x

xjC1 � xj
B � 1 � A D

x � xj

xjC1 � xj
(3.3.2)

Equations (3.3.1) and (3.3.2) are a special case of the general Lagrange interpolation
formula (3.2.1).

Since it is (piecewise) linear, equation (3.3.1) has zero second derivative in the
interior of each interval and an undefined, or infinite, second derivative at the abscis-
sas xj . The goal of cubic spline interpolation is to get an interpolation formula that
is smooth in the first derivative and continuous in the second derivative, both within
an interval and at its boundaries.

Suppose, contrary to fact, that in addition to the tabulated values of yi , we
also have tabulated values for the function’s second derivatives, y00, that is, a set
of numbers y00i . Then, within each interval, we can add to the right-hand side of
equation (3.3.1) a cubic polynomial whose second derivative varies linearly from a
value y00j on the left to a value y00jC1 on the right. Doing so, we will have the desired
continuous second derivative. If we also construct the cubic polynomial to have
zero values at xj and xjC1, then adding it in will not spoil the agreement with the
tabulated functional values yj and yjC1 at the endpoints xj and xjC1.

A little side calculation shows that there is only one way to arrange this con-
struction, namely replacing (3.3.1) by

y D Ayj C ByjC1 C Cy
00
j CDy

00
jC1 (3.3.3)

where A and B are defined in (3.3.2) and

C � 1
6
.A3 � A/.xjC1 � xj /

2 D � 1
6
.B3 � B/.xjC1 � xj /

2 (3.3.4)

Notice that the dependence on the independent variable x in equations (3.3.3) and
(3.3.4) is entirely through the linear x-dependence of A and B , and (through A and
B) the cubic x-dependence of C and D.

We can readily check that y00 is in fact the second derivative of the new inter-
polating polynomial. We take derivatives of equation (3.3.3) with respect to x, using
the definitions of A;B;C; andD to compute dA=dx; dB=dx; dC=dx, and dD=dx.
The result is

dy

dx
D
yjC1 � yj

xjC1 � xj
�
3A2 � 1

6
.xjC1 � xj /y

00
j C

3B2 � 1

6
.xjC1 � xj /y

00
jC1 (3.3.5)

for the first derivative, and

d2y

dx2
D Ay00j C By

00
jC1 (3.3.6)

for the second derivative. Since A D 1 at xj , A D 0 at xjC1, while B is just the
other way around, (3.3.6) shows that y00 is just the tabulated second derivative, and
also that the second derivative will be continuous across, e.g., the boundary between
the two intervals .xj�1; xj / and .xj ; xjC1/.

The only problem now is that we supposed the y00i ’s to be known, when, actually,
they are not. However, we have not yet required that the first derivative, computed
from equation (3.3.5), be continuous across the boundary between two intervals. The
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key idea of a cubic spline is to require this continuity and to use it to get equations
for the second derivatives y00i .

The required equations are obtained by setting equation (3.3.5) evaluated for
x D xj in the interval .xj�1; xj / equal to the same equation evaluated for x D xj
but in the interval .xj ; xjC1/. With some rearrangement, this gives (for j D 1; : : : ;

N � 2)

xj � xj�1

6
y00j�1 C

xjC1 � xj�1

3
y00j C

xjC1 � xj

6
y00jC1 D

yjC1 � yj

xjC1 � xj
�
yj � yj�1

xj � xj�1
(3.3.7)

These areN�2 linear equations in theN unknowns y00i ; i D 0; : : : ; N�1. Therefore
there is a two-parameter family of possible solutions.

For a unique solution, we need to specify two further conditions, typically taken
as boundary conditions at x0 and xN�1. The most common ways of doing this are
either

� set one or both of y000 and y00N�1 equal to zero, giving the so-called natural cubic
spline, which has zero second derivative on one or both of its boundaries, or
� set either of y000 and y00N�1 to values calculated from equation (3.3.5) so as to

make the first derivative of the interpolating function have a specified value on
either or both boundaries.

Although the boundary condition for natural splines is commonly used, another
possibility is to estimate the first derivatives at the endpoints from the first and last
few tabulated points. For details of how to do this, see the end of �3.7. Best, of
course, is if you can compute the endpoint first derivatives analytically.

One reason that cubic splines are especially practical is that the set of equations
(3.3.7), along with the two additional boundary conditions, are not only linear, but
also tridiagonal. Each y00j is coupled only to its nearest neighbors at j ˙ 1. There-
fore, the equations can be solved in O.N/ operations by the tridiagonal algorithm
(�2.4). That algorithm is concise enough to build right into the function called by the
constructor.

The object for cubic spline interpolation looks like this:

struct Spline_interp : Base_interpinterp 1d.h
Cubic spline interpolation object. Construct with x and y vectors, and (optionally) values of
the first derivative at the endpoints, then call interp for interpolated values.
{

VecDoub y2;

Spline_interp(VecDoub_I &xv, VecDoub_I &yv, Doub yp1=1.e99, Doub ypn=1.e99)
: Base_interp(xv,&yv[0],2), y2(xv.size())
{sety2(&xv[0],&yv[0],yp1,ypn);}

Spline_interp(VecDoub_I &xv, const Doub *yv, Doub yp1=1.e99, Doub ypn=1.e99)
: Base_interp(xv,yv,2), y2(xv.size())
{sety2(&xv[0],yv,yp1,ypn);}

void sety2(const Doub *xv, const Doub *yv, Doub yp1, Doub ypn);
Doub rawinterp(Int jl, Doub xv);

};

For now, you can ignore the second constructor; it will be used later for two-dimen-
sional spline interpolation.
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The user interface differs from previous ones only in the addition of two con-
structor arguments, used to set the values of the first derivatives at the endpoints, y00
and y0N�1. These are coded with default values that signal that you want a natural
spline, so they can be omitted in most situations. Both constructors invoke sety2 to
do the actual work of computing, and storing, the second derivatives.

void Spline_interp::sety2(const Doub *xv, const Doub *yv, Doub yp1, Doub ypn) interp 1d.h
This routine stores an array y2[0..n-1] with second derivatives of the interpolating function
at the tabulated points pointed to by xv, using function values pointed to by yv. If yp1 and/or

ypn are equal to 1 � 1099 or larger, the routine is signaled to set the corresponding boundary
condition for a natural spline, with zero second derivative on that boundary; otherwise, they are
the values of the first derivatives at the endpoints.
{

Int i,k;
Doub p,qn,sig,un;
Int n=y2.size();
VecDoub u(n-1);
if (yp1 > 0.99e99) The lower boundary condition is set either to be “nat-

ural”y2[0]=u[0]=0.0;
else { or else to have a specified first derivative.

y2[0] = -0.5;
u[0]=(3.0/(xv[1]-xv[0]))*((yv[1]-yv[0])/(xv[1]-xv[0])-yp1);

}
for (i=1;i<n-1;i++) { This is the decomposition loop of the tridiagonal al-

gorithm. y2 and u are used for tem-
porary storage of the decomposed
factors.

sig=(xv[i]-xv[i-1])/(xv[i+1]-xv[i-1]);
p=sig*y2[i-1]+2.0;
y2[i]=(sig-1.0)/p;
u[i]=(yv[i+1]-yv[i])/(xv[i+1]-xv[i]) - (yv[i]-yv[i-1])/(xv[i]-xv[i-1]);
u[i]=(6.0*u[i]/(xv[i+1]-xv[i-1])-sig*u[i-1])/p;

}
if (ypn > 0.99e99) The upper boundary condition is set either to be

“natural”qn=un=0.0;
else { or else to have a specified first derivative.

qn=0.5;
un=(3.0/(xv[n-1]-xv[n-2]))*(ypn-(yv[n-1]-yv[n-2])/(xv[n-1]-xv[n-2]));

}
y2[n-1]=(un-qn*u[n-2])/(qn*y2[n-2]+1.0);
for (k=n-2;k>=0;k--) This is the backsubstitution loop of the tridiagonal

algorithm.y2[k]=y2[k]*y2[k+1]+u[k];
}

Note that, unlike the previous object Poly_interp, Spline_interp stores
data that depend on the contents of your array of yi ’s at its time of creation — a
whole vector y2. Although we didn’t point it out, the previous interpolation object
actually allowed the misuse of altering the contents of their x and y arrays on the fly
(as long as the lengths didn’t change). If you do that with Spline_interp, you’ll
get definitely wrong answers!

The required rawinterp method, never called directly by the users, uses the
stored y2 and implements equation (3.3.3):

Doub Spline_interp::rawinterp(Int jl, Doub x) interp 1d.h
Given a value x, and using pointers to data xx and yy, and the stored vector of second derivatives
y2, this routine returns the cubic spline interpolated value y.
{

Int klo=jl,khi=jl+1;
Doub y,h,b,a;
h=xx[khi]-xx[klo];
if (h == 0.0) throw("Bad input to routine splint"); The xa’s must be dis-

tinct.a=(xx[khi]-x)/h;
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b=(x-xx[klo])/h; Cubic spline polynomial is now evaluated.
y=a*yy[klo]+b*yy[khi]+((a*a*a-a)*y2[klo]

+(b*b*b-b)*y2[khi])*(h*h)/6.0;
return y;

}

Typical use looks like this:

Int n=...;

VecDoub xx(n), yy(n);

...

Spline_interp myfunc(xx,yy);

and then, as often as you like,

Doub x,y;

...

y = myfunc.interp(x);

Note that no error estimate is available.

CITED REFERENCES AND FURTHER READING:

De Boor, C. 1978, A Practical Guide to Splines (New York: Springer).

Ueberhuber, C.W. 1997, Numerical Computation: Methods, Software, and Analysis, vol. 1 (Berlin:
Springer), Chapter 9.

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical Com-
putations (Englewood Cliffs, NJ: Prentice-Hall), �4.4 – �4.5.

Stoer, J., and Bulirsch, R. 2002, Introduction to Numerical Analysis, 3rd ed. (New York: Springer),
�2.4.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed.; reprinted
2001 (New York: Dover), �3.8.

3.4 Rational Function Interpolation and
Extrapolation

Some functions are not well approximated by polynomials but are well ap-
proximated by rational functions, that is quotients of polynomials. We denote by
Ri.iC1/:::.iCm/ a rational function passing through the m C 1 points .xi ; yi /; : : : ;
.xiCm; yiCm/. More explicitly, suppose

Ri.iC1/:::.iCm/ D
P�.x/

Q�.x/
D
p0 C p1x C 	 	 	 C p�x

�

q0 C q1x C 	 	 	 C q�x�
(3.4.1)

Since there are �C 
 C 1 unknown p’s and q’s (q0 being arbitrary), we must have

mC 1 D �C 
 C 1 (3.4.2)

In specifying a rational function interpolating function, you must give the desired
order of both the numerator and the denominator.

Rational functions are sometimes superior to polynomials, roughly speaking,
because of their ability to model functions with poles, that is, zeros of the denomina-
tor of equation (3.4.1). These poles might occur for real values of x, if the function
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to be interpolated itself has poles. More often, the function f .x/ is finite for all finite
real x but has an analytic continuation with poles in the complex x-plane. Such poles
can themselves ruin a polynomial approximation, even one restricted to real values
of x, just as they can ruin the convergence of an infinite power series in x. If you
draw a circle in the complex plane around your m tabulated points, then you should
not expect polynomial interpolation to be good unless the nearest pole is rather far
outside the circle. A rational function approximation, by contrast, will stay “good”
as long as it has enough powers of x in its denominator to account for (cancel) any
nearby poles.

For the interpolation problem, a rational function is constructed so as to go
through a chosen set of tabulated functional values. However, we should also men-
tion in passing that rational function approximations can be used in analytic work.
One sometimes constructs a rational function approximation by the criterion that the
rational function of equation (3.4.1) itself have a power series expansion that agrees
with the firstmC1 terms of the power series expansion of the desired function f .x/.
This is called Padé approximation and is discussed in �5.12.

Bulirsch and Stoer found an algorithm of the Neville type that performs ratio-
nal function extrapolation on tabulated data. A tableau like that of equation (3.2.2)
is constructed column by column, leading to a result and an error estimate. The
Bulirsch-Stoer algorithm produces the so-called diagonal rational function, with the
degrees of the numerator and denominator equal (if m is even) or with the degree
of the denominator larger by one (if m is odd; cf. equation 3.4.2 above). For the
derivation of the algorithm, refer to [1]. The algorithm is summarized by a recur-
rence relation exactly analogous to equation (3.2.3) for polynomial approximation:

Ri.iC1/:::.iCm/ D R.iC1/:::.iCm/

C
R.iC1/:::.iCm/ �Ri:::.iCm�1/�

x�xi
x�xiCm

� �
1 �

R.iC1/:::.iCm/�Ri:::.iCm�1/
R.iC1/:::.iCm/�R.iC1/:::.iCm�1/

�
� 1

(3.4.3)

This recurrence generates the rational functions through mC 1 points from the ones
throughm and (the termR.iC1/:::.iCm�1/ in equation 3.4.3)m�1 points. It is started
with

Ri D yi (3.4.4)

and with

R � ŒRi.iC1/:::.iCm/ with m D �1� D 0 (3.4.5)

Now, exactly as in equations (3.2.4) and (3.2.5) above, we can convert the re-
currence (3.4.3) to one involving only the small differences

Cm;i � Ri:::.iCm/ �Ri:::.iCm�1/

Dm;i � Ri:::.iCm/ �R.iC1/:::.iCm/
(3.4.6)

Note that these satisfy the relation

CmC1;i �DmC1;i D Cm;iC1 �Dm;i (3.4.7)



�

�

“nr3” — 2007/5/1 — 20:53 — page 126 — #148
�

�

� �

126 Chapter 3. Interpolation and Extrapolation

which is useful in proving the recurrences

DmC1;i D
Cm;iC1.Cm;iC1 �Dm;i /�
x�xi

x�xiCmC1

�
Dm;i � Cm;iC1

CmC1;i D

�
x�xi

x�xiCmC1

�
Dm;i .Cm;iC1 �Dm;i /�

x�xi
x�xiCmC1

�
Dm;i � Cm;iC1

(3.4.8)

The class for rational function interpolation is identical to that for polynomial
interpolation in every way, except, of course, for the different method implemented
in rawinterp. See the end of �3.2 for usage. Plausible values forM are in the range
4 to 7.

struct Rat_interp : Base_interpinterp 1d.h
Diagonal rational function interpolation object. Construct with x and y vectors, and the number
m of points to be used locally, then call interp for interpolated values.
{

Doub dy;
Rat_interp(VecDoub_I &xv, VecDoub_I &yv, Int m)

: Base_interp(xv,&yv[0],m), dy(0.) {}
Doub rawinterp(Int jl, Doub x);

};

Doub Rat_interp::rawinterp(Int jl, Doub x)
Given a value x, and using pointers to data xx and yy, this routine returns an interpolated value
y, and stores an error estimate dy. The returned value is obtained by mm-point diagonal rational
function interpolation on the subrange xx[jl..jl+mm-1].
{

const Doub TINY=1.0e-99; A small number.
Int m,i,ns=0;
Doub y,w,t,hh,h,dd;
const Doub *xa = &xx[jl], *ya = &yy[jl];
VecDoub c(mm),d(mm);
hh=abs(x-xa[0]);
for (i=0;i<mm;i++) {

h=abs(x-xa[i]);
if (h == 0.0) {

dy=0.0;
return ya[i];

} else if (h < hh) {
ns=i;
hh=h;

}
c[i]=ya[i];
d[i]=ya[i]+TINY; The TINY part is needed to prevent a rare zero-over-zero

condition.}
y=ya[ns--];
for (m=1;m<mm;m++) {

for (i=0;i<mm-m;i++) {
w=c[i+1]-d[i];
h=xa[i+m]-x; h will never be zero, since this was tested in the initial-

izing loop.t=(xa[i]-x)*d[i]/h;
dd=t-c[i+1];
if (dd == 0.0) throw("Error in routine ratint");
This error condition indicates that the interpolating function has a pole at the
requested value of x.
dd=w/dd;
d[i]=c[i+1]*dd;
c[i]=t*dd;
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}
y += (dy=(2*(ns+1) < (mm-m) ? c[ns+1] : d[ns--]));

}
return y;

}

3.4.1 Barycentric Rational Interpolation
Suppose one tries to use the above algorithm to construct a global approxima-

tion on the entire table of values using all the given nodes x0; x1; : : : ; xN�1. One
potential drawback is that the approximation can have poles inside the interpolation
interval where the denominator in (3.4.1) vanishes, even if the original function has
no poles there. An even greater (related) hazard is that we have allowed the order of
the approximation to grow to N � 1, probably much too large.

An alternative algorithm can be derived [2] that has no poles anywhere on the
real axis, and that allows the actual order of the approximation to be specified to be
any integer d < N . The trick is to make the degree of both the numerator and the
denominator in equation (3.4.1) be N � 1. This requires that the p’s and the q’s not
be independent, so that equation (3.4.2) no longer holds.

The algorithm utilizes the barycentric form of the rational interpolant

R.x/ D

N�1X
iD0

wi

x � xi
yi

N�1X
iD0

wi

x � xi

(3.4.9)

One can show that by a suitable choice of the weights wi , every rational inter-
polant can be written in this form, and that, as a special case, so can polynomial
interpolants [3]. It turns out that this form has many nice numerical properties. Bary-
centric rational interpolation competes very favorably with splines: its error is often
smaller, and the resulting approximation is infinitely smooth (unlike splines).

Suppose we want our rational interpolant to have approximation order d , i.e., if
the spacing of the points is O.h/, the error is O.hdC1/ as h! 0. Then the formula
for the weights is

wk D

kX
iDk�d

0�i<N�d

.�1/k
iCdY
jDi
j¤k

1

xk � xj
(3.4.10)

For example,

wk D .�1/
k ; d D 0

wk D .�1/
k�1

�
1

xk � xk�1
C

1

xkC1 � xk

�
; d D 1

(3.4.11)

In the last equation, you omit the terms in w0 and wN�1 that refer to out-of-range
values of xk .

Here is a routine that implements barycentric rational interpolation. Given a
set of N nodes and a desired order d , with d < N , it first computes the weights
wk . Then subsequent calls to interp evaluate the interpolant using equation (3.4.9).
Note that the parameter jl of rawinterp is not used, since the algorithm is designed
to construct an approximation on the entire interval at once.
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The workload to construct the weights is of orderO.Nd/ operations. For small
d , this is not too different from splines. Note, however, that the workload for each
subsequent interpolated value is O.N/, not O.d/ as for splines.

struct BaryRat_interp : Base_interpinterp 1d.h
Barycentric rational interpolation object. After constructing the object, call interp for inter-
polated values. Note that no error estimate dy is calculated.
{

VecDoub w;
Int d;
BaryRat_interp(VecDoub_I &xv, VecDoub_I &yv, Int dd);
Doub rawinterp(Int jl, Doub x);
Doub interp(Doub x);

};

BaryRat_interp::BaryRat_interp(VecDoub_I &xv, VecDoub_I &yv, Int dd)
: Base_interp(xv,&yv[0],xv.size()), w(n), d(dd)

Constructor arguments are x and y vectors of length n, and order d of desired approximation.
{

if (n<=d) throw("d too large for number of points in BaryRat_interp");
for (Int k=0;k<n;k++) { Compute weights from equation (3.4.10).

Int imin=MAX(k-d,0);
Int imax = k >= n-d ? n-d-1 : k;
Doub temp = imin & 1 ? -1.0 : 1.0;
Doub sum=0.0;
for (Int i=imin;i<=imax;i++) {

Int jmax=MIN(i+d,n-1);
Doub term=1.0;
for (Int j=i;j<=jmax;j++) {

if (j==k) continue;
term *= (xx[k]-xx[j]);

}
term=temp/term;
temp=-temp;
sum += term;

}
w[k]=sum;

}
}
Doub BaryRat_interp::rawinterp(Int jl, Doub x)
Use equation (3.4.9) to compute the barycentric rational interpolant. Note that jl is not used
since the approximation is global; it is included only for compatibility with Base_interp.
{

Doub num=0,den=0;
for (Int i=0;i<n;i++) {

Doub h=x-xx[i];
if (h == 0.0) {

return yy[i];
} else {

Doub temp=w[i]/h;
num += temp*yy[i];
den += temp;

}
}
return num/den;

}
Doub BaryRat_interp::interp(Doub x) {
No need to invoke hunt or locate since the interpolation is global, so override interp to simply
call rawinterp directly with a dummy value of jl.

return rawinterp(1,x);
}

It is wise to start with small values of d before trying larger values.
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3.5 Coefficients of the Interpolating Polynomial
Occasionally you may wish to know not the value of the interpolating poly-

nomial that passes through a (small!) number of points, but the coefficients of that
polynomial. A valid use of the coefficients might be, for example, to compute simul-
taneous interpolated values of the function and of several of its derivatives (see �5.1),
or to convolve a segment of the tabulated function with some other function, where
the moments of that other function (i.e., its convolution with powers of x) are known
analytically.

Please be certain, however, that the coefficients are what you need. Generally
the coefficients of the interpolating polynomial can be determined much less accu-
rately than its value at a desired abscissa. Therefore, it is not a good idea to determine
the coefficients only for use in calculating interpolating values. Values thus calcu-
lated will not pass exactly through the tabulated points, for example, while values
computed by the routines in �3.1 – �3.3 will pass exactly through such points.

Also, you should not mistake the interpolating polynomial (and its coefficients)
for its cousin, the best-fit polynomial through a data set. Fitting is a smoothing pro-
cess, since the number of fitted coefficients is typically much less than the number
of data points. Therefore, fitted coefficients can be accurately and stably determined
even in the presence of statistical errors in the tabulated values. (See �14.9.) Inter-
polation, where the number of coefficients and number of tabulated points are equal,
takes the tabulated values as perfect. If they in fact contain statistical errors, these
can be magnified into oscillations of the interpolating polynomial in between the
tabulated points.

As before, we take the tabulated points to be yi � y.xi /. If the interpolating
polynomial is written as

y D c0 C c1x C c2x
2 C 	 	 	 C cN�1x

N�1 (3.5.1)

then the ci ’s are required to satisfy the linear equation266664
1 x0 x20 	 	 	 xN�10

1 x1 x21 	 	 	 xN�11
:::

:::
:::

:::

1 xN�1 x2N�1 	 	 	 xN�1N�1

377775 	
266664
c0

c1
:::

cN�1

377775 D
266664
y0

y1
:::

yN�1

377775 (3.5.2)
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This is a Vandermonde matrix, as described in �2.8. One could in principle solve
equation (3.5.2) by standard techniques for linear equations generally (�2.3); how-
ever, the special method that was derived in �2.8 is more efficient by a large factor,
of order N , so it is much better.

Remember that Vandermonde systems can be quite ill-conditioned. In such a
case, no numerical method is going to give a very accurate answer. Such cases do
not, please note, imply any difficulty in finding interpolated values by the methods
of �3.2, but only difficulty in finding coefficients.

Like the routine in �2.8, the following is due to G.B. Rybicki.

void polcoe(VecDoub_I &x, VecDoub_I &y, VecDoub_O &cof)polcoef.h
Given arrays x[0..n-1] and y[0..n-1] containing a tabulated function yi D f .xi /, this routine

returns an array of coefficients cof[0..n-1], such that yi D
Pn�1
jD0 cofj x

j

i
.

{
Int k,j,i,n=x.size();
Doub phi,ff,b;
VecDoub s(n);
for (i=0;i<n;i++) s[i]=cof[i]=0.0;
s[n-1]= -x[0];
for (i=1;i<n;i++) { Coefficients si of the master polynomial P.x/ are

found by recurrence.for (j=n-1-i;j<n-1;j++)
s[j] -= x[i]*s[j+1];

s[n-1] -= x[i];
}
for (j=0;j<n;j++) {

phi=n;
for (k=n-1;k>0;k--) The quantity phi D

Q
j¤k.xj � xk/ is found as a

derivative of P.xj /.phi=k*s[k]+x[j]*phi;
ff=y[j]/phi;
b=1.0; Coefficients of polynomials in each term of the La-

grange formula are found by synthetic division of
P.x/ by .x � xj /. The solution ck is accumu-
lated.

for (k=n-1;k>=0;k--) {
cof[k] += b*ff;
b=s[k]+x[j]*b;

}
}

}

3.5.1 Another Method

Another technique is to make use of the function value interpolation routine
already given (polint; �3.2). If we interpolate (or extrapolate) to find the value of
the interpolating polynomial at x D 0, then this value will evidently be c0. Now we
can subtract c0 from the yi ’s and divide each by its corresponding xi . Throwing out
one point (the one with smallest xi is a good candidate), we can repeat the procedure
to find c1, and so on.

It is not instantly obvious that this procedure is stable, but we have generally
found it to be somewhat more stable than the routine immediately preceding. This
method is of orderN 3, while the preceding one was of orderN 2. You will find, how-
ever, that neither works very well for large N , because of the intrinsic ill-condition
of the Vandermonde problem. In single precision, N up to 8 or 10 is satisfactory;
about double this in double precision.
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void polcof(VecDoub_I &xa, VecDoub_I &ya, VecDoub_O &cof) polcoef.h
Given arrays xa[0..n-1] and ya[0..n-1] containing a tabulated function yai D f .xai /, this

routine returns an array of coefficients cof[0..n-1], such that yai D
Pn�1
jD0 cofj xa

j

i
.

{
Int k,j,i,n=xa.size();
Doub xmin;
VecDoub x(n),y(n);
for (j=0;j<n;j++) {

x[j]=xa[j];
y[j]=ya[j];

}
for (j=0;j<n;j++) { Fill a temporary vector whose size

decreases as each coefficient is
found.

VecDoub x_t(n-j),y_t(n-j);
for (k=0;k<n-j;k++) {

x_t[k]=x[k];
y_t[k]=y[k];

}
Poly_interp interp(x,y,n-j);
cof[j] = interp.rawinterp(0,0.); Extrapolate to x D 0.
xmin=1.0e99;
k = -1;
for (i=0;i<n-j;i++) { Find the remaining xi of smallest

absolute valueif (abs(x[i]) < xmin) {
xmin=abs(x[i]);
k=i;

}
if (x[i] != 0.0) (meanwhile reducing all the terms)

y[i]=(y[i]-cof[j])/x[i];
}
for (i=k+1;i<n-j;i++) { and eliminate it.

y[i-1]=y[i];
x[i-1]=x[i];

}
}

}

If the point x D 0 is not in (or at least close to) the range of the tabulated
xi ’s, then the coefficients of the interpolating polynomial will in general become
very large. However, the real “information content” of the coefficients is in small
differences from the “translation-induced” large values. This is one cause of ill-
conditioning, resulting in loss of significance and poorly determined coefficients. In
this case, you should consider redefining the origin of the problem, to put x D 0 in a
sensible place.

Another pathology is that, if too high a degree of interpolation is attempted on a
smooth function, the interpolating polynomial will attempt to use its high-degree co-
efficients, in combinations with large and almost precisely canceling combinations,
to match the tabulated values down to the last possible epsilon of accuracy. This
effect is the same as the intrinsic tendency of the interpolating polynomial values
to oscillate (wildly) between its constrained points and would be present even if the
machine’s floating precision were infinitely good. The above routines polcoe and
polcof have slightly different sensitivities to the pathologies that can occur.

Are you still quite certain that using the coefficients is a good idea?

CITED REFERENCES AND FURTHER READING:

Isaacson, E., and Keller, H.B. 1966, Analysis of Numerical Methods; reprinted 1994 (New York:
Dover), �5.2.
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3.6 Interpolation on a Grid in Multidimensions

In multidimensional interpolation, we seek an estimate of a function of more
than one independent variable, y.x1; x2; : : : ; xn/. The Great Divide is, Are we given
a complete set of tabulated values on an n-dimensional grid? Or, do we know func-
tion values only on some scattered set of points in the n-dimensional space? In one
dimension, the question never arose, because any set of xi ’s, once sorted into as-
cending order, could be viewed as a valid one-dimensional grid (regular spacing not
being a requirement).

As the number of dimensions n gets large, maintaining a full grid becomes
rapidly impractical, because of the explosion in the number of gridpoints. Methods
that work with scattered data, to be considered in �3.7, then become the methods
of choice. Don’t, however, make the mistake of thinking that such methods are
intrinsically more accurate than grid methods. In general they are less accurate. Like
the proverbial three-legged dog, they are remarkable because they work at all, not
because they work, necessarily, well!

Both kinds of methods are practical in two dimensions, and some other kinds as
well. For example, finite element methods, of which triangulation is the most com-
mon, find ways to impose some kind of geometrically regular structure on scattered
points, and then use that structure for interpolation. We will treat two-dimensional
interpolation by triangulation in detail in �21.6; that section should be considered as
a continuation of the discussion here.

In the remainder of this section, we consider only the case of interpolating on
a grid, and we implement in code only the (most common) case of two dimensions.
All of the methods given generalize to three dimensions in an obvious way. When
we implement methods for scattered data, in �3.7, the treatment will be for general n.

In two dimensions, we imagine that we are given a matrix of functional values
yij , with i D 0; : : : ;M � 1 and j D 0; : : : ; N � 1. We are also given an array of x1
values x1i , and an array of x2 values x2j , with i and j as just stated. The relation of
these input quantities to an underlying function y.x1; x2/ is just

yij D y.x1i ; x2j / (3.6.1)

We want to estimate, by interpolation, the function y at some untabulated point
.x1; x2/.

An important concept is that of the grid square in which the point .x1; x2/
falls, that is, the four tabulated points that surround the desired interior point. For
convenience, we will number these points from 0 to 3, counterclockwise starting
from the lower left. More precisely, if

x1i 
 x1 
 x1.iC1/

x2j 
 x2 
 x2.jC1/
(3.6.2)

defines values of i and j , then

y0 � yij

y1 � y.iC1/j

y2 � y.iC1/.jC1/

y3 � yi.jC1/

(3.6.3)
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The simplest interpolation in two dimensions is bilinear interpolation on the
grid square. Its formulas are

t � .x1 � x1i /=.x1.iC1/ � x1i /

u � .x2 � x2j /=.x2.jC1/ � x2j /
(3.6.4)

(so that t and u each lie between 0 and 1) and

y.x1; x2/ D .1 � t /.1 � u/y0 C t .1 � u/y1 C tuy2 C .1 � t /uy3 (3.6.5)

Bilinear interpolation is frequently “close enough for government work.” As the
interpolating point wanders from grid square to grid square, the interpolated func-
tion value changes continuously. However, the gradient of the interpolated function
changes discontinuously at the boundaries of each grid square.

We can easily implement an object for bilinear interpolation by grabbing pieces
of “machinery” from our one-dimensional interpolation classes:

struct Bilin_interp { interp 2d.h
Object for bilinear interpolation on a matrix. Construct with a vector of x1 values, a vector of
x2 values, and a matrix of tabulated function values yij . Then call interp for interpolated
values.

Int m,n;
const MatDoub &y;
Linear_interp x1terp, x2terp;

Bilin_interp(VecDoub_I &x1v, VecDoub_I &x2v, MatDoub_I &ym)
: m(x1v.size()), n(x2v.size()), y(ym),
x1terp(x1v,x1v), x2terp(x2v,x2v) {} Construct dummy 1-dim interpola-

tions for their locate and hunt
functions.Doub interp(Doub x1p, Doub x2p) {

Int i,j;
Doub yy, t, u;
i = x1terp.cor ? x1terp.hunt(x1p) : x1terp.locate(x1p);
j = x2terp.cor ? x2terp.hunt(x2p) : x2terp.locate(x2p);
Find the grid square.
t = (x1p-x1terp.xx[i])/(x1terp.xx[i+1]-x1terp.xx[i]); Interpolate.
u = (x2p-x2terp.xx[j])/(x2terp.xx[j+1]-x2terp.xx[j]);
yy = (1.-t)*(1.-u)*y[i][j] + t*(1.-u)*y[i+1][j]

+ (1.-t)*u*y[i][j+1] + t*u*y[i+1][j+1];
return yy;

}
};

Here we declare two instances of Linear_interp, one for each direction, and use
them merely to do the bookkeeping on the arrays x1i and x2j — in particular, to
provide the “intelligent” table-searching mechanisms that we have come to rely on.
(The second occurrence of x1v and x2v in the constructors is just a placeholder;
there are not really any one-dimensional “y” arrays.)

Usage of Bilin_interp is just what you’d expect:

Int m=..., n=...;

MatDoub yy(m,n);

VecDoub x1(m), x2(n);

...

Bilin_interp myfunc(x1,x2,yy);

followed (any number of times) by
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Doub x1,x2,y;

...

y = myfunc.interp(x1,x2);

Bilinear interpolation is a good place to start, in two dimensions, unless you posi-
tively know that you need something fancier.

There are two distinctly different directions that one can take in going beyond
bilinear interpolation to higher-order methods: One can use higher order to obtain
increased accuracy for the interpolated function (for sufficiently smooth functions!),
without necessarily trying to fix up the continuity of the gradient and higher deriva-
tives. Or, one can make use of higher order to enforce smoothness of some of these
derivatives as the interpolating point crosses grid-square boundaries. We will now
consider each of these two directions in turn.

3.6.1 Higher Order for Accuracy
The basic idea is to break up the problem into a succession of one-dimensional

interpolations. If we want to do m-1 order interpolation in the x1 direction, and n-1
order in the x2 direction, we first locate an m � n sub-block of the tabulated func-
tion matrix that contains our desired point .x1; x2/. We then do m one-dimensional
interpolations in the x2 direction, i.e., on the rows of the sub-block, to get function
values at the points .x1i ; x2/, with m values of i . Finally, we do a last interpolation
in the x1 direction to get the answer.

Again using the previous one-dimensional machinery, this can all be coded very
concisely as

struct Poly2D_interp {interp 2d.h
Object for two-dimensional polynomial interpolation on a matrix. Construct with a vector of x1
values, a vector of x2 values, a matrix of tabulated function values yij , and integers to specify
the number of points to use locally in each direction. Then call interp for interpolated values.

Int m,n,mm,nn;
const MatDoub &y;
VecDoub yv;
Poly_interp x1terp, x2terp;

Poly2D_interp(VecDoub_I &x1v, VecDoub_I &x2v, MatDoub_I &ym,
Int mp, Int np) : m(x1v.size()), n(x2v.size()),
mm(mp), nn(np), y(ym), yv(m),
x1terp(x1v,yv,mm), x2terp(x2v,x2v,nn) {} Dummy 1-dim interpolations for their

locate and hunt functions.
Doub interp(Doub x1p, Doub x2p) {

Int i,j,k;
i = x1terp.cor ? x1terp.hunt(x1p) : x1terp.locate(x1p);
j = x2terp.cor ? x2terp.hunt(x2p) : x2terp.locate(x2p);
Find grid block.
for (k=i;k<i+mm;k++) { mm interpolations in the x2 direction.

x2terp.yy = &y[k][0];
yv[k] = x2terp.rawinterp(j,x2p);

}
return x1terp.rawinterp(i,x1p); A final interpolation in the x1 direc-

tion.}
};

The user interface is the same as for Bilin_interp, except that the constructor
has two additional arguments that specify the number of points (order plus one) to
be used locally in, respectively, the x1 and x2 interpolations. Typical values will be
in the range 3 to 7.
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Code stylists won’t like some of the details in Poly2D_interp (see discussion in �3.1
immediately following Base_interp). As we loop over the rows of the sub-block, we reach
into the guts of x2terp and repoint its yy array to a row of our y matrix. Further, we alter
the contents of the array yv, for which x1terp has stored a pointer, on the fly. None of this is
particularly dangerous as long as we control the implementations in both Base_interp and
Poly2D_interp; and it makes for a very efficient implementation. You should view these
two classes as not just (implicitly) friend classes, but as really intimate friends.

3.6.2 Higher Order for Smoothness: Bicubic Spline

A favorite technique for obtaining smoothness in two-dimensional interpola-
tion is the bicubic spline. To set up a bicubic spline, you (one time) construct M
one-dimensional splines across the rows of the two-dimensional matrix of function
values. Then, for each desired interpolated value you proceed as follows: (1) Per-
formM spline interpolations to get a vector of values y.x1i ; x2/, i D 0; : : : ;M � 1.
(2) Construct a one-dimensional spline through those values. (3) Finally, spline-
interpolate to the desired value y.x1; x2/.

If this sounds like a lot of work, well, yes, it is. The one-time setup work
scales as the table size M �N , while the work per interpolated value scales roughly
as M logM C N , both with pretty hefty constants in front. This is the price that
you pay for the desirable characteristics of splines that derive from their nonlocality.
For tables with modest M and N , less than a few hundred, say, the cost is usually
tolerable. If it’s not, then fall back to the previous local methods.

Again a very concise implementation is possible:

struct Spline2D_interp { interp 2d.h
Object for two-dimensional cubic spline interpolation on a matrix. Construct with a vector of x1
values, a vector of x2 values, and a matrix of tabulated function values yij . Then call interp
for interpolated values.

Int m,n;
const MatDoub &y;
const VecDoub &x1;
VecDoub yv;
NRvector<Spline_interp*> srp;

Spline2D_interp(VecDoub_I &x1v, VecDoub_I &x2v, MatDoub_I &ym)
: m(x1v.size()), n(x2v.size()), y(ym), yv(m), x1(x1v), srp(m) {
for (Int i=0;i<m;i++) srp[i] = new Spline_interp(x2v,&y[i][0]);
Save an array of pointers to 1-dim row splines.

}

~Spline2D_interp(){
for (Int i=0;i<m;i++) delete srp[i]; We need a destructor to clean up.

}

Doub interp(Doub x1p, Doub x2p) {
for (Int i=0;i<m;i++) yv[i] = (*srp[i]).interp(x2p);
Interpolate on each row.
Spline_interp scol(x1,yv); Construct the column spline,
return scol.interp(x1p); and evaluate it.

}
};

The reason for that ugly vector of pointers to Spline_interp objects is that we
need to initialize each row spline separately, with data from the appropriate row. The
user interface is the same as Bilin_interp, above.
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Figure 3.6.1. (a) Labeling of points used in the two-dimensional interpolation routines bcuint and
bcucof. (b) For each of the four points in (a), the user supplies one function value, two first derivatives,
and one cross-derivative, a total of 16 numbers.

3.6.3 Higher Order for Smoothness: Bicubic Interpolation
Bicubic interpolation gives the same degree of smoothness as bicubic spline

interpolation, but it has the advantage of being a local method. Thus, after you set it
up, a function interpolation costs only a constant, plus logM C logN , to find your
place in the table. Unfortunately, this advantage comes with a lot of complexity in
coding. Here, we will give only some building blocks for the method, not a complete
user interface.

Bicubic splines are in fact a special case of bicubic interpolation. In the gen-
eral case, however, we leave the values of all derivatives at the grid points as freely
specifiable. You, the user, can specify them any way you want. In other words,
you specify at each grid point not just the function y.x1; x2/, but also the gradients
@y=@x1 � y;1, @y=@x2 � y;2 and the cross derivative @2y=@x1@x2 � y;12 (see
Figure 3.6.1). Then an interpolating function that is cubic in the scaled coordinates t
and u (equation 3.6.4) can be found, with the following properties: (i) The values of
the function and the specified derivatives are reproduced exactly on the grid points,
and (ii) the values of the function and the specified derivatives change continuously
as the interpolating point crosses from one grid square to another.

It is important to understand that nothing in the equations of bicubic interpola-
tion requires you to specify the extra derivatives correctly! The smoothness proper-
ties are tautologically “forced,” and have nothing to do with the “accuracy” of the
specified derivatives. It is a separate problem for you to decide how to obtain the
values that are specified. The better you do, the more accurate the interpolation will
be. But it will be smooth no matter what you do.

Best of all is to know the derivatives analytically, or to be able to compute them
accurately by numerical means, at the grid points. Next best is to determine them by
numerical differencing from the functional values already tabulated on the grid. The
relevant code would be something like this (using centered differencing):
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y1a[j][k]=(ya[j+1][k]-ya[j-1][k])/(x1a[j+1]-x1a[j-1]);
y2a[j][k]=(ya[j][k+1]-ya[j][k-1])/(x2a[k+1]-x2a[k-1]);
y12a[j][k]=(ya[j+1][k+1]-ya[j+1][k-1]-ya[j-1][k+1]+ya[j-1][k-1])

/((x1a[j+1]-x1a[j-1])*(x2a[k+1]-x2a[k-1]));

To do a bicubic interpolation within a grid square, given the function y and
the derivatives y1, y2, y12 at each of the four corners of the square, there are two
steps: First obtain the 16 quantities cij ; i; j D 0; : : : ; 3 using the routine bcucof
below. (The formulas that obtain the c’s from the function and derivative values are
just a complicated linear transformation, with coefficients that, having been deter-
mined once in the mists of numerical history, can be tabulated and forgotten.) Next,
substitute the c’s into any or all of the following bicubic formulas for function and
derivatives, as desired:

y.x1; x2/ D

3X
iD0

3X
jD0

cij t
iuj

y;1.x1; x2/ D

3X
iD0

3X
jD0

icij t
i�1uj .dt=dx1/

y;2.x1; x2/ D

3X
iD0

3X
jD0

jcij t
iuj�1.du=dx2/

y;12.x1; x2/ D

3X
iD0

3X
jD0

ijcij t
i�1uj�1.dt=dx1/.du=dx2/

(3.6.6)

where t and u are again given by equation (3.6.4).

void bcucof(VecDoub_I &y, VecDoub_I &y1, VecDoub_I &y2, VecDoub_I &y12, interp 2d.h
const Doub d1, const Doub d2, MatDoub_O &c) {

Given arrays y[0..3], y1[0..3], y2[0..3], and y12[0..3], containing the function, gradients,
and cross-derivative at the four grid points of a rectangular grid cell (numbered counterclockwise
from the lower left), and given d1 and d2, the length of the grid cell in the 1 and 2 directions, this
routine returns the table c[0..3][0..3] that is used by routine bcuint for bicubic interpolation.

static Int wt_d[16*16]=
{1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
-3, 0, 0, 3, 0, 0, 0, 0,-2, 0, 0,-1, 0, 0, 0, 0,
2, 0, 0,-2, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0, 0, 0, 0,-3, 0, 0, 3, 0, 0, 0, 0,-2, 0, 0,-1,
0, 0, 0, 0, 2, 0, 0,-2, 0, 0, 0, 0, 1, 0, 0, 1,
-3, 3, 0, 0,-2,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,-3, 3, 0, 0,-2,-1, 0, 0,
9,-9, 9,-9, 6, 3,-3,-6, 6,-6,-3, 3, 4, 2, 1, 2,
-6, 6,-6, 6,-4,-2, 2, 4,-3, 3, 3,-3,-2,-1,-1,-2,
2,-2, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 2,-2, 0, 0, 1, 1, 0, 0,
-6, 6,-6, 6,-3,-3, 3, 3,-4, 4, 2,-2,-2,-2,-1,-1,
4,-4, 4,-4, 2, 2,-2,-2, 2,-2,-2, 2, 1, 1, 1, 1};

Int l,k,j,i;
Doub xx,d1d2=d1*d2;
VecDoub cl(16),x(16);
static MatInt wt(16,16,wt_d);
for (i=0;i<4;i++) { Pack a temporary vector x.
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x[i]=y[i];
x[i+4]=y1[i]*d1;
x[i+8]=y2[i]*d2;
x[i+12]=y12[i]*d1d2;

}
for (i=0;i<16;i++) { Matrix-multiply by the stored table.

xx=0.0;
for (k=0;k<16;k++) xx += wt[i][k]*x[k];
cl[i]=xx;

}
l=0;
for (i=0;i<4;i++) Unpack the result into the output table.

for (j=0;j<4;j++) c[i][j]=cl[l++];
}

The implementation of equation (3.6.6), which performs a bicubic interpolation,
gives back the interpolated function value and the two gradient values, and uses the
above routine bcucof, is simply:

void bcuint(VecDoub_I &y, VecDoub_I &y1, VecDoub_I &y2, VecDoub_I &y12,interp 2d.h
const Doub x1l, const Doub x1u, const Doub x2l, const Doub x2u,
const Doub x1, const Doub x2, Doub &ansy, Doub &ansy1, Doub &ansy2) {

Bicubic interpolation within a grid square. Input quantities are y,y1,y2,y12 (as described in
bcucof); x1l and x1u, the lower and upper coordinates of the grid square in the 1 direction;
x2l and x2u likewise for the 2 direction; and x1,x2, the coordinates of the desired point for
the interpolation. The interpolated function value is returned as ansy, and the interpolated
gradient values as ansy1 and ansy2. This routine calls bcucof.

Int i;
Doub t,u,d1=x1u-x1l,d2=x2u-x2l;
MatDoub c(4,4);
bcucof(y,y1,y2,y12,d1,d2,c); Get the c’s.
if (x1u == x1l || x2u == x2l)

throw("Bad input in routine bcuint");
t=(x1-x1l)/d1; Equation (3.6.4).
u=(x2-x2l)/d2;
ansy=ansy2=ansy1=0.0;
for (i=3;i>=0;i--) { Equation (3.6.6).

ansy=t*ansy+((c[i][3]*u+c[i][2])*u+c[i][1])*u+c[i][0];
ansy2=t*ansy2+(3.0*c[i][3]*u+2.0*c[i][2])*u+c[i][1];
ansy1=u*ansy1+(3.0*c[3][i]*t+2.0*c[2][i])*t+c[1][i];

}
ansy1 /= d1;
ansy2 /= d2;

}

You can combine the best features of bicubic interpolation and bicubic splines
by using splines to compute values for the necessary derivatives at the grid points,
storing these values, and then using bicubic interpolation, with an efficient table-
searching method, for the actual function interpolations. Unfortunately this is be-
yond our scope here.
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3.7 Interpolation on Scattered Data in
Multidimensions

We now leave behind, if with some trepidation, the orderly world of regular
grids. Courage is required. We are given an arbitrarily scattered set of N data points
.xi ; yi /, i D 0; : : : ; N�1 in n-dimensional space. Here xi denotes an n-dimensional
vector of independent variables, .x1i ; x2i ; : : : ; xni /, and yi is the value of the func-
tion at that point.

In this section we discuss two of the most widely used general methods for
this problem, radial basis function (RBF) interpolation, and kriging. Both of these
methods are expensive. By that we mean that they require O.N 3/ operations to ini-
tially digest a set of data points, followed by O.N/ operations for each interpolated
value. Kriging is also able to supply an error estimate — but at the rather high cost of
O.N 2/ per value. Shepard interpolation, discussed below, is a variant of RBF that at
least avoids the O.N 3/ initial work; otherwise these workloads effectively limit the
usefulness of these general methods to values ofN . 104. It is therefore worthwhile
for you to consider whether you have any other options. Two of these are

� If n is not too large (meaning, usually, n D 2), and if the data points are fairly
dense, then consider triangulation, discussed in �21.6. Triangulation is an
example of a finite element method. Such methods construct some semblance
of geometric regularity and then exploit that construction to advantage. Mesh
generation is a closely related subject.

� If your accuracy goals will tolerate it, consider moving each data point to the
nearest point on a regular Cartesian grid and then using Laplace interpolation
(�3.8) to fill in the rest of the grid points. After that, you can interpolate on the
grid by the methods of �3.6. You will need to compromise between making
the grid very fine (to minimize the error introduced when you move the points)
and the compute time workload of the Laplace method.

If neither of these options seem attractive, and you can’t think of another one
that is, then try one or both of the two methods that we now discuss. RBF interpola-
tion is probably the more widely used of the two, but kriging is our personal favorite.
Which works better will depend on the details of your problem.

The related, but easier, problem of curve interpolation in multidimensions is
discussed at the end of this section.

3.7.1 Radial Basis Function Interpolation
The idea behind RBF interpolation is very simple: Imagine that every known

point j “influences” its surroundings the same way in all directions, according to
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some assumed functional form �.r/ — the radial basis function — that is a function
only of radial distance r D jx � xj j from the point. Let us try to approximate the
interpolating function everywhere by a linear combination of the �’s, centered on all
the known points,

y.x/ D

N�1X
iD0

wi�.jx � xi j/ (3.7.1)

where the wi ’s are some unknown set of weights. How do we find these weights?
Well, we haven’t used the function values yi yet. The weights are determined by re-
quiring that the interpolation be exact at all the known data points. That is equivalent
to solving a set of N linear equations in N unknowns for the wi ’s:

yj D

N�1X
iD0

wi�.jxj � xi j/ (3.7.2)

For many functional forms �, it can be proved, under various general assumptions,
that this set of equations is nondegenerate and can be readily solved by, e.g., LU
decomposition (�2.3). References [1,2] provide entry to the literature.

A variant on RBF interpolation is normalized radial basis function (NRBF) in-
terpolation, in which we require the sum of the basis functions to be unity or, equiv-
alently, replace equations (3.7.1) and (3.7.2) by

y.x/ D

PN�1
iD0 wi�.jx � xi j/PN�1
iD0 �.jx � xi j/

(3.7.3)

and

yj

N�1X
iD0

�.jxj � xi j/ D

N�1X
iD0

wi�.jxj � xi j/ (3.7.4)

Equations (3.7.3) and (3.7.4) arise more naturally from a Bayesian statistical perspec-
tive [3]. However, there is no evidence that either the NRBF method is consistently
superior to the RBF method, or vice versa. It is easy to implement both methods in
the same code, leaving the choice to the user.

As we already mentioned, for N data points the one-time work to solve for the
weights byLU decomposition isO.N 3/. After that, the cost isO.N/ for each inter-
polation. Thus N � 103 is a rough dividing line (at 2007 desktop speeds) between
“easy” and “difficult.” If your N is larger, however, don’t despair: There are fast
multipole methods, beyond our scope here, with much more favorable scaling [1,4,5].
Another, much lower-tech, option is to use Shepard interpolation discussed later in
this section.

Here are a couple of objects that implement everything discussed thus far.
RBF_fn is a virtual base class whose derived classes will embody different func-
tional forms for rbf.r/ � �.r/. RBF_interp, via its constructor, digests your data
and solves the equations for the weights. The data points xi are input as an N � n
matrix, and the code works for any dimension n. A boolean argument nrbf inputs
whether NRBF is to be used instead of RBF. You call interp to get an interpolated
function value at a new point x.
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struct RBF_fn { interp rbf.h
Abstract base class template for any particular radial basis function. See specific examples
below.

virtual Doub rbf(Doub r) = 0;
};

struct RBF_interp {
Object for radial basis function interpolation using n points in dim dimensions. Call constructor
once, then interp as many times as desired.

Int dim, n;
const MatDoub &pts;
const VecDoub &vals;
VecDoub w;
RBF_fn &fn;
Bool norm;

RBF_interp(MatDoub_I &ptss, VecDoub_I &valss, RBF_fn &func, Bool nrbf=false)
: dim(ptss.ncols()), n(ptss.nrows()) , pts(ptss), vals(valss),
w(n), fn(func), norm(nrbf) {
Constructor. The n � dim matrix ptss inputs the data points, the vector valss the function
values. func contains the chosen radial basis function, derived from the class RBF_fn. The
default value of nrbf gives RBF interpolation; set it to 1 for NRBF.

Int i,j;
Doub sum;
MatDoub rbf(n,n);
VecDoub rhs(n);
for (i=0;i<n;i++) { Fill the matrix �.jri �rj j/ and the r.h.s. vector.

sum = 0.;
for (j=0;j<n;j++) {

sum += (rbf[i][j] = fn.rbf(rad(&pts[i][0],&pts[j][0])));
}
if (norm) rhs[i] = sum*vals[i];
else rhs[i] = vals[i];

}
LUdcmp lu(rbf); Solve the set of linear equations.
lu.solve(rhs,w);

}

Doub interp(VecDoub_I &pt) {
Return the interpolated function value at a dim-dimensional point pt.

Doub fval, sum=0., sumw=0.;
if (pt.size() != dim) throw("RBF_interp bad pt size");
for (Int i=0;i<n;i++) { Sum over all tabulated points.

fval = fn.rbf(rad(&pt[0],&pts[i][0]));
sumw += w[i]*fval;
sum += fval;

}
return norm ? sumw/sum : sumw;

}

Doub rad(const Doub *p1, const Doub *p2) {
Euclidean distance.

Doub sum = 0.;
for (Int i=0;i<dim;i++) sum += SQR(p1[i]-p2[i]);
return sqrt(sum);

}
};

3.7.2 Radial Basis Functions in General Use
The most often used radial basis function is the multiquadric first used by Hardy,

circa 1970. The functional form is
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�.r/ D .r2 C r20 /
1=2 (3.7.5)

where r0 is a scale factor that you get to choose. Multiquadrics are said to be less
sensitive to the choice of r0 than some other functional forms.

In general, both for multiquadrics and for other functions, below, r0 should
be larger than the typical separation of points but smaller than the “outer scale” or
feature size of the function that you are interpolating. There can be several orders
of magnitude difference between the interpolation accuracy with a good choice for
r0, versus a poor choice, so it is definitely worth some experimentation. One way to
experiment is to construct an RBF interpolator omitting one data point at a time and
measuring the interpolation error at the omitted point.

The inverse multiquadric

�.r/ D .r2 C r20 /
�1=2 (3.7.6)

gives results that are comparable to the multiquadric, sometimes better.
It might seem odd that a function and its inverse (actually, reciprocal) work

about equally well. The explanation is that what really matters is smoothness, and
certain properties of the function’s Fourier transform that are not very different be-
tween the multiquadric and its reciprocal. The fact that one increases monotonically
and the other decreases turns out to be almost irrelevant. However, if you want the
extrapolated function to go to zero far from all the data (where an accurate value is
impossible anyway), then the inverse multiquadric is a good choice.

The thin-plate spline radial basis function is

�.r/ D r2 log.r=r0/ (3.7.7)

with the limiting value �.0/ D 0 assumed. This function has some physical justi-
fication in the energy minimization problem associated with warping a thin elastic
plate. There is no indication that it is generally better than either of the above forms,
however.

The Gaussian radial basis function is just what you’d expect,

�.r/ D exp
�
�1
2
r2=r20



(3.7.8)

The interpolation accuracy using Gaussian basis functions can be very sensitive to
r0, and they are often avoided for this reason. However, for smooth functions and
with an optimal r0, very high accuracy can be achieved. The Gaussian also will
extrapolate any function to zero far from the data, and it gets to zero quickly.

Other functions are also in use, for example those of Wendland [6]. There is
a large literature in which the above choices for basis functions are tested against
specific functional forms or experimental data sets [1,2,7]. Few, if any, general rec-
ommendations emerge. We suggest that you try the alternatives in the order listed
above, starting with multiquadrics, and that you not omit experimenting with differ-
ent choices of the scale parameters r0.

The functions discussed are implemented in code as:
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struct RBF_multiquadric : RBF_fn { interp rbf.h
Instantiate this and send to RBF_interp to get multiquadric interpolation.

Doub r02;
RBF_multiquadric(Doub scale=1.) : r02(SQR(scale)) {}
Constructor argument is the scale factor. See text.
Doub rbf(Doub r) { return sqrt(SQR(r)+r02); }

};

struct RBF_thinplate : RBF_fn {
Same as above, but for thin-plate spline.

Doub r0;
RBF_thinplate(Doub scale=1.) : r0(scale) {}
Doub rbf(Doub r) { return r <= 0. ? 0. : SQR(r)*log(r/r0); }

};

struct RBF_gauss : RBF_fn {
Same as above, but for Gaussian.

Doub r0;
RBF_gauss(Doub scale=1.) : r0(scale) {}
Doub rbf(Doub r) { return exp(-0.5*SQR(r/r0)); }

};

struct RBF_inversemultiquadric : RBF_fn {
Same as above, but for inverse multiquadric.

Doub r02;
RBF_inversemultiquadric(Doub scale=1.) : r02(SQR(scale)) {}
Doub rbf(Doub r) { return 1./sqrt(SQR(r)+r02); }

};

Typical use of the objects in this section should look something like this:

Int npts=...,ndim=...;

Doub r0=...;

MatDoub pts(npts,ndim);

VecDoub y(npts);

...

RBF_multiquadric multiquadric(r0);

RBF_interp myfunc(pts,y,multiquadric,0);

followed by any number of interpolation calls,

VecDoub pt(ndim);

Doub val;

...

val = myfunc.interp(pt);

3.7.3 Shepard Interpolation
An interesting special case of normalized radial basis function interpolation

(equations 3.7.3 and 3.7.4) occurs if the function �.r/ goes to infinity as r ! 0,
and is finite (e.g., decreasing) for r > 0. In that case it is easy to see that the weights
wi are just equal to the respective function values yi , and the interpolation formula
is simply

y.x/ D

PN�1
iD0 yi�.jx � xi j/PN�1
iD0 �.jx � xi j/

(3.7.9)

(with appropriate provision for the limiting case where x is equal to one of the xi ’s).
Note that no solution of linear equations is required. The one-time work is negligible,
while the work for each interpolation is O.N/, tolerable even for very large N .
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Shepard proposed the simple power-law function

�.r/ D r�p (3.7.10)

with (typically) 1 < p . 3, as well as some more complicated functions with differ-
ent exponents in an inner and outer region (see [8]). You can see that what is going
on is basically interpolation by a nearness-weighted average, with nearby points con-
tributing more strongly than distant ones.

Shepard interpolation is rarely as accurate as the well-tuned application of one
of the other radial basis functions, above. On the other hand, it is simple, fast, and
often just the thing for quick and dirty applications. It, and variants, are thus widely
used.

An implementing object is

struct Shep_interp {interp rbf.h
Object for Shepard interpolation using n points in dim dimensions. Call constructor once, then
interp as many times as desired.

Int dim, n;
const MatDoub &pts;
const VecDoub &vals;
Doub pneg;

Shep_interp(MatDoub_I &ptss, VecDoub_I &valss, Doub p=2.)
: dim(ptss.ncols()), n(ptss.nrows()) , pts(ptss),
vals(valss), pneg(-p) {}
Constructor. The n � dim matrix ptss inputs the data points, the vector valss the function
values. Set p to the desired exponent. The default value is typical.

Doub interp(VecDoub_I &pt) {
Return the interpolated function value at a dim-dimensional point pt.

Doub r, w, sum=0., sumw=0.;
if (pt.size() != dim) throw("RBF_interp bad pt size");
for (Int i=0;i<n;i++) {

if ((r=rad(&pt[0],&pts[i][0])) == 0.) return vals[i];
sum += (w = pow(r,pneg));
sumw += w*vals[i];

}
return sumw/sum;

}

Doub rad(const Doub *p1, const Doub *p2) {
Euclidean distance.

Doub sum = 0.;
for (Int i=0;i<dim;i++) sum += SQR(p1[i]-p2[i]);
return sqrt(sum);

}
};

3.7.4 Interpolation by Kriging
Kriging is a technique named for South African mining engineer D.G. Krige. It

is basically a form of linear prediction (�13.6), also known in different communities
as Gauss-Markov estimation or Gaussian process regression.

Kriging can be either an interpolation method or a fitting method. The distinc-
tion between the two is whether the fitted/interpolated function goes exactly through
all the input data points (interpolation), or whether it allows measurement errors to
be specified and then “smooths” to get a statistically better predictor that does not
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generally go through the data points (does not “honor the data”). In this section we
consider only the former case, that is, interpolation. We will return to the latter case
in �15.9.

At this point in the book, it is beyond our scope to derive the equations for
kriging. You can turn to �13.6 to get a flavor, and look to references [9,10,11] for
details. To use kriging, you must be able to estimate the mean square variation of
your function y.x/ as a function of offset distance r , a so-called variogram,

v.r/ � 1
2

D
Œy.xC r/ � y.x/�2

E
(3.7.11)

where the average is over all x with fixed r . If this seems daunting, don’t worry.
For interpolation, even very crude variogram estimates work fine, and we will give
below a routine to estimate v.r/ from your input data points xi and yi D y.xi /,
i D 0; : : : ; N � 1, automatically. One usually takes v.r/ to be a function only of the
magnitude r D jrj and writes it as v.r/.

Let vij denote v.jxi � xj j/, where i and j are input points, and let v�j denote
v.jx� � xj j/, x� being a point at which we want an interpolated value y.x�/. Now
define two vectors of length N C 1,

Y D .y0; y1; : : : ; yN�1; 0/

V � D .v�1; v�2; : : : ; v�;N�1; 1/
(3.7.12)

and an .N C 1/ � .N C 1/ symmetric matrix,

V D

0BBBB@
v00 v01 : : : v0;N�1 1

v10 v11 : : : v1;N�1 1

: : : : : :

vN�1;0 vN�1;1 : : : vN�1;N�1 1

1 1 : : : 1 0

1CCCCA (3.7.13)

Then the kriging interpolation estimate yy� � y.x�/ is given by

yy� D V � 	 V
�1 	 Y (3.7.14)

and its variance is given by

Var.yy�/ D V � 	 V
�1 	 V � (3.7.15)

Notice that if we compute, once, the LU decomposition of V , and then backsub-
stitute, once, to get the vector V�1 	 Y , then the individual interpolations cost only
O.N/: Compute the vector V � and take a vector dot product. On the other hand,
every computation of a variance, equation (3.7.15), requires an O.N 2/ backsubsti-
tution.

As an aside (if you have looked ahead to �13.6) the purpose of the extra row and
column in V , and extra last components in V � and Y , is to automatically calculate,
and correct for, an appropriately weighted average of the data, and thus to make
equation (3.7.14) an unbiased estimator.

Here is an implementation of equations (3.7.12) – (3.7.15). The constructor
does the one-time work, while the two overloaded interp methods calculate either
an interpolated value or else a value and a standard deviation (square root of the
variance). You should leave the optional argument err set to the default value of
NULL until you read �15.9.
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template<class T>krig.h
struct Krig {
Object for interpolation by kriging, using npt points in ndim dimensions. Call constructor once,
then interp as many times as desired.

const MatDoub &x;
const T &vgram;
Int ndim, npt;
Doub lastval, lasterr; Most recently computed value and (if com-

puted) error.VecDoub y,dstar,vstar,yvi;
MatDoub v;
LUdcmp *vi;

Krig(MatDoub_I &xx, VecDoub_I &yy, T &vargram, const Doub *err=NULL)
: x(xx),vgram(vargram),npt(xx.nrows()),ndim(xx.ncols()),dstar(npt+1),
vstar(npt+1),v(npt+1,npt+1),y(npt+1),yvi(npt+1) {
Constructor. The npt � ndim matrix xx inputs the data points, the vector yy the function
values. vargram is the variogram function or functor. The argument err is not used for
interpolation; see �15.9.

Int i,j;
for (i=0;i<npt;i++) { Fill Y and V .

y[i] = yy[i];
for (j=i;j<npt;j++) {

v[i][j] = v[j][i] = vgram(rdist(&x[i][0],&x[j][0]));
}
v[i][npt] = v[npt][i] = 1.;

}
v[npt][npt] = y[npt] = 0.;
if (err) for (i=0;i<npt;i++) v[i][i] -= SQR(err[i]); �15.9.
vi = new LUdcmp(v);
vi->solve(y,yvi);

}
~Krig() { delete vi; }

Doub interp(VecDoub_I &xstar) {
Return an interpolated value at the point xstar.

Int i;
for (i=0;i<npt;i++) vstar[i] = vgram(rdist(&xstar[0],&x[i][0]));
vstar[npt] = 1.;
lastval = 0.;
for (i=0;i<=npt;i++) lastval += yvi[i]*vstar[i];
return lastval;

}

Doub interp(VecDoub_I &xstar, Doub &esterr) {
Return an interpolated value at the point xstar, and return its estimated error as esterr.

lastval = interp(xstar);
vi->solve(vstar,dstar);
lasterr = 0;
for (Int i=0;i<=npt;i++) lasterr += dstar[i]*vstar[i];
esterr = lasterr = sqrt(MAX(0.,lasterr));
return lastval;

}

Doub rdist(const Doub *x1, const Doub *x2) {
Utility used internally. Cartesian distance between two points.

Doub d=0.;
for (Int i=0;i<ndim;i++) d += SQR(x1[i]-x2[i]);
return sqrt(d);

}
};

The constructor argument vgram, the variogram function, can be either a func-
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tion or functor (�1.3.3). For interpolation, you can use a Powvargram object that fits
a simple model

v.r/ D ˛rˇ (3.7.16)

where ˇ is considered fixed and ˛ is fitted by unweighted least squares over all pairs
of data points i and j . We’ll get more sophisticated about variograms in �15.9;
but for interpolation, excellent results can be obtained with this simple choice. The
value of ˇ should be in the range 1 
 ˇ < 2. A good general choice is 1:5, but
for functions with a strong linear trend, you may want to experiment with values as
large as 1:99. (The value 2 gives a degenerate matrix and meaningless results.) The
optional argument nug will be explained in �15.9.

struct Powvargram { krig.h
Functor for variogram v.r/ D ˛rˇ , where ˇ is specified, ˛ is fitted from the data.

Doub alph, bet, nugsq;

Powvargram(MatDoub_I &x, VecDoub_I &y, const Doub beta=1.5, const Doub nug=0.)
: bet(beta), nugsq(nug*nug) {
Constructor. The npt � ndim matrix x inputs the data points, the vector y the function
values, beta the value of ˇ . For interpolation, the default value of beta is usually adequate.
For the (rare) use of nug see �15.9.

Int i,j,k,npt=x.nrows(),ndim=x.ncols();
Doub rb,num=0.,denom=0.;
for (i=0;i<npt;i++) for (j=i+1;j<npt;j++) {

rb = 0.;
for (k=0;k<ndim;k++) rb += SQR(x[i][k]-x[j][k]);
rb = pow(rb,0.5*beta);
num += rb*(0.5*SQR(y[i]-y[j]) - nugsq);
denom += SQR(rb);

}
alph = num/denom;

}

Doub operator() (const Doub r) const {return nugsq+alph*pow(r,bet);}
};

Sample code for interpolating on a set of data points is

MatDoub x(npts,ndim);

VecDoub y(npts), xstar(ndim);

...

Powvargram vgram(x,y);

Krig<Powvargram> krig(x,y,vgram);

followed by any number of interpolations of the form

ystar = krig.interp(xstar);

Be aware that while the interpolated values are quite insensitive to the vari-
ogram model, the estimated errors are rather sensitive to it. You should thus consider
the error estimates as being order of magnitude only. Since they are also relatively
expensive to compute, their value in this application is not great. They will be much
more useful in �15.9, when our model includes measurement errors.

3.7.5 Curve Interpolation in Multidimensions
A different kind of interpolation, worth a brief mention here, is when you have

an ordered set of N tabulated points in n dimensions that lie on a one-dimensional
curve, x0; : : :xN�1, and you want to interpolate other values along the curve. Two
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cases worth distinguishing are: (i) The curve is an open curve, so that x0 and xN�1
represent endpoints. (ii) The curve is a closed curve, so that there is an implied curve
segment connecting xN�1 back to x0.

A straightforward solution, using methods already at hand, is first to approx-
imate distance along the curve by the sum of chord lengths between the tabulated
points, and then to construct spline interpolations for each of the coordinates, 0; : : : ;
n � 1, as a function of that parameter. Since the derivative of any single coordinate
with respect to arc length can be no greater than 1, it is guaranteed that the spline
interpolations will be well-behaved.

Probably 90% of applications require nothing more complicated than the above.
If you are in the unhappy 10%, then you will need to learn about Bézier curves, B-
splines, and interpolating splines more generally [12,13,14]. For the happy majority,
an implementation is

struct Curve_interp {interp curve.h
Object for interpolating a curve specified by n points in dim dimensions.

Int dim, n, in;
Bool cls; Set if a closed curve.
MatDoub pts;
VecDoub s;
VecDoub ans;
NRvector<Spline_interp*> srp;

Curve_interp(MatDoub &ptsin, Bool close=0)
: n(ptsin.nrows()), dim(ptsin.ncols()), in(close ? 2*n : n),
cls(close), pts(dim,in), s(in), ans(dim), srp(dim) {
Constructor. The n � dim matrix ptsin inputs the data points. Input close as 0 for
an open curve, 1 for a closed curve. (For a closed curve, the last data point should not
duplicate the first — the algorithm will connect them.)

Int i,ii,im,j,ofs;
Doub ss,soff,db,de;
ofs = close ? n/2 : 0; The trick for closed curves is to duplicate half a

period at the beginning and end, and then
use the middle half of the resulting spline.

s[0] = 0.;
for (i=0;i<in;i++) {

ii = (i-ofs+n) % n;
im = (ii-1+n) % n;
for (j=0;j<dim;j++) pts[j][i] = ptsin[ii][j]; Store transpose.
if (i>0) { Accumulate arc length.

s[i] = s[i-1] + rad(&ptsin[ii][0],&ptsin[im][0]);
if (s[i] == s[i-1]) throw("error in Curve_interp");
Consecutive points may not be identical. For a closed curve, the last data
point should not duplicate the first.

}
}
ss = close ? s[ofs+n]-s[ofs] : s[n-1]-s[0]; Rescale parameter so that the

interval [0,1] is the whole curve (or one period).soff = s[ofs];
for (i=0;i<in;i++) s[i] = (s[i]-soff)/ss;
for (j=0;j<dim;j++) { Construct the splines using endpoint derivatives.

db = in < 4 ? 1.e99 : fprime(&s[0],&pts[j][0],1);
de = in < 4 ? 1.e99 : fprime(&s[in-1],&pts[j][in-1],-1);
srp[j] = new Spline_interp(s,&pts[j][0],db,de);

}
}
~Curve_interp() {for (Int j=0;j<dim;j++) delete srp[j];}

VecDoub &interp(Doub t) {
Interpolate a point on the stored curve. The point is parameterized by t, in the range [0,1].
For open curves, values of t outside this range will return extrapolations (dangerous!). For
closed curves, t is periodic with period 1.
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if (cls) t = t - floor(t);
for (Int j=0;j<dim;j++) ans[j] = (*srp[j]).interp(t);
return ans;

}

Doub fprime(Doub *x, Doub *y, Int pm) {
Utility for estimating the derivatives at the endpoints. x and y point to the abscissa and
ordinate of the endpoint. If pm is C1, points to the right will be used (left endpoint); if it
is �1, points to the left will be used (right endpoint). See text, below.

Doub s1 = x[0]-x[pm*1], s2 = x[0]-x[pm*2], s3 = x[0]-x[pm*3],
s12 = s1-s2, s13 = s1-s3, s23 = s2-s3;

return -(s1*s2/(s13*s23*s3))*y[pm*3]+(s1*s3/(s12*s2*s23))*y[pm*2]
-(s2*s3/(s1*s12*s13))*y[pm*1]+(1./s1+1./s2+1./s3)*y[0];

}

Doub rad(const Doub *p1, const Doub *p2) {
Euclidean distance.

Doub sum = 0.;
for (Int i=0;i<dim;i++) sum += SQR(p1[i]-p2[i]);
return sqrt(sum);

}

};

The utility routine fprime estimates the derivative of a function at a tabulated
abscissa x0 using four consecutive tabulated abscissa-ordinate pairs, .x0; y0/; : : : ;
.x3; y3/. The formula for this, readily derived by power-series expansion, is

y00 D �C0y0 C C1y1 � C2y2 C C3y3 (3.7.17)

where

C0 D
1

s1
C
1

s2
C
1

s3

C1 D
s2s3

s1.s2 � s1/.s3 � s1/

C2 D
s1s3

.s2 � s1/s2.s3 � s2/

C3 D
s1s2

.s3 � s1/.s3 � s2/s3

(3.7.18)

with
s1 � x1 � x0

s2 � x2 � x0

s3 � x3 � x0

(3.7.19)
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3.8 Laplace Interpolation
In this section we look at a missing data or gridding problem, namely, how

to restore missing or unmeasured values on a regular grid. Evidently some kind of
interpolation from the not-missing values is required, but how shall we do this in a
principled way?

One good method, already in use at the dawn of the computer age [1,2], is
Laplace interpolation, sometimes called Laplace/Poisson interpolation. The gen-
eral idea is to find an interpolating function y that satisfies Laplace’s equation in n
dimensions,

r2y D 0 (3.8.1)

wherever there is no data, and which satisfies

y.xi / D yi (3.8.2)

at all measured data points. Generically, such a function does exist. The reason
for choosing Laplace’s equation (among all possible partial differential equations,
say) is that the solution to Laplace’s equation selects, in some sense, the smoothest
possible interpolant. In particular, its solution minimizes the integrated square of the
gradient, Z

�

jryj2 d� (3.8.3)

where � denotes the n-dimensional domain of interest. This is a very general idea,
and it can be applied to irregular meshes as well as to regular grids. Here, however,
we consider only the latter.
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For purposes of illustration (and because it is the most useful example) we fur-
ther specialize to the case of two dimensions, and to the case of a Cartesian grid
whose x1 and x2 values are evenly spaced — like a checkerboard.

In this geometry, the finite difference approximation to Laplace’s equation has
a particularly simple form, one that echos the mean value theorem for continuous
solutions of the Laplace equation: The value of the solution at any free gridpoint
(i.e., not a point with a measured value) equals the average of its four Cartesian
neighbors. (See �20.0.) Indeed, this already sounds a lot like interpolation.

If y0 denotes the value at a free point, while yu, yd , yl , and yr denote the values
at its up, down, left, and right neighbors, respectively, then the equation satisfied is

y0 �
1
4
yu �

1
4
yd �

1
4
yl �

1
4
yr D 0 (3.8.4)

For gridpoints with measured values, on the other hand, a different (simple)
equation is satisfied,

y0 D y0.measured/ (3.8.5)

Note that these nonzero right-hand sides are what make an inhomogeneous, and
therefore generally solvable, set of linear equations.

We are not quite done, since we must provide special forms for the top, bot-
tom, left, and right boundaries, and for the four corners. Homogeneous choices that
embody “natural” boundary conditions (with no preferred function values) are

y0 �
1
2
yu �

1
2
yd D 0 (left and right boundaries)

y0 �
1
2
yl �

1
2
yr D 0 (top and bottom boundaries)

y0 �
1
2
yr �

1
2
yd D 0 (top-left corner)

y0 �
1
2
yl �

1
2
yd D 0 (top-right corner)

y0 �
1
2
yr �

1
2
yu D 0 (bottom-left corner)

y0 �
1
2
yl �

1
2
yu D 0 (bottom-right corner)

(3.8.6)

Since every gridpoint corresponds to exactly one of the equations in (3.8.4),
(3.8.5), or (3.8.4), we have exactly as many equations as there are unknowns. If the
grid is M by N , then there are MN of each. This can be quite a large number; but
the equations are evidently very sparse. We solve them by defining a derived class
from �2.7’s Linbcg base class. You can readily identify all the cases of equations
(3.8.4) – (3.8.6) in the code for atimes, below.

struct Laplace_interp : Linbcg { interp laplace.h
Object for interpolating missing data in a matrix by solving Laplace’s equation. Call constructor
once, then solve one or more times (see text).

MatDoub &mat;
Int ii,jj;
Int nn,iter;
VecDoub b,y,mask;

Laplace_interp(MatDoub_IO &matrix) : mat(matrix), ii(mat.nrows()),
jj(mat.ncols()), nn(ii*jj), iter(0), b(nn), y(nn), mask(nn) {
Constructor. Values greater than 1.e99 in the input matrix mat are deemed to be missing
data. The matrix is not altered until solve is called.

Int i,j,k;
Doub vl = 0.;
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for (k=0;k<nn;k++) { Fill the r.h.s. vector, the initial guess,
and a mask of the missing data.i = k/jj;

j = k - i*jj;
if (mat[i][j] < 1.e99) {

b[k] = y[k] = vl = mat[i][j];
mask[k] = 1;

} else {
b[k] = 0.;
y[k] = vl;
mask[k] = 0;

}
}

}

void asolve(VecDoub_I &b, VecDoub_O &x, const Int itrnsp);
void atimes(VecDoub_I &x, VecDoub_O &r, const Int itrnsp);
See definitions below. These are the real algorithmic content.

Doub solve(Doub tol=1.e-6, Int itmax=-1) {
Invoke Linbcg::solve with appropriate arguments. The default argument values will usu-
ally work, in which case this routine need be called only once. The original matrix mat is
refilled with the interpolated solution.

Int i,j,k;
Doub err;
if (itmax <= 0) itmax = 2*MAX(ii,jj);
Linbcg::solve(b,y,1,tol,itmax,iter,err);
for (k=0,i=0;i<ii;i++) for (j=0;j<jj;j++) mat[i][j] = y[k++];
return err;

}
};

void Laplace_interp::asolve(VecDoub_I &b, VecDoub_O &x, const Int itrnsp) {
Diagonal preconditioner. (Diagonal elements all unity.)

Int i,n=b.size();
for (i=0;i<n;i++) x[i] = b[i];

}

void Laplace_interp::atimes(VecDoub_I &x, VecDoub_O &r, const Int itrnsp) {
Sparse matrix, and matrix transpose, multiply. This routine embodies eqs. (3.8.4), (3.8.5), and
(3.8.6).

Int i,j,k,n=r.size(),jjt,it;
Doub del;
for (k=0;k<n;k++) r[k] = 0.;
for (k=0;k<n;k++) {

i = k/jj;
j = k - i*jj;
if (mask[k]) { Measured point, eq. (3.8.5).

r[k] += x[k];
} else if (i>0 && i<ii-1 && j>0 && j<jj-1) { Interior point, eq. (3.8.4).

if (itrnsp) {
r[k] += x[k];
del = -0.25*x[k];
r[k-1] += del;
r[k+1] += del;
r[k-jj] += del;
r[k+jj] += del;

} else {
r[k] = x[k] - 0.25*(x[k-1]+x[k+1]+x[k+jj]+x[k-jj]);

}
} else if (i>0 && i<ii-1) { Left or right edge, eq. (3.8.6).

if (itrnsp) {
r[k] += x[k];
del = -0.5*x[k];
r[k-jj] += del;
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r[k+jj] += del;
} else {

r[k] = x[k] - 0.5*(x[k+jj]+x[k-jj]);
}

} else if (j>0 && j<jj-1) { Top or bottom edge, eq. (3.8.6).
if (itrnsp) {

r[k] += x[k];
del = -0.5*x[k];
r[k-1] += del;
r[k+1] += del;

} else {
r[k] = x[k] - 0.5*(x[k+1]+x[k-1]);

}
} else { Corners, eq. (3.8.6).

jjt = i==0 ? jj : -jj;
it = j==0 ? 1 : -1;
if (itrnsp) {

r[k] += x[k];
del = -0.5*x[k];
r[k+jjt] += del;
r[k+it] += del;

} else {
r[k] = x[k] - 0.5*(x[k+jjt]+x[k+it]);

}
}

}
}

Usage is quite simple. Just fill a matrix with function values where they are
known, and with 1.e99 where they are not; send the matrix to the constructor; and
call the solve routine. The missing values will be interpolated. The default argu-
ments should serve for most cases.

Int m=...,n=...;

MatDoub mat(m,n);

...

Laplace_interp mylaplace(mat);

mylaplace.solve();

Quite decent results are obtained for smooth functions on 300 � 300 matrices in
which a random 10% of gridpoints have known function values, with 90% interpo-
lated. However, since compute time scales asMN max .M;N / (that is, as the cube),
this is not a method to use for much larger matrices, unless you break them up into
overlapping tiles. If you experience convergence difficulties, then you should call
solve, with appropriate nondefault arguments, several times in succession, and look
at the returned error estimate after each call returns.

3.8.1 Minimum Curvature Methods

Laplace interpolation has a tendency to yield cone-like cusps around any small
islands of known data points that are surrounded by a sea of unknowns. The reason
is that, in two dimensions, the solution of Laplace’s equation near a point source is
logarithmically singular. When the known data is spread fairly evenly (if randomly)
across the grid, this is not generally a problem. Minimum curvature methods deal
with the problem at a more fundamental level by being based on the biharmonic
equation

r.ry/ D 0 (3.8.7)
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instead of Laplace’s equation. Solutions of the biharmonic equation minimize the
integrated square of the curvature, Z

�

jr2yj2 d� (3.8.8)

Minimum curvature methods are widely used in the earth-science community [3,4].

The references give a variety of other methods that can be used for missing data
interpolation and gridding.
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4.0 Introduction

Numerical integration, which is also called quadrature, has a history extending
back to the invention of calculus and before. The fact that integrals of elementary
functions could not, in general, be computed analytically, while derivatives could be,
served to give the field a certain panache, and to set it a cut above the arithmetic
drudgery of numerical analysis during the whole of the 18th and 19th centuries.

With the invention of automatic computing, quadrature became just one numer-
ical task among many, and not a very interesting one at that. Automatic computing,
even the most primitive sort involving desk calculators and rooms full of “comput-
ers” (that were, until the 1950s, people rather than machines), opened to feasibility
the much richer field of numerical integration of differential equations. Quadrature
is merely the simplest special case: The evaluation of the integral

I D

Z b

a

f .x/dx (4.0.1)

is precisely equivalent to solving for the value I � y.b/ the differential equation

dy

dx
D f .x/ (4.0.2)

with the boundary condition
y.a/ D 0 (4.0.3)

Chapter 17 of this book deals with the numerical integration of differential equa-
tions. In that chapter, much emphasis is given to the concept of “variable” or “adap-
tive” choices of stepsize. We will not, therefore, develop that material here. If the
function that you propose to integrate is sharply concentrated in one or more peaks,
or if its shape is not readily characterized by a single length scale, then it is likely
that you should cast the problem in the form of (4.0.2) – (4.0.3) and use the methods
of Chapter 17. (But take a look at �4.7 first.)

The quadrature methods in this chapter are based, in one way or another, on the
obvious device of adding up the value of the integrand at a sequence of abscissas

155
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156 Chapter 4. Integration of Functions

within the range of integration. The game is to obtain the integral as accurately as
possible with the smallest number of function evaluations of the integrand. Just as
in the case of interpolation (Chapter 3), one has the freedom to choose methods of
various orders, with higher order sometimes, but not always, giving higher accuracy.
Romberg integration, which is discussed in �4.3, is a general formalism for mak-
ing use of integration methods of a variety of different orders, and we recommend
it highly.

Apart from the methods of this chapter and of Chapter 17, there are yet other
methods for obtaining integrals. One important class is based on function approxima-
tion. We discuss explicitly the integration of functions by Chebyshev approximation
(Clenshaw-Curtis quadrature) in �5.9. Although not explicitly discussed here, you
ought to be able to figure out how to do cubic spline quadrature using the output
of the routine spline in �3.3. (Hint: Integrate equation 3.3.3 over x analytically.
See [1].)

Some integrals related to Fourier transforms can be calculated using the fast
Fourier transform (FFT) algorithm. This is discussed in �13.9. A related problem is
the evaluation of integrals with long oscillatory tails. This is discussed at the end of
�5.3.

Multidimensional integrals are a whole ’nother multidimensional bag of worms.
Section 4.8 is an introductory discussion in this chapter; the important technique of
Monte Carlo integration is treated in Chapter 7.

CITED REFERENCES AND FURTHER READING:

Carnahan, B., Luther, H.A., and Wilkes, J.O. 1969, Applied Numerical Methods (New York:
Wiley), Chapter 2.

Isaacson, E., and Keller, H.B. 1966, Analysis of Numerical Methods; reprinted 1994 (New York:
Dover), Chapter 7.

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington, DC:
Mathematical Association of America), Chapter 4.

Stoer, J., and Bulirsch, R. 2002, Introduction to Numerical Analysis, 3rd ed. (New York: Springer),
Chapter 3.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed.; reprinted
2001 (New York: Dover), Chapter 4.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall);
reprinted 2003 (New York: Dover), �7.4.

Kahaner, D., Moler, C., and Nash, S. 1989, Numerical Methods and Software (Englewood Cliffs,
NJ: Prentice-Hall), Chapter 5.

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical Com-
putations (Englewood Cliffs, NJ: Prentice-Hall), �5.2, p. 89.[1]

Davis, P., and Rabinowitz, P. 1984, Methods of Numerical Integration, 2nd ed. (Orlando, FL:
Academic Press).

4.1 Classical Formulas for Equally Spaced
Abscissas

Where would any book on numerical analysis be without Mr. Simpson and his
“rule”? The classical formulas for integrating a function whose value is known at
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x0 xN− 1 xN 

open formulas use these points

closed formulas use these points

x1 x2

h

Figure 4.1.1. Quadrature formulas with equally spaced abscissas compute the integral of a function
between x0 and xN . Closed formulas evaluate the function on the boundary points, while open formulas
refrain from doing so (useful if the evaluation algorithm breaks down on the boundary points).

equally spaced steps have a certain elegance about them, and they are redolent with
historical association. Through them, the modern numerical analyst communes with
the spirits of his or her predecessors back across the centuries, as far as the time
of Newton, if not farther. Alas, times do change; with the exception of two of the
most modest formulas (“extended trapezoidal rule,” equation 4.1.11, and “extended
midpoint rule,” equation 4.1.19; see �4.2), the classical formulas are almost entirely
useless. They are museum pieces, but beautiful ones; we now enter the museum.
(You can skip to �4.2 if you are not touristically inclined.)

Some notation: We have a sequence of abscissas, denoted x0; x1; : : : ; xN�1; xN ,
that are spaced apart by a constant step h,

xi D x0 C ih i D 0; 1; : : : ; N (4.1.1)

A function f .x/ has known values at the xi ’s,

f .xi / � fi (4.1.2)

We want to integrate the function f .x/ between a lower limit a and an upper limit b,
where a and b are each equal to one or the other of the xi ’s. An integration formula
that uses the value of the function at the endpoints, f .a/ or f .b/, is called a closed
formula. Occasionally, we want to integrate a function whose value at one or both
endpoints is difficult to compute (e.g., the computation of f goes to a limit of zero
over zero there, or worse yet has an integrable singularity there). In this case we
want an open formula, which estimates the integral using only xi ’s strictly between
a and b (see Figure 4.1.1).

The basic building blocks of the classical formulas are rules for integrating a
function over a small number of intervals. As that number increases, we can find
rules that are exact for polynomials of increasingly high order. (Keep in mind that
higher order does not always imply higher accuracy in real cases.) A sequence of
such closed formulas is now given.
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4.1.1 Closed Newton-Cotes Formulas
Trapezoidal rule:Z x1

x0

f .x/dx D h

�
1

2
f0 C

1

2
f1

�
CO.h3f 00/ (4.1.3)

Here the error term O. / signifies that the true answer differs from the estimate by
an amount that is the product of some numerical coefficient times h3 times the value
of the function’s second derivative somewhere in the interval of integration. The
coefficient is knowable, and it can be found in all the standard references on this
subject. The point at which the second derivative is to be evaluated is, however,
unknowable. If we knew it, we could evaluate the function there and have a higher-
order method! Since the product of a knowable and an unknowable is unknowable,
we will streamline our formulas and write only O. /, instead of the coefficient.

Equation (4.1.3) is a two-point formula (x0 and x1). It is exact for polynomials
up to and including degree 1, i.e., f .x/ D x. One anticipates that there is a three-
point formula exact up to polynomials of degree 2. This is true; moreover, by a
cancellation of coefficients due to left-right symmetry of the formula, the three-point
formula is exact for polynomials up to and including degree 3, i.e., f .x/ D x3.

Simpson’s rule:Z x2

x0

f .x/dx D h

�
1

3
f0 C

4

3
f1 C

1

3
f2

�
CO.h5f .4// (4.1.4)

Here f .4/ means the fourth derivative of the function f evaluated at an unknown
place in the interval. Note also that the formula gives the integral over an interval of
size 2h, so the coefficients add up to 2.

There is no lucky cancellation in the four-point formula, so it is also exact for
polynomials up to and including degree 3.

Simpson’s 3
8

rule:Z x3

x0

f .x/dx D h

�
3

8
f0 C

9

8
f1 C

9

8
f2 C

3

8
f3

�
CO.h5f .4// (4.1.5)

The five-point formula again benefits from a cancellation:

Bode’s rule:Z x4

x0

f .x/dx D h

�
14

45
f0 C

64

45
f1 C

24

45
f2 C

64

45
f3 C

14

45
f4

�
CO.h7f .6//

(4.1.6)
This is exact for polynomials up to and including degree 5.

At this point the formulas stop being named after famous personages, so we
will not go any further. Consult [1] for additional formulas in the sequence.

4.1.2 Extrapolative Formulas for a Single Interval
We are going to depart from historical practice for a moment. Many texts would

give, at this point, a sequence of “Newton-Cotes Formulas of Open Type.” Here is
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an example:Z x5

x0

f .x/dx D h

�
55

24
f1 C

5

24
f2 C

5

24
f3 C

55

24
f4

�
CO.h5f .4//

Notice that the integral from a D x0 to b D x5 is estimated, using only the interior
points x1; x2; x3; x4. In our opinion, formulas of this type are not useful for the
reasons that (i) they cannot usefully be strung together to get “extended” rules, as we
are about to do with the closed formulas, and (ii) for all other possible uses they are
dominated by the Gaussian integration formulas, which we will introduce in �4.6.

Instead of the Newton-Cotes open formulas, let us set out the formulas for esti-
mating the integral in the single interval from x0 to x1, using values of the function
f at x1; x2; : : : . These will be useful building blocks later for the “extended” open
formulas.Z x1

x0

f .x/dx D hŒf1� CO.h2f 0/ (4.1.7)

Z x1

x0

f .x/dx D h

�
3

2
f1 �

1

2
f2

�
CO.h3f 00/ (4.1.8)

Z x1

x0

f .x/dx D h

�
23

12
f1 �

16

12
f2 C

5

12
f3

�
CO.h4f .3// (4.1.9)

Z x1

x0

f .x/dx D h

�
55

24
f1 �

59

24
f2 C

37

24
f3 �

9

24
f4

�
CO.h5f .4// (4.1.10)

Perhaps a word here would be in order about how formulas like the above can
be derived. There are elegant ways, but the most straightforward is to write down the
basic form of the formula, replacing the numerical coefficients with unknowns, say
p; q; r; s. Without loss of generality take x0 D 0 and x1 D 1, so h D 1. Substitute
in turn for f .x/ (and for f1; f2; f3; f4) the functions f .x/ D 1, f .x/ D x, f .x/ D
x2, and f .x/ D x3. Doing the integral in each case reduces the left-hand side to
a number and the right-hand side to a linear equation for the unknowns p; q; r; s.
Solving the four equations produced in this way gives the coefficients.

4.1.3 Extended Formulas (Closed)
If we use equation (4.1.3) N � 1 times to do the integration in the intervals

.x0; x1/; .x1; x2/; : : : ; .xN�2; xN�1/ and then add the results, we obtain an “ex-
tended” or “composite” formula for the integral from x0 to xN�1.

Extended trapezoidal rule:Z xN�1

x0

f .x/dx D h

�
1

2
f0 C f1 C f2 C

	 	 	 C fN�2 C
1

2
fN�1

�
CO

�
.b � a/3f 00

N 2

� (4.1.11)

Here we have written the error estimate in terms of the interval b�a and the number
of pointsN instead of in terms of h. This is clearer, since one is usually holding a and
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b fixed and wanting to know, e.g., how much the error will be decreased by taking
twice as many steps (in this case, it is by a factor of 4). In subsequent equations we
will show only the scaling of the error term with the number of steps.

For reasons that will not become clear until �4.2, equation (4.1.11) is in fact the
most important equation in this section; it is the basis for most practical quadrature
schemes.

The extended formula of order 1=N 3 isZ xN�1

x0

f .x/dx D h

�
5

12
f0 C

13

12
f1 C f2 C f3 C

	 	 	 C fN�3 C
13

12
fN�2 C

5

12
fN�1

�
CO

�
1

N 3

�
(4.1.12)

(We will see in a moment where this comes from.)
If we apply equation (4.1.4) to successive, nonoverlapping pairs of intervals,

we get the extended Simpson’s rule:Z xN�1

x0

f .x/dx D h

�
1

3
f0 C

4

3
f1 C

2

3
f2 C

4

3
f3 C

	 	 	 C
2

3
fN�3 C

4

3
fN�2 C

1

3
fN�1

�
CO

�
1

N 4

� (4.1.13)

Notice that the 2/3, 4/3 alternation continues throughout the interior of the evalu-
ation. Many people believe that the wobbling alternation somehow contains deep
information about the integral of their function that is not apparent to mortal eyes.
In fact, the alternation is an artifact of using the building block (4.1.4). Another
extended formula with the same order as Simpson’s rule isZ xN�1

x0

f .x/dx D h

�
3

8
f0 C

7

6
f1 C

23

24
f2 C f3 C f4 C

	 	 	 C fN�5 C fN�4 C
23

24
fN�3 C

7

6
fN�2 C

3

8
fN�1

�
CO

�
1

N 4

�
(4.1.14)

This equation is constructed by fitting cubic polynomials through successive groups
of four points; we defer details to �19.3, where a similar technique is used in the
solution of integral equations. We can, however, tell you where equation (4.1.12)
came from. It is Simpson’s extended rule, averaged with a modified version of itself
in which the first and last steps are done with the trapezoidal rule (4.1.3). The trape-
zoidal step is two orders lower than Simpson’s rule; however, its contribution to the
integral goes down as an additional power of N (since it is used only twice, not N
times). This makes the resulting formula of degree one less than Simpson.

4.1.4 Extended Formulas (Open and Semi-Open)
We can construct open and semi-open extended formulas by adding the closed

formulas (4.1.11) – (4.1.14), evaluated for the second and subsequent steps, to the
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extrapolative open formulas for the first step, (4.1.7) – (4.1.10). As discussed imme-
diately above, it is consistent to use an end step that is of one order lower than the
(repeated) interior step. The resulting formulas for an interval open at both ends are
as follows.

Equations (4.1.7) and (4.1.11) giveZ xN�1

x0

f .x/dx D h

�
3

2
f1 C f2 C f3 C 	 	 	 C fN�3 C

3

2
fN�2

�
CO

�
1

N 2

�
(4.1.15)

Equations (4.1.8) and (4.1.12) giveZ xN�1

x0

f .x/dx D h

�
23

12
f1 C

7

12
f2 C f3 C f4 C

	 	 	 C fN�4 C
7

12
fN�3 C

23

12
fN�2

�
CO

�
1

N 3

�
(4.1.16)

Equations (4.1.9) and (4.1.13) giveZ xN�1

x0

f .x/dx D h

�
27

12
f1 C 0C

13

12
f3 C

4

3
f4 C

	 	 	 C
4

3
fN�5 C

13

12
fN�4 C 0C

27

12
fN�2

�
CO

�
1

N 4

�
(4.1.17)

The interior points alternate 4/3 and 2/3. If we want to avoid this alternation,
we can combine equations (4.1.9) and (4.1.14), givingZ xN�1

x0

f .x/dx D h

�
55

24
f1 �

1

6
f2 C

11

8
f3 C f4 C f5 C f6 C

	 	 	 C fN�6 C fN�5 C
11

8
fN�4 �

1

6
fN�3 C

55

24
fN�2

�
CO

�
1

N 4

�
(4.1.18)

We should mention in passing another extended open formula, for use where
the limits of integration are located halfway between tabulated abscissas. This one is
known as the extended midpoint rule and is accurate to the same order as (4.1.15):Z xN�1

x0

f .x/dx D hŒf1=2 C f3=2 C f5=2 C 	 	 	 C fN�5=2 C fN�3=2� CO

�
1

N 2

�
(4.1.19)

There are also formulas of higher order for this situation, but we will refrain from
giving them.

The semi-open formulas are just the obvious combinations of equations (4.1.11)
– (4.1.14) with (4.1.15) – (4.1.18), respectively. At the closed end of the integration,
use the weights from the former equations; at the open end, use the weights from
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N = 1

2

3

4

(total after N = 4)

Figure 4.2.1. Sequential calls to the routine Trapzd incorporate the information from previous calls and
evaluate the integrand only at those new points necessary to refine the grid. The bottom line shows the
totality of function evaluations after the fourth call. The routine qsimp, by weighting the intermediate
results, transforms the trapezoid rule into Simpson’s rule with essentially no additional overhead.

the latter equations. One example should give the idea, the formula with error term
decreasing as 1=N 3, which is closed on the right and open on the left:Z xN�1

x0

f .x/dx D h

�
23

12
f1 C

7

12
f2 C f3 C f4 C

	 	 	 C fN�3 C
13

12
fN�2 C

5

12
fN�1

�
CO

�
1

N 3

�
(4.1.20)

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions (Washington: Na-
tional Bureau of Standards); reprinted 1968 (New York: Dover); online at http://www.nr.
com/aands, �25.4.[1]

Isaacson, E., and Keller, H.B. 1966, Analysis of Numerical Methods; reprinted 1994 (New York:
Dover), �7.1.

4.2 Elementary Algorithms
Our starting point is equation (4.1.11), the extended trapezoidal rule. There are

two facts about the trapezoidal rule that make it the starting point for a variety of
algorithms. One fact is rather obvious, while the second is rather “deep.”

The obvious fact is that, for a fixed function f .x/ to be integrated between fixed
limits a and b, one can double the number of intervals in the extended trapezoidal
rule without losing the benefit of previous work. The coarsest implementation of the
trapezoidal rule is to average the function at its endpoints a and b. The first stage
of refinement is to add to this average the value of the function at the halfway point.
The second stage of refinement is to add the values at the 1/4 and 3/4 points. And so
on (see Figure 4.2.1).

As we will see, a number of elementary quadrature algorithms involve adding
successive stages of refinement. It is convenient to encapsulate this feature in a
Quadrature structure:
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struct Quadrature{ quadrature.h
Abstract base class for elementary quadrature algorithms.

Int n; Current level of refinement.
virtual Doub next() = 0;
Returns the value of the integral at the nth stage of refinement. The function next() must
be defined in the derived class.

};

Then the Trapzd structure is derived from this as follows:

template<class T> quadrature.h
struct Trapzd : Quadrature {
Routine implementing the extended trapezoidal rule.

Doub a,b,s; Limits of integration and current value of integral.
T &func;
Trapzd() {};
Trapzd(T &funcc, const Doub aa, const Doub bb) :

func(funcc), a(aa), b(bb) {n=0;}
The constructor takes as inputs func, the function or functor to be integrated between
limits a and b, also input.

Doub next() {
Returns the nth stage of refinement of the extended trapezoidal rule. On the first call (n=1),

the routine returns the crudest estimate of
R b
a f .x/dx. Subsequent calls set n=2,3,... and

improve the accuracy by adding 2n-2 additional interior points.
Doub x,tnm,sum,del;
Int it,j;
n++;
if (n == 1) {

return (s=0.5*(b-a)*(func(a)+func(b)));
} else {

for (it=1,j=1;j<n-1;j++) it <<= 1;
tnm=it;
del=(b-a)/tnm; This is the spacing of the points to be added.
x=a+0.5*del;
for (sum=0.0,j=0;j<it;j++,x+=del) sum += func(x);
s=0.5*(s+(b-a)*sum/tnm); This replaces s by its refined value.
return s;

}
}

};

Note that Trapzd is templated on the whole struct and does not just contain a
templated function. This is necessary because it retains a reference to the supplied
function or functor as a member variable.

The Trapzd structure is a workhorse that can be harnessed in several ways. The
simplest and crudest is to integrate a function by the extended trapezoidal rule where
you know in advance (we can’t imagine how!) the number of steps you want. If you
want 2M C 1, you can accomplish this by the fragment

Ftor func; Functor func here has no parameters.
Trapzd<Ftor> s(func,a,b);

for(j=1;j<=m+1;j++) val=s.next();

with the answer returned as val. Here Ftor is a functor containing the function to
be integrated.

Much better, of course, is to refine the trapezoidal rule until some specified
degree of accuracy has been achieved. A function for this is
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template<class T>quadrature.h
Doub qtrap(T &func, const Doub a, const Doub b, const Doub eps=1.0e-10) {
Returns the integral of the function or functor func from a to b. The constants EPS can be
set to the desired fractional accuracy and JMAX so that 2 to the power JMAX-1 is the maximum
allowed number of steps. Integration is performed by the trapezoidal rule.

const Int JMAX=20;
Doub s,olds=0.0; Initial value of olds is arbitrary.
Trapzd<T> t(func,a,b);
for (Int j=0;j<JMAX;j++) {

s=t.next();
if (j > 5) Avoid spurious early convergence.

if (abs(s-olds) < eps*abs(olds) ||
(s == 0.0 && olds == 0.0)) return s;

olds=s;
}
throw("Too many steps in routine qtrap");

}

The optional argument eps sets the desired fractional accuracy. Unsophisti-
cated as it is, routine qtrap is in fact a fairly robust way of doing integrals of func-
tions that are not very smooth. Increased sophistication will usually translate into
a higher-order method whose efficiency will be greater only for sufficiently smooth
integrands. qtrap is the method of choice, e.g., for an integrand that is a function
of a variable that is linearly interpolated between measured data points. Be sure that
you do not require too stringent an eps, however: If qtrap takes too many steps
in trying to achieve your required accuracy, accumulated roundoff errors may start
increasing, and the routine may never converge. A value of 10�10 or even smaller is
usually no problem in double precision when the convergence is moderately rapid,
but not otherwise. (Of course, very few problems really require such precision.)

We come now to the “deep” fact about the extended trapezoidal rule, equation
(4.1.11). It is this: The error of the approximation, which begins with a term of
order 1=N 2, is in fact entirely even when expressed in powers of 1=N . This follows
directly from the Euler-Maclaurin summation formula,Z xN�1

x0

f .x/dx D h

�
1

2
f0 C f1 C f2 C 	 	 	 C fN�2 C

1

2
fN�1

�
�
B2h

2

2Š
.f 0N�1 � f

0
0/ � 	 	 	 �

B2kh
2k

.2k/Š
.f

.2k�1/
N�1 � f

.2k�1/
0 / � 	 	 	

(4.2.1)
Here B2k is a Bernoulli number, defined by the generating function

t

et � 1
D

1X
nD0

Bn
tn

nŠ
(4.2.2)

with the first few even values (odd values vanish except for B1 D �1=2)

B0 D 1 B2 D
1

6
B4 D �

1

30
B6 D

1

42

B8 D �
1

30
B10 D

5

66
B12 D �

691

2730

(4.2.3)

Equation (4.2.1) is not a convergent expansion, but rather only an asymptotic expan-
sion whose error when truncated at any point is always less than twice the magnitude
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of the first neglected term. The reason that it is not convergent is that the Bernoulli
numbers become very large, e.g.,

B50 D
495057205241079648212477525

66

The key point is that only even powers of h occur in the error series of (4.2.1).
This fact is not, in general, shared by the higher-order quadrature rules in �4.1. For
example, equation (4.1.12) has an error series beginning with O.1=N 3/, but contin-
uing with all subsequent powers of N : 1=N 4, 1=N 5, etc.

Suppose we evaluate (4.1.11) with N steps, getting a result SN , and then again
with 2N steps, getting a result S2N . (This is done by any two consecutive calls of
Trapzd.) The leading error term in the second evaluation will be 1/4 the size of the
error in the first evaluation. Therefore the combination

S D 4
3
S2N �

1
3
SN (4.2.4)

will cancel out the leading order error term. But there is no error term of order 1=N 3,
by (4.2.1). The surviving error is of order 1=N 4, the same as Simpson’s rule. In fact,
it should not take long for you to see that (4.2.4) is exactly Simpson’s rule (4.1.13),
alternating 2/3’s, 4/3’s, and all. This is the preferred method for evaluating that rule,
and we can write it as a routine exactly analogous to qtrap above:

template<class T> quadrature.h
Doub qsimp(T &func, const Doub a, const Doub b, const Doub eps=1.0e-10) {
Returns the integral of the function or functor func from a to b. The constants EPS can be
set to the desired fractional accuracy and JMAX so that 2 to the power JMAX-1 is the maximum
allowed number of steps. Integration is performed by Simpson’s rule.

const Int JMAX=20;
Doub s,st,ost=0.0,os=0.0;
Trapzd<T> t(func,a,b);
for (Int j=0;j<JMAX;j++) {

st=t.next();
s=(4.0*st-ost)/3.0; Compare equation (4.2.4), above.
if (j > 5) Avoid spurious early convergence.

if (abs(s-os) < eps*abs(os) ||
(s == 0.0 && os == 0.0)) return s;

os=s;
ost=st;

}
throw("Too many steps in routine qsimp");

}

The routine qsimp will in general be more efficient than qtrap (i.e., require
fewer function evaluations) when the function to be integrated has a finite fourth
derivative (i.e., a continuous third derivative). The combination of qsimp and its
necessary workhorse Trapzd is a good one for light-duty work.

CITED REFERENCES AND FURTHER READING:

Stoer, J., and Bulirsch, R. 2002, Introduction to Numerical Analysis, 3rd ed. (New York: Springer),
�3.1.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall);
reprinted 2003 (New York: Dover), �7.4.1 – �7.4.2.

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical Com-
putations (Englewood Cliffs, NJ: Prentice-Hall), �5.3.
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4.3 Romberg Integration

We can view Romberg’s method as the natural generalization of the routine
qsimp in the last section to integration schemes that are of higher order than Simp-
son’s rule. The basic idea is to use the results from k successive refinements of the
extended trapezoidal rule (implemented in trapzd) to remove all terms in the error
series up to but not including O.1=N 2k/. The routine qsimp is the case of k D 2.
This is one example of a very general idea that goes by the name of Richardson’s de-
ferred approach to the limit: Perform some numerical algorithm for various values
of a parameter h, and then extrapolate the result to the continuum limit h D 0.

Equation (4.2.4), which subtracts off the leading error term, is a special case of
polynomial extrapolation. In the more general Romberg case, we can use Neville’s
algorithm (see �3.2) to extrapolate the successive refinements to zero stepsize. Ne-
ville’s algorithm can in fact be coded very concisely within a Romberg integration
routine. For clarity of the program, however, it seems better to do the extrapolation
by a function call to Poly_interp::rawinterp, as given in �3.2.

template <class T>romberg.h
Doub qromb(T &func, Doub a, Doub b, const Doub eps=1.0e-10) {
Returns the integral of the function or functor func from a to b. Integration is performed by
Romberg’s method of order 2K, where, e.g., K=2 is Simpson’s rule.

const Int JMAX=20, JMAXP=JMAX+1, K=5;
Here EPS is the fractional accuracy desired, as determined by the extrapolation error es-
timate; JMAX limits the total number of steps; K is the number of points used in the
extrapolation.
VecDoub s(JMAX),h(JMAXP); These store the successive trapezoidal approxi-

mations and their relative stepsizes.Poly_interp polint(h,s,K);
h[0]=1.0;
Trapzd<T> t(func,a,b);
for (Int j=1;j<=JMAX;j++) {

s[j-1]=t.next();
if (j >= K) {

Doub ss=polint.rawinterp(j-K,0.0);
if (abs(polint.dy) <= eps*abs(ss)) return ss;

}
h[j]=0.25*h[j-1];
This is a key step: The factor is 0.25 even though the stepsize is decreased by only
0.5. This makes the extrapolation a polynomial in h2 as allowed by equation (4.2.1),
not just a polynomial in h.

}
throw("Too many steps in routine qromb");

}

The routine qromb is quite powerful for sufficiently smooth (e.g., analytic) in-
tegrands, integrated over intervals that contain no singularities, and where the end-
points are also nonsingular. qromb, in such circumstances, takes many, many fewer
function evaluations than either of the routines in �4.2. For example, the integralZ 2

0

x4 log.x C
p
x2 C 1/dx

converges (with parameters as shown above) on the second extrapolation, after just
6 calls to trapzd, while qsimp requires 11 calls (32 times as many evaluations of
the integrand) and qtrap requires 19 calls (8192 times as many evaluations of the
integrand).



�

�

“nr3” — 2007/5/1 — 20:53 — page 167 — #189
�

�

� �

4.4 Improper Integrals 167

CITED REFERENCES AND FURTHER READING:

Stoer, J., and Bulirsch, R. 2002, Introduction to Numerical Analysis, 3rd ed. (New York: Springer),
�3.4 – �3.5.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall);
reprinted 2003 (New York: Dover), �7.4.1 – �7.4.2.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed.; reprinted
2001 (New York: Dover), �4.10–2.

4.4 Improper Integrals

For our present purposes, an integral will be “improper” if it has any of the
following problems:

� its integrand goes to a finite limiting value at finite upper and lower limits, but
cannot be evaluated right on one of those limits (e.g., sin x=x at x D 0)
� its upper limit is1 , or its lower limit is �1
� it has an integrable singularity at either limit (e.g., x�1=2 at x D 0)
� it has an integrable singularity at a known place between its upper and lower

limits
� it has an integrable singularity at an unknown place between its upper and

lower limits

If an integral is infinite (e.g.,
R1
1 x�1dx), or does not exist in a limiting sense

(e.g.,
R1
�1

cos xdx), we do not call it improper; we call it impossible. No amount of
clever algorithmics will return a meaningful answer to an ill-posed problem.

In this section we will generalize the techniques of the preceding two sections
to cover the first four problems on the above list. A more advanced discussion of
quadrature with integrable singularities occurs in Chapter 19, notably �19.3. The
fifth problem, singularity at an unknown location, can really only be handled by the
use of a variable stepsize differential equation integration routine, as will be given in
Chapter 17, or an adaptive quadrature routine such as in �4.7.

We need a workhorse like the extended trapezoidal rule (equation 4.1.11), but
one that is an open formula in the sense of �4.1, i.e., does not require the integrand to
be evaluated at the endpoints. Equation (4.1.19), the extended midpoint rule, is the
best choice. The reason is that (4.1.19) shares with (4.1.11) the “deep” property of
having an error series that is entirely even in h. Indeed there is a formula, not as well
known as it ought to be, called the Second Euler-Maclaurin summation formula,Z xN�1

x0

f .x/dx D hŒf1=2 C f3=2 C f5=2 C 	 	 	 C fN�5=2 C fN�3=2�

C
B2h

2

4
.f 0N�1 � f

0
0/C 	 	 	

C
B2kh

2k

.2k/Š
.1 � 2�2kC1/.f

.2k�1/
N�1 � f

.2k�1/
0 /C 	 	 	

(4.4.1)

This equation can be derived by writing out (4.2.1) with stepsize h, then writing it
out again with stepsize h=2, and then subtracting the first from twice the second.
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It is not possible to double the number of steps in the extended midpoint rule
and still have the benefit of previous function evaluations (try it!). However, it is
possible to triple the number of steps and do so. Shall we do this, or double and
accept the loss? On the average, tripling does a factor

p
3 of unnecessary work,

since the “right” number of steps for a desired accuracy criterion may in fact fall
anywhere in the logarithmic interval implied by tripling. For doubling, the factor
is only

p
2, but we lose an extra factor of 2 in being unable to use all the previous

evaluations. Since 1:732 < 2 � 1:414, it is better to triple.
Here is the resulting structure, which is directly comparable to Trapzd.

template <class T>quadrature.h
struct Midpnt : Quadrature {
Routine implementing the extended midpoint rule.

Doub a,b,s; Limits of integration and current value of inte-
gral.T &funk;

Midpnt(T &funcc, const Doub aa, const Doub bb) :
funk(funcc), a(aa), b(bb) {n=0;}
The constructor takes as inputs func, the function or functor to be integrated between
limits a and b, also input.

Doub next(){
Returns the nth stage of refinement of the extended midpoint rule. On the first call (n=1),

the routine returns the crudest estimate of
R b
a f .x/dx. Subsequent calls set n=2,3,... and

improve the accuracy by adding .2=3/� 3n-1 additional interior points.
Int it,j;
Doub x,tnm,sum,del,ddel;
n++;
if (n == 1) {

return (s=(b-a)*func(0.5*(a+b)));
} else {

for(it=1,j=1;j<n-1;j++) it *= 3;
tnm=it;
del=(b-a)/(3.0*tnm);
ddel=del+del; The added points alternate in spacing be-

tween del and ddel.x=a+0.5*del;
sum=0.0;
for (j=0;j<it;j++) {

sum += func(x);
x += ddel;
sum += func(x);
x += del;

}
s=(s+(b-a)*sum/tnm)/3.0; The new sum is combined with the old inte-

gral to give a refined integral.return s;
}

}
virtual Doub func(const Doub x) {return funk(x);} Identity mapping.

};

You may have spotted a seemingly unnecessary extra level of indirection in
Midpnt, namely its calling the user-supplied function funk through an identity func-
tion func. The reason for this is that we are going to use mappings other than the
identity mapping between funk and func to solve the problems of improper inte-
grals listed above. The new quadratures will simply be derived from Midpnt with
func overridden.

The structure Midpnt could be used to exactly replace Trapzd in a driver
routine like qtrap (�4.2); one could simply change Trapzd<T> t(func,a,b) to
Midpnt<T> t(func,a,b), and perhaps also decrease the parameter JMAX since
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3JMAX�1 (from step tripling) is a much larger number than 2JMAX�1 (step doubling).
The open formula implementation analogous to Simpson’s rule (qsimp in �4.2) could
also substitute Midpnt for Trapzd, decreasing JMAX as above, but now also changing
the extrapolation step to be

s=(9.0*st-ost)/8.0;

since, when the number of steps is tripled, the error decreases to 1=9th its size, not
1=4th as with step doubling.

Either the thus modified qtrap or qsimp will fix the first problem on the list
at the beginning of this section. More sophisticated, and allowing us to fix more
problems, is to generalize Romberg integration in like manner:

template<class T> romberg.h
Doub qromo(Midpnt<T> &q, const Doub eps=3.0e-9) {
Romberg integration on an open interval. Returns the integral of a function using any specified
elementary quadrature algorithm q and Romberg’s method. Normally q will be an open formula,
not evaluating the function at the endpoints. It is assumed that q triples the number of steps
on each call, and that its error series contains only even powers of the number of steps. The
routines midpnt, midinf, midsql, midsqu, midexp are possible choices for q. The constants
below have the same meanings as in qromb.

const Int JMAX=14, JMAXP=JMAX+1, K=5;
VecDoub h(JMAXP),s(JMAX);
Poly_interp polint(h,s,K);
h[0]=1.0;
for (Int j=1;j<=JMAX;j++) {

s[j-1]=q.next();
if (j >= K) {

Doub ss=polint.rawinterp(j-K,0.0);
if (abs(polint.dy) <= eps*abs(ss)) return ss;

}
h[j]=h[j-1]/9.0; This is where the assumption of step tripling and an even

error series is used.}
throw("Too many steps in routine qromo");

}

Notice that we now pass a Midpnt object instead of the user function and limits
of integration. There is a good reason for this, as we will see below. It does, however,
mean that you have to bind things together before calling qromo, something like this,
where we integrate from a to b:

Midpnt<Ftor> q(ftor,a,b);

Doub integral=qromo(q);

or, for a bare function,

Midpnt<Doub(Doub)> q(fbare,a,b);

Doub integral=qromo(q);

Laid back C++ compilers will let you condense these to

Doub integral = qromo(Midpnt<Ftor>(Ftor(),a,b));

or

Doub integral = qromo(Midpnt<Doub(Doub)>(fbare,a,b));

but uptight compilers may object to the way that a temporary is passed by reference,
in which case use the two-line forms above.

As we shall now see, the function qromo, with its peculiar interface, is an ex-
cellent driver routine for solving all the other problems of improper integrals in our
first list (except the intractable fifth).
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The basic trick for improper integrals is to make a change of variables to elim-
inate the singularity or to map an infinite range of integration to a finite one. For
example, the identityZ b

a

f .x/dx D

Z 1=a

1=b

1

t2
f

�
1

t

�
dt ab > 0 (4.4.2)

can be used with either b ! 1 and a positive, or with a ! �1 and b negative,
and works for any function that decreases toward infinity faster than 1=x2.

You can make the change of variable implied by (4.4.2) either analytically and
then use, e.g., qromo and Midpnt to do the numerical evaluation, or you can let the
numerical algorithm make the change of variable for you. We prefer the latter method
as being more transparent to the user. To implement equation (4.4.2) we simply write
a modified version of Midpnt, called Midinf, which allows b to be infinite (or, more
precisely, a very large number on your particular machine, such as 1� 1099), or a to
be negative and infinite. Since all the machinery is already in place in Midpnt, we
write Midinf as a derived class and simply override the mapping function.

template <class T>quadrature.h
struct Midinf : Midpnt<T>{
This routine is an exact replacement for midpnt, i.e., returns the nth stage of refinement of the
integral of funcc from aa to bb, except that the function is evaluated at evenly spaced points in
1=x rather than in x. This allows the upper limit bb to be as large and positive as the computer
allows, or the lower limit aa to be as large and negative, but not both. aa and bb must have
the same sign.

Doub func(const Doub x) {
return Midpnt<T>::funk(1.0/x)/(x*x); Effect the change of variable.

}
Midinf(T &funcc, const Doub aa, const Doub bb) :

Midpnt<T>(funcc, aa, bb) {
Midpnt<T>::a=1.0/bb; Set the limits of integration.
Midpnt<T>::b=1.0/aa;

}
};

An integral from 2 to1, for example, might be calculated by

Midinf<Ftor> q(ftor,2.,1.e99);

Doub integral=qromo(q);

If you need to integrate from a negative lower limit to positive infinity, you do this
by breaking the integral into two pieces at some positive value, for example,

Midpnt<Ftor> q1(ftor,-5.,2.);

Midinf<Ftor> q2(ftor,2.,1.e99);

integral=qromo(q1)+qromo(q2);

Where should you choose the breakpoint? At a sufficiently large positive value so
that the function funk is at least beginning to approach its asymptotic decrease to
zero value at infinity. The polynomial extrapolation implicit in the second call to
qromo deals with a polynomial in 1=x, not in x.

To deal with an integral that has an integrable power-law singularity at its lower
limit, one also makes a change of variable. If the integrand diverges as .x � a/�� ,
0 
 � < 1, near x D a, use the identityZ b

a

f .x/dx D
1

1 � �

Z .b�a/1��

0

t
�
1�� f .t

1
1�� C a/dt .b > a/ (4.4.3)



�

�

“nr3” — 2007/5/1 — 20:53 — page 171 — #193
�

�

� �

4.4 Improper Integrals 171

If the singularity is at the upper limit, use the identity

Z b

a

f .x/dx D
1

1 � �

Z .b�a/1��

0

t
�
1�� f .b � t

1
1�� /dt .b > a/ (4.4.4)

If there is a singularity at both limits, divide the integral at an interior breakpoint as
in the example above.

Equations (4.4.3) and (4.4.4) are particularly simple in the case of inverse square-
root singularities, a case that occurs frequently in practice:

Z b

a

f .x/dx D

Z pb�a
0

2tf .aC t2/dt .b > a/ (4.4.5)

for a singularity at a, and

Z b

a

f .x/dx D

Z pb�a
0

2tf .b � t2/dt .b > a/ (4.4.6)

for a singularity at b. Once again, we can implement these changes of variable
transparently to the user by defining substitute routines for Midpnt that make the
change of variable automatically:

template <class T> quadrature.h
struct Midsql : Midpnt<T>{
This routine is an exact replacement for midpnt, except that it allows for an inverse square-root
singularity in the integrand at the lower limit aa.

Doub aorig;
Doub func(const Doub x) {

return 2.0*x*Midpnt<T>::funk(aorig+x*x); Effect the change of variable.
}
Midsql(T &funcc, const Doub aa, const Doub bb) :

Midpnt<T>(funcc, aa, bb), aorig(aa) {
Midpnt<T>::a=0;
Midpnt<T>::b=sqrt(bb-aa);

}
};

Similarly,

template <class T> quadrature.h
struct Midsqu : Midpnt<T>{
This routine is an exact replacement for midpnt, except that it allows for an inverse square-root
singularity in the integrand at the upper limit bb.

Doub borig;
Doub func(const Doub x) {

return 2.0*x*Midpnt<T>::funk(borig-x*x); Effect the change of variable.
}
Midsqu(T &funcc, const Doub aa, const Doub bb) :

Midpnt<T>(funcc, aa, bb), borig(bb) {
Midpnt<T>::a=0;
Midpnt<T>::b=sqrt(bb-aa);

}
};
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One last example should suffice to show how these formulas are derived in
general. Suppose the upper limit of integration is infinite and the integrand falls
off exponentially. Then we want a change of variable that maps e�xdx into .˙/dt
(with the sign chosen to keep the upper limit of the new variable larger than the lower
limit). Doing the integration gives by inspection

t D e�x or x D � log t (4.4.7)

so that Z xD1

xDa

f .x/dx D

Z tDe�a

tD0

f .� log t /
dt

t
(4.4.8)

The user-transparent implementation would be

template <class T>quadrature.h
struct Midexp : Midpnt<T>{
This routine is an exact replacement for midpnt, except that bb is assumed to be infinite (value
passed not actually used). It is assumed that the function funk decreases exponentially rapidly
at infinity.

Doub func(const Doub x) {
return Midpnt<T>::funk(-log(x))/x; Effect the change of variable.

}
Midexp(T &funcc, const Doub aa, const Doub bb) :

Midpnt<T>(funcc, aa, bb) {
Midpnt<T>::a=0.0;
Midpnt<T>::b=exp(-aa);

}
};

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington, DC:
Mathematical Association of America), Chapter 4.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall);
reprinted 2003 (New York: Dover), �7.4.3, p. 294.

Stoer, J., and Bulirsch, R. 2002, Introduction to Numerical Analysis, 3rd ed. (New York: Springer),
�3.7.

4.5 Quadrature by Variable Transformation
Imagine a simple general quadrature algorithm that is very rapidly convergent

and allows you to ignore endpoint singularities completely. Sound too good to be
true? In this section we’ll describe an algorithm that in fact handles large classes of
integrals in exactly this way.

Consider evaluating the integral

I D

Z b

a

f .x/dx (4.5.1)

As we saw in the construction of equations (4.1.11) – (4.1.20), quadrature formulas
of arbitrarily high order can be constructed with interior weights unity, just by tun-
ing the weights near the endpoints. But if a function dies off rapidly enough near
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the endpoints, then those weights don’t matter at all. In such a case, an N -point
quadrature with uniform weights converges converges exponentially with N . (For
a more rigorous motivation of this idea, see �4.5.1. For the connection to Gaussian
quadrature, see the discussion at the end of �20.7.4.)

What about a function that doesn’t vanish at the endpoints? Consider a change
of variables x D x.t/, such that x 2 Œa; b�! t 2 Œc; d �:

I D

Z d

c

f Œx.t/�
dx

dt
dt (4.5.2)

Choose the transformation such that the factor dx=dt goes rapidly to zero at the end-
points of the interval. Then the simple trapezoidal rule applied to (4.5.2) will give ex-
tremely accurate results. (In this section, we’ll call quadrature with uniform weights
trapezoidal quadrature, with the understanding that it’s a matter of taste whether you
weight the endpoints with weight 1=2 or 1, since they don’t count anyway.)

Even when f .x/ has integrable singularities at the endpoints of the interval,
their effect can be overwhelmed by a suitable transformation x D x.t/. One need
not tailor the transformation to the specific nature of the singularity: We will dis-
cuss several transformations that are effective at obliterating just about any kind of
endpoint singularity.

The first transformation of this kind was introduced by Schwartz [1] and has
become known as the TANH rule:

x D
1

2
.b C a/C

1

2
.b � a/ tanh t; x 2 Œa; b�! t 2 Œ�1;1�

dx

dt
D
1

2
.b � a/ sech2 t D

2

b � a
.b � x/.x � a/

(4.5.3)

The sharp decrease of sech2 t as t ! ˙1 explains the efficiency of the algorithm
and its ability to deal with singularities. Another similar algorithm is the IMT rule [2].
However, x.t/ for the IMT rule is not given by a simple analytic expression, and its
performance is not too different from the TANH rule.

There are two kinds of errors to consider when using something like the TANH
rule. The discretization error is just the truncation error because you are using the
trapezoidal rule to approximate I . The trimming error is the result of truncating
the infinite sum in the trapezoidal rule at a finite value of N . (Recall that the limits
are now ˙1.) You might think that the sharper the decrease of dx=dt as t !
˙1, the more efficient the algorithm. But if the decrease is too sharp, then the
density of quadrature points near the center of the original interval Œa; b� is low and
the discretization error is large. The optimal strategy is to try to arrange that the
discretization and trimming errors are approximately equal.

For the TANH rule, Schwartz [1] showed that the discretization error is of order

�d � e
�2	w=h (4.5.4)

where w is the distance from the real axis to the nearest singularity of the integrand.
There is a pole when sech2 t ! 1, i.e., when t D ˙i	=2. If there are no poles
closer to the real axis in f .x/, thenw D 	=2. The trimming error, on the other hand,
is

�t � sech2 tN � e
�2Nh (4.5.5)
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Setting �d � �t , we find

h �
	

.2N /1=2
; � � e�	.2N/

1=2

(4.5.6)

as the optimum h and the corresponding error. Note that � decreases with N faster
than any power of N . If f is singular at the endpoints, this can modify equation
(4.5.5) for �t . This usually results in the constant 	 in (4.5.6) being reduced. Rather
than developing an algorithm where we try to estimate the optimal h for each inte-
grand a priori, we recommend simple step doubling and testing for convergence. We
expect convergence to set in for h around the value given by equation (4.5.6).

The TANH rule essentially uses an exponential mapping to achieve the desired
rapid fall-off at infinity. On the theory that more is better, one can try repeating the
procedure. This leads to the DE (double exponential) rule:

x D
1

2
.b C a/C

1

2
.b � a/ tanh.c sinh t /; x 2 Œa; b�! t 2 Œ�1;1�

dx

dt
D
1

2
.b � a/ sech2.c sinh t /c cosh t � exp.�c exp jt j/ as jt j ! 1

(4.5.7)

Here the constant c is usually taken to be 1 or 	=2. (Values larger than 	=2 are not
useful since w D 	=2 for 0 < c 
 	=2, but w decreases rapidly for larger c.) By an
analysis similar to equations (4.5.4) – (4.5.6), one can show that the optimal h and
corresponding error for the DE rule are of order

h �
log.2	Nw=c/

N
; � � e�kN= logN (4.5.8)

where k is a constant. The improved performance of the DE rule over the TANH
rule indicated by comparing equations (4.5.6) and (4.5.8) is borne out in practice.

4.5.1 Exponential Convergence of the Trapezoidal Rule

The error in evaluating the integral (4.5.1) by the trapezoidal rule is given by the Euler-
Maclaurin summation formula,

I �
h

2
Œf .a/Cf .b/�Ch

N�1X
jD1

f .aCjh/�

1X
kD1

B2kh
2k

.2k/Š
Œf .2k�1/.b/�f .2k�1/.a/� (4.5.9)

Note that this is in general an asymptotic expansion, not a convergent series. If all the deriva-
tives of the function f vanish at the endpoints, then all the “correction terms” in equation
(4.5.9) are zero. The error in this case is very small — it goes to zero with h faster than any
power of h. We say that the method converges exponentially. The straight trapezoidal rule
is thus an excellent method for integrating functions such as exp.�x2/ on .�1;1/, whose
derivatives all vanish at the endpoints.

The class of transformations that will produce exponential convergence for a function
whose derivatives do not all vanish at the endpoints is those for which dx=dt and all its
derivatives go to zero at the endpoints of the interval. For functions with singularities at the
endpoints, we require that f .x/ dx=dt and all its derivatives vanish at the endpoints. This is
a more precise statement of “dx=dt goes rapidly to zero” given above.
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4.5.2 Implementation
Implementing the DE rule is a little tricky. It’s not a good idea to simply use

Trapzd on the function f .x/ dx=dt . First, the factor sech2.c sinh t / in equation
(4.5.7) can overflow if sech is computed as 1= cosh. We follow [3] and avoid this by
using the variable q defined by

q D e�2 sinh t (4.5.10)

(we take c D 1 for simplicity) so that

dx

dt
D 2.b � a/

q

.1C q/2
cosh t (4.5.11)

For large positive t , q just underflows harmlessly to zero. Negative t is handled by
using the symmetry of the trapezoidal rule about the midpoint of the interval. We
write

I ' h

NX
jD�N

f .xj /
dx

dt

ˇ̌̌̌
j

D h

�
f Œ.aC b/=2�

dx

dt

ˇ̌̌̌
0

C

NX
jD1

Œf .aC ıj /C f .b � ıj /�
dx

dt

ˇ̌̌̌
j

� (4.5.12)

where
ı D b � x D .b � a/

q

1C q
(4.5.13)

A second possible problem is that cancellation errors in computing aCı or b�ı
can cause the computed value of f .x/ to blow up near the endpoint singularities.
To handle this, you should code the function f .x/ as a function of two arguments,
f .x; ı/. Then compute the singular part using ı directly. For example, code the
function x�˛.1 � x/�ˇ as ı�˛.1 � x/�ˇ near x D 0 and x�˛ı�ˇ near x D 1. (See
�6.10 for another example of a f .x; ı/.) Accordingly, the routine DErule below
expects the function f to have two arguments. If your function has no singularities,
or the singularities are “mild” (e.g., no worse than logarithmic), you can ignore ı
when coding f .x; ı/ and code it as if it were just f .x/.

The routine DErule implements equation (4.5.12). It contains an argument hmax

that corresponds to the upper limit for t . The first approximation to I is given by the
first term on the right-hand side of (4.5.12) with h D hmax. Subsequent refinements
correspond to halving h as usual. We typically take hmax D 3:7 in double precision,
corresponding to q D 3� 10�18. This is generally adequate for “mild” singularities,
like logarithms. If you want high accuracy for stronger singularities, you may have
to increase hmax. For example, for 1=

p
x you need hmax D 4:3 to get full double

precision. This corresponds to q D 10�32 D .10�16/2, as you might expect.

template<class T> derule.h
struct DErule : Quadrature {
Structure for implementing the DE rule.

Doub a,b,hmax,s;
T &func;
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DErule(T &funcc, const Doub aa, const Doub bb, const Doub hmaxx=3.7)
: func(funcc), a(aa), b(bb), hmax(hmaxx) {n=0;}

Constructor. funcc is the function or functor that provides the function to be integrated between
limits aa and bb, also input. The function operator in funcc takes two arguments, x and ı, as
described in the text. The range of integration in the transformed variable t is .�hmaxx; hmaxx/.
Typical values of hmaxx are 3.7 for logarithmic or milder singularities, and 4.3 for square-root
singularities, as discussed in the text.

Doub next() {
On the first call to the function next (n D 1), the routine returns the crudest estimate ofR b
a f .x/dx. Subsequent calls to next (n D 2; 3; : : :) will improve the accuracy by adding

2n�1 additional interior points.
Doub del,fact,q,sum,t,twoh;
Int it,j;
n++;
if (n == 1) {

fact=0.25;
return s=hmax*2.0*(b-a)*fact*func(0.5*(b+a),0.5*(b-a));

} else {
for (it=1,j=1;j<n-1;j++) it <<= 1;
twoh=hmax/it; Twice the spacing of the points to be added.
t=0.5*twoh;
for (sum=0.0,j=0;j<it;j++) {

q=exp(-2.0*sinh(t));
del=(b-a)*q/(1.0+q);
fact=q/SQR(1.0+q)*cosh(t);
sum += fact*(func(a+del,del)+func(b-del,del));
t += twoh;

}
return s=0.5*s+(b-a)*twoh*sum; Replace s by its refined value and return.

}
}

};

If the double exponential rule (DE rule) is generally better than the single expo-
nential rule (TANH rule), why don’t we keep going and use a triple exponential rule,
quadruple exponential rule, . . . ? As we mentioned earlier, the discretization error is
dominated by the pole nearest to the real axis. It turns out that beyond the double
exponential the poles come nearer and nearer to the real axis, so the methods tend to
get worse, not better.

If the function to be integrated itself has a pole near the real axis (much nearer
than the 	=2 that comes from the DE or TANH rules), the convergence of the method
slows down. In analytically tractable cases, one can find a “pole correction term” to
add to the trapezoidal rule to restore rapid convergence [4].

4.5.3 Infinite Ranges
Simple variations of the TANH or DE rules can be used if either or both of the

limits of integration is infinite:

Range TANH Rule DE Rule Mixed Rule

.0;1/ x D et x D e2c sinh t x D et�e
�t

.�1;1/ x D sinh t x D sinh.c sinh t / —

(4.5.14)

The last column gives a mixed rule for functions that fall off rapidly (e�x or e�x
2
) at

infinity. It is a DE rule at x D 0 but only a single exponential at infinity. The expo-
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nential fall-off of the integrand makes it behave like a DE rule there too. The mixed
rule for .�1;1/ is constructed by splitting the range into .�1; 0/ and .0;1/ and
making the substitution x ! �x in the first range. This gives two integrals on
.0;1/.

To implement the DE rule for infinite ranges we don’t need the precautions we
used in coding the finite range DE rule. It’s fine to simply use the routine Trapzd
directly as a function of t , with the function func that it calls returning f .x/ dx=dt .
So if funk is your function returning f .x/, then you define the function func as a
function of t by code of the following form (for the mixed rule)

x=exp(t-exp(-t));

dxdt=x*(1.0+exp(-t));

return funk(x)*dxdt;

and pass func to Trapzd. The only care required is in deciding the range of integra-
tion. You want the contribution to the integral from the endpoints of the integration
to be negligible. For example, .�4; 4/ is typically adequate for x D exp.	 sinh t /.

4.5.4 Examples
As examples of the power of these methods, consider the following integrals:Z 1

0

log x log.1 � x/ dx D 2 �
	2

6
(4.5.15)Z 1

0

1

x1=2.1C x/
dx D 	 (4.5.16)Z 1

0

x�3=2 sin
x

2
e�x dx D Œ	.

p
5 � 2/�1=2 (4.5.17)Z 1

0

x�2=7e�x
2

dx D 1
2
�. 5

14
/ (4.5.18)

The integral (4.5.15) is easily handled by DErule. The routine converges to machine
precision (10�16) with about 30 function evaluations, completely unfazed by the
singularities at the endpoints. The integral (4.5.16) is an example of an integrand
that is singular at the origin and falls off slowly at infinity. The routine Midinf fails
miserably because of the slow fall-off. Yet the transformation x D exp.	 sinh t /
again gives machine precision in about 30 function evaluations, integrating t over
the range .�4; 4/. By comparison, the transformation x D et for t in the range
.�90; 90/ requires about 500 function evaluations for the same accuracy.

The integral (4.5.17) combines a singularity at the origin with exponential fall-
off at infinity. Here the “mixed” transformation x D exp.t � e�t / is best, requiring
about 60 function evaluations for t in the range .�4:5; 4/. Note that the exponential
fall-off is crucial here; these transformations fail completely for slowly decaying
oscillatory functions like x�3=2 sin x. Fortunately the series acceleration algorithms
of �5.3 work well in such cases.

The final integral (4.5.18) is similar to (4.5.17), and using the same transfor-
mation requires about the same number of function evaluations to achieve machine
precision. The range of t can be smaller, say .�4; 3/, because of the more rapid
fall-off of the integrand. Note that for all these integrals the number of function
evaluations would be double the number we quote if we are using step doubling to
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decide when the integrals have converged, since we need one extra set of trapezoidal
evaluations to confirm convergence. In many cases, however, you don’t need this
extra set of function evaluations: Once the method starts converging, the number of
significant digits approximately doubles with each iteration. Accordingly, you can
set the convergence criterion to stop the procedure when two successive iterations
agree to the square root of the desired precision. The last iteration will then have
approximately the required precision. Even without this trick, the method is quite
remarkable for the range of difficult integrals that it can tame efficiently.

An extended example of the use of the DE rule for finite and infinite ranges is
given in �6.10. There we give a routine for computing the generalized Fermi-Dirac
integrals

Fk.
; �/ D

Z 1
0

xk.1C 1
2
�x/1=2

ex�
 C 1
dx (4.5.19)

Another example is given in the routine Stiel in �4.6.

4.5.5 Relation to the Sampling Theorem
The sinc expansion of a function is

f .x/ '

1X
kD�1

f .kh/ sinc
h	
h
.x � kh/

i
(4.5.20)

where sinc.x/ � sin x=x. The expansion is exact for a limited class of analytic
functions. However, it can be a good approximation for other functions too, and
the sampling theorem characterizes these functions, as will be discussed in �13.11.
There we will use the sinc expansion of e�x

2
to get an approximation for the complex

error function. Functions well-approximated by the sinc expansion typically fall off
rapidly as x ! ˙1, so truncating the expansion at k D ˙N still gives a good
approximation to f .x/.

If we integrate both sides of equation (4.5.20), we findZ 1
�1

f .x/ dx ' h

1X
kD�1

f .kh/ (4.5.21)

which is just the trapezoidal formula! Thus, rapid convergence of the trapezoidal for-
mula for the integral of f corresponds to f being well-approximated by its sinc ex-
pansion. The various transformations described earlier can be used to map x ! x.t/

and produce good sinc approximations with uniform samples in t . These approxi-
mations can be used not only for the trapezoidal quadrature of f , but also for good
approximations to derivatives, integral transforms, Cauchy principal value integrals,
and solving differential and integral equations [5].
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4.6 Gaussian Quadratures and Orthogonal
Polynomials

In the formulas of �4.1, the integral of a function was approximated by the sum
of its functional values at a set of equally spaced points, multiplied by certain aptly
chosen weighting coefficients. We saw that as we allowed ourselves more freedom
in choosing the coefficients, we could achieve integration formulas of higher and
higher order. The idea of Gaussian quadratures is to give ourselves the freedom to
choose not only the weighting coefficients, but also the location of the abscissas at
which the function is to be evaluated. They will no longer be equally spaced. Thus,
we will have twice the number of degrees of freedom at our disposal; it will turn out
that we can achieve Gaussian quadrature formulas whose order is, essentially, twice
that of the Newton-Cotes formula with the same number of function evaluations.

Does this sound too good to be true? Well, in a sense it is. The catch is a familiar
one, which cannot be overemphasized: High order is not the same as high accuracy.
High order translates to high accuracy only when the integrand is very smooth, in the
sense of being “well-approximated by a polynomial.”

There is, however, one additional feature of Gaussian quadrature formulas that
adds to their usefulness: We can arrange the choice of weights and abscissas to make
the integral exact for a class of integrands “polynomials times some known function
W.x/” rather than for the usual class of integrands “polynomials.” The function
W.x/ can then be chosen to remove integrable singularities from the desired integral.
GivenW.x/, in other words, and given an integerN , we can find a set of weights wj
and abscissas xj such that the approximation

Z b

a

W.x/f .x/dx �

N�1X
jD0

wjf .xj / (4.6.1)

is exact if f .x/ is a polynomial. For example, to do the integralZ 1

�1

exp.� cos2 x/
p
1 � x2

dx (4.6.2)



�

�

“nr3” — 2007/5/1 — 20:53 — page 180 — #202
�

�

� �

180 Chapter 4. Integration of Functions

(not a very natural looking integral, it must be admitted), we might well be interested
in a Gaussian quadrature formula based on the choice

W.x/ D
1

p
1 � x2

(4.6.3)

in the interval .�1; 1/. (This particular choice is called Gauss-Chebyshev integration,
for reasons that will become clear shortly.)

Notice that the integration formula (4.6.1) can also be written with the weight
function W.x/ not overtly visible: Define g.x/ � W.x/f .x/ and vj � wj =W.xj /.
Then (4.6.1) becomes Z b

a

g.x/dx �

N�1X
jD0

vjg.xj / (4.6.4)

Where did the function W.x/ go? It is lurking there, ready to give high-order accu-
racy to integrands of the form polynomials timesW.x/, and ready to deny high-order
accuracy to integrands that are otherwise perfectly smooth and well-behaved. When
you find tabulations of the weights and abscissas for a given W.x/, you have to de-
termine carefully whether they are to be used with a formula in the form of (4.6.1),
or like (4.6.4).

So far our introduction to Gaussian quadrature is pretty standard. However,
there is an aspect of the method that is not as widely appreciated as it should be: For
smooth integrands (after factoring out the appropriate weight function), Gaussian
quadrature converges exponentially fast as N increases, because the order of the
method, not just the density of points, increases with N . This behavior should be
contrasted with the power-law behavior (e.g., 1=N 2 or 1=N 4) of the Newton-Cotes
based methods in which the order remains fixed (e.g., 2 or 4) even as the density of
points increases. For a more rigorous discussion, see �20.7.4.

Here is an example of a quadrature routine that contains the tabulated abscissas
and weights for the case W.x/ D 1 and N D 10. Since the weights and abscissas
are, in this case, symmetric around the midpoint of the range of integration, there are
actually only five distinct values of each:

template <class T>qgaus.h
Doub qgaus(T &func, const Doub a, const Doub b)
Returns the integral of the function or functor func between a and b, by ten-point Gauss-
Legendre integration: the function is evaluated exactly ten times at interior points in the range
of integration.
{

Here are the abscissas and weights:
static const Doub x[]={0.1488743389816312,0.4333953941292472,

0.6794095682990244,0.8650633666889845,0.9739065285171717};
static const Doub w[]={0.2955242247147529,0.2692667193099963,

0.2190863625159821,0.1494513491505806,0.0666713443086881};
Doub xm=0.5*(b+a);
Doub xr=0.5*(b-a);
Doub s=0; Will be twice the average value of the function, since the

ten weights (five numbers above each used twice)
sum to 2.

for (Int j=0;j<5;j++) {
Doub dx=xr*x[j];
s += w[j]*(func(xm+dx)+func(xm-dx));

}
return s *= xr; Scale the answer to the range of integration.

}
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The above routine illustrates that one can use Gaussian quadratures without
necessarily understanding the theory behind them: One just locates tabulated weights
and abscissas in a book (e.g., [1] or [2]). However, the theory is very pretty, and it will
come in handy if you ever need to construct your own tabulation of weights and
abscissas for an unusual choice ofW.x/. We will therefore give, without any proofs,
some useful results that will enable you to do this. Several of the results assume that
W.x/ does not change sign inside .a; b/, which is usually the case in practice.

The theory behind Gaussian quadratures goes back to Gauss in 1814, who used
continued fractions to develop the subject. In 1826, Jacobi rederived Gauss’s results
by means of orthogonal polynomials. The systematic treatment of arbitrary weight
functions W.x/ using orthogonal polynomials is largely due to Christoffel in 1877.
To introduce these orthogonal polynomials, let us fix the interval of interest to be
.a; b/. We can define the “scalar product of two functions f and g over a weight
function W ” as

hf jgi �

Z b

a

W.x/f .x/g.x/dx (4.6.5)

The scalar product is a number, not a function of x. Two functions are said to be
orthogonal if their scalar product is zero. A function is said to be normalized if its
scalar product with itself is unity. A set of functions that are all mutually orthogonal
and also all individually normalized is called an orthonormal set.

We can find a set of polynomials (i) that includes exactly one polynomial of
order j , called pj .x/, for each j D 0; 1; 2; : : : , and (ii) all of which are mutually
orthogonal over the specified weight function W.x/. A constructive procedure for
finding such a set is the recurrence relation

p�1.x/ � 0

p0.x/ � 1

pjC1.x/ D .x � aj /pj .x/ � bjpj�1.x/ j D 0; 1; 2; : : :

(4.6.6)

where

aj D

˝
xpj jpj

˛˝
pj jpj

˛ j D 0; 1; : : :

bj D

˝
pj jpj

˛˝
pj�1jpj�1

˛ j D 1; 2; : : :

(4.6.7)

The coefficient b0 is arbitrary; we can take it to be zero.
The polynomials defined by (4.6.6) are monic, that is, the coefficient of their

leading term [xj for pj .x/] is unity. If we divide each pj .x/ by the constant
Œ
˝
pj jpj

˛
�1=2, we can render the set of polynomials orthonormal. One also encounters

orthogonal polynomials with various other normalizations. You can convert from a
given normalization to monic polynomials if you know that the coefficient of xj in
pj is �j , say; then the monic polynomials are obtained by dividing each pj by �j .
Note that the coefficients in the recurrence relation (4.6.6) depend on the adopted
normalization.

The polynomial pj .x/ can be shown to have exactly j distinct roots in the
interval .a; b/. Moreover, it can be shown that the roots of pj .x/ “interleave” the
j � 1 roots of pj�1.x/, i.e., there is exactly one root of the former in between each
two adjacent roots of the latter. This fact comes in handy if you need to find all the
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roots. You can start with the one root of p1.x/ and then, in turn, bracket the roots of
each higher j , pinning them down at each stage more precisely by Newton’s rule or
some other root-finding scheme (see Chapter 9).

Why would you ever want to find all the roots of an orthogonal polynomial
pj .x/? Because the abscissas of the N -point Gaussian quadrature formulas (4.6.1)
and (4.6.4) with weighting functionW.x/ in the interval .a; b/ are precisely the roots
of the orthogonal polynomial pN .x/ for the same interval and weighting function.
This is the fundamental theorem of Gaussian quadratures, and it lets you find the
abscissas for any particular case.

Once you know the abscissas x0; : : : ; xN�1, you need to find the weights wj ,
j D 0; : : : ; N � 1. One way to do this (not the most efficient) is to solve the set of
linear equations26664

p0.x0/ : : : p0.xN�1/

p1.x0/ : : : p1.xN�1/
:::

:::

pN�1.x0/ : : : pN�1.xN�1/

37775
26664
w0
w1
:::

wN�1

37775 D
26664
R b
a W.x/p0.x/dx

0
:::

0

37775 (4.6.8)

Equation (4.6.8) simply solves for those weights such that the quadrature (4.6.1)
gives the correct answer for the integral of the first N orthogonal polynomials. Note
that the zeros on the right-hand side of (4.6.8) appear because p1.x/; : : : ; pN�1.x/
are all orthogonal to p0.x/, which is a constant. It can be shown that, with those
weights, the integral of the next N � 1 polynomials is also exact, so that the quadra-
ture is exact for all polynomials of degree 2N � 1 or less. Another way to evaluate
the weights (though one whose proof is beyond our scope) is by the formula

wj D
hpN�1jpN�1i

pN�1.xj /p
0
N .xj /

(4.6.9)

where p0N .xj / is the derivative of the orthogonal polynomial at its zero xj .
The computation of Gaussian quadrature rules thus involves two distinct phases:

(i) the generation of the orthogonal polynomials p0; : : : ; pN , i.e., the computation of
the coefficients aj , bj in (4.6.6), and (ii) the determination of the zeros of pN .x/, and
the computation of the associated weights. For the case of the “classical” orthogonal
polynomials, the coefficients aj and bj are explicitly known (equations 4.6.10 –
4.6.14 below) and phase (i) can be omitted. However, if you are confronted with a
“nonclassical” weight function W.x/, and you don’t know the coefficients aj and
bj , the construction of the associated set of orthogonal polynomials is not trivial. We
discuss it at the end of this section.

4.6.1 Computation of the Abscissas and Weights
This task can range from easy to difficult, depending on how much you already

know about your weight function and its associated polynomials. In the case of
classical, well-studied, orthogonal polynomials, practically everything is known, in-
cluding good approximations for their zeros. These can be used as starting guesses,
enabling Newton’s method (to be discussed in �9.4) to converge very rapidly. New-
ton’s method requires the derivative p0N .x/, which is evaluated by standard relations
in terms of pN and pN�1. The weights are then conveniently evaluated by equation
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(4.6.9). For the following named cases, this direct root finding is faster, by a factor
of 3 to 5, than any other method.

Here are the weight functions, intervals, and recurrence relations that generate
the most commonly used orthogonal polynomials and their corresponding Gaussian
quadrature formulas.

Gauss-Legendre:
W.x/ D 1 � 1 < x < 1

.j C 1/PjC1 D .2j C 1/xPj � jPj�1
(4.6.10)

Gauss-Chebyshev:

W.x/ D .1 � x2/�1=2 � 1 < x < 1

TjC1 D 2xTj � Tj�1
(4.6.11)

Gauss-Laguerre:

W.x/ D x˛e�x 0 < x <1

.j C 1/L˛jC1 D .�x C 2j C ˛ C 1/L
˛
j � .j C ˛/L

˛
j�1

(4.6.12)

Gauss-Hermite:
W.x/ D e�x

2

�1 < x <1

HjC1 D 2xHj � 2jHj�1
(4.6.13)

Gauss-Jacobi:

W.x/ D .1 � x/˛.1C x/ˇ � 1 < x < 1

cjP
.˛;ˇ/
jC1 D .dj C ejx/P

.˛;ˇ/
j � fjP

.˛;ˇ/
j�1

(4.6.14)

where the coefficients cj ; dj ; ej , and fj are given by

cj D 2.j C 1/.j C ˛ C ˇ C 1/.2j C ˛ C ˇ/

dj D .2j C ˛ C ˇ C 1/.˛
2 � ˇ2/

ej D .2j C ˛ C ˇ/.2j C ˛ C ˇ C 1/.2j C ˛ C ˇ C 2/

fj D 2.j C ˛/.j C ˇ/.2j C ˛ C ˇ C 2/

(4.6.15)

We now give individual routines that calculate the abscissas and weights for
these cases. First comes the most common set of abscissas and weights, those of
Gauss-Legendre. The routine, due to G.B. Rybicki, uses equation (4.6.9) in the
special form for the Gauss-Legendre case,

wj D
2

.1 � x2j /ŒP
0
N .xj /�

2
(4.6.16)

The routine also scales the range of integration from .x1; x2/ to .�1; 1/, and provides
abscissas xj and weights wj for the Gaussian formulaZ x2

x1

f .x/dx D

N�1X
jD0

wjf .xj / (4.6.17)



�

�

“nr3” — 2007/5/1 — 20:53 — page 184 — #206
�

�

� �

184 Chapter 4. Integration of Functions

void gauleg(const Doub x1, const Doub x2, VecDoub_O &x, VecDoub_O &w)gauss wgts.h
Given the lower and upper limits of integration x1 and x2, this routine returns arrays x[0..n-1]
and w[0..n-1] of length n, containing the abscissas and weights of the Gauss-Legendre n-point
quadrature formula.
{

const Doub EPS=1.0e-14; EPS is the relative precision.
Doub z1,z,xm,xl,pp,p3,p2,p1;
Int n=x.size();
Int m=(n+1)/2; The roots are symmetric in the interval, so

we only have to find half of them.xm=0.5*(x2+x1);
xl=0.5*(x2-x1);
for (Int i=0;i<m;i++) { Loop over the desired roots.

z=cos(3.141592654*(i+0.75)/(n+0.5));
Starting with this approximation to the ith root, we enter the main loop of refinement
by Newton’s method.
do {

p1=1.0;
p2=0.0;
for (Int j=0;j<n;j++) { Loop up the recurrence relation to get the

Legendre polynomial evaluated at z.p3=p2;
p2=p1;
p1=((2.0*j+1.0)*z*p2-j*p3)/(j+1);

}
p1 is now the desired Legendre polynomial. We next compute pp, its derivative,
by a standard relation involving also p2, the polynomial of one lower order.
pp=n*(z*p1-p2)/(z*z-1.0);
z1=z;
z=z1-p1/pp; Newton’s method.

} while (abs(z-z1) > EPS);
x[i]=xm-xl*z; Scale the root to the desired interval,
x[n-1-i]=xm+xl*z; and put in its symmetric counterpart.
w[i]=2.0*xl/((1.0-z*z)*pp*pp); Compute the weight
w[n-1-i]=w[i]; and its symmetric counterpart.

}
}

Next we give three routines that use initial approximations for the roots given
by Stroud and Secrest [2]. The first is for Gauss-Laguerre abscissas and weights, to
be used with the integration formulaZ 1

0

x˛e�xf .x/dx D

N�1X
jD0

wjf .xj / (4.6.18)

void gaulag(VecDoub_O &x, VecDoub_O &w, const Doub alf)gauss wgts.h
Given alf, the parameter ˛ of the Laguerre polynomials, this routine returns arrays x[0..n-1]
and w[0..n-1] containing the abscissas and weights of the n-point Gauss-Laguerre quadrature
formula. The smallest abscissa is returned in x[0], the largest in x[n-1].
{

const Int MAXIT=10;
const Doub EPS=1.0e-14; EPS is the relative precision.
Int i,its,j;
Doub ai,p1,p2,p3,pp,z,z1;
Int n=x.size();
for (i=0;i<n;i++) { Loop over the desired roots.

if (i == 0) { Initial guess for the smallest root.
z=(1.0+alf)*(3.0+0.92*alf)/(1.0+2.4*n+1.8*alf);

} else if (i == 1) { Initial guess for the second root.
z += (15.0+6.25*alf)/(1.0+0.9*alf+2.5*n);

} else { Initial guess for the other roots.
ai=i-1;
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z += ((1.0+2.55*ai)/(1.9*ai)+1.26*ai*alf/
(1.0+3.5*ai))*(z-x[i-2])/(1.0+0.3*alf);

}
for (its=0;its<MAXIT;its++) { Refinement by Newton’s method.

p1=1.0;
p2=0.0;
for (j=0;j<n;j++) { Loop up the recurrence relation to get the

Laguerre polynomial evaluated at z.p3=p2;
p2=p1;
p1=((2*j+1+alf-z)*p2-(j+alf)*p3)/(j+1);

}
p1 is now the desired Laguerre polynomial. We next compute pp, its derivative,
by a standard relation involving also p2, the polynomial of one lower order.
pp=(n*p1-(n+alf)*p2)/z;
z1=z;
z=z1-p1/pp; Newton’s formula.
if (abs(z-z1) <= EPS) break;

}
if (its >= MAXIT) throw("too many iterations in gaulag");
x[i]=z; Store the root and the weight.
w[i] = -exp(gammln(alf+n)-gammln(Doub(n)))/(pp*n*p2);

}
}

Next is a routine for Gauss-Hermite abscissas and weights. If we use the “stan-
dard” normalization of these functions, as given in equation (4.6.13), we find that
the computations overflow for large N because of various factorials that occur. We
can avoid this by using instead the orthonormal set of polynomials zHj . They are
generated by the recurrence

zH�1 D 0; zH0 D
1

	1=4
; zHjC1 D x

r
2

j C 1
zHj �

r
j

j C 1
zHj�1 (4.6.19)

The formula for the weights becomes

wj D
2

Œ zH 0N .xj /�
2

(4.6.20)

while the formula for the derivative with this normalization is

zH 0j D
p
2j zHj�1 (4.6.21)

The abscissas and weights returned by gauher are used with the integration formulaZ 1
�1

e�x
2

f .x/dx D

N�1X
jD0

wjf .xj / (4.6.22)

void gauher(VecDoub_O &x, VecDoub_O &w) gauss wgts.h
This routine returns arrays x[0..n-1] and w[0..n-1] containing the abscissas and weights of
the n-point Gauss-Hermite quadrature formula. The largest abscissa is returned in x[0], the
most negative in x[n-1].
{

const Doub EPS=1.0e-14,PIM4=0.7511255444649425;
Relative precision and 1=	1=4.
const Int MAXIT=10; Maximum iterations.
Int i,its,j,m;
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Doub p1,p2,p3,pp,z,z1;
Int n=x.size();
m=(n+1)/2;
The roots are symmetric about the origin, so we have to find only half of them.
for (i=0;i<m;i++) { Loop over the desired roots.

if (i == 0) { Initial guess for the largest root.
z=sqrt(Doub(2*n+1))-1.85575*pow(Doub(2*n+1),-0.16667);

} else if (i == 1) { Initial guess for the second largest root.
z -= 1.14*pow(Doub(n),0.426)/z;

} else if (i == 2) { Initial guess for the third largest root.
z=1.86*z-0.86*x[0];

} else if (i == 3) { Initial guess for the fourth largest root.
z=1.91*z-0.91*x[1];

} else { Initial guess for the other roots.
z=2.0*z-x[i-2];

}
for (its=0;its<MAXIT;its++) { Refinement by Newton’s method.

p1=PIM4;
p2=0.0;
for (j=0;j<n;j++) { Loop up the recurrence relation to get

the Hermite polynomial evaluated at
z.

p3=p2;
p2=p1;
p1=z*sqrt(2.0/(j+1))*p2-sqrt(Doub(j)/(j+1))*p3;

}
p1 is now the desired Hermite polynomial. We next compute pp, its derivative, by
the relation (4.6.21) using p2, the polynomial of one lower order.
pp=sqrt(Doub(2*n))*p2;
z1=z;
z=z1-p1/pp; Newton’s formula.
if (abs(z-z1) <= EPS) break;

}
if (its >= MAXIT) throw("too many iterations in gauher");
x[i]=z; Store the root
x[n-1-i] = -z; and its symmetric counterpart.
w[i]=2.0/(pp*pp); Compute the weight
w[n-1-i]=w[i]; and its symmetric counterpart.

}
}

Finally, here is a routine for Gauss-Jacobi abscissas and weights, which imple-
ment the integration formulaZ 1

�1

.1 � x/˛.1C x/ˇf .x/dx D

N�1X
jD0

wjf .xj / (4.6.23)

void gaujac(VecDoub_O &x, VecDoub_O &w, const Doub alf, const Doub bet)gauss wgts.h
Given alf and bet, the parameters ˛ and ˇ of the Jacobi polynomials, this routine returns
arrays x[0..n-1] and w[0..n-1] containing the abscissas and weights of the n-point Gauss-
Jacobi quadrature formula. The largest abscissa is returned in x[0], the smallest in x[n-1].

{
const Int MAXIT=10;
const Doub EPS=1.0e-14; EPS is the relative precision.
Int i,its,j;
Doub alfbet,an,bn,r1,r2,r3;
Doub a,b,c,p1,p2,p3,pp,temp,z,z1;
Int n=x.size();
for (i=0;i<n;i++) { Loop over the desired roots.

if (i == 0) { Initial guess for the largest root.
an=alf/n;
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bn=bet/n;
r1=(1.0+alf)*(2.78/(4.0+n*n)+0.768*an/n);
r2=1.0+1.48*an+0.96*bn+0.452*an*an+0.83*an*bn;
z=1.0-r1/r2;

} else if (i == 1) { Initial guess for the second largest root.
r1=(4.1+alf)/((1.0+alf)*(1.0+0.156*alf));
r2=1.0+0.06*(n-8.0)*(1.0+0.12*alf)/n;
r3=1.0+0.012*bet*(1.0+0.25*abs(alf))/n;
z -= (1.0-z)*r1*r2*r3;

} else if (i == 2) { Initial guess for the third largest root.
r1=(1.67+0.28*alf)/(1.0+0.37*alf);
r2=1.0+0.22*(n-8.0)/n;
r3=1.0+8.0*bet/((6.28+bet)*n*n);
z -= (x[0]-z)*r1*r2*r3;

} else if (i == n-2) { Initial guess for the second smallest root.
r1=(1.0+0.235*bet)/(0.766+0.119*bet);
r2=1.0/(1.0+0.639*(n-4.0)/(1.0+0.71*(n-4.0)));
r3=1.0/(1.0+20.0*alf/((7.5+alf)*n*n));
z += (z-x[n-4])*r1*r2*r3;

} else if (i == n-1) { Initial guess for the smallest root.
r1=(1.0+0.37*bet)/(1.67+0.28*bet);
r2=1.0/(1.0+0.22*(n-8.0)/n);
r3=1.0/(1.0+8.0*alf/((6.28+alf)*n*n));
z += (z-x[n-3])*r1*r2*r3;

} else { Initial guess for the other roots.
z=3.0*x[i-1]-3.0*x[i-2]+x[i-3];

}
alfbet=alf+bet;
for (its=1;its<=MAXIT;its++) { Refinement by Newton’s method.

temp=2.0+alfbet; Start the recurrence with P0 and P1 to avoid
a division by zero when ˛ C ˇ D 0 or
�1.

p1=(alf-bet+temp*z)/2.0;
p2=1.0;
for (j=2;j<=n;j++) { Loop up the recurrence relation to get the

Jacobi polynomial evaluated at z.p3=p2;
p2=p1;
temp=2*j+alfbet;
a=2*j*(j+alfbet)*(temp-2.0);
b=(temp-1.0)*(alf*alf-bet*bet+temp*(temp-2.0)*z);
c=2.0*(j-1+alf)*(j-1+bet)*temp;
p1=(b*p2-c*p3)/a;

}
pp=(n*(alf-bet-temp*z)*p1+2.0*(n+alf)*(n+bet)*p2)/(temp*(1.0-z*z));
p1 is now the desired Jacobi polynomial. We next compute pp, its derivative, by
a standard relation involving also p2, the polynomial of one lower order.
z1=z;
z=z1-p1/pp; Newton’s formula.
if (abs(z-z1) <= EPS) break;

}
if (its > MAXIT) throw("too many iterations in gaujac");
x[i]=z; Store the root and the weight.
w[i]=exp(gammln(alf+n)+gammln(bet+n)-gammln(n+1.0)-

gammln(n+alfbet+1.0))*temp*pow(2.0,alfbet)/(pp*p2);
}

}

Legendre polynomials are special cases of Jacobi polynomials with ˛ D ˇ D 0,
but it is worth having the separate routine for them, gauleg, given above. Chebyshev
polynomials correspond to ˛ D ˇ D �1=2 (see �5.8). They have analytic abscissas
and weights:
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xj D cos

 
	.j C 1

2
/

N

!
wj D

	

N

(4.6.24)

4.6.2 Case of Known Recurrences
Turn now to the case where you do not know good initial guesses for the zeros of your or-

thogonal polynomials, but you do have available the coefficients aj and bj that generate them.
As we have seen, the zeros of pN .x/ are the abscissas for the N -point Gaussian quadrature
formula. The most useful computational formula for the weights is equation (4.6.9) above,
since the derivative p0

N
can be efficiently computed by the derivative of (4.6.6) in the general

case, or by special relations for the classical polynomials. Note that (4.6.9) is valid as written
only for monic polynomials; for other normalizations, there is an extra factor of �N =�N�1,
where �N is the coefficient of xN in pN .

Except in those special cases already discussed, the best way to find the abscissas is not
to use a root-finding method like Newton’s method on pN .x/. Rather, it is generally faster
to use the Golub-Welsch [3] algorithm, which is based on a result of Wilf [4]. This algorithm
notes that if you bring the term xpj to the left-hand side of (4.6.6) and the term pjC1 to the
right-hand side, the recurrence relation can be written in matrix form as

x

266664
p0
p1
:::

pN�2
pN�1

377775 D
266664
a0 1
b1 a1 1

:::
:::

bN�2 aN�2 1
bN�1 aN�1

377775 	
266664

p0
p1
:::

pN�2
pN�1

377775C
266664
0
0
:::
0
pN

377775 (4.6.25)

or
xp D T 	 pC pN eN�1 (4.6.26)

Here T is a tridiagonal matrix; p is a column vector of p0; p1; : : : ; pN�1; and eN�1 is a
unit vector with a 1 in the .N � 1/st (last) position and zeros elsewhere. The matrix T can be
symmetrized by a diagonal similarity transformation D to give

J D DTD�1 D

2666664
a0

p
b1p

b1 a1
p
b2

:::
:::p
bN�2 aN�2

p
bN�1p

bN�1 aN�1

3777775 (4.6.27)

The matrix J is called the Jacobi matrix (not to be confused with other matrices named after
Jacobi that arise in completely different problems!). Now we see from (4.6.26) that pN .xj / D
0 is equivalent to xj being an eigenvalue of T . Since eigenvalues are preserved by a similarity
transformation, xj is an eigenvalue of the symmetric tridiagonal matrix J . Moreover, Wilf [4]
shows that if vj is the eigenvector corresponding to the eigenvalue xj , normalized so that
v 	 v D 1, then

wj D �0v
2
j;0 (4.6.28)

where

�0 D

Z b

a
W.x/ dx (4.6.29)

and where vj;0 is the zeroth component of v . As we shall see in Chapter 11, finding all
eigenvalues and eigenvectors of a symmetric tridiagonal matrix is a relatively efficient and
well-conditioned procedure. We accordingly give a routine, gaucof, for finding the abscissas
and weights, given the coefficients aj and bj . Remember that if you know the recurrence
relation for orthogonal polynomials that are not normalized to be monic, you can easily convert
it to monic form by means of the quantities �j .
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void gaucof(VecDoub_IO &a, VecDoub_IO &b, const Doub amu0, VecDoub_O &x, gauss wgts2.h
VecDoub_O &w)

Computes the abscissas and weights for a Gaussian quadrature formula from the Jacobi matrix.
On input, a[0..n-1] and b[0..n-1] are the coefficients of the recurrence relation for the set of

monic orthogonal polynomials. The quantity �0 �
R b
a W.x/dx is input as amu0. The abscissas

x[0..n-1] are returned in descending order, with the corresponding weights in w[0..n-1]. The
arrays a and b are modified. Execution can be speeded up by modifying tqli and eigsrt to
compute only the zeroth component of each eigenvector.
{

Int n=a.size();
for (Int i=0;i<n;i++)

if (i != 0) b[i]=sqrt(b[i]); Set up superdiagonal of Jacobi matrix.
Symmeig sym(a,b);
for (Int i=0;i<n;i++) {

x[i]=sym.d[i];
w[i]=amu0*sym.z[0][i]*sym.z[0][i]; Equation (4.6.28).

}
}

4.6.3 Orthogonal Polynomials with Nonclassical Weights
What do you do if your weight function is not one of the classical ones dealt with above

and you do not know the aj ’s and bj ’s of the recurrence relation (4.6.6) to use in gaucof?
Obviously, you need a method of finding the aj ’s and bj ’s.

The best general method is the Stieltjes procedure: First compute a0 from (4.6.7), and
then p1.x/ from (4.6.6). Knowing p0 and p1, compute a1 and b1 from (4.6.7), and so on.
But how are we to compute the inner products in (4.6.7)?

The textbook approach is to represent each pj .x/ explicitly as a polynomial in x and to
compute the inner products by multiplying out term by term. This will be feasible if we know
the first 2N moments of the weight function,

�j D

Z b

a
xjW.x/dx j D 0; 1; : : : ; 2N � 1 (4.6.30)

However, the solution of the resulting set of algebraic equations for the coefficients aj and bj
in terms of the moments �j is in general extremely ill-conditioned. Even in double precision,
it is not unusual to lose all accuracy by the time N D 12. We thus reject any procedure based
on the moments (4.6.30).

Gautschi [5] showed that the Stieltjes procedure is feasible if the inner products in (4.6.7)
are computed directly by numerical quadrature. This is only practicable if you can find a
quadrature scheme that can compute the integrals to high accuracy despite the singularities in
the weight function W.x/. Gautschi advocates the Fejér quadrature scheme [5] as a general-
purpose scheme for handling singularities when no better method is available. We have per-
sonally had much better experience with the transformation methods of �4.5, particularly the
DE rule and its variants.

We use a structure Stiel that implements the Stieltjes procedure. Its member function
get_weights generates the coefficients aj and bj of the recurrence relation, and then calls
gaucof to find the abscissas and weights. You can easily modify it to return the aj ’s and bj ’s
if you want them as well. Internally, the routine calls the function quad to do the integrals in
(4.6.7). For a finite range of integration, the routine uses the straight DE rule. This is effected
by invoking the constructor with five parameters: the number of quadrature abscissas (and
weights) desired, the lower and upper limits of integration, the parameter hmax to be passed
to the DE rule (see �4.5), and the weight function W.x/. For an infinite range of integration,
the routine invokes the trapezoidal rule with one of the coordinate transformations discussed
in �4.5. For this case you invoke the constructor that has no hmax, but takes the mapping
function x D x.t/ and its derivative dx=dt in addition toW.x/. Now the range of integration
you input is the finite range of the trapezoidal rule.

This will all be clearer with some examples. Consider first the weight function

W.x/ D � log x (4.6.31)
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on the finite interval .0; 1/. Normally, for the finite range case (DE rule), the weight function
must be coded as a function of two variables, W.x; ı/, where ı is the distance from the end-
point singularity. Since the logarithmic singularity at the endpoint x D 0 is “mild,” there is no
need to use the argument ı in coding the function:

Doub wt(const Doub x, const Doub del)
{

return -log(x);
}

A value of hmax D 3:7 will give full double precision, as discussed in �4.5, so the calling code
looks like this:

n= ...
VecDoub x(n),w(n);
Stiel s(n,0.0,1.0,3.7,wt);
s.get_weights(x,w);

For the infinite range case, in addition to the weight function W.x/, you have to supply
two functions for the coordinate transformation you want to use (see equation 4.5.14). We’ll
denote the mapping x D x.t/ by fx and dx=dt by fdxdt, but you can use any names you
like. All these functions are coded as functions of one variable.

Here is an example of the user-supplied functions for the weight function

W.x/ D
x1=2

ex C 1
(4.6.32)

on the interval .0;1/. Gaussian quadrature based on W.x/ has been proposed for evaluating
generalized Fermi-Dirac integrals [6] (cf. �4.5). We use the “mixed” DE rule of equation
(4.5.14), x D et�e

�t
. As is typical with the Stieltjes procedure, you get abscissas and weights

within about one or two significant digits of machine accuracy for N of a few dozen.

Doub wt(const Doub x)
{

Doub s=exp(-x);
return sqrt(x)*s/(1.0+s);

}

Doub fx(const Doub t)
{

return exp(t-exp(-t));
}

Doub fdxdt(const Doub t)
{

Doub s=exp(-t);
return exp(t-s)*(1.0+s);

}
...

Stiel ss(n,-5.5,6.5,wt,fx,fdxdt);
ss.get_weights(x,w);

The listing of the Stiel object, and discussion of some of the C++ intricacies of its
coding, are in a Webnote [9].

Two other algorithms exist [7,8] for finding abscissas and weights for Gaussian quadra-
tures. The first starts similarly to the Stieltjes procedure by representing the inner product
integrals in equation (4.6.7) as discrete quadratures using some quadrature rule. This defines a
matrix whose elements are formed from the abscissas and weights in your chosen quadrature
rule, together with the given weight function. Then an algorithm due to Lanczos is used to
transform this to a matrix that is essentially the Jacobi matrix (4.6.27).

The second algorithm is based on the idea of modified moments. Instead of using powers
of x as a set of basis functions to represent the pj ’s, one uses some other known set of orthog-
onal polynomials 	j .x/, say. Then the inner products in equation (4.6.7) will be expressible
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in terms of the modified moments


j D

Z b

a
	j .x/W.x/dx j D 0; 1; : : : ; 2N � 1 (4.6.33)

The modified Chebyshev algorithm (due to Sack and Donovan [10] and later improved by
Wheeler [11]) is an efficient algorithm that generates the desired aj ’s and bj ’s from the modi-
fied moments. Roughly speaking, the improved stability occurs because the polynomial basis
“samples” the interval .a; b/ better than the power basis when the inner product integrals are
evaluated, especially if its weight function resembles W.x/. The algorithm requires that the
modified moments (4.6.33) be accurately computed. Sometimes there is a closed form, for
example, for the important case of the log x weight function [12,8]. Otherwise you have to
use a suitable discretization procedure to compute the modified moments [7,8], just as we did
for the inner products in the Stieltjes procedure. There is some art in choosing the auxil-
iary polynomials 	j , and in practice it is not always possible to find a set that removes the
ill-conditioning.

Gautschi [8] has given an extensive suite of routines that handle all three of the algo-
rithms we have described, together with many other aspects of orthogonal polynomials and
Gaussian quadrature. However, for most straightforward applications, you should find Stiel
together with a suitable DE rule quadrature more than adequate.

4.6.4 Extensions of Gaussian Quadrature
There are many different ways in which the ideas of Gaussian quadrature have

been extended. One important extension is the case of preassigned nodes: Some
points are required to be included in the set of abscissas, and the problem is to choose
the weights and the remaining abscissas to maximize the degree of exactness of the
the quadrature rule. The most common cases are Gauss-Radau quadrature, where
one of the nodes is an endpoint of the interval, either a or b, and Gauss-Lobatto
quadrature, where both a and b are nodes. Golub [13,8] has given an algorithm similar
to gaucof for these cases.

An N -point Gauss-Radau rule has the form of equation (4.6.1), where x1 is chosen to
be either a or b (x1 must be finite). You can construct the rule from the coefficients for
the corresponding ordinary N -point Gaussian quadrature. Simply set up the Jacobi matrix
equation (4.6.27), but modify the entry aN�1:

a0N�1 D x1 � bN�1
pN�2.x1/

pN�1.x1/
(4.6.34)

Here is the routine:

void radau(VecDoub_IO &a, VecDoub_IO &b, const Doub amu0, const Doub x1, gauss wgts2.h
VecDoub_O &x, VecDoub_O &w)

Computes the abscissas and weights for a Gauss-Radau quadrature formula. On input, a[0..n-1]
and b[0..n-1] are the coefficients of the recurrence relation for the set of monic orthogo-
nal polynomials corresponding to the weight function. (b[0] is not referenced.) The quantity

�0 �
R b
a W.x/dx is input as amu0. x1 is input as either endpoint of the interval. The abscissas

x[0..n-1] are returned in descending order, with the corresponding weights in w[0..n-1]. The
arrays a and b are modified.
{

Int n=a.size();
if (n == 1) {

x[0]=x1;
w[0]=amu0;

} else { Compute pN�1 and pN�2 by recurrence.
Doub p=x1-a[0];
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Doub pm1=1.0;
Doub p1=p;
for (Int i=1;i<n-1;i++) {

p=(x1-a[i])*p1-b[i]*pm1;
pm1=p1;
p1=p;

}
a[n-1]=x1-b[n-1]*pm1/p; Equation (4.6.34).
gaucof(a,b,amu0,x,w);

}
}

AnN -point Gauss-Lobatto rule has the form of equation (4.6.1) where x1 D a, xN D b
(both finite). This time you modify the entries aN�1 and bN�1 in equation (4.6.27) by solving
two linear equations:�

pN�1.x1/ pN�2.x1/
pN�1.xN / pN�2.xN /

� �
a0
N�1
b0
N�1

�
D

�
x1pN�1.x1/
xNpN�1.xN /

�
(4.6.35)

void lobatto(VecDoub_IO &a, VecDoub_IO &b, const Doub amu0, const Doub x1,gauss wgts2.h
const Doub xn, VecDoub_O &x, VecDoub_O &w)

Computes the abscissas and weights for a Gauss-Lobatto quadrature formula. On input, the
vectors a[0..n-1] and b[0..n-1] are the coefficients of the recurrence relation for the set of
monic orthogonal polynomials corresponding to the weight function. (b[0] is not referenced.)

The quantity �0 �
R b
a W.x/dx is input as amu0. x1 amd xn are input as the endpoints of

the interval. The abscissas x[0..n-1] are returned in descending order, with the corresponding
weights in w[0..n-1]. The arrays a and b are modified.
{

Doub det,pl,pr,p1l,p1r,pm1l,pm1r;
Int n=a.size();
if (n <= 1)

throw("n must be bigger than 1 in lobatto");
pl=x1-a[0]; Compute pN�1 and pN�2 at x1 and xN by recur-

rence.pr=xn-a[0];
pm1l=1.0;
pm1r=1.0;
p1l=pl;
p1r=pr;
for (Int i=1;i<n-1;i++) {

pl=(x1-a[i])*p1l-b[i]*pm1l;
pr=(xn-a[i])*p1r-b[i]*pm1r;
pm1l=p1l;
pm1r=p1r;
p1l=pl;
p1r=pr;

}
det=pl*pm1r-pr*pm1l; Solve equation (4.6.35).
a[n-1]=(x1*pl*pm1r-xn*pr*pm1l)/det;
b[n-1]=(xn-x1)*pl*pr/det;
gaucof(a,b,amu0,x,w);

}

The second important extension of Gaussian quadrature is the Gauss-Kronrod
formulas. For ordinary Gaussian quadrature formulas, as N increases, the sets of
abscissas have no points in common. This means that if you compare results with
increasing N as a way of estimating the quadrature error, you cannot reuse the pre-
vious function evaluations. Kronrod [14] posed the problem of searching for optimal
sequences of rules, each of which reuses all abscissas of its predecessor. If one starts
with N D m, say, and then adds n new points, one has 2nCm free parameters: the
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n new abscissas and weights, and m new weights for the fixed previous abscissas.
The maximum degree of exactness one would expect to achieve would therefore be
2nCm� 1. The question is whether this maximum degree of exactness can actually
be achieved in practice, when the abscissas are required to all lie inside .a; b/. The
answer to this question is not known in general.

Kronrod showed that if you choose n D m C 1, an optimal extension can
be found for Gauss-Legendre quadrature. Patterson [15] showed how to compute
continued extensions of this kind. Sequences such as N D 10; 21; 43; 87; : : : are
popular in automatic quadrature routines [16] that attempt to integrate a function until
some specified accuracy has been achieved.
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4.7 Adaptive Quadrature
The idea behind adaptive quadrature is very simple. Suppose you have two

different numerical estimates I1 and I2 of the integral

I D

Z b

a

f .x/ dx (4.7.1)

Suppose I1 is more accurate. Use the relative difference between I1 and I2 as an
error estimate. If it is less than �, accept I1 as the answer. Otherwise divide the
interval Œa; b� into two subintervals,

I D

Z m

a

f .x/ dx C

Z b

m

f .x/ dx m D .aC b/=2 (4.7.2)

and compute the two integrals independently. For each one, compute an I1 and I2,
estimate the error, and continue subdividing if necessary. Dividing any given subin-
terval stops when its contribution to � is sufficiently small. (Obviously recursion will
be a good way to implement this algorithm.)

The most important criterion for an adaptive quadrature routine is reliability: If
you request an accuracy of 10�6, you would like to be sure that the answer is at least
that good. From a theoretical point of view, however, it is impossible to design an
adaptive quadrature routine that will work for all possible functions. The reason is
simple: A quadrature is based on the value of the integrand f .x/ at a finite set of
points. You can alter the function at all the other points in an arbitrary way without
affecting the estimate your algorithm returns, while the true value of the integral
changes unpredictably. Despite this point of principle, however, in practice good
routines are reliable for a high fraction of functions they encounter. Our favorite
routine is one proposed by Gander and Gautschi [1], which we now describe. It is
relatively simple, yet scores well on reliability and efficiency.

A key component of a good adaptive algorithm is the termination criterion. The
usual criterion

jI1 � I2j < �jI1j (4.7.3)

is problematic. In the neighborhood of a singularity, I1 and I2 might never agree
to the requested tolerance, even if it’s not particularly small. Instead, you need to
somehow come up with an estimate of the whole integral I of equation (4.7.1). Then
you can terminate when the error in I1 is negligible compared to the whole integral:

jI1 � I2j < �jIsj (4.7.4)

where Is is the estimate of I . Gander and Gautschi implement this test by writing

if (is + (i1-i2) == is)

which is equivalent to setting � to the machine precision. However, modern op-
timizing compilers have become too good at recognizing that this is algebraically
equivalent to
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if (i1-i2 == 0.0)

which might never be satisfied in floating point arithmetic. Accordingly, we imple-
ment the test with an explicit �.

The other problem you need to take care of is when an interval gets subdivided
so small that it contains no interior machine-representable point. You then need to
terminate the recursion and alert the user that the full accuracy might not have been
attained. In the case where the points in an interval are supposed to be fa;m D
.aC b/=2; bg, you can test for m 
 a or b 
 m.

The lowest order integration method in the Gander-Gautschi method is the four-
point Gauss-Lobatto quadrature (cf. �4.6)Z 1

�1

f .x/ dx D 1
6

h
f .�1/C f .1/

i
C 5

6

h
f
�
� 1p

5

�
C f

�
1p
5

�i
(4.7.5)

This formula, which is exact for polynomials of degree 5, is used to compute I2. To
reuse these function evaluations in computing I1, they find the seven-point Kronrod
extension,Z 1

�1

f .x/ dx D 11
210

h
f .�1/C f .1/

i
C 72

245

h
f
�
�

q
2
3

�
C f

�q
2
3

�i
C 125

294

h
f
�
� 1p

5

�
C f

�
1p
5

�i
C 16

35
f .0/

(4.7.6)

whose degree of exactness is nine. The formulas (4.7.5) and (4.7.6) get scaled from
Œ�1; 1� to an arbitrary subinterval Œa; b�.

For Is , Gander and Gautschi find a 13-point Kronrod extension of equation
(4.7.6), which lets them reuse the previous function evaluations. The formula is
coded into the routine below. You can think of this initial 13-point evaluation as
a kind of Monte Carlo sampling to get an idea of the order of magnitude of the
integral. But if the integrand is smooth, this initial evaluation will itself be quite
accurate already. The routine below takes advantage of this.

Note that to reuse the four function evaluations in (4.7.5) in the seven-point
formula (4.7.6), you can’t simply bisect intervals. But dividing into six subintervals
works (there are six intervals between seven points).

To use the routine, you need to initialize an Adapt object with your required
tolerance,

Adapt s(1.0e-6);

and then call the integrate function:

ans=s.integrate(func,a,b);

You should check that the desired tolerance could be met:

if (s.out_of_tolerance)

cout << "Required tolerance may not be met" << endl;

The smallest allowed tolerance is 10 times the machine precision. If you enter a
smaller tolerance, it gets reset internally. (The routine will work using the machine
precision itself, but then it usually just takes lots of function evaluations for little
additional benefit.)

The implementation of the Adapt object is given in a Webnote [2].
Adaptive quadrature is no panacea. The above routine has no special machinery

to deal with singularities other than to refine the neighboring intervals. By using
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suitable schemes for I1 and I2, one can customize an adaptive routine to deal with a
particular kind of singularity (cf. [3]).
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4.8 Multidimensional Integrals

Integrals of functions of several variables, over regions with dimension greater
than one, are not easy. There are two reasons for this. First, the number of function
evaluations needed to sample an N -dimensional space increases as the N th power
of the number needed to do a one-dimensional integral. If you need 30 function
evaluations to do a one-dimensional integral crudely, then you will likely need on
the order of 30000 evaluations to reach the same crude level for a three-dimensional
integral. Second, the region of integration in N -dimensional space is defined by
an N � 1 dimensional boundary that can itself be terribly complicated: It need not
be convex or simply connected, for example. By contrast, the boundary of a one-
dimensional integral consists of two numbers, its upper and lower limits.

The first question to be asked, when faced with a multidimensional integral, is,
can it be reduced analytically to a lower dimensionality? For example, so-called iter-
ated integrals of a function of one variable f .t/ can be reduced to one-dimensional
integrals by the formulaZ x

0

dtn

Z tn

0

dtn�1 	 	 	

Z t3

0

dt2

Z t2

0

f .t1/ dt1 D
1

.n � 1/Š

Z x

0

.x � t /n�1f .t/ dt

(4.8.1)
Alternatively, the function may have some special symmetry in the way it depends on
its independent variables. If the boundary also has this symmetry, then the dimension
can be reduced. In three dimensions, for example, the integration of a spherically
symmetric function over a spherical region reduces, in polar coordinates, to a one-
dimensional integral.

The next questions to be asked will guide your choice between two entirely
different approaches to doing the problem. The questions are: Is the shape of the
boundary of the region of integration simple or complicated? Inside the region, is
the integrand smooth and simple, or complicated, or locally strongly peaked? Does
the problem require high accuracy, or does it require an answer accurate only to a
percent, or a few percent?
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If your answers are that the boundary is complicated, the integrand is not strongly
peaked in very small regions, and relatively low accuracy is tolerable, then your prob-
lem is a good candidate for Monte Carlo integration. This method is very straight-
forward to program, in its cruder forms. One needs only to know a region with
simple boundaries that includes the complicated region of integration, plus a method
of determining whether a random point is inside or outside the region of integration.
Monte Carlo integration evaluates the function at a random sample of points and es-
timates its integral based on that random sample. We will discuss it in more detail,
and with more sophistication, in Chapter 7.

If the boundary is simple, and the function is very smooth, then the remaining
approaches, breaking up the problem into repeated one-dimensional integrals, or
multidimensional Gaussian quadratures, will be effective and relatively fast [1]. If
you require high accuracy, these approaches are in any case the only ones available
to you, since Monte Carlo methods are by nature asymptotically slow to converge.

For low accuracy, use repeated one-dimensional integration or multidimen-
sional Gaussian quadratures when the integrand is slowly varying and smooth in the
region of integration, Monte Carlo when the integrand is oscillatory or discontinuous
but not strongly peaked in small regions.

If the integrand is strongly peaked in small regions, and you know where those
regions are, break the integral up into several regions so that the integrand is smooth
in each, and do each separately. If you don’t know where the strongly peaked regions
are, you might as well (at the level of sophistication of this book) quit: It is hopeless
to expect an integration routine to search out unknown pockets of large contribution
in a huge N -dimensional space. (But see �7.9.)

If, on the basis of the above guidelines, you decide to pursue the repeated one-
dimensional integration approach, here is how it works. For definiteness, we will
consider the case of a three-dimensional integral in x; y; z-space. Two dimensions,
or more than three dimensions, are entirely analogous.

The first step is to specify the region of integration by (i) its lower and upper
limits in x, which we will denote x1 and x2; (ii) its lower and upper limits in y at
a specified value of x, denoted y1.x/ and y2.x/; and (iii) its lower and upper limits
in z at specified x and y, denoted z1.x; y/ and z2.x; y/. In other words, find the
numbers x1 and x2, and the functions y1.x/; y2.x/; z1.x; y/, and z2.x; y/ such that

I �

•
dx dy dz f .x; y; z/

D

Z x2

x1

dx

Z y2.x/

y1.x/

dy

Z z2.x;y/

z1.x;y/

dz f .x; y; z/

(4.8.2)

For example, a two-dimensional integral over a circle of radius one centered on the
origin becomes Z 1

�1

dx

Z p1�x2
�
p
1�x2

dy f .x; y/ (4.8.3)

Now we can define a function G.x; y/ that does the innermost integral,

G.x; y/ �

Z z2.x;y/

z1.x;y/

f .x; y; z/ dz (4.8.4)



�

�

“nr3” — 2007/5/1 — 20:53 — page 198 — #220
�

�

� �

198 Chapter 4. Integration of Functions
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Figure 4.8.1. Function evaluations for a two-dimensional integral over an irregular region, shown
schematically. The outer integration routine, in y, requests values of the inner, x, integral at locations
along the y-axis of its own choosing. The inner integration routine then evaluates the function at x loca-
tions suitable to it. This is more accurate in general than, e.g., evaluating the function on a Cartesian mesh
of points.

and a function H.x/ that does the integral of G.x; y/,

H.x/ �

Z y2.x/

y1.x/

G.x; y/ dy (4.8.5)

and finally our answer as an integral over H.x/

I D

Z x2

x1

H.x/ dx (4.8.6)

In an implementation of equations (4.8.4) – (4.8.6), some basic one-dimensional
integration routine (e.g., qgaus in the program following) gets called recursively:
once to evaluate the outer integral I , then many times to evaluate the middle integral
H , then even more times to evaluate the inner integral G (see Figure 4.8.1). Current
values of x and y, and the pointers to the user-supplied functions for the integrand
and the boundaries, are passed “over the head” of the intermediate calls through
member variables in the three functors defining the integrands for G, H and I .

struct NRf3 {quad3d.h
Doub xsav,ysav;
Doub (*func3d)(const Doub, const Doub, const Doub);
Doub operator()(const Doub z) The integrand f .x; y; z/ evaluated at fixed x and

y.{
return func3d(xsav,ysav,z);

}
};
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struct NRf2 {
NRf3 f3;
Doub (*z1)(Doub, Doub);
Doub (*z2)(Doub, Doub);
NRf2(Doub zz1(Doub, Doub), Doub zz2(Doub, Doub)) : z1(zz1), z2(zz2) {}
Doub operator()(const Doub y) This is G of eq. (4.8.4).
{

f3.ysav=y;
return qgaus(f3,z1(f3.xsav,y),z2(f3.xsav,y));

}
};
struct NRf1 {

Doub (*y1)(Doub);
Doub (*y2)(Doub);
NRf2 f2;
NRf1(Doub yy1(Doub), Doub yy2(Doub), Doub z1(Doub, Doub),

Doub z2(Doub, Doub)) : y1(yy1),y2(yy2), f2(z1,z2) {}
Doub operator()(const Doub x) This is H of eq. (4.8.5).
{

f2.f3.xsav=x;
return qgaus(f2,y1(x),y2(x));

}
};

template <class T>
Doub quad3d(T &func, const Doub x1, const Doub x2, Doub y1(Doub), Doub y2(Doub),

Doub z1(Doub, Doub), Doub z2(Doub, Doub))
Returns the integral of a user-supplied function func over a three-dimensional region specified
by the limits x1, x2, and by the user-supplied functions y1, y2, z1, and z2, as defined in (4.8.2).
Integration is performed by calling qgaus recursively.
{

NRf1 f1(y1,y2,z1,z2);
f1.f2.f3.func3d=func;
return qgaus(f1,x1,x2);

}

Note that while the function to be integrated can be supplied either as a simple
function

Doub func(const Doub x, const Doub y, const Doub z);

or as the equivalent functor, the functions defining the boundary can only be func-
tions:

Doub y1(const Doub x);

Doub y2(const Doub x);

Doub z1(const Doub x, const Doub y);

Doub z2(const Doub x, const Doub y);

This is for simplicity; you can easily modify the code to take functors if you need to.
The Gaussian quadrature routine used in quad3d is simple, but its accuracy is

not controllable. An alternative is to use a one-dimensional integration routine like
qtrap, qsimp or qromb, which have a user-definable tolerance eps. Simply replace
all occurrences of qgaus in quad3d by qromb, say.

Note that multidimensional integration is likely to be very slow if you try for
too much accuracy. You should almost certainly increase the default eps in qromb
from 10�10 to 10�6 or bigger. You should also decrease JMAX to avoid a lot of
waiting around for an answer. Some people advocate using a smaller eps for the
inner quadrature (over z in our routine) than for the outer quadratures (over x or y).
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CITED REFERENCES AND FURTHER READING:

Stroud, A.H. 1971, Approximate Calculation of Multiple Integrals (Englewood Cliffs, NJ: Prentice-
Hall).[1]

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall);
reprinted 2003 (New York: Dover), �7.7, p. 318.

Johnson, L.W., and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: Addison-
Wesley), �6.2.5, p. 307.

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions (Washington: Na-
tional Bureau of Standards); reprinted 1968 (New York: Dover); online at http://www.nr.
com/aands, equations 25.4.58ff.
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5.0 Introduction

The purpose of this chapter is to acquaint you with a selection of the techniques
that are frequently used in evaluating functions. In Chapter 6, we will apply and
illustrate these techniques by giving routines for a variety of specific functions. The
purposes of this chapter and the next are thus mostly congruent. Occasionally, how-
ever, the method of choice for a particular special function in Chapter 6 is peculiar to
that function. By comparing this chapter to the next one, you should get some idea
of the balance between “general” and “special” methods that occurs in practice.

Insofar as that balance favors general methods, this chapter should give you
ideas about how to write your own routine for the evaluation of a function that, while
“special” to you, is not so special as to be included in Chapter 6 or the standard
function libraries.

CITED REFERENCES AND FURTHER READING:

Fike, C.T. 1968, Computer Evaluation of Mathematical Functions (Englewood Cliffs, NJ: Prentice-
Hall).

Lanczos, C. 1956, Applied Analysis; reprinted 1988 (New York: Dover), Chapter 7.

5.1 Polynomials and Rational Functions

A polynomial of degreeN is represented numerically as a stored array of coeffi-
cients, c[j] with jD 0; : : : ; N . We will always take c[0] to be the constant term in
the polynomial and c[N] the coefficient of xN ; but of course other conventions are
possible. There are two kinds of manipulations that you can do with a polynomial:
numerical manipulations (such as evaluation), where you are given the numerical
value of its argument, or algebraic manipulations, where you want to transform the
coefficient array in some way without choosing any particular argument. Let’s start
with the numerical.

201
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We assume that you know enough never to evaluate a polynomial this way:

p=c[0]+c[1]*x+c[2]*x*x+c[3]*x*x*x+c[4]*x*x*x*x;

or (even worse!),

p=c[0]+c[1]*x+c[2]*pow(x,2.0)+c[3]*pow(x,3.0)+c[4]*pow(x,4.0);

Come the (computer) revolution, all persons found guilty of such criminal be-
havior will be summarily executed, and their programs won’t be! It is a matter of
taste, however, whether to write

p=c[0]+x*(c[1]+x*(c[2]+x*(c[3]+x*c[4])));

or

p=(((c[4]*x+c[3])*x+c[2])*x+c[1])*x+c[0];

If the number of coefficients c[0..n-1] is large, one writes

p=c[n-1];

for(j=n-2;j>=0;j--) p=p*x+c[j];

or

p=c[j=n-1];

while (j>0) p=p*x+c[--j];

We can formalize this by defining a function object (or functor) that binds a reference
to an array of coefficients and endows them with a polynomial evaluation function,

struct Poly {poly.h
Polynomial function object that binds a reference to a vector of coefficients.

VecDoub &c;
Poly(VecDoub &cc) : c(cc) {}
Doub operator() (Doub x) {
Returns the value of the polynomial at x.

Int j;
Doub p = c[j=c.size()-1];
while (j>0) p = p*x + c[--j];
return p;

}
};

which allows you to write things like

y = Poly(c)(x);

where c is a coefficient vector.
Another useful trick is for evaluating a polynomial P.x/ and its derivative

dP.x/=dx simultaneously:

p=c[n-1];

dp=0.;

for(j=n-2;j>=0;j--) {dp=dp*x+p; p=p*x+c[j];}

or

p=c[j=n-1];

dp=0.;

while (j>0) {dp=dp*x+p; p=p*x+c[--j];}

which yields the polynomial as p and its derivative as dp using coefficients c[0..n-1].
The above trick, which is basically synthetic division [1,2], generalizes to the

evaluation of the polynomial and nd of its derivatives simultaneously:
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void ddpoly(VecDoub_I &c, const Doub x, VecDoub_O &pd) poly.h
Given the coefficients of a polynomial of degree nc as an array c[0..nc] of size nc+1 (with
c[0] being the constant term), and given a value x, this routine fills an output array pd of size
nd+1 with the value of the polynomial evaluated at x in pd[0], and the first nd derivatives at
x in pd[1..nd].
{

Int nnd,j,i,nc=c.size()-1,nd=pd.size()-1;
Doub cnst=1.0;
pd[0]=c[nc];
for (j=1;j<nd+1;j++) pd[j]=0.0;
for (i=nc-1;i>=0;i--) {

nnd=(nd < (nc-i) ? nd : nc-i);
for (j=nnd;j>0;j--) pd[j]=pd[j]*x+pd[j-1];
pd[0]=pd[0]*x+c[i];

}
for (i=2;i<nd+1;i++) { After the first derivative, factorial constants come in.

cnst *= i;
pd[i] *= cnst;

}
}

As a curiosity, you might be interested to know that polynomials of degree
n > 3 can be evaluated in fewer than n multiplications, at least if you are willing to
precompute some auxiliary coefficients and, in some cases, do some extra addition.
For example, the polynomial

P.x/ D a0 C a1x C a2x
2 C a3x

3 C a4x
4 (5.1.1)

where a4 > 0, can be evaluated with three multiplications and five additions as
follows:

P.x/ D Œ.Ax C B/2 C Ax C C�Œ.Ax C B/2 CD�CE (5.1.2)

where A;B;C;D; and E are to be precomputed by

A D .a4/
1=4

B D
a3 � A

3

4A3

D D 3B2 C 8B3 C
a1A � 2a2B

A2

C D
a2

A2
� 2B � 6B2 �D

E D a0 � B
4 � B2.C CD/ � CD

(5.1.3)

Fifth-degree polynomials can be evaluated in four multiplies and five adds; sixth-
degree polynomials can be evaluated in four multiplies and seven adds; if any of this
strikes you as interesting, consult references [3-5]. The subject has something of the
same flavor as that of fast matrix multiplication, discussed in �2.11.

Turn now to algebraic manipulations. You multiply a polynomial of degree
n � 1 (array of range [0..n-1]) by a monomial factor x � a by a bit of code like
the following,

c[n]=c[n-1];

for (j=n-1;j>=1;j--) c[j]=c[j-1]-c[j]*a;

c[0] *= (-a);
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Likewise, you divide a polynomial of degree n by a monomial factor x � a
(synthetic division again) using

rem=c[n];

c[n]=0.;

for(i=n-1;i>=0;i--) {

swap=c[i];

c[i]=rem;

rem=swap+rem*a;

}

which leaves you with a new polynomial array and a numerical remainder rem.
Multiplication of two general polynomials involves straightforward summing

of the products, each involving one coefficient from each polynomial. Division of
two general polynomials, while it can be done awkwardly in the fashion taught using
pencil and paper, is susceptible to a good deal of streamlining. Witness the following
routine based on the algorithm in [3].

void poldiv(VecDoub_I &u, VecDoub_I &v, VecDoub_O &q, VecDoub_O &r)poly.h
Divide a polynomial u by a polynomial v, and return the quotient and remainder polynomials
in q and r, respectively. The four polynomials are represented as vectors of coefficients, each
starting with the constant term. There is no restriction on the relative lengths of u and v, and
either may have trailing zeros (represent a lower degree polynomial than its length allows). q
and r are returned with the size of u, but will usually have trailing zeros.
{

Int k,j,n=u.size()-1,nv=v.size()-1;
while (nv >= 0 && v[nv] == 0.) nv--;
if (nv < 0) throw("poldiv divide by zero polynomial");
r = u; May do a resize.
q.assign(u.size(),0.); May do a resize.
for (k=n-nv;k>=0;k--) {

q[k]=r[nv+k]/v[nv];
for (j=nv+k-1;j>=k;j--) r[j] -= q[k]*v[j-k];

}
for (j=nv;j<=n;j++) r[j]=0.0;

}

5.1.1 Rational Functions

You evaluate a rational function like

R.x/ D
P�.x/

Q�.x/
D
p0 C p1x C 	 	 	 C p�x

�

q0 C q1x C 	 	 	 C q�x�
(5.1.4)

in the obvious way, namely as two separate polynomials followed by a divide. As a
matter of convention one usually chooses q0 D 1, obtained by dividing the numerator
and denominator by any other q0. In that case, it is often convenient to have both
sets of coefficients, omitting q0, stored in a single array, in the order

.p0; p1; : : : ; p�; q1; : : : ; q�/ (5.1.5)

The following object encapsulates a rational function. It provides constructors
from either separate numerator and denominator polynomials, or a single array like
(5.1.5) with explicit values for n D �C 1 and d D 
 C 1. The evaluation function
makes Ratfn a functor, like Poly. We’ll make use of this object in �5.12 and �5.13.
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struct Ratfn { poly.h
Function object for a rational function.

VecDoub cofs;
Int nn,dd; Number of numerator, denominator coefficients.

Ratfn(VecDoub_I &num, VecDoub_I &den) : cofs(num.size()+den.size()-1),
nn(num.size()), dd(den.size()) {
Constructor from numerator, denominator polyomials (as coefficient vectors).

Int j;
for (j=0;j<nn;j++) cofs[j] = num[j]/den[0];
for (j=1;j<dd;j++) cofs[j+nn-1] = den[j]/den[0];

}

Ratfn(VecDoub_I &coffs, const Int n, const Int d) : cofs(coffs), nn(n),
dd(d) {}
Constructor from coefficients already normalized and in a single array.

Doub operator() (Doub x) const {
Evaluate the rational function at x and return result.

Int j;
Doub sumn = 0., sumd = 0.;
for (j=nn-1;j>=0;j--) sumn = sumn*x + cofs[j];
for (j=nn+dd-2;j>=nn;j--) sumd = sumd*x + cofs[j];
return sumn/(1.0+x*sumd);

}

};

5.1.2 Parallel Evaluation of a Polynomial
A polynomial of degree N can be evaluated in about log2N parallel steps [6].

This is best illustrated by an example, for example withN D 5. Start with the vector
of coefficients, imagining appended zeros:

c0; c1; c2; c3; c4; c5; 0; : : : (5.1.6)

Now add the elements by pairs, multiplying the second of each pair by x:

c0 C c1x; c2 C c3x; c4 C c5x; 0; : : : (5.1.7)

Now the same operation, but with the multiplier x2:

.c0 C c1x/C .c2 C c3x/x
2; .c4 C c5x/C .0/x

2; 0 : : : (5.1.8)

And a final time with multiplier x4:

Œ.c0 C c1x/C .c2 C c3x/x
2�C Œ.c4 C c5x/C .0/x

2�x4; 0 : : : (5.1.9)

We are left with a vector of (active) length 1, whose value is the desired polynomial
evaluation. You can see that the zeros are just a bookkeeping device for taking care
of the case where the active subvector has an odd length; in an actual implementation
you can avoid most operations on the zeros. This parallel method generally has better
roundoff properties than the standard sequential coding.

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington, DC:
Mathematical Association of America), pp. 183, 190.[1]
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Mathews, J., and Walker, R.L. 1970, Mathematical Methods of Physics, 2nd ed. (Reading, MA:
W.A. Benjamin/Addison-Wesley), pp. 361–363.[2]

Knuth, D.E. 1997, Seminumerical Algorithms, 3rd ed., vol. 2 of The Art of Computer Program-
ming (Reading, MA: Addison-Wesley), �4.6.[3]

Fike, C.T. 1968, Computer Evaluation of Mathematical Functions (Englewood Cliffs, NJ: Prentice-
Hall), Chapter 4.

Winograd, S. 1970, “On the number of multiplications necessary to compute certain functions,”
Communications on Pure and Applied Mathematics, vol. 23, pp. 165–179.[4]

Kronsjö, L. 1987, Algorithms: Their Complexity and Efficiency, 2nd ed. (New York: Wiley).[5]

Estrin, G. 1960, quoted in Knuth, D.E. 1997, Seminumerical Algorithms, 3rd ed., vol. 2 of The
Art of Computer Programming (Reading, MA: Addison-Wesley), �4.6.4.[6]

5.2 Evaluation of Continued Fractions
Continued fractions are often powerful ways of evaluating functions that occur

in scientific applications. A continued fraction looks like this:

f .x/ D b0 C
a1

b1 C
a2

b2C
a3

b3C
a4

b4C
a5

b5C���

(5.2.1)

Printers prefer to write this as

f .x/ D b0 C
a1

b1 C

a2

b2 C

a3

b3 C

a4

b4 C

a5

b5 C
	 	 	 (5.2.2)

In either (5.2.1) or (5.2.2), the a’s and b’s can themselves be functions of x, usually
linear or quadratic monomials at worst (i.e., constants times x or times x2). For
example, the continued fraction representation of the tangent function is

tan x D
x

1 �

x2

3 �

x2

5 �

x2

7 �
	 	 	 (5.2.3)

Continued fractions frequently converge much more rapidly than power series
expansions, and in a much larger domain in the complex plane (not necessarily in-
cluding the domain of convergence of the series, however). Sometimes the continued
fraction converges best where the series does worst, although this is not a general
rule. Blanch [1] gives a good review of the most useful convergence tests for contin-
ued fractions.

There are standard techniques, including the important quotient-difference al-
gorithm, for going back and forth between continued fraction approximations, power
series approximations, and rational function approximations. Consult Acton [2] for
an introduction to this subject, and Fike [3] for further details and references.

How do you tell how far to go when evaluating a continued fraction? Unlike
a series, you can’t just evaluate equation (5.2.1) from left to right, stopping when
the change is small. Written in the form of (5.2.1), the only way to evaluate the
continued fraction is from right to left, first (blindly!) guessing how far out to start.
This is not the right way.
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The right way is to use a result that relates continued fractions to rational ap-
proximations, and that gives a means of evaluating (5.2.1) or (5.2.2) from left to
right. Let fn denote the result of evaluating (5.2.2) with coefficients through an and
bn. Then

fn D
An

Bn
(5.2.4)

where An and Bn are given by the following recurrence:

A�1 � 1 B�1 � 0

A0 � b0 B0 � 1

Aj D bjAj�1 C ajAj�2 Bj D bjBj�1 C ajBj�2 j D 1; 2; : : : ; n

(5.2.5)

This method was invented by J. Wallis in 1655 (!) and is discussed in his Arithmetica
Infinitorum [4]. You can easily prove it by induction.

In practice, this algorithm has some unattractive features: The recurrence (5.2.5)
frequently generates very large or very small values for the partial numerators and
denominators Aj and Bj . There is thus the danger of overflow or underflow of the
floating-point representation. However, the recurrence (5.2.5) is linear in the A’s and
B’s. At any point you can rescale the currently saved two levels of the recurrence,
e.g., divide Aj ; Bj ; Aj�1; and Bj�1 all by Bj . This incidentally makes Aj D fj
and is convenient for testing whether you have gone far enough: See if fj and fj�1
from the last iteration are as close as you would like them to be. If Bj happens to
be zero, which can happen, just skip the renormalization for this cycle. A fancier
level of optimization is to renormalize only when an overflow is imminent, saving
the unnecessary divides. In fact, the C library function ldexp can be used to avoid
division entirely. (See the end of �6.5 for an example.)

Two newer algorithms have been proposed for evaluating continued fractions.
Steed’s method does not useAj and Bj explicitly, but only the ratioDj D Bj�1=Bj .
One calculates Dj and �fj D fj � fj�1 recursively using

Dj D 1=.bj C ajDj�1/ (5.2.6)

�fj D .bjDj � 1/�fj�1 (5.2.7)

Steed’s method (see, e.g., [5]) avoids the need for rescaling of intermediate results.
However, for certain continued fractions you can occasionally run into a situation
where the denominator in (5.2.6) approaches zero, so thatDj and�fj are very large.
The next �fjC1 will typically cancel this large change, but with loss of accuracy in
the numerical running sum of the fj ’s. It is awkward to program around this, so
Steed’s method can be recommended only for cases where you know in advance
that no denominator can vanish. We will use it for a special purpose in the routine
besselik (�6.6).

The best general method for evaluating continued fractions seems to be the
modified Lentz’s method [6]. The need for rescaling intermediate results is avoided
by using both the ratios

Cj D Aj =Aj�1; Dj D Bj�1=Bj (5.2.8)

and calculating fj by
fj D fj�1CjDj (5.2.9)
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From equation (5.2.5), one easily shows that the ratios satisfy the recurrence relations

Dj D 1=.bj C ajDj�1/; Cj D bj C aj =Cj�1 (5.2.10)

In this algorithm there is the danger that the denominator in the expression for Dj ,
or the quantity Cj itself, might approach zero. Either of these conditions invalidates
(5.2.10). However, Thompson and Barnett [5] show how to modify Lentz’s algorithm
to fix this: Just shift the offending term by a small amount, e.g., 10�30. If you work
through a cycle of the algorithm with this prescription, you will see that fjC1 is
accurately calculated.

In detail, the modified Lentz’s algorithm is this:

� Set f0 D b0; if b0 D 0, set f0 D tiny.
� Set C0 D f0.
� Set D0 D 0.
� For j D 1; 2; : : :

Set Dj D bj C ajDj�1.
If Dj D 0, set Dj D tiny.
Set Cj D bj C aj =Cj�1.
If Cj D 0, set Cj D tiny.
Set Dj D 1=Dj .
Set �j D CjDj .
Set fj D fj�1�j .
If j�j � 1j < eps, then exit.

Here eps is your floating-point precision, say 10�7 or 10�15. The parameter tiny
should be less than typical values of eps jbj j, say 10�30.

The above algorithm assumes that you can terminate the evaluation of the con-
tinued fraction when jfj � fj�1j is sufficiently small. This is usually the case, but
by no means guaranteed. Jones [7] gives a list of theorems that can be used to justify
this termination criterion for various kinds of continued fractions.

There is at present no rigorous analysis of error propagation in Lentz’s algo-
rithm. However, empirical tests suggest that it is at least as good as other methods.

5.2.1 Manipulating Continued Fractions
Several important properties of continued fractions can be used to rewrite them

in forms that can speed up numerical computation. An equivalence transformation

an ! �an; bn ! �bn; anC1 ! �anC1 (5.2.11)

leaves the value of a continued fraction unchanged. By a suitable choice of the scale
factor � you can often simplify the form of the a’s and the b’s. Of course, you
can carry out successive equivalence transformations, possibly with different �’s, on
successive terms of the continued fraction.

The even and odd parts of a continued fraction are continued fractions whose
successive convergents are f2n and f2nC1, respectively. Their main use is that they
converge twice as fast as the original continued fraction, and so if their terms are not
much more complicated than the terms in the original, there can be a big savings in
computation. The formula for the even part of (5.2.2) is

feven D d0 C
c1

d1 C

c2

d2 C
	 	 	 (5.2.12)
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where in terms of intermediate variables

˛1 D
a1

b1

˛n D
an

bnbn�1
; n � 2

(5.2.13)

we have

d0 D b0; c1 D ˛1; d1 D 1C ˛2

cn D �˛2n�1˛2n�2; dn D 1C ˛2n�1 C ˛2n; n � 2
(5.2.14)

You can find the similar formula for the odd part in the review by Blanch [1]. Often a
combination of the transformations (5.2.14) and (5.2.11) is used to get the best form
for numerical work.

We will make frequent use of continued fractions in the next chapter.

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions (Washington: Na-
tional Bureau of Standards); reprinted 1968 (New York: Dover); online at http://www.nr.
com/aands, �3.10.

Blanch, G. 1964, “Numerical Evaluation of Continued Fractions,” SIAM Review, vol. 6, pp. 383–
421.[1]

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington, DC:
Mathematical Association of America), Chapter 11.[2]

Cuyt, A., and Wuytack, L. 1987, Nonlinear Methods in Numerical Analysis (Amsterdam: North-
Holland), Chapter 1.

Fike, C.T. 1968, Computer Evaluation of Mathematical Functions (Englewood Cliffs, NJ: Prentice-
Hall), �8.2, �10.4, and �10.5.[3]

Wallis, J. 1695, in Opera Mathematica, vol. 1, p. 355, Oxoniae e Theatro Shedoniano. Reprinted
by Georg Olms Verlag, Hildeshein, New York (1972).[4]

Thompson, I.J., and Barnett, A.R. 1986, “Coulomb and Bessel Functions of Complex Arguments
and Order,” Journal of Computational Physics, vol. 64, pp. 490–509.[5]

Lentz, W.J. 1976, “Generating Bessel Functions in Mie Scattering Calculations Using Continued
Fractions,” Applied Optics, vol. 15, pp. 668–671.[6]

Jones, W.B. 1973, in Padé Approximants and Their Applications, P.R. Graves-Morris, ed. (Lon-
don: Academic Press), p. 125.[7]

5.3 Series and Their Convergence
Everybody knows that an analytic function can be expanded in the neighbor-

hood of a point x0 in a power series,

f .x/ D

1X
kD0

ak.x � x0/
k (5.3.1)

Such series are straightforward to evaluate. You don’t, of course, evaluate the kth
power of x�x0 ab initio for each term; rather, you keep the k�1st power and update
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it with a multiply. Similarly, the form of the coefficients ak is often such as to make
use of previous work: Terms like kŠ or .2k/Š can be updated in a multiply or two.

How do you know when you have summed enough terms? In practice, the terms
had better be getting small fast, otherwise the series is not a good technique to use
in the first place. While not mathematically rigorous in all cases, standard practice is
to quit when the term you have just added is smaller in magnitude than some small
� times the magnitude of the sum thus far accumulated. (But watch out if isolated
instances of ak D 0 are possible!)

Sometimes you will want to compute a function from a series representation
even when the computation is not efficient. For example, you may be using the values
obtained to fit the function to an approximating form that you will use subsequently
(cf. �5.8). If you are summing very large numbers of slowly convergent terms, pay
attention to roundoff errors! In floating-point representation it is more accurate to
sum a list of numbers in the order starting with the smallest one, rather than starting
with the largest one. It is even better to group terms pairwise, then in pairs of pairs,
etc., so that all additions involve operands of comparable magnitude.

A weakness of a power series representation is that it is guaranteed not to con-
verge farther than that distance from x0 at which a singularity is encountered in the
complex plane. This catastrophe is not usually unexpected: When you find a power
series in a book (or when you work one out yourself), you will generally also know
the radius of convergence. An insidious problem occurs with series that converge ev-
erywhere (in the mathematical sense), but almost nowhere fast enough to be useful
in a numerical method. Two familiar examples are the sine function and the Bessel
function of the first kind,

sin x D
1X
kD0

.�1/k

.2k C 1/Š
x2kC1 (5.3.2)

Jn.x/ D
�x
2

�n 1X
kD0

.�1
4
x2/k

kŠ.k C n/Š
(5.3.3)

Both of these series converge for all x. But both don’t even start to converge until
k � jxj; before this, their terms are increasing. Even worse, the terms alternate in
sign, leading to large cancellation errors with finite precision arithmetic. This makes
these series useless for large x.

5.3.1 Divergent Series
Divergent series are often very useful. One class consists of power series out-

side their radius of convergence, which can often be summed by the acceleration
techniques we will describe below. Another class is asymptotic series, such as the
Euler series that comes from Euler’s integral (related to the exponential integral E1):

E.x/ D

Z 1
0

e�t

1C xt
dt '

1X
kD0

.�1/kkŠ xk (5.3.4)

Here the series is derived by expanding .1 C xt/�1 in powers of x and integrating
term by term. The series diverges for all x ¤ 0. For x D 0:1, the series gives
only three significant digits before diverging. Nevertheless, convergence acceleration



�

�

“nr3” — 2007/5/1 — 20:53 — page 211 — #233
�

�

� �

5.3 Series and Their Convergence 211

techniques allow effortless evaluation of the function E.x/, even for x � 2, when
the series is wildly divergent!

5.3.2 Accelerating the Convergence of Series
There are several tricks for accelerating the rate of convergence of a series or,

equivalently, of a sequence of partial sums

sn D

nX
kD0

ak (5.3.5)

(We’ll use the terms sequence and series interchangeably in this section.) An ex-
cellent review has been given by Weniger [1]. Before we can describe the tricks and
when to use them, we need to classify some of the ways in which a sequence can
converge. Suppose sn converges to s, say, and that

lim
n!1

anC1

an
D � (5.3.6)

If 0 < j�j < 1, we say the convergence is linear; if � D 1, it is logarithmic; and
if � D 0, it is hyperlinear. Of course, if j�j > 1, the sequence diverges. (More
rigorously, this classification should be given in terms of the so-called remainders
sn � s [1]. However, our definition is more practical and is equivalent if we restrict
the logarithmic case to terms of the same sign.)

The prototype of linear convergence is a geometric series,

sn D

nX
kD0

xk D
1 � xnC1

1 � x
(5.3.7)

It is easy to see that � D x, and so we have linear convergence for 0 < jxj < 1. The
prototype of logarithmic convergence is the series for the Riemann zeta function,

�.x/ D

1X
kD1

1

kx
; x > 1 (5.3.8)

which is notoriously slowly convergent, especially as x ! 1. The series (5.3.2)
and (5.3.3), or the series for ex , exemplify hyperlinear convergence. We see that
hyperlinear convergence doesn’t necessarily imply that the series is easy to evaluate
for all values of x. Sometimes convergence acceleration is helpful only once the
terms start decreasing.

Probably the most famous series transformation for accelerating convergence is
the Euler transformation (see, e.g., [2,3]), which dates from 1755. Euler’s transfor-
mation works on alternating series (where the terms in the sum alternate in sign).
Generally it is advisable to do a small number of terms directly, through term n � 1,
say, and then apply the transformation to the rest of the series beginning with term
n. The formula (for n even) is

1X
sD0

.�1/sas D a0 � a1 C a2 : : : � an�1 C

1X
sD0

.�1/s

2sC1
Œ�san� (5.3.9)
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Here � is the forward difference operator, i.e.,

�an � anC1 � an

�2an � anC2 � 2anC1 C an

�3an � anC3 � 3anC2 C 3anC1 � an etc.

(5.3.10)

Of course you don’t actually do the infinite sum on the right-hand side of (5.3.9), but
only the first, say, p terms, thus requiring the first p differences (5.3.10) obtained
from the terms starting at an. There is an elegant and subtle implementation of
Euler’s transformation due to van Wijngaarden [6], discussed in full in a Webnote [7].

Euler’s transformation is an example of a linear transformation: The partial
sums of the transformed series are linear combinations of the partial sums of the
original series. Euler’s transformation and other linear transformations, while still
important theoretically, have generally been superseded by newer nonlinear trans-
formations that are considerably more powerful. As usual in numerical work, there
is no free lunch: While the nonlinear transformations are more powerful, they are
somewhat riskier than linear transformations in that they can occasionally fail spec-
tacularly. But if you follow the guidance below, we think that you will never again
resort to puny linear transformations.

The oldest example of a nonlinear sequence transformation is Aitken’s �2-
process. If sn; snC1; snC2 are three successive partial sums, then an improved es-
timate is

s0n � sn �
.snC1 � sn/

2

snC2 � 2snC1 C sn
D sn �

.�sn/
2

�2sn
(5.3.11)

The formula (5.3.11) is exact for a geometric series, which is one way of deriving
it. If you form the sequence of s0i ’s, you can apply (5.3.11) a second time to that
sequence, and so on. (In practice, this iteration will only rarely do much for you after
the first stage.) Note that equation (5.3.11) should be computed as written; there exist
algebraically equivalent forms that are much more susceptible to roundoff error.

Aitken’s�2-process works only on linearly convergent sequences. Like Euler’s
transformation, it has also been superseded by algorithms such as the two we will
now describe. After giving routines for these algorithms, we will supply some rules
of thumb on when to use them.

The first “modern” nonlinear transformation was proposed by Shanks. An effi-
cient recursive implementation was given by Wynn, called the � algorithm. Aitken’s
�2-process is a special case of the � algorithm, corresponding to using just three
terms at a time. Although we will not give a derivation here, it is easy to state ex-
actly what the � algorithm does: If you input the partial sums of a power series, the
� algorithm returns the “diagonal” Padé approximants (�5.12) evaluated at the value
of x used in the power series. (The coefficients in the approximant itself are not
calculated.) That is, if ŒM=N � denotes the Padé approximant with a polynomial of
degree M in the numerator and degree N in the denominator, the algorithm returns
the numerical values of the approximants

Œ0; 0�; Œ1=0�; Œ1=1�; Œ2=1�; Œ2=2�; Œ3; 2�; Œ3; 3� : : : (5.3.12)

(The object Epsalg below is roughly equivalent to pade in �5.12 followed by an
evaluation of the resulting rational function.)

In the object Epsalg, which is based on a routine in [1], you supply the sequence
term by term and monitor the output for convergence in the calling program. Inter-
nally, the routine contains a check for division by zero and substitutes a large number
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for the result. There are three conditions under which this check can be triggered: (i)
Most likely, the algorithm has already converged, and should have been stopped ear-
lier; (ii) there is an “accidental” zero term, and the program will recover; (iii) hardly
ever in practice, the algorithm can actually fail because of a perverse combination
of terms. Because (i) and (ii) are vastly more common than (iii), Epsalg hides the
check condition and instead returns the last-known good estimate.

struct Epsalg { series.h
Convergence acceleration of a sequence by the � algorithm. Initialize by calling the constructor
with arguments nmax, an upper bound on the number of terms to be summed, and epss, the
desired accuracy. Then make successive calls to the function next, with argument the next
partial sum of the sequence. The current estimate of the limit of the sequence is returned by
next. The flag cnvgd is set when convergence is detected.

VecDoub e; Workspace.
Int n,ncv;
Bool cnvgd;
Doub eps,small,big,lastval,lasteps; Numbers near machine underflow and

overflow limits.
Epsalg(Int nmax, Doub epss) : e(nmax), n(0), ncv(0),
cnvgd(0), eps(epss), lastval(0.) {

small = numeric_limits<Doub>::min()*10.0;
big = numeric_limits<Doub>::max();

}

Doub next(Doub sum) {
Doub diff,temp1,temp2,val;
e[n]=sum;
temp2=0.0;
for (Int j=n; j>0; j--) {

temp1=temp2;
temp2=e[j-1];
diff=e[j]-temp2;
if (abs(diff) <= small)

e[j-1]=big;
else

e[j-1]=temp1+1.0/diff;
}
n++;
val = (n & 1) ? e[0] : e[1]; Cases of n even or odd.
if (abs(val) > 0.01*big) val = lastval;
lasteps = abs(val-lastval);
if (lasteps > eps) ncv = 0;
else ncv++;
if (ncv >= 3) cnvgd = 1;
return (lastval = val);

}

};

The last few lines above implement a simple criterion for deciding whether the
sequence has converged. For problems whose convergence is robust, you can simply
put your calls to next inside a while loop like this:

Doub val, partialsum, eps=...;

Epsalg mysum(1000,eps);

while (! mysum.cnvgd) {

partialsum = ...

val = mysum.next(partialsum);

}
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For more delicate cases, you can ignore the cnvgd flag and just keep calling next
until you are satisfied with the convergence.

A large class of modern nonlinear transformations can be derived by using the
concept of a model sequence. The idea is to choose a “simple” sequence that approx-
imates the asymptotic form of the given sequence and construct a transformation that
sums the model sequence exactly. Presumably the transformation will work well for
other sequences with similar asymptotic properties. For example, a geometric series
provides the model sequence for Aitken’s �2-process.

The Levin transformation is probably the best single sequence acceleration
method currently known. It is based on approximating a sequence asymptotically
by an expression of the form

sn D s C !n

k�1X
jD0

cj

.nC ˇ/j
(5.3.13)

Here !n is the dominant term in the remainder of the sequence:

sn � s D !nŒc CO.n
�1/�; n!1 (5.3.14)

The constants cj are arbitrary, and ˇ is a parameter that is restricted to be positive.
Levin showed that for a model sequence of the form (5.3.13), the following transfor-
mation gives the exact value of the series:

s D

kX
jD0

.�1/j

 
k

j

!
.ˇ C nC j /k�1

.ˇ C nC k/k�1
snCj

!nCj

kX
jD0

.�1/j

 
k

j

!
.ˇ C nC j /k�1

.ˇ C nC k/k�1
1

!nCj

(5.3.15)

(The common factor .ˇ C n C k/k�1 in the numerator and denominator reduces
the chances of overflow for large k.) A derivation of equation (5.3.15) is given in a
Webnote [4].

The numerator and denominator in (5.3.15) are not computed as written. In-
stead, they can be computed efficiently from a single recurrence relation with differ-
ent starting values (see [1] for a derivation):

Dn
kC1.ˇ/ D D

nC1
k

.ˇ/ �
.ˇ C n/.ˇ C nC k/k�1

.ˇ C nC k C 1/k
Dn
k .ˇ/ (5.3.16)

The starting values are

Dn
0 .ˇ/ D

(
sn=!n; numerator

1=!n; denominator
(5.3.17)

Although Dn
k

is a two-dimensional object, the recurrence can be coded in a one-
dimensional array proceeding up the counterdiagonal nC k D constant.

The choice (5.3.14) doesn’t determine !n uniquely, but if you have analytic in-
formation about your series, this is where you can make use of it. Usually you won’t
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be so lucky, in which case you can make a choice based on heuristics. For example,
the remainder in an alternating series is approximately half the first neglected term,
which suggests setting !n equal to an or anC1. These are called the Levin t and
d transformations, respectively. Similarly, the remainder for a geometric series is
the difference between the partial sum (5.3.7) and its limit 1=.1 � x/. This can be
written as ananC1=.an�anC1/, which defines the Levin v transformation. The most
popular choice comes from approximating the remainder in the � function (5.3.8) by
an integral:

1X
kDnC1

1

kx
�

Z 1
nC1

dk

kx
D
.nC 1/1�x

x � 1
D
.nC 1/anC1

x � 1
(5.3.18)

This motivates the choice .n C ˇ/an (Levin u transformation), where ˇ is usually
chosen to be 1. To summarize:

!n D

˚
.ˇ C n/an; u transformation

an; t transformation

anC1; d transformation (modified t transformation)
ananC1

an � anC1
; v transformation

(5.3.19)

For sequences that are not partial sums, so that the individual an’s are not defined,
replace an by �sn�1 in (5.3.19).

Here is the routine for Levin’s transformation, also based on the routine in [1]:

struct Levin { series.h
Convergence acceleration of a sequence by the Levin transformation. Initialize by calling the
constructor with arguments nmax, an upper bound on the number of terms to be summed, and
epss, the desired accuracy. Then make successive calls to the function next, which returns
the current estimate of the limit of the sequence. The flag cnvgd is set when convergence is
detected.

VecDoub numer,denom; Numerator and denominator computed via (5.3.16).
Int n,ncv;
Bool cnvgd;
Doub small,big; Numbers near machine underflow and overflow limits.
Doub eps,lastval,lasteps;

Levin(Int nmax, Doub epss) : numer(nmax), denom(nmax), n(0), ncv(0),
cnvgd(0), eps(epss), lastval(0.) {

small=numeric_limits<Doub>::min()*10.0;
big=numeric_limits<Doub>::max();

}

Doub next(Doub sum, Doub omega, Doub beta=1.) {
Arguments: sum, the nth partial sum of the sequence; omega, the nth remainder estimate
!n, usually from (5.3.19); and the parameter beta, which should usually be set to 1, but
sometimes 0.5 works better. The current estimate of the limit of the sequence is returned.

Int j;
Doub fact,ratio,term,val;
term=1.0/(beta+n);
denom[n]=term/omega;
numer[n]=sum*denom[n];
if (n > 0) {

ratio=(beta+n-1)*term;
for (j=1;j<=n;j++) {
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fact=(n-j+beta)*term;
numer[n-j]=numer[n-j+1]-fact*numer[n-j];
denom[n-j]=denom[n-j+1]-fact*denom[n-j];
term=term*ratio;

}
}
n++;
val = abs(denom[0]) < small ? lastval : numer[0]/denom[0];
lasteps = abs(val-lastval);
if (lasteps <= eps) ncv++;
if (ncv >= 2) cnvgd = 1;
return (lastval = val);

}
};

You can use, or not use, the cnvgd flag exactly as previously discussed for Epsalg.
An alternative to the model sequence method of deriving sequence transforma-

tions is to use extrapolation of a polynomial or rational function approximation to
a series, e.g., as in Wynn’s � algorithm [1]. Since none of these methods generally
beats the two we have given, we won’t say any more about them.

5.3.3 Practical Hints and an Example
There is no general theoretical understanding of nonlinear sequence transforma-

tions. Accordingly, most of the practical advice is based on numerical experiments [5].
You might have thought that summing a wildly divergent series is the hardest prob-
lem for a sequence transformation. However, the difficulty of a problem depends
more on whether the terms are all of the same sign or whether the signs alternate,
rather than whether the sequence actually converges or not. In particular, logarithmi-
cally convergent series with terms all of the same sign are generally the most difficult
to sum. Even the best acceleration methods are corrupted by rounding errors when
accelerating logarithmic convergence. You should always use double precision and
be prepared for some loss of significant digits. Typically one observes convergence
up to some optimum number of terms, and then a loss of significant digits if one tries
to go further. Moreover, there is no single algorithm that can accelerate every loga-
rithmically convergent sequence. Nevertheless, there are some good rules of thumb.

First, note that among divergent series it is useful to separate out asymptotic se-
ries, where the terms first decrease before increasing, as a separate class from other
divergent series, e.g., power series outside their radius of convergence. For alter-
nating series, whether convergent, asymptotic, or divergent power series, Levin’s u
transformation is almost always the best choice. For monotonic linearly convergent
or monotonic divergent power series, the � algorithm typically is the first choice, but
the u transformation often does a reasonable job. For logarithmic convergence, the u
transformation is clearly the best. (The � algorithm fails completely.) For series with
irregular signs or other nonstandard features, typically the � algorithm is relatively
robust, often succeeding where other algorithms fail. Finally, for monotonic asymp-
totic series, such as (6.3.11) for Ei.x/, there is nothing better than direct summation
without acceleration.

The v and t transformations are almost as good as the u transformation, except
that the t transformation typically fails for logarithmic convergence.

If you have only a few numerical terms of some sequence and no theoretical
insight, blindly applying a convergence accelerator can be dangerous. The algorithm
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can sometimes display “convergence” that is only apparent, not real. The remedy is
to try two different transformations as a check.

Since convergence acceleration is so much more difficult for a series of positive
terms than for an alternating series, occasionally it is useful to convert a series of
positive terms into an alternating series. Van Wijngaarden has given a transformation
for accomplishing this [6]:

1X
rD1

vr D

1X
rD1

.�1/r�1wr (5.3.20)

where
wr � vr C 2v2r C 4v4r C 8v8r C 	 	 	 (5.3.21)

Equations (5.3.20) and (5.3.21) replace a simple sum by a two-dimensional sum,
each term in (5.3.20) being itself an infinite sum (5.3.21). This may seem a strange
way to save on work! Since, however, the indices in (5.3.21) increase tremendously
rapidly, as powers of 2, it often requires only a few terms to converge (5.3.21) to
extraordinary accuracy. You do, however, need to be able to compute the vr ’s ef-
ficiently for “random” values r . The standard “updating” tricks for sequential r’s,
mentioned above following equation (5.3.1), can’t be used.

Once you’ve generated the alternating series by Van Wijngaarden’s transforma-
tion, the Levin d transformation is particularly effective at summing the series [8].
This strategy is most useful for linearly convergent series with � close to 1. For
logarithmically convergent series, even the transformed series (5.3.21) is often too
slowly convergent to be useful numerically.

As an example of how to call the routines Epsalg or Levin, consider the prob-
lem of evaluating the integral

I D

Z 1
0

x

1C x2
J0.x/ dx D K0.1/ D 0:4210244382 : : : (5.3.22)

Standard quadrature methods such as qromo fail because the integrand has a long
oscillatory tail, giving alternating positive and negative contributions that tend to
cancel. A good way of evaluating such an integral is to split it into a sum of integrals
between successive zeros of J0.x/:

I D

Z 1
0

f .x/ dx D

1X
jD0

Ij (5.3.23)

where

Ij D

Z xj

xj�1

f .x/ dx; f .xj / D 0; j D 0; 1; : : : (5.3.24)

We take x�1 equal to the lower limit of the integral, zero in this example. The idea is
to evaluate the relatively simple integrals Ij by qromb or Gaussian quadrature, and
then accelerate the convergence of the series (5.3.23), since we expect the contri-
butions to alternate in sign. For the example (5.3.22), we don’t even need accurate
values of the zeros of J0.x/. It is good enough to take xj D .j C 1/	 , which is
asymptotically correct. Here is the code:
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Doub func(const Doub x)levex.h
Integrand for (5.3.22).
{

if (x == 0.0)
return 0.0;

else {
Bessel bess;
return x*bess.jnu(0.0,x)/(1.0+x*x);

}
}

Int main_levex(void)
This sample program shows how to use the Levin u transformation to evaluate an oscillatory
integral, equation (5.3.22).
{

const Doub PI=3.141592653589793;
Int nterm=12;
Doub beta=1.0,a=0.0,b=0.0,sum=0.0;
Levin series(100,0.0);
cout << setw(5) << "N" << setw(19) << "Sum (direct)" << setw(21)

<< "Sum (Levin)" << endl;
for (Int n=0; n<=nterm; n++) {

b+=PI;
Doub s=qromb(func,a,b,1.e-8);
a=b;
sum+=s;
Doub omega=(beta+n)*s; Use u transformation.
Doub ans=series.next(sum,omega,beta);
cout << setw(5) << n << fixed << setprecision(14) << setw(21)

<< sum << setw(21) << ans << endl;
}
return 0;

}

Setting eps to 1 � 10�8 in qromb, we get 9 significant digits with about 200
function evaluations by n D 8. Replacing qromb with a Gaussian quadrature routine
cuts the number of function evaluations in half. Note that n D 8 corresponds to an
upper limit in the integral of 9	 , where the amplitude of the integrand is still of order
10�2. This shows the remarkable power of convergence acceleration. (For more on
oscillatory integrals, see �13.9.)
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5.4 Recurrence Relations and Clenshaw’s
Recurrence Formula

Many useful functions satisfy recurrence relations, e.g.,

.nC 1/PnC1.x/ D .2nC 1/xPn.x/ � nPn�1.x/ (5.4.1)

JnC1.x/ D
2n

x
Jn.x/ � Jn�1.x/ (5.4.2)

nEnC1.x/ D e
�x � xEn.x/ (5.4.3)

cosn� D 2 cos � cos.n � 1/� � cos.n � 2/� (5.4.4)

sinn� D 2 cos � sin.n � 1/� � sin.n � 2/� (5.4.5)

where the first three functions are Legendre polynomials, Bessel functions of the first
kind, and exponential integrals, respectively. (For notation see [1].) These relations
are useful for extending computational methods from two successive values of n to
other values, either larger or smaller.

Equations (5.4.4) and (5.4.5) motivate us to say a few words about trigonomet-
ric functions. If your program’s running time is dominated by evaluating trigono-
metric functions, you are probably doing something wrong. Trig functions whose
arguments form a linear sequence � D �0 C nı, n D 0; 1; 2; : : : , are efficiently
calculated by the recurrence

cos.� C ı/ D cos � � Œ˛ cos � C ˇ sin ��

sin.� C ı/ D sin � � Œ˛ sin � � ˇ cos ��
(5.4.6)

where ˛ and ˇ are the precomputed coefficients

˛ � 2 sin2
�
ı

2

�
ˇ � sin ı (5.4.7)

The reason for doing things this way, rather than with the standard (and equivalent)
identities for sums of angles, is that here ˛ and ˇ do not lose significance if the
incremental ı is small. Likewise, the adds in equation (5.4.6) should be done in the
order indicated by the square brackets. We will use (5.4.6) repeatedly in Chapter 12,
when we deal with Fourier transforms.

Another trick, occasionally useful, is to note that both sin � and cos � can be
calculated via a single call to tan:

t � tan

�
�

2

�
cos � D

1 � t2

1C t2
sin � D

2t

1C t2
(5.4.8)



�

�

“nr3” — 2007/5/1 — 20:53 — page 220 — #242
�

�

� �

220 Chapter 5. Evaluation of Functions

The cost of getting both sin and cos, if you need them, is thus the cost of tan plus 2
multiplies, 2 divides, and 2 adds. On machines with slow trig functions, this can be a
savings. However, note that special treatment is required if � !˙	 . And also note
that many modern machines have very fast trig functions; so you should not assume
that equation (5.4.8) is faster without testing.

5.4.1 Stability of Recurrences
You need to be aware that recurrence relations are not necessarily stable against

roundoff error in the direction that you propose to go (either increasing n or decreas-
ing n). A three-term linear recurrence relation

ynC1 C anyn C bnyn�1 D 0; n D 1; 2; : : : (5.4.9)

has two linearly independent solutions, fn and gn, say. Only one of these corre-
sponds to the sequence of functions fn that you are trying to generate. The other
one, gn, may be exponentially growing in the direction that you want to go, or ex-
ponentially damped, or exponentially neutral (growing or dying as some power law,
for example). If it is exponentially growing, then the recurrence relation is of little
or no practical use in that direction. This is the case, e.g., for (5.4.2) in the direction
of increasing n, when x < n. You cannot generate Bessel functions of high n by
forward recurrence on (5.4.2).

To state things a bit more formally, if

fn=gn ! 0 as n!1 (5.4.10)

then fn is called the minimal solution of the recurrence relation (5.4.9). Nonminimal
solutions like gn are called dominant solutions. The minimal solution is unique, if it
exists, but dominant solutions are not — you can add an arbitrary multiple of fn to
a given gn. You can evaluate any dominant solution by forward recurrence, but not
the minimal solution. (Unfortunately it is sometimes the one you want.)

Abramowitz and Stegun (in their Introduction!) [1] give a list of recurrences
that are stable in the increasing or decreasing direction. That list does not contain all
possible formulas, of course. Given a recurrence relation for some function fn.x/,
you can test it yourself with about five minutes of (human) labor: For a fixed x in
your range of interest, start the recurrence not with true values of fj .x/ and fjC1.x/,
but (first) with the values 1 and 0, respectively, and then (second) with 0 and 1,
respectively. Generate 10 or 20 terms of the recursive sequences in the direction
that you want to go (increasing or decreasing from j ), for each of the two starting
conditions. Look at the differences between the corresponding members of the two
sequences. If the differences stay of order unity (absolute value less than 10, say),
then the recurrence is stable. If they increase slowly, then the recurrence may be
mildly unstable but quite tolerably so. If they increase catastrophically, then there is
an exponentially growing solution of the recurrence. If you know that the function
that you want actually corresponds to the growing solution, then you can keep the
recurrence formula anyway (e.g., the case of the Bessel function Yn.x/ for increasing
n; see �6.5). If you don’t know which solution your function corresponds to, you
must at this point reject the recurrence formula. Notice that you can do this test
before you go to the trouble of finding a numerical method for computing the two
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starting functions fj .x/ and fjC1.x/: Stability is a property of the recurrence, not
of the starting values.

An alternative heuristic procedure for testing stability is to replace the recur-
rence relation by a similar one that is linear with constant coefficients. For example,
the relation (5.4.2) becomes

ynC1 � 2�yn C yn�1 D 0 (5.4.11)

where � � n=x is treated as a constant. You solve such recurrence relations by
trying solutions of the form yn D a

n. Substituting into the above recurrence gives

a2 � 2�aC 1 D 0 or a D � ˙
p
�2 � 1 (5.4.12)

The recurrence is stable if jaj 
 1 for all solutions a. This holds (as you can verify)
if j� j 
 1 or n 
 x. The recurrence (5.4.2) thus cannot be used, starting with J0.x/
and J1.x/, to compute Jn.x/ for large n.

Possibly you would at this point like the security of some real theorems on this
subject (although we ourselves always follow one of the heuristic procedures). Here
are two theorems, due to Perron [2]:

Theorem A. If in (5.4.9) an � an˛ , bn � bnˇ as n!1, and ˇ < 2˛, then

gnC1=gn � �an
˛; fnC1=fn � �.b=a/n

ˇ�˛ (5.4.13)

and fn is the minimal solution to (5.4.9).
Theorem B. Under the same conditions as Theorem A, but with ˇ D 2˛,

consider the characteristic polynomial

t2 C at C b D 0 (5.4.14)

If the roots t1 and t2 of (5.4.14) have distinct moduli, jt1j > jt2j say, then

gnC1=gn � t1n
˛; fnC1=fn � t2n

˛ (5.4.15)

and fn is again the minimal solution to (5.4.9). Cases other than those in these two
theorems are inconclusive for the existence of minimal solutions. (For more on the
stability of recurrences, see [3].)

How do you proceed if the solution that you desire is the minimal solution? The
answer lies in that old aphorism, that every cloud has a silver lining: If a recurrence
relation is catastrophically unstable in one direction, then that (undesired) solution
will decrease very rapidly in the reverse direction. This means that you can start
with any seed values for the consecutive fj and fjC1 and (when you have gone
enough steps in the stable direction) you will converge to the sequence of functions
that you want, times an unknown normalization factor. If there is some other way to
normalize the sequence (e.g., by a formula for the sum of the fn’s), then this can be
a practical means of function evaluation. The method is called Miller’s algorithm.
An example often given [1,4] uses equation (5.4.2) in just this way, along with the
normalization formula

1 D J0.x/C 2J2.x/C 2J4.x/C 2J6.x/C 	 	 	 (5.4.16)
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Incidentally, there is an important relation between three-term recurrence rela-
tions and continued fractions. Rewrite the recurrence relation (5.4.9) as

yn

yn�1
D �

bn

an C ynC1=yn
(5.4.17)

Iterating this equation, starting with n, gives

yn

yn�1
D �

bn

an �

bnC1

anC1 �
	 	 	 (5.4.18)

Pincherle’s theorem [2] tells us that (5.4.18) converges if and only if (5.4.9) has a
minimal solution fn, in which case it converges to fn=fn�1. This result, usually for
the case n D 1 and combined with some way to determine f0, underlies many of the
practical methods for computing special functions that we give in the next chapter.

5.4.2 Clenshaw’s Recurrence Formula
Clenshaw’s recurrence formula [5] is an elegant and efficient way to evaluate a

sum of coefficients times functions that obey a recurrence formula, e.g.,

f .�/ D

NX
kD0

ck cos k� or f .x/ D

NX
kD0

ckPk.x/

Here is how it works: Suppose that the desired sum is

f .x/ D

NX
kD0

ckFk.x/ (5.4.19)

and that Fk obeys the recurrence relation

FnC1.x/ D ˛.n; x/Fn.x/C ˇ.n; x/Fn�1.x/ (5.4.20)

for some functions ˛.n; x/ and ˇ.n; x/. Now define the quantities yk .k D N;N �
1; : : : ; 1/ by the recurrence

yNC2 D yNC1 D 0

yk D ˛.k; x/ykC1 C ˇ.k C 1; x/ykC2 C ck .k D N;N � 1; : : : ; 1/

(5.4.21)

If you solve equation (5.4.21) for ck on the left, and then write out explicitly the sum
(5.4.19), it will look (in part) like this:

f .x/ D 	 	 	

C Œy8 � ˛.8; x/y9 � ˇ.9; x/y10�F8.x/

C Œy7 � ˛.7; x/y8 � ˇ.8; x/y9�F7.x/

C Œy6 � ˛.6; x/y7 � ˇ.7; x/y8�F6.x/

C Œy5 � ˛.5; x/y6 � ˇ.6; x/y7�F5.x/

C 	 	 	

C Œy2 � ˛.2; x/y3 � ˇ.3; x/y4�F2.x/

C Œy1 � ˛.1; x/y2 � ˇ.2; x/y3�F1.x/

C Œc0 C ˇ.1; x/y2 � ˇ.1; x/y2�F0.x/

(5.4.22)
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Notice that we have added and subtracted ˇ.1; x/y2 in the last line. If you examine
the terms containing a factor of y8 in (5.4.22), you will find that they sum to zero
as a consequence of the recurrence relation (5.4.20); similarly for all the other yk’s
down through y2. The only surviving terms in (5.4.22) are

f .x/ D ˇ.1; x/F0.x/y2 C F1.x/y1 C F0.x/c0 (5.4.23)

Equations (5.4.21) and (5.4.23) are Clenshaw’s recurrence formula for doing the
sum (5.4.19): You make one pass down through the yk’s using (5.4.21); when you
have reached y2 and y1, you apply (5.4.23) to get the desired answer.

Clenshaw’s recurrence as written above incorporates the coefficients ck in a
downward order, with k decreasing. At each stage, the effect of all previous ck’s
is “remembered” as two coefficients that multiply the functions FkC1 and Fk (ulti-
mately F0 and F1). If the functions Fk are small when k is large, and if the coeffi-
cients ck are small when k is small, then the sum can be dominated by small Fk’s. In
this case, the remembered coefficients will involve a delicate cancellation and there
can be a catastrophic loss of significance. An example would be to sum the trivial
series

J15.1/ D 0 � J0.1/C 0 � J1.1/C : : :C 0 � J14.1/C 1 � J15.1/ (5.4.24)

Here J15, which is tiny, ends up represented as a canceling linear combination of J0
and J1, which are of order unity.

The solution in such cases is to use an alternative Clenshaw recurrence that
incorporates the ck’s in an upward direction. The relevant equations are

y�2 D y�1 D 0 (5.4.25)

yk D
1

ˇ.k C 1; x/
Œyk�2 � ˛.k; x/yk�1 � ck�; k D 0; 1; : : : ; N � 1 (5.4.26)

f .x/ D cNFN .x/ � ˇ.N; x/FN�1.x/yN�1 � FN .x/yN�2 (5.4.27)

The rare case where equations (5.4.25) – (5.4.27) should be used instead of
equations (5.4.21) and (5.4.23) can be detected automatically by testing whether
the operands in the first sum in (5.4.23) are opposite in sign and nearly equal in
magnitude. Other than in this special case, Clenshaw’s recurrence is always stable,
independent of whether the recurrence for the functions Fk is stable in the upward
or downward direction.

5.4.3 Parallel Evaluation of Linear Recurrence Relations

When desirable, linear recurrence relations can be evaluated with a lot of parallelism.
Consider the general first-order linear recurrence relation

uj D aj C bj�1uj�1; j D 2; 3; : : : ; n (5.4.28)

with initial value u1 D a1. To parallelize the recurrence, we can employ the powerful general
strategy of recursive doubling. Write down equation (5.4.28) for 2j and for 2j � 1:

u2j D a2j C b2j�1u2j�1

u2j�1 D a2j�1 C b2j�2u2j�2
(5.4.29)
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Substitute the second of these equations into the first to eliminate u2j�1 and get

u2j D .a2j C a2j�1b2j�1/C .b2j�2b2j�1/u2j�2 (5.4.30)

This is a new recurrence of the same form as (5.4.28) but over only the even uj , and hence in-
volving only n=2 terms. Clearly we can continue this process recursively, halving the number
of terms in the recurrence at each stage, until we are left with a recurrence of length 1 or 2 that
we can do explicitly. Each time we finish a subpart of the recursion, we fill in the odd terms
in the recurrence, using the second equation in (5.4.29). In practice, it’s even easier than it
sounds. The total number of operations is the same as for serial evaluation, but they are done
in about log2 n parallel steps.

There is a variant of recursive doubling, called cyclic reduction, that can be implemented
with a straightforward iteration loop instead of a recursive procedure [6]. Here we start by
writing down the recurrence (5.4.28) for all adjacent terms uj and uj�1 (not just the even
ones, as before). Eliminating uj�1, just as in equation (5.4.30), gives

uj D .aj C aj�1bj�1/C .bj�2bj�1/uj�2 (5.4.31)

which is a first-order recurrence with new coefficients a0j and b0j . Repeating this process gives
successive formulas for uj in terms of uj�2, uj�4, uj�8, : : :. The procedure terminates when
we reach uj�n (for n a power of 2), which is zero for all j . Thus the last step gives uj equal
to the last set of a0j ’s.

In cyclic reduction, the length of the vector uj that is updated at each stage does not
decrease by a factor of 2 at each stage, but rather only decreases from � n to � n=2 during
all log2 n stages. Thus the total number of operations carried out is O.n log n/, as opposed
to O.n/ for recursive doubling. Whether this is important depends on the details of the com-
puter’s architecture.

Second-order recurrence relations can also be parallelized. Consider the second-order
recurrence relation

yj D aj C bj�2yj�1 C cj�2yj�2; j D 3; 4; : : : ; n (5.4.32)

with initial values
y1 D a1; y2 D a2 (5.4.33)

With this numbering scheme, you supply coefficients a1; : : : ; an, b1; : : : ; bn�2, and c1; : : : ;
cn�2. Rewrite the recurrence relation in the form [6]�

yj
yjC1

�
D

�
0

ajC1

�
C

�
0 1

cj�1 bj�1

��
yj�1
yj

�
; j D 2; : : : ; n � 1 (5.4.34)

that is,
uj D aj C bj�1 	 uj�1; j D 2; : : : ; n � 1 (5.4.35)

where

uj D

�
yj
yjC1

�
; aj D

�
0

ajC1

�
; bj�1 D

�
0 1

cj�1 bj�1

�
(5.4.36)

and

u1 D a1 D

�
y1
y2

�
D

�
a1
a2

�
(5.4.37)

This is a first-order recurrence relation for the vectors uj and can be solved by either of
the algorithms described above. The only difference is that the multiplications are matrix
multiplications with the 2�2matrices bj . After the first recursive call, the zeros in a and b are
lost, so we have to write the routine for general two-dimensional vectors and matrices. Note
that this algorithm does not avoid the potential instability problems associated with second-
order recurrences that were discussed in �5.4.1. Also note that the algorithm generalizes in
the obvious way to higher-order recurrences: An nth-order recurrence can be written as a
first-order recurrence involving vectors and matrices of dimension n.
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5.5 Complex Arithmetic

Since C++ has a built-in class complex, you can generally let the compiler
and the class library take care of complex arithmetic for you. Generally, but not
always. For a program with only a small number of complex operations, you may
want to code these yourself, in-line. Or, you may find that your compiler is not up to
snuff: It is disconcertingly common to encounter complex operations that produce
overflows or underflows when both the complex operands and the complex result are
perfectly representable. This occurs, we think, because software companies mistake
the implementation of complex arithmetic for a completely trivial task, not requiring
any particular finesse.

Actually, complex arithmetic is not quite trivial. Addition and subtraction are
done in the obvious way, performing the operation separately on the real and imagi-
nary parts of the operands. Multiplication can also be done in the obvious way, with
four multiplications, one addition, and one subtraction:

.aC ib/.c C id/ D .ac � bd/C i.bc C ad/ (5.5.1)

(the addition sign before the i doesn’t count; it just separates the real and imaginary
parts notationally). But it is sometimes faster to multiply via

.aC ib/.c C id/ D .ac � bd/C i Œ.aC b/.c C d/ � ac � bd� (5.5.2)

which has only three multiplications (ac, bd , .aCb/.cCd/), plus two additions and
three subtractions. The total operations count is higher by two, but multiplication is
a slow operation on some machines.

While it is true that intermediate results in equations (5.5.1) and (5.5.2) can
overflow even when the final result is representable, this happens only when the final
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answer is on the edge of representability. Not so for the complex modulus, if you or
your compiler is misguided enough to compute it as

jaC ibj D
p
a2 C b2 (bad!) (5.5.3)

whose intermediate result will overflow if either a or b is as large as the square root
of the largest representable number (e.g., 1019 as compared to 1038). The right way
to do the calculation is

jaC ibj D

(
jaj
p
1C .b=a/2 jaj � jbj

jbj
p
1C .a=b/2 jaj < jbj

(5.5.4)

Complex division should use a similar trick to prevent avoidable overflow, un-
derflow, or loss of precision:

aC ib

c C id
D

‚
ŒaC b.d=c/�C i Œb � a.d=c/�

c C d.d=c/
jcj � jd j

Œa.c=d/C b�C i Œb.c=d/ � a�

c.c=d/C d
jcj < jd j

(5.5.5)

Of course you should calculate repeated subexpressions, like c=d or d=c, only once.
Complex square root is even more complicated, since we must both guard inter-

mediate results and also enforce a chosen branch cut (here taken to be the negative
real axis). To take the square root of c C id , first compute

w �

�
0 c D d D 0p
jcj

s
1C

p
1C .d=c/2

2
jcj � jd j

p
jd j

s
jc=d j C

p
1C .c=d/2

2
jcj < jd j

(5.5.6)

Then the answer is

p
c C id D

�
0 w D 0

w C i

�
d

2w

�
w ¤ 0; c � 0

jd j

2w
C iw w ¤ 0; c < 0; d � 0

jd j

2w
� iw w ¤ 0; c < 0; d < 0

(5.5.7)
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Knuth, D.E. 1997, Seminumerical Algorithms, 3rd ed., vol. 2 of The Art of Computer Program-
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5.6 Quadratic and Cubic Equations

The roots of simple algebraic equations can be viewed as being functions of the
equations’ coefficients. We are taught these functions in elementary algebra. Yet,
surprisingly many people don’t know the right way to solve a quadratic equation
with two real roots, or to obtain the roots of a cubic equation.

There are two ways to write the solution of the quadratic equation

ax2 C bx C c D 0 (5.6.1)

with real coefficients a; b; c, namely

x D
�b ˙

p
b2 � 4ac

2a
(5.6.2)

and

x D
2c

�b ˙
p
b2 � 4ac

(5.6.3)

If you use either (5.6.2) or (5.6.3) to get the two roots, you are asking for trouble:
If either a or c (or both) is small, then one of the roots will involve the subtraction
of b from a very nearly equal quantity (the discriminant); you will get that root very
inaccurately. The correct way to compute the roots is

q � �
1

2

h
b C sgn.b/

p
b2 � 4ac

i
(5.6.4)

Then the two roots are

x1 D
q

a
and x2 D

c

q
(5.6.5)

If the coefficients a; b; c, are complex rather than real, then the above formulas
still hold, except that in equation (5.6.4) the sign of the square root should be chosen
so as to make

Re.b�
p
b2 � 4ac/ � 0 (5.6.6)

where Re denotes the real part and asterisk denotes complex conjugation.

Apropos of quadratic equations, this seems a convenient place to recall that
the inverse hyperbolic functions sinh�1 and cosh�1 are in fact just logarithms of
solutions to such equations

sinh�1.x/ D ln
�
x C

p
x2 C 1



(5.6.7)

cosh�1.x/ D ˙ ln
�
x C
p
x2 � 1



(5.6.8)

Equation (5.6.7) is numerically robust for x � 0. For negative x, use the symmetry
sinh�1.�x/ D � sinh�1.x/. Equation (5.6.8) is of course valid only for x � 1.
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For the cubic equation

x3 C ax2 C bx C c D 0 (5.6.9)

with real or complex coefficients a; b; c, first compute

Q �
a2 � 3b

9
and R �

2a3 � 9ab C 27c

54
(5.6.10)

If Q and R are real (always true when a; b; c are real) and R2 < Q3, then the cubic
equation has three real roots. Find them by computing

� D arccos.R=
p
Q3/ (5.6.11)

in terms of which the three roots are

x1 D �2
p
Q cos

�
�

3

�
�
a

3

x2 D �2
p
Q cos

�
� C 2	

3

�
�
a

3

x3 D �2
p
Q cos

�
� � 2	

3

�
�
a

3

(5.6.12)

(This equation first appears in Chapter VI of François Viète’s treatise “De emenda-
tione,” published in 1615!)

Otherwise, compute

A D �
h
RC

p
R2 �Q3

i1=3
(5.6.13)

where the sign of the square root is chosen to make

Re.R�
p
R2 �Q3/ � 0 (5.6.14)

(asterisk again denoting complex conjugation). If Q and R are both real, equations
(5.6.13) – (5.6.14) are equivalent to

A D �sgn.R/
h
jRj C

p
R2 �Q3

i1=3
(5.6.15)

where the positive square root is assumed. Next compute

B D

(
Q=A .A ¤ 0/

0 .A D 0/
(5.6.16)

in terms of which the three roots are

x1 D .AC B/ �
a

3
(5.6.17)

(the single real root when a; b; c are real) and

x2 D �
1

2
.AC B/ �

a

3
C i

p
3

2
.A � B/

x3 D �
1

2
.AC B/ �

a

3
� i

p
3

2
.A � B/

(5.6.18)
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(in that same case, a complex-conjugate pair). Equations (5.6.13) – (5.6.16) are
arranged both to minimize roundoff error and also (as pointed out by A.J. Glassman)
to ensure that no choice of branch for the complex cube root can result in the spurious
loss of a distinct root.

If you need to solve many cubic equations with only slightly different coeffi-
cients, it is more efficient to use Newton’s method (�9.4).

CITED REFERENCES AND FURTHER READING:

Weast, R.C. (ed.) 1967, Handbook of Tables for Mathematics, 3rd ed. (Cleveland: The Chemical
Rubber Co.), pp. 130–133.

Pachner, J. 1983, Handbook of Numerical Analysis Applications (New York: McGraw-Hill), �6.1.

McKelvey, J.P. 1984, “Simple Transcendental Expressions for the Roots of Cubic Equations,”
American Journal of Physics, vol. 52, pp. 269–270; see also vol. 53, p. 775, and vol. 55,
pp. 374–375.

5.7 Numerical Derivatives

Imagine that you have a procedure that computes a function f .x/, and now you
want to compute its derivative f 0.x/. Easy, right? The definition of the derivative,
the limit as h! 0 of

f 0.x/ �
f .x C h/ � f .x/

h
(5.7.1)

practically suggests the program: Pick a small value h; evaluate f .x C h/; you
probably have f .x/ already evaluated, but if not, do it too; finally, apply equation
(5.7.1). What more needs to be said?

Quite a lot, actually. Applied uncritically, the above procedure is almost guar-
anteed to produce inaccurate results. Applied properly, it can be the right way to
compute a derivative only when the function f is fiercely expensive to compute;
when you already have invested in computing f .x/; and when, therefore, you want
to get the derivative in no more than a single additional function evaluation. In such
a situation, the remaining issue is to choose h properly, an issue we now discuss.

There are two sources of error in equation (5.7.1), truncation error and roundoff
error. The truncation error comes from higher terms in the Taylor series expansion,

f .x C h/ D f .x/C hf 0.x/C 1
2
h2f 00.x/C 1

6
h3f 000.x/C 	 	 	 (5.7.2)

whence
f .x C h/ � f .x/

h
D f 0 C

1

2
hf 00 C 	 	 	 (5.7.3)

The roundoff error has various contributions. First there is roundoff error in h: Sup-
pose, by way of an example, that you are at a point x D 10:3 and you blindly choose
h D 0:0001. Neither x D 10:3 nor x C h D 10:30001 is a number with an ex-
act representation in binary; each is therefore represented with some fractional error
characteristic of the machine’s floating-point format, �m, whose value in single pre-
cision may be � 10�7. The error in the effective value of h, namely the difference
between xCh and x as represented in the machine, is therefore on the order of �mx,
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which implies a fractional error in h of order� �mx=h � 10�2! By equation (5.7.1),
this immediately implies at least the same large fractional error in the derivative.

We arrive at Lesson 1: Always choose h so that xCh and x differ by an exactly
representable number. This can usually be accomplished by the program steps

temp D x C h

h D temp � x
(5.7.4)

Some optimizing compilers, and some computers whose floating-point chips have
higher internal accuracy than is stored externally, can foil this trick; if so, it is
usually enough to declare temp as volatile, or else to call a dummy function
donothing(temp) between the two equations (5.7.4). This forces temp into and
out of addressable memory.

With h an “exact” number, the roundoff error in equation (5.7.1) is approxi-
mately er � �f jf .x/=hj. Here �f is the fractional accuracy with which f is com-
puted; for a simple function this may be comparable to the machine accuracy, �f �
�m, but for a complicated calculation with additional sources of inaccuracy it may
be larger. The truncation error in equation (5.7.3) is on the order of et � jhf 00.x/j.
Varying h to minimize the sum er C et gives the optimal choice of h,

h �

s
�f f

f 00
�
p
�f xc (5.7.5)

where xc � .f=f 00/1=2 is the “curvature scale” of the function f or the “character-
istic scale” over which it changes. In the absence of any other information, one often
assumes xc D x (except near x D 0, where some other estimate of the typical x
scale should be used).

With the choice of equation (5.7.5), the fractional accuracy of the computed
derivative is

.er C et /=jf
0j �
p
�f .ff

00=f 0
2
/1=2 �

p
�f (5.7.6)

Here the last order-of-magnitude equality assumes that f , f 0, and f 00 all share the
same characteristic length scale, which is usually the case. One sees that the simple
finite difference equation (5.7.1) gives at best only the square root of the machine
accuracy �m.

If you can afford two function evaluations for each derivative calculation, then
it is significantly better to use the symmetrized form

f 0.x/ �
f .x C h/ � f .x � h/

2h
(5.7.7)

In this case, by equation (5.7.2), the truncation error is et � h2f 000. The roundoff
error er is about the same as before. The optimal choice of h, by a short calculation
analogous to the one above, is now

h �

�
�f f

f 000

�1=3
� .�f /

1=3xc (5.7.8)

and the fractional error is

.er C et /=jf
0j � .�f /

2=3f 2=3.f 000/1=3=f 0 � .�f /
2=3 (5.7.9)
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which will typically be an order of magnitude (single precision) or two orders of
magnitude (double precision) better than equation (5.7.6). We have arrived at Lesson
2: Choose h to be the correct power of �f or �m times a characteristic scale xc .

You can easily derive the correct powers for other cases [1]. For a function of
two dimensions, for example, and the mixed derivative formula

@2f

@x@y
D
Œf .x C h; y C h/ � f .x C h; y � h/� � Œf .x � h; y C h/ � f .x � h; y � h/�

4h2

(5.7.10)
the correct scaling is h � �1=4

f
xc .

It is disappointing, certainly, that no simple finite difference formula like equa-
tion (5.7.1) or (5.7.7) gives an accuracy comparable to the machine accuracy �m, or
even the lower accuracy to which f is evaluated, �f . Are there no better methods?

Yes, there are. All, however, involve exploration of the function’s behavior over
scales comparable to xc , plus some assumption of smoothness, or analyticity, so that
the high-order terms in a Taylor expansion like equation (5.7.2) have some meaning.
Such methods also involve multiple evaluations of the function f , so their increased
accuracy must be weighed against increased cost.

The general idea of “Richardson’s deferred approach to the limit” is particularly
attractive. For numerical integrals, that idea leads to so-called Romberg integration
(for review, see �4.3). For derivatives, one seeks to extrapolate, to h! 0, the result
of finite difference calculations with smaller and smaller finite values of h. By the
use of Neville’s algorithm (�3.2), one uses each new finite difference calculation to
produce both an extrapolation of higher order and also extrapolations of previous,
lower, orders but with smaller scales h. Ridders [2] has given a nice implementation
of this idea; the following program, dfridr, is based on his algorithm, modified by
an improved termination criterion. Input to the routine is a function f (called func),
a position x, and a largest stepsize h (more analogous to what we have called xc
above than to what we have called h). Output is the returned value of the derivative
and an estimate of its error, err.

template<class T> dfridr.h
Doub dfridr(T &func, const Doub x, const Doub h, Doub &err)
Returns the derivative of a function func at a point x by Ridders’ method of polynomial extrap-
olation. The value h is input as an estimated initial stepsize; it need not be small, but rather
should be an increment in x over which func changes substantially. An estimate of the error in
the derivative is returned as err.
{

const Int ntab=10; Sets maximum size of tableau.
const Doub con=1.4, con2=(con*con); Stepsize decreased by CON at each iteration.
const Doub big=numeric_limits<Doub>::max();
const Doub safe=2.0; Return when error is SAFE worse than the

best so far.Int i,j;
Doub errt,fac,hh,ans;
MatDoub a(ntab,ntab);
if (h == 0.0) throw("h must be nonzero in dfridr.");
hh=h;
a[0][0]=(func(x+hh)-func(x-hh))/(2.0*hh);
err=big;
for (i=1;i<ntab;i++) {
Successive columns in the Neville tableau will go to smaller stepsizes and higher orders of
extrapolation.

hh /= con;
a[0][i]=(func(x+hh)-func(x-hh))/(2.0*hh); Try new, smaller stepsize.
fac=con2;
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for (j=1;j<=i;j++) { Compute extrapolations of various orders, requiring
no new function eval-
uations.

a[j][i]=(a[j-1][i]*fac-a[j-1][i-1])/(fac-1.0);
fac=con2*fac;
errt=MAX(abs(a[j][i]-a[j-1][i]),abs(a[j][i]-a[j-1][i-1]));
The error strategy is to compare each new extrapolation to one order lower, both
at the present stepsize and the previous one.
if (errt <= err) { If error is decreased, save the improved answer.

err=errt;
ans=a[j][i];

}
}
if (abs(a[i][i]-a[i-1][i-1]) >= safe*err) break;
If higher order is worse by a significant factor SAFE, then quit early.

}
return ans;

}

In dfridr, the number of evaluations of func is typically 6 to 12, but is allowed
to be as great as 2�NTAB. As a function of input h, it is typical for the accuracy
to get better as h is made larger, until a sudden point is reached where nonsensical
extrapolation produces an early return with a large error. You should therefore choose
a fairly large value for h but monitor the returned value err, decreasing h if it is not
small. For functions whose characteristic x scale is of order unity, we typically take
h to be a few tenths.

Besides Ridders’ method, there are other possible techniques. If your function is
fairly smooth, and you know that you will want to evaluate its derivative many times
at arbitrary points in some interval, then it makes sense to construct a Chebyshev
polynomial approximation to the function in that interval, and to evaluate the deriva-
tive directly from the resulting Chebyshev coefficients. This method is described in
�5.8 – �5.9, following.

Another technique applies when the function consists of data that is tabulated at
equally spaced intervals, and perhaps also noisy. One might then want, at each point,
to least-squares fit a polynomial of some degreeM , using an additional number nL of
points to the left and some number nR of points to the right of each desired x value.
The estimated derivative is then the derivative of the resulting fitted polynomial. A
very efficient way to do this construction is via Savitzky-Golay smoothing filters,
which will be discussed later, in �14.9. There we will give a routine for getting filter
coefficients that not only construct the fitting polynomial but, in the accumulation
of a single sum of data points times filter coefficients, evaluate it as well. In fact,
the routine given, savgol, has an argument ld that determines which derivative of
the fitted polynomial is evaluated. For the first derivative, the appropriate setting is
ld=1, and the value of the derivative is the accumulated sum divided by the sampling
interval h.

CITED REFERENCES AND FURTHER READING:

Dennis, J.E., and Schnabel, R.B. 1983, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations; reprinted 1996 (Philadelphia: S.I.A.M.), �5.4 – �5.6.[1]

Ridders, C.J.F. 1982, “Accurate computation of F 0.x/ and F 0.x/F 00.x/,” Advances in Engineer-
ing Software, vol. 4, no. 2, pp. 75–76.[2]
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5.8 Chebyshev Approximation

The Chebyshev polynomial of degree n is denoted Tn.x/ and is given by the
explicit formula

Tn.x/ D cos.n arccos x/ (5.8.1)

This may look trigonometric at first glance (and there is in fact a close relation be-
tween the Chebyshev polynomials and the discrete Fourier transform); however,
(5.8.1) can be combined with trigonometric identities to yield explicit expressions
for Tn.x/ (see Figure 5.8.1):

T0.x/ D 1

T1.x/ D x

T2.x/ D 2x
2 � 1

T3.x/ D 4x
3 � 3x

T4.x/ D 8x
4 � 8x2 C 1

	 	 	

TnC1.x/ D 2xTn.x/ � Tn�1.x/ n � 1:

(5.8.2)

(There also exist inverse formulas for the powers of x in terms of the Tn’s — see,
e.g., [1].)

The Chebyshev polynomials are orthogonal in the interval Œ�1; 1� over a weight
.1 � x2/�1=2. In particular,

Z 1

�1

Ti .x/Tj .x/
p
1 � x2

dx D

�
0 i ¤ j

	=2 i D j ¤ 0

	 i D j D 0

(5.8.3)

The polynomial Tn.x/ has n zeros in the interval Œ�1; 1�, and they are located
at the points

x D cos

 
	.k C 1

2
/

n

!
k D 0; 1; : : : ; n � 1 (5.8.4)

In this same interval there are nC 1 extrema (maxima and minima), located at

x D cos

�
	k

n

�
k D 0; 1; : : : ; n (5.8.5)

At all of the maxima Tn.x/ D 1, while at all of the minima Tn.x/ D �1; it is pre-
cisely this property that makes the Chebyshev polynomials so useful in polynomial
approximation of functions.

The Chebyshev polynomials satisfy a discrete orthogonality relation as well as
the continuous one (5.8.3): If xk.k D 0; : : : ; m� 1/ are the m zeros of Tm.x/ given
by (5.8.4), and if i; j < m, then

m�1X
kD0

Ti .xk/Tj .xk/ D

�
0 i ¤ j

m=2 i D j ¤ 0

m i D j D 0

(5.8.6)
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Figure 5.8.1. Chebyshev polynomials T0.x/ through T6.x/. Note that Tj has j roots in the interval
.�1; 1/ and that all the polynomials are bounded between˙1.

It is not too difficult to combine equations (5.8.1), (5.8.4), and (5.8.6) to prove
the following theorem: If f .x/ is an arbitrary function in the interval Œ�1; 1�, and if
N coefficients cj ; j D 0; : : : ; N � 1, are defined by

cj D
2

N

N�1X
kD0

f .xk/Tj .xk/

D
2

N

N�1X
kD0

f

"
cos

 
	.k C 1

2
/

N

!#
cos

 
	j.k C 1

2
/

N

! (5.8.7)

then the approximation formula

f .x/ �

"
N�1X
kD0

ckTk.x/

#
�
1

2
c0 (5.8.8)

is exact for x equal to all of the N zeros of TN .x/.
For a fixed N , equation (5.8.8) is a polynomial in x that approximates the func-

tion f .x/ in the interval Œ�1; 1� (where all the zeros of TN .x/ are located). Why is
this particular approximating polynomial better than any other one, exact on some
other set of N points? The answer is not that (5.8.8) is necessarily more accurate
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than some other approximating polynomial of the same order N (for some specified
definition of “accurate”), but rather that (5.8.8) can be truncated to a polynomial of
lower degree m � N in a very graceful way, one that does yield the “most accu-
rate” approximation of degreem (in a sense that can be made precise). SupposeN is
so large that (5.8.8) is virtually a perfect approximation of f .x/. Now consider the
truncated approximation

f .x/ �

"
m�1X
kD0

ckTk.x/

#
�
1

2
c0 (5.8.9)

with the same cj ’s, computed from (5.8.7). Since the Tk.x/’s are all bounded be-
tween ˙1, the difference between (5.8.9) and (5.8.8) can be no larger than the sum
of the neglected ck’s (k D m; : : : ; N � 1). In fact, if the ck’s are rapidly decreasing
(which is the typical case), then the error is dominated by cmTm.x/, an oscillatory
function with m C 1 equal extrema distributed smoothly over the interval Œ�1; 1�.
This smooth spreading out of the error is a very important property: The Cheby-
shev approximation (5.8.9) is very nearly the same polynomial as that holy grail of
approximating polynomials the minimax polynomial, which (among all polynomi-
als of the same degree) has the smallest maximum deviation from the true function
f .x/. The minimax polynomial is very difficult to find; the Chebyshev approximat-
ing polynomial is almost identical and is very easy to compute!

So, given some (perhaps difficult) means of computing the function f .x/, we
now need algorithms for implementing (5.8.7) and (after inspection of the resulting
ck’s and choice of a truncating value m) evaluating (5.8.9). The latter equation then
becomes an easy way of computing f .x/ for all subsequent time.

The first of these tasks is straightforward. A generalization of equation (5.8.7)
that is here implemented is to allow the range of approximation to be between two
arbitrary limits a and b, instead of just �1 to 1. This is effected by a change of
variable

y �
x � 1

2
.b C a/

1
2
.b � a/

(5.8.10)

and by the approximation of f .x/ by a Chebyshev polynomial in y.
It will be convenient for us to group a number of functions related to Chebyshev

polynomials into a single object, even though discussion of their specifics is spread
out over �5.8 – �5.11:

struct Chebyshev { chebyshev.h
Object for Chebyshev approximation and related methods.

Int n,m; Number of total, and truncated, coefficients.
VecDoub c;
Doub a,b; Approximation interval.

Chebyshev(Doub func(Doub), Doub aa, Doub bb, Int nn);
Constructor. Approximate the function func in the interval [aa,bb] with nn terms.
Chebyshev(VecDoub &cc, Doub aa, Doub bb)

: n(cc.size()), m(n), c(cc), a(aa), b(bb) {}
Constructor from previously computed coefficients.
Int setm(Doub thresh) {while (m>1 && abs(c[m-1])<thresh) m--; return m;}
Set m, the number of coefficients after truncating to an error level thresh, and return the
value set.
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Doub eval(Doub x, Int m);
inline Doub operator() (Doub x) {return eval(x,m);}
Return a value for the Chebyshev fit, either using the stored m or else overriding it.

Chebyshev derivative(); See �5.9.
Chebyshev integral();

VecDoub polycofs(Int m); See �5.10.
inline VecDoub polycofs() {return polycofs(m);}
Chebyshev(VecDoub &pc); See �5.11.

};

The first constructor, the one with an arbitrary function func as its first argu-
ment, calculates and saves nn Chebyshev coefficients that approximate func in the
range aa to bb. (You can ignore for now the second constructor, which simply makes
a Chebyshev object from already-calculated data.) Let us also note the method
setm, which provides a quick way to truncate the Chebyshev series by (in effect)
deleting, from the right, all coefficients smaller in magnitude than some threshold
thresh.

Chebyshev::Chebyshev(Doub func(Doub), Doub aa, Doub bb, Int nn=50)chebyshev.h
: n(nn), m(nn), c(n), a(aa), b(bb)

Chebyshev fit: Given a function func, lower and upper limits of the interval [a,b], compute and

save nn coefficients of the Chebyshev approximation such that func.x/ 	 Œ
Pnn-1
kD0 ckTk.y/��

c0=2, where y and x are related by (5.8.10). This routine is intended to be called with moder-
ately large n (e.g., 30 or 50), the array of c’s subsequently to be truncated at the smaller value
m such that cm and subsequent elements are negligible.
{

const Doub pi=3.141592653589793;
Int k,j;
Doub fac,bpa,bma,y,sum;
VecDoub f(n);
bma=0.5*(b-a);
bpa=0.5*(b+a);
for (k=0;k<n;k++) { We evaluate the function at the n points required

by (5.8.7).y=cos(pi*(k+0.5)/n);
f[k]=func(y*bma+bpa);

}
fac=2.0/n;
for (j=0;j<n;j++) { Now evaluate (5.8.7).

sum=0.0;
for (k=0;k<n;k++)

sum += f[k]*cos(pi*j*(k+0.5)/n);
c[j]=fac*sum;

}
}

If you find that the constructor’s execution time is dominated by the calculation
of N 2 cosines, rather than by the N evaluations of your function, then you should
look ahead to �12.3, especially equation (12.4.16), which shows how fast cosine
transform methods can be used to evaluate equation (5.8.7).

Now that we have the Chebyshev coefficients, how do we evaluate the approxi-
mation? One could use the recurrence relation of equation (5.8.2) to generate values
for Tk.x/ from T0 D 1; T1 D x, while also accumulating the sum of (5.8.9). It
is better to use Clenshaw’s recurrence formula (�5.4), effecting the two processes
simultaneously. Applied to the Chebyshev series (5.8.9), the recurrence is
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dmC1 � dm � 0

dj D 2xdjC1 � djC2 C cj j D m � 1;m � 2; : : : ; 1

f .x/ � d0 D xd1 � d2 C
1
2
c0

(5.8.11)

Doub Chebyshev::eval(Doub x, Int m) chebyshev.h

Chebyshev evaluation: The Chebyshev polynomial
Pm-1
kD0 ckTk.y/ � c0=2 is evaluated at a

point y D Œx� .bC a/=2�=Œ.b� a/=2�, and the result is returned as the function value.
{

Doub d=0.0,dd=0.0,sv,y,y2;
Int j;
if ((x-a)*(x-b) > 0.0) throw("x not in range in Chebyshev::eval");
y2=2.0*(y=(2.0*x-a-b)/(b-a)); Change of variable.
for (j=m-1;j>0;j--) { Clenshaw’s recurrence.

sv=d;
d=y2*d-dd+c[j];
dd=sv;

}
return y*d-dd+0.5*c[0]; Last step is different.

}

The method eval has an argument for specifying how many leading coefficients
m should be used in the evaluation. If you simply want to use a stored value of m
that was set by a previous call to setm (or, by hand, by you), then you can use the
Chebyshev object as a functor. For example,

Chebyshev approxfunc(func,0.,1.,50);

approxfunc.setm(1.e-8);

...

y = approxfunc(x);

If we are approximating an even function on the interval Œ�1; 1�, its expan-
sion will involve only even Chebyshev polynomials. It is wasteful to construct a
Chebyshev object with all the odd coefficients zero [2]. Instead, using the half-angle
identity for the cosine in equation (5.8.1), we get the relation

T2n.x/ D Tn.2x
2 � 1/ (5.8.12)

Thus we can construct a more efficient Chebyshev object for even functions simply
by replacing the function’s argument x by 2x2 � 1, and likewise when we evaluate
the Chebyshev approximation.

An odd function will have an expansion involving only odd Chebyshev polyno-
mials. It is best to rewrite it as an expansion for the function f .x/=x, which involves
only even Chebyshev polynomials. This has the added benefit of giving accurate val-
ues for f .x/=x near x D 0. Don’t try to construct the series by evaluating f .x/=x
numerically, however. Rather, the coefficients c0n for f .x/=x can be found from
those for f .x/ by recurrence:

c0NC1 D 0

c0n�1 D 2cn � c
0
nC1; n D N � 1;N � 3; : : :

(5.8.13)

Equation (5.8.13) follows from the recurrence relation in equation (5.8.2).
If you insist on evaluating an odd Chebyshev series, the efficient way is to once

again to replace x by y D 2x2 � 1 as the argument of your function. Now, however,
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you must also change the last formula in equation (5.8.11) to be

f .x/ D xŒ.2y � 1/d1 � d2 C c0� (5.8.14)

and change the corresponding line in eval.

5.8.1 Chebyshev and Exponential Convergence
Since first mentioning truncation error in �1.1, we have seen many examples of

algorithms with an adjustable order, say M , such that the truncation error decreases
as theM th power of something. Examples include most of the interpolation methods
in Chapter 3 and most of the quadrature methods in Chapter 4. In these examples
there is also another parameter, N , which is the number of points at which a function
will be evaluated.

We have many times warned that “higher order does not necessarily give higher
accuracy.” That remains good advice when N is held fixed while M is increased.
However, a recently emerging theme in many areas of scientific computation is the
use of methods that allow, in very special cases, M and N to be increased together,
with the result that errors not only do decrease with higher order, but decrease expo-
nentially!

The common thread in almost all of these relatively new methods is the remark-
able fact that infinitely smooth functions become exponentially well determined by
N sample points as N is increased. Thus, mere power-law convergence may be just
a consequence of either (i) functions that are not smooth enough, or (ii) endpoint
effects.

We already saw several examples of this in Chapter 4. In �4.1 we pointed out
that high-order quadrature rules can have interior weights of unity, just like the trape-
zoidal rule; all of the “high-orderness” is obtained by a proper treatment near the
boundaries. In �4.5 we further saw that variable transformations that push the bound-
aries off to infinity produce rapidly converging quadrature algorithms. In �4.5.1 we
in fact proved exponential convergence, as a consequence of the Euler-Maclaurin
formula. Then in �4.6 we remarked on the fact that the convergence of Gaussian
quadratures could be exponentially rapid (an example, in the language above, of
increasing M and N simultaneously).

Chebyshev approximation can be exponentially convergent for a different
(though related) reason: Smooth periodic functions avoid endpoint effects by not
having endpoints at all! Chebyshev approximation can be viewed as mapping the
x interval Œ�1; 1� onto the angular interval Œ0; 	� (cf. equations 5.8.4 and 5.8.5) in
such a way that any infinitely smooth function on the interval Œ�1; 1� becomes an
infinitely smooth, even, periodic function on Œ0; 2	�. Figure 5.8.2 shows the idea
geometrically. By projecting the abscissas onto a semicircle, a half-period is pro-
duced. The other half-period is obtained by reflection, or could be imagined as the
result of projecting the function onto an identical lower semicircle. The zeros of the
Chebyshev polynomial, or nodes of a Chebyshev approximation, are equally spaced
on the circle, where the Chebyshev polynomial itself is a cosine function (cf. equa-
tion 5.8.1). This illustrates the close connection between Chebyshev approximation
and periodic functions on the circle; in Chapter 12, we will apply the discrete Fourier
transform to such functions in an almost equivalent way (�12.4.2).

The reason that Chebyshev works so well (and also why Gaussian quadratures
work so well) is thus seen to be intimately related to the special way that the the
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Figure 5.8.2. Geometrical construction showing how Chebyshev approximation is related to periodic
functions. A smooth function on the interval is plotted in (a). In (b), the abscissas are mapped to a
semicircle. In (c), the semicircle is unrolled. Because of the semicircle’s vertical tangents, the function is
now nearly constant at the endpoints. In fact, if reflected into the interval Œ	; 2	�, it is a smooth, even,
periodic function on Œ0; 2	�.

sample points are bunched up near the endpoints of the interval. Any function that is
bounded on the interval will have a convergent Chebyshev approximation as N !
1, even if there are nearby poles in the complex plane. For functions that are not
infinitely smooth, the actual rate of convergence depends on the smoothness of the
function: the more deriviatives that are bounded, the greater the convergence rate.
For the special case of a C1 function, the convergence is exponential. In �3.0, in
connection with polynomial interpolation, we mentioned the other side of the coin:
equally spaced samples on the interval are about the worst possible geometry and
often lead to ill-conditioned problems.

Use of the sampling theorem (�4.5, �6.9, �12.1, �13.11) is often closely associ-
ated with exponentially convergent methods. We will return to many of the concepts
of exponentially convergent methods when we discuss spectral methods for partial
differential equations in �20.7.
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5.9 Derivatives or Integrals of a
Chebyshev-Approximated Function

If you have obtained the Chebyshev coefficients that approximate a function in
a certain range (e.g., from chebft in �5.8), then it is a simple matter to transform
them to Chebyshev coefficients corresponding to the derivative or integral of the
function. Having done this, you can evaluate the derivative or integral just as if it
were a function that you had Chebyshev-fitted ab initio.

The relevant formulas are these: If ci ; i D 0; : : : ; m�1 are the coefficients that
approximate a function f in equation (5.8.9),Ci are the coefficients that approximate
the indefinite integral of f , and c0i are the coefficients that approximate the derivative
of f , then

Ci D
ci�1 � ciC1

2i
.i > 0/ (5.9.1)

c0i�1 D c
0
iC1 C 2ici .i D m � 1;m � 2; : : : ; 1/ (5.9.2)

Equation (5.9.1) is augmented by an arbitrary choice of C0, corresponding to an
arbitrary constant of integration. Equation (5.9.2), which is a recurrence, is started
with the values c0m D c

0
m�1 D 0, corresponding to no information about the mC 1st

Chebyshev coefficient of the original function f .
Here are routines for implementing equations (5.9.1) and (5.9.2). Each returns

a new Chebyshev object on which you can setm, call eval, or use directly as a
functor.

Chebyshev Chebyshev::derivative()chebyshev.h
Return a new Chebyshev object that approximates the derivative of the existing function over
the same range [a,b].
{

Int j;
Doub con;
VecDoub cder(n);
cder[n-1]=0.0; n-1 and n-2 are special cases.
cder[n-2]=2*(n-1)*c[n-1];
for (j=n-2;j>0;j--) Equation (5.9.2).

cder[j-1]=cder[j+1]+2*j*c[j];
con=2.0/(b-a);
for (j=0;j<n;j++) cder[j] *= con; Normalize to the interval b-a.
return Chebyshev(cder,a,b);

}

Chebyshev Chebyshev::integral()chebyshev.h
Return a new Chebyshev object that approximates the indefinite integral of the existing function
over the same range [a,b]. The constant of integration is set so that the integral vanishes at a.
{

Int j;
Doub sum=0.0,fac=1.0,con;
VecDoub cint(n);
con=0.25*(b-a); Factor that normalizes to the interval b-a.
for (j=1;j<n-1;j++) {

cint[j]=con*(c[j-1]-c[j+1])/j; Equation (5.9.1).
sum += fac*cint[j]; Accumulates the constant of integration.
fac = -fac; Will equal ˙1.

}
cint[n-1]=con*c[n-2]/(n-1); Special case of (5.9.1) for n-1.
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sum += fac*cint[n-1];
cint[0]=2.0*sum; Set the constant of integration.
return Chebyshev(cint,a,b);

}

5.9.1 Clenshaw-Curtis Quadrature
Since a smooth function’s Chebyshev coefficients ci decrease rapidly, generally expo-

nentially, equation (5.9.1) is often quite efficient as the basis for a quadrature scheme. As
described above, the Chebyshev object can be used to compute the integral

R x
a f .x/dx when

many different values of x in the range a 
 x 
 b are needed. If only the single definite

integral
R b
a f .x/dx is required, then instead use the simpler formula, derived from equation

(5.9.1),Z b

a
f .x/dx D .b � a/

�
1

2
c0 �

1

3
c2 �

1

15
c4 � 	 	 	 �

1

.2k C 1/.2k � 1/
c2k � 	 	 	

�
(5.9.3)

where the ci’s are as returned by chebft. The series can be truncated when c2k becomes
negligible, and the first neglected term gives an error estimate.

This scheme is known as Clenshaw-Curtis quadrature [1]. It is often combined with an
adaptive choice of N , the number of Chebyshev coefficients calculated via equation (5.8.7),
which is also the number of function evaluations of f .x/. If a modest choice of N does not
give a sufficiently small c2k in equation (5.9.3), then a larger value is tried. In this adaptive
case, it is even better to replace equation (5.8.7) by the so-called “trapezoidal” or Gauss-
Lobatto (�4.6) variant,

cj D
2

N

NX00

kD0

f

�
cos

�
	k

N

��
cos

�
	jk

N

�
j D 0; : : : ; N � 1 (5.9.4)

where (N.B.!) the two primes signify that the first and last terms in the sum are to be multiplied
by 1=2. If N is doubled in equation (5.9.4), then half of the new function evaluation points
are identical to the old ones, allowing the previous function evaluations to be reused. This fea-
ture, plus the analytic weights and abscissas (cosine functions in 5.9.4), often give Clenshaw-
Curtis quadrature an edge over high-order adaptive Gaussian quadrature (cf. �4.6.4), which
the method otherwise resembles.

If your problem forces you to large values of N , you should be aware that equation
(5.9.4) can be evaluated rapidly, and simultaneously for all the values of j , by a fast cosine
transform. (See �12.3, especially equation 12.4.11. We already remarked that the nontrape-
zoidal form (5.8.7) can also be done by fast cosine methods, cf. equation 12.4.16.)

CITED REFERENCES AND FURTHER READING:

Goodwin, E.T. (ed.) 1961, Modern Computing Methods, 2nd ed. (New York: Philosophical Li-
brary), pp. 78–79.

Clenshaw, C.W., and Curtis, A.R. 1960, “A Method for Numerical Integration on an Automatic
Computer,” Numerische Mathematik, vol. 2, pp. 197–205.[1]

5.10 Polynomial Approximation from
Chebyshev Coefficients

You may well ask after reading the preceding two sections: Must I store and evaluate my
Chebyshev approximation as an array of Chebyshev coefficients for a transformed variable y?
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Can’t I convert the ck’s into actual polynomial coefficients in the original variable x and have
an approximation of the following form?

f .x/ �

m�1X
kD0

gkx
k ; a 
 x 
 b (5.10.1)

Yes, you can do this (and we will give you the algorithm to do it), but we caution you
against it: Evaluating equation (5.10.1), where the coefficient g’s reflect an underlying Cheby-
shev approximation, usually requires more significant figures than evaluation of the Cheby-
shev sum directly (as by eval). This is because the Chebyshev polynomials themselves ex-
hibit a rather delicate cancellation: The leading coefficient of Tn.x/, for example, is 2n�1;
other coefficients of Tn.x/ are even bigger; yet they all manage to combine into a polynomial
that lies between ˙1. Only when m is no larger than 7 or 8 should you contemplate writing a
Chebyshev fit as a direct polynomial, and even in those cases you should be willing to tolerate
two or so significant figures less accuracy than the roundoff limit of your machine.

You get the g’s in equation (5.10.1) in two steps. First, use the member function polycofs
in Chebyshev to output a set of polynomial coefficients equivalent to the stored ck’s (that is,
with the range Œa; b� scaled to Œ�1; 1�). Second, use the routine pcshft to transform the
coefficients so as to map the range back to Œa; b�. The two required routines are listed here:

VecDoub Chebyshev::polycofs(Int m)chebyshev.h
Polynomial coefficients from a Chebyshev fit. Given a coefficient array c[0..n-1], this routine

returns a coefficient array d[0..n-1] such that
Pn-1
kD0 dky

k D
Pn-1
kD0 ckTk.y/ � c0=2. The

method is Clenshaw’s recurrence (5.8.11), but now applied algebraically rather than arithmeti-
cally.
{

Int k,j;
Doub sv;
VecDoub d(m),dd(m);
for (j=0;j<m;j++) d[j]=dd[j]=0.0;
d[0]=c[m-1];
for (j=m-2;j>0;j--) {

for (k=m-j;k>0;k--) {
sv=d[k];
d[k]=2.0*d[k-1]-dd[k];
dd[k]=sv;

}
sv=d[0];
d[0] = -dd[0]+c[j];
dd[0]=sv;

}
for (j=m-1;j>0;j--) d[j]=d[j-1]-dd[j];
d[0] = -dd[0]+0.5*c[0];
return d;

}

void pcshft(Doub a, Doub b, VecDoub_IO &d)pcshft.h
Polynomial coefficient shift. Given a coefficient array d[0..n-1], this routine generates a co-

efficient array g[0..n-1] such that
Pn-1
kD0 dky

k D
Pn-1
kD0 gkx

k , where x and y are related
by (5.8.10), i.e., the interval �1 < y < 1 is mapped to the interval a < x < b. The array g is
returned in d.
{

Int k,j,n=d.size();
Doub cnst=2.0/(b-a), fac=cnst;
for (j=1;j<n;j++) { First we rescale by the factor const...

d[j] *= fac;
fac *= cnst;

}
cnst=0.5*(a+b); ...which is then redefined as the desired shift.
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for (j=0;j<=n-2;j++) We accomplish the shift by synthetic division, a miracle
of high-school algebra.for (k=n-2;k>=j;k--)

d[k] -= cnst*d[k+1];
}

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington, DC:
Mathematical Association of America), pp. 59, 182–183 [synthetic division].

5.11 Economization of Power Series

One particular application of Chebyshev methods, the economization of power series, is
an occasionally useful technique, with a flavor of getting something for nothing.

Suppose that you know how to compute a function by the use of a convergent power
series, for example,

f .x/ �
1

2
�
x

4
C
x2

8
�
x3

16
C 	 	 	 (5.11.1)

(This function is actually just 1=.x C 2/, but pretend you don’t know that.) You might be
doing a problem that requires evaluating the series many times in some particular interval, say
Œ0; 1�. Everything is fine, except that the series requires a large number of terms before its
error (approximated by the first neglected term, say) is tolerable. In our example, with x D 1,
it takes about 30 terms before the first neglected term is < 10�9.

Notice that because of the large exponent in x30, the error is much smaller than 10�9

everywhere in the interval except at the very largest values of x. This is the feature that allows
“economization”: If we are willing to let the error elsewhere in the interval rise to about the
same value that the first neglected term has at the extreme end of the interval, then we can
replace the 30-term series by one that is significantly shorter.

Here are the steps for doing this:

1. Compute enough coefficients of the power series to get accurate function values every-
where in the range of interest.

2. Change variables from x to y, as in equation (5.8.10), to map the x interval into �1 

y 
 1.

3. Find the Chebyshev series (like equation 5.8.8) that exactly equals your truncated
power series.

4. Truncate this Chebyshev series to a smaller number of terms, using the coefficient of
the first neglected Chebyshev polynomial as an estimate of the error.

5. Convert back to a polynomial in y.
6. Change variables back to x.

We already have tools for all of the steps, except for steps 2 and 3. Step 2 is exactly
the inverse of the routine pcshft (�5.10), which mapped a polynomial from y (in the interval
Œ�1; 1�) to x (in the interval Œa; b�). But since equation (5.8.10) is a linear relation between x
and y, one can also use pcshft for the inverse. The inverse of

pcshft(a,b,d,n)

turns out to be (you can check this)

void ipcshft(Doub a, Doub b, VecDoub_IO &d) { pcshft.h
pcshft(-(2.+b+a)/(b-a),(2.-b-a)/(b-a),d);

}
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Step 3 requires a new Chebyshev constructor, one that computes Chebyshev coefficients
from a vector of polynomial coefficients. The following code accomplishes this. The algo-
rithm is based on constructing the polynomial by the technique of �5.3 starting with the highest
coefficient d[n-1] and using the recurrence of equation (5.8.2) written in the form

xT0 D T1

xTn D
1
2 .TnC1 C Tn�1/; n � 1:

(5.11.2)

The only subtlety is to multiply the coefficient of T0 by 2 since it gets used with a factor 1/2
in equation (5.8.8).

Chebyshev::Chebyshev(VecDoub &d)chebyshev.h
: n(d.size()), m(n), c(n), a(-1.), b(1.)

Inverse of routine polycofs in Chebyshev: Given an array of polynomial coefficients d[0..n-1],
construct an equivalent Chebyshev object.
{

c[n-1]=d[n-1];
c[n-2]=2.0*d[n-2];
for (Int j=n-3;j>=0;j--) {

c[j]=2.0*d[j]+c[j+2];
for (Int i=j+1;i<n-2;i++) {

c[i] = (c[i]+c[i+2])/2;
}
c[n-2] /= 2;
c[n-1] /= 2;

}
}

Putting them all together, steps 2 through 6 will look something like this (starting with a
vector powser of power series coefficients):

ipcshft(a,b,powser);
Chebyshev cpowser(powser);
cpowser.setm(1.e-9);
VecDoub d=cpowser.polycofs();
pcshft(a,b,d);

In our example, by the way, the number of terms required for 10�9 accuracy is reduced
from 30 to 9. Replacing a 30-term polynomial with a 9-term polynomial without any loss
of accuracy — that does seem to be getting something for nothing. Is there some magic in
this technique? Not really. The 30-term polynomial defined a function f .x/. Equivalent to
economizing the series, we could instead have evaluated f .x/ at enough points to construct
its Chebyshev approximation in the interval of interest, by the methods of �5.8. We would
have obtained just the same lower-order polynomial. The principal lesson is that the rate
of convergence of Chebyshev coefficients has nothing to do with the rate of convergence of
power series coefficients; and it is the former that dictates the number of terms needed in a
polynomial approximation. A function might have a divergent power series in some region
of interest, but if the function itself is well-behaved, it will have perfectly good polynomial
approximations. These can be found by the methods of �5.8, but not by economization of
series. There is slightly less to economization of series than meets the eye.

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington, DC:
Mathematical Association of America), Chapter 12.
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5.12 Padé Approximants

A Padé approximant, so called, is that rational function (of a specified order) whose
power series expansion agrees with a given power series to the highest possible order. If the
rational function is

R.x/ �

MX
kD0

akx
k

1C

NX
kD1

bkx
k

(5.12.1)

then R.x/ is said to be a Padé approximant to the series

f .x/ �

1X
kD0

ckx
k (5.12.2)

if
R.0/ D f .0/ (5.12.3)

and also

dk

dxk
R.x/

ˇ̌̌̌
ˇ
xD0

D
dk

dxk
f .x/

ˇ̌̌̌
ˇ
xD0

; k D 1; 2; : : : ;M CN (5.12.4)

Equations (5.12.3) and (5.12.4) furnish M CN C 1 equations for the unknowns a0; : : : ; aM
and b1; : : : ; bN . The easiest way to see what these equations are is to equate (5.12.1) and
(5.12.2), multiply both by the denominator of equation (5.12.1), and equate all powers of x
that have either a’s or b’s in their coefficients. If we consider only the special case of a diagonal
rational approximation,M D N (cf. �3.4), then we have a0 D c0, with the remaining a’s and
b’s satisfying

NX
mD1

bmcN�mCk D �cNCk ; k D 1; : : : ; N (5.12.5)

kX
mD0

bmck�m D ak ; k D 1; : : : ; N (5.12.6)

(note, in equation 5.12.1, that b0 D 1). To solve these, start with equations (5.12.5), which are
a set of linear equations for all the unknown b’s. Although the set is in the form of a Toeplitz
matrix (compare equation 2.8.8), experience shows that the equations are frequently close to
singular, so that one should not solve them by the methods of �2.8, but rather by full LU
decomposition. Additionally, it is a good idea to refine the solution by iterative improvement
(method mprove in �2.5) [1].

Once the b’s are known, then equation (5.12.6) gives an explicit formula for the unknown
a’s, completing the solution.

Padé approximants are typically used when there is some unknown underlying function
f .x/. We suppose that you are able somehow to compute, perhaps by laborious analytic
expansions, the values of f .x/ and a few of its derivatives at x D 0: f .0/, f 0.0/, f 00.0/, and
so on. These are of course the first few coefficients in the power series expansion of f .x/;
but they are not necessarily getting small, and you have no idea where (or whether) the power
series is convergent.

By contrast with techniques like Chebyshev approximation (�5.8) or economization of
power series (�5.11) that only condense the information that you already know about a func-
tion, Padé approximants can give you genuinely new information about your function’s values.
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Figure 5.12.1. The five-term power series expansion and the derived five-coefficient Padé approximant for
a sample function f .x/. The full power series converges only for x < 1. Note that the Padé approximant
maintains accuracy far outside the radius of convergence of the series.

It is sometimes quite mysterious how well this can work. (Like other mysteries in mathemat-
ics, it relates to analyticity.) An example will illustrate.

Imagine that, by extraordinary labors, you have ground out the first five terms in the
power series expansion of an unknown function f .x/,

f .x/ � 2C
1

9
x C

1

81
x2 �

49

8748
x3 C

175

78732
x4 C 	 	 	 (5.12.7)

(It is not really necessary that you know the coefficients in exact rational form — numerical
values are just as good. We here write them as rationals to give you the impression that they
derive from some side analytic calculation.) Equation (5.12.7) is plotted as the curve labeled
“power series” in Figure 5.12.1. One sees that for x & 4 it is dominated by its largest,
quartic, term.

We now take the five coefficients in equation (5.12.7) and run them through the routine
pade listed below. It returns five rational coefficients, three a’s and two b’s, for use in equation
(5.12.1) with M D N D 2. The curve in the figure labeled “Padé” plots the resulting rational
function. Note that both solid curves derive from the same five original coefficient values.

To evaluate the results, we need Deus ex machina (a useful fellow, when he is available)
to tell us that equation (5.12.7) is in fact the power series expansion of the function

f .x/ D Œ7C .1C x/4=3�1=3 (5.12.8)

which is plotted as the dotted curve in the figure. This function has a branch point at x D �1,
so its power series is convergent only in the range �1 < x < 1. In most of the range
shown in the figure, the series is divergent, and the value of its truncation to five terms is
rather meaningless. Nevertheless, those five terms, converted to a Padé approximant, give a
remarkably good representation of the function up to at least x � 10.
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Why does this work? Are there not other functions with the same first five terms in
their power series but completely different behavior in the range (say) 2 < x < 10? Indeed
there are. Padé approximation has the uncanny knack of picking the function you had in
mind from among all the possibilities. Except when it doesn’t! That is the downside of Padé
approximation: It is uncontrolled. There is, in general, no way to tell how accurate it is, or
how far out in x it can usefully be extended. It is a powerful, but in the end still mysterious,
technique.

Here is the routine that returns a Ratfn rational function object that is the Padé approxi-
mant to a set of power series coefficients that you provide. Note that the routine is specialized
to the case M D N . You can then use the Ratfn object directly as a functor, or else read out
its coefficients by hand (�5.1).

Ratfn pade(VecDoub_I &cof) pade.h
Given cof[0..2*n], the leading terms in the power series expansion of a function, solve the
linear Padé equations to return a Ratfn object that embodies a diagonal rational function
approximation to the same function.
{

const Doub BIG=1.0e99;
Int j,k,n=(cof.size()-1)/2;
Doub sum;
MatDoub q(n,n),qlu(n,n);
VecInt indx(n);
VecDoub x(n),y(n),num(n+1),denom(n+1);
for (j=0;j<n;j++) { Set up matrix for solving.

y[j]=cof[n+j+1];
for (k=0;k<n;k++) q[j][k]=cof[j-k+n];

}
LUdcmp lu(q); Solve by LU decomposition and backsubstitu-

tion, with iterative improvement.lu.solve(y,x);
for (j=0;j<4;j++) lu.mprove(y,x);
for (k=0;k<n;k++) { Calculate the remaining coefficients.

for (sum=cof[k+1],j=0;j<=k;j++) sum -= x[j]*cof[k-j];
y[k]=sum;

}
num[0] = cof[0];
denom[0] = 1.;
for (j=0;j<n;j++) { Copy answers to output.

num[j+1]=y[j];
denom[j+1] = -x[j];

}
return Ratfn(num,denom);

}

CITED REFERENCES AND FURTHER READING:

Ralston, A. and Wilf, H.S. 1960, Mathematical Methods for Digital Computers (New York: Wiley),
p. 14.

Cuyt, A., and Wuytack, L. 1987, Nonlinear Methods in Numerical Analysis (Amsterdam: North-
Holland), Chapter 2.

Graves-Morris, P.R. 1979, in Padé Approximation and Its Applications, Lecture Notes in Mathe-
matics, vol. 765, L. Wuytack, ed. (Berlin: Springer).[1]

5.13 Rational Chebyshev Approximation

In �5.8 and �5.10 we learned how to find good polynomial approximations to a given
function f .x/ in a given interval a 
 x 
 b. Here, we want to generalize the task to find
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good approximations that are rational functions (see �5.1). The reason for doing so is that,
for some functions and some intervals, the optimal rational function approximation is able
to achieve substantially higher accuracy than the optimal polynomial approximation with the
same number of coefficients. This must be weighed against the fact that finding a rational func-
tion approximation is not as straightforward as finding a polynomial approximation, which, as
we saw, could be done elegantly via Chebyshev polynomials.

Let the desired rational function R.x/ have a numerator of degree m and denominator
of degree k. Then we have

R.x/ �
p0 C p1x C 	 	 	 C pmx

m

1C q1x C 	 	 	 C qkx
k
� f .x/ for a 
 x 
 b (5.13.1)

The unknown quantities that we need to find are p0; : : : ; pm and q1; : : : ; qk , that is, m C
k C 1 quantities in all. Let r.x/ denote the deviation of R.x/ from f .x/, and let r denote its
maximum absolute value,

r.x/ � R.x/ � f .x/ r � max
a�x�b

jr.x/j (5.13.2)

The ideal minimax solution would be that choice of p’s and q’s that minimizes r . Obviously
there is some minimax solution, since r is bounded below by zero. How can we find it, or a
reasonable approximation to it?

A first hint is furnished by the following fundamental theorem: IfR.x/ is nondegenerate
(has no common polynomial factors in numerator and denominator), then there is a unique
choice of p’s and q’s that minimizes r ; for this choice, r.x/ has m C k C 2 extrema in
a 
 x 
 b, all of magnitude r and with alternating sign. (We have omitted some technical
assumptions in this theorem. See Ralston [1] for a precise statement.) We thus learn that the
situation with rational functions is quite analogous to that for minimax polynomials: In �5.8
we saw that the error term of an nth-order approximation, with nC 1 Chebyshev coefficients,
was generally dominated by the first neglected Chebyshev term, namely TnC1, which itself
has nC 2 extrema of equal magnitude and alternating sign. So, here, the number of rational
coefficients, mC k C 1, plays the same role of the number of polynomial coefficients, nC 1.

A different way to see why r.x/ should havemCkC2 extrema is to note that R.x/ can
be made exactly equal to f .x/ at any mC k C 1 points xi . Multiplying equation (5.13.1) by
its denominator gives the equations

p0Cp1xiC	 	 	Cpmx
m
i D f .xi /.1Cq1xiC	 	 	Cqkx

k
i / i D 0; 1; : : : ; mCk (5.13.3)

This is a set of mC k C 1 linear equations for the unknown p’s and q’s, which can be solved
by standard methods (e.g., LU decomposition). If we choose the xi’s to all be in the interval
.a; b/, then there will generically be an extremum between each chosen xi and xiC1, plus
also extrema where the function goes out of the interval at a and b, for a total of mC k C 2
extrema. For arbitrary xi’s, the extrema will not have the same magnitude. The theorem says
that, for one particular choice of xi’s, the magnitudes can be beaten down to the identical,
minimal, value of r .

Instead of making f .xi / and R.xi / equal at the points xi , one can instead force the
residual r.xi / to any desired values yi by solving the linear equations

p0 C p1xi C 	 	 	 C pmx
m
i D Œf .xi /� yi �.1C q1xi C 	 	 	 C qkx

k
i / i D 0; 1; : : : ; mC k

(5.13.4)
In fact, if the xi’s are chosen to be the extrema (not the zeros) of the minimax solution, then
the equations satisfied will be

p0Cp1xi C	 	 	Cpmx
m
i D Œf .xi /˙r�.1Cq1xi C	 	 	Cqkx

k
i / i D 0; 1; : : : ; mCkC1

(5.13.5)
where the˙ alternates for the alternating extrema. Notice that equation (5.13.5) is satisfied at
mC k C 2 extrema, while equation (5.13.4) was satisfied only at mC k C 1 arbitrary points.
How can this be? The answer is that r in equation (5.13.5) is an additional unknown, so that
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the number of both equations and unknowns is mC k C 2. True, the set is mildly nonlinear
(in r), but in general it is still perfectly soluble by methods that we will develop in Chapter 9.

We thus see that, given only the locations of the extrema of the minimax rational func-
tion, we can solve for its coefficients and maximum deviation. Additional theorems, leading
up to the so-called Remes algorithms [1], tell how to converge to these locations by an iterative
process. For example, here is a (slightly simplified) statement of Remes’ Second Algorithm:
(1) Find an initial rational function with mC k C 2 extrema xi (not having equal deviation).
(2) Solve equation (5.13.5) for new rational coefficients and r . (3) Evaluate the resultingR.x/
to find its actual extrema (which will not be the same as the guessed values). (4) Replace
each guessed value with the nearest actual extremum of the same sign. (5) Go back to step
2 and iterate to convergence. Under a broad set of assumptions, this method will converge.
Ralston [1] fills in the necessary details, including how to find the initial set of xi’s.

Up to this point, our discussion has been textbook standard. We now reveal ourselves as
heretics. We don’t much like the elegant Remes algorithm. Its two nested iterations (on r in
the nonlinear set 5.13.5, and on the new sets of xi’s) are finicky and require a lot of special
logic for degenerate cases. Even more heretical, we doubt that compulsive searching for the
exactly best, equal deviation approximation is worth the effort — except perhaps for those
few people in the world whose business it is to find optimal approximations that get built into
compilers and microcode.

When we use rational function approximation, the goal is usually much more pragmatic:
Inside some inner loop we are evaluating some function a zillion times, and we want to speed
up its evaluation. Almost never do we need this function to the last bit of machine accuracy.
Suppose (heresy!) we use an approximation whose error hasmC kC 2 extrema whose devia-
tions differ by a factor of 2. The theorems on which the Remes algorithms are based guarantee
that the perfect minimax solution will have extrema somewhere within this factor of 2 range
— forcing down the higher extrema will cause the lower ones to rise, until all are equal. So
our “sloppy” approximation is in fact within a fraction of a least significant bit of the minimax
one.

That is good enough for us, especially when we have available a very robust method
for finding the so-called “sloppy” approximation. Such a method is the least-squares solution
of overdetermined linear equations by singular value decomposition (�2.6 and �15.4). We
proceed as follows: First, solve (in the least-squares sense) equation (5.13.3), not just for
m C k C 1 values of xi , but for a significantly larger number of xi’s, spaced approximately
like the zeros of a high-order Chebyshev polynomial. This gives an initial guess for R.x/.
Second, tabulate the resulting deviations, find the mean absolute deviation, call it r , and then
solve (again in the least-squares sense) equation (5.13.5) with r fixed and the ˙ chosen to be
the sign of the observed deviation at each point xi . Third, repeat the second step a few times.

You can spot some Remes orthodoxy lurking in our algorithm: The equations we solve
are trying to bring the deviations not to zero, but rather to plus-or-minus some consistent
value. However, we dispense with keeping track of actual extrema, and we solve only linear
equations at each stage. One additional trick is to solve a weighted least-squares problem,
where the weights are chosen to beat down the largest deviations fastest.

Here is a function implementing these ideas. Notice that the only calls to the function fn
occur in the initial filling of the table fs. You could easily modify the code to do this filling
outside of the routine. It is not even necessary that your abscissas xs be exactly the ones
that we use, though the quality of the fit will deteriorate if you do not have several abscissas
between each extremum of the (underlying) minimax solution. The function returns a Ratfn
object that you can subsequently use as a functor, or from which you can extract the stored
coefficients.

Ratfn ratlsq(Doub fn(const Doub), const Doub a, const Doub b, const Int mm, ratlsq.h
const Int kk, Doub &dev)

Returns a rational function approximation to the function fn in the interval .a; b/. Input quanti-
ties mm and kk specify the order of the numerator and denominator, respectively. The maximum
absolute deviation of the approximation (insofar as is known) is returned as dev.
{

const Int NPFAC=8,MAXIT=5;
const Doub BIG=1.0e99,PIO2=1.570796326794896619;
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Int i,it,j,ncof=mm+kk+1,npt=NPFAC*ncof;
Number of points where function is evaluated, i.e., fineness of the mesh.
Doub devmax,e,hth,power,sum;
VecDoub bb(npt),coff(ncof),ee(npt),fs(npt),wt(npt),xs(npt);
MatDoub u(npt,ncof);
Ratfn ratbest(coff,mm+1,kk+1);
dev=BIG;
for (i=0;i<npt;i++) { Fill arrays with mesh abscissas and function val-

ues.if (i < (npt/2)-1) {
hth=PIO2*i/(npt-1.0); At each end, use formula that minimizes round-

off sensitivity.xs[i]=a+(b-a)*SQR(sin(hth));
} else {

hth=PIO2*(npt-i)/(npt-1.0);
xs[i]=b-(b-a)*SQR(sin(hth));

}
fs[i]=fn(xs[i]);
wt[i]=1.0; In later iterations we will adjust these weights to

combat the largest deviations.ee[i]=1.0;
}
e=0.0;
for (it=0;it<MAXIT;it++) { Loop over iterations.

for (i=0;i<npt;i++) { Set up the “design matrix” for the least-squares
fit.power=wt[i];

bb[i]=power*(fs[i]+SIGN(e,ee[i]));
Key idea here: Fit to fn.x/Ce where the deviation is positive, to fn.x/�e where
it is negative. Then e is supposed to become an approximation to the equal-ripple
deviation.
for (j=0;j<mm+1;j++) {

u[i][j]=power;
power *= xs[i];

}
power = -bb[i];
for (j=mm+1;j<ncof;j++) {

power *= xs[i];
u[i][j]=power;

}
}
SVD svd(u); Singular value decomposition.
svd.solve(bb,coff);
In especially singular or difficult cases, one might here edit the singular values, replacing
small values by zero in w[0..ncof-1].
devmax=sum=0.0;
Ratfn rat(coff,mm+1,kk+1);
for (j=0;j<npt;j++) { Tabulate the deviations and revise the weights.

ee[j]=rat(xs[j])-fs[j];
wt[j]=abs(ee[j]); Use weighting to emphasize most deviant points.
sum += wt[j];
if (wt[j] > devmax) devmax=wt[j];

}
e=sum/npt; Update e to be the mean absolute deviation.
if (devmax <= dev) { Save only the best coefficient set found.

ratbest = rat;
dev=devmax;

}
cout << " ratlsq iteration= " << it;
cout << " max error= " << setw(10) << devmax << endl;

}
return ratbest;

}

Figure 5.13.1 shows the discrepancies for the first five iterations of ratlsq when it is
applied to find the m D k D 4 rational fit to the function f .x/ D cos x=.1 C ex/ in the
interval .0; 	/. One sees that after the first iteration, the results are virtually as good as the
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Figure 5.13.1. Solid curves show deviations r.x/ for five successive iterations of the routine ratlsq for
an arbitrary test problem. The algorithm does not converge to exactly the minimax solution (shown as
the dotted curve). But, after one iteration, the discrepancy is a small fraction of the last significant bit of
accuracy.

minimax solution. The iterations do not converge in the order that the figure suggests. In fact,
it is the second iteration that is best (has smallest maximum deviation). The routine ratlsq
accordingly returns the best of its iterations, not necessarily the last one; there is no advantage
in doing more than five iterations.

CITED REFERENCES AND FURTHER READING:

Ralston, A. and Wilf, H.S. 1960, Mathematical Methods for Digital Computers (New York: Wiley),
Chapter 13.[1]

5.14 Evaluation of Functions by Path
Integration

In computer programming, the technique of choice is not necessarily the most
efficient, or elegant, or fastest executing one. Instead, it may be the one that is quick
to implement, general, and easy to check.

One sometimes needs only a few, or a few thousand, evaluations of a special
function, perhaps a complex-valued function of a complex variable, that has many
different parameters, or asymptotic regimes, or both. Use of the usual tricks (series,
continued fractions, rational function approximations, recurrence relations, and so
forth) may result in a patchwork program with tests and branches to different formu-
las. While such a program may be highly efficient in execution, it is often not the
shortest way to the answer from a standing start.
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A different technique of considerable generality is direct integration of a func-
tion’s defining differential equation — an ab initio integration for each desired func-
tion value — along a path in the complex plane if necessary. While this may at first
seem like swatting a fly with a golden brick, it turns out that when you already have
the brick, and the fly is asleep right under it, all you have to do is let it fall!

As a specific example, let us consider the complex hypergeometric function
2F1.a; b; cI z/, which is defined as the analytic continuation of the so-called hyper-
geometric series,

2F1.a; b; cI z/ D 1C
ab

c

z

1Š
C
a.aC 1/b.b C 1/

c.c C 1/

z2

2Š
C 	 	 	

C
a.aC 1/ : : : .aC j � 1/b.b C 1/ : : : .b C j � 1/

c.c C 1/ : : : .c C j � 1/

zj

j Š
C 	 	 	

(5.14.1)

The series converges only within the unit circle jzj < 1 (see [1]), but one’s interest in
the function is often not confined to this region.

The hypergeometric function 2F1 is a solution (in fact the solution that is regular
at the origin) of the hypergeometric differential equation, which we can write as

z.1 � z/F 00 D abF � Œc � .aC b C 1/z�F 0 (5.14.2)

Here prime denotes d=dz. One can see that the equation has regular singular points
at z D 0; 1; and1. Since the desired solution is regular at z D 0, the values 1 and
1 will in general be branch points. If we want 2F1 to be a single-valued function,
we must have a branch cut connecting these two points. A conventional position for
this cut is along the positive real axis from 1 to1, though we may wish to keep open
the possibility of altering this choice for some applications.

Our golden brick consists of a collection of routines for the integration of sets
of ordinary differential equations, which we will develop in detail later, in Chapter
17. For now, we need only a high-level, “black-box” routine that integrates such a set
from initial conditions at one value of a (real) independent variable to final conditions
at some other value of the independent variable, while automatically adjusting its
internal stepsize to maintain some specified accuracy. That routine is called Odeint
and, in one particular invocation, it calculates its individual steps with a sophisticated
Bulirsch-Stoer technique.

Suppose that we know values for F and its derivative F 0 at some value z0, and
that we want to find F at some other point z1 in the complex plane. The straight-line
path connecting these two points is parametrized by

z.s/ D z0 C s.z1 � z0/ (5.14.3)

with s a real parameter. The differential equation (5.14.2) can now be written as a
set of two first-order equations,

dF

ds
D .z1 � z0/F

0

dF 0

ds
D .z1 � z0/

�
abF � Œc � .aC b C 1/z�F 0

z.1 � z/

� (5.14.4)



�

�

“nr3” — 2007/5/1 — 20:53 — page 253 — #275
�

�

� �

5.14 Evaluation of Functions by Path Integration 253

use power series
branch cut

Im

0 1 Re

Figure 5.14.1. Complex plane showing the singular points of the hypergeometric function, its branch cut,
and some integration paths from the circle jzj D 1=2 (where the power series converges rapidly) to other
points in the plane.

to be integrated from s D 0 to s D 1. Here F and F 0 are to be viewed as two
independent complex variables. The fact that prime means d=dz can be ignored; it
will emerge as a consequence of the first equation in (5.14.4). Moreover, the real and
imaginary parts of equation (5.14.4) define a set of four real differential equations,
with independent variable s. The complex arithmetic on the right-hand side can be
viewed as mere shorthand for how the four components are to be coupled. It is
precisely this point of view that gets passed to the routine Odeint, since it knows
nothing of either complex functions or complex independent variables.

It remains only to decide where to start, and what path to take in the complex
plane, to get to an arbitrary point z. This is where consideration of the function’s
singularities, and the adopted branch cut, enter. Figure 5.14.1 shows the strategy
that we adopt. For jzj 
 1=2, the series in equation (5.14.1) will in general converge
rapidly, and it makes sense to use it directly. Otherwise, we integrate along a straight-
line path from one of the starting points .˙1=2; 0/ or .0;˙1=2/. The former choices
are natural for 0 < Re.z/ < 1 and Re.z/ < 0, respectively. The latter choices are
used for Re.z/ > 1, above and below the branch cut; the purpose of starting away
from the real axis in these cases is to avoid passing too close to the singularity at
z D 1 (see Figure 5.14.1). The location of the branch cut is defined by the fact that
our adopted strategy never integrates across the real axis for Re.z/ > 1.
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An implementation of this algorithm is given in �6.13 as the routine hypgeo.
A number of variants on the procedure described thus far are possible and easy

to program. If successively called values of z are close together (with identical values
of a; b; and c), then you can save the state vector .F; F 0/ and the corresponding value
of z on each call, and use these as starting values for the next call. The incremental
integration may then take only one or two steps. Avoid integrating across the branch
cut unintentionally: The function value will be “correct,” but not the one you want.

Alternatively, you may wish to integrate to some position z by a dog-leg path
that does cross the real axis Re.z/ > 1, as a means of moving the branch cut. For
example, in some cases you might want to integrate from .0; 1=2/ to .3=2; 1=2/, and
go from there to any point with Re.z/ > 1 — with either sign of Imz. (If you are,
for example, finding roots of a function by an iterative method, you do not want
the integration for nearby values to take different paths around a branch point. If
it does, your root-finder will see discontinuous function values and will likely not
converge correctly!)

In any case, be aware that a loss of numerical accuracy can result if you integrate
through a region of large function value on your way to a final answer where the
function value is small. (For the hypergeometric function, a particular case of this is
when a and b are both large and positive, with c and x & 1.) In such cases, you’ll
need to find a better dog-leg path.

The general technique of evaluating a function by integrating its differential
equation in the complex plane can also be applied to other special functions. For
example, the complex Bessel function, Airy function, Coulomb wave function, and
Weber function are all special cases of the confluent hypergeometric function, with a
differential equation similar to the one used above (see, e.g., [1] �13.6, for a table of
special cases). The confluent hypergeometric function has no singularities at finite z:
That makes it easy to integrate. However, its essential singularity at infinity means
that it can have, along some paths and for some parameters, highly oscillatory or
exponentially decreasing behavior: That makes it hard to integrate. Some case-by-
case judgment (or experimentation) is therefore required.

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions (Washington: Na-
tional Bureau of Standards); reprinted 1968 (New York: Dover); online at http://www.nr.
com/aands.[1]



�

�

“nr3” — 2007/5/1 — 20:53 — page 255 — #277
�

�

� �

Special Functions CHAPTER 6

6.0 Introduction

There is nothing particularly special about a special function, except that some
person in authority or a textbook writer (not the same thing!) has decided to bestow
the moniker. Special functions are sometimes called higher transcendental functions
(higher than what?) or functions of mathematical physics (but they occur in other
fields also) or functions that satisfy certain frequently occurring second-order dif-
ferential equations (but not all special functions do). One might simply call them
“useful functions” and let it go at that. The choice of which functions to include in
this chapter is highly arbitrary.

Commercially available program libraries contain many special function rou-
tines that are intended for users who will have no idea what goes on inside them.
Such state-of-the-art black boxes are often very messy things, full of branches to
completely different methods depending on the value of the calling arguments. Black
boxes have, or should have, careful control of accuracy, to some stated uniform pre-
cision in all regimes.

We will not be quite so fastidious in our examples, in part because we want to
illustrate techniques from Chapter 5, and in part because we want you to understand
what goes on in the routines presented. Some of our routines have an accuracy pa-
rameter that can be made as small as desired, while others (especially those involving
polynomial fits) give only a certain stated accuracy, one that we believe is service-
able (usually, but not always, close to double precision). We do not certify that the
routines are perfect black boxes. We do hope that, if you ever encounter trouble in
a routine, you will be able to diagnose and correct the problem on the basis of the
information that we have given.

In short, the special function routines of this chapter are meant to be used — we
use them all the time — but we also want you to learn from their inner workings.

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions (Washington: Na-
tional Bureau of Standards); reprinted 1968 (New York: Dover); online at http://www.nr.
com/aands.
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6.1 Gamma Function, Beta Function,
Factorials, Binomial Coefficients

The gamma function is defined by the integral

�.z/ D

Z 1
0

tz�1e�tdt (6.1.1)

When the argument z is an integer, the gamma function is just the familiar factorial
function, but offset by 1:

nŠ D �.nC 1/ (6.1.2)

The gamma function satisfies the recurrence relation

�.z C 1/ D z �.z/ (6.1.3)

If the function is known for arguments z > 1 or, more generally, in the half complex
plane Re.z/ > 1, it can be obtained for z < 1 or Re .z/ < 1 by the reflection formula

�.1 � z/ D
	

�.z/ sin.	z/
D

	z

�.1C z/ sin.	z/
(6.1.4)

Notice that �.z/ has a pole at z D 0 and at all negative integer values of z.
There are a variety of methods in use for calculating the function �.z/ numer-

ically, but none is quite as neat as the approximation derived by Lanczos [1]. This
scheme is entirely specific to the gamma function, seemingly plucked from thin air.
We will not attempt to derive the approximation, but only state the resulting for-
mula: For certain choices of rational � and integer N , and for certain coefficients
c1; c2; : : : ; cN , the gamma function is given by

�.z C 1/ D .z C � C
1

2
/zC

1
2 e�.zC�C

1
2 /

�
p
2	

�
c0 C

c1

z C 1
C

c2

z C 2
C 	 	 	 C

cN

z CN
C �

�
.z > 0/

(6.1.5)

You can see that this is a sort of take-off on Stirling’s approximation, but with a
series of corrections that take into account the first few poles in the left complex
plane. The constant c0 is very nearly equal to 1. The error term is parametrized by
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�. For N D 14, and a certain set of c’s and � (calculated by P. Godfrey), the error
is smaller than j�j < 10�15. Even more impressive is the fact that, with these same
constants, the formula (6.1.5) applies for the complex gamma function, everywhere
in the half complex plane Re z > 0, achieving almost the same accuracy as on the
real line.

It is better to implement ln�.x/ than �.x/, since the latter will overflow at
quite modest values of x. Often the gamma function is used in calculations where
the large values of �.x/ are divided by other large numbers, with the result being a
perfectly ordinary value. Such operations would normally be coded as subtraction of
logarithms. With (6.1.5) in hand, we can compute the logarithm of the gamma func-
tion with two calls to a logarithm and a few dozen arithmetic operations. This makes
it not much more difficult than other built-in functions that we take for granted, such
as sin x or ex:

Doub gammln(const Doub xx) { gamma.h
Returns the value lnŒ
.xx/� for xx > 0.

Int j;
Doub x,tmp,y,ser;
static const Doub cof[14]={57.1562356658629235,-59.5979603554754912,
14.1360979747417471,-0.491913816097620199,.339946499848118887e-4,
.465236289270485756e-4,-.983744753048795646e-4,.158088703224912494e-3,
-.210264441724104883e-3,.217439618115212643e-3,-.164318106536763890e-3,
.844182239838527433e-4,-.261908384015814087e-4,.368991826595316234e-5};
if (xx <= 0) throw("bad arg in gammln");
y=x=xx;
tmp = x+5.24218750000000000; Rational 671/128.
tmp = (x+0.5)*log(tmp)-tmp;
ser = 0.999999999999997092;
for (j=0;j<14;j++) ser += cof[j]/++y;
return tmp+log(2.5066282746310005*ser/x);

}

How shall we write a routine for the factorial function nŠ? Generally the fac-
torial function will be called for small integer values, and in most applications the
same integer value will be called for many times. It is obviously inefficient to call
exp(gammln(n+1.)) for each required factorial. Better is to initialize a static ta-
ble on the first call, and do a fast lookup on subsequent calls. The fixed size 171
for the table is because 170Š is representable as an IEEE double precision value, but
171Š overflows. It is also sometimes useful to know that factorials up to 22Š have
exact double precision representations (52 bits of mantissa, not counting powers of
two that are absorbed into the exponent), while 23Š and above are represented only
approximately.

Doub factrl(const Int n) { gamma.h
Returns the value nŠ as a floating-point number.

static VecDoub a(171);
static Bool init=true;
if (init) {

init = false;
a[0] = 1.;
for (Int i=1;i<171;i++) a[i] = i*a[i-1];

}
if (n < 0 || n > 170) throw("factrl out of range");
return a[n];

}
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More useful in practice is a function returning the log of a factorial, which
doesn’t have overflow issues. The size of the table of logarithms is whatever you can
afford in space and initialization time. The value NTOP D 2000 should be increased
if your integer arguments are often larger.

Doub factln(const Int n) {gamma.h
Returns ln.nŠ/.

static const Int NTOP=2000;
static VecDoub a(NTOP);
static Bool init=true;
if (init) {

init = false;
for (Int i=0;i<NTOP;i++) a[i] = gammln(i+1.);

}
if (n < 0) throw("negative arg in factln");
if (n < NTOP) return a[n];
return gammln(n+1.); Out of range of table.

}

The binomial coefficient is defined by 
n

k

!
D

nŠ

kŠ.n � k/Š
0 
 k 
 n (6.1.6)

A routine that takes advantage of the tables stored in factrl and factln is

Doub bico(const Int n, const Int k) {gamma.h
Returns the binomial coefficient

�
n
k



as a floating-point number.

if (n<0 || k<0 || k>n) throw("bad args in bico");
if (n<171) return floor(0.5+factrl(n)/(factrl(k)*factrl(n-k)));
return floor(0.5+exp(factln(n)-factln(k)-factln(n-k)));
The floor function cleans up roundoff error for smaller values of n and k.

}

If your problem requires a series of related binomial coefficients, a good idea is
to use recurrence relations, for example, 

nC 1

k

!
D

nC 1

n � k C 1

 
n

k

!
D

 
n

k

!
C

 
n

k � 1

!
 

n

k C 1

!
D
n � k

k C 1

 
n

k

! (6.1.7)

Finally, turning away from the combinatorial functions with integer-valued ar-
guments, we come to the beta function,

B.z;w/ D B.w; z/ D

Z 1

0

tz�1.1 � t /w�1dt (6.1.8)

which is related to the gamma function by

B.z;w/ D
�.z/�.w/

�.z C w/
(6.1.9)

hence
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Doub beta(const Doub z, const Doub w) { gamma.h
Returns the value of the beta function B.z;w/.

return exp(gammln(z)+gammln(w)-gammln(z+w));
}

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions (Washington: Na-
tional Bureau of Standards); reprinted 1968 (New York: Dover); online at http://www.nr.
com/aands, Chapter 6.

Lanczos, C. 1964, “A Precision Approximation of the Gamma Function,” SIAM Journal on Nu-
merical Analysis, ser. B, vol. 1, pp. 86–96.[1]

6.2 Incomplete Gamma Function and Error
Function

The incomplete gamma function is defined by

P.a; x/ �
�.a; x/

�.a/
�

1

�.a/

Z x

0

e�t ta�1dt .a > 0/ (6.2.1)

It has the limiting values

P.a; 0/ D 0 and P.a;1/ D 1 (6.2.2)

The incomplete gamma function P.a; x/ is monotonic and (for a greater than one or
so) rises from “near-zero” to “near-unity” in a range of x centered on about a � 1,
and of width about

p
a (see Figure 6.2.1).

The complement of P.a; x/ is also confusingly called an incomplete gamma
function,

Q.a; x/ � 1 � P.a; x/ �
�.a; x/

�.a/
�

1

�.a/

Z 1
x

e�t ta�1dt .a > 0/ (6.2.3)

It has the limiting values

Q.a; 0/ D 1 and Q.a;1/ D 0 (6.2.4)

The notations P.a; x/; �.a; x/, and �.a; x/ are standard; the notation Q.a; x/ is
specific to this book.

There is a series development for �.a; x/ as follows:

�.a; x/ D e�xxa
1X
nD0

�.a/

�.aC 1C n/
xn (6.2.5)

One does not actually need to compute a new �.a C 1 C n/ for each n; one rather
uses equation (6.1.3) and the previous coefficient.
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Figure 6.2.1. The incomplete gamma function P.a; x/ for four values of a.

A continued fraction development for �.a; x/ is

�.a; x/ D e�xxa
�

1

x C

1 � a

1C

1

x C

2 � a

1C

2

x C
	 	 	

�
.x > 0/ (6.2.6)

It is computationally better to use the even part of (6.2.6), which converges twice as
fast (see �5.2):

�.a; x/ D e�xxa
�

1

x C 1 � a �

1 	 .1 � a/

x C 3 � a �

2 	 .2 � a/

x C 5 � a �
	 	 	

�
.x > 0/

(6.2.7)
It turns out that (6.2.5) converges rapidly for x less than about a C 1, while

(6.2.6) or (6.2.7) converges rapidly for x greater than about aC1. In these respective
regimes each requires at most a few times

p
a terms to converge, and this many only

near x D a, where the incomplete gamma functions are varying most rapidly. For
moderate values of a, less than 100, say, (6.2.5) and (6.2.7) together allow evaluation
of the function for all x. An extra dividend is that we never need to compute a
function value near zero by subtracting two nearly equal numbers.

Some applications require P.a; x/ and Q.a; x/ for much larger values of a,
where both the series and the continued fraction are inefficient. In this regime, how-
ever, the integrand in equation (6.2.1) falls off sharply in both directions from its
peak, within a few times

p
a. An efficient procedure is to evaluate the integral di-

rectly, with a single step of high-order Gauss-Legendre quadrature (�4.6) extending
from x just far enough into the nearest tail to achieve negligible values of the inte-
grand. Actually it is “half a step,” because we need the dense abscissas only near x,
not far out on the tail where the integrand is effectively zero.
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We package the various incomplete gamma parts into an object Gamma. The
only persistent state is the value gln, which is set to �.a/ for the most recent call to
P.a; x/ or Q.a; x/. This is useful when you need a different normalization conven-
tion, for example �.a; x/ or �.a; x/ in equations (6.2.1) or (6.2.3).

struct Gamma : Gauleg18 { incgammabeta.h
Object for incomplete gamma function. Gauleg18 provides coefficients for Gauss-Legendre
quadrature.

static const Int ASWITCH=100; When to switch to quadrature method.
static const Doub EPS; See end of struct for initializations.
static const Doub FPMIN;
Doub gln;

Doub gammp(const Doub a, const Doub x) {
Returns the incomplete gamma function P.a; x/.

if (x < 0.0 || a <= 0.0) throw("bad args in gammp");
if (x == 0.0) return 0.0;
else if ((Int)a >= ASWITCH) return gammpapprox(a,x,1); Quadrature.
else if (x < a+1.0) return gser(a,x); Use the series representation.
else return 1.0-gcf(a,x); Use the continued fraction representation.

}

Doub gammq(const Doub a, const Doub x) {
Returns the incomplete gamma function Q.a;x/ � 1�P.a; x/.

if (x < 0.0 || a <= 0.0) throw("bad args in gammq");
if (x == 0.0) return 1.0;
else if ((Int)a >= ASWITCH) return gammpapprox(a,x,0); Quadrature.
else if (x < a+1.0) return 1.0-gser(a,x); Use the series representation.
else return gcf(a,x); Use the continued fraction representation.

}

Doub gser(const Doub a, const Doub x) {
Returns the incomplete gamma function P.a; x/ evaluated by its series representation.
Also sets ln
.a/ as gln. User should not call directly.

Doub sum,del,ap;
gln=gammln(a);
ap=a;
del=sum=1.0/a;
for (;;) {

++ap;
del *= x/ap;
sum += del;
if (fabs(del) < fabs(sum)*EPS) {

return sum*exp(-x+a*log(x)-gln);
}

}
}

Doub gcf(const Doub a, const Doub x) {
Returns the incomplete gamma function Q.a; x/ evaluated by its continued fraction rep-
resentation. Also sets ln
.a/ as gln. User should not call directly.

Int i;
Doub an,b,c,d,del,h;
gln=gammln(a);
b=x+1.0-a; Set up for evaluating continued fraction

by modified Lentz’s method (�5.2)
with b0 D 0.

c=1.0/FPMIN;
d=1.0/b;
h=d;
for (i=1;;i++) { Iterate to convergence.

an = -i*(i-a);
b += 2.0;
d=an*d+b;
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if (fabs(d) < FPMIN) d=FPMIN;
c=b+an/c;
if (fabs(c) < FPMIN) c=FPMIN;
d=1.0/d;
del=d*c;
h *= del;
if (fabs(del-1.0) <= EPS) break;

}
return exp(-x+a*log(x)-gln)*h; Put factors in front.

}

Doub gammpapprox(Doub a, Doub x, Int psig) {
Incomplete gamma by quadrature. Returns P.a; x/ or Q.a; x/, when psig is 1 or 0,
respectively. User should not call directly.

Int j;
Doub xu,t,sum,ans;
Doub a1 = a-1.0, lna1 = log(a1), sqrta1 = sqrt(a1);
gln = gammln(a);
Set how far to integrate into the tail:
if (x > a1) xu = MAX(a1 + 11.5*sqrta1, x + 6.0*sqrta1);
else xu = MAX(0.,MIN(a1 - 7.5*sqrta1, x - 5.0*sqrta1));
sum = 0;
for (j=0;j<ngau;j++) { Gauss-Legendre.

t = x + (xu-x)*y[j];
sum += w[j]*exp(-(t-a1)+a1*(log(t)-lna1));

}
ans = sum*(xu-x)*exp(a1*(lna1-1.)-gln);
return (psig?(ans>0.0? 1.0-ans:-ans):(ans>=0.0? ans:1.0+ans));

}

Doub invgammp(Doub p, Doub a);
Inverse function on x of P.a; x/. See �6.2.1.

};
const Doub Gamma::EPS = numeric_limits<Doub>::epsilon();
const Doub Gamma::FPMIN = numeric_limits<Doub>::min()/EPS;

Remember that since Gamma is an object, you have to declare an instance of it
before you can use its member functions. We habitually write

Gamma gam;

as a global declaration, and then call gam.gammp or gam.gammq as needed. The
structure Gauleg18 just contains the abscissas and weights for the Gauss-Legendre
quadrature.

struct Gauleg18 {incgammabeta.h
Abscissas and weights for Gauss-Legendre quadrature.

static const Int ngau = 18;
static const Doub y[18];
static const Doub w[18];

};
const Doub Gauleg18::y[18] = {0.0021695375159141994,
0.011413521097787704,0.027972308950302116,0.051727015600492421,
0.082502225484340941, 0.12007019910960293,0.16415283300752470,
0.21442376986779355, 0.27051082840644336, 0.33199876341447887,
0.39843234186401943, 0.46931971407375483, 0.54413605556657973,
0.62232745288031077, 0.70331500465597174, 0.78649910768313447,
0.87126389619061517, 0.95698180152629142};
const Doub Gauleg18::w[18] = {0.0055657196642445571,
0.012915947284065419,0.020181515297735382,0.027298621498568734,
0.034213810770299537,0.040875750923643261,0.047235083490265582,
0.053244713977759692,0.058860144245324798,0.064039797355015485,
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0.068745323835736408,0.072941885005653087,0.076598410645870640,
0.079687828912071670,0.082187266704339706,0.084078218979661945,
0.085346685739338721,0.085983275670394821};

6.2.1 Inverse Incomplete Gamma Function
In many statistical applications one needs the inverse of the incomplete gamma

function, that is, the value x such that P.a; x/ D p, for a given value 0 
 p 
 1.
Newton’s method works well if we can devise a good-enough initial guess. In fact,
this is a good place to use Halley’s method (see �9.4), since the second derivative
(that is, the first derivative of the integrand) is easy to compute.

For a > 1, we use an initial guess that derives from �26.2.22 and �26.4.17 in
reference [1]. For a 
 1, we first roughly approximate Pa � P.a; 1/:

Pa � P.a; 1/ � 0:253aC 0:12a
2; 0 
 a 
 1 (6.2.8)

and then solve for x in one or the other of the (rough) approximations:

P.a; x/ �

(
Pax

a; x < 1

Pa C .1 � Pa/.1 � e
1�x/; x � 1

(6.2.9)

An implementation is

Doub Gamma::invgammp(Doub p, Doub a) { incgammabeta.h
Returns x such that P.a; x/ D p for an argument p between 0 and 1.

Int j;
Doub x,err,t,u,pp,lna1,afac,a1=a-1;
const Doub EPS=1.e-8; Accuracy is the square of EPS.
gln=gammln(a);
if (a <= 0.) throw("a must be pos in invgammap");
if (p >= 1.) return MAX(100.,a + 100.*sqrt(a));
if (p <= 0.) return 0.0;
if (a > 1.) { Initial guess based on reference [1].

lna1=log(a1);
afac = exp(a1*(lna1-1.)-gln);
pp = (p < 0.5)? p : 1. - p;
t = sqrt(-2.*log(pp));
x = (2.30753+t*0.27061)/(1.+t*(0.99229+t*0.04481)) - t;
if (p < 0.5) x = -x;
x = MAX(1.e-3,a*pow(1.-1./(9.*a)-x/(3.*sqrt(a)),3));

} else { Initial guess based on equations (6.2.8)
and (6.2.9).t = 1.0 - a*(0.253+a*0.12);

if (p < t) x = pow(p/t,1./a);
else x = 1.-log(1.-(p-t)/(1.-t));

}
for (j=0;j<12;j++) {

if (x <= 0.0) return 0.0; x too small to compute accurately.
err = gammp(a,x) - p;
if (a > 1.) t = afac*exp(-(x-a1)+a1*(log(x)-lna1));
else t = exp(-x+a1*log(x)-gln);
u = err/t;
x -= (t = u/(1.-0.5*MIN(1.,u*((a-1.)/x - 1)))); Halley’s method.
if (x <= 0.) x = 0.5*(x + t); Halve old value if x tries to go negative.
if (fabs(t) < EPS*x ) break;

}
return x;

}
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6.2.2 Error Function
The error function and complementary error function are special cases of the

incomplete gamma function and are obtained moderately efficiently by the above
procedures. Their definitions are

erf.x/ D
2
p
	

Z x

0

e�t
2

dt (6.2.10)

and

erfc.x/ � 1 � erf.x/ D
2
p
	

Z 1
x

e�t
2

dt (6.2.11)

The functions have the following limiting values and symmetries:

erf.0/ D 0 erf.1/ D 1 erf.�x/ D �erf.x/ (6.2.12)

erfc.0/ D 1 erfc.1/ D 0 erfc.�x/ D 2 � erfc.x/ (6.2.13)

They are related to the incomplete gamma functions by

erf.x/ D P

�
1

2
; x2

�
.x � 0/ (6.2.14)

and

erfc.x/ D Q

�
1

2
; x2

�
.x � 0/ (6.2.15)

A faster calculation takes advantage of an approximation of the form

erfc.z/ � t expŒ�z2 CP .t/�; z > 0 (6.2.16)

where

t �
2

2C z
(6.2.17)

and P .t/ is a polynomial for 0 
 t 
 1 that can be found by Chebyshev methods
(�5.8). As with Gamma, implementation is by an object that also includes the inverse
function, here an inverse for both erf and erfc. Halley’s method is again used for the
inverses (as suggested by P.J. Acklam).

struct Erf {erf.h
Object for error function and related functions.

static const Int ncof=28;
static const Doub cof[28]; Initialization at end of struct.

inline Doub erf(Doub x) {
Return erf.x/ for any x.

if (x >=0.) return 1.0 - erfccheb(x);
else return erfccheb(-x) - 1.0;

}

inline Doub erfc(Doub x) {
Return erfc.x/ for any x.

if (x >= 0.) return erfccheb(x);
else return 2.0 - erfccheb(-x);

}
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Doub erfccheb(Doub z){
Evaluate equation (6.2.16) using stored Chebyshev coefficients. User should not call di-
rectly.

Int j;
Doub t,ty,tmp,d=0.,dd=0.;
if (z < 0.) throw("erfccheb requires nonnegative argument");
t = 2./(2.+z);
ty = 4.*t - 2.;
for (j=ncof-1;j>0;j--) {

tmp = d;
d = ty*d - dd + cof[j];
dd = tmp;

}
return t*exp(-z*z + 0.5*(cof[0] + ty*d) - dd);

}

Doub inverfc(Doub p) {
Inverse of complementary error function. Returns x such that erfc.x/ D p for argument p
between 0 and 2.

Doub x,err,t,pp;
if (p >= 2.0) return -100.; Return arbitrary large pos or neg value.
if (p <= 0.0) return 100.;
pp = (p < 1.0)? p : 2. - p;
t = sqrt(-2.*log(pp/2.)); Initial guess:
x = -0.70711*((2.30753+t*0.27061)/(1.+t*(0.99229+t*0.04481)) - t);
for (Int j=0;j<2;j++) {

err = erfc(x) - pp;
x += err/(1.12837916709551257*exp(-SQR(x))-x*err); Halley.

}
return (p < 1.0? x : -x);

}

inline Doub inverf(Doub p) {return inverfc(1.-p);}
Inverse of the error function. Returns x such that erf.x/ D p for argument p between �1
and 1.

};

const Doub Erf::cof[28] = {-1.3026537197817094, 6.4196979235649026e-1,
1.9476473204185836e-2,-9.561514786808631e-3,-9.46595344482036e-4,
3.66839497852761e-4,4.2523324806907e-5,-2.0278578112534e-5,
-1.624290004647e-6,1.303655835580e-6,1.5626441722e-8,-8.5238095915e-8,
6.529054439e-9,5.059343495e-9,-9.91364156e-10,-2.27365122e-10,
9.6467911e-11, 2.394038e-12,-6.886027e-12,8.94487e-13, 3.13092e-13,
-1.12708e-13,3.81e-16,7.106e-15,-1.523e-15,-9.4e-17,1.21e-16,-2.8e-17};

A lower-order Chebyshev approximation produces a very concise routine, though
with only about single precision accuracy:

Doub erfcc(const Doub x) erf.h
Returns the complementary error function erfc.x/ with fractional error everywhere less than
1:2 � 10�7.
{

Doub t,z=fabs(x),ans;
t=2./(2.+z);
ans=t*exp(-z*z-1.26551223+t*(1.00002368+t*(0.37409196+t*(0.09678418+

t*(-0.18628806+t*(0.27886807+t*(-1.13520398+t*(1.48851587+
t*(-0.82215223+t*0.17087277)))))))));

return (x >= 0.0 ? ans : 2.0-ans);
}
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Figure 6.3.1. Exponential integrals En.x/ for n D 0; 1; 2; 3; 5; and 10, and the exponential integral
Ei.x/.

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions (Washington: Na-
tional Bureau of Standards); reprinted 1968 (New York: Dover); online at http://www.nr.
com/aands, Chapters 6, 7, and 26.[1]

Pearson, K. (ed.) 1951, Tables of the Incomplete Gamma Function (Cambridge, UK: Cambridge
University Press).

6.3 Exponential Integrals

The standard definition of the exponential integral is

En.x/ D

Z 1
1

e�xt

tn
dt; x > 0; n D 0; 1; : : : (6.3.1)

The function defined by the principal value of the integral

Ei.x/ D �
Z 1
�x

e�t

t
dt D

Z x

�1

et

t
dt; x > 0 (6.3.2)

is also called an exponential integral. Note that Ei.�x/ is related to �E1.x/ by
analytic continuation. Figure 6.3.1 plots these functions for representative values of
their parameters.
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The function En.x/ is a special case of the incomplete gamma function

En.x/ D x
n�1�.1 � n; x/ (6.3.3)

We can therefore use a similar strategy for evaluating it. The continued fraction —
just equation (6.2.6) rewritten — converges for all x > 0:

En.x/ D e
�x

�
1

x C

n

1C

1

x C

nC 1

1C

2

x C
	 	 	

�
(6.3.4)

We use it in its more rapidly converging even form,

En.x/ D e
�x

�
1

x C n �

1 	 n

x C nC 2 �

2.nC 1/

x C nC 4 �
	 	 	

�
(6.3.5)

The continued fraction only really converges fast enough to be useful for x & 1.
For 0 < x . 1, we can use the series representation

En.x/ D
.�x/n�1

.n � 1/Š
Œ� ln x C  .n/� �

1X
mD0
m¤n�1

.�x/m

.m � nC 1/mŠ
(6.3.6)

The quantity  .n/ here is the digamma function, given for integer arguments by

 .1/ D ��;  .n/ D �� C

n�1X
mD1

1

m
(6.3.7)

where � D 0:5772156649 : : : is Euler’s constant. We evaluate the expression (6.3.6)
in order of ascending powers of x:

En.x/ D�

�
1

.1 � n/
�

x

.2 � n/ 	 1
C

x2

.3 � n/.1 	 2/
� 	 	 	 C

.�x/n�2

.�1/.n � 2/Š

�
C
.�x/n�1

.n � 1/Š
Œ� ln x C  .n/� �

�
.�x/n

1 	 nŠ
C

.�x/nC1

2 	 .nC 1/Š
C 	 	 	

�
(6.3.8)

The first square bracket is omitted when n D 1. This method of evaluation has the
advantage that, for large n, the series converges before reaching the term containing
 .n/. Accordingly, one needs an algorithm for evaluating .n/ only for small n, n .
20 – 40. We use equation (6.3.7), although a table lookup would improve efficiency
slightly.

Amos [1] presents a careful discussion of the truncation error in evaluating equa-
tion (6.3.8) and gives a fairly elaborate termination criterion. We have found that sim-
ply stopping when the last term added is smaller than the required tolerance works
about as well.

Two special cases have to be handled separately:

E0.x/ D
e�x

x

En.0/ D
1

n � 1
; n > 1

(6.3.9)
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The routine expint allows fast evaluation ofEn.x/ to any accuracy EPS within
the reach of your machine’s precision for floating-point numbers. The only modifi-
cation required for increased accuracy is to supply Euler’s constant with enough
significant digits. Wrench [2] can provide you with the first 328 digits if necessary!

Doub expint(const Int n, const Doub x)expint.h
Evaluates the exponential integral En.x/.
{

static const Int MAXIT=100;
static const Doub EULER=0.577215664901533,

EPS=numeric_limits<Doub>::epsilon(),
BIG=numeric_limits<Doub>::max()*EPS;
Here MAXIT is the maximum allowed number of iterations; EULER is Euler’s constant
� ; EPS is the desired relative error, not smaller than the machine precision; BIG is a
number near the largest representable floating-point number.

Int i,ii,nm1=n-1;
Doub a,b,c,d,del,fact,h,psi,ans;
if (n < 0 || x < 0.0 || (x==0.0 && (n==0 || n==1)))

throw("bad arguments in expint");
if (n == 0) ans=exp(-x)/x; Special case.
else {

if (x == 0.0) ans=1.0/nm1; Another special case.
else {

if (x > 1.0) { Lentz’s algorithm (�5.2).
b=x+n;
c=BIG;
d=1.0/b;
h=d;
for (i=1;i<=MAXIT;i++) {

a = -i*(nm1+i);
b += 2.0;
d=1.0/(a*d+b); Denominators cannot be zero.
c=b+a/c;
del=c*d;
h *= del;
if (abs(del-1.0) <= EPS) {

ans=h*exp(-x);
return ans;

}
}
throw("continued fraction failed in expint");

} else { Evaluate series.
ans = (nm1!=0 ? 1.0/nm1 : -log(x)-EULER); Set first term.
fact=1.0;
for (i=1;i<=MAXIT;i++) {

fact *= -x/i;
if (i != nm1) del = -fact/(i-nm1);
else {

psi = -EULER; Compute  .n/.
for (ii=1;ii<=nm1;ii++) psi += 1.0/ii;
del=fact*(-log(x)+psi);

}
ans += del;
if (abs(del) < abs(ans)*EPS) return ans;

}
throw("series failed in expint");

}
}

}
return ans;

}
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A good algorithm for evaluating Ei is to use the power series for small x and
the asymptotic series for large x. The power series is

Ei.x/ D � C ln x C
x

1 	 1Š
C

x2

2 	 2Š
C 	 	 	 (6.3.10)

where � is Euler’s constant. The asymptotic expansion is

Ei.x/ �
ex

x

�
1C

1Š

x
C
2Š

x2
C 	 	 	

�
(6.3.11)

The lower limit for the use of the asymptotic expansion is approximately j ln EPS j,
where EPS is the required relative error.

Doub ei(const Doub x) { expint.h
Computes the exponential integral Ei.x/ for x > 0.

static const Int MAXIT=100;
static const Doub EULER=0.577215664901533,

EPS=numeric_limits<Doub>::epsilon(),
FPMIN=numeric_limits<Doub>::min()/EPS;

Here MAXIT is the maximum number of iterations allowed; EULER is Euler’s constant � ; EPS
is the relative error, or absolute error near the zero of Ei at x D 0:3725; FPMIN is a number
close to the smallest representable floating-point number.
Int k;
Doub fact,prev,sum,term;
if (x <= 0.0) throw("Bad argument in ei");
if (x < FPMIN) return log(x)+EULER; Special case: Avoid failure of convergence

test because of underflow.if (x <= -log(EPS)) {
sum=0.0; Use power series.
fact=1.0;
for (k=1;k<=MAXIT;k++) {

fact *= x/k;
term=fact/k;
sum += term;
if (term < EPS*sum) break;

}
if (k > MAXIT) throw("Series failed in ei");
return sum+log(x)+EULER;

} else { Use asymptotic series.
sum=0.0; Start with second term.
term=1.0;
for (k=1;k<=MAXIT;k++) {

prev=term;
term *= k/x;
if (term < EPS) break;
Since final sum is greater than one, term itself approximates the relative error.
if (term < prev) sum += term; Still converging: Add new term.
else {

sum -= prev; Diverging: Subtract previous term and
exit.break;

}
}
return exp(x)*(1.0+sum)/x;

}
}

CITED REFERENCES AND FURTHER READING:

Stegun, I.A., and Zucker, R. 1974, “Automatic Computing Methods for Special Functions. II. The
Exponential Integral En.x/,” Journal of Research of the National Bureau of Standards,
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vol. 78B, pp. 199–216; 1976, “Automatic Computing Methods for Special Functions. III. The
Sine, Cosine, Exponential Integrals, and Related Functions,” op. cit., vol. 80B, pp. 291–311.

Amos D.E. 1980, “Computation of Exponential Integrals,” ACM Transactions on Mathematical
Software, vol. 6, pp. 365–377[1]; also vol. 6, pp. 420–428.

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions (Washington: Na-
tional Bureau of Standards); reprinted 1968 (New York: Dover); online at http://www.nr.
com/aands, Chapter 5.

Wrench J.W. 1952, “A New Calculation of Euler’s Constant,” Mathematical Tables and Other Aids
to Computation, vol. 6, p. 255.[2]

6.4 Incomplete Beta Function
The incomplete beta function is defined by

Ix.a; b/ �
Bx.a; b/

B.a; b/
�

1

B.a; b/

Z x

0

ta�1.1 � t /b�1dt .a; b > 0/ (6.4.1)

It has the limiting values

I0.a; b/ D 0 I1.a; b/ D 1 (6.4.2)

and the symmetry relation

Ix.a; b/ D 1 � I1�x.b; a/ (6.4.3)

If a and b are both rather greater than one, then Ix.a; b/ rises from “near-zero” to
“near-unity” quite sharply at about x D a=.a C b/. Figure 6.4.1 plots the function
for several pairs .a; b/.

The incomplete beta function has a series expansion

Ix.a; b/ D
xa.1 � x/b

aB.a; b/

"
1C

1X
nD0

B.aC 1; nC 1/

B.aC b; nC 1/
xnC1

#
(6.4.4)

but this does not prove to be very useful in its numerical evaluation. (Note, however,
that the beta functions in the coefficients can be evaluated for each value of n with
just the previous value and a few multiplies, using equations 6.1.9 and 6.1.3.)

The continued fraction representation proves to be much more useful:

Ix.a; b/ D
xa.1 � x/b

aB.a; b/

�
1

1C

d1

1C

d2

1C
	 	 	

�
(6.4.5)

where

d2mC1 D �
.aCm/.aC b Cm/x

.aC 2m/.aC 2mC 1/

d2m D
m.b �m/x

.aC 2m � 1/.aC 2m/

(6.4.6)

This continued fraction converges rapidly for x < .a C 1/=.a C b C 2/, except
when a and b are both large, when it can take O.

p
min.a; b// iterations. For x >
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Figure 6.4.1. The incomplete beta function Ix.a; b/ for five different pairs of .a; b/. Notice that the
pairs .0:5; 5:0/ and .5:0; 0:5/ are symmetrically related as indicated in equation (6.4.3).

.a C 1/=.a C b C 2/ we can just use the symmetry relation (6.4.3) to obtain an
equivalent computation in which the convergence is again rapid. Our computational
strategy is thus very similar to that used in Gamma: We use the continued fraction
except when a and b are both large, in which case we do a single step of high-order
Gauss-Legendre quadrature.

Also as in Gamma, we code an inverse function using Halley’s method. When
a and b are both � 1, the initial guess comes from �26.5.22 in reference [1]. When
either is less than 1, the guess comes from first crudely approximatingZ 1

0

ta�1.1 � t /b�1dt �
1

a

�
a

aC b

�a
C
1

b

�
b

aC b

�b
� S (6.4.7)

which comes from breaking the integral at t D a=.aC b/ and ignoring one factor in
the integrand on each side of the break. We then write

Ix.a; b/ �

(
xa=.Sa/ x 
 a=.aC b/

.1 � x/b=.Sb/ x > a=.aC b/
(6.4.8)

and solve for x in the respective regimes. While crude, this is good enough to get
well within the basin of convergence in all cases.
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struct Beta : Gauleg18 {incgammabeta.h
Object for incomplete beta function. Gauleg18 provides coefficients for Gauss-Legendre quadra-
ture.

static const Int SWITCH=3000; When to switch to quadrature method.
static const Doub EPS, FPMIN; See end of struct for initializations.

Doub betai(const Doub a, const Doub b, const Doub x) {
Returns incomplete beta function Ix.a; b/ for positive a and b, and x between 0 and 1.

Doub bt;
if (a <= 0.0 || b <= 0.0) throw("Bad a or b in routine betai");
if (x < 0.0 || x > 1.0) throw("Bad x in routine betai");
if (x == 0.0 || x == 1.0) return x;
if (a > SWITCH && b > SWITCH) return betaiapprox(a,b,x);
bt=exp(gammln(a+b)-gammln(a)-gammln(b)+a*log(x)+b*log(1.0-x));
if (x < (a+1.0)/(a+b+2.0)) return bt*betacf(a,b,x)/a;
else return 1.0-bt*betacf(b,a,1.0-x)/b;

}

Doub betacf(const Doub a, const Doub b, const Doub x) {
Evaluates continued fraction for incomplete beta function by modified Lentz’s method
(�5.2). User should not call directly.

Int m,m2;
Doub aa,c,d,del,h,qab,qam,qap;
qab=a+b; These q’s will be used in factors that

occur in the coefficients (6.4.6).qap=a+1.0;
qam=a-1.0;
c=1.0; First step of Lentz’s method.
d=1.0-qab*x/qap;
if (fabs(d) < FPMIN) d=FPMIN;
d=1.0/d;
h=d;
for (m=1;m<10000;m++) {

m2=2*m;
aa=m*(b-m)*x/((qam+m2)*(a+m2));
d=1.0+aa*d; One step (the even one) of the recur-

rence.if (fabs(d) < FPMIN) d=FPMIN;
c=1.0+aa/c;
if (fabs(c) < FPMIN) c=FPMIN;
d=1.0/d;
h *= d*c;
aa = -(a+m)*(qab+m)*x/((a+m2)*(qap+m2));
d=1.0+aa*d; Next step of the recurrence (the odd

one).if (fabs(d) < FPMIN) d=FPMIN;
c=1.0+aa/c;
if (fabs(c) < FPMIN) c=FPMIN;
d=1.0/d;
del=d*c;
h *= del;
if (fabs(del-1.0) <= EPS) break; Are we done?

}
return h;

}

Doub betaiapprox(Doub a, Doub b, Doub x) {
Incomplete beta by quadrature. Returns Ix.a; b/. User should not call directly.

Int j;
Doub xu,t,sum,ans;
Doub a1 = a-1.0, b1 = b-1.0, mu = a/(a+b);
Doub lnmu=log(mu),lnmuc=log(1.-mu);
t = sqrt(a*b/(SQR(a+b)*(a+b+1.0)));
if (x > a/(a+b)) { Set how far to integrate into the tail:

if (x >= 1.0) return 1.0;
xu = MIN(1.,MAX(mu + 10.*t, x + 5.0*t));

} else {
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if (x <= 0.0) return 0.0;
xu = MAX(0.,MIN(mu - 10.*t, x - 5.0*t));

}
sum = 0;
for (j=0;j<18;j++) { Gauss-Legendre.

t = x + (xu-x)*y[j];
sum += w[j]*exp(a1*(log(t)-lnmu)+b1*(log(1-t)-lnmuc));

}
ans = sum*(xu-x)*exp(a1*lnmu-gammln(a)+b1*lnmuc-gammln(b)+gammln(a+b));
return ans>0.0? 1.0-ans : -ans;

}

Doub invbetai(Doub p, Doub a, Doub b) {
Inverse of incomplete beta function. Returns x such that Ix.a; b/ D p for argument p
between 0 and 1.

const Doub EPS = 1.e-8;
Doub pp,t,u,err,x,al,h,w,afac,a1=a-1.,b1=b-1.;
Int j;
if (p <= 0.) return 0.;
else if (p >= 1.) return 1.;
else if (a >= 1. && b >= 1.) { Set initial guess. See text.

pp = (p < 0.5)? p : 1. - p;
t = sqrt(-2.*log(pp));
x = (2.30753+t*0.27061)/(1.+t*(0.99229+t*0.04481)) - t;
if (p < 0.5) x = -x;
al = (SQR(x)-3.)/6.;
h = 2./(1./(2.*a-1.)+1./(2.*b-1.));
w = (x*sqrt(al+h)/h)-(1./(2.*b-1)-1./(2.*a-1.))*(al+5./6.-2./(3.*h));
x = a/(a+b*exp(2.*w));

} else {
Doub lna = log(a/(a+b)), lnb = log(b/(a+b));
t = exp(a*lna)/a;
u = exp(b*lnb)/b;
w = t + u;
if (p < t/w) x = pow(a*w*p,1./a);
else x = 1. - pow(b*w*(1.-p),1./b);

}
afac = -gammln(a)-gammln(b)+gammln(a+b);
for (j=0;j<10;j++) {

if (x == 0. || x == 1.) return x; a or b too small for accurate calcu-
lation.err = betai(a,b,x) - p;

t = exp(a1*log(x)+b1*log(1.-x) + afac);
u = err/t; Halley:
x -= (t = u/(1.-0.5*MIN(1.,u*(a1/x - b1/(1.-x)))));
if (x <= 0.) x = 0.5*(x + t); Bisect if x tries to go neg or > 1.
if (x >= 1.) x = 0.5*(x + t + 1.);
if (fabs(t) < EPS*x && j > 0) break;

}
return x;

}

};
const Doub Beta::EPS = numeric_limits<Doub>::epsilon();
const Doub Beta::FPMIN = numeric_limits<Doub>::min()/EPS;

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions (Washington: Na-
tional Bureau of Standards); reprinted 1968 (New York: Dover); online at http://www.nr.
com/aands, Chapters 6 and 26.[1]

Pearson, E., and Johnson, N. 1968, Tables of the Incomplete Beta Function (Cambridge, UK:
Cambridge University Press).
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6.5 Bessel Functions of Integer Order
This section presents practical algorithms for computing various kinds of Bessel

functions of integer order. In �6.6 we deal with fractional order. Actually, the more
complicated routines for fractional order work fine for integer order too. For integer
order, however, the routines in this section are simpler and faster.

For any real 
, the Bessel function J�.x/ can be defined by the series represen-
tation

J�.x/ D

�
1

2
x

�� 1X
kD0

.�1
4
x2/k

kŠ�.
 C k C 1/
(6.5.1)

The series converges for all x, but it is not computationally very useful for x � 1.
For 
 not an integer, the Bessel function Y�.x/ is given by

Y�.x/ D
J�.x/ cos.
	/ � J��.x/

sin.
	/
(6.5.2)

The right-hand side goes to the correct limiting value Yn.x/ as 
 goes to some integer
n, but this is also not computationally useful.

For arguments x < 
, both Bessel functions look qualitatively like simple
power laws, with the asymptotic forms for 0 < x � 


J�.x/ �
1

�.
 C 1/

�
1

2
x

��

 � 0

Y0.x/ �
2

	
ln.x/

Y�.x/ � �
�.
/

	

�
1

2
x

���

 > 0

(6.5.3)

For x > 
, both Bessel functions look qualitatively like sine or cosine waves whose
amplitude decays as x�1=2. The asymptotic forms for x � 
 are

J�.x/ �

r
2

	x
cos

�
x �

1

2

	 �

1

4
	

�
Y�.x/ �

r
2

	x
sin

�
x �

1

2

	 �

1

4
	

� (6.5.4)

In the transition region where x � 
, the typical amplitudes of the Bessel functions
are on the order

J�.
/ �
21=3

32=3�.2
3
/

1


1=3
�
0:4473


1=3

Y�.
/ � �
21=3

31=6�.2
3
/

1


1=3
� �

0:7748


1=3

(6.5.5)

which holds asymptotically for large 
. Figure 6.5.1 plots the first few Bessel func-
tions of each kind.

The Bessel functions satisfy the recurrence relations

JnC1.x/ D
2n

x
Jn.x/ � Jn�1.x/ (6.5.6)
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Figure 6.5.1. Bessel functions J0.x/ through J3.x/ and Y0.x/ through Y2.x/.

and

YnC1.x/ D
2n

x
Yn.x/ � Yn�1.x/ (6.5.7)

As already mentioned in �5.4, only the second of these, (6.5.7), is stable in the di-
rection of increasing n for x < n. The reason that (6.5.6) is unstable in the direction
of increasing n is simply that it is the same recurrence as (6.5.7): A small amount of
“polluting” Yn introduced by roundoff error will quickly come to swamp the desired
Jn, according to equation (6.5.3).

A practical strategy for computing the Bessel functions of integer order divides
into two tasks: first, how to compute J0; J1; Y0, and Y1; and second, how to use the
recurrence relations stably to find other J ’s and Y ’s. We treat the first task first.

For x between zero and some arbitrary value (we will use the value 8), approx-
imate J0.x/ and J1.x/ by rational functions in x. Likewise approximate by rational
functions the “regular part” of Y0.x/ and Y1.x/, defined as

Y0.x/ �
2

	
J0.x/ ln.x/ and Y1.x/ �

2

	

�
J1.x/ ln.x/ �

1

x

�
(6.5.8)

For 8 < x <1, use the approximating forms (n D 0; 1)

Jn.x/ D

r
2

	x

�
Pn

�
8

x

�
cos.Xn/ �Qn

�
8

x

�
sin.Xn/

�
(6.5.9)

Yn.x/ D

r
2

	x

�
Pn

�
8

x

�
sin.Xn/CQn

�
8

x

�
cos.Xn/

�
(6.5.10)
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where

Xn � x �
2nC 1

4
	 (6.5.11)

and where P0; P1;Q0, and Q1 are each polynomials in their arguments, for 0 <
8=x < 1. The P ’s are even polynomials, the Q’s odd.

In the routines below, the various coefficients were calculated in multiple preci-
sion so as to achieve full double precision in the relative error. (In the neighborhood
of the zeros of the functions, it is the absolute error that is double precision.) How-
ever, because of roundoff, evaluating the approximations can lead to a loss of up to
two significant digits.

One additional twist: The rational approximation for 0 < x < 8 is actually
computed in the form [1]

J0.x/ D .x
2 � x20/.x

2 � x21/
r.x2/

s.x2/
(6.5.12)

and similarly for J1, Y0 and Y1. Here x0 and x1 are the two zeros of J0 in the
interval, and r and s are polynomials. The polynomial r.x2/ has alternating signs.
Writing it in terms of 64 � x2 makes all the signs the same and reduces roundoff
error. For the approximations (6.5.9) and (6.5.10), our coefficients are similar but
not identical to those given by Hart [2].

The functions J0, J1, Y0, and Y1 share a lot of code, so we package them as a
single object Bessjy. The routines for higher Jn and Yn are also member functions,
with implementations discussed below. All the numerical coefficients are declared
in Bessjy but defined (as a long list of constants) separately; the listing is in a
Webnote [3].

struct Bessjy {bessel.h
static const Doub xj00,xj10,xj01,xj11,twoopi,pio4;
static const Doub j0r[7],j0s[7],j0pn[5],j0pd[5],j0qn[5],j0qd[5];
static const Doub j1r[7],j1s[7],j1pn[5],j1pd[5],j1qn[5],j1qd[5];
static const Doub y0r[9],y0s[9],y0pn[5],y0pd[5],y0qn[5],y0qd[5];
static const Doub y1r[8],y1s[8],y1pn[5],y1pd[5],y1qn[5],y1qd[5];
Doub nump,denp,numq,denq,y,z,ax,xx;

Doub j0(const Doub x) {
Returns the Bessel function J0.x/ for any real x.

if ((ax=abs(x)) < 8.0) { Direct rational function fit.
rat(x,j0r,j0s,6);
return nump*(y-xj00)*(y-xj10)/denp;

} else { Fitting function (6.5.9).
asp(j0pn,j0pd,j0qn,j0qd,1.);
return sqrt(twoopi/ax)*(cos(xx)*nump/denp-z*sin(xx)*numq/denq);

}
}

Doub j1(const Doub x) {
Returns the Bessel function J1.x/ for any real x.

if ((ax=abs(x)) < 8.0) { Direct rational approximation.
rat(x,j1r,j1s,6);
return x*nump*(y-xj01)*(y-xj11)/denp;

} else { Fitting function (6.5.9).
asp(j1pn,j1pd,j1qn,j1qd,3.);
Doub ans=sqrt(twoopi/ax)*(cos(xx)*nump/denp-z*sin(xx)*numq/denq);
return x > 0.0 ? ans : -ans;

}
}
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Doub y0(const Doub x) {
Returns the Bessel function Y0.x/ for positive x.

if (x < 8.0) { Rational function approximation of (6.5.8).
Doub j0x = j0(x);
rat(x,y0r,y0s,8);
return nump/denp+twoopi*j0x*log(x);

} else { Fitting function (6.5.10).
ax=x;
asp(y0pn,y0pd,y0qn,y0qd,1.);
return sqrt(twoopi/x)*(sin(xx)*nump/denp+z*cos(xx)*numq/denq);

}
}

Doub y1(const Doub x) {
Returns the Bessel function Y1.x/ for positive x.

if (x < 8.0) { Rational function approximation of (6.5.8).
Doub j1x = j1(x);
rat(x,y1r,y1s,7);
return x*nump/denp+twoopi*(j1x*log(x)-1.0/x);

} else { Fitting function (6.5.10).
ax=x;
asp(y1pn,y1pd,y1qn,y1qd,3.);
return sqrt(twoopi/x)*(sin(xx)*nump/denp+z*cos(xx)*numq/denq);

}
}

Doub jn(const Int n, const Doub x);
Returns the Bessel function Jn.x/ for any real x and integer n 
 0.

Doub yn(const Int n, const Doub x);
Returns the Bessel function Yn.x/ for any positive x and integer n 
 0.

void rat(const Doub x, const Doub *r, const Doub *s, const Int n) {
Common code: Evaluates rational approximation.

y = x*x;
z=64.0-y;
nump=r[n];
denp=s[n];
for (Int i=n-1;i>=0;i--) {

nump=nump*z+r[i];
denp=denp*y+s[i];

}
}

void asp(const Doub *pn, const Doub *pd, const Doub *qn, const Doub *qd,
Common code: Evaluates asymptotic approximation.

const Doub fac) {
z=8.0/ax;
y=z*z;
xx=ax-fac*pio4;
nump=pn[4];
denp=pd[4];
numq=qn[4];
denq=qd[4];
for (Int i=3;i>=0;i--) {

nump=nump*y+pn[i];
denp=denp*y+pd[i];
numq=numq*y+qn[i];
denq=denq*y+qd[i];

}
}

};
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We now turn to the second task, namely, how to use the recurrence formulas
(6.5.6) and (6.5.7) to get the Bessel functions Jn.x/ and Yn.x/ for n � 2. The latter
of these is straightforward, since its upward recurrence is always stable:

Doub Bessjy::yn(const Int n, const Doub x)bessel.h
Returns the Bessel function Yn.x/ for any positive x and integer n 
 0.
{

Int j;
Doub by,bym,byp,tox;
if (n==0) return y0(x);
if (n==1) return y1(x);
tox=2.0/x;
by=y1(x); Starting values for the recurrence.
bym=y0(x);
for (j=1;j<n;j++) { Recurrence (6.5.7).

byp=j*tox*by-bym;
bym=by;
by=byp;

}
return by;

}

The cost of this algorithm is the calls to y1 and y0 (which generate a call to
each of j1 and j0), plus O.n/ operations in the recurrence.

For Jn.x/, things are a bit more complicated. We can start the recurrence up-
ward on n from J0 and J1, but it will remain stable only while n does not exceed
x. This is, however, just fine for calls with large x and small n, a case that occurs
frequently in practice.

The harder case to provide for is that with x < n. The best thing to do here
is to use Miller’s algorithm (see discussion preceding equation 5.4.16), applying
the recurrence downward from some arbitrary starting value and making use of the
upward-unstable nature of the recurrence to put us onto the correct solution. When
we finally arrive at J0 or J1 we are able to normalize the solution with the sum
(5.4.16) accumulated along the way.

The only subtlety is in deciding at how large an n we need start the downward
recurrence so as to obtain a desired accuracy by the time we reach the n that we
really want. If you play with the asymptotic forms (6.5.3) and (6.5.5), you should be
able to convince yourself that the answer is to start larger than the desired n by an
additive amount of order Œconstant � n�1=2, where the square root of the constant is,
very roughly, the number of significant figures of accuracy.

The above considerations lead to the following function.

Doub Bessjy::jn(const Int n, const Doub x)bessel.h
Returns the Bessel function Jn.x/ for any real x and integer n 
 0.
{

const Doub ACC=160.0; ACC determines accuracy.
const Int IEXP=numeric_limits<Doub>::max_exponent/2;
Bool jsum;
Int j,k,m;
Doub ax,bj,bjm,bjp,dum,sum,tox,ans;
if (n==0) return j0(x);
if (n==1) return j1(x);
ax=abs(x);
if (ax*ax <= 8.0*numeric_limits<Doub>::min()) return 0.0;
else if (ax > Doub(n)) { Upwards recurrence from J0 and J1.

tox=2.0/ax;
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bjm=j0(ax);
bj=j1(ax);
for (j=1;j<n;j++) {

bjp=j*tox*bj-bjm;
bjm=bj;
bj=bjp;

}
ans=bj;

} else { Downward recurrence from an even m here
computed.tox=2.0/ax;

m=2*((n+Int(sqrt(ACC*n)))/2);
jsum=false; jsum will alternate between false and true;

when it is true, we accumulate in sum
the even terms in (5.4.16).

bjp=ans=sum=0.0;
bj=1.0;
for (j=m;j>0;j--) { The downward recurrence.

bjm=j*tox*bj-bjp;
bjp=bj;
bj=bjm;
dum=frexp(bj,&k);
if (k > IEXP) { Renormalize to prevent overflows.

bj=ldexp(bj,-IEXP);
bjp=ldexp(bjp,-IEXP);
ans=ldexp(ans,-IEXP);
sum=ldexp(sum,-IEXP);

}
if (jsum) sum += bj; Accumulate the sum.
jsum=!jsum; Change false to true or vice versa.
if (j == n) ans=bjp; Save the unnormalized answer.

}
sum=2.0*sum-bj; Compute (5.4.16)
ans /= sum; and use it to normalize the answer.

}
return x < 0.0 && (n & 1) ? -ans : ans;

}

The function ldexp, used above, is a standard C and C++ library function for
scaling the binary exponent of a number.

6.5.1 Modified Bessel Functions of Integer Order
The modified Bessel functions In.x/ and Kn.x/ are equivalent to the usual

Bessel functions Jn and Yn evaluated for purely imaginary arguments. In detail, the
relationship is

In.x/ D .�i /
nJn.ix/

Kn.x/ D
	

2
inC1ŒJn.ix/C iYn.ix/�

(6.5.13)

The particular choice of prefactor and of the linear combination of Jn and Yn to form
Kn are simply choices that make the functions real-valued for real arguments x.

For small arguments x � n, both In.x/ and Kn.x/ become, asymptotically,
simple powers of their arguments

In.x/ �
1

nŠ

�x
2

�n
n � 0

K0.x/ � � ln.x/

Kn.x/ �
.n � 1/Š

2

�x
2

��n
n > 0

(6.5.14)
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These expressions are virtually identical to those for Jn.x/ and Yn.x/ in this region,
except for the factor of �2=	 difference between Yn.x/ and Kn.x/. In the region
x � n, however, the modified functions have quite different behavior than the Bessel
functions,

In.x/ �
1

p
2	x

exp.x/

Kn.x/ �
	
p
2	x

exp.�x/
(6.5.15)

The modified functions evidently have exponential rather than sinusoidal be-
havior for large arguments (see Figure 6.5.2). Rational approximations analogous to
those for the J and Y Bessel functions are efficient for computing I0, I1, K0, and
K1. The corresponding routines are packaged as an object Bessik. The routines are
similar to those in [1], although different in detail. (All the constants are again listed
in a Webnote [3].)

struct Bessik {bessel.h
static const Doub i0p[14],i0q[5],i0pp[5],i0qq[6];
static const Doub i1p[14],i1q[5],i1pp[5],i1qq[6];
static const Doub k0pi[5],k0qi[3],k0p[5],k0q[3],k0pp[8],k0qq[8];
static const Doub k1pi[5],k1qi[3],k1p[5],k1q[3],k1pp[8],k1qq[8];
Doub y,z,ax,term;

Doub i0(const Doub x) {
Returns the modified Bessel function I0.x/ for any real x.

if ((ax=abs(x)) < 15.0) { Rational approximation.
y = x*x;
return poly(i0p,13,y)/poly(i0q,4,225.-y);

} else { Rational approximation with ex=
p
x factored out.

z=1.0-15.0/ax;
return exp(ax)*poly(i0pp,4,z)/(poly(i0qq,5,z)*sqrt(ax));

}
}

Doub i1(const Doub x) {
Returns the modified Bessel function I1.x/ for any real x.

if ((ax=abs(x)) < 15.0) { Rational approximation.
y=x*x;
return x*poly(i1p,13,y)/poly(i1q,4,225.-y);

} else { Rational approximation with ex=
p
x factored out.

z=1.0-15.0/ax;
Doub ans=exp(ax)*poly(i1pp,4,z)/(poly(i1qq,5,z)*sqrt(ax));
return x > 0.0 ? ans : -ans;

}
}

Doub k0(const Doub x) {
Returns the modified Bessel function K0.x/ for positive real x.

if (x <= 1.0) { Use two rational approximations.
z=x*x;
term = poly(k0pi,4,z)*log(x)/poly(k0qi,2,1.-z);
return poly(k0p,4,z)/poly(k0q,2,1.-z)-term;

} else { Rational approximation with e�x=
p
x factored

out.z=1.0/x;
return exp(-x)*poly(k0pp,7,z)/(poly(k0qq,7,z)*sqrt(x));

}
}
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Figure 6.5.2. Modified Bessel functions I0.x/ through I3.x/, andK0.x/ throughK2.x/.

Doub k1(const Doub x) {
Returns the modified Bessel function K1.x/ for positive real x.

if (x <= 1.0) { Use two rational approximations.
z=x*x;
term = poly(k1pi,4,z)*log(x)/poly(k1qi,2,1.-z);
return x*(poly(k1p,4,z)/poly(k1q,2,1.-z)+term)+1./x;

} else { Rational approximation with e�x=
p
x factored

out.z=1.0/x;
return exp(-x)*poly(k1pp,7,z)/(poly(k1qq,7,z)*sqrt(x));

}
}

Doub in(const Int n, const Doub x);
Returns the modified Bessel function In.x/ for any real x and n 
 0.

Doub kn(const Int n, const Doub x);
Returns the modified Bessel function Kn.x/ for positive x and n 
 0.

inline Doub poly(const Doub *cof, const Int n, const Doub x) {
Common code: Evaluate a polynomial.

Doub ans = cof[n];
for (Int i=n-1;i>=0;i--) ans = ans*x+cof[i];
return ans;

}
};

The recurrence relation for In.x/ and Kn.x/ is the same as that for Jn.x/ and
Yn.x/ provided that ix is substituted for x. This has the effect of changing a sign in
the relation,
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InC1.x/ D �

�
2n

x

�
In.x/C In�1.x/

KnC1.x/ D C

�
2n

x

�
Kn.x/CKn�1.x/

(6.5.16)

These relations are always unstable for upward recurrence. For Kn, itself growing,
this presents no problem. The implementation is

Doub Bessik::kn(const Int n, const Doub x)bessel.h
Returns the modified Bessel function Kn.x/ for positive x and n 
 0.
{

Int j;
Doub bk,bkm,bkp,tox;
if (n==0) return k0(x);
if (n==1) return k1(x);
tox=2.0/x;
bkm=k0(x); Upward recurrence for all x...
bk=k1(x);
for (j=1;j<n;j++) { ...and here it is.

bkp=bkm+j*tox*bk;
bkm=bk;
bk=bkp;

}
return bk;

}

For In, the strategy of downward recursion is required once again, and the start-
ing point for the recursion may be chosen in the same manner as for the routine
Bessjy::jn. The only fundamental difference is that the normalization formula for
In.x/ has an alternating minus sign in successive terms, which again arises from the
substitution of ix for x in the formula used previously for Jn:

1 D I0.x/ � 2I2.x/C 2I4.x/ � 2I6.x/C 	 	 	 (6.5.17)

In fact, we prefer simply to normalize with a call to i0.

Doub Bessik::in(const Int n, const Doub x)bessel.h
Returns the modified Bessel function In.x/ for any real x and n 
 0.
{

const Doub ACC=200.0; ACC determines accuracy.
const Int IEXP=numeric_limits<Doub>::max_exponent/2;
Int j,k;
Doub bi,bim,bip,dum,tox,ans;
if (n==0) return i0(x);
if (n==1) return i1(x);
if (x*x <= 8.0*numeric_limits<Doub>::min()) return 0.0;
else {

tox=2.0/abs(x);
bip=ans=0.0;
bi=1.0;
for (j=2*(n+Int(sqrt(ACC*n)));j>0;j--) { Downward recurrence.

bim=bip+j*tox*bi;
bip=bi;
bi=bim;
dum=frexp(bi,&k);
if (k > IEXP) { Renormalize to prevent overflows.

ans=ldexp(ans,-IEXP);
bi=ldexp(bi,-IEXP);
bip=ldexp(bip,-IEXP);
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}
if (j == n) ans=bip;

}
ans *= i0(x)/bi; Normalize with bessi0.
return x < 0.0 && (n & 1) ? -ans : ans;

}
}

The function ldexp, used above, is a standard C and C++ library function for
scaling the binary exponent of a number.

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions (Washington: Na-
tional Bureau of Standards); reprinted 1968 (New York: Dover); online at http://www.nr.
com/aands, Chapter 9.

Carrier, G.F., Krook, M. and Pearson, C.E. 1966, Functions of a Complex Variable (New York:
McGraw-Hill), pp. 220ff.

SPECFUN, 2007+, at http://www.netlib.org/specfun.[1]

Hart, J.F., et al. 1968, Computer Approximations (New York: Wiley), �6.8, p. 141.[2]

Numerical Recipes Software 2007, “Coefficients Used in the Bessjy and Bessik Objects,” Nu-
merical Recipes Webnote No. 7, at http://www.nr.com/webnotes?7 [3]

6.6 Bessel Functions of Fractional Order, Airy
Functions, Spherical Bessel Functions

Many algorithms have been proposed for computing Bessel functions of fractional order
numerically. Most of them are, in fact, not very good in practice. The routines given here are
rather complicated, but they can be recommended wholeheartedly.

6.6.1 Ordinary Bessel Functions
The basic idea is Steed’s method, which was originally developed [1] for Coulomb wave

functions. The method calculates J� , J 0� , Y� , and Y 0� simultaneously, and so involves four
relations among these functions. Three of the relations come from two continued fractions,
one of which is complex. The fourth is provided by the Wronskian relation

W � J�Y
0
� � Y�J

0
� D

2

	x
(6.6.1)

The first continued fraction, CF1, is defined by

f� �
J 0�
J�
D



x
�
J�C1

J�

D



x
�

1

2.
 C 1/=x �

1

2.
 C 2/=x �
	 	 	

(6.6.2)

You can easily derive it from the three-term recurrence relation for Bessel functions: Start with
equation (6.5.6) and use equation (5.4.18). Forward evaluation of the continued fraction by
one of the methods of �5.2 is essentially equivalent to backward recurrence of the recurrence
relation. The rate of convergence of CF1 is determined by the position of the turning point
xtp D

p

.
 C 1/ � 
, beyond which the Bessel functions become oscillatory. If x . xtp,
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convergence is very rapid. If x & xtp, then each iteration of the continued fraction effectively
increases 
 by one until x . xtp; thereafter rapid convergence sets in. Thus the number of iter-
ations of CF1 is of order x for large x. In the routine besseljy we set the maximum allowed
number of iterations to 10,000. For larger x, you can use the usual asymptotic expressions for
Bessel functions.

One can show that the sign of J� is the same as the sign of the denominator of CF1 once
it has converged.

The complex continued fraction CF2 is defined by

p C iq �
J 0� C iY

0
�

J� C iY�
D �

1

2x
C i C

i

x

.1=2/2 � 
2

2.x C i/C

.3=2/2 � 
2

2.x C 2i/C
	 	 	 (6.6.3)

(We sketch the derivation of CF2 in the analogous case of modified Bessel functions in the
next subsection.) This continued fraction converges rapidly for x & xtp, while convergence
fails as x ! 0. We have to adopt a special method for small x, which we describe below. For
x not too small, we can ensure that x & xtp by a stable recurrence of J� and J 0� downward
to a value 
 D � . x, thus yielding the ratio f� at this lower value of 
. This is the stable
direction for the recurrence relation. The initial values for the recurrence are

J� D arbitrary; J 0� D f�J� ; (6.6.4)

with the sign of the arbitrary initial value of J� chosen to be the sign of the denominator of
CF1. Choosing the initial value of J� very small minimizes the possibility of overflow during
the recurrence. The recurrence relations are

J��1 D



x
J� C J

0
�

J 0��1 D

 � 1

x
J��1 � J�

(6.6.5)

Once CF2 has been evaluated at 
 D �, then with the Wronskian (6.6.1) we have enough re-
lations to solve for all four quantities. The formulas are simplified by introducing the quantity

� �
p � f�

q
(6.6.6)

Then

J� D ˙

�
W

q C �.p � f�/

�1=2
(6.6.7)

J 0� D f�J� (6.6.8)

Y� D �J� (6.6.9)

Y 0� D Y�

�
p C

q

�

�
(6.6.10)

The sign of J� in (6.6.7) is chosen to be the same as the sign of the initial J� in (6.6.4).
Once all four functions have been determined at the value 
 D �, we can find them at the

original value of 
. For J� and J 0� , simply scale the values in (6.6.4) by the ratio of (6.6.7) to
the value found after applying the recurrence (6.6.5). The quantities Y� and Y 0� can be found
by starting with the values in (6.6.9) and (6.6.10) and using the stable upward recurrence

Y�C1 D
2


x
Y� � Y��1 (6.6.11)

together with the relation

Y 0� D



x
Y� � Y�C1 (6.6.12)

Now turn to the case of small x, when CF2 is not suitable. Temme [2] has given a good
method of evaluating Y� and Y�C1, and hence Y 0� from (6.6.12), by series expansions that
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accurately handle the singularity as x ! 0. The expansions work only for j
j 
 1=2, and so
now the recurrence (6.6.5) is used to evaluate f� at a value 
 D � in this interval. Then one
calculates J� from

J� D
W

Y 0� � Y�f�
(6.6.13)

and J 0� from (6.6.8). The values at the original value of 
 are determined by scaling as before,
and the Y ’s are recurred up as before.

Temme’s series are

Y� D �

1X
kD0

ckgk Y�C1 D �
2

x

1X
kD0

ckhk (6.6.14)

Here

ck D
.�x2=4/k

kŠ
(6.6.15)

while the coefficients gk and hk are defined in terms of quantities pk , qk , and fk that can be
found by recursion:

gk D fk C
2



sin2

�
	
2

�
qk

hk D �kgk C pk

pk D
pk�1

k � 


qk D
qk�1

k C 


fk D
kfk�1 C pk�1 C qk�1

k2 � 
2

(6.6.16)

The initial values for the recurrences are

p0 D
1

	

�x
2

���
�.1C 
/

q0 D
1

	

�x
2

��
�.1 � 
/

f0 D
2

	


	

sin 
	

�
cosh ��1.
/C

sinh �

�
ln

�
2

x

�
�2.
/

� (6.6.17)

with

� D 
 ln

�
2

x

�
�1.
/ D

1

2


�
1

�.1 � 
/
�

1

�.1C 
/

�
�2.
/ D

1

2

�
1

�.1 � 
/
C

1

�.1C 
/

� (6.6.18)

The whole point of writing the formulas in this way is that the potential problems as 
 ! 0
can be controlled by evaluating 
	= sin 
	 , sinh �=� , and �1 carefully. In particular, Temme
gives Chebyshev expansions for �1.
/ and �2.
/. We have rearranged his expansion for �1
to be explicitly an even series in 
 for more efficient evaluation, as explained in �5.8.

Because J� , Y� , J 0� , and Y 0� are all calculated simultaneously, a single void function
sets them all. You then grab those that you need directly from the object. Alternatively, the
functions jnu and ynu can be used. (We’ve omitted similar helper functions for the deriva-
tives, but you can easily add them.) The object Bessel contains various other methods that
will be discussed below.
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The routines assume 
 � 0. For negative 
 you can use the reflection formulas

J�� D cos 
	 J� � sin 
	 Y�
Y�� D sin 
	 J� C cos 
	 Y�

(6.6.19)

The routine also assumes x > 0. For x < 0, the functions are in general complex but express-
ible in terms of functions with x > 0. For x D 0, Y� is singular. The complex arithmetic is
carried out explicitly with real variables.

struct Bessel {besselfrac.h
Object for Bessel functions of arbitrary order �, and related functions.

static const Int NUSE1=7, NUSE2=8;
static const Doub c1[NUSE1],c2[NUSE2];
Doub xo,nuo; Saved x and � from last call.
Doub jo,yo,jpo,ypo; Set by besseljy.
Doub io,ko,ipo,kpo; Set by besselik.
Doub aio,bio,aipo,bipo; Set by airy.
Doub sphjo,sphyo,sphjpo,sphypo; Set by sphbes.
Int sphno;

Bessel() : xo(9.99e99), nuo(9.99e99), sphno(-9999) {}
Default constructor. No arguments.

void besseljy(const Doub nu, const Doub x);
Calculate Bessel functions J�.x/ and Y�.x/ and their derivatives.
void besselik(const Doub nu, const Doub x);
Calculate Bessel functions I�.x/ and K�.x/ and their derivatives.

Doub jnu(const Doub nu, const Doub x) {
Simple interface returning J�.x/.

if (nu != nuo || x != xo) besseljy(nu,x);
return jo;

}
Doub ynu(const Doub nu, const Doub x) {
Simple interface returning Y�.x/.

if (nu != nuo || x != xo) besseljy(nu,x);
return yo;

}
Doub inu(const Doub nu, const Doub x) {
Simple interface returning I�.x/.

if (nu != nuo || x != xo) besselik(nu,x);
return io;

}
Doub knu(const Doub nu, const Doub x) {
Simple interface returning K�.x/.

if (nu != nuo || x != xo) besselik(nu,x);
return ko;

}

void airy(const Doub x);
Calculate Airy functions Ai.x/ and Bi.x/ and their derivatives.
Doub airy_ai(const Doub x);
Simple interface returning Ai.x/.
Doub airy_bi(const Doub x);
Simple interface returning Bi.x/.

void sphbes(const Int n, const Doub x);
Calculate spherical Bessel functions jn.x/ and yn.x/ and their derivatives.
Doub sphbesj(const Int n, const Doub x);
Simple interface returning jn.x/.
Doub sphbesy(const Int n, const Doub x);
Simple interface returning yn.x/.
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inline Doub chebev(const Doub *c, const Int m, const Doub x) {
Utility used by besseljy and besselik, evaluates Chebyshev series.

Doub d=0.0,dd=0.0,sv;
Int j;
for (j=m-1;j>0;j--) {

sv=d;
d=2.*x*d-dd+c[j];
dd=sv;

}
return x*d-dd+0.5*c[0];

}
};

const Doub Bessel::c1[7] = {-1.142022680371168e0,6.5165112670737e-3,
3.087090173086e-4,-3.4706269649e-6,6.9437664e-9,3.67795e-11,
-1.356e-13};

const Doub Bessel::c2[8] = {1.843740587300905e0,-7.68528408447867e-2,
1.2719271366546e-3,-4.9717367042e-6,-3.31261198e-8,2.423096e-10,
-1.702e-13,-1.49e-15};

The code listing for Bessel::besseljy is in a Webnote [4].

6.6.2 Modified Bessel Functions
Steed’s method does not work for modified Bessel functions because in this case CF2 is

purely imaginary and we have only three relations among the four functions. Temme [3] has
given a normalization condition that provides the fourth relation.

The Wronskian relation is

W � I�K
0
� �K�I

0
� D �

1

x
(6.6.20)

The continued fraction CF1 becomes

f� �
I 0�
I�
D



x
C

1

2.
 C 1/=x C

1

2.
 C 2/=x C
	 	 	 (6.6.21)

To get CF2 and the normalization condition in a convenient form, consider the sequence
of confluent hypergeometric functions

zn.x/ D U.
 C 1=2C n; 2
 C 1; 2x/ (6.6.22)

for fixed 
. Then

K�.x/ D 	
1=2.2x/�e�xz0.x/ (6.6.23)

K�C1.x/

K�.x/
D
1

x

�

 C

1

2
C x C

�

2 �

1

4

�
z1

z0

�
(6.6.24)

Equation (6.6.23) is the standard expression for K� in terms of a confluent hypergeometric
function, while equation (6.6.24) follows from relations between contiguous confluent hyper-
geometric functions (equations 13.4.16 and 13.4.18 in Ref. [5]). Now the functions zn satisfy
the three-term recurrence relation (equation 13.4.15 in Ref. [5])

zn�1.x/ D bnzn.x/C anC1znC1 (6.6.25)

with

bn D 2.nC x/

anC1 D �Œ.nC 1=2/
2 � 
2�

(6.6.26)

Following the steps leading to equation (5.4.18), we get the continued fraction CF2

z1

z0
D

1

b1 C

a2

b2 C
	 	 	 (6.6.27)
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from which (6.6.24) gives K�C1=K� and thus K0�=K� .
Temme’s normalization condition is that

1X
nD0

Cnzn D

�
1

2x

��C1=2
(6.6.28)

where

Cn D
.�1/n

nŠ

�.
 C 1=2C n/

�.
 C 1=2 � n/
(6.6.29)

Note that the Cn’s can be determined by recursion:

C0 D 1; CnC1 D �
anC1

nC 1
Cn (6.6.30)

We use the condition (6.6.28) by finding

S D

1X
nD1

Cn
zn

z0
(6.6.31)

Then

z0 D

�
1

2x

��C1=2 1

1C S
(6.6.32)

and (6.6.23) gives K� .
Thompson and Barnett [6] have given a clever method of doing the sum (6.6.31) simul-

taneously with the forward evaluation of the continued fraction CF2. Suppose the continued
fraction is being evaluated as

z1

z0
D

1X
nD0

�hn (6.6.33)

where the increments �hn are being found by, e.g., Steed’s algorithm or the modified Lentz’s
algorithm of �5.2. Then the approximation to S keeping the first N terms can be found as

SN D

NX
nD1

Qn�hn (6.6.34)

Here

Qn D

nX
kD1

Ckqk (6.6.35)

and qk is found by recursion from

qkC1 D .qk�1 � bkqk/=akC1 (6.6.36)

starting with q0 D 0, q1 D 1. For the case at hand, approximately three times as many terms
are needed to get S to converge as are needed simply for CF2 to converge.

To find K� and K�C1 for small x we use series analogous to (6.6.14):

K� D

1X
kD0

ckfk K�C1 D
2

x

1X
kD0

ckhk (6.6.37)
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Here

ck D
.x2=4/k

kŠ

hk D �kfk C pk

pk D
pk�1

k � 


qk D
qk�1

k C 


fk D
kfk�1 C pk�1 C qk�1

k2 � 
2

(6.6.38)

The initial values for the recurrences are

p0 D
1

2

�x
2

���
�.1C 
/

q0 D
1

2

�x
2

��
�.1 � 
/

f0 D

	

sin 
	

�
cosh ��1.
/C

sinh �

�
ln

�
2

x

�
�2.
/

� (6.6.39)

Both the series for small x, and CF2 and the normalization relation (6.6.28) require
j
j 
 1=2. In both cases, therefore, we recurse I� down to a value 
 D � in this interval, find
K� there, and recurse K� back up to the original value of 
.

The routine assumes 
 � 0. For negative 
 use the reflection formulas

I�� D I� C
2

	
sin.
	/K�

K�� D K�

(6.6.40)

Note that for large x, I� � ex and K� � e�x , and so these functions will overflow or
underflow. It is often desirable to be able to compute the scaled quantities e�xI� and exK� .
Simply omitting the factor e�x in equation (6.6.23) will ensure that all four quantities will
have the appropriate scaling. If you also want to scale the four quantities for small x when the
series in equation (6.6.37) are used, you must multiply each series by ex .

As with besseljy, you can either call the void function besselik, and then retrieve
the function and/or derivative values from the object, or else just call inu or knu.

The code listing for Bessel::besselik is in a Webnote [4].

6.6.3 Airy Functions
For positive x, the Airy functions are defined by

Ai.x/ D
1

	

r
x

3
K1=3.z/ (6.6.41)

Bi.x/ D

r
x

3
ŒI1=3.z/C I�1=3.z/� (6.6.42)

where

z D
2

3
x3=2 (6.6.43)

By using the reflection formula (6.6.40), we can convert (6.6.42) into the computationally
more useful form

Bi.x/ D
p
x

�
2
p
3
I1=3.z/C

1

	
K1=3.z/

�
(6.6.44)

so that Ai and Bi can be evaluated with a single call to besselik.



�

�

“nr3” — 2007/5/1 — 20:53 — page 290 — #312
�

�

� �

290 Chapter 6. Special Functions

-7 -6 -5 -4 -3 -2 -1 0 1 2 3

-0.5

0

0.5

1

x

A
ir

y 
fu

nc
tio

ns

Bi(x)

Ai(x)

Figure 6.6.1. Airy functions Ai.x/ and Bi.x/.

The derivatives should not be evaluated by simply differentiating the above expressions
because of possible subtraction errors near x D 0. Instead, use the equivalent expressions

Ai0.x/ D �
x

	
p
3
K2=3.z/

Bi0.x/ D x

�
2
p
3
I2=3.z/C

1

	
K2=3.z/

� (6.6.45)

The corresponding formulas for negative arguments are

Ai.�x/ D

p
x

2

�
J1=3.z/ �

1
p
3
Y1=3.z/

�
Bi.�x/ D �

p
x

2

�
1
p
3
J1=3.z/C Y1=3.z/

�
Ai0.�x/ D

x

2

�
J2=3.z/C

1
p
3
Y2=3.z/

�
Bi0.�x/ D

x

2

�
1
p
3
J2=3.z/ � Y2=3.z/

�
(6.6.46)

void Bessel::airy(const Doub x) {besselfrac.h
Sets aio, bio, aipo, and bipo, respectively, to the Airy functions Ai.x/, Bi.x/ and their
derivatives Ai0.x/, Bi0.x/.

static const Doub PI=3.141592653589793238,
ONOVRT=0.577350269189626,THR=1./3.,TWOTHR=2.*THR;

Doub absx,rootx,z;
absx=abs(x);
rootx=sqrt(absx);
z=TWOTHR*absx*rootx;
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if (x > 0.0) {
besselik(THR,z);
aio = rootx*ONOVRT*ko/PI;
bio = rootx*(ko/PI+2.0*ONOVRT*io);
besselik(TWOTHR,z);
aipo = -x*ONOVRT*ko/PI;
bipo = x*(ko/PI+2.0*ONOVRT*io);

} else if (x < 0.0) {
besseljy(THR,z);
aio = 0.5*rootx*(jo-ONOVRT*yo);
bio = -0.5*rootx*(yo+ONOVRT*jo);
besseljy(TWOTHR,z);
aipo = 0.5*absx*(ONOVRT*yo+jo);
bipo = 0.5*absx*(ONOVRT*jo-yo);

} else { Case x D 0.
aio=0.355028053887817;
bio=aio/ONOVRT;
aipo = -0.258819403792807;
bipo = -aipo/ONOVRT;

}
}

Doub Bessel::airy_ai(const Doub x) {
Simple interface returning Ai.x/.

if (x != xo) airy(x);
return aio;

}
Doub Bessel::airy_bi(const Doub x) {
Simple interface returning Bi.x/.

if (x != xo) airy(x);
return bio;

}

6.6.4 Spherical Bessel Functions
For integer n, spherical Bessel functions are defined by

jn.x/ D

r
	

2x
J
nC

1
2
.x/

yn.x/ D

r
	

2x
Y
nC

1
2
.x/

(6.6.47)

They can be evaluated by a call to besseljy, and the derivatives can safely be found from the
derivatives of equation (6.6.47).

Note that in the continued fraction CF2 in (6.6.3) just the first term survives for 
 D 1=2.
Thus one can make a very simple algorithm for spherical Bessel functions along the lines of
besseljy by always recursing jn down to n D 0, setting p and q from the first term in CF2,
and then recursing yn up. No special series is required near x D 0. However, besseljy is
already so efficient that we have not bothered to provide an independent routine for spherical
Bessels.

void Bessel::sphbes(const Int n, const Doub x) { besselfrac.h
Sets sphjo, sphyo, sphjpo, and sphypo, respectively, to the spherical Bessel functions jn.x/,
yn.x/, and their derivatives j 0n.x/, y

0
n.x/ for integer n (which is saved as sphno).

const Doub RTPIO2=1.253314137315500251;
Doub factor,order;
if (n < 0 || x <= 0.0) throw("bad arguments in sphbes");
order=n+0.5;
besseljy(order,x);
factor=RTPIO2/sqrt(x);
sphjo=factor*jo;
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sphyo=factor*yo;
sphjpo=factor*jpo-sphjo/(2.*x);
sphypo=factor*ypo-sphyo/(2.*x);
sphno = n;

}

Doub Bessel::sphbesj(const Int n, const Doub x) {
Simple interface returning jn.x/.

if (n != sphno || x != xo) sphbes(n,x);
return sphjo;

}
Doub Bessel::sphbesy(const Int n, const Doub x) {
Simple interface returning yn.x/.

if (n != sphno || x != xo) sphbes(n,x);
return sphyo;

}
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6.7 Spherical Harmonics

Spherical harmonics occur in a large variety of physical problems, for example,
whenever a wave equation, or Laplace’s equation, is solved by separation of vari-
ables in spherical coordinates. The spherical harmonic Ylm.�; �/;�l 
 m 
 l; is a
function of the two coordinates �; � on the surface of a sphere.

The spherical harmonics are orthogonal for different l and m, and they are nor-
malized so that their integrated square over the sphere is unity:Z 2	

0

d�

Z 1

�1

d.cos �/Y �l 0m0.�; �/Ylm.�; �/ D ıl 0lım0m (6.7.1)

Here the asterisk denotes complex conjugation.
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Mathematically, the spherical harmonics are related to associated Legendre
polynomials by the equation

Ylm.�; �/ D

s
2l C 1

4	

.l �m/Š

.l Cm/Š
Pml .cos �/eim� (6.7.2)

By using the relation
Yl;�m.�; �/ D .�1/

mY �lm.�; �/ (6.7.3)

we can always relate a spherical harmonic to an associated Legendre polynomial
with m � 0. With x � cos � , these are defined in terms of the ordinary Legendre
polynomials (cf. �4.6 and �5.4) by

Pml .x/ D .�1/
m.1 � x2/m=2

dm

dxm
Pl .x/ (6.7.4)

Be careful: There are alternative normalizations for the associated Legendre polyno-
mials and alternative sign conventions.

The first few associated Legendre polynomials, and their corresponding nor-
malized spherical harmonics, are

P 00 .x/ D 1 Y00 D

q
1
4	

P 11 .x/ D �.1 � x2/1=2 Y11 D �

q
3
8	

sin �ei�

P 01 .x/ D x Y10 D

q
3
4	

cos �

P 22 .x/ D 3.1 � x2/ Y22 D
1
4

q
15
2	

sin2 �e2i�

P 12 .x/ D �3.1 � x
2/1=2x Y21 D �

q
15
8	

sin � cos �ei�

P 02 .x/ D
1
2
.3x2 � 1/ Y20 D

q
5
4	
.3
2

cos2 � � 1
2
/

(6.7.5)

There are many bad ways to evaluate associated Legendre polynomials numer-
ically. For example, there are explicit expressions, such as

Pml .x/ D
.�1/m.l Cm/Š

2mmŠ.l �m/Š
.1 � x2/m=2

�
1 �

.l �m/.mC l C 1/

1Š.mC 1/

�
1 � x

2

�
C
.l �m/.l �m � 1/.mC l C 1/.mC l C 2/

2Š.mC 1/.mC 2/

�
1 � x

2

�2
� 	 	 	

�
(6.7.6)

where the polynomial continues up through the term in .1 � x/l�m. (See [1] for this
and related formulas.) This is not a satisfactory method because evaluation of the
polynomial involves delicate cancellations between successive terms, which alter-
nate in sign. For large l , the individual terms in the polynomial become very much
larger than their sum, and all accuracy is lost.

In practice, (6.7.6) can be used only in single precision (32-bit) for l up to 6
or 8, and in double precision (64-bit) for l up to 15 or 18, depending on the preci-
sion required for the answer. A more robust computational procedure is therefore
desirable, as follows.
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The associated Legendre functions satisfy numerous recurrence relations, tab-
ulated in [1,2]. These are recurrences on l alone, on m alone, and on both l and m
simultaneously. Most of the recurrences involvingm are unstable, and so are danger-
ous for numerical work. The following recurrence on l is, however, stable (compare
5.4.1):

.l �m/Pml D x.2l � 1/P
m
l�1 � .l Cm � 1/P

m
l�2 (6.7.7)

Even this recurrence is useful only for moderate l andm, since the Pm
l

’s themselves
grow rapidly with l and quickly overflow. The spherical harmonics by contrast re-
main bounded — after all, they are normalized to unity (eq. 6.7.1). It is exactly
the square-root factor in equation (6.7.2) that balances the divergence. So the right
function to use in the recurrence relation is the renormalized associated Legendre
function,

zPml D

s
2l C 1

4	

.l �m/Š

.l Cm/Š
Pml (6.7.8)

Then the recurrence relation (6.7.7) becomes

zPml D

r
4l2 � 1

l2 �m2

24x zPml�1 �
s
.l � 1/2 �m2

4.l � 1/2 � 1
zPml�2

35 (6.7.9)

We start the recurrence with the closed-form expression for the l D m function,

zPmm D .�1/
m

s
2mC 1

4	.2m/Š
.2m � 1/ŠŠ .1 � x2/m=2 (6.7.10)

(The notation nŠŠ denotes the product of all odd integers less than or equal to n.)
Using (6.7.9) with l D mC 1, and setting zPmm�1 D 0, we find

zPmmC1 D x
p
2mC 3 zPmm (6.7.11)

Equations (6.7.10) and (6.7.11) provide the two starting values required for (6.7.9)
for general l .

The function that implements this is

Doub plegendre(const Int l, const Int m, const Doub x) {plegendre.h
Computes the renormalized associated Legendre polynomial zPm

l
.x/, equation (6.7.8). Here m

and l are integers satisfying 0 � m � l , while x lies in the range �1 � x � 1.
static const Doub PI=3.141592653589793;
Int i,ll;
Doub fact,oldfact,pll,pmm,pmmp1,omx2;
if (m < 0 || m > l || abs(x) > 1.0)

throw("Bad arguments in routine plgndr");

pmm=1.0; Compute zPmm .
if (m > 0) {

omx2=(1.0-x)*(1.0+x);
fact=1.0;
for (i=1;i<=m;i++) {

pmm *= omx2*fact/(fact+1.0);
fact += 2.0;

}
}
pmm=sqrt((2*m+1)*pmm/(4.0*PI));
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if (m & 1)
pmm=-pmm;

if (l == m)
return pmm;

else { Compute zPm
mC1

.
pmmp1=x*sqrt(2.0*m+3.0)*pmm;
if (l == (m+1))

return pmmp1;

else { Compute zPm
l

, l > mC 1.
oldfact=sqrt(2.0*m+3.0);
for (ll=m+2;ll<=l;ll++) {

fact=sqrt((4.0*ll*ll-1.0)/(ll*ll-m*m));
pll=(x*pmmp1-pmm/oldfact)*fact;
oldfact=fact;
pmm=pmmp1;
pmmp1=pll;

}
return pll;

}
}

}

Sometimes it is convenient to have the functions with the standard normaliza-
tion, as defined by equation (6.7.4). Here is a routine that does this. Note that it will
overflow for m & 80, or even sooner if l � m.

Doub plgndr(const Int l, const Int m, const Doub x) plegendre.h
Computes the associated Legendre polynomial Pm

l
.x/, equation (6.7.4). Here m and l are

integers satisfying 0 � m � l , while x lies in the range �1 � x � 1. These functions will
overflow for m & 80.
{

const Doub PI=3.141592653589793238;
if (m < 0 || m > l || abs(x) > 1.0)

throw("Bad arguments in routine plgndr");
Doub prod=1.0;
for (Int j=l-m+1;j<=l+m;j++)

prod *= j;
return sqrt(4.0*PI*prod/(2*l+1))*plegendre(l,m,x);

}

6.7.1 Fast Spherical Harmonic Transforms
Any smooth function on the surface of a sphere can be written as an expansion in

spherical harmonics. Suppose the function can be well-approximated by truncating
the expansion at l D lmax:

f .�i ; �j / D

lmaxX
lD0

mDlX
mD�l

almYlm.�i ; �j /

D

lmaxX
lD0

mDlX
mD�l

alm zP
m
l .cos �i /e

im�j

(6.7.12)

Here we have written the function evaluated at one of N� sample points �i and one
of N� sample points �j . The total number of sample points is N D N�N� . In appli-
cations, typically N� � N� �

p
N . Since the total number of spherical harmonics

in the sum (6.7.12) is l2max, we also have lmax �
p
N .
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How many operations does it take to evaluate the sum (6.7.12)? Direct evalua-
tion of l2max terms at N sample points is an O.N 2/ process. You might try to speed
this up by choosing the sample points �j to be equally spaced in angle and doing the
sum overm by an FFT. Each FFT is O.N� lnN�/, and you have to doO.N� lmax/ of
them, for a total ofO.N 3=2 lnN/ operations, which is some improvement. A simple
rearrangement [3-5] gives an even better way: Interchange the order of summation

lmaxX
lD0

lX
mD�l

 !

lmaxX
mD�lmax

lmaxX
lDjmj

(6.7.13)

so that

f .�i ; �j / D

lmaxX
mD�lmax

qm.�i /e
im�j (6.7.14)

where

qm.�i / D

lmaxX
lDjmj

alm zP
m
l .cos �i / (6.7.15)

Evaluating the sum in (6.7.15) is O.lmax/, and one must do this for O.lmaxN� / qm’s,
so the total work is O.N 3=2/. To evaluate equation (6.7.14) by an FFT at fixed
�i is O.N� lnN�/. There are N� FFTs to be done, for a total operations count of
O.N lnN/, which is negligible in comparison. So the total algorithm is O.N 3=2/.
Note that you can evaluate equation (6.7.14) either by precomputing and storing the
zPm
l

’s using the recurrence relation (6.7.9), or by Clenshaw’s method (�5.4).
What about inverting the transform (6.7.12)? The formal inverse for the expan-

sion of a continuous function f .�; �/ follows from the orthonormality of the Ylm’s,
equation (6.7.1),

alm D

Z
sin � d� d� f .�; �/e�im� zPml .cos �/ (6.7.16)

For the discrete case, where we have a sampled function, the integral becomes a
quadrature:

alm D
X
i;j

w.�i /f .�i ; �j /e
�im�j zPml .cos �i / (6.7.17)

Here w.�i / are the quadrature weights. In principle we could consider weights that
depend on �j as well, but in practice we do the � quadrature by an FFT, so the
weights are unity. A good choice for the weights for an equi-angular grid in � is
given in Ref. [3], Theorem 3. Another possibility is to use Gaussian quadrature for
the � integral. In this case, you choose the sample points so that the cos �i ’s are the
abscissas returned by gauleg and the w.�i /’s are the corresponding weights. The
best way to organize the calculation is to first do the FFTs, computing

gm.�i / D
X
j

f .�i ; �j /e
�im�j (6.7.18)

Then
alm D

X
i

w.�i /gm.�i / zP
m
l .cos �i / (6.7.19)
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You can verify that the operations count is dominated by equation (6.7.19) and
scales as O.N 3=2/ once again. In a real calculation, you should exploit all the sym-
metries that let you reduce the workload, such as g�m D g�m and zPm

l
Œcos.	 � �/� D

.�1/lCm zPm
l
.cos �/.

Very recently, algorithms for fast Legendre transforms have been developed,
similar in spirit to the FFT [3,6,7]. Theoretically, they reduce the forward and in-
verse spherical harmonic transforms to O.N log2N/ problems. However, current
implementations [8] are not much faster than the O.N 3=2/ methods above for N �
500, and there are stability and accuracy problems that require careful attention [9].
Stay tuned!

CITED REFERENCES AND FURTHER READING:

Magnus, W., and Oberhettinger, F. 1949, Formulas and Theorems for the Functions of Mathe-
matical Physics (New York: Chelsea), pp. 54ff.[1]

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions (Washington: Na-
tional Bureau of Standards); reprinted 1968 (New York: Dover); online at http://www.nr.
com/aands, Chapter 8.[2]

Driscoll, J.R., and Healy, D.M. 1994, “Computing Fourier Transforms and Convolutions on the
2–sphere,” Advances in Applied Mathematics, vol. 15, pp. 202–250.[3]

Muciaccia, P.F., Natoli, P., and Vittorio, N. 1997, “Fast Spherical Harmonic Analysis: A Quick Al-
gorithm for Generating and/or Inverting Full-Sky, High-Resolution Cosmic Microwave Back-
ground Anisotropy Maps,” Astrophysical Journal, vol. 488, pp. L63–66.[4]

Oh, S.P., Spergel, D.N., and Hinshaw, G. 1999, “An Efficient Technique to Determine the Power
Spectrum from Cosmic Microwave Background Sky Maps,” Astrophysical Journal, vol. 510,
pp. 551–563, Appendix A.[5]

Healy, D.M., Rockmore, D., Kostelec, P.J., and Moore, S. 2003, “FFTs for the 2-Sphere: Improve-
ments and Variations,” Journal of Fourier Analysis and Applications, vol. 9, pp. 341–385.[6]

Potts, D., Steidl, G., and Tasche, M. 1998, “ Fast and Stable Algorithms for Discrete Spherical
Fourier Transforms,” Linear Algebra and Its Applications, vol. 275-276, pp. 433–450.[7]

Moore, S., Healy, D.M., Rockmore, D., and Kostelec, P.J. 2007+, SpharmonicKit. Software at
http://www.cs.dartmouth.edu/~geelong/sphere.[8]

Healy, D.M., Kostelec, P.J., and Rockmore, D. 2004, “Towards Safe and Effective High-Order
Legendre Transforms with Applications to FFTs for the 2-Sphere,” Advances in Computa-
tional Mathematics, vol. 21, pp. 59–105.[9]

6.8 Fresnel Integrals, Cosine and Sine
Integrals

6.8.1 Fresnel Integrals
The two Fresnel integrals are defined by

C.x/ D

Z x

0

cos
�	
2
t2
�
dt; S.x/ D

Z x

0

sin
�	
2
t2
�
dt (6.8.1)

and are plotted in Figure 6.8.1.
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Figure 6.8.1. Fresnel integrals C.x/ and S.x/ (�6.8), and Dawson’s integral F.x/ (�6.9).

The most convenient way of evaluating these functions to arbitrary precision is
to use power series for small x and a continued fraction for large x. The series are

C.x/ D x �
�	
2

�2 x5

5 	 2Š
C
�	
2

�4 x9

9 	 4Š
� 	 	 	

S.x/ D
�	
2

� x3

3 	 1Š
�
�	
2

�3 x7

7 	 3Š
C
�	
2

�5 x11

11 	 5Š
� 	 	 	

(6.8.2)

There is a complex continued fraction that yields both S.x/ and C.x/ simulta-
neously:

C.x/C iS.x/ D
1C i

2
erf z; z D

p
	

2
.1 � i /x (6.8.3)

where

ez
2

erfc z D
1
p
	

�
1

z C

1=2

z C

1

z C

3=2

z C

2

z C
	 	 	

�
D

2z
p
	

�
1

2z2 C 1 �

1 	 2

2z2 C 5 �

3 	 4

2z2 C 9 �
	 	 	

� (6.8.4)

In the last line we have converted the “standard” form of the continued fraction to
its “even” form (see �5.2), which converges twice as fast. We must be careful not
to evaluate the alternating series (6.8.2) at too large a value of x; inspection of the
terms shows that x D 1:5 is a good point to switch over to the continued fraction.

Note that for large x

C.x/ �
1

2
C

1

	x
sin
�	
2
x2
�
; S.x/ �

1

2
�

1

	x
cos

�	
2
x2
�

(6.8.5)
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Thus the precision of the routine frenel may be limited by the precision of the
library routines for sine and cosine for large x.

Complex frenel(const Doub x) { frenel.h
Computes the Fresnel integrals S.x/ and C.x/ for all real x. C.x/ is returned as the real part
of cs and S.x/ as the imaginary part.

static const Int MAXIT=100;
static const Doub PI=3.141592653589793238, PIBY2=(PI/2.0), XMIN=1.5,

EPS=numeric_limits<Doub>::epsilon(),
FPMIN=numeric_limits<Doub>::min(),
BIG=numeric_limits<Doub>::max()*EPS;
Here MAXIT is the maximum number of iterations allowed; EPS is the relative error;
FPMIN is a number near the smallest representable floating-point number; BIG is a
number near the machine overflow limit; and XMIN is the dividing line between using
the series and continued fraction.

Bool odd;
Int k,n;
Doub a,ax,fact,pix2,sign,sum,sumc,sums,term,test;
Complex b,cc,d,h,del,cs;
if ((ax=abs(x)) < sqrt(FPMIN)) { Special case: Avoid failure of convergence

test because of underflow.cs=ax;
} else if (ax <= XMIN) { Evaluate both series simultaneously.

sum=sums=0.0;
sumc=ax;
sign=1.0;
fact=PIBY2*ax*ax;
odd=true;
term=ax;
n=3;
for (k=1;k<=MAXIT;k++) {

term *= fact/k;
sum += sign*term/n;
test=abs(sum)*EPS;
if (odd) {

sign = -sign;
sums=sum;
sum=sumc;

} else {
sumc=sum;
sum=sums;

}
if (term < test) break;
odd=!odd;
n += 2;

}
if (k > MAXIT) throw("series failed in frenel");
cs=Complex(sumc,sums);

} else { Evaluate continued fraction by modified
Lentz’s method (�5.2).pix2=PI*ax*ax;

b=Complex(1.0,-pix2);
cc=BIG;
d=h=1.0/b;
n = -1;
for (k=2;k<=MAXIT;k++) {

n += 2;
a = -n*(n+1);
b += 4.0;
d=1.0/(a*d+b); Denominators cannot be zero.
cc=b+a/cc;
del=cc*d;
h *= del;
if (abs(real(del)-1.0)+abs(imag(del)) <= EPS) break;

}
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Figure 6.8.2. Sine and cosine integrals Si.x/ and Ci.x/.

if (k > MAXIT) throw("cf failed in frenel");
h *= Complex(ax,-ax);
cs=Complex(0.5,0.5)

*(1.0-Complex(cos(0.5*pix2),sin(0.5*pix2))*h);
}
if (x < 0.0) cs = -cs; Use antisymmetry.
return cs;

}

6.8.2 Cosine and Sine Integrals

The cosine and sine integrals are defined by

Ci.x/ D � C ln x C
Z x

0

cos t � 1

t
dt

Si.x/ D
Z x

0

sin t

t
dt

(6.8.6)

and are plotted in Figure 6.8.2. Here � � 0:5772 : : : is Euler’s constant. We only
need a way to calculate the functions for x > 0, because

Si.�x/ D � Si.x/; Ci.�x/ D Ci.x/ � i	 (6.8.7)

Once again we can evaluate these functions by a judicious combination of power
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series and complex continued fraction. The series are

Si.x/ D x �
x3

3 	 3Š
C

x5

5 	 5Š
� 	 	 	

Ci.x/ D � C ln x C

�
�
x2

2 	 2Š
C

x4

4 	 4Š
� 	 	 	

� (6.8.8)

The continued fraction for the exponential integral E1.ix/ is

E1.ix/ D �Ci.x/C i ŒSi.x/ � 	=2�

D e�ix
�

1

ix C

1

1C

1

ix C

2

1C

2

ix C
	 	 	

�
D e�ix

�
1

1C ix �

12

3C ix �

22

5C ix �
	 	 	

� (6.8.9)

The “even” form of the continued fraction is given in the last line and converges
twice as fast for about the same amount of computation. A good crossover point
from the alternating series to the continued fraction is x D 2 in this case. As for the
Fresnel integrals, for large x the precision may be limited by the precision of the sine
and cosine routines.

Complex cisi(const Doub x) { cisi.h
Computes the cosine and sine integrals Ci.x/ and Si.x/. The function Ci.x/ is returned as the
real part of cs, and Si.x/ as the imaginary part. Ci.0/ is returned as a large negative number
and no error message is generated. For x < 0 the routine returns Ci.�x/ and you must supply
the �i	 yourself.

static const Int MAXIT=100; Maximum number of iterations allowed.
static const Doub EULER=0.577215664901533, PIBY2=1.570796326794897,

TMIN=2.0, EPS=numeric_limits<Doub>::epsilon(),
FPMIN=numeric_limits<Doub>::min()*4.0,
BIG=numeric_limits<Doub>::max()*EPS;
Here EULER is Euler’s constant � ; PIBY2 is 	=2; TMIN is the dividing line between using
the series and continued fraction; EPS is the relative error, or absolute error near a zero
of Ci.x/; FPMIN is a number close to the smallest representable floating-point number;
and BIG is a number near the machine overflow limit.

Int i,k;
Bool odd;
Doub a,err,fact,sign,sum,sumc,sums,t,term;
Complex h,b,c,d,del,cs;
if ((t=abs(x)) == 0.0) return -BIG; Special case.
if (t > TMIN) { Evaluate continued fraction by modified

Lentz’s method (�5.2).b=Complex(1.0,t);
c=Complex(BIG,0.0);
d=h=1.0/b;
for (i=1;i<MAXIT;i++) {

a= -i*i;
b += 2.0;
d=1.0/(a*d+b); Denominators cannot be zero.
c=b+a/c;
del=c*d;
h *= del;
if (abs(real(del)-1.0)+abs(imag(del)) <= EPS) break;

}
if (i >= MAXIT) throw("cf failed in cisi");
h=Complex(cos(t),-sin(t))*h;
cs= -conj(h)+Complex(0.0,PIBY2);

} else { Evaluate both series simultaneously.
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if (t < sqrt(FPMIN)) { Special case: Avoid failure of convergence
test because of underflow.sumc=0.0;

sums=t;
} else {

sum=sums=sumc=0.0;
sign=fact=1.0;
odd=true;
for (k=1;k<=MAXIT;k++) {

fact *= t/k;
term=fact/k;
sum += sign*term;
err=term/abs(sum);
if (odd) {

sign = -sign;
sums=sum;
sum=sumc;

} else {
sumc=sum;
sum=sums;

}
if (err < EPS) break;
odd=!odd;

}
if (k > MAXIT) throw("maxits exceeded in cisi");

}
cs=Complex(sumc+log(t)+EULER,sums);

}
if (x < 0.0) cs = conj(cs);
return cs;

}

CITED REFERENCES AND FURTHER READING:

Stegun, I.A., and Zucker, R. 1976, “Automatic Computing Methods for Special Functions. III.
The Sine, Cosine, Exponential integrals, and Related Functions,” Journal of Research of
the National Bureau of Standards, vol. 80B, pp. 291–311; 1981, “Automatic Computing
Methods for Special Functions. IV. Complex Error Function, Fresnel Integrals, and Other
Related Functions,” op. cit., vol. 86, pp. 661–686.

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions (Washington: Na-
tional Bureau of Standards); reprinted 1968 (New York: Dover); online at http://www.nr.
com/aands, Chapters 5 and 7.

6.9 Dawson’s Integral

Dawson’s Integral F.x/ is defined by

F.x/ D e�x
2

Z x

0

et
2

dt (6.9.1)

See Figure 6.8.1 for a graph of the function. The function can also be related to the
complex error function by

F.z/ D
i
p
	

2
e�z

2

Œ1 � erfc.�iz/� : (6.9.2)
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A remarkable approximation for F.z/, due to Rybicki [1], is

F.z/ D lim
h!0

1
p
	

X
n odd

e�.z�nh/
2

n
(6.9.3)

What makes equation (6.9.3) unusual is that its accuracy increases exponentially as
h gets small, so that quite moderate values of h (and correspondingly quite rapid
convergence of the series) give very accurate approximations.

We will discuss the theory that leads to equation (6.9.3) later, in �13.11, as an
interesting application of Fourier methods. Here we simply implement a routine for
real values of x based on the formula.

It is first convenient to shift the summation index to center it approximately on
the maximum of the exponential term. Define n0 to be the even integer nearest to
x=h, and x0 � n0h, x0 � x � x0, and n0 � n � n0, so that

F.x/ �
1
p
	

NX
n0D�N n

0 odd

e�.x
0�n0h/2

n0 C n0
(6.9.4)

where the approximate equality is accurate when h is sufficiently small and N is
sufficiently large. The computation of this formula can be greatly speeded up if we
note that

e�.x
0�n0h/2 D e�x

02

e�.n
0h/2

�
e2x
0h
�n0

(6.9.5)

The first factor is computed once, the second is an array of constants to be stored,
and the third can be computed recursively, so that only two exponentials need be
evaluated. Advantage is also taken of the symmetry of the coefficients e�.n

0h/2 by
breaking up the summation into positive and negative values of n0 separately.

In the following routine, the choices h D 0:4 andN D 11 are made. Because of
the symmetry of the summations and the restriction to odd values of n, the limits on
the for loops are 0 to 5. The accuracy of the result in this version is about 2� 10�7.
In order to maintain relative accuracy near x D 0, where F.x/ vanishes, the program
branches to the evaluation of the power series [2] for F.x/, for jxj < 0:2.

Doub dawson(const Doub x) { dawson.h
Returns Dawson’s integral F.x/ D exp.�x2/

R x
0 exp.t2/dt for any real x.

static const Int NMAX=6;
static VecDoub c(NMAX);
static Bool init = true;
static const Doub H=0.4, A1=2.0/3.0, A2=0.4, A3=2.0/7.0;
Int i,n0; Flag is true if we need to initialize, else false.
Doub d1,d2,e1,e2,sum,x2,xp,xx,ans;
if (init) {

init=false;
for (i=0;i<NMAX;i++) c[i]=exp(-SQR((2.0*i+1.0)*H));

}
if (abs(x) < 0.2) { Use series expansion.

x2=x*x;
ans=x*(1.0-A1*x2*(1.0-A2*x2*(1.0-A3*x2)));

} else { Use sampling theorem representation.
xx=abs(x);
n0=2*Int(0.5*xx/H+0.5);
xp=xx-n0*H;
e1=exp(2.0*xp*H);
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e2=e1*e1;
d1=n0+1;
d2=d1-2.0;
sum=0.0;
for (i=0;i<NMAX;i++,d1+=2.0,d2-=2.0,e1*=e2)

sum += c[i]*(e1/d1+1.0/(d2*e1));
ans=0.5641895835*SIGN(exp(-xp*xp),x)*sum; Constant is 1=

p
	.

}
return ans;

}

Other methods for computing Dawson’s integral are also known [2,3].

CITED REFERENCES AND FURTHER READING:

Rybicki, G.B. 1989, “Dawson’s Integral and The Sampling Theorem,” Computers in Physics,
vol. 3, no. 2, pp. 85–87.[1]

Cody, W.J., Pociorek, K.A., and Thatcher, H.C. 1970, “Chebyshev Approximations for Dawson’s
Integral,” Mathematics of Computation, vol. 24, pp. 171–178.[2]

McCabe, J.H. 1974, “A Continued Fraction Expansion, with a Truncation Error Estimate, for
Dawson’s Integral,” Mathematics of Computation, vol. 28, pp. 811–816.[3]

6.10 Generalized Fermi-Dirac Integrals

The generalized Fermi-Dirac integral is defined as

Fk.
; �/ D

Z 1
0

xk.1C 1
2
�x/1=2

ex�
 C 1
dx (6.10.1)

It occurs, for example, in astrophysical applications with � nonnegative and arbitrary

. In condensed matter physics one usually has the simpler case of � D 0 and omits
the “generalized” from the name of the function. The important values of k are
�1=2, 1/2, 3/2, and 5/2, but we’ll consider arbitrary values greater than �1. Watch
out for an alternative definition that multiplies the integral by 1=�.k C 1/.

For 
 � �1 and 
 � 1 there are useful series expansions for these functions
(see, e.g., [1]). These give, for example,

F1=2.
; �/!
1
p
2�
e
e1=�K1

�
1

�

�
; 
! �1

F1=2.
; �/!
1

2
p
2

3=2

y
p
1C y2 � sinh�1 y

.
p
1C y2 � 1/3=2

; 
!1

(6.10.2)

Here y is defined by
1C y2 D .1C 
�/2 (6.10.3)

It is the middle range of 
 values that is difficult to handle.
For � D 0, Macleod [2] has given Chebyshev expansions accurate to 10�16 for

the four important k values, covering all 
 values. In this case, one need look no
further for an algorithm. Goano [3] handles arbitrary k for � D 0. For nonzero � ,
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it is reasonable to compute the functions by direct integration, using variable trans-
formation to get rapidly converging quadratures [4]. (Of course, this works also for
� D 0, but is not as efficient.) The usual transformation x D exp.t � e�t / handles
the singularity at x D 0 and the exponential fall off at large x (cf. equation 4.5.14).
For 
 & 15, it is better to split the integral into two regions, Œ0; 
� and Œ
; 
 C 60�.
(The contribution beyond 
C 60 is negligible.) Each of these integrals can then be
done with the DE rule. Between 60 and 500 function evaluations give full double
precision, larger 
 requiring more function evaluations. A more efficient strategy
would replace the quadrature by a series expansion for large 
.

In the implementation below, note how operator() is overloaded to define
both a function of one variable (for Trapzd) and a function of two variables (for
DErule). Note also the syntax

Trapzd<Fermi> s(*this,a,b);

for declaring a Trapzd object inside the Fermi object itself.

struct Fermi { fermi.h
Doub kk,etaa,thetaa;
Doub operator() (const Doub t);
Doub operator() (const Doub x, const Doub del);
Doub val(const Doub k, const Doub eta, const Doub theta);

};

Doub Fermi::operator() (const Doub t) {
Integrand for trapezoidal quadrature of generalized Fermi-Dirac integral with transformation
x D exp.t � e�t /.

Doub x;
x=exp(t-exp(-t));
return x*(1.0+exp(-t))*pow(x,kk)*sqrt(1.0+thetaa*0.5*x)/

(exp(x-etaa)+1.0);
}

Doub Fermi::operator() (const Doub x, const Doub del) {
Integrand for DE rule quadrature of generalized Fermi-Dirac integral.

if (x < 1.0)
return pow(del,kk)*sqrt(1.0+thetaa*0.5*x)/(exp(x-etaa)+1.0);

else
return pow(x,kk)*sqrt(1.0+thetaa*0.5*x)/(exp(x-etaa)+1.0);

}

Doub Fermi::val(const Doub k, const Doub eta, const Doub theta)
Computes the generalized Fermi-Dirac integral Fk.
; �/, where k > �1 and � 
 0. The
accuracy is approximately the square of the parameter EPS. NMAX limits the total number of
quadrature steps.
{

const Doub EPS=3.0e-9;
const Int NMAX=11;
Doub a,aa,b,bb,hmax,olds,sum;
kk=k; Load the arguments into the member variables

for use in the function evaluations.etaa=eta;
thetaa=theta;
if (eta <= 15.0) {

a=-4.5; Set limits for x D exp.t � e�t / mapping.
b=5.0;
Trapzd<Fermi> s(*this,a,b);
for (Int i=1;i<=NMAX;i++) {

sum=s.next();
if (i > 3) Test for convergence.

if (abs(sum-olds) <= EPS*abs(olds))
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return sum;
olds=sum; Save value for next convergence test.

}
}
else {

a=0.0; Set limits for DE rule.
b=eta;
aa=eta;
bb=eta+60.0;
hmax=4.3; Big enough to handle negative k or large 
.
DErule<Fermi> s(*this,a,b,hmax);
DErule<Fermi> ss(*this,aa,bb,hmax);
for (Int i=1;i<=NMAX;i++) {

sum=s.next()+ss.next();
if (i > 3)

if (abs(sum-olds) <= EPS*abs(olds))
return sum;

olds=sum;
}

}
throw("no convergence in fermi");
return 0.0;

}

You get values of the Fermi-Dirac functions by declaring a Fermi object:

Fermi ferm;

and then making repeated calls to the val function:

ans=ferm.val(k,eta,theta);

Other quadrature methods exist for these functions [5-7]. A reasonably efficient
method [8] involves trapezoidal quadrature with “pole correction,” but it is restricted
to � . 0:2. Generalized Bose-Einstein integrals can also be computed by the DE
rule or the methods in these references.
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Figure 6.11.1. The function x log.x/ is shown for 0 < x < 1. Although nearly invisible, an essential
singularity at x D 0 makes this function tricky to invert.

6.11 Inverse of the Function x log(x)
The function

y.x/ D x log.x/ (6.11.1)

and its inverse function x.y/ occur in a number of statistical and information theo-
retical contexts. Obviously y.x/ is nonsingular for all positive x, and easy to eval-
uate. For x between 0 and 1, it is negative, with a single minimum at .x; y/ D
.e�1;�e�1/. The function has the value 0 at x D 1, and it has the value 0 as its limit
at x D 0, since the linear factor x easily dominates the singular logarithm.

Computing the inverse function x.y/ is, however, not so easy. (We will need
this inverse in �6.14.12.) From the appearance of Figure 6.11.1, it might seem easy
to invert the function on its left branch, that is, return a value x between 0 and e�1

for every value y between 0 and �e�1. However, the lurking logarithmic singularity
at x D 0 causes difficulties for many methods that you might try.

Polynomial fits work well over any range of y that is less than a decade or
so (e.g., from 0.01 to 0.1), but fail badly if you demand high fractional precision
extending all the way to y D 0.

What about Newton’s method? We write

f .x/ � x log.x/ � y

f 0.x/ D 1C log.x/
(6.11.2)

giving the iteration

xiC1 D xi �
xi log.xi / � y

1C log.xi /
(6.11.3)
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This doesn’t work. The problem is not with its rate of convergence, which is of
course quadratic for any finite y if we start close enough to the solution (see �9.4).
The problem is that the region in which it converges at all is very small, especially
as y ! 0. So, if we don’t already have a good approximation as we approach the
singularity, we are sunk.

If we change variables, we can get different (not computationally equivalent)
versions of Newton’s method. For example, let

u � log.x/; x D eu (6.11.4)

Newton’s method in u looks like this:

f .u/ D ueu � y

f 0.u/ D .1C u/eu

uiC1 D ui �
ui � e

�uiy

1C ui

(6.11.5)

But it turns out that iteration (6.11.5) is no better than (6.11.3).
The observation that leads to a good solution is that, since its log term varies

only slowly, y D x log.x/ is only very modestly curved when it is plotted in log-log
coordinates. (Actually it is the negative of y that is plotted, since log-log coordinates
require positive quantities.) Algebraically, we rewrite equation (6.11.1) as

.�y/ D .�u/eu (6.11.6)

(with u as defined above) and take logarithms, giving

log.�y/ D uC log.�u/ (6.11.7)

This leads to the Newton formulas,

f .u/ D uC log.�u/ � log.�y/

f 0.u/ D
uC 1

u

uiC1 D ui C
ui

ui C 1

�
log

�
y

ui

�
� ui

� (6.11.8)

It turns out that the iteration (6.11.8) converges quadratically over quite a broad re-
gion of initial guesses. For �0:2 < y < 0, you can just choose �10 (for example)
as a fixed initial guess. When �0:2 < y < �e�1, one can use the Taylor series
expansion around x D e�1,

y.x � e�1/ D �e�1 C 1
2
e.x � e�1/2 C 	 	 	 (6.11.9)

which yields
x � e�1 �

p
2e�1.y C e�1/ (6.11.10)

With these initial guesses, (6.11.8) never takes more than six iterations to converge to
double precision accuracy, and there is just one log and a few arithmetic operations
per iteration. The implementation looks like this:
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Doub invxlogx(Doub y) { ksdist.h
For negative y, 0 > y > �e�1, return x such that y D x log.x/. The value returned is always
the smaller of the two roots and is in the range 0 < x < e�1.

const Doub ooe = 0.367879441171442322;
Doub t,u,to=0.;
if (y >= 0. || y <= -ooe) throw("no such inverse value");
if (y < -0.2) u = log(ooe-sqrt(2*ooe*(y+ooe))); First approximation by inverse

of Taylor series.else u = -10.;
do { See text for derivation.

u += (t=(log(y/u)-u)*(u/(1.+u)));
if (t < 1.e-8 && abs(t+to)<0.01*abs(t)) break;
to = t;

} while (abs(t/u) > 1.e-15);
return exp(u);

}

6.12 Elliptic Integrals and Jacobian Elliptic
Functions

Elliptic integrals occur in many applications, because any integral of the formZ
R.t; s/ dt (6.12.1)

where R is a rational function of t and s, and s is the square root of a cubic or
quartic polynomial in t , can be evaluated in terms of elliptic integrals. Standard
references [1] describe how to carry out the reduction, which was originally done by
Legendre. Legendre showed that only three basic elliptic integrals are required. The
simplest of these is

I1 D

Z x

y

dtp
.a1 C b1t /.a2 C b2t /.a3 C b3t /.a4 C b4t /

(6.12.2)

where we have written the quartic s2 in factored form. In standard integral tables [2],
one of the limits of integration is always a zero of the quartic, while the other limit
lies closer than the next zero, so that there is no singularity within the interval. To
evaluate I1, we simply break the interval Œy; x� into subintervals, each of which
either begins or ends on a singularity. The tables, therefore, need only distinguish
the eight cases in which each of the four zeros (ordered according to size) appears as
the upper or lower limit of integration. In addition, when one of the b’s in (6.12.2)
tends to zero, the quartic reduces to a cubic, with the largest or smallest singularity
moving to ˙1; this leads to eight more cases (actually just special cases of the
first eight). The 16 cases in total are then usually tabulated in terms of Legendre’s
standard elliptic integral of the first kind, which we will define below. By a change of
the variable of integration t , the zeros of the quartic are mapped to standard locations
on the real axis. Then only two dimensionless parameters are needed to tabulate
Legendre’s integral. However, the symmetry of the original integral (6.12.2) under
permutation of the roots is concealed in Legendre’s notation. We will get back to
Legendre’s notation below. But first, here is a better approach:
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Carlson [3] has given a new definition of a standard elliptic integral of the first kind,

RF .x; y; z/ D
1

2

Z 1
0

dtp
.t C x/.t C y/.t C z/

(6.12.3)

where x, y, and z are nonnegative and at most one is zero. By standardizing the range of
integration, he retains permutation symmetry for the zeros. (Weierstrass’ canonical form also
has this property.) Carlson first shows that when x or y is a zero of the quartic in (6.12.2), the
integral I1 can be written in terms ofRF in a form that is symmetric under permutation of the
remaining three zeros. In the general case, when neither x nor y is a zero, two such RF func-
tions can be combined into a single one by an addition theorem, leading to the fundamental
formula

I1 D 2RF .U
2
12; U

2
13; U

2
14/ (6.12.4)

where

Uij D .XiXjYkYm C YiYjXkXm/=.x � y/ (6.12.5)

Xi D .ai C bix/
1=2; Yi D .ai C biy/

1=2 (6.12.6)

and i; j; k;m is any permutation of 1; 2; 3; 4. A short-cut in evaluating these expressions is

U 213 D U
2
12 � .a1b4 � a4b1/.a2b3 � a3b2/

U 214 D U
2
12 � .a1b3 � a3b1/.a2b4 � a4b2/

(6.12.7)

The U ’s correspond to the three ways of pairing the four zeros, and I1 is thus manifestly
symmetric under permutation of the zeros. Equation (6.12.4) therefore reproduces all 16 cases
when one limit is a zero, and also includes the cases when neither limit is a zero.

Thus Carlson’s function allows arbitrary ranges of integration and arbitrary positions of
the branch points of the integrand relative to the interval of integration. To handle elliptic
integrals of the second and third kinds, Carlson defines the standard integral of the third kind
as

RJ .x; y; z; p/ D
3

2

Z 1
0

dt

.t C p/
p
.t C x/.t C y/.t C z/

(6.12.8)

which is symmetric in x, y, and z. The degenerate case when two arguments are equal is
denoted

RD.x; y; z/ D RJ .x; y; z; z/ (6.12.9)

and is symmetric in x and y. The function RD replaces Legendre’s integral of the second
kind. The degenerate form of RF is denoted

RC .x; y/ D RF .x; y; y/ (6.12.10)

It embraces logarithmic, inverse circular, and inverse hyperbolic functions.
Carlson [4-7] gives integral tables in terms of the exponents of the linear factors of the

quartic in (6.12.1). For example, the integral where the exponents are (12 ,12 ,�12 ,�32 ) can be
expressed as a single integral in terms ofRD ; it accounts for 144 separate cases in Gradshteyn
and Ryzhik [2]!

Refer to Carlson’s papers [3-8] for some of the practical details in reducing elliptic inte-
grals to his standard forms, such as handling complex-conjugate zeros.

Turn now to the numerical evaluation of elliptic integrals. The traditional methods [9]
are Gauss or Landen transformations. Descending transformations decrease the modulus k of
the Legendre integrals toward zero, and increasing transformations increase it toward unity.
In these limits the functions have simple analytic expressions. While these methods con-
verge quadratically and are quite satisfactory for integrals of the first and second kinds, they
generally lead to loss of significant figures in certain regimes for integrals of the third kind.
Carlson’s algorithms [10,11], by contrast, provide a unified method for all three kinds with no
significant cancellations.
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The key ingredient in these algorithms is the duplication theorem:

RF .x; y; z/ D 2RF .x C �; y C �; z C �/

D RF

�
x C �

4
;
y C �

4
;
z C �

4

�
(6.12.11)

where
� D .xy/1=2 C .xz/1=2 C .yz/1=2 (6.12.12)

This theorem can be proved by a simple change of variable of integration [12]. Equation
(6.12.11) is iterated until the arguments of RF are nearly equal. For equal arguments we have

RF .x; x; x/ D x
�1=2 (6.12.13)

When the arguments are close enough, the function is evaluated from a fixed Taylor expansion
about (6.12.13) through fifth-order terms. While the iterative part of the algorithm is only
linearly convergent, the error ultimately decreases by a factor of 46 D 4096 for each iteration.
Typically only two or three iterations are required, perhaps six or seven if the initial values of
the arguments have huge ratios. We list the algorithm for RF here, and refer you to Carlson’s
paper [10] for the other cases.

Stage 1: For n D 0; 1; 2; : : : compute

�n D .xn C yn C zn/=3

Xn D 1 � .xn=�n/; Yn D 1 � .yn=�n/; Zn D 1 � .zn=�n/

�n D max.jXnj; jYnj; jZnj/

If �n < tol, go to Stage 2; else compute

�n D .xnyn/
1=2 C .xnzn/

1=2 C .ynzn/
1=2

xnC1 D .xn C �n/=4; ynC1 D .yn C �n/=4; znC1 D .zn C �n/=4

and repeat this stage.

Stage 2: Compute

E2 D XnYn �Z
2
n; E3 D XnYnZn

RF D .1 �
1
10E2 C

1
14E3 C

1
24E

2
2 �

3
44E2E3/=.�n/

1=2

In some applications the argument p in RJ or the argument y in RC is negative, and the
Cauchy principal value of the integral is required. This is easily handled by using the formulas

RJ .x; y;z; p/ D

Œ.� � y/RJ .x; y; z; �/ � 3RF .x; y; z/C 3RC .xz=y; p�=y/� =.y � p/

(6.12.14)

where

� � y C
.z � y/.y � x/

y � p
(6.12.15)

is positive if p is negative, and

RC .x; y/ D

�
x

x � y

�1=2
RC .x � y;�y/ (6.12.16)

The Cauchy principal value of RJ has a zero at some value of p < 0, so (6.12.14) will give
some loss of significant figures near the zero.
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Doub rf(const Doub x, const Doub y, const Doub z) {elliptint.h
Computes Carlson’s elliptic integral of the first kind, RF .x; y; z/. x, y, and z must be non-
negative, and at most one can be zero.

static const Doub ERRTOL=0.0025, THIRD=1.0/3.0,C1=1.0/24.0, C2=0.1,
C3=3.0/44.0, C4=1.0/14.0;

static const Doub TINY=5.0*numeric_limits<Doub>::min(),
BIG=0.2*numeric_limits<Doub>::max();

Doub alamb,ave,delx,dely,delz,e2,e3,sqrtx,sqrty,sqrtz,xt,yt,zt;
if (MIN(MIN(x,y),z) < 0.0 || MIN(MIN(x+y,x+z),y+z) < TINY ||

MAX(MAX(x,y),z) > BIG) throw("invalid arguments in rf");
xt=x;
yt=y;
zt=z;
do {

sqrtx=sqrt(xt);
sqrty=sqrt(yt);
sqrtz=sqrt(zt);
alamb=sqrtx*(sqrty+sqrtz)+sqrty*sqrtz;
xt=0.25*(xt+alamb);
yt=0.25*(yt+alamb);
zt=0.25*(zt+alamb);
ave=THIRD*(xt+yt+zt);
delx=(ave-xt)/ave;
dely=(ave-yt)/ave;
delz=(ave-zt)/ave;

} while (MAX(MAX(abs(delx),abs(dely)),abs(delz)) > ERRTOL);
e2=delx*dely-delz*delz;
e3=delx*dely*delz;
return (1.0+(C1*e2-C2-C3*e3)*e2+C4*e3)/sqrt(ave);

}

A value of 0.0025 for the error tolerance parameter gives full double precision (16 sig-
nificant digits). Since the error scales as �6n, we see that 0.08 would be adequate for single
precision (7 significant digits), but would save at most two or three more iterations. Since
the coefficients of the sixth-order truncation error are different for the other elliptic functions,
these values for the error tolerance should be set to 0.04 (single precision) or 0.0012 (double
precision) in the algorithm for RC , and 0.05 or 0.0015 for RJ and RD . As well as being an
algorithm in its own right for certain combinations of elementary functions, the algorithm for
RC is used repeatedly in the computation of RJ .

The C++ implementations test the input arguments against two machine-dependent con-
stants, TINY and BIG, to ensure that there will be no underflow or overflow during the com-
putation. You can always extend the range of admissible argument values by using the homo-
geneity relations (6.12.22), below.

Doub rd(const Doub x, const Doub y, const Doub z) {elliptint.h
Computes Carlson’s elliptic integral of the second kind, RD.x; y; z/. x and y must be nonneg-
ative, and at most one can be zero. z must be positive.

static const Doub ERRTOL=0.0015, C1=3.0/14.0, C2=1.0/6.0, C3=9.0/22.0,
C4=3.0/26.0, C5=0.25*C3, C6=1.5*C4;

static const Doub TINY=2.0*pow(numeric_limits<Doub>::max(),-2./3.),
BIG=0.1*ERRTOL*pow(numeric_limits<Doub>::min(),-2./3.);

Doub alamb,ave,delx,dely,delz,ea,eb,ec,ed,ee,fac,sqrtx,sqrty,
sqrtz,sum,xt,yt,zt;

if (MIN(x,y) < 0.0 || MIN(x+y,z) < TINY || MAX(MAX(x,y),z) > BIG)
throw("invalid arguments in rd");

xt=x;
yt=y;
zt=z;
sum=0.0;
fac=1.0;
do {

sqrtx=sqrt(xt);
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sqrty=sqrt(yt);
sqrtz=sqrt(zt);
alamb=sqrtx*(sqrty+sqrtz)+sqrty*sqrtz;
sum += fac/(sqrtz*(zt+alamb));
fac=0.25*fac;
xt=0.25*(xt+alamb);
yt=0.25*(yt+alamb);
zt=0.25*(zt+alamb);
ave=0.2*(xt+yt+3.0*zt);
delx=(ave-xt)/ave;
dely=(ave-yt)/ave;
delz=(ave-zt)/ave;

} while (MAX(MAX(abs(delx),abs(dely)),abs(delz)) > ERRTOL);
ea=delx*dely;
eb=delz*delz;
ec=ea-eb;
ed=ea-6.0*eb;
ee=ed+ec+ec;
return 3.0*sum+fac*(1.0+ed*(-C1+C5*ed-C6*delz*ee)

+delz*(C2*ee+delz*(-C3*ec+delz*C4*ea)))/(ave*sqrt(ave));
}

Doub rj(const Doub x, const Doub y, const Doub z, const Doub p) { elliptint.h
Computes Carlson’s elliptic integral of the third kind, RJ .x; y; z;p/. x, y, and z must be
nonnegative, and at most one can be zero. p must be nonzero. If p < 0, the Cauchy principal
value is returned.

static const Doub ERRTOL=0.0015, C1=3.0/14.0, C2=1.0/3.0, C3=3.0/22.0,
C4=3.0/26.0, C5=0.75*C3, C6=1.5*C4, C7=0.5*C2, C8=C3+C3;

static const Doub TINY=pow(5.0*numeric_limits<Doub>::min(),1./3.),
BIG=0.3*pow(0.2*numeric_limits<Doub>::max(),1./3.);

Doub a,alamb,alpha,ans,ave,b,beta,delp,delx,dely,delz,ea,eb,ec,ed,ee,
fac,pt,rcx,rho,sqrtx,sqrty,sqrtz,sum,tau,xt,yt,zt;

if (MIN(MIN(x,y),z) < 0.0 || MIN(MIN(x+y,x+z),MIN(y+z,abs(p))) < TINY
|| MAX(MAX(x,y),MAX(z,abs(p))) > BIG) throw("invalid arguments in rj");

sum=0.0;
fac=1.0;
if (p > 0.0) {

xt=x;
yt=y;
zt=z;
pt=p;

} else {
xt=MIN(MIN(x,y),z);
zt=MAX(MAX(x,y),z);
yt=x+y+z-xt-zt;
a=1.0/(yt-p);
b=a*(zt-yt)*(yt-xt);
pt=yt+b;
rho=xt*zt/yt;
tau=p*pt/yt;
rcx=rc(rho,tau);

}
do {

sqrtx=sqrt(xt);
sqrty=sqrt(yt);
sqrtz=sqrt(zt);
alamb=sqrtx*(sqrty+sqrtz)+sqrty*sqrtz;
alpha=SQR(pt*(sqrtx+sqrty+sqrtz)+sqrtx*sqrty*sqrtz);
beta=pt*SQR(pt+alamb);
sum += fac*rc(alpha,beta);
fac=0.25*fac;
xt=0.25*(xt+alamb);
yt=0.25*(yt+alamb);
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zt=0.25*(zt+alamb);
pt=0.25*(pt+alamb);
ave=0.2*(xt+yt+zt+pt+pt);
delx=(ave-xt)/ave;
dely=(ave-yt)/ave;
delz=(ave-zt)/ave;
delp=(ave-pt)/ave;

} while (MAX(MAX(abs(delx),abs(dely)),
MAX(abs(delz),abs(delp))) > ERRTOL);

ea=delx*(dely+delz)+dely*delz;
eb=delx*dely*delz;
ec=delp*delp;
ed=ea-3.0*ec;
ee=eb+2.0*delp*(ea-ec);
ans=3.0*sum+fac*(1.0+ed*(-C1+C5*ed-C6*ee)+eb*(C7+delp*(-C8+delp*C4))

+delp*ea*(C2-delp*C3)-C2*delp*ec)/(ave*sqrt(ave));
if (p <= 0.0) ans=a*(b*ans+3.0*(rcx-rf(xt,yt,zt)));
return ans;

}

Doub rc(const Doub x, const Doub y) {elliptint.h
Computes Carlson’s degenerate elliptic integral, RC .x; y/. x must be nonnegative and y must
be nonzero. If y < 0, the Cauchy principal value is returned.

static const Doub ERRTOL=0.0012, THIRD=1.0/3.0, C1=0.3, C2=1.0/7.0,
C3=0.375, C4=9.0/22.0;

static const Doub TINY=5.0*numeric_limits<Doub>::min(),
BIG=0.2*numeric_limits<Doub>::max(), COMP1=2.236/sqrt(TINY),
COMP2=SQR(TINY*BIG)/25.0;

Doub alamb,ave,s,w,xt,yt;
if (x < 0.0 || y == 0.0 || (x+abs(y)) < TINY || (x+abs(y)) > BIG ||

(y<-COMP1 && x > 0.0 && x < COMP2)) throw("invalid arguments in rc");
if (y > 0.0) {

xt=x;
yt=y;
w=1.0;

} else {
xt=x-y;
yt= -y;
w=sqrt(x)/sqrt(xt);

}
do {

alamb=2.0*sqrt(xt)*sqrt(yt)+yt;
xt=0.25*(xt+alamb);
yt=0.25*(yt+alamb);
ave=THIRD*(xt+yt+yt);
s=(yt-ave)/ave;

} while (abs(s) > ERRTOL);
return w*(1.0+s*s*(C1+s*(C2+s*(C3+s*C4))))/sqrt(ave);

}

At times you may want to express your answer in Legendre’s notation. Alter-
natively, you may be given results in that notation and need to compute their values
with the programs given above. It is a simple matter to transform back and forth.
The Legendre elliptic integral of the first kind is defined as

F.�; k/ �

Z �

0

d�
p
1 � k2 sin2 �

(6.12.17)

The complete elliptic integral of the first kind is given by

K.k/ � F.	=2; k/ (6.12.18)



�

�

“nr3” — 2007/5/1 — 20:53 — page 315 — #337
�

�

� �

6.12 Elliptic Integrals and Jacobian Elliptic Functions 315

In terms of RF ,

F.�; k/ D sin�RF .cos2 �; 1 � k2 sin2 �; 1/

K.k/ D RF .0; 1 � k
2; 1/

(6.12.19)

The Legendre elliptic integral of the second kind and the complete elliptic integral of
the second kind are given by

E.�; k/ �

Z �

0

p
1 � k2 sin2 � d�

D sin�RF .cos2 �; 1 � k2 sin2 �; 1/

� 1
3
k2 sin3 �RD.cos2 �; 1 � k2 sin2 �; 1/

E.k/ � E.	=2; k/ D RF .0; 1 � k
2; 1/ � 1

3
k2RD.0; 1 � k

2; 1/

(6.12.20)

Finally, the Legendre elliptic integral of the third kind is

….�; n; k/ �

Z �

0

d�

.1C n sin2 �/
p
1 � k2 sin2 �

D sin�RF .cos2 �; 1 � k2 sin2 �; 1/

� 1
3
n sin3 �RJ .cos2 �; 1 � k2 sin2 �; 1; 1C n sin2 �/

(6.12.21)

(Note that this sign convention for n is opposite that of Abramowitz and Stegun [13],
and that their sin˛ is our k.)

Doub ellf(const Doub phi, const Doub ak) { elliptint.h
Legendre elliptic integral of the first kind F.�; k/, evaluated using Carlson’s function RF . The
argument ranges are 0 � � � 	=2, 0 � k sin� � 1.

Doub s=sin(phi);
return s*rf(SQR(cos(phi)),(1.0-s*ak)*(1.0+s*ak),1.0);

}

Doub elle(const Doub phi, const Doub ak) { elliptint.h
Legendre elliptic integral of the second kind E.�; k/, evaluated using Carlson’s functions RD
and RF . The argument ranges are 0 � � � 	=2, 0 � k sin� � 1.

Doub cc,q,s;
s=sin(phi);
cc=SQR(cos(phi));
q=(1.0-s*ak)*(1.0+s*ak);
return s*(rf(cc,q,1.0)-(SQR(s*ak))*rd(cc,q,1.0)/3.0);

}

Doub ellpi(const Doub phi, const Doub en, const Doub ak) { elliptint.h
Legendre elliptic integral of the third kind ….�; n; k/, evaluated using Carlson’s functions RJ
and RF . (Note that the sign convention on n is opposite that of Abramowitz and Stegun.)
The ranges of � and k are 0 � � � 	=2, 0 � k sin� � 1.

Doub cc,enss,q,s;
s=sin(phi);
enss=en*s*s;
cc=SQR(cos(phi));
q=(1.0-s*ak)*(1.0+s*ak);
return s*(rf(cc,q,1.0)-enss*rj(cc,q,1.0,1.0+enss)/3.0);

}
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Carlson’s functions are homogeneous of degree �1
2

and �3
2

, so

RF .�x; �y; �z/ D �
�1=2RF .x; y; z/

RJ .�x; �y; �z; �p/ D �
�3=2RJ .x; y; z; p/

(6.12.22)

Thus, to express a Carlson function in Legendre’s notation, permute the first three
arguments into ascending order, use homogeneity to scale the third argument to be
1, and then use equations (6.12.19) – (6.12.21).

6.12.1 Jacobian Elliptic Functions
The Jacobian elliptic function sn is defined as follows: Instead of considering

the elliptic integral
u.y; k/ � u D F.�; k/ (6.12.23)

consider the inverse function

y D sin� D sn.u; k/ (6.12.24)

Equivalently,

u D

Z sn

0

dyp
.1 � y2/.1 � k2y2/

(6.12.25)

When k D 0, sn is just sin. The functions cn and dn are defined by the relations

sn2 C cn2 D 1; k2sn2 C dn2 D 1 (6.12.26)

The routine given below actually takes mc � k2c D 1 � k2 as an input parameter.
It also computes all three functions sn, cn, and dn since computing all three is no
harder than computing any one of them. For a description of the method, see [9].

void sncndn(const Doub uu, const Doub emmc, Doub &sn, Doub &cn, Doub &dn) {elliptint.h
Returns the Jacobian elliptic functions sn.u; kc/, cn.u; kc/, and dn.u; kc/. Here uu D u, while
emmc D k2c .

static const Doub CA=1.0e-8; The accuracy is the square of CA.
Bool bo;
Int i,ii,l;
Doub a,b,c,d,emc,u;
VecDoub em(13),en(13);
emc=emmc;
u=uu;
if (emc != 0.0) {

bo=(emc < 0.0);
if (bo) {

d=1.0-emc;
emc /= -1.0/d;
u *= (d=sqrt(d));

}
a=1.0;
dn=1.0;
for (i=0;i<13;i++) {

l=i;
em[i]=a;
en[i]=(emc=sqrt(emc));
c=0.5*(a+emc);
if (abs(a-emc) <= CA*a) break;
emc *= a;
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a=c;
}
u *= c;
sn=sin(u);
cn=cos(u);
if (sn != 0.0) {

a=cn/sn;
c *= a;
for (ii=l;ii>=0;ii--) {

b=em[ii];
a *= c;
c *= dn;
dn=(en[ii]+a)/(b+a);
a=c/b;

}
a=1.0/sqrt(c*c+1.0);
sn=(sn >= 0.0 ? a : -a);
cn=c*sn;

}
if (bo) {

a=dn;
dn=cn;
cn=a;
sn /= d;

}
} else {

cn=1.0/cosh(u);
dn=cn;
sn=tanh(u);

}
}
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6.13 Hypergeometric Functions

As was discussed in �5.14, a fast, general routine for the the complex hyperge-
ometric function 2F1.a; b; cI z/ is difficult or impossible. The function is defined as
the analytic continuation of the hypergeometric series

2F1.a; b; cI z/ D 1C
ab

c

z

1Š
C
a.aC 1/b.b C 1/

c.c C 1/

z2

2Š
C 	 	 	

C
a.aC 1/ : : : .aC j � 1/b.b C 1/ : : : .b C j � 1/

c.c C 1/ : : : .c C j � 1/

zj

j Š
C 	 	 	

(6.13.1)

This series converges only within the unit circle jzj < 1 (see [1]), but one’s interest
in the function is not confined to this region.

Section 5.14 discussed the method of evaluating this function by direct path
integration in the complex plane. We here merely list the routines that result.

Implementation of the function hypgeo is straightforward and is described by
comments in the program. The machinery associated with Chapter 17’s routine for
integrating differential equations, Odeint, is only minimally intrusive and need not
even be completely understood: Use of Odeint requires one function call to the
constructor, with a prescribed format for the derivative routine Hypderiv, followed
by a call to the integrate method.

The function hypgeo will fail, of course, for values of z too close to the singu-
larity at 1. (If you need to approach this singularity, or the one at1, use the “linear
transformation formulas” in �15:3 of [1].) Away from z D 1, and for moderate values
of a; b; c, it is often remarkable how few steps are required to integrate the equations.
A half-dozen is typical.

Complex hypgeo(const Complex &a, const Complex &b,const Complex &c,hypgeo.h
const Complex &z)

Complex hypergeometric function 2F1 for complex a; b; c, and z, by direct integration of the
hypergeometric equation in the complex plane. The branch cut is taken to lie along the real
axis, Re z > 1.
{

const Doub atol=1.0e-14,rtol=1.0e-14; Accuracy parameters.
Complex ans,dz,z0,y[2];
VecDoub yy(4);
if (norm(z) <= 0.25) { Use series...

hypser(a,b,c,z,ans,y[1]);
return ans;

}
...or pick a starting point for the path integration.
else if (real(z) < 0.0) z0=Complex(-0.5,0.0);
else if (real(z) <= 1.0) z0=Complex(0.5,0.0);
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else z0=Complex(0.0,imag(z) >= 0.0 ? 0.5 : -0.5);
dz=z-z0;
hypser(a,b,c,z0,y[0],y[1]); Get starting function and derivative.
yy[0]=real(y[0]);
yy[1]=imag(y[0]);
yy[2]=real(y[1]);
yy[3]=imag(y[1]);
Hypderiv d(a,b,c,z0,dz); Set up the functor for the derivatives.
Output out; Suppress output in Odeint.
Odeint<StepperBS<Hypderiv> > ode(yy,0.0,1.0,atol,rtol,0.1,0.0,out,d);
The arguments to Odeint are the vector of independent variables, the starting and ending
values of the dependent variable, the accuracy parameters, an initial guess for the stepsize,
a minimum stepsize, and the names of the output object and the derivative object. The
integration is performed by the Bulirsch-Stoer stepping routine.
ode.integrate();
y[0]=Complex(yy[0],yy[1]);
return y[0];

}

void hypser(const Complex &a, const Complex &b, const Complex &c, hypgeo.h
const Complex &z, Complex &series, Complex &deriv)

Returns the hypergeometric series 2F1 and its derivative, iterating to machine accuracy. For
jzj � 1=2 convergence is quite rapid.
{

deriv=0.0;
Complex fac=1.0;
Complex temp=fac;
Complex aa=a;
Complex bb=b;
Complex cc=c;
for (Int n=1;n<=1000;n++) {

fac *= ((aa*bb)/cc);
deriv += fac;
fac *= ((1.0/n)*z);
series=temp+fac;
if (series == temp) return;
temp=series;
aa += 1.0;
bb += 1.0;
cc += 1.0;

}
throw("convergence failure in hypser");

}

struct Hypderiv { hypgeo.h
Functor to compute derivatives for the hypergeometric equation; see text equation (5.14.4).

Complex a,b,c,z0,dz;
Hypderiv(const Complex &aa, const Complex &bb,

const Complex &cc, const Complex &z00,
const Complex &dzz) : a(aa),b(bb),c(cc),z0(z00),dz(dzz) {}

void operator() (const Doub s, VecDoub_I &yy, VecDoub_O &dyyds) {
Complex z,y[2],dyds[2];
y[0]=Complex(yy[0],yy[1]);
y[1]=Complex(yy[2],yy[3]);
z=z0+s*dz;
dyds[0]=y[1]*dz;
dyds[1]=(a*b*y[0]-(c-(a+b+1.0)*z)*y[1])*dz/(z*(1.0-z));
dyyds[0]=real(dyds[0]);
dyyds[1]=imag(dyds[0]);
dyyds[2]=real(dyds[1]);
dyyds[3]=imag(dyds[1]);

}
};
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6.14 Statistical Functions

Certain special functions get frequent use because of their relation to common
univariate statistical distributions, that is, probability densities in a single variable.
In this section we survey a number of such common distributions in a unified way,
giving, in each case, routines for computing the probability density function p.x/;
the cumulative density function or cdf, written P.< x/; and the inverse of the cu-
mulative density function x.P /. The latter function is needed for finding the values
of x associated with specified percentile points or quantiles in significance tests, for
example, the 0.5%, 5%, 95% or 99.5% points.

The emphasis of this section is on defining and computing these statistical func-
tions. Section �7.3 is a related section that discusses how to generate random deviates
from the distributions discussed here. We defer discussion of the actual use of these
distributions in statistical tests to Chapter 14.

6.14.1 Normal (Gaussian) Distribution

If x is drawn from a normal distribution with mean � and standard deviation � ,
then we write

x � N.�; �/; � > 0

p.x/ D
1

p
2	�

exp

�
�
1

2

hx � �
�

i2� (6.14.1)

with p.x/ the probability density function. Note the special use of the notation “�”
in this section, which can be read as “is drawn from a distribution.” The variance of
the distribution is, of course, �2.

The cumulative distribution function is the probability of a value 
 x. For the
normal distribution, this is given in terms of the complementary error function by

cdf � P.< x/ �
Z x

�1

p.x0/dx0 D
1

2
erfc

�
�
1
p
2

hx � �
�

i�
(6.14.2)

The inverse cdf can thus be calculated in terms of the inverse of erfc,

x.P / D � �
p
2�erfc�1.2P / (6.14.3)

The following structure implements the above relations.



�

�

“nr3” — 2007/5/1 — 20:53 — page 321 — #343
�

�

� �

6.14 Statistical Functions 321

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-5 -4 -3 -2 -1  0  1  2  3  4  5

pr
ob

ab
ili

ty
 d

en
si

ty
 p

(x
)

x

N(0,1)
Student(6,0,1)
Student(4,0,1)

Cauchy(0,1)
Logistic(0,1)

Figure 6.14.1. Examples of centrally peaked distributions that are symmetric on the real line. Any of
these can substitute for the normal distribution either as an approximation or in applications such as
robust estimation. They differ largely in the decay rate of their tails.

struct Normaldist : Erf { erf.h
Normal distribution, derived from the error function Erf.

Doub mu, sig;
Normaldist(Doub mmu = 0., Doub ssig = 1.) : mu(mmu), sig(ssig) {
Constructor. Initialize with � and � . The default with no arguments is N.0; 1/.

if (sig <= 0.) throw("bad sig in Normaldist");
}
Doub p(Doub x) {
Return probability density function.

return (0.398942280401432678/sig)*exp(-0.5*SQR((x-mu)/sig));
}
Doub cdf(Doub x) {
Return cumulative distribution function.

return 0.5*erfc(-0.707106781186547524*(x-mu)/sig);
}
Doub invcdf(Doub p) {
Return inverse cumulative distribution function.

if (p <= 0. || p >= 1.) throw("bad p in Normaldist");
return -1.41421356237309505*sig*inverfc(2.*p)+mu;

}
};

We will use the conventions of the above code for all the distributions in this
section. A distribution’s parameters (here, � and � ) are set by the constructor and
then referenced as needed by the member functions. The density function is always
p(), the cdf is cdf(), and the inverse cdf is invcdf(). We will generally check the
arguments of probability functions for validity, since many program bugs can show
up as, e.g., a probability out of the range Œ0; 1�.
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6.14.2 Cauchy Distribution

Like the normal distribution, the Cauchy distribution is a centrally peaked, sym-
metric distribution with a parameter � that specifies its center and a parameter � that
specifies its width. Unlike the normal distribution, the Cauchy distribution has tails
that decay very slowly at infinity, as jxj�2, so slowly that moments higher than the
zeroth moment (the area under the curve) don’t even exist. The parameter � is there-
fore, strictly speaking, not the mean, and the parameter � is not, technically, the
standard deviation. But these two parameters substitute for those moments as mea-
sures of central position and width.

The defining probability density is

x � Cauchy.�; �/; � > 0

p.x/ D
1

	�

�
1C

hx � �
�

i2��1 (6.14.4)

If x � Cauchy.0; 1/, then also 1=x � Cauchy.0; 1/ and also .ax C b/�1 �
Cauchy.�b=a; 1=a/.

The cdf is given by

cdf � P.< x/ �
Z x

�1

p.x0/dx0 D
1

2
C
1

	
arctan

�x � �
�

�
(6.14.5)

The inverse cdf is given by

x.P / D �C � tan
�
	ŒP � 1

2
�



(6.14.6)

Figure 6.14.1 shows Cauchy.0; 1/ as compared to the normal distribution N.0; 1/,
as well as several other similarly shaped distributions discussed below.

The Cauchy distribution is sometimes called the Lorentzian distribution.

struct Cauchydist {distributions.h
Cauchy distribution.

Doub mu, sig;
Cauchydist(Doub mmu = 0., Doub ssig = 1.) : mu(mmu), sig(ssig) {
Constructor. Initialize with � and � . The default with no arguments is Cauchy.0; 1/.

if (sig <= 0.) throw("bad sig in Cauchydist");
}
Doub p(Doub x) {
Return probability density function.

return 0.318309886183790671/(sig*(1.+SQR((x-mu)/sig)));
}
Doub cdf(Doub x) {
Return cumulative distribution function.

return 0.5+0.318309886183790671*atan2(x-mu,sig);
}
Doub invcdf(Doub p) {
Return inverse cumulative distribution function.

if (p <= 0. || p >= 1.) throw("bad p in Cauchydist");
return mu + sig*tan(3.14159265358979324*(p-0.5));

}
};
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6.14.3 Student-t Distribution
A generalization of the Cauchy distribution is the Student-t distribution, named

for the early 20th century statistician William Gosset, who published under the
name “Student” because his employer, Guinness Breweries, required him to use a
pseudonym. Like the Cauchy distribution, the Student-t distribution has power-law
tails at infinity, but it has an additional parameter 
 that specifies how rapidly they de-
cay, namely as jt j�.�C1/. When 
 is an integer, the number of convergent moments,
including the zeroth, is thus 
.

The defining probability density (conventionally written in a variable t instead
of x) is

t � Student.
; �; �/; 
 > 0; � > 0

p.t/ D
�.1

2
Œ
 C 1�/

�.1
2

/
p

	�

 
1C

1




�
t � �

�

�2!�12 .�C1/ (6.14.7)

The Cauchy distribution is obtained in the case 
 D 1. In the opposite limit, 
 !1,
the normal distribution is obtained. In pre-computer days, this was the basis of vari-
ous approximation schemes for the normal distribution, now all generally irrelevant.
Figure 6.14.1 shows examples of the Student-t distribution for 
 D 1 (Cauchy),

 D 4, and 
 D 6. The approach to the normal distribution is evident.

The mean of Student.
; �; �/ is (by symmetry) �. The variance is not �2, but
rather

VarfStudent.
; �; �/g D




 � 2
�2 (6.14.8)

For additional moments, and other properties, see [1].
The cdf is given by an incomplete beta function. If we let

x �




 C
�
t��
�


2 (6.14.9)

then

cdf � P.< t/ �
Z t

�1

p.t 0/dt 0 D

(
1
2
Ix.

1
2

; 1
2
/; t 
 �

1 � 1
2
Ix.

1
2

; 1
2
/; t > �

(6.14.10)

The inverse cdf is given by an inverse incomplete beta function (see code below
for the exact formulation).

In practice, the Student-t cdf is the above form is rarely used, since most statis-
tical tests using Student-t are double-sided. Conventionally, the two-tailed function
A.t j
/ is defined (only) for the case � D 0 and � D 1 by

A.t j
/ �

Z Ct
�t

p.t 0/dt 0 D 1 � Ix.
1
2

; 1
2
/ (6.14.11)

with x as given above. The statistic A.t j
/ is notably used in the test of whether
two observed distributions have the same mean. The code below implements both
equations (6.14.10) and (6.14.11), as well as their inverses.
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struct Studenttdist : Beta {incgammabeta.h
Student-t distribution, derived from the beta function Beta.

Doub nu, mu, sig, np, fac;
Studenttdist(Doub nnu, Doub mmu = 0., Doub ssig = 1.)
: nu(nnu), mu(mmu), sig(ssig) {
Constructor. Initialize with �, � and � . The default with one argument is Student.�; 0; 1/.

if (sig <= 0. || nu <= 0.) throw("bad sig,nu in Studentdist");
np = 0.5*(nu + 1.);
fac = gammln(np)-gammln(0.5*nu);

}
Doub p(Doub t) {
Return probability density function.

return exp(-np*log(1.+SQR((t-mu)/sig)/nu)+fac)
/(sqrt(3.14159265358979324*nu)*sig);

}
Doub cdf(Doub t) {
Return cumulative distribution function.

Doub p = 0.5*betai(0.5*nu, 0.5, nu/(nu+SQR((t-mu)/sig)));
if (t >= mu) return 1. - p;
else return p;

}
Doub invcdf(Doub p) {
Return inverse cumulative distribution function.

if (p <= 0. || p >= 1.) throw("bad p in Studentdist");
Doub x = invbetai(2.*MIN(p,1.-p), 0.5*nu, 0.5);
x = sig*sqrt(nu*(1.-x)/x);
return (p >= 0.5? mu+x : mu-x);

}
Doub aa(Doub t) {
Return the two-tailed cdf A.t j�/.

if (t < 0.) throw("bad t in Studentdist");
return 1.-betai(0.5*nu, 0.5, nu/(nu+SQR(t)));

}
Doub invaa(Doub p) {
Return the inverse, namely t such that p D A.t j�/.

if (p < 0. || p >= 1.) throw("bad p in Studentdist");
Doub x = invbetai(1.-p, 0.5*nu, 0.5);
return sqrt(nu*(1.-x)/x);

}
};

6.14.4 Logistic Distribution
The logistic distribution is another symmetric, centrally peaked distribution that

can be used instead of the normal distribution. Its tails decay exponentially, but still
much more slowly than the normal distribution’s “exponent of the square.”

The defining probability density is

p.y/ D
e�y

.1C e�y/2
D

ey

.1C ey/2
D 1

4
sech2

�
1
2
y



(6.14.12)

The three forms are algebraically equivalent, but, to avoid overflows, it is wise to
use the negative and positive exponential forms for positive and negative values of
y, respectively.

The variance of the distribution (6.14.12) turns out to be 	2=3. Since it is
convenient to have parameters � and � with the conventional meanings of mean and
standard deviation, equation (6.14.12) is often replaced by the standardized logistic
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distribution,

x � Logistic.�; �/; � > 0

p.x/ D
	

4
p
3�

sech2
�
	

2
p
3

hx � �
�

i� (6.14.13)

which implies equivalent forms using the positive and negative exponentials (see
code below).

The cdf is given by

cdf � P.< x/ �
Z x

�1

p.x0/dx0 D

�
1C exp

�
�
	
p
3

hx � �
�

i���1
(6.14.14)

The inverse cdf is given by

x.P / D �C

p
3

	
� log

�
P

1 � P

�
(6.14.15)

struct Logisticdist { distributions.h
Logistic distribution.

Doub mu, sig;
Logisticdist(Doub mmu = 0., Doub ssig = 1.) : mu(mmu), sig(ssig) {
Constructor. Initialize with � and � . The default with no arguments is Logistic.0; 1/.

if (sig <= 0.) throw("bad sig in Logisticdist");
}
Doub p(Doub x) {
Return probability density function.

Doub e = exp(-abs(1.81379936423421785*(x-mu)/sig));
return 1.81379936423421785*e/(sig*SQR(1.+e));

}
Doub cdf(Doub x) {
Return cumulative distribution function.

Doub e = exp(-abs(1.81379936423421785*(x-mu)/sig));
if (x >= mu) return 1./(1.+e); Because we used abs to control over-

flow, we now have two cases.else return e/(1.+e);
}
Doub invcdf(Doub p) {
Return inverse cumulative distribution function.

if (p <= 0. || p >= 1.) throw("bad p in Logisticdist");
return mu + 0.551328895421792049*sig*log(p/(1.-p));

}
};

The logistic distribution is cousin to the logit transformation that maps the open
unit interval 0 < p < 1 onto the real line �1 < u <1 by the relation

u D log

�
p

1 � p

�
(6.14.16)

Back when a book of tables and a slide rule were a statistician’s working tools, the
logit transformation was used to approximate processes on the interval by analyti-
cally simpler processes on the real line. A uniform distribution on the interval maps
by the logit transformation to a logistic distribution on the real line. With the com-
puter’s ability to calculate distributions on the interval directly (beta distributions,
for example), that motivation has vanished.



�

�

“nr3” — 2007/5/1 — 20:53 — page 326 — #348
�

�

� �

326 Chapter 6. Special Functions

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  1  2  3  4  5  6  7  8  9  10

pr
ob

ab
ili

ty
 d

en
si

ty
 p

(x
)

x

F(10,4)

Exponential(0.5)

Gamma(3,1)

Chisquare(5)

Lognormal(1,1)

Figure 6.14.2. Examples of common distributions on the half-line x > 0.

Another cousin is the logistic equation,

dy

dt
/ y.ymax � y/ (6.14.17)

a differential equation describing the growth of some quantity y, starting off as an
exponential but reaching, asymptotically, a value ymax. The solution of this equation
is identical, up to a scaling, to the cdf of the logistic distribution.

6.14.5 Exponential Distribution
With the exponential distribution we now turn to common distribution functions

defined on the positive real axis x � 0. Figure 6.14.2 shows examples of several of
the distributions that we will discuss. The exponential is the simplest of them all. It
has a parameter ˇ that can control its width (in inverse relationship), but its mode is
always at zero:

x � Exponential.ˇ/; ˇ > 0

p.x/ D ˇ exp.�ˇx/; x > 0
(6.14.18)

cdf � P.< x/ �
Z x

0

p.x0/dx0 D 1 � exp.�ˇx/ (6.14.19)

x.P / D �
1

ˇ
log.1 � P / (6.14.20)

The mean and standard deviation of the exponential distribution are both 1=ˇ.
The median is log.2/=ˇ. Reference [1] has more to say about the exponential distri-
bution than you would ever think possible.
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struct Expondist { distributions.h
Exponential distribution.

Doub bet;
Expondist(Doub bbet) : bet(bbet) {
Constructor. Initialize with ˇ .

if (bet <= 0.) throw("bad bet in Expondist");
}
Doub p(Doub x) {
Return probability density function.

if (x < 0.) throw("bad x in Expondist");
return bet*exp(-bet*x);

}
Doub cdf(Doub x) {
Return cumulative distribution function.

if (x < 0.) throw("bad x in Expondist");
return 1.-exp(-bet*x);

}
Doub invcdf(Doub p) {
Return inverse cumulative distribution function.

if (p < 0. || p >= 1.) throw("bad p in Expondist");
return -log(1.-p)/bet;

}
};

6.14.6 Weibull Distribution
The Weibull distribution generalizes the exponential distribution in a way that

is often useful in hazard, survival, or reliability studies. When the lifetime (time to
failure) of an item is exponentially distributed, there is a constant probability per unit
time that an item will fail, if it has not already done so. That is,

hazard �
p.x/

P.> x/
/ constant (6.14.21)

Exponentially lived items don’t age; they just keep rolling the same dice until,
one day, their number comes up. In many other situations, however, it is observed
that an item’s hazard (as defined above) does change with time, say as a power law,

p.x/

P.> x/
/ x˛�1; ˛ > 0 (6.14.22)

The distribution that results is the Weibull distribution, named for Swedish physicist
Waloddi Weibull, who used it as early as 1939. When ˛ > 1, the hazard increases
with time, as for components that wear out. When 0 < ˛ < 1, the hazard decreases
with time, as for components that experience “infant mortality.”

We say that

x �Weibull.˛; ˇ/ iff y �

�
x

ˇ

�˛
� Exponential.1/ (6.14.23)

The probability density is

p.x/ D

�
˛

ˇ

��
x

ˇ

�˛�1
e�.x=ˇ/

˛

; x > 0 (6.14.24)
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The cdf is

cdf � P.< x/ �
Z x

0

p.x0/dx0 D 1 � e�.x=ˇ/
˛

(6.14.25)

The inverse cdf is
x.P / D ˇ Œ� log.1 � P /�1=˛ (6.14.26)

For 0 < ˛ < 1, the distribution has an infinite (but integrable) cusp at x D 0

and is monotonically decreasing. The exponential distribution is the case of ˛ D 1.
When ˛ > 1, the distribution is zero at x D 0 and has a single maximum at the value
x D ˇ Œ.˛ � 1/=˛�1=˛ .

The mean and variance are given by

� D ˇ �.1C ˛�1/

�2 D ˇ2
n
�.1C 2˛�1/ �

�
�.1C ˛�1/

	2o (6.14.27)

With correct normalization, equation (6.14.22) becomes

hazard �
p.x/

P.> x/
D

�
˛

ˇ

��
x

ˇ

�˛�1
(6.14.28)

6.14.7 Lognormal Distribution
Many processes that live on the positive x-axis are naturally approximated by

normal distributions on the “log.x/-axis,” that is, for �1 < log.x/ < 1. A sim-
ple, but important, example is the multiplicative random walk, which starts at some
positive value x0, and then generates new values by a recurrence like

xiC1 D

(
xi .1C �/ with probability 0.5

xi=.1C �/ with probability 0.5
(6.14.29)

Here � is some small, fixed, constant.
These considerations motivate the definition

x � Lognormal.�; �/ iff u �
log.x/ � �

�
� N.0; 1/ (6.14.30)

or the equivalent definition

x � Lognormal.�; �/; � > 0

p.x/ D
1

p
2	�x

exp

 
�
1

2

�
log.x/ � �

�

�2!
; x > 0

(6.14.31)

Note the required extra factor of x�1 in front of the exponential: The density that is
“normal” is p.log x/d log x.

While � and � are the mean and standard deviation in log x space, they are not
so in x space. Rather,

MeanfLognormal.�; �/g D e�C
1
2
�2

VarfLognormal.�; �/g D e2� e�
2

.e�
2

� 1/
(6.14.32)
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The cdf is given by

cdf � P.< x/ �
Z x

0

p.x0/dx0 D
1

2
erfc

�
�
1
p
2

�
log.x/ � �

�

��
(6.14.33)

The inverse to the cdf involves the inverse complementary error function,

x.P / D expŒ� �
p
2� erfc�1.2P /� (6.14.34)

struct Lognormaldist : Erf { erf.h
Lognormal distribution, derived from the error function Erf.

Doub mu, sig;
Lognormaldist(Doub mmu = 0., Doub ssig = 1.) : mu(mmu), sig(ssig) {

if (sig <= 0.) throw("bad sig in Lognormaldist");
}
Doub p(Doub x) {
Return probability density function.

if (x < 0.) throw("bad x in Lognormaldist");
if (x == 0.) return 0.;
return (0.398942280401432678/(sig*x))*exp(-0.5*SQR((log(x)-mu)/sig));

}
Doub cdf(Doub x) {
Return cumulative distribution function.

if (x < 0.) throw("bad x in Lognormaldist");
if (x == 0.) return 0.;
return 0.5*erfc(-0.707106781186547524*(log(x)-mu)/sig);

}
Doub invcdf(Doub p) {
Return inverse cumulative distribution function.

if (p <= 0. || p >= 1.) throw("bad p in Lognormaldist");
return exp(-1.41421356237309505*sig*inverfc(2.*p)+mu);

}
};

Multiplicative random walks like (6.14.29) and lognormal distributions are key
ingredients in the economic theory of efficient markets, leading to (among many
other results) the celebrated Black-Scholes formula for the probability distribution
of the price of an investment after some elapsed time � . A key piece of the Black-
Scholes derivation is implicit in equation (6.14.32): If an investment’s average return
is zero (which may be true in the limit of zero risk), then its price cannot simply be a
widening lognormal distribution with fixed � and increasing � , for its expected value
would then diverge to infinity! The actual Black-Scholes formula thus defines both
how � increases with time (basically as �1=2) and how � correspondingly decreases
with time, so as to keep the overall mean under control. A simplified version of the
Black-Scholes formula can be written as

S.�/ � S.0/ � Lognormal
�
r� � 1

2
�2�; �

p
�



(6.14.35)

where S.�/ is the price of a stock at time � , r is its expected (annualized) rate of
return, and � is now redefined to be the stock’s (annualized) volatility. The definition
of volatility is that, for small values of � , the fractional variance of the stock’s price
is �2� . You can check that (6.14.35) has the desired expectation value EŒS.�/� D
S.0/, for all � , if r D 0. A good reference is [3].
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6.14.8 Chi-Square Distribution
The chi-square (or �2) distribution has a single parameter 
 > 0 that controls

both the location and width of its peak. In most applications 
 is an integer and is
referred to as the number of degrees of freedom (see �14.3).

The defining probability density is

�2 � Chisquare.
/; 
 > 0

p.�2/d�2 D
1

2
1
2
�
�.1

2

/

.�2/
1
2
��1 exp

�
�1
2
�2


d�2; �2 > 0 (6.14.36)

where we have written the differentials d�2 merely to emphasize that �2, not �, is to
be viewed as the independent variable.

The mean and variance are given by

MeanfChisquare.
/g D 


VarfChisquare.
/g D 2

(6.14.37)

When 
 � 2 there is a single mode at �2 D 
 � 2.
The chi-square distribution is actually just a special case of the gamma distri-

bution, below, so its cdf is given by an incomplete gamma function P.a; x/,

cdf � P.< �2/ � P.�2j
/ �
Z �2

0

p.�20/d�20 D P

�



2
;
�2

2

�
(6.14.38)

One frequently also sees the complement of the cdf, which can be calculated
either from the incomplete gamma functionP.a; x/, or from its complementQ.a; x/
(often more accurate if P is very close to 1):

Q.�2j
/ � 1 � P.�2jn/ D 1 � P

�



2
;
�2

2

�
� Q

�



2
;
�2

2

�
(6.14.39)

The inverse cdf is given in terms of the function that is the inverse of P.a; x/
on its second argument, which we here denote P�1.a; p/:

x.P / D 2P�1
�

2
; P
�

(6.14.40)

struct Chisqdist : Gamma {incgammabeta.h
�2 distribution, derived from the gamma function Gamma.

Doub nu,fac;
Chisqdist(Doub nnu) : nu(nnu) {
Constructor. Initialize with �.

if (nu <= 0.) throw("bad nu in Chisqdist");
fac = 0.693147180559945309*(0.5*nu)+gammln(0.5*nu);

}
Doub p(Doub x2) {
Return probability density function.

if (x2 <= 0.) throw("bad x2 in Chisqdist");
return exp(-0.5*(x2-(nu-2.)*log(x2))-fac);

}
Doub cdf(Doub x2) {
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Return cumulative distribution function.
if (x2 < 0.) throw("bad x2 in Chisqdist");
return gammp(0.5*nu,0.5*x2);

}
Doub invcdf(Doub p) {
Return inverse cumulative distribution function.

if (p < 0. || p >= 1.) throw("bad p in Chisqdist");
return 2.*invgammp(p,0.5*nu);

}
};

6.14.9 Gamma Distribution
The gamma distribution is defined by

x � Gamma.˛; ˇ/; ˛ > 0; ˇ > 0

p.x/ D
ˇ˛

�.˛/
x˛�1e�ˇx; x > 0

(6.14.41)

The exponential distribution is the special case with ˛ D 1. The chi-square distribu-
tion is the special case with ˛ D 
=2 and ˇ D 1=2.

The mean and variance are given by,

MeanfGamma.˛; ˇ/g D ˛=ˇ

VarfGamma.˛; ˇ/g D ˛=ˇ2
(6.14.42)

When ˛ � 1 there is a single mode at x D .˛ � 1/=ˇ.
Evidently, the cdf is the incomplete gamma function

cdf � P.< x/ �
Z x

0

p.x0/dx0 D P .˛; ˇx/ (6.14.43)

while the inverse cdf is given in terms of the inverse of P.a; x/ on its second argu-
ment by

x.P / D
1

ˇ
P�1 .˛; P / (6.14.44)

struct Gammadist : Gamma { incgammabeta.h
Gamma distribution, derived from the gamma function Gamma.

Doub alph, bet, fac;
Gammadist(Doub aalph, Doub bbet = 1.) : alph(aalph), bet(bbet) {
Constructor. Initialize with ˛ and ˇ .

if (alph <= 0. || bet <= 0.) throw("bad alph,bet in Gammadist");
fac = alph*log(bet)-gammln(alph);

}
Doub p(Doub x) {
Return probability density function.

if (x <= 0.) throw("bad x in Gammadist");
return exp(-bet*x+(alph-1.)*log(x)+fac);

}
Doub cdf(Doub x) {
Return cumulative distribution function.

if (x < 0.) throw("bad x in Gammadist");
return gammp(alph,bet*x);

}
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Doub invcdf(Doub p) {
Return inverse cumulative distribution function.

if (p < 0. || p >= 1.) throw("bad p in Gammadist");
return invgammp(p,alph)/bet;

}
};

6.14.10 F-Distribution
The F-distribution is parameterized by two positive values 
1 and 
2, usually

(but not always) integers.
The defining probability density is

F � F.
1; 
2/; 
1 > 0; 
2 > 0

p.F / D


1
2
�1

1 

1
2
�2

2

B.1
2

1;

1
2

2/

F
1
2
�1�1

.
2 C 
1F /.�1C�2/=2
; F > 0

(6.14.45)

where B.a; b/ denotes the beta function. The mean and variance are given by

MeanfF.
1; 
2/g D

2


2 � 2
; 
2 > 2

VarfF.
1; 
2/g D
2
22.
1 C 
2 � 2/


1.
2 � 2/2.
2 � 4/
; 
2 > 4

(6.14.46)

When 
1 � 2 there is a single mode at

F D

2.
1 � 2/


1.
2 C 2/
(6.14.47)

.
For fixed 
1, if 
2 !1, the F -distribution becomes a chi-square distribution,

namely

lim
�2!1

F.
1; 
2/ Š
1


1
Chisquare.
1/ (6.14.48)

where “Š” means “are identical distributions.”
TheF -distribution’s cdf is given in terms of the incomplete beta function Ix.a; b/

by

cdf � P.< x/ �
Z x

0

p.x0/dx0 D I�1F=.�2C�1F /
�
1
2

1;

1
2

2



(6.14.49)

while the inverse cdf is given in terms of the inverse of Ix.a; b/ on its subscript
argument by

u � I�1p
�
1
2

1;

1
2

2



x.P / D

2u


1.1 � u/

(6.14.50)

A frequent use of the F -distribution is to test whether two observed samples have
the same variance.
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struct Fdist : Beta { incgammabeta.h
F distribution, derived from the beta function Beta.

Doub nu1,nu2;
Doub fac;
Fdist(Doub nnu1, Doub nnu2) : nu1(nnu1), nu2(nnu2) {
Constructor. Initialize with �1 and �2.

if (nu1 <= 0. || nu2 <= 0.) throw("bad nu1,nu2 in Fdist");
fac = 0.5*(nu1*log(nu1)+nu2*log(nu2))+gammln(0.5*(nu1+nu2))

-gammln(0.5*nu1)-gammln(0.5*nu2);
}
Doub p(Doub f) {
Return probability density function.

if (f <= 0.) throw("bad f in Fdist");
return exp((0.5*nu1-1.)*log(f)-0.5*(nu1+nu2)*log(nu2+nu1*f)+fac);

}
Doub cdf(Doub f) {
Return cumulative distribution function.

if (f < 0.) throw("bad f in Fdist");
return betai(0.5*nu1,0.5*nu2,nu1*f/(nu2+nu1*f));

}
Doub invcdf(Doub p) {
Return inverse cumulative distribution function.

if (p <= 0. || p >= 1.) throw("bad p in Fdist");
Doub x = invbetai(p,0.5*nu1,0.5*nu2);
return nu2*x/(nu1*(1.-x));

}
};

6.14.11 Beta Distribution
The beta distribution is defined on the unit interval 0 < x < 1 by

x � Beta.˛; ˇ/; ˛ > 0; ˇ > 0

p.x/ D
1

B.˛; ˇ/
x˛�1.1 � x/ˇ�1; 0 < x < 1

(6.14.51)

The mean and variance are given by

MeanfBeta.˛; ˇ/g D
˛

˛ C ˇ

VarfBeta.˛; ˇ/g D
˛ˇ

.˛ C ˇ/2.˛ C ˇ C 1/

(6.14.52)

When ˛ > 1 and ˇ > 1, there is a single mode at .˛ � 1/=.˛ C ˇ � 2/. When
˛ < 1 and ˇ < 1, the distribution function is “U-shaped” with a minimum at this
same value. In other cases there is neither a maximum nor a minimum.

In the limit that ˇ becomes large as ˛ is held fixed, all the action in the beta
distribution shifts toward x D 0, and the density function takes the shape of a gamma
distribution. More precisely,

lim
ˇ!1

ˇ Beta.˛; ˇ/ Š Gamma.˛; 1/ (6.14.53)

The cdf is the incomplete beta function

cdf � P.< x/ �
Z x

0

p.x0/dx0 D Ix .˛; ˇ/ (6.14.54)
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while the inverse cdf is given in terms of the inverse of Ix.˛; ˇ/ on its subscript
argument by

x.P / D I�1p .˛; ˇ/ (6.14.55)

struct Betadist : Beta {incgammabeta.h
Beta distribution, derived from the beta function Beta.

Doub alph, bet, fac;
Betadist(Doub aalph, Doub bbet) : alph(aalph), bet(bbet) {
Constructor. Initialize with ˛ and ˇ .

if (alph <= 0. || bet <= 0.) throw("bad alph,bet in Betadist");
fac = gammln(alph+bet)-gammln(alph)-gammln(bet);

}
Doub p(Doub x) {
Return probability density function.

if (x <= 0. || x >= 1.) throw("bad x in Betadist");
return exp((alph-1.)*log(x)+(bet-1.)*log(1.-x)+fac);

}
Doub cdf(Doub x) {
Return cumulative distribution function.

if (x < 0. || x > 1.) throw("bad x in Betadist");
return betai(alph,bet,x);

}
Doub invcdf(Doub p) {
Return inverse cumulative distribution function.

if (p < 0. || p > 1.) throw("bad p in Betadist");
return invbetai(p,alph,bet);

}
};

6.14.12 Kolmogorov-Smirnov Distribution
The Kolmogorov-Smirnov or KS distribution, defined for positive z, is key to

an important statistical test that is discussed in �14.3. Its probability density func-
tion does not directly enter into the test and is virtually never even written down.
What one typically needs to compute is the cdf, denoted PKS .z/, or its complement,
QKS .z/ � 1 � PKS .z/.

The cdf PKS .z/ is defined by the series

PKS .z/ D 1 � 2

1X
jD1

.�1/j�1 exp.�2j 2z2/ (6.14.56)

or by the equivalent series (nonobviously so!)

PKS .z/ D

p
2	

z

1X
jD1

exp

�
�
.2j � 1/2	2

8z2

�
(6.14.57)

Limiting values are what you’d expect for cdf’s named “P ” and “Q”:

PKS .0/ D 0 PKS .1/ D 1

QKS .0/ D 1 QKS .1/ D 0
(6.14.58)

Both of the series (6.14.56) and (6.14.57) are convergent for all z > 0. More-
over, for any z, one or the other series converges extremely rapidly, requiring no more
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than three terms to get to IEEE double precision fractional accuracy. A good place
to switch from one series to the other is at z � 1:18. This renders the KS functions
computable by a single exponential and a small number of arithmetic operations (see
code below).

Getting the inverse functions P�1KS .P / and Q�1KS .Q/, which return a value of z
from a P or Q value, is a little trickier. For Q . 0:3 (that is, P & 0:7), an iteration
based on (6.14.56) works nicely:

x0 � 0

xiC1 D
1
2
QC x4i � x

9
i C x

16
i � x

25
i C 	 	 	

z.Q/ D

q
�1
2

log.x1/

(6.14.59)

For x . 0:06 you only need the first two powers of xi .
For larger values of Q, that is, P . 0:7, the number of powers of x required

quickly becomes excessive. A useful approach is to write (6.14.57) as

y log.y/ D �
	P 2

8

�
1C y4 C y12 C 	 	 	 C y2j.j�1/ C 	 	 	

��1
z.P / D

	=2p
� log.y/

(6.14.60)

If we can get a good enough initial guess for y, we can solve the first equation in
(6.14.60) by a variant of Halley’s method: Use values of y from the previous iteration
on the right-hand side of (6.14.60), and use Halley only for the y log.y/ piece, so
that the first and second derivatives are analytically simple functions.

A good initial guess is obtained by using the inverse function to y log.y/ (the
function invxlogx in �6.11) with the argument �	P 2=8. The number of iterations
within the invxlogx function and the Halley loop is never more than half a dozen
in each, often less. Code for the KS functions and their inverses follows.

struct KSdist { ksdist.h
Kolmogorov-Smirnov cumulative distribution functions and their inverses.

Doub pks(Doub z) {
Return cumulative distribution function.

if (z < 0.) throw("bad z in KSdist");
if (z == 0.) return 0.;
if (z < 1.18) {

Doub y = exp(-1.23370055013616983/SQR(z));
return 2.25675833419102515*sqrt(-log(y))

*(y + pow(y,9) + pow(y,25) + pow(y,49));
} else {

Doub x = exp(-2.*SQR(z));
return 1. - 2.*(x - pow(x,4) + pow(x,9));

}
}
Doub qks(Doub z) {
Return complementary cumulative distribution function.

if (z < 0.) throw("bad z in KSdist");
if (z == 0.) return 1.;
if (z < 1.18) return 1.-pks(z);
Doub x = exp(-2.*SQR(z));
return 2.*(x - pow(x,4) + pow(x,9));

}
Doub invqks(Doub q) {
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Return inverse of the complementary cumulative distribution function.
Doub y,logy,yp,x,xp,f,ff,u,t;
if (q <= 0. || q > 1.) throw("bad q in KSdist");
if (q == 1.) return 0.;
if (q > 0.3) {

f = -0.392699081698724155*SQR(1.-q);
y = invxlogx(f); Initial guess.
do {

yp = y;
logy = log(y);
ff = f/SQR(1.+ pow(y,4)+ pow(y,12));
u = (y*logy-ff)/(1.+logy); Newton’s method correction.
y = y - (t=u/MAX(0.5,1.-0.5*u/(y*(1.+logy)))); Halley.

} while (abs(t/y)>1.e-15);
return 1.57079632679489662/sqrt(-log(y));

} else {
x = 0.03;
do { Iteration (6.14.59).

xp = x;
x = 0.5*q+pow(x,4)-pow(x,9);
if (x > 0.06) x += pow(x,16)-pow(x,25);

} while (abs((xp-x)/x)>1.e-15);
return sqrt(-0.5*log(x));

}
}
Doub invpks(Doub p) {return invqks(1.-p);}
Return inverse of the cumulative distribution function.

};

6.14.13 Poisson Distribution
The eponymous Poisson distribution was derived by Poisson in 1837. It applies

to a process where discrete, uncorrelated events occur at some mean rate per unit
time. If, for a given period, � is the mean expected number of events, then the
probability distribution of seeing exactly k events, k � 0, can be written as

k � Poisson.�/; � > 0

p.k/ D
1

kŠ
�ke��; k D 0; 1; : : :

(6.14.61)

Evidently
P
k p.k/ D 1, since the k-dependent factors in (6.14.61) are just the series

expansion of e�.
The mean and variance of Poisson.�/ are both �. There is a single mode at

k D b�c, that is, at � rounded down to an integer.
The Poisson distribution’s cdf is an incomplete gamma function Q.a; x/,

P�.< k/ D Q.k; �/ (6.14.62)

Since k is discrete, P�.< k/ is of course different from P�.
 k/, the latter being
given by

P�.
 k/ D Q.k C 1; �/ (6.14.63)

Some particular values are

P�.< 0/ D 0 P�.< 1/ D e
�� P�.<1/ D 1 (6.14.64)
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Some other relations involving the incomplete gamma functionsQ.a; x/ andP.a; x/
are

P�.� k/ D P.k; �/ D 1 �Q.k; �/

P�.> k/ D P.k C 1; �/ D 1 �Q.k C 1; �/
(6.14.65)

Because of the discreteness in k, the inverse of the cdf must be defined with
some care: Given a value P, we define k�.P / as the integer such that

P�.< k/ 
 P < P�.
 k/ (6.14.66)

In the interest of conciseness, the code below cheats a little bit and allows the right-
hand< to be
. If you may be supplying P ’s that are exact P�.< k/’s, then you will
need to check both k�.P / as returned, and k�.P /C 1. (This will essentially never
happen for “round” P ’s like 0.95, 0.99, etc.)

struct Poissondist : Gamma { incgammabeta.h
Poisson distribution, derived from the gamma function Gamma.

Doub lam;
Poissondist(Doub llam) : lam(llam) {
Constructor. Initialize with �.

if (lam <= 0.) throw("bad lam in Poissondist");
}
Doub p(Int n) {
Return probability density function.

if (n < 0) throw("bad n in Poissondist");
return exp(-lam + n*log(lam) - gammln(n+1.));

}
Doub cdf(Int n) {
Return cumulative distribution function.

if (n < 0) throw("bad n in Poissondist");
if (n == 0) return 0.;
return gammq((Doub)n,lam);

}
Int invcdf(Doub p) {
Given argument P , return integer n such that P.< n/ � P � P.< nC 1/.

Int n,nl,nu,inc=1;
if (p <= 0. || p >= 1.) throw("bad p in Poissondist");
if (p < exp(-lam)) return 0;
n = (Int)MAX(sqrt(lam),5.); Starting guess near peak of density.
if (p < cdf(n)) { Expand interval until we bracket.

do {
n = MAX(n-inc,0);
inc *= 2;

} while (p < cdf(n));
nl = n; nu = n + inc/2;

} else {
do {

n += inc;
inc *= 2;

} while (p > cdf(n));
nu = n; nl = n - inc/2;

}
while (nu-nl>1) { Now contract the interval by bisection.

n = (nl+nu)/2;
if (p < cdf(n)) nu = n;
else nl = n;

}
return nl;

}
};
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6.14.14 Binomial Distribution
Like the Poisson distribution, the binomial distribution is a discrete distribution

over k � 0. It has two parameters, n � 1, the “sample size” or maximum value
for which k can be nonzero; and p, the “event probability” (not to be confused with
p.k/, the probability of a particular k). We write

k � Binomial.n; p/; n � 1; 0 < p < 1

p.k/ D

 
n

k

!
pk.1 � p/n�k; k D 0; 1; : : : ; n

(6.14.67)

where
�
n
k



is, of course, the binomial coefficient.

The mean and variance are given by

MeanfBinomial.n; p/g D np

VarfBinomial.n; p/g D np.1 � p/
(6.14.68)

There is a single mode at the value k that satisfies

.nC 1/p � 1 < k 
 .nC 1/p (6.14.69)

The distribution is symmetrical iff p D 1
2

. Otherwise it has positive skewness for
p < 1

2
and negative for p > 1

2
. Many additional properties are described in [2].

The Poisson distribution is obtained from the binomial distribution in the limit
n!1; p ! 0 with the np remaining finite. More precisely,

lim
n!1

Binomial.n; �=n/ Š Poisson.�/ (6.14.70)

The binomial distribution’s cdf can be computed from the incomplete beta func-
tion Ix.a; b/,

P.< k/ D 1 � Ip.k; n � k C 1/ (6.14.71)

so we also have (analogously to the Poisson distribution)

P.
 k/ D 1 � Ip.k C 1; n � k/

P.> k/ D Ip.k C 1; n � k/

P.� k/ D Ip.k; n � k C 1/

(6.14.72)

Some particular values are

P.< 0/ D 0 P.< ŒnC 1�/ D 1 (6.14.73)

The inverse cdf is defined exactly as for the Poisson distribution, above, and
with the same small warning about the code.

struct Binomialdist : Beta {incgammabeta.h
Binomial distribution, derived from the beta function Beta.

Int n;
Doub pe, fac;
Binomialdist(Int nn, Doub ppe) : n(nn), pe(ppe) {
Constructor. Initialize with n (sample size) and p (event probability).

if (n <= 0 || pe <= 0. || pe >= 1.) throw("bad args in Binomialdist");
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fac = gammln(n+1.);
}
Doub p(Int k) {
Return probability density function.

if (k < 0) throw("bad k in Binomialdist");
if (k > n) return 0.;
return exp(k*log(pe)+(n-k)*log(1.-pe)

+fac-gammln(k+1.)-gammln(n-k+1.));
}
Doub cdf(Int k) {
Return cumulative distribution function.

if (k < 0) throw("bad k in Binomialdist");
if (k == 0) return 0.;
if (k > n) return 1.;
return 1. - betai((Doub)k,n-k+1.,pe);

}
Int invcdf(Doub p) {
Given argument P , return integer n such that P.< n/ � P � P.< nC 1/.

Int k,kl,ku,inc=1;
if (p <= 0. || p >= 1.) throw("bad p in Binomialdist");
k = MAX(0,MIN(n,(Int)(n*pe))); Starting guess near peak of density.
if (p < cdf(k)) { Expand interval until we bracket.

do {
k = MAX(k-inc,0);
inc *= 2;

} while (p < cdf(k));
kl = k; ku = k + inc/2;

} else {
do {

k = MIN(k+inc,n+1);
inc *= 2;

} while (p > cdf(k));
ku = k; kl = k - inc/2;

}
while (ku-kl>1) { Now contract the interval by bisection.

k = (kl+ku)/2;
if (p < cdf(k)) ku = k;
else kl = k;

}
return kl;

}
};

CITED REFERENCES AND FURTHER READING:

Johnson, N.L. and Kotz, S. 1970, Continuous Univariate Distributions, 2 vols. (Boston: Houghton
Mifflin).[1]

Johnson, N.L. and Kotz, S. 1969, Discrete Distributions (Boston: Houghton Mifflin).[2]

Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. 2003, Bayesian Data Analysis, 2nd ed.
(Boca Raton, FL: Chapman & Hall/CRC), Appendix A.

Lyuu, Y-D. 2002, Financial Engineering and Computation (Cambridge, UK: Cambridge University
Press).[3]
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7.0 Introduction

It may seem perverse to use a computer, that most precise and deterministic of
all machines conceived by the human mind, to produce “random” numbers. More
than perverse, it may seem to be a conceptual impossibility. After all, any program
produces output that is entirely predictable, hence not truly “random.”

Nevertheless, practical computer “random number generators” are in common
use. We will leave it to philosophers of the computer age to resolve the paradox in
a deep way (see, e.g., Knuth [1] �3.5 for discussion and references). One sometimes
hears computer-generated sequences termed pseudo-random, while the word random
is reserved for the output of an intrinsically random physical process, like the elapsed
time between clicks of a Geiger counter placed next to a sample of some radioactive
element. We will not try to make such fine distinctions.

A working definition of randomness in the context of computer-generated se-
quences is to say that the deterministic program that produces a random sequence
should be different from, and — in all measurable respects — statistically uncor-
related with, the computer program that uses its output. In other words, any two
different random number generators ought to produce statistically the same results
when coupled to your particular applications program. If they don’t, then at least one
of them is not (from your point of view) a good generator.

The above definition may seem circular, comparing, as it does, one generator to
another. However, there exists a large body of random number generators that mutu-
ally do satisfy the definition over a very, very broad class of applications programs.
And it is also found empirically that statistically identical results are obtained from
random numbers produced by physical processes. So, because such generators are
known to exist, we can leave to the philosophers the problem of defining them.

The pragmatic point of view is thus that randomness is in the eye of the beholder
(or programmer). What is random enough for one application may not be random
enough for another. Still, one is not entirely adrift in a sea of incommensurable
applications programs: There is an accepted list of statistical tests, some sensible and
some merely enshrined by history, that on the whole do a very good job of ferreting
out any nonrandomness that is likely to be detected by an applications program (in
this case, yours). Good random number generators ought to pass all of these tests,

340
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or at least the user had better be aware of any that they fail, so that he or she will be
able to judge whether they are relevant to the case at hand.

For references on this subject, the one to turn to first is Knuth [1]. Be cautious
about any source earlier than about 1995, since the field progressed enormously in
the following decade.

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1997, Seminumerical Algorithms, 3rd ed., vol. 2 of The Art of Computer Program-
ming (Reading, MA: Addison-Wesley), Chapter 3, especially �3.5.[1]

Gentle, J.E. 2003, Random Number Generation and Monte Carlo Methods, 2nd ed. (New York:
Springer).

7.1 Uniform Deviates
Uniform deviates are just random numbers that lie within a specified range, typ-

ically 0.0 to 1.0 for floating-point numbers, or 0 to 232 � 1 or 264 � 1 for integers.
Within the range, any one number is just as likely as any other. They are, in other
words, what you probably think “random numbers” are. However, we want to distin-
guish uniform deviates from other sorts of random numbers, for example, numbers
drawn from a normal (Gaussian) distribution of specified mean and standard de-
viation. These other sorts of deviates are almost always generated by performing
appropriate operations on one or more uniform deviates, as we will see in subse-
quent sections. So, a reliable source of random uniform deviates, the subject of this
section, is an essential building block for any sort of stochastic modeling or Monte
Carlo computer work.

The state of the art for generating uniform deviates has advanced considerably
in the last decade and now begins to resemble a mature field. It is now reasonable to
expect to get “perfect” deviates in no more than a dozen or so arithmetic or logical
operations per deviate, and fast, “good enough” deviates in many fewer operations
than that. Three factors have all contributed to the field’s advance: first, new mathe-
matical algorithms; second, better understanding of the practical pitfalls; and, third,
standardization of programming languages in general, and of integer arithmetic in
particular — and especially the universal availability of unsigned 64-bit arithmetic
in C and C++. It may seem ironic that something as down-in-the-weeds as this last
factor can be so important. But, as we will see, it really is.

The greatest lurking danger for a user today is that many out-of-date and inferior
methods remain in general use. Here are some traps to watch for:

� Never use a generator principally based on a linear congruential generator
(LCG) or a multiplicative linear congruential generator (MLCG). We say
more about this below.
� Never use a generator with a period less than � 264 � 2 � 1019, or any

generator whose period is undisclosed.
� Never use a generator that warns against using its low-order bits as being com-

pletely random. That was good advice once, but it now indicates an obsolete
algorithm (usually a LCG).
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� Never use the built-in generators in the C and C++ languages, especially rand
and srand. These have no standard implementation and are often badly flawed.

If all scientific papers whose results are in doubt because of one or more of the above
traps were to disappear from library shelves, there would be a gap on each shelf
about as big as your fist.

You may also want to watch for indications that a generator is overengineered,
and therefore wasteful of resources:

� Avoid generators that take more than (say) two dozen arithmetic or logical
operations to generate a 64-bit integer or double precision floating result.
� Avoid using generators (over-)designed for serious cryptographic use.
� Avoid using generators with period > 10100. You really will never need it,

and, above some minimum bound, the period of a generator has little to do
with its quality.

Since we have told you what to avoid from the past, we should immediately
follow with the received wisdom of the present:

An acceptable random generator must combine at least two
(ideally, unrelated) methods. The methods combined should
evolve independently and share no state. The combination
should be by simple operations that do not produce results
less random than their operands.

If you don’t want to read the rest of this section, then use the following code to
generate all the uniform deviates you’ll ever need. This is our suspenders-and-belt,
full-body-armor, never-any-doubt generator;� and, it also meets the above guidelines
for avoiding wasteful, overengineered methods. (The fastest generators that we rec-
ommend, below, are only �2:5 � faster, even when their code is copied inline into
an application.)

struct Ran {ran.h
Implementation of the highest quality recommended generator. The constructor is called with
an integer seed and creates an instance of the generator. The member functions int64, doub,
and int32 return the next values in the random sequence, as a variable type indicated by their
names. The period of the generator is 	 3:138 � 1057.

Ullong u,v,w;
Ran(Ullong j) : v(4101842887655102017LL), w(1) {
Constructor. Call with any integer seed (except value of v above).

u = j ^ v; int64();
v = u; int64();
w = v; int64();

}
inline Ullong int64() {

�“What about the $1000 reward?” some long-time readers may wonder. That is a tale in itself: Two
decades ago, the first edition of Numerical Recipes included a flawed random number generator. (Forgive
us, we were young!) In the second edition, in a misguided attempt to buy back some credibility, we
offered a prize of $1000 to the “first reader who convinces us” that that edition’s best generator was in any
way flawed. No one ever won that prize (ran2 is a sound generator within its stated limits). We did learn,
however, that many people don’t understand what constitutes a statistical proof. Multiple claimants over
the years have submitted claims based on one of two fallacies: (1) finding, after much searching, some
particular seed that makes the first few random values seem unusual, or (2) finding, after some millions of
trials, a statistic that, just that once, is as unlikely as a part in a million. In the interests of our own sanity,
we are not offering any rewards in this edition. And the previous offer is hereby revoked.
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Return 64-bit random integer. See text for explanation of method.
u = u * 2862933555777941757LL + 7046029254386353087LL;
v ^= v >> 17; v ^= v << 31; v ^= v >> 8;
w = 4294957665U*(w & 0xffffffff) + (w >> 32);
Ullong x = u ^ (u << 21); x ^= x >> 35; x ^= x << 4;
return (x + v) ^ w;

}
inline Doub doub() { return 5.42101086242752217E-20 * int64(); }
Return random double-precision floating value in the range 0. to 1.
inline Uint int32() { return (Uint)int64(); }
Return 32-bit random integer.

};

The basic premise here is that a random generator, because it maintains internal
state between calls, should be an object, a struct. You can declare more than one
instance of it (although it is hard to think of a reason for doing so), and different
instances will in no way interact.

The constructor Ran() takes a single integer argument, which becomes the seed
for the sequence generated. Different seeds generate (for all practical purposes)
completely different sequences. Once constructed, an instance of Ran offers sev-
eral different formats for random output. To be specific, suppose you have created
an instance by the declaration

Ran myran(17);

where myran is now the name of this instance, and 17 is its seed. Then, the function
myran.int64() returns a random 64-bit unsigned integer; the function
myran.int32() returns an unsigned 32-bit integer; and the function myran.doub()
returns a double-precision floating value in the range 0:0 to 1:0. You can intermix
calls to these functions as you wish. You can use any returned random bits for any
purpose. If you need a random integer between 1 and n (inclusive), say, then the
expression 1 + myran.int64() % (n-1) is perfectly OK (though there are faster
idioms than the use of %).

In the rest of this section, we briefly review some history (the rise and fall of
the LCG), then give details on some of the algorithmic methods that go into a good
generator, and on how to combine those methods. Finally, we will give some further
recommended generators, additional to Ran above.

7.1.1 Some History
With hindsight, it seems clear that the whole field of random number generation

was mesmerized, for far too long, by the simple recurrence equation

IjC1 D aIj C c .mod m/ (7.1.1)

Here m is called the modulus, a is a positive integer called the multiplier, and c
(which may be zero) is nonnegative integer called the increment. For c ¤ 0, equation
(7.1.1) is called a linear congruential generator (LCG). When c D 0, it is sometimes
called a multiplicative LCG or MLCG.

The recurrence (7.1.1) must eventually repeat itself, with a period that is obvi-
ously no greater than m. If m; a; and c are properly chosen, then the period will be
of maximal length, i.e., of lengthm. In that case, all possible integers between 0 and
m� 1 occur at some point, so any initial “seed” choice of I0 is as good as any other:
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The sequence just takes off from that point, and successive values Ij are the returned
“random” values.

The idea of LCGs goes back to the dawn of computing, and they were widely
used in the 1950s and thereafter. The trouble in paradise first began to be noticed in
the mid-1960s (e.g., [1]): If k random numbers at a time are used to plot points in
k-dimensional space (with each coordinate between 0 and 1), then the points will not
tend to “fill up” the k-dimensional space, but rather will lie on .k � 1/-dimensional
“planes.” There will be at most about m1=k such planes. If the constants m and a
are not very carefully chosen, there will be many fewer than that. The number m
was usually close to the machine’s largest representable integer, often � 232. So,
for example, the number of planes on which triples of points lie in three-dimensional
space can be no greater than about the cube root of 232, about 1600. You might well
be focusing attention on a physical process that occurs in a small fraction of the total
volume, so that the discreteness of the planes can be very pronounced.

Even worse, many early generators happened to make particularly bad choices
for m and a. One infamous such routine, RANDU, with a D 65539 and m D 231,
was widespread on IBM mainframe computers for many years, and widely copied
onto other systems. One of us recalls as a graduate student producing a “random”
plot with only 11 planes and being told by his computer center’s programming con-
sultant that he had misused the random number generator: “We guarantee that each
number is random individually, but we don’t guarantee that more than one of them
is random.” That set back our graduate education by at least a year!

LCGs and MLCGs have additional weaknesses: When m is chosen as a power
of 2 (e.g., RANDU), then the low-order bits generated are hardly random at all. In
particular, the least significant bit has a period of at most 2, the second at most 4,
the third at most 8, and so on. But, if you don’t choose m as a power of 2 (in
fact, choosing m prime is generally a good thing), then you generally need access
to double-length registers to do the multiplication and modulo functions in equation
(7.1.1). These were often unavailable in computers of the time (and usually still are).

A lot of effort subsequently went into “fixing” these weaknesses. An elegant
number-theoretical test of m and a, the spectral test, was developed to characterize
the density of planes in arbitrary dimensional space. (See [2] for a recent review that
includes graphical renderings of some of the appallingly poor generators that were
used historically, and also [3].) Schrage’s method [4] was invented to do the multipli-
cation a Ij with only 32-bit arithmetic for m as large as 232 � 1, but, unfortunately,
only for certain a’s, not always the best ones. The review by Park and Miller [5] gives
a good contemporary picture of LCGs in their heyday.

Looking back, it seems clear that the field’s long preoccupation with LCGs was
somewhat misguided. There is no technological reason that the better, non-LCG,
generators of the last decade could not have been discovered decades earlier, nor any
reason that the impossible dream of an elegant “single algorithm” generator could not
also have been abandoned much earlier (in favor of the more pragmatic patchwork
in combined generators). As we will explain below, LCGs and MLCGs can still
be useful, but only in carefully controlled situations, and with due attention to their
manifest weaknesses.
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7.1.2 Recommended Methods for Use in Combined
Generators

Today, there are at least a dozen plausible algorithms that deserve serious con-
sideration for use in random generators. Our selection of a few is motivated by
aesthetics as much as mathematics. We like algorithms with few and fast operations,
with foolproof initialization, and with state small enough to keep in registers or first-
level cache (if the compiler and hardware are able to do so). This means that we tend
to avoid otherwise fine algorithms whose state is an array of some length, despite the
relative simplicity with which such algorithms can achieve truly humongous periods.
For overviews of broader sets of methods, see [6] and [7].

To be recommendable for use in a combined generator, we require a method
to be understood theoretically to some degree, and to pass a reasonably broad suite
of empirical tests (or, if it fails, have weaknesses that are well characterized). Our
minimal theoretical standard is that the period, the set of returned values, and the
set of valid initializations should be completely understood. As a minimal empirical
standard, we have used the second release (2003) of Marsaglia’s whimsically named
Diehard battery of statistical tests [8].� An alternative test suite, NIST-STS [9], might
be used instead, or in addition.

Simply requiring a combined generator to pass Diehard or NIST-STS is not
an acceptably stringent test. These suites make only �107 calls to the generator,
whereas a user program might make 1012 or more. Much more meaningful is to
require that each method in a combined generator separately pass the chosen suite.
Then the combination generator (if correctly constructed) should be vastly better
than any one component. In the tables below, we use the symbol “¾” to indicate that
a method passes the Diehard tests by itself. (For 64-bit quantities, the statement is
that the 32 high and low bits each pass.) Correspondingly, the words “can be used
as random,” below, do not imply perfect randomness, but only a minimum level for
quick-and-dirty applications where a better, combined, generator is just not needed.

We turn now to specific methods, starting with methods that use 64-bit unsigned
arithmetic (what we call Ullong, that is, unsigned long long in the Linux/Unix
world, or unsigned __int64 on planet Microsoft).

(A) 64-bit Xorshift Method. This generator was discovered and characterized
by Marsaglia [10]. In just three XORs and three shifts (generally fast operations)
it produces a full period of 264 � 1 on 64 bits. (The missing value is zero, which
perpetuates itself and must be avoided.) High and low bits pass Diehard. A generator
can use either the three-line update rule, below, that starts with <<, or the rule that
starts with >>. (The two update rules produce different sequences, related by bit
reversal.)

state: x (unsigned 64-bit)
initialize: x ¤ 0

update: x  x ^ .x >> a1/;

x  x ^ .x << a2/;

x  x ^ .x >> a3/I

or x  x ^ .x << a1/;

x  x ^ .x >> a2/;

�Be sure that you use a version of Diehard that includes the so-called “Gorilla Test.”
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x  x ^ .x << a3/I

can use as random: x (all bits) ¾
can use in bit mix: x (all bits)
can improve by: output 64-bit MLCG successor
period: 264 � 1

Here is a very brief outline of the theory behind these generators: Consider the
64 bits of the integer as components in a vector of length 64, in a linear space where
addition and multiplication are done modulo 2. Noting that XOR (^) is the same as
addition, each of the three lines in the updating can be written as the action of a 64�
64 matrix on a vector, where the matrix is all zeros except for ones on the diagonal,
and on exactly one super- or subdiagonal (corresponding to << or >>). Denote this
matrix as Sk , where k is the shift argument (positive for left-shift, say, and negative
for right-shift). Then, one full step of updating (three lines of the updating rule,
above) corresponds to multiplication by the matrix T � Sk3Sk2Sk1 .

One next needs to find triples of integers .k1; k2; k3/, for example .21;�35; 4/,
that give the full M � 264 � 1 period. Necessary and sufficient conditions are
that TM D 1 (the identity matrix) and that TN ¤ 1 for these seven values of N :
M=6700417, M=65537, M=641, M=257, M=17, M=5, and M=3, that is, M di-
vided by each of its seven distinct prime factors. The required large powers of T are
readily computed by successive squarings, requiring only on the order of 644 opera-
tions. With this machinery, one can find full-period triples .k1; k2; k3/ by exhaustive
search, at a reasonable cost.

Brent [11] has pointed out that the 64-bit xorshift method produces, at each bit
position, a sequence of bits that is identical to one produced by a certain linear feed-
back shift register (LFSR) on 64 bits. (We will learn more about LFSRs in �7.5.)
The xorshift method thus potentially has some of the same strengths and weaknesses
as an LFSR. Mitigating this, however, is the fact that the primitive polynomial equiv-
alent of a typical xorshift generator has many nonzero terms, giving it better statis-
tical properties than LFSR generators based, for example, on primitive trinomials.
In effect, the xorshift generator is a way to step simultaneously 64 nontrivial one-
bit LFSR registers, using only six fast, 64-bit operations. There are other ways
of making fast steps on LFSRs, and combining the output of more than one such
generator [12,13], but none as simple as the xorshift method.

While each bit position in an xorshift generator has the same recurrence, and
therefore the same sequence with period 264 � 1, the method guarantees offsets to
each sequence such that all nonzero 64-bit words are produced across the bit posi-
tions during one complete cycle (as we just saw).

A selection of full-period triples is tabulated in [10]. Only a small fraction of
full-period triples actually produce generators that pass Diehard. Also, a triple may
pass in its <<-first version, and fail in its >>-first version, or vice versa. Since the
two versions produce simply bit-reversed sequences, a failure of either sense must
obviously be considered a failure of both (and a weakness in Diehard). The following
recommended parameter sets pass Diehard for both the << and >> rules. The sets near
the top of the list may be slightly superior to the sets near the bottom. The column
labeled ID assigns an identification string to each recommended generator that we
will refer to later.
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ID a1 a2 a3
A1 21 35 4
A2 20 41 5
A3 17 31 8
A4 11 29 14
A5 14 29 11
A6 30 35 13
A7 21 37 4
A8 21 43 4
A9 23 41 18

It is easy to design a test that the xorshift generator fails if used by itself. Each
bit at step i C 1 depends on at most 8 bits of step i , so some simple logical com-
binations of the two timesteps (and appropriate masks) will show immediate non-
randomness. Also, when the state passes though a value with only small numbers
of 1 bits, as it must eventually do (so-called states of low Hamming weight), it will
take longer than expected to recover. Nevertheless, used in combination, the xorshift
generator is an exceptionally powerful and useful method. Much grief could have
been avoided had it, instead of LCGs, been discovered in 1949!

(B) Multiply with Carry (MWC) with Base b D 232. Also discovered by
Marsaglia, the base b of an MWC generator is most conveniently chosen to be a
power of 2 that is half the available word length (i.e., b D 32 for 64-bit words). The
MWC is then defined by its multiplier a.

state: x (unsigned 64-bit)
initialize: 1 
 x 
 232 � 1

update: x  a .x & Œ232 � 1�/C .x >> 32/

can use as random: x (low 32 bits) ¾
can use in bit mix: x (all 64 bits)
can improve by: output 64-bit xorshift successor to 64 bit x
period: .232a � 2/=2 (a prime)

An MWC generator with parameters b and a is related theoretically [14] to,
though not identical to, an LCG with modulusm D ab�1 and multiplier a. It is easy
to find values of a that make m a prime, so we get, in effect, the benefit of a prime
modulus using only power-of-two modular arithmetic. It is not possible to choose
a to give the maximal period m, but if a is chosen to make both m and .m � 1/=2
prime, then the period of the MCG is .m � 1/=2, almost as good. A fraction of
candidate a’s thus chosen passes the standard statistical test suites; a spectral test [14]

is a promising development, but we have not made use of it here.
Although only the low b bits of the state x can be taken as algorithmically ran-

dom, there is considerable randomness in all the bits of x that represent the product
ab. This is very convenient in a combined generator, allowing the entire state x to
be used as a component. In fact, the first two recommended a’s below give ab so
close to 264 (within about 2 ppm) that the high bits of x actually pass Diehard. (This
is a good example of how any test suite can fail to find small amounts of highly
nonrandom behavior, in this case as many as 8000 missing values in the top 32 bits.)
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Apart from this kind of consideration, the values below are recommended with no
particular ordering.

ID a

B1 4294957665
B2 4294963023
B3 4162943475
B4 3947008974
B5 3874257210
B6 2936881968
B7 2811536238
B8 2654432763
B9 1640531364

(C) LCG Modulo 264. Why in the world do we include this generator after
vilifying it so thoroughly above? For the parameters given (which strongly pass the
spectral test), its high 32 bits almost, but don’t quite, pass Diehard, and its low 32
bits are a complete disaster. Yet, as we will see when we discuss the construction of
combined generators, there is still a niche for it to fill. The recommended multipliers
a below have good spectral characteristics [15].

state: x (unsigned 64-bit)
initialize: any value
update: x  ax C c .mod 264/
can use as random: x (high 32 bits, with caution)
can use in bit mix: x (high 32 bits)
can improve by: output 64-bit xorshift successor
period: 264

ID a c (any odd value ok)
C1 3935559000370003845 2691343689449507681
C2 3202034522624059733 4354685564936845319
C3 2862933555777941757 7046029254386353087

(D) MLCG Modulo 264. As for the preceding one, the useful role for this
generator is strictly limited. The low bits are highly nonrandom. The recommended
multipliers have good spectral characteristics (some from [15]).

state: x (unsigned 64-bit)
initialize: x ¤ 0

update: x  ax .mod 264/
can use as random: x (high 32 bits, with caution)
can use in bit mix: x (high 32 bits)
can improve by: output 64-bit xorshift successor
period: 262
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ID a

D1 2685821657736338717
D2 7664345821815920749
D3 4768777513237032717
D4 1181783497276652981
D5 702098784532940405

(E) MLCG with m � 232, m Prime. When 64-bit unsigned arithmetic is
available, the MLCGs with prime moduli and large multipliers of good spectral char-
acter are decent 32-bit generators. Their main liability is that the 64-bit multiply and
64-bit remainder operations are quite expensive for the mere 32 (or so) bits of the
result.

state: x (unsigned 64-bit)
initialize: 1 
 x 
 m � 1

update: x  ax .mod m/
can use as random: x .1 
 x 
 m � 1/ or low 32 bits ¾
can use in bit mix: (same)
period: m � 1

The parameter values below were kindly computed for us by P. L’Ecuyer. The
multipliers are about the best that can be obtained for the prime moduli, close to
powers of 2, shown. Although the recommended use is for only the low 32 bits
(which all pass Diehard), you can see that (depending on the modulus) as many
as 43 reasonably good bits can be obtained for the cost of the 64-bit multiply and
remainder operations.

ID m a

E1 239 � 7 D 549755813881 10014146
E2 30508823
E3 25708129

E4 241 � 21 D 2199023255531 5183781
E5 1070739
E6 6639568

E7 242 � 11 D 4398046511093 1781978
E8 2114307
E9 1542852

E10 243 � 57 D 8796093022151 2096259
E11 2052163
E12 2006881

(F) MLCG withm� 232,m Prime, and a.m� 1/ � 264. A variant, for use
in combined generators, is to choose m and a to make a.m � 1/ as close as possible
to 264, while still requiring that m be prime and that a pass the spectral test. The
purpose of this maneuver is to make ax a 64-bit value with good randomness in its
high bits, for use in combined generators. The expense of the multiply and remainder
operations is still the big liability, however. The low 32 bits of x are not significantly
less random than those of the previous MLCG generators E1–E12.
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state: x (unsigned 64-bit)
initialize: 1 
 x 
 m � 1

update: x  ax .mod m/
can use as random: x .1 
 x 
 m � 1/ or low 32 bits ¾
can use in bit mix: ax (but don’t use both ax and x) ¾
can improve by: output 64-bit xorshift successor of ax
period: m � 1

ID m a

F1 1148 � 232 C 11 D 4930622455819 3741260
F2 1264 � 232 C 9 D 5428838662153 3397916
F3 2039 � 232 C 3 D 8757438316547 2106408

7.1.3 How to Construct Combined Generators
While the construction of combined generators is an art, it should be informed

by underlying mathematics. Rigorous theorems about combined generators are usu-
ally possible only when the generators being combined are algorithmically related;
but that in itself is usually a bad thing to do, on the general principle of “don’t put all
your eggs in one basket.” So, one is left with guidelines and rules of thumb.

The methods being combined should be independent of one another. They must
share no state (although their initializations are allowed to derive from some conve-
nient common seed). They should have different, incommensurate, periods. And,
ideally, they should “look like” each other algorithmically as little as possible. This
latter criterion is where some art necessarily enters.

The output of the combination generator should in no way perturb the indepen-
dent evolution of the individual methods, nor should the operations effecting combi-
nation have any side effects.

The methods should be combined by binary operations whose output is no less
random than one input if the other input is held fixed. For 32- or 64-bit unsigned
arithmetic, this in practice means that only theC and ^ operators can be used. As an
example of a forbidden operator, consider multiplication: If one operand is a power
of 2, then the product will end in trailing zeros, no matter how random is the other
operand.

All bit positions in the combined output should depend on high-quality bits from
at least two methods, and may also depend on lower-quality bits from additional
methods. In the tables above, the bits labeled “can use as random” are considered
high quality; those labeled “can use in bit mix” are considered low quality, unless
they also pass a statistical suite such as Diehard.

There is one further trick at our disposal, the idea of using a method as a succes-
sor relation instead of as a generator in its own right. Each of the methods described
above is a mapping from some 64-bit state xi to a unique successor state xiC1. For a
method to pass a good statistical test suite, it must have no detectable correlations be-
tween a state and its successor. If, in addition, the method has period 264 or 264 � 1,
then all values (except possibly zero) occur exactly once as successor states.

Suppose we take the output of a generator, say C1 above, with period 264, and
run it through generator A6, whose period is 264 � 1, as a successor relation. This is
conveniently denoted by “A6(C1),” which we will call a composed generator. Note
that the composed output is emphatically not fed back into the state of C1, which
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continues unperturbed. The composed generator A6(C1) has the period of C1, not,
unfortunately, the product of the two periods. But its random mapping of C1’s output
values effectively fixes C1’s problems with short-period low bits. (The better so if
the form of A6 with left-shift first is used.) And, A6(C1) will also fix A6’s weakness
that a bit depends only on a few bits of the previous state. We will thus consider a
carefully constructed composed generator as being a combined generator, on a par
with direct combining viaC or ^.

Composition is inferior to direct combining in that it costs almost as much but
does not increase the size of the state or the length of the period. It is superior to
direct combining in its ability to mix widely differing bit positions. In the previous
example we would not have accepted A6+C1 as a combined generator, because the
low bits of C1 are so poor as to add little value to the combination; but A6(C1) has no
such liability, and much to recommend it. In the preceding summary tables of each
method, we have indicated recommended combinations for composed generators in
the table entries, “can improve by.”

We can now completely describe the generator in Ran, above, by the pseudo-
equation,

Ran D ŒA1l .C3/C A3r � ^ B1 (7.1.2)

that is, the combination and/or composition of four different generators. For the
methods A1 and A3, the subscripts l and r denote whether a left- or right-shift oper-
ation is done first. The period of Ran is the least common multiple of the periods of
C3, A3, and B1.

The simplest and fastest generator that we can readily recommend is

Ranq1 � D1.A1r / (7.1.3)

implemented as

struct Ranq1 { ran.h
Recommended generator for everyday use. The period is 	 1:8 � 1019. Calling conventions
same as Ran, above.

Ullong v;
Ranq1(Ullong j) : v(4101842887655102017LL) {

v ^= j;
v = int64();

}
inline Ullong int64() {

v ^= v >> 21; v ^= v << 35; v ^= v >> 4;
return v * 2685821657736338717LL;

}
inline Doub doub() { return 5.42101086242752217E-20 * int64(); }
inline Uint int32() { return (Uint)int64(); }

};

Ranq1 generates a 64-bit random integer in 3 shifts, 3 xors, and one multiply,
or a double floating value in one additional multiply. Its method is concise enough to
go easily inline in an application. It has a period of “only” 1:8�1019, so it should not
be used by an application that makes more than � 1012 calls. With that restriction,
we think that Ranq1 will do just fine for 99.99% of all user applications, and that
Ran can be reserved for the remaining 0.01%.

If the “short” period of Ranq1 bothers you (which it shouldn’t), you can instead
use

Ranq2 � A3r ^ B1 (7.1.4)
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whose period is 8:5 � 1037.

struct Ranq2 {ran.h
Backup generator if Ranq1 has too short a period and Ran is too slow. The period is 	 8:5 �
1037. Calling conventions same as Ran, above.

Ullong v,w;
Ranq2(Ullong j) : v(4101842887655102017LL), w(1) {

v ^= j;
w = int64();
v = int64();

}
inline Ullong int64() {

v ^= v >> 17; v ^= v << 31; v ^= v >> 8;
w = 4294957665U*(w & 0xffffffff) + (w >> 32);
return v ^ w;

}
inline Doub doub() { return 5.42101086242752217E-20 * int64(); }
inline Uint int32() { return (Uint)int64(); }

};

7.1.4 Random Hashes and Random Bytes
Every once in a while, you want a random sequence Hi whose values you can

visit or revisit in any order of i ’s. That is to say, you want a random hash of the inte-
gers i , one that passes serious tests for randomness, even for very ordered sequences
of i ’s. In the language already developed, you want a generator that has no state at
all and is built entirely of successor relationships, starting with the value i .

An example that easily passes the Diehard test is

Ranhash � A2l .D3.A7r .C1.i//// (7.1.5)

Note the alternation between successor relations that utilize 64-bit multiplication and
ones using shifts and XORs.

struct Ranhash {ran.h
High-quality random hash of an integer into several numeric types.

inline Ullong int64(Ullong u) {
Returns hash of u as a 64-bit integer.

Ullong v = u * 3935559000370003845LL + 2691343689449507681LL;
v ^= v >> 21; v ^= v << 37; v ^= v >> 4;
v *= 4768777513237032717LL;
v ^= v << 20; v ^= v >> 41; v ^= v << 5;
return v;

}
inline Uint int32(Ullong u)
Returns hash of u as a 32-bit integer.

{ return (Uint)(int64(u) & 0xffffffff) ; }
inline Doub doub(Ullong u)
Returns hash of u as a double-precision floating value between 0. and 1.

{ return 5.42101086242752217E-20 * int64(u); }
};

Since Ranhash has no state, it has no constructor. You just call its int64(i)
function, or any of its other functions, with your value of i whenever you want.

Random Bytes. In a different set of circumstances, you may want to generate
random integers a byte at a time. You can of course pull bytes out of any of the above
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recommended combination generators, since they are constructed to be equally good
on all bits. The following code, added to any of the generators above, augments them
with an int8() method. (Be sure to initialize bc to zero in the constructor.)

Ullong breg;

Int bc;

inline unsigned char int8() {

if (bc--) return (unsigned char)(breg >>= 8);

breg = int64();

bc = 7;

return (unsigned char)breg;

}

If you want a more byte-oriented, though not necessarily faster, algorithm, an
interesting one — in part because of its interesting history — is Rivest’s RC4, used in
many Internet applications. RC4 was originally a proprietary algorithm of RSA, Inc.,
but it was protected simply as a trade secret and not by either patent or copyright.
The result was that when the secret was breached, by an anonymous posting to the
Internet in 1994, RC4 became, in almost all respects, public property. The name
RC4 is still protectable, and is a trademark of RSA. So, to be scrupulous, we give the
following implementation another name, Ranbyte.

struct Ranbyte { ran.h
Generator for random bytes using the algorithm generally known as RC4.

Int s[256],i,j,ss;
Uint v;
Ranbyte(Int u) {
Constructor. Call with any integer seed.

v = 2244614371U ^ u;
for (i=0; i<256; i++) {s[i] = i;}
for (j=0, i=0; i<256; i++) {

ss = s[i];
j = (j + ss + (v >> 24)) & 0xff;
s[i] = s[j]; s[j] = ss;
v = (v << 24) | (v >> 8);

}
i = j = 0;
for (Int k=0; k<256; k++) int8();

}
inline unsigned char int8() {
Returns next random byte in the sequence.

i = (i+1) & 0xff;
ss = s[i];
j = (j+ss) & 0xff;
s[i] = s[j]; s[j] = ss;
return (unsigned char)(s[(s[i]+s[j]) & 0xff]);

}
Uint int32() {
Returns a random 32-bit integer constructed from 4 random bytes. Slow!

v = 0;
for (int k=0; k<4; k++) {

i = (i+1) & 0xff;
ss = s[i];
j = (j+ss) & 0xff;
s[i] = s[j]; s[j] = ss;
v = (v << 8) | s[(s[i]+s[j]) & 0xff];

}
return v;

}
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Doub doub() {
Returns a random double-precision floating value between 0. and 1. Slow!!

return 2.32830643653869629E-10 * ( int32() +
2.32830643653869629E-10 * int32() );

}
};

Notice that there is a lot of overhead in starting up an instance of Ranbyte, so
you should not create instances inside loops that are executed many times. The meth-
ods that return 32-bit integers, or double floating-point values, are slow in compari-
son to the other generators above, but are provided in case you want to use Ranbyte
as a test substitute for another, perhaps questionable, generator.

If you find any nonrandomness at all in Ranbyte, don’t tell us. But there are
several national cryptological agencies that might, or might not, want to talk to you!

7.1.5 Faster Floating-Point Values
The steps above that convert a 64-bit integer to a double-precision floating-point

value involves both a nontrivial type conversion and a 64-bit floating multiply. They
are performance bottlenecks. One can instead directly move the random bits into
the right place in the double word with union structure, a mask, and some 64-bit
logical operations; but in our experience this is not significantly faster.

To generate faster floating-point values, if that is an absolute requirement, we
need to bend some of our design rules. Here is a variant of “Knuth’s subtractive
generator,” which is a so-called lagged Fibonacci generator on a circular list of 55
values, with lags 24 and 55. Its interesting feature is that new values are generated
directly as floating point, by the floating-point subtraction of two previous values.

struct Ranfib {ran.h
Implements Knuth’s subtractive generator using only floating operations. See text for cautions.

Doub dtab[55], dd;
Int inext, inextp;
Ranfib(Ullong j) : inext(0), inextp(31) {
Constructor. Call with any integer seed. Uses Ranq1 to initialize.

Ranq1 init(j);
for (int k=0; k<55; k++) dtab[k] = init.doub();

}
Doub doub() {
Returns random double-precision floating value between 0. and 1.

if (++inext == 55) inext = 0;
if (++inextp == 55) inextp = 0;
dd = dtab[inext] - dtab[inextp];
if (dd < 0) dd += 1.0;
return (dtab[inext] = dd);

}
inline unsigned long int32()
Returns random 32-bit integer. Recommended only for testing purposes.

{ return (unsigned long)(doub() * 4294967295.0);}
};

The int32 method is included merely for testing, or incidental use. Note also
that we use Ranq1 to initialize Ranfib’s table of 55 random values. See earlier
editions of Knuth or Numerical Recipes for a (somewhat awkward) way to do the
initialization purely internally.

Ranfib fails the Diehard “birthday test,” which is able to discern the simple
relation among the three values at lags 0, 24, and 55. Aside from that, it is a good,
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but not great, generator, with speed as its principal recommendation.

7.1.6 Timing Results

Timings depend so intimately on highly specific hardware and compiler details,
that it is hard to know whether a single set of tests is of any use at all. This is espe-
cially true of combined generators, because a good compiler, or a CPU with sophis-
ticated instruction look-ahead, can interleave and pipeline the operations of the indi-
vidual methods, up to the final combination operations. Also, as we write, desktop
computers are in transition from 32 bits to 64, which will affect the timing of 64-bit
operations. So, you ought to familiarize yourself with C’s “clock_t clock(void)”
facility and run your own experiments.

That said, the following tables give typical results for routines in this section,
normalized to a 3.4 GHz Pentium CPU, vintage 2004. The units are 106 returned
values per second. Large numbers are better.

Generator int64() doub() int8()

Ran 19 10 51
Ranq1 39 13 59
Ranq2 32 12 58
Ranfib 24
Ranbyte 43

The int8() timings for Ran, Ranq1, and Ranq2 refer to versions augmented as
indicated above.

7.1.7 When You Have Only 32-Bit Arithmetic

Our best advice is: Get a better compiler! But if you seriously must live in a
world with only unsigned 32-bit arithmetic, then here are some options. None of
these individually pass Diehard.

(G) 32-Bit Xorshift RNG

state: x (unsigned 32-bit)
initialize: x ¤ 0

update: x  x ^ .x >> b1/;

x  x ^ .x << b2/;

x  x ^ .x >> b3/I

or x  x ^ .x << b1/;

x  x ^ .x >> b2/;

x  x ^ .x << b3/I

can use as random: x (32 bits, with caution)
can use in bit mix: x (32 bits)
can improve by: output 32-bit MLCG successor
period: 232 � 1
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ID b1 b2 b3
G1 13 17 5
G2 7 13 3
G3 9 17 6
G4 6 13 5
G5 9 21 2
G6 17 15 5
G7 3 13 7
G8 5 13 6
G9 12 21 5

(H) MWC with Base b D 216

state: x; y (unsigned 32-bit)
initialize: 1 
 x; y 
 216 � 1

update: x  a .x & Œ216 � 1�/C .x >> 16/

y  b .y & Œ216 � 1�/C .y >> 16/

can use as random: .x << 16/C y

can use in bit mix: same, or (with caution) x or y
can improve by: output 32-bit xorshift successor
period: .216a � 2/.216b � 2/=4 (product of two primes)

ID a b

H1 62904 41874
H2 64545 34653
H3 34653 64545
H4 57780 55809
H5 48393 57225
H6 63273 33378

(I) LCG Modulo 232

state: x (unsigned 32-bit)
initialize: any value
update: x  ax C c .mod 232/
can use as random: not recommended
can use in bit mix: not recommended
can improve by: output 32-bit xorshift successor
period: 232

ID a c (any odd ok)
I1 1372383749 1289706101
I2 2891336453 1640531513
I3 2024337845 797082193
I4 32310901 626627237
I5 29943829 1013904223
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(J) MLCG Modulo 232

state: x (unsigned 32-bit)
initialize: x ¤ 0

update: x  ax .mod 232/
can use as random: not recommended
can use in bit mix: not recommended
can improve by: output 32-bit xorshift successor
period: 230

ID a

J1 1597334677
J2 741103597
J3 1914874293
J4 990303917
J5 747796405

A high-quality, if somewhat slow, combined generator is

Ranlim32 � ŒG3l .I2/C G1r � ^ ŒG6l .H6b/C H5b� (7.1.6)

implemented as

struct Ranlim32 { ran.h
High-quality random generator using only 32-bit arithmetic. Same conventions as Ran. Period
	 3:11 � 1037. Recommended only when 64-bit arithmetic is not available.

Uint u,v,w1,w2;
Ranlim32(Uint j) : v(2244614371U), w1(521288629U), w2(362436069U) {

u = j ^ v; int32();
v = u; int32();

}
inline Uint int32() {

u = u * 2891336453U + 1640531513U;
v ^= v >> 13; v ^= v << 17; v ^= v >> 5;
w1 = 33378 * (w1 & 0xffff) + (w1 >> 16);
w2 = 57225 * (w2 & 0xffff) + (w2 >> 16);
Uint x = u ^ (u << 9); x ^= x >> 17; x ^= x << 6;
Uint y = w1 ^ (w1 << 17); y ^= y >> 15; y ^= y << 5;
return (x + v) ^ (y + w2);

}
inline Doub doub() { return 2.32830643653869629E-10 * int32(); }
inline Doub truedoub() {

return 2.32830643653869629E-10 * ( int32() +
2.32830643653869629E-10 * int32() );

}
};

Note that the doub() method returns floating-point numbers with only 32 bits
of precision. For full precision, use the slower truedoub() method.

CITED REFERENCES AND FURTHER READING:
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7.2 Completely Hashing a Large Array

We introduced the idea of a random hash or hash function in �7.1.4. Once in a while
we might want a hash function that operates not on a single word, but on an entire array of
length M . Being perfectionists, we want every single bit in the hashed output array to depend
on every single bit in the given input array. One way to achieve this is to borrow structural
concepts from algorithms as unrelated as the Data Encryption Standard (DES) and the Fast
Fourier Transform (FFT)!

DES, like its progenitor cryptographic system LUCIFER, is a so-called “block product
cipher” [1]. It acts on 64 bits of input by iteratively applying (16 times, in fact) a kind of highly
nonlinear bit-mixing function. Figure 7.2.1 shows the flow of information in DES during this
mixing. The function g, which takes 32 bits into 32 bits, is called the “cipher function.” Meyer
and Matyas [1] discuss the importance of the cipher function being nonlinear, as well as other
design criteria.

DES constructs its cipher function g from an intricate set of bit permutations and table
lookups acting on short sequences of consecutive bits. For our purposes, a different function g
that can be rapidly computed in a high-level computer language is preferable. Such a function
probably weakens the algorithm cryptographically. Our purposes are not, however, crypto-
graphic: We want to find the fastest g, and the smallest number of iterations of the mixing
procedure in Figure 7.2.1, such that our output random sequence passes the tests that are cus-
tomarily applied to random number generators. The resulting algorithm is not DES, but rather
a kind of “pseudo-DES,” better suited to the purpose at hand.



�

�

“nr3” — 2007/5/1 — 20:53 — page 359 — #381
�

�

� �

7.2 Completely Hashing a Large Array 359

32-bit XOR

right 32-bit wordleft 32-bit word

right 32-bit wordleft 32-bit word

g

32-bit XOR

right 32-bit wordleft 32-bit word

g

Figure 7.2.1. The Data Encryption Standard (DES) iterates a nonlinear function g on two 32-bit words,
in the manner shown here (after Meyer and Matyas [1]).

Following the criterion mentioned above, that g should be nonlinear, we must give the
integer multiply operation a prominent place in g. Confining ourselves to multiplying 16-
bit operands into a 32-bit result, the general idea of g is to calculate the three distinct 32-
bit products of the high and low 16-bit input half-words, and then to combine these, and
perhaps additional fixed constants, by fast operations (e.g., add or exclusive-or) into a single
32-bit result.

There are only a limited number of ways of effecting this general scheme, allowing
systematic exploration of the alternatives. Experimentation and tests of the randomness of
the output lead to the sequence of operations shown in Figure 7.2.2. The few new elements
in the figure need explanation: The values C1 and C2 are fixed constants, chosen randomly
with the constraint that they have exactly 16 1-bits and 16 0-bits; combining these constants
via exclusive-or ensures that the overall g has no bias toward 0- or 1-bits. The “reverse half-
words” operation in Figure 7.2.2 turns out to be essential; otherwise, the very lowest and very
highest bits are not properly mixed by the three multiplications.

It remains to specify the smallest number of iterations Nit that we can get away with.
For purposes of this section, we recommend Nit D 2. We have not found any statistical devi-
ation from randomness in sequences of up to 109 random deviates derived from this scheme.
However, we include C1 and C2 constants for Nit 
 4.

void psdes(Uint &lword, Uint &rword) { hashall.h
Pseudo-DES hashing of the 64-bit word (lword,rword). Both 32-bit arguments are returned
hashed on all bits.

const int NITER=2;
static const Uint c1[4]={

0xbaa96887L, 0x1e17d32cL, 0x03bcdc3cL, 0x0f33d1b2L};
static const Uint c2[4]={

0x4b0f3b58L, 0xe874f0c3L, 0x6955c5a6L, 0x55a7ca46L};
Uint i,ia,ib,iswap,itmph=0,itmpl=0;
for (i=0;i<NITER;i++) {
Perform niter iterations of DES logic, using a simpler (noncryptographic) nonlinear func-
tion instead of DES’s.

ia = (iswap=rword) ^ c1[i]; The bit-rich constants c1 and (below)
c2 guarantee lots of nonlinear mix-
ing.

itmpl = ia & 0xffff;
itmph = ia >> 16;
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Figure 7.2.2. The nonlinear function g used by the routine psdes.

ib=itmpl*itmpl+ ~(itmph*itmph);
rword = lword ^ (((ia = (ib >> 16) |

((ib & 0xffff) << 16)) ^ c2[i])+itmpl*itmph);
lword = iswap;

}
}

Thus far, this doesn’t seem to have much to do with completely hashing a large array.
However, psdes gives us a building block, a routine for mutually hashing two arbitrary 32-bit
integers. We now turn to the FFT concept of the butterfly to extend the hash to a whole array.

The butterfly is a particular algorithmic construct that applies to an array of length N ,
a power of 2. It brings every element into mutual communication with every other element
in about N log2N operations. A useful metaphor is to imagine that one array element has a
disease that infects any other element with which it has contact. Then the butterfly has two
properties of interest here: (i) After its log2N stages, everyone has the disease. Furthermore,
(ii) after j stages, 2j elements are infected; there is never an “eye of the needle” or “necking
down” of the communication path.

The butterfly is very simple to describe: In the first stage, every element in the first half
of the array mutually communicates with its corresponding element in the second half of the
array. Now recursively do this same thing to each of the halves, and so on. We can see by
induction that every element now has a communication path to every other one: Obviously it
works when N D 2. And if it works for N , it must also work for 2N , because the first step
gives every element a communication path into both its own and the other half of the array,
after which it has, by assumption, a path everywhere.

We need to modify the butterfly slightly, so that our array size M does not have to be a
power of 2. Let N be the next larger power of 2. We do the butterfly on the (virtual) size N ,
ignoring any communication with nonexistent elements larger thanM . This, by itself, doesn’t
do the job, because the later elements in the firstN=2were not able to “infect” the secondN=2
(and similarly at later recursive levels). However, if we do one extra communication between
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elements of the first N=2 and second N=2 at the very end, then all missing communication
paths are restored by traveling through the first N=2 elements.

The third line in the following code is an idiom that sets n to the next larger power of 2
greater or equal to m, a miniature masterpiece due to S.E. Anderson [2]. If you look closely,
you’ll see that it is itself a sort of butterfly, but now on bits!

void hashall(VecUint &arr) { hashall.h
Replace the array arr by a same-sized hash, all of whose bits depend on all of the bits in arr.
Uses psdes for the mutual hash of two 32-bit words.

Int m=arr.size(), n=m-1;
n|=n>>1; n|=n>>2; n|=n>>4; n|=n>>8; n|=n>>16; n++;
Incredibly, n is now the next power of 2 
 m.
Int nb=n,nb2=n>>1,j,jb;
if (n<2) throw("size must be > 1");
while (nb > 1) {

for (jb=0;jb<n-nb+1;jb+=nb)
for (j=0;j<nb2;j++)

if (jb+j+nb2 < m) psdes(arr[jb+j],arr[jb+j+nb2]);
nb = nb2;
nb2 >>= 1;

}
nb2 = n>>1;
if (m != n) for (j=nb2;j<m;j++) psdes(arr[j],arr[j-nb2]);
Final mix needed only if m is not a power of 2.

}

CITED REFERENCES AND FURTHER READING:

Meyer, C.H. and Matyas, S.M. 1982, Cryptography: A New Dimension in Computer Data Security
(New York: Wiley).[1]

Zonst, A.E. 2000, Understanding the FFT, 2nd revised ed. (Titusville, FL: Citrus Press).

Anderson, S.E. 2005, “Bit Twiddling Hacks,” 2007+ at http://graphics.stanford.edu/
~seander/bithacks.html .[2]

Data Encryption Standard, 1977 January 15, Federal Information Processing Standards Publi-
cation, number 46 (Washington: U.S. Department of Commerce, National Bureau of Stan-
dards).

Guidelines for Implementing and Using the NBS Data Encryption Standard, 1981 April 1, Federal
Information Processing Standards Publication, number 74 (Washington: U.S. Department
of Commerce, National Bureau of Standards).

7.3 Deviates from Other Distributions
In �7.1 we learned how to generate random deviates with a uniform probability

between 0 and 1, denoted U.0; 1/. The probability of generating a number between
x and x C dx is

p.x/dx D

(
dx 0 
 x < 1

0 otherwise
(7.3.1)

and we write
x � U.0; 1/ (7.3.2)

As in �6.14, the symbol � can be read as “is drawn from the distribution.”
In this section, we learn how to generate random deviates drawn from other

probability distributions, including all of those discussed in �6.14. Discussion of
specific distributions is interleaved with the discussion of the general methods used.
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7.3.1 Exponential Deviates
Suppose that we generate a uniform deviate x and then take some prescribed

function of it, y.x/. The probability distribution of y, denoted p.y/dy, is determined
by the fundamental transformation law of probabilities, which is simply

jp.y/dyj D jp.x/dxj (7.3.3)

or

p.y/ D p.x/

ˇ̌̌̌
dx

dy

ˇ̌̌̌
(7.3.4)

As an example, take
y.x/ D � ln.x/ (7.3.5)

with x � U.0; 1/. Then

p.y/dy D

ˇ̌̌̌
dx

dy

ˇ̌̌̌
dy D e�ydy (7.3.6)

which is the exponential distribution with unit mean, Exponential .1/, discussed in
�6.14.5. This distribution occurs frequently in real life, usually as the distribution
of waiting times between independent Poisson-random events, for example the ra-
dioactive decay of nuclei. You can also easily see (from 7.3.6) that the quantity y=ˇ
has the probability distribution ˇe�ˇy , so

y=ˇ � Exponential .ˇ/ (7.3.7)

We can thus generate exponential deviates at a cost of about one uniform devi-
ate, plus a logarithm, per call.

struct Expondev : Ran {deviates.h
Structure for exponential deviates.

Doub beta;
Expondev(Doub bbeta, Ullong i) : Ran(i), beta(bbeta) {}
Constructor arguments are ˇ and a random sequence seed.
Doub dev() {
Return an exponential deviate.

Doub u;
do u = doub(); while (u == 0.);
return -log(u)/beta;

}
};

Our convention here and in the rest of this section is to derive the class for each
kind of deviate from the uniform generator class Ran. We use the constructor to
set the distribution’s parameters and set the initial seed for the generator. We then
provide a method dev() that returns a random deviate from the distribution.

7.3.2 Transformation Method in General
Let’s see what is involved in using the above transformation method to generate

some arbitrary desired distribution of y’s, say one with p.y/ D f .y/ for some
positive function f whose integral is 1. According to (7.3.4), we need to solve the
differential equation
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uniform
deviate in

0

1

y

x

F(y) =  0 p(y)dy
y

p(y)

⌠
⌡

transformed
deviate out

Figure 7.3.1. Transformation method for generating a random deviate y from a known probability dis-
tribution p.y/. The indefinite integral of p.y/ must be known and invertible. A uniform deviate x is
chosen between 0 and 1. Its corresponding y on the definite-integral curve is the desired deviate.

dx

dy
D f .y/ (7.3.8)

But the solution of this is just x D F.y/, where F.y/ is the indefinite integral of
f .y/. The desired transformation that takes a uniform deviate into one distributed as
f .y/ is therefore

y.x/ D F �1.x/ (7.3.9)

where F �1 is the inverse function to F . Whether (7.3.9) is feasible to implement
depends on whether the inverse function of the integral of f(y) is itself feasible to
compute, either analytically or numerically. Sometimes it is, and sometimes it isn’t.

Incidentally, (7.3.9) has an immediate geometric interpretation: Since F.y/ is
the area under the probability curve to the left of y, (7.3.9) is just the prescription:
Choose a uniform random x, then find the value y that has that fraction x of proba-
bility area to its left, and return the value y. (See Figure 7.3.1.)

7.3.3 Logistic Deviates

Deviates from the logistic distribution, as discussed in �6.14.4, are readily gen-
erated by the transformation method, using equation (6.14.15). The cost is again
dominated by one uniform deviate, and a logarithm, per logistic deviate.

struct Logisticdev : Ran { deviates.h
Structure for logistic deviates.

Doub mu,sig;
Logisticdev(Doub mmu, Doub ssig, Ullong i) : Ran(i), mu(mmu), sig(ssig) {}
Constructor arguments are �, � , and a random sequence seed.
Doub dev() {
Return a logistic deviate.

Doub u;
do u = doub(); while (u*(1.-u) == 0.);
return mu + 0.551328895421792050*sig*log(u/(1.-u));

}
};
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7.3.4 Normal Deviates by Transformation (Box-Muller)
Transformation methods generalize to more than one dimension. If x1; x2; : : :

are random deviates with a joint probability distribution p.x1; x2; : : :/dx1dx2 : : : ,
and if y1; y2; : : : are each functions of all the x’s (same number of y’s as x’s), then
the joint probability distribution of the y’s is

p.y1; y2; : : :/dy1dy2 : : : D p.x1; x2; : : :/

ˇ̌̌̌
@.x1; x2; : : :/

@.y1; y2; : : :/

ˇ̌̌̌
dy1dy2 : : : (7.3.10)

where j@. /=@. /j is the Jacobian determinant of the x’s with respect to the y’s
(or the reciprocal of the Jacobian determinant of the y’s with respect to the x’s).

An important historical example of the use of (7.3.10) is the Box-Muller method
for generating random deviates with a normal (Gaussian) distribution (�6.14.1):

p.y/dy D
1
p
2	
e�y

2=2dy (7.3.11)

Consider the transformation between two uniform deviates on (0,1), x1; x2, and two
quantities y1; y2,

y1 D
p
�2 ln x1 cos 2	x2

y2 D
p
�2 ln x1 sin 2	x2

(7.3.12)

Equivalently we can write

x1 D exp

�
�
1

2
.y21 C y

2
2/

�
x2 D

1

2	
arctan

y2

y1

(7.3.13)

Now the Jacobian determinant can readily be calculated (try it!):

@.x1; x2/

@.y1; y2/
D

ˇ̌̌̌
ˇ
@x1
@y1

@x1
@y2

@x2
@y1

@x2
@y2

ˇ̌̌̌
ˇ D �

�
1
p
2	
e�y

2
1
=2

� �
1
p
2	
e�y

2
2
=2

�
(7.3.14)

Since this is the product of a function of y2 alone and a function of y1 alone, we see
that each y is independently distributed according to the normal distribution (7.3.11).

One further trick is useful in applying (7.3.12). Suppose that, instead of picking
uniform deviates x1 and x2 in the unit square, we instead pick v1 and v2 as the
ordinate and abscissa of a random point inside the unit circle around the origin. Then
the sum of their squares, R2 � v21 C v

2
2 , is a uniform deviate, which can be used for

x1, while the angle that .v1; v2/ defines with respect to the v1-axis can serve as the
random angle 2	x2. What’s the advantage? It’s that the cosine and sine in (7.3.12)
can now be written as v1=

p
R2 and v2=

p
R2, obviating the trigonometric function

calls! (In the next section we will generalize this trick considerably.)
Code for generating normal deviates by the Box-Muller method follows. Con-

sider it for pedagogical use only, because a significantly faster method for generating
normal deviates is coming, below, in �7.3.9.
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struct Normaldev_BM : Ran { deviates.h
Structure for normal deviates.

Doub mu,sig;
Doub storedval;
Normaldev_BM(Doub mmu, Doub ssig, Ullong i)
: Ran(i), mu(mmu), sig(ssig), storedval(0.) {}
Constructor arguments are �, � , and a random sequence seed.
Doub dev() {
Return a normal deviate.

Doub v1,v2,rsq,fac;
if (storedval == 0.) { We don’t have an extra deviate handy, so

do {
v1=2.0*doub()-1.0; pick two uniform numbers in the square ex-

tending from -1 to +1 in each direction,v2=2.0*doub()-1.0;
rsq=v1*v1+v2*v2; see if they are in the unit circle,

} while (rsq >= 1.0 || rsq == 0.0); or try again.
fac=sqrt(-2.0*log(rsq)/rsq); Now make the Box-Muller transformation to

get two normal deviates. Return one and
save the other for next time.

storedval = v1*fac;
return mu + sig*v2*fac;

} else { We have an extra deviate handy,
fac = storedval;
storedval = 0.;
return mu + sig*fac; so return it.

}
}

};

7.3.5 Rayleigh Deviates
The Rayleigh distribution is defined for positive z by

p.z/dz D z exp
�
�1
2
z2


dz .z > 0/ (7.3.15)

Since the indefinite integral can be done analytically, and the result easily inverted, a
simple transformation method from a uniform deviate x results:

z D
p
�2 ln x; x � U.0; 1/ (7.3.16)

A Rayleigh deviate z can also be generated from two normal deviates y1 and
y2 by

z D

q
y21 C y

2
2 ; y1; y2 � N.0; 1/ (7.3.17)

Indeed, the relation between equations (7.3.16) and (7.3.17) is immediately evident
in the equation for the Box-Muller method, equation (7.3.12), if we square and sum
that method’s two normal deviates y1 and y2.

7.3.6 Rejection Method
The rejection method is a powerful, general technique for generating random

deviates whose distribution function p.x/dx (probability of a value occurring be-
tween x and x C dx) is known and computable. The rejection method does not re-
quire that the cumulative distribution function (indefinite integral of p.x/) be readily
computable, much less the inverse of that function — which was required for the
transformation method in the previous section.

The rejection method is based on a simple geometrical argument (Figure 7.3.2):
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Figure 7.3.2. Rejection method for generating a random deviate x from a known probability distribution
p.x/ that is everywhere less than some other function f .x/. The transformation method is first used to
generate a random deviate x of the distribution f (compare Figure 7.3.1). A second uniform deviate is
used to decide whether to accept or reject that x. If it is rejected, a new deviate of f is found, and so on.
The ratio of accepted to rejected points is the ratio of the area under p to the area between p and f .

Draw a graph of the probability distribution p.x/ that you wish to generate, so
that the area under the curve in any range of x corresponds to the desired probability
of generating an x in that range. If we had some way of choosing a random point in
two dimensions, with uniform probability in the area under your curve, then the x
value of that random point would have the desired distribution.

Now, on the same graph, draw any other curve f .x/ that has finite (not infinite)
area and lies everywhere above your original probability distribution. (This is always
possible, because your original curve encloses only unit area, by definition of prob-
ability.) We will call this f .x/ the comparison function. Imagine now that you have
some way of choosing a random point in two dimensions that is uniform in the area
under the comparison function. Whenever that point lies outside the area under the
original probability distribution, we will reject it and choose another random point.
Whenever it lies inside the area under the original probability distribution, we will
accept it.

It should be obvious that the accepted points are uniform in the accepted area,
so that their x values have the desired distribution. It should also be obvious that
the fraction of points rejected just depends on the ratio of the area of the comparison
function to the area of the probability distribution function, not on the details of shape
of either function. For example, a comparison function whose area is less than 2 will
reject fewer than half the points, even if it approximates the probability function very
badly at some values of x, e.g., remains finite in some region where p.x/ is zero.

It remains only to suggest how to choose a uniform random point in two dimen-
sions under the comparison function f .x/. A variant of the transformation method
(�7.3) does nicely: Be sure to have chosen a comparison function whose indefinite
integral is known analytically, and is also analytically invertible to give x as a func-
tion of “area under the comparison function to the left of x.” Now pick a uniform
deviate between 0 and A, where A is the total area under f .x/, and use it to get a
corresponding x. Then pick a uniform deviate between 0 and f .x/ as the y value
for the two-dimensional point. Finally, accept or reject according to whether it is
respectively less than or greater than p.x/.

So, to summarize, the rejection method for some given p.x/ requires that one
find, once and for all, some reasonably good comparison function f .x/. Thereafter,
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each deviate generated requires two uniform random deviates, one evaluation of f
(to get the coordinate y) and one evaluation of p (to decide whether to accept or
reject the point x; y). Figure 7.3.1 illustrates the whole process. Then, of course,
this process may need to be repeated, on the average, A times before the final deviate
is obtained.

7.3.7 Cauchy Deviates
The “further trick” described following equation (7.3.14) in the context of the

Box-Muller method is now seen to be a rejection method for getting trigonometric
functions of a uniformly random angle. If we combine this with the explicit formula,
equation (6.14.6), for the inverse cdf of the Cauchy distribution (see �6.14.2), we can
generate Cauchy deviates quite efficiently.

struct Cauchydev : Ran { deviates.h
Structure for Cauchy deviates.

Doub mu,sig;
Cauchydev(Doub mmu, Doub ssig, Ullong i) : Ran(i), mu(mmu), sig(ssig) {}
Constructor arguments are �, � , and a random sequence seed.
Doub dev() {
Return a Cauchy deviate.

Doub v1,v2;
do { Find a random point in the unit semicircle.

v1=2.0*doub()-1.0;
v2=doub();

} while (SQR(v1)+SQR(v2) >= 1. || v2 == 0.);
return mu + sig*v1/v2; Ratio of its coordinates is the tangent of a

random angle.}
};

7.3.8 Ratio-of-Uniforms Method
In finding Cauchy deviates, we took the ratio of two uniform deviates chosen

to lie within the unit circle. If we generalize to shapes other than the unit circle, and
combine it with the principle of the rejection method, a powerful variant emerges.
Kinderman and Monahan [1] showed that deviates of virtually any probability distri-
bution p.x/ can be generated by the following rather amazing prescription:

� Construct the region in the .u; v/ plane bounded by 0 
 u 
 Œp.v=u/�1=2.
� Choose two deviates, u and v, that lie uniformly in this region.
� Return v=u as the deviate.

Proof: We can represent the ordinary rejection method by the equation in the
.x; p/ plane,

p.x/dx D

Z p0Dp.x/

p0D0

dp0dx (7.3.18)

Since the integrand is 1, we are justified in sampling uniformly in .x; p0/ as long as
p0 is within the limits of the integral (that is, 0 < p0 < p.x/). Now make the change
of variable

v

u
D x

u2 D p

(7.3.19)
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Figure 7.3.3. Ratio-of-uniforms method. The interior of this teardrop shape is the acceptance region for
the normal distribution: If a random point is chosen inside this region, then the ratio v=u will be a normal
deviate.

Then equation (7.3.18) becomes

p.x/dx D

Z p0Dp.x/

p0D0

dp0dx D

Z uD
p
p.x/

uD0

@.p; x/

@.u; v/
du dv D 2

Z uD
p
p.v=u/

uD0

du dv

(7.3.20)
because (as you can work out) the Jacobian determinant is the constant 2. Since the
new integrand is constant, uniform sampling in .u; v/ with the limits indicated for u
is equivalent to the rejection method in .x; p/.

The above limits on u very often define a region that is “teardrop” shaped. To
see why, note that the locii of constant x D v=u are radial lines. Along each radial,
the acceptance region goes from the origin to a point where u2 D p.x/. Since most
probability distributions go to zero for both large and small x, the acceptance region
accordingly shrinks toward the origin along radials, producing a teardrop. Of course,
it is the exact shape of this teardrop that matters. Figure 7.3.3 shows the shape of the
acceptance region for the case of the normal distribution.

Typically this ratio-of-uniforms method is used when the desired region can
be closely bounded by a rectangle, parallelogram, or some other shape that is easy
to sample uniformly. Then, we go from sampling the easy shape to sampling the
desired region by rejection of points outside the desired region.

An important adjunct to the ratio-of-uniforms method is the idea of a squeeze. A
squeeze is any easy-to-compute shape that tightly bounds the region of acceptance of
a rejection method, either from the inside or from the outside. Best of all is when you
have squeezes on both sides. Then you can immediately reject points that are outside
the outer squeeze and immediately accept points that are inside the inner squeeze.
Only when you have the bad luck of drawing a point between the two squeezes do
you actually have to do the more lengthy computation of comparing with the actual
rejection boundary. Squeezes are useful both in the ordinary rejection method and in
the ratio-of-uniforms method.

7.3.9 Normal Deviates by Ratio-of-Uniforms
Leva [2] has given an algorithm for normal deviates that uses the ratio-of-uni-

forms method with great success. He uses quadratic curves to provide both inner
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and outer squeezes that hug the desired region in the .u; v/ plane (Figure 7.3.3).
Only about 1% of the time is it necessary to calculate an exact boundary (requiring
a logarithm).

The resulting code looks so simple and “un-transcendental” that it may be hard
to believe that exact normal deviates are generated. But they are!

struct Normaldev : Ran { deviates.h
Structure for normal deviates.

Doub mu,sig;
Normaldev(Doub mmu, Doub ssig, Ullong i)
: Ran(i), mu(mmu), sig(ssig){}
Constructor arguments are �, � , and a random sequence seed.
Doub dev() {
Return a normal deviate.

Doub u,v,x,y,q;
do {

u = doub();
v = 1.7156*(doub()-0.5);
x = u - 0.449871;
y = abs(v) + 0.386595;
q = SQR(x) + y*(0.19600*y-0.25472*x);

} while (q > 0.27597
&& (q > 0.27846 || SQR(v) > -4.*log(u)*SQR(u)));

return mu + sig*v/u;
}

};

Note that the while clause makes use of C’s (and C++’s) guarantee that logical
expressions are evaluated conditionally: If the first operand is sufficient to determine
the outcome, the second is not evaluated at all. With these rules, the logarithm is
evaluated only when q is between 0:27597 and 0:27846.

On average, each normal deviate uses 2.74 uniform deviates. By the way, even
though the various constants are given only to six digits, the method is exact (to
full double precision). Small perturbations of the bounding curves are of no conse-
quence. The accuracy is implicit in the (rare) evaluations of the exact boundary.

7.3.10 Gamma Deviates
The distribution Gamma.˛; ˇ/ was described in �6.14.9. The ˇ parameter en-

ters only as a scaling,

Gamma.˛; ˇ/ Š
1

ˇ
Gamma.˛; 1/ (7.3.21)

(Translation: To generate a Gamma.˛; ˇ/ deviate, generate a Gamma.˛; 1/ deviate
and divide it by ˇ.)

If ˛ is a small positive integer, a fast way to generate x � Gamma.˛; 1/ is to
use the fact that it is distributed as the waiting time to the ˛th event in a Poisson
random process of unit mean. Since the time between two consecutive events is just
the exponential distribution Exponential .1/, you can simply add up ˛ exponentially
distributed waiting times, i.e., logarithms of uniform deviates. Even better, since the
sum of logarithms is the logarithm of the product, you really only have to compute
the product of a uniform deviates and then take the log. Because this is such a special
case, however, we don’t include it in the code below.
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When ˛ < 1, the gamma distribution’s density function is not bounded, which
is inconvenient. However, it turns out [4] that if

y � Gamma.˛ C 1; 1/; u � Uniform.0; 1/ (7.3.22)

then
yu1=˛ � Gamma.˛; 1/ (7.3.23)

We will use this in the code below.
For ˛ > 1, Marsaglia and Tsang [5] give an elegant rejection method based on

a simple transformation of the gamma distribution combined with a squeeze. After
transformation, the gamma distribution can be bounded by a Gaussian curve whose
area is never more than 5% greater than that of the gamma curve. The cost of a
gamma deviate is thus only a little more than the cost of the normal deviate that
is used to sample the comparison function. The following code gives the precise
formulation; see the original paper for a full explanation.

struct Gammadev : Normaldev {deviates.h
Structure for gamma deviates.

Doub alph, oalph, bet;
Doub a1,a2;
Gammadev(Doub aalph, Doub bbet, Ullong i)
: Normaldev(0.,1.,i), alph(aalph), oalph(aalph), bet(bbet) {
Constructor arguments are ˛, ˇ , and a random sequence seed.

if (alph <= 0.) throw("bad alph in Gammadev");
if (alph < 1.) alph += 1.;
a1 = alph-1./3.;
a2 = 1./sqrt(9.*a1);

}
Doub dev() {
Return a gamma deviate by the method of Marsaglia and Tsang.

Doub u,v,x;
do {

do {
x = Normaldev::dev();
v = 1. + a2*x;

} while (v <= 0.);
v = v*v*v;
u = doub();

} while (u > 1. - 0.331*SQR(SQR(x)) &&
log(u) > 0.5*SQR(x) + a1*(1.-v+log(v))); Rarely evaluated.

if (alph == oalph) return a1*v/bet;
else { Case where ˛ < 1, per Ripley.

do u=doub(); while (u == 0.);
return pow(u,1./oalph)*a1*v/bet;

}
}

};

There exists a sum rule for gamma deviates. If we have a set of independent
deviates yi with possibly different ˛i ’s, but sharing a common value of ˇ,

yi � Gamma.˛i ; ˇ/ (7.3.24)

then their sum is also a gamma deviate,

y �
X
i

yi � Gamma.˛T ; ˇ/; ˛T D
X
i

˛i (7.3.25)
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If the ˛i ’s are integers, you can see how this relates to the discussion of Poisson
waiting times above.

7.3.11 Distributions Easily Generated by Other Deviates
From normal, gamma and uniform deviates, we get a bunch of other distribu-

tions for free. Important: When you are going to combine their results, be sure that
all distinct instances of Normaldist, Gammadist, and Ran have different random
seeds! (Ran and its derived classes are sufficiently robust that seeds i; i C 1; : : :

are fine.)
Chi-Square Deviates (cf. �6.14.8)
This one is easy:

Chisquare.
/ Š Gamma
�

2
;
1

2

�
Š 2Gamma

�

2
; 1
�

(7.3.26)

Student-t Deviates (cf. �6.14.3)
Deviates from the Student-t distribution can be generated by a method very

similar to the Box-Muller method. The analog of equation (7.3.12) is

y D

q

.u
�2=�
1 � 1/ cos 2	u2 (7.3.27)

If u1 and u2 are independently uniform, U.0; 1/, then

y � Student.
; 0; 1/ (7.3.28)

or
�C �y � Student.
; �; �/ (7.3.29)

Unfortunately, you can’t do the Box-Muller trick of getting two deviates at a time,
because the Jacobian determinant analogous to equation (7.3.14) does not factor-
ize. You might want to use the polar method anyway, just to get cos 2	u2, but its
advantage is now not so large.

An alternative method uses the quotients of normal and gamma deviates. If we
have

x � N.0; 1/; y � Gamma
�

2
;
1

2

�
(7.3.30)

then
x
p

=y � Student.
; 0; 1/ (7.3.31)

Beta Deviates (cf. �6.14.11)
If

x � Gamma.˛; 1/; y � Gamma.ˇ; 1/ (7.3.32)

then
x

x C y
� Beta.˛; ˇ/ (7.3.33)

F-Distribution Deviates (cf. �6.14.10)
If

x � Beta.1
2

1;

1
2

2/ (7.3.34)

(see equation 7.3.33), then


2x


1.1 � x/
� F.
1; 
2/ (7.3.35)
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Figure 7.3.4. Rejection method as applied to an integer-valued distribution. The method is performed on
the step function shown as a dashed line, yielding a real-valued deviate. This deviate is rounded down to
the next lower integer, which is output.

7.3.12 Poisson Deviates
The Poisson distribution, Poisson.�/, previously discussed in �6.14.13, is a dis-

crete distribution, so its deviates will be integers, k. To use the methods already
discussed, it is convenient to convert the Poisson distribution into a continuous dis-
tribution by the following trick: Consider the finite probability p.k/ as being spread
out uniformly into the interval from k to kC1. This defines a continuous distribution
q�.k/dk given by

q�.k/dk D
�bkce��

bkcŠ
dk (7.3.36)

where bkc represents the largest integer 
 k. If we now use a rejection method, or
any other method, to generate a (noninteger) deviate from (7.3.36), and then take the
integer part of that deviate, it will be as if drawn from the discrete Poisson distri-
bution. (See Figure 7.3.4.) This trick is general for any integer-valued probability
distribution. Instead of the “floor” operator, one can equally well use “ceiling” or
“nearest” — anything that spreads the probability over a unit interval.

For � large enough, the distribution (7.3.36) is qualitatively bell-shaped (albeit
with a bell made out of small, square steps). In that case, the ratio-of-uniforms
method works well. It is not hard to find simple inner and outer squeezes in the .u; v/
plane of the form v2 D Q.u/, where Q.u/ is a simple polynomial in u. The only
trick is to allow a big enough gap between the squeezes to enclose the true, jagged,
boundaries for all values of �. (Look ahead to Figure 7.3.5 for a similar example.)

For intermediate values of �, the jaggedness is so large as to render squeezes
impractical, but the ratio-of-uniforms method, unadorned, still works pretty well.

For small �, we can use an idea similar to that mentioned above for the gamma
distribution in the case of integer a. When the sum of independent exponential
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deviates first exceeds �, their number (less 1) is a Poisson deviate k. Also, as ex-
plained for the gamma distribution, we can multiply uniform deviates from U.0; 1/
instead of adding deviates from Exponential .1/.

These ideas produce the following routine.

struct Poissondev : Ran { deviates.h
Structure for Poisson deviates.

Doub lambda, sqlam, loglam, lamexp, lambold;
VecDoub logfact;
Int swch;
Poissondev(Doub llambda, Ullong i) : Ran(i), lambda(llambda),

logfact(1024,-1.), lambold(-1.) {}
Constructor arguments are � and a random sequence seed.
Int dev() {
Return a Poisson deviate using the most recently set value of �.

Doub u,u2,v,v2,p,t,lfac;
Int k;
if (lambda < 5.) { Will use product of uniforms method.

if (lambda != lambold) lamexp=exp(-lambda);
k = -1;
t=1.;
do {

++k;
t *= doub();

} while (t > lamexp);
} else { Will use ratio-of-uniforms method.

if (lambda != lambold) {
sqlam = sqrt(lambda);
loglam = log(lambda);

}
for (;;) {

u = 0.64*doub();
v = -0.68 + 1.28*doub();
if (lambda > 13.5) { Outer squeeze for fast rejection.

v2 = SQR(v);
if (v >= 0.) {if (v2 > 6.5*u*(0.64-u)*(u+0.2)) continue;}
else {if (v2 > 9.6*u*(0.66-u)*(u+0.07)) continue;}

}
k = Int(floor(sqlam*(v/u)+lambda+0.5));
if (k < 0) continue;
u2 = SQR(u);
if (lambda > 13.5) { Inner squeeze for fast acceptance.

if (v >= 0.) {if (v2 < 15.2*u2*(0.61-u)*(0.8-u)) break;}
else {if (v2 < 6.76*u2*(0.62-u)*(1.4-u)) break;}

}
if (k < 1024) {

if (logfact[k] < 0.) logfact[k] = gammln(k+1.);
lfac = logfact[k];

} else lfac = gammln(k+1.);
p = sqlam*exp(-lambda + k*loglam - lfac); Only when we must.
if (u2 < p) break;

}
}
lambold = lambda;
return k;

}
Int dev(Doub llambda) {
Reset � and then return a Poisson deviate.

lambda = llambda;
return dev();

}
};
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Figure 7.3.5. Ratio-of-uniforms method as applied to the generation of binomial deviates. Points are
chosen randomly in the .u; v/-plane. The smooth curves are inner and outer squeezes. The jagged curves
correspond to various binomial distributions with n > 64 and np > 30. An evaluation of the binomial
probability is required only when the random point falls between the smooth curves.

In the regime � > 13:5, the above code uses about 3:3 uniform deviates per
output Poisson deviate and does 0:4 evaluations of the exact probability (costing an
exponential and, for large k, a call to gammln).

Poissondev is slightly faster if you draw many deviates with the same value �,
using the dev function with no arguments, than if you vary � on each call, using the
one-argument overloaded form of dev (which is provided for just that purpose). The
difference is just an extra exponential (� < 5) or square root and logarithm (� � 5).
Note also the object’s table of previously computed log-factorials. If your �’s are as
large as � 103, you might want to make the table larger.

7.3.13 Binomial Deviates

The generation of binomial deviates k � Binomial.n; p/ involves many of
the same ideas as for Poisson deviates. The distribution is again integer-valued, so
we use the same trick to convert it into a stepped continuous distribution. We can
always restrict attention to the case p 
 0:5, since the distribution’s symmetries let
us trivially recover the case p > 0:5.

When n > 64 and np > 30, we use the ratio-of-uniforms method, with squeezes
shown in Figure 7.3.5. The cost is about 3:2 uniform deviates, plus 0:4 evaluations
of the exact probability, per binomial deviate.

It would be foolish to waste much thought on the case where n > 64 and
np < 30, because it is so easy simply to tabulate the cdf, say for 0 
 k < 64, and
then loop over k’s until the right one is found. (A bisection search, implemented
below, is even better.) With a cdf table of length 64, the neglected probability at the
end of the table is never larger than� 10�20. (At 109 deviates per second, you could
run 3000 years before losing a deviate.)

What is left is the interesting case n < 64, which we will explore in some detail,
because it demonstrates the important concept of bit-parallel random comparison.

Analogous to the methods for gamma deviates with small integer a and for
Poisson deviates with small �, is this direct method for binomial deviates: Generate
n uniform deviates in U.0; 1/. Count the number of them < p. Return the count as
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k � Binomial.n; p/. Indeed this is essentially the definition of a binomial process!
The problem with the direct method is that it seems to require n uniform devi-

ates, even when the mean value of k is much smaller. Would you be surprised if we
told you that for n 
 64 you can achieve the same goal with at most seven 64-bit
uniform deviates, on average? Here is how.

Expand p < 1 into its first 5 bits, plus a residual,

p D b12
�1 C b22

�2 C 	 	 	 C b52
�5 C pr2

�5 (7.3.37)

where each bi is 0 or 1, and 0 
 pr 
 1.
Now imagine that you have generated and stored 64 uniform U.0; 1/ deviates,

and that the 64-bit word P displays just the first bit of each of the 64. Compare
each bit of P to b1. If the bits are the same, then we don’t yet know whether that
uniform deviate is less than or greater than p. But if the bits are different, then we
know that the generator is less than p (in the case that b1 D 1) or greater than p
(in the case that b1 D 0). If we keep a mask of “known” versus “unknown” cases,
we can do these comparisons in a bit-parallel manner by bitwise logical operations
(see code below to learn how). Now move on to the second bit, b2, in the same way.
At each stage we change half the remaining unknowns to knowns. After five stages
(for n D 64) there will be two remaining unknowns, on average, each of which we
finish off by generating a new uniform and comparing it to pr . (This requires a loop
through the 64 bits; but since C++ has no bitwise “popcount” operation, we are stuck
doing such a loop anyway. If you can do popcounts, you may be better off just doing
more stages until the unknowns mask is zero.)

The trick is that the bits used in the five stages are not actually the leading five
bits of 64 generators, they are just five independent 64-bit random integers. The
number five was chosen because it minimizes 64� 2�j C j , the expected number of
deviates needed.

So, the code for binomial deviates ends up with three separate methods: bit-
parallel direct, cdf lookup (by bisection), and squeezed ratio-of-uniforms.

struct Binomialdev : Ran { deviates.h
Structure for binomial deviates.

Doub pp,p,pb,expnp,np,glnp,plog,pclog,sq;
Int n,swch;
Ullong uz,uo,unfin,diff,rltp;
Int pbits[5];
Doub cdf[64];
Doub logfact[1024];
Binomialdev(Int nn, Doub ppp, Ullong i) : Ran(i), pp(ppp), n(nn) {
Constructor arguments are n, p, and a random sequence seed.

Int j;
pb = p = (pp <= 0.5 ? pp : 1.0-pp);
if (n <= 64) { Will use bit-parallel direct method.

uz=0;
uo=0xffffffffffffffffLL;
rltp = 0;
for (j=0;j<5;j++) pbits[j] = 1 & ((Int)(pb *= 2.));
pb -= floor(pb); Leading bits of p (above) and remaining

fraction.swch = 0;
} else if (n*p < 30.) { Will use precomputed cdf table.

cdf[0] = exp(n*log(1-p));
for (j=1;j<64;j++) cdf[j] = cdf[j-1] + exp(gammln(n+1.)

-gammln(j+1.)-gammln(n-j+1.)+j*log(p)+(n-j)*log(1.-p));
swch = 1;
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} else { Will use ratio-of-uniforms method.
np = n*p;
glnp=gammln(n+1.);
plog=log(p);
pclog=log(1.-p);
sq=sqrt(np*(1.-p));
if (n < 1024) for (j=0;j<=n;j++) logfact[j] = gammln(j+1.);
swch = 2;

}
}
Int dev() {
Return a binomial deviate.

Int j,k,kl,km;
Doub y,u,v,u2,v2,b;
if (swch == 0) {

unfin = uo; Mark all bits as ”unfinished.”
for (j=0;j<5;j++) { Compare with first five bits of p.

diff = unfin & (int64()^(pbits[j]? uo : uz)); Mask of diff.
if (pbits[j]) rltp |= diff; Set bits to 1, meaning ran < p.
else rltp = rltp & ~diff; Set bits to 0, meaning ran > p.
unfin = unfin & ~diff; Update unfinished status.

}
k=0; Now we just count the events.
for (j=0;j<n;j++) {

if (unfin & 1) {if (doub() < pb) ++k;} Clean up unresolved cases,
else {if (rltp & 1) ++k;} or use bit answer.
unfin >>= 1;
rltp >>= 1;

}
} else if (swch == 1) { Use stored cdf.

y = doub();
kl = -1;
k = 64;
while (k-kl>1) {

km = (kl+k)/2;
if (y < cdf[km]) k = km;
else kl = km;

}
} else { Use ratio-of-uniforms method.

for (;;) {
u = 0.645*doub();
v = -0.63 + 1.25*doub();
v2 = SQR(v);
Try squeeze for fast rejection:
if (v >= 0.) {if (v2 > 6.5*u*(0.645-u)*(u+0.2)) continue;}
else {if (v2 > 8.4*u*(0.645-u)*(u+0.1)) continue;}
k = Int(floor(sq*(v/u)+np+0.5));
if (k < 0) continue;
u2 = SQR(u);
Try squeeze for fast acceptance:
if (v >= 0.) {if (v2 < 12.25*u2*(0.615-u)*(0.92-u)) break;}
else {if (v2 < 7.84*u2*(0.615-u)*(1.2-u)) break;}
b = sq*exp(glnp+k*plog+(n-k)*pclog Only when we must.

- (n < 1024 ? logfact[k]+logfact[n-k]
: gammln(k+1.)+gammln(n-k+1.)));

if (u2 < b) break;
}

}
if (p != pp) k = n - k;
return k;

}
};
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If you are in a situation where you are drawing only one or a few deviates each
for many different values of n and/or p, you’ll need to restructure the code so that
n and p can be changed without creating a new instance of the object and without
reinitializing the underlying Ran generator.

7.3.14 When You Need Greater Speed
In particular situations you can cut some corners to gain greater speed. Here are

some suggestions.

� All of the algorithms in this section can be speeded up significantly by using
Ranq1 in �7.1 instead of Ran. We know of no reason not to do this. You can
gain some further speed by coding Ranq1’s algorithm inline, thus eliminating
the function calls.
� If you are using Poissondev or Binomialdev with large values of � or n,

then the above codes revert to calling gammln, which is slow. You can instead
increase the length of the stored tables.
� For Poisson deviates with � < 20, you may want to use a stored table of cdfs

combined with bisection to find the value of k. The code in Binomialdev
shows how to do this.
� If your need is for binomial deviates with small n, you can easily modify the

code in Binomialdev to get multiple deviates (� 64=n, in fact) from each
execution of the bit-parallel code.
� Do you need exact deviates, or would an approximation do? If your distribu-

tion of interest can be approximated by a normal distribution, consider sub-
stituting Normaldev, above, especially if you also code the uniform random
generation inline.
� If you sum exactly 12 uniform deviates U.0; 1/ and then subtract 6, you get

a pretty good approximation of a normal deviate N.0; 1/. This is definitely
slower then Normaldev (not to mention less accurate) on a general-purpose
CPU. However, there are reported to be some special-purpose signal process-
ing chips in which all the operations can be done with integer arithmetic and
in parallel.

See Gentle [3], Ripley [4], Devroye [6], Bratley [7], and Knuth [8] for many addi-
tional algorithms.

CITED REFERENCES AND FURTHER READING:
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Ratio of Uniform Deviates,” ACM Transactions on Mathematical Software, vol. 3, pp. 257–
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Leva, J.L. 1992. “A Fast Normal Random Number Generator,” ACM Transactions on Mathemat-
ical Software, vol. 18, no. 4, pp. 449-453.[2]

Gentle, J.E. 2003, Random Number Generation and Monte Carlo Methods, 2nd ed. (New York:
Springer), Chapters 4–5.[3]

Ripley, B.D. 1987, Stochastic Simulation (New York: Wiley).[4]

Marsaglia, G. and Tsang W-W. 2000, “A Simple Method for Generating Gamma Variables,” ACM
Transactions on Mathematical Software, vol. 26, no. 3, pp. 363–372.[5]

Devroye, L. 1986, Non-Uniform Random Variate Generation (New York: Springer).[6]
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Bratley, P., Fox, B.L., and Schrage, E.L. 1983, A Guide to Simulation, 2nd ed. (New York:
Springer).[7].

Knuth, D.E. 1997, Seminumerical Algorithms, 3rd ed., vol. 2 of The Art of Computer Program-
ming (Reading, MA: Addison-Wesley), pp. 125ff.[8]

7.4 Multivariate Normal Deviates

A multivariate random deviate of dimension M is a point in M -dimensional
space. Its coordinates are a vector, each of whose M components are random —
but not, in general, independently so, or identically distributed. The special case of
multivariate normal deviates is defined by the multidimensional Gaussian density
function

N.x j�;†/ D
1

.2	/M=2 det.†/1=2
expŒ�1

2
.x � �/ 	†�1 	 .x � �/� (7.4.1)

where the parameter � is a vector that is the mean of the distribution, and the param-
eter† is a symmetrical, positive-definite matrix that is the distribution’s covariance.

There is a quite general way to construct a vector deviate x with a specified
covariance † and mean �, starting with a vector y of independent random deviates
of zero mean and unit variance: First, use Cholesky decomposition (�2.9) to factor
† into a left triangular matrix L times its transpose,

† D LLT (7.4.2)

This is always possible because † is positive-definite, and you need do it only once
for each distinct † of interest. Next, whenever you want a new deviate x, fill y with
independent deviates of unit variance and then construct

x D Ly C � (7.4.3)

The proof is straightforward, with angle brackets denoting expectation values:
Since the components yi are independent with unit variance, we have

hy ˝ yi D 1 (7.4.4)

where 1 is the identity matrix. Then,

h.x � �/˝ .x � �/i D h.Ly/˝ .Ly/i

D
D
L.y ˝ y/LT

E
D L hy ˝ yiLT

D LLT D †

(7.4.5)

As general as this procedure is, it is, however, rarely useful for anything except
multivariate normal deviates. The reason is that while the components of x indeed
have the right mean and covariance structure, their detailed distribution is not any-
thing “nice.” The xi ’s are linear combinations of the yi ’s, and, in general, a linear
combination of random variables is distributed as a complicated convolution of their
individual distributions.
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For Gaussians, however, we do have “nice.” All linear combinations of normal
deviates are themselves normally distributed, and completely defined by their mean
and covariance structure. Thus, if we always fill the components of y with normal
deviates,

yi � N.0; 1/ (7.4.6)

then the deviate (7.4.3) will be distributed according to equation (7.4.1).
Implementation is straightforward, since the Cholesky structure both accom-

plishes the decomposition and provides a method for doing the matrix multiplication
efficiently, taking advantage of L’s triangular structure. The generation of normal
deviates is inline for efficiency, identical to Normaldev in �7.3.

struct Multinormaldev : Ran { multinormaldev.h
Structure for multivariate normal deviates.

Int mm;
VecDoub mean;
MatDoub var;
Cholesky chol;
VecDoub spt, pt;

Multinormaldev(Ullong j, VecDoub &mmean, MatDoub &vvar) :
Ran(j), mm(mmean.size()), mean(mmean), var(vvar), chol(var),
spt(mm), pt(mm) {
Constructor. Arguments are the random generator seed, the (vector) mean, and the (ma-
trix) covariance. Cholesky decomposition of the covariance is done here.

if (var.ncols() != mm || var.nrows() != mm) throw("bad sizes");
}

VecDoub &dev() {
Return a multivariate normal deviate.

Int i;
Doub u,v,x,y,q;
for (i=0;i<mm;i++) { Fill a vector of independent normal deviates.

do {
u = doub();
v = 1.7156*(doub()-0.5);
x = u - 0.449871;
y = abs(v) + 0.386595;
q = SQR(x) + y*(0.19600*y-0.25472*x);

} while (q > 0.27597
&& (q > 0.27846 || SQR(v) > -4.*log(u)*SQR(u)));

spt[i] = v/u;
}
chol.elmult(spt,pt); Apply equation (7.4.3).
for (i=0;i<mm;i++) {pt[i] += mean[i];}
return pt;

}

};

7.4.1 Decorrelating Multiple Random Variables
Although not directly related to the generation of random deviates, this is a

convenient place to point out how Cholesky decomposition can be used in the reverse
manner, namely to find linear combinations of correlated random variables that have
no correlation. In this application we are given a vector x whose components have a
known covariance † and mean �. Decomposing † as in equation (7.4.2), we assert
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that
y D L�1.x � �/ (7.4.7)

has uncorrelated components, each of unit variance. Proof:

hy ˝ yi D
˝
.L�1Œx � ��/˝ .L�1Œx � ��/

˛
D L�1 h.x � �/˝ .x � �/iL�1T

D L�1†L�1T D L�1LLTL�1T D 1

(7.4.8)

Be aware that this linear combination is not unique. In fact, once you have
obtained a vector y of uncorrelated components, you can perform any rotation on it
and still have uncorrelated components. In particular, if K is an orthogonal matrix,
so that

KTK D KKT D 1 (7.4.9)

then
h.Ky/˝ .Ky/i D K hy ˝ yiKT D KKT D 1 (7.4.10)

A common (though slower) alternative to Cholesky decomposition is to use the
Jacobi transformation (�11.1) to decompose † as

† D Vdiag.�2i /V
T (7.4.11)

where V is the orthogonal matrix of eigenvectors, and the �i ’s are the standard devi-
ations of the (new) uncorrelated variables. Then Vdiag.�i / plays the role of L in the
proofs above.

Section �16.1.1 discusses some further applications of Cholesky decomposition
relating to multivariate random variables.

7.5 Linear Feedback Shift Registers

A linear feedback shift register (LFSR) consists of a state vector and a certain
kind of update rule. The state vector is often the set of bits in a 32- or 64-bit word,
but it can sometimes be a set of words in an array. To qualify as an LFSR, the update
rule must generate a linear combination of the bits (or words) in the current state,
and then shift that result onto one end of the state vector. The oldest value, at the
other end of the state vector, falls off and is gone. The output of an LFSR consists of
the sequence of new bits (or words) as they are shifted in.

For single bits, “linear” means arithmetic modulo 2, which is the same as using
the logical XOR operation for C and the logical AND operation for �. It is conve-
nient, however, to write equations using the arithmetic notation. So, for an LFSR of
length n, the words in the paragraph above translate to

a01 D

� n�1X
jD1

cjaj

�
C an

a0i D ai�1; i D 2; : : : ; n

(7.5.1)
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18 17 5 4 3 2 1 0
shift left

(a)

18 17 5 4 3 2 1 0
shift left

(b)

Figure 7.5.1. Two related methods for obtaining random bits from a shift register and a primitive poly-
nomial modulo 2. (a) The contents of selected taps are combined by XOR (addition modulo 2), and the
result is shifted in from the right. This method is easiest to implement in hardware. (b) Selected bits are
modified by XOR with the leftmost bit, which is then shifted in from the right. This method is easiest to
implement in software.

Here a0 is the new state vector, derived from a by the update rule as shown. The
reason for singling out an in the first line above is that its coefficient cn must be
� 1. Otherwise, the LFSR wouldn’t be of length n, but only of length up to the last
nonzero coefficient in the cj ’s.

There is also a reason for numbering the bits (henceforth we consider only the
case of a vector of bits, not of words) starting with 1 rather than the more comfortable
0. The mathematical properties of equation (7.5.1) derive from the properties of the
polynomials over the integers modulo 2. The polynomial associated with (7.5.1) is

P.x/ D xn C cn�1x
n�1 C 	 	 	 C c2x

2 C c1x C 1 (7.5.2)

where each of the ci ’s has the value 0 or 1. So, c0, like cn, exists but is implicitly
� 1. There are several notations for describing specific polynomials like (7.5.2).
One is to simply list the values i for which ci is nonzero (by convention including cn
and c0). So the polynomial

x18 C x5 C x2 C x C 1 (7.5.3)

is abbreviated as
.18; 5; 2; 1; 0/ (7.5.4)

Another, when a value of n (here 18), and cn D c0 D 1, is assumed, is to construct a
“serial number” from the binary word cn�1cn�1 	 	 	 c2c1 (by convention now exclud-
ing cn and c0). For (7.5.3) this would be 19, that is, 24 C 21 C 20. The nonzero ci ’s
are often referred to as an LFSR’s taps.

Figure 7.5.1(a) illustrates how the polynomial (7.5.3) and (7.5.4) looks as an
update process on a register of 18 bits. Bit 0 is the temporary where a bit that is to
become the new bit 1 is computed.

The maximum period of an LFSR of n bits, before its output starts repeating, is
2n � 1. This is because the maximum number of distinct states is 2n, but the special
vector with all bits zero simply repeats itself with period 1. If you pick a random
polynomial P.x/, then the generator you construct will usually not be full-period. A
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fraction of polynomials over the integers modulo 2 are irreducible, meaning that they
can’t be factored. A fraction of the irreducible polynomials are primitive, meaning
that they generate maximum period LFSRs. For example, the polynomial x2 C 1 D
.x C 1/.x C 1/ is not irreducible, so it is not primitive. (Remember to do arithmetic
on the coefficients mod 2.) The polynomial x4 C x3 C x2 C x C 1 is irreducible,
but it turns out not to be primitive. The polynomial x4 C x C 1 is both irreducible
and primitive.

Maximum period LFSRs are often used as sources of random bits in hardware
devices, because logic like that shown in Figure 7.5.1(a) requires only a few gates
and can be made to run extremely fast. There is not much of a niche for LFSRs
in software applications, because implementing equation (7.5.1) in code requires at
least two full-word logical operations for each nonzero ci , and all this work produces
a meager one bit of output. We call this “Method I.” A better software approach,
“Method II,” is not obviously an LFSR at all, but it turns out to be mathematically
equivalent to one. It is shown in Figure 7.5.1(b). In code, this is implemented from
a primitive polynomial as follows:

Let maskp and maskn be two bit masks,

maskp � .0 	 	 	 0 cn�1 cn�2 	 	 	 c2 c1/

maskn � .0 	 	 	 1 0 0 	 	 	 0 0/
(7.5.5)

Then, a word a is updated by

if (a & maskn) a = ((a ^ maskp) << 1) | 1;

else a <<= 1;
(7.5.6)

You should work through the above prescription to see that it is identical to what
is shown in the figure. The output of this update (still only one bit) can be taken as
(a & maskn), or for that matter any fixed bit in a.

LFSRs (either Method I or Method II) are sometimes used to get random m-bit
words by concatenating the output bits fromm consecutive updates (or, equivalently
for Method I, grabbing the low-order m bits of state after every m updates). This is
generally a bad idea, because the resulting words usually fail some standard statisti-
cal tests for randomness. It is especially a bad idea if m and 2n � 1 are not relatively
prime, in which case the method does not even give all m-bit words uniformly.

Next, we’ll develop a bit of theory to see the relation between Method I and
Method II, and this will lead us to a routine for testing whether any given polynomial
(expressed as a bit string of ci ’s) is primitive. But, for now, if you only need a table
of some primitive polynomials go get going, one is provided on the next page.

Since the update rule (7.5.1) is linear, it can be written as a matrix M that multiplies
from the left a column vector of bits a to produce an updated state a0. (Note that the low-order
bits of a start at the top of the column vector.) One can readily read off

M D

26666664

c1 c2 : : : cn�2 cn�1 1
1 0 : : : 0 0 0
0 1 : : : 0 0 0
:::

:::
:::

:::
:::

0 0 : : : 1 0 0
0 0 : : : 0 1 0

37777775 (7.5.7)
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Some Primitive Polynomials Modulo 2 (after Watson [1])

.1; 0/ .51; 6; 3; 1; 0/

.2; 1; 0/ .52; 3; 0/

.3; 1; 0/ .53; 6; 2; 1; 0/

.4; 1; 0/ .54; 6; 5; 4; 3; 2; 0/

.5; 2; 0/ .55; 6; 2; 1; 0/

.6; 1; 0/ .56; 7; 4; 2; 0/

.7; 1; 0/ .57; 5; 3; 2; 0/

.8; 4; 3; 2; 0/ .58; 6; 5; 1; 0/

.9; 4; 0/ .59; 6; 5; 4; 3; 1; 0/

.10; 3; 0/ .60; 1; 0/

.11; 2; 0/ .61; 5; 2; 1; 0/

.12; 6; 4; 1; 0/ .62; 6; 5; 3; 0/

.13; 4; 3; 1; 0/ .63; 1; 0/

.14; 5; 3; 1; 0/ .64; 4; 3; 1; 0/

.15; 1; 0/ .65; 4; 3; 1; 0/

.16; 5; 3; 2; 0/ .66; 8; 6; 5; 3; 2; 0/

.17; 3; 0/ .67; 5; 2; 1; 0/

.18; 5; 2; 1; 0/ .68; 7; 5; 1; 0/

.19; 5; 2; 1; 0/ .69; 6; 5; 2; 0/

.20; 3; 0/ .70; 5; 3; 1; 0/

.21; 2; 0/ .71; 5; 3; 1; 0/

.22; 1; 0/ .72; 6; 4; 3; 2; 1; 0/

.23; 5; 0/ .73; 4; 3; 2; 0/

.24; 4; 3; 1; 0/ .74; 7; 4; 3; 0/

.25; 3; 0/ .75; 6; 3; 1; 0/

.26; 6; 2; 1; 0/ .76; 5; 4; 2; 0/

.27; 5; 2; 1; 0/ .77; 6; 5; 2; 0/

.28; 3; 0/ .78; 7; 2; 1; 0/

.29; 2; 0/ .79; 4; 3; 2; 0/

.30; 6; 4; 1; 0/ .80; 7; 5; 3; 2; 1; 0/

.31; 3; 0/ .81; 4 0/

.32; 7; 5; 3; 2; 1; 0/ .82; 8; 7; 6; 4; 1; 0/

.33; 6; 4; 1; 0/ .83; 7; 4; 2; 0/

.34; 7; 6; 5; 2; 1; 0/ .84; 8; 7; 5; 3; 1; 0/

.35; 2; 0/ .85; 8; 2; 1; 0/

.36; 6; 5; 4; 2; 1; 0/ .86; 6; 5; 2; 0/

.37; 5; 4; 3; 2; 1; 0/ .87; 7; 5; 1; 0/

.38; 6; 5; 1; 0/ .88; 8; 5; 4; 3; 1; 0/

.39; 4; 0/ .89; 6; 5; 3; 0/

.40; 5; 4 3; 0/ .90; 5; 3; 2; 0/

.41; 3; 0/ .91; 7; 6; 5; 3; 2; 0/

.42; 5; 4; 3; 2; 1; 0/ .92; 6; 5; 2; 0/

.43; 6; 4; 3; 0/ .93; 2; 0/

.44; 6; 5; 2; 0/ .94; 6; 5; 1; 0/

.45; 4; 3; 1; 0/ .95; 6; 5; 4; 2; 1; 0/

.46; 8; 5; 3; 2; 1; 0/ .96; 7; 6; 4; 3; 2; 0/

.47; 5; 0/ .97; 6; 0/

.48; 7; 5; 4; 2; 1; 0/ .98; 7; 4; 3; 2; 1; 0/

.49; 6; 5; 4; 0/ .99; 7; 5; 4; 0/

.50; 4; 3; 2; 0/ .100; 8; 7; 2; 0/
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What are the conditions on M that give a full-period generator, and thereby prove that
the polynomial with coefficients ci is primitive? Evidently we must have

M.2n�1/ D 1 (7.5.8)

where 1 is the identity matrix. This states that the period, or some multiple of it, is 2n�1. But
the only possible such multiples are integers that divide 2n � 1. To rule these out, and ensure
a full period, we need only check that

Mqk ¤ 1; qk � .2
n � 1/=fk (7.5.9)

for every prime factor fk of 2n � 1. (This is exactly the logic behind the tests of the matrix T
that we described, but did not justify, in �7.1.2.)

It may at first sight seem daunting to compute the humongous powers of M in equations
(7.5.8) and (7.5.9). But, by the method of repeated squaring of M, each such power takes
only about n (a number like 32 or 64) matrix multiplies. And, since all the arithmetic is
done modulo 2, there is no possibility of overflow! The conditions (7.5.8) and (7.5.9) are in
fact an efficient way to test a polynomial for primitiveness. The following code implements
the test. Note that you must customize the constants in the constructor for your choice of n
(called N in the code), in particular the prime factors of 2n � 1. The case n D 32 is shown.
Other than that customization, the code as written is valid for n 
 64. The input to the test
is the “serial number,” as defined above following equation (7.5.4), of the polynomial to be
tested. After declaring an instance of the Primpolytest structure, you can repeatedly call its
test()method to test multiple polynomials. To make Primpolytest entirely self-contained,
matrices are implemented as linear arrays, and the structure builds from scratch the few matrix
operations that it needs. This is inelegant, but effective.

struct Primpolytest {primpolytest.h
Test polynomials over the integers mod 2 for primitiveness.

Int N, nfactors;
VecUllong factors;
VecInt t,a,p;

Primpolytest() : N(32), nfactors(5), factors(nfactors), t(N*N),
a(N*N), p(N*N) {
Constructor. The constants are specific to 32-bit LFSRs.
Ullong factordata[5] = {3,5,17,257,65537};
for (Int i=0;i<nfactors;i++) factors[i] = factordata[i];

}

Int ispident() { Utility to test if p is the identity matrix.
Int i,j;
for (i=0; i<N; i++) for (j=0; j<N; j++) {

if (i == j) { if (p[i*N+j] != 1) return 0; }
else {if (p[i*N+j] != 0) return 0; }

}
return 1;

}

void mattimeseq(VecInt &a, VecInt &b) { Utility for a *= b on matrices a and b.
Int i,j,k,sum;
VecInt tmp(N*N);
for (i=0; i<N; i++) for (j=0; j<N; j++) {

sum = 0;
for (k=0; k<N; k++) sum += a[i*N+k] * b[k*N+j];
tmp[i*N+j] = sum & 1;

}
for (k=0; k<N*N; k++) a[k] = tmp[k];

}

void matpow(Ullong n) { Utility for matrix p = a^n by successive
squares.Int k;
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for (k=0; k<N*N; k++) p[k] = 0;
for (k=0; k<N; k++) p[k*N+k] = 1;
while (1) {

if (n & 1) mattimeseq(p,a);
n >>= 1;
if (n == 0) break;
mattimeseq(a,a);

}
}

Int test(Ullong n) {
Main test routine. Returns 1 if the polynomial with serial number n (see text) is primitive,
0 otherwise.

Int i,k,j;
Ullong pow, tnm1, nn = n;
tnm1 = ((Ullong)1 << N) - 1;
if (n > (tnm1 >> 1)) throw("not a polynomial of degree N");
for (k=0; k<N*N; k++) t[k] = 0; Construct the update matrix in t.
for (i=1; i<N; i++) t[i*N+(i-1)] = 1;
j=0;
while (nn) {

if (nn & 1) t[j] = 1;
nn >>= 1;
j++;

}
t[N-1] = 1;
for (k=0; k<N*N; k++) a[k] = t[k]; Test that t^tnm1 is the identity matrix.
matpow(tnm1);
if (ispident() != 1) return 0;
for (i=0; i<nfactors; i++) { Test that the t to the required submulti-

ple powers is not the identity matrix.pow = tnm1/factors[i];
for (k=0; k<N*N; k++) a[k] = t[k];
matpow(pow);
if (ispident() == 1) return 0;

}
return 1;

}
};

It is straightforward to generalize this method to n > 64 or to prime moduli p other than
2. If pn > 264, you’ll need a multiword binary representation of the integers pn � 1 and its
quotients with its prime factors, so that matpow can still find powers by successive squares.
Note that the computation time scales roughly as O.n4/, so n D 64 is fast, while n D 1024
would be rather a long calculation.

Some random primitive polynomials for n D 32 bits (giving their serial numbers as dec-
imal values) are 2046052277, 1186898897, 221421833, 55334070, 1225518245, 216563424,
1532859853, 1735381519, 2049267032, 1363072601, and 130420448. Some random ones
for n D 64 bits are 926773948609480634, 3195735403700392248, 4407129700254524327,
256457582706860311, 5017679982664373343, and 1723461400905116882.

Given a matrix M that satisfies equations (7.5.8) and (7.5.9), there are some related
matrices that also satisfy those relations. An example is the inverse of M, which you can
easily verify as

M�1 D

266664
0 1 0 : : : 0 0
0 0 1 : : : 0 0
:::

:::
:::

:::
:::

0 0 0 : : : 0 1
1 c1 c2 : : : cn�2 cn�1

377775 (7.5.10)

This is the update rule that backs up a state a0 to its predecessor state a. You can easily convert
(7.5.10) to a prescription analogous to equation (7.5.1) or to Figure 7.5.1(a).

Another matrix satisfying the relations that guarantee a full period is the transpose of the
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inverse (or inverse of the transpose) of M,

�
M�1

�T
D

26666664

0 0 : : : 0 0 1
1 0 : : : 0 0 c1
0 1 : : : 0 0 c2
:::

:::
:::

:::
:::

0 0 : : : 1 0 cn�2
0 0 : : : 0 1 cn�1

37777775 (7.5.11)

Surprise! This is exactly Method II, as also shown in Figure 7.5.1(b). (Work it out.)
Even more specifically, the sequence of bits output by a Method II LFSR based on a

primitive polynomial P.x/ is identical to the sequence output by a Method I LFSR that uses
the reciprocal polynomial xnP.1=x/. The proof is a bit beyond our scope, but it is essentially
because the matrix M and its transpose are both roots of the characteristic polynomial, equa-
tion (7.5.2), while the inverse matrix M�1 and its transpose are both roots of the reciprocal
polynomial. The reciprocal polynomial, as you can easily check from the definition, just swaps
the positions of nonzero coefficients end-to-end. For example, the reciprocal polynomial of
equation (7.5.3) is .18; 17; 16; 13; 1/. If a polynomial is primitive, so is its reciprocal.

Try this experiment: Run a Method II generator for a while. Then take n consecutive
bits of its output (from its highest bit, say) and put them into a Method I shift register as
initialization (low bit the most recent one). Now step the two methods together, using the
reciprocal polynomial in the Method I. You’ll get identical output from the two generators.
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Tausworthe, R.C. 1965, “Random Numbers Generated by Linear Recurrence Modulo Two,”
Mathematics of Computation, vol. 19, pp. 201–209.

Watson, E.J. 1962, “Primitive Polynomials (Mod 2),” Mathematics of Computation, vol. 16, pp. 368–
369.[1]

7.6 Hash Tables and Hash Memories

It’s a strange dream. You’re in a kind of mailroom whose walls are lined with
numbered pigeonhole boxes. A man, Mr. Hacher, sits at a table. You are standing.
There is an in-basket mounted on the wall. Your job is to take letters from the in-
basket and sort them into the pigeonholes.

But how? The letters are addressed by name, while the pigeonholes are only
numbered. That is where Mr. Hacher comes in. You show him each letter, and he
immediately tells you its pigeonhole number. He always gives the same number for
the same name, while different names always get different numbers (and therefore
unique pigeonholes).

Over time, as the number of addressees grows, there are fewer and fewer empty
boxes until, finally, none at all. This is not a problem as long as letters arrive only
for existing boxholders. But one day, you spot a new name on an envelope. With
trepidation you put it in front of Mr. Hacher : : : and you wake up!
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Mr. Hacher and his table are a hash table. A hash table behaves as if it keeps
a running ledger of all the hash keys (the addressee names) that it has ever seen,
assigns a unique number to each, and is able to look through all the names for every
new query, either returning the same number as before (for a repeat key) or, for a
new key, assigning a new one. There is usually also an option to erase a key.

The goal in implementing a hash table is to make all these functions take only a
few computer operations each, not even O.logN/. That is quite a trick, if you think
about it. Even if you somehow maintain an ordered or alphabetized list of keys, it
will still take O.logN/ operations to find a place in the list, by bisection, say. The
big idea behind hash tables is the use of random number techniques (�7.1) to map
a hash key to a pseudo-random integer between 0 and N � 1, where N is the total
number of pigeonholes. Here we definitely want pseudo-random and not random
integers, because the same key must produce the same integer each time.

In first approximation, ideally much of the time, that initial pseudo-random in-
teger, called the output of the hash function, or (for short) the key’s hash, is what the
hash table puts out, i.e., the number given out by Mr. Hacher. However, it is possi-
ble that, by chance, two keys have the same hash; in fact this becomes increasingly
probable as the number of distinct keys approaches N , and a certainty when N is
exceeded (the pigeonhole principle). The implementation of a hash table therefore
requires a collision strategy that ensures that unique integers are returned, even for
(different) keys that have the same hash.

Many vendors’ implementations of the C++’s Standard Template Library (STL)
provide a hash table as the class hash_map. Unfortunately, at this writing, hash_map
is not a part of the actual STL standard, and the quality of vendor implementations
is also quite variable. We therefore here implement our own; thereby we can both
learn more about the principles involved and build in some specific features that will
be useful later in this book (for example �21.8 and �21.6).

7.6.1 Hash Function Object
By a hash function object we mean a structure that combines a hashing algo-

rithm (as in �7.1) with the “glue” needed to make a hash table. The object should
map an arbitrary key type keyT, which itself may be a structure containing multiple
data values, into (for our implementation) a pseudo-random 64-bit integer. All the
hash function object really needs to know about keyT is its length in bytes, that is,
sizeof(keyT), since it doesn’t care how those bytes are used, only that they are
part of the key to be hashed. We therefore give the hash function object a constructor
that tells it how many bytes to hash; and we let it access a key by a void pointer to
the key’s address. Thus the object can access those bytes any way it wants.

As a first example of a hash function object, let’s just put a wrapper around the
hash function algorithm of �7.1.4. This is quite efficient when sizeof(keyT) D 4

or 8.

struct Hashfn1 { hash.h
Example of an object encapsulating a hash function for use by the class Hashmap.

Ranhash hasher; The actual hash function.
Int n; Size of key in bytes.
Hashfn1(Int nn) : n(nn) {} Constructor just saves key size.
Ullong fn(const void *key) { Function that returns hash from key.

Uint *k;
Ullong *kk;
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switch (n) {
case 4:

k = (Uint *)key;
return hasher.int64(*k); Return 64-bit hash of 32-bit key.

case 8:
kk = (Ullong *)key;\
return hasher.int64(*kk); Return 64-bit hash of 64-bit key.

default:
throw("Hashfn1 is for 4 or 8 byte keys only.");

}
}

};

(Since n is constant for the life of the object, it’s a bit inefficient to be testing it on
every call; you should edit out the unnecessary code when you know n in advance.)

More generally, a hash function object can be designed to work on arbitrary
sized keys by incorporating them into a final hash value a byte at a time. There is
a trade-off between speed and degree-of-randomness. Historically, hash functions
have favored speed, with simple incorporation rules like

h0 D some fixed constant

hi D .m hi�1 op ki / mod 232 .i D 1 : : : K/
(7.6.1)

Here ki is the i th byte of the key (1 
 i 
 K), m is a multiplier with popular values
that include 33, 63689, and 216C 26� 1 (doing the multiplication by shifts and adds
in the first and third cases), and “op” is either addition or bitwise XOR. You get the
mod function for free when you use 32-bit unsigned integer arithmetic. However,
since 64-bit arithmetic is fast on modern machines, we think that the days of small
multipliers, or many operations changing only a few bits at a time, are over. We favor
hash functions that can pass good tests for randomness. (When you know a lot about
your keys, it is possible to design hash functions that are even better than random,
but that is beyond our scope here.)

A hash function object may also do some initialization (of tables, etc.) when it
is created. Unlike a random number generator, however, it may not store any history-
dependent state between calls, because it must return the same hash for the same key
every time. Here is an example of a self-contained hash function object for keys of
any length. This is the hash function object that we will use below.

struct Hashfn2 {hash.h
Another example of an object encapsulating a hash function, allowing arbitrary fixed key sizes
or variable-length null terminated strings. The hash function algorithm is self-contained.

static Ullong hashfn_tab[256];
Ullong h;
Int n; Size of key in bytes, when fixed size.
Hashfn2(Int nn) : n(nn) {

if (n == 1) n = 0; Null terminated string key signaled by n D 0
or 1.h = 0x544B2FBACAAF1684LL;

for (Int j=0; j<256; j++) { Length 256 lookup table is initialized with
values from a 64-bit Marsaglia generator
stepped 31 times between each.

for (Int i=0; i<31; i++) {
h = (h >> 7) ^ h;
h = (h << 11) ^ h;
h = (h >> 10) ^ h;

}
hashfn_tab[j] = h;

}
}
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Ullong fn(const void *key) { Function that returns hash from key.
Int j;
char *k = (char *)key; Cast the key pointer to char pointer.
h=0xBB40E64DA205B064LL;
j=0;
while (n ? j++ < n : *k) { Fixed length or else until null.

h = (h * 7664345821815920749LL) ^ hashfn_tab[(unsigned char)(*k)];
k++;

}
return h;

}
};
Ullong Hashfn2::hashfn_tab[256]; Defines storage for the lookup table.

The method used is basically equation (7.6.1), but (i) with a large constant that
is known to be a good multiplier for a linear congruential random number generator
mod 264, and, more importantly, (ii) a table lookup that substitutes a random (but
fixed) 64-bit value for every byte value in 0 : : : 255. Note also the tweak that allows
Hashfn2 to be used either for fixed length key types (call constructor with n > 1) or
with null terminated byte arrays of variable length (call constructor with n D 0 or 1).

7.6.2 Hash Table
By hash table we mean an object with the functionality of Mr. Hacher (and his

table) in the dream, namely to turn arbitrary keys into unique integers in a specified
range. Let’s dive right in. In outline, the Hashtable object is

template<class keyT, class hfnT> struct Hashtable { hash.h
Instantiate a hash table, with methods for maintaining a one-to-one correspondence between
arbitrary keys and unique integers in a specified range.

Int nhash, nmax, nn, ng;
VecInt htable, next, garbg;
VecUllong thehash;
hfnT hash; An instance of a hash function object.
Hashtable(Int nh, Int nv);
Constructor. Arguments are size of hash table and max number of stored elements (keys).

Int iget(const keyT &key); Return integer for a previously set key.
Int iset(const keyT &key); Return unique integer for a new key.
Int ierase(const keyT &key); Erase a key.
Int ireserve(); Reserve an integer (with no key).
Int irelinquish(Int k); Un-reserve an integer.

};

template<class keyT, class hfnT>
Hashtable<keyT,hfnT>::Hashtable(Int nh, Int nv):
Constructor. Set nhash, the size of the hash table, and nmax, the maximum number of elements
(keys) that can be accommodated. Allocate arrays appropriately.

hash(sizeof(keyT)), nhash(nh), nmax(nv), nn(0), ng(0),
htable(nh), next(nv), garbg(nv), thehash(nv) {
for (Int j=0; j<nh; j++) { htable[j] = -1; } Signifies empty.

}

A Hashtable object is templated by two class names: the class of the key
(which may be as simple as int or as complicated as a multiply derived class) and
the class of the hash function object (e.g., Hashfn1 or Hashfn2, above). Note how
the hash function object is automatically created using the size of keyT, so the user
is not responsible for knowing this value. If you are going to use variable length, null
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terminated byte arrays as keys, then the type of keyT is char, not char*; see �7.6.5
for an example.

The hash table object is created from two integer parameters. The most impor-
tant one is nm, the maximum number of objects that can be stored — in the dream,
the number of pigeonholes in the room. For now, suppose that the second parameter,
nh, has the same value as nm.

The overall scheme is to convert arbitrary keys into integers in the range 0 : : :
nh-1 that index into the array htable, by taking the output of the hash function
modulo nh. That array’s indexed element contains either �1, meaning “empty,” or
else an index in the range 0 : : : nm-1 that points into the arrays thehash and next.
(For a computer science flavor one could do this with list elements linked by pointers,
but in the spirit of numerical computation, we will use arrays; both ways are about
equally efficient.)

An element in thehash contains the 64-bit hash of whatever key was previously
assigned to that index. We will take the identity of two hashes as being positive proof
that their keys were identical. Of course this is not really true. There is a probability
of 2�64 � 5 � 10�20 of two keys giving identical hashes by chance. To guarantee
error-free performance, a hash table must in fact store the actual key, not just the
hash; but for our purposes we will accept the very small chance that two elements
might get confused. (Don’t use these routines if you are typically storing more than
a billion elements in a single hash table. But you already knew that!)

This 10�20 coincidence is not what is meant by hash collision. Rather, hash
collisions occur when two hashes yield the same value modulo nh, so that they point
to the same element in htable. That is not at all unusual, and we must provide for
handling it. Elements in the array next contain values that index back into thehash
and next, i.e., form a linked list. So, when two or more keys have landed on the
same value i , 0 
 i < nh, and we want to retrieve a particular one of them, it will
either be in the location thehashŒi �, or else in the (hopefully short) list that starts
there and is linked by nextŒi �, nextŒnextŒi ��, and so forth.

We can now say more about the value that should be initially specified for the
parameter nh. For a full table with all nm values assigned, the linked lists attached
to each element of htable have lengths that are Poisson distributed with a mean
� � nm=nh. Thus, large � (nh too small) implies a lot of list traversal, while small
� (nh too large) implies wasted space in htable. Conventional wisdom is to choose
� � 0:75, in which case (assuming a good hash function) 47% of htable will be
empty, 67% of the nonempty elements will have lists of length one (i.e., you get the
correct key on the first try), and the mean number of indirections (steps in traversing
the next pointers) is 0.42. For � D 1, that is, nh D nm, the values are 37% table
empty, 58% first try hits, and 0.58 mean indirections. So, in this general range, any
choice is basically fine. The general formulas are

empty fraction D P�.0/ D e
��

first try hits D P�.1/=Œ1 � P�.0/� D
�e��

1 � e��

mean indirections D
1X
jD2

.j � 1/P�.j /

1 � P�.0/
D
e�� � 1C �

1 � e��

(7.6.2)

where P�.j / is the Poisson probability function.
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Now to the implementations within Hashtable. The simplest to understand is
the “get” function, which returns an index value only if the key was previously “set,”
and returns �1 (by convention) if it was not. Our data structure is designed to make
this as fast as possible.

template<class keyT, class hfnT> hash.h
Int Hashtable<keyT,hfnT>::iget(const keyT &key) {
Returns integer in 0..nmax-1 corresponding to key, or �1 if no such key was previously stored.

Int j,k;
Ullong pp = hash.fn(&key); Get 64-bit hash
j = (Int)(pp % nhash); and map it into the hash table.
for (k = htable[j]; k != -1; k = next[k]) { Traverse linked list until an ex-

act match is found.if (thehash[k] == pp) {
return k;

}
}
return -1; Key was not previously stored.

}

A language subtlety to be noted is that iget receives key as a const reference, and
then passes its address, namely &key, to the hash function object. C++ allows this,
because the hash function object’s void pointer argument is itself declared as const.

The routine that “sets” a key is slightly more complicated. If the key has pre-
viously been set, we want to return the same value as the first time. If it hasn’t been
set, we initialize the necessary links for the future.

template<class keyT, class hfnT> hash.h
Int Hashtable<keyT,hfnT>::iset(const keyT &key) {
Returns integer in 0..nmax-1 that will henceforth correspond to key. If key was previously set,
return the same integer as before.

Int j,k,kprev;
Ullong pp = hash.fn(&key); Get 64-bit hash
j = (Int)(pp % nhash); and map it into the hash table.
if (htable[j] == -1) { Key not in table. Find a free integer, either

new or previously erased.k = ng ? garbg[--ng] : nn++ ;
htable[j] = k;

} else { Key might be in table. Traverse list.
for (k = htable[j]; k != -1; k = next[k]) {

if (thehash[k] == pp) {
return k; Yes. Return previous value.

}
kprev = k;

}
k = ng ? garbg[--ng] : nn++ ; No. Get new integer.
next[kprev] = k;

}
if (k >= nmax) throw("storing too many values");
thehash[k] = pp; Store the key at the new or previous integer.
next[k] = -1;
return k;

}

A word here about garbage collection. When a key is erased (by the routine
immediately below), we want to make its integer available to future “sets,” so that
nmax keys can always be stored. This is very easy to implement if we allocate a
garbage array (garbg) and use it as a last-in first-out stack of available integers. The
set routine above always checks this stack when it needs a new integer. (By the
way, had we designed Hashtable with list elements linked by pointers, instead of
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arrays, efficient garbage collection would have been more difficult to implement; see
Stroustrop [1].)

template<class keyT, class hfnT>hash.h
Int Hashtable<keyT,hfnT>::ierase(const keyT &key) {
Erase a key, returning the integer in 0..nmax-1 erased, or �1 if the key was not previously set.

Int j,k,kprev;
Ullong pp = hash.fn(&key);
j = (Int)(pp % nhash);
if (htable[j] == -1) return -1; Key not previously set.
kprev = -1;
for (k = htable[j]; k != -1; k = next[k]) {

if (thehash[k] == pp) { Found key. Splice linked list around it.
if (kprev == -1) htable[j] = next[k];
else next[kprev] = next[k];
garbg[ng++] = k; Add k to garbage stack as an available integer.
return k;

}
kprev = k;

}
return -1; Key not previously set.

}

Finally, Hashtable has routines that reserve and relinquish integers in the range
0 to nmax. When an integer is reserved, it is guaranteed not to be used by the hash
table. Below, we’ll use this feature as a convenience in constructing a hash memory
that can store more than one element under a single key.

template<class keyT, class hfnT>hash.h
Int Hashtable<keyT,hfnT>::ireserve() {
Reserve an integer in 0..nmax-1 so that it will not be used by set(), and return its value.

Int k = ng ? garbg[--ng] : nn++ ;
if (k >= nmax) throw("reserving too many values");
next[k] = -2;
return k;

}

template<class keyT, class hfnT>
Int Hashtable<keyT,hfnT>::irelinquish(Int k) {
Return to the pool an index previously reserved by reserve(), and return it, or return �1 if it
was not previously reserved.

if (next[k] != -2) {return -1;}
garbg[ng++] = k;
return k;

}

7.6.3 Hash Memory
The Hashtable class, above, implements Mr. Hacher’s task. Building on it, we

next implement your job in the dream, namely to do the actual storage and retrieval
of arbitrary objects by arbitrary keys. This is termed a hash memory.

When you store into an ordinary computer memory, the value of anything previ-
ously stored there is overwritten. If you want your hash memory to behave the same
way, then a hash memory class, Hash, derived from Hashtable, is almost trivial to
write. The class is templated by three structure types: keyT for the key type; elT for
the type of the element that is stored in the hash memory; and hfnT, as before, for
the object that encapsulates the hash function of your choice.
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template<class keyT, class elT, class hfnT> hash.h
struct Hash : Hashtable<keyT, hfnT> {
Extend the Hashtable class with storage for elements of type elT, and provide methods for
storing, retrieving. and erasing elements. key is passed by address in all methods.

using Hashtable<keyT,hfnT>::iget;
using Hashtable<keyT,hfnT>::iset;
using Hashtable<keyT,hfnT>::ierase;
vector<elT> els;

Hash(Int nh, Int nm) : Hashtable<keyT, hfnT>(nh, nm), els(nm) {}
Same constructor syntax as Hashtable.

void set(const keyT &key, const elT &el)
Store an element el.

{els[iset(key)] = el;}

Int get(const keyT &key, elT &el) {
Retrieve an element into el. Returns 0 if no element is stored under key, or 1 for success.

Int ll = iget(key);
if (ll < 0) return 0;
el = els[ll];
return 1;

}

elT& operator[] (const keyT &key) {
Store or retrieve an element using subscript notation for its key. Returns a reference that
can be used as an l-value.

Int ll = iget(key);
if (ll < 0) {

ll = iset(key);
els[ll] = elT();

}
return els[ll];

}

Int count(const keyT &key) {
Return the number of elements stored under key, that is, either 0 or 1.

Int ll = iget(key);
return (ll < 0 ? 0 : 1);

}

Int erase(const keyT &key) {
Erase an element. Returns 1 for success, or 0 if no element is stored under key.

return (ierase(key) < 0 ? 0 : 1);
}

};

The operator[] method, above, is intended for two distinct uses. First, it
implements an intuitive syntax for storing and retrieving elements, e.g.,

myhash[ some-key ] = rhs

for storing, and

lhs = myhash[ some-key ]

for retrieving. Note, however, that a small inefficiency is introduced, namely a su-
perfluous call to get when an element is set for the first time. Second, the method
returns a non-const reference that cannot only be used as an l-value, but also be
pointed to, as in
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some-pointer = &myhash[ some-key ]

Now the stored element can be referenced through the pointer, possibly multiple
times, without any additional overhead of key lookup. This can be an important
gain in efficiency in some applications. Of course you can also use the set and get
methods directly.

7.6.4 Hash Multimap Memory
Next turn to the case where you want to be able to store more than one element

under the same key. If ordinary computer memory behaved this way, you could set
a variable to a series of values and have it remember all of them! Obviously this is
a somewhat more complicated an extension of Hashtable than was Hash. We will
call it Mhash, where the M stands for “multivalued” or “multimap.” One requirement
is to provide a convenient syntax for retrieving multiple values of a single key, one at
a time. We do this by the functions getinit and getnext. Also, in Mhash, below,
nmax now means the maximum number of values that can be stored, not the number
of keys, which may in general be smaller.

The code, with comments, should be understandable without much additional
explanation. We use the reserve and relinquish features of Hashtable so as to
have a common numbering system for all stored elements, both the first instance of
a key (which Hashtable must know about) and subsequent instances of the same
key (which are invisible to Hashtable but managed by Mhash through the linked
list nextsis).

template<class keyT, class elT, class hfnT>hash.h
struct Mhash : Hashtable<keyT,hfnT> {
Extend the Hashtable class with storage for elements of type elT, allowing more than one
element to be stored under a single key.

using Hashtable<keyT,hfnT>::iget;
using Hashtable<keyT,hfnT>::iset;
using Hashtable<keyT,hfnT>::ierase;
using Hashtable<keyT,hfnT>::ireserve;
using Hashtable<keyT,hfnT>::irelinquish;
vector<elT> els;
VecInt nextsis; Links to next sister element under a single key.
Int nextget;
Mhash(Int nh, Int nm); Same constructor syntax as Hashtable.
Int store(const keyT &key, const elT &el); Store an element under key.
Int erase(const keyT &key, const elT &el); Erase a specified element under key.
Int count(const keyT &key); Count elements stored under key.
Int getinit(const keyT &key); Prepare to retrieve elements from key.
Int getnext(elT &el); Retrieve next element specified by getinit.

};

template<class keyT, class elT, class hfnT>
Mhash<keyT,elT,hfnT>::Mhash(Int nh, Int nm)

: Hashtable<keyT, hfnT>(nh, nm), nextget(-1), els(nm), nextsis(nm) {
for (Int j=0; j<nm; j++) {nextsis[j] = -2;} Initialize to “empty”.

}

template<class keyT, class elT, class hfnT>
Int Mhash<keyT,elT,hfnT>::store(const keyT &key, const elT &el) {
Store an element el under key. Return index in 0..nmax-1, giving the storage location utilized.

Int j,k;
j = iset(key); Find root index for this key.
if (nextsis[j] == -2) { It is the first object with this key.
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els[j] = el;
nextsis[j] = -1; �1 means it is the terminal element.
return j;

} else {
while (nextsis[j] != -1) {j = nextsis[j];} Traverse the tree.
k = ireserve(); Get a new index and link it into the list.
els[k] = el;
nextsis[j] = k;
nextsis[k] = -1;
return k;

}
}

template<class keyT, class elT, class hfnT>
Int Mhash<keyT,elT,hfnT>::erase(const keyT &key, const elT &el) {
Erase an element el previously stored under key. Return 1 for success, or 0 if no matching
element is found. Note: The == operation must be defined for the type elT.

Int j = -1,kp = -1,kpp = -1;
Int k = iget(key);
while (k >= 0) {

if (j < 0 && el == els[k]) j = k; Save index of matching el as j.
kpp = kp;
kp = k;
k=nextsis[k];

}
if (j < 0) return 0; No matching el found.
if (kpp < 0) { The element el was unique under key.

ierase(key);
nextsis[j] = -2;

} else { Patch the list.
if (j != kp) els[j] = els[kp]; Overwrite j with the terminal element

and then shorten the list.nextsis[kpp] = -1;
irelinquish(kp);
nextsis[kp] = -2;

}
return 1; Success.

}

template<class keyT, class elT, class hfnT>
Int Mhash<keyT,elT,hfnT>::count(const keyT &key) {
Return the number of elements stored under key, 0 if none.

Int next, n = 1;
if ((next = iget(key)) < 0) return 0;
while ((next = nextsis[next]) >= 0) {n++;}
return n;

}

template<class keyT, class elT, class hfnT>
Int Mhash<keyT,elT,hfnT>::getinit(const keyT &key) {
Initialize nextget so that it points to the first element stored under key. Return 1 for success,
or 0 if no such element.

nextget = iget(key);
return ((nextget < 0)? 0 : 1);

}

template<class keyT, class elT, class hfnT>
Int Mhash<keyT,elT,hfnT>::getnext(elT &el) {
If nextget points validly, copy its element into el, update nextget to the next element with
the same key, and return 1. Otherwise, do not modify el, and return 0.

if (nextget < 0) {return 0;}
el = els[nextget];
nextget = nextsis[nextget];
return 1;

}
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The methods getinit and getnext are designed to be used in code like this,
where myhash is a variable of type Mhash:

Retrieve all elements el stored under a single key and do something with them.
if (myhash.getinit(&key)) {

while (myhash.getnext(el)) {
Here use the returned element el.

}
}

7.6.5 Usage Examples
Having exposed in such detail the inner workings of the Hash and Mhash classes,

we may have left the impression that these are difficult to use. Quite the contrary.
Here’s a piece code that declares a hash memory for integers, and then stores the
birth years of some personages:

Hash<string,Int,Hashfn2> year(1000,1000);

year[string("Marie Antoinette")] = 1755;

year[string("Ludwig van Beethoven")] = 1770;

year[string("Charles Babbage")] = 1791;

As declared, year can hold up to 1000 entries. We use the C++ string class as the
key type. If we want to know how old Marie was when Charles was born, we can
write,

Int diff = year[string("Charles Babbage")] - year[string("Marie Antoinette")];

cout << diff << ’\n’;

which prints “36”.
Instead of using the C++ string class, you can, if you must, use null terminated

C strings as keys, like this:

Hash<char,Int,Hashfn2> yearc(1000,1000);

yearc["Charles Babbage"[0]] = 1791;

This works because Hashfn2 has a special tweak, mentioned above, for key types
that are apparently one byte long. Note the required use of [0] to send only the first
byte of the C string; but that byte is passed by address, so Hashfn2 knows where to
find the rest of the string. (The syntax yearc[*"Charles Babbage"] is equivalent,
also sending the first byte.)

Suppose we want to go the other direction, namely store the names of people
into a hash memory indexed by birth year. Since more than one person may be born
in a single year, we want to use a hash multimap memory, Mhash:

Mhash<Int,string,Hashfn2> person(1000,1000);

person.store(1775, string("Jane Austen"));

person.store(1791, string("Charles Babbage"));

person.store(1767, string("Andrew Jackson"));

person.store(1791, string("James Buchanan"));

person.store(1767, string("John Quincy Adams"));

person.store(1770, string("Ludwig van Beethoven"));

person.store(1791, string("Samuel Morse"));

person.store(1755, string("Marie Antoinette"));
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It doesn’t matter, of course, the order in which we put the names into the hash. Here
is a piece of code to loop over years, printing the people born in that year:

string str;

for (Int i=1750;i<1800;i++) {

if (person.getinit(i)) {

cout << ’\n’ << "born in " << i << ":\n";

while (person.getnext(str)) cout << str.data() << ’\n’;

}

}

which gives as output

born in 1755:

Marie Antoinette

born in 1767:

Andrew Jackson

John Quincy Adams

born in 1770:

Ludwig van Beethoven

born in 1775:

Jane Austen

born in 1791:

Charles Babbage

James Buchanan

Samuel Morse

Notice that we could not have used null terminated C strings in this example, because
C++ does not regard them as first-class objects that can be stored as elements of a
vector. When you are using Hash or Mhash with strings, you will usually be better
off using the C++ string class.

In �21.2 and �21.8 we will make extensive use of both the Hash and Mhash
classes and almost all their member functions; look there for further usage examples.

By the way, Mr. Hacher’s name is from the French hacher, meaning “to mince
or hash.”

CITED REFERENCES AND FURTHER READING:

Stroustrup, B. 1997, The C++ Programming Language, 3rd ed. (Reading, MA: Addison-
Wesley), �17.6.2.[1]

Knuth, D.E. 1997, Sorting and Searching, 3rd ed., vol. 3 of The Art of Computer Programming
(Reading, MA: Addison-Wesley), �6.4–�6.5.

Vitter, J.S., and Chen, W-C. 1987, Design and Analysis of Coalesced Hashing (New York: Oxford
University Press).

7.7 Simple Monte Carlo Integration

Inspirations for numerical methods can spring from unlikely sources. “Splines”
first were flexible strips of wood used by draftsmen. “Simulated annealing” (we shall
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W

Figure 7.7.1. Monte Carlo integration of a function f .x; y/ in a region W . Random points are chosen
within an area V that includes W and that can easily be sampled uniformly. Of the three possible V ’s
shown, V1 is a poor choice because W occupies only a small fraction of its area, while V2 and V3 are
better choices.

see in �10.12) is rooted in a thermodynamic analogy. And who does not feel at least
a faint echo of glamor in the name “Monte Carlo method”?

Suppose that we pick N random points, uniformly distributed in a multidimen-
sional volume V . Call them x0; : : : ; xN�1. Then the basic theorem of Monte Carlo
integration estimates the integral of a function f over the multidimensional volume,

Z
f dV � V hf i ˙ V

s
hf 2i � hf i2

N
(7.7.1)

Here the angle brackets denote taking the arithmetic mean over theN sample points,

hf i �
1

N

N�1X
iD0

f .xi /
˝
f 2
˛
�

1

N

N�1X
iD0

f 2.xi / (7.7.2)

The “plus-or-minus” term in (7.7.1) is a one standard deviation error estimate for
the integral, not a rigorous bound; further, there is no guarantee that the error is
distributed as a Gaussian, so the error term should be taken only as a rough indication
of probable error.

Suppose that you want to integrate a function g over a regionW that is not easy
to sample randomly. For example, W might have a very complicated shape. No
problem. Just find a region V that includes W and that can easily be sampled, and
then define f to be equal to g for points inW and equal to zero for points outside of
W (but still inside the sampled V ). You want to try to make V enclose W as closely
as possible, because the zero values of f will increase the error estimate term of
(7.7.1). And well they should: Points chosen outside of W have no information
content, so the effective value of N , the number of points, is reduced. The error
estimate in (7.7.1) takes this into account.

Figure 7.7.1 shows three possible regions V that might be used to sample a
complicated region W . The first, V1, is obviously a poor choice. A good choice, V2,
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can be sampled by picking a pair of uniform deviates .s; t/ and then mapping them
into .x; y/ by a linear transformation. Another good choice, V3, can be sampled by,
first, using a uniform deviate to choose between the left and right rectangular subre-
gions (in proportion to their respective areas!) and, then, using two more deviates to
pick a point inside the chosen rectangle.

Let’s create an object that embodies the general scheme described. (We will
discuss the implementing code later.) The general idea is to create an MCintegrate
object by providing (as constructor arguments) the following items:

� a vector xlo of lower limits of the coordinates for the rectangular box to be
sampled
� a vector xhi of upper limits of the coordinates for the rectangular box to be

sampled
� a vector-valued function funcs that returns as its components one or more

functions that we want to integrate simultaneously
� a boolean function that returns whether a point is in the (possibly complicated)

regionW that we want to integrate; the point will already be within the region
V defined by xlo and xhi
� a mapping function to be discussed below, or NULL if there is no mapping

function or if your attention span is too short
� a seed for the random number generator

The object MCintegrate has this structure.

struct MCintegrate { mcintegrate.h
Object for Monte Carlo integration of one or more functions in an ndim-dimensional region.

Int ndim,nfun,n; Number of dimensions, functions, and points sampled.
VecDoub ff,fferr; Answers: The integrals and their standard errors.
VecDoub xlo,xhi,x,xx,fn,sf,sferr;
Doub vol; Volume of the box V .

VecDoub (*funcsp)(const VecDoub &); Pointers to the user-supplied functions.
VecDoub (*xmapp)(const VecDoub &);
Bool (*inregionp)(const VecDoub &);
Ran ran; Random number generator.

MCintegrate(const VecDoub &xlow, const VecDoub &xhigh,
VecDoub funcs(const VecDoub &), Bool inregion(const VecDoub &),
VecDoub xmap(const VecDoub &), Int ranseed);
Constructor. The arguments are in the order described in the itemized list above.

void step(Int nstep);
Sample an additional nstep points, accumulating the various sums.

void calcanswers();
Calculate answers ff and fferr using the current sums.

};

The member function step adds sample points, the number of which is given
by its argument. The member function calcanswers updates the vectors ff and
fferr, which contain respectively the estimated Monte Carlo integrals of the func-
tions and the errors on these estimates. You can examine these values, and then, if
you want, call step and calcanswers again to further reduce the errors.

A worked example will show the underlying simplicity of the method. Suppose
that we want to find the weight and the position of the center of mass of an object of
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Figure 7.7.2. Example of Monte Carlo integration (see text). The region of interest is a piece of a torus,
bounded by the intersection of two planes. The limits of integration of the region cannot easily be written
in analytically closed form, so Monte Carlo is a useful technique.

complicated shape, namely the intersection of a torus with the faces of a large box.
In particular, let the object be defined by the three simultaneous conditions:

z2 C

�p
x2 C y2 � 3

�2

 1 (7.7.3)

(torus centered on the origin with major radius D 3, minor radiusD 1)

x � 1 y � �3 (7.7.4)

(two faces of the box; see Figure 7.7.2). Suppose for the moment that the object has
a constant density � D 1.

We want to estimate the following integrals over the interior of the complicated
object:Z

� dx dy dz

Z
x� dx dy dz

Z
y� dx dy dz

Z
z� dx dy dz

(7.7.5)
The coordinates of the center of mass will be the ratio of the latter three integrals
(linear moments) to the first one (the weight).

To use the MCintegrate object, we first write functions that describe the inte-
grands and the region of integration W inside the box V .
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VecDoub torusfuncs(const VecDoub &x) { mcintegrate.h
Return the integrands in equation (7.7.5), with � D 1.

Doub den = 1.;
VecDoub f(4);
f[0] = den;
for (Int i=1;i<4;i++) f[i] = x[i-1]*den;
return f;

}

Bool torusregion(const VecDoub &x) {
Return the inequality (7.7.3).

return SQR(x[2])+SQR(sqrt(SQR(x[0])+SQR(x[1]))-3.) <= 1.;
}

The code to actually do the integration is now quite simple,

VecDoub xlo(3), xhi(3);

xlo[0] = 1.; xhi[0] = 4.;

xlo[1] = -3.; xhi[1] = 4.;

xlo[2] = -1.; xhi[2] = 1.;

MCintegrate mymc(xlo,xhi,torusfuncs,torusregion,NULL,10201);

mymc.step(1000000);

mymc.calcanswers();

Here we’ve specified the box V by xlo and xhi, created an instance of MCintegrate,
sampled a million times, and updated the answers mymc.ff and mymc.fferr, which
can be accessed for printing or another use.

7.7.1 Change of Variables
A change of variable can often be extremely worthwhile in Monte Carlo inte-

gration. Suppose, for example, that we want to evaluate the same integrals, but for a
piece of torus whose density is a strong function of z, in fact varying according to

�.x; y; z/ D e5z (7.7.6)

One way to do this is, in torusfuncs, simply to replace the statement

Doub den = 1.;

by the statement

Doub den = exp(5.*x[2]);

This will work, but it is not the best way to proceed. Since (7.7.6) falls so rapidly
to zero as z decreases (down to its lower limit �1), most sampled points contribute
almost nothing to the sum of the weight or moments. These points are effectively
wasted, almost as badly as those that fall outside of the region W . A change of
variable, exactly as in the transformation methods of �7.3, solves this problem. Let

ds D e5zdz so that s D 1
5
e5z; z D 1

5
ln.5s/ (7.7.7)

Then �dz D ds, and the limits �1 < z < 1 become :00135 < s < 29:682.
The MCintegrate object knows that you might want to do this. If it sees an

argument xmap that is not NULL, it will assume that the sampling region defined by
xlo and xhi is not in physical space, but rather needs to be mapped into physical
space before either the functions or the region boundary are calculated. Thus, to ef-
fect our change of variable, we don’t need to modify torusfuncs or torusregion,
but we do need to modify xlo and xhi, as well as supply the following function for
the argument xmap:
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VecDoub torusmap(const VecDoub &s) {mcintegrate.h
Return the mapping from s to z defined by the last equation in (7.7.7), mapping the other
coordinates by the identity map.

VecDoub xx(s);
xx[2] = 0.2*log(5.*s[2]);
return xx;

}

Code for the actual integration now looks like this:

VecDoub slo(3), shi(3);

slo[0] = 1.; shi[0] = 4.;

slo[1] = -3.; shi[1] = 4.;

slo[2] = 0.2*exp(5.*(-1.)); shi[2] = 0.2*exp(5.*(1.));

MCintegrate mymc2(slo,shi,torusfuncs,torusregion,torusmap,10201);

mymc2.step(1000000);

mymc2.calcanswers();

If you think for a minute, you will realize that equation (7.7.7) was useful only
because the part of the integrand that we wanted to eliminate (e5z) was both inte-
grable analytically and had an integral that could be analytically inverted. (Compare
�7.3.2.) In general these properties will not hold. Question: What then? Answer:
Pull out of the integrand the “best” factor that can be integrated and inverted. The
criterion for “best” is to try to reduce the remaining integrand to a function that is as
close as possible to constant.

The limiting case is instructive: If you manage to make the integrand f exactly
constant, and if the region V , of known volume, exactly encloses the desired region
W , then the average of f that you compute will be exactly its constant value, and
the error estimate in equation (7.7.1) will exactly vanish. You will, in fact, have done
the integral exactly, and the Monte Carlo numerical evaluations are superfluous. So,
backing off from the extreme limiting case, to the extent that you are able to make f
approximately constant by change of variable, and to the extent that you can sample a
region only slightly larger thanW , you will increase the accuracy of the Monte Carlo
integral. This technique is generically called reduction of variance in the literature.

The fundamental disadvantage of simple Monte Carlo integration is that its ac-
curacy increases only as the square root of N , the number of sampled points. If
your accuracy requirements are modest, or if your computer is large, then the tech-
nique is highly recommended as one of great generality. In �7.8 and �7.9 we will see
that there are techniques available for “breaking the square root of N barrier” and
achieving, at least in some cases, higher accuracy with fewer function evaluations.

There should be nothing surprising in the implementation of MCintegrate.
The constructor stores pointers to the user functions, makes an otherwise superfluous
call to funcs just to find out the size of returned vector, and then sizes the sum and
answer vectors accordingly. The step and calcanswer methods implement exactly
equations (7.7.1) and (7.7.2).

MCintegrate::MCintegrate(const VecDoub &xlow, const VecDoub &xhigh,mcintegrate.h
VecDoub funcs(const VecDoub &), Bool inregion(const VecDoub &),
VecDoub xmap(const VecDoub &), Int ranseed)
: ndim(xlow.size()), n(0), xlo(xlow), xhi(xhigh), x(ndim), xx(ndim),
funcsp(funcs), xmapp(xmap), inregionp(inregion), vol(1.), ran(ranseed) {
if (xmapp) nfun = funcs(xmapp(xlo)).size();
else nfun = funcs(xlo).size();
ff.resize(nfun);
fferr.resize(nfun);



�

�

“nr3” — 2007/5/1 — 20:53 — page 403 — #425
�

�

� �

7.8 Quasi- (that is, Sub-) Random Sequences 403

fn.resize(nfun);
sf.assign(nfun,0.);
sferr.assign(nfun,0.);
for (Int j=0;j<ndim;j++) vol *= abs(xhi[j]-xlo[j]);

}

void MCintegrate::step(Int nstep) {
Int i,j;
for (i=0;i<nstep;i++) {

for (j=0;j<ndim;j++)
x[j] = xlo[j]+(xhi[j]-xlo[j])*ran.doub();

if (xmapp) xx = (*xmapp)(x);
else xx = x;
if ((*inregionp)(xx)) {

fn = (*funcsp)(xx);
for (j=0;j<nfun;j++) {

sf[j] += fn[j];
sferr[j] += SQR(fn[j]);

}
}

}
n += nstep;

}

void MCintegrate::calcanswers(){
for (Int j=0;j<nfun;j++) {

ff[j] = vol*sf[j]/n;
fferr[j] = vol*sqrt((sferr[j]/n-SQR(sf[j]/n))/n);

}
}

CITED REFERENCES AND FURTHER READING:

Robert, C.P., and Casella, G. 2006, Monte Carlo Statistical Methods, 2nd ed. (New York: Springer)

Sobol’, I.M. 1994, A Primer for the Monte Carlo Method (Boca Raton, FL: CRC Press).

Hammersley, J.M., and Handscomb, D.C. 1964, Monte Carlo Methods (London: Methuen).

Gentle, J.E. 2003, Random Number Generation and Monte Carlo Methods, 2nd ed. (New York:
Springer), Chapter 7.

Shreider, Yu. A. (ed.) 1966, The Monte Carlo Method (Oxford: Pergamon).

Kalos, M.H., and Whitlock, P.A. 1986, Monte Carlo Methods: Volume 1: Basics (New York: Wiley).

7.8 Quasi- (that is, Sub-) Random Sequences

We have just seen that choosing N points uniformly randomly in an n-dimen-
sional space leads to an error term in Monte Carlo integration that decreases as
1=
p
N . In essence, each new point sampled adds linearly to an accumulated sum

that will become the function average, and also linearly to an accumulated sum of
squares that will become the variance (equation 7.7.2). The estimated error comes
from the square root of this variance, hence the power N�1=2.

Just because this square-root convergence is familiar does not, however, mean
that it is inevitable. A simple counterexample is to choose sample points that lie
on a Cartesian grid, and to sample each grid point exactly once (in whatever order).
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The Monte Carlo method thus becomes a deterministic quadrature scheme — albeit
a simple one — whose fractional error decreases at least as fast as N�1 (even faster
if the function goes to zero smoothly at the boundaries of the sampled region or is
periodic in the region).

The trouble with a grid is that one has to decide in advance how fine it should
be. One is then committed to completing all of its sample points. With a grid, it is
not convenient to “sample until” some convergence or termination criterion is met.
One might ask if there is not some intermediate scheme, some way to pick sample
points “at random,” yet spread out in some self-avoiding way, avoiding the chance
clustering that occurs with uniformly random points.

A similar question arises for tasks other than Monte Carlo integration. We might
want to search an n-dimensional space for a point where some (locally computable)
condition holds. Of course, for the task to be computationally meaningful, there
had better be continuity, so that the desired condition will hold in some finite n-
dimensional neighborhood. We may not know a priori how large that neighborhood
is, however. We want to “sample until” the desired point is found, moving smoothly
to finer scales with increasing samples. Is there any way to do this that is better than
uncorrelated, random samples?

The answer to the above question is “yes.” Sequences of n-tuples that fill n-
space more uniformly than uncorrelated random points are called quasi-random se-
quences. That term is somewhat of a misnomer, since there is nothing “random”
about quasi-random sequences: They are cleverly crafted to be, in fact, subrandom.
The sample points in a quasi-random sequence are, in a precise sense, “maximally
avoiding” of each other.

A conceptually simple example is Halton’s sequence [1]. In one dimension, the
j th number Hj in the sequence is obtained by the following steps: (i) Write j as a
number in base b, where b is some prime. (For example, j D 17 in base b D 3 is
122.) (ii) Reverse the digits and put a radix point (i.e., a decimal point base b) in
front of the sequence. (In the example, we get 0:221 base 3.) The result is Hj . To
get a sequence of n-tuples in n-space, you make each component a Halton sequence
with a different prime base b. Typically, the first n primes are used.

It is not hard to see how Halton’s sequence works: Every time the number of
digits in j increases by one place, j ’s digit-reversed fraction becomes a factor of b
finer-meshed. Thus the process is one of filling in all the points on a sequence of finer
and finer Cartesian grids — and in a kind of maximally spread-out order on each grid
(since, e.g., the most rapidly changing digit in j controls the most significant digit
of the fraction).

Other ways of generating quasi-random sequences have been proposed by Faure,
Sobol’, Niederreiter, and others. Bratley and Fox [2] provide a good review and refer-
ences, and discuss a particularly efficient variant of the Sobol’ [3] sequence suggested
by Antonov and Saleev [4]. It is this Antonov-Saleev variant whose implementation
we now discuss.

The Sobol’ sequence generates numbers between zero and one directly as binary frac-
tions of length w bits, from a set of w special binary fractions, Vi ; i D 1; 2; : : : ; w, called
direction numbers. In Sobol’s original method, the j th number Xj is generated by XORing
(bitwise exclusive or) together the set of Vi ’s satisfying the criterion on i , “the i th bit of j is
nonzero.” As j increments, in other words, different ones of the Vi ’s flash in and out of Xj
on different time scales. V1 alternates between being present and absent most quickly, while
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Figure 7.8.1. First 1024 points of a two-dimensional Sobol’ sequence. The sequence is generated number-
theoretically, rather than randomly, so successive points at any stage “know” how to fill in the gaps in the
previously generated distribution.

Vk goes from present to absent (or vice versa) only every 2k�1 steps.
Antonov and Saleev’s contribution was to show that instead of using the bits of the

integer j to select direction numbers, one could just as well use the bits of the Gray code of
j , G.j /. (For a quick review of Gray codes, look at �22.3.)

Now G.j / and G.j C 1/ differ in exactly one bit position, namely in the position of the
rightmost zero bit in the binary representation of j (adding a leading zero to j if necessary).
A consequence is that the j C 1st Sobol’-Antonov-Saleev number can be obtained from the
j th by XORing it with a single Vi , namely with i the position of the rightmost zero bit in j .
This makes the calculation of the sequence very efficient, as we shall see.

Figure 7.8.1 plots the first 1024 points generated by a two-dimensional Sobol’ sequence.
One sees that successive points do “know” about the gaps left previously, and keep filling them
in, hierarchically.

We have deferred to this point a discussion of how the direction numbers Vi are gen-
erated. Some nontrivial mathematics is involved in that, so we will content ourselves with a
cookbook summary only: Each different Sobol’ sequence (or component of an n-dimensional
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Degree Primitive Polynomials Modulo 2*

1 0 (i.e., xC 1)

2 1 (i.e., x2 C xC 1)

3 1, 2 (i.e., x3 C xC 1 and x3 C x2 C 1)

4 1, 4 (i.e., x4 C xC 1 and x4 C x3 C 1)

5 2, 4, 7, 11, 13, 14

6 1, 13, 16, 19, 22, 25

7 1, 4, 7, 8, 14, 19, 21, 28, 31, 32, 37, 41, 42, 50, 55, 56, 59, 62

8 14, 21, 22, 38, 47, 49, 50, 52, 56, 67, 70, 84, 97, 103, 115, 122

9 8, 13, 16, 22, 25, 44, 47, 52, 55, 59, 62, 67, 74, 81, 82, 87, 91, 94, 103, 104, 109, 122,
124, 137, 138, 143, 145, 152, 157, 167, 173, 176, 181, 182, 185, 191, 194, 199, 218,
220, 227, 229, 230, 234, 236, 241, 244, 253

10 4, 13, 19, 22, 50, 55, 64, 69, 98, 107, 115, 121, 127, 134, 140, 145, 152, 158, 161, 171,
181, 194, 199, 203, 208, 227, 242, 251, 253, 265, 266, 274, 283, 289, 295, 301, 316,
319, 324, 346, 352, 361, 367, 382, 395, 398, 400, 412, 419, 422, 426, 428, 433, 446,
454, 457, 472, 493, 505, 508

*Expressed as a decimal integer whose binary representation gives the coefficients, from the
highest to lowest power of x. Only the internal terms are represented — the highest-order term
and the constant term always have coefficient 1.

sequence) is based on a different primitive polynomial over the integers modulo 2, that is, a
polynomial whose coefficients are either 0 or 1, and which generates a maximal length shift
register sequence. (Primitive polynomials modulo 2 were used in �7.5 and are further dis-
cussed in �22.4.) Suppose P is such a polynomial, of degree q,

P D xq C a1x
q�1 C a2x

q�2 C 	 	 	 C aq�1x C 1 (7.8.1)

Define a sequence of integers Mi by the q-term recurrence relation,

Mi D 2a1Mi�1 ˚ 2
2a2Mi�2 ˚ 	 	 	 ˚ 2

q�1Mi�qC1aq�1 ˚ .2
qMi�q ˚Mi�q/ (7.8.2)

Here bitwise XOR is denoted by˚. The starting values for this recurrence are thatM1; : : : ;Mq
can be arbitrary odd integers less than 2; : : : ; 2q , respectively. Then, the direction numbers Vi
are given by

Vi DMi=2
i i D 1; : : : ; w (7.8.3)

The table above lists all primitive polynomials modulo 2 with degree q 
 10. Since the
coefficients are either 0 or 1, and since the coefficients of xq and of 1 are predictably 1, it
is convenient to denote a polynomial by its middle coefficients taken as the bits of a binary
number (higher powers of x being more significant bits). The table uses this convention.

Turn now to the implementation of the Sobol’ sequence. Successive calls to the function
sobseq (after a preliminary initializing call) return successive points in an n-dimensional
Sobol’ sequence based on the first n primitive polynomials in the table. As given, the routine
is initialized for maximum n of 6 dimensions, and for a word length w of 30 bits. These
parameters can be altered by changing MAXBIT (� w) and MAXDIM, and by adding more
initializing data to the arrays ip (the primitive polynomials from the table above), mdeg (their
degrees), and iv (the starting values for the recurrence, equation 7.8.2). A second table, on
the next page, elucidates the initializing data in the routine.



�

�

“nr3” — 2007/5/1 — 20:53 — page 407 — #429
�

�

� �

7.8 Quasi- (that is, Sub-) Random Sequences 407

Initializing Values Used in sobseq

Degree Polynomial Starting Values

1 0 1 (3) (5) (15) : : :

2 1 1 1 (7) (11) : : :

3 1 1 3 7 (5) : : :

3 2 1 3 3 (15) : : :

4 1 1 1 3 13 : : :

4 4 1 1 5 9 : : :

Parenthesized values are not freely specifiable, but are forced by the required
recurrence for this degree.

void sobseq(const Int n, VecDoub_O &x) sobseq.h
When n is negative, internally initializes a set of MAXBIT direction numbers for each of MAXDIM
different Sobol’ sequences. When n is positive (but �MAXDIM), returns as the vector x[0..n-1]
the next values from n of these sequences. (n must not be changed between initializations.)
{

const Int MAXBIT=30,MAXDIM=6;
Int j,k,l;
Uint i,im,ipp;
static Int mdeg[MAXDIM]={1,2,3,3,4,4};
static Uint in;
static VecUint ix(MAXDIM);
static NRvector<Uint*> iu(MAXBIT);
static Uint ip[MAXDIM]={0,1,1,2,1,4};
static Uint iv[MAXDIM*MAXBIT]=

{1,1,1,1,1,1,3,1,3,3,1,1,5,7,7,3,3,5,15,11,5,15,13,9};
static Doub fac;

if (n < 0) { Initialize, don’t return a vector.
for (k=0;k<MAXDIM;k++) ix[k]=0;
in=0;
if (iv[0] != 1) return;
fac=1.0/(1 << MAXBIT);
for (j=0,k=0;j<MAXBIT;j++,k+=MAXDIM) iu[j] = &iv[k];
To allow both 1D and 2D addressing.
for (k=0;k<MAXDIM;k++) {

for (j=0;j<mdeg[k];j++) iu[j][k] <<= (MAXBIT-1-j);
Stored values only require normalization.
for (j=mdeg[k];j<MAXBIT;j++) { Use the recurrence to get other val-

ues.ipp=ip[k];
i=iu[j-mdeg[k]][k];
i ^= (i >> mdeg[k]);
for (l=mdeg[k]-1;l>=1;l--) {

if (ipp & 1) i ^= iu[j-l][k];
ipp >>= 1;

}
iu[j][k]=i;

}
}

} else { Calculate the next vector in the se-
quence.im=in++;

for (j=0;j<MAXBIT;j++) { Find the rightmost zero bit.
if (!(im & 1)) break;
im >>= 1;

}
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if (j >= MAXBIT) throw("MAXBIT too small in sobseq");
im=j*MAXDIM;
for (k=0;k<MIN(n,MAXDIM);k++) { XOR the appropriate direction num-

ber into each component of the
vector and convert to a floating
number.

ix[k] ^= iv[im+k];
x[k]=ix[k]*fac;

}
}

}

How good is a Sobol’ sequence, anyway? For Monte Carlo integration of a smooth
function in n dimensions, the answer is that the fractional error will decrease with N , the
number of samples, as .lnN/n=N , i.e., almost as fast as 1=N . As an example, let us integrate
a function that is nonzero inside a torus (doughnut) in three-dimensional space. If the major
radius of the torus is R0 and the minor radius is r0, the minor radial coordinate r is defined by

r D
�
Œ.x2 C y2/1=2 �R0�

2 C z2
�1=2

(7.8.4)

Let us try the function

f .x; y; z/ D

8̂<̂
:1C cos

 
	r2

r20

!
r < r0

0 r � r0

(7.8.5)

which can be integrated analytically in cylindrical coordinates, giving•
dx dy dz f .x; y; z/ D 2	2r20R0 (7.8.6)

With parameters R0 D 0:6; r0 D 0:3, we did 100 successive Monte Carlo integrations of
equation (7.8.4), sampling uniformly in the region �1 < x; y; z < 1, for the two cases of
uncorrelated random points and the Sobol’ sequence generated by the routine sobseq. Figure
7.8.2 shows the results, plotting the r.m.s. average error of the 100 integrations as a function
of the number of points sampled. (For any single integration, the error of course wanders
from positive to negative, or vice versa, so a logarithmic plot of fractional error is not very
informative.) The thin, dashed curve corresponds to uncorrelated random points and shows
the familiar N�1=2 asymptotics. The thin, solid gray curve shows the result for the Sobol’
sequence. The logarithmic term in the expected .lnN/3=N is readily apparent as curvature in
the curve, but the asymptotic N�1 is unmistakable.

To understand the importance of Figure 7.8.2, suppose that a Monte Carlo integration of
f with 1% accuracy is desired. The Sobol’ sequence achieves this accuracy in a few thousand
samples, while pseudo-random sampling requires nearly 100,000 samples. The ratio would
be even greater for higher desired accuracies.

A different, not quite so favorable, case occurs when the function being integrated has
hard (discontinuous) boundaries inside the sampling region, for example the function that is
one inside the torus and zero outside,

f .x; y; z/ D

(
1 r < r0

0 r � r0
(7.8.7)

where r is defined in equation (7.8.4). Not by coincidence, this function has the same analytic
integral as the function of equation (7.8.5), namely 2	2r20R0.

The carefully hierarchical Sobol’ sequence is based on a set of Cartesian grids, but the
boundary of the torus has no particular relation to those grids. The result is that it is essentially
random whether sampled points in a thin layer at the surface of the torus, containing on the
order of N 2=3 points, come out to be inside or outside the torus. The square root law, applied
to this thin layer, gives N 1=3 fluctuations in the sum, or N�2=3 fractional error in the Monte
Carlo integral. One sees this behavior verified in Figure 7.8.2 by the thicker gray curve. The
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Figure 7.8.2. Fractional accuracy of Monte Carlo integrations as a function of number of points sampled,
for two different integrands and two different methods of choosing random points. The quasi-random
Sobol’ sequence converges much more rapidly than a conventional pseudo-random sequence. Quasi-
random sampling does better when the integrand is smooth (“soft boundary”) than when it has step dis-
continuities (“hard boundary”). The curves shown are the r.m.s. averages of 100 trials.

thicker dashed curve in Figure 7.8.2 is the result of integrating the function of equation (7.8.7)
using independent random points. While the advantage of the Sobol’ sequence is not quite so
dramatic as in the case of a smooth function, it can nonetheless be a significant factor (�5)
even at modest accuracies like 1%, and greater at higher accuracies.

Note that we have not provided the routine sobseq with a means of starting the sequence
at a point other than the beginning, but this feature would be easy to add. Once the initial-
ization of the direction numbers iv has been done, the j th point can be obtained directly by
XORing together those direction numbers corresponding to nonzero bits in the Gray code of
j , as described above.

7.8.1 The Latin Hypercube
We mention here the unrelated technique of Latin square or Latin hypercube

sampling, which is useful when you must sample an N -dimensional space exceed-
ingly sparsely, at M points. For example, you may want to test the crashworthiness
of cars as a simultaneous function of four different design parameters, but with a
budget of only three expendable cars. (The issue is not whether this is a good plan
— it isn’t — but rather how to make the best of the situation!)

The idea is to partition each design parameter (dimension) into M segments,
so that the whole space is partitioned into MN cells. (You can choose the segments
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in each dimension to be equal or unequal, according to taste.) With four parameters
and three cars, for example, you end up with 3 � 3 � 3 � 3 D 81 cells.

Next, choose M cells to contain the sample points by the following algorithm:
Randomly choose one of the MN cells for the first point. Now eliminate all cells
that agree with this point on any of its parameters (that is, cross out all cells in the
same row, column, etc.), leaving .M � 1/N candidates. Randomly choose one of
these, eliminate new rows and columns, and continue the process until there is only
one cell left, which then contains the final sample point.

The result of this construction is that each design parameter will have been
tested in every one of its subranges. If the response of the system under test is
dominated by one of the design parameters (the main effect), that parameter will
be found with this sampling technique. On the other hand, if there are important
interaction effects among different design parameters, then the Latin hypercube gives
no particular advantage. Use with care.

There is a large field in statistics that deals with design of experiments. A brief
pedagogical introduction is [5].
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7.9 Adaptive and Recursive Monte Carlo
Methods

This section discusses more advanced techniques of Monte Carlo integration. As ex-
amples of the use of these techniques, we include two rather different, fairly sophisticated,
multidimensional Monte Carlo codes: vegas [1,2], and miser [4]. The techniques that we
discuss all fall under the general rubric of reduction of variance (�7.7), but are otherwise
quite distinct.
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7.9.1 Importance Sampling
The use of importance sampling was already implicit in equations (7.7.6) and (7.7.7).

We now return to it in a slightly more formal way. Suppose that an integrand f can be written
as the product of a function h that is almost constant times another, positive, function g. Then
its integral over a multidimensional volume V isZ

f dV D

Z
.f =g/ gdV D

Z
h gdV (7.9.1)

In equation (7.7.7) we interpreted equation (7.9.1) as suggesting a change of variable to G,
the indefinite integral of g. That made gdV a perfect differential. We then proceeded to use
the basic theorem of Monte Carlo integration, equation (7.7.1). A more general interpretation
of equation (7.9.1) is that we can integrate f by instead sampling h — not, however, with
uniform probability density dV , but rather with nonuniform density gdV . In this second
interpretation, the first interpretation follows as the special case, where the means of generat-
ing the nonuniform sampling of gdV is via the transformation method, using the indefinite
integral G (see �7.3).

More directly, one can go back and generalize the basic theorem (7.7.1) to the case
of nonuniform sampling: Suppose that points xi are chosen within the volume V with a
probability density p satisfying Z

p dV D 1 (7.9.2)

The generalized fundamental theorem is that the integral of any function f is estimated, using
N sample points x0; : : : ; xN�1, by

I �

Z
f dV D

Z
f

p
pdV �

�
f

p

�
˙

s˝
f 2=p2

˛
� hf=pi2

N
(7.9.3)

where angle brackets denote arithmetic means over theN points, exactly as in equation (7.7.2).
As in equation (7.7.1), the “plus-or-minus” term is a one standard deviation error estimate.
Notice that equation (7.7.1) is in fact the special case of equation (7.9.3), with p D constant D
1=V .

What is the best choice for the sampling density p? Intuitively, we have already seen
that the idea is to make h D f=p as close to constant as possible. We can be more rigorous
by focusing on the numerator inside the square root in equation (7.9.3), which is the variance
per sample point. Both angle brackets are themselves Monte Carlo estimators of integrals, so
we can write

S �

*
f 2

p2

+
�

�
f

p

�2
�

Z
f 2

p2
pdV �

�Z
f

p
pdV

�2
D

Z
f 2

p
dV �

�Z
f dV

�2
(7.9.4)

We now find the optimal p subject to the constraint equation (7.9.2) by the functional variation

0 D
ı

ıp

 Z
f 2

p
dV �

�Z
f dV

�2
C �

Z
p dV

!
(7.9.5)

with � a Lagrange multiplier. Note that the middle term does not depend on p. The variation
(which comes inside the integrals) gives 0 D �f 2=p2 C � or

p D
jf j
p
�
D

jf jR
jf j dV

(7.9.6)

where � has been chosen to enforce the constraint (7.9.2).
If f has one sign in the region of integration, then we get the obvious result that the

optimal choice of p — if one can figure out a practical way of effecting the sampling — is
that it be proportional to jf j. Then the variance is reduced to zero. Not so obvious, but seen
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to be true, is the fact that p _ jf j is optimal even if f takes on both signs. In that case the
variance per sample point (from equations 7.9.4 and 7.9.6) is

S D Soptimal D

�Z
jf j dV

�2
�

�Z
f dV

�2
(7.9.7)

One curiosity is that one can add a constant to the integrand to make it all of one sign,
since this changes the integral by a known amount, constant�V . Then, the optimal choice of p
always gives zero variance, that is, a perfectly accurate integral! The resolution of this seeming
paradox (already mentioned at the end of �7.7) is that perfect knowledge of p in equation
(7.9.6) requires perfect knowledge of

R
jf jdV , which is tantamount to already knowing the

integral you are trying to compute!
If your function f takes on a known constant value in most of the volume V , it is

certainly a good idea to add a constant so as to make that value zero. Having done that, the
accuracy attainable by importance sampling depends in practice not on how small equation
(7.9.7) is, but rather on how small is equation (7.9.4) for an implementable p, likely only a
crude approximation to the ideal.

7.9.2 Stratified Sampling
The idea of stratified sampling is quite different from importance sampling. Let us ex-

pand our notation slightly and let hhf ii denote the true average of the function f over the
volume V (namely the integral divided by V ), while hf i denotes as before the simplest (uni-
formly sampled) Monte Carlo estimator of that average:

hhf ii �
1

V

Z
f dV hf i �

1

N

X
i

f .xi / (7.9.8)

The variance of the estimator, Var .hf i/, which measures the square of the error of the Monte
Carlo integration, is asymptotically related to the variance of the function, Var .f / � hhf 2ii�
hhf ii2, by the relation

Var .hf i/ D
Var .f /

N
(7.9.9)

(compare equation 7.7.1).
Suppose we divide the volume V into two equal, disjoint subvolumes, denoted a and b,

and sample N=2 points in each subvolume. Then another estimator for hhf ii, different from
equation (7.9.8), which we denote hf i0, is

hf i0 � 1
2 .hf ia C hf ib/ (7.9.10)

in other words, the mean of the sample averages in the two half-regions. The variance of
estimator (7.9.10) is given by

Var
�
hf i0



D
1

4
ŒVar .hf ia/C Var .hf ib/�

D
1

4

�
Vara .f /

N=2
C

Varb .f /

N=2

�
D

1

2N
ŒVara .f /C Varb .f /�

(7.9.11)

Here Vara .f / denotes the variance of f in subregion a, that is, hhf 2iia � hhf ii2a, and corre-
spondingly for b.

From the definitions already given, it is not difficult to prove the relation

Var .f / D 1
2 ŒVara .f /C Varb .f /�C

1
4 .hhf iia � hhf iib/

2 (7.9.12)
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(In physics, this formula for combining second moments is the “parallel axis theorem.”) Com-
paring equations (7.9.9), (7.9.11), and (7.9.12), one sees that the stratified (into two subvol-
umes) sampling gives a variance that is never larger than the simple Monte Carlo case — and
smaller whenever the means of the stratified samples, hhf iia and hhf iib , are different.

We have not yet exploited the possibility of sampling the two subvolumes with different
numbers of points, say Na in subregion a and Nb � N � Na in subregion b. Let us do so
now. Then the variance of the estimator is

Var
�
hf i0



D
1

4

�
Vara .f /

Na
C

Varb .f /

N �Na

�
(7.9.13)

which is minimized (one can easily verify) when

Na

N
D

�a

�a C �b
(7.9.14)

Here we have adopted the shorthand notation �a � ŒVara .f /�1=2, and correspondingly for b.
If Na satisfies equation (7.9.14), then equation (7.9.13) reduces to

Var
�
hf i0



D
.�a C �b/

2

4N
(7.9.15)

Equation (7.9.15) reduces to equation (7.9.9) if Var .f / D Vara .f / D Varb .f /, in which
case stratifying the sample makes no difference.

A standard way to generalize the above result is to consider the volume V divided into
more than two equal subregions. One can readily obtain the result that the optimal allocation of
sample points among the regions is to have the number of points in each region j proportional
to �j (that is, the square root of the variance of the function f in that subregion). In spaces
of high dimensionality (say d & 4) this is not in practice very useful, however. Dividing a
volume into K segments along each dimension implies Kd subvolumes, typically much too
large a number when one contemplates estimating all the corresponding �j ’s.

7.9.3 Mixed Strategies
Importance sampling and stratified sampling seem, at first sight, inconsistent with each

other. The former concentrates sample points where the magnitude of the integrand jf j is
largest, the latter where the variance of f is largest. How can both be right?

The answer is that (like so much else in life) it all depends on what you know and how
well you know it. Importance sampling depends on already knowing some approximation to
your integral, so that you are able to generate random points xi with the desired probability
density p. To the extent that your p is not ideal, you are left with an error that decreases
only as N�1=2. Things are particularly bad if your p is far from ideal in a region where the
integrand f is changing rapidly, since then the sampled function h D f=p will have a large
variance. Importance sampling works by smoothing the values of the sampled function h and
is effective only to the extent that you succeed in this.

Stratified sampling, by contrast, does not necessarily require that you know anything
about f . Stratified sampling works by smoothing out the fluctuations of the number of points
in subregions, not by smoothing the values of the points. The simplest stratified strategy, di-
viding V intoN equal subregions and choosing one point randomly in each subregion, already
gives a method whose error decreases asymptotically asN�1, much faster thanN�1=2. (Note
that quasi-random numbers, �7.8, are another way of smoothing fluctuations in the density of
points, giving nearly as good a result as the “blind” stratification strategy.)

However, “asymptotically” is an important caveat: For example, if the integrand is neg-
ligible in all but a single subregion, then the resulting one-sample integration is all but useless.
Information, even very crude, allowing importance sampling to put many points in the active
subregion would be much better than blind stratified sampling.

Stratified sampling really comes into its own if you have some way of estimating the
variances, so that you can put unequal numbers of points in different subregions, according
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to (7.9.14) or its generalizations, and if you can find a way of dividing a region into a prac-
tical number of subregions (notably not Kd with large dimension d ), while yet significantly
reducing the variance of the function in each subregion compared to its variance in the full
volume. Doing this requires a lot of knowledge about f , though different knowledge from
what is required for importance sampling.

In practice, importance sampling and stratified sampling are not incompatible. In many,
if not most, cases of interest, the integrand f is small everywhere in V except for a small
fractional volume of “active regions.” In these regions the magnitude of jf j and the standard
deviation � D ŒVar .f /�1=2 are comparable in size, so both techniques will give about the
same concentration of points. In more sophisticated implementations, it is also possible to
“nest” the two techniques, so that, e.g., importance sampling on a crude grid is followed by
stratification within each grid cell.

7.9.4 Adaptive Monte Carlo: VEGAS
The VEGAS algorithm, invented by Peter Lepage [1,2], is widely used for multidimen-

sional integrals that occur in elementary particle physics. VEGAS is primarily based on im-
portance sampling, but it also does some stratified sampling if the dimension d is small enough
to avoidKd explosion (specifically, if .K=2/d < N=2, with N the number of sample points).
The basic technique for importance sampling in VEGAS is to construct, adaptively, a multidi-
mensional weight function g that is separable,

p / g.x; y; z; : : :/ D gx.x/gy.y/gz.z/ : : : (7.9.16)

Such a function avoids the Kd explosion in two ways: (i) It can be stored in the computer
as d separate one-dimensional functions, each defined by K tabulated values, say — so that
K � d replaces Kd . (ii) It can be sampled as a probability density by consecutively sampling
the d one-dimensional functions to obtain coordinate vector components .x; y; z; : : :/.

The optimal separable weight function can be shown to be [1]

gx.x/ /

"Z
dy

Z
dz : : :

f 2.x; y; z; : : :/

gy.y/gz.z/ : : :

#1=2
(7.9.17)

(and correspondingly for y; z; : : :). Notice that this reduces to g / jf j (7.9.6) in one di-
mension. Equation (7.9.17) immediately suggests VEGAS’ adaptive strategy: Given a set of
g-functions (initially all constant, say), one samples the function f , accumulating not only
the overall estimator of the integral, but also the Kd estimators (K subdivisions of the inde-
pendent variable in each of d dimensions) of the right-hand side of equation (7.9.17). These
then determine improved g functions for the next iteration.

When the integrand f is concentrated in one, or at most a few, regions in d -space, then
the weight function g’s quickly become large at coordinate values that are the projections of
these regions onto the coordinate axes. The accuracy of the Monte Carlo integration is then
enormously enhanced over what simple Monte Carlo would give.

The weakness of VEGAS is the obvious one: To the extent that the projection of the
function f onto individual coordinate directions is uniform, VEGAS gives no concentration
of sample points in those dimensions. The worst case for VEGAS, e.g., is an integrand that is
concentrated close to a body diagonal line, e.g., one from .0; 0; 0; : : :/ to .1; 1; 1; : : :/. Since
this geometry is completely nonseparable, VEGAS can give no advantage at all. More gen-
erally, VEGAS may not do well when the integrand is concentrated in one-dimensional (or
higher) curved trajectories (or hypersurfaces), unless these happen to be oriented close to the
coordinate directions.

The routine vegas that follows is essentially Lepage’s standard version, minimally mod-
ified to conform to our conventions. (We thank Lepage for permission to reproduce the pro-
gram here.) For consistency with other versions of the VEGAS algorithm in circulation, we
have preserved original variable names. The parameter NDMX is what we have called K, the
maximum number of increments along each axis; MXDIM is the maximum value of d ; some
other parameters are explained in the comments.
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The vegas routine performs m D itmx statistically independent evaluations of the de-
sired integral, each with N D ncall function evaluations. While statistically independent,
these iterations do assist each other, since each one is used to refine the sampling grid for the
next one. The results of all iterations are combined into a single best answer, and its estimated
error, by the relations

Ibest D

m�1X
iD0

Ii

�2i

�m�1X
iD0

1

�2i

�best D

 
m�1X
iD0

1

�2i

!�1=2
(7.9.18)

Also returned is the quantity

�2=m �
1

m � 1

m�1X
iD0

.Ii � Ibest/
2

�2i

(7.9.19)

If this is significantly larger than 1, then the results of the iterations are statistically inconsis-
tent, and the answers are suspect.

Here is the interface to vegas. (The full code is given in [3].)

void vegas(VecDoub_I &regn, Doub fxn(VecDoub_I &, const Doub), const Int init,
const Int ncall, const Int itmx, const Int nprn, Doub &tgral, Doub &sd,
Doub &chi2a) {

Performs Monte Carlo integration of a user-supplied ndim-dimensional function fxn over a
rectangular volume specified by regn[0..2*ndim-1], a vector consisting of ndim “lower left”
coordinates of the region followed by ndim “upper right” coordinates. The integration consists
of itmx iterations, each with approximately ncall calls to the function. After each iteration
the grid is refined; more than 5 or 10 iterations are rarely useful. The input flag init signals
whether this call is a new start or a subsequent call for additional iterations (see comments in the
code). The input flag nprn (normally 0) controls the amount of diagnostic output. Returned
answers are tgral (the best estimate of the integral), sd (its standard deviation), and chi2a

(�2 per degree of freedom, an indicator of whether consistent results are being obtained). See
text for further details.

The input flag init can be used to advantage. One might have a call with init=0,
ncall=1000, itmx=5 immediately followed by a call with init=1, ncall=100000, itmx=1.
The effect would be to develop a sampling grid over five iterations of a small number of
samples, then to do a single high accuracy integration on the optimized grid.

To use vegas for the torus example discussed in �7.7 (the density integrand only, say),
the function fxn would be

Doub torusfunc(const VecDoub &x, const Doub wgt) {
Doub den = exp(5.*x[2]);
if (SQR(x[2])+SQR(sqrt(SQR(x[0])+SQR(x[1]))-3.) <= 1.) return den;
else return 0.;

}

and the main code would be

Doub tgral, sd, chi2a;
VecDoub regn(6);
regn[0] = 1.; regn[3] = 4.;
regn[1] = -3.; regn[4] = 4.;
regn[2] = -1.; regn[5] = 1.;
vegas(regn,torusfunc,0,10000,10,0,tgral,sd,chi2a);
vegas(regn,torusfunc,1,900000,1,0,tgral,sd,chi2a);

Note that the user-supplied integrand function, fxn, has an argument wgt in addition
to the expected evaluation point x. In most applications you ignore wgt inside the function.
Occasionally, however, you may want to integrate some additional function or functions along
with the principal function f . The integral of any such function g can be estimated by

Ig D
X
i

wig.x/ (7.9.20)
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where the wi ’s and x’s are the arguments wgt and x, respectively. It is straightforward to ac-
cumulate this sum inside your function fxn and to pass the answer back to your main program
via global variables. Of course, g.x/ had better resemble the principal function f to some
degree, since the sampling will be optimized for f .

The full listing of vegas is given in a Webnote [3].

7.9.5 Recursive Stratified Sampling
The problem with stratified sampling, we have seen, is that it may not avoid the Kd

explosion inherent in the obvious, Cartesian, tessellation of a d -dimensional volume. A tech-
nique called recursive stratified sampling [4] attempts to do this by successive bisections of a
volume, not along all d dimensions, but rather along only one dimension at a time. The start-
ing points are equations (7.9.10) and (7.9.13), applied to bisections of successively smaller
subregions.

Suppose that we have a quota of N evaluations of the function f and want to evaluate
hf i0 in the rectangular parallelepiped region R D .xa;xb/. (We denote such a region by the
two coordinate vectors of its diagonally opposite corners.) First, we allocate a fraction p ofN
toward exploring the variance of f in R: We sample pN function values uniformly in R and
accumulate the sums that will give the d different pairs of variances corresponding to the d
different coordinate directions along whichR can be bisected. In other words, in pN samples,
we estimate Var .f / in each of the regions resulting from a possible bisection of R,

Rai �.xa;xb �
1
2ei 	 .xb � xa/ei /

Rbi �.xa C
1
2ei 	 .xb � xa/ei ;xb/

(7.9.21)

Here ei is the unit vector in the i th coordinate direction, i D 1; 2; : : : ; d .
Second, we inspect the variances to find the most favorable dimension i to bisect. By

equation (7.9.15), we could, for example, choose that i for which the sum of the square roots
of the variance estimators in regionsRai and Rbi is minimized. (Actually, as we will explain,
we do something slightly different.)

Third, we allocate the remaining .1�p/N function evaluations between the regionsRai
and Rbi . If we used equation (7.9.15) to choose i , we should do this allocation according to
equation (7.9.14).

We now have two parallelepipeds, each with its own allocation of function evaluations
for estimating the mean of f . Our “RSS” algorithm now shows itself to be recursive: To
evaluate the mean in each region, we go back to the sentence beginning “First,...” in the
paragraph above equation (7.9.21). (Of course, when the allocation of points to a region falls
below some number, we resort to simple Monte Carlo rather than continue with the recursion.)

Finally, we combine the means and also estimated variances of the two subvolumes using
equation (7.9.10) and the first line of equation (7.9.11).

This completes the RSS algorithm in its simplest form. Before we describe some addi-
tional tricks under the general rubric of “implementation details,” we need to return briefly to
equations (7.9.13) – (7.9.15) and derive the equations that we actually use instead of these.
The right-hand side of equation (7.9.13) applies the familiar scaling law of equation (7.9.9)
twice, once to a and again to b. This would be correct if the estimates hf ia and hf ib were
each made by simple Monte Carlo, with uniformly random sample points. However, the two
estimates of the mean are in fact made recursively. Thus, there is no reason to expect equation
(7.9.9) to hold. Rather, we might substitute for equation (7.9.13) the relation,

Var
�
hf i0



D
1

4

�
Vara .f /

N ˛a
C

Varb .f /

.N �Na/˛

�
(7.9.22)

where ˛ is an unknown constant � 1 (the case of equality corresponding to simple Monte
Carlo). In that case, a short calculation shows that Var

�
hf i0



is minimized when

Na

N
D

Vara .f /
1=.1C˛/

Vara .f /
1=.1C˛/ C Varb .f /

1=.1C˛/
(7.9.23)
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and that its minimum value is

Var
�
hf i0



/
h
Vara .f /

1=.1C˛/ C Varb .f /
1=.1C˛/

i1C˛
(7.9.24)

Equations (7.9.22) – (7.9.24) reduce to equations (7.9.13) – (7.9.15) when ˛ D 1. Numerical
experiments to find a self-consistent value for ˛ find that ˛ � 2. That is, when equation
(7.9.23) with ˛ D 2 is used recursively to allocate sample opportunities, the observed variance
of the RSS algorithm goes approximately as N�2, while any other value of ˛ in equation
(7.9.23) gives a poorer fall-off. (The sensitivity to ˛ is, however, not very great; it is not
known whether ˛ D 2 is an analytically justifiable result or only a useful heuristic.)

The principal difference between miser’s implementation and the algorithm as described
thus far lies in how the variances on the right-hand side of equation (7.9.23) are estimated. We
find empirically that it is somewhat more robust to use the square of the difference of max-
imum and minimum sampled function values, instead of the genuine second moment of the
samples. This estimator is of course increasingly biased with increasing sample size; however,
equation (7.9.23) uses it only to compare two subvolumes (a and b) having approximately
equal numbers of samples. The “max minus min” estimator proves its worth when the pre-
liminary sampling yields only a single point, or a small number of points, in active regions of
the integrand. In many realistic cases, these are indicators of nearby regions of even greater
importance, and it is useful to let them attract the greater sampling weight that “max minus
min” provides.

A second modification embodied in the code is the introduction of a “dithering parame-
ter,” dith, whose nonzero value causes subvolumes to be divided not exactly down the middle,
but rather into fractions 0:5˙dith, with the sign of the ˙ randomly chosen by a built-in ran-
dom number routine. Normally dith can be set to zero. However, there is a large advantage
in taking dith to be nonzero if some special symmetry of the integrand puts the active region
exactly at the midpoint of the region, or at the center of some power-of-two submultiple of
the region. One wants to avoid the extreme case of the active region being evenly divided
into 2d abutting corners of a d -dimensional space. A typical nonzero value of dith, on those
occasions when it is useful, might be 0:1. Of course, when the dithering parameter is nonzero,
we must take the differing sizes of the subvolumes into account; the code does this through
the variable fracl.

One final feature in the code deserves mention. The RSS algorithm uses a single set
of sample points to evaluate equation (7.9.23) in all d directions. At the bottom levels of
the recursion, the number of sample points can be quite small. Although rare, it can happen
that in one direction all the samples are in one half of the volume; in that case, that direction
is ignored as a candidate for bifurcation. Even more rare is the possibility that all of the
samples are in one half of the volume in all directions. In this case, a random direction is
chosen. If this happens too often in your application, then you should increase MNPT (see line
if (jb == -1): : : in the code).

Note that miser, as given, returns as ave an estimate of the average function value
hhf ii, not the integral of f over the region. The routine vegas, adopting the other convention,
returns as tgral the integral. The two conventions are of course trivially related, by equation
(7.9.8), since the volume V of the rectangular region is known.

The interface to the miser routine is this:

void miser(Doub func(VecDoub_I &), VecDoub_I &regn, const Int npts,
const Doub dith, Doub &ave, Doub &var) {

Monte Carlo samples a user-supplied ndim-dimensional function func in a rectangular volume
specified by regn[0..2*ndim-1], a vector consisting of ndim “lower-left” coordinates of the
region followed by ndim “upper-right” coordinates. The function is sampled a total of npts
times, at locations determined by the method of recursive stratified sampling. The mean value
of the function in the region is returned as ave; an estimate of the statistical uncertainty of ave
(square of standard deviation) is returned as var. The input parameter dith should normally
be set to zero, but can be set to (e.g.) 0.1 if func’s active region falls on the boundary of a
power-of-two subdivision of region.

Implementing code for the torus problem in �7.7 is



�

�

“nr3” — 2007/5/1 — 20:53 — page 418 — #440
�

�

� �

418 Chapter 7. Random Numbers

Doub torusfunc(const VecDoub &x) {
Doub den = exp(5.*x[2]);
if (SQR(x[2])+SQR(sqrt(SQR(x[0])+SQR(x[1]))-3.) <= 1.) return den;
else return 0.;

}

and the main code is

Doub ave, var, tgral, sd, vol = 3.*7.*2.;
regn[0] = 1.; regn[3] = 4.;
regn[1] = -3.; regn[4] = 4.;
regn[2] = -1.; regn[5] = 1.;
miser(torusfunc,regn,1000000,0.,ave,var);
tgral = ave*vol;
sd = sqrt(var)*vol;

(Actually, miser is not particularly well-suited to this problem.)
The complete listing of miser is given in a Webnote [5]. The miser routine calls the

short function ranpt to get a random point within a specified d -dimensional region. The ver-
sion of ranpt in the Webnote makes consecutive calls to a uniform random number generator
and does the obvious scaling. One can easily modify ranpt to generate its points via the
quasi-random routine sobseq (�7.8). We find that miser with sobseq can be considerably
more accurate than miser with uniform random deviates. Since the use of RSS and the use of
quasi-random numbers are completely separable, however, we have not made the code given
here dependent on sobseq. A similar remark might be made regarding importance sampling,
which could in principle be combined with RSS. (One could in principle combine vegas and
miser, although the programming would be intricate.)
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Sorting and Selection CHAPTER 8

8.0 Introduction

This chapter almost doesn’t belong in a book on numerical methods: Sorting
and selection are bread-and-butter topics in the standard computer science curricu-
lum. However, some review of the techniques for sorting, from the perspective of sci-
entific computing, will prove useful in subsequent chapters. We can develop some
standard interfaces for later use, and also illustrate the usefulness of templates in
object-oriented programming.

In conjunction with numerical work, sorting is frequently necessary when data
(either experimental or numerically generated) are being processed. One has tables
or lists of numbers, representing one or more independent (or control) variables, and
one or more dependent (or measured) variables. One may wish to arrange these data,
in various circumstances, in order by one or another of these variables. Alternatively,
one may simply wish to identify the median value or the upper quartile value of one
of the lists of values. (These kinds of values are generically called quantiles.) This
task, closely related to sorting, is called selection.

Here, more specifically, are the tasks that this chapter will deal with:

� Sort, i.e., rearrange, an array of numbers into numerical order.
� Rearrange an array into numerical order while performing the corresponding

rearrangement of one or more additional arrays, so that the correspondence
between elements in all arrays is maintained.
� Given an array, prepare an index table for it, i.e., a table of pointers telling

which number array element comes first in numerical order, which second,
and so on.
� Given an array, prepare a rank table for it, i.e., a table telling what is the

numerical rank of the first array element, the second array element, and so on.
� Select the M th largest element from an array.
� Select theM th largest value, or estimate arbitrary quantile values, from a data

stream in one pass (i.e., without storing the stream for later processing).
� Given a bunch of equivalence relations, organize them into equivalence classes.

For the basic task of sorting N elements, the best algorithms require on the

419
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order of several times N log2N operations. The algorithm inventor tries to reduce
the constant in front of this estimate to as small a value as possible. Two of the
best algorithms are Quicksort (�8.2), invented by the inimitable C.A.R. Hoare, and
Heapsort (�8.3), invented by J.W.J. Williams.

For large N (say > 1000), Quicksort is faster, on most machines, by a factor
of 1.5 or 2; it requires a bit of extra memory, however, and is a moderately compli-
cated program. Heapsort is a true “sort in place,” and is somewhat more compact to
program and therefore a bit easier to modify for special purposes. On balance, we
recommend Quicksort because of its speed, but we implement both routines.

For small N one does better to use an algorithm whose operation count goes
as a higher, i.e., poorer, power of N , if the constant in front is small enough. For
N < 20, roughly, the method of straight insertion (�8.1) is concise and fast enough.
We include it with some trepidation: It is an N 2 algorithm, whose potential for
misuse (by using it for too large an N ) is great. The resultant waste of computer
resource can be so awesome that we were tempted not to include any N 2 routine
at all. We will draw the line, however, at the inefficient N 2 algorithm, beloved of
elementary computer science texts, called bubble sort. If you know what bubble sort
is, wipe it from your mind; if you don’t know, make a point of never finding out!

For N < 50, roughly, Shell’s method (�8.1), only slightly more complicated to
program than straight insertion, is competitive with the more complicated Quicksort
on many machines. This method goes asN 3=2 in the worst case, but is usually faster.

See Refs. [1,2] for further information on the subject of sorting, and for detailed
references to the literature.

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1997, Sorting and Searching, 3rd ed., vol. 3 of The Art of Computer Programming
(Reading, MA: Addison-Wesley).[1]

Sedgewick, R. 1998, Algorithms in C, 3rd ed. (Reading, MA: Addison-Wesley), Chapters 8–
13.[2]

8.1 Straight Insertion and Shell’s Method

Straight insertion is an N 2 routine and should be used only for small N ,
say < 20.

The technique is exactly the one used by experienced card players to sort their
cards: Pick out the second card and put it in order with respect to the first; then pick
out the third card and insert it into the sequence among the first two; and so on until
the last card has been picked out and inserted.

template<class T>sort.h
void piksrt(NRvector<T> &arr)
Sort an array arr[0..n-1] into ascending numerical order, by straight insertion. arr is replaced
on output by its sorted rearrangement.
{

Int i,j,n=arr.size();
T a;
for (j=1;j<n;j++) { Pick out each element in turn.

a=arr[j];
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i=j;
while (i > 0 && arr[i-1] > a) { Look for the place to insert it.

arr[i]=arr[i-1];
i--;

}
arr[i]=a; Insert it.

}
}

Notice the use of a template in order to make the routine general for any type
of NRvector, including both VecInt and VecDoub. The only thing required of the
elements of type T in the vector is that they have an assignment operator and a >
relation. (We will generally assume that the relations <, >, and == all exist.) If you
try to sort a vector of elements without these properties, the compiler will complain,
so you can’t go wrong.

It is a matter of taste whether to template on the element type, as above, or on
the vector itself, as

template<class T>

void piksrt(T &arr)

This would seem more general, since it will work for any type T that has a subscript
operator [], not just NRvectors. However, it also requires that T have some method
for getting at the type of its elements, necessary for the declaration of the variable a.
If T follows the conventions of STL containers, then that declaration can be written

T::value_type a;

but if it doesn’t, then you can find yourself lost at C.
What if you also want to rearrange an array brr at the same time as you sort

arr? Simply move an element of brr whenever you move an element of arr:

template<class T, class U> sort.h
void piksr2(NRvector<T> &arr, NRvector<U> &brr)
Sort an array arr[0..n-1] into ascending numerical order, by straight insertion, while making
the corresponding rearrangement of the array brr[0..n-1].
{

Int i,j,n=arr.size();
T a;
U b;
for (j=1;j<n;j++) { Pick out each element in turn.

a=arr[j];
b=brr[j];
i=j;
while (i > 0 && arr[i-1] > a) { Look for the place to insert it.

arr[i]=arr[i-1];
brr[i]=brr[i-1];
i--;

}
arr[i]=a; Insert it.
brr[i]=b;

}
}

Note that the types of arr and brr are separately templated, so they don’t have to be
the same.

Don’t generalize this technique to the rearrangement of a larger number of ar-
rays by sorting on one of them. Instead see �8.4.
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8.1.1 Shell’s Method
This is actually a variant on straight insertion, but a very powerful variant in-

deed. The rough idea, e.g., for the case of sorting 16 numbers n0 : : : n15, is this: First
sort, by straight insertion, each of the 8 groups of 2 .n0; n8/, .n1; n9/, . . . , .n7; n15/.
Next, sort each of the 4 groups of 4 .n0; n4; n8; n12/, . . . , .n3; n7; n11; n15/. Next
sort the 2 groups of 8 records, beginning with .n0; n2; n4; n6; n8; n10; n12; n14/. Fi-
nally, sort the whole list of 16 numbers.

Of course, only the last sort is necessary for putting the numbers into order. So
what is the purpose of the previous partial sorts? The answer is that the previous
sorts allow numbers efficiently to filter up or down to positions close to their final
resting places. Therefore, the straight insertion passes on the final sort rarely have to
go past more than a “few” elements before finding the right place. (Think of sorting
a hand of cards that are already almost in order.)

The spacings between the numbers sorted on each pass through the data (8,4,2,1
in the above example) are called the increments, and a Shell sort is sometimes called
a diminishing increment sort. There has been a lot of research into how to choose a
good set of increments, but the optimum choice is not known. The set : : : ; 8; 4; 2; 1
is in fact not a good choice, especially for N a power of 2. A much better choice is
the sequence

.3k � 1/=2; : : : ; 40; 13; 4; 1 (8.1.1)

which can be generated by the recurrence

i0 D 1; ikC1 D 3ik C 1; k D 0; 1; : : : (8.1.2)

It can be shown (see [1]) that for this sequence of increments the number of operations
required in all is of order N 3=2 for the worst possible ordering of the original data.
For “randomly” ordered data, the operations count goes approximately as N 1:25, at
least for N < 60000. For N > 50, however, Quicksort is generally faster.

template<class T>sort.h
void shell(NRvector<T> &a, Int m=-1)
Sort an array a[0..n-1] into ascending numerical order by Shell’s method (diminishing in-
crement sort). a is replaced on output by its sorted rearrangement. Normally, the optional
argument m should be omitted, but if it is set to a positive value, then only the first m elements
of a are sorted.
{

Int i,j,inc,n=a.size();
T v;
if (m>0) n = MIN(m,n); Use optional argument.
inc=1; Determine the starting increment.
do {

inc *= 3;
inc++;

} while (inc <= n);
do { Loop over the partial sorts.

inc /= 3;
for (i=inc;i<n;i++) { Outer loop of straight insertion.

v=a[i];
j=i;
while (a[j-inc] > v) { Inner loop of straight insertion.

a[j]=a[j-inc];
j -= inc;
if (j < inc) break;

}
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a[j]=v;
}

} while (inc > 1);
}

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1997, Sorting and Searching, 3rd ed., vol. 3 of The Art of Computer Programming
(Reading, MA: Addison-Wesley), �5.2.1.[1]

Sedgewick, R. 1998, Algorithms in C, 3rd ed. (Reading, MA: Addison-Wesley), Chapter 8.

8.2 Quicksort
Quicksort is, on most machines, on average, for largeN , the fastest known sort-

ing algorithm. It is a “partition-exchange” sorting method: A “partitioning element”
a is selected from the array. Then, by pairwise exchanges of elements, the original
array is partitioned into two subarrays. At the end of a round of partitioning, the
element a is in its final place in the array. All elements in the left subarray are 
 a,
while all elements in the right subarray are � a. The process is then repeated on the
left and right subarrays independently, and so on.

The partitioning process is carried out by selecting some element, say the left-
most, as the partitioning element a. Scan a pointer up the array until you find an
element > a, and then scan another pointer down from the end of the array until
you find an element < a. These two elements are clearly out of place for the final
partitioned array, so exchange them. Continue this process until the pointers cross.
This is the right place to insert a, and that round of partitioning is done. The question
of the best strategy when an element is equal to the partitioning element is subtle;
see Sedgewick [1] for a discussion. (Answer: You should stop and do an exchange.)

For speed of execution, we don’t implement Quicksort using recursion. Thus
the algorithm requires an auxiliary array of storage, of length 2 log2N , which it uses
as a push-down stack for keeping track of the pending subarrays. When a subarray
has gotten down to some size M , it becomes faster to sort it by straight insertion
(�8.1), so we will do this. The optimal setting of M is machine-dependent, but
M D 7 is not too far wrong. Some people advocate leaving the short subarrays
unsorted until the end, and then doing one giant insertion sort at the end. Since
each element moves at most seven places, this is just as efficient as doing the sorts
immediately, and saves on the overhead. However, on modern machines with a cache
hierarchy, there is increased overhead when dealing with a large array all at once. We
have not found any advantage in saving the insertion sorts till the end.

As already mentioned, Quicksort’s average running time is fast, but its worst
case running time can be very slow: For the worst case it is, in fact, an N 2 method!
And for the most straightforward implementation of Quicksort it turns out that the
worst case is achieved for an input array that is already in order! This ordering of
the input array might easily occur in practice. One way to avoid this is to use a little
random number generator to choose a random element as the partitioning element.
Another is to use instead the median of the first, middle, and last elements of the
current subarray.
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The great speed of Quicksort comes from the simplicity and efficiency of its
inner loop. Simply adding one unnecessary test (for example, a test that your pointer
has not moved off the end of the array) can almost double the running time! One
avoids such unnecessary tests by placing “sentinels” at either end of the subarray
being partitioned. The leftmost sentinel is
 a, the rightmost� a. With the “median-
of-three” selection of a partitioning element, we can use the two elements that were
not the median to be the sentinels for that subarray.

Our implementation closely follows [1]:

template<class T>sort.h
void sort(NRvector<T> &arr, Int m=-1)
Sort an array arr[0..n-1] into ascending numerical order using the Quicksort algorithm. arr
is replaced on output by its sorted rearrangement. Normally, the optional argument m should be
omitted, but if it is set to a positive value, then only the first m elements of arr are sorted.
{

static const Int M=7, NSTACK=64;
Here M is the size of subarrays sorted by straight insertion and NSTACK is the required
auxiliary storage.
Int i,ir,j,k,jstack=-1,l=0,n=arr.size();
T a;
VecInt istack(NSTACK);
if (m>0) n = MIN(m,n); Use optional argument.
ir=n-1;
for (;;) { Insertion sort when subarray small enough.

if (ir-l < M) {
for (j=l+1;j<=ir;j++) {

a=arr[j];
for (i=j-1;i>=l;i--) {

if (arr[i] <= a) break;
arr[i+1]=arr[i];

}
arr[i+1]=a;

}
if (jstack < 0) break;
ir=istack[jstack--]; Pop stack and begin a new round of parti-

tioning.l=istack[jstack--];
} else {

k=(l+ir) >> 1; Choose median of left, center, and right el-
ements as partitioning element a. Also
rearrange so that a[l] � a[l+1] � a[ir].

SWAP(arr[k],arr[l+1]);
if (arr[l] > arr[ir]) {

SWAP(arr[l],arr[ir]);
}
if (arr[l+1] > arr[ir]) {

SWAP(arr[l+1],arr[ir]);
}
if (arr[l] > arr[l+1]) {

SWAP(arr[l],arr[l+1]);
}
i=l+1; Initialize pointers for partitioning.
j=ir;
a=arr[l+1]; Partitioning element.
for (;;) { Beginning of innermost loop.

do i++; while (arr[i] < a); Scan up to find element > a.
do j--; while (arr[j] > a); Scan down to find element < a.
if (j < i) break; Pointers crossed. Partitioning complete.
SWAP(arr[i],arr[j]); Exchange elements.

} End of innermost loop.
arr[l+1]=arr[j]; Insert partitioning element.
arr[j]=a;
jstack += 2;
Push pointers to larger subarray on stack; process smaller subarray immediately.
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if (jstack >= NSTACK) throw("NSTACK too small in sort.");
if (ir-i+1 >= j-l) {

istack[jstack]=ir;
istack[jstack-1]=i;
ir=j-1;

} else {
istack[jstack]=j-1;
istack[jstack-1]=l;
l=i;

}
}

}
}

As usual, you can move any other arrays around at the same time as you sort
arr. At the risk of being repetitious:

template<class T, class U> sort.h
void sort2(NRvector<T> &arr, NRvector<U> &brr)
Sort an array arr[0..n-1] into ascending order using Quicksort, while making the corresponding
rearrangement of the array brr[0..n-1].
{

const Int M=7,NSTACK=64;
Int i,ir,j,k,jstack=-1,l=0,n=arr.size();
T a;
U b;
VecInt istack(NSTACK);
ir=n-1;
for (;;) { Insertion sort when subarray small enough.

if (ir-l < M) {
for (j=l+1;j<=ir;j++) {

a=arr[j];
b=brr[j];
for (i=j-1;i>=l;i--) {

if (arr[i] <= a) break;
arr[i+1]=arr[i];
brr[i+1]=brr[i];

}
arr[i+1]=a;
brr[i+1]=b;

}
if (jstack < 0) break;
ir=istack[jstack--]; Pop stack and begin a new round of parti-

tioning.l=istack[jstack--];
} else {

k=(l+ir) >> 1; Choose median of left, center, and right el-
ements as partitioning element a. Also
rearrange so that a[l] � a[l+1] � a[ir].

SWAP(arr[k],arr[l+1]);
SWAP(brr[k],brr[l+1]);
if (arr[l] > arr[ir]) {

SWAP(arr[l],arr[ir]);
SWAP(brr[l],brr[ir]);

}
if (arr[l+1] > arr[ir]) {

SWAP(arr[l+1],arr[ir]);
SWAP(brr[l+1],brr[ir]);

}
if (arr[l] > arr[l+1]) {

SWAP(arr[l],arr[l+1]);
SWAP(brr[l],brr[l+1]);

}
i=l+1; Initialize pointers for partitioning.
j=ir;
a=arr[l+1]; Partitioning element.
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b=brr[l+1];
for (;;) { Beginning of innermost loop.

do i++; while (arr[i] < a); Scan up to find element > a.
do j--; while (arr[j] > a); Scan down to find element < a.
if (j < i) break; Pointers crossed. Partitioning complete.
SWAP(arr[i],arr[j]); Exchange elements of both arrays.
SWAP(brr[i],brr[j]);

} End of innermost loop.
arr[l+1]=arr[j]; Insert partitioning element in both arrays.
arr[j]=a;
brr[l+1]=brr[j];
brr[j]=b;
jstack += 2;
Push pointers to larger subarray on stack; process smaller subarray immediately.
if (jstack >= NSTACK) throw("NSTACK too small in sort2.");
if (ir-i+1 >= j-l) {

istack[jstack]=ir;
istack[jstack-1]=i;
ir=j-1;

} else {
istack[jstack]=j-1;
istack[jstack-1]=l;
l=i;

}
}

}
}

You could, in principle, rearrange any number of additional arrays along with
brr, but this is inefficient if the number of such arrays is larger than one. The pre-
ferred technique is to make use of an index table, as described in �8.4.

CITED REFERENCES AND FURTHER READING:

Sedgewick, R. 1978, “Implementing Quicksort Programs,” Communications of the ACM, vol. 21,
pp. 847–857.[1]

8.3 Heapsort

Heapsort is slower than Quicksort by a constant factor. It is so beautiful that we
sometimes use it anyway, just for the sheer joy of it. (However, we don’t recommend
that you do this if your employer is paying for efficient code.) Heapsort is a true
“in-place” sort, requiring no auxiliary storage. It is an N log2N algorithm, not only
on average, but also for the worst case order of input data. In fact, its worst case is
only 20 % or so worse than its average running time.

It is beyond our scope to give a complete exposition on the theory of Heapsort.
We mention the general principles, then refer you to the references [1,2]; or you can
analyze the program yourself, if you want to understand the details.

A set of N numbers aj ; j D 0; : : : ; N � 1, is said to form a “heap” if it
satisfies the relation

a.j�1/=2 � aj for 0 
 .j � 1/=2 < j < N (8.3.1)
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a0

a1 a2

a6a5a4 a3

a7 a8 a9 a10 a11

Figure 8.3.1. Ordering implied by a “heap,” here of 12 elements. Elements connected by an upward path
are sorted with respect to one another, but there is not necessarily any ordering among elements related
only “laterally.”

Here the division in j=2 means “integer divide,” i.e., is an exact integer or else
is rounded down to the closest integer. Definition (8.3.1) will make sense if you
think of the numbers ai as being arranged in a binary tree, with the top, “boss,”
node being a0; the two “underling” nodes being a1 and a2; their four underling
nodes being a3 through a6; etc. (See Figure 8.3.1.) In this form, a heap has every
“supervisor” greater than or equal to its two “supervisees,” down through the levels
of the hierarchy.

If you have managed to rearrange your array into an order that forms a heap,
then sorting it is very easy: You pull off the “top of the heap,” which will be the
largest element yet unsorted. Then you “promote” to the top of the heap its largest
underling. Then you promote its largest underling, and so on. The process is like
what happens (or is supposed to happen) in a large corporation when the chairman
of the board retires. You then repeat the whole process by retiring the new chairman
of the board. Evidently the whole thing is an N log2N process, since each retiring
chairman leads to log2N promotions of underlings.

Well, how do you arrange the array into a heap in the first place? The answer
is again a “sift-up” process like corporate promotion. Imagine that the corporation
starts out with N=2 employees on the production line, but with no supervisors. Now
a supervisor is hired to supervise two workers. If he is less capable than one of
his workers, that one is promoted in his place, and he joins the production line.
After supervisors are hired, then supervisors of supervisors are hired, and so on up
the corporate ladder. Each employee is brought in at the top of the tree, but then
immediately sifted down, with more capable workers promoted until their proper
corporate level has been reached.

In the Heapsort implementation, the same sift-up code can be used for the ini-
tial creation of the heap and for the subsequent retirement-and-promotion phase. One
execution of the Heapsort function represents the entire life-cycle of a giant corpo-
ration: N=2 workers are hired; N=2 potential supervisors are hired; there is a sifting
up in the ranks, a sort of super Peter Principle: In due course, each of the original
employees gets promoted to chairman of the board.



�

�

“nr3” — 2007/5/1 — 20:53 — page 428 — #450
�

�

� �

428 Chapter 8. Sorting and Selection

namespace hpsort_util {sort.h
template<class T>
void sift_down(NRvector<T> &ra, const Int l, const Int r)
Carry out the sift-down on element ra(l) to maintain the heap structure. l and r determine
the “left” and “right” range of the sift-down.
{

Int j,jold;
T a;
a=ra[l];
jold=l;
j=2*l+1;
while (j <= r) {

if (j < r && ra[j] < ra[j+1]) j++; Compare to the better underling.
if (a >= ra[j]) break; Found a’s level. Terminate the sift-

down. Otherwise, demote a and
continue.

ra[jold]=ra[j];
jold=j;
j=2*j+1;

}
ra[jold]=a; Put a into its slot.

}
}

template<class T>
void hpsort(NRvector<T> &ra)
Sort an array ra[0..n-1] into ascending numerical order using the Heapsort algorithm. ra is
replaced on output by its sorted rearrangement.
{

Int i,n=ra.size();
for (i=n/2-1; i>=0; i--)

The index i, which here determines the “left” range of the sift-down, i.e., the element
to be sifted down, is decremented from n/2-1 down to 0 during the “hiring” (heap
creation) phase.
hpsort_util::sift_down(ra,i,n-1);

for (i=n-1; i>0; i--) {
Here the “right” range of the sift-down is decremented from n-2 down to 0 during the
“retirement-and-promotion” (heap selection) phase.
SWAP(ra[0],ra[i]); Clear a space at the end of the array, and retire

the top of the heap into it.hpsort_util::sift_down(ra,0,i-1);
}

}

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1997, Sorting and Searching, 3rd ed., vol. 3 of The Art of Computer Programming
(Reading, MA: Addison-Wesley), �5.2.3.[1]

Sedgewick, R. 1998, Algorithms in C, 3rd ed. (Reading, MA: Addison-Wesley), Chapter 11.[2]

8.4 Indexing and Ranking
The concept of keys plays a prominent role in the management of data files. A

data record in such a file may contain several items, or fields. For example, a record
in a file of weather observations may have fields recording time, temperature, and
wind velocity. When we sort the records, we must decide which of these fields we
want to be brought into sorted order. The other fields in a record just come along for
the ride and will not, in general, end up in any particular order. The field on which
the sort is performed is called the key field.
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For a data file with many records and many fields, the actual movement of N
records into the sorted order of their keys Ki ; i D 0; : : : ; N � 1, can be a daunting
task. Instead, one can construct an index table Ij ; j D 0; : : : ; N � 1, such that the
smallest Ki has i D I0, the second smallest has i D I1, and so on up to the largest
Ki with i D IN�1. In other words, the array

KIj j D 0; 1; : : : ; N � 1 (8.4.1)

is in sorted order when indexed by j . When an index table is available, one need not
move records from their original order. Further, different index tables can be made
from the same set of records, indexing them to different keys.

The algorithm for constructing an index table is straightforward: Initialize the
index array with the integers from 0 to N � 1; then perform the Quicksort algorithm,
moving the elements around as if one were sorting the keys. The integer that initially
numbered the smallest key thus ends up in the number one position, and so on.

The concept of an index table maps particularly nicely into an object, say
Indexx. The constructor takes a vector arr as its argument; it stores an index table
to arr, leaving arr unmodified. Subsequently, the method sort can be invoked to
rearrange arr, or any other vector, into the sorted order of arr. Indexx is not a
templated class, since the stored index table does not depend on the type of vector
that is indexed. However, it does need a templated constructor.

struct Indexx { sort.h
Int n;
VecInt indx;

template<class T> Indexx(const NRvector<T> &arr) {
Constructor. Calls index and stores an index to the array arr[0..n-1].

index(&arr[0],arr.size());
}
Indexx() {} Empty constructor. See text.

template<class T> void sort(NRvector<T> &brr) {
Sort an array brr[0..n-1] into the order defined by the stored index. brr is replaced on
output by its sorted rearrangement.

if (brr.size() != n) throw("bad size in Index sort");
NRvector<T> tmp(brr);
for (Int j=0;j<n;j++) brr[j] = tmp[indx[j]];

}

template<class T> inline const T & el(NRvector<T> &brr, Int j) const {
This function, and the next, return the element of brr that would be in sorted position j
according to the stored index. The vector brr is not changed.

return brr[indx[j]];
}
template<class T> inline T & el(NRvector<T> &brr, Int j) {
Same, but return an l-value.

return brr[indx[j]];
}

template<class T> void index(const T *arr, Int nn);
This does the actual work of indexing. Normally not called directly by the user, but see
text for exceptions.

void rank(VecInt_O &irank) {
Returns a rank table, whose jth element is the rank of arr[j], where arr is the vector
originally indexed. The smallest arr[j] has rank 0.

irank.resize(n);
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for (Int j=0;j<n;j++) irank[indx[j]] = j;
}

};

template<class T>
void Indexx::index(const T *arr, Int nn)
Indexes an array arr[0..nn-1], i.e., resizes and sets indx[0..nn-1] such that arr[indx[j]]
is in ascending order for j D 0; 1; : : : ;nn-1. Also sets member value n. The input array arr is
not changed.
{

const Int M=7,NSTACK=64;
Int i,indxt,ir,j,k,jstack=-1,l=0;
T a;
VecInt istack(NSTACK);
n = nn;
indx.resize(n);
ir=n-1;
for (j=0;j<n;j++) indx[j]=j;
for (;;) {

if (ir-l < M) {
for (j=l+1;j<=ir;j++) {

indxt=indx[j];
a=arr[indxt];
for (i=j-1;i>=l;i--) {

if (arr[indx[i]] <= a) break;
indx[i+1]=indx[i];

}
indx[i+1]=indxt;

}
if (jstack < 0) break;
ir=istack[jstack--];
l=istack[jstack--];

} else {
k=(l+ir) >> 1;
SWAP(indx[k],indx[l+1]);
if (arr[indx[l]] > arr[indx[ir]]) {

SWAP(indx[l],indx[ir]);
}
if (arr[indx[l+1]] > arr[indx[ir]]) {

SWAP(indx[l+1],indx[ir]);
}
if (arr[indx[l]] > arr[indx[l+1]]) {

SWAP(indx[l],indx[l+1]);
}
i=l+1;
j=ir;
indxt=indx[l+1];
a=arr[indxt];
for (;;) {

do i++; while (arr[indx[i]] < a);
do j--; while (arr[indx[j]] > a);
if (j < i) break;
SWAP(indx[i],indx[j]);

}
indx[l+1]=indx[j];
indx[j]=indxt;
jstack += 2;
if (jstack >= NSTACK) throw("NSTACK too small in index.");
if (ir-i+1 >= j-l) {

istack[jstack]=ir;
istack[jstack-1]=i;
ir=j-1;

} else {
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istack[jstack]=j-1;
istack[jstack-1]=l;
l=i;

}
}

}
}

A typical use of Indexx might be to rearrange three vectors (not necessarily of
the same type) into the sorted order defined by one of them:

Indexx arrindex(arr);

arrindex.sort(arr);

arrindex.sort(brr);

arrindex.sort(crr);

The generalization to any other number of arrays is obvious.
The Indexx object also provides a method el (for “element”) to access any

vector in arr-sorted order without actually modifying that vector (or, for that matter,
arr). In other words, after we index arr, say by

Indexx arrindex(arr);

we can address an element in brr that corresponds to the jth element of a virtually
sorted arr as simply arrindex.el(brr,j). Neither arr nor brr are altered from
their original state. el is provided in two versions, so that it can be both an l-value
(on the left-hand side of an assignment) and an r-value (in an expression).

As an aside, the reason that the internal workhorse index uses a pointer, not
a vector, for its argument is so that it can be used (purists would say misused) in
other situations, such as indexing one row in a matrix. That is also the reason for
providing an additional, empty, constructor. If you want to index nn consecutive
elements sitting around somewhere, pointed to by ptr, you write

Indexx myhack;

myhack.index(ptr,nn);

A rank table is different from an index table. A rank table’s j th entry gives the
rank of the j th element of the original array of keys, ranging from 0 (if that element
was the smallest) to N � 1 (if that element was the largest). One can easily construct
a rank table from an index table. Indeed, you might already have noticed the method
rank in Indexx that returns just such a table, stored as a vector.

Figure 8.4.1 summarizes the concepts discussed in this section.

8.5 Selecting the Mth Largest

Selection is sorting’s austere sister. (Say that five times quickly!) Where sorting
demands the rearrangement of an entire data array, selection politely asks for a single
returned value: What is the kth smallest (or, equivalently, the m D N � 1 � kth
largest) element out ofN elements? (In this convention, used throughout this section,
k takes on values k D 0; 1; : : : ; N � 1, so k D 0 is the smallest array element and
k D N�1 the largest.) The fastest methods for selection do, unfortunately, rearrange
the array for their own computational purposes, typically putting all smaller elements
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Figure 8.4.1. (a) An unsorted array of six numbers. (b) Index table whose entries are pointers to the
elements of (a) in ascending order. (c) Rank table whose entries are the ranks of the corresponding
elements of (a). (d) Sorted array of the elements in (a).

to the left of the kth, all larger elements to the right, and scrambling the order within
each subset. This side effect is at best innocuous, at worst downright inconvenient.
When an array is very long, so that making a scratch copy of it is taxing on memory,
one turns to in-place algorithms without side effects, which are slower but leave the
original array undisturbed.

The most common use of selection is in the statistical characterization of a set
of data. One often wants to know the median element in an array (quantile p D 1=2)
or the top and bottom quartile elements (quantile p D 1=4; 3=4). When N is odd,
the exact definition of the median is that it is the kth element, with k D .N � 1/=2.
When N is even, statistics books define the median as the arithmetic mean of the
elements k D N=2 � 1 and k D N=2 (that is, N=2 from the bottom and N=2 from
the top). If you embrace such formality, you must perform two separate selections
to find these elements. (If you do the first selection by a partition method, see below,
you can do the second by a single pass through N=2 elements in the right partition,
looking for the smallest element.) For N > 100 we usually use k D N=2 as the
median element, formalists be damned.

A variant on selection for large data sets is single-pass selection, where we
have a stream of input values, each of which we get to see only once. We want to
be able to report at any time, say after N values, the kth smallest (or largest) value
seen so far, or, equivalently, the quantile value for some p. We will describe two
approaches: If we care only about the smallest (or largest) M values, for fixed M ,
so that 0 
 k < M , then there are good algorithms that require only M storage.
On the other hand, if we can tolerate an approximate answer, then there are efficient
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algorithms that can report at any time a good estimate of the p-quantile value for
any p, 0 < p < 1. That is to say, we will get not the exact kth smallest element,
k D pN , of the N that have gone by, but something very close to it — and without
requiring N storage or having to know p in advance.

The fastest general method for selection, allowing rearrangement, is partition-
ing, exactly as was done in the Quicksort algorithm (�8.2). Selecting a “random”
partition element, one marches through the array, forcing smaller elements to the
left, larger elements to the right. As in Quicksort, it is important to optimize the
inner loop, using “sentinels” (�8.2) to minimize the number of comparisons. For
sorting, one would then proceed to further partition both subsets. For selection, we
can ignore one subset and attend only to the one that contains our desired kth ele-
ment. Selection by partitioning thus does not need a stack of pending operations, and
its operations count scales as N rather than as N logN (see [1]). Comparison with
sort in �8.2 should make the following routine obvious.

template<class T> sort.h
T select(const Int k, NRvector<T> &arr)
Given k in [0..n-1] returns an array value from arr[0..n-1] such that k array values are
less than or equal to the one returned. The input array will be rearranged to have this value in
location arr[k], with all smaller elements moved to arr[0..k-1] (in arbitrary order) and all
larger elements in arr[k+1..n-1] (also in arbitrary order).
{

Int i,ir,j,l,mid,n=arr.size();
T a;
l=0;
ir=n-1;
for (;;) {

if (ir <= l+1) { Active partition contains 1 or 2 elements.
if (ir == l+1 && arr[ir] < arr[l]) Case of 2 elements.

SWAP(arr[l],arr[ir]);
return arr[k];

} else {
mid=(l+ir) >> 1; Choose median of left, center, and right el-

ements as partitioning element a. Also
rearrange so that arr[l] � arr[l+1],
arr[ir] 
 arr[l+1].

SWAP(arr[mid],arr[l+1]);
if (arr[l] > arr[ir])

SWAP(arr[l],arr[ir]);
if (arr[l+1] > arr[ir])

SWAP(arr[l+1],arr[ir]);
if (arr[l] > arr[l+1])

SWAP(arr[l],arr[l+1]);
i=l+1; Initialize pointers for partitioning.
j=ir;
a=arr[l+1]; Partitioning element.
for (;;) { Beginning of innermost loop.

do i++; while (arr[i] < a); Scan up to find element > a.
do j--; while (arr[j] > a); Scan down to find element < a.
if (j < i) break; Pointers crossed. Partitioning complete.
SWAP(arr[i],arr[j]);

} End of innermost loop.
arr[l+1]=arr[j]; Insert partitioning element.
arr[j]=a;
if (j >= k) ir=j-1; Keep active the partition that contains the

kth element.if (j <= k) l=i;
}

}
}

If you don’t want your array arr to be rearranged, then you will want to make



�

�

“nr3” — 2007/5/1 — 20:53 — page 434 — #456
�

�

� �

434 Chapter 8. Sorting and Selection

a scratch copy before calling select, e.g.,

VecDoub brr(arr);

The reason for not doing this internally in select is because you may wish to call
select with a variety of different values k, and it would be wasteful to copy the
vector anew each time; instead, just let brr keep getting rearranged.

8.5.1 Tracking the M Largest in a Single Pass
Of course select should not be used for the trivial cases of finding the largest,

or smallest, element in an array. Those cases, you code by hand as simple for loops.
There are also efficient ways to code the case where k is bounded by some fixed

M , modest in comparison to N , so that memory of order M is not burdensome.
Indeed, N may not even be known: You may have a stream of incoming data values
and be called upon at any time to provide a list of the M largest values seen so far.

A good approach to this case is to use the method of Heapsort (�8.3), maintain-
ing a heap of the M largest values. The advantage of the heap structure, as opposed
to a linear array of length M , is that at most logM , rather than M , operations are
required every time a new data value is processed.

The object Heapselect has a constructor, by which you specify M , an “add”
method that assimilates a new data value, and a “report” method for getting the kth
largest seen so far. Note that the initial cost of a report is O.M logM/, because we
need to sort the heap; but you can then get all values of k at no extra cost, until you
do the next add. A special case is that getting the M � 1st largest is always cheap,
since it is at the top of the heap; so if you have a single favorite value of k, it is best
to choose M with M � 1 D k.

struct Heapselect {sort.h
Object for tracking the m largest values seen thus far in a stream of values.

Int m,n,srtd;
VecDoub heap;

Heapselect(Int mm) : m(mm), n(0), srtd(0), heap(mm,1.e99) {}
Constructor. The argument is the number of largest values to track.

void add(Doub val) {
Assimilate a new value from the stream.

Int j,k;
if (n<m) { Heap not yet filled.

heap[n++] = val;
if (n==m) sort(heap); Create initial heap by overkill!

} else {
if (val > heap[0]) { Put it on the heap?

heap[0]=val;
for (j=0;;) { Sift down.

k=(j << 1) + 1;
if (k > m-1) break;
if (k != (m-1) && heap[k] > heap[k+1]) k++;
if (heap[j] <= heap[k]) break;
SWAP(heap[k],heap[j]);
j=k;

}
}
n++;

}
srtd = 0; Mark heap as “unsorted”.

}
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Doub report(Int k) {
Return the kth largest value seen so far. k=0 returns the largest value seen, k=1 the second
largest, : : : , k=m-1 the last position tracked. Also, k must be less than the number of
previous values assimilated.

Int mm = MIN(n,m);
if (k > mm-1) throw("Heapselect k too big");
if (k == m-1) return heap[0]; Always free, since top of heap.
if (! srtd) { sort(heap); srtd = 1; } Otherwise, need to sort the heap.
return heap[mm-1-k];

}
};

8.5.2 Single-Pass Estimation of Arbitrary Quantiles
The data values fly by in a stream. You get to look at each value only once, and

do a constant-time process on it (meaning that you can’t take longer and longer to
process later and later data values). Also, you have only a fixed amount of storage
memory. From time to time you want to know the median value (or 95th percentile
value, or arbitrary p-quantile value) of the data that you have seen thus far. How do
you do this?

Evidently, with the conditions stated, you’ll have to tolerate an approximate an-
swer, since an exact answer must require unbounded storage and (perhaps) unlimited
processing. If you think that “binning” is somehow the answer, you are right. But it is
not immediately obvious how to choose the bins, since you have to see a potentially
unlimited amount of data before you can tell for sure how its values are distributed.

Chambers et al. [2] have given a robust, and extremely fast, algorithm, which
they call IQ agent, that adaptively adjusts a set of bins so that they converge to the
data values of specified quantile p-values. The general idea (see Figure 8.5.1) is
to accumulate incoming data into batches, then to update a stored, piecewise linear,
cumulative distribution function (cdf) by adding a batch’s cdf and then interpolating
back to a fixed set of p-values. Arbitrary requested quantile values (“incremental
quantiles,” or “IQs,” hence the algorithm’s name) can be obtained at any time by lin-
ear interpolation on the stored cdf. Batching allows the program to be very efficient,
with an (amortized) cost of only a small number of operations per new data value.
The batching is done transparently to the user.

Similar to Heapselect, the IQagent object has add and report methods, the
latter now taking a value for p as its argument. In the implementation below, we use
a batch size of nbuf=1000 but do an early update step with a partial batch whenever
a quantile is requested. With these parameters, you should therefore request quantile
information no more frequently than after every few nbuf data values, at which point
you can request as many different values of p as you want before continuing. The
alternative is to remove the call to update from report, in which case you’ll get
fast, but constant, answers, changing only after each regular batch update.

IQagent uses internally a general purpose set of 251 p-values that includes
integer percentile points from 10 to 90, and a logarithmically spaced set of smaller
and larger values spanning 10�6 to 1 � 10�6. Other p-values that you request are
obtained by interpolation. Of course you cannot get meaningful tail quantiles for
small values of p until at least several times 1=p data values have been processed.
Before that, the program will simply report the smallest value previously seen (or
largest value previously seen, for p ! 1).
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Figure 8.5.1. Algorithm for updating a piecewise linear cumulative distribution function (cdf). (a) The
cdf is represented by quantile values at a fixed set of p-values (here, just 3). (b) A batch of new data
values (here, just 4) define a stepwise constant cdf. (c) The two cdfs are summed. New data steps are
small in proportion to the new batch size versus number of data values previously processed. (d) The new
cdf representation is obtained by interpolating the fixed p-values to (c).

struct IQagent {iqagent.h
Object for estimating arbitrary quantile values from a continuing stream of data values.

static const Int nbuf = 1000; Batch size. You may �10 if you expect >
106 data values.Int nq, nt, nd;

VecDoub pval,dbuf,qile;
Doub q0, qm;

IQagent() : nq(251), nt(0), nd(0), pval(nq), dbuf(nbuf),
qile(nq,0.), q0(1.e99), qm(-1.e99) {
Constructor. No arguments.

for (Int j=85;j<=165;j++) pval[j] = (j-75.)/100.;

Set general purpose array of p-values ranging from 10�6 to 1�10�6. You can change
this if you want:
for (Int j=84;j>=0;j--) {

pval[j] = 0.87191909*pval[j+1];
pval[250-j] = 1.-pval[j];

}
}

void add(Doub datum) {
Assimilate a new value from the stream.

dbuf[nd++] = datum;
if (datum < q0) {q0 = datum;}
if (datum > qm) {qm = datum;}
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if (nd == nbuf) update(); Time for a batch update.
}

void update() {
Batch update, as shown in Figure 8.5.1. This function is called by add or report and
should not be called directly by the user.

Int jd=0,jq=1,iq;
Doub target, told=0., tnew=0., qold, qnew;
VecDoub newqile(nq); Will be new quantiles after update.
sort(dbuf,nd);
qold = qnew = qile[0] = newqile[0] = q0; Set lowest and highest to min

and max values seen so far,
and set compatible p-values.

qile[nq-1] = newqile[nq-1] = qm;
pval[0] = min(0.5/(nt+nd),0.5*pval[1]);
pval[nq-1] = max(1.-0.5/(nt+nd),0.5*(1.+pval[nq-2]));
for (iq=1;iq<nq-1;iq++) { Main loop over target p-values for inter-

polation.target = (nt+nd)*pval[iq];
if (tnew < target) for (;;) {

Here’s the guts: We locate a succession of abscissa-ordinate pairs (qnew,tnew)
that are the discontinuities of value or slope in Figure 8.5.1(c), breaking to
perform an interpolation as we cross each target.
if (jq < nq && (jd >= nd || qile[jq] < dbuf[jd])) {

Found slope discontinuity from old CDF.
qnew = qile[jq];
tnew = jd + nt*pval[jq++];
if (tnew >= target) break;

} else { Found value discontinuity from batch data
CDF.qnew = dbuf[jd];

tnew = told;
if (qile[jq]>qile[jq-1]) tnew += nt*(pval[jq]-pval[jq-1])

*(qnew-qold)/(qile[jq]-qile[jq-1]);
jd++;
if (tnew >= target) break;
told = tnew++;
qold = qnew;
if (tnew >= target) break;

}
told = tnew;
qold = qnew;

} Break to here and perform the new interpolation.
if (tnew == told) newqile[iq] = 0.5*(qold+qnew);
else newqile[iq] = qold + (qnew-qold)*(target-told)/(tnew-told);
told = tnew;
qold = qnew;

}
qile = newqile;
nt += nd;
nd = 0;

}

Doub report(Doub p) {
Return estimated p-quantile for the data seen so far. (E.g., p D 0:5 for median.)

Doub q;
if (nd > 0) update(); You may want to remove this line. See text.
Int jl=0,jh=nq-1,j;
while (jh-jl>1) { Locate place in table by bisection.

j = (jh+jl)>>1;
if (p > pval[j]) jl=j;
else jh=j;

}
j = jl; Interpolate.
q = qile[j] + (qile[j+1]-qile[j])*(p-pval[j])/(pval[j+1]-pval[j]);
return MAX(qile[0],MIN(qile[nq-1],q));

}
};
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How accurate is the IQ agent algorithm, as compared, say, to storing all N
data values in an array A and then reporting the “exact” quantile AbpN c? There
are several sources of error, all of which you can control by modifying parameters
in IQagent. (We think that the default parameters will work just fine for almost
all users.) First, there is interpolation error: The desired cdf is represented by a
piecewise linear function between nq=251 stored values. For typical distributions,
this limits the accuracy to three or four significant figures. We find it hard to believe
that anyone needs to know a median, e.g., more accurately than this, but if you do,
then you can increase the density of p-values in the regions of interest.

Second, there are statistical errors. One way to characterize these is to ask what
value j has Aj closest to the quantile reported by IQ agent, and then how small is
jj �pN j as a fraction of ŒNp.1�p/�1=2, the accuracy inherent in your finite sample
size N . If this fraction is . 1, then the estimate is “good enough,” meaning that
no method can do substantially better at estimating the population quantiles given
your sample.

With the default parameters, and for reasonably behaved distributions, IQagent
passes this test for N . 106. For larger N , the statistical error becomes significant
(though still generally smaller than the interpolation error, above). You can, however,
decrease it by increasing the batch size, nbuf. Larger is always better, if you have
the memory and can tolerate the logarithmic increase in the cost per point of the sort.

Although the accuracy of IQagent is not guaranteed by a provable bound, the
algorithm is fast, robust, and highly recommended. For other approaches to incre-
mental quantile estimation, including some that do give provable bounds (but have
other issues), see [3,4] and references cited therein.

8.5.3 Other Uses for Incremental Quantile Estimation
Incremental quantile estimation provides a useful way to histogram data into

variable-size bins that each contain the same number of points, without knowing in
advance the bin boundaries: First, throw N data values at an IQagent object. Next,
choose a number of bins m, and define

pi �
i

m
; i D 0; : : : ; m (8.5.1)

Finally, if qi is the quantile value at pi , plot the i th bin from qi to qiC1 with a height

hi D N
piC1 � pi

qiC1 � qi
; i D 0; : : : ; m � 1 (8.5.2)

A different application concerns the monitoring of quantile values for changes.
For example, you might be producing widgets with a parameter T whose tolerance
is T ˙ ıT , and you want an early warning if the observed values of T at the 5th and
95th percentiles start to drift.

The IQagent object is easily modified for such applications. Simply change the
line nt += nd to nt = my_constant, where my_constant is the number of past
widgets that you want to average over. (More precisely, the number corresponding
to one e-fold of weight decrease in an exponentially decreasing average over all past
production.) Now, the stored cdf combines with a new batch of data with a constant,
not an increasing, weight, and you can look for changes over time in any desired
quantiles.
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8.5.4 In-Place Selection
In-place, nondestructive, selection is conceptually simple, but it requires a lot

of bookkeeping, and it is correspondingly slow. The general idea is to pick some
number M of elements at random, to sort them, and then to make a pass through
the array counting how many elements fall in each of the M C 1 intervals defined
by these elements. The kth largest will fall in one such interval — call it the “live”
interval. One then does a second round, first picking M random elements in the live
interval, and then determining which of the new, finer, M C 1 intervals all presently
live elements fall into. And so on, until the kth element is finally localized within a
single array of size M , at which point direct selection is possible.

How shall we pick M ? The number of rounds, logM N D log2N= log2M ,
will be smaller if M is larger; but the work to locate each element among M C 1
subintervals will be larger, scaling as log2M for bisection, say. Each round requires
looking at allN elements, if only to find those that are still alive, while the bisections
are dominated by the N that occur in the first round. Minimizing O.N logM N/C

O.N log2M/ thus yields the result

M � 2
p

log2N (8.5.3)

The square root of the logarithm is so slowly varying that secondary considerations
of machine timing become important. We use M D 64 as a convenient constant
value.

Further discussion, and code, is in a Webnote [5].
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8.6 Determination of Equivalence Classes

A number of techniques for sorting and searching relate to data structures whose details
are beyond the scope of this book, for example, trees, linked lists, etc. These structures and
their manipulations are the bread and butter of computer science, as distinct from numerical
analysis, and there is no shortage of books on the subject.

In working with experimental data, we have found that one particular such manipu-
lation, namely the determination of equivalence classes, arises sufficiently often to justify
inclusion here.
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The problem is this: There are N “elements” (or “data points” or whatever), numbered
0; : : : ; N � 1. You are given pairwise information about whether the elements are in the same
equivalence class of “sameness,” by whatever criterion happens to be of interest. For example,
you may have a list of facts like: “Element 3 and element 7 are in the same class; element 19
and element 4 are in the same class; element 7 and element 12 are in the same class, : : : .”
Alternatively, you may have a procedure, given the numbers of two elements j and k, for
deciding whether they are in the same class or different classes. (Recall that an equivalence
relation can be anything satisfying the RST properties: reflexive, symmetric, transitive. This
is compatible with any intuitive definition of “sameness.”)

The desired output is an assignment to each of the N elements of an equivalence class
number, such that two elements are in the same class if and only if they are assigned the same
class number.

Efficient algorithms work like this: Let F.j / be the class or “family” number of element
j . Start off with each element in its own family, so that F.j / D j . The array F.j / can be
interpreted as a tree structure, where F.j / denotes the parent of j . If we arrange for each fam-
ily to be its own tree, disjoint from all the other “family trees,” then we can label each family
(equivalence class) by its most senior great-great-: : :grandparent. The detailed topology of the
tree doesn’t matter at all, as long as we graft each related element onto it somewhere.

Therefore, we process each elemental datum “j is equivalent to k” by (i) tracking j up
to its highest ancestor; (ii) tracking k up to its highest ancestor; and (iii) giving j to k as a
new parent, or vice versa (it makes no difference). After processing all the relations, we go
through all the elements j and reset their F.j /’s to their highest possible ancestors, which
then label the equivalence classes.

The following routine, based on Knuth [1], assumes that there are m elemental pieces
of information, stored in two arrays of length m, lista,listb, the interpretation being that
lista[j] and listb[j], j=0...m-1, are the numbers of two elements that (we are thus
told) are related.

void eclass(VecInt_O &nf, VecInt_I &lista, VecInt_I &listb)eclass.h
Given m equivalences between pairs of n individual elements in the form of the input arrays
lista[0..m-1] and listb[0..m-1], this routine returns in nf[0..n-1] the number of the
equivalence class of each of the n elements, integers between 0 and n-1 (not all such integers
used).
{

Int l,k,j,n=nf.size(),m=lista.size();
for (k=0;k<n;k++) nf[k]=k; Initialize each element its own class.
for (l=0;l<m;l++) { For each piece of input information...

j=lista[l];
while (nf[j] != j) j=nf[j]; Track first element up to its ancestor.
k=listb[l];
while (nf[k] != k) k=nf[k]; Track second element up to its ancestor.
if (j != k) nf[j]=k; If they are not already related, make them

so.}
for (j=0;j<n;j++) Final sweep up to highest ancestors.

while (nf[j] != nf[nf[j]]) nf[j]=nf[nf[j]];
}

Alternatively, we may be able to construct a boolean function equiv(j,k) that returns
a value true if elements j and k are related, or false if they are not. Then we want to loop
over all pairs of elements to get the complete picture. D. Eardley has devised a clever way of
doing this while simultaneously sweeping the tree up to high ancestors in a manner that keeps
it current and obviates most of the final sweep phase:

void eclazz(VecInt_O &nf, Bool equiv(const Int, const Int))eclass.h
Given a user-supplied boolean function equiv that tells whether a pair of elements, each in the
range 0...n-1, are related, return in nf[0..n-1] equivalence class numbers for each element.
{

Int kk,jj,n=nf.size();
nf[0]=0;
for (jj=1;jj<n;jj++) { Loop over first element of all pairs.
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nf[jj]=jj;
for (kk=0;kk<jj;kk++) { Loop over second element of all pairs.

nf[kk]=nf[nf[kk]]; Sweep it up this much.
if (equiv(jj+1,kk+1)) nf[nf[nf[kk]]]=jj;
Good exercise for the reader to figure out why this much ancestry is necessary!

}
}
for (jj=0;jj<n;jj++) nf[jj]=nf[nf[jj]]; Only this much sweeping is needed

finally.}

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1997, Fundamental Algorithms, 3rd ed., vol. 1 of The Art of Computer Programming
(Reading, MA: Addison-Wesley), �2.3.3.[1]

Sedgewick, R. 1998, Algorithms in C, 3rd ed. (Reading, MA: Addison-Wesley), Chapter 30.
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Root Finding and
Nonlinear Sets of
Equations

CHAPTER 9

9.0 Introduction

We now consider that most basic of tasks, solving equations numerically. While
most equations are born with both a right-hand side and a left-hand side, one tradi-
tionally moves all terms to the left, leaving

f .x/ D 0 (9.0.1)

whose solution or solutions are desired. When there is only one independent variable,
the problem is one-dimensional, namely to find the root or roots of a function.

With more than one independent variable, more than one equation can be sat-
isfied simultaneously. You likely once learned the implicit function theorem, which
(in this context) gives us the hope of satisfying N equations in N unknowns simul-
taneously. Note that we have only hope, not certainty. A nonlinear set of equations
may have no (real) solutions at all. Contrariwise, it may have more than one solu-
tion. The implicit function theorem tells us that “generically” the solutions will be
distinct, pointlike, and separated from each other. If, however, life is so unkind as to
present you with a nongeneric, i.e., degenerate, case, then you can get a continuous
family of solutions. In vector notation, we want to find one or more N -dimensional
solution vectors x such that

f .x/ D 0 (9.0.2)

where f is the N -dimensional vector-valued function whose components are the in-
dividual equations to be satisfied simultaneously.

Don’t be fooled by the apparent notational similarity of equations (9.0.2) and
(9.0.1). Simultaneous solution of equations in N dimensions is much more difficult
than finding roots in the one-dimensional case. The principal difference between one
and many dimensions is that, in one dimension, it is possible to bracket or “trap” a
root between bracketing values, and then hunt it down like a rabbit. In multidimen-
sions, you can never be sure that the root is there at all until you have found it.

442
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Except in linear problems, root finding invariably proceeds by iteration, and
this is equally true in one or in many dimensions. Starting from some approximate
trial solution, a useful algorithm will improve the solution until some predetermined
convergence criterion is satisfied. For smoothly varying functions, good algorithms
will always converge, provided that the initial guess is good enough. Indeed one can
even determine in advance the rate of convergence of most algorithms.

It cannot be overemphasized, however, how crucially success depends on hav-
ing a good first guess for the solution, especially for multidimensional problems.
This crucial beginning usually depends on analysis rather than numerics. Carefully
crafted initial estimates reward you not only with reduced computational effort, but
also with understanding and increased self-esteem. Hamming’s motto, “the purpose
of computing is insight, not numbers,” is particularly apt in the area of finding roots.
You should repeat this motto aloud whenever your program converges, with sixteen-
digit accuracy, to the wrong root of a problem, or whenever it fails to converge be-
cause there is actually no root, or because there is a root but your initial estimate was
not sufficiently close to it.

“This talk of insight is all very well, but what do I actually do?” For one-
dimensional root finding, it is possible to give some straightforward answers: You
should try to get some idea of what your function looks like before trying to find
its roots. If you need to mass-produce roots for many different functions, then you
should at least know what some typical members of the ensemble look like. Next,
you should always bracket a root, that is, know that the function changes sign in an
identified interval, before trying to converge to the root’s value.

Finally (this is advice with which some daring souls might disagree, but we
give it nonetheless) never let your iteration method get outside of the best bracketing
bounds obtained at any stage. We will see below that some pedagogically impor-
tant algorithms, such as the secant method or Newton-Raphson, can violate this last
constraint and are thus not recommended unless certain fixups are implemented.

Multiple roots, or very close roots, are a real problem, especially if the multi-
plicity is an even number. In that case, there may be no readily apparent sign change
in the function, so the notion of bracketing a root — and maintaining the bracket
— becomes difficult. We are hard-liners: We nevertheless insist on bracketing a
root, even if it takes the minimum-searching techniques of Chapter 10 to determine
whether a tantalizing dip in the function really does cross zero. (You can easily
modify the simple golden section routine of �10.2 to return early if it detects a sign
change in the function. And, if the minimum of the function is exactly zero, then you
have found a double root.)

As usual, we want to discourage you from using routines as black boxes without
understanding them. However, as a guide to beginners, here are some reasonable
starting points:

� Brent’s algorithm in �9.3 is the method of choice to find a bracketed root of a
general one-dimensional function, when you cannot easily compute the func-
tion’s derivative. Ridders’ method (�9.2) is concise, and a close competitor.
� When you can compute the function’s derivative, the routine rtsafe in �9.4,

which combines the Newton-Raphson method with some bookkeeping on the
bounds, is recommended. Again, you must first bracket your root. If you can
easily compute two derivatives, then Halley’s method (�9.4.2) is often worth
a try.
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� Roots of polynomials are a special case. Laguerre’s method, in �9.5, is recom-
mended as a starting point. Beware: Some polynomials are ill-conditioned!
� Finally, for multidimensional problems, the only elementary method is Newton-

Raphson (�9.6), which works very well if you can supply a good first guess of
the solution. Try it. Then read the more advanced material in �9.7 for some
more complicated, but globally more convergent, alternatives.

The routines in this chapter require that you input the function whose roots you
seek. For maximum flexibility, the routines typically will accept either a function or
a functor (see �1.3.3).

9.0.1 Graphical Search for Roots
It never hurts to look at your function, especially if you encounter any difficulty

in finding its roots blindly. If you are thus hunting roots “by eye,” it is useful to have
a routine that repeatedly plots a function to the screen, accepting user-supplied lower
and upper limits for x, automatically scaling y, and making zero crossings visible.
The following routine, or something like it, can occasionally save you a lot of grief.

template<class T>scrsho.h
void scrsho(T &fx) {
Graph the function or functor fx over the prompted-for interval x1,x2. Query for another plot
until the user signals satisfaction.

const Int RES=500; Number of function evaluations for each plot.
const Doub XLL=75., XUR=525., YLL=250., YUR=700.; Corners of plot, in points.
char *plotfilename = tmpnam(NULL);
VecDoub xx(RES), yy(RES);
Doub x1,x2;
Int i;
for (;;) {

Doub ymax = -9.99e99, ymin = 9.99e99, del;
cout << endl << "Enter x1 x2 (x1=x2 to stop):" << endl;
cin >> x1 >> x2; Query for another plot, quit if x1=x2.
if (x1==x2) break;
for (i=0;i<RES;i++) { Evaluate the function at equal intervals. Find

the largest and smallest values.xx[i] = x1 + i*(x2-x1)/(RES-1.);
yy[i] = fx(xx[i]);
if (yy[i] > ymax) ymax=yy[i];
if (yy[i] < ymin) ymin=yy[i];

}
del = 0.05*((ymax-ymin)+(ymax==ymin ? abs(ymax) : 0.));
Plot commands, following, are in PSplot syntax (�22.1). You can substitute commands
for your favorite plotting package.
PSpage pg(plotfilename);
PSplot plot(pg,XLL,XUR,YLL,YUR);
plot.setlimits(x1,x2,ymin-del,ymax+del);
plot.frame();
plot.autoscales();
plot.lineplot(xx,yy);
if (ymax*ymin < 0.) plot.lineseg(x1,0.,x2,0.);
plot.display();

}
remove(plotfilename);

}

CITED REFERENCES AND FURTHER READING:

Stoer, J., and Bulirsch, R. 2002, Introduction to Numerical Analysis, 3rd ed. (New York: Springer),
Chapter 5.
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Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington, DC:
Mathematical Association of America), Chapters 2, 7, and 14.

Deuflhard, P. 2004, Newton Methods for Nonlinear Problems (Berlin: Springer).

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed.; reprinted
2001 (New York: Dover), Chapter 8.

Householder, A.S. 1970, The Numerical Treatment of a Single Nonlinear Equation (New York:
McGraw-Hill).

9.1 Bracketing and Bisection

We will say that a root is bracketed in the interval .a; b/ if f .a/ and f .b/
have opposite signs. If the function is continuous, then at least one root must lie
in that interval (the intermediate value theorem). If the function is discontinuous,
but bounded, then instead of a root there might be a step discontinuity that crosses
zero (see Figure 9.1.1). For numerical purposes, that might as well be a root, since
the behavior is indistinguishable from the case of a continuous function whose zero
crossing occurs in between two “adjacent” floating-point numbers in a machine’s
finite-precision representation. Only for functions with singularities is there the pos-
sibility that a bracketed root is not really there, as for example

f .x/ D
1

x � c
(9.1.1)

Some root-finding algorithms (e.g., bisection in this section) will readily converge to
c in (9.1.1). Luckily there is not much possibility of your mistaking c, or any number
x close to it, for a root, since mere evaluation of jf .x/j will give a very large, rather
than a very small, result.

If you are given a function in a black box, there is no sure way of bracketing
its roots, or even of determining that it has roots. If you like pathological examples,
think about the problem of locating the two real roots of equation (3.0.1), which dips
below zero only in the ridiculously small interval of about x D 	 ˙ 10�667.

In the next chapter we will deal with the related problem of bracketing a func-
tion’s minimum. There it is possible to give a procedure that always succeeds; in
essence, “Go downhill, taking steps of increasing size, until your function starts back
uphill.” There is no analogous procedure for roots. The procedure “go downhill until
your function changes sign,” can be foiled by a function that has a simple extremum.
Nevertheless, if you are prepared to deal with a “failure” outcome, this procedure
is often a good first start; success is usual if your function has opposite signs in the
limit x !˙1.

template <class T> roots.h
Bool zbrac(T &func, Doub &x1, Doub &x2)
Given a function or functor func and an initial guessed range x1 to x2, the routine expands
the range geometrically until a root is bracketed by the returned values x1 and x2 (in which
case zbrac returns true) or until the range becomes unacceptably large (in which case zbrac
returns false).
{

const Int NTRY=50;
const Doub FACTOR=1.6;
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a b

(b)

x1

e f c x1 d a b

b

a

(c)

(d)

(a)

x2 x3

Figure 9.1.1. Some situations encountered while root finding: (a) an isolated root x1 bracketed by two
points a and b at which the function has opposite signs; (b) there is not necessarily a sign change in the
function near a double root (in fact, there is not necessarily a root!); (c) a pathological function with many
roots; in (d) the function has opposite signs at points a and b, but the points bracket a singularity, not
a root.
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if (x1 == x2) throw("Bad initial range in zbrac");
Doub f1=func(x1);
Doub f2=func(x2);
for (Int j=0;j<NTRY;j++) {

if (f1*f2 < 0.0) return true;
if (abs(f1) < abs(f2))

f1=func(x1 += FACTOR*(x1-x2));
else

f2=func(x2 += FACTOR*(x2-x1));
}
return false;

}

Alternatively, you might want to “look inward” on an initial interval, rather
than “look outward” from it, asking if there are any roots of the function f .x/ in
the interval from x1 to x2 when a search is carried out by subdivision into n equal
intervals. The following function calculates brackets for distinct intervals that each
contain one or more roots.

template <class T> roots.h
void zbrak(T &fx, const Doub x1, const Doub x2, const Int n, VecDoub_O &xb1,

VecDoub_O &xb2, Int &nroot)
Given a function or functor fx defined on the interval [x1,x2], subdivide the interval into
n equally spaced segments, and search for zero crossings of the function. nroot will be set
to the number of bracketing pairs found. If it is positive, the arrays xb1[0..nroot-1] and
xb2[0..nroot-1] will be filled sequentially with any bracketing pairs that are found. On input,
these vectors may have any size, including zero; they will be resized to 
 nroot.
{

Int nb=20;
xb1.resize(nb);
xb2.resize(nb);
nroot=0;
Doub dx=(x2-x1)/n; Determine the spacing appropriate to the mesh.
Doub x=x1;
Doub fp=fx(x1);
for (Int i=0;i<n;i++) { Loop over all intervals

Doub fc=fx(x += dx);
if (fc*fp <= 0.0) { If a sign change occurs, then record values for the

bounds.xb1[nroot]=x-dx;
xb2[nroot++]=x;
if(nroot == nb) {

VecDoub tempvec1(xb1),tempvec2(xb2);
xb1.resize(2*nb);
xb2.resize(2*nb);
for (Int j=0; j<nb; j++) {

xb1[j]=tempvec1[j];
xb2[j]=tempvec2[j];

}
nb *= 2;

}
}
fp=fc;

}
}

9.1.1 Bisection Method
Once we know that an interval contains a root, several classical procedures

are available to refine it. These proceed with varying degrees of speed and sure-
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ness toward the answer. Unfortunately, the methods that are guaranteed to converge
plod along most slowly, while those that rush to the solution in the best cases can
also dash rapidly to infinity without warning if measures are not taken to avoid
such behavior.

The bisection method is one that cannot fail. It is thus not to be sneered at as
a method for otherwise badly behaved problems. The idea is simple. Over some
interval the function is known to pass through zero because it changes sign. Evaluate
the function at the interval’s midpoint and examine its sign. Use the midpoint to
replace whichever limit has the same sign. After each iteration the bounds containing
the root decrease by a factor of two. If after n iterations the root is known to be
within an interval of size �n, then after the next iteration it will be bracketed within
an interval of size

�nC1 D �n=2 (9.1.2)

neither more nor less. Thus, we know in advance the number of iterations required
to achieve a given tolerance in the solution,

n D log2
�0

�
(9.1.3)

where �0 is the size of the initially bracketing interval and � is the desired ending
tolerance.

Bisection must succeed. If the interval happens to contain more than one root,
bisection will find one of them. If the interval contains no roots and merely straddles
a singularity, it will converge on the singularity.

When a method converges as a factor (less than 1) times the previous uncertainty
to the first power (as is the case for bisection), it is said to converge linearly. Methods
that converge as a higher power,

�nC1 D constant � .�n/
m m > 1 (9.1.4)

are said to converge superlinearly. In other contexts, “linear” convergence would be
termed “exponential” or “geometrical.” That is not too bad at all: Linear convergence
means that successive significant figures are won linearly with computational effort.

It remains to discuss practical criteria for convergence. It is crucial to keep in
mind that only a finite set of floating point values have exact computer representa-
tions. While your function might analytically pass through zero, it is probable that
its computed value is never zero, for any floating-point argument. One must decide
what accuracy on the root is attainable: Convergence to within 10�10 in absolute
value is reasonable when the root lies near 1 but certainly unachievable if the root
lies near 1026. One might thus think to specify convergence by a relative (fractional)
criterion, but this becomes unworkable for roots near zero. To be most general, the
routines below will require you to specify an absolute tolerance, such that iterations
continue until the interval becomes smaller than this tolerance in absolute units. Of-
ten you may wish to take the tolerance to be �.jx1jCjx2j/=2, where � is the machine
precision and x1 and x2 are the initial brackets. When the root lies near zero you
ought to consider carefully what reasonable tolerance means for your function. The
following routine quits after 50 bisections in any event, with 2�50 � 10�15.
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template <class T> roots.h
Doub rtbis(T &func, const Doub x1, const Doub x2, const Doub xacc) {
Using bisection, return the root of a function or functor func known to lie between x1 and x2.
The root will be refined until its accuracy is ˙xacc.

const Int JMAX=50; Maximum allowed number of bisections.
Doub dx,xmid,rtb;
Doub f=func(x1);
Doub fmid=func(x2);
if (f*fmid >= 0.0) throw("Root must be bracketed for bisection in rtbis");
rtb = f < 0.0 ? (dx=x2-x1,x1) : (dx=x1-x2,x2); Orient the search so that f>0

lies at x+dx.for (Int j=0;j<JMAX;j++) {
fmid=func(xmid=rtb+(dx *= 0.5)); Bisection loop.
if (fmid <= 0.0) rtb=xmid;
if (abs(dx) < xacc || fmid == 0.0) return rtb;

}
throw("Too many bisections in rtbis");

}

9.2 Secant Method, False Position Method, and
Ridders’ Method

For functions that are smooth near a root, the methods known respectively as
false position (or regula falsi) and the secant method generally converge faster than
bisection. In both of these methods the function is assumed to be approximately
linear in the local region of interest, and the next improvement in the root is taken as
the point where the approximating line crosses the axis. After each iteration, one of
the previous boundary points is discarded in favor of the latest estimate of the root.

The only difference between the methods is that secant retains the most recent
of the prior estimates (Figure 9.2.1; this requires an arbitrary choice on the first
iteration), while false position retains that prior estimate for which the function value
has the opposite sign from the function value at the current best estimate of the root,
so that the two points continue to bracket the root (Figure 9.2.2). Mathematically,
the secant method converges more rapidly near a root of a sufficiently continuous
function. Its order of convergence can be shown to be the “golden ratio” 1:618 : : : ,
so that

lim
k!1

j�kC1j � const � j�kj
1:618 (9.2.1)

The secant method has, however, the disadvantage that the root does not necessar-
ily remain bracketed. For functions that are not sufficiently continuous, the algo-
rithm can therefore not be guaranteed to converge: Local behavior might send it off
toward infinity.

False position, since it sometimes keeps an older rather than newer function
evaluation, has a lower order of convergence. Since the newer function value will
sometimes be kept, the method is often superlinear, but estimation of its exact order
is not so easy.

Here are sample implementations of these two related methods. While these
methods are standard textbook fare, Ridders’ method, described below, or Brent’s
method, described in the next section, are almost always better choices. Figure 9.2.3
shows the behavior of the secant and false-position methods in a difficult situation.



�

�

“nr3” — 2007/5/1 — 20:53 — page 450 — #472
�

�

� �

450 Chapter 9. Root Finding and Nonlinear Sets of Equations

f (x)

2

3

4

1

x

Figure 9.2.1. Secant method. Extrapolation or interpolation lines (dashed) are drawn through the two
most recently evaluated points, whether or not they bracket the function. The points are numbered in the
order that they are used.

f (x)

x

4

3

2

1

Figure 9.2.2. False-position method. Interpolation lines (dashed) are drawn through the most recent
points that bracket the root. In this example, point 1 thus remains “active” for many steps. False position
converges less rapidly than the secant method, but it is more certain.
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2
f (x)

1 3 4

x

Figure 9.2.3. Example where both the secant and false-position methods will take many iterations to
arrive at the true root. This function would be difficult for many other root-finding methods.

template <class T> roots.h
Doub rtflsp(T &func, const Doub x1, const Doub x2, const Doub xacc) {
Using the false-position method, return the root of a function or functor func known to lie
between x1 and x2. The root is refined until its accuracy is ˙xacc.

const Int MAXIT=30; Set to the maximum allowed number of iterations.
Doub xl,xh,del;
Doub fl=func(x1);
Doub fh=func(x2); Be sure the interval brackets a root.
if (fl*fh > 0.0) throw("Root must be bracketed in rtflsp");
if (fl < 0.0) { Identify the limits so that xl corresponds to the low

side.xl=x1;
xh=x2;

} else {
xl=x2;
xh=x1;
SWAP(fl,fh);

}
Doub dx=xh-xl;
for (Int j=0;j<MAXIT;j++) { False-position loop.

Doub rtf=xl+dx*fl/(fl-fh); Increment with respect to latest value.
Doub f=func(rtf);
if (f < 0.0) { Replace appropriate limit.

del=xl-rtf;
xl=rtf;
fl=f;

} else {
del=xh-rtf;
xh=rtf;
fh=f;

}
dx=xh-xl;
if (abs(del) < xacc || f == 0.0) return rtf; Convergence.
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}
throw("Maximum number of iterations exceeded in rtflsp");

}

template <class T>roots.h
Doub rtsec(T &func, const Doub x1, const Doub x2, const Doub xacc) {
Using the secant method, return the root of a function or functor func thought to lie between
x1 and x2. The root is refined until its accuracy is ˙xacc.

const Int MAXIT=30; Maximum allowed number of iterations.
Doub xl,rts;
Doub fl=func(x1);
Doub f=func(x2);
if (abs(fl) < abs(f)) { Pick the bound with the smaller function value as

the most recent guess.rts=x1;
xl=x2;
SWAP(fl,f);

} else {
xl=x1;
rts=x2;

}
for (Int j=0;j<MAXIT;j++) { Secant loop.

Doub dx=(xl-rts)*f/(f-fl); Increment with respect to latest value.
xl=rts;
fl=f;
rts += dx;
f=func(rts);
if (abs(dx) < xacc || f == 0.0) return rts; Convergence.

}
throw("Maximum number of iterations exceeded in rtsec");

}

9.2.1 Ridders’ Method
A powerful variant on false position is due to Ridders [1]. When a root is brack-

eted between x1 and x2, Ridders’ method first evaluates the function at the midpoint
x3 D .x1C x2/=2. It then factors out that unique exponential function that turns the
residual function into a straight line. Specifically, it solves for a factor eQ that gives

f .x1/ � 2f .x3/e
Q C f .x2/e

2Q D 0 (9.2.2)

This is a quadratic equation in eQ, which can be solved to give

eQ D
f .x3/C signŒf .x2/�

p
f .x3/2 � f .x1/f .x2/

f .x2/
(9.2.3)

Now the false-position method is applied, not to the values f .x1/; f .x3/; f .x2/, but
to the values f .x1/; f .x3/eQ; f .x2/e2Q, yielding a new guess for the root, x4. The
overall updating formula (incorporating the solution 9.2.3) is

x4 D x3 C .x3 � x1/
signŒf .x1/ � f .x2/�f .x3/p
f .x3/2 � f .x1/f .x2/

(9.2.4)

Equation (9.2.4) has some very nice properties. First, x4 is guaranteed to lie in
the interval .x1; x2/, so the method never jumps out of its brackets. Second, the con-
vergence of successive applications of equation (9.2.4) is quadratic, that is, m D 2
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in equation (9.1.4). Since each application of (9.2.4) requires two function evalua-
tions, the actual order of the method is

p
2, not 2; but this is still quite respectably

superlinear: The number of significant digits in the answer approximately doubles
with each two function evaluations. Third, taking out the function’s “bend” via ex-
ponential (that is, ratio) factors, rather than via a polynomial technique (e.g., fitting
a parabola), turns out to give an extraordinarily robust algorithm. In both reliability
and speed, Ridders’ method is generally competitive with the more highly developed
and better established (but more complicated) method of van Wijngaarden, Dekker,
and Brent, which we next discuss.

template <class T> roots.h
Doub zriddr(T &func, const Doub x1, const Doub x2, const Doub xacc) {
Using Ridders’ method, return the root of a function or functor func known to lie between x1
and x2. The root will be refined to an approximate accuracy xacc.

const Int MAXIT=60;
Doub fl=func(x1);
Doub fh=func(x2);
if ((fl > 0.0 && fh < 0.0) || (fl < 0.0 && fh > 0.0)) {

Doub xl=x1;
Doub xh=x2;
Doub ans=-9.99e99; Any highly unlikely value, to simplify logic

below.for (Int j=0;j<MAXIT;j++) {
Doub xm=0.5*(xl+xh);
Doub fm=func(xm); First of two function evaluations per it-

eration.Doub s=sqrt(fm*fm-fl*fh);
if (s == 0.0) return ans;
Doub xnew=xm+(xm-xl)*((fl >= fh ? 1.0 : -1.0)*fm/s); Updating formula.
if (abs(xnew-ans) <= xacc) return ans;
ans=xnew;
Doub fnew=func(ans); Second of two function evaluations per

iteration.if (fnew == 0.0) return ans;
if (SIGN(fm,fnew) != fm) { Bookkeeping to keep the root bracketed

on next iteration.xl=xm;
fl=fm;
xh=ans;
fh=fnew;

} else if (SIGN(fl,fnew) != fl) {
xh=ans;
fh=fnew;

} else if (SIGN(fh,fnew) != fh) {
xl=ans;
fl=fnew;

} else throw("never get here.");
if (abs(xh-xl) <= xacc) return ans;

}
throw("zriddr exceed maximum iterations");

}
else {

if (fl == 0.0) return x1;
if (fh == 0.0) return x2;
throw("root must be bracketed in zriddr.");

}
}

CITED REFERENCES AND FURTHER READING:

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed.; reprinted
2001 (New York: Dover), �8.3.



�

�

“nr3” — 2007/5/1 — 20:53 — page 454 — #476
�

�

� �

454 Chapter 9. Root Finding and Nonlinear Sets of Equations

Ostrowski, A.M. 1966, Solutions of Equations and Systems of Equations, 2nd ed. (New York:
Academic Press), Chapter 12.

Ridders, C.J.F. 1979, “A New Algorithm for Computing a Single Root of a Real Continuous
Function,” IEEE Transactions on Circuits and Systems, vol. CAS-26, pp. 979–980.[1]

9.3 Van Wijngaarden-Dekker-Brent Method
While secant and false position formally converge faster than bisection, one

finds in practice pathological functions for which bisection converges more rapidly.
These can be choppy, discontinuous functions, or even smooth functions if the sec-
ond derivative changes sharply near the root. Bisection always halves the interval,
while secant and false position can sometimes spend many cycles slowly pulling dis-
tant bounds closer to a root. Ridders’ method does a much better job, but it too can
sometimes be fooled. Is there a way to combine superlinear convergence with the
sureness of bisection?

Yes. We can keep track of whether a supposedly superlinear method is actually
converging the way it is supposed to, and, if it is not, we can intersperse bisection
steps so as to guarantee at least linear convergence. This kind of super-strategy re-
quires attention to bookkeeping detail, and also careful consideration of how round-
off errors can affect the guiding strategy. Also, we must be able to determine reliably
when convergence has been achieved.

An excellent algorithm that pays close attention to these matters was developed
in the 1960s by van Wijngaarden, Dekker, and others at the Mathematical Center in
Amsterdam, and later improved by Brent [1]. For brevity, we refer to the final form of
the algorithm as Brent’s method. The method is guaranteed (by Brent) to converge,
so long as the function can be evaluated within the initial interval known to contain
a root.

Brent’s method combines root bracketing, bisection, and inverse quadratic in-
terpolation to converge from the neighborhood of a zero crossing. While the false-
position and secant methods assume approximately linear behavior between two
prior root estimates, inverse quadratic interpolation uses three prior points to fit an
inverse quadratic function (x as a quadratic function of y) whose value at y D 0 is
taken as the next estimate of the root x. Of course one must have contingency plans
for what to do if the root falls outside of the brackets. Brent’s method takes care of all
that. If the three point pairs are Œa; f .a/�; Œb; f .b/�; Œc; f .c/�, then the interpolation
formula (cf. equation 3.2.1) is

x D
Œy � f .a/�Œy � f .b/�c

Œf .c/ � f .a/�Œf .c/ � f .b/�
C

Œy � f .b/�Œy � f .c/�a

Œf .a/ � f .b/�Œf .a/ � f .c/�

C
Œy � f .c/�Œy � f .a/�b

Œf .b/ � f .c/�Œf .b/ � f .a/�

(9.3.1)

Setting y to zero gives a result for the next root estimate, which can be written as

x D b C P=Q (9.3.2)

where, in terms of

R � f .b/=f .c/; S � f .b/=f .a/; T � f .a/=f .c/ (9.3.3)
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we have
P D S ŒT .R � T /.c � b/ � .1 �R/.b � a/�

Q D .T � 1/.R � 1/.S � 1/
(9.3.4)

In practice b is the current best estimate of the root and P=Q ought to be a “small”
correction. Quadratic methods work well only when the function behaves smoothly;
they run the serious risk of giving very bad estimates of the next root or causing ma-
chine failure by an inappropriate division by a very small number (Q � 0). Brent’s
method guards against this problem by maintaining brackets on the root and check-
ing where the interpolation would land before carrying out the division. When the
correction P=Q would not land within the bounds, or when the bounds are not col-
lapsing rapidly enough, the algorithm takes a bisection step. Thus, Brent’s method
combines the sureness of bisection with the speed of a higher-order method when
appropriate. We recommend it as the method of choice for general one-dimensional
root finding where a function’s values only (and not its derivative or functional form)
are available.

template <class T> roots.h
Doub zbrent(T &func, const Doub x1, const Doub x2, const Doub tol)
Using Brent’s method, return the root of a function or functor func known to lie between x1
and x2. The root will be refined until its accuracy is tol.
{

const Int ITMAX=100; Maximum allowed number of iterations.
const Doub EPS=numeric_limits<Doub>::epsilon();
Machine floating-point precision.
Doub a=x1,b=x2,c=x2,d,e,fa=func(a),fb=func(b),fc,p,q,r,s,tol1,xm;
if ((fa > 0.0 && fb > 0.0) || (fa < 0.0 && fb < 0.0))

throw("Root must be bracketed in zbrent");
fc=fb;
for (Int iter=0;iter<ITMAX;iter++) {

if ((fb > 0.0 && fc > 0.0) || (fb < 0.0 && fc < 0.0)) {
c=a; Rename a, b, c and adjust bounding interval

d.fc=fa;
e=d=b-a;

}
if (abs(fc) < abs(fb)) {

a=b;
b=c;
c=a;
fa=fb;
fb=fc;
fc=fa;

}
tol1=2.0*EPS*abs(b)+0.5*tol; Convergence check.
xm=0.5*(c-b);
if (abs(xm) <= tol1 || fb == 0.0) return b;
if (abs(e) >= tol1 && abs(fa) > abs(fb)) {

s=fb/fa; Attempt inverse quadratic interpolation.
if (a == c) {

p=2.0*xm*s;
q=1.0-s;

} else {
q=fa/fc;
r=fb/fc;
p=s*(2.0*xm*q*(q-r)-(b-a)*(r-1.0));
q=(q-1.0)*(r-1.0)*(s-1.0);

}
if (p > 0.0) q = -q; Check whether in bounds.
p=abs(p);
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Doub min1=3.0*xm*q-abs(tol1*q);
Doub min2=abs(e*q);
if (2.0*p < (min1 < min2 ? min1 : min2)) {

e=d; Accept interpolation.
d=p/q;

} else {
d=xm; Interpolation failed, use bisection.
e=d;

}
} else { Bounds decreasing too slowly, use bisection.

d=xm;
e=d;

}
a=b; Move last best guess to a.
fa=fb;
if (abs(d) > tol1) Evaluate new trial root.

b += d;
else

b += SIGN(tol1,xm);
fb=func(b);

}
throw("Maximum number of iterations exceeded in zbrent");

}

CITED REFERENCES AND FURTHER READING:

Brent, R.P. 1973, Algorithms for Minimization without Derivatives (Englewood Cliffs, NJ: Prentice-
Hall); reprinted 2002 (New York: Dover), Chapters 3, 4.[1]

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical Com-
putations (Englewood Cliffs, NJ: Prentice-Hall), �7.2.

9.4 Newton-Raphson Method Using Derivative

Perhaps the most celebrated of all one-dimensional root-finding routines is New-
ton’s method, also called the Newton-Raphson method. Joseph Raphson (1648–
1715) was a contemporary of Newton who independently invented the method in
1690, some 20 years after Newton did, but some 20 years before Newton actually
published it. This method is distinguished from the methods of previous sections by
the fact that it requires the evaluation of both the function f .x/ and the derivative
f 0.x/, at arbitrary points x. The Newton-Raphson formula consists geometrically
of extending the tangent line at a current point xi until it crosses zero, then setting
the next guess xiC1 to the abscissa of that zero crossing (see Figure 9.4.1). Alge-
braically, the method derives from the familiar Taylor series expansion of a function
in the neighborhood of a point,

f .x C ı/ � f .x/C f 0.x/ı C
f 00.x/

2
ı2 C 	 	 	 (9.4.1)

For small enough values of ı, and for well-behaved functions, the terms beyond
linear are unimportant, hence f .x C ı/ D 0 implies

ı D �
f .x/

f 0.x/
(9.4.2)
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1

2

3

x

f (x)

Figure 9.4.1. Newton’s method extrapolates the local derivative to find the next estimate of the root. In
this example it works well and converges quadratically.

Newton-Raphson is not restricted to one dimension. The method readily gener-
alizes to multiple dimensions, as we shall see in �9.6 and �9.7, below.

Far from a root, where the higher-order terms in the series are important, the
Newton-Raphson formula can give grossly inaccurate, meaningless corrections. For
instance, the initial guess for the root might be so far from the true root as to let the
search interval include a local maximum or minimum of the function. This can be
death to the method (see Figure 9.4.2). If an iteration places a trial guess near such
a local extremum, so that the first derivative nearly vanishes, then Newton-Raphson
sends its solution off to limbo, with vanishingly small hope of recovery. Figure 9.4.3
demonstrates another possible pathology.

Why is Newton-Raphson so powerful? The answer is its rate of convergence:
Within a small distance � of x, the function and its derivative are approximately

f .x C �/ D f .x/C �f 0.x/C �2
f 00.x/

2
C 	 	 	 ;

f 0.x C �/ D f 0.x/C �f 00.x/C 	 	 	

(9.4.3)

By the Newton-Raphson formula,

xiC1 D xi �
f .xi /

f 0.xi /
(9.4.4)

so that

�iC1 D �i �
f .xi /

f 0.xi /
(9.4.5)
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f (x)

x

1

2
3

Figure 9.4.2. Unfortunate case where Newton’s method encounters a local extremum and shoots off to
outer space. Here bracketing bounds, as in rtsafe, would save the day.

x

f (x)

2

1

Figure 9.4.3. Unfortunate case where Newton’s method enters a nonconvergent cycle. This behavior is
often encountered when the function f is obtained, in whole or in part, by table interpolation. With a
better initial guess, the method would have succeeded.
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When a trial solution xi differs from the true root by �i , we can use (9.4.3) to express
f .xi /; f

0.xi / in (9.4.4) in terms of �i and derivatives at the root itself. The result is
a recurrence relation for the deviations of the trial solutions

�iC1 D ��
2
i

f 00.x/

2f 0.x/
(9.4.6)

Equation (9.4.6) says that Newton-Raphson converges quadratically (cf. equa-
tion 9.2.3). Near a root, the number of significant digits approximately doubles
with each step. This very strong convergence property makes Newton-Raphson the
method of choice for any function whose derivative can be evaluated efficiently, and
whose derivative is continuous and nonzero in the neighborhood of a root.

Even where Newton-Raphson is rejected for the early stages of convergence
(because of its poor global convergence properties), it is very common to “polish
up” a root with one or two steps of Newton-Raphson, which can multiply by two or
four its number of significant figures.

For an efficient realization of Newton-Raphson, the user provides a routine
that evaluates both f .x/ and its first derivative f 0.x/ at the point x. The Newton-
Raphson formula can also be applied using a numerical difference to approximate
the true local derivative,

f 0.x/ �
f .x C dx/ � f .x/

dx
(9.4.7)

This is not, however, a recommended procedure for the following reasons: (i) You
are doing two function evaluations per step, so at best the superlinear order of con-
vergence will be only

p
2. (ii) If you take dx too small, you will be wiped out by

roundoff, while if you take it too large, your order of convergence will be only linear,
no better than using the initial evaluation f 0.x0/ for all subsequent steps. Therefore,
Newton-Raphson with numerical derivatives is (in one dimension) always dominated
by Brent’s method (�9.3). (In multidimensions, where there is a paucity of available
methods, Newton-Raphson with numerical derivatives must be taken more seriously.
See �9.6 – �9.7.)

The following routine invokes a user-supplied structure that supplies the func-
tion value and the derivative. The function value is returned in the usual way as
a functor by overloading operator(), while the derivative is returned by the df
function in the structure. For example, to find a root of the Bessel function J0.x/
(derivative �J1.x/) you would have a structure like

struct Funcd {

Bessjy bess;

Doub operator() (const Doub x) {

return bess.j0(x);

}

Doub df(const Doub x) {

return -bess.j1(x);

}

};

(While you can use any name for Funcd, the name df is fixed.) Your code should
then create an instance of this structure and pass it to rtnewt:

Funcd fx;

Doub root=rtnewt(fx,x1,x2,xacc);
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The routine rtnewt includes input bounds on the root x1 and x2 simply to be consis-
tent with previous root-finding routines: Newton does not adjust bounds, and works
only on local information at the point x. The bounds are used only to pick the mid-
point as the first guess, and to reject the solution if it wanders outside of the bounds.

template <class T>roots.h
Doub rtnewt(T &funcd, const Doub x1, const Doub x2, const Doub xacc) {
Using the Newton-Raphson method, return the root of a function known to lie in the interval
Œx1; x2�. The root will be refined until its accuracy is known within ˙xacc. funcd is a user-
supplied struct that returns the function value as a functor and the first derivative of the function
at the point x as the function df (see text).

const Int JMAX=20; Set to maximum number of iterations.
Doub rtn=0.5*(x1+x2); Initial guess.
for (Int j=0;j<JMAX;j++) {

Doub f=funcd(rtn);
Doub df=funcd.df(rtn);
Doub dx=f/df;
rtn -= dx;
if ((x1-rtn)*(rtn-x2) < 0.0)

throw("Jumped out of brackets in rtnewt");
if (abs(dx) < xacc) return rtn; Convergence.

}
throw("Maximum number of iterations exceeded in rtnewt");

}

While Newton-Raphson’s global convergence properties are poor, it is fairly
easy to design a fail-safe routine that utilizes a combination of bisection and Newton-
Raphson. The hybrid algorithm takes a bisection step whenever Newton-Raphson
would take the solution out of bounds, or whenever Newton-Raphson is not reducing
the size of the brackets rapidly enough.

template <class T>roots.h
Doub rtsafe(T &funcd, const Doub x1, const Doub x2, const Doub xacc) {
Using a combination of Newton-Raphson and bisection, return the root of a function bracketed
between x1 and x2. The root will be refined until its accuracy is known within ˙xacc. funcd
is a user-supplied struct that returns the function value as a functor and the first derivative of
the function at the point x as the function df (see text).

const Int MAXIT=100; Maximum allowed number of iterations.
Doub xh,xl;
Doub fl=funcd(x1);
Doub fh=funcd(x2);
if ((fl > 0.0 && fh > 0.0) || (fl < 0.0 && fh < 0.0))

throw("Root must be bracketed in rtsafe");
if (fl == 0.0) return x1;
if (fh == 0.0) return x2;
if (fl < 0.0) { Orient the search so that f .xl/ < 0.

xl=x1;
xh=x2;

} else {
xh=x1;
xl=x2;

}
Doub rts=0.5*(x1+x2); Initialize the guess for root,
Doub dxold=abs(x2-x1); the “stepsize before last,”
Doub dx=dxold; and the last step.
Doub f=funcd(rts);
Doub df=funcd.df(rts);
for (Int j=0;j<MAXIT;j++) { Loop over allowed iterations.

if ((((rts-xh)*df-f)*((rts-xl)*df-f) > 0.0) Bisect if Newton out of range,
|| (abs(2.0*f) > abs(dxold*df))) { or not decreasing fast enough.
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dxold=dx;
dx=0.5*(xh-xl);
rts=xl+dx;
if (xl == rts) return rts; Change in root is negligible.

} else { Newton step acceptable. Take it.
dxold=dx;
dx=f/df;
Doub temp=rts;
rts -= dx;
if (temp == rts) return rts;

}
if (abs(dx) < xacc) return rts; Convergence criterion.
Doub f=funcd(rts);
Doub df=funcd.df(rts);
The one new function evaluation per iteration.
if (f < 0.0) Maintain the bracket on the root.

xl=rts;
else

xh=rts;
}
throw("Maximum number of iterations exceeded in rtsafe");

}

For many functions, the derivative f 0.x/ often converges to machine accuracy
before the function f .x/ itself does. When that is the case one need not subsequently
update f 0.x/. This shortcut is recommended only when you confidently understand
the generic behavior of your function, but it speeds computations when the derivative
calculation is laborious. (Formally, this makes the convergence only linear, but if the
derivative isn’t changing anyway, you can do no better.)

9.4.1 Newton-Raphson and Fractals
An interesting sidelight to our repeated warnings about Newton-Raphson’s un-

predictable global convergence properties — its very rapid local convergence notwith-
standing — is to investigate, for some particular equation, the set of starting values
from which the method does, or doesn’t, converge to a root.

Consider the simple equation

z3 � 1 D 0 (9.4.8)

whose single real root is z D 1, but which also has complex roots at the other two
cube roots of unity, exp.˙2	i=3/. Newton’s method gives the iteration

zjC1 D zj �
z3j � 1

3z2j
(9.4.9)

Up to now, we have applied an iteration like equation (9.4.9) only for real start-
ing values z0, but in fact all of the equations in this section also apply in the complex
plane. We can therefore map out the complex plane into regions from which a start-
ing value z0, iterated in equation (9.4.9), will, or won’t, converge to z D 1. Naively,
we might expect to find a “basin of convergence” somehow surrounding the root
z D 1. We surely do not expect the basin of convergence to fill the whole plane, be-
cause the plane must also contain regions that converge to each of the two complex
roots. In fact, by symmetry, the three regions must have identical shapes. Perhaps
they will be three symmetric 120ı wedges, with one root centered in each?
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1

1
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2

0

0

�1

�1

�2

�2

Figure 9.4.4. The complex z-plane with real and imaginary components in the range .�2; 2/. The black
region is the set of points from which Newton’s method converges to the root z D 1 of the equation
z3 � 1 D 0. Its shape is fractal.

Now take a look at Figure 9.4.4, which shows the result of a numerical explo-
ration. The basin of convergence does indeed cover 1=3 the area of the complex
plane, but its boundary is highly irregular — in fact, fractal. (A fractal, so called, has
self-similar structure that repeats on all scales of magnification.) How does this frac-
tal emerge from something as simple as Newton’s method and an equation as simple
as (9.4.8)? The answer is already implicit in Figure 9.4.2, which showed how, on the
real line, a local extremum causes Newton’s method to shoot off to infinity. Suppose
one is slightly removed from such a point. Then one might be shot off not to infin-
ity, but — by luck — right into the basin of convergence of the desired root. But
that means that in the neighborhood of an extremum there must be a tiny, perhaps
distorted, copy of the basin of convergence — a kind of “one-bounce away” copy.
Similar logic shows that there can be “two-bounce” copies, “three-bounce” copies,
and so on. A fractal thus emerges.

Notice that, for equation (9.4.8), almost the whole real axis is in the domain of
convergence for the root z D 1. We say “almost” because of the peculiar discrete
points on the negative real axis whose convergence is indeterminate (see figure).
What happens if you start Newton’s method from one of these points? (Try it.)
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9.4.2 Halley’s Method
Edmund Halley (1656–1742) was a contemporary and close friend of Newton.

His contribution to root finding was to extend Newton’s method to use information
from the next term in the (as we would now say it) Taylor series, the second deriva-
tive f 00.x/. Omitting a straightforward derivation, the update formula (9.4.4) now
becomes

xiC1 D xi �
f .xi /

f 0.xi /
�
1 � f .xi /f

00.xi /

2f 0.xi /
2

� (9.4.10)

You can see that the update scheme is essentially Newton-Raphson, but with an extra,
hopefully small, correction term in the denominator.

It only makes sense to use Halley’s method when it is easy to calculate f 00.xi /,
often from pieces of functions that are already being used in calculating f .xi / and
f 0.xi /. Otherwise, you might just as well do another step of ordinary Newton-
Raphson. Halley’s method converges cubically; in the final convergence each it-
eration triples the number of significant digits. But two steps of Newton-Raphson
quadruple that number.

There is no reason to think that the basin of convergence of Halley’s method is
generally larger than Newton’s; more often it is probably smaller. So don’t look to
Halley’s method for better convergence in the large.

Nevertheless, when you can get a second derivative almost for free, you can
often usefully shave an iteration or two off Newton-Raphson by something like this,

xiC1 D xi �
f .xi /

f 0.xi /

�
max

�
0:8;min

�
1:2; 1 �

f .xi /f
00.xi /

2f 0.xi /2

��
(9.4.11)

the idea being to limit the influence of the higher-order correction, so that it gets used
only in the endgame. We have already used Halley’s method in just this fashion in
�6.2, �6.4, and �6.14.
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9.5 Roots of Polynomials

Here we give a few methods for finding roots of polynomials. These will serve
for most practical problems involving polynomials of low-to-moderate degree or for
well-conditioned polynomials of higher degree. Not as well appreciated as it ought
to be is the fact that some polynomials are exceedingly ill-conditioned. The tiniest
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changes in a polynomial’s coefficients can, in the worst case, send its roots sprawling
all over the complex plane. (An infamous example due to Wilkinson is detailed by
Acton [1].)

Recall that a polynomial of degree n will have n roots. The roots can be real
or complex, and they might not be distinct. If the coefficients of the polynomial are
real, then complex roots will occur in pairs that are conjugate; i.e., if x1 D aC bi is
a root, then x2 D a � bi will also be a root. When the coefficients are complex, the
complex roots need not be related.

Multiple roots, or closely spaced roots, produce the most difficulty for numer-
ical algorithms (see Figure 9.5.1). For example, P.x/ D .x � a/2 has a double
real root at x D a. However, we cannot bracket the root by the usual technique of
identifying neighborhoods where the function changes sign, nor will slope-following
methods such as Newton-Raphson work well, because both the function and its
derivative vanish at a multiple root. Newton-Raphson may work, but slowly, since
large roundoff errors can occur. When a root is known in advance to be multiple, then
special methods of attack are readily devised. Problems arise when (as is generally
the case) we do not know in advance what pathology a root will display.

9.5.1 Deflation of Polynomials
When seeking several or all roots of a polynomial, the total effort can be sig-

nificantly reduced by the use of deflation. As each root r is found, the polynomial
is factored into a product involving the root and a reduced polynomial of degree one
less than the original, i.e., P.x/ D .x � r/Q.x/. Since the roots of Q are exactly
the remaining roots of P , the effort of finding additional roots decreases, because
we work with polynomials of lower and lower degree as we find successive roots.
Even more important, with deflation we can avoid the blunder of having our iterative
method converge twice to the same (nonmultiple) root instead of separately to two
different roots.

Deflation, which amounts to synthetic division, is a simple operation that acts
on the array of polynomial coefficients. The concise code for synthetic division
by a monomial factor was given in �5.1. You can deflate complex roots either by
converting that code to complex data type, or else — in the case of a polynomial with
real coefficients but possibly complex roots — by deflating by a quadratic factor,

Œx � .aC ib/� Œx � .a � ib/� D x2 � 2ax C .a2 C b2/ (9.5.1)

The routine poldiv in �5.1 can be used to divide the polynomial by this factor.
Deflation must, however, be utilized with care. Because each new root is known

with only finite accuracy, errors creep into the determination of the coefficients of
the successively deflated polynomial. Consequently, the roots can become more and
more inaccurate. It matters a lot whether the inaccuracy creeps in stably (plus or
minus a few multiples of the machine precision at each stage) or unstably (erosion of
successive significant figures until the results become meaningless). Which behavior
occurs depends on just how the root is divided out. Forward deflation, where the
new polynomial coefficients are computed in the order from the highest power of x
down to the constant term, was illustrated in �5.1. This turns out to be stable if the
root of smallest absolute value is divided out at each stage. Alternatively, one can do
backward deflation, where new coefficients are computed in order from the constant
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(a)

x x

(b)

f (x) f (x)

Figure 9.5.1. (a) Linear, quadratic, and cubic behavior at the roots of polynomials. Only under high
magnification (b) does it become apparent that the cubic has one, not three, roots, and that the quadratic
has two roots rather than none.

term up to the coefficient of the highest power of x. This is stable if the remaining
root of largest absolute value is divided out at each stage.

A polynomial whose coefficients are interchanged “end-to-end,” so that the con-
stant becomes the highest coefficient, etc., has its roots mapped into their reciprocals.
(Proof: Divide the whole polynomial by its highest power xn and rewrite it as a poly-
nomial in 1=x.) The algorithm for backward deflation is therefore virtually identical
to that of forward deflation, except that the original coefficients are taken in reverse
order and the reciprocal of the deflating root is used. Since we will use forward de-
flation below, we leave to you the exercise of writing a concise coding for backward
deflation (as in �5.1). For more on the stability of deflation, consult [2].

To minimize the impact of increasing errors (even stable ones) when using de-
flation, it is advisable to treat roots of the successively deflated polynomials as only
tentative roots of the original polynomial. One then polishes these tentative roots
by taking them as initial guesses that are to be re-solved for, using the nondeflated
original polynomial P . Again you must beware lest two deflated roots are inaccurate
enough that, under polishing, they both converge to the same undeflated root; in that
case you gain a spurious root multiplicity and lose a distinct root. This is detectable,
since you can compare each polished root for equality to previous ones from dis-
tinct tentative roots. When it happens, you are advised to deflate the polynomial just
once (and for this root only), then again polish the tentative root, or use Maehly’s
procedure (see equation 9.5.29 below).

Below we say more about techniques for polishing real and complex-conjugate
tentative roots. First, let’s get back to overall strategy.

There are two schools of thought about how to proceed when faced with a poly-
nomial of real coefficients. One school says to go after the easiest quarry, the real,
distinct roots, by the same kinds of methods that we have discussed in previous sec-
tions for general functions, i.e., trial-and-error bracketing followed by a safe Newton-
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Raphson as in rtsafe. Sometimes you are only interested in real roots, in which case
the strategy is complete. Otherwise, you then go after quadratic factors of the form
(9.5.1) by any of a variety of methods. One such is Bairstow’s method, which we will
discuss below in the context of root polishing. Another is Muller’s method, which
we here briefly discuss.

9.5.2 Muller’s Method
Muller’s method generalizes the secant method but uses quadratic interpolation

among three points instead of linear interpolation between two. Solving for the ze-
ros of the quadratic allows the method to find complex pairs of roots. Given three
previous guesses for the root xi�2, xi�1, xi , and the values of the polynomial P.x/
at those points, the next approximation xiC1 is produced by the following formulas,

q �
xi � xi�1

xi�1 � xi�2

A � qP.xi / � q.1C q/P.xi�1/C q
2P.xi�2/

B � .2q C 1/P.xi / � .1C q/
2P.xi�1/C q

2P.xi�2/

C � .1C q/P.xi /

(9.5.2)

followed by

xiC1 D xi � .xi � xi�1/
2C

B ˙
p
B2 � 4AC

(9.5.3)

where the sign in the denominator is chosen to make its absolute value or modulus
as large as possible. You can start the iterations with any three values of x that you
like, e.g., three equally spaced values on the real axis. Note that you must allow
for the possibility of a complex denominator, and subsequent complex arithmetic, in
implementing the method.

Muller’s method is sometimes also used for finding complex zeros of analytic
functions (not just polynomials) in the complex plane, for example in the IMSL
routine ZANLY [3].

9.5.3 Laguerre’s Method
The second school regarding overall strategy happens to be the one to which

we belong. That school advises you to use one of a very small number of methods
that will converge (though with greater or lesser efficiency) to all types of roots: real,
complex, single, or multiple. Use such a method to get tentative values for all n roots
of your nth degree polynomial. Then go back and polish them as you desire.

Laguerre’s method is by far the most straightforward of these general, complex
methods. It does require complex arithmetic, even while converging to real roots;
however, for polynomials with all real roots, it is guaranteed to converge to a root
from any starting point. For polynomials with some complex roots, little is theoreti-
cally proved about the method’s convergence. Much empirical experience, however,
suggests that nonconvergence is extremely unusual and, further, can almost always
be fixed by a simple scheme to break a nonconverging limit cycle. (This is im-
plemented in our routine below.) An example of a polynomial that requires this
cycle-breaking scheme is one of high degree (& 20), with all its roots just outside of
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the complex unit circle, approximately equally spaced around it. When the method
converges on a simple complex zero, it is known that its convergence is third order.

In some instances the complex arithmetic in the Laguerre method is no disad-
vantage, since the polynomial itself may have complex coefficients.

To motivate (although not rigorously derive) the Laguerre formulas we can note
the following relations between the polynomial and its roots and derivatives:

Pn.x/ D .x � x0/.x � x1/ : : : .x � xn�1/ (9.5.4)

ln jPn.x/j D ln jx � x0j C ln jx � x1j C : : :C ln jx � xn�1j (9.5.5)

d ln jPn.x/j

dx
D C

1

x � x0
C

1

x � x1
C : : :C

1

x � xn�1
D
P 0n
Pn
� G (9.5.6)

�
d2 ln jPn.x/j

dx2
D C

1

.x � x0/2
C

1

.x � x1/2
C : : :C

1

.x � xn�1/2

D

�
P 0n
Pn

�2
�
P 00n
Pn
� H (9.5.7)

Starting from these relations, the Laguerre formulas make what Acton [1] nicely calls
“a rather drastic set of assumptions”: The root x0 that we seek is assumed to be
located some distance a from our current guess x, while all other roots are assumed
to be located at a distance b,

x � x0 D a; x � xi D b; i D 1; 2; : : : ; n � 1 (9.5.8)

Then we can express (9.5.6) and (9.5.7) as

1

a
C
n � 1

b
D G (9.5.9)

1

a2
C
n � 1

b2
D H (9.5.10)

which yields as the solution for a

a D
n

G ˙
p
.n � 1/.nH �G2/

(9.5.11)

where the sign should be taken to yield the largest magnitude for the denominator.
Since the factor inside the square root can be negative, a can be complex. (A more
rigorous justification of equation 9.5.11 is in [4].)

The method operates iteratively: For a trial value x, calculate a by equation
(9.5.11). Then use x�a as the next trial value. Continue until a is sufficiently small.

The following routine implements the Laguerre method to find one root of a
given polynomial of degree m, whose coefficients can be complex. As usual, the first
coefficient, a[0], is the constant term, while a[m] is the coefficient of the highest
power of x. The routine implements a simplified version of an elegant stopping
criterion due to Adams [5], which neatly balances the desire to achieve full machine
accuracy, on the one hand, with the danger of iterating forever in the presence of
roundoff error, on the other.
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void laguer(VecComplex_I &a, Complex &x, Int &its) {roots poly.h
Given the m+1 complex coefficients a[0..m] of the polynomial

Pm
iD0 aŒi�x

i , and given a complex
value x, this routine improves x by Laguerre’s method until it converges, within the achievable
roundoff limit, to a root of the given polynomial. The number of iterations taken is returned as
its.

const Int MR=8,MT=10,MAXIT=MT*MR;
const Doub EPS=numeric_limits<Doub>::epsilon();
Here EPS is the estimated fractional roundoff error. We try to break (rare) limit cycles with
MR different fractional values, once every MT steps, for MAXIT total allowed iterations.
static const Doub frac[MR+1]=

{0.0,0.5,0.25,0.75,0.13,0.38,0.62,0.88,1.0};
Fractions used to break a limit cycle.
Complex dx,x1,b,d,f,g,h,sq,gp,gm,g2;
Int m=a.size()-1;
for (Int iter=1;iter<=MAXIT;iter++) { Loop over iterations up to allowed maximum.

its=iter;
b=a[m];
Doub err=abs(b);
d=f=0.0;
Doub abx=abs(x);
for (Int j=m-1;j>=0;j--) { Efficient computation of the polynomial and

its first two derivatives. f stores P 00=2.f=x*f+d;
d=x*d+b;
b=x*b+a[j];
err=abs(b)+abx*err;

}
err *= EPS;
Estimate of roundoff error in evaluating polynomial.
if (abs(b) <= err) return; We are on the root.
g=d/b; The generic case: Use Laguerre’s formula.
g2=g*g;
h=g2-2.0*f/b;
sq=sqrt(Doub(m-1)*(Doub(m)*h-g2));
gp=g+sq;
gm=g-sq;
Doub abp=abs(gp);
Doub abm=abs(gm);
if (abp < abm) gp=gm;
dx=MAX(abp,abm) > 0.0 ? Doub(m)/gp : polar(1+abx,Doub(iter));
x1=x-dx;
if (x == x1) return; Converged.
if (iter % MT != 0) x=x1;
else x -= frac[iter/MT]*dx;
Every so often we take a fractional step, to break any limit cycle (itself a rare occur-
rence).

}
throw("too many iterations in laguer");
Very unusual; can occur only for complex roots. Try a different starting guess.

}

Here is a driver routine that calls laguer in succession for each root, performs
the deflation, optionally polishes the roots by the same Laguerre method — if you
are not going to polish in some other way — and finally sorts the roots by their real
parts. (We will use this routine in Chapter 13.)

void zroots(VecComplex_I &a, VecComplex_O &roots, const Bool &polish)roots poly.h
Given the m+1 complex coefficients a[0..m] of the polynomial

Pm
iD0 a.i/x

i , this routine suc-
cessively calls laguer and finds all m complex roots in roots[0..m-1]. The boolean variable
polish should be input as true if polishing (also by Laguerre’s method) is desired, false if the
roots will be subsequently polished by other means.
{

const Doub EPS=1.0e-14; A small number.



�

�

“nr3” — 2007/5/1 — 20:53 — page 469 — #491
�

�

� �

9.5 Roots of Polynomials 469

Int i,its;
Complex x,b,c;
Int m=a.size()-1;
VecComplex ad(m+1);
for (Int j=0;j<=m;j++) ad[j]=a[j]; Copy of coefficients for successive deflation.
for (Int j=m-1;j>=0;j--) { Loop over each root to be found.

x=0.0; Start at zero to favor convergence to small-
est remaining root, and return the root.VecComplex ad_v(j+2);

for (Int jj=0;jj<j+2;jj++) ad_v[jj]=ad[jj];
laguer(ad_v,x,its);
if (abs(imag(x)) <= 2.0*EPS*abs(real(x)))

x=Complex(real(x),0.0);
roots[j]=x;
b=ad[j+1]; Forward deflation.
for (Int jj=j;jj>=0;jj--) {

c=ad[jj];
ad[jj]=b;
b=x*b+c;

}
}
if (polish)

for (Int j=0;j<m;j++) Polish the roots using the undeflated coeffi-
cients.laguer(a,roots[j],its);

for (Int j=1;j<m;j++) { Sort roots by their real parts by straight in-
sertion.x=roots[j];

for (i=j-1;i>=0;i--) {
if (real(roots[i]) <= real(x)) break;
roots[i+1]=roots[i];

}
roots[i+1]=x;

}
}

9.5.4 Eigenvalue Methods
The eigenvalues of a matrix A are the roots of the “characteristic polynomial”

P.x/ D detŒA� xI�. However, as we will see in Chapter 11, root finding is not gen-
erally an efficient way to find eigenvalues. Turning matters around, we can use the
more efficient eigenvalue methods that are discussed in Chapter 11 to find the roots
of arbitrary polynomials. You can easily verify (see, e.g., [6]) that the characteristic
polynomial of the special m �m companion matrix

A D

0BBBBB@
�
am�1
am

�
am�2
am

	 	 	 �
a1
am

�
a0
am

1 0 	 	 	 0 0

0 1 	 	 	 0 0
:::

:::

0 0 	 	 	 1 0

1CCCCCA (9.5.12)

is equivalent to the general polynomial

P.x/ D

mX
iD0

aix
i (9.5.13)

If the coefficients ai are real, rather than complex, then the eigenvalues of A can
be found using the routine Unsymmeig in �11.6 – �11.7 (see discussion there). This
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method, implemented in the routine zrhqr following, is typically about a factor 2
slower than zroots (above). However, for some classes of polynomials, it is a more
robust technique, largely because of the fairly sophisticated convergence methods
embodied in Unsymmeig. If your polynomial has real coefficients, and you are hav-
ing trouble with zroots, then zrhqr is a recommended alternative.

void zrhqr(VecDoub_I &a, VecComplex_O &rt)zrhqr.h
Find all the roots of a polynomial with real coefficients,

Pm
iD0 a.i/x

i , given the coefficients
a[0..m]. The method is to construct an upper Hessenberg matrix whose eigenvalues are the
desired roots and then use the routine Unsymmeig. The roots are returned in the complex vector
rt[0..m-1], sorted in descending order by their real parts.
{

Int m=a.size()-1;
MatDoub hess(m,m);
for (Int k=0;k<m;k++) { Construct the matrix.

hess[0][k] = -a[m-k-1]/a[m];
for (Int j=1;j<m;j++) hess[j][k]=0.0;
if (k != m-1) hess[k+1][k]=1.0;

}
Unsymmeig h(hess, false, true); Find its eigenvalues.
for (Int j=0;j<m;j++)

rt[j]=h.wri[j];
}

9.5.5 Other Sure-Fire Techniques
The Jenkins-Traub method has become practically a standard in black-box poly-

nomial root finders, e.g., in the IMSL library [3]. The method is too complicated to
discuss here, but is detailed, with references to the primary literature, in [4].

The Lehmer-Schur algorithm is one of a class of methods that isolate roots in
the complex plane by generalizing the notion of one-dimensional bracketing. It is
possible to determine efficiently whether there are any polynomial roots within a
circle of given center and radius. From then on it is a matter of bookkeeping to hunt
down all the roots by a series of decisions regarding where to place new trial circles.
Consult [1] for an introduction.

9.5.6 Techniques for Root Polishing
Newton-Raphson works very well for real roots once the neighborhood of a

root has been identified. The polynomial and its derivative can be efficiently si-
multaneously evaluated as in �5.1. For a polynomial of degree n with coefficients
c[0]...c[n], the following segment of code carries out one cycle of Newton-
Raphson:

p=c[n]*x+c[n-1];

p1=c[n];

for(i=n-2;i>=0;i--) {

p1=p+p1*x;

p=c[i]+p*x;

}

if (p1 == 0.0) throw("derivative should not vanish");

x -= p/p1;

Once all real roots of a polynomial have been polished, one must polish the
complex roots, either directly or by looking for quadratic factors.
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Direct polishing by Newton-Raphson is straightforward for complex roots if the
above code is converted to complex data types. With real polynomial coefficients,
note that your starting guess (tentative root) must be off the real axis, otherwise you
will never get off that axis — and may get shot off to infinity by a minimum or
maximum of the polynomial.

For real polynomials, the alternative means of polishing complex roots (or, for that mat-
ter, double real roots) is Bairstow’s method, which seeks quadratic factors. The advantage of
going after quadratic factors is that it avoids all complex arithmetic. Bairstow’s method seeks
a quadratic factor that embodies the two roots x D a˙ ib, namely

x2 � 2ax C .a2 C b2/ � x2 C Bx C C (9.5.14)

In general, if we divide a polynomial by a quadratic factor, there will be a linear remainder

P.x/ D .x2 C Bx C C/Q.x/C Rx C S: (9.5.15)

GivenB and C ,R and S can be readily found, by polynomial division (�5.1). We can consider
R and S to be adjustable functions of B and C , and they will be zero if the quadratic factor is
a divisor of P.x/.

In the neighborhood of a root, a first-order Taylor series expansion approximates the
variation of R; S with respect to small changes in B;C :

R.B C ıB; C C ıC / � R.B;C /C
@R

@B
ıB C

@R

@C
ıC (9.5.16)

S.B C ıB; C C ıC / � S.B;C /C
@S

@B
ıB C

@S

@C
ıC (9.5.17)

To evaluate the partial derivatives, consider the derivative of (9.5.15) with respect to C . Since
P.x/ is a fixed polynomial, it is independent of C , hence

0 D .x2 C Bx C C/
@Q

@C
CQ.x/C

@R

@C
x C

@S

@C
(9.5.18)

which can be rewritten as

�Q.x/ D .x2 C Bx C C/
@Q

@C
C
@R

@C
x C

@S

@C
(9.5.19)

Similarly, P.x/ is independent of B , so differentiating (9.5.15) with respect to B gives

�xQ.x/ D .x2 C Bx C C/
@Q

@B
C
@R

@B
x C

@S

@B
(9.5.20)

Now note that equation (9.5.19) matches equation (9.5.15) in form. Thus if we perform a sec-
ond synthetic division of P.x/, i.e., a division of Q.x/ by the same quadratic factor, yielding
a remainder R1x C S1, then

@R

@C
D �R1

@S

@C
D �S1 (9.5.21)

To get the remaining partial derivatives, evaluate equation (9.5.20) at the two roots of the
quadratic, xC and x�. Since

Q.x˙/ D R1x˙ C S1 (9.5.22)

we get
@R

@B
xC C

@S

@B
D �xC.R1xC C S1/ (9.5.23)

@R

@B
x� C

@S

@B
D �x�.R1x� C S1/ (9.5.24)
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Solve these two equations for the partial derivatives, using

xC C x� D �B xCx� D C (9.5.25)

and find
@R

@B
D BR1 � S1

@S

@B
D CR1 (9.5.26)

Bairstow’s method now consists of using Newton-Raphson in two dimensions (which is
actually the subject of the next section) to find a simultaneous zero of R and S . Synthetic
division is used twice per cycle to evaluate R; S and their partial derivatives with respect to
B;C . Like one-dimensional Newton-Raphson, the method works well in the vicinity of a root
pair (real or complex), but it can fail miserably when started at a random point. We therefore
recommend it only in the context of polishing tentative complex roots.

void qroot(VecDoub_I &p, Doub &b, Doub &c, const Doub eps)qroot.h
Given n+1 coefficients p[0..n] of a polynomial of degree n, and trial values for the coefficients
of a quadratic factor x*x+b*x+c, improve the solution until the coefficients b,c change by less
than eps. The routine poldiv in �5.1 is used.
{

const Int ITMAX=20; At most ITMAX iterations.
const Doub TINY=1.0e-14;
Doub sc,sb,s,rc,rb,r,dv,delc,delb;
Int n=p.size()-1;
VecDoub d(3),q(n+1),qq(n+1),rem(n+1);
d[2]=1.0;
for (Int iter=0;iter<ITMAX;iter++) {

d[1]=b;
d[0]=c;
poldiv(p,d,q,rem);
s=rem[0]; First division, r,s.
r=rem[1];
poldiv(q,d,qq,rem);
sb = -c*(rc = -rem[1]); Second division, partial r,s with respect to

c.rb = -b*rc+(sc = -rem[0]);
dv=1.0/(sb*rc-sc*rb); Solve 2x2 equation.
delb=(r*sc-s*rc)*dv;
delc=(-r*sb+s*rb)*dv;
b += (delb=(r*sc-s*rc)*dv);
c += (delc=(-r*sb+s*rb)*dv);
if ((abs(delb) <= eps*abs(b) || abs(b) < TINY)

&& (abs(delc) <= eps*abs(c) || abs(c) < TINY)) {
return; Coefficients converged.

}
}
throw("Too many iterations in routine qroot");

}

We have already remarked on the annoyance of having two tentative roots col-
lapse to one value under polishing. You are left not knowing whether your polishing
procedure has lost a root, or whether there is actually a double root, which was
split only by roundoff errors in your previous deflation. One solution is deflate-and-
repolish; but deflation is what we are trying to avoid at the polishing stage. An alter-
native is Maehly’s procedure. Maehly pointed out that the derivative of the reduced
polynomial

Pj .x/ �
P.x/

.x � x0/ 	 	 	 .x � xj�1/
(9.5.27)

can be written as
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P 0j .x/ D
P 0.x/

.x � x0/ 	 	 	 .x � xj�1/
�

P.x/

.x � x0/ 	 	 	 .x � xj�1/

j�1X
iD0

.x�xi /
�1 (9.5.28)

Hence one step of Newton-Raphson, taking a guess xk into a new guess xkC1, can
be written as

xkC1 D xk �
P.xk/

P 0.xk/ � P.xk/
Pj�1
iD0 .xk � xi /

�1
(9.5.29)

This equation, if used with i ranging over the roots already polished, will prevent a
tentative root from spuriously hopping to another one’s true root. It is an example of
so-called zero suppression as an alternative to true deflation.

Muller’s method, which was described above, can also be a useful adjunct at
the polishing stage.
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Adams, D.A. 1967, “A Stopping Criterion for Polynomial Root Finding,” Communications of the
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9.6 Newton-Raphson Method for Nonlinear
Systems of Equations

We make an extreme, but wholly defensible, statement: There are no good, gen-
eral methods for solving systems of more than one nonlinear equation. Furthermore,
it is not hard to see why (very likely) there never will be any good, general methods:
Consider the case of two dimensions, where we want to solve simultaneously

f .x; y/ D 0

g.x; y/ D 0
(9.6.1)
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Figure 9.6.1. Solution of two nonlinear equations in two unknowns. Solid curves refer to f .x; y/,
dashed curves to g.x; y/. Each equation divides the .x; y/-plane into positive and negative regions,
bounded by zero curves. The desired solutions are the intersections of these unrelated zero curves. The
number of solutions is a priori unknown.

The functions f and g are two arbitrary functions, each of which has zero
contour lines that divide the .x; y/-plane into regions where their respective function
is positive or negative. These zero contour boundaries are of interest to us. The
solutions that we seek are those points (if any) that are common to the zero contours
of f and g (see Figure 9.6.1). Unfortunately, the functions f and g have, in general,
no relation to each other at all! There is nothing special about a common point from
either f ’s point of view, or from g’s. In order to find all common points, which
are the solutions of our nonlinear equations, we will (in general) have to do neither
more nor less than map out the full zero contours of both functions. Note further that
the zero contours will (in general) consist of an unknown number of disjoint closed
curves. How can we ever hope to know when we have found all such disjoint pieces?

For problems in more than two dimensions, we need to find points mutually
common to N unrelated zero-contour hypersurfaces, each of dimension N � 1. You
see that root finding becomes virtually impossible without insight! You will almost
always have to use additional information, specific to your particular problem, to an-
swer such basic questions as, “Do I expect a unique solution?” and “Approximately
where?” Acton [1] has a good discussion of some of the particular strategies that can
be tried.

In this section we discuss the simplest multidimensional root-finding method,
Newton-Raphson. This method gives a very efficient means of converging to a root,
if you have a sufficiently good initial guess. It can also spectacularly fail to converge,
indicating (though not proving) that your putative root does not exist nearby. In �9.7
we discuss more sophisticated implementations of the Newton-Raphson method,
which try to improve on Newton-Raphson’s poor global convergence. A multidi-
mensional generalization of the secant method, called Broyden’s method, is also
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discussed in �9.7.

A typical problem givesN functional relations to be zeroed, involving variables
xi ; i D 0; 1; : : : ; N � 1:

Fi .x0; x1; : : : ; xN�1/ D 0 i D 0; 1; : : : ; N � 1: (9.6.2)

We let x denote the entire vector of values xi and F denote the entire vector of
functions Fi . In the neighborhood of x, each of the functions Fi can be expanded in
Taylor series:

Fi .xC ıx/ D Fi .x/C

N�1X
jD0

@Fi

@xj
ıxj CO.ıx

2/: (9.6.3)

The matrix of partial derivatives appearing in equation (9.6.3) is the Jacobian matrix
J :

Jij �
@Fi

@xj
: (9.6.4)

In matrix notation equation (9.6.3) is

F.xC ıx/ D F.x/C J 	 ıxCO.ıx2/: (9.6.5)

By neglecting terms of order ıx2 and higher and by setting F.x C ıx/ D 0, we
obtain a set of linear equations for the corrections ıx that move each function closer
to zero simultaneously, namely

J 	 ıx D �F : (9.6.6)

Matrix equation (9.6.6) can be solved by LU decomposition as described in
�2.3. The corrections are then added to the solution vector,

xnew D xold C ıx (9.6.7)

and the process is iterated to convergence. In general it is a good idea to check the
degree to which both functions and variables have converged. Once either reaches
machine accuracy, the other won’t change.

The following routine mnewt performs ntrial iterations starting from an ini-
tial guess at the solution vector x[0..n-1]. Iteration stops if either the sum of the
magnitudes of the functions Fi is less than some tolerance tolf, or the sum of the
absolute values of the corrections to ıxi is less than some tolerance tolx. mnewt
calls a user-supplied function with the fixed name usrfun, which must provide the
function values F and the Jacobian matrix J . (The more sophisticated methods later
in this chapter will have a more versatile interface.) If J is difficult to compute ana-
lytically, you can try having usrfun invoke the routine NRfdjac of �9.7 to compute
the partial derivatives by finite differences. You should not make ntrial too big;
rather, inspect to see what is happening before continuing for some further iterations.
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void usrfun(VecDoub_I &x, VecDoub_O &fvec, MatDoub_O &fjac);mnewt.h

void mnewt(const Int ntrial, VecDoub_IO &x, const Doub tolx, const Doub tolf) {
Given an initial guess x[0..n-1] for a root in n dimensions, take ntrial Newton-Raphson steps
to improve the root. Stop if the root converges in either summed absolute variable increments
tolx or summed absolute function values tolf.

Int i,n=x.size();
VecDoub p(n),fvec(n);
MatDoub fjac(n,n);
for (Int k=0;k<ntrial;k++) {

usrfun(x,fvec,fjac); User function supplies function values at x in
fvec and Jacobian matrix in fjac.Doub errf=0.0;

for (i=0;i<n;i++) errf += abs(fvec[i]); Check function convergence.
if (errf <= tolf) return;
for (i=0;i<n;i++) p[i] = -fvec[i]; Right-hand side of linear equations.
LUdcmp alu(fjac); Solve linear equations using LU decomposition.
alu.solve(p,p);
Doub errx=0.0; Check root convergence.
for (i=0;i<n;i++) { Update solution.

errx += abs(p[i]);
x[i] += p[i];

}
if (errx <= tolx) return;

}
return;

}

9.6.1 Newton’s Method versus Minimization
In the next chapter, we will find that there are efficient general techniques for

finding a minimum of a function of many variables. Why is that task (relatively)
easy, while multidimensional root finding is often quite hard? Isn’t minimization
equivalent to finding a zero of an N -dimensional gradient vector, which is not so
different from zeroing an N -dimensional function? No! The components of a gra-
dient vector are not independent, arbitrary functions. Rather, they obey so-called
integrability conditions that are highly restrictive. Put crudely, you can always find a
minimum by sliding downhill on a single surface. The test of “downhillness” is thus
one-dimensional. There is no analogous conceptual procedure for finding a multidi-
mensional root, where “downhill” must mean simultaneously downhill inN separate
function spaces, thus allowing a multitude of trade-offs as to how much progress in
one dimension is worth compared with progress in another.

It might occur to you to carry out multidimensional root finding by collapsing all
these dimensions into one: Add up the sums of squares of the individual functions Fi
to get a master functionF that (i) is positive-definite and (ii) has a global minimum of
zero exactly at all solutions of the original set of nonlinear equations. Unfortunately,
as you will see in the next chapter, the efficient algorithms for finding minima come
to rest on global and local minima indiscriminately. You will often find, to your great
dissatisfaction, that your function F has a great number of local minima. In Figure
9.6.1, for example, there is likely to be a local minimum wherever the zero contours
of f and g make a close approach to each other. The point labeledM is such a point,
and one sees that there are no nearby roots.

However, we will now see that sophisticated strategies for multidimensional
root finding can in fact make use of the idea of minimizing a master function F , by
combining it with Newton’s method applied to the full set of functions Fi . While
such methods can still occasionally fail by coming to rest on a local minimum of F ,
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they often succeed where a direct attack via Newton’s method alone fails. The next
section deals with these methods.

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington, DC:
Mathematical Association of America), Chapter 14.[1]

Ostrowski, A.M. 1966, Solutions of Equations and Systems of Equations, 2nd ed. (New York:
Academic Press).

Ortega, J., and Rheinboldt, W. 1970, Iterative Solution of Nonlinear Equations in Several Vari-
ables (New York: Academic Press); reprinted 2000 (Philadelphia: S.I.A.M.).

9.7 Globally Convergent Methods for Nonlinear
Systems of Equations

We have seen that Newton’s method for solving nonlinear equations has an un-
fortunate tendency to wander off into the wild blue yonder if the initial guess is not
sufficiently close to the root. A global method [1] would be one that converges to
a solution from almost any starting point. Such global methods do exist for mini-
mization problems; an example is the quasi-Newton method that we will describe
in �10.9. In this section we will develop an algorithm that is an analogous quasi-
Newton method for multidimensional root finding. Alas, while it is better behaved
than Newton’s method, it is still not truly global.

What the method does do is combine the rapid local convergence of Newton’s
method with a higher-level strategy that guarantees at least some progress at each
step — either toward an actual root (usually), or else, hopefully rarely, toward the
situation labeled “no root here!” in Figure 9.6.1. In the latter case, the method rec-
ognizes the problem and signals failure. By contrast, Newton’s method can bounce
around forever, and you are never sure whether or not to quit.

Recall our discussion of �9.6: The Newton step for the set of equations

F.x/ D 0 (9.7.1)

is
xnew D xold C ıx (9.7.2)

where
ıx D �J�1 	 F (9.7.3)

Here J is the Jacobian matrix. How do we decide whether to accept the Newton step
ıx? A reasonable strategy is to require that the step decrease jF j2 D F 	 F . This is
the same requirement we would impose if we were trying to minimize

f D 1
2
F 	 F (9.7.4)

(The 1
2

is for later convenience.) Every solution to (9.7.1) minimizes (9.7.4), but
there may be local minima of (9.7.4) that are not solutions to (9.7.1). Thus, as already
mentioned, simply applying one of our minimum-finding algorithms from Chapter
10 to (9.7.4) is not a good idea.
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To develop a better strategy, note that the Newton step (9.7.3) is a descent di-
rection for f :

rf 	 ıx D .F 	 J / 	 .�J�1 	 F/ D �F 	 F < 0 (9.7.5)

Thus our strategy is quite simple: We always first try the full Newton step,
because once we are close enough to the solution we will get quadratic convergence.
However, we check at each iteration that the proposed step reduces f . If not, we
backtrack along the Newton direction until we have an acceptable step. Because the
Newton step is a descent direction for f , we are guaranteed to find an acceptable step
by backtracking. We will discuss the backtracking algorithm in more detail below.

Note that this method minimizes f only “incidentally,” either by taking Newton
steps designed to bring F to zero, or by backtracking along such a step. The method
is not equivalent to minimizing f directly by taking Newton steps designed to bring
rf to zero. While the method can nevertheless still fail by converging to a local
minimum of f that is not a root (as in Figure 9.6.1), this is quite rare in real applica-
tions. The routine newt below will warn you if this happens. The only remedy is to
try a new starting point.

9.7.1 Line Searches and Backtracking
When we are not close enough to the minimum of f , taking the full Newton step p D ıx

need not decrease the function; we may move too far for the quadratic approximation to be
valid. All we are guaranteed is that initially f decreases as we move in the Newton direction.
So the goal is to move to a new point xnew along the direction of the Newton step p, but not
necessarily all the way:

xnew D xold C �p; 0 < � 
 1 (9.7.6)

The aim is to find � so that f .xold C �p/ has decreased sufficiently. Until the early 1970s,
standard practice was to choose � so that xnew exactly minimizes f in the direction p. How-
ever, we now know that it is extremely wasteful of function evaluations to do so. A better
strategy is as follows: Since p is always the Newton direction in our algorithms, we first try
� D 1, the full Newton step. This will lead to quadratic convergence when x is sufficiently
close to the solution. However, if f .xnew/ does not meet our acceptance criteria, we backtrack
along the Newton direction, trying a smaller value of �, until we find a suitable point. Since
the Newton direction is a descent direction, we are guaranteed to decrease f for sufficiently
small �.

What should the criterion for accepting a step be? It is not sufficient to require merely
that f .xnew/ < f .xold/. This criterion can fail to converge to a minimum of f in one of
two ways. First, it is possible to construct a sequence of steps satisfying this criterion with f
decreasing too slowly relative to the step lengths. Second, one can have a sequence where the
step lengths are too small relative to the initial rate of decrease of f . (For examples of such
sequences, see [2], p. 117.)

A simple way to fix the first problem is to require the average rate of decrease of f to
be at least some fraction ˛ of the initial rate of decrease rf 	 p:

f .xnew/ 
 f .xold/C ˛rf 	 .xnew � xold/ (9.7.7)

Here the parameter ˛ satisfies 0 < ˛ < 1. We can get away with quite small values of ˛;
˛ D 10�4 is a good choice.

The second problem can be fixed by requiring the rate of decrease of f at xnew to be
greater than some fraction ˇ of the rate of decrease of f at xold. In practice, we will not need
to impose this second constraint because our backtracking algorithm will have a built-in cutoff
to avoid taking steps that are too small.

Here is the strategy for a practical backtracking routine: Define

g.�/ � f .xold C �p/ (9.7.8)
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so that
g0.�/ D rf 	 p (9.7.9)

If we need to backtrack, then we model g with the most current information we have and
choose � to minimize the model. We start with g.0/ and g0.0/ available. The first step is
always the Newton step, � D 1. If this step is not acceptable, we have available g.1/ as well.
We can therefore model g.�/ as a quadratic:

g.�/ � Œg.1/ � g.0/ � g0.0/��2 C g0.0/�C g.0/ (9.7.10)

Taking the derivative of this quadratic, we find that it is a minimum when

� D �
g0.0/

2Œg.1/ � g.0/ � g0.0/�
(9.7.11)

Since the Newton step failed, one can show that � . 1
2 for small ˛. We need to guard against

too small a value of �, however. We set �min D 0:1.
On second and subsequent backtracks, we model g as a cubic in �, using the previous

value g.�1/ and the second most recent value g.�2/:

g.�/ D a�3 C b�2 C g0.0/�C g.0/ (9.7.12)

Requiring this expression to give the correct values of g at �1 and �2 gives two equations that
can be solved for the coefficients a and b:�

a

b

�
D

1

�1 � �2

"
1=�21 �1=�22

��2=�
2
1 �1=�

2
2

#
	

�
g.�1/ � g

0.0/�1 � g.0/

g.�2/ � g
0.0/�2 � g.0/

�
(9.7.13)

The minimum of the cubic (9.7.12) is at

� D
�b C

p
b2 � 3ag0.0/

3a
(9.7.14)

We enforce that � lie between �max D 0:5�1 and �min D 0:1�1.
The routine has two additional features, a minimum step length alamin and a maximum

step length stpmax. lnsrch will also be used in the quasi-Newton minimization routine
dfpmin in the next section.

template <class T> roots multidim.h
void lnsrch(VecDoub_I &xold, const Doub fold, VecDoub_I &g, VecDoub_IO &p,
VecDoub_O &x, Doub &f, const Doub stpmax, Bool &check, T &func) {
Given an n-dimensional point xold[0..n-1], the value of the function and gradient there, fold
and g[0..n-1], and a direction p[0..n-1], finds a new point x[0..n-1] along the direction
p from xold where the function or functor func has decreased “sufficiently.” The new function
value is returned in f. stpmax is an input quantity that limits the length of the steps so that you
do not try to evaluate the function in regions where it is undefined or subject to overflow. p is
usually the Newton direction. The output quantity check is false on a normal exit. It is true
when x is too close to xold. In a minimization algorithm, this usually signals convergence and
can be ignored. However, in a zero-finding algorithm the calling program should check whether
the convergence is spurious.

const Doub ALF=1.0e-4, TOLX=numeric_limits<Doub>::epsilon();
ALF ensures sufficient decrease in function value; TOLX is the convergence criterion on �x.

Doub a,alam,alam2=0.0,alamin,b,disc,f2=0.0;
Doub rhs1,rhs2,slope=0.0,sum=0.0,temp,test,tmplam;
Int i,n=xold.size();
check=false;
for (i=0;i<n;i++) sum += p[i]*p[i];
sum=sqrt(sum);
if (sum > stpmax)

for (i=0;i<n;i++)
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p[i] *= stpmax/sum; Scale if attempted step is too big.
for (i=0;i<n;i++)

slope += g[i]*p[i];
if (slope >= 0.0) throw("Roundoff problem in lnsrch.");
test=0.0; Compute �min.
for (i=0;i<n;i++) {

temp=abs(p[i])/MAX(abs(xold[i]),1.0);
if (temp > test) test=temp;

}
alamin=TOLX/test;
alam=1.0; Always try full Newton step first.
for (;;) { Start of iteration loop.

for (i=0;i<n;i++) x[i]=xold[i]+alam*p[i];
f=func(x);
if (alam < alamin) { Convergence on �x. For zero find-

ing, the calling program should
verify the convergence.

for (i=0;i<n;i++) x[i]=xold[i];
check=true;
return;

} else if (f <= fold+ALF*alam*slope) return; Sufficient function decrease.
else { Backtrack.

if (alam == 1.0)
tmplam = -slope/(2.0*(f-fold-slope)); First time.

else { Subsequent backtracks.
rhs1=f-fold-alam*slope;
rhs2=f2-fold-alam2*slope;
a=(rhs1/(alam*alam)-rhs2/(alam2*alam2))/(alam-alam2);
b=(-alam2*rhs1/(alam*alam)+alam*rhs2/(alam2*alam2))/(alam-alam2);
if (a == 0.0) tmplam = -slope/(2.0*b);
else {

disc=b*b-3.0*a*slope;
if (disc < 0.0) tmplam=0.5*alam;
else if (b <= 0.0) tmplam=(-b+sqrt(disc))/(3.0*a);
else tmplam=-slope/(b+sqrt(disc));

}
if (tmplam>0.5*alam)

tmplam=0.5*alam; � � 0:5�1.
}

}
alam2=alam;
f2 = f;
alam=MAX(tmplam,0.1*alam); � 
 0:1�1.

} Try again.
}

9.7.2 Globally Convergent Newton Method
Using the above results on backtracking, here is the globally convergent New-

ton routine newt that uses lnsrch. A feature of newt is that you need not supply the
Jacobian matrix analytically; the routine will attempt to compute the necessary par-
tial derivatives of F by finite differences in the routine NRfdjac. This routine uses
some of the techniques described in �5.7 for computing numerical derivatives. Of
course, you can always replace NRfdjac with a routine that calculates the Jacobian
analytically if this is easy for you to do.

The routine requires a user-supplied function or functor that computes the vec-
tor of functions to be zeroed. Its declaration as a function is

VecDoub vecfunc(VecDoub_I x);

(The name vecfunc is arbitrary.) The declaration as a functor is similar.
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template <class T> roots multidim.h
void newt(VecDoub_IO &x, Bool &check, T &vecfunc) {
Given an initial guess x[0..n-1] for a root in n dimensions, find the root by a globally convergent
Newton’s method. The vector of functions to be zeroed, called fvec[0..n-1] in the routine
below, is returned by the user-supplied function or functor vecfunc (see text). The output
quantity check is false on a normal return and true if the routine has converged to a local
minimum of the function fmin defined below. In this case try restarting from a different initial
guess.

const Int MAXITS=200;
const Doub TOLF=1.0e-8,TOLMIN=1.0e-12,STPMX=100.0;
const Doub TOLX=numeric_limits<Doub>::epsilon();
Here MAXITS is the maximum number of iterations; TOLF sets the convergence criterion on
function values; TOLMIN sets the criterion for deciding whether spurious convergence to a
minimum of fmin has occurred; STPMX is the scaled maximum step length allowed in line
searches; and TOLX is the convergence criterion on ıx.
Int i,j,its,n=x.size();
Doub den,f,fold,stpmax,sum,temp,test;
VecDoub g(n),p(n),xold(n);
MatDoub fjac(n,n);
NRfmin<T> fmin(vecfunc); Set up NRfmin object.
NRfdjac<T> fdjac(vecfunc); Set up NRfdjac object.
VecDoub &fvec=fmin.fvec; Make an alias to simplify coding.
f=fmin(x); fvec is also computed by this call.
test=0.0; Test for initial guess being a root. Use

more stringent test than simply TOLF.for (i=0;i<n;i++)
if (abs(fvec[i]) > test) test=abs(fvec[i]);

if (test < 0.01*TOLF) {
check=false;
return;

}
sum=0.0;
for (i=0;i<n;i++) sum += SQR(x[i]); Calculate stpmax for line searches.
stpmax=STPMX*MAX(sqrt(sum),Doub(n));
for (its=0;its<MAXITS;its++) { Start of iteration loop.

fjac=fdjac(x,fvec);
If analytic Jacobian is available, you can replace the struct NRfdjac below with your
own struct.
for (i=0;i<n;i++) { Compute rf for the line search.

sum=0.0;
for (j=0;j<n;j++) sum += fjac[j][i]*fvec[j];
g[i]=sum;

}
for (i=0;i<n;i++) xold[i]=x[i]; Store x,
fold=f; and f .
for (i=0;i<n;i++) p[i] = -fvec[i]; Right-hand side for linear equations.
LUdcmp alu(fjac); Solve linear equations by LU decompo-

sition.alu.solve(p,p);
lnsrch(xold,fold,g,p,x,f,stpmax,check,fmin);
lnsrch returns new x and f . It also calculates fvec at the new x when it calls fmin.

test=0.0; Test for convergence on function values.
for (i=0;i<n;i++)

if (abs(fvec[i]) > test) test=abs(fvec[i]);
if (test < TOLF) {

check=false;
return;

}
if (check) { Check for gradient of f zero, i.e., spu-

rious convergence.test=0.0;
den=MAX(f,0.5*n);
for (i=0;i<n;i++) {

temp=abs(g[i])*MAX(abs(x[i]),1.0)/den;
if (temp > test) test=temp;

}
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check=(test < TOLMIN);
return;

}
test=0.0; Test for convergence on ıx.
for (i=0;i<n;i++) {

temp=(abs(x[i]-xold[i]))/MAX(abs(x[i]),1.0);
if (temp > test) test=temp;

}
if (test < TOLX)

return;
}
throw("MAXITS exceeded in newt");

}

template <class T>roots multidim.h
struct NRfdjac {
Computes forward-difference approximation to Jacobian.

const Doub EPS; Set to approximate square root of the machine pre-
cision.T &func;

NRfdjac(T &funcc) : EPS(1.0e-8),func(funcc) {}
Initialize with user-supplied function or functor that returns the vector of functions to be
zeroed.
MatDoub operator() (VecDoub_I &x, VecDoub_I &fvec) {
Returns the Jacobian array df[0..n-1][0..n-1]. On input, x[0..n-1] is the point at
which the Jacobian is to be evaluated and fvec[0..n-1] is the vector of function values
at the point.

Int n=x.size();
MatDoub df(n,n);
VecDoub xh=x;
for (Int j=0;j<n;j++) {

Doub temp=xh[j];
Doub h=EPS*abs(temp);
if (h == 0.0) h=EPS;
xh[j]=temp+h; Trick to reduce finite-precision error.
h=xh[j]-temp;
VecDoub f=func(xh);
xh[j]=temp;
for (Int i=0;i<n;i++) Forward difference formula.

df[i][j]=(f[i]-fvec[i])/h;
}
return df;

}
};

template <class T>roots multidim.h
struct NRfmin {
Returns f D 1

2
F � F . Also stores value of F in fvec.

VecDoub fvec;
T &func;
Int n;
NRfmin(T &funcc) : func(funcc){}
Initialize with user-supplied function or functor that returns the vector of functions to be
zeroed.
Doub operator() (VecDoub_I &x) {
Returns f at x, and stores F.x/ in fvec.

n=x.size();
Doub sum=0;
fvec=func(x);
for (Int i=0;i<n;i++) sum += SQR(fvec[i]);
return 0.5*sum;

}
};
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The routine newt assumes that the typical values of all components of x and
of F are of order unity, and it can fail if this assumption is badly violated. You
should rescale the variables by their typical values before invoking newt if this
problem occurs.

9.7.3 Multidimensional Secant Methods: Broyden’s
Method

Newton’s method as implemented above is quite powerful, but it still has several disad-
vantages. One drawback is that the Jacobian matrix is needed. In many problems analytic
derivatives are unavailable. If function evaluation is expensive, then the cost of finite differ-
ence determination of the Jacobian can be prohibitive.

Just as the quasi-Newton methods to be discussed in �10.9 provide cheap approxima-
tions for the Hessian matrix in minimization algorithms, there are quasi-Newton methods that
provide cheap approximations to the Jacobian for zero finding. These methods are often called
secant methods, since they reduce to the secant method (�9.2) in one dimension (see, e.g., [2]).
The best of these methods still seems to be the first one introduced, Broyden’s method [3].

Let us denote the approximate Jacobian by B. Then the i th quasi-Newton step ıxi is the
solution of

Bi 	 ıxi D �F i (9.7.15)

where ıxi D xiC1 � xi (cf. equation 9.7.3). The quasi-Newton or secant condition is that
BiC1 satisfy

BiC1 	 ıxi D ıF i (9.7.16)

where ıF i D F iC1�F i . This is the generalization of the one-dimensional secant approxima-
tion to the derivative, ıF=ıx. However, equation (9.7.16) does not determine BiC1 uniquely
in more than one dimension.

Many different auxiliary conditions to pin down BiC1 have been explored, but the best-
performing algorithm in practice results from Broyden’s formula. This formula is based on
the idea of getting BiC1 by making the least change to Bi consistent with the secant equation
(9.7.16). Broyden showed that the resulting formula is

BiC1 D Bi C
.ıF i � Bi 	 ıxi /˝ ıxi

ıxi 	 ıxi
(9.7.17)

You can easily check that BiC1 satisfies (9.7.16).
Early implementations of Broyden’s method used the Sherman-Morrison formula, equa-

tion (2.7.2), to invert equation (9.7.17) analytically,

B�1iC1 D B�1i C
.ıxi � B�1i 	 ıF i /˝ ıxi 	 B

�1
i

ıxi 	 B
�1
i 	 ıF i

(9.7.18)

Then, instead of solving equation (9.7.3) by, e.g., LU decomposition, one determined

ıxi D �B
�1
i 	 F i (9.7.19)

by matrix multiplication in O.N 2/ operations. The disadvantage of this method is that it
cannot easily be embedded in a globally convergent strategy, for which the gradient of equation
(9.7.4) requires B, not B�1,

r.12F 	 F/ ' BT 	 F (9.7.20)

Accordingly, we implement the update formula in the form (9.7.17).
However, we can still preserve the O.N 2/ solution of (9.7.3) by using QR decomposi-

tion (�2.10) instead of LU decomposition. The reason is that because of the special form of
equation (9.7.17), theQR decomposition of Bi can be updated into theQR decomposition of
BiC1 inO.N 2/ operations (�2.10). All we need is an initial approximation B0 to start the ball
rolling. It is often acceptable to start simply with the identity matrix, and then allow O.N/
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updates to produce a reasonable approximation to the Jacobian. We prefer to spend the firstN
function evaluations on a finite difference approximation to initialize B via a call to NRfdjac.

Since B is not the exact Jacobian, we are not guaranteed that ıx is a descent direction
for f D 1

2F 	F (cf. equation 9.7.5). Thus the line search algorithm can fail to return a suitable
step if B wanders far from the true Jacobian. In this case, we reinitialize B by another call to
NRfdjac.

Like the secant method in one dimension, Broyden’s method converges superlinearly
once you get close enough to the root. Embedded in a global strategy, it is almost as robust as
Newton’s method, and often needs far fewer function evaluations to determine a zero. Note
that the final value of B is not always close to the true Jacobian at the root, even when the
method converges.

The routine broydn, given below, is very similar to newt in organization. The princi-
pal differences are the use of QR decomposition instead of LU , and the updating formula
instead of directly determining the Jacobian. The remarks at the end of newt about scaling the
variables apply equally to broydn.

template <class T>roots multidim.h
void broydn(VecDoub_IO &x, Bool &check, T &vecfunc) {
Given an initial guess x[0..n-1] for a root in n dimensions, find the root by Broyden’s
method embedded in a globally convergent strategy. The vector of functions to be zeroed,
called fvec[0..n-1] in the routine below, is returned by the user-supplied function or functor
vecfunc. The routines NRfdjac and NRfmin from newt are used. The output quantity check
is false on a normal return and true if the routine has converged to a local minimum of the
function fmin or if Broyden’s method can make no further progress. In this case try restarting
from a different initial guess.

const Int MAXITS=200;
const Doub EPS=numeric_limits<Doub>::epsilon();
const Doub TOLF=1.0e-8, TOLX=EPS, STPMX=100.0, TOLMIN=1.0e-12;
Here MAXITS is the maximum number of iterations; EPS is the machine precision; TOLF
is the convergence criterion on function values; TOLX is the convergence criterion on ıx;
STPMX is the scaled maximum step length allowed in line searches; and TOLMIN is used to
decide whether spurious convergence to a minimum of fmin has occurred.
Bool restrt,skip;
Int i,its,j,n=x.size();
Doub den,f,fold,stpmax,sum,temp,test;
VecDoub fvcold(n),g(n),p(n),s(n),t(n),w(n),xold(n);
QRdcmp *qr;
NRfmin<T> fmin(vecfunc); Set up NRfmin object.
NRfdjac<T> fdjac(vecfunc); Set up NRfdjac object.
VecDoub &fvec=fmin.fvec; Make an alias to simplify coding.
f=fmin(x); The vector fvec is also computed by this

call.test=0.0;
for (i=0;i<n;i++) Test for initial guess being a root. Use more

stringent test than sim-
ply TOLF.

if (abs(fvec[i]) > test) test=abs(fvec[i]);
if (test < 0.01*TOLF) {

check=false;
return;

}
for (sum=0.0,i=0;i<n;i++) sum += SQR(x[i]); Calculate stpmax for line searches.
stpmax=STPMX*MAX(sqrt(sum),Doub(n));
restrt=true; Ensure initial Jacobian gets computed.
for (its=1;its<=MAXITS;its++) { Start of iteration loop.

if (restrt) { Initialize or reinitialize Jacobian and QR de-
compose it.qr=new QRdcmp(fdjac(x,fvec));

if (qr->sing) throw("singular Jacobian in broydn");
} else { Carry out Broyden update.

for (i=0;i<n;i++) s[i]=x[i]-xold[i]; s D ıx.
for (i=0;i<n;i++) { t D R � s.

for (sum=0.0,j=i;j<n;j++) sum += qr->r[i][j]*s[j];
t[i]=sum;

}
skip=true;
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for (i=0;i<n;i++) { w D ıF �B � s.
for (sum=0.0,j=0;j<n;j++) sum += qr->qt[j][i]*t[j];
w[i]=fvec[i]-fvcold[i]-sum;
if (abs(w[i]) >= EPS*(abs(fvec[i])+abs(fvcold[i]))) skip=false;
Don’t update with noisy components of w.
else w[i]=0.0;

}
if (!skip) {

qr->qtmult(w,t); t DQT �w .
for (den=0.0,i=0;i<n;i++) den += SQR(s[i]);
for (i=0;i<n;i++) s[i] /= den; Store s=.s � s/ in s.
qr->update(t,s); Update R and QT .
if (qr->sing) throw("singular update in broydn");

}
}
qr->qtmult(fvec,p);

for (i=0;i<n;i++) Right-hand side for linear equations is �QT �F .
p[i] = -p[i];

for (i=n-1;i>=0;i--) { Compute rf 	 .Q �R/T �F for the line search.
for (sum=0.0,j=0;j<=i;j++) sum -= qr->r[j][i]*p[j];
g[i]=sum;

}
for (i=0;i<n;i++) { Store x and F .

xold[i]=x[i];
fvcold[i]=fvec[i];

}
fold=f; Store f .
qr->rsolve(p,p); Solve linear equations.
lnsrch(xold,fold,g,p,x,f,stpmax,check,fmin);
lnsrch returns new x and f . It also calculates fvec at the new x when it calls fmin.

test=0.0; Test for convergence on function values.
for (i=0;i<n;i++)

if (abs(fvec[i]) > test) test=abs(fvec[i]);
if (test < TOLF) {

check=false;
delete qr;
return;

}
if (check) { True if line search failed to find a new x.

if (restrt) { Failure; already tried reinitializing the Jacobian.
delete qr;
return;

} else {
test=0.0; Check for gradient of f zero, i.e., spurious con-

vergence.den=MAX(f,0.5*n);
for (i=0;i<n;i++) {

temp=abs(g[i])*MAX(abs(x[i]),1.0)/den;
if (temp > test) test=temp;

}
if (test < TOLMIN) {

delete qr;
return;

}
else restrt=true; Try reinitializing the Jacobian.

}
} else { Successful step; will use Broyden update for next

step.restrt=false;
test=0.0; Test for convergence on ıx.
for (i=0;i<n;i++) {

temp=(abs(x[i]-xold[i]))/MAX(abs(x[i]),1.0);
if (temp > test) test=temp;

}



�

�

“nr3” — 2007/5/1 — 20:53 — page 486 — #508
�

�

� �

486 Chapter 9. Root Finding and Nonlinear Sets of Equations

if (test < TOLX) {
delete qr;
return;

}
}

}
throw("MAXITS exceeded in broydn");

}

9.7.4 More Advanced Implementations
One of the principal ways that the methods described so far can fail is if J (in Newton’s

method) or B in (Broyden’s method) becomes singular or nearly singular, so that ıx cannot
be determined. If you are lucky, this situation will not occur very often in practice. Methods
developed so far to deal with this problem involve monitoring the condition number of J and
perturbing J if singularity or near singularity is detected. This is most easily implemented if
the QR decomposition is used instead of LU in Newton’s method (see [2] for details). Our
personal experience is that, while such an algorithm can solve problems where J is exactly
singular and the standard Newton method fails, it is occasionally less robust on other prob-
lems where LU decomposition succeeds. Clearly implementation details involving roundoff,
underflow, etc., are important here and the last word is yet to be written.

Our global strategies both for minimization and zero finding have been based on line
searches. Other global algorithms, such as the hook step and dogleg step methods, are based
instead on the model-trust region approach, which is related to the Levenberg-Marquardt al-
gorithm for nonlinear least squares (�15.5). While somewhat more complicated than line
searches, these methods have a reputation for robustness even when starting far from the de-
sired zero or minimum [2].

CITED REFERENCES AND FURTHER READING:

Deuflhard, P. 2004, Newton Methods for Nonlinear Problems (Berlin: Springer).[1]

Dennis, J.E., and Schnabel, R.B. 1983, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations; reprinted 1996 (Philadelphia: S.I.A.M.).[2]

Broyden, C.G. 1965, “A Class of Methods for Solving Nonlinear Simultaneous Equations,” Math-
ematics of Computation, vol. 19, pp. 577–593.[3]



�

�

“nr3” — 2007/5/1 — 20:53 — page 487 — #509
�

�

� �

Minimization or
Maximization of
Functions

CHAPTER 10

10.0 Introduction

In a nutshell: You are given a single function f that depends on one or more in-
dependent variables. You want to find the value of those variables where f takes on a
maximum or a minimum value. You can then calculate what value of f is achieved at
the maximum or minimum. The tasks of maximization and minimization are trivially
related to each other, since one person’s function f could just as well be another’s
�f . The computational desiderata are the usual ones: Do it quickly, cheaply, and in
small memory. Often the computational effort is dominated by the cost of evaluating
f (and also perhaps its partial derivatives with respect to all variables, if the chosen
algorithm requires them). In such cases the desiderata are sometimes replaced by the
simple surrogate: Evaluate f as few times as possible.

An extremum (maximum or minimum point) can be either global (truly the
highest or lowest function value) or local (the highest or lowest in a finite neighbor-
hood and not on the boundary of that neighborhood). (See Figure 10.0.1.) Finding
a global extremum is, in general, a very difficult problem. Two standard heuristics
are widely used: (i) Find local extrema starting from widely varying starting values
of the independent variables (perhaps chosen quasi-randomly, as in �7.8), and then
pick the most extreme of these (if they are not all the same); or (ii) perturb a local
extremum by taking a finite amplitude step away from it, and then see if your routine
returns you to a better point, or “always” to the same one. More recently, so-called
simulated annealing methods (�10.12) have demonstrated important successes on a
variety of global extremization problems.

Our chapter title could just as well be optimization, which is the usual name for
this very large field of numerical research. The importance ascribed to the various
tasks in this field depends strongly on the particular interests of whom you talk to.
Economists, and some engineers, are particularly concerned with constrained opti-
mization, where there are a priori limitations on the allowed values of independent
variables. For example, the production of wheat in the United States must be a non-

487
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Figure 10.0.1. Extrema of a function in an interval. PointsA,C , andE are local, but not global, maxima.
Points B and F are local, but not global, minima. The global maximum occurs at G, which is on the
boundary of the interval so that the derivative of the function need not vanish there. The global minimum
is atD. At point E , derivatives higher than the first vanish, a situation that can cause difficulty for some
algorithms. The pointsX , Y , andZ are said to bracket the minimum F , since Y is less than bothX and
Z.

negative number. One particularly well-developed area of constrained optimization
is linear programming, where both the function to be optimized and the constraints
happen to be linear functions of the independent variables. Sections 10.10 and 10.11,
which are otherwise somewhat disconnected from the rest of the material that we
have chosen to include in this chapter, discuss the two major approaches to such
problems, the so-called simplex algorithm and interior-point methods.

Two other sections, �10.12 and �10.13, also lie outside of our main thrust, but
for a different reasons. As mentioned, �10.12 discusses so-called annealing methods.
These are stochastic, rather than deterministic, algorithms. Annealing methods have
solved some problems previously thought to be practically insoluble: They address
directly the problem of finding global extrema in the presence of large numbers of
undesired local extrema. Section 10.13 discusses a different kind of minimization,
namely that of path length along a directed graph by the technique known as dynamic
programming. This will prove important later, in Chapter 16.

The other sections in this chapter constitute a selection of established algo-
rithms for unconstrained minimization. (For definiteness, we will henceforth regard
the optimization problem as that of minimization.) These sections are connected,
with later ones depending on earlier ones. If you are just looking for the one “per-
fect” algorithm to solve your particular application, you may feel that we are telling
you more than you want to know. Unfortunately, there is no perfect optimization
algorithm. This is a case where we strongly urge you to try more than one method in
comparative fashion. However, here are some guidelines:

For one-dimensional minimization (minimize a function of one variable), you
must choose between methods that need only evaluations of the function, and meth-
ods that also require evalutations of the function’s derivative. The latter are typically
more powerful, but not always enough so as to compensate for the additional calcu-
lations of derivatives. We can easily construct examples favoring one approach or



�

�

“nr3” — 2007/5/1 — 20:53 — page 489 — #511
�

�

� �

10.0 Introduction 489

the other.

� For one-dimensional minimization without calculation of the derivative, first
bracket the minimum as described in �10.2, and then use Brent’s method as
described in �10.3. If your function has a discontinuous second (or lower)
derivative, then the parabolic interpolations of Brent’s method are of no advan-
tage, and you might wish to use the simplest form of golden section search, as
described in �10.2.
� For one-dimensional minimization with calculation of the derivative, �10.4

supplies a variant of Brent’s method that makes limited use of the first deriva-
tive information. We shy away from the alternative of using derivative infor-
mation to construct high-order interpolating polynomials. In our experience,
the improvement in convergence very near a smooth, analytic minimum does
not make up for the tendency of polynomials sometimes to give wildly wrong
interpolations at early stages, especially for functions that may have sharp,
“exponential” features.

For the multidimensional case, where you want to minimize a function of two
or more variables, the analog of the derivative is the gradient, a vector quantity. You
now have three options: compute the gradients using your function’s known analytic
form, compute the gradients by taking finite differences of computed function values,
or don’t compute the gradients at all. You also get to choose between methods that
require storage of order N 2 and those that require only of order N , where N is the
number of dimensions. For moderate values of N this is not a serious constraint;
but if N is itself the number of points in a two- or three-dimensional grid, then N 2

storage may be prohibitive.

� For minimization without gradients, the downhill simplex method due to Nelder
and Mead, discussed in �10.5, is slow, but sure. (This use of the word “sim-
plex” is not to be confused with the simplex method of linear programming.)
The method just crawls downhill in a straightforward fashion that makes al-
most no special assumptions about your function. While this can be extremely
slow, it can also be extremely robust. Not to be overlooked is the fact that
the code is concise and completely self-contained: a general N -dimensional
minimization program in under 100 program lines! The storage requirement
is of order N 2, and derivative calculations are not required.
� When your function has some smoothness to it, but you still don’t want to

compute gradients, turn to direction set methods, of which Powell’s method is
the prototype (�10.7). Powell’s method requires a one-dimensional minimiza-
tion subalgorithm such as Brent’s method (see above). Storage is of order N 2.
Direction set methods are much faster than the downhill simplex method. But
keep reading for, possibly, an even better alternative.

Now the case where you are willing to calculate gradients from your function’s
known analytic form:

� Conjugate gradient methods, as typified by the Fletcher-Reeves algorithm and
the closely related and probably superior Polak-Ribiere algorithm are widely
used. Conjugate gradient methods require only of order a few timesN storage,
derivative calculations, and one-dimensional subminimization. Turn to �10.8
for detailed discussion and implementation.
� Quasi-Newton or variable metric methods are typified by the Davidon-Fletcher-
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Powell (DFP) algorithm (sometimes referred to just as the Fletcher-Powell
method) or the closely related Broyden-Fletcher-Goldfarb-Shanno (BFGS) al-
gorithm. These methods require of order N 2 storage, derivative calculations,
and one-dimensional subminimization. Details are in �10.9. Our personal ex-
perience is that the quasi-Newton methods dominate the conjugate gradient
methods (if you can afford the storage), but there are probably applications
where the reverse is true.

Finally, the case where the method uses gradients, but you are willing to let
them be calculated by extra function evaluations (and finite differences):

� In our experience, the quasi-Newton (variable metric) methods work very well
in this case, so much so that they can be significantly more efficient than Pow-
ell’s method on suitable problems. In �10.9 we give an implementation that
(almost) hides the gradient calculation completely. Thus quasi-Newton is ef-
fectively our first choice of method both when you are willing to calculate
gradients, and when you are not willing!

You can now proceed to scale the peaks (and/or plumb the depths) of practical
optimization.

CITED REFERENCES AND FURTHER READING:

Dennis, J.E., and Schnabel, R.B. 1983, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations; reprinted 1996 (Philadelphia: S.I.A.M.).

Polak, E. 1971, Computational Methods in Optimization (New York: Academic Press).

Gill, P.E., Murray, W., and Wright, M.H. 1981, Practical Optimization (New York: Academic Press).

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington, DC:
Mathematical Association of America), Chapter 17.

Jacobs, D.A.H. (ed.) 1977, The State of the Art in Numerical Analysis (London: Academic Press),
Chapter III.1.

Brent, R.P. 1973, Algorithms for Minimization without Derivatives (Englewood Cliffs, NJ: Prentice-
Hall); reprinted 2002 (New York: Dover).

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall);
reprinted 2003 (New York: Dover), Chapter 10.

10.1 Initially Bracketing a Minimum
What does it mean to bracket a minimum? A root of a function is known to be

bracketed by a pair of points, a and b, when the function has opposite sign at those
two points. A minimum, by contrast, is known to be bracketed only when there is a
triplet of points, a < b < c (or c < b < a), such that f .b/ is less than both f .a/
and f .c/. In this case we know that the function (if it is smooth) has a minimum in
the interval .a; c/.

We consider the initial bracketing of a minimum to be an essential part of any
one-dimensional minimization. There are some one-dimensional algorithms that do
not require a rigorous initial bracketing. However, we would never trade the secure
feeling of knowing that a minimum is “in there somewhere” for the dubious reduc-
tion of function evaluations that these nonbracketing routines may promise. Please
bracket your minima (or, for that matter, your zeros) before isolating them!
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There is not much theory as to how to do this bracketing. Obviously you want
to step downhill. But how far? We like to take larger and larger steps, starting with
some (wild?) initial guess and then increasing the stepsize at each step either by a
constant factor, or else by the result of a parabolic extrapolation of the preceding
points that is designed to take us to the extrapolated turning point. It doesn’t much
matter if the steps get big. After all, we are stepping downhill, so we already have
the left and middle points of the bracketing triplet. We just need to take a big enough
step to stop the downhill trend and get a high third point.

Here is our standard routine, the function bracket. It appears in the structure
Bracketmethod that serves as the base class for all the one-dimensional minimiza-
tion methods we give in this chapter.

struct Bracketmethod { mins.h
Base class for one-dimensional minimization routines. Provides a routine to bracket a minimum
and several utility functions.

Doub ax,bx,cx,fa,fb,fc;
template <class T>
void bracket(const Doub a, const Doub b, T &func)
Given a function or functor func, and given distinct initial points ax and bx, this routine
searches in the downhill direction (defined by the function as evaluated at the initial points)
and returns new points ax, bx, cx that bracket a minimum of the function. Also returned
are the function values at the three points, fa, fb, and fc.
{

const Doub GOLD=1.618034,GLIMIT=100.0,TINY=1.0e-20;
Here GOLD is the default ratio by which successive intervals are magnified and GLIMIT
is the maximum magnification allowed for a parabolic-fit step.
ax=a; bx=b;
Doub fu;
fa=func(ax);
fb=func(bx);
if (fb > fa) { Switch roles of a and b so that we can go

downhill in the direction from a to b.SWAP(ax,bx);
SWAP(fb,fa);

}
cx=bx+GOLD*(bx-ax); First guess for c.
fc=func(cx);
while (fb > fc) { Keep returning here until we bracket.

Doub r=(bx-ax)*(fb-fc); Compute u by parabolic extrapolation from
a; b; c. TINY is used to prevent any pos-

sible division by zero.
Doub q=(bx-cx)*(fb-fa);
Doub u=bx-((bx-cx)*q-(bx-ax)*r)/

(2.0*SIGN(MAX(abs(q-r),TINY),q-r));
Doub ulim=bx+GLIMIT*(cx-bx);
We won’t go farther than this. Test various possibilities:
if ((bx-u)*(u-cx) > 0.0) { Parabolic u is between b and c: try it.

fu=func(u);
if (fu < fc) { Got a minimum between b and c.

ax=bx;
bx=u;
fa=fb;
fb=fu;
return;

} else if (fu > fb) { Got a minimum between between a and u.
cx=u;
fc=fu;
return;

}
u=cx+GOLD*(cx-bx); Parabolic fit was no use. Use default mag-

nification.fu=func(u);
} else if ((cx-u)*(u-ulim) > 0.0) { Parabolic fit is between c and

its allowed limit.fu=func(u);
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if (fu < fc) {
shft3(bx,cx,u,u+GOLD*(u-cx));
shft3(fb,fc,fu,func(u));

}
} else if ((u-ulim)*(ulim-cx) >= 0.0) { Limit parabolic u to maximum

allowed value.u=ulim;
fu=func(u);

} else { Reject parabolic u, use default magnifica-
tion.u=cx+GOLD*(cx-bx);

fu=func(u);
}
shft3(ax,bx,cx,u); Eliminate oldest point and continue.
shft3(fa,fb,fc,fu);

}
}
inline void shft2(Doub &a, Doub &b, const Doub c)
Utility function used in this structure or others derived from it.
{

a=b;
b=c;

}
inline void shft3(Doub &a, Doub &b, Doub &c, const Doub d)
{

a=b;
b=c;
c=d;

}
inline void mov3(Doub &a, Doub &b, Doub &c, const Doub d, const Doub e,

const Doub f)
{

a=d; b=e; c=f;
}

};

(Because of the housekeeping involved in moving around three or four points and
their function values, the above program ends up looking deceptively formidable.
That is true of several other programs in this chapter as well. The underlying ideas,
however, are quite simple.)

10.2 Golden Section Search in One Dimension

Recall how the bisection method finds roots of functions in one dimension
(�9.1): The root is supposed to have been bracketed in an interval .a; b/. One then
evaluates the function at an intermediate point x and obtains a new, smaller brack-
eting interval, either .a; x/ or .x; b/. The process continues until the bracketing
interval is acceptably small. It is optimal to choose x to be the midpoint of .a; b/ so
that the decrease in the interval length is maximized when the function is as unco-
operative as it can be, i.e., when the luck of the draw forces you to take the bigger
bisected segment.

There is a precise, though slightly subtle, translation of these considerations to
the minimization problem. The analog of bisection is to choose a new point x, either
between a and b or between b and c. Suppose, to be specific, that we make the latter
choice. Then we evaluate f .x/. If f .b/ < f .x/, then the new bracketing triplet
of points is .a; b; x/; contrariwise, if f .b/ > f .x/, then the new bracketing triplet
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Figure 10.2.1. Successive bracketing of a minimum. The minimum is originally bracketed by points
1,3,2. The function is evaluated at 4, which replaces 2; then at 5, which replaces 1; then at 6, which
replaces 4. The rule at each stage is to keep a center point that is lower than the two outside points. After
the steps shown, the minimum is bracketed by points 5,3,6.

is .b; x; c/. In all cases, the middle point of the new triplet is the abscissa whose
ordinate is the best minimum achieved so far; see Figure 10.2.1. We continue the
process of bracketing until the distance between the two outer points of the triplet is
tolerably small.

How small is “tolerably” small? For a minimum located at a value b, you might
naively think that you will be able to bracket it in as small a range as .1 � �/b <
b < .1 C �/b, where � is your computer’s floating-point precision, a number like
10�7 (for float) or 2 � 10�16 (for double). Not so! In general, the shape of your
function f .x/ near b will be given by Taylor’s theorem,

f .x/ � f .b/C 1
2
f 00.b/.x � b/2 (10.2.1)

The second term will be negligible compared to the first (that is, will be a factor �
smaller and will act just like zero when added to it) whenever

jx � bj <
p
�jbj

s
2 jf .b/j

b2f 00.b/
(10.2.2)

The reason for writing the right-hand side in this way is that, for most functions,
the final square root is a number of order unity. Therefore, as a rule of thumb, it is
hopeless to ask for a bracketing interval of width less than

p
� times its central value,

a fractional width of only about 10�4 (single precision) or 10�8 (double precision).
Knowing this inescapable fact will save you a lot of useless bisections!

The minimum-finding routines of this chapter will often call for a user-supplied
argument tol, and return with an abscissa whose fractional precision is about˙tol
(bracketing interval of fractional size about 2�tol). Unless you have a better es-
timate for the right-hand side of equation (10.2.2), you should set tol equal to (or
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not much less than) the square root of your machine’s floating-point precision, since
smaller values will gain you nothing.

It remains to decide on a strategy for choosing the new point x, given .a; b; c/.
Suppose that b is a fraction w of the way between a and c, i.e.,

b � a

c � a
D w

c � b

c � a
D 1 � w (10.2.3)

Also suppose that our next trial point x is an additional fraction z beyond b,

x � b

c � a
D z (10.2.4)

Then the next bracketing segment will either be of lengthwCz relative to the current
one, or else of length 1 � w. If we want to minimize the worst case possibility, then
we will choose z to make these equal, namely

z D 1 � 2w (10.2.5)

We see at once that the new point is the symmetric point to b in the original interval,
namely with jb � aj equal to jx � cj. This implies that the point x lies in the larger
of the two segments (z is positive only if w < 1=2).

But where in the larger segment? Where did the value of w itself come from?
Presumably from the previous stage of applying our same strategy. Therefore, if z
is chosen to be optimal, then so was w before it. This scale similarity implies that x
should be the same fraction of the way from b to c (if that is the bigger segment) as
was b from a to c, in other words,

z

1 � w
D w (10.2.6)

Equations (10.2.5) and (10.2.6) give the quadratic equation

w2 � 3w C 1 D 0 yielding w D
3 �
p
5

2
� 0:38197 (10.2.7)

In other words, the optimal bracketing interval .a; b; c/ has its middle point b
a fractional distance 0.38197 from one end (say a), and 0.61803 from the other end
(say b). These fractions are those of the so-called golden mean or golden section,
whose supposedly aesthetic properties hark back to the ancient Pythagoreans. This
optimal method of function minimization, the analog of the bisection method for
finding zeros, is thus called the golden section search, which can be summarized as
follows:

Given, at each stage, a bracketing triplet of points, the next point to be tried
is that which is a fraction 0.38197 into the larger of the two intervals (measuring
from the central point of the triplet). If you start out with a bracketing triplet whose
segments are not in the golden ratios, the procedure of choosing successive points at
the golden mean point of the larger segment will quickly converge you to the proper
self-replicating ratios.

The golden section search guarantees that each new function evaluation will
(after self-replicating ratios have been achieved) bracket the minimum to an interval
just 0.61803 times the size of the preceding interval. This is comparable to, but not
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quite as good as, the 0.50000 that holds when finding roots by bisection. Note that
the convergence is linear (in the language of Chapter 9), meaning that successive
significant figures are won linearly with additional function evaluations. In the next
section we will give a superlinear method, in which the rate at which successive
significant figures are liberated increases with each successive function evaluation.

To use the golden section search, you need statements like the following:

Golden golden;

golden.bracket(a,b,func);

xmin=golden.minimize(func);

The value of the function at the minimum is available in golden.fmin. If you want
to specify a function tolerance different from the default value of 3.0e-8, simply
override the default value in the constructor:

tol = ...

Golden golden(tol);

If you want to use a specified bracket as the initial condition, omit the call to bracket
and set the bracket explicitly:

golden.ax = ...; golden.bx = ...; golden.cx = ...;

Here is the routine:

struct Golden : Bracketmethod { mins.h
Golden section search for minimum.

Doub xmin,fmin;
const Doub tol;
Golden(const Doub toll=3.0e-8) : tol(toll) {}
template <class T>
Doub minimize(T &func)
Given a function or functor f, and given a bracketing triplet of abscissas ax, bx, cx (such
that bx is between ax and cx, and f(bx) is less than both f(ax) and f(cx)), this routine
performs a golden section search for the minimum, isolating it to a fractional precision of
about tol. The abscissa of the minimum is returned as xmin, and the function value at
the minimum is returned as min, the returned function value.
{

const Doub R=0.61803399,C=1.0-R; The golden ratios.
Doub x1,x2;
Doub x0=ax; At any given time we will keep track of four

points, x0,x1,x2,x3.Doub x3=cx;
if (abs(cx-bx) > abs(bx-ax)) { Make x0 to x1 the smaller segment,

x1=bx;
x2=bx+C*(cx-bx); and fill in the new point to be tried.

} else {
x2=bx;
x1=bx-C*(bx-ax);

}
Doub f1=func(x1); The initial function evaluations. Note that

we never need to evaluate the function
at the original endpoints.

Doub f2=func(x2);
while (abs(x3-x0) > tol*(abs(x1)+abs(x2))) {

if (f2 < f1) { One possible outcome,
shft3(x0,x1,x2,R*x2+C*x3); its housekeeping,
shft2(f1,f2,func(x2)); and a new function evaluation.

} else { The other outcome,
shft3(x3,x2,x1,R*x1+C*x0);
shft2(f2,f1,func(x1)); and its new function evaluation.

}
} Back to see if we are done.
if (f1 < f2) { We are done. Output the best of the two

current values.xmin=x1;



�

�

“nr3” — 2007/5/1 — 20:53 — page 496 — #518
�

�

� �

496 Chapter 10. Minimization or Maximization of Functions

fmin=f1;
} else {

xmin=x2;
fmin=f2;

}
return xmin;

}
};

10.3 Parabolic Interpolation and Brent’s
Method in One Dimension

We already tipped our hand about the desirability of parabolic interpolation in
the bracket routine of �10.1, but it is now time to be more explicit. A golden section
search is designed to handle, in effect, the worst possible case of function minimiza-
tion, with the uncooperative minimum hunted down and cornered like a scared rabbit.
But why assume the worst? If the function is nicely parabolic near to the minimum
— surely the generic case for sufficiently smooth functions — then the parabola fit-
ted through any three points ought to take us in a single leap to the minimum, or at
least very near to it (see Figure 10.3.1). Since we want to find an abscissa rather than
an ordinate, the procedure is technically called inverse parabolic interpolation.

The formula for the abscissa x that is the minimum of a parabola through three
points f .a/, f .b/, and f .c/ is

x D b �
1

2

.b � a/2Œf .b/ � f .c/� � .b � c/2Œf .b/ � f .a/�

.b � a/Œf .b/ � f .c/� � .b � c/Œf .b/ � f .a/�
(10.3.1)

as you can easily derive. This formula fails only if the three points are collinear, in
which case the denominator is zero (the minimum of the parabola is infinitely far
away). Note, however, that (10.3.1) is as happy jumping to a parabolic maximum as
to a minimum. No minimization scheme that depends solely on (10.3.1) is likely to
succeed in practice.

The exacting task is to invent a scheme that relies on a sure-but-slow technique,
like golden section search, when the function is not cooperative, but that switches
over to (10.3.1) when the function allows. The task is nontrivial for several rea-
sons, including these: (i) The housekeeping needed to avoid unnecessary function
evaluations in switching between the two methods can be complicated. (ii) Care-
ful attention must be given to the “endgame,” where the function is being evaluated
very near to the roundoff limit of equation (10.2.2). (iii) The scheme for detecting a
cooperative versus noncooperative function must be very robust.

Brent’s method [1] is up to the task in all particulars. At any particular stage, it is
keeping track of six function points (not necessarily all distinct), a, b, u, v, w and x,
defined as follows: The minimum is bracketed between a and b; x is the point with
the very least function value found so far (or the most recent one in case of a tie); w
is the point with the second least function value; v is the previous value of w; and
u is the point at which the function was evaluated most recently. Also appearing in
the algorithm is the point xm, the midpoint between a and b; however, the function
is not evaluated there.
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Figure 10.3.1. Convergence to a minimum by inverse parabolic interpolation. A parabola (dashed line) is
drawn through the three original points 1,2,3 on the given function (solid line). The function is evaluated
at the parabola’s minimum, 4, which replaces point 3. A new parabola (dotted line) is drawn through
points 1,4,2. The minimum of this parabola is at 5, which is close to the minimum of the function.

You can read the code below to understand the method’s logical organization.
Mention of a few general principles here may, however, be helpful: Parabolic in-
terpolation is attempted, fitting through the points x, v, and w. To be acceptable,
the parabolic step must (i) fall within the bounding interval .a; b/, and (ii) imply a
movement from the best current value x that is less than half the movement of the
step before last. This second criterion ensures that the parabolic steps are actually
converging to something, rather than, say, bouncing around in some nonconvergent
limit cycle. In the worst possible case, where the parabolic steps are acceptable but
useless, the method will approximately alternate between parabolic steps and golden
sections, converging in due course by virtue of the latter. The reason for comparing
to the step before last seems essentially heuristic: Experience shows that it is better
not to “punish” the algorithm for a single bad step if it can make it up on the next one.

Another principle exemplified in the code is never to evaluate the function less
than a distance tol from a point already evaluated (or from a known bracketing
point). The reason is that, as we saw in equation (10.2.2), there is simply no infor-
mation content in doing so: The function will differ from the value already evaluated
only by an amount of order the roundoff error. Therefore, in the code below you
will find several tests and modifications of a potential new point, imposing this re-
striction. This restriction also interacts subtly with the test for “doneness,” which the
method takes into account.

A typical ending configuration for Brent’s method is that a and b are 2�x�tol
apart, with x (the best abscissa) at the midpoint of a and b, and therefore fractionally
accurate to˙tol.

The calling sequence for Brent is exactly analogous to that of Golden in the
previous section. Indulge us a final reminder that tol should generally be no smaller
than the square root of your machine’s floating-point precision.
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struct Brent : Bracketmethod {mins.h
Brent’s method to find a minimum.

Doub xmin,fmin;
const Doub tol;
Brent(const Doub toll=3.0e-8) : tol(toll) {}
template <class T>
Doub minimize(T &func)
Given a function or functor f, and given a bracketing triplet of abscissas ax, bx, cx (such
that bx is between ax and cx, and f(bx) is less than both f(ax) and f(cx)), this routine
isolates the minimum to a fractional precision of about tol using Brent’s method. The
abscissa of the minimum is returned as xmin, and the function value at the minimum is
returned as min, the returned function value.
{

const Int ITMAX=100;
const Doub CGOLD=0.3819660;
const Doub ZEPS=numeric_limits<Doub>::epsilon()*1.0e-3;
Here ITMAX is the maximum allowed number of iterations; CGOLD is the golden ratio;
and ZEPS is a small number that protects against trying to achieve fractional accuracy
for a minimum that happens to be exactly zero.
Doub a,b,d=0.0,etemp,fu,fv,fw,fx;
Doub p,q,r,tol1,tol2,u,v,w,x,xm;
Doub e=0.0; This will be the distance moved on

the step before last.
a=(ax < cx ? ax : cx); a and b must be in ascending order,

but input abscissas need not be.b=(ax > cx ? ax : cx);
x=w=v=bx; Initializations...
fw=fv=fx=func(x);
for (Int iter=0;iter<ITMAX;iter++) { Main program loop.

xm=0.5*(a+b);
tol2=2.0*(tol1=tol*abs(x)+ZEPS);
if (abs(x-xm) <= (tol2-0.5*(b-a))) { Test for done here.

fmin=fx;
return xmin=x;

}
if (abs(e) > tol1) { Construct a trial parabolic fit.

r=(x-w)*(fx-fv);
q=(x-v)*(fx-fw);
p=(x-v)*q-(x-w)*r;
q=2.0*(q-r);
if (q > 0.0) p = -p;
q=abs(q);
etemp=e;
e=d;
if (abs(p) >= abs(0.5*q*etemp) || p <= q*(a-x)

|| p >= q*(b-x))
d=CGOLD*(e=(x >= xm ? a-x : b-x));

The above conditions determine the acceptability of the parabolic fit. Here
we take the golden section step into the larger of the two segments.
else {

d=p/q; Take the parabolic step.
u=x+d;
if (u-a < tol2 || b-u < tol2)

d=SIGN(tol1,xm-x);
}

} else {
d=CGOLD*(e=(x >= xm ? a-x : b-x));

}
u=(abs(d) >= tol1 ? x+d : x+SIGN(tol1,d));
fu=func(u);
This is the one function evaluation per iteration.
if (fu <= fx) { Now decide what to do with our func-

tion evaluation.if (u >= x) a=x; else b=x;
shft3(v,w,x,u); Housekeeping follows:
shft3(fv,fw,fx,fu);
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} else {
if (u < x) a=u; else b=u;
if (fu <= fw || w == x) {

v=w;
w=u;
fv=fw;
fw=fu;

} else if (fu <= fv || v == x || v == w) {
v=u;
fv=fu;

}
} Done with housekeeping. Back for

another iteration.}
throw("Too many iterations in brent");

}
};

CITED REFERENCES AND FURTHER READING:

Brent, R.P. 1973, Algorithms for Minimization without Derivatives (Englewood Cliffs, NJ: Prentice-
Hall); reprinted 2002 (New York: Dover), Chapter 5.[1]

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical Com-
putations (Englewood Cliffs, NJ: Prentice-Hall), �8.2.

10.4 One-Dimensional Search with First
Derivatives

Here we want to accomplish precisely the same goal as in the previous section,
namely to isolate a functional minimum that is bracketed by the triplet of abscissas
.a; b; c/, but utilizing an additional capability to compute the function’s first deriva-
tive as well as its value.

In principle, we might simply search for a zero of the derivative, ignoring the
function value information, using a root finder like rtflsp or zbrent (�9.2 – �9.3).
It doesn’t take long to reject that idea: How do we distinguish maxima from minima?
Where do we go from initial conditions where the derivatives on one or both of
the outer bracketing points indicate that “downhill” is in the direction out of the
bracketed interval?

We don’t want to give up our strategy of maintaining a rigorous bracket on the
minimum at all times. The only way to keep such a bracket is to update it using
function (not derivative) information, with the central point in the bracketing triplet
always that with the lowest function value. Therefore, the role of the derivatives can
only be to help us choose new trial points within the bracket.

One school of thought is to “use everything you’ve got”: Compute a polynomial
of relatively high order (cubic or above) that agrees with some number of previous
function and derivative evaluations. For example, there is a unique cubic that agrees
with function and derivative at two points, and one can jump to the interpolated
minimum of that cubic (if there is a minimum within the bracket). Suggested by
Davidon and others, formulas for this tactic are given in [1].

We like to be more conservative than this. Once superlinear convergence sets
in, it hardly matters whether its order is moderately lower or higher. In practical
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problems that we have met, most function evaluations are spent in getting globally
close enough to the minimum for superlinear convergence to commence. So we are
more worried about all the funny “stiff” things that high-order polynomials can do
(cf. Figure 3.0.1(b)), and about their sensitivities to roundoff error.

This leads us to use derivative information only as follows: The sign of the
derivative at the central point of the bracketing triplet .a; b; c/ indicates uniquely
whether the next test point should be taken in the interval .a; b/ or in the interval
.b; c/. The value of this derivative and of the derivative at the second-best-so-far
point are extrapolated to zero by the secant method (inverse linear interpolation),
which by itself is superlinear of order 1.618. (The golden mean again: See [1], p. 57.)
We impose the same sort of restrictions on this new trial point as in Brent’s method.
If the trial point must be rejected, we bisect the interval under scrutiny.

Yes, we are fuddy-duddies when it comes to making flamboyant use of deriva-
tive information in one-dimensional minimization. But we have met too many func-
tions whose computed “derivatives” don’t integrate up to the function value and don’t
accurately point the way to the minimum, usually because of roundoff errors, some-
times because of truncation error in the method of derivative evaluation.

You will see that the following routine is closely modeled on Brent in the previ-
ous section. One difference is in the input to the routine. Whereas Brent takes either
a function or functor argument, Dbrent takes only a functor. The functor returns not
only the function value, by overloading operator(), but also the derivative as the
member function df. For example, here’s how you would code the function x2:

struct Funcd { Name Funcd is arbitrary.
Doub operator() (const Doub x) {

return x*x;

}

Doub df(const Doub x) {

return 2.0*x;

}

};

To invoke Dbrent, you need statements like the following:

Dbrent dbrent;

Funcd f;

dbrent.bracket(a,b,f);

xmin=dbrent.minimize(f);

The value of the function at the minimum is available in dbrent.fmin as usual.
Here is the routine:

struct Dbrent : Bracketmethod {mins.h
Brent’s method to find a minimum, modified to use derivatives.

Doub xmin,fmin;
const Doub tol;
Dbrent(const Doub toll=3.0e-8) : tol(toll) {}
template <class T>
Doub minimize(T &funcd)
Given a functor funcd that computes a function and also its derivative function df, and
given a bracketing triplet of abscissas ax, bx, cx [such that bx is between ax and cx, and
f(bx) is less than both f(ax) and f(cx)], this routine isolates the minimum to a fractional
precision of about tol using a modification of Brent’s method that uses derivatives. The
abscissa of the minimum is returned as xmin, and the minimum function value is returned
as min, the returned function value.
{

const Int ITMAX=100;
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const Doub ZEPS=numeric_limits<Doub>::epsilon()*1.0e-3;
Bool ok1,ok2; Will be used as flags for whether pro-

posed steps are acceptable or not.Doub a,b,d=0.0,d1,d2,du,dv,dw,dx,e=0.0;
Doub fu,fv,fw,fx,olde,tol1,tol2,u,u1,u2,v,w,x,xm;

Comments following will point out only differences from the routine in Brent. Read
that routine first.
a=(ax < cx ? ax : cx);
b=(ax > cx ? ax : cx);
x=w=v=bx;
fw=fv=fx=funcd(x);
dw=dv=dx=funcd.df(x); All our housekeeping chores are dou-

bled by the necessity of moving
aorund derivative values as well
as function values.

for (Int iter=0;iter<ITMAX;iter++) {
xm=0.5*(a+b);
tol1=tol*abs(x)+ZEPS;
tol2=2.0*tol1;
if (abs(x-xm) <= (tol2-0.5*(b-a))) {

fmin=fx;
return xmin=x;

}
if (abs(e) > tol1) {

d1=2.0*(b-a); Initialize these d’s to an out-of-bracket
value.d2=d1;

if (dw != dx) d1=(w-x)*dx/(dx-dw); Secant method with one point.
if (dv != dx) d2=(v-x)*dx/(dx-dv); And the other.
Which of these two estimates of d shall we take? We will insist that they be
within the bracket, and on the side pointed to by the derivative at x:
u1=x+d1;
u2=x+d2;
ok1 = (a-u1)*(u1-b) > 0.0 && dx*d1 <= 0.0;
ok2 = (a-u2)*(u2-b) > 0.0 && dx*d2 <= 0.0;
olde=e; Movement on the step before last.
e=d;
if (ok1 || ok2) { Take only an acceptable d, and if

both are acceptable, then take
the smallest one.

if (ok1 && ok2)
d=(abs(d1) < abs(d2) ? d1 : d2);

else if (ok1)
d=d1;

else
d=d2;

if (abs(d) <= abs(0.5*olde)) {
u=x+d;
if (u-a < tol2 || b-u < tol2)

d=SIGN(tol1,xm-x);
} else { Bisect, not golden section.

d=0.5*(e=(dx >= 0.0 ? a-x : b-x));
Decide which segment by the sign of the derivative.

}
} else {

d=0.5*(e=(dx >= 0.0 ? a-x : b-x));
}

} else {
d=0.5*(e=(dx >= 0.0 ? a-x : b-x));

}
if (abs(d) >= tol1) {

u=x+d;
fu=funcd(u);

} else {
u=x+SIGN(tol1,d);
fu=funcd(u);
if (fu > fx) { If the minimum step in the downhill

direction takes us uphill, then
we are done.

fmin=fx;
return xmin=x;

}
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}
du=funcd.df(u); Now all the housekeeping, sigh.
if (fu <= fx) {

if (u >= x) a=x; else b=x;
mov3(v,fv,dv,w,fw,dw);
mov3(w,fw,dw,x,fx,dx);
mov3(x,fx,dx,u,fu,du);

} else {
if (u < x) a=u; else b=u;
if (fu <= fw || w == x) {

mov3(v,fv,dv,w,fw,dw);
mov3(w,fw,dw,u,fu,du);

} else if (fu < fv || v == x || v == w) {
mov3(v,fv,dv,u,fu,du);

}
}

}
throw("Too many iterations in routine dbrent");

}
};

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington, DC:
Mathematical Association of America), pp. 55; 454–458.[1]

Brent, R.P. 1973, Algorithms for Minimization without Derivatives (Englewood Cliffs, NJ: Prentice-
Hall); reprinted 2002 (New York: Dover), p. 78.

10.5 Downhill Simplex Method in
Multidimensions

With this section we begin consideration of multidimensional minimization,
that is, finding the minimum of a function of more than one independent variable.
This section stands apart from those that follow, however: All of the algorithms
after this section will make explicit use of a one-dimensional minimization algorithm
as a part of their computational strategy. This section implements an entirely self-
contained strategy, in which one-dimensional minimization does not figure.

The downhill simplex method is due to Nelder and Mead [1]. The method re-
quires only function evaluations, not derivatives. It is not very efficient in terms of
the number of function evaluations that it requires. Powell’s method (�10.7) or the
DFP method with finite differences (�10.9) is almost surely faster in all likely appli-
cations. However, the downhill simplex method may frequently be the best method
to use if the figure of merit is “get something working quickly” for a problem whose
computational burden is small.

The method has a geometrical naturalness about it that makes it delightful to
describe or work through:

A simplex is the geometrical figure consisting, inN dimensions, ofNC1 points
(or vertices) and all their interconnecting line segments, polygonal faces, etc. In two
dimensions, a simplex is a triangle. In three dimensions, it is a tetrahedron, not
necessarily the regular tetrahedron. (The simplex method of linear programming, de-
scribed in �10.10, also makes use of the geometrical concept of a simplex. Otherwise
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it is completely unrelated to the algorithm that we are describing in this section.) In
general we are only interested in simplexes that are nondegenerate, i.e., that enclose
a finite inner N -dimensional volume. If any point of a nondegenerate simplex is
taken as the origin, then the N other points define vector directions that span the
N -dimensional vector space.

In one-dimensional minimization, it was possible to bracket a minimum, so that
the success of a subsequent isolation was guaranteed. Alas! There is no analogous
procedure in multidimensional space. For multidimensional minimization, the best
we can do is give our algorithm a starting guess, that is, an N -vector of independent
variables as the first point to try. The algorithm is then supposed to make its own way
downhill through the unimaginable complexity of an N -dimensional topography,
until it encounters a (local, at least) minimum.

The downhill simplex method must be started not just with a single point, but
with N C 1 points, defining an initial simplex. If you think of one of these points
(it matters not which) as being your initial starting point P0, then you can take the
other N points to be

P i D P0 C�ei (10.5.1)

where the ei ’s are N unit vectors, and where � is a constant that is your guess of
the problem’s characteristic length scale. (Or, you could have different�i ’s for each
vector direction.)

The downhill simplex method now takes a series of steps, most steps just mov-
ing the point of the simplex where the function is largest (“highest point”) through
the opposite face of the simplex to a lower point. These steps are called reflections,
and they are constructed to conserve the volume of the simplex (and hence maintain
its nondegeneracy). When it can do so, the method expands the simplex in one or
another direction to take larger steps. When it reaches a “valley floor,” the method
contracts itself in the transverse direction and tries to ooze down the valley. If there
is a situation where the simplex is trying to “pass through the eye of a needle,” it
contracts itself in all directions, pulling itself in around its lowest (best) point. The
routine name amoeba is intended to be descriptive of this kind of behavior; the basic
moves are summarized in Figure 10.5.1.

Termination criteria can be delicate in any multidimensional minimization rou-
tine. Without bracketing, and with more than one independent variable, we no longer
have the option of requiring a certain tolerance for a single independent variable. We
typically can identify one “cycle” or “step” of our multidimensional algorithm. It is
then possible to terminate when the vector distance moved in that step is fraction-
ally smaller in magnitude than some tolerance tol. Alternatively, we could require
that the decrease in the function value in the terminating step be fractionally smaller
than some tolerance ftol. Note that while tol should not usually be smaller than
the square root of the machine precision, it is perfectly appropriate to let ftol be
of order the machine precision (or perhaps slightly larger so as not to be confused
by roundoff).

Note well that either of the above criteria might be fooled by a single anomalous
step that, for one reason or another, failed to get anywhere. Therefore, it is frequently
a good idea to restart a multidimensional minimization routine at a point where
it claims to have found a minimum. For this restart, you should reinitialize any
ancillary input quantities. In the downhill simplex method, for example, you should
reinitialize N of the N C 1 vertices of the simplex again by equation (10.5.1), with
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simplex at beginning of step

reflection

reflection and expansion

contraction

multiple
contraction

(a)

(b)

(c)

(d)

high
low

Figure 10.5.1. Possible outcomes for a step in the downhill simplex method. The simplex at the beginning
of the step, here a tetrahedron, is shown, top. The simplex at the end of the step can be any one of (a)
a reflection away from the high point, (b) a reflection and expansion away from the high point, (c) a
contraction along one dimension from the high point, or (d) a contraction along all dimensions toward the
low point. An appropriate sequence of such steps will always converge to a minimum of the function.

P0 being one of the vertices of the claimed minimum.
Restarts should never be very expensive; your algorithm did, after all, converge

to the restart point once, and now you are starting the algorithm already there.
The routine below has three different user interfaces. The simplest requires you

to supply the initial simplex as in equation (10.5.1):

Amoeba am(ftol);

VecDoub point = ...; Doub del = ...;

pmin=am.minimize(point,del,func);

The value of the function at the minimum is available in am.fmin.
Second, you can use equation (10.5.1) with a vector of increments �i :
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VecDoub dels = ...;

pmin=am.minimize(point,dels,func);

Lastly, you can provide the simplex as an .N C 1/ � N matrix whose rows are the
coordinates of each vertex:

MatDoub p = ...;

pmin=am.minimize(p,func);

Consider, then, our N -dimensional amoeba:

struct Amoeba { amoeba.h
Multidimensional minimization by the downhill simplex method of Nelder and Mead.

const Doub ftol;
Int nfunc; The number of function evaluations.
Int mpts;
Int ndim;
Doub fmin; Function value at the minimum.
VecDoub y; Function values at the vertices of the simplex.
MatDoub p; Current simplex.
Amoeba(const Doub ftoll) : ftol(ftoll) {}
The constructor argument ftoll is the fractional convergence tolerance to be achieved in
the function value (n.b.!).
template <class T>
VecDoub minimize(VecDoub_I &point, const Doub del, T &func)
Multidimensional minimization of the function or functor func(x), where x[0..ndim-1]
is a vector in ndim dimensions, by the downhill simplex method of Nelder and Mead.
The initial simplex is specified as in equation (10.5.1) by a point[0..ndim-1] and a
constant displacement del along each coordinate direction. Returned is the location of the
minimum.
{

VecDoub dels(point.size(),del);
return minimize(point,dels,func);

}
template <class T>
VecDoub minimize(VecDoub_I &point, VecDoub_I &dels, T &func)
Alternative interface that takes different displacements dels[0..ndim-1] in different di-
rections for the initial simplex.
{

Int ndim=point.size();
MatDoub pp(ndim+1,ndim);
for (Int i=0;i<ndim+1;i++) {

for (Int j=0;j<ndim;j++)
pp[i][j]=point[j];

if (i !=0 ) pp[i][i-1] += dels[i-1];
}
return minimize(pp,func);

}
template <class T>
VecDoub minimize(MatDoub_I &pp, T &func)
Most general interface: initial simplex specified by the matrix pp[0..ndim][0..ndim-1].
Its ndim+1 rows are ndim-dimensional vectors that are the vertices of the starting simplex.
{

const Int NMAX=5000; Maximum allowed number of function evalua-
tions.const Doub TINY=1.0e-10;

Int ihi,ilo,inhi;
mpts=pp.nrows();
ndim=pp.ncols();
VecDoub psum(ndim),pmin(ndim),x(ndim);
p=pp;
y.resize(mpts);
for (Int i=0;i<mpts;i++) {

for (Int j=0;j<ndim;j++)
x[j]=p[i][j];

y[i]=func(x);
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}
nfunc=0;
get_psum(p,psum);
for (;;) {

ilo=0;
First we must determine which point is the highest (worst), next-highest, and
lowest (best), by looping over the points in the simplex.
ihi = y[0]>y[1] ? (inhi=1,0) : (inhi=0,1);
for (Int i=0;i<mpts;i++) {

if (y[i] <= y[ilo]) ilo=i;
if (y[i] > y[ihi]) {

inhi=ihi;
ihi=i;

} else if (y[i] > y[inhi] && i != ihi) inhi=i;
}
Doub rtol=2.0*abs(y[ihi]-y[ilo])/(abs(y[ihi])+abs(y[ilo])+TINY);
Compute the fractional range from highest to lowest and return if satisfactory.
if (rtol < ftol) { If returning, put best point and value in slot 0.

SWAP(y[0],y[ilo]);
for (Int i=0;i<ndim;i++) {

SWAP(p[0][i],p[ilo][i]);
pmin[i]=p[0][i];

}
fmin=y[0];
return pmin;

}
if (nfunc >= NMAX) throw("NMAX exceeded");
nfunc += 2;
Begin a new iteration. First extrapolate by a factor �1 through the face of the
simplex across from the high point, i.e., reflect the simplex from the high point.
Doub ytry=amotry(p,y,psum,ihi,-1.0,func);
if (ytry <= y[ilo])

Gives a result better than the best point, so try an additional extrapolation
by a factor 2.
ytry=amotry(p,y,psum,ihi,2.0,func);

else if (ytry >= y[inhi]) {
The reflected point is worse than the second-highest, so look for an interme-
diate lower point, i.e., do a one-dimensional contraction.
Doub ysave=y[ihi];
ytry=amotry(p,y,psum,ihi,0.5,func);
if (ytry >= ysave) { Can’t seem to get rid of that high point.

Better contract around the lowest
(best) point.

for (Int i=0;i<mpts;i++) {
if (i != ilo) {

for (Int j=0;j<ndim;j++)
p[i][j]=psum[j]=0.5*(p[i][j]+p[ilo][j]);

y[i]=func(psum);
}

}
nfunc += ndim; Keep track of function evaluations.
get_psum(p,psum); Recompute psum.

}
} else --nfunc; Correct the evaluation count.

} Go back for the test of doneness and the next
iteration.}

inline void get_psum(MatDoub_I &p, VecDoub_O &psum)
Utility function.
{

for (Int j=0;j<ndim;j++) {
Doub sum=0.0;
for (Int i=0;i<mpts;i++)

sum += p[i][j];
psum[j]=sum;

}
}
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template <class T>
Doub amotry(MatDoub_IO &p, VecDoub_O &y, VecDoub_IO &psum,

const Int ihi, const Doub fac, T &func)
Helper function: Extrapolates by a factor fac through the face of the simplex across from
the high point, tries it, and replaces the high point if the new point is better.
{

VecDoub ptry(ndim);
Doub fac1=(1.0-fac)/ndim;
Doub fac2=fac1-fac;
for (Int j=0;j<ndim;j++)

ptry[j]=psum[j]*fac1-p[ihi][j]*fac2;
Doub ytry=func(ptry); Evaluate the function at the trial point.
if (ytry < y[ihi]) { If it’s better than the highest, then replace the

highest.y[ihi]=ytry;
for (Int j=0;j<ndim;j++) {

psum[j] += ptry[j]-p[ihi][j];
p[ihi][j]=ptry[j];

}
}
return ytry;

}
};

CITED REFERENCES AND FURTHER READING:

Nelder, J.A., and Mead, R. 1965, “A Simplex Method for Function Minimization,” Computer Jour-
nal, vol. 7, pp. 308–313.[1]

Yarbro, L.A., and Deming, S.N. 1974, “Selection and Preprocessing of Factors for Simplex Opti-
mization,” Analytica Chimica Acta, vol. 73, pp. 391–398.

Jacoby, S.L.S, Kowalik, J.S., and Pizzo, J.T. 1972, Iterative Methods for Nonlinear Optimization
Problems (Englewood Cliffs, NJ: Prentice-Hall).

10.6 Line Methods in Multidimensions
We know (�10.2 – �10.4) how to minimize a function of one variable. If we

start at a point P in N -dimensional space, and proceed from there in some vector
direction n, then any function of N variables f .P / can be minimized along the line
n by our one-dimensional methods. One can dream up various multidimensional
minimization methods that consist of sequences of such line minimizations. Differ-
ent methods will differ only by how, at each stage, they choose the next direction
n to try. The minimization methods in the next two sections fall under this gen-
eral schema of successive line minimizations. (The quasi-Newton algorithm in �10.9
does not need very accurate line minimizations. Accordingly, it uses the approximate
line minimization routine, lnsrch from �9.7.1.)

In this section we provide the line minimization routine linmin as part of the
base class Linemethod from which we will derive the minimization methods in
the next two sections. These minimization routines regard linmin as a black-box
subalgorithm, whose definition is

linmin: Given as input the vectors P and n, and the
function f , find the scalar � that minimizes f .P C
�n/. Replace P by P C �n. Replace n by �n. Done.
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Since we will want to use linmin with methods whose choice of successive
directions does not involve explicit computation of the function’s gradient, linmin
itself cannot use gradient information. Later, in �10.8, we will consider a method that
does use gradient information. Accordingly, there we provide a routine dlinmin that
makes use of this information to reduce the total computational burden.

The obvious way to implement linmin is to use the methods of one-dimensional
minimization described in �10.2 – �10.4, but to rewrite the programs of those sec-
tions so that their bookkeeping is done on vector-valued points P (all lying along a
given direction n) rather than scalar-valued abscissas x. That straightforward task
produces long routines densely populated with “for(k=0;k<n;k++)” loops.

As an alternative, we can simply reuse the one-dimensional minimization rou-
tines by constructing a functor F1dim, which gives the value of your function, say
func, along the line going through the point p in the direction xi. The function
linmin calls our familiar one-dimensional routine Brent (�10.4) and instructs it to
minimize F1dim. The routine linmin communicates with F1dim “over the head” of
Brent through the constructor, our usual C++ idiom.

template <class T>mins ndim.h
struct Linemethod {
Base class for line-minimization algorithms. Provides the line-minimization routine linmin.

VecDoub p;
VecDoub xi;
T &func;
Int n;
Linemethod(T &funcc) : func(funcc) {}
Constructor argument is the user-supplied function or functor to be minimized.
Doub linmin()
Line-minimization routine. Given an n-dimensional point p[0..n-1] and an n-dimensional
direction xi[0..n-1], moves and resets p to where the function or functor func(p) takes on
a minimum along the direction xi from p, and replaces xi by the actual vector displacement
that p was moved. Also returns the value of func at the returned location p. This is actually
all accomplished by calling the routines bracket and minimize of Brent.
{

Doub ax,xx,xmin;
n=p.size();
F1dim<T> f1dim(p,xi,func);
ax=0.0; Initial guess for brackets.
xx=1.0;
Brent brent;
brent.bracket(ax,xx,f1dim);
xmin=brent.minimize(f1dim);
for (Int j=0;j<n;j++) { Construct the vector results to return.

xi[j] *= xmin;
p[j] += xi[j];

}
return brent.fmin;

}
};

template <class T>mins ndim.h
struct F1dim {
Must accompany linmin in Linemethod.

const VecDoub &p;
const VecDoub &xi;
Int n;
T &func;
VecDoub xt;
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F1dim(VecDoub_I &pp, VecDoub_I &xii, T &funcc) : p(pp),
xi(xii), n(pp.size()), func(funcc), xt(n) {}

Constructor takes as inputs an n-dimensional point p[0..n-1] and an n-dimensional di-
rection xi[0..n-1] from linmin, as well as the function or functor that takes a vector
argument.
Doub operator() (const Doub x)
Functor returning value of the given function along a one-dimensional line.
{

for (Int j=0;j<n;j++)
xt[j]=p[j]+x*xi[j];

return func(xt);
}

};

10.7 Direction Set (Powell’s) Methods in
Multidimensions

With a routine for line minimization in hand, you might think of this simple
method for general multidimensional minimization: Take the unit vectors e0; e1; : : :
eN�1 as a set of directions. Using linmin, move along the first direction to its
minimum, then from there along the second direction to its minimum, and so on,
cycling through the whole set of directions as many times as necessary, until the
function stops decreasing.

This simple method is actually not too bad for many functions. Even more
interesting is why it is bad, i.e., very inefficient, for some other functions. Consider
a function of two dimensions whose contour map (level lines) happens to define a
long, narrow valley at some angle to the coordinate basis vectors (see Figure 10.7.1).
Then the only way “down the length of the valley” going along the basis vectors at
each stage is by a series of many tiny steps. More generally, in N dimensions, if the
function’s second derivatives are much larger in magnitude in some directions than
in others, then many cycles through all N basis vectors will be required in order to
get anywhere. This condition is not all that unusual; according to Murphy’s Law,
you should count on it.

Obviously what we need is a better set of directions than the ei ’s. All direction
set methods consist of prescriptions for updating the set of directions as the method
proceeds, attempting to come up with a set that either (i) includes some very good di-
rections that will take us far along narrow valleys, or else (more subtly) (ii) includes
some number of “noninterfering” directions with the special property that minimiza-
tion along one is not “spoiled” by subsequent minimization along another, so that
interminable cycling through the set of directions can be avoided.

10.7.1 Conjugate Directions
This concept of “noninterfering” directions, more conventionally called conju-

gate directions, is worth making mathematically explicit.
First, note that if we minimize a function along some direction u, then the

gradient of the function must be perpendicular to u at the line minimum; if not,
then there would still be a nonzero directional derivative along u.
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start

y

x

Figure 10.7.1. Successive minimizations along coordinate directions in a long, narrow “valley” (shown as
contour lines). Unless the valley is optimally oriented, this method is extremely inefficient, taking many
tiny steps to get to the minimum, crossing and re-crossing the principal axis.

Next take some particular point P as the origin of the coordinate system with
coordinates x. Then any function f can be approximated by its Taylor series

f .x/ D f .P /C
X
i

@f

@xi
xi C

1

2

X
i;j

@2f

@xi@xj
xixj C 	 	 	

� c � b 	 x C
1

2
x 	A 	 x

(10.7.1)

where

c � f .P / b � �rf jP ŒA�ij �
@2f

@xi@xj

ˇ̌̌̌
P

(10.7.2)

The matrix A whose components are the second partial derivative matrix of the
function is called the Hessian matrix of the function at P .

In the approximation of (10.7.1), the gradient of f is easily calculated as

rf D A 	 x � b (10.7.3)

(This implies that the gradient will vanish — the function will be at an extremum —
at a value of x obtained by solving A 	 x D b. We will return to this idea in �10.9!)
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How does the gradientrf change as we move along some direction? Evidently

ı.rf / D A 	 .ıx/ (10.7.4)

Suppose that we have moved along some direction u to a minimum and now
propose to move along some new direction v . The condition that motion along v not
spoil our minimization along u is just that the gradient stay perpendicular to u, i.e.,
that the change in the gradient be perpendicular to u. By equation (10.7.4) this is just

0 D u 	 ı.rf / D u 	A 	 v (10.7.5)

When (10.7.5) holds for two vectors u and v , they are said to be conjugate.
When the relation holds pairwise for all members of a set of vectors, they are said
to be a conjugate set. If you do successive line minimizations of a function along
a conjugate set of directions, then you don’t need to redo any of those directions
(unless, of course, you spoil things by minimizing along a direction that they are not
conjugate to).

A triumph for a direction set method is to come up with a set of N linearly
independent, mutually conjugate directions. Then, one pass ofN line minimizations
will put it exactly at the minimum of a quadratic form like (10.7.1). For functions
f that are not exactly quadratic forms, it won’t be exactly at the minimum, but
repeated cycles of N line minimizations will in due course converge quadratically
to the minimum.

10.7.2 Powell’s Quadratically Convergent Method
Powell first discovered a direction set method that does produce N mutually

conjugate directions. Here is how it goes: Initialize the set of directions ui to the
basis vectors,

ui D ei i D 0; : : : ; N � 1 (10.7.6)

Now repeat the following sequence of steps (“basic procedure”) until your function
stops decreasing:

� Save your starting position as P0.
� For i D 0; : : : ; N � 1, move P i to the minimum along direction ui and call

this point P iC1.
� For i D 0; : : : ; N � 2, set ui  uiC1.
� Set uN�1  PN � P0.
� Move PN to the minimum along direction uN�1 and call this point P0.

Powell, in 1964, showed that, for a quadratic form like (10.7.1), k iterations
of the above basic procedure produce a set of directions ui whose last k members
are mutually conjugate. Therefore,N iterations of the basic procedure, amounting to
N.NC1/ line minimizations in all, will exactly minimize a quadratic form. Brent [1]

gives proofs of these statements in accessible form.
Unfortunately, there is a problem with Powell’s quadratically convergent algo-

rithm. The procedure of throwing away, at each stage, u0 in favor of PN �P0 tends
to produce sets of directions that “fold up on each other” and become linearly depen-
dent. Once this happens, the procedure finds the minimum of the function f only
over a subspace of the full N -dimensional case; in other words, it gives the wrong
answer. Therefore, the algorithm must not be used in the form given above.
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There are a number of ways to fix up the problem of linear dependence in Pow-
ell’s algorithm, among them:

1. You can reinitialize the set of directions ui to the basis vectors ei after every
N or N C 1 iterations of the basic procedure. This produces a serviceable method,
which we commend to you if quadratic convergence is important for your application
(i.e., if your functions are close to quadratic forms and if you desire high accuracy).

2. Brent points out that the set of directions can equally well be reset to the
columns of any orthogonal matrix. Rather than throw away the information on con-
jugate directions already built up, he resets the direction set to calculated principal
directions of the matrix A (which he gives a procedure for determining). The calcu-
lation is essentially a singular value decomposition algorithm (see �2.6). Brent has a
number of other cute tricks up his sleeve, and his modification of Powell’s method is
probably the best presently known. Consult [1] for a detailed description and listing
of the program. Unfortunately it is rather too elaborate for us to include here.

3. You can give up the property of quadratic convergence in favor of a more
heuristic scheme (due to Powell) that tries to find a few good directions along narrow
valleys instead ofN necessarily conjugate directions. This is the method that we now
implement. (It is also the version of Powell’s method given in Acton [2], from which
parts of the following discussion are drawn.)

10.7.3 Discarding the Direction of Largest Decrease
The fox and the grapes: Now that we are going to give up the property of

quadratic convergence, was it so important after all? That depends on the function
that you are minimizing. Some applications produce functions with long, twisty
valleys. Quadratic convergence is of no particular advantage to a program that must
slalom down the length of a valley floor that twists one way and another (and another,
and another, : : : — there are N dimensions!). Along the long direction, a quadrati-
cally convergent method is trying to extrapolate to the minimum of a parabola that
just isn’t (yet) there while the conjugacy of the N � 1 transverse directions keeps
getting spoiled by the twists.

Sooner or later, however, we do arrive at an approximately ellipsoidal minimum
(cf. equation 10.7.1 when b, the gradient, is zero). Then, depending on how much
accuracy we require, a method with quadratic convergence can save us several times
N 2 extra line minimizations, since quadratic convergence doubles the number of
significant figures at each iteration.

The basic idea of our now-modified Powell’s method is still to take PN � P0
as a new direction; it is, after all, the average direction moved in after trying all
N possible directions. For a valley whose long direction is twisting slowly, this
direction is likely to give us a good run along the new long direction. The change
is to discard the old direction along which the function f made its largest decrease.
This seems paradoxical, since that direction was the best of the previous iteration.
However, it is also likely to be a major component of the new direction that we
are adding, so dropping it gives us the best chance of avoiding a buildup of linear
dependence.

There are a couple of exceptions to this basic idea. Sometimes it is better not to
add a new direction at all. Define

f0 � f .P0/ fN � f .PN / fE � f .2PN � P0/ (10.7.7)
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Here fE is the function value at an “extrapolated” point somewhat further along the
proposed new direction. Also define �f to be the magnitude of the largest decrease
along one particular direction of the present basic procedure iteration. (�f is a
positive number.) Then:

1. If fE � f0, then keep the old set of directions for the next basic procedure,
because the average direction PN � P0 is all played out.

2. If 2 .f0�2fN CfE / Œ.f0�fN /��f �2 � .f0�fE /2�f , then keep the old
set of directions for the next basic procedure, because either (i) the decrease along
the average direction was not primarily due to any single direction’s decrease, or (ii)
there is a substantial second derivative along the average direction and we seem to
be near to the bottom of its minimum.

The following routine implements Powell’s method in the version just described.
In the routine, xi is the matrix whose columns are the set of directions ni ; otherwise
the correspondence of notation should be self-evident. If the function to be mini-
mized is provided as a functor Func

struct Func {

Doub operator()(VecDoub_I &x);

};

then the normal calling sequence for Powell looks something like this:

VecDoub p = ...;

Func func;

Powell<Func> powell(func);

p=powell.minimize(p); OK to overwrite initial guess.

The function value at the minimum is available as powell.fret.
If, on the other hand, the function to be minimized is provided as a normal C++

function,

Doub func(VecDoub_I &x);

then the constructor call looks like this instead:

Powell<Doub (VecDoub_I &)> powell(func);

Note that the constructor takes an optional argument that specifies the function tol-
erance for the minimization.

template <class T> mins ndim.h
struct Powell : Linemethod<T> {
Multidimensional minimization by Powell’s method.

Int iter;
Doub fret; Value of the function at the minimum.
using Linemethod<T>::func; Variables from a templated base class are not auto-

matically inherited.using Linemethod<T>::linmin;
using Linemethod<T>::p;
using Linemethod<T>::xi;
const Doub ftol;
Powell(T &func, const Doub ftoll=3.0e-8) : Linemethod<T>(func),

ftol(ftoll) {}
Constructor arguments are func, the function or functor to be minimized, and an optional
argument ftoll, the fractional tolerance in the function value such that failure to decrease
by more than this amount on one iteration signals doneness.
VecDoub minimize(VecDoub_I &pp)
Minimization of a function or functor n variables. Input consists of an initial starting point
pp[0..n-1]. The initial matrix ximat[0..n-1][0..n-1], whose columns contain the initial
set of directions, is set to the n unit vectors. Returned is the best point found, at which
point fret is the minimum function value and iter is the number of iterations taken.
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{
Int n=pp.size();
MatDoub ximat(n,n,0.0);
for (Int i=0;i<n;i++) ximat[i][i]=1.0;
return minimize(pp,ximat);

}
VecDoub minimize(VecDoub_I &pp, MatDoub_IO &ximat)
Alternative interface: Input consists of the initial starting point pp[0..n-1] and an initial
matrix ximat[0..n-1][0..n-1], whose columns contain the initial set of directions. On
output ximat is the then-current direction set.
{

const Int ITMAX=200; Maximum allowed iterations.
const Doub TINY=1.0e-25; A small number.
Doub fptt;
Int n=pp.size();
p=pp;
VecDoub pt(n),ptt(n);
xi.resize(n);
fret=func(p);
for (Int j=0;j<n;j++) pt[j]=p[j]; Save the initial point.
for (iter=0;;++iter) {

Doub fp=fret;
Int ibig=0;
Doub del=0.0; Will be the biggest function decrease.
for (Int i=0;i<n;i++) { In each iteration, loop over all directions in the set.

for (Int j=0;j<n;j++) xi[j]=ximat[j][i]; Copy the direction,
fptt=fret;
fret=linmin(); minimize along it,
if (fptt-fret > del) { and record it if it is the largest decrease

so far.del=fptt-fret;
ibig=i+1;

}
} Here comes the termination criterion:
if (2.0*(fp-fret) <= ftol*(abs(fp)+abs(fret))+TINY) {

return p;
}
if (iter == ITMAX) throw("powell exceeding maximum iterations.");
for (Int j=0;j<n;j++) { Construct the extrapolated point and the

average direction moved. Save the
old starting point.

ptt[j]=2.0*p[j]-pt[j];
xi[j]=p[j]-pt[j];
pt[j]=p[j];

}
fptt=func(ptt); Function value at extrapolated point.
if (fptt < fp) {

Doub t=2.0*(fp-2.0*fret+fptt)*SQR(fp-fret-del)-del*SQR(fp-fptt);
if (t < 0.0) {

fret=linmin(); Move to the minimum of the new direc-
tion, and save the new direction.for (Int j=0;j<n;j++) {

ximat[j][ibig-1]=ximat[j][n-1];
ximat[j][n-1]=xi[j];

}
}

}
}

}
};

CITED REFERENCES AND FURTHER READING:

Brent, R.P. 1973, Algorithms for Minimization without Derivatives (Englewood Cliffs, NJ: Prentice-
Hall); reprinted 2002 (New York: Dover), Chapter 7.[1]
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Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington, DC:
Mathematical Association of America), pp. 464–467.[2]

Jacobs, D.A.H. (ed.) 1977, The State of the Art in Numerical Analysis (London: Academic Press),
pp. 259–262.

10.8 Conjugate Gradient Methods in
Multidimensions

Consider now the case where you are able to calculate, at a givenN -dimensional
point P , not just the value of a function f .P / but also the gradient (vector of first
partial derivatives) rf .P /.

A rough counting argument will show how advantageous it is to use the gradient
information: Suppose that the function f is roughly approximated as a quadratic
form, as above in equation (10.7.1),

f .x/ � c � b 	 x C 1
2
x 	A 	 x (10.8.1)

Then the number of unknown parameters in f is equal to the number of free param-
eters in A and b, which is 1

2
N.N C 1/, which we see to be of order N 2. Changing

any one of these parameters can move the location of the minimum. Therefore, we
should not expect to be able to find the minimum until we have collected an equiva-
lent information content, of order N 2 numbers.

In the direction set methods of �10.7, we collected the necessary information by
making on the order of N 2 separate line minimizations, each requiring “a few” (but
sometimes a big few!) function evaluations. Now, each evaluation of the gradient
will bring us N new components of information. If we use them wisely, we should
need to make only of order N separate line minimizations. That is in fact the case
for the algorithms in this section and the next.

A factor of N improvement in computational speed is not necessarily implied.
As a rough estimate, we might imagine that the calculation of each component of
the gradient takes about as long as evaluating the function itself. In that case there
will be of order N 2 equivalent function evaluations both with and without gradient
information. Even if the advantage is not of order N , however, it is nevertheless
quite substantial: (i) Each calculated component of the gradient will typically save
not just one function evaluation, but a number of them, equivalent to, say, a whole
line minimization. (ii) There is often a high degree of redundancy in the formulas for
the various components of a function’s gradient. When this is so, especially when
there is also redundancy with the calculation of the function, the calculation of the
gradient may cost significantly less than N function evaluations.

A common beginner’s error is to assume that any reasonable way of incorporat-
ing gradient information should be about as good as any other. This line of thought
leads to the following not-very-good algorithm, the steepest descent method:

Steepest Descent: Start at a point P0. As many times
as needed, move from point P i to the point P iC1 by
minimizing along the line from P i in the direction of
the local downhill gradient �rf .P i /.
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(a)

(b)

Figure 10.8.1. (a) Steepest descent method in a long, narrow “valley.” While more efficient than the
strategy of Figure 10.7.1, steepest descent is nonetheless an inefficient strategy, taking many steps to
reach the valley floor. (b) Magnified view of one step: A step starts off in the local gradient direction,
perpendicular to the contour lines, and traverses a straight line until a local minimum is reached, where
the traverse is parallel to the local contour lines.

The problem with the steepest descent method (which, incidentally, goes back to
Cauchy), is similar to the problem that was shown in Figure 10.7.1. The method will
perform many small steps in going down a long, narrow valley, even if the valley is a
perfect quadratic form. You might have hoped that, say in two dimensions, your first
step would take you to the valley floor, the second step directly down the long axis;
but remember that the new gradient at the minimum point of any line minimization
is perpendicular to the direction just traversed. Therefore, with the steepest descent
method, you must make a right angle turn, which does not, in general, take you to
the minimum. (See Figure 10.8.1.)

Just as in the discussion that led up to equation (10.7.5), we really want a way of
proceeding not down the new gradient, but rather in a direction that is somehow con-
structed to be conjugate to the old gradient, and, insofar as possible, to all previous
directions traversed. Methods that accomplish this construction are called conjugate
gradient methods.

In �2.7 we discussed the conjugate gradient method as a technique for solving
linear algebraic equations by minimizing a quadratic form. That formalism can also
be applied to the problem of minimizing a function approximated by the quadratic
form (10.8.1). Recall that, starting with an arbitrary initial vector g0 and letting
h0 D g0, the conjugate gradient method constructs two sequences of vectors from
the recurrence

giC1 D gi � �iA 	 hi hiC1 D giC1 C �ihi i D 0; 1; 2; : : : (10.8.2)

The vectors satisfy the orthogonality and conjugacy conditions
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gi 	 gj D 0 hi 	A 	 hj D 0 gi 	 hj D 0 j < i (10.8.3)

The scalars �i and �i are given by

�i D
gi 	 gi

hi 	A 	 hi
D

gi 	 hi

hi 	A 	 hi
(10.8.4)

�i D
giC1 	 giC1

gi 	 gi
(10.8.5)

Equations (10.8.2) – (10.8.5) are simply equations (2.7.32) – (2.7.35) for a symmetric
A in a new notation. (A self-contained derivation of these results in the context of
function minimization is given by Polak [1].)

Now suppose that we knew the Hessian matrix A in equation (10.8.1). Then
we could use the construction (10.8.2) to find successively conjugate directions hi
along which to line-minimize. After N such, we would efficiently have arrived at
the minimum of the quadratic form. But we don’t know A.

Here is a remarkable theorem to save the day: Suppose we happen to have
gi D �rf .P i /, for some point P i , where f is of the form (10.8.1). Suppose
also that we proceed from P i along the direction hi to the local minimum of f
located at some point P iC1 and then set giC1 D �rf .P iC1/. Then, this giC1 is
the same vector as would have been constructed by equation (10.8.2). (And we have
constructed it without knowledge of A!)

Proof: By equation (10.7.3), gi D �A 	 P i C b and

giC1 D �A 	 .P i C �hi /C b D gi � �A 	 hi (10.8.6)

with � chosen to take us to the line minimum. But at the line minimum hi 	 rf D
�hi 	 giC1 D 0. This latter condition is easily combined with (10.8.6) to solve for
�. The result is exactly the expression (10.8.4). But with this value of �, (10.8.6) is
the same as (10.8.2), q.e.d.

We have, then, the basis of an algorithm that requires neither knowledge of the
Hessian matrix A nor even the storage necessary to store such a matrix. A sequence
of directions hi is constructed, using only line minimizations, evaluations of the
gradient vector, and an auxiliary vector to store the latest in the sequence of g’s.

The algorithm described so far is the original Fletcher-Reeves version of the
conjugate gradient algorithm. Later, Polak and Ribiere introduced one tiny, but
sometimes significant, change. They proposed using the form

�i D
.giC1 � gi / 	 giC1

gi 	 gi
(10.8.7)

instead of equation (10.8.5). “Wait,” you say, “aren’t they equal by the orthogonality
conditions (10.8.3)?” They are equal for exact quadratic forms. In the real world,
however, your function is not exactly a quadratic form. Arriving at the supposed
minimum of the quadratic form, you may still need to proceed for another set of
iterations. There is some evidence [2] that the Polak-Ribiere formula accomplishes
the transition to further iterations more gracefully: When it runs out of steam, it
tends to reset h to be down the local gradient, which is equivalent to beginning the
conjugate gradient procedure anew.

The following routine implements the Polak-Ribiere variant, which we recom-
mend; but changing one program line, as shown, will give you Fletcher-Reeves. The
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routine presumes the existence of a functor (not a function) that returns the function
value by overloading operator() and also provides a function to set the vector gra-
dient df[0..n-1] evaluated at the input point p. Here’s an example for the function
x20 C x

2
1 :

struct Funcd { Name Funcd is arbitrary.
Doub operator() (VecDoub_I &x)

{

return x[0]*x[0]+x[1]*x[1];

}

void df(VecDoub_I &x, VecDoub_O &deriv) Name df is fixed.
{

deriv[0]=2.0*x[0];

deriv[1]=2.0*x[1];

}

};

To use frprmn, you need statements like the following:

Funcd funcd;

Frprmn<Funcd> frprmn(funcd);

VecDoub p = ...;

p=frprmn.minimize(p); OK to overwrite initial guess.

The function value at the minimum is available as frprmn.fret. Note that the
constructor takes an optional argument that specifies the function tolerance for the
minimization.

The routine calls linmin to do the line minimizations. As already discussed,
you may wish to use a modified version of linmin that uses Dbrent instead of
Brent, i.e., that uses the gradient in doing the line minimizations. See note below
(�10.8.1).

template <class T>mins ndim.h
struct Frprmn : Linemethod<T> {
Multidimensional minimization by the Fletcher-Reeves-Polak-Ribiere method.

Int iter;
Doub fret; Value of the function at the minimum.
using Linemethod<T>::func; Variables from a templated base class

are not automatically inherited.using Linemethod<T>::linmin;
using Linemethod<T>::p;
using Linemethod<T>::xi;
const Doub ftol;
Frprmn(T &funcd, const Doub ftoll=3.0e-8) : Linemethod<T>(funcd),

ftol(ftoll) {}
Constructor arguments are funcd, the function or functor to be minimized, and an optional
argument ftoll, the fractional tolerance in the function value such that failure to decrease
by more than this amount on one iteration signals doneness.
VecDoub minimize(VecDoub_I &pp)
Given a starting point pp[0..n-1], performs the minimization on a function whose value
and gradient are provided by a functor funcd (see text).
{

const Int ITMAX=200;
const Doub EPS=1.0e-18;
const Doub GTOL=1.0e-8;
Here ITMAX is the maximum allowed number of iterations; EPS is a small number to
rectify the special case of converging to exactly zero function value; and GTOL is the
convergence criterion for the zero gradient test.
Doub gg,dgg;
Int n=pp.size(); Initializations.
p=pp;
VecDoub g(n),h(n);
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xi.resize(n);
Doub fp=func(p);
func.df(p,xi);
for (Int j=0;j<n;j++) {

g[j] = -xi[j];
xi[j]=h[j]=g[j];

}
for (Int its=0;its<ITMAX;its++) { Loop over iterations.

iter=its;
fret=linmin(); Next statement is one possible return:
if (2.0*abs(fret-fp) <= ftol*(abs(fret)+abs(fp)+EPS))

return p;
fp=fret;
func.df(p,xi);
Doub test=0.0; Test for convergence on zero gradient.
Doub den=MAX(fp,1.0);
for (Int j=0;j<n;j++) {

Doub temp=abs(xi[j])*MAX(abs(p[j]),1.0)/den;
if (temp > test) test=temp;

}
if (test < GTOL) return p; The other possible return.
dgg=gg=0.0;
for (Int j=0;j<n;j++) {

gg += g[j]*g[j];
// dgg += xi[j]*xi[j]; This statement for Fletcher-Reeves.

dgg += (xi[j]+g[j])*xi[j]; This statement for Polak-Ribiere.
}
if (gg == 0.0) Unlikely. If gradient is exactly zero, then

we are already done.return p;
Doub gam=dgg/gg;
for (Int j=0;j<n;j++) {

g[j] = -xi[j];
xi[j]=h[j]=g[j]+gam*h[j];

}
}
throw("Too many iterations in frprmn");

}
};

10.8.1 Note on Line Minimization Using Derivatives
Kindly reread �10.6. We here want to do the same thing, but using derivative

information in performing the line minimization. Simply replace all occurrences of
Linemethod in Frprmn with Dlinemethod. The routine Dlinemethod is exactly
the same as Linemethod except that Brent is replaced by Dbrent and F1dim by
Df1dim:

template <class T> mins ndim.h
struct Dlinemethod {
Base class for line-minimization algorithms using derivative information. Provides the line-
minimization routine linmin.

VecDoub p;
VecDoub xi;
T &func;
Int n;
Dlinemethod(T &funcc) : func(funcc) {}
Constructor argument is the user-supplied function or functor to be minimized.
Doub linmin()
Line-minimization routine. Given an n-dimensional point p[0..n-1] and an n-dimensional
direction xi[0..n-1], moves and resets p to where the function or functor func(p) takes on
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a minimum along the direction xi from p, and replaces xi by the actual vector displacement
that p was moved. Also returns the value of func at the returned location p. All of this is
actually accomplished by calling the routines bracket and minimize of Dbrent.
{

Doub ax,xx,xmin;
n=p.size();
Df1dim<T> df1dim(p,xi,func);
ax=0.0; Initial guess for brackets.
xx=1.0;
Dbrent dbrent;
dbrent.bracket(ax,xx,df1dim);
xmin=dbrent.minimize(df1dim);
for (Int j=0;j<n;j++) { Construct the vector results to return.

xi[j] *= xmin;
p[j] += xi[j];

}
return dbrent.fmin;

}
};

template <class T>mins ndim.h
struct Df1dim {
Must accompany linmin in Dlinemethod.

const VecDoub &p;
const VecDoub &xi;
Int n;
T &funcd;
VecDoub xt;
VecDoub dft;
Df1dim(VecDoub_I &pp, VecDoub_I &xii, T &funcdd) : p(pp),

xi(xii), n(pp.size()), funcd(funcdd), xt(n), dft(n) {}
Constructor takes as inputs an n-dimensional point p[0..n-1] and an n-dimensional direc-
tion xi[0..n-1] from linmin, as well as the functor funcd.
Doub operator()(const Doub x)
Functor returning value of the given function along a one-dimensional line.
{

for (Int j=0;j<n;j++)
xt[j]=p[j]+x*xi[j];

return funcd(xt);
}
Doub df(const Doub x)
Returns the derivative along the line.
{

Doub df1=0.0;
funcd.df(xt,dft); Dbrent always evaluates the derivative at the

same value as the function, so xt is un-
changed.

for (Int j=0;j<n;j++)
df1 += dft[j]*xi[j];

return df1;
}

};

CITED REFERENCES AND FURTHER READING:

Polak, E. 1971, Computational Methods in Optimization (New York: Academic Press), �2.3.[1]

Jacobs, D.A.H. (ed.) 1977, The State of the Art in Numerical Analysis (London: Academic Press),
Chapter III.1.7 (by K.W. Brodlie).[2]

Stoer, J., and Bulirsch, R. 2002, Introduction to Numerical Analysis, 3rd ed. (New York: Springer),
�8.7.
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10.9 Quasi-Newton or Variable Metric Methods
in Multidimensions

The goal of quasi-Newton methods, which are also called variable metric meth-
ods, is not different from the goal of conjugate gradient methods: to accumulate
information from successive line minimizations so that N such line minimizations
lead to the exact minimum of a quadratic form in N dimensions. In that case, the
method will also be quadratically convergent for more general smooth functions.

Both quasi-Newton and conjugate gradient methods require that you are able to
compute your function’s gradient, or first partial derivatives, at arbitrary points. The
quasi-Newton approach differs from the conjugate gradient in the way that it stores
and updates the information that is accumulated. Instead of requiring intermediate
storage on the order of N , the number of dimensions, it requires a matrix of size
N �N . Generally, for any moderate N , this hardly matters.

On the other hand, there is not, as far as we know, any overwhelming advantage
that the quasi-Newton methods hold over the conjugate gradient techniques, except
perhaps a historical one. Developed somewhat earlier, and more widely propagated,
the quasi-Newton methods have by now developed a wider constituency of satisfied
users. Likewise, some fancier implementations of quasi-Newton methods (going
beyond the scope of this book; see below) have been developed to a greater level of
sophistication on issues like the minimization of roundoff error, handling of special
conditions, and so on.

Quasi-Newton methods come in two main flavors. One is the Davidon-Fletcher-
Powell (DFP) algorithm (sometimes referred to as simply Fletcher-Powell). The
other goes by the name Broyden-Fletcher-Goldfarb-Shanno (BFGS). The BFGS and
DFP schemes differ only in details of their roundoff error, convergence tolerances,
and similar “dirty” issues that are outside of our scope [1,2]. However, it has become
generally recognized that, empirically, the BFGS scheme is superior in these details.
We will implement BFGS in this section.

As before, we imagine that our arbitrary function f .x/ can be locally approxi-
mated by the quadratic form of equation (10.8.1). We don’t, however, have any infor-
mation about the values of the quadratic form’s parameters A and b, except insofar as
we can glean such information from our function evaluations and line minimizations.

The basic idea of the quasi-Newton method is to build up, iteratively, a good
approximation to the inverse Hessian matrix A�1, that is, to construct a sequence of
matrices Hi with the property

lim
i!1

Hi D A�1 (10.9.1)

Even better if the limit is achieved after N iterations instead of1.
The reason that these methods are called quasi-Newton can now be explained.

Consider finding a minimum by using Newton’s method to search for a zero of the
gradient of the function. Near the current point xi , we have to second order

f .x/ D f .xi /C .x � xi / 	 rf .xi /C
1
2
.x � xi / 	A 	 .x � xi / (10.9.2)

so
rf .x/ D rf .xi /CA 	 .x � xi / (10.9.3)
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In Newton’s method we set rf .x/ D 0 to determine the next iteration point:

x � xi D �A
�1 	 rf .xi / (10.9.4)

The left-hand side is the finite step we need to take to get to the exact minimum; the
right-hand side is known once we have accumulated an accurate H � A�1.

The “quasi” in quasi-Newton is because we don’t use the actual Hessian matrix
of f , but instead use our current approximation of it. This is often better than us-
ing the true Hessian. We can understand this paradoxical result by considering the
descent directions of f at xi . These are the directions p along which f decreases:
rf 	 p < 0. For the Newton direction (10.9.4) to be a descent direction, we must
have

rf .xi / 	 .x � xi / D �.x � xi / 	A 	 .x � xi / < 0 (10.9.5)

which is true if A is positive-definite. In general, far from a minimum, we have no
guarantee that the Hessian is positive-definite. Taking the actual Newton step with
the real Hessian can move us to points where the function is increasing in value. The
idea behind quasi-Newton methods is to start with a positive-definite, symmetric
approximation to A (usually the unit matrix) and build up the approximating Hi ’s
in such a way that the matrix Hi remains positive-definite and symmetric. Far from
the minimum, this guarantees that we always move in a downhill direction. Close to
the minimum, the updating formula approaches the true Hessian and we enjoy the
quadratic convergence of Newton’s method.

When we are not close enough to the minimum, taking the full Newton step
p even with a positive-definite A need not decrease the function; we may move
too far for the quadratic approximation to be valid. All we are guaranteed is that
initially f decreases as we move in the Newton direction. Once again we can use
the backtracking strategy described in �9.7 to choose a step along the direction of the
Newton step p, but not necessarily all the way.

We won’t rigorously derive the DFP algorithm for taking Hi into HiC1; you can
consult [3] for clear derivations. Following Brodlie (in [2]), we will give the following
heuristic motivation of the procedure.

Subtracting equation (10.9.4) at xiC1 from that same equation at xi gives

xiC1 � xi D A�1 	 .rfiC1 � rfi / (10.9.6)

where rfj � rf .xj /. Having made the step from xi to xiC1, we might reasonably
want to require that the new approximation HiC1 satisfy (10.9.6) as if it were actually
A�1, that is,

xiC1 � xi D HiC1 	 .rfiC1 � rfi / (10.9.7)

We might also imagine that the updating formula should be of the form HiC1 D

Hi C correction.
What “objects” are around out of which to construct a correction term? Most

notable are the two vectors xiC1 � xi and rfiC1 � rfi , and there is also Hi .
There are not infinitely many natural ways of making a matrix out of these objects,
especially if (10.9.7) must hold! One such way, the DFP updating formula, is

HiC1 D Hi C
.xiC1 � xi /˝ .xiC1 � xi /

.xiC1 � xi / 	 .rfiC1 � rfi /

�
ŒHi 	 .rfiC1 � rfi /�˝ ŒHi 	 .rfiC1 � rfi /�

.rfiC1 � rfi / 	Hi 	 .rfiC1 � rfi /

(10.9.8)
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where ˝ denotes the “outer” or “direct” product of two vectors, a matrix: The ij
component of u ˝ v is uivj . (You might want to verify that 10.9.8 does indeed
satisfy 10.9.7.)

The BFGS updating formula is exactly the same, but with one additional term,

	 	 	 C Œ.rfiC1 � rfi / 	Hi 	 .rfiC1 � rfi /� u˝ u (10.9.9)

where u is defined as the vector

u �
.xiC1 � xi /

.xiC1 � xi / 	 .rfiC1 � rfi /
�

Hi 	 .rfiC1 � rfi /

.rfiC1 � rfi / 	Hi 	 .rfiC1 � rfi /

(10.9.10)
(You might also verify that this satisfies 10.9.7.)

You will have to take on faith — or else consult [3] for details of — the “deep”
result that equation (10.9.8), with or without (10.9.9), does in fact converge to A�1

in N steps, if f is a quadratic form.
Here now is the routine dfpmin that implements the quasi-Newton method and

uses lnsrch from �9.7. As mentioned at the end of newt in �9.7, this algorithm can
fail if your variables are badly scaled. You must provide a functor with the same
format as the one for frprmn in �10.8 to calculate the function and its gradient.

template <class T> quasinewton.h
void dfpmin(VecDoub_IO &p, const Doub gtol, Int &iter, Doub &fret, T &funcd)
Given a starting point p[0..n-1], the Broyden-Fletcher-Goldfarb-Shanno variant of Davidon-
Fletcher-Powell minimization is performed on a function whose value and gradient are provided
by a functor funcd (see text in �10.8). The convergence requirement on zeroing the gradient
is input as gtol. Returned quantities are p[0..n-1] (the location of the minimum), iter (the
number of iterations that were performed), and fret (the minimum value of the function). The
routine lnsrch is called to perform approximate line minimizations.
{

const Int ITMAX=200;
const Doub EPS=numeric_limits<Doub>::epsilon();
const Doub TOLX=4*EPS,STPMX=100.0;
Here ITMAX is the maximum allowed number of iterations; EPS is the machine precision;
TOLX is the convergence criterion on x values; and STPMX is the scaled maximum step length
allowed in line searches.
Bool check;
Doub den,fac,fad,fae,fp,stpmax,sum=0.0,sumdg,sumxi,temp,test;
Int n=p.size();
VecDoub dg(n),g(n),hdg(n),pnew(n),xi(n);
MatDoub hessin(n,n);
fp=funcd(p); Calculate starting function value and gra-

dient,funcd.df(p,g);
for (Int i=0;i<n;i++) { and initialize the inverse Hessian to the

unit matrix.for (Int j=0;j<n;j++) hessin[i][j]=0.0;
hessin[i][i]=1.0;
xi[i] = -g[i]; Initial line direction.
sum += p[i]*p[i];

}
stpmax=STPMX*MAX(sqrt(sum),Doub(n));
for (Int its=0;its<ITMAX;its++) { Main loop over the iterations.

iter=its;
lnsrch(p,fp,g,xi,pnew,fret,stpmax,check,funcd);
The new function evaluation occurs in lnsrch; save the function value in fp for the
next line search. It is usually safe to ignore the value of check.
fp=fret;
for (Int i=0;i<n;i++) {

xi[i]=pnew[i]-p[i]; Update the line direction,
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p[i]=pnew[i]; and the current point.
}
test=0.0; Test for convergence on �x.
for (Int i=0;i<n;i++) {

temp=abs(xi[i])/MAX(abs(p[i]),1.0);
if (temp > test) test=temp;

}
if (test < TOLX)

return;
for (Int i=0;i<n;i++) dg[i]=g[i]; Save the old gradient,
funcd.df(p,g); and get the new gradient.
test=0.0; Test for convergence on zero gradient.
den=MAX(fret,1.0);
for (Int i=0;i<n;i++) {

temp=abs(g[i])*MAX(abs(p[i]),1.0)/den;
if (temp > test) test=temp;

}
if (test < gtol)

return;
for (Int i=0;i<n;i++) Compute difference of gradients,

dg[i]=g[i]-dg[i];
for (Int i=0;i<n;i++) { and difference times current matrix.

hdg[i]=0.0;
for (Int j=0;j<n;j++) hdg[i] += hessin[i][j]*dg[j];

}
fac=fae=sumdg=sumxi=0.0; Calculate dot products for the denomi-

nators.for (Int i=0;i<n;i++) {
fac += dg[i]*xi[i];
fae += dg[i]*hdg[i];
sumdg += SQR(dg[i]);
sumxi += SQR(xi[i]);

}
if (fac > sqrt(EPS*sumdg*sumxi)) { Skip update if fac not sufficiently posi-

tive.fac=1.0/fac;
fad=1.0/fae;
The vector that makes BFGS different from DFP:
for (Int i=0;i<n;i++) dg[i]=fac*xi[i]-fad*hdg[i];
for (Int i=0;i<n;i++) { The BFGS updating formula:

for (Int j=i;j<n;j++) {
hessin[i][j] += fac*xi[i]*xi[j]

-fad*hdg[i]*hdg[j]+fae*dg[i]*dg[j];
hessin[j][i]=hessin[i][j];

}
}

}
for (Int i=0;i<n;i++) { Now calculate the next direction to go,

xi[i]=0.0;
for (Int j=0;j<n;j++) xi[i] -= hessin[i][j]*g[j];

}
} and go back for another iteration.
throw("too many iterations in dfpmin");

}

Quasi-Newton methods like dfpmin work well with the approximate line min-
imization done by lnsrch. The routines Powell (�10.7) and Frprmn (�10.8), how-
ever, need more accurate line minimization, which is carried out by the routine
linmin in Linemethod or Dlinemethod.

10.9.1 Quasi-Newton Methods Without Derivatives
In using Newton’s method to find a zero of a function in multidimensions, we

saw in �9.7 that one can use finite differences to calculate the partial derivatives
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instead of providing them analytically. Similarly, dfpmin very often succeeds when
the gradient is calculated with finite differences. In our experience, this method often
involves less total computation than one of the other methods that avoids analytic
derivatives, such as Powell.

To use this idea, all you need to do is supply a suitable functor to dfpmin, which
remains unchanged. Here is the code, which is very similar to that of Fdjac in �9.7:

template <class T> quasinewton.h
struct Funcd {

Doub EPS; Set to approximate square root of the machine pre-
cision.T &func;

Doub f;
Funcd(T &funcc) : EPS(1.0e-8), func(funcc) {}
Doub operator() (VecDoub_I &x)
{

return f=func(x);
}

void df(VecDoub_I &x, VecDoub_O &df)
{

Int n=x.size();
VecDoub xh=x;
Doub fold=f;
for (Int j=0;j<n;j++) {

Doub temp=x[j];
Doub h=EPS*abs(temp);
if (h == 0.0) h=EPS;
xh[j]=temp+h; Trick to reduce finite-precision error.
h=xh[j]-temp;
Doub fh=operator()(xh);
xh[j]=temp;
df[j]=(fh-fold)/h;

}
}

};

10.9.2 Advanced Implementations of Variable Metric
Methods

Although rare, it can conceivably happen that roundoff errors cause the matrix Hi to
become nearly singular or non-positive-definite. This can be serious, because the supposed
search directions might then not lead downhill, and because nearly singular Hi ’s tend to give
subsequent Hi ’s that are also nearly singular.

There is a simple fix for this rare problem, the same as was mentioned in �10.5: In case
of any doubt, you should restart the algorithm at the claimed minimum point and see if it goes
anywhere. Simple, but not very elegant. Modern implementations of quasi-Newton methods
deal with the problem in a more sophisticated way.

Instead of building up an approximation to A�1, it is possible to build up an approxima-
tion of A itself. Then, instead of calculating the left-hand side of (10.9.4) directly, one solves
the set of linear equations

A 	 .x � xi / D �rf .xi / (10.9.11)

At first glance this seems like a bad idea, since solving (10.9.11) is a process of order N 3 —
and anyway, how does this help the roundoff problem? The trick is not to store A but rather
a triangular decomposition of A, its Cholesky decomposition (cf. �2.9). The updating formula
used for the Cholesky decomposition of A is of orderN 2 and can be arranged to guarantee that
the matrix remains positive-definite and nonsingular, even in the presence of finite roundoff.
This method is due to Gill and Murray [1,2].
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10.10 Linear Programming: The Simplex
Method

The subject of linear programming, sometimes called linear optimization, con-
cerns itself with the following problem: For n independent variables x1; : : : ; xn,
minimize the function

� D c1x1 C c2x2 C 	 	 	 C cnxn (10.10.1)

subject to the nonnegativity conditions

x1 � 0; x2 � 0; : : : xn � 0 (10.10.2)

and simultaneously subject to m additional constraints of the form

ai1x1 C ai2x2 C 	 	 	 C ainxn 
 bi (10.10.3)

or
ai1x1 C ai2x2 C 	 	 	 C ainxn D bi (10.10.4)

Here i D 1; : : : ; m. Note that an inequality with a� can be converted to a
 by mul-
tiplying by �1. Some formulations of linear programming require you to write all
the constraints with the b’s nonnegative and separately treat the � and 
 constraints.
We will use the above formulation, with either sign of bi , instead. However, it is still
useful to refer to the inequalities with bi 
 0 as “� inequalities” (which they would
be with bi � 0), since, as we shall see, they enter the problem in a different way
from the 
 inequalities.

There is no particular significance in the number of constraints m being less
than, equal to, or greater than the number of unknowns n. Also, note that there
is no special significance to minimizing � in equation (10.10.1): We can convert a
maximizing problem to a minimizing problem by changing the signs of all the c’s.
The solution x1; : : : ; xn is the same, and the required maximum is the negative of
the minimum � found.

A set of values x1; : : : ; xn that satisfies the constraints (10.10.2) – (10.10.4)
is called a feasible vector. The function that we are trying to minimize is called
the objective function. The feasible vector that minimizes the objective function is
called the optimal feasible vector. An optimal feasible vector can fail to exist for
two distinct reasons: (i) There are no feasible vectors, i.e., the given constraints
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Figure 10.10.1. Basic concepts of linear programming. The case of only two independent variables,
x1; x2, is shown. The linear function � , to be minimized, is represented by its contour lines. Nonnegativ-
ity constraints require x1 and x2 to be positive. Additional constraints may restrict the solution to regions
(inequality constraints) or to surfaces of lower dimensionality (equality constraints). Feasible vectors sat-
isfy all constraints. Feasible basic vectors also lie on the boundary of the allowed region. The simplex
method steps among feasible basic vectors until the optimal feasible vector is found.

are incompatible, or (ii) there is no minimum, i.e., there is a direction in n-space
where one or more of the variables can be taken to infinity while still satisfying the
constraints, giving an unbounded value for the objective function. Figure 10.10.1
summarizes some of the terminology thus far.

As you see, the subject of linear programming is surrounded by notational and
terminological thickets. Both of these thorny defenses are lovingly cultivated by a
coterie of stern acolytes who have devoted themselves to the field. Actually, the basic
ideas of linear programming are quite simple. Avoiding the shrubbery, let’s elucidate
the basics by means of a couple of specific examples; it should then be quite obvious
how to generalize.

Why is linear programming so important? (i) Because “nonnegativity” is the
usual constraint on any variable xi that represents the tangible amount of some phys-
ical commodity, like guns, butter, dollars, units of vitamin E, food calories, kilowatt
hours, mass, etc. Hence equation (10.10.2). (ii) Because one is often interested in ad-
ditive (linear) limitations or bounds imposed by man or nature: minimum nutritional
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requirement, maximum affordable cost, maximum on available labor or capital, min-
imum tolerable level of voter approval, etc. Hence equations (10.10.3) – (10.10.4).
(iii) Because the function that one wants to optimize may be linear, or else may at
least be approximated by a linear function — since that is the problem that linear
programming can solve. Hence equation (10.10.1). For a short, semipopular survey
of linear programming applications, see Bland [1].

10.10.1 Fundamental Theorem of Linear Optimization
Imagine that we start with a full n-dimensional space of candidate vectors. Then

(in our mind’s eye, at least) we carve away the regions that are eliminated in turn by
each imposed constraint. Since the constraints are linear, every boundary introduced
by this process is a plane, or rather a hyperplane. Equality constraints of the form
(10.10.4) force the feasible region onto hyperplanes of smaller dimension, while in-
equalities simply divide the then-feasible region into allowed and nonallowed pieces.

When all the constraints are imposed, either we are left with some feasible
region or else there are no feasible vectors. Since the feasible region is bounded by
hyperplanes, it is geometrically a kind of convex polyhedron or simplex (cf. �10.5).
If there is a feasible region, can the optimal feasible vector be somewhere in its
interior, away from the boundaries? No, because the objective function is linear.
This means that it always has a nonzero vector gradient. This, in turn, means that we
could always decrease the objective function by running down the gradient until we
hit a boundary wall.

The boundary of any geometrical region has one less dimension than its interior.
Therefore, we can now run down the gradient projected into the boundary wall until
we reach an edge of that wall. We can then run down that edge, and so on, down
through whatever number of dimensions, until we finally arrive at a point, a vertex
of the original simplex. Since this point has all n of its coordinates defined, it must
be the solution of n simultaneous equalities drawn from the original set of equalities
and inequalities (10.10.2) – (10.10.4).

Points that are feasible vectors and that satisfy n of the original constraints as
equalities, including the nonnegativity constraints, are termed feasible basic vectors.
If n > m, then a feasible basic vector has at least n �m of its components equal to
zero, since at least that many of the constraints (10.10.2) will be needed to make up
the total of n. Put the other way, at most m components of a feasible basic vector
are nonzero.

Put together the two preceding paragraphs and you have the Fundamental The-
orem of Linear Optimization: If an optimal feasible vector exists, then there is a
feasible basic vector that is optimal. (Didn’t we warn you about the terminological
thicket?)

The importance of the fundamental theorem is that it reduces the optimization
problem to a “combinatorial” problem, that of determining which n constraints (out
of the m C n constraints in 10.10.2 – 10.10.4) should be satisfied by the optimal
feasible vector. We have only to keep trying different combinations, and computing
the objective function for each trial, until we find the best.

Doing this blindly would take halfway to forever. The simplex method, first
published by Dantzig in 1948 (see [2]), is a way of organizing the procedure so that
(i) a series of combinations is tried for which the objective function decreases at each
step, and (ii) the optimal feasible vector is reached after a number of iterations that
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is almost always no larger than of order m or n, whichever is larger. An interesting
mathematical sidelight is that this second property, although known empirically ever
since the simplex method was devised, was not proved to be true until the 1982 work
of Stephen Smale. (For a contemporary account, see [3].)

10.10.2 Writing the General Problem in Standard Form
There is a standard form for linear programming problems, and we have to learn

how to write a general problem like (10.10.1) – (10.10.4) in this standard form. For
definiteness, consider the problem

Minimize � D �40x1 � 60x2 (10.10.5)

with the x’s nonnegative and also with

2x1 C x2 
 70 (10.10.6)

x1 C x2 � 40 (10.10.7)

x1 C 3x2 D 90 (10.10.8)

First, we rewrite the inequalities as equalities. We do this by adding to the prob-
lem so-called slack variables xnC1; xnC2; : : : In our example, equations (10.10.6)
and (10.10.7) become

2x1 C x2 C x3 D 70 (10.10.9)

�x1 � x2 C x4 D �40 (10.10.10)

(A slack variable like x4 for a � inequality is sometimes called a surplus variable.)
Requiring the slack variables to be nonnegative makes these equalities equivalent to
the original inequalities. Once they are introduced, you treat slack variables on an
equal footing with the original variables xi ; then, at the very end, you just ignore
them. The simplex solution for each slack variable is simply the amount by which
the original inequality is satisfied.

The key idea in the simplex method is to start with a feasible basic vector and
make a sequence of exchanges between basic and nonbasic variables. At each step
the vector stays feasible (satisfies the constraints), and the objective function de-
creases (or at least does not increase).

How do we find an initial feasible basic vector to start the procedure? Suppose
that our example were changed so that equations (10.10.7) and (10.10.8) were both

 inequalities, like (10.10.6). Then, after introducing slack variables, we would have

2x1 C x2 C x3 D 70 (10.10.11)

x1 C x2 C x4 D 40 (10.10.12)

x1 C 3x2 C x5 D 90 (10.10.13)

In this case it is easy to write down a feasible basic vector: Set the original variables
x1 and x2 to zero and take .x3; x4; x5/ D .70; 40; 90/. Here n D 2 of the constraints,
namely x1 � 0, x2 � 0, are satisfied as equalities, while m D 3 components of the
feasible basic vector are nonzero. The variables .x3; x4; x5/ are called basic vari-
ables, while the variables that are zero, .x1; x2/, are called nonbasic variables. Note
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that if we write equations (10.10.11) – (10.10.13) as a 3�5matrix equation, then the
last three columns of the matrix, corresponding to the slack variables .x3; x4; x5/,
form a 3 � 3 unit matrix.

So 
 constraints are easy. But how do we handle constraints like equations
(10.10.7) and (10.10.8)? The trick is again to invent new variables called artificial
variables. We rewrite equation (10.10.8) as

x1 C 3x2 C x5 D 90 (10.10.14)

Now equations (10.10.9), (10.10.10), and (10.10.14) are almost in the form to give
us an easy initial feasible basic vector by setting x1 D x2 D 0. The obstacle is
equation (10.10.10), which would give a negative value for x4. We have to precede
the actual simplex procedure by a preliminary procedure, called phase one of the
simplex method, to find an initial feasible vector. (The actual optimization is called
phase two.)

In phase one, we replace our objective function (10.10.5) by a so-called auxil-
iary objective function,

�0 � �x4 (10.10.15)

We now perform the simplex method on the auxiliary objective function (10.10.15)
with the constraints (10.10.9), (10.10.10), and (10.10.14), starting with the basis
given by x1 D x2 D 0. The variable x4 starts off negative (at �40). Minimizing the
function (10.10.15) drives x4 toward satisfying x4 � 0, the condition for feasibility.
In fact, we don’t even have to solve phase one all the way to the exact minimum. As
we do the exchanges between variables during this phase, we continually redefine
the auxiliary objective function at each iteration to be minus the sum of all negative
basic variables. As soon as all the basic variables are nonnegative, we are done with
phase one.

And what if the first phase doesn’t drive the auxiliary objective function to a
negative value (i.e., all basic variables nonnegative)? That signals that there is no ini-
tial feasible basic vector, i.e., that the constraints given to us are inconsistent among
themselves. Report that fact, and you are done.

An artificial variable in an equality constraint is an example of a zero variable,
a variable that must vanish in the optimal solution. Typically the way a zero variable
gets to be zero is by being nonbasic in the optimal solution. So we can precede phase
one with a “phase zero” in which we exchange each zero variable out of the basis.

One last piece of jargon: Slack and artificial variables are often called logical
variables, to distinguish them from the original independent variables, which are
sometimes called structural variables.

10.10.3 The Simplex Method: A Worked Example
The easiest way to describe the actual simplex procedure is with a worked ex-

ample. We write the general linear programming problem in the following form:
Minimize the objective function

� D c 	 x D c1x1 C c2x2 C 	 	 	 C cnxn (10.10.16)

subject to the constraints
A 	 x D b (10.10.17)
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and
xi � 0; i D 1; : : : ; nCm (10.10.18)

Here we assume that we started with an m � n matrix of constraint coefficients
given by equations like (10.10.3) and (10.10.4). We then added slack variables to
the inequality constraints and artificial variables to the equality constraints so that
the constraint matrix is now the m � .n C m/ matrix A. The last m columns form
an m �m identity matrix. Note that the coefficients of the slack variables are taken
to be C1, so that an original � inequality will have a negative right-hand side. For
our example given in equations (10.10.5) – (10.10.8), transformed as in equations
(10.10.9), (10.10.10), and (10.10.14), the matrix A has five columns:

a1 D

0@ 2

�1

1

1A a2 D

0@ 1

�1

3

1A a3 D

0@10
0

1A a4 D

0@01
0

1A a5 D

0@00
1

1A (10.10.19)

The right-hand side and the objective function coefficients are

b D

0@ 70

�40

90

1A c D .�40;�60; 0; 0; 0/T (10.10.20)

We partition the matrix A into two submatrices,

A D
�
AB AN

	
(10.10.21)

where we have permuted the columns corresponding to the basic variables to be
in AB , while the nonbasic columns are in AN . In our example, the initial basic
variables are .x3; x4; x5/ and the initial basis AB is the unit matrix composed of the
last three columns of A, a3, a4 and a5. A basic solution of A 	 x D b consists of a
set of basic and nonbasic variables ŒxB j xN � with xN D 0. In our example, initially
xN D .x1; x2/ D 0. The basic solution satisfies AB 	 xB D b, or xB D A�1B 	 b.

To derive the simplex method, we need one simple equation: how a basic vector
changes as a nonbasic variable (i.e., one that is zero) becomes nonzero. This corre-
sponds to starting at a vertex of the simplex and sliding along an edge toward another
vertex. Suppose the variable xk is the one increasing from zero. The constraint equa-
tion A 	 x D AB 	 xB D b becomes

ABx
0
B C akxk D b (10.10.22)

since only xk is nonzero among the nonbasic variables. Multiplying this equation by
A�1B gives

x0B D A�1B 	 b � xkA
�1
B 	 ak D xB � xkA

�1
B 	 ak (10.10.23)

The first application of equation (10.10.23) is to the idea of a reduced cost.
The coefficient ci in the objective function (10.10.16) is sometimes called the cost
of variable xi , because it represents the cost of having xi amount of quantity i in
the objective function. The simplex method requires instead the cost of changing a
variable that is zero (not in the basis) to a nonzero value. If the initial value of the
objective function is c 	xB D cB 	xB and the final value is c 	 .x0BCxkek/, where ek
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is a unit vector, then using equation (10.10.23) you find that the difference is xkuk ,
where the reduced cost of xk is given by

uk D ck � ak 	 y ; y � .A�1B /T 	 cB (10.10.24)

Note that if uk < 0, you can make the value of the objective function smaller by
bringing xk into the basis (making it nonzero).

The simplex procedure consists of the following steps:

1. Find a feasible basis (phase 1)
2. Compute the reduced costs (10.10.24) for all xk not in the basis.
3. If uk � 0 for all k, the solution is optimal: No exchange will improve things.

Otherwise, choose k corresponding to the most negative uk as the entering
column.

4. Choose the leaving column i from the minimum ratio test (motivated below):
Compute

xB D A�1B 	 b; w D A�1B 	 ak (10.10.25)

For each component wi > 0, compute the ratio xiB=wi . Choose i that cor-
responds to the smallest such ratio. (If no wi > 0, the objective function is
unbounded. Exit and report this.)

5. Exchange columns i and k and go back to step 2.

The minimum ratio test is the second application of equation (10.10.23), which
can be written as

.xiB/
0 D xiB � xkwi (10.10.26)

where wi is defined in equation (10.10.25). For each wi > 0, xiB decreases as xk
increases from zero. The minimum ratio test selects the i corresponding to the first
xiB to hit zero, while the other basis variables are still positive. The idea is to allow xk
to be as big as possible so that the objective function is reduced as much as possible
by bringing it into the basis.

Let’s see how this applies to our example. We start with phase zero, where
we remove the zero variable x5 from the basis. Suppose we choose x2 to be the
incoming variable (x1 would work fine, too). Using x2, we find for the new basis
and its inverse

AB D

0B@1 0 1

0 1 �1

0 0 3

1CA A�1B D

0B@1 0 �1
3

0 1 1
3

0 0 1
3

1CA (10.10.27)

The new basic solution is

xB D

0@x3x4
x2

1A D A�1B 	 b D

0@ 40

�10

30

1A (10.10.28)

The solution (10.10.28) is not feasible because x4 is negative. We enter phase
one, with �0 D xc 	 x D �x4, i.e.,

xcB D

0@ 0

�1

0

1A (10.10.29)
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Here the order of elements corresponds to the order .x3; x4; x2/ for the basic vari-
ables. We compute the reduced costs from equation (10.10.24). Only k D 1 is
relevant, since x5 is never allowed to re-enter the basis (zero variable). We find

u1 D �a1 	 .A
�1
B /T 	 xcB D �

2
3

(10.10.30)

which is negative, confirming that x1 should enter. For the minimum ratio test to
determine which variable leaves, we need the quantity

A�1B 	 a1 D

0B@
5
3

�2
3
1
3

1CA (10.10.31)

So the ratios of the elements in equation (10.10.28) to those in equation (10.10.31)
are

40

5=3
D 24;

�10

�2=3
D 15;

30

1=3
D 90 (10.10.32)

The middle ratio is the minimum, so x4 goes out. (Note that in phase one we relax the
requirement that wi > 0, since we haven’t yet made all the variables nonnegative.)

Now the basic variables are .x3; x1; x2/. Proceeding as before, we find

AB D

0B@1 2 1

0 �1 �1

0 1 3

1CA A�1B D

0B@1
5
2

1
2

0 �3
2
�1
2

0 1
2

1
2

1CA (10.10.33)

and

xB D

0@x3x1
x2

1A D A�1B 	 b D

0@1515
25

1A (10.10.34)

All the variables are positive, so the basis is feasible and we enter phase two, with
cB D .0;�40;�60/T . We find the reduced cost u4 D �30, so x4 re-enters the
basis. The minimum ratio test (10.10.25) gives a minimum for the term involving
x3, so the next basis is .x4; x1; x2/. The basic solution turns out to be .6; 24; 22/.
When we compute the reduced cost u3 for this basis, it is positive, so we are done.
The minimum occurs at x1 D 24, x2 D 22, and the minimum value, obtained by
substitution in the objective function, is �2280. The meaning of x4 D 6 is that
the inequality (10.10.7) is satisfied by 6. The other two constraints are satisfied
as equalities.

The graphical interpretation of the solution procedure is shown in Figure 10.10.2.
The initial basic vector is at the origin. We first proceed to the vertex A, which puts
us on the line where the equality (10.10.8) is satisfied. This is not a feasible point,
since we are on the wrong side of the line Y . So we move along the line X to the
vertexB , which is now feasible. Finally we move to vertexC , which is the minimum
value of the objective function.

10.10.4 Degeneracy
Nonbasic variables in a basic feasible solution are all zero. If any basic variable

is zero, we say the basis is degenerate. Geometrically, this situation corresponds in
n dimensions to having more than n hyperplanes intersect at a vertex. Degeneracy
can cause problems in the simplex method. Consider the simple case when three
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Y W x1 C x2 D 40

Figure 10.10.2. Graphical interpretation of the simplex solution of the problem (10.10.5) – (10.10.8). The
initial basic vector is at the origin O . To satisfy the equality (10.10.8), the first step moves to A, on the
line X . This is not yet a feasible point, since it is on the wrong side of the line Y . The next move is to
B , which is feasible. We enter phase two, and find that we can reduce the objective function by moving
to C . No further moves are possible, so we are done. Note that the figure is really the projection of a
five-dimensional simplex onto the x1-x2 plane.

lines intersect at a point in two dimensions. Only two of the lines are necessary to
define the vertex. When the leaving variable is chosen, it can correspond to the third
direction at the vertex. On making this change in the basis, the objective function
doesn’t improve. You can see this algebraically from equation (10.10.26): If xiB D 0
and wi > 0, then a step size of zero is required for the new variable xk . Clearly
special measures need to be taken.

Degeneracy allows the possibility of cycling, where you keep exchanging the
same set of vectors in and out of the basis without making any progress. In prac-
tice, however, cycling is almost never a problem. More common in very degenerate
problems is stalling, where you spend a long time making exchanges before finally
leaving the vertex.

10.10.5 Sparseness and Stability
If you examine the operations carried out during each simplex step, you see that

a key ingredient is to solve equations of the form AB 	 x D b and similar equations
with ATB . We know that a good method for doing this, absent other considerations,
is to use the LU decomposition of AB (cf. �2.3), since we can use partial pivoting to
maintain stability. Decomposing AB afresh each step is expensive, but since succes-
sive bases differ only by the replacement of a single column, one can use techniques
analogous to the Sherman-Morrison formula (�2.7) to update L and U .

However, most linear programming problems that occur in practice have a con-
straint matrix A that is very sparse. It is crucial to take advantage of this sparseness
in the linear algebra procedures that make up each simplex step, since real-life prob-
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lems can involve many thousands or even millions of constraints and variables. Stan-
dard LU decomposition with partial pivoting to maintain stability is not desirable,
because it leads to excessive fill-in, that is, the generation of nonzero matrix elements
where there were zeros before. Instead, one chooses the pivot element by a trade-off
between stability and sparsity. A popular strategy is based on the Markowitz crite-
rion [4]. Here the pivot is a nonzero with the smallest product of the number of other
nonzeros in its row and its column. Empirically, the Markowitz criterion works about
as well as any other general strategy for minimizing fill-in. In linear programming
applications, one also generally needs to impose some kind of stability criterion. In
threshold partial pivoting, no pivot is less than ˛ times the largest element in its row,
where ˛ is a parameter between zero and one. A typical value is ˛ � 0:1; ˛ D 1

gives straight partial pivoting.
The first stable updating procedure for sparse LU decomposition was given by

Bartels and Golub [5,6]. This procedure updates L and U when a column is replaced
in AB . A good sparse LU algorithm that includes the Bartels-Golub update is that
of [7]. It is freely available in the software package LUSOL as part of [8], and we use
it in our pedagogical implementation described below.

There are newer methods for the LU decomposition and the update procedure.
According to [9], the best of these is probably that of [10].

10.10.6 State-of-the-Art Simplex Codes

A high-quality implementation of the simplex method will have a number of
features that we have not discussed so far.

� It will implement more than one variant of the simplex method. In addition to
the algorithm we have described, the primal algorithm, it will typically also
implement the so-called dual algorithm (duality is discussed in �10.11). The
number of iterations can be significantly reduced by the appropriate use of
more than one algorithm.
� It will accept multiple input formats for the specification of the problem, with

suitable error checking.
� It will preprocess the problem, with the aim of reducing its size and improving

its numerical properties. Many complex problems are inadvertently specified
in reducible form.
� It will have multiple options for scaling the problem. As with solving linear

equations, no universal scaling algorithm is known for linear programming.
� It will have multiple options for starting the iteration, including several proce-

dures for phase 1.
� It will have several pricing strategies (procedures for selecting the incoming

variable). These go by names like multiple pricing, Devex, and steepest edge.
� It will have multiple pivot methods (variants of the ratio test) for the outgoing

variable.
� It will handle bounded variables, that is, variables that satisfy a requirement
li 
 xi 
 ui instead of xi � 0. It is possible to handle such bounds using slack
variables, but that increases the size of the matrix A. A slight generalization
of the algorithm we have described allows you to handle bounded variables
directly.
� It will have efficient sparse matrix algorithms.
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All these issues are thoroughly discussed in [9].
There are several excellent public domain simplex implementations that incor-

porate most of the above items. These include CLP [11], GLPK [12] and lp solve [8].
If you are planning to do any serious LP solving, you should definitely explore these
options. It may even be worthwhile to invest in a commercial LP solver. For more
information on all these options, see [13]. But first look at the next section, where
interior-point methods are discussed. It appears now that for many very big problems
(but not all), interior-point methods can out-perform simplex methods [14-16]. Even
for moderate-sized problems, an interior-point method could be your best choice.

The simplex codes mentioned above are large software efforts, with many thou-
sands of lines of code. They are quite formidable if you want to study how the
simplex algorithm works and play around with various options. Accordingly, in a
Webnote [17], we give a pedagogical implementation of the simplex method. Even
though it uses reasonably good sparse matrix algebra, it is slower than the public
domain implementations by one to two orders of magnitude on problems with� 104

variables. If you don’t care about the simplex algorithm and you just want a simple
method to get your problem solved quickly without getting a public domain code up
and running, take a look at our pedagogical interior-point code in the next section.

10.10.7 Other Topics Briefly Mentioned
Problems where the objective function and/or one or more of the constraints are

replaced by expressions nonlinear in the variables are called nonlinear programming
problems. The literature on such problems is vast, but outside our scope. The special
case of quadratic expressions is called quadratic programming. Optimization prob-
lems where the variables take on only integer values are called integer programming
problems, a special case of discrete optimization generally. Section 10.12 looks at a
particular kind of discrete optimization problem.
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10.11 Linear Programming: Interior-Point
Methods

As we mentioned in �10.10, the worst-case number of iterations for the simplex
method is an exponential function of n. (The worst case occurs for m D n.) The
average number of iterations, however, is a small multiple of m. For a long time it
was not known if there was another algorithm for linear programming that would be
bounded by, for example, some polynomial in n. In 1979, Khachian published a new
algorithm [1], the ellipsoid method, that is in fact polynomial in n. Disappointingly,
however, in practical implementations it was much slower than the simplex method.

In 1984, the field was electrified by Karmarkar’s paper [2] describing an interior-
point method. Not only was it polynomial in n, but he claimed it solved large LP
problems significantly faster than the simplex method. This claim turned out to be
somewhat exaggerated, but in the frenzy of activity over the next decade interior-
point algorithms were developed that do solve many problems much faster than the
simplex method, especially very large problems. Ironically, the rivalry between the
two algorithms led to improvements of about a factor of 100 in the simplex method
itself over the same period. We give some recommendations on which method to use
at the end of this section.

Originally, interior-point methods traversed the interior of the feasible region,
homing in on the optimal vertex. So-called infeasible interior-point methods follow
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a path in the interior of the nonnegative region, xi � 0, i D 1; : : : ; n, but possibly
through the infeasible region.

To understand how interior-point methods work, we need to develop some more
theory about linear programming, in particular about duality.

10.11.1 Dual Problem
As we saw in �10.10, any LP problem can be written in standard form:

minimize c 	 x

subject to A 	 x D b

x � 0

(10.11.1)

Here slack variables have been appended to the x’s to write all inequality constraints
as equalities, but no other logical variables have been added. This is called the primal
problem. Recall that if the constraints in (10.11.1) are satisfied, we say that x is a
feasible point.

The dual problem corresponding to (10.11.1) interchanges the roles of variables
and constraints: Corresponding to them constraints is a set of variables .y1; : : : ; ym/
determined by

maximize b 	 y

subject to AT 	 y 
 c

y free

(10.11.2)

Here “free” means unconstrained. Most of the textbooks mentioned at the end of the
previous section discuss exactly how to go from the primal problem to its dual. For
a hint, see �16.5.2, where a different primal-dual problem is discussed. After that,
a particularly clear discussion is in [3]. Note how the constraint matrix for the dual
problem is the transpose of the matrix for the primal problem. Forming the dual of
the dual simply takes you back to the primal problem.

The dual problem (10.11.2) can be rewritten by adding slack variables .z1; : : : ;
zn/:

maximize b 	 y

subject to AT 	 y C z D c

z � 0; y free

(10.11.3)

If .y ; z/ satisfy the constraints in (10.11.3), we say that they are dual feasible. For a
good introduction to the meaning of the relation between primal and dual problems,
see [4].

The weak duality theorem asserts that the value of the dual objective function
provides a lower bound to the value of the objective function if they are each evalu-
ated at feasible points. Proof: b 	 y D y 	A 	 x D x 	AT 	 y 
 x 	 c. The difference

c 	 x � b 	 y (10.11.4)

is called the duality gap. If the primal is unbounded (the objective can be made
arbitrarily negative), then the dual must be infeasible, and vice versa. Moreover, we
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have the strong duality theorem: If either the primal or the dual has a finite optimal
solution, so does the other, and c 	 x D b 	 y for the optimal solution.

There is a further important relation between the primal and dual variables at
optimality. Consider a particular xj and the corresponding zj D .c �AT 	 y/j . The
Karush-Kuhn-Tucker complementarity condition says that they can’t both be strictly
greater than zero: At least one must be equal to zero. In other words,

xj zj D 0; j D 1; : : : ; n (10.11.5)

Adopting the convention that an uppercase letter denotes a matrix with the corre-
sponding lowercase vector along the diagonal, we can write equation (10.11.5) alter-
natively as

X 	Z 	e D 0; X D diag.x1; : : : ; xn/; Z D diag.z1; : : : ; zn/; e D .1; : : : ; 1/
(10.11.6)

Since each xj and zj is nonnegative, equation (10.11.5) is equivalent to x 	 z D 0. In
fact, this result holds in both directions: The complementary slackness theorem says
that feasible solutions are optimal if and only if x 	 z D 0. It is easy to show that for
feasible solutions, x 	 z is simply equal to the duality gap (10.11.4).

Note that complementary slackness allows the possibility that both xj and zj
might be zero at an optimal solution. Strict complementarity is the property that
exactly one of these quantities is zero for all j . The Goldman-Tucker theorem says
that if the primal and dual are feasible, there exists a strictly complementary pair of
optimal solutions. As we’ll see, interior-point methods find such a solution.

10.11.2 The KKT Conditions
Linear programming is a special case of general constrained optimization, where

one wants to minimize some function f .x/ subject to constraints. The general op-
timality conditions are called the Karush-Kuhn-Tucker or KKT conditions. Special-
ized to the LP problem (10.11.1), the KKT conditions are

A 	 x D b x � 0

AT 	 y C z D c z � 0

X 	 Z 	 e D 0 y free

(10.11.7)

Note that these are exactly the conditions that follow from strong duality and comple-
mentarity. Later we will see how to derive these conditions directly using Lagrange
multipliers to handle the constraints.

The KKT conditions (10.11.7) are necessary and sufficient for x to be an opti-
mal solution of (10.11.1). Moreover, they are necessary and sufficient for .x; y ; z/
to solve the primal and dual problems (10.11.1) and (10.11.2). In this case, we
call .x; y ; z/ a primal-dual solution. Primal-dual interior-point methods solve the
equations (10.11.7) in such a way that the inequalities are satisfied strictly at every
iteration, that is, x, z > 0.

The equations are solved using a variant of Newton’s method. Recall that if we
define the vector of equations in (10.11.7) as

F.v/ D

24 A 	 x � b

AT 	 y C z � c
X 	 Z 	 e

35 D 0 (10.11.8)
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where v is shorthand for .x; y ; z/, then Newton’s method determines the update �v
to the current point by solving

J 	�v D �F (10.11.9)

Here J is the Jacobian matrix of F (see �9.7). A full step with this value of �v is
usually not allowed because it would violate the condition .x; z/ � 0. So the new
iterate is chosen from a line search along the Newton direction:

vnew D vold C ˛�v ; ˛ 2 .0; 1� (10.11.10)

You choose ˛ D 1 if possible; otherwise, you choose the maximum ˛ that preserves
nonnegativity.

Note the importance of keeping the nonnegative variables strictly positive at all
times: The Newton equation for xj zj D 0 is xj�zj Czj�xj D �xj zj . Suppose zj
is zero. Then the Newton equation becomes xj�zj D 0, or�zj D 0. So zj remains
zero if it ever becomes zero. The algorithm can never recover. Of course, one should
also expect difficulties if any variable gets “too close” to zero.

This simple damped Newton’s method is not a practical algorithm, because too
often the allowed stepsize becomes very small (˛ � 1). There are two important
modifications that are crucial to producing a viable algorithm:

� Change the search direction so that it aims toward the “center” of the nonnega-
tive region. The idea is to allow larger steps before one of the variables would
become negative.
� Don’t allow the variables to come “too close” to the boundary of the nonneg-

ative region. As discussed above, little progress tends to be made from such
points.

10.11.3 The Central Path
One way to bias the search direction away from boundary is to arrange for all

the complementarity pairs xj zj to converge to zero at the same rate, say xj zj D � ,
where � ! 0 during the iterations. In other words, modify the last equation in
(10.11.8) so that the system becomes

F.v/ D

24 A 	 x � b

AT 	 y C z � c
X 	 Z 	 e

35 D
24 00
�e

35 (10.11.11)

The set of solutions v.�/ to equations (10.11.11) defines the central path. Primal-
dual algorithms take steps toward points on the central path with � > 0. During the
iterations, � ! 0 and the central path homes in on the optimal solution.

If you plot the central path in the hyperspace of .x; z/ coordinates, it’s some
contorted line that doesn’t look central to anything. However, if you plot it in coordi-
nates .x1z1; x2z2; : : :/, you see that it is equidistant from all the coordinate surfaces,
with the optimal solution at the origin. When the current iterate is close to the central
path, the next iteration can make a large step toward the optimal solution. When the
current iterate is close to one of the boundaries, a good algorithm makes the next
iteration get close to the central path again.
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10.11.4 Path-Following Methods
Path-following methods don’t just aim steps in the direction of the central path;

they explicitly attempt to stay close to it. These methods are currently the most
successful interior-point methods. In primal-dual methods, the duality gap (10.11.4),
which is equal to x 	 z for feasible points, provides a figure-of-merit for how close
one is to the optimal solution. Accordingly, we set

� D x 	 z=n; � D �ı; ı 2 Œ0; 1� (10.11.12)

The quantity ı is called the centering parameter, while � is called the duality mea-
sure. If ı D 1, the Newton step calculated from (10.11.11) is in a centering direction,
toward a point at which each product xj zj is equal to the average value � defined in
(10.11.12). On the other hand, the value ı D 0 defines the Newton step for the orig-
inal system (10.11.8). Good algorithms use intermediate values to trade off between
improving centrality and reducing �.

Methods that keep ı close to 1, so that unit steps (˛ D 1) stay close to the central
path, are called short-step methods. Methods that allow small values of ı are called long-step
methods (less conservative choices of ı). There is an interesting gap between theory and prac-
tice between the methods. Short-step methods have been proved to converge in O.

p
n log 1� /

iterations, where � is the desired tolerance. Long-step methods take O.n log 1� / iterations,
according to theory. Yet in practice short-step methods take hopelessly small steps, while
long-step methods provide practical algorithms.

This is a somewhat academic discussion anyway. Real-life examples take many fewer
than O.

p
n/ iterations — a few dozen is typical for large problems.

10.11.5 Barrier Methods
Introducing a “penalty” function is a standard technique to enforce a constraint

in general optimization problems. For example, to enforce the condition x � 0,
consider the logarithmic penalty function

nX
jD1

log xj (10.11.13)

If any xj ! 0, this function tends to �1. So instead of trying to minimize c 	 x in
the standard primal problem (10.11.1), consider minimizing

c 	 x � �

nX
jD1

log xj (10.11.14)

If one takes the limit � ! 0 after the minimization, we expect this to be equivalent
to the original problem.

Equation (10.11.14) is called a logarithmic barrier function. It defines a family
of nonlinear objective functions that gives the solution to the original problem as the
parameter � ! 0.

The power of the barrier function idea is that it lets us handle the constraint
x � 0 with calculus. To minimize (10.11.14) subject to the constraint A 	 x D b,
introduce a Lagrange multiplier �y and extremize the Lagrangian

L D c 	 x � �

nX
jD1

log xj � y 	 .A 	 x � b/ (10.11.15)
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The optimality conditions rxL D 0 and ryL D 0 give

A 	 x D b

AT 	 y C �X�1 	 e D c
(10.11.16)

Define the vector
z D �X�1 	 e; i.e., zj D �=xj (10.11.17)

Then equation (10.11.16) becomes

A 	 x D b

AT 	 y C z D c

X 	 Z 	 e D �e

(10.11.18)

These are exactly the equations (10.11.11) defining the central path, and they reduce
to the KKT conditions (10.11.7) if we set � to zero.

Note that equation (10.11.16) can be used to define an algorithm, the primal
interior-point method, that doesn’t depend on z. Similarly, by starting with a loga-
rithmic barrier function for the dual objective function, one can derive a purely dual
method that doesn’t involve x. In practice, These methods are not competitive with
the primal-dual methods.

Originally the logarithmic barrier function idea played an important role in mo-
tivating interior-point methods. More recently, the viewpoint has shifted to empha-
size the importance of � as defining the centering property of the algorithm rather
than being simply a parameter to enforce the nonnegativity constraint.

10.11.6 A Primal-Dual Infeasible Interior-Point Algorithm
Let’s pull all the pieces together now to define the algorithm. Write equation

(10.11.11) for the new iterate:

A 	 .xC�x/ � b D 0

AT 	 .y C�y/C zC�z � c D 0

.XC�X/ 	 .ZC�Z/ 	 e D �e

(10.11.19)

Drop the quadratic term �X 	�Z 	 e and get24A 0 0

0 AT 1
Z 0 X

3524�x
�y
�z

35 D
24 �rp

�rd
�e �X 	 Z 	 e

35 (10.11.20)

where the primal and dual residuals are defined by

rp D A 	 x � b

rd D AT 	 y C z � c
(10.11.21)

Equation (10.11.20) is simply the Newton equation (10.11.9) for (10.11.11). Note
that the only nonlinearity comes from the innocuous looking quadratic term for com-
plementary slackness. Yet it’s exactly what leads to all the difficulty!
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Since X is a diagonal positive-definite matrix, we can trivially invert it and use
the last equation in (10.11.20) to eliminate�z from the second equation. Interchang-
ing the order of the variables �x and �y , we get�

0 A

AT �X�1 	 Z

� �
�y
�x

�
D

�
�rp

z � �X�1 	 e � rd

�
(10.11.22)

Similarly, since �X�1 	 Z is easily invertible, we can use the second equation in
(10.11.22) to eliminate �x from the first. This gives

A 	 .X 	 Z�1/ 	AT 	�y D �rp CA 	 .x � �Z�1 	 e �X 	 Z�1 	 rd / (10.11.23)

These are called the normal equations, by analogy with the normal equations that oc-
cur in least-squares problems (cf. 15.4.10). The predecessor equations in (10.11.22)
are called the augmented equations. Note that the matrix on the left-hand side of
the normal equations is symmetric and positive-definite, except for some delicacy
as x and z ! 0. This suggests solving them with some version of the Cholesky
decomposition (�2.9).

Once �y is determined from the normal equations, the second equation in
(10.11.20) gives �z:

�z D �AT 	�y � rd (10.11.24)

Finally, the third equation in (10.11.20) gives �x:

�x D �X 	 Z�1 	�zC �Z�1 	 e � x (10.11.25)

In a feasible interior-point method, an initial point is somehow found in the
feasible region, that is, with rp D rd D 0 and .x; z/ > 0. Then equations (10.11.23)
– (10.11.25) are solved with rp and rd set to zero. The consensus now is that it is
not necessary to do this. It is much easier to choose a point that may be infeasible
initially, and allow the iterations to converge toward a feasible point. As explained
above, it is still crucial to maintain nonnegativity, however.

Equation (10.11.23) contains three contributions to the step�y and hence to�x
and �z. First there are the terms that involve rp and rd , which drive the solution
toward feasibility. Then there is the term independent of � . It drives the solution
toward optimality. In the literature, this term is called the affine scaling term, because
there is a geometric interpretation of its effect in terms of a linear scaling of variables.
Finally there is the term proportional to � , which is the centering term.

Here is the framework for a simple primal-dual infeasible interior-point method:

1. Choose an initial nonnegative point.
2. If the infeasibilities rp and rd and the complementarity gap x 	z are below the

desired tolerance, exit. Otherwise, continue.
3. Set the value of � from equation (10.11.12). A value of ı � 0:02 works well.
4. Compute the direction of the step .�x; �y ; �z/ from equations (10.11.23) –

(10.11.25). The solution of the normal equations is done in two steps: factor-
ization of the matrix to some easily invertible form, followed by solution using
this factorization.

5. Determine the maximum stepsizes that do not allow the variables to become
negative. Separate stepsizes can be determined for the primal and dual vari-
ables:
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xnew D xold C p̨�x

ynew D yold C ˛d�y

znew D zold C ˛d�z

(10.11.26)

where p̨ and ˛d are initially chosen to be the largest values that keep all
components of xnew and znew nonnegative but no larger than unity. Then reduce
the values of p̨ and ˛d by a safety factor � . A conservative choice is � D 0:9,
but � D 0:99995 works for many problems.

6. Go back to step 2 for the next iteration.

Since in real-life linear programming the constraint matrix A is sparse, the code
must take advantage of this. The various matrix products such as A 	 x, AT 	 y and
A 	 .X 	Z�1/ 	AT should be computed efficiently. More important, the factorization
and backsubstitution involved in solving the normal equations must use a suitable
sparse matrix Cholesky decomposition. The factorization step in fact dominates the
running time of the algorithm. Our implementation uses the relatively simple pack-
age LDL [5], combined with the package AMD [6] to compute an ordering (permu-
tation) of the matrix that minimizes fill-in during the factorization. Both of these
packages are freely available. Note that LDL has to be modified to deal with the
singularities that occur as the diagonal matrix elements xj =zj ! 0. It is sufficient
to modify the line of code in LDL that tests for a diagonal element equal to zero to
something like

if (D[k] < 1.0e-40)

D[k] = 1.0e128;

This has the effect of setting the corresponding variable to zero, which is the desired
behavior. Here is our interface NRldl.h to these packages. The full implementation
is given in a Webnote [13].

extern "C" {interior.h
#include "ldl.h"
#include "amd.h"

}

struct NRldl {
Interface between Numerical Recipes routine intpt and the required external packages LDL and
AMD.

Doub Info [AMD_INFO];
Int lnz,n,nz;
VecInt PP,PPinv,PPattern,LLnz,LLp,PParent,FFlag,*LLi;
VecDoub YY,DD,*LLx;
Doub *Ax, *Lx, *B, *D, *X, *Y;
Int *Ai, *Ap, *Li, *Lp, *P, *Pinv, *Flag,*Pattern, *Lnz, *Parent;
NRldl(NRsparseMat &adat);
Constructor only needs adat to have been declared with appropriate dimensions.
void order();
AMD ordering and LDL symbolic factorization. Only needs nonzero pattern of adat, not
actual values.
void factorize();
Numerical factorization of matrix.
void solve(VecDoub_O &y,VecDoub &rhs);
Solves for y given rhs. Can be invoked multiple times after a single call to factorize.
~NRldl();

};

Here is a simple implementation of the interior-point algorithm. Although it
is a pedagogical code, it is actually quite powerful — better than the pedagogical
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simplex code of the previous section. Below we will explain what would be required
to turn this code into a serious implementation.

Doub dotprod(VecDoub_I &x, VecDoub_I &y) interior.h
Compute the dot product of two vectors, x � y.
{

Doub sum=0.0;
for (Int i=0;i<x.size();i++)

sum += x[i]*y[i];
return sum;

}

Int intpt(const NRsparseMat &a, VecDoub_I &b, VecDoub_I &c, VecDoub_O &x)
Interior-point method for linear programming. On input a contains the coefficient matrix for the
constraints in the form A �x D b. The right-hand side of the constraints is input in b[0..m-1].
The coefficients of the objective function to be minimized, c � x, are input in c[0..n-1]. Note
that c should generally be padded with zeros corresponding to the slack variables that extend
the number of columns to be n. The function returns 0 if an optimal solution is found; 1 if
the problem is infeasible; 2 if the dual problem is infeasible, i.e., if the problem is unbounded
or perhaps infeasible; and 3 if the number of iterations is exceeded. The solution is returned in
x[0..n-1].
{

const Int MAXITS=200; Maximum iterations.
const Doub EPS=1.0e-6; Tolerance for optimality and feasibility.
const Doub SIGMA=0.9; Stepsize reduction factor (conservative choice).
const Doub DELTA=0.02; Factor to set centrality parameter �.
const Doub BIG=numeric_limits<Doub>::max();
Int i,j,iter,status;
Int m=a.nrows;
Int n=a.ncols;
VecDoub y(m),z(n),ax(m),aty(n),rp(m),rd(n),d(n),dx(n),dy(m),dz(n),

rhs(m),tempm(m),tempn(n);

NRsparseMat at=a.transpose(); Compute AT .

ADAT adat(a,at); Setup for A �D �AT , where D D X �Z�1.
NRldl solver(adat.ref()); Initialize interface to LDL package.
solver.order(); AMD ordering and LDL symbolic factorization.
Doub rpfact=1.0+sqrt(dotprod(b,b)); Compute factors for convergence test.
Doub rdfact=1.0+sqrt(dotprod(c,c));
for (j=0;j<n;j++) { Initial point.

x[j]=1000.0;
z[j]=1000.0;

}
for (i=0;i<m;i++) {

y[i]=1000.0;
}
Doub normrp_old=BIG;
Doub normrd_old=BIG;
cout << setw(4) << "iter" << setw(12) << "Primal obj." << setw(9) <<

"||r_p||" << setw(13) << "Dual obj." << setw(11) << "||r_d||" <<
setw(13) << "duality gap" << setw(16) << "normalized gap" << endl;

cout << scientific << setprecision(4);
for (iter=0;iter<MAXITS;iter++) { Start of main loop.

ax=a.ax(x); Compute normalized residuals rp and rd .
for (i=0;i<m;i++)

rp[i]=ax[i]-b[i];
Doub normrp=sqrt(dotprod(rp,rp))/rpfact;
aty=at.ax(y);
for (j=0;j<n;j++)

rd[j]=aty[j]+z[j]-c[j];
Doub normrd=sqrt(dotprod(rd,rd))/rdfact;
Doub gamma=dotprod(x,z); Duality gap is x � z for feasible points.
Doub mu=DELTA*gamma/n; Choice of �.
Doub primal_obj=dotprod(c,x); Print current iteration.
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Doub dual_obj=dotprod(b,y);
Doub gamma_norm=gamma/(1.0+abs(primal_obj));
cout << setw(3) << iter << setw(12) << primal_obj << setw(12) <<

normrp << setw(12) << dual_obj << setw(12) << normrd << setw(12)
<< gamma << setw(12) << gamma_norm<<endl;

if (normrp < EPS && normrd < EPS && gamma_norm < EPS)
return status=0; Optimal solution found.

if (normrp > 1000*normrp_old && normrp > EPS)
return status=1; Primal infeasible.

if (normrd > 1000*normrd_old && normrd > EPS)
return status=2; Dual infeasible.

for (j=0;j<n;j++) Compute step directions. First form matrix

A �X �Z�1 �AT .d[j]=x[j]/z[j];
adat.updateD(d);
solver.factorize(); Factorize matrix.
for (j=0;j<n;j++) Form right-hand side.

tempn[j]=x[j]-mu/z[j]-d[j]*rd[j];
tempm=a.ax(tempn);
for (i=0;i<m;i++)

rhs[i]=-rp[i]+tempm[i];
solver.solve(dy,rhs); Solve for dy.
tempn=at.ax(dy); Solve for dz.
for (j=0;j<n;j++)

dz[j]=-tempn[j]-rd[j];
for (j=0;j<n;j++) Solve for dx.

dx[j]=-d[j]*dz[j]+mu/z[j]-x[j];
Doub alpha_p=1.0; Find step length.
for (j=0;j<n;j++)

if (x[j]+alpha_p*dx[j] < 0.0)
alpha_p=-x[j]/dx[j];

Doub alpha_d=1.0;
for (j=0;j<n;j++)

if (z[j]+alpha_d*dz[j] < 0.0)
alpha_d=-z[j]/dz[j];

alpha_p = MIN(alpha_p*SIGMA,1.0);
alpha_d = MIN(alpha_d*SIGMA,1.0);
for (j=0;j<n;j++) { Step to new point.

x[j]+=alpha_p*dx[j];
z[j]+=alpha_d*dz[j];

}
for (i=0;i<m;i++)

y[i]+=alpha_d*dy[i];
normrp_old=normrp; Update norms.
normrd_old=normrd;

}
return status=3; Maximum iterations exceeded.

}

10.11.7 Practical Interior-Point Codes
There are a number of important features that would be needed to turn the above

simple implementation into a state-of-the-art code.

� Initial point. Choosing a good starting point cuts down the number of iterations
required. A good algorithm is described in [7].
� Preprocessing. As for the simplex method, preprocessing can often reduce the

size of the problem.
� Scaling. A badly scaled problem can lead to numerical difficulties.
� Handling bounded variables. Suppose that instead of the requirement x � 0

the variables are bounded:
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l 
 x 
 u (10.11.27)

Here, for simplicity, we have written the vectors of lower and upper bounds, l
and u, as being of length n. In practice, only some of the variables x may have
bounds. One way to deal with bounds is to add them to the system A 	 x D b
with slack variables in the usual way. However, this increases the dimension
of the matrix A. There is a simpler way to proceed. First, lower bounds of the
form lj 
 xj can be handled by a simple shift: x0j D xj � lj � 0. Making this
replacement everywhere allows the problem to be solved as before, and then
you simply undo the shift to get the solution in terms of the original xj . So
without loss of generality we can assume all the bounds are of the form

0 
 x 
 u (10.11.28)

If we introduce slack variables s and dual slack variables w , the optimality
conditions are

A 	 x D b

xC s D u

AT 	 y C z � w D c

X 	 Z 	 e D 0

S 	W 	 e D 0

(10.11.29)

with x, s, z, and w all nonnegative. It is simple to change the right-hand sides
of the last two equations in (10.11.29) to �e and apply Newton’s method as for
equation (10.11.11). You find that the equations to be solved are very similar
in form to equations (10.11.23) – (10.11.25).
� Predictor-corrector. Most of the time spent in an iteration goes into the factor-

ization of the matrix in the normal equations. Given the factorization, the solve
step is relatively cheap. Mehotra’s predictor-corrector method [7] takes advan-
tage of this by using an extra solve step per iteration to improve the overall
efficiency of the algorithm.

Recall that in going from equation (10.11.19) to equation (10.11.20) we
dropped the term �X 	 �Z 	 e. The idea in Mehotra’s method is to first take
a predictor step that solves equation (10.11.20), but with the � term omitted.
The values of .�x; �y ; �z/ obtained are used to estimate �X 	�Z 	 e. Then
the corrector step solves for an additional set .�x; �y ; �z/ from equation
(10.11.20) with the right-hand side replaced by24 0

0

�e ��X 	�Z 	 e

35 (10.11.30)

The value of � in equation (10.11.30) is set differently from equation (10.11.12).
First y� is computed using the predictor step:

y� D .xC p̨�x/ 	 .zC ˛d�z/=n (10.11.31)

Here p̨ and ˛d are the largest values that maintain nonnegativity, but no larger
than unity. (No safety factor is used.) Then � is set as

� D

�
y�

�

�2
y� (10.11.32)
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where � is computed using the starting values of x and z as in equation
(10.11.12). This heuristic choice makes � small when the predictor step gives
a large decrease in complementarity, and large otherwise.

The total step is the sum of the predictor and corrector steps. The cutdown
factor from p̨ or ˛d equal to unity is calculated from a heuristic procedure
described in [7] or [8].

Gondzio [9,10] has developed an extension to the predictor-corrector al-
gorithm that incorporates higher-order corrections when they can improve the
efficiency.
� Better sparse matrix algebra. While AMD is a good general-purpose choice

for an ordering algorithm, LDL is a good but basic sparse Cholesky routine,
chosen mainly for its simplicity and availability. More powerful algorithms
are known and are starting to become publicly available.

One of the problems with the normal equations is that the matrix can be
quite dense, even when A itself is rather sparse. This has motivated algorithms
that solve the augmented equations (10.11.22) directly. On some problems,
this leads to significant savings. A good implementation will provide both
alternatives.

Solving the equations can become numerically delicate, especially as the
optimal point is approached. Good implementations will use some form of
iterative refinement to preserve accuracy.
� Crossover to the simplex method. Often the convergence of the interior-point

algorithm slows down near the optimal point. By switching to a simplex
method with a basis that is presumably close to optimal, one can get rapid
convergence to the answer. This feature has the additional benefit that the
optimal point is given in terms of basis vectors, whereas the interior-point so-
lution never actually attains zeros for any x’s. Some kinds of post-analysis
need the actual basis.

Interestingly, using a previously-found solution as the initial point for a
“nearby” problem seldom helps much for interior-point methods. The reason
is that interior-point methods don’t make good progress from a point near the
boundary. The simplex method, by contrast, generally converges much more
rapidly with a “warm start.” A good strategy for solving a sequence of closely
related problems is therefore interior-point with crossover to an optimal basis
for the first one, then simplex with a warm start for the remainder.

There are several codes that are free for noncommercial use and that give full
implementations of interior-point methods. We particularly like PCx (in C with For-
tran sparse algebra routines) [11] and HOPDM (in Fortran) [10]. For a discussion of
more options, including commercial codes, see [12].

So which should you use: a simplex or an interior-point code? If you have only
our codes, use the interior-point one. If you have a production implementation of
either algorithm, it will probably suffice. If you are solving many large problems,
however, you should have both so you can use the optimum algorithm in each case.
If you are solving a large problem for the first time, there is a lot to be said for us-
ing an interior-point code. There are fewer choices to make to get almost optimal
performance. By contrast, finding which particular choices of components in a sim-
plex method give optimal performance can involve a lot of experimentation. Your
first try will usually not be as good as a default interior-point code. And often the
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interior-point code will beat all simplex variants.
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10.12 Simulated Annealing Methods

The method of simulated annealing [1,2] is a technique that has attracted
significant attention as suitable for optimization problems of large scale, especially
ones where a desired global extremum is hidden among many poorer, local extrema.
For practical purposes, simulated annealing has effectively “solved” the famous
traveling salesman problem of finding the shortest cyclical itinerary for a traveling
salesman who must visit each of N cities in turn. (Other practical methods have also
been found.) The method has also been used successfully for designing complex
integrated circuits: The arrangement of several hundred thousand circuit elements
on a tiny silicon substrate is optimized so as to minimize interference among
their connecting wires [3,4]. Surprisingly, the implementation of the algorithm is
relatively simple.

Notice that the two applications cited are both examples of combinatorial mini-
mization. There is an objective function to be minimized, as usual, but the space over
which that function is defined is not simply the N -dimensional space of N continu-
ously variable parameters. Rather, it is a discrete, but very large, configuration space,
like the set of possible orders of cities, or the set of possible allocations of silicon
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“real estate” blocks to circuit elements. The number of elements in the configuration
space is factorially large, so that they cannot be explored exhaustively. Furthermore,
since the set is discrete, we are deprived of any notion of “continuing downhill in a
favorable direction.” The concept of “direction” may not have any meaning in the
configuration space.

Below, we will also discuss how to use simulated annealing methods for spaces
with continuous control parameters, like those of �10.5 – �10.9. This application is
actually more complicated than the combinatorial one, since the familiar problem
of “long, narrow valleys” again asserts itself. Simulated annealing, as we will see,
tries “random” steps; but in a long, narrow valley, almost all random steps are uphill!
Some additional finesse is therefore required.

At the heart of the method of simulated annealing is an analogy with thermo-
dynamics, specifically with the way that liquids freeze and crystallize or metals cool
and anneal. At high temperatures, the molecules of a liquid move freely with respect
to one another. If the liquid is cooled slowly, thermal mobility is lost. The atoms are
often able to line themselves up and form a pure crystal that is completely ordered
over a distance up to billions of times the size of an individual atom in all directions.
This crystal is the state of minimum energy for this system. The amazing fact is that,
for slowly cooled systems, nature is able to find this minimum energy state. In fact, if
a liquid metal is cooled quickly or “quenched,” it does not reach this state but rather
ends up in a polycrystalline or amorphous state having somewhat higher energy.

So the essence of the process is slow cooling, allowing ample time for the re-
distribution of the atoms as they lose mobility. This is the technical definition of
annealing, and it is essential for ensuring that a low energy state will be achieved.

Although the analogy is not perfect, there is a sense in which all of the mini-
mization algorithms thus far in this chapter correspond to rapid cooling or quenching.
In all cases, we have gone greedily for the quick, nearby solution: From the start-
ing point, go immediately downhill as far as you can go. This, as often remarked
above, leads to a local, but not necessarily a global, minimum. Nature’s own mini-
mization algorithm is based on quite a different procedure. The so-called Boltzmann
probability distribution,

Prob .E/ � exp.�E=kT / (10.12.1)

expresses the idea that a system in thermal equilibrium at temperature T has its
energy probabilistically distributed among all different energy states E. Even at low
temperature, there is a chance, albeit a very small one, of a system being in a high
energy state. Therefore, there is a corresponding chance for the system to get out of
a local energy minimum in favor of finding a better, more global one. The quantity
k (Boltzmann’s constant) is a constant of nature that relates temperature to energy.
In other words, the system sometimes goes uphill as well as downhill; but the lower
the temperature, the less likely is any significant uphill excursion.

In 1953, Metropolis and coworkers [5] first incorporated these kinds of princi-
ples into numerical calculations. Offered a succession of options, a simulated ther-
modynamic system was assumed to change its configuration from energy E1 to en-
ergy E2 with probability p D expŒ�.E2 � E1/=kT �. Notice that if E2 < E1, this
probability is greater than unity; in such cases the change is arbitrarily assigned a
probability p D 1, i.e., the system always took such an option. This general scheme,
of always taking a downhill step while sometimes taking an uphill step, has come to
be known as the Metropolis algorithm.
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To make use of the Metropolis algorithm for other than thermodynamic systems,
one must provide the following elements:

1. A description of possible system configurations.
2. A generator of random changes in the configuration; these changes are the

“options” presented to the system.
3. An objective function E (analog of energy) whose minimization is the goal of

the procedure.
4. A control parameter T (analog of temperature) and an annealing schedule that

tells how it is lowered from high to low values, e.g., after how many random
changes in configuration is each downward step in T taken, and how large is
that step. The meaning of “high” and “low” in this context, and the assignment
of a schedule, may require physical insight and/or trial-and-error experiments.

We will return to these ideas in �15.8, with a more rigorous discussion of
Markov chain Monte Carlo and the Metropolis-Hastings algorithm.

10.12.1 Combinatorial Minimization: The Traveling
Salesman

A concrete illustration is provided by the traveling salesman problem. The
proverbial seller visits N cities with given positions .xi ; yi ), returning finally to his
or her city of origin. Each city is to be visited only once, and the route is to be made as
short as possible. This problem belongs to a class known as NP-complete problems,
whose computation time for an exact solution increases with N as exp.const. �N/,
becoming rapidly prohibitive in cost asN increases. The traveling salesman problem
also belongs to a class of minimization problems for which the objective function E
has many local minima. In practical cases, it is often enough to be able to choose
from these a minimum that, even if not absolute, cannot be significantly improved
upon. The annealing method manages to achieve this, while limiting its calculations
to scale as a small power of N .

As a problem in simulated annealing, the traveling salesman problem is handled
as follows:

1. Configuration. The cities are numbered i D 0 : : : N � 1 and each has coor-
dinates .xi ; yi /. A configuration is a permutation of the number 0 : : : N � 1,
interpreted as the order in which the cities are visited.

2. Rearrangements. An efficient set of moves has been suggested by Lin [6]. The
moves consist of two types: (i) A section of path is removed and then replaced
with the same cities running in the opposite order; or (ii) a section of path is
removed and then replaced in between two cities on another, randomly chosen,
part of the path.

3. Objective function. In the simplest form of the problem, E is taken just as the
total length of the journey,

E D L �

N�1X
iD0

p
.xi � xiC1/2 C .yi � yiC1/2 (10.12.2)

with the convention that point N is identified with point 0. To illustrate the
flexibility of the method, however, we can add the following additional wrin-
kle: Suppose that the salesman has an irrational fear of flying over the Missis-
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sippi River. In that case, we would assign each city a parameter �i , equal to
C1 if it is east of the Mississippi and �1 if it is west, and take the objective
function to be

E D

N�1X
iD0

hp
.xi � xiC1/2 C .yi � yiC1/2 C �.�i � �iC1/

2
i

(10.12.3)

A penalty 4� is thereby assigned to any river crossing. The algorithm now
finds the shortest path that avoids crossings. The relative importance that it
assigns to length of path versus river crossings is determined by our choice of
�. Figure 10.12.1 shows the results obtained. Clearly, this technique can be
generalized to include many conflicting goals in the minimization.

4. Annealing schedule. This requires experimentation. We first generate some
random rearrangements, and use them to determine the range of values of�E
that will be encountered from move to move. Choosing a starting value for
the parameter T that is considerably larger than the largest �E normally en-
countered, we proceed downward in multiplicative steps each amounting to a
10% decrease in T . We hold each new value of T constant for, say, 100N re-
configurations, or for 10N successful reconfigurations, whichever comes first.
When efforts to reduce E further become sufficiently discouraging, we stop.

In a Webnote [7], we give a complete implementation of the above ideas for the
traveling salesman problem, using the Metropolis algorithm.

10.12.2 Continuous Minimization by Simulated Annealing
The basic ideas of simulated annealing are also applicable to optimization prob-

lems with continuousN -dimensional control spaces, e.g., finding the (ideally, global)
minimum of some function f .x/, in the presence of many local minima, where x is
an N -dimensional vector. The four elements required by the Metropolis procedure
are now as follows: The value of f is the objective function. The system state is the
point x. The control parameter T is, as before, something like a temperature, with an
annealing schedule by which it is gradually reduced. And there must be a generator
of random changes in the configuration, that is, a procedure for taking a random step
from x to xC�x.

The last of these elements is the most problematical. The literature to date [8-12]

describes several different schemes for choosing �x, none of which, in our view,
inspires complete confidence. The problem is one of efficiency: A generator of ran-
dom changes is inefficient if, when local downhill moves exist, it nevertheless almost
always proposes an uphill move. A good generator, we think, should not become
inefficient in narrow valleys, nor should it become more and more inefficient as con-
vergence to a minimum is approached. Except possibly for [8], all of the schemes
that we have seen are inefficient in one or both of these situations.

Our own way of doing simulated annealing minimization on continuous control
spaces is to use a modification of the downhill simplex method (�10.5). Complete
code for this is given in a Webnote [9]. The technique amounts to replacing the sin-
gle point x as a description of the system state by a simplex of N C 1 points. The
“moves” are the same as described in �10.5, namely reflections, expansions, and con-
tractions of the simplex. The implementation of the Metropolis procedure is slightly
subtle: We add a positive, logarithmically distributed random variable, proportional
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Figure 10.12.1. Traveling salesman problem solved by simulated annealing. The (nearly) shortest path
among 100 randomly positioned cities is shown in (a). The dotted line is a river, but there is no penalty in
crossing. In (b) the river-crossing penalty is made large, and the solution restricts itself to the minimum
number of crossings, two. In (c) the penalty has been made negative: The salesman is actually a smuggler
who crosses the river on the flimsiest excuse!
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to the temperature T , to the stored function value associated with every vertex of
the simplex, and we subtract a similar random variable from the function value of
every new point that is tried as a replacement point. Like the ordinary Metropolis
procedure, this method always accepts a true downhill step, but sometimes accepts
an uphill one. In the limit T ! 0, this algorithm reduces exactly to the downhill
simplex method and converges to a local minimum.

At a finite value of T , the simplex expands to a scale that approximates the size
of the region that can be reached at this temperature, and then executes a stochastic,
tumbling Brownian motion within that region, sampling new, approximately ran-
dom, points as it does so. The efficiency with which a region is explored is inde-
pendent of its narrowness (for an ellipsoidal valley, the ratio of its principal axes)
and orientation. If the temperature is reduced sufficiently slowly, it becomes highly
likely that the simplex will shrink into that region containing the lowest relative
minimum encountered.

As in all applications of simulated annealing, there can be quite a lot of problem-
dependent subtlety in the phrase “sufficiently slowly”; success or failure is quite
often determined by the choice of annealing schedule. Here are some possibilities
worth trying:

� Reduce T to .1 � �/T after every m moves, where �=m is determined by
experiment.
� Budget a total of K moves, and reduce T after every m moves to a value
T D T0.1 � k=K/

˛ , where k is the cumulative number of moves thus far,
and ˛ is a constant, say 1, 2, or 4. The optimal value for ˛ depends on the
statistical distribution of relative minima of various depths. Larger values of ˛
spend more iterations at lower temperature.
� After every m moves, set T to ˇ times f1 � fb , where ˇ is an experimentally

determined constant of order 1, f1 is the smallest function value currently rep-
resented in the simplex, and fb is the best function ever encountered. However,
never reduce T by more than some fraction � at a time.

Another strategic question is whether to do an occasional restart, where a vertex
of the simplex is discarded in favor of the “best-ever” point. (You must be sure
that the best-ever point is not one of the other vertices of the simplex when you do
this!) We have found problems for which restarts — every time the temperature
has decreased by a factor of 3, say — are highly beneficial; we have found other
problems for which restarts have no positive, or a somewhat negative, effect.

There is not yet enough practical experience with the method of simulated an-
nealing to say definitively what its place among optimization methods is. The method
has several extremely attractive features that are rather unique when compared with
other optimization techniques.

First, it is not “greedy,” in the sense that it is not easily fooled by the quick
payoff achieved by falling into unfavorable local minima. Provided that sufficiently
general reconfigurations are given, it wanders freely among local minima of depth
less than about T . As T is lowered, the number of such minima qualifying for
frequent visits is gradually reduced.

Second, configuration decisions tend to proceed in a logical order. Changes that
cause the greatest energy differences are sifted over when the control parameter T
is large. These decisions become more permanent as T is lowered, and attention
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then shifts more to smaller refinements in the solution. For example, in the traveling
salesman problem with the Mississippi River twist, if � is large, a decision to cross
the Mississippi only twice is made at high T , while the specific routes on each side
of the river are determined only at later stages.

The analogies to thermodynamics may be pursued to a greater extent than we
have done here. Quantities analogous to specific heat and entropy may be defined,
and these can be useful in monitoring the progress of the algorithm toward an ac-
ceptable solution [1].
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10.13 Dynamic Programming
Dynamic programming, or DP, is an optimization technique that applies when a

known sequence of choices, each with a cost or benefit, is to be made and one wants
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Figure 10.13.1. Canonical dynamical programming problem. It is desired to find the lowest cost path
from a starting state to an ending state throughN �1 intermediate stages. Each stage is characterized by
a set of states (not necessarily the same at each stage). An allowed edge between state j in stage i and
state k in stage i C 1 has a cost denoted cjk.i/ (not all labeled in the figure).

to minimize the total cost, or maximize the total benefit, after the sequence has been
traversed. More specifically, a problem that is amenable to dynamic programming
can be broken up into an ordered series of discrete stages, and within each stage a set
of discrete states. These stages and states form a directed graph (see Figure 10.13.1)
that we want to traverse from a given starting state (i D 0) to a given ending state
(i D N ). Allowed decisions that take one from state j in stage i to state k in stage
i C 1 are edges in the graph. Their cost is denoted cjk.i/. Without any loss of
generality, one can connect all the states in stage i to all the states in stage i C 1, but
with cjk.i/ D 1 for forbidden paths.

Computer science is rich in graph-theoretic problems and algorithms, but only
a few of these are within the scope of this book. Dynamic programming is one of
these because its basic idea is very simple and its applications are very broad. It is
important that you be able to recognize a problem amenable to DP when you see one.
In particular, we will use several of the concepts in this section later, in �16.2, when
we discuss the estimation of states from probabilistic data, including probabilistic
decoding algorithms.

The key idea of dynamic programming is called the Bellman, Dijkstra, or Viterbi
algorithm, depending on the field of training of the caller. As shown in Figure
10.13.2, the idea is that one can do a single sweep of a stage-ordered graph from
left to right, labeling each vertex by the single number that is the cost of the best way
of having reached it. (Henceforth we’ll take the canonical DP problem as a cost-
minimization problem; if your problem is instead a benefit-maximization problem,
just use the negative of your benefits as costs.)

When the end state is reached, the global minimum cost of getting to it becomes
known. Now, in a single backward pass, we can read off exactly what set of decisions
led to this global minimum, by reconstructing which predecessor state was the one
actually in the chain that led to the best result. Arriving back at the starting state, our
solution is complete.

The art of DP involves, in many cases, the clever organization of the problem to
minimize the number of states at each stage, so as to avoid the “curse of dimension-
ality” (a phrase first used by Bellman in exactly this context). Sometimes the order
of the stages is not chronological at all, but merely reflects the decomposition of a



�

�

“nr3” — 2007/5/1 — 20:53 — page 557 — #579
�

�

� �

10.13 Dynamic Programming 557

14

3

1

4

1

5

9

2

6

5

3

5

8

9

7

8

3

2

3

8

4

6
2

6

4

3

3

8

3

2

9

7

5

2

3

0

1

4

2

1

5

2

7

5

3

16

13

8

11

6

20

15

12

14

9

19

backtrack

3

1

4

1

5

9

2

6

5

3

5

8

9

7

8

3

2

3

8

4

6
2

6

4

3

3

8

3

2

9

7

5

2

3

0

1

4

2

1

5

2

7

5

3

16

13

8

11

6

sweep

Figure 10.13.2. Two snapshots during the solution of a DP problem by the Bellman-Dijkstra-Viterbi
algorithm. Edge costs are given as shown. Top: During the rightward sweep (here not yet complete) each
state is labeled by the minimum cost to reach it, as determined solely by the labels of the preceding stage
and the connecting edge costs. Bottom: After the rightward sweep is complete, the unique set of edges
that produce the global minimum is found by one pass of backtracking.

problem into a convenient form for DP.
Here is a function embodying the Bellman-Dijkstra-Viterbi algorithm. You

should consider this function more a precise statement of the algorithm than a pro-
duction DP code. For example, it simply pushes off to the user function cost()
the important issue of how to retrieve efficiently the (usually) sparse set of allowed
edges that have finite costs. (You might want to consider a hash memory. See �7.6.)
Also, this routine loops explicitly over all combinations of states j and k, the origin
and destination states in going from stage i to i C 1. If you have a problem
big enough to need some kind of sparse lookup, then you’ll want to change these
explicit loops accordingly.

VecInt dynpro(const VecInt &nstate, dynpro.h
Doub cost(Int jj, Int kk, Int ii)) {
Given the vector nstate whose integer values are the number of states in each stage (1
for the first and last stages), and given a function cost(j,k,i) that returns the cost of
moving between state j of stage i and state k of stage i+1, this routine returns a vector
of the same length as nstate containing the state numbers of the lowest cost path. States
number from 0, and the first and last components of the returned vector will thus always
be 0.
const Doub BIG = 1.e99;
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static const Doub EPS=numeric_limits<Doub>::epsilon();
Int i, j ,k, nstage = nstate.size() - 1;
Doub a,b;
VecInt answer(nstage+1);
if (nstate[0] != 1 || nstate[nstage] != 1)

throw("One state allowed in first and last stages.");
Doub **best = new Doub*[nstage+1]; Allocate array-of-arrays for storing scores.
best[0] = new Doub[nstate[0]];
best[0][0] = 0.;
for (i=1; i<=nstage; i++) { Forward sweep through stages.

best[i] = new Doub[nstate[i]];
for (k=0; k<nstate[i]; k++) {

b = BIG;
for (j=0; j<nstate[i-1]; j++) { Find predecessor giving min cost.

if ((a = best[i-1][j] + cost(j,k,i-1)) < b) b = a;
}
best[i][k] = b;

}
}
answer[nstage] = answer[0] = 0;
for (i=nstage-1; i>0; i--) { Backtracking pass.

k = answer[i+1];
b = best[i+1][k];
for (j=0; j<nstate[i]; j++) { Find a predecessor that gave min.

Doub temp = best[i][j] + cost(j,k,i);
if (fabs(b - temp) <= EPS*fabs(temp)) break;

}
answer[i] = j;

}
for (i=nstage; i>=0; i--) delete [] best[i]; Cleanup storage.
delete [] best;
return answer;

}

10.13.1 Example: Order of Matrix Multiplication

Suppose we have five matrices to multiply, so as to get a result T ,

T D ABCDE (10.13.1)

The matrices may all have different shapes, as long as the number of columns
of a matrix is the same as the number of rows of the matrix immediately to its right.
Matrix multiplication is associative, and we can do the multiplies in any order we
want; but the total number of scalar multiplications can be quite different, depending
on which order is chosen. You should be able to see this in the following figure:

D

What we want to minimize is the total number of scalar multiplications. In this
example, a good choice of “stage” is just how many matrix multiplications have been
performed. So the stages and states might look something like this:
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Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

ABCDE .AB/CDE .ABC/DE .ABCD/E .ABCDE/
A.BC/DE .AB/.CD/E .ABC/.DE/
AB.CD/E .AB/C.DE/ .AB/.CDE/
ABC.DE/ A.BCD/E A.BCDE/

A.BC/.DE/
AB.CDE/

Here parentheses group matrix factors that are already fully multiplied (i.e.,
they are, by now, a single matrix). We will leave it to you to connect the states by
allowed edges, and to calculate the cost of each edge in terms of the dimensions of
the various matrices.

So how could we have done this example wrong? We might have identified
states with all possible ways of parenthesizing ABCDE, including, for example,
A.B.CD/E/. That is unnecessary, because only the outermost parentheses matter:
A matrix state doesn’t care about the exact path taken to reach it, as long as its factors
were multiplied in some associative order. The power of DP is realized when, at
every stage, many histories collapse to a (relatively) small number of states, which
can then be taken as ignorant of their past history.

10.13.2 Example: DNA Sequence Alignment

DNA sequences of different organisms, at one time identical in a common an-
cestor, can diverge over time by the deletion, insertion, or substitution of bases in one
or the other organism’s sequence. It is desired to find the best match between two
given sequences. In finding the best match, we are allowed to insert gaps in either
sequence; but in the end we will be assessed a penalty for gap positions, a penalty
for mismatches, and a reward for matches.

For example [2], before matching, we might have the two sequences

G A A T T C A G T T A
G G A T C G A

A possible match might be

G A A T T C A G T T A
G G A T C G A

for which we would earn six rewards, less one mismatch penalty (shown italic) and
four gap penalties. (We will consider all rewards and penalties as having positive or
zero values, with the accounting done by adding rewards and subtracting penalties.)

Needleman and Wunsch [1] first pointed out that this problem is amenable to
solution by DP, allowing all possible matchings to be scored, and the highest-scoring
one identified. The clever idea is to form a two-dimensional array with the two
sequences defining the columns and rows. In the above example, this looks like
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G A A T T C A G T T A

0

G

G

A

T

C

G

A

A matching consists of a path through the (initially) empty boxes in the above
tableau, starting in the box labeled by a zero and moving, in each step, either one
box right, one box down, or diagonally down and right. A right or down move
corresponds to using up a letter in the first or second sequence (respectively) without
using up one in the second or first (respective) sequence. Therefore it corresponds to
inserting a gap and incurs a gap penalty. A diagonal move corresponds to pairing a
new character in each sequence. Therefore, it incurs either the matching reward, if
the two sequences match, or a mismatch penalty, if they don’t.

Also useful is to distinguish right or down moves between two boxes in the
bordering rows or columns (respectively) of the table from right or down moves in
the interior of the table. The former kind don’t open gaps in either sequence, but
merely allow the sequences to shift with respect to one another. So we might assess
a smaller, or zero, penalty for these overall “skews.”

Now, characteristic of dynamic programming, you just fill in the boxes with the
total score of the best way to reach that box, either from above it, from its left, or
from the upper-left diagonal neighbor. A score is computed, naturally, by taking the
score of a predecessor box and then adding the reward (or subtracting the penalty)
associated with the move. Starting at the upper left, there are always boxes ready to
be filled in as you work your way, by rows or columns, to the lower right.

Also characteristic of dynamic programming, when you are done filling in all
the boxes, you do a backtrack pass: Start at the lower right box in the table. Now
figure out the path back through the table that contributed to that best score. (It may
not be unique.) Finally, translate that path into the series of letters and gaps that
it implies.

A straightforward implementation of this is the following routine. Note that
the matching reward is normalized to one per matched character, while the penalties
for mismatches, gaps, and overall skews are input arguments. You can set all three
to zero in most cases. If you set a nonzero mismatch penalty, however, you will
probably also want to have a gap penalty, since otherwise the program will always
avoid a mismatch by creating two gaps, one in each string.

The routine’s output includes a summary string showing where the matches,
mismatches, and gaps occur. For the example above, the summary string is

=!= == = =

(You can change the symbols used to your liking.)
You can modify the program in various other ways. For example, you might

want to have a bigger penalty for initially opening a gap than for extending it once
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opened. This requires a more complicated logic in the initial filling of the cost table.
As long as you are able to fill each box with the cost of the best way to reach it, then
the logic of dynamic programming will still apply.

void stringalign(char *ain, char *bin, Doub mispen, Doub gappen, stringalign.h
Doub skwpen, char *aout, char *bout, char *summary) {

Given null terminated input strings ain and bin, and given penalties mispen, gappen, and
skwpen, respectively, for mismatches, interior gaps, and gaps before/after either string, set null
terminated output strings aout, bout, and summary as the aligned versions of the input strings,
and a summary string. User must supply storage for the output strings of size equal to the sum
of the two input strings.

Int i,j,k;
Doub dn,rt,dg; Cost of down, right, and diagonal moves.
Int ia = strlen(ain), ib = strlen(bin);
MatDoub cost(ia+1,ib+1); Cost table, as illustrated in the text.
First we fill in the cost table.
cost[0][0] = 0.;
for (i=1;i<=ia;i++) cost[i][0] = cost[i-1][0] + skwpen;
for (i=1;i<=ib;i++) cost[0][i] = cost[0][i-1] + skwpen;
for (i=1;i<=ia;i++) for (j=1;j<=ib;j++) {

dn = cost[i-1][j] + ((j == ib)? skwpen : gappen);
rt = cost[i][j-1] + ((i == ia)? skwpen : gappen);
dg = cost[i-1][j-1] + ((ain[i-1] == bin[j-1])? -1. : mispen);
cost[i][j] = MIN(MIN(dn,rt),dg);

}
Next, we do the backtrack pass, writing the output (backward, however).
i=ia; j=ib; k=0;
while (i > 0 || j > 0) {

dn = rt = dg = 9.99e99; Any large value will do.
if (i>0) dn = cost[i-1][j] + ((j==ib)? skwpen : gappen);
if (j>0) rt = cost[i][j-1] + ((i==ia)? skwpen : gappen);
if (i>0 && j>0) dg = cost[i-1][j-1] +

((ain[i-1] == bin[j-1])? -1. : mispen);
if (dg <= MIN(dn,rt)) { Diagonal move produces either match or in-

equality.aout[k] = ain[i-1];
bout[k] = bin[j-1];
summary[k++] = ((ain[i-1] == bin[j-1])? ’=’ : ’!’);
i--; j--;

}
else if (dn < rt) { Down move produces a gap in the B string.

aout[k] = ain[i-1];
bout[k] = ’ ’;
summary[k++] = ’ ’;
i--;

}
else { Right move produces a gap in the A string.

aout[k] = ’ ’;
bout[k] = bin[j-1];
summary[k++] = ’ ’;
j--;

}
}
Finally, reverse the output strings.
for (i=0;i<k/2;i++) {

SWAP(aout[i],aout[k-1-i]);
SWAP(bout[i],bout[k-1-i]);
SWAP(summary[i],summary[k-1-i]);

}
aout[k] = bout[k] = summary[k] = 0; Don’t forget the terminating nulls!

}

Various modifications of the Needleman-Wunsch method are also in use, most
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notably the generalization by Smith and Waterman [3]. There are also a number
of heuristic methods for identifying sequence similarity, with names like BLAST,
FASTA, BLAT, etc. The field is highly developed, so you should use the routine
above only pedagogically.
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11.0 Introduction

An N �N matrix A is said to have an eigenvector x and corresponding eigen-
value � if

A 	 x D �x (11.0.1)

Obviously any multiple of an eigenvector x will also be an eigenvector, but we won’t
consider such multiples as being distinct eigenvectors. (The zero vector is not con-
sidered to be an eigenvector at all.) Evidently (11.0.1) can hold only if

det jA � �1j D 0 (11.0.2)

which, if expanded out, is an N th degree polynomial in � whose roots are the eigen-
values. This proves that there are always N (not necessarily distinct) eigenvalues.
Equal eigenvalues coming from multiple roots are called degenerate. Root searching
in the characteristic equation (11.0.2) is usually a very poor computational method
for finding eigenvalues. We will learn much better ways in this chapter, as well as
efficient ways for finding corresponding eigenvectors.

The above two equations also prove that every one of the N eigenvalues has a
(not necessarily distinct) corresponding eigenvector: If � is set to an eigenvalue, then
the matrix A � �1 is singular, and we know that every singular matrix has at least
one nonzero vector in its nullspace (see �2.6.1).

If you add �x to both sides of (11.0.1), you will easily see that the eigenvalues
of any matrix can be changed or shifted by an additive constant � by adding to the
matrix that constant times the identity matrix. The eigenvectors are unchanged by
this shift. Shifting, as we will see, is an important part of many algorithms for
computing eigenvalues. We see also that there is no special significance to a zero
eigenvalue. Any eigenvalue can be shifted to zero, or any zero eigenvalue can be
shifted away from zero.

11.0.1 Definitions and Basic Facts
A matrix is called symmetric if it is equal to its transpose,

A D AT or aij D aj i (11.0.3)

563
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It is called Hermitian or self-adjoint if it equals the complex conjugate of its trans-
pose (its Hermitian conjugate, denoted by “�”)

A D A� or aij D aj i
 (11.0.4)

It is termed orthogonal if its transpose equals its inverse,

AT 	A D A 	AT D 1 (11.0.5)

and unitary if its Hermitian conjugate equals its inverse. Finally, a matrix is called
normal if it commutes with its Hermitian conjugate,

A 	A� D A� 	A (11.0.6)

For real matrices, Hermitian means the same as symmetric, unitary means the
same as orthogonal, and both of these distinct classes are normal.

The reason that Hermitian is an important concept has to do with eigenvalues.
The eigenvalues of a Hermitian matrix are all real. In particular, the eigenvalues of
a real symmetric matrix are all real. Contrariwise, the eigenvalues of a real non-
symmetric matrix may include real values, but may also include pairs of complex-
conjugate values; and the eigenvalues of a complex matrix that is not Hermitian will
in general be complex.

The reason that normal is an important concept has to do with the eigenvectors.
The eigenvectors of a normal matrix with nondegenerate (i.e., distinct) eigenvalues
are complete and orthogonal, spanning the N -dimensional vector space. For a nor-
mal matrix with degenerate eigenvalues, we have the additional freedom of replacing
the eigenvectors corresponding to a degenerate eigenvalue by linear combinations of
themselves. Using this freedom, we can always perform Gram-Schmidt orthogonal-
ization (consult any linear algebra text) and find a set of eigenvectors that are com-
plete and orthogonal, just as in the nondegenerate case. The matrix whose columns
are an orthonormal set of eigenvectors is evidently unitary. A special case is that the
matrix of eigenvectors of a real symmetric matrix is orthogonal, since the eigenvec-
tors of that matrix are all real.

When a matrix is not normal, as typified by any random, nonsymmetric, real
matrix, then in general we cannot find any orthonormal set of eigenvectors, nor even
any pairs of eigenvectors that are orthogonal (except perhaps by rare chance). While
the N nonorthonormal eigenvectors will “usually” span the N -dimensional vector
space, they do not always do so; that is, the eigenvectors are not always complete.
Such a matrix is said to be defective.

11.0.2 Left and Right Eigenvectors
While the eigenvectors of a nonnormal matrix are not particularly orthogonal

among themselves, they do have an orthogonality relation with a different set of
vectors, which we must now define. Up to now our eigenvectors have been column
vectors that are multiplied to the right of a matrix A, as in (11.0.1). These, more
explicitly, are termed right eigenvectors. We could also, however, try to find row
vectors, which multiply A to the left and satisfy

x 	A D �x (11.0.7)
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These are called left eigenvectors. By taking the transpose of equation (11.0.7), we
see that every left eigenvector is the transpose of a right eigenvector of the transpose
of A. Now, by comparing to (11.0.2) and using the fact that the determinant of a
matrix equals the determinant of its transpose, we also see that the left and right
eigenvalues of A are identical.

If the matrix A is symmetric, then the left and right eigenvectors are just trans-
poses of each other, that is, they have the same numerical components. Likewise, if
the matrix is self-adjoint, the left and right eigenvectors are Hermitian conjugates of
each other. For the general nonnormal case, however, we have the following calcu-
lation: Let XR be the matrix formed by columns from the right eigenvectors and XL
be the matrix formed by rows from the left eigenvectors. Then (11.0.1) and (11.0.7)
can be rewritten as

A 	XR D XR 	 diag.�0 : : : �N�1/ XL 	A D diag.�0 : : : �N�1/ 	XL (11.0.8)

Multiplying the first of these equations on the left by XL, the second on the right by
XR, and subtracting the two, gives

.XL 	XR/ 	 diag.�0 : : : �N�1/ D diag.�0 : : : �N�1/ 	 .XL 	XR/ (11.0.9)

This says that the matrix of dot products of the left and right eigenvectors commutes
with the diagonal matrix of eigenvalues. But the only matrices that commute with a
diagonal matrix of distinct elements are themselves diagonal. Thus, if the eigenvalues
are nondegenerate, each left eigenvector is orthogonal to all right eigenvectors except
its corresponding one, and vice versa. By choice of normalization, the dot products
of corresponding left and right eigenvectors can always be made unity for any matrix
with nondegenerate eigenvalues.

If some eigenvalues are degenerate, then either the left or the right eigenvectors
corresponding to a degenerate eigenvalue must be linearly combined among them-
selves to achieve orthogonality with the right or left ones, respectively. This can
always be done by a procedure akin to Gram-Schmidt orthogonalization. The nor-
malization can then be adjusted to give unity for the nonzero dot products between
corresponding left and right eigenvectors. If the dot product of corresponding left
and right eigenvectors is zero at this stage, then you have a case where the eigenvec-
tors are incomplete! Note that incomplete eigenvectors can occur only where there
are degenerate eigenvalues, but they do not always occur in such cases (in fact, they
never occur for the class of “normal” matrices). See [1] for a clear discussion.

In both the degenerate and nondegenerate cases, the final normalization to unity
of all nonzero dot products produces the result: The matrix whose rows are left
eigenvectors is the inverse matrix of the matrix whose columns are right eigenvectors,
if the inverse exists. When it does exist, equations (11.0.8) and (11.0.9) imply the
useful factorizations

A D XR 	diag.�0 : : : �N�1/	XL and diag.�0 : : : �N�1/ D XL	A	XR (11.0.10)

11.0.3 Diagonalization of a Matrix
From equation (11.0.10) and the fact that XL and XR are matrix inverses, we

get
X�1R 	A 	XR D diag.�0 : : : �N�1/ (11.0.11)
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This is a particular case of a similarity transform of the matrix A,

A ! Z�1 	A 	 Z (11.0.12)

for some transformation matrix Z. Similarity transformations play a crucial role
in the computation of eigenvalues, because they leave the eigenvalues of a matrix
unchanged. This is easily seen from

det
ˇ̌
Z�1 	A 	 Z � �1

ˇ̌
D det

ˇ̌
Z�1 	 .A � �1/ 	 Z

ˇ̌
D det jZj det jA � �1j det

ˇ̌
Z�1

ˇ̌
D det jA � �1j

(11.0.13)

Equation (11.0.11) shows that any matrix with complete eigenvectors (which in-
cludes all normal matrices and “most” random nonnormal ones) can be diagonalized
by a similarity transformation, that the columns of the transformation matrix that
effects the diagonalization are the right eigenvectors, and that the rows of its inverse
are the left eigenvectors.

For real symmetric matrices, the eigenvectors are real and orthonormal, so the
transformation matrix is orthogonal. The similarity transformation is then also an
orthogonal transformation of the form

A ! ZT 	A 	 Z (11.0.14)

While real nonsymmetric matrices can be diagonalized in their usual case of com-
plete eigenvectors, the transformation matrix is not necessarily real. It turns out,
however, that a real similarity transformation can “almost” do the job. It can reduce
the matrix down to a form with little two-by-two blocks along the diagonal and all
other elements zero. Each two-by-two block corresponds to a complex-conjugate
pair of complex eigenvalues. We will see this idea exploited in some routines given
later in the chapter.

The “grand strategy” of virtually all modern eigensystem routines is to nudge
the matrix A toward diagonal form by a sequence of similarity transformations,

A ! P�11 	A 	 P1 ! P�12 	 P
�1
1 	A 	 P1 	 P2

! P�13 	 P
�1
2 	 P

�1
1 	A 	 P1 	 P2 	 P3 ! etc.

(11.0.15)

If we get all the way to diagonal form, then the eigenvectors are the columns of the
accumulated transformation

XR D P1 	 P2 	 P3 	 : : : (11.0.16)

Sometimes we do not want to go all the way to diagonal form. For example, if we are
interested only in eigenvalues, not eigenvectors, it is enough to transform the matrix
A to be triangular, with all elements below (or above) the diagonal zero. In this
case the diagonal elements are already the eigenvalues, as you can see by mentally
evaluating (11.0.2) using expansion by minors.

There are two rather different sets of techniques for implementing the grand
strategy (11.0.15). It turns out that they work rather well in combination, so most
modern eigensystem routines use both. The first set of techniques constructs indi-
vidual P i ’s as explicit “atomic” transformations designed to perform specific tasks,
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for example zeroing a particular off-diagonal element (Jacobi transformation, �11.1),
or a whole particular row or column (Householder transformation, �11.3; elimina-
tion method, �11.6). In general, a finite sequence of these simple transformations
cannot completely diagonalize a matrix. There are then two choices: either use the
finite sequence of transformations to go most of the way (e.g., to some special form
like tridiagonal or Hessenberg; see �11.3 and �11.6 below) and follow up with the
second set of techniques about to be mentioned; or else iterate the finite sequence
of simple transformations over and over until the deviation of the matrix from diag-
onal is negligibly small. This latter approach is conceptually simplest, so we will
discuss it in the next section; however, forN greater than� 10, it is computationally
inefficient by a roughly constant factor � 5.

The second set of techniques, called factorization methods, is more subtle. Sup-
pose that the matrix A can be factored into a left factor FL and a right factor FR.
Then

A D FL 	 FR or equivalently F�1L 	A D FR (11.0.17)

If we now multiply back together the factors in the reverse order and use the second
equation in (11.0.17), we get

FR 	 FL D F�1L 	A 	 FL (11.0.18)

which we recognize as having effected a similarity transformation on A with the
transformation matrix being FL! In �11.4 and �11.7 we will discuss the QR method
that exploits this idea.

Factorization methods also do not converge exactly in a finite number of trans-
formations. But the better ones do converge rapidly and reliably, and, when fol-
lowing an appropriate initial reduction by simple similarity transformations, they are
generally the methods of choice.

11.0.4 “Eigenpackages of Canned Eigenroutines”
You have probably gathered by now that the solution of eigensystems is a fairly

complicated business. It is. It is one of the few subjects covered in this book for
which we do not recommend that you avoid canned routines. On the contrary, the
purpose of this chapter is precisely to give you some appreciation of what is going
on inside such canned routines, so that you can make intelligent choices about using
them, and intelligent diagnoses when something goes wrong.

You will find that almost all canned routines in use nowadays trace their ances-
try back to routines published in Wilkinson and Reinsch’s Handbook for Automatic
Computation, Vol. II, Linear Algebra [2]. This excellent reference, containing papers
by a number of authors, is the Bible of the field. A public-domain implementation
of the Handbook routines in Fortran is the EISPACK set of programs [3]. The rou-
tines in this chapter are translations of either the Handbook or EISPACK routines,
so understanding these will take you a lot of the way toward understanding those
canonical packages.

The successor to EISPACK is LAPACK [4], which also includes the linear alge-
bra routines of LINPACK. This is a Fortran package in which a lot of attention has
been paid to efficient execution on modern machines. A C translation is available
as CLAPACK.
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IMSL [5] and NAG [6] each provide proprietary implementations, in Fortran and
C, of what are essentially the Handbook routines.

A good “eigenpackage” will provide separate routines, or separate paths through
sequences of routines, for the following desired calculations:

� all eigenvalues and no eigenvectors
� all eigenvalues and some corresponding eigenvectors
� all eigenvalues and all corresponding eigenvectors

The purpose of these distinctions is to save compute time and storage; it is wasteful to
calculate eigenvectors that you don’t need. Often one is interested only in the eigen-
vectors corresponding to the largest few eigenvalues, or largest few in magnitude,
or few that are negative. The method usually used to calculate “some” eigenvectors
is typically more efficient than calculating all eigenvectors if you desire fewer than
about a quarter of the eigenvectors.

A good eigenpackage also provides separate paths for each of the above calcu-
lations for each of the following special forms of the matrix:

� real, symmetric, tridiagonal
� real, symmetric, banded (only a small number of sub- and superdiagonals are

nonzero)
� real, symmetric
� real, nonsymmetric
� complex, Hermitian
� complex, non-Hermitian

Again, the purpose of these distinctions is to save time and storage by using the least
general routine that will serve in any particular application.

In this chapter, as a bare introduction, we give good routines for the following
paths:

� all eigenvalues and eigenvectors of a real symmetric, tridiagonal matrix (�11.4)
� all eigenvalues and eigenvectors of a real symmetric, matrix (�11.1 – �11.4)
� all eigenvalues and eigenvectors of a complex Hermitian matrix (�11.5)
� all eigenvalues and eigenvectors of a real nonsymmetric matrix (�11.6 – �11.7)

We also discuss, in �11.8, how to obtain some eigenvectors of general matrices
by the method of inverse iteration.

11.0.5 Generalized and Nonlinear Eigenvalue Problems
Many eigenpackages also deal with the so-called generalized eigenproblem [7],

A 	 x D �B 	 x (11.0.19)

where A and B are both matrices. Most such problems, where B is nonsingular, can
be handled by the equivalent

.B�1 	A/ 	 x D �x (11.0.20)

Often A and B are symmetric and B is positive-definite. The matrix B�1 	 A in
(11.0.20) is not symmetric, but we can recover a symmetric eigenvalue problem
by using the Cholesky decomposition B D L 	 LT of �2.9. Multiplying equation
(11.0.19) by L�1, we get

C 	 .LT 	 x/ D �.LT 	 x/ (11.0.21)
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where
C D L�1 	A 	 .L�1/T (11.0.22)

The matrix C is symmetric and its eigenvalues are the same as those of the original
problem (11.0.19); its eigenfunctions are LT 	 x. The efficient way to form C is first
to solve the equation

Y 	 LT D A (11.0.23)

for the lower triangle of the matrix Y . Then solve

L 	C D Y (11.0.24)

for the lower triangle of the symmetric matrix C.
Another generalization of the standard eigenvalue problem is to problems non-

linear in the eigenvalue �, for example,

.A�2 C B�CC/ 	 x D 0 (11.0.25)

This can be turned into a linear problem by introducing an additional unknown eigen-
vector y and solving the 2N � 2N eigensystem�

0 1

�A�1 	C �A�1 	 B

�
	

�
x
y

�
D �

�
x
y

�
(11.0.26)

This technique generalizes to higher-order polynomials in �. A polynomial of degree
M produces a linear MN �MN eigensystem (see [8]).

11.0.6 Relation to Singular Value Decomposition
The factorization of a matrix A by the use of its eigenvectors and eigenvalues,

equation (11.0.10), seems similar to singular value decomposition (SVD), as was
discussed in �2.6. Is it the same thing? In general, no. A first obvious difference is
that SVD is not restricted to square matrices, while eigendecomposition is. But what
if A is square? Are the two decompositions then identical?

In general, still no. The difference has to do with what is orthogonal to what. If
for a square matrix A we write the two decompositions (cf. equation 2.6.1 or 2.6.4
and equation 11.0.10),

A D U 	 diag.w0 : : : wN�1/ 	 V
T D XR 	 diag.�0 : : : �N�1/ 	XL (11.0.27)

then for SVD the columns of U are mutually orthonormal, as are the columns of V .
There is no particular orthonormality between U and V . For the eigendecomposition,
the situation is the reverse: The rows of XL are orthogonal to the columns of XR
(except for those corresponding to the same eigenvalue), but there is no particular
orthogonality among the rows or columns of XL or the rows or columns of XR. The
two decompositions in equation (11.0.27) are just, in general, different!

However, the difference disappears when A is symmetric (or, if complex, Her-
mitian). In that case, equation (11.0.27) becomes

A D V 	 diag.w0 : : : wN�1/ 	 V
T D XR 	 diag.�0 : : : �N�1/ 	X

T
R (11.0.28)
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and the fact that each decomposition is unique implies

V D U D XR D XTL (11.0.29)

and
�i D wi ; i D 0; : : : ; N � 1 (11.0.30)

That is, the (left and right) eigenvectors are the columns of any of the matrices
listed in equation (11.0.29), and the corresponding eigenvalues and singular values
are identical.

From a general matrix A, not necessarily even square, one can form the two
symmetric matrices AT 	 A and A 	 AT . You can work out from equation (11.0.27)
that the eigenvalues of either of these two matrices are squares of singular values of
A. However, this doesn’t tell you about the eigenvalues of A: The matrix whose
eigenvalues are the squares of the eigenvalues of A is the unrelated matrix A 	A, not
AT 	A or A 	AT .

CITED REFERENCES AND FURTHER READING:

Stoer, J., and Bulirsch, R. 2002, Introduction to Numerical Analysis, 3rd ed. (New York: Springer),
Chapter 6.[1]

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer).[2]

Smith, B.T., et al. 1976, Matrix Eigensystem Routines — EISPACK Guide, 2nd ed., vol. 6 of
Lecture Notes in Computer Science (New York: Springer).[3]

Anderson, E., et al. 1999, LAPACK User’s Guide, 3rd ed. (Philadelphia: S.I.A.M.). Online with
software at 2007+, http://www.netlib.org/lapack.[4]

IMSL Math/Library Users Manual (Houston: IMSL Inc.), see 2007+, http://www.vni.com/
products/imsl.[5]

NAG Fortran Library (Oxford, UK: Numerical Algorithms Group), see 2007+, http://www.nag.
co.uk, Chapter F02.[6]

Golub, G.H., and Van Loan, C.F. 1996, Matrix Computations, 3rd ed. (Baltimore: Johns Hopkins
University Press), �7.7.[7]

Wilkinson, J.H. 1965, The Algebraic Eigenvalue Problem (New York: Oxford University Press).[8]

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington, DC:
Mathematical Association of America), Chapter 13.

Horn, R.A., and Johnson, C.R. 1985, Matrix Analysis (Cambridge: Cambridge University Press).

11.1 Jacobi Transformations of a Symmetric
Matrix

The Jacobi method consists of a sequence of orthogonal similarity transforma-
tions of the form of equation (11.0.15). Each transformation (a Jacobi rotation) is
just a plane rotation designed to annihilate one of the off-diagonal matrix elements.
Successive transformations undo previously set zeros, but the off-diagonal elements
nevertheless get smaller and smaller, until the matrix is diagonal to machine preci-
sion. Accumulating the product of the transformations as you go gives the matrix of
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eigenvectors, equation (11.0.16), while the elements of the final diagonal matrix are
the eigenvalues.

The Jacobi method is absolutely foolproof for all real symmetric matrices. In
particular, it returns the small eigenvalues with better relative accuracy than methods
that first reduce the matrix to tridiagonal form. For matrices of order greater than
about 10, however, the algorithm is slower, by a significant constant factor, than the
QR method we shall give in �11.4. However, the Jacobi algorithm is much simpler
than the more efficient methods. We thus recommend it for matrices of moderate
order, where expense is not a major consideration.

The basic Jacobi rotation Ppq is a matrix of the form

Ppq D

26666666664

1

	 	 	

c 	 	 	 s
::: 1

:::

�s 	 	 	 c

	 	 	

1

37777777775
(11.1.1)

Here all the diagonal elements are unity except for the two elements c in rows (and
columns) p and q. All off-diagonal elements are zero except the two elements s and
�s. The numbers c and s are the cosine and sine of a rotation angle �, so c2Cs2 D 1.

A plane rotation such as (11.1.1) is used to transform the matrix A according to

A0 D PTpq 	A 	 Ppq (11.1.2)

Now, PTpq 	A changes only rows p and q of A, while A 	Ppq changes only columns
p and q. Notice that the subscripts p and q do not denote components of Ppq , but
rather label which kind of rotation the matrix is, i.e., which rows and columns it
affects. Thus the changed elements of A in (11.1.2) are only in rows p and q, and
columns p and q, as indicated below:

A0 D

2666666666664

a00p a00q
:::

:::

a0p0 	 	 	 a0pp 	 	 	 a0pq 	 	 	 a0p;n�1
:::

:::

a0q0 	 	 	 a0qp 	 	 	 a0qq 	 	 	 a0q;n�1
:::

:::

a0n�1;p a0n�1;q

3777777777775
(11.1.3)

Multiplying out equation (11.1.2) and using the symmetry of A, we get the explicit
formulas

a0rp D carp � sarq

a0rq D carq C sarp

)
r ¤ p; r ¤ q (11.1.4)

a0pp D c
2app C s

2aqq � 2scapq (11.1.5)

a0qq D s
2app C c

2aqq C 2scapq (11.1.6)

a0pq D .c
2 � s2/apq C sc.app � aqq/ (11.1.7)
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The idea of the Jacobi method is to try to zero the off-diagonal elements by a
series of plane rotations. Accordingly, to set a0pq D 0, equation (11.1.7) gives the
following expression for the rotation angle �:

� � cot 2� �
c2 � s2

2sc
D
aqq � app

2apq
(11.1.8)

If we let t � s=c, the definition of � can be rewritten

t2 C 2t� � 1 D 0 (11.1.9)

The smaller root of this equation corresponds to a rotation angle less than 	=4
in magnitude; this choice at each stage gives the most stable reduction. Using the
form of the quadratic formula with the discriminant in the denominator, we can write
this smaller root as

t D
sgn.�/

j� j C
p
�2 C 1

(11.1.10)

If � is so large that �2 would overflow on the computer, we set t D 1=.2�/. It now
follows that

c D
1

p
t2 C 1

(11.1.11)

s D tc (11.1.12)

When we actually use equations (11.1.4) – (11.1.7) numerically, we rewrite
them to minimize roundoff error. Equation (11.1.7) is replaced by

a0pq D 0 (11.1.13)

The idea in the remaining equations is to set the new quantity equal to the old quantity
plus a small correction. Thus we can use (11.1.7) and (11.1.13) to eliminate aqq from
(11.1.5), giving

a0pp D app � tapq (11.1.14)

Similarly,

a0qq D aqq C tapq (11.1.15)

a0rp D arp � s.arq C �arp/ (11.1.16)

a0rq D arq C s.arp � �arq/ (11.1.17)

where � .D tan�=2/ is defined by

� �
s

1C c
(11.1.18)

One can see the convergence of the Jacobi method by considering the sum of
the squares of the off-diagonal elements

S D
X
r¤s

jarsj
2 (11.1.19)
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Equations (11.1.4) – (11.1.7) imply that

S 0 D S � 2japqj
2 (11.1.20)

(Since the transformation is orthogonal, the sum of the squares of the diagonal el-
ements increases correspondingly by 2japqj2.) The sequence of S ’s thus decreases
monotonically. Since the sequence is bounded below by zero, and since we can
choose apq to be whatever element we want, the sequence can be made to converge
to zero.

Eventually one obtains a matrix D that is diagonal to machine precision. The
diagonal elements give the eigenvalues of the original matrix A, since

D D VT 	A 	 V (11.1.21)

where
V D P1 	 P2 	 P3 	 	 	 (11.1.22)

the P i ’s being the successive Jacobi rotation matrices. The columns of V are the
eigenvectors (since A 	 V D V 	D). They can be computed by applying

V 0 D V 	 P i (11.1.23)

at each stage of calculation, where initially V is the identity matrix. In detail, equa-
tion (11.1.23) is

v0rs D vrs .s ¤ p; s ¤ q/

v0rp D cvrp � svrq

v0rq D svrp C cvrq

(11.1.24)

We rewrite these equations in terms of � as in equations (11.1.16) and (11.1.17) to
minimize roundoff.

The only remaining question is the strategy one should adopt for the order
in which the elements are to be annihilated. Jacobi’s original algorithm of 1846
searched the whole upper triangle at each stage and set the largest off-diagonal ele-
ment to zero. This is a reasonable strategy for hand calculation, but it is prohibitive
on a computer since the search alone makes each Jacobi rotation a process of order
N 2 instead of N .

A better strategy for our purposes is the cyclic Jacobi method, where one anni-
hilates elements in strict order. For example, one can simply proceed down the rows:
P01;P02; :::;P0;n�1; then P12;P13, etc. One can show that convergence is gener-
ally quadratic for either the original or the cyclic Jacobi method, for nondegenerate
eigenvalues. One such set of n.n � 1/=2 Jacobi rotations is called a sweep.

The program below, based on the implementations in [1,2], uses two further re-
finements:

� In the first three sweeps, we carry out the pq rotation only if japqj > � for
some threshold value

� D
1

5

S0

n2
(11.1.25)

where S0 is the sum of the off-diagonal moduli,

S0 D
X
r<s

jarsj (11.1.26)
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� After four sweeps, if japqj � jappj and japqj � jaqqj, we set japqj D
0 and skip the rotation. The criterion used in the comparison is japqj <
10�.DC2/jappj, where D is the number of significant decimal digits on the
machine, and similarly for jaqqj.

Typical matrices require six to ten sweeps to achieve convergence, or 3n2 to
5n2 Jacobi rotations. Each rotation requires of order 8n floating-point operations, so
the total labor is of order 24n3 to 40n3 operations. Calculation of the eigenvectors
as well as the eigenvalues changes the operation count from 8n to 12n per rotation,
which is only a 50% overhead.

The following routine implements the Jacobi method. Simply create a Jacobi
object using your symmetric matrix a[0..n-1] [0..n-1]:

Jacobi jac(a);

The vector d[0..n-1] then contains the eigenvalues of a. During the computation,
it contains the current diagonal of a. The matrix v[0..n-1][0..n-1] outputs the
normalized eigenvector belonging to d[k] in column k. The parameter nrot is the
number of Jacobi rotations that were needed to achieve convergence.

struct Jacobi {eigen sym.h
Computes all eigenvalues and eigenvectors of a real symmetric matrix by Jacobi’s method.

const Int n;
MatDoub a,v;
VecDoub d;
Int nrot;
const Doub EPS;

Jacobi(MatDoub_I &aa) : n(aa.nrows()), a(aa), v(n,n), d(n), nrot(0),
EPS(numeric_limits<Doub>::epsilon())

Computes all eigenvalues and eigenvectors of a real symmetric matrix a[0..n-1][0..n-1].
On output, d[0..n-1] contains the eigenvalues of a sorted into descending order, while
v[0..n-1][0..n-1] is a matrix whose columns contain the corresponding normalized eigen-
vectors. nrot contains the number of Jacobi rotations that were required. Only the upper
triangle of a is accessed.
{

Int i,j,ip,iq;
Doub tresh,theta,tau,t,sm,s,h,g,c;
VecDoub b(n),z(n);
for (ip=0;ip<n;ip++) { Initialize to the identity matrix.

for (iq=0;iq<n;iq++) v[ip][iq]=0.0;
v[ip][ip]=1.0;

}
for (ip=0;ip<n;ip++) { Initialize b and d to the diagonal

of a.b[ip]=d[ip]=a[ip][ip];
z[ip]=0.0; This vector will accumulate terms

of the form tapq as in equa-
tion (11.1.14).

}
for (i=1;i<=50;i++) {

sm=0.0;
for (ip=0;ip<n-1;ip++) { Sum magnitude of off-diagonal

elements.for (iq=ip+1;iq<n;iq++)
sm += abs(a[ip][iq]);

}
if (sm == 0.0) { The normal return, which relies

on quadratic convergence to
machine underflow.

eigsrt(d,&v);
return;

}
if (i < 4)

tresh=0.2*sm/(n*n); On the first three sweeps...



�

�

“nr3” — 2007/5/1 — 20:53 — page 575 — #597
�

�

� �

11.1 Jacobi Transformations of a Symmetric Matrix 575

else
tresh=0.0; ...thereafter.

for (ip=0;ip<n-1;ip++) {
for (iq=ip+1;iq<n;iq++) {

g=100.0*abs(a[ip][iq]);
After four sweeps, skip the rotation if the off-diagonal element is small.
if (i > 4 && g <= EPS*abs(d[ip]) && g <= EPS*abs(d[iq]))

a[ip][iq]=0.0;
else if (abs(a[ip][iq]) > tresh) {

h=d[iq]-d[ip];
if (g <= EPS*abs(h))

t=(a[ip][iq])/h; t D 1=.2�/
else {

theta=0.5*h/(a[ip][iq]); Equation (11.1.10).
t=1.0/(abs(theta)+sqrt(1.0+theta*theta));
if (theta < 0.0) t = -t;

}
c=1.0/sqrt(1+t*t);
s=t*c;
tau=s/(1.0+c);
h=t*a[ip][iq];
z[ip] -= h;
z[iq] += h;
d[ip] -= h;
d[iq] += h;
a[ip][iq]=0.0;
for (j=0;j<ip;j++) Case of rotations 0 � j < p.

rot(a,s,tau,j,ip,j,iq);
for (j=ip+1;j<iq;j++) Case of rotations p < j < q.

rot(a,s,tau,ip,j,j,iq);
for (j=iq+1;j<n;j++) Case of rotations q < j < n.

rot(a,s,tau,ip,j,iq,j);
for (j=0;j<n;j++)

rot(v,s,tau,j,ip,j,iq);
++nrot;

}
}

}
for (ip=0;ip<n;ip++) {

b[ip] += z[ip];
d[ip]=b[ip]; Update d with the sum of tapq ,
z[ip]=0.0; and reinitialize z.

}
}
throw("Too many iterations in routine jacobi");

}
inline void rot(MatDoub_IO &a, const Doub s, const Doub tau, const Int i,

const Int j, const Int k, const Int l)
{

Doub g=a[i][j];
Doub h=a[k][l];
a[i][j]=g-s*(h+g*tau);
a[k][l]=h+s*(g-h*tau);

}
};

Note that the above routine assumes that underflows are set to zero. On ma-
chines where this is not true, the program must be modified. See �1.5.4 and/or find
out about the fesetenv (Linux) or __controlfp (Microsoft) functions.

The Jacobi method does not order the eigenvalues itself. We incorporate the
following routine to sort the eigenvalues into descending order. The same routine is
used in Symmeig in the next section. (The method, straight insertion, is N 2 rather
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than N logN ; but since you have just done an N 3 procedure to get the eigenvalues,
you can afford yourself this little indulgence.)

void eigsrt(VecDoub_IO &d, MatDoub_IO *v=NULL)eigen sym.h
Given the eigenvalues d[0..n-1] and (optionally) the eigenvectors v[0..n-1][0..n-1] as de-
termined by Jacobi (�11.1) or tqli (�11.4), this routine sorts the eigenvalues into descending
order and rearranges the columns of v correspondingly. The method is straight insertion.
{

Int k;
Int n=d.size();
for (Int i=0;i<n-1;i++) {

Doub p=d[k=i];
for (Int j=i;j<n;j++)

if (d[j] >= p) p=d[k=j];
if (k != i) {

d[k]=d[i];
d[i]=p;
if (v != NULL)

for (Int j=0;j<n;j++) {
p=(*v)[j][i];
(*v)[j][i]=(*v)[j][k];
(*v)[j][k]=p;

}
}

}
}

CITED REFERENCES AND FURTHER READING:

Golub, G.H., and Van Loan, C.F. 1996, Matrix Computations, 3rd ed. (Baltimore: Johns Hopkins
University Press), �8.4.

Smith, B.T., et al. 1976, Matrix Eigensystem Routines — EISPACK Guide, 2nd ed., vol. 6 of
Lecture Notes in Computer Science (New York: Springer).[1]

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer).[2]

11.2 Real Symmetric Matrices

As already mentioned, the optimum strategy in most cases for finding eigen-
values and eigenvectors is, first, to reduce the matrix to a simple form, only then
beginning an iterative procedure. For symmetric matrices, the preferred simple form
is tridiagonal.

Here is a routine based on this strategy that finds all eigenvalues and eigenvec-
tors of a real symmetric matrix. It is typically a factor of about five faster than the
Jacobi routine of the previous section. The implementations of the functions tred2
and tqli that reduce the matrix to tridiagonal form and then find the eigensystem
are discussed in the next two sections.

There are two user interfaces, implemented as two constructors. The first con-
structor is the usual one:

Symmeig s(a);
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It returns the eigenvalues of a in descending order in s.d[0..n-1]. The normalized
eigenvector corresponding to d[k] is in the matrix column s.z[0..n-1][k]. Set-
ting the default argument to false suppresses the computation of the eigenvectors:

Symmeig s(a,false);

If you already have a matrix in tridiagonal form, you use the other constructor, which
accepts the diagonal and subdiagonal of the matrix as vectors:

Symmeig s(d,e);

Again, you can suppress the computation of eigenvectors by setting the default argu-
ment to false.

Here is the routine:

struct Symmeig { eigen sym.h
Computes all eigenvalues and eigenvectors of a real symmetric matrix by reduction to tridiagonal
form followed by QL iteration.

Int n;
MatDoub z;
VecDoub d,e;
Bool yesvecs;

Symmeig(MatDoub_I &a, Bool yesvec=true) : n(a.nrows()), z(a), d(n),
e(n), yesvecs(yesvec)

Computes all eigenvalues and eigenvectors of a real symmetric matrix a[0..n-1][0..n-1]
by reduction to tridiagonal form followed by QL iteration. On output, d[0..n-1] contains
the eigenvalues of a sorted into descending order, while z[0..n-1][0..n-1] is a matrix
whose columns contain the corresponding normalized eigenvectors. If yesvecs is input as
true (the default), then the eigenvectors are computed. If yesvecs is input as false, only
the eigenvalues are computed.
{

tred2(); Reduction to tridiagonal form; see �11.3.
tqli(); Eigensystem of tridiagonal matrix; see �11.4.
sort();

}
Symmeig(VecDoub_I &dd, VecDoub_I &ee, Bool yesvec=true) :

n(dd.size()), d(dd), e(ee), z(n,n,0.0), yesvecs(yesvec)
Computes all eigenvalues and (optionally) eigenvectors of a real, symmetric, tridiagonal
matrix by QL iteration. On input, dd[0..n-1] contains the diagonal elements of the tridi-
agonal matrix. The vector ee[0..n-1] inputs the subdiagonal elements of the tridiagonal
matrix, with ee[0] arbitrary. Output is the same as the constructor above.
{

for (Int i=0;i<n;i++) z[i][i]=1.0;
tqli();
sort();

}
void sort() {

if (yesvecs)
eigsrt(d,&z);

else
eigsrt(d);

}
void tred2();
void tqli();
Doub pythag(const Doub a, const Doub b);

};
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11.3 Reduction of a Symmetric Matrix to
Tridiagonal Form: Givens and
Householder Reductions

The previous section outlined the grand strategy of (i) reduction to tridiago-
nal form, followed by (ii) finding the eigenvalues and eigenvectors of a tridiagonal
matrix. In this section we implement the first of these steps.

11.3.1 Givens Method
The Givens reduction is a modification of the Jacobi method. Instead of trying

to reduce the matrix all the way to diagonal form, we are content to stop when the
matrix is tridiagonal. This allows the procedure to be carried out in a finite number
of steps, unlike the Jacobi method, which requires iteration to convergence.

For the Givens method, we choose the rotation angle in equation (11.1.1) so
as to zero an element that is not at one of the four “corners,” i.e., not app , apq , or
aqq in equation (11.1.3). Specifically, we first choose P12 to annihilate a20 (and, by
symmetry, a02). Then we choose P13 to annihilate a30. In general, we choose the
sequence

P12;P13; : : : ;P1;n�1IP 23; : : : ;P 2;n�1I : : : IPn�2;n�1

where Pjk annihilates ak;j�1. The method works because elements such as a0rp and
a0rq , with r ¤ p r ¤ q, are linear combinations of the old quantities arp and arq ,
by equation (11.1.4). Thus, if arp and arq have already been set to zero, they remain
zero as the reduction proceeds. Evidently, of order n2=2 rotations are required, and
the number of multiplications in a straightforward implementation is of order 4n3=3,
not counting those for keeping track of the product of the transformation matrices,
required for the eigenvectors.

The Householder method, to be discussed next, is just as stable as the Givens re-
duction and it is a factor of two more efficient, so the Givens method is not generally
used. However, the Givens reduction can be reformulated to reduce the number of
operations by a factor of two, and also avoid the necessity of taking square roots [1].
This appears to make the algorithm competitive with the Householder reduction.
Unfortunately, this “fast Givens” reduction has to be monitored to avoid overflows,
and the variables have to be periodically rescaled. There does not seem to be any
compelling reason to prefer the Givens reduction over the Householder method.

11.3.2 Householder Method
The Householder algorithm reduces an n � n symmetric matrix A to tridiago-

nal form by n � 2 orthogonal transformations. Each transformation annihilates the
required part of a whole column and whole corresponding row. The basic ingredient
is a Householder matrix P , which has the form

P D 1 � 2w 	 wT (11.3.1)

where w is a real vector with jw j2 D 1. (In the present notation, the outer or matrix
product of two vectors, a and b, is written a 	 bT , while the inner or scalar product
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of the vectors is written as aT 	 b.) The matrix P is orthogonal, because

P2 D .1 � 2w 	 wT / 	 .1 � 2w 	 wT /

D 1 � 4w 	 wT C 4w 	 .wT 	 w/ 	 wT

D 1

(11.3.2)

Therefore P D P�1. But PT D P , and so PT D P�1, proving orthogonality.
Rewrite P as

P D 1 �
u 	 uT

H
(11.3.3)

where the scalar H is

H � 1
2
juj2 (11.3.4)

and u can now be any vector. Suppose x is the vector composed of the first column
of A. Choose

u D x� jxje0 (11.3.5)

where e0 is the unit vector Œ1; 0; : : : ; 0�T and the choice of signs will be made later.
Then

P 	 x D x �
u

H
	 .x� jxje0/

T 	 x

D x �
2u 	 .jxj2 � jxjx0/

2jxj2 � 2jxjx0

D x � u

D ˙jxje0

(11.3.6)

This shows that the Householder matrix P acts on a given vector x to zero all its
elements except the first one.

To reduce a symmetric matrix A to tridiagonal form, we choose the vector x for
the first Householder matrix to be the lower n � 1 elements of column 0. Then the
lower n � 2 elements will be zeroed:

P1 	A D

2666664
1 0 0 	 	 	 0

0

0
::: .n�1/P1
0

3777775 	
2666664

a00 a01 a02 	 	 	 a0;n�1

a10
a20
::: irrelevant

an�1;0

3777775

D

2666664
a00 a01 a02 	 	 	 a0;n�1

k

0
::: irrelevant
0

3777775
(11.3.7)
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Here we have written the matrices in partitioned form, with .n�1/P denoting a House-
holder matrix with dimensions .n � 1/ � .n � 1/. The quantity k is simply plus or
minus the magnitude of the vector Œa10; : : : ; an�1;0�T .

The complete orthogonal transformation is now

A0 D P 	A 	 P D

2666664
a00 k 0 	 	 	 0

k

0
::: irrelevant
0

3777775 (11.3.8)

We have used the fact that PT D P .
Now choose the vector x for the second Householder matrix to be the bottom

n � 2 elements of column 1, and from it construct

P2 �

2666664
1 0 0 	 	 	 0

0 1 0 	 	 	 0

0 0
:::

::: .n�2/P2
0 0

3777775 (11.3.9)

The identity block in the upper-left corner ensures that the tridiagonalization achieved
in the first step will not be spoiled by this one, while the .n� 2/-dimensional House-
holder matrix .n�2/P2 creates one additional row and column of the tridiagonal out-
put. Clearly, a sequence of n � 2 such transformations will reduce the matrix A to
tridiagonal form.

Instead of actually carrying out the matrix multiplications in P 	 A 	 P , we compute a
vector

p �
A 	 u

H
(11.3.10)

Then

A 	 P D A 	 .1 �
u 	 uT

H
/ D A � p 	 uT

A0 D P 	A 	 P D A � p 	 uT � u 	 pT C 2Ku 	 uT

where the scalar K is defined by

K D
uT 	 p

2H
(11.3.11)

If we write
q � p �Ku (11.3.12)

then we have
A0 D A � q 	 uT � u 	 qT (11.3.13)

This is the computationally useful formula.
Following [2], the routine for Householder reduction given below actually starts in the

column n � 1 of A, not column 0 as in the explanation above. In detail, the equations are as
follows: At stage m .m D 1; 2; : : : ; n � 2/, the vector u has the form

uT D Œai0; ai1; : : : ; ai;i�2; ai;i�1 ˙
p
�; 0; : : : ; 0� (11.3.14)
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Here
i � n �m D n � 1; n � 2; : : : ; 2 (11.3.15)

and the quantity � (jxj2 in our earlier notation) is

� D .ai0/
2 C 	 	 	 C .ai;i�1/

2 (11.3.16)

Choose the sign of
p
� in (11.3.14) to be the same as the sign of ai;i�1 to lessen roundoff error.

Variables are thus computed in the following order: �;u;H;p; K;q;A0. At any stage
m, A is tridiagonal in its last m � 1 rows and columns.

No extra storage arrays are needed for the intermediate results. At stage m, the vectors
p and q are nonzero only in elements 0; : : : ; i (recall that i D n � m), while u is nonzero
only in elements 0; : : : ; i � 1. The elements of the vector e are being determined in the order
n � 1; n � 2; : : : , so we can store p in the elements of e not already determined. The vector
q can overwrite p once p is no longer needed. We store u in row i of a and u=H in column i
of a. Once the reduction is complete, we compute the matrices Qj using the quantities u and
u=H that have been stored in a. Since Qj is an identity matrix from row and column n � j
on, we only need compute its elements up to row and column n� j � 1. These can overwrite
the u’s and u=H ’s in the corresponding rows and columns of a, which are no longer required
for subsequent Q’s.

The routine tred2, given below, includes one further refinement. If the quantity � is zero
or “small” at any stage, one can skip the corresponding transformation. A simple criterion,
such as

� <
smallest positive number representable on machine

machine precision

would be fine most of the time. A more careful criterion is actually used. At stage i , define
the quantity

� D

i�1X
kD0

jaik j (11.3.17)

If � D 0 to machine precision, we skip the transformation. Otherwise we redefine

aik becomes aik=� (11.3.18)

and use the scaled variables for the transformation. (A Householder transformation depends
only on the ratios of the elements.)

If the eigenvectors of the final tridiagonal matrix are found (for example, by the
routine in the next section), then the eigenvectors of A can be obtained by applying
the accumulated transformation

Q D P1 	 P2 	 	 	Pn�2 (11.3.19)

to those eigenvectors. We therefore form Q by recursion after all the P ’s have been
determined:

Qn�2 D Pn�2

Qj D Pj 	QjC1; j D n � 3; : : : ; 1

Q D Q1

(11.3.20)

Input for the routine below is the real symmetric matrix A stored in the matrix
z[0..n-1][0..n-1]. On output, z contains the elements of the orthogonal matrix
Q. The vector d[0..n-1] is set to the diagonal elements of the tridiagonal matrix
A0, while the vector e[0..n-1] is set to the off-diagonal elements in its components
1 through n-1, with e[0]=0.
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Note that when dealing with a matrix whose elements vary over many orders
of magnitude, it is desirable that the matrix be permuted, insofar as possible, so that
the smaller elements are in the top left-hand corner. This is because the reduction
is performed starting from the bottom right-hand corner, and a mixture of small and
large elements there can lead to considerable rounding errors.

In the limit of large n, the operation count of the Householder reduction is
4n3=3 for eigenvalues only, and 8n3=3 for both eigenvalues and eigenvectors. The
routine tred2 is designed for use with the routine tqli of the next section. tqli
finds the eigenvalues and eigenvectors of a symmetric tridiagonal matrix. For many
years, the combination of tred2 and tqli was the most efficient known technique
for finding all the eigenvalues and eigenvectors (or just all the eigenvalues) of a real
symmetric matrix. For moderate-sized matrices, it is still competitive with newer,
more complicated methods.

void Symmeig::tred2()eigen sym.h
Householder reduction of a real symmetric matrix z[0..n-1][0..n-1]. (The input matrix A
to Symmeig is stored in z.) On output, z is replaced by the orthogonal matrix Q effecting
the transformation. d[0..n-1] contains the diagonal elements of the tridiagonal matrix and
e[0..n-1] the off-diagonal elements, with e[0]=0. If yesvecs is false, so that only eigenvalues
will subsequently be determined, several statements are omitted, in which case z contains no
useful information on output.
{

Int l,k,j,i;
Doub scale,hh,h,g,f;
for (i=n-1;i>0;i--) {

l=i-1;
h=scale=0.0;
if (l > 0) {

for (k=0;k<i;k++)
scale += abs(z[i][k]);

if (scale == 0.0) Skip transformation.
e[i]=z[i][l];

else {
for (k=0;k<i;k++) {

z[i][k] /= scale; Use scaled a’s for transformation.
h += z[i][k]*z[i][k]; Form � in h.

}
f=z[i][l];
g=(f >= 0.0 ? -sqrt(h) : sqrt(h));
e[i]=scale*g;
h -= f*g; Now h is equation (11.3.4).
z[i][l]=f-g; Store u in row i of z.
f=0.0;
for (j=0;j<i;j++) {

if (yesvecs) Store u=H in column i of z.
z[j][i]=z[i][j]/h;

g=0.0; Form an element of A � u in g.
for (k=0;k<j+1;k++)

g += z[j][k]*z[i][k];
for (k=j+1;k<i;k++)

g += z[k][j]*z[i][k];
e[j]=g/h; Form element of p in temporarily unused

element of e.f += e[j]*z[i][j];
}
hh=f/(h+h); Form K, equation (11.3.11).
for (j=0;j<i;j++) { Form q and store in e overwriting p.

f=z[i][j];
e[j]=g=e[j]-hh*f;
for (k=0;k<j+1;k++) Reduce z, equation (11.3.13).
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z[j][k] -= (f*e[k]+g*z[i][k]);
}

}
} else

e[i]=z[i][l];
d[i]=h;

}
if (yesvecs) d[0]=0.0;
e[0]=0.0;
for (i=0;i<n;i++) { Begin accumulation of transformation ma-

trices.if (yesvecs) {
if (d[i] != 0.0) { This block skipped when i=0.

for (j=0;j<i;j++) {
g=0.0;
for (k=0;k<i;k++) Use u and u=H stored in z to form P �Q.

g += z[i][k]*z[k][j];
for (k=0;k<i;k++)

z[k][j] -= g*z[k][i];
}

}
d[i]=z[i][i];
z[i][i]=1.0; Reset row and column of z to identity

matrix for next iteration.for (j=0;j<i;j++) z[j][i]=z[i][j]=0.0;
} else {

d[i]=z[i][i]; Only this statement remains.
}

}
}

CITED REFERENCES AND FURTHER READING:

Golub, G.H., and Van Loan, C.F. 1996, Matrix Computations, 3rd ed. (Baltimore: Johns Hopkins
University Press), �5.1.[1]

Smith, B.T., et al. 1976, Matrix Eigensystem Routines — EISPACK Guide, 2nd ed., vol. 6 of
Lecture Notes in Computer Science (New York: Springer).

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer).[2]

11.4 Eigenvalues and Eigenvectors of a
Tridiagonal Matrix

We now turn to the second step in the grand strategy outlined in �11.2, namely
computing the eigenvectors and eigenvalues of a tridiagonal matrix.

11.4.1 Evaluation of the Characteristic Polynomial
Once our original real symmetric matrix has been reduced to tridiagonal form,

one possible way to determine its eigenvalues is to find the roots of the characteristic
polynomial pn(�) directly. The characteristic polynomial of a tridiagonal matrix can
be evaluated for any trial value of � by an efficient recursion relation (see [1], for
example). The polynomials of lower degree produced during the recurrence form a
Sturmian sequence that can be used to localize the eigenvalues to intervals on the
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real axis. A root-finding method such as bisection or Newton’s method can then be
employed to refine the intervals. The corresponding eigenvectors can then be found
by inverse iteration (see �11.8).

Procedures based on these ideas can be found in [2,3]. If, however, more than a
small fraction of all the eigenvalues and eigenvectors is required, then the factoriza-
tion method next considered is much more efficient.

11.4.2 The QR and QL Algorithms
The basic idea behind the QR algorithm is that any real matrix can be decom-

posed in the form
A D Q 	R (11.4.1)

where Q is orthogonal and R is upper triangular. For a general matrix, the de-
composition is constructed by applying Householder transformations to annihilate
successive columns of A below the diagonal (see �2.10).

Now consider the matrix formed by writing the factors in (11.4.1) in the oppo-
site order:

A0 D R 	Q (11.4.2)

Since Q is orthogonal, equation (11.4.1) gives R D QT 	A. Thus equation (11.4.2)
becomes

A0 D QT 	A 	Q (11.4.3)

We see that A0 is an orthogonal transformation of A.
You can verify that a QR transformation preserves the following properties of

a matrix: symmetry, tridiagonal form, and Hessenberg form (to be defined in �11.6).
There is nothing special about choosing one of the factors of A to be upper

triangular; one could equally well make it lower triangular. This is called the QL
algorithm, since

A D Q 	 L (11.4.4)

where L is lower triangular. (The standard, but confusing, nomenclature R and L
stands for whether the right or left of the matrix is nonzero.)

Recall that in the Householder reduction to tridiagonal form in �11.3, we started
in column n� 1 of the original matrix. To minimize roundoff, we then exhorted you
to put the biggest elements of the matrix in the lower right-hand corner, if you can. If
we now wish to diagonalize the resulting tridiagonal matrix, the QL algorithm will
have smaller roundoff than the QR algorithm, so we shall use QL henceforth.

The QL algorithm consists of a sequence of orthogonal transformations:

As D Qs 	 Ls

AsC1 D Ls 	Qs .D QT
s 	As 	Qs/

(11.4.5)

The following (nonobvious!) theorem is the basis of the algorithm for a general
matrix A: (i) If A has eigenvalues of different absolute value j�i j, then As !
[lower triangular form] as s ! 1. The eigenvalues appear on the diagonal in in-
creasing order of absolute magnitude. (ii) If A has an eigenvalue j�i j of multiplicity
p, As ! [lower triangular form] as s ! 1, except for a diagonal block matrix of
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order p, whose eigenvalues! �i . The proof of this theorem is fairly lengthy; see,
for example, [4].

The workload in the QL algorithm is O.n3/ per iteration for a general matrix,
which is prohibitive. However, the workload is only O.n/ per iteration for a tridiag-
onal matrix and O.n2/ for a Hessenberg matrix, which makes it highly efficient on
these forms.

In this section we are concerned only with the case where A is a real, sym-
metric, tridiagonal matrix. All the eigenvalues �i are thus real. According to the
theorem, if any �i has a multiplicity p, then there must be at least p � 1 zeros on
the sub- and superdiagonals. Thus the matrix can be split into submatrices that can
be diagonalized separately, and the complication of diagonal blocks that can arise in
the general case is irrelevant.

In the proof of the theorem quoted above, one finds that in general a superdiag-
onal element converges to zero like

a
.s/
ij �

�
�i

�j

�s
(11.4.6)

Although �i < �j , convergence can be slow if �i is close to �j . Convergence can
be accelerated by the technique of shifting: If k is any constant, then A � k1 has
eigenvalues �i � k. If we decompose

As � ks1 D Qs 	 Ls (11.4.7)

so that

AsC1 D Ls 	Qs C ks1

D QT
s 	As 	Qs

(11.4.8)

then the convergence is determined by the ratio

�i � ks

�j � ks
(11.4.9)

The idea is to choose the shift ks at each stage to maximize the rate of conver-
gence. A good choice for the shift initially would be ks close to �0, the smallest
eigenvalue. Then the first row of off-diagonal elements would tend rapidly to zero.
However, �0 is not usually known a priori. A very effective strategy in practice (al-
though there is no proof that it is optimal) is to compute the eigenvalues of the leading
2 � 2 diagonal submatrix of A. Then set ks equal to the eigenvalue closer to a00.

More generally, suppose you have already found r eigenvalues of A. Then you
can deflate the matrix by crossing out the first r rows and columns, leaving

A D

26666666666664

0 	 	 	 	 	 	 0

	 	 	

0
::: dr er

:::
::: er drC1

	 	 	 0

dn�2 en�2
0 	 	 	 0 en�2 dn�1

37777777777775
(11.4.10)
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Choose ks equal to the eigenvalue of the leading 2� 2 submatrix that is closer to dr .
One can show that the convergence of the algorithm with this strategy is generally
cubic (and at worst quadratic for degenerate eigenvalues). This rapid convergence is
what makes the algorithm so attractive.

Note that with shifting, the eigenvalues no longer necessarily appear on the
diagonal in order of increasing absolute magnitude. The routine eigsrt (�11.1) can
be used if required.

As we mentioned earlier, the QL decomposition of a general matrix is ef-
fected by a sequence of Householder transformations. For a tridiagonal matrix,
however, it is more efficient to use plane rotations Ppq . One uses the sequence
P01;P12; : : : ;Pn�2;n�1 to annihilate the elements a01; a12; : : : ; an�2;n�1. By sym-
metry, the subdiagonal elements a10; a21; : : : ; an�1;n�2 will be annihilated too. Thus
each Qs is a product of plane rotations:

QT
s D P

.s/
1 	 P

.s/
2 	 	 	P

.s/
n�1 (11.4.11)

where P i annihilates ai�1;i . Note that it is QT in equation (11.4.11), not Q, because
we defined L D QT 	A.

11.4.3 QL Algorithm with Implicit Shifts
The algorithm as described so far can be very successful. However, when the

elements of A differ widely in order of magnitude, subtracting a large ks from the
diagonal elements can lead to loss of accuracy for the small eigenvalues. This diffi-
culty is avoided by theQL algorithm with implicit shifts. The implicitQL algorithm
is mathematically equivalent to the originalQL algorithm, but the computation does
not require ks1 to be actually subtracted from A.

The algorithm is based on the following lemma: If A is a symmetric nonsingular matrix
and B D QT 	 A 	 Q, where Q is orthogonal and B is tridiagonal with positive off-diagonal
elements, then Q and B are fully determined when the last row of QT is specified. Proof: Let
qTi denote the row vector i of the matrix QT . Then qi is the column vector i of the matrix

Q. The relation B 	QT D QT 	A can be written26666664

ˇ0 �0

˛1 ˇ1 �1
:::

˛n�2 ˇn�2 �n�2

˛n�1 ˇn�1

37777775 	
266666664

qT0
qT1
:::

qTn�2
qTn�1

377777775
D

266666664

qT0
qT1
:::

qTn�2
qTn�1

377777775
	A (11.4.12)

Row n � 1 of this matrix equation is

˛n�1q
T
n�2 C ˇn�1q

T
n�1 D qTn�1 	A (11.4.13)

Since Q is orthogonal,
qTn�1 	 qm D ın�1;m (11.4.14)

Thus, if we postmultiply equation (11.4.13) by qn�1, we find

ˇn�1 D qTn�1 	A 	 qn�1 (11.4.15)
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which is known since qn�1 is known. Then equation (11.4.13) gives

˛n�1q
T
n�2 D zTn�2 (11.4.16)

where
zTn�2 � qTn�1 	A � ˇn�1q

T
n�1 (11.4.17)

is known. Therefore
˛2n�1 D zTn�2zn�2; (11.4.18)

or
˛n�1 D jzn�2j (11.4.19)

and
qTn�2 D zTn�2=˛n�1 (11.4.20)

(where ˛n�1 is nonzero by hypothesis). Similarly, one can show by induction that if we know
qn�1;qn�2; : : : ;qn�j and the ˛’s, ˇ’s, and �’s up to level n � j , one can determine the
quantities at level n � .j C 1/.

To apply the lemma in practice, suppose one can somehow find a tridiagonal matrix
xAsC1 such that

xAsC1 D xQ
T
s 	
xAs 	 xQs (11.4.21)

where xQ
T
s is orthogonal and has the same last row as QTs in the original QL algorithm. Then

xQs D Qs and xAsC1 D AsC1.
Now, in the original algorithm, from equation (11.4.11) we see that the last row of QTs

is the same as the last row of P
.s/
n�1. But recall that P .s/n�1 is a plane rotation designed to

annihilate the .n � 2; n � 1/ element of As � ks1. A simple calculation using the expression
(11.1.1) shows that it has parameters

c D
dn�1 � ksq

e2n�1 C .dn�1 � ks/
2
; s D

�en�2q
e2n�1 C .dn�1 � ks/

2
(11.4.22)

The matrix P
.s/
n�1 	As 	 P

.s/T
n�1 is tridiagonal with two extra elements:26664

	 	 	
� � �
� � � x
� � �
x � �

37775 (11.4.23)

We must now reduce this to tridiagonal form with an orthogonal matrix whose last row is

Œ0; 0; : : : ; 0; 1� so that the last row of xQ
T
s will stay equal to P

.s/
n�1. This can be done by

a sequence of Householder or Givens transformations. For the special form of the matrix
(11.4.23), Givens is better. We rotate in the plane .n�3; n�2/ to annihilate the .n�3; n�1/
element. [By symmetry, the .n� 1; n� 3/ element will also be zeroed.] This leaves us with a
tridiagonal form except for the extra elements .n� 4; n� 2/ and .n� 2; n� 4/. We annihilate
these with a rotation in the .n � 4; n � 3/-plane, and so on. Thus a sequence of n � 2 Givens
rotations is required. The result is that

QTs D
xQ
T
s D

xP
.s/
1 	
xP
.s/
2 	 	 	

xP
.s/
n�2 	 P

.s/
n�1 (11.4.24)

where the xP ’s are the Givens rotations and Pn�1 is the same plane rotation as in the original
algorithm. Then equation (11.4.21) gives the next iterate of A. Note that the shift ks enters
implicitly through the parameters (11.4.22).



�

�

“nr3” — 2007/5/1 — 20:53 — page 588 — #610
�

�

� �

588 Chapter 11. Eigensystems

The following routine tqli (“TridiagonalQL Implicit”), based algorithmically
on the implementations in [2,3], works extremely well in practice. The number of it-
erations for the first few eigenvalues might be four or five, say, but meanwhile the
off-diagonal elements in the lower right-hand corner have been reduced too. The
later eigenvalues are liberated with very little work. The average number of itera-
tions per eigenvalue is typically 1.3–1.6. The operation count per iteration is O.n/,
with a fairly large effective coefficient, say � 20n. The total operation count for the
diagonalization is then very roughly � 20n � .1:3–1:6/n � 30n2. If the eigenvec-
tors are required, the statements indicated by comments are included and there is an
additional, much larger, workload of about 6n3 operations.

void Symmeig::tqli()eigen sym.h
QL algorithm with implicit shifts to determine the eigenvalues and (optionally) the eigenvectors
of a real, symmetric, tridiagonal matrix, or of a real symmetric matrix previously reduced by
tred2 (�11.3). On input, d[0..n-1] contains the diagonal elements of the tridiagonal matrix.
On output, it returns the eigenvalues. The vector e[0..n-1] inputs the subdiagonal elements
of the tridiagonal matrix, with e[0] arbitrary. On output e is destroyed. If the eigenvectors of
a tridiagonal matrix are desired, the matrix z[0..n-1][0..n-1] is input as the identity matrix.
If the eigenvectors of a matrix that has been reduced by tred2 are required, then z is input as
the matrix output by tred2. In either case, column k of z returns the normalized eigenvector
corresponding to d[k].
{

Int m,l,iter,i,k;
Doub s,r,p,g,f,dd,c,b;
const Doub EPS=numeric_limits<Doub>::epsilon();
for (i=1;i<n;i++) e[i-1]=e[i]; Convenient to renumber the el-

ements of e.e[n-1]=0.0;
for (l=0;l<n;l++) {

iter=0;
do {

for (m=l;m<n-1;m++) { Look for a single small subdi-
agonal element to split the
matrix.

dd=abs(d[m])+abs(d[m+1]);
if (abs(e[m]) <= EPS*dd) break;

}
if (m != l) {

if (iter++ == 30) throw("Too many iterations in tqli");
g=(d[l+1]-d[l])/(2.0*e[l]); Form shift.
r=pythag(g,1.0);
g=d[m]-d[l]+e[l]/(g+SIGN(r,g)); This is dm � ks .
s=c=1.0;
p=0.0;
for (i=m-1;i>=l;i--) { A plane rotation as in the origi-

nal QL, followed by Givens
rotations to restore tridiag-
onal form.

f=s*e[i];
b=c*e[i];
e[i+1]=(r=pythag(f,g));
if (r == 0.0) { Recover from underflow.

d[i+1] -= p;
e[m]=0.0;
break;

}
s=f/r;
c=g/r;
g=d[i+1]-p;
r=(d[i]-g)*s+2.0*c*b;
d[i+1]=g+(p=s*r);
g=c*r-b;
if (yesvecs) {

for (k=0;k<n;k++) { Form eigenvectors.
f=z[k][i+1];
z[k][i+1]=s*z[k][i]+c*f;
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z[k][i]=c*z[k][i]-s*f;
}

}
}
if (r == 0.0 && i >= l) continue;
d[l] -= p;
e[l]=g;
e[m]=0.0;

}
} while (m != l);

}
}

Doub Symmeig::pythag(const Doub a, const Doub b) {

Computes .a2 C b2/1=2 without destructive underflow or overflow.
Doub absa=abs(a), absb=abs(b);
return (absa > absb ? absa*sqrt(1.0+SQR(absb/absa)) :

(absb == 0.0 ? 0.0 : absb*sqrt(1.0+SQR(absa/absb))));
}

11.4.4 Newer Methods
There are two newer algorithms for tridiagonal symmetric systems that are gen-

erally more efficient than the QL method, especially for large matrices. The first is
the divide-and-conquer method [5]. This method divides the tridiagonal matrix into
two halves, solves the eigenproblems in each of the two halves, and then stitches the
two solutions together to generate the solution of the original problem. The method
is applied recursively, with the QL method used once the matrices are sufficiently
small. The method is implemented in LAPACK as dstevd and is about 2.5 times
faster than the QL method for large matrices.

The fastest method of all for the vast majority of matrices is the MRRR al-
gorithm (Multiple Relatively Robust Representations) [6]. As we will see in �11.8,
inverse iteration can determine the eigenvectors of a tridiagonal matrix in O.n2/ op-
erations. However, clustered eigenvalues lead to eigenvectors that are not properly
orthogonal to one another. Using a procedure like Gram-Schmidt to orthogonalize
the vectors isO.n3/. The MRRR algorithm is a sophisticated version of inverse iter-
ation that isO.n2/without requiring Gram-Schmidt. An implementation is available
in LAPACK as dstegr.
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Dhillon, I.S., and Parlett, B.N. 2004, “Multiple Representations to Compute Orthogonal Eigen-
vectors of Symmetric Tridiagonal Matrices,” Linear Algebra and Its Applications, vol. 387,
pp. 1–28.[6]
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11.5 Hermitian Matrices
The complex analog of a real symmetric matrix is a Hermitian matrix, satisfy-

ing equation (11.0.4). Jacobi transformations can be used to find eigenvalues and
eigenvectors, as can Householder reduction to tridiagonal form followed by QL it-
eration. Complex versions of the previous routines jacobi, tred2, and tqli are
quite analogous to their real counterparts. For working routines, consult [1,2].

An alternative, using the routines in this book, is to convert the Hermitian prob-
lem to a real symmetric one: If C D AC iB is a Hermitian matrix, then the n � n
complex eigenvalue problem

.AC iB/ 	 .uC iv/ D �.uC iv/ (11.5.1)

is equivalent to the 2n � 2n real problem�
A �B
B A

�
	

�
u
v

�
D �

�
u
v

�
(11.5.2)

Note that the 2n � 2n matrix in (11.5.2) is symmetric: AT D A and BT D �B if C
is Hermitian.

Corresponding to a given eigenvalue �, the vector�
�v
u

�
(11.5.3)

is also an eigenvector, as you can verify by writing out the two matrix equations
implied by (11.5.2). Thus, if �0; �1; : : : ; �n�1 are the eigenvalues of C, then the 2n
eigenvalues of the augmented problem (11.5.2) are �0; �0; �1; �1; : : : ; �n�1; �n�1;
each, in other words, is repeated twice. The eigenvectors are pairs of the form uC iv
and i.uC iv/; that is, they are the same up to an inessential phase. Thus we solve the
augmented problem (11.5.2) and choose one eigenvalue and eigenvector from each
pair. These give the eigenvalues and eigenvectors of the original matrix C.

Working with the augmented matrix requires a factor of two more storage than
the original complex matrix. In principle, a complex algorithm is also a factor of
two more efficient in computer time than is the solution of the augmented problem.
In practice, most complex implementations do not achieve this factor unless they are
written entirely in real arithmetic. (Good library routines always do this.)

CITED REFERENCES AND FURTHER READING:

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer).[1]

Smith, B.T., et al. 1976, Matrix Eigensystem Routines — EISPACK Guide, 2nd ed., vol. 6 of
Lecture Notes in Computer Science (New York: Springer).[2]

11.6 Real Nonsymmetric Matrices
The algorithms for symmetric matrices given in the preceding sections are highly

satisfactory in practice. By contrast, it is impossible to design equally satisfactory
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algorithms for the nonsymmetric case. There are two reasons for this. First, the
eigenvalues of a nonsymmetric matrix can be very sensitive to small changes in the
matrix elements. Second, the matrix itself can be defective, so that there is no com-
plete set of eigenvectors. We emphasize that these difficulties are intrinsic properties
of certain nonsymmetric matrices, and no numerical procedure can “cure” them. The
best we can hope for are procedures that don’t exacerbate such problems.

The presence of rounding error can only make the situation worse. With finite-
precision arithmetic, one cannot even design a foolproof algorithm to determine
whether a given matrix is defective or not. Thus current algorithms generally try
to find a complete set of eigenvectors and rely on the user to inspect the results. If
any eigenvectors are almost parallel, the matrix is probably defective.

The strategy for finding the eigensystem of a general matrix parallels that of the
symmetric case. First we reduce the matrix to a simpler form, and then we perform
an iterative procedure on the simplified matrix. The simpler structure we use here
is called Hessenberg form, defined later in this section. The user interface to the
routine is very simple. The declaration

Unsymmeig h(a);

computes all eigenvalues and eigenvectors of the matrix a. The eigenvalues are
stored in the complex vector h.wri and the corresponding eigenvectors in the columns
of the matrix h.zz. If h.wri[i] is real, the real eigenvector is in h.zz[0..n-1][i].
For complex eigenvalues, if h.wri[i] has a positive imaginary part, then the complex-
conjugate eigenvalue is in h.wri[i+1]. Only the eigenvector corresponding to
h.wri[i] is returned, with the real part in h.zz[0..n-1][i] and the imaginary
part in h.zz[0..n-1][i+1]. The eigenvector corresponding to h.wri[i+1] is
simply the complex conjugate of this one.

Optional arguments allow you to compute only the eigenvalues, or to input a
matrix already in Hessenberg form:

Unsymmeig h(a,false); Only eigenvalues computed.
Unsymmeig h(a,true,true); Both eigenvalues and eigenvectors, Hessenberg matrix.

Here is the routine. The implementations of the various components are dis-
cussed in the rest of this section and the next.

struct Unsymmeig { eigen unsym.h
Computes all eigenvalues and eigenvectors of a real nonsymmetric matrix by reduction to Hes-
senberg form followed by QR iteration.

Int n;
MatDoub a,zz;
VecComplex wri;
VecDoub scale; Stores scaling from balance.
VecInt perm; Stores permutation from elmhes.
Bool yesvecs,hessen;

Unsymmeig(MatDoub_I &aa, Bool yesvec=true, Bool hessenb=false) :
n(aa.nrows()), a(aa), zz(n,n,0.0), wri(n), scale(n,1.0), perm(n),
yesvecs(yesvec), hessen(hessenb)

Computes all eigenvalues and (optionally) eigenvectors of a real nonsymmetric matrix
a[0..n-1][0..n-1] by reduction to Hessenberg form followed byQR iteration. If yesvecs
is input as true (the default), then the eigenvectors are computed. Otherwise, only the
eigenvalues are computed. If hessen is input as false (the default), the matrix is first
reduced to Hessenberg form. Otherwise it is assumed that the matrix is already in Hessen-
berg from. On output, wri[0..n-1] contains the eigenvalues of a sorted into descending
order, while zz[0..n-1][0..n-1] is a matrix whose columns contain the corresponding
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eigenvectors. For a complex eigenvalue, only the eigenvector corresponding to the eigen-
value with a positive imaginary part is stored, with the real part in zz[0..n-1][i] and the
imaginary part in h.zz[0..n-1][i+1]. The eigenvectors are not normalized.
{

balance();
if (!hessen) elmhes();
if (yesvecs) {

for (Int i=0;i<n;i++) Initialize to unit matrix.
zz[i][i]=1.0;

if (!hessen) eltran();
hqr2();
balbak();
sortvecs();

} else {
hqr();
sort();

}
}
void balance();
void elmhes();
void eltran();
void hqr();
void hqr2();
void balbak();
void sort();
void sortvecs();

};

11.6.1 Balancing
The sensitivity of eigenvalues to rounding errors during the execution of some

algorithms can be reduced by the procedure of balancing. The errors in the eigensys-
tem found by a numerical procedure are generally proportional to the Euclidean norm
of the matrix, that is, to the square root of the sum of the squares of the elements.
The idea of balancing is to use similarity transformations to make corresponding
rows and columns of the matrix have comparable norms, thus reducing the overall
norm of the matrix while leaving the eigenvalues unchanged. A symmetric matrix is
already balanced.

Balancing is a procedure with of order N 2 operations. Thus, the time taken
by the procedure balance, given below, should never be significant compared to
the total time required to find the eigenvalues. It is therefore recommended that
you always balance nonsymmetric matrices. It never hurts, and it can substantially
improve the accuracy of the eigenvalues computed for a badly balanced matrix.

The actual algorithm used is due to Osborne, as discussed in [1]. It consists of a
sequence of similarity transformations by diagonal matrices D. To avoid introducing
rounding errors during the balancing process, the elements of D are restricted to be
exact powers of the radix base employed for floating-point arithmetic (i.e., 2 for all
modern machines, but 16 for some historical mainframe architectures). The output
is a matrix that is balanced in the norm given by summing the absolute magnitudes
of the matrix elements. This is more efficient than using the Euclidean norm, and
equally effective: A large reduction in one norm implies a large reduction in the
other.

Note that if the off-diagonal elements of any row or column of a matrix are
all zero, then the diagonal element is an eigenvalue. If the eigenvalue happens to
be ill-conditioned (sensitive to small changes in the matrix elements), it will have
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relatively large errors when determined by the routine hqr (�11.7). Had we merely
inspected the matrix beforehand, we could have determined the isolated eigenvalue
exactly and then deleted the corresponding row and column from the matrix. You
should consider whether such a pre-inspection might be useful in your application.
(For symmetric matrices, the routines we gave will determine isolated eigenvalues
accurately in all cases.)

The routine balance keeps track of the scale factors used in the balancing. If
you are computing eigenvectors as well as eigenvalues, then the accumulated simi-
larity transformation of the original matrix is undone by applying these scale factors
in the routine balbak.

void Unsymmeig::balance() eigen unsym.h
Given a matrix a[0..n-1][0..n-1], this routine replaces it by a balanced matrix with identical
eigenvalues. A symmetric matrix is already balanced and is unaffected by this procedure.
{

const Doub RADIX = numeric_limits<Doub>::radix;
Bool done=false;
Doub sqrdx=RADIX*RADIX;
while (!done) {

done=true;
for (Int i=0;i<n;i++) { Calculate row and column norms.

Doub r=0.0,c=0.0;
for (Int j=0;j<n;j++)

if (j != i) {
c += abs(a[j][i]);
r += abs(a[i][j]);

}
if (c != 0.0 && r != 0.0) { If both are nonzero,

Doub g=r/RADIX;
Doub f=1.0;
Doub s=c+r;
while (c<g) { find the integer power of the machine

radix that comes closest to balanc-
ing the matrix.

f *= RADIX;
c *= sqrdx;

}
g=r*RADIX;
while (c>g) {

f /= RADIX;
c /= sqrdx;

}
if ((c+r)/f < 0.95*s) {

done=false;
g=1.0/f;
scale[i] *= f;
for (Int j=0;j<n;j++) a[i][j] *= g; Apply similarity transforma-

tion.for (Int j=0;j<n;j++) a[j][i] *= f;
}

}
}

}
}

void Unsymmeig::balbak() eigen unsym.h
Forms the eigenvectors of a real nonsymmetric matrix by back transforming those of the corre-
sponding balanced matrix determined by balance.
{

for (Int i=0;i<n;i++)
for (Int j=0;j<n;j++)

zz[i][j] *= scale[i];
}
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11.6.2 Reduction to Hessenberg Form

An upper Hessenberg matrix has zeros everywhere below the diagonal except
for the first subdiagonal row. For example, in the 6 � 6 case, the nonzero elements
are 26666664

� � � � � �

� � � � � �

� � � � �

� � � �

� � �

� �

37777775
By now you should be able to tell at a glance that such a structure can be

achieved by a sequence of Householder transformations, each one zeroing the re-
quired elements in a column of the matrix. Householder reduction to Hessenberg
form is in fact an accepted technique. An alternative, however, is a procedure analo-
gous to Gaussian elimination with pivoting. We will use this elimination procedure
since it is about a factor of two more efficient than the Householder method, and
also since we want to teach you the method. It is possible to construct matrices for
which the Householder reduction, being orthogonal, is stable and elimination is not,
but such matrices are extremely rare in practice.

Straight Gaussian elimination is not a similarity transformation of the matrix.
Accordingly, the actual elimination procedure used is slightly different. We proceed
in a series of stages r D 1; 2; : : : ; N � 2. Before the r th stage, the original matrix
A � A1 has become Ar , which is upper Hessenberg up to, but not including, row and
column r � 1. The r th stage then consists of the following sequence of operations:

� Find the element of maximum magnitude in column r � 1 below the diagonal.
If it is zero, skip the next two “bullets” and the stage is done. Otherwise,
suppose the maximum element was in row r 0.
� Interchange rows r 0 and r . This is the pivoting procedure. To make the per-

mutation a similarity transformation, also interchange columns r 0 and r .
� For i D r C 1; r C 2; : : : ; N � 1, compute the multiplier

nir �
ai;r�1

ar;r�1

Subtract nir times row r from row i . To make the elimination a similarity
transformation, also add nir times column i to column r .

A total of N � 2 such stages are required.

When the magnitudes of the matrix elements vary over many orders, you should
try to rearrange the matrix so that the largest elements are in the top left-hand corner.
This reduces the roundoff error, since the reduction proceeds from left to right.

The routine elmhes keeps track of the permutations applied during the elim-
ination. If you are computing eigenvectors, then the accumulated similarity trans-
formation is applied to the eigenvectors by the routine eltran, which includes any
necessary permutations. The operation count is about 5N 3=3 for large N .
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void Unsymmeig::elmhes() eigen unsym.h
Reduction to Hessenberg form by the elimination method. Replaces the real nonsymmetric
matrix a[0..n-1][0..n-1] by an upper Hessenberg matrix with identical eigenvalues. Rec-
ommended, but not required, is that this routine be preceded by balance. On output, the
Hessenberg matrix is in elements a[i][j] with i � j+1. Elements with i > j+1 are to be
thought of as zero, but are returned with random values.
{

for (Int m=1;m<n-1;m++) { m is called r in the text.
Doub x=0.0;
Int i=m;
for (Int j=m;j<n;j++) { Find the pivot.

if (abs(a[j][m-1]) > abs(x)) {
x=a[j][m-1];
i=j;

}
}
perm[m]=i; Store permutation.
if (i != m) { Interchange rows and columns.

for (Int j=m-1;j<n;j++) SWAP(a[i][j],a[m][j]);
for (Int j=0;j<n;j++) SWAP(a[j][i],a[j][m]);

}
if (x != 0.0) { Carry out the elimination.

for (i=m+1;i<n;i++) {
Doub y=a[i][m-1];
if (y != 0.0) {

y /= x;
a[i][m-1]=y;
for (Int j=m;j<n;j++) a[i][j] -= y*a[m][j];
for (Int j=0;j<n;j++) a[j][m] += y*a[j][i];

}
}

}
}

}

void Unsymmeig::eltran() eigen unsym.h
This routine accumulates the stabilized elementary similarity transformations used in the re-
duction to upper Hessenberg form by elmhes. The multipliers that were used in the reduction
are obtained from the lower triangle (below the subdiagonal) of a. The transformations are
permuted according to the permutations stored in perm by elmhes.
{

for (Int mp=n-2;mp>0;mp--) {
for (Int k=mp+1;k<n;k++)

zz[k][mp]=a[k][mp-1];
Int i=perm[mp];
if (i != mp) {

for (Int j=mp;j<n;j++) {
zz[mp][j]=zz[i][j];
zz[i][j]=0.0;

}
zz[i][mp]=1.0;

}
}

}

CITED REFERENCES AND FURTHER READING:

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer).[1]

Smith, B.T., et al. 1976, Matrix Eigensystem Routines — EISPACK Guide, 2nd ed., vol. 6 of
Lecture Notes in Computer Science (New York: Springer).[2]

Stoer, J., and Bulirsch, R. 2002, Introduction to Numerical Analysis, 3rd ed. (New York: Springer),
�6.5.4.[3]
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11.7 The QR Algorithm for Real Hessenberg
Matrices

To complete the strategy for real, nonsymmetric matrices that was laid out in
�11.6, we need to compute the eigenvalues and eigenvectors of a real Hessenberg
matrix. Recall the following relations for the QR algorithm with shifts:

Qs 	 .As � ks1/ D Rs (11.7.1)

where Q is orthogonal and R is upper triangular, and

AsC1 D Rs 	Q
T
s C ks1

D Qs 	As 	Q
T
s

(11.7.2)

The QR transformation preserves the upper Hessenberg form of the original matrix
A � A1, and the workload on such a matrix is O.n2/ per iteration as opposed
to O.n3/ on a general matrix. As s ! 1, As converges to a form where the
eigenvalues are either isolated on the diagonal or are eigenvalues of a 2�2 submatrix
on the diagonal.

As we pointed out in �11.4, shifting is essential for rapid convergence. A key
difference here is that a nonsymmetric real matrix can have complex eigenvalues.
This means that good choices for the shifts ks may be complex, apparently necessi-
tating complex arithmetic.

Complex arithmetic can be avoided, however, by a clever trick. This trick, plus
a detailed description of how theQR algorithm is used, is described in a Webnote [1].

The operation count for the QR algorithm for Hessenberg matrices is � 10k2

per iteration, where k is the current size of the matrix. The typical average number of
iterations per eigenvalue is about two, so the total operation count for all the eigen-
values is � 10n3. The total operation count for both eigenvalues and eigenvectors is
� 25n3.

The routines hqr for the eigenvalues only, and hqr2, which computes both
eigenvalues and eigenvectors, are given in full in a Webnote [2], along with a few
Unsymmeig utility routines not already listed. The implementations are based algo-
rithmically on the above description, in turn following the implementations in [3,4].

CITED REFERENCES AND FURTHER READING:

Numerical Recipes Software 2007, “Description of the QR Algorithm for Hessenberg Matrices,”
Numerical Recipes Webnote No. 16, at http://www.nr.com/webnotes?16 [1]

Numerical Recipes Software 2007, “Implementations in Unsymmeig,” Numerical Recipes Web-
note No. 17, at http://www.nr.com/webnotes?17 [2]

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer).[3]

Golub, G.H., and Van Loan, C.F. 1996, Matrix Computations, 3rd ed. (Baltimore: Johns Hopkins
University Press), �7.5.

Smith, B.T., et al. 1976, Matrix Eigensystem Routines — EISPACK Guide, 2nd ed., vol. 6 of
Lecture Notes in Computer Science (New York: Springer).[4]
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11.8 Improving Eigenvalues and/or Finding
Eigenvectors by Inverse Iteration

The basic idea behind inverse iteration is quite simple. Let y be the solution of
the linear system

.A � �1/ 	 y D b (11.8.1)

where b is a random vector and � is close to some eigenvalue � of A. Then the
solution y will be close to the eigenvector corresponding to �. The procedure can be
iterated: Replace b by y and solve for a new y , which will be even closer to the true
eigenvector.

We can see why this works by expanding both y and b as linear combinations
of the eigenvectors xj of A:

y D
X
j

j̨xj b D
X
j

ǰxj (11.8.2)

Then (11.8.1) gives X
j

j̨ .�j � �/xj D
X
j

ǰxj (11.8.3)

so that

j̨ D
ǰ

�j � �
(11.8.4)

and

y D
X
j

ǰxj

�j � �
(11.8.5)

If � is close to �n, say, then provided ˇn is not accidentally too small, y will be
approximately xn, up to a normalization. Moreover, each iteration of this procedure
gives another power of �j � � in the denominator of (11.8.5). Thus the convergence
is rapid for well-separated eigenvalues.

Suppose at the kth stage of iteration we are solving the equation

.A � �k1/ 	 y D bk (11.8.6)

where bk and �k are our current guesses for some eigenvector and eigenvalue of in-
terest (let’s say xn and �n). Normalize bk so that bk 	bk D 1. The exact eigenvector
and eigenvalue satisfy

A 	 xn D �nxn (11.8.7)

so

.A � �k1/ 	 xn D .�n � �k/xn (11.8.8)

Since y of (11.8.6) is an improved approximation to xn, we normalize it and set

bkC1 D
y

jyj
(11.8.9)
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We get an improved estimate of the eigenvalue by substituting our improved guess y
for xn in (11.8.8). By (11.8.6), the left-hand side is bk , so, calling �n our new value
�kC1, we find

�kC1 D �k C
1

bk 	 y
(11.8.10)

While the above formulas look simple enough, in practice the implementation
can be quite tricky. The first question to be resolved is when to use inverse iteration.
Most of the computational load occurs in solving the linear system (11.8.6). Thus
a possible strategy is first to reduce the matrix A to a special form that allows easy
solution of (11.8.6). Tridiagonal form for symmetric matrices or Hessenberg for
nonsymmetric are the obvious choices. The tridiagonal form can be solved in O.N/
operations, the Hessenberg form in O.N 2/ operations. If you then apply inverse it-
eration to generate all the eigenvectors, this gives an O.N 2/ method for tridiagonal
matrices. The problem is that closely spaced eigenvalues lead to eigenvectors that
are not properly orthogonal to one another. Using a procedure like Gram-Schmidt
to orthogonalize the vectors is O.n3/, and not entirely satisfactory anyway. Accord-
ingly, inverse iteration is generally used when one already has good eigenvalues and
wants only a few selected eigenvectors.

You can write a simple inverse iteration routine yourself using LU decomposi-
tion to solve (11.8.6). You can decide whether to use the general LU algorithm we
gave in Chapter 2 or whether to take advantage of tridiagonal or Hessenberg form.
Note that, since the linear system (11.8.6) is nearly singular, you must be careful to
use a version of LU decomposition like that in �2.3 which replaces a zero pivot with
a very small number.

We have chosen not to give a general inverse iteration routine in this book, be-
cause it is quite cumbersome to take account of all the cases that can arise. Routines
are given, for example, in [1-3]. If you use these, or write your own routine, you may
appreciate the following pointers.

One starts by supplying an initial value �0 for the eigenvalue �n of interest.
Choose a random normalized vector b0 as the initial guess for the eigenvector xn,
and solve (11.8.6). The new vector y is bigger than b0 by a “growth factor” jyj,
which ideally should be large. Equivalently, the change in the eigenvalue, which by
(11.8.10) is essentially 1= jyj, should be small. The following cases can arise:

� If the growth factor is too small initially, then we assume we have made a
“bad” choice of random vector. This can happen not just because of a small
ˇn in (11.8.5), but also in the case of a defective matrix, when (11.8.5) does
not even apply (see, e.g., [1] or [4] for details). We go back to the beginning
and choose a new initial vector.
� The change jb1 � b0j might be less than some tolerance �. We can use this as

a criterion for stopping, iterating until it is satisfied, with a maximum of 5–10
iterations, say.
� After a few iterations, if jbkC1 � bkj is not decreasing rapidly enough, we can

try updating the eigenvalue according to (11.8.10). If �kC1 D �k to machine
accuracy, we are not going to improve the eigenvector much more and can
quit. Otherwise start another cycle of iterations with the new eigenvalue.

The reason we do not update the eigenvalue at every step is that when we solve
the linear system (11.8.6) by LU decomposition, we can save the decomposition if
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�k is fixed (assuming we are working with the full matrix). We only need to do the
backsubstitution step each time we update bk . The number of iterations we decide
to do with a fixed �k is a trade-off between the quadratic convergence but O.N 3/

workload for updating �k at each step and the linear convergence but O.N 2/ load
for keeping �k fixed. If you have determined the eigenvalue by one of the routines
given earlier in the chapter, it is probably correct to machine accuracy anyway, and
you can omit updating it.

There are two different pathologies that can arise during inverse iteration. The
first is multiple or closely spaced roots. This is more often a problem with symmetric
matrices. Inverse iteration will find only one eigenvector for a given initial guess �0.
A good strategy is to perturb the last few significant digits in �0 and then repeat the
iteration. Usually this provides an independent eigenvector. Special steps generally
have to be taken to ensure orthogonality of the linearly independent eigenvectors,
whereas the Jacobi and QL algorithms automatically yield orthogonal eigenvectors
even in the case of multiple eigenvalues.

The second problem, peculiar to nonsymmetric matrices, is the defective case.
Unless one makes a “good” initial guess, the growth factor is small. Moreover,
iteration does not improve matters. In this case, the remedy is to choose random
initial vectors, solve (11.8.6) once, and quit as soon as any vector gives an acceptably
large growth factor. Typically only a few trials are necessary.

One further complication in the nonsymmetric case is that a real matrix can
have complex-conjugate pairs of eigenvalues. You will then have to use complex
arithmetic to solve (11.8.6) for the complex eigenvectors. For any moderate-sized
(or larger) nonsymmetric matrix, our recommendation is to avoid inverse iteration in
favor of a QR method like Unsymmeig.

A good discussion of these and other problems with inverse iteration is given
in [5]. As discussed in �11.4.4, for symmetric tridiagonal matrices, the MRRR algo-
rithm is a sophisticated version of inverse iteration that avoids all these problems.

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington, DC:
Mathematical Association of America).

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-
putation (New York: Springer), p. 418.[1]

Smith, B.T., et al. 1976, Matrix Eigensystem Routines — EISPACK Guide, 2nd ed., vol. 6 of
Lecture Notes in Computer Science (New York: Springer).[2]

Anderson, E., et al. 1999, LAPACK User’s Guide, 3rd ed. (Philadelphia: S.I.A.M.). Online with
software at 2007+, http://www.netlib.org/lapack.[3]

Stoer, J., and Bulirsch, R. 2002, Introduction to Numerical Analysis, 3rd ed. (New York: Springer),
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12.0 Introduction

A very large class of important computational problems falls under the gen-
eral rubric of Fourier transform methods or spectral methods. For some of these
problems, the Fourier transform is simply an efficient computational tool for accom-
plishing certain common manipulations of data. In other cases, we have problems
for which the Fourier transform (or the related power spectrum) is itself of intrinsic
interest. These two kinds of problems share a common methodology.

Historically, Fourier and spectral methods have been considered a part of “sig-
nal processing,” rather than “numerical analysis” proper. There is really no justifi-
cation for such a distinction. Fourier methods are commonplace in research and we
will not treat them as specialized or arcane. However, we realize that many users
have had relatively less experience with this field than with, say, differential equa-
tions or numerical integration. Therefore our summary of analytical results will be
more complete. Numerical algorithms, per se, begin in �12.2. Various applications
of Fourier transform methods are discussed in Chapter 13.

A physical process can be described either in the time domain, by the values
of some quantity h as a function of time t , e.g., h.t/, or else in the frequency do-
main, where the process is specified by giving its amplitudeH (generally a complex
number indicating phase also) as a function of frequency f , that is, H.f /, with
�1 < f < 1. For many purposes it is useful to think of h.t/ and H.f / as being
two different representations of the same function. One goes back and forth between
these two representations by means of the Fourier transform equations,

H.f / D

Z 1
�1

h.t/e2	if tdt

h.t/ D

Z 1
�1

H.f /e�2	if tdf

(12.0.1)

If t is measured in seconds, then f in equation (12.0.1) is in cycles per second,
or Hertz (the unit of frequency). However, the equations work with other units, too.
If h is a function of position x (in meters),H will be a function of inverse wavelength

600
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(cycles per meter), and so on. If you are trained as a physicist or mathematician, you
are probably more used to using angular frequency !, which is given in radians per
second. The relation between ! and f , H.!/ and H.f /, is

! � 2	f H.!/ � ŒH.f /�fD!=2	 (12.0.2)

and equation (12.0.1) looks like this:

H.!/ D

Z 1
�1

h.t/ei!tdt

h.t/ D
1

2	

Z 1
�1

H.!/e�i!td!

(12.0.3)

We were raised on the !-convention, but we changed! There are fewer factors of
2	 to remember if you use the f -convention, especially when we get to discretely
sampled data in �12.1.

From equation (12.0.1) it is evident at once that Fourier transformation is a
linear operation. The transform of the sum of two functions is equal to the sum of
the transforms. The transform of a constant times a function is that same constant
times the transform of the function.

In the time domain, the function h.t/ may happen to have one or more spe-
cial symmetries. It might be purely real or purely imaginary or it might be even,
h.t/ D h.�t /, or odd, h.t/ D �h.�t /. In the frequency domain, these symme-
tries lead to relationships between H.f / and H.�f /. The following table gives the
correspondence between symmetries in the two domains:

If : : : then : : :

h.t/ is real H.�f / D ŒH.f /��

h.t/ is imaginary H.�f / D �ŒH.f /��

h.t/ is even H.�f / D H.f / [i.e., H.f / is even]
h.t/ is odd H.�f / D �H.f / [i.e., H.f / is odd]
h.t/ is real and even H.f / is real and even
h.t/ is real and odd H.f / is imaginary and odd
h.t/ is imaginary and even H.f / is imaginary and even
h.t/ is imaginary and odd H.f / is real and odd

In subsequent sections we shall see how to use these symmetries to increase compu-
tational efficiency.

Here are some other elementary properties of the Fourier transform. (We’ll use
the “”” symbol to indicate transform pairs.) If

h.t/” H.f / (12.0.4)

is such a pair, then other transform pairs are



�

�

“nr3” — 2007/5/1 — 20:53 — page 602 — #624
�

�

� �

602 Chapter 12. Fast Fourier Transform

h.at/”
1

jaj
H.

f

a
/ time scaling (12.0.5)

1

jbj
h.
t

b
/” H.bf / frequency scaling (12.0.6)

h.t � t0/” H.f / e2	if t0 time shifting (12.0.7)

h.t/ e�2	if0t” H.f � f0/ frequency shifting (12.0.8)

With two functions h.t/ and g.t/, and their corresponding Fourier transforms
H.f / andG.f /, we can form two combinations of special interest. The convolution
of the two functions, denoted g 
 h, is defined by

g 
 h �

Z 1
�1

g.�/h.t � �/ d� (12.0.9)

Note that g 
 h is a function in the time domain and that g 
 h D h 
 g. It turns out
that the function g 
 h is one member of a simple transform pair,

g 
 h” G.f /H.f / convolution theorem (12.0.10)

In other words, the Fourier transform of the convolution is just the product of the
individual Fourier transforms.

The correlation of two functions, denoted Corr.g; h/, is defined by

Corr.g; h/ �
Z 1
�1

g.� C t /h.�/ d� (12.0.11)

The correlation is a function of t , which is called the lag. It therefore lies in the time
domain, and it turns out to be one member of the transform pair:

Corr.g; h/” G.f /H�.f / correlation theorem (12.0.12)

[More generally, the second member of the pair is G.f /H.�f /, but we are restrict-
ing ourselves to the usual case in which g and h are real functions, so we take the
liberty of setting H.�f / D H�.f /.] This result shows that multiplying the Fourier
transform of one function by the complex conjugate of the Fourier transform of the
other gives the Fourier transform of their correlation. The correlation of a function
with itself is called its autocorrelation. In this case (12.0.12) becomes the transform
pair

Corr.g; g/”jG.f /j2 Wiener-Khinchin theorem (12.0.13)

The total power in a signal is the same whether we compute it in the time
domain or in the frequency domain. This result is known as Parseval’s theorem:

total power �
Z 1
�1

jh.t/j2 dt D

Z 1
�1

jH.f /j2 df (12.0.14)

Frequently one wants to know “how much power” is contained in the frequency
interval between f and f C df . In such circumstances, one does not usually distin-
guish between positive and negative f , but rather regards f as varying from 0 (“zero
frequency” or D.C.) toC1. In such cases, one defines the one-sided power spectral
density (PSD) of the function h as

Ph.f / � jH.f /j
2 C jH.�f /j2 0 
 f <1 (12.0.15)
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Figure 12.0.1. Normalizations of one- and two-sided power spectra. The area under the square of the
function, (a), equals the area under its one-sided power spectrum at positive frequencies, (b), and also
equals the area under its two-sided power spectrum at positive and negative frequencies, (c).

so that the total power is just the integral of Ph.f / from f D 0 to f D 1. When the
function h.t/ is real, the two terms in (12.0.15) are equal, so Ph.f / D 2 jH.f /j2.
Be warned that one occasionally sees PSDs defined without this factor two. These,
strictly speaking, are called two-sided power spectral densities, but some books are
not careful about stating whether one- or two-sided is to be assumed. We will always
use the one-sided density given by equation (12.0.15). Figure 12.0.1 contrasts the
two conventions.

If the function h.t/ goes endlessly from �1 < t < 1, then its total power
and power spectral density will, in general, be infinite. Of interest then is the (one-
or two-sided) power spectral density per unit time. This is computed by taking a
long, but finite, stretch of the function h.t/, computing its PSD [that is, the PSD
of a function that equals h.t/ in the finite stretch but is zero everywhere else], and
then dividing the resulting PSD by the length of the stretch used. Parseval’s theorem
in this case states that the integral of the one-sided PSD-per-unit-time over positive
frequency is equal to the mean square amplitude of the signal h.t/.

You might well worry about how the PSD-per-unit-time, which is a function of
frequency f , converges as one evaluates it using longer and longer stretches of data.
This interesting question is the content of the subject of “power spectrum estimation”
and will be considered below in �13.4 – �13.7. A crude answer for now is, the
PSD-per-unit-time converges to finite values at all frequencies except those where
h.t/ has a discrete sine-wave (or cosine-wave) component of finite amplitude. At
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those frequencies, it becomes a delta-function, i.e., a sharp spike, whose width gets
narrower and narrower, but whose area converges to be the mean square amplitude
of the discrete sine or cosine component at that frequency.

We have by now stated all of the analytical formalism that we will need in this
chapter, with one exception: In computational work, especially with experimental
data, we are almost never given a continuous function h.t/ to work with, but are
given, rather, a list of measurements of h.ti / for a discrete set of ti ’s. The profound
implications of this seemingly trivial fact are the subject of �12.1.

12.0.1 Higher-Order Statistics

The Wiener-Khinchin theorem, equation (12.0.13), along with the definition
(12.0.11), shows that the power spectrum of a function is fully equivalent to the func-
tion’s two-point statistic, that is, the expectation value of the product of the function
at two different points separated by t . One can correspondingly define higher-order
statistics in both the time and Fourier domains. For example, a function’s three-point
correlation is

Corr3.g; g; g/ �
Z 1
�1

g.�/g.� C t1/g.� C t2/ d� (12.0.16)

a function of the two variables t1 and t2. The two-dimensional Fourier transform
(�12.5) of equation (12.0.16) over t1 and t2 is called the bispectrum, a function of
two frequencies f1 and f2.

Higher-order statistics, including the bispectrum, can make visible non-Gaussian
and nonlinear phenomena to which two-point statistics (and thus power spectra) are
blind. However, they have the disadvantages of being often difficult to interpret and,
because of the high powers of the signal that enter, highly susceptible to noise. On
these grounds, we advise caution. Useful, if sometimes overly enthusiastic, refer-
ences are [1,2,3].

CITED REFERENCES AND FURTHER READING:

Bracewell, R.N. 1999, The Fourier Transform and Its Applications, 3rd ed. (New York: McGraw-
Hill)

Folland, G.B. 1992, Fourier Analysis and Its Applications (Pacific Grove, CA: Wadsworth &
Brooks).

James, J.F. 2002, A Student’s Guide to Fourier Transforms, 2nd ed. (Cambridge, UK: Cambridge
University Press)

Elliott, D.F., and Rao, K.R. 1982, Fast Transforms: Algorithms, Analyses, Applications (New York:
Academic Press).

Brillinger, D., and Rosenblatt, M. 1967, “Computation and Intepretation of kth Order Spectra,” in
B. Harris, ed., Spectral Analysis of Time Signals (New York: Wiley).[1]

Mendel, J.M. 1991, “Tutorial on Higher-Order Statistics (Spectra) in Signal Processing and Sys-
tem Theory: Theoretical Results and Some Applications,” Proceedings of the IEEE, vol. 79,
pp. 278–305.[2]

Nikias, C.L., and Petropulu, A.P. 1993, Higher-Order Spectra Analysis (New Jersey: Prentice-
Hall).[3]
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12.1 Fourier Transform of Discretely Sampled
Data

In the most common situations, function h.t/ is sampled (that is, its value is
recorded) at evenly spaced intervals in time. Let � denote the time interval between
consecutive samples, so that the sequence of sampled values is

hn D h.n�/ n D : : : ;�3;�2;�1; 0; 1; 2; 3; : : : (12.1.1)

The reciprocal of the time interval � is called the sampling rate; if � is measured
in seconds, for example, then the sampling rate is the number of samples recorded
per second.

12.1.1 Sampling Theorem and Aliasing
For any sampling interval �, there is also a special frequency fc , called the

Nyquist critical frequency, given by

fc �
1

2�
(12.1.2)

If a sine wave of the Nyquist critical frequency is sampled at its positive peak value,
then the next sample will be at its negative trough value, the sample after that at the
positive peak again, and so on. Expressed otherwise: Critical sampling of a sine
wave is two sample points per cycle. One frequently chooses to measure time in
units of the sampling interval �. In this case, the Nyquist critical frequency is just
the constant 1/2.

The Nyquist critical frequency is important for two related, but distinct, reasons.
One is good news, and the other bad news. First the good news. It is the remarkable
fact known as the sampling theorem: If a continuous function h.t/, sampled at an
interval �, happens to be bandwidth limited to frequencies smaller in magnitude
than fc , i.e., if H.f / D 0 for all jf j � fc , then the function h.t/ is completely
determined by its samples hn. In fact, h.t/ is given explicitly by the formula

h.t/ D �

C1X
nD�1

hn
sinŒ2	fc.t � n�/�

	.t � n�/
(12.1.3)

This is a remarkable theorem for many reasons, among them that it shows that the
“information content” of a bandwidth limited function is, in some sense, infinitely
smaller than that of a general continuous function. Fairly often, one is dealing with
a signal that is known on physical grounds to be bandwidth limited (or at least ap-
proximately bandwidth limited). For example, the signal may have passed through
a physical component with a known, finite frequency response. In this case, the
sampling theorem tells us that the entire information content of the signal can be
recorded by sampling it at a rate��1 equal to twice the maximum frequency passed
by the amplifier (cf. equation 12.1.2).

Now the bad news. The bad news concerns the effect of sampling a continu-
ous function that is not bandwidth limited to less than the Nyquist critical frequency.
In that case, it turns out that all of the power spectral density that lies outside of
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Figure 12.1.1. The continuous function shown in (a) is nonzero only for a finite interval of time T . It
follows that its Fourier transform, whose modulus is shown schematically in (b), is not bandwidth limited
but has finite amplitude for all frequencies. If the original function is sampled with a sampling interval
�, as in (a), then the Fourier transform (c) is defined only between plus and minus the Nyquist critical
frequency. Power outside that range is folded over or “aliased” into the range. The effect can be eliminated
only by low-pass filtering the original function before sampling.

the frequency range �fc < f < fc is spuriously moved into that range. This
phenomenon is called aliasing. Any frequency component outside of the frequency
range .�fc ; fc/ is aliased (falsely translated) into that range by the very act of dis-
crete sampling. You can readily convince yourself that two waves exp.2	if1t / and
exp.2	if2t / give the same samples at an interval� if and only if f1 and f2 differ by
a multiple of 1=�, which is just the width in frequency of the range .�fc ; fc/. There
is little that you can do to remove aliased power once you have discretely sampled
a signal. The way to overcome aliasing is to (i) know the natural bandwidth limit
of the signal — or else enforce a known limit by analog filtering of the continuous
signal, and then (ii) sample at a rate sufficiently rapid to give at least two points per
cycle of the highest frequency present. Figure 12.1.1 illustrates these considerations.

To put the best face on this, we can take the alternative point of view: If a
continuous function has been competently sampled, then, when we come to estimate
its Fourier transform from the discrete samples, we can assume (or rather we might as
well assume) that its Fourier transform is equal to zero outside of the frequency range
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in between �fc and fc . Then we look to the Fourier transform to tell whether the
continuous function has been competently sampled (aliasing effects minimized). We
do this by looking to see whether the Fourier transform is already approaching zero
as the frequency approaches fc from below or �fc from above. If, on the contrary,
the transform is going toward some finite value, then chances are that components
outside of the range have been folded back over onto the critical range.

12.1.2 Discrete Fourier Transform
We now estimate the Fourier transform of a function from a finite number of its

sampled points. Suppose that we have N consecutive sampled values,

hk � h.tk/; tk � k�; k D 0; 1; 2; : : : ; N � 1 (12.1.4)

so that the sampling interval is �. To make things simpler, let us also suppose that
N is even. If the function h.t/ is nonzero only in a finite interval of time, then
that whole interval of time is supposed to be contained in the range of the N points
given. Alternatively, if the function h.t/ goes on forever, then the sampled points are
supposed to be at least “typical” of what h.t/ looks like at all other times.

With N numbers of input, we will evidently be able to produce no more than
N independent numbers of output. So, instead of trying to estimate the Fourier
transform H.f / at all values of f in the range �fc to fc , let us seek estimates only
at the discrete values

fn �
n

N�
; n D �

N

2
; : : : ;

N

2
(12.1.5)

The extreme values of n in (12.1.5) correspond exactly to the lower and upper limits
of the Nyquist critical frequency range. If you are really on the ball, you will have
noticed that there are N C 1, not N , values of n in (12.1.5); it will turn out that the
two extreme values of n are not independent (in fact they are equal), but all the others
are. This reduces the count to N .

The remaining step is to approximate the integral in (12.0.1) by a discrete sum:

H.fn/ D

Z 1
�1

h.t/e2	ifntdt �

N�1X
kD0

hk e
2	ifntk� D �

N�1X
kD0

hk e
2	ikn=N

(12.1.6)
Here equations (12.1.4) and (12.1.5) have been used in the final equality. The final
summation in equation (12.1.6) is called the discrete Fourier transform of the N
points hk . Let us denote it by Hn,

Hn �

N�1X
kD0

hk e
2	ikn=N (12.1.7)

The discrete Fourier transform mapsN complex numbers (the hk’s) intoN complex
numbers (the Hn’s). It does not depend on any dimensional parameter, such as the
time scale�. The relation (12.1.6) between the discrete Fourier transform of a set of
numbers and their continuous Fourier transform when they are viewed as samples of
a continuous function sampled at an interval � can be rewritten as

H.fn/ � �Hn (12.1.8)
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where fn is given by (12.1.5).
Up to now we have taken the view that the index n in (12.1.7) varies from�N=2

to N=2 (cf. 12.1.5). You can easily see, however, that (12.1.7) is periodic in n, with
period N . Therefore, H�n D HN�n, n D 1; 2; : : : . With this conversion in mind,
one generally lets the n in Hn vary from 0 to N � 1 (one complete period). Then
n and k (in hk) vary exactly over the same range, so the mapping of N numbers
into N numbers is manifest. When this convention is followed, you must remember
that zero frequency corresponds to n D 0 and positive frequencies 0 < f < fc
correspond to values 1 
 n 
 N=2 � 1, while negative frequencies �fc < f < 0

correspond to N=2 C 1 
 n 
 N � 1. The value n D N=2 corresponds to both
f D fc and f D �fc .

The discrete Fourier transform has symmetry properties almost exactly the same
as the continuous Fourier transform. For example, all the symmetries in the table
following equation (12.0.3) hold if we read hk for h.t/, Hn for H.f /, and HN�n
for H.�f /. (Likewise, “even” and “odd” in time refer to whether the values hk at k
and N � k are identical or the negative of each other.)

The formula for the discrete inverse Fourier transform, which recovers the set
of hk’s exactly from the Hn’s is

hk D
1

N

N�1X
nD0

Hn e
�2	ikn=N (12.1.9)

Notice that the only differences between (12.1.9) and (12.1.7) are (i) changing the
sign in the exponential, and (ii) dividing the answer by N . This means that a rou-
tine for calculating discrete Fourier transforms can also, with slight modification,
calculate the inverse transforms.

The discrete form of Parseval’s theorem is
N�1X
kD0

jhkj
2 D

1

N

N�1X
nD0

jHnj
2 (12.1.10)

There are also discrete analogs to the convolution and correlation theorems (equa-
tions 12.0.10 and 12.0.12), but we shall defer them to �13.1 and �13.2, respectively.

CITED REFERENCES AND FURTHER READING:

Brigham, E.O. 1974, The Fast Fourier Transform (Englewood Cliffs, NJ: Prentice-Hall).

James, J.F. 2002, A Student’s Guide to Fourier Transforms, 2nd ed. (Cambridge, UK: Cambridge
University Press)

Elliott, D.F., and Rao, K.R. 1982, Fast Transforms: Algorithms, Analyses, Applications (New York:
Academic Press).

12.2 Fast Fourier Transform (FFT)
How much computation is involved in computing the discrete Fourier transform

(12.1.7) of N points? For many years, until the mid-1960s, the standard answer was
this: Define W as the complex number

W � e2	i=N (12.2.1)
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Then (12.1.7) can be written as

Hn D

N�1X
kD0

W nkhk (12.2.2)

In other words, the vector of hk’s is multiplied by a matrix whose .n; k/th element
is the constant W to the power n � k. The matrix multiplication produces a vector
result whose components are theHn’s. This matrix multiplication evidently requires
N 2 complex multiplications, plus a smaller number of operations to generate the re-
quired powers ofW . So, the discrete Fourier transform appears to be anO.N 2/ pro-
cess. These appearances are deceiving! The discrete Fourier transform can, in fact,
be computed in O.N log2N/ operations with an algorithm called the fast Fourier
transform, or FFT. The difference between N log2N and N 2 is immense. With
N D 108, for example, it is a factor of several million, comparable to the ratio
of one second to one month. The existence of an FFT algorithm became generally
known only in the mid-1960s, from the work of J.W. Cooley and J.W. Tukey. Ret-
rospectively, we now know (see [1]) that efficient methods for computing the DFT
had been independently discovered, and in some cases implemented, by as many as
a dozen individuals, starting with Gauss in 1805!

One “rediscovery” of the FFT, that of Danielson and Lanczos in 1942, provides
one of the clearest derivations of the algorithm. Danielson and Lanczos showed that
a discrete Fourier transform of length N can be rewritten as the sum of two discrete
Fourier transforms, each of length N=2. One of the two is formed from the even-
numbered points of the original N , the other from the odd-numbered points. The
proof is simply this:

Fk D

N�1X
jD0

e2	ijk=Nfj

D

N=2�1X
jD0

e2	ik.2j /=Nf2j C

N=2�1X
jD0

e2	ik.2jC1/=Nf2jC1

D

N=2�1X
jD0

e2	ikj=.N=2/f2j CW
k

N=2�1X
jD0

e2	ikj=.N=2/f2jC1

D F ek CW
k F ok

(12.2.3)

In the last line, W is the same complex constant as in (12.2.1), F e
k

denotes the kth
component of the Fourier transform of lengthN=2 formed from the even components
of the original fj ’s, while F o

k
is the corresponding transform of length N=2 formed

from the odd components. Notice also that k in the last line of (12.2.3) varies from
0 to N , not just to N=2. Nevertheless, the transforms F e

k
and F o

k
are periodic in k

with length N=2. So each is repeated through two cycles to obtain Fk .
The wonderful thing about the Danielson-Lanczos lemma is that it can be used

recursively. Having reduced the problem of computing Fk to that of computing
F e
k

and F o
k

, we can do the same reduction of F e
k

to the problem of computing the
transform of its N=4 even-numbered input data and N=4 odd-numbered data. In
other words, we can define F ee

k
and F eo

k
to be the discrete Fourier transforms of the



�

�

“nr3” — 2007/5/1 — 20:53 — page 610 — #632
�

�

� �

610 Chapter 12. Fast Fourier Transform

points that are respectively even-even and even-odd on the successive subdivisions
of the data.

Although there are ways of treating other cases, by far the easiest case is the
one in which the original N is an integer power of 2. In fact, we categorically
recommend that you only use FFTs with N a power of 2. If the length of your data
set is not a power of 2, pad it with zeros up to the next power of 2. (We will give
more sophisticated suggestions in subsequent sections below.) With this restriction
onN , it is evident that we can continue applying the Danielson-Lanczos lemma until
we have subdivided the data all the way down to transforms of length one. What is
the Fourier transform of length one? It is just the identity operation that copies its
one input number into its one output slot! In other words, for every pattern of log2N
e’s and o’s, there is a one-point transform that is just one of the input numbers fn,

F eoeeoeo���oeek D fn for some n (12.2.4)

(Of course this one-point transform actually does not depend on k, since it is periodic
in k with period 1.)

The next trick is to figure out which value of n corresponds to which pattern
of e’s and o’s in equation (12.2.4). The answer is: Reverse the pattern of e’s and
o’s, then let e D 0 and o D 1, and you will have, in binary, the value of n. Do
you see why it works? It is because the successive subdivisions of the data into even
and odd are tests of successive low-order (least significant) bits of n. This idea of
bit reversal can be exploited in a very clever way that, along with the Danielson-
Lanczos lemma, makes FFTs practical: Suppose we take the original vector of data
fj and rearrange it into bit-reversed order (see Figure 12.2.1), so that the individual
numbers are in the order not of j , but of the number obtained by bit reversing j .
Then the bookkeeping on the recursive application of the Danielson-Lanczos lemma
becomes extraordinarily simple. The points as given are the one-point transforms.
We combine adjacent pairs to get two-point transforms, then combine adjacent pairs
of pairs to get four-point transforms, and so on, until the first and second halves of
the whole data set are combined into the final transform. Each combination takes
of order N operations, and there are evidently log2N combinations, so the whole
algorithm is of order N log2N (assuming, as is the case, that the process of sorting
into bit-reversed order is no greater in order than N log2N ).

This, then, is the structure of an FFT algorithm: It has two sections. The first
section sorts the data into bit-reversed order. Luckily this takes no additional stor-
age, since it involves only swapping pairs of elements. (If k1 is the bit reverse of k2,
then k2 is the bit reverse of k1.) The second section has an outer loop that is exe-
cuted log2N times and calculates, in turn, transforms of length 2; 4; 8; : : : ; N . This
series of operations is often called a butterfly. For each stage of the process, two
nested inner loops range over the subtransforms already computed and the elements
of each transform, implementing the Danielson-Lanczos lemma. The operation is
made more efficient by restricting external calls for trigonometric sines and cosines
to the outer loop, where they are made only log2N times. Computation of the sines
and cosines of multiple angles is through simple recurrence relations in the inner
loops (cf. 5.4.6).



�

�

“nr3” — 2007/5/1 — 20:53 — page 611 — #633
�

�

� �

12.2 Fast Fourier Transform (FFT) 611

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

000

001

010

011

100

 101

110

111

(a) (b)

Figure 12.2.1. Reordering an array (here of length 8) by bit reversal, (a) between two arrays, versus (b)
in place. Bit-reversal reordering is a necessary part of the fast Fourier transform (FFT) algorithm.

12.2.1 Bare FFT Routine and Helper Interfaces

Experience convinces us that a good way to package the FFT is as (i) a bare rou-
tine with a minimal interface, plus also (ii) a small set of interface objects that make it
easier to get data in and out of the bare routine. The bare FFT routine given below is
based on one originally written by N.M. Brenner. The input quantities are the number
of complex data points n (=N ), a pointer to the data array (data[0..2*n-1]), and
isign, which is set to either ˙1 and is the sign of i in the exponential of equation
(12.1.7). When isign is set to �1, the routine thus calculates the inverse transform
(12.1.9) — except that it does not multiply by the normalizing factor 1=N that ap-
pears in that equation. You do that yourself. We test to be sure that n is a power of 2
by the C++ idiom n&(n-1), which is zero only if n is, in binary, 1 followed by any
number of zeros.

Notice that the argument n is the number of complex data points. The actual
length of the Doub array (data[0..2*n-1]) is 2n, with each complex value occu-
pying two consecutive locations. In other words, data[0] is the real part of f0,
data[1] is the imaginary part of f0, and so on up to data[2*n-2], which is the
real part of fN�1, and data[2*n-1], which is the imaginary part of fN�1.

The FFT routine gives back the Fn’s packed in exactly the same fashion, as n
complex numbers. The real and imaginary parts of the zero frequency component F0
are in data[0] and data[1]; the smallest nonzero positive frequency has real and
imaginary parts in data[2] and data[3]; the smallest (in magnitude) nonzero neg-
ative frequency has real and imaginary parts in data[2*n-2] and data[2*n-1].
Positive frequencies increasing in magnitude are stored in the real-imaginary pairs
data[4], data[5] up to data[n-2], data[n-1]. Negative frequencies of in-
creasing magnitude are stored in data[2*n-4], data[2*n-3] down to data[n+2],
data[n+3]. Finally, the pair data[n], data[n+1] contains the real and imaginary
parts of the one aliased point that contains the most positive and the most negative
frequencies. You should try to develop a familiarity with this storage arrangement of
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Figure 12.2.2. Input and output arrays for FFT. (a) The input array contains N (a power of 2) complex
time samples in a real array of length 2N , with real and imaginary parts alternating. (b) The output
array contains the complex Fourier spectrum at N values of frequency. Real and imaginary parts again
alternate. The array starts with zero frequency, works up to the most positive frequency (which is aliased
with the most negative frequency). Negative frequencies follow, from the second-most negative up to the
frequency just below zero.

complex spectra, also shown in Figure 12.2.2, since it is the practical standard.

void four1(Doub *data, const Int n, const Int isign) {fourier.h
Replaces data[0..2*n-1] by its discrete Fourier transform, if isign is input as 1; or replaces
data[0..2*n-1] by n times its inverse discrete Fourier transform, if isign is input as �1. data
is a complex array of length n stored as a real array of length 2*n. n must be an integer power
of 2.

Int nn,mmax,m,j,istep,i;
Doub wtemp,wr,wpr,wpi,wi,theta,tempr,tempi;
if (n<2 || n&(n-1)) throw("n must be power of 2 in four1");
nn = n << 1;
j = 1;
for (i=1;i<nn;i+=2) { This is the bit-reversal section of the

routine.if (j > i) {
SWAP(data[j-1],data[i-1]); Exchange the two complex numbers.
SWAP(data[j],data[i]);

}
m=n;
while (m >= 2 && j > m) {

j -= m;
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m >>= 1;
}
j += m;

}
Here begins the Danielson-Lanczos section of the routine.
mmax=2;
while (nn > mmax) { Outer loop executed log2 n times.

istep=mmax << 1;
theta=isign*(6.28318530717959/mmax); Initialize the trigonometric recurrence.
wtemp=sin(0.5*theta);
wpr = -2.0*wtemp*wtemp;
wpi=sin(theta);
wr=1.0;
wi=0.0;
for (m=1;m<mmax;m+=2) { Here are the two nested inner loops.

for (i=m;i<=nn;i+=istep) {
j=i+mmax; This is the Danielson-Lanczos for-

mula:tempr=wr*data[j-1]-wi*data[j];
tempi=wr*data[j]+wi*data[j-1];
data[j-1]=data[i-1]-tempr;
data[j]=data[i]-tempi;
data[i-1] += tempr;
data[i] += tempi;

}
wr=(wtemp=wr)*wpr-wi*wpi+wr; Trigonometric recurrence.
wi=wi*wpr+wtemp*wpi+wi;

}
mmax=istep;

}
}

For an interface at a slightly higher level, we can overload the bare four1 with
equivalent functions that input and output data as either a VecDoub of length 2N or
a VecComplex of length N :

void four1(VecDoub_IO &data, const Int isign) { fourier.h
Overloaded interface to four1. Replaces the vector data, a complex vector of length N stored
as a real vector of twice that length, by its discrete Fourier transform, with components in
wraparound order, if isign is 1; or by N times the inverse Fourier transform, if isign is �1.

four1(&data[0],data.size()/2,isign);
}

void four1(VecComplex_IO &data, const Int isign) {
Overloaded interface to four1. Replaces the vector data, a complex vector of length N stored
as such, by its discrete Fourier transform, with components in wraparound order, if isign is 1;
or by N times the inverse Fourier transform, if isign is �1.

four1((Doub*)(&data[0]),data.size(),isign);
}

In these overloaded versions, however, you are still responsible for decoding on
your own the wraparound order. To get an interface that takes care of that for you,
we can define an object WrapVecDoub that creates a real vector (or binds a reference
to an existing one) and then defines methods for addressing the vector as if it were
a complex vector of half the size. Since the WrapVecDoub object also knows about
wraparound periodicity, you can access frequencies either by subscripts [0..n-1] or
[-n/2..n/2-1], or, for that matter, any n consecutive complex components. The
object has a conversion operator to VecDoub, so you can (e.g.) send it directly to
four1.
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struct WrapVecDoub {fourier.h
Object for accessing a VecDoub as if it were a complex vector of half the length, with wraparound
periodicity.

VecDoub vvec; Used when data are stored internally.
VecDoub &v;
Int n, mask;

WrapVecDoub(const Int nn) : vvec(nn), v(vvec), n(nn/2),
mask(n-1) {validate();}
Constructor. Declare a new vector with nn real components (half as many complex).

WrapVecDoub(VecDoub &vec) : v(vec), n(vec.size()/2),
mask(n-1) {validate();}
Constructor. Bind the data in an existing vector vec for access as if complex.

void validate() {if (n&(n-1)) throw("vec size must be power of 2");}

inline Complex& operator[] (Int i) {return (Complex &)v[(i&mask) << 1];}
Reduce any integer i to the periodic range [0..n] and return that complex component.
Can also be an l-value.

inline Doub& real(Int i) {return v[(i&mask) << 1];}
As above, but return the real part only. Can also be an l-value.

inline Doub& imag(Int i) {return v[((i&mask) << 1)+1];}
As above, but return the imaginary part only. Can also be an l-value.

operator VecDoub&() {return v;}
Conversion operator. Allows a WrapVecDoub object to be sent to any function that expects
a VecDoub.

};

Here are some sample lines of code (not a useful program) that show how
WrapVecDoub can be used:

Int j,n=256; 256 complex components, e.g.
VecDoub dat(2*n); A real vector to hold them.
WrapVecDoub data1(dat), data2(2*n); Examples of the two constructors.
for (j=0;j<n;j++) { Loop over complex components.

data1[j] = Complex(... , ...); Set a complex value directly,
data2.real(j) = ... ; or set real and imag separately.
data2.imag(j) = ... ;

}
four1(data1,1); Invokes four1(VecDoub&,Int) through the

conversion operator.four1(data2,1);
for (j=-n/2;j<n/2;j++) { Can address negative frequencies directly!

... = data1.real(j); Get real part of component j .

... = data2[j]; Get component as a complex value.
}

12.2.2 Decomposing the FFT for Parallelism
It is possible to decompose the calculation of an FFT of size N into a set of

smaller FFTs that can be done independently of one another. This can be useful
either to achieve parallelism or to allow more versatile memory management. The
basic idea is to address the input array as if it were a two-dimensional array of size
m�M , whereN D mM andN ,m, andM are all powers of 2. Then the components
of f can be addressed as

f ŒJmC j �; 0 
 j < m; 0 
 J < M (12.2.5)
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where the j index changes more rapidly, the J index more slowly, and brackets
denote C++ subscripts.

What we want to compute is the FFT of the original array of length N , which
we can write as

F ŒkM CK� �
X
j;J

e2	i.kMCK/.JmCj /=.Mm/f .JmC j /;

0 
 k < m; 0 
 K < M

(12.2.6)

You can see that the indices k and K address the desired result (FFT of the original
array), with K varying more rapidly.

From equation (12.2.6) it is easy to verify the identity

F ŒkM CK� D
X
j

�
e2	ijk=m

�
e2	ijK=.Mm/

�X
J

e2	iJK=Mf .JmC j /

���
(12.2.7)

But this, reading it from the innermost operation outward, is just the method that we
need:

� For each value of j form a vector of input values whose components vary with
J , 0 
 J < M . This is basically a transpose operation.
� FFT each such vector. (OK to do in parallel.) Notationally, the J index now

becomes a K index.
� Multiply each component by a phase factor expŒ2	ijK=.Mm/�.
� Rearrange the data so that they are accessible as a set of vectors whose com-

ponents vary with j , 0 
 j < m, another transpose operation.
� FFT each such vector. (OK to do in parallel.) The j index now becomes a k

index.
� The answer is now available asF ŒkMCK�. It takes a third transpose operation

to get it back into the desired order (with k varying most rapidly).

Even though two FFTs are performed on each element, the operations count is
about the same as for the ordinary FFT: The first set of FFTs scales as N logM , the
second set as N logm, and the total is thus N log.Mn/ D N logN .

For further discussion, see [2], where the above is called the six-step framework.
You can easily eliminate the first two of the three transpose operations by writing
a new four1 routine with an additional stride argument, specifying the constant
increment between logically “next” components. The stride will be m for the first
set of FFTs, and 1 for the second set. An algorithm very similar to this is called the
four-step framework. See [2,3] for more details.

Related decompositions, called zoom transforms, can be used to get an approx-
imation to the spectrum of a long data stream, at high resolution in only certain
frequency bands. See [4-6].

12.2.3 Other FFT Algorithms
We should mention that there are a number of variants on the basic FFT algo-

rithm given above. As we have seen, that algorithm first rearranges the input ele-
ments into bit-reverse order, then builds up the output transform in log2N iterations.
In the literature, this sequence is called a decimation-in-time or Cooley-Tukey FFT
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algorithm. It is also possible to derive FFT algorithms that first go through a set of
log2N iterations on the input data, and rearrange the output values into bit-reverse
order. These are called decimation-in-frequency or Sande-Tukey FFT algorithms. For
some applications, such as convolution (�13.1), one takes a data set into the Fourier
domain and then, after some manipulation, back out again. In these cases it is possi-
ble to avoid all bit reversing. You use a decimation-in-frequency algorithm (without
its bit reversing) to get into the “scrambled” Fourier domain, do your operations
there, and then use an inverse algorithm (without its bit reversing) to get back to the
time domain. While elegant in principle, this procedure does not in practice save
much computation time, since the bit reversals represent only a small fraction of an
FFT’s operations count, and since most useful operations in the frequency domain
require a knowledge of which points correspond to which frequencies.

Another class of FFTs subdivides the initial data set of length N not all the way
down to the trivial transform of length 1, but rather only down to some other small
power of 2, for example N D 4, base-4 FFTs, or N D 8, base-8 FFTs. These
small transforms are then done by small sections of highly optimized coding that
take advantage of special symmetries of that particular small N . For example, for
N D 4, the trigonometric sines and cosines that enter are all ˙1 or 0, so many
multiplications are eliminated, leaving largely additions and subtractions. These can
be faster than simpler FFTs by some significant, but not overwhelming, factor, e.g.,
20 or 30%.

There are also FFT algorithms for data sets of length N not a power of 2. They
work by using relations analogous to the Danielson-Lanczos lemma to subdivide the
initial problem into successively smaller problems, not by factors of 2, but by what-
ever small prime factors happen to divide N . The larger that the largest prime factor
of N is, the worse this method works. If N is prime, then no subdivision is possi-
ble, and the user (whether he knows it or not) is taking a slow Fourier transform, of
order N 2 instead of order N log2N . Our advice is to stay clear of such FFT imple-
mentations, with perhaps one class of exceptions, the Winograd Fourier transform
algorithms. Winograd algorithms are in some ways analogous to the base-4 and
base-8 FFTs. Winograd has derived highly optimized codings for taking small-N
discrete Fourier transforms, e.g., for N D 2; 3; 4; 5; 7; 8; 11; 13; 16. The algorithms
also use a different and clever way of combining the subfactors. The method in-
volves a reordering of the data both before the hierarchical processing and after it,
but it allows a significant reduction in the number of multiplications in the algorithm.
For some especially favorable values of N , the Winograd algorithms can be signifi-
cantly (e.g., up to a factor of 2) faster than the simpler FFT algorithms of the nearest
integer power of 2. This advantage in speed, however, must be weighed against the
considerably more complicated data indexing involved in these transforms, and the
fact that the Winograd transform cannot be done “in place.”

Finally, an interesting class of transforms for doing convolutions quickly is
number-theoretic transforms [7,8]. These schemes replace floating-point arithmetic
with integer arithmetic modulo some large prime N+1, and the N th root of 1 by
the modulo arithmetic equivalent. Strictly speaking, these are not Fourier trans-
forms at all, but the properties are quite similar and computational speed can be far
superior. On the other hand, their use is somewhat restricted to quantities like cor-
relations and convolutions since the transform itself is not easily interpretable as a
“frequency” spectrum.
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12.3 FFT of Real Functions
It happens frequently that the data whose FFT is desired consist of real-valued

samples fj ; j D 0 : : : N � 1. To use four1, we put these into a complex array
with all imaginary parts set to zero. The resulting transform Fn; n D 0 : : : N � 1

satisfies .FN�n/� D Fn. Since this complex-valued array has real values for F0
and FN=2, and .N=2/ � 1 other independent values F1 : : : FN=2�1, it has the same
2.N=2�1/C2 D N “degrees of freedom” as the original, real data set. However, the
use of the full complex FFT algorithm for real data is inefficient, both in execution
time and in storage required. You would think that there is a better way.

Actually, there are two better ways.

12.3.1 Transform of Two Real Functions Simultaneously
The first better way is “mass production”: Pack two separate real functions

into the input array in such a way that their individual transforms can be separated
from the result. This may remind you of a one-cent sale, at which you are coerced
to purchase two of an item when you only need one. However, remember that for
correlations and convolutions the Fourier transforms of two functions are involved,
and this is a handy way to do them both at once.
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Here is how to exploit the symmetry of the FFT to handle two real functions at
once: Pack the two data arrays as the real and imaginary parts, respectively, of the
complex input array of four1 and take the transform. This gives

Hn D
X
j

e2	ijn=N .fj C igj / (12.3.1)

Now look at the N � n component, and take its complex conjugate,

.HN�n/
� D

�X
j

e2	ij.N�n/=N .fj C igj /

��
D
X
j

e2	ijn=N .fj � igj / (12.3.2)

where we have used f �j D fj and g�j D gj . Now, adding and subtracting equations
(12.3.1) and (12.3.2) gives

Hn CH
�
N�n D 2Fn; Hn �H

�
N�n D 2iGn (12.3.3)

Equations (12.3.3) with n D 0; 1; : : : ; N=2 easily yield the independent (zero and
positive frequency) components of the two desired transforms Fn and Gn. Note that
F0, G0, FN=2, and GN=2 are real (using H0 D HN ), but that the other values are, in
general, complex.

What about the reverse process? This is even easier. Using the symmetries
FN�n D F �n and GN�n D G�n , form Fn C iGn for 0 
 n < N . Now take the
inverse FFT. The real and imaginary parts of the resulting complex array are the two
desired real functions.

The only potential drawback of this method occurs if f and g are very different
in scale. Then roundoff error can cause the smaller function’s FFT to be inaccurate.

12.3.2 FFT of a Single Real Function
To implement the second method, which allows us to perform the FFT of a

single real function without redundancy, we split the data set in half, thereby form-
ing two real arrays of half the size. We can apply the method above to these two,
but of course the result will not be the transform of the original data. It will be a
schizophrenic combination of two transforms, each of which has half of the infor-
mation we need. Fortunately, this schizophrenia is treatable. It works like this:

The right way to split the original data is to take the even-numbered fj as one
data set, and the odd-numbered fj as the other. The beauty of this is that we can
take the original real array and treat it as a complex array hj of half the length. The
first data set is the real part of this array, and the second is the imaginary part, just as
was described above. No repacking is required. In other words, hj D f2j C if2jC1,
j D 0; : : : ; N=2 � 1. We submit this to four1, and it gives back a complex array
Hn D F

e
n C iF

o
n , n D 0; : : : ; N=2 � 1 with

F en D

N=2�1X
kD0

f2k e
2	ikn=.N=2/

F on D

N=2�1X
kD0

f2kC1 e
2	ikn=.N=2/

(12.3.4)
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The previous discussion tells us how to separate the two transforms F en and F on
out of Hn. How do you work them into the transform Fn of the original data set fj ?
Simply glance back at equation (12.2.3):

Fn D F
e
n C e

2	in=NF on n D 0; : : : ; N � 1 (12.3.5)

Expressed directly in terms of the transform Hn of our real (masquerading as com-
plex) data set, the result is

Fn D
1

2
.Hn CH

�
N=2�n/ �

i

2
.Hn �H

�
N=2�n/e

2	in=N n D 0; : : : ; N � 1

(12.3.6)
A few remarks:

� Since F �N�n D Fn, there is no point in saving the entire spectrum. The positive
frequency half is sufficient and can be stored in the same array as the original
data. The operation can, in fact, be done in place.
� Even so, we need values Hn; n D 0; : : : ; N=2, whereas four1 gives only the

values n D 0; : : : ; N=2 � 1. Symmetry to the rescue, HN=2 D H0.
� The values F0 and FN=2 are real and independent. In order to actually get

the entire Fn in the original array space, it is convenient to put FN=2 into the
imaginary part of F0.
� Despite its complicated form, the process above is invertible. First peel FN=2

out of F0. Then construct

F en D
1
2
.Fn C F

�
N=2�n/

F on D
1
2
e�2	in=N .Fn � F

�
N=2�n/ n D 0; : : : ; N=2 � 1

(12.3.7)

and use four1 to find the inverse transform of Hn D F
.1/
n C iF

.2/
n . Surpris-

ingly, the actual algebraic steps are virtually identical to those of the forward
transform.

Here is a representation of what we have said:

void realft(VecDoub_IO &data, const Int isign) { fourier.h
Calculates the Fourier transform of a set of n real-valued data points. Replaces these data
(which are stored in array data[0..n-1]) by the positive frequency half of their complex Fourier
transform. The real-valued first and last components of the complex transform are returned
as elements data[0] and data[1], respectively. n must be a power of 2. This routine also
calculates the inverse transform of a complex data array if it is the transform of real data.
(Result in this case must be multiplied by 2/n.)

Int i,i1,i2,i3,i4,n=data.size();
Doub c1=0.5,c2,h1r,h1i,h2r,h2i,wr,wi,wpr,wpi,wtemp;
Doub theta=3.141592653589793238/Doub(n>>1); Initialize the recurrence.
if (isign == 1) {

c2 = -0.5;
four1(data,1); The forward transform is here.

} else {
c2=0.5; Otherwise set up for an inverse trans-

form.theta = -theta;
}
wtemp=sin(0.5*theta);
wpr = -2.0*wtemp*wtemp;
wpi=sin(theta);
wr=1.0+wpr;
wi=wpi;
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for (i=1;i<(n>>2);i++) { Case i=0 done separately below.
i2=1+(i1=i+i);
i4=1+(i3=n-i1);
h1r=c1*(data[i1]+data[i3]); The two separate transforms are sep-

arated out of data.h1i=c1*(data[i2]-data[i4]);
h2r= -c2*(data[i2]+data[i4]);
h2i=c2*(data[i1]-data[i3]);
data[i1]=h1r+wr*h2r-wi*h2i; Here they are recombined to form

the true transform of the origi-
nal real data.

data[i2]=h1i+wr*h2i+wi*h2r;
data[i3]=h1r-wr*h2r+wi*h2i;
data[i4]= -h1i+wr*h2i+wi*h2r;
wr=(wtemp=wr)*wpr-wi*wpi+wr; The recurrence.
wi=wi*wpr+wtemp*wpi+wi;

}
if (isign == 1) {

data[0] = (h1r=data[0])+data[1]; Squeeze the first and last data to-
gether to get them all within the
original array.

data[1] = h1r-data[1];
} else {

data[0]=c1*((h1r=data[0])+data[1]);
data[1]=c1*(h1r-data[1]);
four1(data,-1); This is the inverse transform for the

case isign=-1.}
}

You can’t use WrapVecDoub (�12.2) to access the output of realft as complex
values; it assumes a wraparound order that is not valid when we are storing only the
positive part of the spectrum. An even simpler trick, however, is to define an inline
function

inline Complex* Cmplx(VecDoub &d) {return (Complex *)&d[0];}

and then write things like

Cmplx(data)[k] = Complex(... , ...);

cvalue = Cmplx(data)[k];

when you want to set or get the kth complex value in data, viewed as a complex
array. (You are still responsible for separating the two real values stored in the first
complex component, however.)
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vol. ASSP-35, pp. 849–863.

Hockney, R.W. 1971, in Methods in Computational Physics, vol. 9 (New York: Academic Press).

Russ, J.C. 2002, The Image Processing Handbook, 4th ed. (Boca Raton, FL: CRC Press)

Clarke, R.J. 1985, Transform Coding of Images, (Reading, MA: Addison-Wesley).
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Addison-Wesley).

12.4 Fast Sine and Cosine Transforms
Among their other uses, the Fourier transforms of functions can be used to solve differ-

ential equations (see �20.4). The most common boundary conditions for the solutions are (i)
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Figure 12.4.1. Basis functions used by the Fourier transform (a), sine transform (b), and cosine transform
(c) are plotted. The first five basis functions are shown in each case. (For the Fourier transform, the real
and imaginary parts of the basis functions are both shown.) While some basis functions occur in more
than one transform, the basis sets are distinct. For example, the sine transform functions labeled (1), (3),
(5) are not present in the Fourier basis. Any of the three sets can expand any function in the interval
shown; however, the sine or cosine transform best expands functions matching the boundary conditions
of the respective basis functions, namely zero function values for sine, zero derivatives for cosine.

they have the value zero at the boundaries, or (ii) their derivatives are zero at the boundaries.
In the first instance, the natural transform to use is the sine transform, while in the second, one
of several variations of the cosine transform is a natural choice.

12.4.1 Sine Transform
The sine transform is given by

Fk D

N�1X
jD1

fj sin.	jk=N/ (12.4.1)

where fj ; j D 0; : : : ; N � 1 is the data array, and f0 � 0.
At first blush this appears to be simply the imaginary part of the discrete Fourier trans-

form. However, the argument of the sine differs by a factor of two from the value that would
make this so. The sine transform uses sines only as a complete set of functions in the interval
from 0 to 2	 , and, as we shall see, the cosine transform uses cosines only. By contrast, the
normal FFT uses both sines and cosines, but only half as many of each. (See Figure 12.4.1.)

The expression (12.4.1) can be “force-fit” into a form that allows its calculation via the
FFT. The idea is to extend the given function rightward past its last tabulated value. We extend
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the data to twice their length in such a way as to make them an odd function about j D N ,
with fN D 0,

f2N�j � �fj j D 0; : : : ; N � 1 (12.4.2)

Consider the FFT of this extended function:

Fk D

2N�1X
jD0

fj e
2	ijk=.2N/ (12.4.3)

The half of this sum from j D N to j D 2N � 1 can be rewritten with the substitution
j 0 D 2N � j ,

2N�1X
jDN

fj e
2	ijk=.2N/ D

NX
j 0D1

f2N�j 0e
2	i.2N�j 0/k=.2N/

D �

N�1X
j 0D0

fj 0e
�2	ij 0k=.2N/

(12.4.4)

so that

Fk D

N�1X
jD0

fj

h
e2	ijk=.2N/ � e�2	ijk=.2N/

i

D 2i

N�1X
jD0

fj sin.	jk=N/

(12.4.5)

Thus, up to a factor 2i we get the sine transform from the FFT of the extended function.
This method introduces a factor of two inefficiency into the computation by extending

the data. This inefficiency shows up in the FFT output, which has zeros for the real part
of every element of the transform. For a one-dimensional problem, the factor of two may
be bearable, especially in view of the simplicity of the method. When we work with partial
differential equations in two or three dimensions, though, the factor becomes four or eight, so
efforts to eliminate the inefficiency are well rewarded.

From the original real data array fj we will construct an auxiliary array yj and apply to
it the routine realft. The output will then be used to construct the desired transform. For the
sine transform of data fj ; j D 1; : : : ; N � 1, the auxiliary array is

y0 D 0

yj D sin.j	=N/.fj C fN�j /C
1
2 .fj � fN�j / j D 1; : : : ; N � 1

(12.4.6)

This array is of the same dimension as the original. Notice that the first term is symmetric
about j D N=2 and the second is antisymmetric. Consequently, when realft is applied to
yj , the result has real parts Rk and imaginary parts Ik given by

Rk D

N�1X
jD0

yj cos.2	jk=N/

D

N�1X
jD1

.fj C fN�j / sin.j	=N/ cos.2	jk=N/

D

N�1X
jD0

2fj sin.j	=N/ cos.2	jk=N/
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D

N�1X
jD0

fj

�
sin

.2k C 1/j	

N
� sin

.2k � 1/j	

N

�
D F2kC1 � F2k�1 (12.4.7)

Ik D

N�1X
jD0

yj sin.2	jk=N/

D

N�1X
jD1

.fj � fN�j /
1

2
sin.2	jk=N/

D

N�1X
jD0

fj sin.2	jk=N/

D F2k (12.4.8)

Therefore, Fk can be determined as follows:

F2k D Ik F2kC1 D F2k�1 CRk k D 0; : : : ; .N=2 � 1/ (12.4.9)

The even terms of Fk are thus determined very directly. The odd terms require a recursion, the
starting point of which follows from setting k D 0 in equation (12.4.9) and using F1 D �F�1:

F1 D
1
2R0 (12.4.10)

The implementing program is

void sinft(VecDoub_IO &y) { fourier.h
Calculates the sine transform of a set of n real-valued data points stored in array y[0..n-1].
The number n must be a power of 2. On exit, y is replaced by its transform. This program,
without changes, also calculates the inverse sine transform, but in this case the output array
should be multiplied by 2/n.

Int j,n=y.size();
Doub sum,y1,y2,theta,wi=0.0,wr=1.0,wpi,wpr,wtemp;
theta=3.141592653589793238/Doub(n); Initialize the recurrence.
wtemp=sin(0.5*theta);
wpr= -2.0*wtemp*wtemp;
wpi=sin(theta);
y[0]=0.0;
for (j=1;j<(n>>1)+1;j++) {

wr=(wtemp=wr)*wpr-wi*wpi+wr; Calculate the sine for the auxiliary array.
wi=wi*wpr+wtemp*wpi+wi; The cosine is needed to continue the recurrence.
y1=wi*(y[j]+y[n-j]); Construct the auxiliary array.
y2=0.5*(y[j]-y[n-j]);
y[j]=y1+y2; Terms j and N � j are related.
y[n-j]=y1-y2;

}
realft(y,1); Transform the auxiliary array.
y[0]*=0.5; Initialize the sum used for odd terms below.
sum=y[1]=0.0;
for (j=0;j<n-1;j+=2) {

sum += y[j];
y[j]=y[j+1]; Even terms determined directly.
y[j+1]=sum; Odd terms determined by this running sum.

}
}

The sine transform, curiously, is its own inverse. If you apply it twice, you get the original
data, but multiplied by a factor of N=2.
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12.4.2 Cosine Transform
The other common boundary condition for differential equations is that the derivative of

the function is zero at the boundary. In this case, the natural transform is the cosine transform.
There are several possible ways of defining the transform. Each can be thought of as resulting
from a different way of extending a given array to create an even array of double the length,
and/or from whether the extended array contains 2N �1, 2N , or some other number of points.
In practice, only two of the numerous possibilities are useful, so we will restrict ourselves to
just these two.

The first form of the cosine transform uses N C 1 data points:

Fk D
1

2
Œf0 C .�1/

kfN �C

N�1X
jD1

fj cos.	jk=N/ (12.4.11)

It results from extending the given array to an even array about j D N , with

f2N�j D fj ; j D 0; : : : ; N � 1 (12.4.12)

If you substitute this extended array into equation (12.4.3) and follow steps analogous to those
leading up to equation (12.4.5), you will find that the Fourier transform is just twice the cosine
transform (12.4.11). Another way of thinking about the formula (12.4.11) is to notice that it is
the Chebyshev-Gauss-Lobatto quadrature formula (see �4.6), often used in Clenshaw-Curtis
adaptive quadrature (see �5.9, equation 5.9.4).

Once again the transform can be computed without the factor of two inefficiency. In this
case the auxiliary function is

yj D
1
2 .fj C fN�j / � sin.j	=N/.fj � fN�j / j D 0; : : : ; N � 1 (12.4.13)

Instead of equation (12.4.9), realft now gives

F2k D Rk F2kC1 D F2k�1 C Ik k D 0; : : : ; .N=2 � 1/ (12.4.14)

The starting value for the recursion for odd k in this case is

F1 D
1

2
.f0 � fN /C

N�1X
jD1

fj cos.j	=N/ (12.4.15)

This sum does not appear naturally among the Rk and Ik , and so we accumulate it during the
generation of the array yj .

Once again this transform is its own inverse, and so the following routine works for both
directions of the transformation. Note that although this form of the cosine transform has
N C 1 input and output values, it passes an array only of length N to realft.

void cosft1(VecDoub_IO &y) {fourier.h
Calculates the cosine transform of a set y[0..n] of real-valued data points. The transformed
data replace the original data in array y. n must be a power of 2. This program, without
changes, also calculates the inverse cosine transform, but in this case the output array should
be multiplied by 2/n.

const Doub PI=3.141592653589793238;
Int j,n=y.size()-1;
Doub sum,y1,y2,theta,wi=0.0,wpi,wpr,wr=1.0,wtemp;
VecDoub yy(n); Need array of length n, not n+1, for realft.
theta=PI/n; Initialize the recurrence.
wtemp=sin(0.5*theta);
wpr = -2.0*wtemp*wtemp;
wpi=sin(theta);
sum=0.5*(y[0]-y[n]);
yy[0]=0.5*(y[0]+y[n]);
for (j=1;j<n/2;j++) {
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wr=(wtemp=wr)*wpr-wi*wpi+wr; Carry out the recurrence.
wi=wi*wpr+wtemp*wpi+wi;
y1=0.5*(y[j]+y[n-j]); Calculate the auxiliary function.
y2=(y[j]-y[n-j]);
yy[j]=y1-wi*y2; The values for j and N � j are related.
yy[n-j]=y1+wi*y2;
sum += wr*y2; Carry along this sum for later use in unfold-

ing the transform.}
yy[n/2]=y[n/2]; y[n/2] unchanged.
realft(yy,1); Calculate the transform of the auxiliary func-

tion.for (j=0;j<n;j++) y[j]=yy[j];
y[n]=y[1];
y[1]=sum; sum is the value of F1 in equation (12.4.15).
for (j=3;j<n;j+=2) {

sum += y[j]; Equation (12.4.14).
y[j]=sum;

}
}

The second important form of the cosine transform is defined by

Fk D

N�1X
jD0

fj cos
	k.j C 1

2 /

N
(12.4.16)

with inverse

fj D
2

N

N�1X0

kD0

Fk cos
	k.j C 1

2 /

N
(12.4.17)

Here the prime on the summation symbol means that the term for k D 0 has a coefficient of
1
2 in front. This form arises by extending the given data, defined for j D 0; : : : ; N � 1, to
j D N; : : : ; 2N �1 in such a way that they are even about the pointN � 12 and periodic. (They

are therefore also even about j D �12 .) The form (12.4.17) is related to Gauss-Chebyshev
quadrature (see equation 4.6.19), to Chebyshev approximation (�5.8, equation 5.8.7), and
Clenshaw-Curtis quadrature (�5.9).

This form of the cosine transform is useful when solving differential equations on “stag-
gered” grids, where the variables are centered midway between mesh points. It is also the
standard form in the field of data compression and image processing.

The auxiliary function used in this case is similar to equation (12.4.13):

yj D
1

2
.fj C fN�j�1/C sin

	.j C 1
2 /

N
.fj � fN�j�1/ j D 0; : : : ; N � 1 (12.4.18)

Carrying out the steps similar to those used to get from (12.4.6) to (12.4.9), we find

F2k D cos
	k

N
Rk � sin

	k

N
Ik (12.4.19)

F2k�1 D sin
	k

N
Rk C cos

	k

N
Ik C F2kC1 (12.4.20)

Note that equation (12.4.20) gives

FN�1 D
1
2RN=2 (12.4.21)

Thus the even components are found directly from (12.4.19), while the odd components are
found by recursing (12.4.20) down from k D N=2 � 1, using (12.4.21) to start.

Since the transform is not self-inverting, we have to reverse the above steps to find the
inverse. Here is the routine:
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void cosft2(VecDoub_IO &y, const Int isign) {fourier.h
Calculates the “staggered” cosine transform of a set y[0..n-1] of real-valued data points. The
transformed data replace the original data in array y. n must be a power of 2. Set isign to
C1 for a transform, and to �1 for an inverse transform. For an inverse transform, the output
array should be multiplied by 2/n.

const Doub PI=3.141592653589793238;
Int i,n=y.size();
Doub sum,sum1,y1,y2,ytemp,theta,wi=0.0,wi1,wpi,wpr,wr=1.0,wr1,wtemp;
theta=0.5*PI/n; Initialize the recurrences.
wr1=cos(theta);
wi1=sin(theta);
wpr = -2.0*wi1*wi1;
wpi=sin(2.0*theta);
if (isign == 1) { Forward transform.

for (i=0;i<n/2;i++) {
y1=0.5*(y[i]+y[n-1-i]); Calculate the auxiliary function.
y2=wi1*(y[i]-y[n-1-i]);
y[i]=y1+y2;
y[n-1-i]=y1-y2;
wr1=(wtemp=wr1)*wpr-wi1*wpi+wr1; Carry out the recurrence.
wi1=wi1*wpr+wtemp*wpi+wi1;

}
realft(y,1); Transform the auxiliary function.
for (i=2;i<n;i+=2) { Even terms.

wr=(wtemp=wr)*wpr-wi*wpi+wr;
wi=wi*wpr+wtemp*wpi+wi;
y1=y[i]*wr-y[i+1]*wi;
y2=y[i+1]*wr+y[i]*wi;
y[i]=y1;
y[i+1]=y2;

}
sum=0.5*y[1]; Initialize recurrence for odd terms

with 1
2
RN=2.for (i=n-1;i>0;i-=2) {

sum1=sum; Carry out recurrence for odd terms.
sum += y[i];
y[i]=sum1;

}
} else if (isign == -1) { Inverse transform.

ytemp=y[n-1];
for (i=n-1;i>2;i-=2) Form difference of odd terms.

y[i]=y[i-2]-y[i];
y[1]=2.0*ytemp;
for (i=2;i<n;i+=2) { Calculate Rk and Ik .

wr=(wtemp=wr)*wpr-wi*wpi+wr;
wi=wi*wpr+wtemp*wpi+wi;
y1=y[i]*wr+y[i+1]*wi;
y2=y[i+1]*wr-y[i]*wi;
y[i]=y1;
y[i+1]=y2;

}
realft(y,-1);
for (i=0;i<n/2;i++) { Invert auxiliary array.

y1=y[i]+y[n-1-i];
y2=(0.5/wi1)*(y[i]-y[n-1-i]);
y[i]=0.5*(y1+y2);
y[n-1-i]=0.5*(y1-y2);
wr1=(wtemp=wr1)*wpr-wi1*wpi+wr1;
wi1=wi1*wpr+wtemp*wpi+wi1;

}
}

}

An alternative way of implementing this algorithm is to form an auxiliary function by
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copying the even elements of fj into the firstN=2 locations, and the odd elements into the next
N=2 elements in reverse order. However, it is not easy to implement the alternative algorithm
without a temporary storage array and we prefer the above in-place algorithm.

Finally, we mention that there exist fast cosine transforms for small N that do not rely
on an auxiliary function or use an FFT routine. Instead, they carry out the transform directly,
often coded in hardware for fixed N of small dimension [1].

CITED REFERENCES AND FURTHER READING:

Walker, J.S. 1996, Fast Fourier Transforms, 2nd ed. (Boca Raton, FL: CRC Press)

Rao, K.R. and Yip, P. 1990, Discrete Cosine Transform: Algorithms, Advantages, Applications
(San Diego, CA: Academic Press)

Hou, H.S. 1987, “A Fast, Recursive Algorithm for Computing the Discrete Cosine Transform,”
IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-35, pp. 1455–
1461 [see for additional references].

Chen, W., Smith, C.H., and Fralick, S.C. 1977, “A Fast Computational Algorithm for the Dis-
crete Cosine Transform,” IEEE Transactions on Communications, vol. COM-25, pp. 1004–
1009.[1]

12.5 FFT in Two or More Dimensions

Given a complex function h.k1; k2/ defined over the two-dimensional grid 0 

k1 
 N1 � 1; 0 
 k2 
 N2 � 1, we can define its two-dimensional discrete Fourier
transform as a complex function H.n1; n2/, defined over the same grid,

H.n1; n2/ �

N2�1X
k2D0

N1�1X
k1D0

exp.2	ik2n2=N2/ exp.2	ik1n1=N1/ h.k1; k2/

(12.5.1)
By pulling the “subscripts 2” exponential outside of the sum over k1, or by reversing
the order of summation and pulling the “subscripts 1” outside of the sum over k2,
we can see instantly that the two-dimensional FFT can be computed by taking one-
dimensional FFTs sequentially on each index of the original function. Symbolically,

H.n1; n2/ D FFT-on-index-1 .FFT-on-index-2 Œh.k1; k2/�/

D FFT-on-index-2 .FFT-on-index-1 Œh.k1; k2/�/
(12.5.2)

For this to be practical, of course, bothN1 andN2 should be some efficient length for
an FFT, usually a power of 2. Programming a two-dimensional FFT, using (12.5.2)
with a one-dimensional FFT routine, is a bit clumsier than it seems at first. Because
the one-dimensional routine requires that its input be in consecutive order as a one-
dimensional complex array, you find that you are endlessly copying things out of
the multidimensional input array and then copying things back into it. This is not
recommended technique. Rather, you should use a multidimensional FFT routine,
such as the one we give below.
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The generalization of (12.5.1) to more than two dimensions, say to L dimen-
sions, is evidently

H.n1; : : : ; nL/ �

NL�1X
kLD0

	 	 	

N1�1X
k1D0

exp.2	ikLnL=NL/ � 	 	 	

� exp.2	ik1n1=N1/ h.k1; : : : ; kL/

(12.5.3)

where n1 and k1 range from 0 toN1�1, : : : , and nL and kL range from 0 toNL�1.
How many calls to a one-dimensional FFT are in (12.5.3)? Quite a few! For each
value of k1; k2; : : : ; kL�1 you FFT to transform the L index. Then for each value of
k1; k2; : : : ; kL�2 and nL you FFT to transform the L� 1 index. And so on. It is best
to rely on someone else having done the bookkeeping for once and for all.

The inverse transforms of (12.5.1) or (12.5.3) are just what you would expect
them to be: Change the i ’s in the exponentials to �i ’s, and put an overall factor of
1=.N1�	 	 	�NL/ in front of the whole thing. Most other features of multidimensional
FFTs are also analogous to features already discussed in the one-dimensional case:

� Frequencies are arranged in wraparound order in the transform, but now for
each separate dimension.
� The input data are also treated as if they were wrapped around. If they are

discontinuous across this periodic identification (in any dimension), then the
spectrum will have some excess power at high frequencies because of the dis-
continuity. The fix, if you care, is to remove multidimensional linear trends.
� If you are doing spatial filtering and are worried about wraparound effects,

then you need to zero-pad all around the border of the multidimensional array.
However, be sure to notice how costly zero-padding is in multidimensional
transforms. If you use too thick a zero-pad, you are going to waste a lot of
storage, especially in three or more dimensions!
� Aliasing occurs as always if sufficient bandwidth limiting does not exist along

one or more of the dimensions of the transform.

The routine fourn that we furnish herewith is a descendant of one written by
N.M. Brenner. It requires as input (i) a vector, telling the length of the array in each
dimension, e.g., .32; 64/ (note that these lengths must all be powers of 2, and are
the numbers of complex values in each direction); (ii) the usual scalar equal to ˙1
indicating whether you want the transform or its inverse; and, finally, (iii) the array
of data. The number of dimensions is determined from the length of the vector in (i).

A few words about the data array: fourn accesses it as a one-dimensional array
of real numbers, that is, data[0...2N1N2 : : : NL/-1], of length equal to twice the
product of the lengths of the L dimensions. It assumes that the array represents an
L-dimensional complex array, with individual components ordered as follows: (i)
each complex value occupies two sequential locations, a real part followed by an
imaginary; (ii) the first subscript changes least rapidly as one goes through the array;
the last subscript changes most rapidly (that is, “store by rows,” the C++ norm).
Figure 12.5.1 illustrates the format of the output array.

As for four1 earlier, we find it useful to give a bare form of the routine, where
the data array is passed as a pointer, and then an overloaded function that passes the
data array (by reference) as a VecDoub.
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Figure 12.5.1. Storage arrangement of frequencies in the output H.f1; f2/ of a two-dimensional FFT.
The input data is a two-dimensional N1 �N2 array h.t1; t2/ (stored by columns of complex numbers).
The output is also stored by complex columns. Each column corresponds to a particular value of f2, as
shown in the figure. Within each column, the arrangement of frequencies f1 is exactly as shown in Figure
12.2.2. �1 and �2 are the sampling intervals in the 1 and 2 directions, respectively. The total number
of (real) array elements is 2N1N2. The program fourn can also do more than two dimensions, and the
storage arrangement generalizes in the obvious way.

void fourn(Doub *data, VecInt_I &nn, const Int isign) { fourier ndim.h
Replaces data by its ndim-dimensional discrete Fourier transform, if isign is input as 1.
nn[0..ndim-1] is an integer array containing the lengths of each dimension (number of com-
plex values), which must all be powers of 2. data is a real array of length twice the product
of these lengths, in which the data are stored as in a multidimensional complex array: real and
imaginary parts of each element are in consecutive locations, and the rightmost index of the
array increases most rapidly as one proceeds along data. For a two-dimensional array, this is
equivalent to storing the array by rows. If isign is input as �1, data is replaced by its inverse
transform times the product of the lengths of all dimensions.

Int idim,i1,i2,i3,i2rev,i3rev,ip1,ip2,ip3,ifp1,ifp2;
Int ibit,k1,k2,n,nprev,nrem,ntot=1,ndim=nn.size();
Doub tempi,tempr,theta,wi,wpi,wpr,wr,wtemp;
for (idim=0;idim<ndim;idim++) ntot *= nn[idim]; Total no. of complex values.
if (ntot<2 || ntot&(ntot-1)) throw("must have powers of 2 in fourn");
nprev=1;
for (idim=ndim-1;idim>=0;idim--) { Main loop over the dimensions.

n=nn[idim];
nrem=ntot/(n*nprev);
ip1=nprev << 1;
ip2=ip1*n;
ip3=ip2*nrem;
i2rev=0;
for (i2=0;i2<ip2;i2+=ip1) { This is the bit-reversal sec-

tion of the routine.if (i2 < i2rev) {
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for (i1=i2;i1<i2+ip1-1;i1+=2) {
for (i3=i1;i3<ip3;i3+=ip2) {

i3rev=i2rev+i3-i2;
SWAP(data[i3],data[i3rev]);
SWAP(data[i3+1],data[i3rev+1]);

}
}

}
ibit=ip2 >> 1;
while (ibit >= ip1 && i2rev+1 > ibit) {

i2rev -= ibit;
ibit >>= 1;

}
i2rev += ibit;

}
ifp1=ip1; Here begins the Danielson-

Lanczos section of the
routine.

while (ifp1 < ip2) {
ifp2=ifp1 << 1;
theta=isign*6.28318530717959/(ifp2/ip1); Initialize for the trigonomet-

ric recurrence.wtemp=sin(0.5*theta);
wpr= -2.0*wtemp*wtemp;
wpi=sin(theta);
wr=1.0;
wi=0.0;
for (i3=0;i3<ifp1;i3+=ip1) {

for (i1=i3;i1<i3+ip1-1;i1+=2) {
for (i2=i1;i2<ip3;i2+=ifp2) {

k1=i2; Danielson-Lanczos formula:
k2=k1+ifp1;
tempr=wr*data[k2]-wi*data[k2+1];
tempi=wr*data[k2+1]+wi*data[k2];
data[k2]=data[k1]-tempr;
data[k2+1]=data[k1+1]-tempi;
data[k1] += tempr;
data[k1+1] += tempi;

}
}
wr=(wtemp=wr)*wpr-wi*wpi+wr; Trigonometric recurrence.
wi=wi*wpr+wtemp*wpi+wi;

}
ifp1=ifp2;

}
nprev *= n;

}
}

void fourn(VecDoub_IO &data, VecInt_I &nn, const Int isign) {
Overloaded version for the case where data is of type VecDoub.

fourn(&data[0],nn,isign);
}

CITED REFERENCES AND FURTHER READING:

Nussbaumer, H.J. 1982, Fast Fourier Transform and Convolution Algorithms (New York: Springer).
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12.6 Fourier Transforms of Real Data in Two
and Three Dimensions

Two-dimensional FFTs are particularly important in the field of image process-
ing. An image is usually represented as a two-dimensional array of pixel intensities,
real (and usually positive) numbers. One commonly desires to filter high, or low,
frequency spatial components from an image; or to convolve or deconvolve the im-
age with some instrumental point spread function. Use of the FFT is by far the most
efficient technique.

In three dimensions, a common use of the FFT is to solve Poisson’s equation for
a potential (e.g., electromagnetic or gravitational) on a three-dimensional lattice that
represents the discretization of three-dimensional space. Here the source terms (mass
or charge distribution) and the desired potentials are also real. In two and three di-
mensions, with large arrays, memory is often at a premium. It is therefore important
to perform the FFTs, insofar as possible, on the data “in place.” We want a routine
with functionality similar to the multidimensional FFT routine fourn (�12.5), but
which operates on real, not complex, input data. We give such a routine in this sec-
tion. The development is analogous to that of �12.3 leading to the one-dimensional
routine realft. (You might wish to review that material at this point, particularly
equation 12.3.6.)

It is convenient to think of the independent variables n1; : : : ; nL in equation
(12.5.3) as representing an L-dimensional vector En in wave-number space, with val-
ues on the lattice of integers. The transform H.n1; : : : ; nL/ is then denoted H.En/.

It is easy to see that the transform H.En/ is periodic in each of its L dimen-
sions. Specifically, if EP1; EP2; EP3; : : : denote the vectors .N1; 0; 0; : : :/, .0;N2; 0; : : :/,
.0; 0;N3; : : :/, and so forth, then

H.En˙ EPj / D H.En/ j D 1; : : : ; L (12.6.1)

Equation (12.6.1) holds for any input data, real or complex. When the data are real,
we have the additional symmetry

H.�En/ D H.En/� (12.6.2)

Equations (12.6.1) and (12.6.2) imply that the full transform can be trivially obtained
from the subset of lattice values En that have

0 
 n1 
 N1 � 1

0 
 n2 
 N2 � 1

	 	 	

0 
 nL 

NL

2

(12.6.3)

In fact, this set of values is overcomplete, because there are additional symmetry
relations among the transform values that have nL D 0 and nL D NL=2. How-
ever, these symmetries are complicated and their use becomes extremely confusing.
Therefore, we will compute our FFT on the lattice subset of equation (12.6.3), even
though this requires a small amount of extra storage for the answer, i.e., the transform
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is not quite “in place.” (Although an in-place transform is in fact possible, we have
found it virtually impossible to explain to any user how to unscramble its output, i.e.,
where to find the real and imaginary components of the transform at some particular
frequency!)

As a “bare” routine, we will implement the multidimensional real Fourier trans-
form for the three-dimensional case L D 3, with the input data stored as a real
three-dimensional array data[0..nn1-1][0..nn2-1][0..nn3-1]. This scheme
will allow two-dimensional data to be processed with effectively no loss of effi-
ciency simply by choosing nn1 D 1. (Note that it must be the first dimension that
is set to 1.) We also provide more convenient overloaded functions whose input
data are stored as a Mat3DDoub (for three-dimensional data) or as a MatDoub (for
two-dimensional data).

The output spectrum comes back packaged, logically at least, as a complex
three-dimensional array that we can call spec[0..nn1-1][0..nn2-1][0..nn3/2]
(cf. equation 12.6.3). In the first two of its three dimensions, the respective frequency
values f1 or f2 are stored in wraparound order, that is, with zero frequency in the first
index value, the smallest positive frequency in the second index value, the smallest
negative frequency in the last index value, and so on (cf. the discussion leading up to
routines four1 and fourn). The third of the three dimensions returns only the posi-
tive half of the frequency spectrum. Figure 12.6.1 shows the logical storage scheme.
The returned portion of the complex output spectrum is shown as the unshaded part
of the lower figure.

The physical, as opposed to logical, packaging of the output spectrum is nec-
essarily a bit different from the logical packaging, because, counting components,
spec doesn’t quite fit into data. The subscript range spec[0..nn1-1][0..nn2-1]
[0..nn3/2-1] is returned in the input array data[0..nn1-1][0..nn2-1]
[0..nn3-1], with the correspondence

Re.spec[i1][i2][i3]/ D data[i1][i2][2*i3]

Im.spec[i1][i2][i3]/ D data[i1][i2][2*i3+1]
(12.6.4)

The remaining “plane” of values, spec[0..nn1-1][0..nn2-1][nn3/2], is re-
turned in the two-dimensional MatDoub array speq[0..nn1-1][0..2*nn2-1], with
the correspondence

Re.spec[i1][i2][nn3/2]/ D speq[i1][2*i2]

Im.spec[i1][i2][nn3/2]/ D speq[i1][2*i2+1]
(12.6.5)

Note that speq contains only frequency components whose third component f3 is
at the Nyquist critical frequency ˙fc . In some applications these values will in fact
be ignored or set to zero, since they are intrinsically aliased between positive and
negative frequencies.

With this much introduction, the implementing procedure, called rlft3, is
something of an anticlimax. Look in the innermost loop in the procedure, and you
will see equation (12.3.6) implemented on the last transform index. The case of
i3=0 is coded separately, to account for the fact that speq is to be filled instead of
overwriting the input array of data. The three enclosing for loops (indices i2, i3,
and i1, from inside to outside) could in fact be done in any order — their actions
all commute. We chose the order shown because of the following considerations: (i)
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Figure 12.6.1. Input and output data arrangements for rlft3. All arrays shown are presumed to
have a first (leftmost) dimension of range [0..nn1-1], coming out of the page. The input data ar-
ray is a real three-dimensional array data[0..nn1-1][0..nn2-1][0..nn3-1]. (For two-dimensional
data, one sets nn1 D 1.) The output data can be viewed as a single complex array with dimensions
[0..nn1-1][0..nn2-1][0..nn3/2] (cf. equation 12.6.3), corresponding to the frequency components
f1 and f2 being stored in wraparound order, but only positive f3 values being stored (others being ob-
tainable by symmetry). The output data are actually returned mostly in the input array data, but partly
stored in the real array speq[0..nn1-1][0..2*nn2-1]. See text for details.
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i3 should not be the inner loop, because if it is, then the recurrence relations on wr
and wi become burdensome. (ii) On modern processors with a cache hierarchy, i1
should be the outer loop, because (with C++ order of array storage) this results in the
array data, which might be very large, being accessed in block sequential order.

Keep in mind that all the computing in rlft3 is negligible, by a logarithmic
factor, compared with the actual work of computing the associated complex FFT,
done in the routine fourn. Complex operations are carried out explicitly in terms
of real and imaginary parts. The routine rlft3 is based on an earlier routine by
G.B. Rybicki. As previously, it is convenient to provide a bare routine, and then more
convenient overloaded functions. The overload for three-dimensional data inputs the
data as a Mat3DDoub, with speq a MatDoub. The overload for two-dimensional data
inputs the data as a MatDoub, with speq a VecDoub.

void rlft3(Doub *data, Doub *speq, const Int isign,fourier ndim.h
const Int nn1, const Int nn2, const Int nn3) {

Given a three-dimensional real array data[0..nn1-1][0..nn2-1][0..nn3-1] (where nn1 D 1
for the case of a logically two-dimensional array), this routine returns (for isign=1) the complex
fast Fourier transform as two complex arrays: On output, data contains the zero and positive
frequency values of the third frequency component, while speq[0..nn1-1][0..2*nn2-1] con-
tains the Nyquist critical frequency values of the third frequency component. First (and sec-
ond) frequency components are stored for zero, positive, and negative frequencies, in standard
wraparound order. See text for description of how complex values are arranged. For isign=-1,
the inverse transform (times nn1*nn2*nn3/2 as a constant multiplicative factor) is performed,
with output data (viewed as a real array) deriving from input data (viewed as complex) and
speq. For inverse transforms on data not generated first by a forward transform, make sure the
complex input data array satisfies property (12.6.2). The dimensions nn1, nn2, nn3 must always
be integer powers of 2.

Int i1,i2,i3,j1,j2,j3,k1,k2,k3,k4;
Doub theta,wi,wpi,wpr,wr,wtemp;
Doub c1,c2,h1r,h1i,h2r,h2i;
VecInt nn(3);
VecDoubp spq(nn1);
for (i1=0;i1<nn1;i1++) spq[i1] = speq + 2*nn2*i1;
c1 = 0.5;
c2 = -0.5*isign;
theta = isign*(6.28318530717959/nn3);
wtemp = sin(0.5*theta);
wpr = -2.0*wtemp*wtemp;
wpi = sin(theta);
nn[0] = nn1;
nn[1] = nn2;
nn[2] = nn3 >> 1;
if (isign == 1) { Case of forward transform.

fourn(data,nn,isign); Here is where most all of the com-
pute time is spent.k1=0;

for (i1=0;i1<nn1;i1++) Extend data periodically into speq.
for (i2=0,j2=0;i2<nn2;i2++,k1+=nn3) {

spq[i1][j2++]=data[k1];
spq[i1][j2++]=data[k1+1];

}
}
for (i1=0;i1<nn1;i1++) {

j1=(i1 != 0 ? nn1-i1 : 0);
Zero frequency is its own reflection, otherwise locate corresponding negative frequency
in wraparound order.
wr=1.0; Initialize trigonometric recurrence.
wi=0.0;
for (i3=0;i3<=(nn3>>1);i3+=2) {

k1=i1*nn2*nn3;
k3=j1*nn2*nn3;
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for (i2=0;i2<nn2;i2++,k1+=nn3) {
if (i3 == 0) { Equation (12.3.6).

j2=(i2 != 0 ? ((nn2-i2)<<1) : 0);
h1r=c1*(data[k1]+spq[j1][j2]);
h1i=c1*(data[k1+1]-spq[j1][j2+1]);
h2i=c2*(data[k1]-spq[j1][j2]);
h2r= -c2*(data[k1+1]+spq[j1][j2+1]);
data[k1]=h1r+h2r;
data[k1+1]=h1i+h2i;
spq[j1][j2]=h1r-h2r;
spq[j1][j2+1]=h2i-h1i;

} else {
j2=(i2 != 0 ? nn2-i2 : 0);
j3=nn3-i3;
k2=k1+i3;
k4=k3+j2*nn3+j3;
h1r=c1*(data[k2]+data[k4]);
h1i=c1*(data[k2+1]-data[k4+1]);
h2i=c2*(data[k2]-data[k4]);
h2r= -c2*(data[k2+1]+data[k4+1]);
data[k2]=h1r+wr*h2r-wi*h2i;
data[k2+1]=h1i+wr*h2i+wi*h2r;
data[k4]=h1r-wr*h2r+wi*h2i;
data[k4+1]= -h1i+wr*h2i+wi*h2r;

}
}
wr=(wtemp=wr)*wpr-wi*wpi+wr; Do the recurrence.
wi=wi*wpr+wtemp*wpi+wi;

}
}
if (isign == -1) fourn(data,nn,isign); Case of reverse transform.

}

void rlft3(Mat3DDoub_IO &data, MatDoub_IO &speq, const Int isign) {
Overloaded version for three-dimensional data. When isign is 1, replace data and spec by
data’s three-dimensional FFT. When isign is �1, the inverse transform (times one-half the
product of data’s dimensions) is performed. See comments in version above.

if (speq.nrows() != data.dim1() || speq.ncols() != 2*data.dim2())
throw("bad dims in rlft3");

rlft3(&data[0][0][0],&speq[0][0],isign,data.dim1(),data.dim2(),data.dim3());
}

void rlft3(MatDoub_IO &data, VecDoub_IO &speq, const Int isign) {
Overloaded version for two-dimensional data. When isign is 1, replace data and spec by data’s
two-dimensional FFT. When isign is �1, the inverse transform (times one-half the product of
data’s dimensions) is performed. See comments in version above.

if (speq.size() != 2*data.nrows()) throw("bad dims in rlft3");
rlft3(&data[0][0],&speq[0],isign,1,data.nrows(),data.ncols());

}

As in earlier sections of this chapter, we can use a bit of C++ trickery to access
the output Fourier components (logical array spec) more easily. We define two
overloaded helper functions (the first of which is identical to the definition in section
�12.3)

inline Complex* Cmplx(VecDoub &d) {return (Complex *)&d[0];}

inline Complex* Cmplx(Doub *d) {return (Complex *)d;}

Now suppose that data is two-dimensional with input dimensions nx and ny. Then,
on output, a complex frequency component .i; j/, with 0 
 i 
 nx=2 and 0 
 j 

ny=2 � 1, can be accessed as

Cmplx(data[i])[j]
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Figure 12.6.2. Fourier processing of an image. Upper left: Original image. Upper right: Blurred by low-
pass filtering. Lower left: Sharpened by enhancing high frequency components. Lower right: Magnitude
of the derivative operator as computed in Fourier space.

Yes, the right parenthesis really is between the subscripts! The corresponding nega-
tive (wraparound) frequencies are at

Cmplx(data[nx-i])[j]

but now with 1 
 i 
 nx=2 � 1. The Nyquist critical values j D ny=2 can be
accessed as

Cmplx(speq)[i]

for 0 
 i 
 nx=2 and

Cmplx(speq)[nx-i]

for 1 
 i 
 nx=2 � 1. If you don’t understand how this all works, a useful exercise
is to locate each of these expressions in Figure 12.6.1. All of the above expressions
can be l-values as well as r-values.

Figure 12.6.2 shows a test image� and three examples of processing with rlft3
(using the overloaded function for two-dimensional data). The first example is a sim-
ple low-pass filter. A sharp image becomes blurry when its high-frequency spatial

�We are inordinately fond of this 1950s vintage IEEE test image, despite the fact that many readers
have urged us to use instead the historically important “Lenna” image from the early 1970s. See [1] for
an interesting recounting of the history. “Lenna,” a strategically cropped Playboy centerfold, is also said
to be the source of the term “discreet Fourier transform.”
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components are suppressed by the factor (here) max .1 � 6f 2=f 2c ; 0/. The second
example is a sharpening filter where high frequencies are enhanced. Code for pro-
ducing this image looks something like this:

Int i, j, nx=256, ny=256; Image is 256 � 256. rlft3 sharpen.h
MatDoub data(nx,ny);
VecDoub speq(2*nx);
Doub fac;
... Here we would fill data with the image.
rlft3(data,speq,1); Forward transform.
for (i=0;i<nx/2;i++) for (j=0;j<ny/2;j++) { Loop over all frequencies ex-

cept Nyquist.fac = 1.+3.*sqrt(SQR(i*2./nx)+SQR(j*2./ny));
Cmplx(data[i])[j] *= fac;
if (i>0) Cmplx(data[nx-i])[j] *= fac; Negative (wraparound) fre-

quencies.}
for (j=0;j<ny/2;j++) { Loop over frequencies where i is Nyquist.

fac = 1.+3.*sqrt(1.+SQR(j*2./ny));
Cmplx(data[nx/2])[j] *= fac;

}
for (i=0;i<nx/2;i++) { Loop over frequencies where j is Nyquist.

fac = 1.+3.*sqrt(SQR(i*2./nx)+1.);
Cmplx(speq)[i] *= fac;
if (i>0) Cmplx(speq)[nx-i] *= fac; Wraparound.

}
Cmplx(speq)[nx/2] *= (1.+3.*sqrt(2.)); Both i and j are Nyquist.
rlft3(data,speq,-1); Reverse transform.

The third example is a derivative filter, where a Fourier component at frequency
.fx ; fy/ is multiplied by 2	i.f 2x C f

2
y /
1=2, and the resulting intensities are then

linearly mapped into an appropriate range.
To extend rlft3 to four dimensions, you simply add an additional (outer)

nested for loop in i0, analogous to the present i1. (Modifying the routine to do
an arbitrary number of dimensions, as in fourn, is a good programming exercise
for the reader.)

CITED REFERENCES AND FURTHER READING:

Brigham, E.O. 1974, The Fast Fourier Transform (Englewood Cliffs, NJ: Prentice-Hall).

Swartztrauber, P. N. 1986, “Symmetric FFTs,” Mathematics of Computation, vol. 47, pp. 323–
346.

Hutchinson, J. 2001, in IEEE Professional Communication Society Newsletter, vol. 45, no. 3.
See also http://www.lenna.org.[1]

12.7 External Storage or Memory-Local FFTs

Sometime in your life, you might have to compute the Fourier transform of a really
large data set, larger than the size of your computer’s physical memory. In such a case, the
data will be stored on some external medium, such as magnetic or optical disk. Needed is an
algorithm that makes some manageable number of sequential passes through the external data,
processing it on the fly and outputting intermediate results to other external media, which can
be read on subsequent passes.

In fact, an algorithm of just this description was developed by Singleton [1] very soon
after the discovery of the FFT. The algorithm requires four sequential storage devices, each
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capable of holding half of the input data. The first half of the input data is initially on one
device, the second half on another.

Singleton’s algorithm is based on the observation that it is possible to bit reverse 2M

values by the following sequence of operations: On the first pass, values are read alternately
from the two input devices, and written to a single output device (until it holds half the data),
and then to the other output device. On the second pass, the output devices become input
devices, and vice versa. Now, we copy two values from the first device, then two values
from the second, writing them (as before) first to fill one output device, then to fill a second.
Subsequent passes read 4, 8, etc., input values at a time. After completion of pass M � 1, the
data are in bit-reverse order.

Singleton’s next observation is that it is possible to alternate the passes of essentially
this bit-reversal technique with passes that implement one stage of the Danielson-Lanczos
combination formula (12.2.3). The scheme, roughly, is this: One starts as before with half the
input data on one device and half on another. In the first pass, one complex value is read from
each input device. Two combinations are formed, and one is written to each of two output
devices. After this “computing” pass, the devices are rewound, and a “permutation” pass is
performed, where groups of values are read from the first input device and alternately written
to the first and second output devices; when the first input device is exhausted, the second is
similarly processed. This sequence of computing and permutation passes is repeatedM�K�1
times, where 2K is the size of internal buffer available to the program. The second phase of
the computation consists of a final K computation passes. What distinguishes the second
phase from the first is that, now, the permutations are local enough to do in place during the
computation. There are thus no separate permutation passes in the second phase. In all, there
are 2M �K � 2 passes through the data.

An implementation of Singleton’s algorithm, fourfs, based on reference [1], is given in
a Webnote [2].

For one-dimensional data, Singleton’s algorithm produces output in exactly the same
order as a standard FFT (e.g., four1). For multidimensional data, the output is in transpose
order rather than in the conventional C++ array order output by fourn. That is, in scanning
through the data, it is the leftmost array index that cycles most quickly, then the second left-
most, and so on. This peculiarity, which is intrinsic to the method, is generally only a minor
inconvenience. For convolutions, one simply computes the component-by-component prod-
uct of two transforms in their nonstandard arrangement, and then does an inverse transform
on the result. Note that, if the lengths of the different dimensions are not all the same, then
you must reverse the order of the values in nn[0..ndim-1] (thus giving the dimensions of
the transpose-order output array) before performing the inverse transform. Note also that, just
like fourn, performing a transform and then an inverse results in multiplying the original data
by the product of the lengths of all dimensions.

We leave it as an exercise for the reader to figure out how to reorder fourfs’s output
into normal order, taking additional passes through the externally stored data. We doubt that
such reordering is ever really needed.

You will likely want to modify fourfs to fit your particular application. For example, as
written, KBF � 2K plays the dual role of being the size of the internal buffers, and the record
size of the unformatted reads and writes. The latter role limits its size to that allowed by your
machine’s I/O facility. It is a simple matter to perform multiple reads for a much larger KBF,
thus reducing the number of passes by a few.

Another modification of fourfs would be for the case where your virtual memory ma-
chine has sufficient address space, but not sufficient physical memory, to do an efficient FFT
by the conventional algorithm (whose memory references are extremely nonlocal). In that
case, you will need to replace the reads, writes, and rewinds by mappings of the arrays afa,
afb, and afc into your address space. In other words, these arrays are replaced by references
to a single data array, with offsets that get modified wherever fourfs performs an I/O opera-
tion. The resulting algorithm will have its memory references local within blocks of size KBF.
Execution speed is thereby sometimes increased enormously, albeit at the cost of requiring
twice as much virtual memory as an in-place FFT.
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CITED REFERENCES AND FURTHER READING:

Singleton, R.C. 1967, “A Method for Computing the Fast Fourier Transform with Auxiliary Mem-
ory and Limited High-speed Storage,” IEEE Transactions on Audio and Electroacoustics,
vol. AU-15, pp. 91–97.[1]

Numerical Recipes Software 2007, “Code for External or Memory-Local Fourier Transform,” Nu-
merical Recipes Webnote No. 18, at http://www.nr.com/webnotes?18 [2]

Oppenheim, A.V., Schafer, R.W., and Buck, J.R. 1999, Discrete-Time Signal Processing, 2nd
ed. (Englewood Cliffs, NJ: Prentice-Hall), Chapter 9.
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Fourier and Spectral
Applications

CHAPTER 13

13.0 Introduction
Fourier methods have revolutionized fields of science and engineering, from

astronomy to medical imaging, from seismology to spectroscopy. In this chapter,
we present some of the basic applications of Fourier and spectral methods that have
made these revolutions possible.

Say the word “Fourier” to a numericist, and the response, as if by Pavlovian
conditioning, will likely be “FFT.” Indeed, the wide application of Fourier methods
must be credited principally to the existence of the fast Fourier transform. Better
mousetraps move over: If you speed up any nontrivial algorithm by a factor of a
million or so, the world will beat a path toward finding useful applications for it.
The most direct applications of the FFT are to the convolution or deconvolution of
data (�13.1), correlation and autocorrelation (�13.2), optimal filtering (�13.3), power
spectrum estimation (�13.4), and the computation of Fourier integrals (�13.9).

As important as they are, however, FFT methods are not the be-all and end-all of
spectral analysis. Section 13.5 is a brief introduction to the field of time-domain digi-
tal filters. In the spectral domain, one limitation of the FFT is that it always represents
a function’s Fourier transform as a polynomial in z D exp.2	if�/ (cf. equation
12.1.7). Sometimes, processes have spectra whose shapes are not well represented
by this form. An alternative form, which allows the spectrum to have poles in z, is
used in the techniques of linear prediction (�13.6) and maximum entropy spectral
estimation (�13.7).

Another significant limitation of all FFT methods is that they require the in-
put data to be sampled at evenly spaced intervals. For irregularly or incompletely
sampled data, other (albeit slower) methods are available, as discussed in �13.8.

So-called wavelet methods inhabit a representation of function space that is
neither in the temporal nor in the spectral domain, but rather somewhere in-between.
Section 13.10 is an introduction to this subject. Finally, �13.11 is an excursion into
the numerical use of the Fourier sampling theorem.

640
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s(t)

r(t)

r*s(t)

t

t

t

Figure 13.1.1. Example of the convolution of two functions. A signal s.t/ is convolved with a response
function r.t/. Since the response function is broader than some features in the original signal, these are
“washed out” in the convolution. In the absence of any additional noise, the process can be reversed by
deconvolution.

13.1 Convolution and Deconvolution
Using the FFT

We have defined the convolution of two functions for the continuous case in
equation (12.0.9), and have given the convolution theorem as equation (12.0.10).
The theorem says that the Fourier transform of the convolution of two functions is
equal to the product of their individual Fourier transforms. Now, we want to deal
with the discrete case. We will mention first the context in which convolution is a
useful procedure, and then discuss how to compute it efficiently using the FFT.

The convolution of two functions r.t/ and s.t/, denoted r 
 s, is mathemati-
cally equal to their convolution in the opposite order, s 
 r . Nevertheless, in most
applications the two functions have quite different meanings and characters. One of
the functions, say s, is typically a signal or data stream, which goes on indefinitely in
time (or in whatever the appropriate independent variable may be). The other func-
tion r is a “response function,” typically a peaked function that falls to zero in both
directions from its maximum. The effect of convolution is to smear the signal s.t/
in time according to the recipe provided by the response function r.t/, as shown in
Figure 13.1.1. In particular, a spike or delta-function of unit area in s which occurs
at some time t0 is supposed to be smeared into the shape of the response function
itself, but translated from time 0 to time t0 as r.t � t0/.

In the discrete case, the signal s.t/ is represented by its sampled values at equal
time intervals sj . The response function is also a discrete set of numbers rk , with the
following interpretation: r0 tells what multiple of the input signal in one channel (one
particular value of j ) is copied into the identical output channel (same value of j );
r1 tells what multiple of input signal in channel j is additionally copied into output
channel j C 1; r�1 tells the multiple that is copied into channel j � 1; and so on for
both positive and negative values of k in rk . Figure 13.1.2 illustrates the situation.
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sj
0

0

0

N − 1
rk

(r*s)j

N − 1

N − 1

Figure 13.1.2. Convolution of discretely sampled functions. Note how the response function for negative
times is wrapped around and stored at the extreme right end of the array rk .

Example: A response function with r0 D 1 and all other rk’s equal to zero
is just the identity filter. Convolution of a signal with this response function gives
identically the signal. Another example is the response function with r14 D 1:5 and
all other rk’s equal to zero. This produces convolved output that is the input signal
multiplied by 1:5 and delayed by 14 sample intervals.

Evidently, we have just described in words the following definition of discrete
convolution with a response function of finite duration M :

.r 
 s/j �

M=2X
kD�M=2C1

sj�k rk (13.1.1)

If a discrete response function is nonzero only in some range �M=2 < k 
 M=2,
where M is a sufficiently large even integer, then the response function is called a
finite impulse response (FIR), and its duration is M . (Notice that we are definingM
as the number of nonzero values of rk ; these values span a time interval of M � 1
sampling times.) In most practical circumstances the case of finite M is the case of
interest, either because the response really has a finite duration, or because we choose
to truncate it at some point and approximate it by a finite-duration response function.

The discrete convolution theorem is this: If a signal sj is periodic with period
N , so that it is completely determined by theN values s0; : : : ; sN�1, then its discrete
convolution with a response function of finite durationN is a member of the discrete
Fourier transform pair,
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N=2X
kD�N=2C1

sj�k rk ” SnRn (13.1.2)

Here Sn .n D 0; : : : ; N � 1/ is the discrete Fourier transform of the values sj .j D
0; : : : ; N � 1/, while Rn .n D 0; : : : ; N � 1/ is the discrete Fourier transform of
the values rk .k D 0; : : : ; N � 1/. These values of rk are the same as for the range
k D �N=2C 1; : : : ; N=2, but in wraparound order, exactly as was described at the
end of �12.2.

13.1.1 Treatment of End Effects by Zero Padding
The discrete convolution theorem presumes a set of two circumstances that are

not universal. First, it assumes that the input signal is periodic, whereas real data
often either go forever without repetition or else consist of one nonperiodic stretch
of finite length. Second, the convolution theorem takes the duration of the response
to be the same as the period of the data; they are both N . We need to work around
these two constraints.

The second is very straightforward. Almost always, one is interested in a
response function whose duration M is much shorter than the length of the data set
N . In this case, you simply extend the response function to length N by padding
it with zeros, i.e., define rk D 0 for M=2 
 k 
 N=2 and also for �N=2 C
1 

 �M=2C 1. Dealing with the first constraint is more challenging. Since
the convolution theorem rashly assumes that the data are periodic, it will falsely
“pollute” the first output channel .r 
 s/0 with some wrapped-around data from the
far end of the data stream sN�1; sN�2, etc. (See Figure 13.1.3.) So, we need to set
up a buffer zone of zero-padded values at the end of the sj vector, in order to make
this pollution zero. How many zero values do we need in this buffer? Exactly as
many as the most negative index for which the response function is nonzero. For
example, if r�3 is nonzero while r�4; r�5; : : : are all zero, then we need three zero
pads at the end of the data: sN�3 D sN�2 D sN�1 D 0. These zeros will protect the
first output channel .r 
s/0 from wraparound pollution. It should be obvious that the
second output channel .r 
 s/1 and subsequent ones will also be protected by these
same zeros. Let K denote the number of padding zeros, so that the last actual input
data point is sN�K�1.

What now about pollution of the very last output channel? Since the data now
end with sN�K�1, the last output channel of interest is .r 
 s/N�K�1. This channel
can be polluted by wraparound from input channel s0 unless the number K is also
large enough to take care of the most positive index k for which the response function
rk is nonzero. For example, if r0 through r6 are nonzero, while r7; r8 : : : are all zero,
then we need at least K D 6 padding zeros at the end of the data: sN�6 D : : : D

sN�1 D 0.
To summarize — we need to pad the data with a number of zeros on one end

equal to the maximum positive duration or maximum negative duration of the re-
sponse function, whichever is larger. (For a symmetric response function of duration
M , you will need only M=2 zero pads.) Combining this operation with the padding
of the response rk described above, we effectively insulate the data from artifacts of
undesired periodicity. Figure 13.1.4 illustrates matters.
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m+

spoiled spoiledunspoiled

m−

response function

sample of original function

convolution

m+

m−

Figure 13.1.3. The wraparound problem in convolving finite segments of a function. Not only must
the response function wrap be viewed as cyclic, but so must the sampled original function. Therefore,
a portion at each end of the original function is erroneously wrapped around by convolution with the
response function.

response function

m+ m−

m−

m+ m−

m+

zero paddingoriginal function

spoiled
but irrelevant

unspoiled

not spoiled because zero

Figure 13.1.4. Zero-padding as solution to the wraparound problem. The original function is extended
by zeros, serving a dual purpose: When the zeros wrap around, they do not disturb the true convolution;
and while the original function wraps around onto the zero region, that region can be discarded.
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13.1.2 Use of FFT for Convolution

The data, complete with zero-padding, are now a set of real numbers sj ; j D
0; : : : ; N � 1, and the response function is zero-padded out to duration N and ar-
ranged in wraparound order. (Generally this means that a large contiguous section
of the rk’s, in the middle of that array, is zero, with nonzero values clustered at the
two extreme ends of the array.) You now compute the discrete convolution as fol-
lows: Use the FFT algorithm to compute the discrete Fourier transform of s and of r .
Multiply the two transforms together component-by-component, remembering that
the transforms consist of complex numbers. Then use the FFT algorithm to take the
inverse discrete Fourier transform of the products. The answer is the convolution
r 
 s.

What about deconvolution? Deconvolution is the process of undoing the smear-
ing in a data set that has occurred under the influence of a known response function,
for example, because of the known effect of a less-than-perfect measuring apparatus.
The defining equation of deconvolution is the same as that for convolution, namely
(13.1.1), except now the left-hand side is taken to be known and (13.1.1) is to be
considered as a set of N linear equations for the unknown quantities sj . Solving
these simultaneous linear equations in the time domain of (13.1.1) is unrealistic in
most cases, but the FFT renders the problem almost trivial. Instead of multiplying
the transform of the signal and response to get the transform of the convolution, we
just divide the transform of the (known) convolution by the transform of the response
to get the transform of the deconvolved signal.

This procedure can go wrong mathematically if the transform of the response
function is exactly zero for some value Rn, so that we can’t divide by it. This indi-
cates that the original convolution has truly lost all information at that one frequency,
so that a reconstruction of that frequency component is not possible. You should be
aware, however, that apart from mathematical problems, the process of deconvolu-
tion has other practical shortcomings. The process is generally quite sensitive to
noise in the input data, and to the accuracy to which the response function rk is
known. Perfectly reasonable attempts at deconvolution can sometimes produce non-
sense for these reasons. In such cases you may want to make use of the additional
process of optimal filtering, which is discussed in �13.3.

Here is our routine for convolution and deconvolution, using the FFT as imple-
mented in realft (�12.3). The data are assumed to be stored in a VecDoub array
data[0..n-1], with n an integer power of 2. The response function is assumed to
be stored in wraparound order in a VecDoub array respns[0..m-1]. The value of m
can be any odd integer less than or equal to n, since the first thing the program does
is to recopy the response function into the appropriate wraparound order in an array
of length n. The answer is provided in ans, which is also used as working space.

void convlv(VecDoub_I &data, VecDoub_I &respns, const Int isign, convlv.h
VecDoub_O &ans) {

Convolves or deconvolves a real data set data[0..n-1] (including any user-supplied zero
padding) with a response function respns[0..m-1], where m is an odd integer � n. The
response function must be stored in wraparound order: The first half of the array respns
contains the impulse response function at positive times, while the second half of the array
contains the impulse response function at negative times, counting down from the highest ele-
ment respns[m-1]. On input isign is C1 for convolution, �1 for deconvolution. The answer
is returned in ans[0..n-1]. n must be an integer power of 2.

Int i,no2,n=data.size(),m=respns.size();
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Doub mag2,tmp;
VecDoub temp(n);
temp[0]=respns[0];
for (i=1;i<(m+1)/2;i++) { Put respns in array of length n.

temp[i]=respns[i];
temp[n-i]=respns[m-i];

}
for (i=(m+1)/2;i<n-(m-1)/2;i++) Pad with zeros.

temp[i]=0.0;
for (i=0;i<n;i++)

ans[i]=data[i];
realft(ans,1); FFT both arrays.
realft(temp,1);
no2=n>>1;
if (isign == 1) {

for (i=2;i<n;i+=2) { Multiply FFTs to convolve.
tmp=ans[i];
ans[i]=(ans[i]*temp[i]-ans[i+1]*temp[i+1])/no2;
ans[i+1]=(ans[i+1]*temp[i]+tmp*temp[i+1])/no2;

}
ans[0]=ans[0]*temp[0]/no2;
ans[1]=ans[1]*temp[1]/no2;

} else if (isign == -1) {
for (i=2;i<n;i+=2) { Divide FFTs to deconvolve.

if ((mag2=SQR(temp[i])+SQR(temp[i+1])) == 0.0)
throw("Deconvolving at response zero in convlv");

tmp=ans[i];
ans[i]=(ans[i]*temp[i]+ans[i+1]*temp[i+1])/mag2/no2;
ans[i+1]=(ans[i+1]*temp[i]-tmp*temp[i+1])/mag2/no2;

}
if (temp[0] == 0.0 || temp[1] == 0.0)

throw("Deconvolving at response zero in convlv");
ans[0]=ans[0]/temp[0]/no2;
ans[1]=ans[1]/temp[1]/no2;

} else throw("No meaning for isign in convlv");
realft(ans,-1); Inverse transform back to time domain.

}

13.1.3 Convolving or Deconvolving Very Large Data Sets
If your data set is so long that you do not want to fit it into memory all at

once, then you must break it up into sections and convolve each section separately.
Now, however, the treatment of end effects is a bit different. You have to worry
not only about spurious wraparound effects, but also about the fact that the ends of
each section of data should have been influenced by data at the nearby ends of the
immediately preceding and following sections of data, but were not so influenced
since only one section of data is in the machine at a time.

There are two, related, standard solutions to this problem. Both are fairly obvi-
ous, so with a few words of description here, you ought to be able to implement them
for yourself. The first solution is called the overlap-save method. In this technique
you pad only the very beginning of the data with enough zeros to avoid wraparound
pollution. After this initial padding, you forget about zero-padding altogether. Bring
in a section of data and convolve or deconvolve it. Then throw out the points at each
end that are polluted by wraparound end effects. Output only the remaining good
points in the middle. Now bring in the next section of data, but not all new data. The
first points in each new section overlap the last points from the preceding section of
data. The sections must be overlapped sufficiently so that the polluted output points
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convolution (out)A A + B B B + C C
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Figure 13.1.5. The overlap-add method for convolving a response with a very long signal. The signal
data are broken up into smaller pieces. Each is zero-padded at both ends and convolved (denoted by bold
arrows in the figure). Finally the pieces are added back together, including the overlapping regions formed
by the zero-pads.

at the end of one section are recomputed as the first of the unpolluted output points
from the subsequent section. With a bit of thought you can easily determine how
many points to overlap and save.

The second solution, called the overlap-add method, is illustrated in Figure
13.1.5. Here you don’t overlap the input data. Each section of data is disjoint from
the others and is used exactly once. However, you carefully zero-pad it at both ends
so that there is no wraparound ambiguity in the output convolution or deconvolution.
Now you overlap and add these sections of output. Thus, an output point near the
end of one section will have the response due to the input points at the beginning of
the next section of data properly added in to it, and likewise for an output point near
the beginning of a section, mutatis mutandis.

Even when computer memory is available, there is some slight gain in comput-
ing speed in segmenting a long data set, since the FFTs’ N log2N is slightly slower
than linear in N . However, the log term is so slowly varying that you will often be
much happier to avoid the bookkeeping complexities of the overlap-add or overlap-
save methods: If it is practical to do so, just cram the whole data set into memory
and FFT away. Then you will have more time for the finer things in life, some of
which are described in succeeding sections of this chapter.

CITED REFERENCES AND FURTHER READING:
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13.2 Correlation and Autocorrelation
Using the FFT

Correlation is the close mathematical cousin of convolution. It is in some ways
simpler, however, because the two functions that go into a correlation are not as
conceptually distinct as were the data and response functions that entered into con-
volution. Rather, in correlation, the functions are represented by different, but gen-
erally similar, data sets. We investigate their “correlation,” by comparing them both
directly superposed, and with one of them shifted left or right.

We have already defined in equation (12.0.11) the correlation between two con-
tinuous functions g.t/ and h.t/, which is denoted Corr.g; h/, and is a function of
lag t . We will occasionally show this time dependence explicitly, with the rather
awkward notation Corr.g; h/.t/. The correlation will be large at some value of t if
the first function (g) is a close copy of the second (h) but lags it in time by t , i.e., if
the first function is shifted to the right of the second. Likewise, the correlation will
be large for some negative value of t if the first function leads the second, i.e., is
shifted to the left of the second. The relation that holds when the two functions are
interchanged is

Corr.g; h/.t/ D Corr.h; g/.�t / (13.2.1)

The discrete correlation of two sampled functions gk and hk , each periodic with
period N , is defined by

Corr.g; h/j �
N�1X
kD0

gjCkhk (13.2.2)

The discrete correlation theorem says that this discrete correlation of two real func-
tions g and h is one member of the discrete Fourier transform pair

Corr.g; h/j ” GkH
�
k (13.2.3)

where Gk and Hk are the discrete Fourier transforms of gj and hj , and the asterisk
denotes complex conjugation. This theorem makes the same presumptions about the
functions as those encountered for the discrete convolution theorem.

We can compute correlations using the FFT as follows: FFT the two data sets,
multiply one resulting transform by the complex conjugate of the other, and inverse
transform the product. The result (call it rk) will formally be a complex vector
of length N . However, it will turn out to have all its imaginary parts zero since
the original data sets were both real. The components of rk are the values of the
correlation at different lags, with positive and negative lags stored in the by-now
familiar wraparound order: The correlation at zero lag is in r0, the first component;
the correlation at lag 1 is in r1, the second component; the correlation at lag �1 is in
rN�1, the last component; etc.

Just as in the case of convolution we have to consider end effects, since our data
will not, in general, be periodic as intended by the correlation theorem. Here again,
we can use zero-padding. If you are interested in the correlation for lags as large as
˙K, then you must append a buffer zone of K zeros at the end of both input data
sets. If you want all possible lags from N data points (not a usual thing), then you
will need to pad the data with an equal number of zeros; this is the extreme case. So
here is the program:
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void correl(VecDoub_I &data1, VecDoub_I &data2, VecDoub_O &ans) { correl.h
Computes the correlation of two real data sets data1[0..n-1] and data2[0..n-1] (including
any user-supplied zero padding). n must be an integer power of 2. The answer is returned in
ans[0..n-1] stored in wraparound order, i.e., correlations at increasingly negative lags are in
ans[n-1] on down to ans[n/2], while correlations at increasingly positive lags are in ans[0]
(zero lag) on up to ans[n/2-1]. Sign convention of this routine: if data1 lags data2, i.e., is
shifted to the right of it, then ans will show a peak at positive lags.

Int no2,i,n=data1.size();
Doub tmp;
VecDoub temp(n);
for (i=0;i<n;i++) {

ans[i]=data1[i];
temp[i]=data2[i];

}
realft(ans,1); Transform both data vectors.
realft(temp,1);
no2=n>>1; Normalization for inverse FFT.
for (i=2;i<n;i+=2) { Multiply to find FFT of their correlation.

tmp=ans[i];
ans[i]=(ans[i]*temp[i]+ans[i+1]*temp[i+1])/no2;
ans[i+1]=(ans[i+1]*temp[i]-tmp*temp[i+1])/no2;

}
ans[0]=ans[0]*temp[0]/no2;
ans[1]=ans[1]*temp[1]/no2;
realft(ans,-1); Inverse transform gives correlation.

}

The discrete autocorrelation of a sampled function gj is just the discrete cor-
relation of the function with itself. Obviously this is always symmetric with respect
to positive and negative lags. Feel free to use the above routine correl to obtain
autocorrelations, simply calling it with the same data vector in both arguments. If
the inefficiency bothers you, you can edit the program so that only one call is made
to realft for the forward transform.

CITED REFERENCES AND FURTHER READING:

Brigham, E.O. 1974, The Fast Fourier Transform (Englewood Cliffs, NJ: Prentice-Hall), �13–2.

13.3 Optimal (Wiener) Filtering with the FFT

There are a number of other tasks in numerical processing that are routinely
handled with Fourier techniques. One of these is filtering for the removal of noise
from a “corrupted” signal. The particular situation we consider is this: There is some
underlying, uncorrupted signal u.t/ that we want to measure. The measurement
process is imperfect, however, and what comes out of our measurement device is a
corrupted signal c.t/. The signal c.t/ may be less than perfect in either or both of
two respects. First, the apparatus may not have a perfect delta-function response, so
that the true signal u.t/ is convolved with (smeared out by) some known response
function r.t/ to give a smeared signal s.t/,

s.t/ D

Z 1
�1

r.t � �/u.�/ d� or S.f / D R.f /U.f / (13.3.1)
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where S;R;U are the Fourier transforms of s; r; u; respectively. Second, the mea-
sured signal c.t/ may contain an additional component of noise n.t/,

c.t/ D s.t/C n.t/ (13.3.2)

We already know how to deconvolve the effects of the response function r in
the absence of any noise (�13.1); we just divide C.f / by R.f / to get a deconvolved
signal. We now want to treat the analogous problem when noise is present. Our
task is to find the optimal filter, �.t/ or ˆ.f /, which, when applied to the measured
signal c.t/ or C.f / and then deconvolved by r.t/ or R.f /, produces a signal zu.t/
or zU.f / that is as close as possible to the uncorrupted signal u.t/ or U.f /. In other
words, we will estimate the true signal U by

zU.f / D
C.f /ˆ.f /

R.f /
(13.3.3)

In what sense is zU to be close to U ? We ask that they be close in the least-
square senseZ 1

�1

jzu.t/ � u.t/j
2 dt D

Z 1
�1

ˇ̌̌
zU.f / � U.f /

ˇ̌̌2
df is minimized. (13.3.4)

Substituting equations (13.3.3) and (13.3.2), the right-hand side of (13.3.4) becomesZ 1
�1

ˇ̌̌̌
ŒS.f /CN.f /�ˆ.f /

R.f /
�
S.f /

R.f /

ˇ̌̌̌2
df

D

Z 1
�1

jR.f /j�2
n
jS.f /j2 j1 �ˆ.f /j2 C jN.f /j2 jˆ.f /j2

o
df

(13.3.5)

The signal S and the noise N are uncorrelated, so their cross product, when inte-
grated over frequency f , gave zero. (This is practically the definition of what we
mean by noise!) Obviously (13.3.5) will be a minimum if and only if the integrand
is minimized with respect to ˆ.f / at every value of f . Let us search for such a
solution where ˆ.f / is a real function. Differentiating with respect to ˆ and setting
the result equal to zero gives

ˆ.f / D
jS.f /j2

jS.f /j2 C jN.f /j2
(13.3.6)

This is the formula for the optimal filter ˆ.f /.
Notice that equation (13.3.6) involves S , the smeared signal, and N , the noise.

The two of these add up to be C , the measured signal. Equation (13.3.6) does not
containU , the “true” signal. This makes for an important simplification: The optimal
filter can be determined independently of the determination of the deconvolution
function that relates S and U .

To determine the optimal filter from equation (13.3.6) we need some way of
separately estimating jS j2 and jN j2. There is no way to do this from the measured
signal C alone without some other information, or some assumption or guess. Luck-
ily, the extra information is often easy to obtain. For example, we can sample a long
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⎥ S⎥ 2 (deduced)

⎥ N⎥ 2 (extrapolated)

⎥ C⎥ 2 (measured)
lo

g 
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Figure 13.3.1. Optimal (Wiener) filtering. The power spectrum of signal plus noise shows a signal peak
added to a noise tail. The tail is extrapolated back into the signal region as a “noise model.” Subtracting
gives the “signal model.” The models need not be accurate for the method to be useful. A simple algebraic
combination of the models gives the optimal filter (see text).

stretch of data c.t/ and plot its power spectral density using equations (12.0.15),
(12.1.8), and (12.1.5). This quantity is proportional to the sum jS j2 C jN j2, so we
have

jS.f /j2 C jN.f /j2 � Pc.f / D jC.f /j
2 0 
 f < fc (13.3.7)

(More sophisticated methods of estimating the power spectral density will be dis-
cussed in �13.4 and �13.7, but the estimation above is almost always good enough
for the optimal filter problem.) The resulting plot (see Figure 13.3.1) will often im-
mediately show the spectral signature of a signal sticking up above a continuous
noise spectrum. The noise spectrum may be flat, or tilted, or smoothly varying; it
doesn’t matter, as long as we can guess a reasonable hypothesis as to what it is.
Draw a smooth curve through the noise spectrum, extrapolating it into the region
dominated by the signal as well. Now draw a smooth curve through the signal plus
noise power. The difference between these two curves is your smooth “model” of the
signal power. The quotient of your model of signal power to your model of signal
plus noise power is the optimal filterˆ.f /. [Extend it to negative values of f by the
formula ˆ.�f / D ˆ.f /.] Notice that ˆ.f / will be close to unity where the noise
is negligible, and close to zero where the noise is dominant. That is how it does its
job! The intermediate dependence given by equation (13.3.6) just turns out to be the
optimal way of going in between these two extremes.

Because the optimal filter results from a minimization problem, the quality of
the results obtained by optimal filtering differs from the true optimum by an amount
that is second order in the precision to which the optimal filter is determined. In
other words, even a fairly crudely determined optimal filter (sloppy, say, at the 10%
level) can give excellent results when it is applied to data. That is why the separation
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of the measured signal C into signal and noise components S and N can usefully be
done “by eye” from a crude plot of power spectral density. All of this may give you
thoughts about iterating the procedure we have just described. For example, after
designing a filter with response ˆ.f / and using it to make a respectable guess at the
signal zU.f / D ˆ.f /C.f /=R.f /, you might turn about and regard zU .f / as a fresh
new signal that you could improve even further with the same filtering technique.
Don’t waste your time on this line of thought. The scheme converges to a signal of
S.f / D 0. Converging iterative methods do exist; this just isn’t one of them.

You can use the routine four1 (�12.2) or realft (�12.3) to FFT your data when
you are constructing an optimal filter. To apply the filter to your data, you can use the
methods described in �13.1. The specific routine convlv is not needed for optimal
filtering, since your filter is constructed in the frequency domain to begin with. If
you are also deconvolving your data with a known response function, however, you
can modify convlv to multiply by your optimal filter just before it takes the inverse
Fourier transform.

CITED REFERENCES AND FURTHER READING:

Rabiner, L.R., and Gold, B. 1975, Theory and Application of Digital Signal Processing (Engle-
wood Cliffs, NJ: Prentice-Hall).

Nussbaumer, H.J. 1982, Fast Fourier Transform and Convolution Algorithms (New York: Springer).

Elliott, D.F., and Rao, K.R. 1982, Fast Transforms: Algorithms, Analyses, Applications (New York:
Academic Press).

13.4 Power Spectrum Estimation Using the FFT

In the previous section we “informally” estimated the power spectral density
of a function c.t/ by taking the modulus-squared of the discrete Fourier transform
of some finite, sampled stretch of it. In this section we’ll do roughly the same
thing, but with considerably greater attention to details. This attention will uncover
some surprises.

The first detail is the normalization of the power spectrum (or power spectral
density or PSD). In general, there is some relation of proportionality between a mea-
sure of the squared amplitude of the function and a measure of the amplitude of
the PSD. Unfortunately, there are several different conventions for describing the
normalization in each domain, and many opportunities for getting wrong the rela-
tionship between the two domains. Suppose that our function c.t/ is sampled at N
points to produce values c0 : : : cN�1, and that these points span a range of time T ,
that is, T D .N � 1/�, where � is the sampling interval. Then here are several
different descriptions of the total power:

N�1X
jD0

ˇ̌
cj
ˇ̌2
� sum squared amplitude (13.4.1)

1

T

Z T

0

jc.t/j2 dt �
1

N

N�1X
jD0

ˇ̌
cj
ˇ̌2
� mean squared amplitude (13.4.2)
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Z T

0

jc.t/j2 dt � �

N�1X
jD0

ˇ̌
cj
ˇ̌2
� time-integral squared amplitude (13.4.3)

PSD estimators, as we shall see, have an even greater variety. In this section,
we consider a class of them that give estimates at discrete values of frequency fi ,
where i will range over integer values. In the next section, we will learn about
a different class of estimators that produce estimates that are continuous functions
of frequency f . Even if it is agreed always to relate the PSD normalization to a
particular description of the function normalization (e.g., 13.4.2), there are at least
the following possibilities: The PSD is

� defined for discrete positive, zero, and negative frequencies, and its sum over
these is the function mean squared amplitude
� defined for zero and discrete positive frequencies only, and its sum over these

is the function mean squared amplitude
� defined in the Nyquist interval from �fc to fc , where fc D 1=.2�/, and its

integral over this range is the function mean squared amplitude
� defined from 0 to fc , and its integral over this range is the function mean

squared amplitude (it never makes sense to integrate the PSD of a sam-
pled function outside of the Nyquist interval �fc and fc since, according
to the sampling theorem, power there will have been aliased into the
Nyquist interval).

It is hopeless to define enough notation to distinguish all possible combinations
of normalizations. In what follows, we use the notation P.f / to mean any of the
above PSDs, stating in each instance how the particular P.f / is normalized. Beware
the inconsistent notation in the literature.

The method of power spectrum estimation used in the previous section is a
simple version of an estimator called, historically, the periodogram. If we take an
N -point sample of the function c.t/ at equal intervals and use the FFT to compute
its discrete Fourier transform

Ck D

N�1X
jD0

cj e
2	ijk=N k D 0; : : : ; N � 1 (13.4.4)

then the periodogram estimate of the power spectrum is defined at N=2C 1 frequen-
cies as

P.0/ D P.f0/ D
1

N 2
jC0j

2

P.fk/ D
1

N 2

h
jCk j

2 C jCN�k j
2
i

k D 1; 2; : : : ;

�
N

2
� 1

�
P.fc/ D P.fN=2/ D

1

N 2

ˇ̌
CN=2

ˇ̌2
(13.4.5)

where fk is defined only for the zero and positive frequencies

fk �
k

N�
D 2fc

k

N
k D 0; 1; : : : ;

N

2
(13.4.6)
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By Parseval’s theorem, equation (12.1.10), we see immediately that equation (13.4.5)
is normalized so that the sum of theN=2C1 values of P is equal to the mean squared
amplitude of the function cj .

Here is an object (Spectreg for “spectrum register”) that implements equations
(13.4.4) – (13.4.6). Its constructor takes an integer argumentM that defines both the
number of data points, 2M � N , and M C 1, the number of frequencies in the
estimate between 0 and fc , inclusive. M must be a power of 2. Spectreg has some
other features that we will build on below when we learn about window functions and
variance reduction. For now, the function window that appears should be defined as
returning the constant 1, that is,

Doub window(Int j,Int n) {return 1.;}

struct Spectreg {spectrum.h
Object for accumulating power spectrum estimates from one or more segments of data.

Int m,m2,nsum;
VecDoub specsum, wksp;

Spectreg(Int em) : m(em), m2(2*m), nsum(0), specsum(m+1,0.), wksp(m2) {
Constructor. Sets M , such that data segments will have length 2M , and the spectrum will
be estimated at M C 1 frequencies.

if (m & (m-1)) throw("m must be power of 2");
}

template<class D>
void adddataseg(VecDoub_I &data, D &window) {
Process a data segment of length 2M using the window function, which can be either a
bare function or a functor.

Int i;
Doub w,fac,sumw = 0.;
if (data.size() != m2) throw("wrong size data segment");
for (i=0;i<m2;i++) { Load the data.

w = window(i,m2);
wksp[i] = w*data[i];
sumw += SQR(w);

}
fac = 2./(sumw*m2);
realft(wksp,1); Take its Fourier transform.
specsum[0] += 0.5*fac*SQR(wksp[0]);
for (i=1;i<m;i++) specsum[i] += fac*(SQR(wksp[2*i])+SQR(wksp[2*i+1]));
specsum[m] += 0.5*fac*SQR(wksp[1]);
nsum++;

}

VecDoub spectrum() {
Return power spectrum estimates as a vector. You can instead just access specsum directly,
and divide by nsum.

VecDoub spec(m+1);
if (nsum == 0) throw("no data yet");
for (Int i=0;i<=m;i++) spec[i] = specsum[i]/nsum;
return spec;

}

VecDoub frequencies() {
Return vector of frequencies (in units of 1=�) at which estimates are made.

VecDoub freq(m+1);
for (Int i=0;i<=m;i++) freq[i] = i*0.5/m;
return freq;

}
};
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The naive use of Spectreg would be as follows: Declare an instance with a
power-of-two value ofM . Call adddataseg to process a vector of data, length 2M .
Call spectrum and frequencies to get, respectively, the PSD estimates and the
frequencies at which they are made (in units of 1=�).

Before we rush to use Spectreg, however, we must now ask this question: In
what sense is the periodogram estimate (13.4.5) a “true” estimator of the power spec-
trum of the underlying function c.t/? You can find the answer treated in considerable
detail in the literature cited (see, e.g., [1] for an introduction). Here is a summary.

First, is the expectation value of the periodogram estimate equal to the power
spectrum, i.e., is the estimator correct (unbiased) on average? Well, yes and no. We
wouldn’t really expect one of the P.fk/’s to equal the continuous P.f / at exactly
fk , since fk is supposed to be representative of a whole frequency “bin” extending
from halfway from the preceding discrete frequency to halfway to the next one. We
should be expecting the P.fk/ to be some kind of average of P.f / over a narrow
window function centered on its fk . For the periodogram estimate (13.4.6), that
window function, as a function of s the frequency offset in bins, is

W.s/ D
1

N 2

�
sin.	s/

sin.	s=N /

�2
(13.4.7)

Notice that W.s/ has oscillatory lobes but, apart from these, falls off only about
as W.s/ � .	s/�2. This is not a very rapid fall-off, and it results in significant
leakage (that is the technical term) from one frequency to another in the periodogram
estimate. Notice also that W.s/ happens to be zero for s equal to a nonzero integer.
This means that if the function c.t/ is a pure sine wave of frequency exactly equal
to one of the fk’s, then there will be no leakage to adjacent fk’s. But this is not
the characteristic case! If the frequency is, say, one-third of the way between two
adjacent fk’s, then the leakage will extend well beyond those two adjacent bins. The
solution to the problem of leakage is called data windowing, and we will discuss
it below.

Turn now to another question about the periodogram estimate. What is the
variance of that estimate as N goes to infinity? In other words, as we take more
sampled points from the original function (either sampling a longer stretch of data at
the same sampling rate, or else by resampling the same stretch of data with a faster
sampling rate), then how much more accurate do the estimates Pk become? The
unpleasant answer is that the periodogram estimates do not become more accurate
at all! In fact, the variance of the periodogram estimate at a frequency fk is always
equal to the square of its expectation value at that frequency. In other words, the
standard deviation is always 100% of the value, independent of N !

How can this be? Where did all the information go as we added points? It all
went into producing estimates at a greater number of discrete frequencies fk . If we
sample a longer run of data using the same sampling rate, then the Nyquist critical
frequency fc is unchanged, but we now have finer frequency resolution (more fk’s)
within the Nyquist frequency interval; alternatively, if we sample the same length of
data with a finer sampling interval, then our frequency resolution is unchanged, but
the Nyquist range now extends up to a higher frequency. In neither case do the addi-
tional samples reduce the variance of any one particular frequency’s estimated PSD.

You don’t have to live with PSD estimates with 100% standard deviations, how-
ever. You simply have to know some techniques for reducing the variance of the
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estimates. Here are two techniques that are very nearly identical mathematically,
though different in implementation. The first is to compute a periodogram estimate
with finer discrete frequency spacing than you really need, and then to sum the pe-
riodogram estimates at K consecutive discrete frequencies to get one “smoother”
estimate at the mid-frequency of those K. The variance of that summed estimate
will be smaller than the estimate itself by a factor of exactly 1=K, i.e., the standard
deviation will be smaller than 100% by a factor 1=

p
K. Thus, to estimate the power

spectrum at M C 1 discrete frequencies between 0 and fc inclusive, you begin by
taking the FFT of 2MK points (which number had better be an integer power of
2!). You then take the modulus square of the resulting coefficients, add positive and
negative frequency pairs, and divide by .2MK/2, all according to equation (13.4.5)
with N D 2MK. Finally, you “bin” the results into summed (not averaged) groups
ofK. This procedure is very easy to program, so we will not bother to give a routine
for it. The reason that you sum, rather than average, K consecutive points is so that
your final PSD estimate will preserve the normalization property that the sum of its
M C 1 values equals the mean square value of the function.

A second technique for estimating the PSD at M C 1 discrete frequencies in
the range 0 to fc is to partition the original sampled data into K segments each of
2M consecutive sampled points. Each segment is separately FFT’d to produce a pe-
riodogram estimate (equation 13.4.5 with N � 2M ). Finally, the K periodogram
estimates are averaged at each frequency. It is this final averaging that reduces the
variance of the estimate by a factorK (standard deviation by

p
K). This second tech-

nique is computationally more efficient than the first technique above by a modest
factor, since it is logarithmically more efficient to take many shorter FFTs than one
longer one. The principal advantage of the second technique, however, is that only
2M data points are manipulated at a single time, not 2KM as in the first technique.
This means that the second technique is the natural choice for processing long runs
of data, as from a real-time device or slow storage.

In fact, you may already have noticed, the object Spectreg implements this
second technique. If you call adddataseg K times, with a different vector of 2M
data points each time, then the result returned by spectrum is the average of the K
periodograms. However, we should still not rush to use Spectreg. We need first
to return to the matters of leakage and data windowing that were brought up after
equation (13.4.7) above.

13.4.1 Data Windowing
The purpose of data windowing is to modify equation (13.4.7), which expresses

the relation between the spectral estimate Pk at a discrete frequency and the actual
underlying continuous spectrum P.f / at nearby frequencies. In general, the spectral
power in one “bin” k contains leakage from frequency components that are actually
s bins away, where s is the independent variable in equation (13.4.7). There is, as we
pointed out, quite substantial leakage even from moderately large values of s. Note
that s is not an integer, in general, because actual frequencies can have any real value.

When we select a run ofN sampled points for periodogram spectral estimation,
we are in effect multiplying an infinite run of sampled data cj by a window function
in time, one that is zero except during the total sampling timeN� and is unity during
that time. In other words, the data are windowed by a square window function. By
the convolution theorem (12.0.10; but interchanging the roles of f and t ), the Fourier
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transform of the product of the data with this square window function is equal to the
convolution of the data’s Fourier transform with the window’s Fourier transform.
In fact, equation (13.4.7) is nothing more than the square of the discrete Fourier
transform of the unity window function.

W.s/ D
1

N 2

�
sin.	s/

sin.	s=N /

�2
D

1

N 2

ˇ̌̌̌
ˇ
N�1X
kD0

e2	isk=N

ˇ̌̌̌
ˇ
2

(13.4.8)

The reason for the leakage at large values of s is that the square window function
turns on and off so rapidly. Its Fourier transform has substantial components at
high frequencies. To remedy this situation, we can multiply the input data cj ; j D
0; : : : ; N � 1 by a window function wj that changes more gradually from zero to a
maximum and then back to zero as j ranges from 0 to N . In this case, the equations
for the periodogram estimator (13.4.4 – 13.4.5) become

Dk �

N�1X
jD0

cjwj e
2	ijk=N k D 0; : : : ; N � 1 (13.4.9)

P.0/ D P.f0/ D
1

Wss
jD0j

2

P.fk/ D
1

Wss

h
jDkj

2 C jDN�kj
2
i

k D 1; 2; : : : ;

�
N

2
� 1

�
P.fc/ D P.fN=2/ D

1

Wss

ˇ̌
DN=2

ˇ̌2
(13.4.10)

where Wss stands for “window squared and summed,”

Wss � N

N�1X
jD0

w2j (13.4.11)

and fk is given by (13.4.6). The more general form of (13.4.7) can now be written
in terms of the window function wj as

W.s/ D
1

Wss

ˇ̌̌̌
ˇ
N�1X
kD0

e2	isk=Nwk

ˇ̌̌̌
ˇ
2

(13.4.12)

There is a lot of perhaps unnecessary lore about the choice of a window func-
tion, and practically every function that rises from zero to a peak and then falls again
has been named after someone. A few of the more common (also shown in Figure
13.4.1) are

wj D 1 �

ˇ̌̌̌
ˇj � 1

2
N

1
2
N

ˇ̌̌̌
ˇ � Bartlett window (13.4.13)

(the “Parzen window” is a smoother, but similarly shaped, functional form)

wj D
1

2

�
1 � cos

�
2	j

N

��
� Hann window (13.4.14)
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Figure 13.4.1. Window functions commonly used in FFT power spectral estimation. The data segment,
here of length 256, is multiplied (bin by bin) by the window function before the FFT is computed. The
square window, which is equivalent to no windowing, is least recommended. The Welch and Bartlett
windows are good choices.

(the “Hamming window” is similar but does not go exactly to zero at the ends)

wj D 1 �

 
j � 1

2
N

1
2
N

!2
�Welch window (13.4.15)

We are inclined to follow Welch in recommending that you use either (13.4.13)
or (13.4.15) in practical work. However, at the level of the discussion thus far,
there is little difference between any of these (or similar) window functions. Their
difference lies in subtle trade-offs among the various figures of merit that can be
used to describe the narrowness or peakedness of the spectral leakage functions
computed by (13.4.12). These figures of merit have such names as: highest sidelobe
level (dB), sidelobe fall-off (dB per octave), equivalent noise bandwidth (bins), 3-dB
bandwidth (bins), scallop loss (dB), and worst-case process loss (dB). Roughly
speaking, the principal trade-off is between making the central peak as narrow as
possible versus making the tails of the distribution fall off as rapidly as possible. For
details, see, e.g., [2]. Figure 13.4.2 plots the leakage amplitudes for several windows
already discussed.

There is a particular lore about window functions that rise smoothly from zero
to unity in the first small fraction (say 10%) of the data, then stay at unity until the
last small fraction (again say 10%) of the data, during which the window function
falls smoothly back to zero. These windows will squeeze a little bit of extra narrow-
ness out of the main lobe of the leakage function (never as much as a factor of two,
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Figure 13.4.2. Leakage functions for the window functions of Figure 13.4.1. A signal whose frequency
is actually located at zero offset “leaks” into neighboring bins with the amplitude shown. The purpose
of windowing is to reduce the leakage at large offsets, where square (no) windowing has large sidelobes.
Offset can have a fractional value, since the actual signal frequency can be located between two frequency
bins of the FFT.

however), but trade this off by widening the leakage tail by a significant factor (e.g.,
the reciprocal of 10%, a factor of ten). If we distinguish between the width of a win-
dow (number of samples for which it is at its maximum value) and its rise/fall time
(number of samples during which it rises and falls); and if we distinguish between
the FWHM (full width to half maximum value) of the leakage function’s main lobe
and the leakage width (full width that contains half of the spectral power that is not
contained in the main lobe), then these quantities are related roughly by

.FWHM in bins/ �
N

.window width/
(13.4.16)

.leakage width in bins/ �
N

.window rise/fall time/
(13.4.17)

For the windows given above in (13.4.13) – (13.4.15), the effective window
widths and the effective window rise/fall times are both of order 1

2
N . Generally

speaking, we feel that the advantages of windows whose rise and fall times are only
small fractions of the data length are minor or nonexistent, and we avoid using them.
One sometimes hears it said that flat-topped windows “throw away less of the data,”
but we will show you two better ways of dealing with that problem, namely by
overlapping data segments or by multitaper methods.

Now, at last, we really are ready to use the Spectreg object. First, choose
a window function. The templating in Spectreg allows it to accept either a bare
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function or a functor. Use the former if your window function is fast to compute, or
the latter if you want to precompute and store a more complicated window function,
or one with auxiliary parameters. Examples are

Doub square(Int j,Int n) {return 1.;} Don’t use this!spectrum.h

Doub bartlett(Int j,Int n) {return 1.-abs(2.*j/(n-1.)-1.);} Use this,

Doub welch(Int j,Int n) {return 1.-SQR(2.*j/(n-1.)-1.);} or this...

struct Hann {
...or this. This is an example of a functor.

Int nn;
VecDoub win;
Hann(Int n) : nn(n), win(n) {
Constructor. Compute and store the window function in a table.

Doub twopi = 8.*atan(1.);
for (Int i=0;i<nn;i++) win[i] = 0.5*(1.-cos(i*twopi/(nn-1.)));

}
Doub operator() (Int j, Int n) {
Make it a functor, able to return values as if it were a function.

if (n != nn) throw("incorrect n for this Hann");
return win[j];

}
};

Second, pick a value of M and declare a Spectreg object. Third, process K data
segments, each of length 2M . The larger K, the more accurate your answer. Fourth,
get the PSD estimate at M C 1 frequencies by a call to the spectrum method (or, to
avoid copying vectors, directly from the specsum member vector).

13.4.2 Overlapping Data Segments
We introduced window functions to mitigate leakage, a major problem, but in

doing so we have created a new problem, luckily minor, which we now address. All
good window functions, because they approach zero at their endpoints, deweight,
and in effect throw away, valid data. A consequence is that, for any number of data
segmentsK each of length 2M , the variance of the PSD estimate is somewhat larger
with a good window function than with the (bad) square window.

Sometimes you are not limited in the number of data points, but rather by the
computer resources to process them. For example, the data may be pouring out of
a real-time device at a high rate. In such a situation, data deweighting is not an
issue. You should use Spectreg as already described, accumulating as many data
segments as you need to obtain the desired accuracy. Indeed, this gives you the
smallest variance estimate per computer operation.

More often, however, you are limited in the total number of data points, and
you want to get the smallest variance estimate from them, but without giving up
the low-leakage benefit of windowing. In this situation it turns out to be optimal,
or nearly optimal, to overlap the segments by one-half of their length. The first
and second sets of M points become segment number 1 (length 2M as usual); the
second and third sets of M points become segment number 2; and so on, up to
segment number K, which is made of the Kth and K C 1st sets of M points. The
total number of sampled points is therefore .K C 1/M , just over half as many as
with nonoverlapping segments. The reduction in the variance is not a full factor
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of K, since the segments are not statistically independent. It can be shown that
the variance is instead reduced by a factor of about 9K=11 [3]. This is, however,
significantly better than the reduction of about K=2 that would have resulted if the
same number of data points were segmented without overlapping.

Here is an object Spectolap, derived from Spectreg as a base class, that
implements the overlap method. As far as the user is concerned, the only difference
is that the adddataseg method now requires a data segment of length M , not 2M .

struct Spectolap : Spectreg { spectrum.h
Object for power spectral estimation using overlapping data segments. The user sends non-
overlapping segments of length M , which are processed in pairs of length 2M , with overlap.

Int first;
VecDoub fullseg;

Spectolap(Int em) : Spectreg(em), first(1), fullseg(2*em) {}
Constructor. Sets M .

template<class D>
void adddataseg(VecDoub_I &data, D &window) {
Process a data segment of length M using the window function, which can be either a bare
function or a functor.

Int i;
if (data.size() != m) throw("wrong size data segment");
if (first) { First segment is just stored.

for (i=0;i<m;i++) fullseg[i+m] = data [i];
first = 0;

} else { Subsequent segments are processed.
for (i=0;i<m;i++) {

fullseg[i] = fullseg[i+m];
fullseg[i+m] = data [i];

}
Spectreg::adddataseg(fullseg,window); Base class method, the data length

is 2M .}
}

template<class D>
void addlongdata(VecDoub_I &data, D &window) {
Process a long vector of data as overlapping segments each of length 2M .

Int i, k, noff, nt=data.size(), nk=(nt-1)/m;
Doub del = nk > 1 ? (nt-m2)/(nk-1.) : 0.; Target separation.
if (nt < m2) throw("data length too short");
for (k=0;k<nk;k++) { Process nk overlapping segments.

noff = (Int)(k*del+0.5); Offset is nearest integer.
for (i=0;i<m2;i++) fullseg[i] = data[noff+i];
Spectreg::adddataseg(fullseg,window);

}
}

};

The method addlongdata in Spectolap is provided to deal with another com-
mon situation: You want to estimate the PSD at M C 1 frequencies (as usual), but
your data are in a long vector that is not necessarily a multiple of M , or 2M , or
a power of 2. Here we are assuming that the length of your data vector, Ntot, is
much larger than 2M . The problem is not that the number of segments K is small,
but rather that K is not an integer. Overlapping data segments provide a nifty fix:
We start with the next-larger integer number of segments, and then squeeze them
together just a bit, like an accordion, until they exactly fit into Ntot. In other words,
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we overlap them by slightly more than half of their length, to get an exact fit.
Here is our plain-vanilla recommendation for PSD estimation when your Ntot

data points are not taxing the size of memory: Pick M , a power of 2, such that
estimates at M C 1 frequencies between 0 and fc (inclusive) are enough. Don’t be
too greedy onM , because the fractional standard deviation of your estimates will on
the order of .M=Ntot/

1=2. Then do

Int ntot=..., m=...;

VecDoub data(ntot), psd(m), freq(m);

...

Spectolap myspec(m);

myspec.addlongdata(data,bartlett);

psd = myspec.spectrum()

freq = myspec.frequencies()

13.4.3 Multitaper Methods and Slepian Functions

Multitaper methods provide a principled approach to the trade-off between (very) low
leakage and minimizing the variance of the PSD estimate. If the leakage profiles in Figure
13.4.2 are acceptable to you (and see also Figure 13.4.4 below), then you don’t need to read
this section. In some applications, however, minimizing leakage is the whole game. For exam-
ple, you may be looking for very weak spectral signals, either line or continuum, that can be
masked by leakage from nearby strong lines. Or, you may be interested in the tail of a spectrum
at high frequencies, which can be spuriously dominated by leakage from lower frequencies.

You have to give something to get something. Here, you have to accept a (small) broad-
ening of the main lobe of the leakage function W.s/ in order to (greatly) suppress leakage
outside of the main lobe. Broadening the main lobe is equivalent to giving up some frequency
resolution. We can parameterize this by a value jres. The goal is to minimize leakage for
jsj > jres, measured in bins, in exchange for which we are willing to have leakage near unity
for any jsj < jres. Typical values of jres might be in the range of 2 to 10. (We’ll see that larger
values are not necessary.)

There are two key ideas in multitaper methods, somewhat independent of each other,
originating in the work of Slepian [4]. The first idea is that, for a given data length N and
choice jres, one can actually solve for the best possible weights wj , meaning the ones that
make the leakage smallest among all possible choices. The beautiful and nonobvious answer
(see [5]) is that the vector of optimal weights is the eigenvector corresponding to the smallest
eigenvalue of the symmetric tridiagonal matrix with diagonal elements

1

4

�
N 2 � .N � 1 � 2j /2 cos

�
2	jres

N

��
; j D 0; : : : ; N � 1 (13.4.18)

and off-diagonal elements

�12j.N � j /; j D 1; : : : ; N � 1 (13.4.19)

The second key idea is that the next few eigenvectors of this same matrix are also pretty
good window functions. And because they are orthogonal to the first eigenvector (and each
other), they give statistically independent estimates, which can be averaged together to de-
crease the variance of the final answer. Let kT (for “taper”) denote the number of such es-
timates that are averaged. Figure 13.4.3 shows the first five window functions (eigenvectors
number k D 0; : : : ; kT �1) for the case jres D 3, N D 1024. The functions (actually discrete
sequences) obtained as eigenvectors of equations (13.4.18) and (13.4.19) are called Slepian
functions or discrete prolate spheroidal sequences (dpss). You can see that larger values of k
pick up the information in data regions that were deweighted in the first eigenvector k D 0.
(You may have thought that window functions needed to be positive, but there is actually no
such restriction in any of the discussion above.)
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Figure 13.4.3. Slepian taper (window) functions for the case jres D 3, k D 0; 1; 2; 3; 4, N D 1024.
Combining the power spectrum estimates of different k’s uses, effectively, more of the data segment and
decreases the variance.

The reason that you can’t continue this indefinitely, using eigenvectors corresponding to
larger and larger eigenvalues (increasing kT ), is that the leakage of the kth window function
increases rather rapidly with k. Only kT < 2jres values are worth considering at all, and only
for kT . jres is the leakage really tiny, which was, after all, the whole point. In Figure 13.4.3
you can already guess that k D 3 and 4 are going to have rather poor leakage properties,
because they noticeably don’t go to zero at their endpoints. Figure 13.4.4 shows the leakage
function W.s/ for a variety of window functions, including those we met previously, now
plotted on a logarithmic scale. Window functions shown as shaded have leakage so large as
to be ruled out almost categorically; the square window is notable in this group. You can see
how the main lobe of the Slepian functions extends almost exactly out to jres, and that the
suppression of the sidelobes of the lowest eigenvectors (e.g., Slepian 3,0 and 3,1) is really
quite remarkable.

Here is an object, again derived from Spectreg as a base class, for estimating the PSD
using the multitaper method with Slepian window functions. As in the base class, the method
adddataseg accepts data segments of length 2M , but it now adds to the average the result of
the first kT tapers of resolution jres. Values for M , jres and kT are set in the constructor.

struct Slepian : Spectreg { spectrum.h
Object for power spectral estimation using the multitaper method with Slepian tapers.

Int jres, kt;
MatDoub dpss; Table of Slepians.
Doub p,pp,d,dd;
Slepian(Int em, Int jjres, Int kkt)
: Spectreg(em), jres(jjres), kt(kkt), dpss(kkt,2*em) {
Constructor sets M (same meaning as previously), jres, and kT , see text.

if (jres < 1 || kt >= 2*jres) throw("kt too big or jres too small");
filltable();

}
void filltable(); Implementation in next subsection.
void renorm(Int n) {
Utility used by filltable.

p = ldexp(p,n); pp = ldexp(pp,n); d = ldexp(d,n); dd = ldexp(dd,n);
}
struct Slepwindow {
Captive functor will be sent to the base class as a window function.

Int k;



�

�

“nr3” — 2007/5/1 — 20:53 — page 664 — #686
�

�

� �

664 Chapter 13. Fourier and Spectral Applications

1.e-6

1.e-5

1.e-4

0.001

0.01

0.1 Square Bartlett Welch Hann

Slepian 2,0 Slepian 2,1 Slepian 2,2 Slepian 2,3

0 1 2 3 4 5 6

Slepian 3,0 Slepian 3,1 Slepian 3,2 Slepian 3,3

Figure 13.4.4. Leakage function W.s/ for various window functions. The top row is essentially the
same as Figure 13.4.2, but squared (to get power) and plotted logarithmically. The second and third rows
are examples of Slepian functions, identified by jres; k values. Small k values have exceedingly small
leakage for jsj > jres; but as k increases, so does the leakage. Shaded functions have unacceptably large
leakage and are not recommended.

MatDoub &dps;
Slepwindow(Int kkt, MatDoub &dpss) : k(kkt), dps(dpss) {}
Doub operator() (Int j, Int n) {return dps[k][j];}

};

void adddataseg(VecDoub_I &data) {
Process a data segment of length 2M using kT tapers.

Int k;
if (data.size() != m2) throw("wrong size data segment");
for (k=0;k<kt;k++) { Loop over tapers, initializing the functor

separately for each.Slepwindow window(k,dpss);
Spectreg::adddataseg(data,window);

}
}

};

We discuss the body of filltable, where the Slepian functions are actually computed, below.
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Figure 13.4.5. Slepian taper (window) functions for k D 0 (smallest eigenvalue) and jres D
2; 3; : : : ; 10, with N D 1024. Any of these, used by itself, is a good choice for the overlapping
data segment method; see text.

First, a few words about the use and misuse of multitaper methods.
The Slepian multitaper method is fundamentally about low leakage. The fact that it can

reduce the variance a bit by taking kT > 1 is only a secondary consideration, because there
are better ways to achieve the latter goal, for example by overlapping data segments. It follows
that you should never need to take jres or kT very large, greater than 10, say. Your logical path
for choosing parameters should be something like this: Leakage suppression of the Slepian
functions is so amazingly good that you can get to any plausible desired level for the first
few eigenvectors with modest jres. Find that value, and the largest acceptable value for kT .
The frequency resolution is now jres, measured in bins. You now pick M to get the physical
frequency resolution that you actually need,

fres D
jres

2M�
(13.4.20)

(compare equation 13.4.6). Don’t be too greedy, or you will produce an unacceptably large
variance. Now, if you have Ntot data points, you process Ntot=.2M/ separate data segments
using adddataseg.

It would be misguided to increase jres to a large value just to increase kT for the purpose
of variance reduction. The reason is that, for a fixed desired physical frequency resolution,
you will need to increase M in proportion, and thus decrease your number of separate data
segments, also in proportion. You thus gain nothing in variance reduction, and (potentially)
lose greatly in leakage.

If squeezing down the variance by the last little bit is important, then you might consider
using only the first Slepian function for a given jres, and then using overlapping data segments.
You can code this using Spectolap and Slepian as models. As jres increases, the optimal
spacing of overlapped segments decreases, as you can intuit from the narrowing central peaks
in Figure 13.4.5. A spacing of 0:7N=

p
jres C 0:3, that is, overlap of N � 0:7N=

p
jres C 0:3,

should be about right.

13.4.4 Computation of the Slepian Functions
We want to find the first few eigenvectors and eigenvalues of the tridiagonal matrix,

equations (13.4.18) and (13.4.19). ForN � 1 (always our situation), the eigenvalues are well
separated and approximately a function of jres only. A good starting approximation for the



�

�

“nr3” — 2007/5/1 — 20:53 — page 666 — #688
�

�

� �

666 Chapter 13. Fourier and Spectral Applications

smallest eigenvalue �0 is

�0 � 1:5692jres � 0:10859 � 0:068762=jres; jres � 1 (13.4.21)

and a similar approximation for the spacing of the first two eigenvalues is

�1 � �0 � 3:1387jres � 0:47276 � 0:20273=jres; jres � 1 (13.4.22)

With these hints, a workable strategy is to find the eigenvalues as roots of the characteristic
polynomial, using Newton’s method. As starting guesses, we use equations (13.4.21) and
(13.4.22), and subsequently linear interpolation on �k�1 and �k , to estimate �kC1. There
exists a straightforward recurrence relation that evaluates the characteristic polynomial of a
tridiagonal system and its first derivative simultaneously (see [6]), and more than three or four
iterations are seldom required. Once the eigenvalue is in hand, the eigenvector is obtained by
setting one component arbitrarily, solving the tridiagonal system for the other components, and
then renormalizing the solution. The code uses an algebraically equivalent form for equation
(13.4.18) that is less susceptible to roundoff error.

void Slepian::filltable() {spectrum.h
Calculate Slepian functions and store in table.

const Doub EPS = 1.e-10, PI = 4.*atan(1.);
Doub xx,xnew,xold,sw,ppp,ddd,sum,bet,ssub,ssup,*u;
Int i,j,k,nl;
VecDoub dg(m2),dgg(m2),gam(m2),sup(m2-1),sub(m2-1);
sw = 2.*SQR(sin(jres*PI/m2));
dg[0] = 0.25*(2*m2+sw*SQR(m2-1.)-1.); Set up the tridiagonal matrix.
for (i=1;i<m2;i++) {

dg[i] = 0.25*(sw*SQR(m2-1.-2*i)+(2*(m2-i)-1.)*(2*i+1.));
sub[i-1] = sup[i-1] = -i*(Doub)(m2-i)/2.;

}
xx = -0.10859 - 0.068762/jres + 1.5692*jres; Eigenvalue first guess
xold = xx + 0.47276 + 0.20273/jres - 3.1387*jres;
for (k=0; k<kt; k++) { Loop over number of desired eigenvalues.

u = &dpss[k][0]; Point output vector into table.
for (i=0;i<20;i++) { Loop over iterations of Newton’s method.

pp = 1.;
p = dg[0] - xx;
dd = 0.;
d = -1.;
for (j=1; j<m2; j++) { Recurrence evaluates polynomial and deriva-

tive.ppp = pp; pp = p;
ddd = dd; dd = d;
p = pp*(dg[j]-xx) - ppp*SQR(sup[j-1]);
d = -pp + dd*(dg[j]-xx) - ddd*SQR(sup[j-1]);
if (abs(p)>1.e30) renorm(-100);
else if (abs(p)<1.e-30) renorm(100);

}
xnew = xx - p/d; Newton’s method.
if (abs(xx-xnew) < EPS*abs(xnew)) break;
xx = xnew;

}
xx = xnew - (xold - xnew);
xold = xnew;
for (i=0;i<m2;i++) dgg[i] = dg[i] - xnew; Subtract eigenvalue from matrix

diagonal. Then, set one com-
ponent (saving current val-
ues).

nl = m2/3;
dgg[nl] = 1.;
ssup = sup[nl]; ssub = sub[nl-1];
u[0] = sup[nl] = sub[nl-1] = 0.;
bet = dgg[0]; Begin tridiagonal solution.
for (i=1; i<m2; i++) {

gam[i] = sup[i-1]/bet;
bet = dgg[i] - sub[i-1]*gam[i];
u[i] = ((i==nl? 1. : 0.) - sub[i-1]*u[i-1])/bet;
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}
for (i=m2-2; i>=0; i--) u[i] -= gam[i+1]*u[i+1];
sup[nl] = ssup; sub[nl-1] = ssub; Restore saved values.
sum = 0.; Renormalize and fix sign convention.
for (i=0; i<m2; i++) sum += SQR(u[i]);
sum = (u[3] > 0.)? sqrt(sum) : -sqrt(sum);
for (i=0; i<m2; i++) u[i] /= sum;

}
}
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13.5 Digital Filtering in the Time Domain

Suppose that you have a signal that you want to filter digitally. For example, perhaps
you want to apply high-pass or low-pass filtering to eliminate noise at low or high frequencies
respectively; or perhaps the interesting part of your signal lies only in a certain frequency
band, so that you need a bandpass filter. Or, if your measurements are contaminated by 60
Hz power-line interference, you may need a notch filter to remove only a narrow band around
that frequency. This section speaks particularly about the case in which you have chosen to do
such filtering in the time domain.

Before continuing, we hope you will reconsider this choice. Remember how convenient
it is to filter in the Fourier domain. You just take your whole data record, FFT it, multiply the
FFT output by a filter function H .f /, and then do an inverse FFT to get back a filtered data
set in time domain. Here is some additional background on the Fourier technique that you will
want to take into account.

� Remember that you must define your filter function H .f / for both positive and neg-
ative frequencies, and that the magnitude of the frequency extremes is always the
Nyquist frequency 1=.2�/, where � is the sampling interval. The magnitude of the
smallest nonzero frequencies in the FFT is˙1=.N�/, whereN is the number of (com-
plex) points in the FFT. The positive and negative frequencies to which this filter are
applied are arranged in wraparound order.

� If the measured data are real, and you want the filtered output also to be real, then your
arbitrary filter function should obey H .�f / D H .f /�. You can arrange this most
easily by picking an H that is real and even in f .
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� If your chosen H .f / has sharp vertical edges in it, then the impulse response of your
filter (the output arising from a short impulse as input) will have damped “ringing”
at frequencies corresponding to these edges. There is nothing wrong with this, but if
you don’t like it, then pick a smoother H .f /. To get a first-hand look at the impulse
response of your filter, just take the inverse FFT of your H .f /. If you smooth all edges
of the filter function over some number k of points, then the impulse response function
of your filter will have a span on the order of a fraction 1=k of the whole data record.

� If your data set is too long to FFT all at once, then break it up into segments of any
convenient size, as long as they are much longer than the impulse response function of
the filter. Use zero-padding, if necessary.

� You should probably remove any trend from the data, by subtracting from it a straight
line through the first and last points (i.e., make the first and last points equal to zero).
If you are segmenting the data, then you can pick overlapping segments and use only
the middle section of each, comfortably distant from edge effects.

� A digital filter is said to be causal or physically realizable if its output for a particular
timestep depends only on inputs at that particular timestep or earlier. It is said to be
acausal if its output can depend on both earlier and later inputs. Filtering in the Fourier
domain is, in general, acausal, since the data are processed “in a batch,” without regard
to time ordering. Don’t let this bother you! Acausal filters can generally give superior
performance (e.g., less dispersion of phases, sharper edges, less asymmetric impulse
response functions). People use causal filters not because they are better, but because
some situations just don’t allow access to out-of-time-order data. Time domain filters
can, in principle, be either causal or acausal, but they are most often used in applications
where physical realizability is a constraint. For this reason we will restrict ourselves to
the causal case in what follows.

If you are still favoring time-domain filtering after all we have said, it is probably because
you have a real-time application for which you must process a continuous data stream and wish
to output filtered values at the same rate as you receive raw data. Otherwise, it may be that
the quantity of data to be processed is so large that you can afford only a very small number
of floating operations on each data point and cannot afford even a modest-sized FFT (with
a number of floating operations per data point several times the logarithm of the number of
points in the data set or segment).

13.5.1 Linear Filters
The most general linear filter takes a sequence xk of input points and produces a se-

quence yn of output points by the formula

yn D

MX
kD0

ck xn�k C

N�1X
jD0

dj yn�j�1 (13.5.1)

Here the M C 1 coefficients ck and the N coefficients dj are fixed and define the filter re-
sponse. The filter (13.5.1) produces each new output value from the current and M previous
input values, and from its own N previous output values. If N D 0, so that there is no sec-
ond sum in (13.5.1), then the filter is called nonrecursive or finite impulse response (FIR). If
N ¤ 0, then it is called recursive or infinite impulse response (IIR). (The term “IIR” connotes
only that such filters are capable of having infinitely long impulse responses, not that their
impulse response is necessarily long in a particular application. Typically the response of an
IIR filter will drop off exponentially at late times, rapidly becoming negligible.)

The relation between the ck’s and dj ’s and the filter response function H .f / is

H .f / D

MP
kD0

cke
�2	ik.f�/

1 �
N�1P
jD0

dj e
�2	i.jC1/.f�/

(13.5.2)
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where � is, as usual, the sampling interval. The Nyquist interval corresponds to f� between
�1=2 and 1=2. For FIR filters the denominator of (13.5.2) is just unity.

Equation (13.5.2) tells how to determine H .f / from the c’s and d ’s. To design a filter,
though, we need a way of doing the inverse, getting a suitable set of c’s and d ’s — as small
a set as possible, to minimize the computational burden — from a desired H .f /. Entire
books are devoted to this issue. Like many other “inverse problems,” it has no all-purpose
solution. One clearly has to make compromises, since H .f / is a full continuous function,
while the short list of c’s and d ’s represents only a few adjustable parameters. The subject
of digital filter design concerns itself with the various ways of making these compromises.
We cannot hope to give any sort of complete treatment of the subject, only sketch a couple
of basic techniques to get you started. For further details, consult the specialized books (see
references).

13.5.2 FIR (Nonrecursive) Filters
When the denominator in (13.5.2) is unity, the right-hand side is just a discrete Fourier

transform. The transform is easily invertible, giving the desired small number of ck coeffi-
cients in terms of the same small number of values of H .fi / at some discrete frequencies fi .
This fact, however, is not very useful. The reason is that, for values of ck computed in this
way, H .f / will tend to oscillate wildly in between the discrete frequencies where it is pinned
down to specific values.

A better strategy, and one that is the basis of several formal methods in the literature,
is this: Start by pretending that you are willing to have a relatively large number of filter co-
efficients, that is, a relatively large value of M . Then H .f / can be fixed to desired values
on a relatively fine mesh, and the M coefficients ck ; k D 0; : : : ;M � 1 can be found by
an FFT. Next, truncate (set to zero) most of the ck’s, leaving nonzero only the first, say K
.c0; c1; : : : ; cK�1/ and last K � 1 .cM�KC1; : : : ; cM�1/. The last few ck’s are filter coef-
ficients at negative lag, because of the wraparound property of the FFT. But we don’t want
coefficients at negative lag. Thereforea, we cyclically shift the array of ck’s, to bring every-
thing to positive lag. (This corresponds to introducing a time delay into the filter.) Do this by
copying the ck’s into a new array of length M in the following order:

.cM�KC1; : : : ; cM�1; c0; c1; : : : ; cK�1; 0; 0; : : : ; 0/ (13.5.3)

To see if your truncation is acceptable, take the FFT of the array (13.5.3), giving an approx-
imation to your original H .f /. You will generally want to compare the modulus jH .f /j
to your original function, since the time delay will have introduced complex phases into the
filter response.

If the new filter function is acceptable, then you are done and have a set of 2K � 1 filter
coefficients. If it is not acceptable, then you can either (i) increase K and try again, or (ii)
do something fancier to improve the acceptability for the same K. An example of something
fancier is to modify the magnitudes (but not the phases) of the unacceptable H .f / to bring
it more in line with your ideal, and then to FFT to get new ck’s. Once again set to zero all
but the first 2K � 1 values of these (no need to cyclically shift since you have preserved the
time-delaying phases), and then inverse transform to get a new H .f /, which will often be
more acceptable. You can iterate this procedure. Note, however, that the procedure will not
converge if your requirements for acceptability are more stringent than your 2K�1 coefficients
can handle.

The key idea, in other words, is to iterate between the space of coefficients and the space
of functions H .f /, until a Fourier conjugate pair that satisfies the imposed constraints in both
spaces is found. A more formal technique for this kind of iteration is the Remes exchange
algorithm, which produces the best Chebyshev approximation to a given desired frequency
response with a fixed number of filter coefficients (cf. �5.13).

13.5.3 IIR (Recursive) Filters
Recursive filters, whose output at a given time depends both on the current and previous

inputs and on previous outputs, can generally have performance that is superior to nonrecur-
sive filters with the same total number of coefficients (or same number of floating operations
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per input point). The reason is fairly clear by inspection of (13.5.2): A nonrecursive filter has
a frequency response that is a polynomial in the variable 1=z, where

z � e2	i.f�/ (13.5.4)

By contrast, a recursive filter’s frequency response is a rational function in 1=z. The class of
rational functions is especially good at fitting functions with sharp edges or narrow features,
and most desired filter functions are in this category.

Nonrecursive filters are always stable. If you turn off the sequence of incoming xi ’s,
then after no more than M steps the sequence of yj ’s produced by (13.5.1) will also turn off.
Recursive filters, feeding as they do on their own output, are not necessarily stable. If the
coefficients dj are badly chosen, a recursive filter can have exponentially growing, so-called
homogeneous, modes, which become huge even after the input sequence has been turned off.
This is not good. The problem of designing recursive filters, therefore, is not just an inverse
problem; it is an inverse problem with an additional stability constraint.

How do you tell if the filter (13.5.1) is stable for a given set of ck and dj coefficients?
Stability depends only on the dj ’s. The filter is stable if and only if all N complex roots of the
characteristic polynomial equation

zN �

N�1X
jD0

dj z
.N�1/�j D 0 (13.5.5)

are inside the unit circle, i.e., satisfy
jzj 
 1 (13.5.6)

The various methods for constructing stable recursive filters again form a subject area
for which you will need more specialized books. One very useful technique, however, is the
bilinear transformation method. For this topic we define a new variable w that reparametrizes
the frequency f ,

w � tanŒ	.f�/� D i

 
1 � e2	i.f�/

1C e2	i.f�/

!
D i

�
1 � z

1C z

�
(13.5.7)

Don’t be fooled by the i’s in (13.5.7). This equation maps real frequencies f into real values of
w. In fact, it maps the Nyquist interval�12 < f� < 1

2 onto the realw-axis�1 < w < C1.
The inverse equation to (13.5.7) is

z D e2	i.f�/ D
1C iw

1 � iw
(13.5.8)

In reparametrizing f , w also reparametrizes z, of course. Therefore, the condition for
stability (13.5.5) – (13.5.6) can be rephrased in terms of w: If the filter response H .f / is
written as a function of w, then the filter is stable if and only if the poles of the filter function
(zeros of its denominator) are all in the upper half complex plane,

Im.w/ � 0 (13.5.9)

The idea of the bilinear transformation method is that instead of specifying your de-
sired H .f /, you specify only its desired modulus square, jH .f /j2 D H .f /H .f /� D
H .f /H .�f /. Pick this to be approximated by some rational function in w2. Then find
all the poles of this function in the w complex plane. Every pole in the lower half-plane will
have a corresponding pole in the upper half-plane, by symmetry. The idea is to form a product
of only the factors with good poles, ones in the upper half-plane. This product is your stably
realizable H .f /. Now substitute equation (13.5.7) to write the function as a rational function
in z and compare with equation (13.5.2) to read off the c’s and d ’s.

The procedure becomes clearer when we go through an example. Suppose we want to
design a simple bandpass filter, whose lower cutoff frequency corresponds to a value w D a,
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and whose upper cutoff frequency corresponds to a value w D b, with a and b both positive
numbers. A simple rational function that accomplishes this is

jH .f /j2 D

 
w2

w2 C a2

! 
b2

w2 C b2

!
(13.5.10)

This function does not have a very sharp cutoff, but it is illustrative of the more general case.
To obtain sharper edges, one could take the function (13.5.10) to some positive integer power,
or, equivalently, run the data sequentially through some number of copies of the filter that we
will obtain from (13.5.10).

The poles of (13.5.10) are evidently at w D ˙ia and w D ˙ib. Therefore the stably
realizable H .f / is

H .f / D
� w

w � ia

�� ib

w � ib

�
D

�
1�z
1Cz

�
bh�

1�z
1Cz

�
� a

i h�
1�z
1Cz

�
� b

i (13.5.11)

We put the i in the numerator of the second factor in order to end up with real-valued coeffi-
cients. If we multiply out all the denominators, (13.5.11) can be rewritten in the form

H .f / D
� b
.1Ca/.1Cb/

C b
.1Ca/.1Cb/

z�2

1 �
.1Ca/.1�b/C.1�a/.1Cb/

.1Ca/.1Cb/
z�1 C

.1�a/.1�b/
.1Ca/.1Cb/

z�2
(13.5.12)

from which one reads off the filter coefficients for equation (13.5.1),

c0 D �
b

.1C a/.1C b/

c1 D 0

c2 D
b

.1C a/.1C b/

d0 D
.1C a/.1 � b/C .1 � a/.1C b/

.1C a/.1C b/

d1 D �
.1 � a/.1 � b/

.1C a/.1C b/

(13.5.13)

This completes the design of the bandpass filter.
Sometimes you can figure out how to construct directly a rational function in w for

H .f /, rather than having to start with its modulus square. The function that you construct has
to have its poles only in the upper half-plane, for stability. It should also have the property of
going into its own complex conjugate if you substitute �w for w, so that the filter coefficients
will be real.

For example, here is a function for a notch filter, designed to remove only a narrow
frequency band around some fiducial frequency w D w0, where w0 is a positive number,

H .f / D

�
w � w0

w � w0 � i�w0

��
w C w0

w C w0 � i�w0

�
D

w2 � w20

.w � i�w0/2 � w
2
0

(13.5.14)

In (13.5.14), the parameter � is a small positive number that is the desired width of the notch, as
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(a)

(b)

Figure 13.5.1. (a) A “chirp,” or signal whose frequency increases continuously with time. (b) Same signal
after it has passed through the notch filter (13.5.15). The parameter � is here 0.2.

a fraction of w0. Going through the algebra of substituting z for w gives the filter coefficients

c0 D
1C w20

.1C �w0/2 C w
2
0

c1 D �2
1 � w20

.1C �w0/2 C w
2
0

c2 D
1C w20

.1C �w0/2 C w
2
0

d0 D 2
1 � �2w20 � w

2
0

.1C �w0/2 C w
2
0

d1 D �
.1 � �w0/

2 C w20

.1C �w0/2 C w
2
0

(13.5.15)

Figure 13.5.1 shows the results of using a filter of the form (13.5.15) on a “chirp” input
signal, one that glides upward in frequency, crossing the notch frequency along the way.

While the bilinear transformation may seem very general, its applications are limited
by some features of the resulting filters. The method is good at getting the general shape
of the desired filter, and good where “flatness” is a desired goal. However, the nonlinear
mapping between w and f makes it difficult to design to a desired shape for a cutoff, and
may move cutoff frequencies (defined by a certain number of dB) from their desired places.
Consequently, practitioners of the art of digital filter design reserve the bilinear transformation
for specific situations, and arm themselves with a variety of other tricks. We suggest that you
do likewise, as your projects demand.
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13.6 Linear Prediction and Linear Predictive
Coding

We begin with a very general formulation that will allow us to make connections
to various special cases. Let fy0˛g be a set of measured values for some underlying
set of true values of a quantity y, denoted fy˛g, related to these true values by the
addition of random noise,

y0˛ D y˛ C n˛ (13.6.1)

(compare equation 13.3.2, with a somewhat different notation). Our use of a Greek
subscript to index the members of the set is meant to indicate that the data points
are not necessarily equally spaced along a line, or even ordered; they might be “ran-
dom” points in three-dimensional space, for example. Now, suppose we want to
construct the “best” estimate of the true value of some particular point y? as a linear
combination of the known, noisy, values. Writing

y? D
X
˛

d?˛y
0
˛ C x? (13.6.2)

we want to find coefficients d?˛ that minimize, in some way, the discrepancy x?. The
coefficients d?˛ have a “star” subscript to indicate that they depend on the choice of
point y?. Later, we might want to let y? be one of the existing y˛’s. In that case,
our problem becomes one of optimal filtering or estimation, closely related to the
discussion in �13.3. On the other hand, we might want y? to be a completely new
point. In that case, our problem will be one of linear prediction.

A natural way to minimize the discrepancy x? is in the statistical mean square
sense. If angle brackets denote statistical averages, then we seek d?˛’s that minimize

˝
x2?
˛
D

*�X
˛

d?˛.y˛ C n˛/ � y?

�2+
D
X
˛ˇ

.
˝
y˛yˇ

˛
C
˝
n˛nˇ

˛
/d?˛d?ˇ � 2

X
˛

hy?y˛i d?˛ C
˝
y2?
˛ (13.6.3)

Here we have used the fact that noise is uncorrelated with signal, e.g.,
˝
n˛yˇ

˛
D

0. The quantities
˝
y˛yˇ

˛
and hy?y˛i describe the autocorrelation structure of the

underlying data. We have already seen an analogous expression, (13.2.2), for the
case of equally spaced data points on a line; we will meet correlation several times
again in its statistical sense in Chapters 14 and 15. The quantities

˝
n˛nˇ

˛
describe

the autocorrelation properties of the noise. Often, for point-to-point uncorrelated
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noise, we have
˝
n˛nˇ

˛
D
˝
n2˛
˛
ı˛ˇ . It is convenient to think of the various correlation

quantities as comprising matrices and vectors,

�˛ˇ �
˝
y˛yˇ

˛
�?˛ � hy?y˛i 
˛ˇ �

˝
n˛nˇ

˛
or

˝
n2˛
˛
ı˛ˇ (13.6.4)

Setting the derivative of equation (13.6.3) with respect to the d?˛’s equal to zero, one
readily obtains the set of linear equationsX

ˇ

�
�˛ˇ C 
˛ˇ

	
d?ˇ D �?˛ (13.6.5)

If we write the solution as a matrix inverse, then the estimation equation (13.6.2)
becomes, omitting the minimized discrepancy x?,

y? �
X
˛ˇ

�?˛
�
��� C 
��

	�1
˛ˇ
y0ˇ (13.6.6)

From equations (13.6.3) and (13.6.5) one can also calculate the expected mean square
value of the discrepancy at its minimum, denoted

˝
x2?
˛
0
,˝

x2?
˛
0
D
˝
y2?
˛
�
X
ˇ

d?ˇ�?ˇ D
˝
y2?
˛
�
X
˛ˇ

�?˛
�
��� C 
��

	�1
˛ˇ
�?ˇ (13.6.7)

Although the notation is now different, equations (13.6.6) and (13.6.7) are close
relatives to equations (3.7.14) and (3.7.15), which we exhibited without proof in
connection with kriging interpolation. (See also �13.6.3, below.)

A final general result tells how much the mean square discrepancy
˝
x2?
˛

is in-
creased if we use the estimation equation (13.6.2) not with the best values d?ˇ , but

with some other values yd?ˇ . The above equations then imply˝
x2?
˛
D
˝
x2?
˛
0
C
X
˛ˇ

. yd?˛ � d?˛/
�
�˛ˇ C 
˛ˇ

	
. yd?ˇ � d?ˇ / (13.6.8)

Since the second term is a pure quadratic form, we see that the increase in the dis-
crepancy is only second order in any error made in estimating the d?ˇ ’s.

13.6.1 Connection to Optimal Filtering
If we change “star” to a Greek index, say � , then the above formulas describe

optimal filtering, generalizing the discussion of �13.3. One sees, for example, that
if the noise amplitudes n˛ go to zero, so likewise do the noise autocorrelations 
˛ˇ ,
and, canceling a matrix times its inverse, equation (13.6.6) simply becomes y� D y0� .
Another special case occurs if the matrices �˛ˇ and 
˛ˇ are diagonal. In that case,
equation (13.6.6) becomes

y� D
���

��� C 
��
y0� (13.6.9)

which is readily recognizable as equation (13.3.6) with S2 ! ��� , N 2 ! 
�� .
What is going on is this: For the case of equally spaced data points, and in the Fourier
domain, autocorrelations become simply squares of Fourier amplitudes (Wiener-
Khinchin theorem, equation 12.0.13), and the optimal filter can be constructed al-
gebraically, as equation (13.6.9), without inverting any matrix.
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More generally, in the time domain, or any other domain, an optimal filter (one
that minimizes the square of the discrepancy from the underlying true value in the
presence of measurement noise) can be constructed by estimating the autocorrelation
matrices �˛ˇ and 
˛ˇ , and applying equation (13.6.6) with ?! � . (Equation 13.6.8
is in fact the basis for the �13.3’s statement that even crude optimal filtering can be
quite effective.)

13.6.2 Linear Prediction
Classical linear prediction specializes to the case where the data points yˇ are

equally spaced along a line, yi , i D 0; 1; : : : ; N � 1, and we want to use M con-
secutive values of yi to predict an M C 1st. Stationarity is assumed. That is, the
autocorrelation

˝
yjyk

˛
is assumed to depend only on the difference jj � kj, and not

on j or k individually, so that the autocorrelation � has only a single index,

�j �
˝
yiyiCj

˛
�

1

N � j

N�j�1X
iD0

yiyiCj (13.6.10)

Here, the approximate equality shows one way to use the actual data set values to
estimate the autocorrelation components. (In fact, there is a better way to make these
estimates; see below.) In the situation described, the estimation equation (13.6.2) is

yn D

M�1X
jD0

djyn�j�1 C xn (13.6.11)

(compare equation 13.5.1) and equation (13.6.5) becomes the set ofM equations for
the M unknown dj ’s, now called the linear prediction (LP) coefficients,

M�1X
jD0

�jj�k�1j dj D �k .k D 1; : : : ;M/ (13.6.12)

Notice that while noise is not explicitly included in the equations, it is properly
accounted for, if it is point-to-point uncorrelated: �0, as estimated by equation
(13.6.10) using measured values y0i , actually estimates the diagonal part of �˛˛ C

˛˛ , above. The mean square discrepancy

˝
x2n
˛

is estimated by equation (13.6.7) as˝
x2n
˛
D �0 � �1d0 � �2d1 � 	 	 	 � �MdM�1 (13.6.13)

To use linear prediction, we first compute the dj ’s, using equations (13.6.10)
and (13.6.12). We then calculate equation (13.6.13) or, more concretely, apply
(13.6.11) to the known record to get an idea of how large are the discrepancies xi .
If the discrepancies are small, then we can continue applying (13.6.11) right on into
the future, imagining the unknown “future” discrepancies xi to be zero. In this ap-
plication, (13.6.11) is a kind of extrapolation formula. In many situations, this ex-
trapolation turns out to be vastly more powerful than any kind of simple polynomial
extrapolation. (By the way, you should not confuse the terms “linear prediction” and
“linear extrapolation”; the general functional form used by linear prediction is much
more complex than a straight line, or even a low-order polynomial!)
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However, to achieve its full usefulness, linear prediction must be constrained in
one additional respect: One must take additional measures to guarantee its stability.
Equation (13.6.11) is a special case of the general linear filter (13.5.1). The condi-
tion that (13.6.11) be stable as a linear predictor is precisely that given in equations
(13.5.5) and (13.5.6), namely that the characteristic polynomial

zN �

N�1X
jD0

dj z
.N�1/�j D 0 (13.6.14)

have all N of its roots inside the unit circle

jzj 
 1 (13.6.15)

There is no guarantee that the coefficients produced by equation (13.6.12) will have
this property. If the data contain many oscillations without any particular trend to-
ward increasing or decreasing amplitude, then the complex roots of (13.6.14) will
generally all be rather close to the unit circle. The finite length of the data set will
cause some of these roots to be inside the unit circle, others outside. In some appli-
cations, where the resulting instabilities are slowly growing and the linear prediction
is not pushed too far, it is best to use the “unmassaged” LP coefficients that come
directly out of (13.6.12). For example, one might be extrapolating to fill a short gap
in a data set; then one might extrapolate both forward across the gap and backward
from the data beyond the gap. If the two extrapolations agree tolerably well, then
instability is not a problem.

When instability is a problem, you have to “massage” the LP coefficients. You
do this by (i) solving (numerically) equation (13.6.14) for its N complex roots; (ii)
moving the roots to where you think they ought to be inside or on the unit circle; and
(iii) reconstituting the now-modified LP coefficients. You may think that step (ii)
sounds a little vague. It is. There is no “best” procedure. If you think that your signal
is truly a sum of undamped sine and cosine waves (perhaps with incommensurate
periods), then you will want simply to move each root zi onto the unit circle

zi ! zi= jzi j (13.6.16)

In other circumstances it may seem appropriate to reflect a bad root across the unit
circle

zi ! 1=z�i (13.6.17)

This alternative has the property that it preserves the amplitude of the output of
(13.6.11) when it is driven by a sinusoidal set of xi ’s. It assumes that (13.6.12)
has correctly identified the spectral width of a resonance, but only slipped up on
identifying its time sense so that signals that should be damped as time proceeds end
up growing in amplitude. The choice between (13.6.16) and (13.6.17) sometimes
might as well be based on voodoo. We prefer (13.6.17).

Also magical is the choice of M , the number of LP coefficients to use. You
should choose M to be as small as works for you, that is, you should choose it by
experimenting with your data. Try M D 5; 10; 20; 40. If you need larger M ’s than
this, be aware that the procedure of “massaging” all those complex roots is quite
sensitive to roundoff error. Double precision is crucial.
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Linear prediction is especially successful at extrapolating signals that are smooth
and oscillatory, though not necessarily periodic. In such cases, linear prediction often
extrapolates accurately through many cycles of the signal. By contrast, polynomial
extrapolation in general becomes seriously inaccurate after at most a cycle or two.
A prototypical example of a signal that can successfully be linearly predicted is the
height of ocean tides, for which the fundamental 12-hour period is modulated in
phase and amplitude over the course of the month and year, and for which local hy-
drodynamic effects may make even one cycle of the curve look rather different in
shape from a sine wave.

We already remarked that equation (13.6.10) is not necessarily the best way to
estimate the covariances �k from the data set. In fact, results obtained from lin-
ear prediction are remarkably sensitive to exactly how the �k’s are estimated. One
particularly good method is due to Burg [1], and involves a recursive procedure for
increasing the order M by one unit at a time, at each stage re-estimating the coeffi-
cients dj , j D 0; : : : ;M � 1 so as to minimize the residual in equation (13.6.13).
Although further discussion of the Burg method is beyond our scope here, the method
is implemented in the following routine [1,2] for estimating the LP coefficients dj of
a data set.

void memcof(VecDoub_I &data, Doub &xms, VecDoub_O &d) { linpredict.h
Given a real vector of data[0..n-1], this routine returns m linear prediction coefficients as
d[0..m-1], and returns the mean square discrepancy as xms.

Int k,j,i,n=data.size(),m=d.size();
Doub p=0.0;
VecDoub wk1(n),wk2(n),wkm(m);
for (j=0;j<n;j++) p += SQR(data[j]);
xms=p/n;
wk1[0]=data[0];
wk2[n-2]=data[n-1];
for (j=1;j<n-1;j++) {

wk1[j]=data[j];
wk2[j-1]=data[j];

}
for (k=0;k<m;k++) {

Doub num=0.0,denom=0.0;
for (j=0;j<(n-k-1);j++) {

num += (wk1[j]*wk2[j]);
denom += (SQR(wk1[j])+SQR(wk2[j]));

}
d[k]=2.0*num/denom;
xms *= (1.0-SQR(d[k]));
for (i=0;i<k;i++)

d[i]=wkm[i]-d[k]*wkm[k-1-i];
The algorithm is recursive, building up the answer for larger and larger values of m
until the desired value is reached. At this point in the algorithm, one could return
the vector d and scalar xms for a set of LP coefficients with k (rather than m)
terms.

if (k == m-1)
return;

for (i=0;i<=k;i++) wkm[i]=d[i];
for (j=0;j<(n-k-2);j++) {

wk1[j] -= (wkm[k]*wk2[j]);
wk2[j]=wk2[j+1]-wkm[k]*wk1[j+1];

}
}
throw("never get here in memcof");

}
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Here are procedures for rendering the LP coefficients stable (if you choose to
do so) and for extrapolating a data set by linear prediction, using the original or
massaged LP coefficients. The routine zroots (�9.5) is used to find all complex
roots of a polynomial.

void fixrts(VecDoub_IO &d) {linpredict.h
Given the LP coefficients d[0..m-1], this routine finds all roots of the characteristic polynomial
(13.6.14), reflects any roots that are outside the unit circle back inside, and then returns a
modified set of coefficients d[0..m-1].

Bool polish=true;
Int i,j,m=d.size();
VecComplex a(m+1),roots(m);
a[m]=1.0;
for (j=0;j<m;j++) Set up complex coefficients for polynomial root

finder.a[j]= -d[m-1-j];
zroots(a,roots,polish); Find all the roots.
for (j=0;j<m;j++) Look for a root outside the unit circle, and reflect

it back inside.if (abs(roots[j]) > 1.0)
roots[j]=1.0/conj(roots[j]);

a[0]= -roots[0]; Now reconstruct the polynomial coefficients,
a[1]=1.0;
for (j=1;j<m;j++) { by looping over the roots

a[j+1]=1.0;
for (i=j;i>=1;i--) and synthetically multiplying.

a[i]=a[i-1]-roots[j]*a[i];
a[0]= -roots[j]*a[0];

}
for (j=0;j<m;j++) The polynomial coefficients are guaranteed to be

real, so we need only return the real part as
new LP coefficients.

d[m-1-j] = -real(a[j]);
}

void predic(VecDoub_I &data, VecDoub_I &d, VecDoub_O &future) {linpredict.h
Given data[0..ndata-1], and given the data’s LP coefficients d[0..m-1], this routine ap-
plies equation (13.6.11) to predict the next nfut data points, which it returns in the array
future[0..nfut-1]. Note that the routine references only the last m values of data, as initial
values for the prediction.

Int k,j,ndata=data.size(),m=d.size(),nfut=future.size();
Doub sum,discrp;
VecDoub reg(m);
for (j=0;j<m;j++) reg[j]=data[ndata-1-j];
for (j=0;j<nfut;j++) {

discrp=0.0;
This is where you would put in a known discrepancy if you were reconstructing a func-
tion by linear predictive coding rather than extrapolating a function by linear prediction.
See text.
sum=discrp;
for (k=0;k<m;k++) sum += d[k]*reg[k];
for (k=m-1;k>=1;k--) reg[k]=reg[k-1]; [If you want to implement circular

arrays, you can avoid this shift-
ing of coefficients.]

future[j]=reg[0]=sum;
}

}

13.6.3 Removing the Bias in Linear Prediction
You might expect that the sum of the dj ’s in equation (13.6.11) (or, more gen-

erally, in equation 13.6.2) should be 1, so that, e.g., adding a constant to all the data
points yi yields a prediction that is increased by the same constant. However, the
dj ’s do not sum to 1 but, in general, to a value slightly less than one. This fact re-
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veals a subtle point, that the estimator of classical linear prediction is not unbiased,
even though it does minimize the mean square discrepancy. At any place where the
measured autocorrelation does not imply a better estimate, the equations of linear
prediction tend to predict a value that tends toward zero.

Sometimes, that is just what you want. If the process that generates the yi ’s in
fact has zero mean, then zero is the best guess absent other information. At other
times, however, this behavior is unwarranted. If you have data that show only small
variations around a positive value, you don’t want linear predictions that droop to-
ward zero.

Often it is a workable approximation to subtract the mean off your data set,
perform the linear prediction, and then add the mean back. This procedure contains
the germ of the correct solution; but the simple arithmetic mean is not quite the
correct constant to subtract. In fact, an unbiased estimator is obtained by subtracting
from every data point an autocorrelation-weighted mean defined by [3,4]

xy �
X
ˇ

�
��� C 
��

	�1
˛ˇ
yˇ

�X
˛ˇ

�
��� C 
��

	�1
˛ˇ

(13.6.18)

With this subtraction, the sum of the LP coefficients should be unity, up to roundoff
and differences in how the �k’s are estimated.

Equations (3.7.14) and (3.7.15), given in connection with kriging, are in fact
exactly equivalent to equations (13.6.6) and (13.6.7) if the mean (13.6.18) is used to
remove the estimator bias. To prove this, start by writing the inverse of the matrix
(3.7.13) in the obvious partitioned form (e.g., using equation 2.7.23).

13.6.4 Linear Predictive Coding (LPC)
A different, though related, method to which the formalism above can be ap-

plied is the “compression” of a sampled signal so that it can be stored more com-
pactly. The original form should be exactly recoverable from the compressed ver-
sion. Obviously, compression can be accomplished only if there is redundancy in the
signal. Equation (13.6.11) describes one kind of redundancy: It says that the signal,
except for a small discrepancy, is predictable from its previous values and from a
small number of LP coefficients. Compression of a signal by the use of (13.6.11) is
thus called linear predictive coding, or LPC.

The basic idea of LPC (in its simplest form) is to record as a compressed file (i)
the number of LP coefficients M ; (ii) their M values, e.g., as obtained by memcof;
(iii) the firstM data points; and then (iv) for each subsequent data point only its resid-
ual discrepancy xi (equation 13.6.1). When you are creating the compressed file, you
find the residual by applying (13.6.1) to the previous M points, subtracting the sum
from the actual value of the current point. When you are reconstructing the original
file, you add the residual back in, at the point indicated in the routine predic.

It may not be obvious why there is any compression at all in this scheme. After
all, we are storing one value of residual per data point! Why not just store the original
data point? The answer depends on the relative sizes of the numbers involved. The
residual is obtained by subtracting two very nearly equal numbers (the data and the
linear prediction). Therefore, the discrepancy typically has only a very small number
of nonzero bits. These can be stored in a compressed file. How do you do it in a
high-level language? A rudimentary approach would be to scale your data to have
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integer values, say between C1000000 and �1000000 (supposing that you need six
significant figures). Now modify equation (13.6.11) by enclosing the sum term in
an “integer part of” operator. The discrepancy will now, by definition, be an integer.
Experiment with different values of M to find LP coefficients that make the range
of the discrepancy as small as you can. If you can get to within a range of ˙127
(and in our experience this is not at all difficult), then you can write it to a file as a
single byte. This is a compression factor of 4, compared to 4-byte integer or floating
formats.

Notice that the LP coefficients are computed using the quantized data, and that
the discrepancy is also quantized, i.e., quantization is done both outside and inside
the LPC loop. If you are careful in following this prescription, then, apart from the
initial quantization of the data, you will not introduce even a single bit of roundoff
error into the compression-reconstruction process: While the evaluation of the sum
in (13.6.11) may have roundoff errors, the residual that you store is the value that,
when added back to the sum, gives exactly the original (quantized) data value. Notice
also that you do not need to massage the LP coefficients for stability; by adding the
residual back in to each point, you never depart from the original data, so instabilities
cannot grow. There is therefore no need for fixrts, above.

Look at �22.5 to learn about Huffman coding, which will further compress the
residuals by taking advantage of the fact that smaller values of discrepancy will occur
more often than larger values. A very primitive version of Huffman coding would
be this: If most of the discrepancies are in the range ˙127, but an occasional one is
outside, then reserve the value 127 to mean “out of range,” and then record on the file
(immediately following the 127) a full-word value of the out-of-range discrepancy.
Section 22.5 explains how to do much better.

There are many variant procedures that all fall under the rubric of LPC:

� If the spectral character of the data is time-variable, then it is best not to use a
single set of LP coefficients for the whole data set, but rather to partition the
data into segments, computing and storing different LP coefficients for each
segment.
� If the data are really well characterized by their LP coefficients, and you can

tolerate some small amount of error, then don’t bother storing all of the resid-
uals. Just do linear prediction until you are outside of tolerances, and then
reinitialize (using M sequential stored residuals) and continue predicting.
� In some applications, most notably speech synthesis, one cares only about the

spectral content of the reconstructed signal, not the relative phases. In this
case, one need not store any starting values at all, but only the LP coefficients
for each segment of the data. The output is reconstructed by driving these co-
efficients with initial conditions consisting of all zeros except for one nonzero
spike. A speech synthesizer chip may have of order 10 LP coefficients, which
change perhaps 20 to 50 times per second.
� Some people believe that it is interesting to analyze a signal by LPC, even

when the residuals xi are not small. The xi ’s are then interpreted as the under-
lying “input signal” that, when filtered through the all-poles filter defined by
the LP coefficients (see �13.7), produces the observed “output signal.” LPC
reveals simultaneously, it is said, the nature of the filter and the particular in-
put that is driving it. We are skeptical of these applications; the literature,
however, is full of extravagant claims.
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13.7 Power Spectrum Estimation by the
Maximum Entropy (All-Poles) Method

The FFT is not the only way to estimate the power spectrum of a process, nor is it
necessarily the best way for all purposes. To see how one might devise another method, let
us enlarge our view for a moment, so that it includes not only real frequencies in the Nyquist
interval �fc < f < fc , but also the entire complex frequency plane. From that vantage
point, let us transform the complex f -plane to a new plane, called the z-transform plane or
z-plane, by the relation

z � e2	if� (13.7.1)

where� is, as usual, the sampling interval in the time domain. Notice that the Nyquist interval
on the real axis of the f -plane maps one-to-one onto the unit circle in the complex z-plane.

If we now compare (13.7.1) to equations (13.4.4) and (13.4.6), we see that the FFT power
spectrum estimate (13.4.5) for any real sampled function ck � c.tk/ can be written, except
for normalization convention, as

P.f / D

ˇ̌̌̌
ˇ
N=2�1X
kD�N=2

ckz
k

ˇ̌̌̌
ˇ
2

(13.7.2)

Of course, (13.7.2) is not the true power spectrum of the underlying function c.t/, but only an
estimate. We can see in two related ways why the estimate is not likely to be exact. First, in the
time domain, the estimate is based on only a finite range of the function c.t/, which may, for
all we know, have continued from t D �1 to1. Second, in the z-plane of equation (13.7.2),
the finite Laurent series offers, in general, only an approximation to a general analytic function
of z. In fact, a formal expression for representing “true” power spectra (up to normalization)
is

P.f / D

ˇ̌̌̌
ˇ
1X

kD�1

ckz
k

ˇ̌̌̌
ˇ
2

(13.7.3)

This is an infinite Laurent series that depends on an infinite number of values ck . Equation
(13.7.2) is just one kind of analytic approximation to the analytic function of z represented
by (13.7.3), the kind, in fact, that is implicit in the use of FFTs to estimate power spectra by
periodogram methods. It goes under several names, including direct method, all-zero model,
and moving average (MA) model. The term “all-zero” in particular refers to the fact that the
model spectrum can have zeros in the z-plane, but not poles.

If we look at the problem of approximating (13.7.3) more generally, it seems clear that
we could do a better job with a rational function, one with a series of type (13.7.2) in both the
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numerator and the denominator. Less obviously, it turns out that there are some advantages in
an approximation whose free parameters all lie in the denominator, namely,

P.f / �
1ˇ̌̌̌

M=2P
kD�M=2

bkz
k

ˇ̌̌̌2 D a0ˇ̌̌̌
1C

MP
kD1

akz
k

ˇ̌̌̌2 (13.7.4)

Here the second equality brings in a new set of coefficients ak’s, which can be determined
from the bk’s using the fact that z lies on the unit circle. The bk’s can be thought of as
being determined by the condition that power series expansion of (13.7.4) agree with the first
M C 1 terms of (13.7.3). In practice, as we shall see, one determines the bk’s or ak’s by
another method.

The differences between the approximations (13.7.2) and (13.7.4) are not just cosmetic.
They are approximations of very different character. Most notable is the fact that (13.7.4)
can have poles, corresponding to infinite power spectral density, on the unit z-circle, i.e., at
real frequencies in the Nyquist interval. Such poles can provide an accurate representation
for underlying power spectra that have sharp, discrete “lines” or delta-functions. By contrast,
(13.7.2) can have only zeros, not poles, at real frequencies in the Nyquist interval, and must
thus attempt to fit sharp spectral features with, essentially, a polynomial. The approximation
(13.7.4) goes under several names: all-poles model, maximum entropy method (MEM), au-
toregressive model (AR). We need only find out how to compute the coefficients a0 and the
ak’s from a data set, so that we can actually use (13.7.4) to obtain spectral estimates.

A pleasant surprise is that we already know how! Look at equation (13.6.11) for linear
prediction. Compare it with linear filter equations (13.5.1) and (13.5.2), and you will see that,
viewed as a filter that takes input x’s into output y’s, linear prediction has a filter function

H .f / D
1

1 �
N�1P
jD0

dj z
�.jC1/

(13.7.5)

Thus, the power spectrum of the y’s should be equal to the power spectrum of the x’s multi-
plied by jH .f /j2. Now let us think about what the spectrum of the input x’s is, when they are
residual discrepancies from linear prediction. Although we will not prove it formally, it is intu-
itively believable that the x’s are independently random and therefore have a flat (white noise)
spectrum. (Roughly speaking, any residual correlations left in the x’s would have allowed a
more accurate linear prediction, and would have been removed.) The overall normalization of
this flat spectrum is just the mean square amplitude of the x’s. But this is exactly the quantity
computed in equation (13.6.13) and returned by the routine memcof as xms. Thus, the coef-
ficients a0 and ak in equation (13.7.4) are related to the LP coefficients returned by memcof
simply by

a0 D xms ak D �d(k � 1); k D 1; : : : ;M (13.7.6)

There is also another way to describe the relation between the ak’s and the autocorrela-
tion components �k . The Wiener-Khinchin theorem (12.0.13) says that the Fourier transform
of the autocorrelation is equal to the power spectrum. In z-transform language, this Fourier
transform is just a Laurent series in z. The equation that is to be satisfied by the coefficients
in equation (13.7.4) is thus

a0ˇ̌̌̌
1C

MP
kD1

akz
k

ˇ̌̌̌2 � MX
jD�M

�j z
j (13.7.7)

The approximately equal sign in (13.7.7) has a somewhat special interpretation. It means
that the series expansion of the left-hand side is supposed to agree with the right-hand side
term-by-term from z�M to zM . Outside this range of terms, the right-hand side is obviously
zero, while the left-hand side will still have nonzero terms. Notice that M , the number of
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coefficients in the approximation on the left-hand side, can be any integer up to N , the total
number of autocorrelations available. (In practice, one often chooses M much smaller than
N .) M is called the order or number of poles of the approximation.

Whatever the chosen value of M , the series expansion of the left-hand side of (13.7.7)
defines a certain sort of extrapolation of the autocorrelation function to lags larger than M , in
fact even to lags larger than N , i.e., larger than the run of data can actually measure. It turns
out that this particular extrapolation can be shown to have, among all possible extrapolations,
the maximum entropy in a definable information-theoretic sense. Hence the name maximum
entropy method, or MEM. The maximum entropy property has caused MEM to acquire a cer-
tain “cult” popularity; one sometimes hears that it gives an intrinsically “better” estimate than
is given by other methods. Don’t believe it. MEM has the very cute property of being able to
fit sharp spectral features, but there is nothing else magical about its power spectrum estimates.

The operations count in memcof scales as the product of N (the number of data points)
and M (the desired order of the MEM approximation). If M were chosen to be as large as
N , then the method would be much slower than the N logN FFT methods of the previous
section. In practice, however, one usually wants to limit the order (or number of poles) of the
MEM approximation to a few times the number of sharp spectral features that one desires it
to fit. With this restricted number of poles, the method will smooth the spectrum somewhat,
but this is often a desirable property. While exact values depend on the application, one might
take M D 10 or 20 or 50 for N D 1000 or 10000. In that case, MEM estimation is not much
slower than FFT estimation.

We feel obliged to warn you that memcof can be a bit quirky at times. If the number of
poles or number of data points is too large, roundoff error can be a problem, even in double
precision. With “peaky” data (i.e., data with extremely sharp spectral features), the algorithm
may suggest split peaks even at modest orders, and the peaks may shift with the phase of the
sine wave. Also, with noisy input functions, if you choose too high an order, you will find
spurious peaks galore! Some experts recommend the use of this algorithm in conjunction with
more conservative methods, like periodograms, to help choose the correct model order and to
avoid getting too fooled by spurious spectral features. MEM can be finicky, but it can also do
remarkable things. We recommend that you try it out, cautiously, on your own problems. We
now turn to the evaluation of the MEM spectral estimate from its coefficients.

The MEM estimation (13.7.4) is a function of continuously varying frequency f . There
is no special significance to specific equally spaced frequencies as there was in the FFT case.
In fact, since the MEM estimate may have very sharp spectral features, one wants to be able to
evaluate it on a very fine mesh near to those features, but perhaps only more coarsely farther
away from them. Here is a function that, given the coefficients already computed, evaluates
(13.7.4) and returns the estimated power spectrum as a function of f� (the frequency times
the sampling interval). Of course, f� should lie in the Nyquist range between �1=2 and 1=2.

Doub evlmem(const Doub fdt, VecDoub_I &d, const Doub xms) linpredict.h
Given d[0..m-1] and xms as returned by memcof, this function returns the power spectrum
estimate P.f / as a function of fdt D f�.
{

Int i;
Doub sumr=1.0,sumi=0.0,wr=1.0,wi=0.0,wpr,wpi,wtemp,theta;

Int m=d.size();
theta=6.28318530717959*fdt;
wpr=cos(theta); Set up for recurrence relations.
wpi=sin(theta);
for (i=0;i<m;i++) { Loop over the terms in the sum.

wr=(wtemp=wr)*wpr-wi*wpi;
wi=wi*wpr+wtemp*wpi;
sumr -= d[i]*wr; These accumulate the denominator of (13.7.4).
sumi -= d[i]*wi;

}
return xms/(sumr*sumr+sumi*sumi);

}
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Figure 13.7.1. Sample output of maximum entropy spectral estimation. The input signal consists of 512
samples of the sum of two sinusoids of very nearly the same frequency, plus white noise with about equal
power. Shown is an expanded portion of the full Nyquist frequency interval (which would extend from
zero to 0.5). The dashed spectral estimate uses 20 poles; the dotted, 40; the solid, 150. With the larger
number of poles, the method can resolve the distinct sinusoids, but the flat noise background is beginning
to show spurious peaks. (Note logarithmic scale.)

Be sure to evaluate P.f / on a fine enough grid to find any narrow features that may
be there! Such narrow features, if present, can contain virtually all of the power in the data.
You might also wish to know how the P.f / produced by the routines memcof and evlmem is
normalized with respect to the mean square value of the input data vector. The answer isZ 1=2

�1=2
P.f�/d.f�/ D 2

Z 1=2

0
P.f�/d.f�/ D mean square value of data (13.7.8)

Sample spectra produced by the routines memcof and evlmem are shown in Figure 13.7.1.

CITED REFERENCES AND FURTHER READING:

Childers, D.G. (ed.) 1978, Modern Spectrum Analysis (New York: IEEE Press), Chapter II.

Kay, S.M., and Marple, S.L. 1981, “Spectrum Analysis: A Modern Perspective,” Proceedings of
the IEEE, vol. 69, pp. 1380–1419.
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13.8 Spectral Analysis of Unevenly Sampled
Data

Thus far, we have been dealing exclusively with evenly sampled data,

hn D h.n�/ n D : : : ;�3;�2;�1; 0; 1; 2; 3; : : : (13.8.1)

where � is the sampling interval, whose reciprocal is the sampling rate. Recall also (�12.1)
the significance of the Nyquist critical frequency

fc �
1

2�
(13.8.2)

as codified by the sampling theorem: A sampled data set like equation (13.8.1) contains com-
plete information about all spectral components for a signal h.t/ containing only frequencies
below the Nyquist frequency, and scrambled or aliased information about any signals contain-
ing frequencies larger than the Nyquist frequency. The sampling theorem thus defines both
the attractiveness and the limitation of any analysis of an evenly spaced data set.

There are situations, however, where evenly spaced data cannot be obtained. A common
case is where instrumental dropouts occur, so that data are obtained only on a (not consecutive
integer) subset of equation (13.8.1), the so-called missing data problem. Another case, com-
mon in observational sciences like astronomy, is that the observer cannot completely control
the time of the observations, but must simply accept a certain dictated set of ti ’s.

There are some obvious ways to get from unevenly spaced ti ’s to evenly spaced ones,
as in equation (13.8.1). Interpolation is one way: Lay down a grid of evenly spaced times on
your data and interpolate values onto that grid; then use FFT methods. In the missing data
problem, you only have to interpolate on missing data points. If a lot of consecutive points
are missing, you might as well just set them to zero, or perhaps “clamp” the value at the last
measured point. However, the experience of practitioners of such interpolation techniques
is not reassuring. Generally speaking, such techniques perform poorly. Long gaps in the
data, for example, often produce a spurious bulge of power at low frequencies (wavelengths
comparable to gaps).

A completely different method of spectral analysis for unevenly sampled data, one that
mitigates these difficulties and has some other very desirable properties, was developed by
Lomb [1], based in part on earlier work by Barning [2] and Vanı́ček [3], and additionally elab-
orated by Scargle [4]. The Lomb method (as we will call it) evaluates data, and sines and
cosines, only at times ti that are actually measured. Suppose that there are N data points
hi � h.ti /; i D 0; : : : ; N � 1. Then first find the mean and variance of the data by the usual
formulas,

xh �
1

N

N�1X
iD0

hi �2 �
1

N � 1

N�1X
iD0

.hi � xh/
2 (13.8.3)

Now, the Lomb normalized periodogram (spectral power as a function of angular fre-
quency ! � 2	f > 0) is defined by

PN .!/ �
1

2�2

( �P
j .hj �

xh/ cos!.tj � �/
	2P

j cos2 !.tj � �/
C

�P
j .hj �

xh/ sin!.tj � �/
	2P

j sin2 !.tj � �/

)
(13.8.4)

Here � is defined by the relation

tan.2!�/ D

P
j sin 2!tjP
j cos 2!tj

(13.8.5)

The constant � is a kind of offset that makes PN .!/ completely independent of shifting
all the ti ’s by any constant. Lomb shows that this particular choice of offset has another,
deeper, effect: It makes equation (13.8.4) identical to the equation that one would obtain if one
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estimated the harmonic content of a data set, at a given frequency !, by linear least-squares
fitting to the model

h.t/ D A cos!t C B sin!t (13.8.6)

This fact gives some insight into why the method can give results superior to FFT methods: It
weights the data on a “per-point” basis instead of on a “per-time interval” basis, when uneven
sampling can render the latter seriously in error.

A very common occurrence is that the measured data points hi are the sum of a periodic
signal and independent (white) Gaussian noise. If we are trying to determine the presence or
absence of such a periodic signal, we want to be able to give a quantitative answer to the ques-
tion, “How significant is a peak in the spectrum PN .!/?” In this question, the null hypothesis
is that the data values are independent Gaussian random values. A very nice property of the
Lomb normalized periodogram is that the viability of the null hypothesis can be tested fairly
rigorously, as we now discuss.

The word “normalized” refers to the factor �2 in the denominator of equation (13.8.4).
Scargle [4] shows that with this normalization, at any particular ! and in the case of the null
hypothesis, PN .!/ has an exponential probability distribution with unit mean. In other words,
the probability that PN .!/ will be between some positive z and z C dz is exp.�z/dz. It
readily follows that, if we scan some M independent frequencies, the probability that none
give values larger than z is .1 � e�z/M . So

P.> z/ � 1 � .1 � e�z/M (13.8.7)

is the false-alarm probability of the null hypothesis, that is, the significance level of any peak
in PN .!/ that we do see. A small value for the false-alarm probability indicates a highly
significant periodic signal.

To evaluate this significance, we need to know M . After all, the more frequencies we
look at, the less significant is some one modest bump in the spectrum. (Look long enough, find
anything!) A typical procedure will be to plot PN .!/ as a function of many closely spaced
frequencies in some large frequency range. How many of these are independent?

Before answering, let us first see how accurately we need to know M . The interesting
region is where the significance is a small (significant) number,� 1. There, equation (13.8.7)
can be series expanded to give

P.> z/ �Me�z (13.8.8)

We see that the significance scales linearly with M . Practical significance levels are numbers
like 0:05, 0:01, 0:001, etc. An error of even ˙50% in the estimated significance is often
tolerable, since quoted significance levels are typically spaced apart by factors of 5 or 10. So
our estimate of M need not be very accurate.

Horne and Baliunas [5] give results from extensive Monte Carlo experiments for deter-
miningM in various cases. In general,M depends on the number of frequencies sampled, the
number of data pointsN , and their detailed spacing. It turns out thatM is very nearly equal to
N when the data points are approximately equally spaced and when the sampled frequencies
“fill” (oversample) the frequency range from 0 to the Nyquist frequency fc (equation 13.8.2).
Further, the value of M is not importantly different for random spacing of the data points
than for equal spacing. When a larger frequency range than the Nyquist range is sampled, M
increases proportionally. About the only case where M differs significantly from the case of
evenly spaced points is when the points are closely clumped, say into groups of three; then (as
one would expect) the number of independent frequencies is reduced by a factor of about 3.

The program period, below, calculates an effective value for M based on the above
rough-and-ready rules and assumes that there is no important clumping. This will be adequate
for most purposes. In any particular case, if it really matters, it is not too difficult to compute
a better value ofM by simple Monte Carlo: Holding fixed the number of data points and their
locations ti , generate synthetic data sets of Gaussian (normal) deviates, find the largest values
of PN .!/ for each such data set (using the accompanying program), and fit the resulting
distribution for M in equation (13.8.7).

Figure 13.8.1 shows the results of applying the method as discussed so far. In the upper
figure, the data points are plotted against time. Their number is N D 100, and their distribu-
tion in t is Poisson random. There is certainly no sinusoidal signal evident to the eye. The
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Figure 13.8.1. Example of the Lomb algorithm in action. The 100 data points (upper figure) are at
random times between 0 and 100. Their sinusoidal component is readily uncovered (lower figure) by
the algorithm, at a significance level p < 0:001. If the 100 data points had been evenly spaced at unit
interval, the Nyquist critical frequency would have been 0.5. Note that, for these unevenly spaced points,
there is no visible aliasing into the Nyquist range.

lower figure plots PN .!/ against frequency f D !=2	 . The Nyquist critical frequency that
would obtain if the points were evenly spaced is at f D fc D 0:5. Since we have searched up
to about twice that frequency, and oversampled the f ’s to the point where successive values
of PN .!/ vary smoothly, we take M D 2N . The horizontal dashed and dotted lines are (re-
spectively from bottom to top) significance levels 0.5, 0.1, 0.05, 0.01, 0.005, and 0.001. One
sees a highly significant peak at a frequency of 0.81. That is in fact the frequency of the sine
wave that is present in the data. (You will have to take our word for this!)

Note that two other peaks approach but do not exceed the 50% significance level; that
is about what one might expect by chance. It is also worth commenting on the fact that the
significant peak was found (correctly) above the Nyquist frequency and without any significant
aliasing down into the Nyquist interval! That would not be possible for evenly spaced data. It
is possible here because the randomly spaced data have some points spaced much closer than
the “average” sampling rate, and these remove ambiguity from any aliasing.

Implementation of the normalized periodogram in code is straightforward, with, how-
ever, a few points to be kept in mind. We are dealing with a slow algorithm. Typically, for
N data points, we may wish to examine on the order of 2N or 4N frequencies. Each combi-
nation of frequency and data point has, in equations (13.8.4) and (13.8.5), not just a few adds
or multiplies, but four calls to trigonometric functions; the operations count can easily reach
several hundred times N 2. It is highly desirable — in fact results in a factor 4 speedup —
to replace these trigonometric calls by recurrences. That is possible only if the sequence of



�

�

“nr3” — 2007/5/1 — 20:53 — page 688 — #710
�

�

� �

688 Chapter 13. Fourier and Spectral Applications

frequencies examined is a linear sequence. Since such a sequence is probably what most users
would want anyway, we have built this into the implementation.

At the end of this section we describe a way to evaluate equations (13.8.4) and (13.8.5)
— approximately, but to any desired degree of approximation — by a fast method [6] whose
operation count goes only as N logN . This faster method should be used for long data sets.

The lowest independent frequency f to be examined is the inverse of the span of the
input data, maxi .ti /�mini .ti / � T . This is the frequency such that the data can include one
complete cycle. In subtracting off the data’s mean, equation (13.8.4) already assumed that you
are not interested in the data’s zero frequency piece — which is just that mean value. In an
FFT method, higher independent frequencies would be integer multiples of 1=T . Because we
are interested in the statistical significance of any peak that may occur, however, we had better
(over-)sample more finely than at interval 1=T , so that sample points lie close to the top of any
peak. Thus, the accompanying program includes an oversampling parameter, called ofac; a
value ofac & 4 might be typical in use. We also want to specify how high in frequency
to go, say fhi . One guide to choosing fhi is to compare it with the Nyquist frequency fc
that would obtain if the N data points were evenly spaced over the same span T , that is,
fc D N=.2T /. The accompanying program includes an input parameter hifac, defined as
fhi=fc . The number of different frequencies NP returned by the program is then given by

NP D
ofac � hifac

2
N (13.8.9)

(You have to remember to dimension the output arrays to at least this size.)
The trigonometric recurrences should be done in double precision even if you convert

the rest of the routine to single precision. The code embodies a few tricks with trigonometric
identities, to decrease roundoff errors. If you are an aficionado of such things, you can puzzle
it out. A final detail is that equation (13.8.7) will fail because of roundoff error if z is too
large; but equation (13.8.8) is fine in this regime.

void period(VecDoub_I &x, VecDoub_I &y, const Doub ofac, const Doub hifac,period.h
VecDoub_O &px, VecDoub_O &py, Int &nout, Int &jmax, Doub &prob) {

Given n data points with abscissas x[0..n-1] (which need not be equally spaced) and ordinates
y[0..n-1], and given a desired oversampling factor ofac (a typical value being 4 or larger),
this routine fills array px[0..nout-1] with an increasing sequence of frequencies (not angular
frequencies) up to hifac times the “average” Nyquist frequency, and fills array py[0..nout-1]
with the values of the Lomb normalized periodogram at those frequencies. The arrays x and y
are not altered. The vectors px and py are resized to nout (eq. 13.8.9) if their initial size is less
than this; otherwise, only their first nout components are filled. The routine also returns jmax
such that py[jmax] is the maximum element in py, and prob, an estimate of the significance
of that maximum against the hypothesis of random noise. A small value of prob indicates that
a significant periodic signal is present.

const Doub TWOPI=6.283185307179586476;
Int i,j,n=x.size(),np=px.size();
Doub ave,c,cc,cwtau,effm,expy,pnow,pymax,s,ss,sumc,sumcy,sums,sumsh,

sumsy,swtau,var,wtau,xave,xdif,xmax,xmin,yy,arg,wtemp;
VecDoub wi(n),wpi(n),wpr(n),wr(n);
nout=Int(0.5*ofac*hifac*n);
if (np < nout) {px.resize(nout); py.resize(nout);}
avevar(y,ave,var); Get mean and variance of the input data.
if (var == 0.0) throw("zero variance in period");
xmax=xmin=x[0]; Go through data to get the range of abscis-

sas.for (j=0;j<n;j++) {
if (x[j] > xmax) xmax=x[j];
if (x[j] < xmin) xmin=x[j];

}
xdif=xmax-xmin;
xave=0.5*(xmax+xmin);
pymax=0.0;
pnow=1.0/(xdif*ofac); Starting frequency.
for (j=0;j<n;j++) { Initialize values for the trigonometric recur-

rences at each data point.arg=TWOPI*((x[j]-xave)*pnow);
wpr[j]= -2.0*SQR(sin(0.5*arg));
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wpi[j]=sin(arg);
wr[j]=cos(arg);
wi[j]=wpi[j];

}
for (i=0;i<nout;i++) { Main loop over the frequencies to be evalu-

ated.px[i]=pnow;
sumsh=sumc=0.0; First, loop over the data to get � and related

quantities.for (j=0;j<n;j++) {
c=wr[j];
s=wi[j];
sumsh += s*c;
sumc += (c-s)*(c+s);

}
wtau=0.5*atan2(2.0*sumsh,sumc);
swtau=sin(wtau);
cwtau=cos(wtau);
sums=sumc=sumsy=sumcy=0.0; Then, loop over the data again to get the

periodogram value.for (j=0;j<n;j++) {
s=wi[j];
c=wr[j];
ss=s*cwtau-c*swtau;
cc=c*cwtau+s*swtau;
sums += ss*ss;
sumc += cc*cc;
yy=y[j]-ave;
sumsy += yy*ss;
sumcy += yy*cc;
wr[j]=((wtemp=wr[j])*wpr[j]-wi[j]*wpi[j])+wr[j]; Update the trigono-

metric recurrences.wi[j]=(wi[j]*wpr[j]+wtemp*wpi[j])+wi[j];
}
py[i]=0.5*(sumcy*sumcy/sumc+sumsy*sumsy/sums)/var;
if (py[i] >= pymax) pymax=py[jmax=i];
pnow += 1.0/(ofac*xdif); The next frequency.

}
expy=exp(-pymax); Evaluate statistical significance of the max-

imum.effm=2.0*nout/ofac;
prob=effm*expy;
if (prob > 0.01) prob=1.0-pow(1.0-expy,effm);

}

13.8.1 Fast Computation of the Lomb Periodogram
We here show how equations (13.8.4) and (13.8.5) can be calculated — approximately,

but to any desired precision — with an operation count only of orderNP logNP . The method
uses the FFT, but it is in no sense an FFT periodogram of the data. It is an actual evaluation of
equations (13.8.4) and (13.8.5), the Lomb normalized periodogram, with exactly that method’s
strengths and weaknesses. This fast algorithm, due to Press and Rybicki [6], makes feasible
the application of the Lomb method to data sets at least as large as 106 points; it is already
faster than straightforward evaluation of equations (13.8.4) and (13.8.5) for data sets as small
as 60 or 100 points.

Notice that the trigonometric sums that occur in equations (13.8.5) and (13.8.4) can be
reduced to four simpler sums. If we define

Sh �

N�1X
jD0

.hj � xh/ sin.!tj / Ch �

N�1X
jD0

.hj � xh/ cos.!tj / (13.8.10)

and

S2 �

N�1X
jD0

sin.2!tj / C2 �

N�1X
jD0

cos.2!tj / (13.8.11)
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then
N�1X
jD0

.hj � xh/ cos!.tj � �/ D Ch cos!� C Sh sin!�

N�1X
jD0

.hj � xh/ sin!.tj � �/ D Sh cos!� � Ch sin!�

N�1X
jD0

cos2 !.tj � �/ D
N

2
C
1

2
C2 cos.2!�/C

1

2
S2 sin.2!�/

N�1X
jD0

sin2 !.tj � �/ D
N

2
�
1

2
C2 cos.2!�/�

1

2
S2 sin.2!�/

(13.8.12)

Now notice that if the tj s were evenly spaced, then the four quantities Sh, Ch, S2, and C2
could be evaluated by two complex FFTs, and the results could then be substituted back
through equation (13.8.12) to evaluate equations (13.8.5) and (13.8.4). The problem is there-
fore only to evaluate equations (13.8.10) and (13.8.11) for unevenly spaced data.

Interpolation, or rather reverse interpolation — we will here call it extirpolation — pro-
vides the key. Interpolation, as classically understood, uses several function values on a regular
mesh to construct an accurate approximation at an arbitrary point. Extirpolation, just the op-
posite, replaces a function value at an arbitrary point by several function values on a regular
mesh, doing this in such a way that sums over the mesh are an accurate approximation to sums
over the original arbitrary point.

It is not hard to see that the weight functions for extirpolation are identical to those for
interpolation. Suppose that the function h.t/ to be extirpolated is known only at the discrete
(unevenly spaced) points h.ti / � hi , and that the function g.t/ (which will be, e.g., cos!t )
can be evaluated anywhere. Let ytk be a sequence of evenly spaced points on a regular mesh.
Then Lagrange interpolation (�3.2) gives an approximation of the form

g.t/ �
X
k

wk.t/g.ytk/ (13.8.13)

where wk.t/ are interpolation weights. Now let us evaluate a sum of interest by the following
scheme:

N�1X
jD0

hj g.tj / �

N�1X
jD0

hj

�X
k

wk.tj /g.ytk/

�
D
X
k

�N�1X
jD0

hjwk.tj /

�
g.ytk/ �

X
k

yhk g.ytk/

(13.8.14)
Here yhk �

P
j hjwk.tj /. Notice that equation (13.8.14) replaces the original sum by one

on the regular mesh. Notice also that the accuracy of equation (13.8.13) depends only on the
fineness of the mesh with respect to the function g and has nothing to do with the spacing of the
points tj or the function h; therefore, the accuracy of equation (13.8.14) also has this property.

The general outline of the fast evaluation method is therefore this: (i) Choose a mesh
size large enough to accommodate some desired oversampling factor, and large enough to
have several extirpolation points per half-wavelength of the highest frequency of interest. (ii)
Extirpolate the values hi onto the mesh and take the FFT; this gives Sh and Ch in equation
(13.8.10). (iii) Extirpolate the constant values 1 onto another mesh, and take its FFT; this, with
some manipulation, gives S2 and C2 in equation (13.8.11). (iv) Evaluate equations (13.8.12),
(13.8.5), and (13.8.4), in that order.

There are several other tricks involved in implementing this algorithm efficiently. You
can figure most out from the code, but we will mention the following points: (a) A nice way
to get transform values at frequencies 2! instead of ! is to stretch the time-domain data by a
factor 2, and then wrap it to double-cover the original length. (This trick goes back to Tukey.)
In the program, this appears as a modulo function. (b) Trigonometric identities are used to
get from the left-hand side of equation (13.8.5) to the various needed trigonometric functions
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of !� . C++ identifiers like, e.g., cwt and hs2wt represent quantities like, e.g., cos!� and
1
2 sin.2!�/. (c) The function spread does extirpolation onto the M most nearly centered
mesh points around an arbitrary point; its turgid code evaluates coefficients of the Lagrange
interpolating polynomials, in an efficient manner.

void fasper(VecDoub_I &x, VecDoub_I &y, const Doub ofac, const Doub hifac, fasper.h
VecDoub_O &px, VecDoub_O &py, Int &nout, Int &jmax, Doub &prob) {

Given n data points with abscissas x[0..n-1] (which need not be equally spaced) and ordinates
y[0..n-1], and given a desired oversampling factor ofac (a typical value being 4 or larger),
this routine fills array px[0..nout-1] with an increasing sequence of frequencies (not angular
frequencies) up to hifac times the “average” Nyquist frequency, and fills array py[0..nout-1]
with the values of the Lomb normalized periodogram at those frequencies. The arrays x and y
are not altered. The vectors px and py are resized to nout (eq. 13.8.9) if their initial size is less
than this; otherwise, only their first nout components are filled. The routine also returns jmax
such that py[jmax] is the maximum element in py, and prob, an estimate of the significance
of that maximum against the hypothesis of random noise. A small value of prob indicates that
a significant periodic signal is present.

const Int MACC=4;
Int j,k,nwk,nfreq,nfreqt,n=x.size(),np=px.size();
Doub ave,ck,ckk,cterm,cwt,den,df,effm,expy,fac,fndim,hc2wt,hs2wt,

hypo,pmax,sterm,swt,var,xdif,xmax,xmin;
nout=Int(0.5*ofac*hifac*n);
nfreqt=Int(ofac*hifac*n*MACC); Size the FFT as next power of 2 above

nfreqt.nfreq=64;
while (nfreq < nfreqt) nfreq <<= 1;
nwk=nfreq << 1;
if (np < nout) {px.resize(nout); py.resize(nout);}
avevar(y,ave,var); Compute the mean, variance, and range

of the data.if (var == 0.0) throw("zero variance in fasper");
xmin=x[0];
xmax=xmin;
for (j=1;j<n;j++) {

if (x[j] < xmin) xmin=x[j];
if (x[j] > xmax) xmax=x[j];

}
xdif=xmax-xmin;
VecDoub wk1(nwk,0.); Zero the workspaces.
VecDoub wk2(nwk,0.);
fac=nwk/(xdif*ofac);
fndim=nwk;
for (j=0;j<n;j++) { Extirpolate the data into the workspaces.

ck=fmod((x[j]-xmin)*fac,fndim);
ckk=2.0*(ck++);
ckk=fmod(ckk,fndim);
++ckk;
spread(y[j]-ave,wk1,ck,MACC);
spread(1.0,wk2,ckk,MACC);

}
realft(wk1,1); Take the Fast Fourier Transforms.
realft(wk2,1);
df=1.0/(xdif*ofac);
pmax = -1.0;
for (k=2,j=0;j<nout;j++,k+=2) { Compute the Lomb value for each fre-

quency.hypo=sqrt(wk2[k]*wk2[k]+wk2[k+1]*wk2[k+1]);
hc2wt=0.5*wk2[k]/hypo;
hs2wt=0.5*wk2[k+1]/hypo;
cwt=sqrt(0.5+hc2wt);
swt=SIGN(sqrt(0.5-hc2wt),hs2wt);
den=0.5*n+hc2wt*wk2[k]+hs2wt*wk2[k+1];
cterm=SQR(cwt*wk1[k]+swt*wk1[k+1])/den;
sterm=SQR(cwt*wk1[k+1]-swt*wk1[k])/(n-den);
px[j]=(j+1)*df;
py[j]=(cterm+sterm)/(2.0*var);
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if (py[j] > pmax) pmax=py[jmax=j];
}
expy=exp(-pmax); Estimate significance of largest peak value.
effm=2.0*nout/ofac;
prob=effm*expy;
if (prob > 0.01) prob=1.0-pow(1.0-expy,effm);

}

void spread(const Doub y, VecDoub_IO &yy, const Doub x, const Int m) {fasper.h
Given an array yy[0..n-1], extirpolate (spread) a value y into m actual array elements that best
approximate the “fictional” (i.e., possibly noninteger) array element number x. The weights used
are coefficients of the Lagrange interpolating polynomial.

static Int nfac[11]={0,1,1,2,6,24,120,720,5040,40320,362880};
Int ihi,ilo,ix,j,nden,n=yy.size();
Doub fac;
if (m > 10) throw("factorial table too small in spread");
ix=Int(x);
if (x == Doub(ix)) yy[ix-1] += y;
else {

ilo=MIN(MAX(Int(x-0.5*m),0),Int(n-m));
ihi=ilo+m;
nden=nfac[m];
fac=x-ilo-1;
for (j=ilo+1;j<ihi;j++) fac *= (x-j-1);
yy[ihi-1] += y*fac/(nden*(x-ihi));
for (j=ihi-1;j>ilo;j--) {

nden=(nden/(j-ilo))*(j-ihi);
yy[j-1] += y*fac/(nden*(x-j));

}
}

}
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13.9 Computing Fourier Integrals Using the
FFT

Not uncommonly, one wants to calculate accurate numerical values for integrals of the
form

I D

Z b

a
ei!th.t/dt ; (13.9.1)
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or the equivalent real and imaginary parts

Ic D

Z b

a
cos.!t/h.t/dt Is D

Z b

a
sin.!t/h.t/dt ; (13.9.2)

and one wants to evaluate this integral for many different values of !. In cases of interest, h.t/
is often a smooth function, but it is not necessarily periodic in Œa; b�, nor does it necessarily go
to zero at a or b. While it seems intuitively obvious that the force majeure of the FFT ought to
be applicable to this problem, doing so turns out to be a surprisingly subtle matter, as we will
now see.

Let us first approach the problem naively, to see where the difficulty lies. Divide the
interval Œa; b� into M subintervals, where M is a large integer, and define

� �
b � a

M
; tj � aC j� ; hj � h.tj / ; j D 0; : : : ;M (13.9.3)

Notice that h0 D h.a/ and hM D h.b/, and that there are M C 1 values hj . We can
approximate the integral I by a sum,

I � �

M�1X
jD0

hj exp.i!tj / (13.9.4)

which is at any rate first-order accurate. (If we centered the hj ’s and the tj ’s in the intervals,
we could be accurate to second order.) Now, for certain values of ! and M , the sum in
equation (13.9.4) can be made into a discrete Fourier transform, or DFT, and evaluated by the
fast Fourier transform (FFT) algorithm. In particular, we can chooseM to be an integer power
of 2 and define a set of special !’s by

!m� �
2	m

M
(13.9.5)

where m has the values m D 0; 1; : : : ;M=2 � 1. Then equation (13.9.4) becomes

I.!m/ � �e
i!ma

M�1X
jD0

hj e
2	imj=M D �ei!maŒDFT.h0 : : : hM�1/�m (13.9.6)

Equation (13.9.6), while simple and clear, is emphatically not recommended for use: It is
likely to give wrong answers!

The problem lies in the oscillatory nature of the integral (13.9.1). If h.t/ is at all smooth,
and if ! is large enough to imply several cycles in the interval Œa; b�— in fact, !m in equation
(13.9.5) gives exactly m cycles — then the value of I is typically very small, so small that
it is easily swamped by first-order, or even (with centered values) second-order, truncation
error. Furthermore, the characteristic “small parameter” that occurs in the error term is not
�=.b� a/ D 1=M , as it would be if the integrand were not oscillatory, but !�, which can be
as large as 	 for !’s within the Nyquist interval of the DFT (cf. equation 13.9.5). The result
is that equation (13.9.6) becomes systematically inaccurate as ! increases.

It is a sobering exercise to implement equation (13.9.6) for an integral that can be done
analytically and to see just how bad it is. We recommend that you try it.

Let us therefore turn to a more sophisticated treatment. Given the sampled points hj , we
can approximate the function h.t/ everywhere in the interval Œa; b� by interpolation on nearby
hj ’s. The simplest case is linear interpolation, using the two nearest hj ’s, one to the left and
one to the right. A higher-order interpolation, e.g., would be cubic interpolation, using two
points to the left and two to the right — except in the first and last subintervals, where we must
interpolate with three hj ’s on one side, one on the other.

The formulas for such interpolation schemes are (piecewise) polynomial in the inde-
pendent variable t , but with coefficients that are of course linear in the function values hj .
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Although one does not usually think of it in this way, interpolation can be viewed as ap-
proximating a function by a sum of kernel functions (which depend only on the interpolation
scheme) times sample values (which depend only on the function). Let us write

h.t/ �

MX
jD0

hj  

�
t � tj

�

�
C

X
jDendpoints

hj 'j

�
t � tj

�

�
(13.9.7)

Here  .s/ is the kernel function of an interior point: It is zero for s sufficiently negative or
sufficiently positive and becomes nonzero only when s is in the range where the hj multiply-
ing it is actually used in the interpolation. We always have  .0/ D 1 and  .m/ D 0; m D
˙1;˙2; : : : ; since interpolation right on a sample point should give the sampled function
value. For linear interpolation,  .s/ is piecewise linear, rises from 0 to 1 for s in .�1; 0/,
and falls back to 0 for s in .0; 1/. For higher-order interpolation,  .s/ is made up piece-
wise of segments of Lagrange interpolation polynomials. It has discontinuous derivatives at
integer values of s, where the pieces join, because the set of points used in the interpolation
changes discretely.

As already remarked, the subintervals closest to a and b require different (noncentered)
interpolation formulas. This is reflected in equation (13.9.7) by the second sum, with the spe-
cial endpoint kernels 'j .s/. Actually, for reasons that will become clearer below, we have
included all the points in the first sum (with kernel  ), so the 'j ’s are actually differences
between true endpoint kernels and the interior kernel  . It is a tedious, but straightforward,
exercise to write down all the 'j .s/’s for any particular order of interpolation, each one con-
sisting of differences of Lagrange interpolating polynomials spliced together piecewise.

Now apply the integral operator
R b
a dt exp.i!t/ to both sides of equation (13.9.7), in-

terchange the sums and integral, and make the changes of variable s D .t � tj /=� in the first
sum and s D .t � a/=� in the second sum. The result is

I � �ei!a

"
W.�/

MX
jD0

hj e
ij� C

X
jDendpoints

hj j̨ .�/

#
(13.9.8)

Here � � !�, and the functions W.�/ and j̨ .�/ are defined by

W.�/ �

Z 1
�1

ds ei�s .s/ (13.9.9)

j̨ .�/ �

Z 1
�1

ds ei�s'j .s � j / (13.9.10)

The key point is that equations (13.9.9) and (13.9.10) can be evaluated, analytically,
once and for all, for any given interpolation scheme. Then equation (13.9.8) is an algorithm
for applying “endpoint corrections” to a sum that (as we will see) can be done using the FFT,
giving a result with high-order accuracy.

We will consider only interpolations that are left-right symmetric. Then symmetry im-
plies

'M�j .s/ D 'j .�s/ ˛M�j .�/ D e
i�M˛�j .�/ D e

i!.b�a/˛�j .�/ (13.9.11)

where 
 denotes complex conjugation. Also,  .s/ D  .�s/ implies that W.�/ is real.
Turn now to the first sum in equation (13.9.8), which we want to do by FFT methods. To

do so, choose someN that is an integer power of 2 withN �MC1. (Note thatM need not be
a power of 2, soM D N �1 is allowed.) IfN > MC1, define hj � 0; MC1 < j 
 N �1,
i.e., “zero-pad” the array of hj ’s so that j takes on the range 0 
 j 
 N � 1. Then the sum
can be done as a DFT for the special values ! D !n given by

!n� �
2	n

N
� � n D 0; 1; : : : ;

N

2
� 1 (13.9.12)
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For fixed M , the larger N is chosen, the finer the sampling in frequency space. The
value M , on the other hand, determines the highest frequency sampled, since � decreases
with increasing M (equation 13.9.3), and the largest value of !� is always just under 	
(equation 13.9.12). In general it is advantageous to oversample by at least a factor of 4, i.e.,
N > 4M (see below). We can now rewrite equation (13.9.8) in its final form as

I.!n/ D �e
i!na

n
W.�/ŒDFT.h0 : : : hN�1/�n

C ˛0.�/h0 C ˛1.�/h1 C ˛2.�/h2 C ˛3.�/h3 C : : :

C ei!.b�a/
�
˛�0 .�/hM C ˛

�
1 .�/hM�1 C ˛

�
2 .�/hM�2 C ˛

�
3 .�/hM�3 C : : :

	o
(13.9.13)

For cubic (or lower) polynomial interpolation, at most the terms explicitly shown above
are nonzero; the ellipses (: : :) can therefore be ignored, and we need explicit forms only for the
functionsW;˛0; ˛1; ˛2; ˛3, calculated with equations (13.9.9) and (13.9.10). We have worked
these out for you, in the trapezoidal (second-order) and cubic (fourth-order) cases. Here are
the results, along with the first few terms of their power series expansions for small � :

Trapezoidal order:

W.�/ D
2.1� cos �/

�2
	 1�

1

12
�2 C

1

360
�4 �

1

20160
�6

˛0.�/ D �
.1� cos �/

�2
C i

.� � sin �/

�2

	 �
1

2
C

1

24
�2 �

1

720
�4 C

1

40320
�6 C i�

�
1

6
�

1

120
�2 C

1

5040
�4 �

1

362880
�6
�

˛1 D ˛2 D ˛3 D 0

Cubic order:

W.�/ D

�
6C �2

3�4

�
.3� 4 cos � C cos 2�/ 	 1�

11

720
�4 C

23

15120
�6

˛0.�/ D
.�42C 5�2/C .6C �2/.8 cos � � cos 2�/

6�4
C i

.�12� C 6�3/C .6C �2/ sin 2�

6�4

	 �
2

3
C

1

45
�2 C

103

15120
�4 �

169

226800
�6 C i�

�
2

45
C

2

105
�2 �

8

2835
�4 C

86

467775
�6
�

˛1.�/ D
14.3� �2/� 7.6C �2/ cos �

6�4
C i

30� � 5.6C �2/ sin �

6�4

	
7

24
�

7

180
�2 C

5

3456
�4 �

7

259200
�6 C i�

�
7

72
�

1

168
�2 C

11

72576
�4 �

13

5987520
�6
�

˛2.�/ D
�4.3� �2/C 2.6C �2/ cos �

3�4
C i
�12� C 2.6C �2/ sin �

3�4

	 �
1

6
C

1

45
�2 �

5

6048
�4 C

1

64800
�6 C i�

�
�

7

90
C

1

210
�2 �

11

90720
�4 C

13

7484400
�6
�

˛3.�/ D
2.3� �2/� .6C �2/ cos �

6�4
C i

6� � .6C �2/ sin �

6�4

	
1

24
�

1

180
�2 C

5

24192
�4 �

1

259200
�6 C i�

�
7

360
�

1

840
�2 C

11

362880
�4 �

13

29937600
�6
�
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The program dftcor, below, implements the endpoint corrections for the cubic case.
Given input values of!;�; a; b; and an array with the eight values h0; : : : ; h3, hM�3; : : : ; hM ,
it returns the real and imaginary parts of the endpoint corrections in equation (13.9.13), and
the factor W.�/. The code is turgid, but only because the formulas above are complicated.
The formulas have cancellations to high powers of � . It is therefore necessary to compute
the right-hand sides in double precision, even when the corrections are desired only to single
precision. It is also necessary to use the series expansion for small values of � . The opti-
mal cross-over value of � depends on your machine’s wordlength, but you can always find it
experimentally as the largest value where the two methods give identical results to machine
precision.

void dftcor(const Doub w, const Doub delta, const Doub a, const Doub b,dftintegrate.h
VecDoub_I &endpts, Doub &corre, Doub &corim, Doub &corfac) {

For an integral approximated by a discrete Fourier transform, this routine computes the cor-
rection factor that multiplies the DFT and the endpoint correction to be added. Input is the
angular frequency w, stepsize delta, lower and upper limits of the integral a and b, while the
array endpts contains the first 4 and last 4 function values. The correction factor W.�/ is
returned as corfac, while the real and imaginary parts of the endpoint correction are returned
as corre and corim.

Doub a0i,a0r,a1i,a1r,a2i,a2r,a3i,a3r,arg,c,cl,cr,s,sl,sr,t,t2,t4,t6,
cth,ctth,spth2,sth,sth4i,stth,th,th2,th4,tmth2,tth4i;

th=w*delta;
if (a >= b || th < 0.0e0 || th > 3.1416e0)

throw("bad arguments to dftcor");
if (abs(th) < 5.0e-2) { Use series.

t=th;
t2=t*t;
t4=t2*t2;
t6=t4*t2;
corfac=1.0-(11.0/720.0)*t4+(23.0/15120.0)*t6;
a0r=(-2.0/3.0)+t2/45.0+(103.0/15120.0)*t4-(169.0/226800.0)*t6;
a1r=(7.0/24.0)-(7.0/180.0)*t2+(5.0/3456.0)*t4-(7.0/259200.0)*t6;
a2r=(-1.0/6.0)+t2/45.0-(5.0/6048.0)*t4+t6/64800.0;
a3r=(1.0/24.0)-t2/180.0+(5.0/24192.0)*t4-t6/259200.0;
a0i=t*(2.0/45.0+(2.0/105.0)*t2-(8.0/2835.0)*t4+(86.0/467775.0)*t6);
a1i=t*(7.0/72.0-t2/168.0+(11.0/72576.0)*t4-(13.0/5987520.0)*t6);
a2i=t*(-7.0/90.0+t2/210.0-(11.0/90720.0)*t4+(13.0/7484400.0)*t6);
a3i=t*(7.0/360.0-t2/840.0+(11.0/362880.0)*t4-(13.0/29937600.0)*t6);

} else { Use trigonometric formulas.
cth=cos(th);
sth=sin(th);
ctth=cth*cth-sth*sth;
stth=2.0e0*sth*cth;
th2=th*th;
th4=th2*th2;
tmth2=3.0e0-th2;
spth2=6.0e0+th2;
sth4i=1.0/(6.0e0*th4);
tth4i=2.0e0*sth4i;
corfac=tth4i*spth2*(3.0e0-4.0e0*cth+ctth);
a0r=sth4i*(-42.0e0+5.0e0*th2+spth2*(8.0e0*cth-ctth));
a0i=sth4i*(th*(-12.0e0+6.0e0*th2)+spth2*stth);
a1r=sth4i*(14.0e0*tmth2-7.0e0*spth2*cth);
a1i=sth4i*(30.0e0*th-5.0e0*spth2*sth);
a2r=tth4i*(-4.0e0*tmth2+2.0e0*spth2*cth);
a2i=tth4i*(-12.0e0*th+2.0e0*spth2*sth);
a3r=sth4i*(2.0e0*tmth2-spth2*cth);
a3i=sth4i*(6.0e0*th-spth2*sth);

}
cl=a0r*endpts[0]+a1r*endpts[1]+a2r*endpts[2]+a3r*endpts[3];
sl=a0i*endpts[0]+a1i*endpts[1]+a2i*endpts[2]+a3i*endpts[3];
cr=a0r*endpts[7]+a1r*endpts[6]+a2r*endpts[5]+a3r*endpts[4];
sr= -a0i*endpts[7]-a1i*endpts[6]-a2i*endpts[5]-a3i*endpts[4];
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arg=w*(b-a);
c=cos(arg);
s=sin(arg);
corre=cl+c*cr-s*sr;
corim=sl+s*cr+c*sr;

}

Since the use of dftcor can be confusing, we also give an illustrative program dftint
that uses dftcor to compute equation (13.9.1) for general a; b; !, and h.t/. Several points
within this program bear mentioning: The constants M and NDFT correspond to M and N in
the above discussion. On successive calls, we recompute the Fourier transform only if a or b
or h.t/ has changed.

Since dftint is designed to work for any value of ! satisfying !� < 	 , not just the
special values returned by the DFT (equation 13.9.12), we do polynomial interpolation of
degree MPOL on the DFT spectrum. You should be warned that a large factor of oversampling
(N � M ) is required for this interpolation to be accurate. After interpolation, we add the
endpoint corrections from dftcor, which can be evaluated for any !.

While dftcor is good at what it does, the routine dftint is illustrative only. It is not
a general-purpose program, because it does not adapt its parameters M, NDFT, MPOL or its
interpolation scheme to any particular function h.t/. You will have to experiment with your
own application.

void dftint(Doub func(const Doub), const Doub a, const Doub b, const Doub w, dftintegrate.h
Doub &cosint, Doub &sinint) {

Example program illustrating how to use the routine dftcor. The user supplies an external

function func that returns the quantity h.t/. The routine then returns
R b
a cos.!t/h.t/ dt as

cosint and
R b
a sin.!t/h.t/ dt as sinint.

static Int init=0;
static Doub (*funcold)(const Doub);
static Doub aold = -1.e30,bold = -1.e30,delta;
const Int M=64,NDFT=1024,MPOL=6;
The values of M, NDFT, and MPOL are merely illustrative and should be optimized for your
particular application. M is the number of subintervals, NDFT is the length of the FFT (a
power of 2), and MPOL is the degree of polynomial interpolation used to obtain the desired
frequency from the FFT.
const Doub TWOPI=6.283185307179586476;
Int j,nn;
Doub c,cdft,corfac,corim,corre,en,s,sdft;
static VecDoub data(NDFT),endpts(8);
VecDoub cpol(MPOL),spol(MPOL),xpol(MPOL);
if (init != 1 || a != aold || b != bold || func != funcold) {

Do we need to initialize, or is only ! changed?
init=1;
aold=a;
bold=b;
funcold=func;
delta=(b-a)/M;
for (j=0;j<M+1;j++) Load the function values into the data

array.data[j]=func(a+j*delta);
for (j=M+1;j<NDFT;j++) Zero-pad the rest of the data array.

data[j]=0.0;
for (j=0;j<4;j++) { Load the endpoints.

endpts[j]=data[j];
endpts[j+4]=data[M-3+j];

}
realft(data,1);
realft returns the unused value corresponding to !N=2 in data[1]. We actually want
this element to contain the imaginary part corresponding to !0, which is zero.
data[1]=0.0;

}
Now interpolate on the DFT result for the desired frequency. If the frequency is an !n,
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i.e., the quantity en is an integer, then cdft=data[2*en-2], sdft=data[2*en-1], and you
could omit the interpolation.
en=w*delta*NDFT/TWOPI+1.0;
nn=MIN(MAX(Int(en-0.5*MPOL+1.0),1),NDFT/2-MPOL+1); Leftmost point for the

interpolation.for (j=0;j<MPOL;j++,nn++) {
cpol[j]=data[2*nn-2];
spol[j]=data[2*nn-1];
xpol[j]=nn;

}
cdft = Poly_interp(xpol,cpol,MPOL).interp(en);
sdft = Poly_interp(xpol,spol,MPOL).interp(en);
dftcor(w,delta,a,b,endpts,corre,corim,corfac); Now get the endpoint cor-

rection and the mul-
tiplicative factorW.�/.

cdft *= corfac;
sdft *= corfac;
cdft += corre;
sdft += corim;
c=delta*cos(w*a); Finally multiply by � and exp.i!a/.
s=delta*sin(w*a);
cosint=c*cdft-s*sdft;
sinint=s*cdft+c*sdft;

}

Sometimes one is interested only in the discrete frequencies !m of equation (13.9.5),
the ones that have integral numbers of periods in the interval Œa; b�. For smooth h.t/, the
value of I tends to be much smaller in magnitude at these !’s than at values in between,
since the integral half-periods tend to cancel precisely. (That is why one must oversample for
interpolation to be accurate: I.!/ is oscillatory with small magnitude near the !m’s.) If you
want these !m’s without messy (and possibly inaccurate) interpolation, you have to set N to
a multiple of M (compare equations 13.9.5 and 13.9.12). In the method implemented above,
however, N must be at least M C 1, so the smallest such multiple is 2M , resulting in a factor
�2 unnecessary computing. Alternatively, one can derive a formula like equation (13.9.13),
but with the last function sample hM D h.b/ omitted from the DFT, but included entirely in
the endpoint correction for hM . Then one can set M D N (an integer power of 2) and get the
special frequencies of equation (13.9.5) with no additional overhead. The modified formula is

I.!m/ D �e
i!ma

n
W.�/ ŒDFT.h0 : : : hM�1/�m

C ˛0.�/h0 C ˛1.�/h1 C ˛2.�/h2 C ˛3.�/h3

C ei!.b�a/
�
A.�/hM C ˛

�
1 .�/hM�1 C ˛

�
2 .�/hM�2 C ˛

�
3 .�/hM�3

	o (13.9.14)

where � � !m� and A.�/ is given by

A.�/ D �˛0.�/ (13.9.15)

for the trapezoidal case, or

A.�/ D
.�6C 11�2/C .6C �2/ cos 2�

6�4
� i ImŒ˛0.�/�

�
1

3
C

1

45
�2 �

8

945
�4 C

11

14175
�6 � i ImŒ˛0.�/�

(13.9.16)

for the cubic case.
Factors likeW.�/ arise naturally whenever one calculates Fourier coefficients of smooth

functions, and they are sometimes called attenuation factors [1]. However, the endpoint cor-
rections are equally important in obtaining accurate values of integrals. Narasimhan and
Karthikeyan [2] have given a formula that is algebraically equivalent to our trapezoidal for-
mula. However, their formula requires the evaluation of two FFTs, which is unnecessary.
The basic idea used here goes back at least to Filon [3] in 1928 (before the FFT!). He used
Simpson’s rule (quadratic interpolation). Since this interpolation is not left-right symmet-
ric, two Fourier transforms are required. An alternative algorithm for equation (13.9.14) has
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been given by Lyness in [4]; for related references, see [5]. To our knowledge, the cubic-order
formulas derived here have not previously appeared in the literature.

Calculating Fourier transforms when the range of integration is .�1;1/ can be tricky.
If the function falls off reasonably quickly at infinity, you can split the integral at a large
enough value of t . For example, the integration to C1 can be writtenZ 1

a
ei!th.t/ dt D

Z b

a
ei!th.t/ dt C

Z 1
b

ei!th.t/ dt

D

Z b

a
ei!th.t/ dt �

h.b/ei!b

i!
C
h0.b/ei!b

.i!/2
� 	 	 	

(13.9.17)

The splitting point b must be chosen large enough that the remaining integral over .b;1/ is
small. Successive terms in its asymptotic expansion are found by integrating by parts. The
integral over .a; b/ can be done using dftint. You keep as many terms in the asymptotic
expansion as you can easily compute. See [6] for some examples of this idea. More pow-
erful methods, which work well for long-tailed functions but which do not use the FFT, are
described in [7-9].
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13.10 Wavelet Transforms

Like the fast Fourier transform (FFT), the discrete wavelet transform (DWT) is
a fast, linear operation that operates on a data vector whose length is an integer power
of 2, transforming it into a numerically different vector of the same length. Also like
the FFT, the wavelet transform is invertible and in fact orthogonal — the inverse
transform, when viewed as a big matrix, is simply the transpose of the transform.
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Both FFT and DWT, therefore, can be viewed as a rotation in function space, from
the input space (or time) domain, where the basis functions are the unit vectors ei ,
or Dirac delta functions in the continuum limit, to a different domain. For the FFT,
this new domain has basis functions that are the familiar sines and cosines. In the
wavelet domain, the basis functions are somewhat more complicated and have the
fanciful names “mother functions” and “wavelets.”

Of course there are an infinity of possible bases for function space, almost all of
them uninteresting! What makes the wavelet basis interesting is that, unlike sines and
cosines, individual wavelet functions are quite localized in space; simultaneously,
like sines and cosines, individual wavelet functions are quite localized in frequency
or (more precisely) characteristic scale. As we will see below, the particular kind
of dual localization achieved by wavelets renders large classes of functions and op-
erators sparse, or sparse to some high accuracy, when transformed into the wavelet
domain. Analogously with the Fourier domain, where a class of computations, like
convolutions, becomes computationally fast, there is a large class of computations
— those that can take advantage of sparsity — that becomes computationally fast in
the wavelet domain [1].

Unlike sines and cosines, which define a unique Fourier transform, there is
not one single unique set of wavelets; in fact, there are infinitely many possible
sets. Roughly, the different sets of wavelets make different trade-offs between how
compactly they are localized in space, how smooth they are, and whether they have
any special boundary conditions. (There are further fine distinctions.)

13.10.1 Daubechies Wavelet Filter Coefficients
A particular set of wavelets is specified by a particular set of numbers, called

wavelet filter coefficients. Here, we will largely restrict ourselves to wavelet filters
in a class discovered by Daubechies [2]. This class includes members ranging from
highly localized to highly smooth. The simplest (and most localized) member, often
called DAUB4, has only four coefficients, c0; : : : ; c3. For the moment we specialize
to this case for ease of notation.

Consider the following transformation matrix acting on a column vector of data
to its right:266666666666664

c0 c1 c2 c3
c3 �c2 c1 �c0

c0 c1 c2 c3
c3 �c2 c1 �c0

:::
:::

: : :

c0 c1 c2 c3
c3 �c2 c1 �c0

c2 c3 c0 c1
c1 �c0 c3 �c2

377777777777775
(13.10.1)

Here blank entries signify zeroes. Note the structure of this matrix. The first row
convolves four consecutive data points with the filter coefficients c0 : : : ; c3; likewise,
the third, fifth, and other odd rows. If the even rows followed this pattern, offset by
one, then the matrix would be a circulant, that is, an ordinary convolution that could
be done by FFT methods. (Note how the last two rows wrap around like convolutions



�

�

“nr3” — 2007/5/1 — 20:53 — page 701 — #723
�

�

� �

13.10 Wavelet Transforms 701

with periodic boundary conditions.) Instead of convolving with c0; : : : ; c3, however,
the even rows perform a different convolution, with coefficients c3;�c2; c1;�c0.
The action of the matrix, overall, is thus to perform two related convolutions, then
to decimate each of them by half (throw away half the values), and interleave the
remaining halves.

It is useful to think of the filter c0; : : : ; c3 as being a smoothing filter, call it H ,
something like a moving average of four points. Then, because of the minus signs,
the filter c3;�c2; c1;�c0, call it G, is not a smoothing filter. (In signal processing
contexts,H andG are called quadrature mirror filters [3].) In fact, the c’s are chosen
so as to make G yield, insofar as possible, a zero response to a sufficiently smooth
data vector. This is done by requiring the sequence c3;�c2; c1;�c0 to have a certain
number of vanishing moments. When this is the case for p moments (starting with
the zeroth), a set of wavelets is said to satisfy an “approximation condition of order
p.” This results in the output of H , decimated by half, accurately representing the
data’s “smooth” information. The output of G, also decimated, is referred to as the
data’s “detail” information [4].

For such a characterization to be useful, it must be possible to reconstruct the
original data vector of length N from its N=2 smooth or s-components and its N=2
detail or d-components. That is effected by requiring the matrix (13.10.1) to be
orthogonal, so that its inverse is just the transposed matrix

266666666666664

c0 c3 	 	 	 c2 c1
c1 �c2 	 	 	 c3 �c0
c2 c1 c0 c3
c3 �c0 c1 �c2

: : :

c2 c1 c0 c3
c3 �c0 c1 �c2

c2 c1 c0 c3
c3 �c0 c1 �c2

377777777777775
(13.10.2)

One sees immediately that matrix (13.10.2) is inverse to matrix (13.10.1) if and
only if these two equations hold,

c20 C c
2
1 C c

2
2 C c

2
3 D 1

c2c0 C c3c1 D 0
(13.10.3)

If additionally we require the approximation condition of order p D 2, then two
additional relations are required,

c3 � c2 C c1 � c0 D 0

0c3 � 1c2 C 2c1 � 3c0 D 0
(13.10.4)

Equations (13.10.3) and (13.10.4) are four equations for the four unknowns c0; : : : ; c3,
first recognized and solved by Daubechies. The unique solution (up to a left-right
reversal) is

c0 D .1C
p
3/=4
p
2 c1 D .3C

p
3/=4
p
2

c2 D .3 �
p
3/=4
p
2 c3 D .1 �

p
3/=4
p
2

(13.10.5)
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In fact, DAUB4 is only the most compact of a sequence of wavelet sets: If we had
six coefficients instead of four, there would be three orthogonality requirements in
equation (13.10.3) (with offsets of zero, two, and four), and we could require the van-
ishing of p D 3 moments in equation (13.10.4). In this case, DAUB6, the solution
coefficients can also be expressed in closed form,

c0 D .1C
p
10C

p
5C 2

p
10/=16

p
2 c1 D .5C

p
10C 3

p
5C 2

p
10/=16

p
2

c2 D .10 � 2
p
10C 2

p
5C 2

p
10/=16

p
2 c3 D .10 � 2

p
10 � 2

p
5C 2

p
10/=16

p
2

c4 D .5C
p
10 � 3

p
5C 2

p
10/=16

p
2 c5 D .1C

p
10 �

p
5C 2

p
10/=16

p
2

(13.10.6)

For higher p, the coefficients are available only numerically, e.g., tabulated in [5]

or [6]. (We use some of these below.) The number of coefficients increases by two
each time p is increased by one.

13.10.2 Discrete Wavelet Transform
We have not yet defined the discrete wavelet transform (DWT), but we are al-

most there: The DWT consists of applying a wavelet coefficient matrix like (13.10.1)
hierarchically, first to the full data vector of lengthN , then to the “smooth” vector of
length N=2, then to the “smooth-smooth” vector of length N=4, and so on until only
a trivial number of “smooth-: : :-smooth” components (usually 2 or 4) remain. The
procedure is sometimes called a pyramidal algorithm [4], for obvious reasons. The
output of the DWT consists of these remaining components and all the “detail” com-
ponents that were accumulated along the way. A diagram should make the procedure
clear:

2666666666666666666666666664

y0
y1
y2
y3
y4
y5
y6
y7
y8
y9
y10
y11
y12
y13
y14
y15

3777777777777777777777777775

13.10.1
�!

2666666666666666666666666664

s0
d0
s1
d1
s2
d2
s3
d3
s4
d4
s5
d5
s6
d6
s7
d7

3777777777777777777777777775

permute
�!

2666666666666666666666666664

s0
s1
s2
s3
s4
s5
s6
s7
d0
d1
d2
d3
d4
d5
d6
d7

3777777777777777777777777775

13.10.1
�!

2666666666666666666666666664

S0
D0
S1
D1
S2
D2
S3
D3
d0
d1
d2
d3
d4
d5
d6
d7

3777777777777777777777777775

permute
�!

2666666666666666666666666664

S0
S1
S2
S3
D0
D1
D2
D3
d0
d1
d2
d3
d4
d5
d6
d7

3777777777777777777777777775

etc.
�!

2666666666666666666666666664

S0
S1
D0

D1

D0
D1
D2
D3
d0
d1
d2
d3
d4
d5
d6
d7

3777777777777777777777777775
(13.10.7)

If the length of the data vector were a higher power of 2, there would be more
stages of applying (13.10.1) (or any other wavelet coefficients) and permuting. The
endpoint will always be a vector with two S’s and a hierarchy of D’s, D’s, d ’s,
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etc. Notice that once d ’s are generated, they simply propagate through to all subse-
quent stages.

A value di of any level is termed a “wavelet coefficient” of the original data vec-
tor; the final values S0;S1 should strictly be called “mother-function coefficients,”
although the term “wavelet coefficients” is often used loosely for both d ’s and final
S’s. Since the full procedure is a composition of orthogonal linear operations, the
whole DWT is itself an orthogonal linear operator.

To invert the DWT, one simply reverses the procedure, starting with the smallest
level of the hierarchy and working (in equation 13.10.7) from right to left. The
inverse matrix (13.10.2) is of course used instead of the matrix (13.10.1).

As already noted, the matrices (13.10.1) and (13.10.2) embody periodic (“wrap-
around”) boundary conditions on the data vector. One normally accepts this as a
minor inconvenience: The last few wavelet coefficients at each level of the hierarchy
are affected by data from both ends of the data vector. By circularly shifting the ma-
trix (13.10.1) N=2 columns to the left, one can symmetrize the wraparound; but this
does not eliminate it. It is in fact possible to eliminate the wraparound completely by
altering the coefficients in the first and last few rows of (13.10.1), giving an orthog-
onal matrix that is purely band-diagonal. This variant can be useful when, e.g., the
data vary by many orders of magnitude from one end of the data vector to the other.
We discuss it in �13.10.5, below.

Here is a DWT routine, wt1, that performs the pyramidal algorithm (or its in-
verse if isign is negative) on some data vector a[0..n-1]. Successive applications
of the wavelet filter, and accompanying permutations, are performed by the object
wlet, of class Wavelet, to be described below. The routine wt1 also provides for
the possibility of preconditioning and postconditioning steps, which we won’t need
until a later subsection.

void wt1(VecDoub_IO &a, const Int isign, Wavelet &wlet) wavelet.h
One-dimensional discrete wavelet transform. This routine implements the pyramid algorithm,
replacing a[0..n-1] by its wavelet transform (for isign=1), or performing the inverse operation
(for isign=-1). Note that n MUST be an integer power of 2. The object wlet, of type Wavelet,
is the underlying wavelet filter. Examples of Wavelet types are Daub4, Daubs, and Daub4i.
{

Int nn, n=a.size();
if (n < 4) return;
if (isign >= 0) { Wavelet transform.

wlet.condition(a,n,1);
for (nn=n;nn>=4;nn>>=1) wlet.filt(a,nn,isign);
Start at largest hierarchy, and work toward smallest.

} else {
for (nn=4;nn<=n;nn<<=1) wlet.filt(a,nn,isign);
Start at smallest hierarchy, and work toward largest.
wlet.condition(a,n,-1);

}
}

The Wavelet class is an “abstract base class,” meaning that it is really only
a promise that specific wavelets that derive from it will contain a method called
filt, the actual wavelet filter. Wavelet also provides a default, null, pre- and post-
conditioning method. The class Daub4 is derived from Wavelet and is intended for
use with wt1. Its filt method implements the matrices (13.10.1) and (13.10.2),
along with the permutation shown in (13.10.7).
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struct Wavelet {wavelet.h
virtual void filt(VecDoub_IO &a, const Int n, const Int isign) = 0;
virtual void condition(VecDoub_IO &a, const Int n, const Int isign) {}

};

struct Daub4 : Wavelet {
void filt(VecDoub_IO &a, const Int n, const Int isign) {
Applies the Daubechies 4-coefficient wavelet filter to data vector a[0..n-1] (for isign=1)
or applies its transpose (for isign=-1). Used hierarchically by routines wt1 and wtn.

const Doub C0=0.4829629131445341, C1=0.8365163037378077,
C2=0.2241438680420134, C3=-0.1294095225512603;
Int nh,i,j;
if (n < 4) return;
VecDoub wksp(n);
nh = n >> 1;
if (isign >= 0) { Apply filter.

for (i=0,j=0;j<n-3;j+=2,i++) {
wksp[i] = C0*a[j]+C1*a[j+1]+C2*a[j+2]+C3*a[j+3];
wksp[i+nh] = C3*a[j]-C2*a[j+1]+C1*a[j+2]-C0*a[j+3];

}
wksp[i] = C0*a[n-2]+C1*a[n-1]+C2*a[0]+C3*a[1];
wksp[i+nh] = C3*a[n-2]-C2*a[n-1]+C1*a[0]-C0*a[1];

} else { Apply transpose filter.
wksp[0] = C2*a[nh-1]+C1*a[n-1]+C0*a[0]+C3*a[nh];
wksp[1] = C3*a[nh-1]-C0*a[n-1]+C1*a[0]-C2*a[nh];
for (i=0,j=2;i<nh-1;i++) {

wksp[j++] = C2*a[i]+C1*a[i+nh]+C0*a[i+1]+C3*a[i+nh+1];
wksp[j++] = C3*a[i]-C0*a[i+nh]+C1*a[i+1]-C2*a[i+nh+1];

}
}
for (i=0;i<n;i++) a[i]=wksp[i];

}
};

For larger sets of wavelet coefficients, the wraparound of the last rows or columns
is a programming inconvenience. An efficient implementation would handle the
wraparounds as special cases, outside of the main loop. For now, we will content
ourselves with a more general scheme involving some extra arithmetic at run-time.

The following class, Daubs, takes an integer argument n in its constructor and
creates a wavelet object with the filter DAUBn. Slightly better than “Hobson’s
choice,” you can choose n D 4; 12; or 20. For other values of n you will need
to add additional coefficient tables (e.g., from [6]).

struct Daubs : Wavelet {wavelet.h
Structure for initializing and using the DAUBn wavelet filter for any n whose coefficients are
provided (here n D 4; 12; 20).

Int ncof,ioff,joff;
VecDoub cc,cr;
static Doub c4[4],c12[12],c20[20];
Daubs(Int n) : ncof(n), cc(n), cr(n) {

Int i;
ioff = joff = -(n >> 1);
// ioff = -2; joff = -n + 2; Alternative centering. (Used by Daub4, above.)
if (n == 4) for (i=0; i<n; i++) cc[i] = c4[i];
else if (n == 12) for (i=0; i<n; i++) cc[i] = c12[i];
else if (n == 20) for (i=0; i<n; i++) cc[i] = c20[i];
else throw("n not yet implemented in Daubs");
Doub sig = -1.0;
for (i=0; i<n; i++) {

cr[n-1-i]=sig*cc[i];
sig = -sig;
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}
}
void filt(VecDoub_IO &a, const Int n, const Int isign);See below.

};

Doub Daubs::c4[4]=
{0.4829629131445341,0.8365163037378079,
0.2241438680420134,-0.1294095225512604};

Doub Daubs::c12[12]=
{0.111540743350, 0.494623890398, 0.751133908021,
0.315250351709,-0.226264693965,-0.129766867567,
0.097501605587, 0.027522865530,-0.031582039318,
0.000553842201, 0.004777257511,-0.001077301085};

Doub Daubs::c20[20]=
{0.026670057901, 0.188176800078, 0.527201188932,
0.688459039454, 0.281172343661,-0.249846424327,
-0.195946274377, 0.127369340336, 0.093057364604,
-0.071394147166,-0.029457536822, 0.033212674059,
0.003606553567,-0.010733175483, 0.001395351747,
0.001992405295,-0.000685856695,-0.000116466855,
0.000093588670,-0.000013264203};

There is some arbitrariness in how the wavelets at each hierarchical stage are
centered over the data they act on. Daubs implements one popular choice, with
another shown in commented code. Consult the literature if this matters to you (it
rarely does).

The implementation of Daubs::filt() is straightforward:

void Daubs::filt(VecDoub_IO &a, const Int n, const Int isign) { wavelet.h
Applies the previously initialized Daubn wavelet filter to data vector a[0..n-1] (for isign D 1)
or applies its transpose (for isign D �1). Used hierarchically by routines wt1 and wtn.

Doub ai,ai1;
Int i,ii,j,jf,jr,k,n1,ni,nj,nh,nmod;
if (n < 4) return;
VecDoub wksp(n);
nmod = ncof*n; A positive constant equal to zero mod n.
n1 = n-1; Mask of all bits, since n a power of 2.
nh = n >> 1;
for (j=0;j<n;j++) wksp[j]=0.0;
if (isign >= 0) { Apply filter.

for (ii=0,i=0;i<n;i+=2,ii++) {
ni = i+1+nmod+ioff; Pointer to be incremented and wrapped around.
nj = i+1+nmod+joff;
for (k=0;k<ncof;k++) {

jf = n1 & (ni+k+1); We use “bitwise and” to wrap around the
pointers.jr = n1 & (nj+k+1);

wksp[ii] += cc[k]*a[jf];
wksp[ii+nh] += cr[k]*a[jr];

}
}

} else { Apply transpose filter.
for (ii=0,i=0;i<n;i+=2,ii++) {

ai = a[ii];
ai1 = a[ii+nh];
ni = i+1+nmod+ioff; See comments above.
nj = i+1+nmod+joff;
for (k=0;k<ncof;k++) {

jf = n1 & (ni+k+1);
jr = n1 & (nj+k+1);
wksp[jf] += cc[k]*ai;
wksp[jr] += cr[k]*ai1;

}
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Figure 13.10.1. Wavelet functions, that is, single basis functions from the wavelet families DAUB4 and
DAUB20. A complete, orthonormal wavelet basis consists of scalings and translations of either one of
these functions. DAUB4 has an infinite number of cusps; DAUB20 would show similar behavior in a
higher derivative.

}
}
for (j=0;j<n;j++) a[j] = wksp[j]; Copy the results back from workspace.

}

13.10.3 What Do Wavelets Look Like?
We are now in a position to actually see some wavelets. To do so, we simply run

unit vectors through any of the above discrete wavelet transforms, with isign nega-
tive so that the inverse transform is performed. Figure 13.10.1 shows the DAUB4
wavelet that is the inverse DWT of a unit vector in component 4 of a vector of
length 1024, and also the DAUB20 wavelet that is the inverse of component 21.
(One needs to go to a later hierarchical level for DAUB20 to avoid a wavelet with a
wrapped-around tail.) Other unit vectors would give wavelets with the same shapes
but different positions and scales.

One sees that both DAUB4 and DAUB20 have wavelets that are continuous.
DAUB20 wavelets also have higher continuous derivatives. DAUB4 has the peculiar
property that its derivative exists only almost everywhere. Examples of where it fails
to exist are the points p=2n, where p and n are integers; at such points, DAUB4 is
left differentiable, but not right differentiable! This kind of discontinuity — at least
in some derivative — is a necessary feature of wavelets with compact support, like
the Daubechies series. For every increase in the number of wavelet coefficients by
two, the Daubechies wavelets gain about half a derivative of continuity. (But not
exactly half; the actual orders of regularity are irrational numbers!)



�

�

“nr3” — 2007/5/1 — 20:53 — page 707 — #729
�

�

� �

13.10 Wavelet Transforms 707

0 100 200 300 400 500 600 700 800 900 1000

0 100 200 300 400 500 600 700 800 900 1000

−.2

0

.2

DAUB4 e9 + e57

−.2

0

.2

Lemarie e9 + e57

Figure 13.10.2. More wavelets, here generated from the sum of two unit vectors, e9 C e57, which are
in different hierarchical levels of scale, and also at different spatial positions. DAUB4 wavelets (top) are
defined by a filter in coordinate space (equation 13.10.5), while Lemarie wavelets (bottom) are defined by
a filter most easily written in Fourier space (equation 13.10.14).

Note that the fact that wavelets are not smooth does not prevent their having ex-
act representations for some smooth functions, as demanded by their approximation
order p. The continuity of a wavelet is not the same as the continuity of functions
that a set of wavelets can represent. For example, DAUB4 can represent (piecewise)
linear functions of arbitrary slope: In the correct linear combinations, the cusps all
cancel out. Every increase of two in the number of coefficients allows one higher
order of polynomial to be exactly represented.

Figure 13.10.2 shows the result of performing the inverse DWT on the input
vector e9 C e57, again for the two different particular wavelets. Since 9 lies early in
the hierarchical range of 8–15, that wavelet lies on the left side of the picture. Since
57 lies in a later (smaller-scale) hierarchy, it is a narrower wavelet; in the range
of 32–63 it is toward the end, so it lies on the right side of the picture. Note that
smaller-scale wavelets are taller, so as to have the same squared integral.

13.10.4 Wavelet Filters in the Fourier Domain
The Fourier transform of a set of filter coefficients cj is given by

H.!/ D
X
j

cj e
ij! (13.10.8)

Here H is a function periodic in 2	 , and it has the same meaning as before: It is
the wavelet filter, now written in the Fourier domain. A very useful fact is that the
orthogonality conditions for the c’s (e.g., equation 13.10.3 above) collapse to two
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simple relations in the Fourier domain,

1
2
jH.0/j2 D 1 (13.10.9)

and
1
2

�
jH.!/j2 C jH.! C 	/j2

	
D 1 (13.10.10)

Likewise, the approximation condition of order p (e.g., equation 13.10.4 above) has
a simple formulation, requiring that H.!/ have a pth order zero at ! D 	 , or
(equivalently)

H .m/.	/ D 0 m D 0; 1; : : : ; p � 1 (13.10.11)

It is thus relatively straightforward to invent wavelet sets in the Fourier domain.
You simply invent a function H.!/ satisfying equations (13.10.9) – (13.10.11). To
find the actual cj ’s applicable to a data (or s-component) vector of length N , and
with periodic wraparound as in matrices (13.10.1) and (13.10.2), you invert equation
(13.10.8) by the discrete Fourier transform

cj D
1

N

N�1X
kD0

H.2	
k

N
/e�2	ijk=N (13.10.12)

The quadrature mirror filterG (reversed cj ’s with alternating signs), incidentally, has
the Fourier representation

G.!/ D e�i!H�.! C 	/ (13.10.13)

where the asterisk denotes complex conjugation.
In general, the above procedure will not produce wavelet filters with compact

support. In other words, all N of the cj ’s, j D 0; : : : ; N � 1 will in general be
nonzero (though they may be rapidly decreasing in magnitude). The Daubechies
wavelets, or other wavelets with compact support, are specially chosen so thatH.!/
is a trigonometric polynomial with only a small number of Fourier components, guar-
anteeing that there will be only a small number of nonzero cj ’s.

On the other hand, there is sometimes no particular reason to demand compact
support. Giving it up in fact allows the ready construction of relatively smoother
wavelets (higher values of p). Even without compact support, the convolutions im-
plicit in the matrix (13.10.1) can be done efficiently by FFT methods.

Lemarie’s wavelet (see [4]) has p D 4, does not have compact support, and is
defined by the choice of H.!/,

H.!/ D

�
2.1 � u/4

315 � 420uC 126u2 � 4u3

315 � 420v C 126v2 � 4v3

�1=2
(13.10.14)

where
u � sin2

!

2
v � sin2 ! (13.10.15)

It is beyond our scope to explain where equation (13.10.14) comes from. An in-
formal description is that the quadrature mirror filter G.!/ deriving from equation
(13.10.14) has the property that it gives identically zero when applied to any func-
tion whose odd-numbered samples are equal to the cubic spline interpolation of its
even-numbered samples. Since this class of functions includes many very smooth
members, it follows thatH.!/ does a good job of truly selecting a function’s smooth
information content. Sample Lemarie wavelets are shown in Figure 13.10.2.
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13.10.5 Daubechies Wavelets on the Interval

The discrete wavelet transforms that we have seen thus far are periodic and thus
“live on a circle.”. Wavelets close to one edge of the data vector have tails that wrap
around to the other edge. Said differently, some components of a discrete wavelet
transform depend on data values at both ends of the data vector.

Most of the time, this periodicity is merely something between a curiosity and
a minor nuisance, exactly like the discrete Fourier transform’s similar periodicity.
Similar simple workarounds (e.g., zero-padding of the data) apply. Occasionally,
however, the wraparound can produce undesirable effects, for example when the
data differ by orders of magnitude at the two ends, or are smooth at one end but
unsmooth at the other.

By modifying the coefficients of the wavelet filters near the two ends of the data
vector, it is possible to produce wavelets that utilize only local data at each edge, that
is, wavelets that “live on the interval” instead of on the circle. For such wavelets, the
orthogonal matrix analogous to (13.10.1) is purely band-diagonal, and is identical
to (13.10.1) except for modifications in the first and last few rows. Various such
constructions have been proposed. Our favorite is that of [7].

One wrinkle needs to be mentioned: We would hope that those modified rows of
the new matrix that are “detail filters” have the property of giving exactly zero when
applied to smooth polynomial sequences like 1; 1; 1; 1; 1 or 1; 2; 3; 4; 5. Indeed, all
the period wavelets previously discussed have this property. Alas, this condition, plus
orthogonality, imposes too many constraints on the coefficients, and is unachievable.
It turns out, however, that a simple linear preconditioning of the first and last few
data points (that is, replacing the values by linear combinations of themselves) re-
stores the desired property. The preconditioning is done only once in the transform,
not at every pyramidal level. This need for preconditioning (with a corresponding
postconditioning for the inverse) is the reason that our Wavelet abstract class has a
method named condition. Finally we get to use it in a nontrivial way!

Here is an implementation of DAUB4 wavelets on the interval as a class derived
from Wavelet, compatible for use in wt1. The ugliness of the code reflects only the
large number of new coefficients that must be provided. If you want to implement
higher DAUBn’s on the interval, you’ll need even more coefficients, as found in [6]

or [5].

struct Daub4i : Wavelet { wavelet.h
void filt(VecDoub_IO &a, const Int n, const Int isign) {
Applies the Cohen-Daubechies-Vial 4-coefficient wavelet on the interval filter to data vector
a[0..n-1] (for isign=1) or applies its transpose (for isign=-1). Used hierarchically by
routines wt1 and wtn.

const Doub C0=0.4829629131445341, C1=0.8365163037378077,
C2=0.2241438680420134, C3=-0.1294095225512603;

const Doub R00=0.603332511928053,R01=0.690895531839104,
R02=-0.398312997698228,R10=-0.796543516912183,R11=0.546392713959015,
R12=-0.258792248333818,R20=0.0375174604524466,R21=0.457327659851769,
R22=0.850088102549165,R23=0.223820356983114,R24=-0.129222743354319,
R30=0.0100372245644139,R31=0.122351043116799,R32=0.227428111655837,
R33=-0.836602921223654,R34=0.483012921773304,R43=0.443149049637559,
R44=0.767556669298114,R45=0.374955331645687,R46=0.190151418429955,
R47=-0.194233407427412,R53=0.231557595006790,R54=0.401069519430217,
R55=-0.717579999353722,R56=-0.363906959570891,R57=0.371718966535296,
R65=0.230389043796969,R66=0.434896997965703,R67=0.870508753349866,
R75=-0.539822500731772,R76=0.801422961990337,R77=-0.257512919478482;
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Int nh,i,j;
if (n < 8) return;
VecDoub wksp(n);
nh = n >> 1;
if (isign >= 0) {

wksp[0] = R00*a[0]+R01*a[1]+R02*a[2];
wksp[nh] = R10*a[0]+R11*a[1]+R12*a[2];
wksp[1] = R20*a[0]+R21*a[1]+R22*a[2]+R23*a[3]+R24*a[4];
wksp[nh+1] = R30*a[0]+R31*a[1]+R32*a[2]+R33*a[3]+R34*a[4];
for (i=2,j=3;j<n-4;j+=2,i++) {

wksp[i] = C0*a[j]+C1*a[j+1]+C2*a[j+2]+C3*a[j+3];
wksp[i+nh] = C3*a[j]-C2*a[j+1]+C1*a[j+2]-C0*a[j+3];

}
wksp[nh-2] = R43*a[n-5]+R44*a[n-4]+R45*a[n-3]+R46*a[n-2]+R47*a[n-1];
wksp[n-2] = R53*a[n-5]+R54*a[n-4]+R55*a[n-3]+R56*a[n-2]+R57*a[n-1];
wksp[nh-1] = R65*a[n-3]+R66*a[n-2]+R67*a[n-1];
wksp[n-1] = R75*a[n-3]+R76*a[n-2]+R77*a[n-1];

} else {
wksp[0] = R00*a[0]+R10*a[nh]+R20*a[1]+R30*a[nh+1];
wksp[1] = R01*a[0]+R11*a[nh]+R21*a[1]+R31*a[nh+1];
wksp[2] = R02*a[0]+R12*a[nh]+R22*a[1]+R32*a[nh+1];
if (n == 8) {

wksp[3] = R23*a[1]+R33*a[5]+R43*a[2]+R53*a[6];
wksp[4] = R24*a[1]+R34*a[5]+R44*a[2]+R54*a[6];

} else {
wksp[3] = R23*a[1]+R33*a[nh+1]+C0*a[2]+C3*a[nh+2];
wksp[4] = R24*a[1]+R34*a[nh+1]+C1*a[2]-C2*a[nh+2];
wksp[n-5] = C2*a[nh-3]+C1*a[n-3]+R43*a[nh-2]+R53*a[n-2];
wksp[n-4] = C3*a[nh-3]-C0*a[n-3]+R44*a[nh-2]+R54*a[n-2];

}
for (i=2,j=5;i<nh-3;i++) {

wksp[j++] = C2*a[i]+C1*a[i+nh]+C0*a[i+1]+C3*a[i+nh+1];
wksp[j++] = C3*a[i]-C0*a[i+nh]+C1*a[i+1]-C2*a[i+nh+1];

}
wksp[n-3] = R45*a[nh-2]+R55*a[n-2]+R65*a[nh-1]+R75*a[n-1];
wksp[n-2] = R46*a[nh-2]+R56*a[n-2]+R66*a[nh-1]+R76*a[n-1];
wksp[n-1] = R47*a[nh-2]+R57*a[n-2]+R67*a[nh-1]+R77*a[n-1];

}
for (i=0;i<n;i++) a[i]=wksp[i];

}
void condition(VecDoub_IO &a, const Int n, const Int isign) {

Doub t0,t1,t2,t3;
if (n < 4) return;
if (isign >= 0) {

t0 = 0.324894048898962*a[0]+0.0371580151158803*a[1];
t1 = 1.00144540498130*a[1];
t2 = 1.08984305289504*a[n-2];
t3 = -0.800813234246437*a[n-2]+2.09629288435324*a[n-1];
a[0]=t0; a[1]=t1; a[n-2]=t2; a[n-1]=t3;

} else {
t0 = 3.07792649138669*a[0]-0.114204567242137*a[1];
t1 = 0.998556681198888*a[1];
t2 = 0.917563310922261*a[n-2];
t3 = 0.350522032550918*a[n-2]+0.477032578540915*a[n-1];
a[0]=t0; a[1]=t1; a[n-2]=t2; a[n-1]=t3;

}
}

};

Do you really need wavelets on the interval, instead of ordinary, periodic wave-
lets? Occasionally, yes. If you look ahead to Figure 13.10.6, which is a graphical
display of two-dimensional wavelet coefficients, you can see the difference between
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Figure 13.10.3. Top: Arbitrary test function, with cusp, sampled on a vector of length 1024. Bottom:
Absolute value of the 1024 wavelet coefficients produced by the discrete wavelet transform of the function.
Note log scale. The dotted curve plots the same amplitudes when sorted by decreasing size. One sees that
only 130 out of 1024 coefficients are larger than 10�4 (or larger than about 10�5 times the largest
coefficient, whose value is� 10).

allowing and suppressing wraparound.

13.10.6 Truncated Wavelet Approximations
Most of the usefulness of wavelets rests on the fact that wavelet transforms can

usefully be severely truncated, that is, turned into sparse expansions. The case of
Fourier transforms is different: FFTs are ordinarily used without truncation, to com-
pute fast convolutions, for example. This works because the convolution operator
is particularly simple in the Fourier basis. There are not, however, any standard
mathematical operations that are especially simple in the wavelet basis.

To see how truncation works, consider the simple example shown in Figure
13.10.3. The upper panel shows an arbitrarily chosen test function, smooth except
for a square-root cusp, sampled onto a vector of length 210. The bottom panel (solid
curve) shows, on a log scale, the absolute value of the vector’s components after
it has been run through the DAUB4 discrete wavelet transform. One notes, from
right to left, the different levels of hierarchy, 512–1023, 256–511, 128–255, etc.
Within each level, the wavelet coefficients are nonnegligible only very near the loca-
tion of the cusp, or very near the left and right boundaries of the hierarchical range
(edge effects).

The dotted curve in the lower panel of Figure 13.10.3 plots the same amplitudes
as the solid curve, but sorted into decreasing order of size. One can read off, for
example, that the 130th largest wavelet coefficient has an amplitude less than 10�5

of the largest coefficient, whose magnitude is � 10 (power or square integral ratio
less than 10�10). Thus, the example function can be represented quite accurately
by only 130, rather than 1024, coefficients — the remaining ones being set to zero.
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Note that this kind of truncation makes the vector sparse, but still of logical length
1024. It is very important that vectors in wavelet space be truncated according to the
amplitude of the components, not their position in the vector. Keeping the first 256
components of the vector (all levels of the hierarchy except the last two) would give
an extremely poor, and jagged, approximation to the function. When you compress
a function with wavelets, you have to record both the values and the positions of the
nonzero coefficients.

Generally, compact (and therefore unsmooth) wavelets are better for lower ac-
curacy approximations and for functions with discontinuities (like edges). Smooth
(and therefore noncompact) wavelets are better for achieving high numerical accu-
racy. This makes compact wavelets a good choice for image compression, for exam-
ple, while it makes smooth wavelets best for fast solution of integral equations.

In real applications of wavelets to compression, components are not starkly
“kept” or “discarded.” Rather, components may be kept with a varying number of
bits of accuracy, depending on their magnitude. The JPEG-2000 image compression
standard utilizes wavelets in such a manner.

13.10.7 Wavelet Transform in Multidimensions
A wavelet transform of a d -dimensional array is most easily obtained by trans-

forming the array sequentially on its first index (for all values of its other indices),
then on its second, and so on. Each transformation corresponds to multiplication by
an orthogonal matrix M. Because (illustrating the case d D 2)

X
j

Mnj

�X
i

Mmiaij

�
D
X
i

Mmi

�X
j

Mnjaij

�
(13.10.16)

the result is independent of the order in which the indices were transformed. The
situation is exactly like that for multidimensional FFTs. A routine for effecting the
multidimensional DWT can thus be modeled on a multidimensional FFT routine like
fourn:

void wtn(VecDoub_IO &a, VecInt_I &nn, const Int isign, Wavelet &wlet)wavelet.h
Replaces a by its ndim-dimensional discrete wavelet transform, if isign is input as 1. Here
nn[0..ndim-1] is an integer array containing the lengths of each dimension (number of real
values), which must all be powers of 2. a is a real array of length equal to the product of these
lengths, in which the data are stored as in a multidimensional real array. If isign is input as
�1, a is replaced by its inverse wavelet transform. The object wlet, of type Wavelet, is the
underlying wavelet filter. Examples of Wavelet types are Daub4, Daubs, and Daub4i.
{

Int idim,i1,i2,i3,k,n,nnew,nprev=1,nt,ntot=1;
Int ndim=nn.size();
for (idim=0;idim<ndim;idim++) ntot *= nn[idim];
if (ntot&(ntot-1)) throw("all lengths must be powers of 2 in wtn");
for (idim=0;idim<ndim;idim++) { Main loop over the dimensions.

n=nn[idim];
VecDoub wksp(n);
nnew=n*nprev;
if (n > 4) {

for (i2=0;i2<ntot;i2+=nnew) {
for (i1=0;i1<nprev;i1++) {

for (i3=i1+i2,k=0;k<n;k++,i3+=nprev) wksp[k]=a[i3];
Copy the relevant row or column or etc. into workspace.
if (isign >= 0) { Do one-dimensional wavelet transform.
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Figure 13.10.4. (a) Two-dimensional array of intensities (i.e., a photograph) and (b) its two-dimensional
discrete wavelet transform. Darker pixels represent wavelet components that are larger in magnitude, on
a logarithmic scale. Wavelets number from the upper-left corner, where the “smooth” information content
is encoded.

wlet.condition(wksp,n,1);
for(nt=n;nt>=4;nt >>= 1) wlet.filt(wksp,nt,isign);

} else { Or inverse transform.
for(nt=4;nt<=n;nt <<= 1) wlet.filt(wksp,nt,isign);
wlet.condition(wksp,n,-1);

}
for (i3=i1+i2,k=0;k<n;k++,i3+=nprev) a[i3]=wksp[k];
Copy back from workspace.

}
}

}
nprev=nnew;

}
}

Here, as before, wlet is a Wavelet object that embodies a particular wavelet
filter and (if required) pre-conditioner.

Figure 13.10.4 shows a sample image and its wavelet transform, represented
graphically.

13.10.8 Compression of Images
An immediate application of the multidimensional transform wtn is to image

compression. The overall procedure is to take the wavelet transform of a digitized
image, and then to “allocate bits” among the wavelet coefficients in some highly
nonuniform, optimized, manner. As already mentioned, large wavelet coefficients
get quantized accurately, while small coefficients are quantized coarsely with only a
bit or two — or else are truncated completely. If the resulting quantization levels are
still statistically nonuniform, they may then be further compressed by a technique
like Huffman coding (�22.5).

While a more detailed description of the “back end” of this process, namely the
quantization and coding of the image, is beyond our scope, it is quite straightforward
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Figure 13.10.5. (a) IEEE test image, 256� 256 pixels with 8-bit grayscale. (b) The image is transformed
into the wavelet basis; 77% of its wavelet components are set to zero (those of smallest magnitude); it
is then reconstructed from the remaining 23%. (c) Same as (b), but 94.5% of the wavelet components
are deleted. (d) Same as (c), but the Fourier transform is used instead of the wavelet transform. Wavelet
coefficients are better than the Fourier coefficients at preserving relevant details.

to demonstrate the “front-end” wavelet encoding with a simple truncation: We keep
(with full accuracy) all wavelet coefficients larger than some threshold, and we delete
(set to zero) all smaller wavelet coefficients. We can then adjust the threshold to vary
the fraction of preserved coefficients.

Figure 13.10.5 shows a sequence of images that differ in the number of wavelet
coefficients that have been kept. The original picture (a), which is an official IEEE
test image, has 256 by 256 pixels with an 8-bit grayscale. The two reproductions
following are reconstructed with 23% (b) and 5.5% (c) of the 65536 wavelet coeffi-
cients. The latter image illustrates the kind of compromises made by the truncated
wavelet representation. High-contrast edges (the model’s right cheek and hair high-
lights, e.g.) are maintained at a relatively high resolution, while low-contrast areas
(the model’s left eye and cheek, e.g.) are washed out into what amounts to large
constant pixels. Figure 13.10.5(d) is the result of performing the identical procedure
with Fourier, instead of wavelet, transforms: The figure is reconstructed from the
5.5% of 65536 real Fourier components having the largest magnitudes. One sees
that, since sines and cosines are nonlocal, the resolution is uniformly poor across the
picture; also, the deletion of any components produces a mottled “ringing” every-
where. (Practical Fourier image compression schemes therefore break up an image
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into small blocks of pixels, 16 � 16, say, and do rather elaborate smoothing across
block boundaries when the image is reconstructed.)

Viewers will sometimes choose (b) over (a), in Figure 13.10.5, as the superior
image. The reason is that a “little bit” of wavelet compression has the effect of
denoising the image. See [8] for a rigorous development.

13.10.9 Fast Solution of Linear Systems
There are interesting applications of wavelets to linear algebra. The basic idea [1]

is to think of an integral operator (that is, a large matrix) as a digital image. Suppose
that the operator compresses well under a two-dimensional wavelet transform, i.e.,
that a large fraction of its wavelet coefficients are so small as to be negligible. Then
any linear system involving the operator becomes a sparse system in the wavelet
basis. In other words, to solve

A 	 x D b (13.10.17)

we first wavelet-transform the operator A and the right-hand side b by

zA �W 	A 	W T ; zb �W 	 b (13.10.18)

where W represents the one-dimensional wavelet transform, then solve

zA 	 zx D zb (13.10.19)

and finally transform to the answer by the inverse wavelet transform

x DW T 	 zx (13.10.20)

(Note that the routine wtn does the complete transformation of A into zA.)
A typical integral operator that compresses well into wavelets has arbitrary (or

even nearly singular) elements near its main diagonal, but becomes smooth away
from the diagonal. An example might be

Aij D

(
�1 if i D j

ji � j j�1=2 otherwise
(13.10.21)

Figure 13.10.6 shows a graphical representation of the wavelet transform of
this matrix, where i and j range over 0 : : : 255, using the DAUB4 wavelet, both
in its conventional, periodic, implementation, and its modified form on the interval.
Elements larger in magnitude than 10�3 times the maximum element are shown as
black pixels, while elements between 10�3 and 10�6 are shown in gray. White pixels
are < 10�6. The indices i and j each number from the lower left.

In the figure, one sees the hierarchical decomposition into power-of-two sized
blocks. At the edges or corners of the various blocks, one sees edge effects caused
by the wraparound wavelet boundary conditions. Apart from edge effects, within
each block, the nonnegligible elements are concentrated along the block diagonals.
This is a statement that, for this type of linear operator, a wavelet is coupled mainly
to near neighbors in its own hierarchy (square blocks along the main diagonal) and
near neighbors in other hierarchies (rectangular blocks off the diagonal).

The number of nonnegligible elements in a matrix like that in Figure 13.10.6
scales only as N , the linear size of the matrix; as a rough rule of thumb it is about
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Figure 13.10.6. Wavelet transform of a 256�256 matrix, represented graphically. The original matrix has
a discontinuous cusp along its diagonal, decaying smoothly away on both sides of the diagonal. In wavelet
basis, the matrix becomes sparse: Components larger than 10�3 are shown as black, components larger
than 10�6 as gray, and smaller-magnitude components are white. The matrix indices i and j number
from the lower left. (a) Ordinary DAUB4 (periodic) is used. (b) Modified DAUB4 on the interval is used,
eliminating wraparound artifacts and producing a more regular pattern of significant components.

10N log10.1=�/, where � is the truncation level, e.g., 10�6. For a 2000 by 2000
matrix, then, the matrix is sparse by a factor on the order of 30.

Various numerical schemes can be used to solve sparse linear systems of this
“hierarchically band-diagonal” form. Beylkin, Coifman, and Rokhlin [1] make the
interesting observations that (1) the product of two such matrices is itself hierar-
chically band-diagonal (truncating, of course, newly generated elements that are
smaller than the predetermined threshold �); and, moreover, that (2) the product
can be formed in order N operations.

Fast matrix multiplication enables finding the matrix inverse by Schultz’s (or
Hotelling’s) method; see �2.5.

Other schemes are also possible for fast solution of hierarchically band-diagonal
forms. For example, one can use the conjugate gradient method, implemented in �2.7
as linbcg.

CITED REFERENCES AND FURTHER READING:

Daubechies, I. 1992, Wavelets (Philadelphia: S.I.A.M.).

Strang, G. 1989, “Wavelets and Dilation Equations: A Brief Introduction,” SIAM Review, vol. 31,
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Beylkin, G., Coifman, R., and Rokhlin, V. 1991, “Fast Wavelet Transforms and Numerical Algo-
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on Pure and Applied Mathematics, vol. 41, pp. 909–996.[2]
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cations,” Proceedings of the IEEE, vol. 78, pp. 56–93.[3]

Mallat, S.G. 1989, “A Theory for Multiresolution Signal Decomposition: The Wavelet Represen-
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mirrored at http://www.nr.com/contrib.[6]

Cohen, A., Daubechies, I., and Vial, P. 1993, “Wavelets on the Interval and Fast Wavelet Trans-
forms,” Applied and Computational Harmonic Analysis, vol. 1, pp. 54–81.[7]

Donoho, D. and Johnstone, I.M. 1994, “Ideal Spatial Adaptation via Wavelet Shrinkage,” Biometrika,
vol. 81, no. 3, pp. 425–455.[8]

13.11 Numerical Use of the Sampling Theorem

We have met the sampling theorem before, in �4.5 (in relation to the accuracy of the
trapezoidal rule for integration); in �6.9, where we implemented an approximating formula
for Dawson’s integral due to Rybicki, and in �12.1, where we first saw it in a Fourier context.
Now that we have become Fourier sophisticates, we can readily supply a derivation of the
formula in �6.9 and illustrate the use of the sampling theorem as a purely numerical tool. Our
discussion is identical to Rybicki [1].

For our present purposes, the sampling theorem is most conveniently stated as follows:
Consider an arbitrary function g.t/ and the grid of sampling points tn D ˛ C nh, where n
ranges over the integers and ˛ is a constant that allows an arbitrary shift of the sampling grid.
We then write

g.t/ D

1X
nD�1

g.tn/ sinc
	

h
.t � tn/C e.t/ (13.11.1)

where sinc x � sin x=x. The summation over the sampling points is called the sampling rep-
resentation of g.t/, and e.t/ is its error term. The sampling theorem asserts that the sampling
representation is exact, that is, e.t/ � 0, if the Fourier transform of g.t/,

G.!/ D

Z 1
�1

g.t/ei!t dt (13.11.2)

vanishes identically for j!j � 	=h.
When can sampling representations be used to advantage for the approximate numerical

computation of functions? In order that the error term be small, the Fourier transform G.!/
must be sufficiently small for j!j � 	=h. On the other hand, in order for the summation
in (13.11.1) to be approximated by a reasonably small number of terms, the function g.t/
itself should be very small outside of a fairly limited range of values of t . Thus we are led
to two conditions to be satisfied in order that (13.11.1) be useful numerically: Both the func-
tion g.t/ and its Fourier transform G.!/ must rapidly approach zero for large values of their
respective arguments.

Unfortunately, these two conditions are mutually antagonistic — the Uncertainty Princi-
ple in quantum mechanics. There exist strict limits on how rapidly the simultaneous approach

to zero can be in both arguments. According to a theorem of Hardy [2], if g.t/ D O.e�t
2
/ as

jt j ! 1 and G.!/ D O.e�!
2=4/ as j!j ! 1, then g.t/ � Ce�t

2
, where C is a constant.

This can be interpreted as saying that, of all functions, the Gaussian is the most rapidly decay-
ing in both t and !, and in this sense is the “best” function to be expressed numerically as a
sampling representation.

Let us then write for the Gaussian g.t/ D e�t
2

,

e�t
2

D

1X
nD�1

e�t
2
n sinc

	

h
.t � tn/C e.t/ (13.11.3)

The error e.t/ depends on the parameters h and ˛ as well as on t , but it is sufficient for the
present purposes to state the bound,

je.t/j < e�.	=2h/
2

(13.11.4)
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which can be understood simply as the order of magnitude of the Fourier transform of the
Gaussian at the point where it “spills over” into the region j!j > 	=h.

When the summation in (13.11.3) is approximated by one with finite limits, say from
N0 � N to N0 C N , where N0 is the integer nearest to �˛=h, there is a further truncation
error. However, if N is chosen so that N > 	=.2h2/, the truncation error in the summation
is less than the bound given by (13.11.4), and, since this bound is an overestimate, we shall
continue to use it for (13.11.3) as well. The truncated summation gives a remarkably accurate
representation for the Gaussian even for moderate values ofN . For example, je.t/j < 5�10�5

for h D 1=2 andN D 7; je.t/j < 2�10�10 for h D 1=3 andN D 15; and je.t/j < 7�10�18

for h D 1=4 and N D 25.
One may ask, what is the point of such a numerical representation for the Gaussian,

which can be computed so easily and quickly as an exponential? The answer is that many
transcendental functions can be expressed as an integral involving the Gaussian, and by sub-
stituting (13.11.3) one can often find excellent approximations to the integrals as a sum over
elementary functions.

Let us consider as an example the function w.z/ of the complex variable z D x C iy,
related to the complex error function by

w.z/ D e�z
2

erfc.�iz/ (13.11.5)

having the integral representation

w.z/ D
1

	i

Z
C

e�t
2
dt

t � z
(13.11.6)

where the contour C extends from �1 to1, passing below z (see, e.g., [3]). Many methods
exist for the evaluation of this function (e.g., [4]). Substituting the sampling representation
(13.11.3) into (13.11.6) and performing the resulting elementary contour integrals, we obtain

w.z/ �
1

	i

1X
nD�1

he�t
2
n
1 � .�1/ne�	i.˛�z/=h

tn � z
(13.11.7)

where we now omit the error term. One should note that there is no singularity as z ! tm
for some n D m, but a special treatment of the mth term will be required in this case (for
example, by power series expansion).

An alternative form of equation (13.11.7) can be found by expressing the complex expo-
nential in (13.11.7) in terms of trigonometric functions and using the sampling representation
(13.11.3) with z replacing t . This yields

w.z/ � e�z
2

C
1

	i

1X
nD�1

he�t
2
n
1 � .�1/n cos	.˛ � z/=h

tn � z
(13.11.8)

This form is particularly useful in obtaining Re w.z/ when jyj � 1. Note that in evaluat-
ing (13.11.7) the complex exponential inside the summation is a constant and needs to be
evaluated only once; a similar comment holds for the cosine in (13.11.8).

There are a variety of formulas that can now be derived from either equation (13.11.7)
or (13.11.8) by choosing particular values of ˛. Eight interesting choices are ˛ D 0, x, iy, or
z, plus the values obtained by adding h=2 to each of these. Since the error bound (13.11.3)
assumed a real value of ˛, the choices involving a complex ˛ are useful only if the imaginary
part of z is not too large. This is not the place to catalog all 16 possible formulas, and we give
only two particular cases that show some of the important features.

First of all let ˛ D 0 in equation (13.11.8), which yields,

w.z/ � e�z
2

C
1

	i

1X
nD�1

he�.nh/
2 1 � .�1/n cos.	z=h/

nh � z
(13.11.9)

This approximation is good over the entire z-plane. As stated previously, one has to treat the
case where one denominator becomes small by expansion in a power series. Formulas for
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the case ˛ D 0 were discussed briefly in [5]. They are similar, but not identical, to formulas
derived by Chiarella and Reichel [6], using the method of Goodwin [7].

Next, let ˛ D z in (13.11.7), which yields

w.z/ � e�z
2
�
2

	i

X
n odd

e�.z�nh/
2

n
(13.11.10)

the sum being over all odd integers (positive and negative). Note that we have made the
substitution n ! �n in the summation. This formula is simpler than (13.11.9) and contains
half the number of terms, but its error is worse if y is large. Equation (13.11.10) is the source
of the approximation formula (6.9.3) for Dawson’s integral, used in �6.9.
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�

�

“nr3” — 2007/5/1 — 20:53 — page 720 — #742
�

�

� �

Statistical Description
of Data

CHAPTER 14

14.0 Introduction

In this chapter and the next, the concept of data enters the discussion more
prominently than before.

Data consist of numbers, of course. But these numbers are given to the com-
puter, not produced by it. These are numbers to be treated with considerable respect,
neither to be tampered with, nor subjected to a computational process whose charac-
ter you do not completely understand. You are well advised to acquire a reverence
for data, rather different from the “sporty” attitude that is sometimes allowable, or
even commendable, in other numerical tasks.

The analysis of data inevitably involves some trafficking with the field of statis-
tics, that wonderful gray area that is not quite a branch of mathematics — and just as
surely not quite a branch of science. In the following sections, you will repeatedly
encounter the following paradigm, usually called a tail test or p-value test:

� apply some formula to the data to compute “a statistic”
� compute where the value of that statistic falls in a probability distribution that

is computed on the basis of some “null hypothesis”
� if it falls in a very unlikely spot, way out on a tail of the distribution, conclude

that the null hypothesis is false for your data set

If a statistic falls in a reasonable part of the distribution, you must not make the
mistake of concluding that the null hypothesis is “verified” or “proved.” That is the
curse of statistics, that it can never prove things, only disprove them! At best, you can
substantiate a hypothesis by ruling out, statistically, a whole long list of competing
hypotheses, every one that has ever been proposed. After a while your adversaries
and competitors will give up trying to think of alternative hypotheses, or else they
will grow old and die, and then your hypothesis will become accepted. Sounds crazy,
we know, but that’s how science works!�

In this book we make a somewhat arbitrary distinction between data analysis
procedures that are model-independent and those that are model-dependent. In the

�“Science advances one funeral at a time.” —Max Planck (attributed)

720
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former category, we include so-called descriptive statistics that characterize a data
set in general terms: its mean, variance, and so on. We also include statistical tests
that seek to establish the “sameness” or “differentness” of two or more data sets, or
that seek to establish and measure a degree of correlation between two data sets.
These subjects are discussed in this chapter.

In the other category, model-dependent statistics, we lump the whole subject
of fitting data to a theory, parameter estimation, least-squares fits, and so on. Those
subjects are introduced in Chapter 15.

Section 14.1 deals with so-called measures of central tendency, the moments of
a distribution, the median and mode. In �14.2 we learn to test whether different data
sets are drawn from distributions with different values of these measures of central
tendency. This leads naturally, in �14.3, to the more general question of whether two
distributions can be shown to be (significantly) different.

In �14.4 – �14.7, we deal with measures of association for two distributions.
We want to determine whether two variables are “correlated” or “dependent” on
one another. If they are, we want to characterize the degree of correlation in some
simple ways. The distinction between parametric and nonparametric (rank) meth-
ods is emphasized. Information-theoretic methods are discussed in �14.7. Section
14.9 introduces the concept of data smoothing, and discusses the particular case of
Savitzky-Golay smoothing filters.

This chapter draws mathematically on the material on special functions that was
presented in Chapter 6, especially �6.1 – �6.4 and �6.14. You may wish, at this point,
to review those sections.

Bayesian methods make little appearance in this chapter, but become more
prominent in the two chapters following this one.

CITED REFERENCES AND FURTHER READING:

Bevington, P.R., and Robinson, D.K. 2002, Data Reduction and Error Analysis for the Physical
Sciences, 3rd ed. (New York: McGraw-Hill).

Taylor, J.R. 1997, An Introduction to Error Analysis, 2nd ed. (Sausalito, CA: University Science
Books).

Devore, J.L. 2003, Probability and Statistics for Engineering and the Sciences, 6th ed. (Belmont,
CA: Duxbury Press).

Wall, J.V., and Jenkins, C.R. 2003, Practical Statistics for Astronomers (Cambridge, UK: Cam-
bridge University Press).

Lupton, R. 1993, Statistics in Theory and Practice (Princeton, NJ: Princeton University Press).

14.1 Moments of a Distribution: Mean,
Variance, Skewness, and So Forth

When a set of values has a sufficiently strong central tendency, that is, a ten-
dency to cluster around some particular value, then it may be useful to characterize
the set by a few numbers that are related to its moments, the sums of integer powers
of the values.
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Best known is the mean of the values x0; : : : ; xN�1,

xx D
1

N

N�1X
jD0

xj (14.1.1)

which estimates the value around which central clustering occurs. Note the use of
an overbar to denote the mean; angle brackets are an equally common notation, e.g.,
hxi. You should be aware that the mean is not the only available estimator of this
quantity, nor is it necessarily the best one. For values drawn from a probability
distribution with very broad “tails,” the mean may converge poorly, or not at all, as
the number of sampled points is increased. Alternative estimators, the median and
the mode, are mentioned at the end of this section.

Having characterized a distribution’s central value, one conventionally next
characterizes its “width” or “variability” around that value. Here again, more than
one measure is available. Most common is the variance,

Var.x0 : : : xN�1/ D
1

N � 1

N�1X
jD0

.xj � xx/
2 (14.1.2)

or its square root, the standard deviation,

�.x0 : : : xN�1/ D
p

Var.x0 : : : xN�1/ (14.1.3)

Equation (14.1.2) estimates the mean squared deviation of x from its mean value.
There is a long story about why the denominator of (14.1.2) is N � 1 instead of N .
If you have never heard that story, you should consult any good statistics text. Here
we will be content to note that the N � 1 should be changed to N if you are ever
in the situation of measuring the variance of a distribution whose mean xx is known
a priori rather than being estimated from the data. (We might also comment that
if the difference between N and N � 1 ever matters to you, then you are probably
up to no good anyway — e.g., trying to substantiate a questionable hypothesis with
marginal data.)

If we calculate equation (14.1.1) many times with different sets of sampled data
(each set having N values), the values xx will themselves have a standard deviation.
This is called the standard error of the estimated mean xx. When the underlying dis-
tribution is Gaussian, it is given approximately by �=

p
N . Correspondingly, there

is a standard error of the estimated variance, equation (14.1.2), which is approxi-
mately �2

p
2=N , and a standard error for the estimated � , equation (14.1.3), which

is approximately �=
p
2N .

As the mean depends on the first moment of the data, so do the variance and
standard deviation depend on the second moment. It is not uncommon, in real life,
to be dealing with a distribution whose second moment does not exist (i.e., is infi-
nite). In this case, the variance or standard deviation is useless as a measure of the
data’s width around its central value: The values obtained from equations (14.1.2) or
(14.1.3) will not converge with increased numbers of points, nor show any consis-
tency from data set to data set drawn from the same distribution. This can occur even
when the width of the peak looks, by eye, perfectly finite. A more robust estimator
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of the width is the average deviation or mean absolute deviation, defined by

ADev.x0 : : : xN�1/ D
1

N

N�1X
jD0

ˇ̌
xj � xx

ˇ̌
(14.1.4)

One often substitutes the sample median xmed for xx in equation (14.1.4). For any
fixed sample, the median in fact minimizes the mean absolute deviation.

Statisticians have historically sniffed at the use of (14.1.4) instead of (14.1.2),
since the absolute value brackets in (14.1.4) are “nonanalytic” and make theorem-
proving more difficult. In recent years, however, the fashion has changed, and the
subject of robust estimation (meaning, estimation for broad distributions with signif-
icant numbers of “outlier” points) has become a popular and important one. Higher
moments, or statistics involving higher powers of the input data, are almost always
less robust than lower moments or statistics that involve only linear sums or (the
lowest moment of all) counting.

That being the case, the skewness or third moment, and the kurtosis or fourth
moment should be used with caution or, better yet, not at all.

The skewness characterizes the degree of asymmetry of a distribution around its
mean. While the mean, standard deviation, and average deviation are dimensional
quantities, that is, have the same units as the measured quantities xj , the skewness
is conventionally defined in such a way as to make it nondimensional. It is a pure
number that characterizes only the shape of the distribution. The usual definition is

Skew.x0 : : : xN�1/ D
1

N

N�1X
jD0

�
xj � xx

�

�3
(14.1.5)

where � D �.x0 : : : xN�1/ is the distribution’s standard deviation (14.1.3). A posi-
tive value of skewness signifies a distribution with an asymmetric tail extending out
toward more positive x; a negative value signifies a distribution whose tail extends
out toward more negative x (see Figure 14.1.1).

Of course, any set of N measured values is likely to give a nonzero value for
(14.1.5), even if the underlying distribution is in fact symmetrical (has zero skew-
ness). For (14.1.5) to be meaningful, we need to have some idea of its standard error.
Unfortunately, that depends on the shape of the underlying distribution, and rather
critically on its tails! For the idealized case of a normal (Gaussian) distribution, the
standard error of (14.1.5) is approximately

p
15=N when xx is the true mean andp

6=N when it is estimated by the sample mean, (14.1.1). (Yes, using the sample
mean is likely to give a more accurate estimate than using the true mean!) In real life
it is good practice to believe in skewnesses only when they are several or many times
as large as this.

The kurtosis is also a nondimensional quantity. It measures the relative peaked-
ness or flatness of a distribution. Relative to what? A normal distribution! What
else? A distribution with positive kurtosis is termed leptokurtic; the outline of the
Matterhorn is an example. A distribution with negative kurtosis is termed platykur-
tic; the outline of a loaf of bread is an example. (See Figure 14.1.1.) And, as you no
doubt expect, an in-between distribution is termed mesokurtic.

The conventional definition of the kurtosis is
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(b)(a)

Skewness

negative positive

positive
(leptokurtic)

negative
(platykurtic)

Kurtosis

Figure 14.1.1. Distributions whose third and fourth moments are significantly different from a normal
(Gaussian) distribution. (a) Skewness or third moment. (b) Kurtosis or fourth moment.

Kurt.x0 : : : xN�1/ D

(
1

N

N�1X
jD0

�
xj � xx

�

�4)
� 3 (14.1.6)

where the �3 term makes the value zero for a normal distribution.
The standard error of (14.1.6) as an estimator of the kurtosis of an underlying

normal distribution is
p
96=N when � is the true standard deviation, and

p
24=N

when it is the sample estimate (14.1.3). (Yes, you are better off using the sample
variance.) However, the kurtosis depends on such a high moment that there are many
real-life distributions for which the standard deviation of (14.1.6) as an estimator is
effectively infinite.

Calculation of the quantities defined in this section is perfectly straightforward.
Many textbooks use the binomial theorem to expand out the definitions into sums of
various powers of the data, e.g., the familiar

Var.x0 : : : xN�1/ D
1

N � 1

" 
N�1X
jD0

x2j

!
�N xx2

#
� xx2 � xx2 (14.1.7)

but this can magnify the roundoff error by a large factor and is generally unjustifiable
in terms of computing speed. A clever way to minimize roundoff error, especially
for large samples, is to use the corrected two-pass algorithm [1]: First calculate xx,
then calculate Var.x0 : : : xN�1/ by

Var.x0 : : : xN�1/ D
1

N � 1

8<:
N�1X
jD0

.xj � xx/
2 �

1

N

"
N�1X
jD0

.xj � xx/

#29=; (14.1.8)

The second sum would be zero if xx were exact, but otherwise it does a good job of
correcting the roundoff error in the first term.

void moment(VecDoub_I &data, Doub &ave, Doub &adev, Doub &sdev, Doub &var,moment.h
Doub &skew, Doub &curt) {

Given an array of data[0..n-1], this routine returns its mean ave, average deviation adev,
standard deviation sdev, variance var, skewness skew, and kurtosis curt.

Int j,n=data.size();
Doub ep=0.0,s,p;
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if (n <= 1) throw("n must be at least 2 in moment");
s=0.0; First pass to get the mean.
for (j=0;j<n;j++) s += data[j];
ave=s/n;
adev=var=skew=curt=0.0; Second pass to get the first (absolute), sec-

ond, third, and fourth moments of the
deviation from the mean.

for (j=0;j<n;j++) {
adev += abs(s=data[j]-ave);
ep += s;
var += (p=s*s);
skew += (p *= s);
curt += (p *= s);

}
adev /= n;
var=(var-ep*ep/n)/(n-1); Corrected two-pass formula.
sdev=sqrt(var); Put the pieces together according to the con-

ventional definitions.if (var != 0.0) {
skew /= (n*var*sdev);
curt=curt/(n*var*var)-3.0;

} else throw("No skew/kurtosis when variance = 0 (in moment)");
}

14.1.1 Semi-Invariants
The mean and variance of independent random variables are additive: If x and y are

drawn independently from two, possibly different, probability distributions, then

.x C y/ D xx C xy Var.x C y/ D Var.x/C Var.x/ (14.1.9)

Higher moments are not, in general, additive. However, certain combinations of them,
called semi-invariants, are in fact additive. If the centered moments of a distribution are
denoted Mk ,

Mk �
D
.xi � xx/

k
E

(14.1.10)

so that, e.g., M2 D Var.x/, then the first few semi-invariants, denoted Ik , are given by

I2 DM2 I3 DM3 I4 DM4 � 3M
2
2

I5 DM5 � 10M2M3 I6 DM6 � 15M2M4 � 10M
2
3 C 30M

3
2

(14.1.11)

Notice that the skewness and kurtosis, equations (14.1.5) and (14.1.6), are simple powers
of the semi-invariants,

Skew.x/ D I3=I
3=2
2 Kurt.x/ D I4=I

2
2 (14.1.12)

A Gaussian distribution has all its semi-invariants higher than I2 equal to zero. A Poisson
distribution has all of its semi-invariants equal to its mean. For more details, see [2].

14.1.2 Median and Mode
The median of a probability distribution function p.x/ is the value xmed for

which larger and smaller values of x are equally probable:Z xmed

�1

p.x/ dx D
1

2
D

Z 1
xmed

p.x/ dx (14.1.13)

The median of a distribution is estimated from a sample of values x0; : : : ; xN�1
by finding that value xi which has equal numbers of values above it and below it.
Of course, this is not possible when N is even. In that case it is conventional to
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estimate the median as the mean of the unique two central values. If the values
xj ; j D 0; : : : ; N � 1, are sorted into ascending (or, for that matter, descending)
order, then the formula for the median is

xmed D

(
x.N�1/=2; N odd
1
2
.x.N=2/�1 C xN=2/; N even

(14.1.14)

If a distribution has a strong central tendency, so that most of its area is under a
single peak, then the median is an estimator of the central value. It is a more robust
estimator than the mean is: The median fails as an estimator only if the area in the
tails is large, while the mean fails if the first moment of the tails is large; it is easy
to construct examples where the first moment of the tails is large even though their
area is negligible.

To find the median of a set of values, one can proceed by sorting the set and
then applying (14.1.14). This is a process of order N logN . You might rightly think
that this is wasteful, since it yields much more information than just the median (e.g.,
the upper and lower quartile points, the deciles, etc.). In fact, we saw in �8.5 that the
element x.N�1/=2 can be located in of order N operations. Consult that section for
routines, including a method for getting a good approximation to the median in a
single pass through the data.

The mode of a probability distribution function p.x/ is the value of x where it
takes on a maximum value. The mode is useful primarily when there is a single, sharp
maximum, in which case it estimates the central value. Occasionally, a distribution
will be bimodal, with two relative maxima; then one may wish to know the two
modes individually. Note that, in such cases, the mean and median are not very
useful, since they will give only a “compromise” value between the two peaks.

CITED REFERENCES AND FURTHER READING:

Bevington, P.R., and Robinson, D.K. 2002, Data Reduction and Error Analysis for the Physical
Sciences, 3rd ed. (New York: McGraw-Hill), Chapter 1.

Spiegel, M.R., Schiller, J., and Srinivasan, R.A. 2000, Schaum’s Outline of Theory and Problem
of Probability and Statistics, 2nd ed. (New York: McGraw-Hill).

Stuart, A., and Ord, J.K. 1994, Kendall’s Advanced Theory of Statistics, 6th ed. (London: Edward
Arnold) [previous eds. published as Kendall, M., and Stuart, A., The Advanced Theory of
Statistics], vol. 1, �10.15

Norusis, M.J. 2006, SPSS 14.0 Guide to Data Analysis (Englewood Cliffs, NJ: Prentice-Hall).

Chan, T.F., Golub, G.H., and LeVeque, R.J. 1983, “Algorithms for Computing the Sample Vari-
ance: Analysis and Recommendations,” American Statistician, vol. 37, pp. 242–247.[1]

Cramér, H. 1946, Mathematical Methods of Statistics (Princeton, NJ: Princeton University Press),
�15.10.[2]

14.2 Do Two Distributions Have the Same
Means or Variances?

Not uncommonly we want to know whether two distributions have the same
mean. For example, a first set of measured values may have been gathered before



�

�

“nr3” — 2007/5/1 — 20:53 — page 727 — #749
�

�

� �

14.2 Do Two Distributions Have the Same Means or Variances? 727

some event, a second set after it. We want to know whether the event, a “treatment”
or a “change in a control parameter,” made a difference.

Our first thought is to ask “how many standard deviations” one sample mean is
from the other. That number may in fact be a useful thing to know. It does relate to
the strength or “importance” of a difference of means if that difference is genuine.
However, by itself, it says nothing about whether the difference is genuine, that is,
statistically significant. A difference of means can be very small compared to the
standard deviation, and yet very significant, if the number of data points is large.
Conversely, a difference may be moderately large but not significant, if the data
are sparse. We will be meeting these distinct concepts of strength and significance
several times in the next few sections.

A quantity that measures the significance of a difference of means is not the
number of standard deviations that they are apart, but the number of so-called stan-
dard errors that they are apart. The standard error of a set of values measures the
accuracy with which the sample mean estimates the population (or “true”) mean.
Typically the standard error is equal to the sample’s standard deviation divided by
the square root of the number of points in the sample.

14.2.1 Student’s t-Test for Significantly Different Means
Applying the concept of standard error, the conventional statistic for measuring

the significance of a difference of means is termed Student’s t. When the two dis-
tributions are thought to have the same variance, but possibly different means, then
Student’s t is computed as follows: First, estimate the standard error of the difference
of the means, sD , from the “pooled variance” by the formula

sD D

sP
i2A.xi � xxA/

2 C
P
i2B.xi � xxB/

2

NA CNB � 2

�
1

NA
C

1

NB

�
(14.2.1)

where each sum is over the points in one sample, the first or second; each mean
likewise refers to one sample or the other; and NA and NB are the numbers of points
in the first and second samples, respectively. Second, compute t by

t D
xxA � xxB

sD
(14.2.2)

Third, evaluate the p-value or significance of this value of t for Student’s distribution
with NA CNB � 2 degrees of freedom, by equation (6.14.11).

The p-value is a number between zero and one. It is the probability that jt j could
be this large or larger just by chance, for distributions with equal means. Therefore,
a small numerical value of the p-value (0.01 or 0.001) means that the observed dif-
ference is “very significant.” The function A.t j
/ in equation (6.14.11) is one minus
the p-value.

As a routine, we have

void ttest(VecDoub_I &data1, VecDoub_I &data2, Doub &t, Doub &prob) stattests.h
Given the arrays data1[0..n1-1] and data2[0..n2-1], returns Student’s t as t, and its p-
value as prob, small values of prob indicating that the arrays have significantly different means.
The data arrays are assumed to be drawn from populations with the same true variance.
{

Beta beta;
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Doub var1,var2,svar,df,ave1,ave2;
Int n1=data1.size(), n2=data2.size();
avevar(data1,ave1,var1);
avevar(data2,ave2,var2);
df=n1+n2-2; Degrees of freedom.
svar=((n1-1)*var1+(n2-1)*var2)/df; Pooled variance.
t=(ave1-ave2)/sqrt(svar*(1.0/n1+1.0/n2));
prob=beta.betai(0.5*df,0.5,df/(df+t*t)); See equation (6.14.11).

}

which makes use of the following routine for computing the mean and variance of a
set of numbers,

void avevar(VecDoub_I &data, Doub &ave, Doub &var) {moment.h
Given array data[0..n-1], returns its mean as ave and its variance as var.

Doub s,ep;
Int j,n=data.size();
ave=0.0;
for (j=0;j<n;j++) ave += data[j];
ave /= n;
var=ep=0.0;
for (j=0;j<n;j++) {

s=data[j]-ave;
ep += s;
var += s*s;

}
var=(var-ep*ep/n)/(n-1); Corrected two-pass formula (14.1.8).

}

The next case to consider is where the two distributions have significantly dif-
ferent variances, but we nevertheless want to know if their means are the same or
different. (A treatment for baldness has caused some patients to lose all their hair
and turned others into werewolves, but we want to know if it helps cure baldness on
the average!) Be suspicious of the unequal-variance t -test: If two distributions have
very different variances, then they may also be substantially different in shape; in
that case, the difference of the means may not be a particularly useful thing to know.

To find out whether the two data sets have variances that are significantly dif-
ferent, you use the F-test, described later on in this section.

The relevant statistic for the unequal-variance t -test is

t D
xxA � xxB

ŒVar.xA/=NA C Var.xB/=NB �1=2
(14.2.3)

This statistic is distributed approximately as Student’s t with a number of degrees of
freedom equal to �

Var.xA/

NA
C

Var.xB/

NB

�2
h
Var.xA/=NA

i2
NA � 1

C

h
Var.xB/=NB

i2
NB � 1

(14.2.4)

Expression (14.2.4) is in general not an integer, but equation (6.14.11) doesn’t care.
The routine is
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void tutest(VecDoub_I &data1, VecDoub_I &data2, Doub &t, Doub &prob) { stattests.h
Given the arrays data1[0..n1-1] and data2[0..n2-1], this routine returns Student’s t as t,
and its p-value as prob, small values of prob indicating that the arrays have significantly different
means. The data arrays are allowed to be drawn from populations with unequal variances.

Beta beta;
Doub var1,var2,df,ave1,ave2;
Int n1=data1.size(), n2=data2.size();
avevar(data1,ave1,var1);
avevar(data2,ave2,var2);
t=(ave1-ave2)/sqrt(var1/n1+var2/n2);
df=SQR(var1/n1+var2/n2)/(SQR(var1/n1)/(n1-1)+SQR(var2/n2)/(n2-1));
prob=beta.betai(0.5*df,0.5,df/(df+SQR(t)));

}

Our final example of a Student’s t -test is the case of paired samples. Here we
imagine that much of the variance in both samples is due to effects that are point-by-
point identical in the two samples. For example, we might have two job candidates
who have each been rated by the same ten members of a hiring committee. We
want to know if the means of the ten scores differ significantly. We first try ttest
above, and obtain a value of prob that is not especially significant (e.g., > 0:05).
But perhaps the significance is being washed out by the tendency of some committee
members always to give high scores and others always to give low scores, which
increases the apparent variance and thus decreases the significance of any difference
in the means. We thus try the paired-sample formulas,

Cov.xA; xB/ �
1

N � 1

N�1X
iD0

.xAi � xxA/.xBi � xxB/ (14.2.5)

sD D

�
Var.xA/C Var.xB/ � 2Cov.xA; xB/

N

�1=2
(14.2.6)

t D
xxA � xxB

sD
(14.2.7)

where N is the number in each sample (number of pairs). Notice that it is important
that a particular value of i label the corresponding points in each sample, that is, the
ones that are paired. The p-value for the t statistic in (14.2.7) is evaluated for N � 1
degrees of freedom.

The routine is

void tptest(VecDoub_I &data1, VecDoub_I &data2, Doub &t, Doub &prob) { stattests.h
Given the paired arrays data1[0..n-1] and data2[0..n-1], this routine returns Student’s t for
paired data as t, and its p-value as prob, small values of prob indicating a significant difference
of means.

Beta beta;
Int j, n=data1.size();
Doub var1,var2,ave1,ave2,sd,df,cov=0.0;
avevar(data1,ave1,var1);
avevar(data2,ave2,var2);
for (j=0;j<n;j++) cov += (data1[j]-ave1)*(data2[j]-ave2);
cov /= (df=n-1);
sd=sqrt((var1+var2-2.0*cov)/n);
t=(ave1-ave2)/sd;
prob=beta.betai(0.5*df,0.5,df/(df+t*t));

}
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14.2.2 F-Test for Significantly Different Variances
The F-test tests the hypothesis that two samples have different variances by

trying to reject the null hypothesis that their variances are actually consistent. The
statistic F is the ratio of one variance to the other, so values either � 1 or � 1

will indicate very significant differences. The distribution of F in the null case is
given in equation (6.14.49), which is evaluated using the routine betai. In the most
common case, we are willing to disprove the null hypothesis (of equal variances)
by either very large or very small values of F , so the correct p-value is two-tailed,
the sum of two incomplete beta functions. It turns out, by equation (6.4.3), that the
two tails are always equal; we need compute only one, and double it. Occasionally,
when the null hypothesis is strongly viable, the identity of the two tails can become
confused, giving an indicated probability greater than one. Changing the probability
to two minus itself correctly exchanges the tails. These considerations and equation
(6.4.3) give the routine

void ftest(VecDoub_I &data1, VecDoub_I &data2, Doub &f, Doub &prob) {stattests.h
Given the arrays data1[0..n1-1] and data2[0..n2-1], this routine returns the value of f,
and its p-value as prob. Small values of prob indicate that the two arrays have significantly
different variances.

Beta beta;
Doub var1,var2,ave1,ave2,df1,df2;
Int n1=data1.size(), n2=data2.size();
avevar(data1,ave1,var1);
avevar(data2,ave2,var2);
if (var1 > var2) { Make F the ratio of the larger variance to the smaller

one.f=var1/var2;
df1=n1-1;
df2=n2-1;

} else {
f=var2/var1;
df1=n2-1;
df2=n1-1;

}
prob = 2.0*beta.betai(0.5*df2,0.5*df1,df2/(df2+df1*f));
if (prob > 1.0) prob=2.-prob;

}

CITED REFERENCES AND FURTHER READING:

Spiegel, M.R., Schiller, J., and Srinivasan, R.A. 2000, Schaum’s Outline of Theory and Problem
of Probability and Statistics, 2nd ed. (New York: McGraw-Hill).

Lupton, R. 1993, Statistics in Theory and Practice (Princeton, NJ: Princeton University Press),
Chapter 9.

Devore, J.L. 2003, Probability and Statistics for Engineering and the Sciences, 6th ed. (Belmont,
CA: Duxbury Press), Chapters 7–8.

Norusis, M.J. 2006, SPSS 14.0 Guide to Data Analysis (Englewood Cliffs, NJ: Prentice-Hall).

14.3 Are Two Distributions Different?
Given two sets of data, we can generalize the questions asked in the previous

section and ask the single question: Are the two sets drawn from the same distri-
bution function, or from different distribution functions? Equivalently, in proper
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statistical language, “Can we disprove, to a certain required level of significance, the
null hypothesis that two data sets are drawn from the same population distribution
function?” Disproving the null hypothesis in effect proves that the data sets are from
different distributions. Failing to disprove the null hypothesis, on the other hand,
only shows that the data sets can be consistent with a single distribution function.
One can never prove that two data sets come from a single distribution, since, e.g.,
no practical amount of data can distinguish between two distributions that differ only
by one part in 1010.

Proving that two distributions are different, or showing that they are consistent,
is a task that comes up all the time in many areas of research: Are the visible stars
distributed uniformly in the sky? (That is, is the distribution of stars as a function
of declination — position in the sky — the same as the distribution of sky area as
a function of declination?) Are educational patterns the same in Brooklyn as in the
Bronx? (That is, are the distributions of people as a function of last-grade-attended
the same?) Do two brands of fluorescent lights have the same distribution of burn-
out times? Is the incidence of chicken pox the same for first-born, second-born,
third-born children, etc.?

These four examples illustrate the four combinations arising from two different
dichotomies: (1) The data are either continuous or binned. (2) Either we wish to
compare one data set to a known distribution, or we wish to compare two equally
unknown data sets. The data sets on fluorescent lights and on stars are continuous,
since we can be given lists of individual burnout times or of stellar positions. The
data sets on chicken pox and educational level are binned, since we are given ta-
bles of numbers of events in discrete categories: first-born, second-born, etc.; or 6th
grade, 7th grade, etc. Stars and chicken pox, on the other hand, share the property
that the null hypothesis is a known distribution (distribution of area in the sky, or in-
cidence of chicken pox in the general population). Fluorescent lights and educational
level involve the comparison of two equally unknown data sets (the two brands, or
Brooklyn and the Bronx).

One can always turn continuous data into binned data, by grouping the events
into specified ranges of the continuous variable(s): declinations between 0 and 10
degrees, 10 and 20, 20 and 30, etc. Binning involves a loss of information, however.
Also, there is often considerable arbitrariness as to how the bins should be chosen.
Along with many other investigators, we prefer to avoid unnecessary binning of data.

The accepted test for differences between binned distributions is the chi-square
test. For continuous data as a function of a single variable, the most generally ac-
cepted test is the Kolmogorov-Smirnov test. We consider each in turn.

14.3.1 Chi-Square Test
Suppose that Ni is the number of events observed in the i th bin, and that ni is

the number expected according to some known distribution. Note that the Ni ’s are
integers, while the ni ’s may not be. Then the chi-square statistic is

�2 D
X
i

.Ni � ni /
2

ni
(14.3.1)

where the sum is over all bins. A large value of �2 indicates that the null hy-
pothesis (that the Ni ’s are drawn from the population represented by the ni ’s) is
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rather unlikely.
Any term j in (14.3.1) with 0 D nj D Nj should be omitted from the sum. A

term with nj D 0; Nj ¤ 0 gives an infinite �2, as it should, since in this case the
Ni ’s cannot possibly be drawn from the ni ’s!

The chi-square probability function Q.�2j
/ is an incomplete gamma func-
tion, and was already discussed in �6.14 (see equation 6.14.38). Strictly speaking,
Q.�2j
/ is the probability that the sum of the squares of 
 random normal vari-
ables of unit variance (and zero mean) will be greater than �2. The terms in the sum
(14.3.1) are not exactly the squares of a normal variable. However, if the number
of events in each bin is large (� 1), then the normal distribution is approximately
achieved and the chi-square probability function is a good approximation to the dis-
tribution of (14.3.1) in the case of the null hypothesis. Its use to estimate the p-value
significance of the chi-square test is standard (but see �14.3.2).

The appropriate value of 
, the number of degrees of freedom, bears some ad-
ditional discussion. If the data are collected with the model ni ’s fixed — that is, not
later renormalized to fit the total observed number of events †Ni — then 
 equals
the number of binsNB . (Note that this is not the total number of events!) Much more
commonly, the ni ’s are normalized after the fact so that their sum equals the sum of
the Ni ’s. In this case, the correct value for 
 is NB � 1, and the model is said to have
one constraint (knstrn=1 in the program below). If the model that gives the ni ’s
has additional free parameters that were adjusted after the fact to agree with the data,
then each of these additional “fitted” parameters decreases 
 (and increases knstrn)
by one additional unit.

We have, then, the following program:

void chsone(VecDoub_I &bins, VecDoub_I &ebins, Doub &df,stattests.h
Doub &chsq, Doub &prob, const Int knstrn=1) {

Given the array bins[0..nbins-1] containing the observed numbers of events, and an array
ebins[0..nbins-1] containing the expected numbers of events, and given the number of
constraints knstrn (normally one), this routine returns (trivially) the number of degrees of
freedom df, and (nontrivially) the chi-square chsq and the p-value prob. A small value of prob
indicates a significant difference between the distributions bins and ebins. Note that bins and
ebins are both double arrays, although bins will normally contain integer values.

Gamma gam;
Int j,nbins=bins.size();
Doub temp;
df=nbins-knstrn;
chsq=0.0;
for (j=0;j<nbins;j++) {

if (ebins[j]<0.0 || (ebins[j]==0. && bins[j]>0.))
throw("Bad expected number in chsone");

if (ebins[j]==0.0 && bins[j]==0.0) {
--df; No data means one less degree of free-

dom.} else {
temp=bins[j]-ebins[j];
chsq += temp*temp/ebins[j];

}
}
prob=gam.gammq(0.5*df,0.5*chsq); Chi-square probability function. See �6.2.

}

Next we consider the case of comparing two binned data sets. Let Ri be the
number of events in bin i for the first data set and Si the number of events in the
same bin i for the second data set. Then the chi-square statistic is
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�2 D
X
i

.Ri � Si /
2

Ri C Si
(14.3.2)

Comparing (14.3.2) to (14.3.1), you should note that the denominator of (14.3.2) is
not just the average of Ri and Si (which would be an estimator of ni in 14.3.1).
Rather, it is twice the average, the sum. The reason is that each term in a chi-square
sum is supposed to approximate the square of a normally distributed quantity with
unit variance. The variance of the difference of two normal quantities is the sum of
their individual variances, not the average.

If the data were collected in such a way that the sum of the Ri ’s is necessarily
equal to the sum of Si ’s, then the number of degrees of freedom is equal to one
less than the number of bins, NB � 1 (that is, knstrn D 1), the usual case. If
this requirement were absent, then the number of degrees of freedom would be NB .
Example: A birdwatcher wants to know whether the distribution of sighted birds
as a function of species is the same this year as last. Each bin corresponds to one
species. If the birdwatcher takes his data to be the first 1000 birds that he saw in each
year, then the number of degrees of freedom is NB � 1. If he takes his data to be
all the birds he saw on a random sample of days, the same days in each year, then
the number of degrees of freedom is NB (knstrn D 0). In this latter case, note that
he is also testing whether the birds were more numerous overall in one year or the
other: That is the extra degree of freedom. Of course, any additional constraints on
the data set lower the number of degrees of freedom (i.e., increase knstrn to more
positive values) in accordance with their number.

The program is

void chstwo(VecDoub_I &bins1, VecDoub_I &bins2, Doub &df, stattests.h
Doub &chsq, Doub &prob, const Int knstrn=1) {

Given the arrays bins1[0..nbins-1] and bins2[0..nbins-1], containing two sets of binned
data, and given the number of constraints knstrn (normally 1 or 0), this routine returns the
number of degrees of freedom df, the chi-square chsq, and the p-value prob. A small value of
prob indicates a significant difference between the distributions bins1 and bins2. Note that
bins1 and bins2 are both double arrays, although they will normally contain integer values.

Gamma gam;
Int j,nbins=bins1.size();
Doub temp;
df=nbins-knstrn;
chsq=0.0;
for (j=0;j<nbins;j++)

if (bins1[j] == 0.0 && bins2[j] == 0.0)
--df; No data means one less degree of free-

dom.else {
temp=bins1[j]-bins2[j];
chsq += temp*temp/(bins1[j]+bins2[j]);

}
prob=gam.gammq(0.5*df,0.5*chsq); Chi-square probability function. See �6.2.

}

Equation (14.3.2) and the routine chstwo both apply to the case where the total
number of data points is the same in the two binned sets, or to the case where any
difference in the totals is part of what is being tested for. For intentionally unequal
sample sizes, the formula analogous to (14.3.2) is

�2 D
X
i

.
p
S=RRi �

p
R=SSi /

2

Ri C Si
(14.3.3)
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where
R �

X
i

Ri S �
X
i

Si (14.3.4)

are the respective numbers of data points. It is straightforward to make the corre-
sponding change in chstwo. The fact that Ri and Si occur in the denominator of
equation (14.3.3) with equal weights may seem unintuitive, but the following heuris-
tic derivation shows how this comes about: In the null hypothesis that Ri and Si are
drawn from the same distribution, we can estimate the probability associated with
bin i as

ypi D
Ri C Si

RC S
(14.3.5)

The expected number of counts is thus

yRi D R ypi and ySi D S ypi (14.3.6)

and the chi-square statistic summing over all observations is

�2 D
X
i

.Ri � yRi /
2

yRi
C
X
i

.Si � ySi /
2

ySi
(14.3.7)

Substituting equations (14.3.6) and (14.3.5) into equation (14.3.7) gives, after some
algebra, exactly equation (14.3.3). Although there are 2NB terms in equation (14.3.7),
the number of degrees of freedom is actually NB � 1 (minus any additional con-
straints), the same as equation (14.3.2), because we implicitly estimated NB C 1

parameters, the ypi ’s and the ratio of the two sample sizes. This number of degrees
of freedom must thus be subtracted from the original 2NB .

For three or more samples, see equation (14.4.3) and related discussion.

14.3.2 Chi-Square with Small Numbers of Counts

When a significant fraction of bins have small numbers of counts (. 10, say), then the �2

statistics (14.3.1), (14.3.2), and (14.3.3) are not well approximated by a chi-square probability
function. Let us quantify this problem and suggest some remedies.

Consider first equation (14.3.1). In the null hypothesis, the count in an individual bin,
Ni , is a Poisson deviate of mean ni , so it occurs with probability

p.Ni jni / D exp.�ni /
n
Ni
i

Ni Š
(14.3.8)

(cf. equation 6.14.61). We can calculate the mean� and variance �2 of the term .Ni�ni /
2=ni

by evaluating the appropriate expectation values. There are various analytical ways to do this.
The sums, and the answers, are

� D

1X
NiD0

p.Ni jni /
.Ni � ni /

2

ni
D 1

�2 D

8<:
1X

NiD0

p.Ni jni /

"
.Ni � ni /

2

ni

#29=; � �2 D 2C 1

ni

(14.3.9)

Now we can see what the problem is: Equation (14.3.9) says that each term in (14.3.1)
adds, on average, 1 to the value of the �2 statistic, and slightly more than 2 to its variance. But
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the variance of the chi-square probability function is exactly twice its mean (equation 6.14.37).
If a significant fraction of ni ’s are small, then quite probable values of the �2 statistic will
appear to lie farther out on the tail than they actually are, so that the null hypothesis may be
rejected even when it is true.

Several approximate remedies are possible. One is simply to rescale the observed �2

statistic so as to “fix” its variance, an idea due to Lucy [1]. If we define

Y 2 � 
 C

s
2


2
 C
P
i n
�1
i

�
�2 � 


�
(14.3.10)

where 
 is the number of degrees of freedom (see discussion above), then Y 2 is asymptotically
approximated by the chi-square probability function even when many ni ’s are small. The basic
idea in (14.3.10) is to subtract off the mean, rescale the difference from the mean, and then
add back the mean. Lucy [1] also defines a similar Z2 statistic by rescaling not the �2 sum of
all the terms, but the terms individually, using equation (14.3.9) separately for each.

Another possibility, valid when 
 is large, is to use the central limit theorem directly.
From its mean and standard deviation, we now know that the �2 statistic must be approxi-
mately the normal distribution,

�2 � N

�

;
h
2
 C

X
i

n�1i

i1=2�
(14.3.11)

We can then obtain p-values from equation (6.14.2), computing a complementary error func-
tion. (The p-value is one minus that cdf.)

The same ideas go through in the case of two binned data sets, with counts Ri and Si ,
and total numbers of countsR and S (equation 14.3.3, with equation 14.3.2 as the special case
with R D S). Now, in the null hypothesis, and glossing over some technical issues beyond
our scope, we can think of Ti � Ri C Si as being fixed, while Ri is a random variable drawn
from the binomial distribution

Ri � Binomial

�
Ti ;

R

RC S

�
(14.3.12)

(see equation 6.14.67). Calculating moments over the binomial distribution, one can obtain as
analogs of equations (14.3.9)

� D 1

�2 D 2C

"
.RC S/2

RS
� 6

#
1

Ri C Si

(14.3.13)

Notice that, now, depending on the values of R and S , the variance can be either greater or
less than its nominal value 2, and that it is less than 2 for the case R D S . The formulas
(14.3.9) and (14.3.13) are originally due to Haldane [2] (see also [3]).

Summing over i , one obtains the analogs of equations (14.3.10) and (14.3.11) simply by
the replacement, X

i

n�1i �!

"
.RC S/2

RS
� 6

#X
i

1

Ri C Si
(14.3.14)

In fact, equation (14.3.9) is a limiting form of equation (14.3.13) in just the same limit that
Poisson is a limiting form of binomial, namely

S !1;
R

RC S
Si ! ni ; Ri ! Ni (14.3.15)

There are also other ways of treating small-number counts, including the likelihood ratio
test [4], the modified Neyman �2 [5], and the chi-square-gamma statistic [5].
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Figure 14.3.1. Kolmogorov-Smirnov statistic D. A measured distribution of values in x (shown as N
dots on the lower abscissa) is to be compared with a theoretical distribution whose cumulative probability
distribution is plotted asP.x/. A step-function cumulative probability distribution SN .x/ is constructed,
one that rises an equal amount at each measured point. D is the greatest distance between the two
cumulative distributions.

14.3.3 Kolmogorov-Smirnov Test
The Kolmogorov-Smirnov (or K–S) test is applicable to unbinned distributions

that are functions of a single independent variable, that is, to data sets where each
data point can be associated with a single number (lifetime of each lightbulb when
it burns out, or declination of each star). In such cases, the list of data points can
be easily converted to an unbiased estimator SN .x/ of the cumulative distribution
function of the probability distribution from which it was drawn: If the N events
are located at values xi ; i D 0; : : : ; N � 1, then SN .x/ is the function giving the
fraction of data points to the left of a given value x. This function is obviously
constant between consecutive (i.e., sorted into ascending order) xi ’s and jumps by
the same constant 1=N at each xi . (See Figure 14.3.1.)

Different distribution functions, or sets of data, give different cumulative dis-
tribution function estimates by the above procedure. However, all cumulative dis-
tribution functions agree at the smallest allowable value of x (where they are zero)
and at the largest allowable value of x (where they are unity). (The smallest and
largest values might of course be˙1.) So it is the behavior between the largest and
smallest values that distinguishes distributions.

One can think of any number of statistics to measure the overall difference be-
tween two cumulative distribution functions: the absolute value of the area between
them, for example, or their integrated mean square difference. The Kolmogorov-
Smirnov D is a particularly simple measure: It is defined as the maximum value
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of the absolute difference between two cumulative distribution functions. Thus, for
comparing one data set’s SN .x/ to a known cumulative distribution function P.x/,
the K–S statistic is

D D max
�1<x<1

jSN .x/ � P.x/j (14.3.16)

while for comparing two different cumulative distribution functions SN1.x/ and
SN2.x/, the K–S statistic is

D D max
�1<x<1

ˇ̌
SN1.x/ � SN2.x/

ˇ̌
(14.3.17)

What makes the K–S statistic useful is that its distribution in the case of the
null hypothesis (data sets drawn from the same distribution) can be calculated, at
least to a useful approximation, thus giving the p-value significance of any observed
nonzero value of D. A central feature of the K–S test is that it is invariant under
reparametrization of x; in other words, you can locally slide or stretch the x-axis in
Figure 14.3.1, and the maximum distance D remains unchanged. For example, you
will get the same significance using x as using log x.

The function that enters into the calculation of the p-value was discussed pre-
viously in �6.14, was defined in equations (6.14.56) and (6.14.57), and was imple-
mented in the object KSdist. In terms of the function QKS , the p-value of an
observed value of D (as a disproof of the null hypothesis that the distributions are
the same) is given approximately [6] by the formula

Probability .D > observed / D QKS
� hp

Ne C 0:12C 0:11=
p
Ne

i
D
�

(14.3.18)

where Ne is the effective number of data points, Ne D N for the case (14.3.16) of
one distribution, and

Ne D
N1N2

N1 CN2
(14.3.19)

for the case (14.3.17) of two distributions, where N1 is the number of data points in
the first distribution and N2 the number in the second.

The nature of the approximation involved in (14.3.18) is that it becomes asymp-
totically accurate as the Ne becomes large, but is already quite good for Ne � 4, as
small a number as one might ever actually use. (See [6].)

Here is the routine for the case of one distribution:

void ksone(VecDoub_IO &data, Doub func(const Doub), Doub &d, Doub &prob) kstests.h
Given an array data[0..n-1], and given a user-supplied function of a single variable func that is
a cumulative distribution function ranging from 0 (for smallest values of its argument) to 1 (for
largest values of its argument), this routine returns the K–S statistic d and the p-value prob.
Small values of prob show that the cumulative distribution function of data is significantly
different from func. The array data is modified by being sorted into ascending order.
{

Int j,n=data.size();
Doub dt,en,ff,fn,fo=0.0;
KSdist ks;
sort(data); If the data are already sorted into as-

cending order, then this call can be
omitted.

en=n;
d=0.0;
for (j=0;j<n;j++) { Loop over the sorted data points.

fn=(j+1)/en; Data’s c.d.f. after this step.
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ff=func(data[j]); Compare to the user-supplied function.
dt=MAX(abs(fo-ff),abs(fn-ff)); Maximum distance.
if (dt > d) d=dt;
fo=fn;

}
en=sqrt(en);
prob=ks.qks((en+0.12+0.11/en)*d); Compute p-value.

}

While the K-S statistic is intended for use with a continuous distribution, it can
also be used for a discrete distribution. In this case, it can be shown that the test is
conservative, that is, the statistic returned is no larger than in the continuous case.
If you allow discrete variables in the case of two distributions, you have to consider
how to deal with ties. The standard way to handle ties is to combine all the tied data
points and add them to the cdf at once (see, e.g., [7]). This refinement is included in
the routine kstwo.

void kstwo(VecDoub_IO &data1, VecDoub_IO &data2, Doub &d, Doub &prob)kstests.h
Given an array data1[0..n1-1], and an array data2[0..n2-1], this routine returns the K–S
statistic d and the p-value prob for the null hypothesis that the data sets are drawn from the
same distribution. Small values of prob show that the cumulative distribution function of data1
is significantly different from that of data2. The arrays data1 and data2 are modified by being
sorted into ascending order.
{

Int j1=0,j2=0,n1=data1.size(),n2=data2.size();
Doub d1,d2,dt,en1,en2,en,fn1=0.0,fn2=0.0;
KSdist ks;
sort(data1);
sort(data2);
en1=n1;
en2=n2;
d=0.0;
while (j1 < n1 && j2 < n2) { If we are not done...

if ((d1=data1[j1]) <= (d2=data2[j2])) Next step is in data1.
do

fn1=++j1/en1;
while (j1 < n1 && d1 == data1[j1]);

if (d2 <= d1) Next step is in data2.
do

fn2=++j2/en2;
while (j2 < n2 && d2 == data2[j2]);

if ((dt=abs(fn2-fn1)) > d) d=dt;
}
en=sqrt(en1*en2/(en1+en2));
prob=ks.qks((en+0.12+0.11/en)*d); Compute p-value.

}

14.3.4 Variants on the K–S Test

The sensitivity of the K–S test to deviations from a cumulative distribution function
P.x/ is not independent of x. In fact, the K–S test tends to be most sensitive around the
median value, where P.x/ D 0:5, and less sensitive at the extreme ends of the distribution,
where P.x/ is near 0 or 1. The reason is that the difference jSN .x/ � P.x/j does not, in the
null hypothesis, have a probability distribution that is independent of x. Rather, its variance is
proportional to P.x/Œ1�P.x/�, which is largest at P D 0:5. Since the K–S statistic (14.3.16)
is the maximum difference over all x of two cumulative distribution functions, a deviation that
might be statistically significant at its own value of x gets compared to the expected chance
deviation at P D 0:5 and is thus discounted. A result is that, while the K–S test is good at
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finding shifts in a probability distribution, especially changes in the median value, it is not
always so good at finding spreads, which more affect the tails of the probability distribution,
and which may leave the median unchanged.

One way of increasing the power of the K–S statistic out on the tails is to replace
D (equation 14.3.16) by a so-called stabilized or weighted statistic [8-10], for example the
Anderson-Darling statistic,

D� D max
�1<x<1

jSN .x/ � P.x/jp
P.x/Œ1 � P.x/�

(14.3.20)

Unfortunately, there is no simple formula analogous to equation (14.3.18) for this statistic,
although Noé [11] gives a computational method using a recursion relation and provides a
graph of numerical results. There are many other possible similar statistics, for example

D�� D

Z 1

PD0

ŒSN .x/ � P.x/�
2

P.x/Œ1 � P.x/�
dP.x/ (14.3.21)

which is also discussed by Anderson and Darling (see [9]).
Another approach, which we prefer as simpler and more direct, is due to Kuiper [12,13].

We already mentioned that the standard K–S test is invariant under reparametrizations of the
variable x. An even more general symmetry, which guarantees equal sensitivities at all values
of x, is to wrap the x-axis around into a circle (identifying the points at˙1), and to look for
a statistic that is now invariant under all shifts and parametrizations on the circle. This allows,
for example, a probability distribution to be “cut” at some central value of x and the left and
right halves to be interchanged, without altering the statistic or its significance.

Kuiper’s statistic, defined as

V D DC CD� D max
�1<x<1

ŒSN .x/ � P.x/�C max
�1<x<1

ŒP.x/ � SN .x/� (14.3.22)

is the sum of the maximum distance of SN .x/ above and below P.x/. You should be able
to convince yourself that this statistic has the desired invariance on the circle: Sketch the
indefinite integral of two probability distributions defined on the circle as a function of angle
around the circle, as the angle goes through several times 360ı. If you change the starting
point of the integration, DC and D� change individually, but their sum is constant.

Furthermore, there is a simple formula for the asymptotic distribution of the statistic V ,
directly analogous to equations (14.3.18) – (14.3.19). Let

QKP .�/ D 2

1X
jD1

.4j 2�2 � 1/e�2j
2�2 (14.3.23)

which is monotonic and satisfies

QKP .0/ D 1 QKP .1/ D 0 (14.3.24)

In terms of this function the p-value is [6]

Probability .V > observed / D QKP
��p

Ne C 0:155C 0:24=
p
Ne
	
V
�

(14.3.25)

Here Ne is N in the one-sample case or is given by equation (14.3.19) in the case of
two samples.

Of course, Kuiper’s test is ideal for any problem originally defined on a circle, for ex-
ample, to test whether the distribution in longitude of something agrees with some theory, or
whether two somethings have different distributions in longitude. (See also [14].)

We will leave to you the coding of routines analogous to ksone, kstwo, and KSdist::
qks. (For � < 0:4, don’t try to do the sum 14.3.23. Its value is 1, to 7 figures, but the series
can require many terms to converge, and loses accuracy to roundoff.)
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Two final cautionary notes: First, we should mention that all varieties of the K–S test
lack the ability to discriminate some kinds of distributions. A simple example is a proba-
bility distribution with a narrow “notch” within which the probability falls to zero. Such a
distribution is of course ruled out by the existence of even one data point within the notch,
but, because of its cumulative nature, a K–S test would require many data points in the notch
before signaling a discrepancy.

Second, we should note that, if you estimate any parameters from a data set (e.g., a mean
and variance), then the distribution of the K–S statisticD for a cumulative distribution function
P.x/ that uses the estimated parameters is no longer given by equation (14.3.18). In general,
you will have to determine the new distribution yourself, e.g., by Monte Carlo methods.
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14.4 Contingency Table Analysis of Two
Distributions

In this section and the next three sections, we deal with measures of associa-
tion for two distributions. The situation is this: Each data point has two or more
different quantities associated with it, and we want to know whether knowledge of
one quantity gives us any demonstrable advantage in predicting the value of another
quantity. In many cases, one variable will be an “independent” or “control” variable,
and another will be a “dependent” or “measured” variable. Then, we want to know if
the latter variable is in fact dependent on or associated with the former variable. If it
is, we want to have some quantitative measure of the strength of the association. One
often hears this loosely stated as the question of whether two variables are correlated
or uncorrelated, but we will reserve those terms for a particular kind of association
(linear, or at least monotonic), as discussed in �14.5 and �14.6.

Notice that, as in previous sections, the different concepts of significance and
strength appear: The association between two distributions may be very significant
even if that association is weak — if the quantity of data is large enough.

It is useful to distinguish among some different kinds of variables, with different
categories forming a loose hierarchy.

� A variable is called nominal if its values are the members of some unordered
set. For example, “state of residence” is a nominal variable that (in the U.S.)
takes on one of 50 values; in astrophysics, “type of galaxy” is a nominal vari-
able with the three values “spiral,” “elliptical,” and “irregular.”
� A variable is termed ordinal if its values are the members of a discrete, but or-

dered, set. Examples are grade in school, planetary order from the Sun (Mer-
cury = 1, Venus = 2, : : :), and number of offspring. There need not be any
concept of “equal metric distance” between the values of an ordinal variable,
only that they be intrinsically ordered.
� We will call a variable continuous if its values are real numbers, as are times,

distances, temperatures, etc. (Social scientists sometimes distinguish between
interval and ratio continuous variables, but we do not find that distinction very
compelling.)

A continuous variable can always be made into an ordinal one by binning it
into ranges. If we choose to ignore the ordering of the bins, then we can turn it into
a nominal variable. Nominal variables constitute the lowest type of the hierarchy,
and therefore the most general. For example, a set of several continuous or ordinal
variables can be turned, if crudely, into a single nominal variable, by coarsely bin-
ning each variable and then taking each distinct combination of bin assignments as a
single nominal value. When multidimensional data are sparse, this is often the only
sensible way to proceed.

The remainder of this section will deal with measures of association between
nominal variables. For any pair of nominal variables, the data can be displayed as
a contingency table, a table whose rows are labeled by the values of one nominal
variable, whose columns are labeled by the values of the other nominal variable,
and whose entries are nonnegative integers giving the number of observed events for
each combination of row and column (see Figure 14.4.1). The analysis of associ-
ation between nominal variables is thus called contingency table analysis or cross-
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Figure 14.4.1. Example of a contingency table for two nominal variables, here sex and color. The row and
column marginals (totals) are shown. The variables are “nominal,” i.e., the order in which their values are
listed is arbitrary and does not affect the result of the contingency table analysis. If the ordering of values
has some intrinsic meaning, then the variables are “ordinal” or “continuous,” and correlation techniques
(�14.5 – �14.6) can be utilized.

tabulation analysis.
The remainder of this section gives an approach, based on the chi-square statis-

tic, that does a good job of characterizing the significance of association but is only
so-so as a measure of the strength (principally because its numerical values have no
very direct interpretations). We will return to contingency table analysis in �14.7
with an approach, based on the information-theoretic concept of entropy, that will
say little about the significance of association (use chi-square for that!) but is capa-
ble of very elegantly characterizing the strength of an association already known to
be significant.

14.4.1 Measures of Association Based on Chi-Square
Some notation first: LetNij denote the number of events that occur with the first

variable x taking on its i th value and the second variable y taking on its j th value.
Let N denote the total number of events, the sum of all the Nij ’s. Let Ni � denote the
number of events for which the first variable x takes on its i th value regardless of the
value of y; N�j is the number of events with the j th value of y regardless of x. So
we have

Ni � D
X
j

Nij N�j D
X
i

Nij

N D
X
i

Ni � D
X
j

N�j
(14.4.1)
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In other words, “dot” is a placeholder that means, “sum over the missing index”. N�j
and Ni � are sometimes called the row and column totals or marginals, but we will
use these terms cautiously since we can never keep straight which are the rows and
which are the columns!

The null hypothesis is that the two variables x and y have no association. In this
case, the probability of a particular value of x given a particular value of y should
be the same as the probability of that value of x regardless of y. Therefore, in the
null hypothesis, the expected number for any Nij , which we will denote nij , can be
calculated from only the row and column totals,

nij

N�j
D
Ni �

N
which implies nij D

Ni �N�j

N
(14.4.2)

Notice that if a column or row total is zero, then the expected number for all the
entries in that column or row is also zero; in that case, the never-occurring bin of x
or y should simply be removed from the analysis.

The chi-square statistic is now given by equation (14.3.1), which, in the present
case, is summed over all entries in the table:

�2 D
X
i;j

.Nij � nij /
2

nij
(14.4.3)

The number of degrees of freedom is equal to the number of entries in the table
(product of its row size and column size) minus the number of constraints that have
arisen from our use of the data themselves to determine the nij . Each row total and
column total is a constraint, except that this overcounts by one, since the total of the
column totals and the total of the row totals both equal N , the total number of data
points. Therefore, if the table is of size I by J , the number of degrees of freedom is
IJ � I � J C 1. Equation (14.4.3), along with the chi-square probability function
(�6.2), now give the significance of an association between the variables x and y.
Incidentally, the two-sample chi-square test for equality of distributions, equation
(14.3.3), is a special case of equation (14.4.3) with J D 2 and with the y variable
simply a label distinguishing the two samples.

Suppose there is a significant association. How do we quantify its strength,
so that (e.g.) we can compare the strength of one association with another? The
idea here is to find some reparametrization of �2 that maps it into some convenient
interval, like 0 to 1, where the result is not dependent on the quantity of data that we
happen to sample, but rather depends only on the underlying population from which
the data were drawn. There are several different ways of doing this. Two of the more
common are called Cramer’s V and the contingency coefficient C.

The formula for Cramer’s V is

V D

r
�2

N min .I � 1; J � 1/
(14.4.4)

where I and J are again the numbers of rows and columns, andN is the total number
of events. Cramer’s V has the pleasant property that it lies between zero and one
inclusive, equals zero when there is no association, and equals one only when the
association is perfect: All the events in any row lie in one unique column, and vice
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versa. (In chess parlance, no two rooks, placed on a nonzero table entry, can capture
each other.)

In the case of I D J D 2, Cramer’s V is also referred to as the phi statistic.
The contingency coefficient C is defined as

C D

s
�2

�2 CN
(14.4.5)

It also lies between zero and one, but (as is apparent from the formula) it can never
achieve the upper limit. While it can be used to compare the strength of association
of two tables with the same I and J , its upper limit depends on I and J . Therefore
it can never be used to compare tables of different sizes.

The trouble with both Cramer’s V and the contingency coefficient C is that,
when they take on values in between their extremes, there is no very direct interpre-
tation of what that value means. For example, you are in Las Vegas, and a friend tells
you that there is a small, but significant, association between the color of a croupier’s
eyes and the occurrence of red and black on his roulette wheel. Cramer’s V is about
0.028, your friend tells you. You know what the usual odds against you are (because
of the green zero and double zero on the wheel). Is this association sufficient for
you to make money? Don’t ask us! For a measure of association that is directly
applicable to gambling, look at �14.7.

void cntab(MatInt_I &nn, Doub &chisq, Doub &df, Doub &prob, Doub &cramrv,stattests.h
Doub &ccc)

Given a two-dimensional contingency table in the form of an array nn[0..ni-1][0..nj-1] of
integers, this routine returns the chi-square chisq, the number of degrees of freedom df, the p-
value prob (small values indicating a significant association), and two measures of association,
Cramer’s V (cramrv) and the contingency coefficient C (ccc).
{

const Doub TINY=1.0e-30; A small number.
Gamma gam;
Int i,j,nnj,nni,minij,ni=nn.nrows(),nj=nn.ncols();
Doub sum=0.0,expctd,temp;
VecDoub sumi(ni),sumj(nj);
nni=ni; Number of rows...
nnj=nj; ...and columns.
for (i=0;i<ni;i++) { Get the row totals.

sumi[i]=0.0;
for (j=0;j<nj;j++) {

sumi[i] += nn[i][j];
sum += nn[i][j];

}
if (sumi[i] == 0.0) --nni; Eliminate any zero rows by reducing the num-

ber.}
for (j=0;j<nj;j++) { Get the column totals.

sumj[j]=0.0;
for (i=0;i<ni;i++) sumj[j] += nn[i][j];
if (sumj[j] == 0.0) --nnj; Eliminate any zero columns.

}
df=nni*nnj-nni-nnj+1; Corrected number of degrees of freedom.
chisq=0.0;
for (i=0;i<ni;i++) { Do the chi-square sum.

for (j=0;j<nj;j++) {
expctd=sumj[j]*sumi[i]/sum;
temp=nn[i][j]-expctd;
chisq += temp*temp/(expctd+TINY); Here TINY guarantees that any

eliminated row or column will
not contribute to the sum.

}



�

�

“nr3” — 2007/5/1 — 20:53 — page 745 — #767
�

�

� �

14.5 Linear Correlation 745

}
prob=gam.gammq(0.5*df,0.5*chisq); Chi-square probability function.
minij = nni < nnj ? nni-1 : nnj-1;
cramrv=sqrt(chisq/(sum*minij));
ccc=sqrt(chisq/(chisq+sum));

}

CITED REFERENCES AND FURTHER READING:

Agresti, A. 2002, Categorical Data Analysis, 2nd ed. (New York: Wiley).

Mickey, R.M., Dunn, O.J., and Clark, V.A. 2004, Applied Statistics: Analysis of Variance and
Regression, 3rd ed. (New York: Wiley).

Norusis, M.J. 2006, SPSS 14.0 Guide to Data Analysis (Englewood Cliffs, NJ: Prentice-Hall).

14.5 Linear Correlation

We next turn to measures of association between variables that are ordinal or
continuous, rather than nominal. Most widely used is the linear correlation coef-
ficient. For pairs of quantities .xi ; yi /; i D 0; : : : ; N � 1, the linear correlation
coefficient r (also called the product-moment correlation coefficient, or Pearson’s r)
is given by the formula

r D

P
i

.xi � xx/.yi � xy/rP
i

.xi � xx/2
rP

i

.yi � xy/2
(14.5.1)

where, as usual, xx is the mean of the xi ’s and xy is the mean of the yi ’s.
The value of r lies between �1 and 1, inclusive. It takes on a value of 1, termed

“complete positive correlation,” when the data points lie on a perfect straight line
with positive slope, with x and y increasing together. The value 1 holds independent
of the magnitude of the slope. If the data points lie on a perfect straight line with
negative slope, y decreasing as x increases, then r has the value �1; this is called
“complete negative correlation.” A value of r near zero indicates that the variables x
and y are uncorrelated.

When a correlation is known to be significant, r is one conventional way of
summarizing its strength. In fact, the value of r can be translated into a statement
about what residuals (root-mean-square deviations) are to be expected if the data are
fitted to a straight line by the least-squares method (see �15.2, especially equation
15.2.13). Unfortunately, r is a rather poor statistic for deciding whether an observed
correlation is statistically significant and/or whether one observed correlation is sig-
nificantly stronger than another. The reason is that r is ignorant of the individual
distributions of x and y, so there is no universal way to compute its distribution in
the case of the null hypothesis.

About the only general statement that can be made is this: If the null hypothesis
is that x and y are uncorrelated, and if the distributions for x and y each have enough
convergent moments (“tails” die off sufficiently rapidly), and if N is large (typically
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> 500), then r is distributed approximately normally, with a mean of zero and a
standard deviation of 1=

p
N . In that case, the (double-sided) significance of the

correlation, that is, the probability that jr j should be larger than its observed value in
the null hypothesis, is

erfc

 
jr j
p
N

p
2

!
(14.5.2)

where erfc.x/ is the complementary error function, equation (6.2.10), computed by
the routines Erf.erfc or erfcc of �6.2. A small value of (14.5.2) indicates that
the two distributions are significantly correlated. (See expression 14.5.9 below for a
more accurate test.)

Most statistics books try to go beyond (14.5.2) and give additional statistical
tests that can be made using r . In almost all cases, however, these tests are valid
only for a very special class of hypotheses, namely that the distributions of x and y
jointly form a binormal or two-dimensional Gaussian distribution around their mean
values, with joint probability density

p.x; y/ dxdy D const. � exp
�
�1
2
.a00x

2 � 2a01xy C a11y
2/
	
dxdy (14.5.3)

where a00; a01; and a11 are arbitrary constants. For this distribution r has the value

r D �
a01

p
a00a11

(14.5.4)

There are occasions when (14.5.3) may be known to be a good model of the
data. There may be other occasions when we are willing to take (14.5.3) as at least
a rough-and-ready guess, since many two-dimensional distributions do resemble a
binormal distribution, (that is, a two-dimensional Gaussian) at least not too far out
on their tails. In either situation, we can use (14.5.3) to go beyond (14.5.2) in any of
several directions:

First, we can allow for the possibility that the number N of data points is not
large. Here, it turns out that the statistic

t D r

r
N � 2

1 � r2
(14.5.5)

is distributed in the null case (of no correlation) like Student’s t -distribution with

 D N � 2 degrees of freedom, whose two-sided significance level is given by
1�A.t j
/ (equation 6.14.11) [1]. AsN becomes large, this significance and (14.5.2)
become asymptotically the same, so that one never does worse by using (14.5.5),
even if the binormal assumption is not well substantiated.

Second, when N is only moderately large (� 10), we can compare whether
the difference of two significantly nonzero r’s, e.g., from different experiments, is
itself significant. In other words, we can quantify whether a change in some con-
trol variable significantly alters an existing correlation between two other variables.
This is done by using Fisher’s z-transformation to associate each measured r with a
corresponding z:

z D
1

2
ln

�
1C r

1 � r

�
(14.5.6)
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Then, each z is approximately normally distributed with a mean value

xz D
1

2

�
ln

�
1C rtrue

1 � rtrue

�
C

rtrue

N � 1

�
(14.5.7)

where rtrue is the actual or population value of the correlation coefficient, and with a
standard deviation

�.z/ �
1

p
N � 3

(14.5.8)

Equations (14.5.7) and (14.5.8), when they are valid, give several useful sta-
tistical tests [1]. For example, the significance level at which a measured value of r
differs from some hypothesized value rtrue is given by

erfc

 
jz � xzj

p
N � 3

p
2

!
(14.5.9)

where z and xz are given by (14.5.6) and (14.5.7), with small values of (14.5.9) in-
dicating a significant difference. (Setting xz D 0 makes expression 14.5.9 a more
accurate replacement for expression 14.5.2 above.) Similarly, the significance of a
difference between two measured correlation coefficients r1 and r2 is

erfc

0B@ jz1 � z2j
p
2
q

1
N1�3

C 1
N2�3

1CA (14.5.10)

where z1 and z2 are obtained from r1 and r2 using (14.5.6), and where N1 and N2
are, respectively, the number of data points in the measurement of r1 and r2.

All of the significances above are two-sided. If you wish to disprove the null
hypothesis in favor of a one-sided hypothesis, such as that r1 > r2 (where the sense
of the inequality was decided a priori), then (i) if your measured r1 and r2 have the
wrong sense, you have failed to demonstrate your one-sided hypothesis, but (ii) if
they have the right ordering, you can multiply the significances given above by 0.5,
which makes them more significant.

But keep in mind: These interpretations of the r statistic can be completely
meaningless if the joint probability distribution of your variables x and y is too
different from a binormal distribution.

void pearsn(VecDoub_I &x, VecDoub_I &y, Doub &r, Doub &prob, Doub &z) stattests.h
Given two arrays x[0..n-1] and y[0..n-1], this routine computes their correlation coefficient r
(returned as r), the p-value at which the null hypothesis of zero correlation is disproved (prob
whose small value indicates a significant correlation), and Fisher’s z (returned as z), whose
value can be used in further statistical tests as described above.
{

const Doub TINY=1.0e-20; Will regularize the unusual case of
complete correlation.Beta beta;

Int j,n=x.size();
Doub yt,xt,t,df;
Doub syy=0.0,sxy=0.0,sxx=0.0,ay=0.0,ax=0.0;
for (j=0;j<n;j++) { Find the means.

ax += x[j];
ay += y[j];

}
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ax /= n;
ay /= n;
for (j=0;j<n;j++) { Compute the correlation coefficient.

xt=x[j]-ax;
yt=y[j]-ay;
sxx += xt*xt;
syy += yt*yt;
sxy += xt*yt;

}
r=sxy/(sqrt(sxx*syy)+TINY);
z=0.5*log((1.0+r+TINY)/(1.0-r+TINY)); Fisher’s z transformation.
df=n-2;
t=r*sqrt(df/((1.0-r+TINY)*(1.0+r+TINY))); Equation (14.5.5).
prob=beta.betai(0.5*df,0.5,df/(df+t*t)); Student’s t probability.
// prob=erfcc(abs(z*sqrt(n-1.0))/1.4142136);
For large n, this easier computation of prob, using the short routine erfcc, would give
approximately the same value.

}

CITED REFERENCES AND FURTHER READING:

Taylor, J.R. 1997, An Introduction to Error Analysis, 2nd ed. (Sausalito, CA: University Science
Books), Chapter 9.

Mickey, R.M., Dunn, O.J., and Clark, V.A. 2004, Applied Statistics: Analysis of Variance and
Regression, 3rd ed. (New York: Wiley).

Devore, J.L. 2003, Probability and Statistics for Engineering and the Sciences, 6th ed. (Belmont,
CA: Duxbury Press), Chapter 12.

Hoel, P.G. 1971, Introduction to Mathematical Statistics, 4th ed. (New York: Wiley), Chapter 7.

Korn, G.A., and Korn, T.M. 1968, Mathematical Handbook for Scientists and Engineers, 2nd rev.
ed., reprinted 2000 (New York: Dover), �19.7.

Norusis, M.J. 2006, SPSS 14.0 Guide to Data Analysis (Englewood Cliffs, NJ: Prentice-Hall).

Stuart, A., and Ord, J.K. 1994, Kendall’s Advanced Theory of Statistics, 6th ed. (London: Edward
Arnold) [previous eds. published as Kendall, M., and Stuart, A., The Advanced Theory of
Statistics], �16.28 and �16.33.[1]

14.6 Nonparametric or Rank Correlation

It is precisely the uncertainty in interpreting the significance of the linear cor-
relation coefficient r that leads us to the important concepts of nonparametric or
rank correlation. As before, we are given N pairs of measurements .xi ; yi /. Before,
difficulties arose because we did not necessarily know the probability distribution
function from which the xi ’s or yi ’s were drawn.

The key concept of nonparametric correlation is this: If we replace the value
of each xi by the value of its rank among all the other xi ’s in the sample, that
is, 1; 2; 3; : : : ; N , then the resulting list of numbers will be drawn from a perfectly
known distribution function, namely uniformly from the integers between 1 and N ,
inclusive. Better than uniformly, in fact, since if the xi ’s are all distinct, then each
integer will occur precisely once. If some of the xi ’s have identical values, it is con-
ventional to assign to all these “ties” the mean of the ranks that they would have had
if their values had been slightly different. This midrank will sometimes be an integer,
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sometimes a half-integer. In all cases the sum of all assigned ranks will be the same
as the sum of the integers from 1 to N , namely 1

2
N.N C 1/.

Of course we do exactly the same procedure for the yi ’s, replacing each value
by its rank among the other yi ’s in the sample.

Now we are free to invent statistics for detecting correlation between uniform
sets of integers between 1 and N , keeping in mind the possibility of ties in the ranks.
There is, of course, some loss of information in replacing the original numbers by
ranks. We could construct some rather artificial examples where a correlation could
be detected parametrically (e.g., in the linear correlation coefficient r) but could not
be detected nonparametrically. Such examples are very rare in real life, however,
and the slight loss of information in ranking is a small price to pay for a very major
advantage: When a correlation is demonstrated to be present nonparametrically, then
it is really there! (That is, to a certainty level that depends on the significance cho-
sen.) Nonparametric correlation is more robust than linear correlation, more resistant
to unplanned defects in the data, in the same sort of sense that the median is more
robust than the mean. For more on the concept of robustness, see �15.7.

As always in statistics, some particular choices of a statistic have already been
invented for us and consecrated, if not beatified, by popular use. We will discuss
two, the Spearman rank-order correlation coefficient (rs), and Kendall’s tau (� ).

14.6.1 Spearman Rank-Order Correlation Coefficient
Let Ri be the rank of xi among the other x’s and Si be the rank of yi among the

other y’s, with ties being assigned the appropriate midrank as described above. Then
the rank-order correlation coefficient is defined to be the linear correlation coefficient
of the ranks, namely,

rs D

P
i .Ri �

xR/.Si � xS/qP
i .Ri �

xR/2
qP

i .Si �
xS/2

(14.6.1)

The significance of a nonzero value of rs is tested by computing

t D rs

r
N � 2

1 � r2s
(14.6.2)

which is distributed approximately as Student’s distribution with N � 2 degrees of
freedom. A key point is that this approximation does not depend on the original
distribution of the x’s and y’s; it is always the same approximation, and always
pretty good.

It turns out that rs is closely related to another conventional measure of non-
parametric correlation, the so-called sum squared difference of ranks, defined as

D D

N�1X
iD0

.Ri � Si /
2 (14.6.3)

(This D is sometimes denoted D��, where the asterisks are used to indicate that ties
are treated by midranking.)

When there are no ties in the data, the exact relation between D and rs is

rs D 1 �
6D

N 3 �N
(14.6.4)



�

�

“nr3” — 2007/5/1 — 20:53 — page 750 — #772
�

�

� �

750 Chapter 14. Statistical Description of Data

When there are ties, the exact relation is slightly more complicated: Let fk be the
number of ties in the kth group of ties among the Ri ’s, and let gm be the number of
ties in the mth group of ties among the Si ’s. Then it turns out that

rs D
1 �

6

N 3 �N

�
D C 1

12

P
k.f

3
k
� fk/C

1
12

P
m.g

3
m � gm/

	
"
1 �

P
k.f

3
k
� fk/

N 3 �N

#1=2 "
1 �

P
m.g

3
m � gm/

N 3 �N

#1=2 (14.6.5)

holds exactly. Notice that if all the fk’s and all the gm’s are equal to one, meaning
that there are no ties, then equation (14.6.5) reduces to equation (14.6.4).

In (14.6.2) we gave a t -statistic that tests the significance of a nonzero rs . It is
also possible to test the significance ofD directly. The expectation value ofD in the
null hypothesis of uncorrelated data sets is

xD D
1

6
.N 3 �N/ �

1

12

X
k

.f 3k � fk/ �
1

12

X
m

.g3m � gm/ (14.6.6)

its variance is

Var.D/ D
.N � 1/N 2.N C 1/2

36

"
1 �

P
k.f

3
k
� fk/

N 3 �N

#�
1 �

P
m.g

3
m � gm/

N 3 �N

�
(14.6.7)

and it is approximately normally distributed, so that the significance level is a com-
plementary error function (cf. equation 14.5.2). Of course, (14.6.2) and (14.6.7)
are not independent tests, but simply variants of the same test. In the program that
follows, we calculate both the significance level obtained by using (14.6.2) and the
significance level obtained by using (14.6.7); their discrepancy will give you an idea
of how good the approximations are. You will also notice that we break off the task
of assigning ranks (including tied midranks) into a separate function, crank.

void spear(VecDoub_I &data1, VecDoub_I &data2, Doub &d, Doub &zd, Doub &probd,stattests.h
Doub &rs, Doub &probrs)

Given two data arrays, data1[0..n-1] and data2[0..n-1], this routine returns their sum
squared difference of ranks as D, the number of standard deviations by which D deviates
from its null-hypothesis expected value as zd, the two-sided p-value of this deviation as probd,
Spearman’s rank correlation rs as rs, and the two-sided p-value of its deviation from zero as
probrs. The external routines crank (below) and sort2 (�8.2) are used. A small value of either
probd or probrs indicates a significant correlation (rs positive) or anticorrelation (rs negative).
{

Beta bet;
Int j,n=data1.size();
Doub vard,t,sg,sf,fac,en3n,en,df,aved;
VecDoub wksp1(n),wksp2(n);
for (j=0;j<n;j++) {

wksp1[j]=data1[j];
wksp2[j]=data2[j];

}
sort2(wksp1,wksp2); Sort each of the data arrays, and convert the en-

tries to ranks. The values sf and sg return

the sums
P
.f 3
k
� fk/ and

P
.g3m � gm/,

respectively.

crank(wksp1,sf);
sort2(wksp2,wksp1);
crank(wksp2,sg);
d=0.0;
for (j=0;j<n;j++) Sum the squared difference of ranks.
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d += SQR(wksp1[j]-wksp2[j]);
en=n;
en3n=en*en*en-en;
aved=en3n/6.0-(sf+sg)/12.0; Expectation value of D,
fac=(1.0-sf/en3n)*(1.0-sg/en3n);
vard=((en-1.0)*en*en*SQR(en+1.0)/36.0)*fac; and variance of D give
zd=(d-aved)/sqrt(vard); number of standard devia-

tions and p-value.probd=erfcc(abs(zd)/1.4142136);
rs=(1.0-(6.0/en3n)*(d+(sf+sg)/12.0))/sqrt(fac); Rank correlation coefficient,
fac=(rs+1.0)*(1.0-rs);
if (fac > 0.0) {

t=rs*sqrt((en-2.0)/fac); and its t-value,
df=en-2.0;
probrs=bet.betai(0.5*df,0.5,df/(df+t*t)); give its p-value.

} else
probrs=0.0;

}

void crank(VecDoub_IO &w, Doub &s) stattests.h
Given a sorted array w[0..n-1], replaces the elements by their rank, including midranking of
ties, and returns as s the sum of f 3 � f , where f is the number of elements in each tie.
{

Int j=1,ji,jt,n=w.size();
Doub t,rank;
s=0.0;
while (j < n) {

if (w[j] != w[j-1]) { Not a tie.
w[j-1]=j;
++j;

} else { A tie:
for (jt=j+1;jt<=n && w[jt-1]==w[j-1];jt++); How far does it go?
rank=0.5*(j+jt-1); This is the mean rank of the tie,
for (ji=j;ji<=(jt-1);ji++) so enter it into all the tied entries,

w[ji-1]=rank;
t=jt-j;
s += (t*t*t-t); and update s.
j=jt;

}
}
if (j == n) w[n-1]=n; If the last element was not tied, this is its

rank.}

14.6.2 Kendall’s Tau
Kendall’s � is even more nonparametric than Spearman’s rs or D. Instead of

using the numerical difference of ranks, it uses only the relative ordering of ranks:
higher in rank, lower in rank, or the same in rank. But in that case we don’t even
have to rank the data! Ranks will be higher, lower, or the same if and only if the
values are larger, smaller, or equal, respectively. On balance, we prefer rs as being
the more straightforward nonparametric test, but both statistics are in general use. In
fact, � and rs are very strongly correlated and, in most applications, are effectively
the same test.

To define � , we start with theN data points .xi ; yi /. Now consider all 1
2
N.N �

1/ pairs of data points, where a data point cannot be paired with itself, and where
the points in either order count as one pair. We call a pair concordant if the relative
ordering of the ranks of the two x’s (or for that matter the two x’s themselves) is the
same as the relative ordering of the ranks of the two y’s (or for that matter the two
y’s themselves). We call a pair discordant if the relative ordering of the ranks of the
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two x’s is opposite from the relative ordering of the ranks of the two y’s. If there is
a tie in either the ranks of the two x’s or the ranks of the two y’s, then we don’t call
the pair either concordant or discordant. If the tie is in the x’s, we will call the pair
an “extra y pair.” If the tie is in the y’s, we will call the pair an “extra x pair.” If the
tie is in both the x’s and the y’s, we don’t call the pair anything at all. Are you still
with us?

Kendall’s � is now the following simple combination of these various counts:

� D
concordant � discordant

p
concordantC discordantC extra-y

p
concordantC discordantC extra-x

(14.6.8)

You can easily convince yourself that this must lie between 1 and �1, and that it
takes on the extreme values only for complete rank agreement or complete rank
reversal, respectively.

More important, Kendall has worked out, from the combinatorics, the approx-
imate distribution of � in the null hypothesis of no association between x and y. In
this case, � is approximately normally distributed, with zero expectation value and a
variance of

Var.�/ D
4N C 10

9N.N � 1/
(14.6.9)

The following program proceeds according to the above description, and there-
fore loops over all pairs of data points. Beware: This is an O.N 2/ algorithm, unlike
the algorithm for rs , whose dominant sort operations are of order N logN . If you
are routinely computing Kendall’s � for data sets of more than a few thousand points,
you may be in for some serious computing. If, however, you are willing to bin your
data into a moderate number of bins, then read on.

void kendl1(VecDoub_I &data1, VecDoub_I &data2, Doub &tau, Doub &z, Doub &prob)stattests.h
Given data arrays data1[0..n-1] and data2[0..n-1], this program returns Kendall’s � as
tau, its number of standard deviations from zero as z, and its two-sided p-value as prob. Small
values of prob indicate a significant correlation (tau positive) or anticorrelation (tau negative).
{

Int is=0,j,k,n2=0,n1=0,n=data1.size();
Doub svar,aa,a2,a1;
for (j=0;j<n-1;j++) { Loop over first member of pair,

for (k=j+1;k<n;k++) { and second member.
a1=data1[j]-data1[k];
a2=data2[j]-data2[k];
aa=a1*a2;
if (aa != 0.0) { Neither array has a tie.

++n1;
++n2;
aa > 0.0 ? ++is : --is;

} else { One or both arrays have ties.
if (a1 != 0.0) ++n1; An “extra x” event.
if (a2 != 0.0) ++n2; An “extra y” event.

}
}

}
tau=is/(sqrt(Doub(n1))*sqrt(Doub(n2))); Equation (14.6.8).
svar=(4.0*n+10.0)/(9.0*n*(n-1.0)); Equation (14.6.9).
z=tau/sqrt(svar);
prob=erfcc(abs(z)/1.4142136); p-value.

}
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Sometimes it happens that there are only a few possible values each for x and
y. In that case, the data can be recorded as a contingency table (see �14.4) that gives
the number of data points for each contingency of x and y.

Spearman’s rank-order correlation coefficient is not a very natural statistic un-
der these circumstances, since it assigns to each x and y bin a not-very-meaningful
midrank value and then totals up vast numbers of identical rank differences. Kendall’s
tau, on the other hand, with its simple counting, remains quite natural. Furthermore,
its O.N 2/ algorithm is no longer a problem, since we can arrange for it to loop over
pairs of contingency table entries (each containing many data points) instead of over
pairs of data points. This is implemented in the program that follows.

Note that Kendall’s tau can be applied only to contingency tables where both
variables are ordinal, i.e., well-ordered, and that it looks specifically for monotonic
correlations, not for arbitrary associations. These two properties make it less general
than the methods of �14.4, which applied to nominal, i.e., unordered, variables and
arbitrary associations.

Comparing kendl1 above with kendl2 below, you will see that we have changed
a number of variables from int to double. This is because the number of events
in a contingency table might be sufficiently large as to cause overflows in some of
the integer arithmetic, while the number of individual data points in a list could not
possibly be that large (for an O.N 2/ routine!).

void kendl2(MatDoub_I &tab, Doub &tau, Doub &z, Doub &prob) stattests.h
Given a two-dimensional table tab[0..i-1][0..j-1], such that tab[k][l] contains the num-
ber of events falling in bin k of one variable and bin l of another, this program returns Kendall’s
� as tau, its number of standard deviations from zero as z, and its two-sided p-value as prob.
Small values of prob indicate a significant correlation (tau positive) or anticorrelation (tau
negative) between the two variables. Although tab is a double array, it will normally contain
integral values.
{

Int k,l,nn,mm,m2,m1,lj,li,kj,ki,i=tab.nrows(),j=tab.ncols();
Doub svar,s=0.0,points,pairs,en2=0.0,en1=0.0;
nn=i*j; Total number of entries in contingency table.
points=tab[i-1][j-1];
for (k=0;k<=nn-2;k++) { Loop over entries in table,

ki=(k/j); decoding a row,
kj=k-j*ki; and a column.
points += tab[ki][kj]; Increment the total count of events.
for (l=k+1;l<=nn-1;l++) { Loop over other member of the pair,

li=l/j; decoding its row
lj=l-j*li; and column.
mm=(m1=li-ki)*(m2=lj-kj);
pairs=tab[ki][kj]*tab[li][lj];
if (mm != 0) { Not a tie.

en1 += pairs;
en2 += pairs;
s += (mm > 0 ? pairs : -pairs); Concordant, or discordant.

} else {
if (m1 != 0) en1 += pairs;
if (m2 != 0) en2 += pairs;

}
}

}
tau=s/sqrt(en1*en2);
svar=(4.0*points+10.0)/(9.0*points*(points-1.0));
z=tau/sqrt(svar);
prob=erfcc(abs(z)/1.4142136);

}
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14.7 Information-Theoretic Properties of
Distributions

In this section we return to nominal distributions, that is to say, to distributions
with discrete outcomes that have no meaningful ordering. Information theory [1-3]

provides a different, and sometimes very useful, perspective on the nature of such a
distribution p with outcomes i , 0 
 i 
 I � 1, and associated probabilities pi , and
on the relation between two or more such distributions. We develop that perspective
in this section, starting with a review of some key concepts.

14.7.1 Entropy of a Distribution
Suppose that we make M sequential, independent draws from a distribution p,

thus generating a message that describes the outcomes, an M -vector of integers ij ,
each in the range 0 
 ij 
 I � 1, with j D 0; : : : ;M � 1. We want to send the
message to a waiting confederate, but we first want to compress it (that is, encode
it) into the most parsimonious format, say into the smallest possible number of bits,
B . We can calculate a lower bound on B by equating 2B , the number of possible
different compressed messages, to a statistical estimate of the number of likely input
messages. That equation, in the limit of M becoming very large, is

2B �
MŠQ
i .Mpi /Š

(14.7.1)

The rationale for the right-hand side is that our message will contain very nearlyMpi
occurrences of the integer i for each i , so the count of messages will be very nearly
the number of ways that we can arrange M objects of I types, with Mpi of them
identical for each type i . Taking the logarithm of equation (14.7.1), using Stirling’s
approximation on the factorials, and keeping only terms that scale as fast as M , we
readily obtain

B � �M

I�1X
iD0

pi log2 pi �M H2.p/ (14.7.2)

where H2.p/ is called the entropy (in bits) of the distribution p, a terminology bor-
rowed from statistical physics. The subscript 2 is to remind us that the logarithm has
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base 2. We can also define an entropy with base e,

H.p/ � �

I�1X
iD0

pi lnpi D �.ln 2/
I�1X
iD0

pi log2 pi D .ln 2/H2.p/ (14.7.3)

If H2.p/ is measured in bits, then H.p/ will be measured in nats, with 1 nat D
1:4427 bits. In evaluating (14.7.3), note that

lim
p!0

p lnp D 0 (14.7.4)

The value H.p/ lies between 0 and ln I . It is zero only when one of the pi ’s is one,
all the others zero.

Although we derived B as a lower bound, a central result of information theory
is that, in the limit of large M , one can find codes that actually achieve that bound.
(Arithmetic coding, described in �22.6, is an example of such a code.) Heuristically,
one can interpret equation (14.7.2) as saying that it takes, on average, � log2 pi bits
(a positive number, since pi < 1) to encode an outcome i . Thus, the compressed
message size is M times the expectation of � log2 pi over outcomes occurring with
probability pi .

Yet a different view of entropy arises if we consider the game of “twenty ques-
tions,” where by repeated yes/no questions you try to eliminate all except one correct
possibility for an unknown object. Better yet, let us consider a generalization of
the game, where you are allowed to ask multiple choice questions as well as binary
(yes/no) ones. The categories in your multiple choice questions are supposed to be
mutually exclusive and exhaustive (as are “yes” and “no”).

The value to you of an answer increases with the number of possibilities that it
eliminates. More specifically, an answer that eliminates all except a fraction p of the
remaining possibilities can be assigned a value � lnp. The purpose of the logarithm
is to make the value additive, since, e.g., one question that eliminates all but 1/6 of
the possibilities is considered as good as two questions that, in sequence, reduce the
number by factors 1/2 and 1/3.

So that is the value of an answer; but what is the value of a question? If there
are I possible answers to the question and the fraction of possibilities consistent with
answer i is pi , then the value of the question is the expectation value of the value of
the answer, which is just �

P
i pi lnpi or H.p/, as above.

As already mentioned, the entropy is zero only if one of the pi ’s is unity, with all
the others zero. In this case, the question is valueless, since its answer is preordained.
H.p/ takes on its maximum value when all the pi ’s are equal, in which case the
question is sure to eliminate all but a fraction 1=I of the remaining possibilities.

A third, still different, view of entropy comes from thinking about bets (or, more
politely, “investments”). A fair bet on an outcome i of probability pi is one that has
a payoff oi D 1=pi . This is the unique payoff (per unit wagered) for which, in the
long run, the bettor will neither win nor lose, since in expectation value

hoi i D pioi D 1 (14.7.5)

Suppose you have the opportunity to bet repeatedly on a game offering fair bets on
each outcome. This is not very interesting as a money-making proposition. But
suppose that you are clairvoyant and can know in advance the outcome of each play
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(although you cannot affect that outcome). Now you’re in business! You always put
your money on the winning choice of i . How much money can you make?

Since your profit on each (sure thing!) wager scales multiplicatively with your
accumulated wealth, the appropriate figure of merit is the the average doubling rate,
or, equivalently, e-folding rate, at which you can increase your capital. Since you
always win, but can’t control the outcome, this is given by

W � hln oi i D h� lnpi i D �
X
i

pi lnpi D H.p/ (14.7.6)

In other words, the entropy of a distribution is the e-folding rate of capital for a fair
game about which you have perfect predictive information. While this may seem
fanciful, we will see in �14.7.3 how it generalizes to the more realistic case where
you have only imperfect, perhaps very small, predictive information.

14.7.2 Kullback-Leibler Distance
Back in the context of message compression, suppose that events occur with a

distribution p, that is, pi , 0 
 i 
 I � 1, but we try to compress the message of
their outcomes with a code that is optimized for some other distribution q, that is,
qi , 0 
 i 
 I � 1. Our code therefore takes about � log2 qi bits, or � ln qi nats, to
encode outcome i , and the average compressed length per outcome is

�
X
i

pi ln qi D H.p/C
X
i

pi ln
pi

qi
� H.p/CD.pkq/ (14.7.7)

The quantity

D.pkq/ �
X
i

pi ln
pi

qi
(14.7.8)

is called the Kullback-Leibler distance between p and q, also called the relative
entropy between the two distributions. We can easily prove that it is nonnegative,
since

�D.pkq/ D
X
i

pi ln

�
qi

pi

�


X
i

pi

�
qi

pi
� 1

�
D 1 � 1 D 0 (14.7.9)

where the inequality follows from the fact that

lnw 
 w � 1 (14.7.10)

(Of course we already knew it had to be nonnegative, because we knew that H.p/
was the smallest possible compressed message size for the distribution p.) The
Kullback-Leibler distance between two distributions is zero only when the two dis-
tributions are identical. The Kullback-Leibler distance between any distribution p
and the uniform distribution U is just the difference between the entropy of p and
the maximum possible entropy ln I , that is,

H.p/CD.pkU/ D ln I (14.7.11)

This is illustrated in Figure 14.7.1. Just like entropy, the Kullback-Leibler distance
is measured in bits or nats, depending on whether the logarithms are taken base 2 or
e, respectively.
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ln I

H.p/ D.pkU /

Figure 14.7.1. Relation between the entropy of a distribution p, its Kullback-Leibler distance to the
uniform distribution U , and its maximum possible entropy ln I .

Notice that the Kullback-Leibler distance is not symmetric, nor (it turns out)
does it satisfy the triangle inequality. So it is not a true metric distance. It is, how-
ever, a useful measure of the degree by which some “target” distribution q differs
from some “base” distribution p. We now give a couple of examples of where it
naturally occurs.

Example 1. Suppose that we are seeing events drawn from the distribution p,
but we want to rule out an alternative hypothesis that they are drawn from q. We
might do this by computing a likelihood ratio,

L D
p.Datajp/

p.Datajq/
D
Y
data

pi

qi
(14.7.12)

and rejecting the alternative hypothesis q if this ratio is larger than some large num-
ber, say 106. (In the above shorthand notation, the product over “data” means that we
substitute for i in each factor the particular outcome of that factor’s individual data
event.) Taking the logarithm of equation (14.7.12), you can easily see that, under hy-
pothesis p, the average increase in ln L per data event is justD.pkq/. In other words,
the Kullback-Leibler distance is the expected log-likelihood with which a false hy-
pothesis q can be rejected, per event. As we might expect, this has something to do
with “how different” q is from p.

As a Bayesian aside, the reason that the above likelihood test is unsatisfyingly
asymmetric is that, without the notion of a prior, we have no way to treat hypotheses
p and q democratically. But suppose that p.p/ is the prior probability of p, so that
p.q/ D 1�p.p/ is the prior for q. Then the Bayes odds ratio on the two hypotheses
is

O.R. D
p.pjData/

p.qjData/
D
p.Datajp/ p.p/

p.Datajq/ p.q/
D
p.p/

p.q/

Y
data

pi

qi
(14.7.13)

The figure of merit is now the expected increase in ln.O.R./ if p is true, minus the
expected increase (that is, plus the expected decrease) if q is true, which can readily
be seen to be

p.p/D.pkq/C p.q/D.qkp/ (14.7.14)

per data event, which has the appropriate symmetry. We can use expression (14.7.14)
to estimate how many data events we will need on average to distinguish between
two distributions. Notice that in the case of a uniform (“noninformative”) prior,
p.p/ D p.q/ D 0:5, we get just the symmetrized average of the two Kullback-
Leibler distances.

Example 2. Meanwhile, back at the racetrack where we are offered payoffs of
oi on events with probability pi ,

P
i pi D 1, we want to work out the best way to

divide our capital across all the possible outcomes i of each race. Suppose we bet a
fraction bi on outcome i . Analgously to equation (14.7.6), we want to maximize the
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average e-folding rate,

W D hln.bioi /i D
X
i

pi ln.bioi / (14.7.15)

subject to the constraint X
i

bi D 1 (14.7.16)

An easy calculation (using a Lagrange multiplier to impose the constraint) gives the
result that the maximum occurs for

bi D pi (14.7.17)

completely independent of the values oi ! This remarkable result is called propor-
tional betting, or sometimes Kelly’s formula [4].

In practice, the distribution p is imperfectly known, both to you and to the
bookie at the track. Suppose that you estimate the outcome probabilities as q, while
the bookie’s estimate is r . If the bookie is feeling generous, he offers payoffs that
are fair bets according to his estimate,

oi D 1=ri (14.7.18)

while you place proportional bets with bi D qi . Your e-folding rate is now

W D hln.bioi /i D
X
i

pi ln
qi

ri
D D.pkr/ �D.pkq/ (14.7.19)

This will be positive if and only if your estimate of the probabilities is better than
the bookie’s, that is, closer as measured by the Kullback-Leibler distance. Betting,
in other words, is a competition between you and the bookie over who can better
estimate the true odds.

A more realistic variant is to assume that the bookie offers payoffs of only some
fraction f < 1 of his reciprocal probability estimates. Then (you can work out), you
can win only if

D.pkr/ �D.pkq/ > � lnf (14.7.20)

14.7.3 Conditional Entropy and Mutual Information
We now want to look at the association of two variables. Let us return to the

guessing game that was discussed in �14.7.1. Suppose we are deciding what question
to ask next in the game and have to choose between two candidates, or possibly want
to ask both in one order or another. Suppose that one question, x, has I possible
answers, labeled by i , and that the other question, y, has J possible answers, labeled
by j . Then the possible outcomes of asking both questions form a contingency table
whose entries are the joint outcome probabilities pij , normalized by

I�1X
iD0

J�1X
jD0

pij �
X
i;j

pij D 1 (14.7.21)
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We use the same “dot” notation as in �14.4 to denote the row and column sums,
so that pi � is the probability of outcome i asking question x only, while p�j is the
probability of outcome j asking question y only. The entropies of the questions x
and y are thus, respectively,

H.x/ D �
X
i

pi � lnpi � H.y/ D �
X
j

p�j lnp�j (14.7.22)

The entropy of the two questions together is

H.x; y/ D �
X
i;j

pij lnpij (14.7.23)

Now what is the entropy of the question y given x (that is, if x is asked first)?
It is the expectation value over the answers to x of the entropy of the restricted y
distribution that lies in a single column of the contingency table (corresponding to
the x answer):

H.yjx/ D �
X
i

pi �
X
j

pij

pi �
ln
pij

pi �
D �

X
i;j

pij ln
pij

pi �
(14.7.24)

Correspondingly, the entropy of x given y is

H.xjy/ D �
X
j

p�j
X
i

pij

p�j
ln
pij

p�j
D �

X
i;j

pij ln
pij

p�j
(14.7.25)

We can readily prove that the entropy of y given x is never more than the en-
tropy of y alone, i.e., that asking x first can only reduce the usefulness of asking y
(in which case the two variables are associated):

H.yjx/ �H.y/ D �
X
i;j

pij ln
pij =pi �

p�j

D
X
i;j

pij ln
p�jpi �

pij



X
i;j

pij

�
p�jpi �

pij
� 1

�
D
X
i;j

pi �p�j �
X
i;j

pij

D 1 � 1 D 0

(14.7.26)

Quantities like H.xjy/ or H.yjx/ are called conditional entropies. You can
easily show that

H.x; y/ D H.x/CH.yjx/ D H.y/CH.xjy/ (14.7.27)

sometimes called the chain rule for entropies. It immediately follows that

H.x/ �H.xjy/ D H.y/ �H.yjx/ � I.x; y/ (14.7.28)
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H.x; y/

H.x/

H.y/

I.x; y/

H.xjy/ H.yjx/

Figure 14.7.2. Relations among the entropies, conditional entropies, and mutual information of two
variables. The quantities shown as segment lengths are always positive.

a quantity called the mutual information between x and y, given explicitly by

I.x; y/ D
X
i;j

pij ln

�
pij

pi �p�j

�
(14.7.29)

Notice that the mutual information is symmetrical, I.x; y/ D I.y; x/.
Figure 14.7.2 provides a handy way to visualize the additive relations and in-

equalities among the quantities discussed. As before, all the quantities are measured
in bits or nats. Using mutual information, one can make statements like this about the
degree of association of two variables: “The variables have information (entropy) 6.5
and 4.2 bits, respectively. However, their mutual information is 3.8 bits, so together
they provide only 6.9 bits of information.”

As a more detailed example, let us go back to the racetrack one last time. Sup-
pose that you have some side information relevant to the outcome, but not completely
predictive. That is, x is the random variable of which outcome i wins, while y is a
random variable whose value j you know. Instead of a simple set of probabilities
pi , we now have a contingency table of joint outcomes, pij . How should you bet,
and what is your expected e-folding rate?

First, we need to generalize equation (14.7.17). Suppose that bij is the fraction
of assets that we bet on outcome i when our side information has the value j . There
are now J separate constraints,X

i

bij D 1; 0 
 j 
 J � 1 (14.7.30)

For simplicity, let us take the case where the payoffs are for fair bets (but without the
side information), oi D 1=pi � . Then we want to maximize

W D

�
ln
bij

pi �

�
D
X
i;j

pij ln
bij

pi �
(14.7.31)

A simple calculation, now with J distinct Lagrange multipliers, gives the result,

bij D
pij

p�j
(14.7.32)

This is again proportional betting, except that it is now conditioned on the value j
that is known to us. Substituting equation (14.7.32) into (14.7.31) gives

W D
X
i;j

pij ln

�
pij

pi �p�j

�
D I.x; y/ (14.7.33)
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We see that the expected e-folding rate is exactly the mutual information between
x and y. In other words, we can make money if and only if our side information
y has nonzero mutual information with the outcome x. As in equation (14.7.20),
you can easily work out more realistic cases where the payouts are not fair bets, or
are based on inexact estimates of the true probabilities. A special case of equation
(14.7.33) is when the side information y predicts the outcome x perfectly. Then,
I.x; y/ D H.x/ D H.y/ D H.x; y/ and we recover exactly equation (14.7.6).

14.7.4 Uncertainty Coefficients
By analogy with the various coefficients of correlation discussed earlier in this

chapter, one sometimes sees uncertainty coefficients defined from the various en-
tropies defined above (and in Figure 14.7.2). The uncertainty coefficient of y with
respect to x, denoted U.yjx/, is defined by

U.yjx/ �
H.y/ �H.yjx/

H.y/
(14.7.34)

This measure lies between 0 and 1, with the value 0 indicating that x and y have
no association and the value 1 indicating that knowledge of x completely predicts y.
For in-between values, U.yjx/ gives the fraction of y’s entropy H.y/ that is lost if
x is already known. In our game of “twenty questions,” U.yjx/ is the fractional loss
in the utility of question y if question x is to be asked first.

If we wish to view x as the dependent variable and y as the independent one,
then interchanging x and y we can of course define the dependency of x on y,

U.xjy/ �
H.x/ �H.xjy/

H.x/
(14.7.35)

If we want to treat x and y symmetrically, then the useful combination turns out
to be

U.x; y/ � 2

�
H.y/CH.x/ �H.x; y/

H.x/CH.y/

�
(14.7.36)

If the two variables are completely independent, then H.x; y/ D H.x/ C H.y/,
so (14.7.36) vanishes. If the two variables are completely dependent, then H.x/ D
H.y/ D H.x; y/, so (14.7.35) equals unity. You can easily show that

U.x; y/ D
H.x/U.xjy/CH.y/U.yjx/

H.x/CH.y/
(14.7.37)

that is, that the symmetrical measure is just a weighted average of the two
asymmetrical measures (14.7.34) and (14.7.35), weighted by the entropy of each
variable separately.

Generally we find the entropy measures themselves, in bits or nats, more useful
than the uncertainty coefficients derived from them.

CITED REFERENCES AND FURTHER READING:

Shannon, C.E., and Weaver, W. 1949, The Mathematical Theory of Communication, reprinted
1998 (Urbana, IL: University of Illinois Press).[1]
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Cover, T.M., and Thomas, J.A. 1991, Elements of Information Theory (New York: Wiley). [2]

MacKay, D.J.C. 2003, Information Theory, Inference, and Learning Algorithms (Cambridge, UK:
Cambridge University Press). [3]

Kelly, J. 1956, “A New Interpretation of Information Rate,” Bell System Technical Journal, vol. 35,
pp. 917–926. [4]

14.8 Do Two-Dimensional Distributions Differ?
We here discuss a useful generalization of the K–S test (�14.3) to two-dimen-

sional distributions. This generalization is due to Fasano and Franceschini [1], a
variant on an earlier idea due to Peacock [2].

In a two-dimensional distribution, each data point is characterized by an .x; y/
pair of values. An example near to our hearts is that each of the 19 neutrinos that were
detected from Supernova 1987A is characterized by a time ti and by an energy Ei
(see [3]). We might wish to know whether these measured pairs .ti ; Ei /; i D 0 : : : 18
are consistent with a theoretical model that predicts neutrino flux as a function of
both time and energy — that is, a two-dimensional probability distribution in the
.x; y/ [here, .t; E/] plane. That would be a one-sample test. Or, given two sets of
neutrino detections, from two comparable detectors, we might want to know whether
they are compatible with each other, a two-sample test.

In the spirit of the tried-and-true one-dimensional K–S test, we want to range
over the .x; y/-plane in search of some kind of maximum cumulative difference
between two two-dimensional distributions. Unfortunately, cumulative probability
distribution is not well-defined in more than one dimension! Peacock’s insight was
that a good surrogate is the integrated probability in each of four natural quadrants
around a given point .xi ; yi /, namely the total probabilities (or fraction of data) in
.x > xi ; y > yi /, .x < xi ; y > yi /, .x < xi ; y < yi /, .x > xi ; y < yi /. The two-
dimensional K–S statistic D is now taken to be the maximum difference (ranging
both over data points and over quadrants) of the corresponding integrated probabil-
ities. When comparing two data sets, the value of D may depend on which data set
is ranged over. In that case, define an effective D as the average of the two values
obtained. If you are confused at this point about the exact definition ofD, don’t fret;
the accompanying computer routines amount to a precise algorithmic definition.

Figure 14.8.1 gives a feeling for what is going on. The 65 triangles and 35
squares seem to have somewhat different distributions in the plane. The dotted
lines are centered on the triangle that maximizes the D statistic; the maximum
occurs in the upper-left quadrant. That quadrant contains only 0.12 of all the
triangles, but it contains 0.56 of all the squares. The value of D is thus 0.44. Is this
statistically significant?

Even for fixed sample sizes, it is unfortunately not rigorously true that the distri-
bution ofD in the null hypothesis is independent of the shape of the two-dimensional
distribution. In this respect the two-dimensional K–S test is not as natural as its one-
dimensional parent. However, extensive Monte Carlo integrations have shown that
the distribution of the two-dimensional D is very nearly identical for even quite dif-
ferent distributions, as long as they have the same coefficient of correlation r , defined
in the usual way by equation (14.5.1). In their paper, Fasano and Franceschini tab-
ulate Monte Carlo results for (what amounts to) the distribution of D as a function
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Figure 14.8.1. Two-dimensional distributions of 65 triangles and 35 squares. The two-dimensional K–S
test finds that point one of whose quadrants (shown by dotted lines) maximizes the difference between
fraction of triangles and fraction of squares. Then, equation (14.8.1) indicates whether the difference is
statistically significant, i.e., whether the triangles and squares must have different underlying distributions.

of (of course) D, sample size N , and coefficient of correlation r . Analyzing their
results, one finds that the significance levels for the two-dimensional K–S test can be
summarized by the simple, though approximate, formulas

Probability .D > observed / D QKS

 p
N D

1C
p
1 � r2.0:25 � 0:75=

p
N/

!
(14.8.1)

for the one-sample case, and the same for the two-sample case, but with

N D
N1N2

N1 CN2
: (14.8.2)

The above formulas are accurate enough when N & 20, and when the indi-
cated probability (significance level) is less than (more significant than) 0:20 or so.
When the indicated probability is > 0:20, its value may not be accurate, but the
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implication that the data and model (or two data sets) are not significantly different
is certainly correct. Notice that in the limit of r ! 1 (perfect correlation), equa-
tions (14.8.1) and (14.8.2) reduce to equations (14.3.18) and (14.3.19): The two-
dimensional data lie on a perfect straight line, and the two-dimensional K–S test
becomes a one-dimensional K–S test.

The significance level for the data in Figure 14.8.1, by the way, is about 0.001.
This establishes to a near-certainty that the triangles and squares were drawn from
different distributions. (As in fact they were.)

Of course, if you do not want to rely on the Monte Carlo experiments embodied
in equation (14.8.1), you can do your own: Generate a lot of synthetic data sets from
your model, each one with the same number of points as the real data set. ComputeD
for each synthetic data set, using the accompanying computer routines (but ignoring
their calculated probabilities), and count what fraction of the time these synthetic
D’s exceed the D from the real data. That fraction is your significance.

One disadvantage of the two-dimensional tests, by comparison with their one-
dimensional progenitors, is that the two-dimensional tests require of order N 2 oper-
ations: Two nested loops of order N take the place of an N logN sort. For desktop
computers, this restricts the usefulness of the tests to N less than several thousand.

We now give computer implementations. The one-sample case is embodied
in the routine ks2d1s (that is, two dimensions, one sample). This routine calls a
straightforward utility routine quadct to count points in the four quadrants, and
it calls a user-supplied routine quadvl that must be capable of returning the inte-
grated probability of an analytic model in each of four quadrants around an arbitrary
.x; y/ point. A trivial sample quadvl is shown; realistic quadvls can be quite com-
plicated, often incorporating numerical quadratures over analytic two-dimensional
distributions.

void ks2d1s(VecDoub_I &x1, VecDoub_I &y1, void quadvl(const Doub, const Doub,kstests 2d.h
Doub &, Doub &, Doub &, Doub &), Doub &d1, Doub &prob)

Two-dimensional Kolmogorov-Smirnov test of one sample against a model. Given the x and
y coordinates of n1 data points in arrays x1[0..n1-1] and y1[0..n1-1], and given a user-
supplied function quadvl that exemplifies the model, this routine returns the two-dimensional
K-S statistic as d1, and its p-value as prob. Small values of prob show that the sample is
significantly different from the model. Note that the test is slightly distribution-dependent, so
prob is only an estimate.
{

Int j,n1=x1.size();
Doub dum,dumm,fa,fb,fc,fd,ga,gb,gc,gd,r1,rr,sqen;
KSdist ks;
d1=0.0;
for (j=0;j<n1;j++) { Loop over the data points.

quadct(x1[j],y1[j],x1,y1,fa,fb,fc,fd);
quadvl(x1[j],y1[j],ga,gb,gc,gd);
if (fa > ga) fa += 1.0/n1;
if (fb > gb) fb += 1.0/n1;
if (fc > gc) fc += 1.0/n1;
if (fd > gd) fd += 1.0/n1;
d1=MAX(d1,abs(fa-ga));
d1=MAX(d1,abs(fb-gb));
d1=MAX(d1,abs(fc-gc));
d1=MAX(d1,abs(fd-gd));
For both the sample and the model, the distribution is integrated in each of four
quadrants, and the maximum difference is saved.

}
pearsn(x1,y1,r1,dum,dumm); Get the linear correlation coefficient r1.
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sqen=sqrt(Doub(n1));
rr=sqrt(1.0-r1*r1);
Estimate the probability using the K-S probability function.
prob=ks.qks(d1*sqen/(1.0+rr*(0.25-0.75/sqen)));

}

void quadct(const Doub x, const Doub y, VecDoub_I &xx, VecDoub_I &yy, Doub &fa, kstests 2d.h
Doub &fb, Doub &fc, Doub &fd)

Given an origin .x; y/, and an array of nn points with coordinates xx[0..nn-1] and yy[0..nn-1],
count how many of them are in each quadrant around the origin, and return the normalized
fractions. Quadrants are labeled alphabetically, counterclockwise from the upper right. Used by
ks2d1s and ks2d2s.
{

Int k,na,nb,nc,nd,nn=xx.size();
Doub ff;
na=nb=nc=nd=0;
for (k=0;k<nn;k++) {

if (yy[k] == y && xx[k] == x) continue;
if (yy[k] > y)

xx[k] > x ? ++na : ++nb;
else

xx[k] > x ? ++nd : ++nc;
}
ff=1.0/nn;
fa=ff*na;
fb=ff*nb;
fc=ff*nc;
fd=ff*nd;

}

void quadvl(const Doub x, const Doub y, Doub &fa, Doub &fb, Doub &fc, Doub &fd) quadvl.h
This is a sample of a user-supplied routine to be used with ks2d1s. In this case, the model
distribution is uniform inside the square �1 < x < 1, �1 < y < 1. In general, this routine
should return, for any point .x; y/, the fraction of the total distribution in each of the four
quadrants around that point. The fractions, fa, fb, fc, and fd, must add up to 1. Quadrants
are alphabetical, counterclockwise from the upper right.
{

Doub qa,qb,qc,qd;
qa=MIN(2.0,MAX(0.0,1.0-x));
qb=MIN(2.0,MAX(0.0,1.0-y));
qc=MIN(2.0,MAX(0.0,x+1.0));
qd=MIN(2.0,MAX(0.0,y+1.0));
fa=0.25*qa*qb;
fb=0.25*qb*qc;
fc=0.25*qc*qd;
fd=0.25*qd*qa;

}

The routine ks2d2s is the two-sample case of the two-dimensional K–S test. It
also calls quadct, pearsn, and KSdist::qks. Being a two-sample test, it does not
need an analytic model.

void ks2d2s(VecDoub_I &x1, VecDoub_I &y1, VecDoub_I &x2, VecDoub_I &y2, Doub &d, kstests 2d.h
Doub &prob)

Two-dimensional Kolmogorov-Smirnov test on two samples. Given the x and y coordinates of
the first sample as n1 values in arrays x1[0..n1-1] and y1[0..n1-1], and likewise for the
second sample, n2 values in arrays x2 and y2, this routine returns the two-dimensional, two-
sample K-S statistic as d, and its p-value as prob. Small values of prob show that the two
samples are significantly different. Note that the test is slightly distribution-dependent, so prob
is only an estimate.
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{
Int j,n1=x1.size(),n2=x2.size();
Doub d1,d2,dum,dumm,fa,fb,fc,fd,ga,gb,gc,gd,r1,r2,rr,sqen;
KSdist ks;
d1=0.0;
for (j=0;j<n1;j++) { First, use points in the first sample as origins.

quadct(x1[j],y1[j],x1,y1,fa,fb,fc,fd);
quadct(x1[j],y1[j],x2,y2,ga,gb,gc,gd);
if (fa > ga) fa += 1.0/n1;
if (fb > gb) fb += 1.0/n1;
if (fc > gc) fc += 1.0/n1;
if (fd > gd) fd += 1.0/n1;
d1=MAX(d1,abs(fa-ga));
d1=MAX(d1,abs(fb-gb));
d1=MAX(d1,abs(fc-gc));
d1=MAX(d1,abs(fd-gd));

}
d2=0.0;
for (j=0;j<n2;j++) { Then, use points in the second sample as

origins.quadct(x2[j],y2[j],x1,y1,fa,fb,fc,fd);
quadct(x2[j],y2[j],x2,y2,ga,gb,gc,gd);
if (ga > fa) ga += 1.0/n1;
if (gb > fb) gb += 1.0/n1;
if (gc > fc) gc += 1.0/n1;
if (gd > fd) gd += 1.0/n1;
d2=MAX(d2,abs(fa-ga));
d2=MAX(d2,abs(fb-gb));
d2=MAX(d2,abs(fc-gc));
d2=MAX(d2,abs(fd-gd));

}
d=0.5*(d1+d2); Average the K-S statistics.
sqen=sqrt(n1*n2/Doub(n1+n2));
pearsn(x1,y1,r1,dum,dumm); Get the linear correlation coefficient for each

sample.pearsn(x2,y2,r2,dum,dumm);
rr=sqrt(1.0-0.5*(r1*r1+r2*r2));
Estimate the probability using the K-S probability function.
prob=ks.qks(d*sqen/(1.0+rr*(0.25-0.75/sqen)));

}

CITED REFERENCES AND FURTHER READING:

Fasano, G. and Franceschini, A. 1987, “A Multidimensional Version of the Kolmogorov-Smirnov
Test,” Monthly Notices of the Royal Astronomical Society, vol. 225, pp. 155–170.[1]

Peacock, J.A. 1983, “Two-Dimensional Goodness-of-Fit Testing in Astronomy,” Monthly Notices
of the Royal Astronomical Society, vol. 202, pp. 615–627.[2]

Spergel, D.N., Piran, T., Loeb, A., Goodman, J., and Bahcall, J.N. 1987, “A Simple Model for
Neutrino Cooling of the LMC Supernova,” Science, vol. 237, pp. 1471–1473.[3]

14.9 Savitzky-Golay Smoothing Filters
In �13.5 we learned something about the construction and application of digital

filters, but little guidance was given on which particular filter to use. That, of course,
depends on what you want to accomplish by filtering. One obvious use for low-pass
filters is to smooth noisy data.

The premise of data smoothing is that one is measuring a variable that is both
slowly varying and also corrupted by random noise. Then it can sometimes be useful
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to replace each data point by some kind of local average of surrounding data points.
Since nearby points measure very nearly the same underlying value, averaging can
reduce the level of noise without (much) biasing the value obtained.

We must comment editorially that the smoothing of data lies in a murky area,
beyond the fringe of some better-posed, and therefore more highly recommended,
techniques that are discussed elsewhere in this book. If you are fitting data to a
parametric model, for example (see Chapter 15), it is almost always better to use
raw data than to use data that have been pre-processed by a smoothing procedure.
Another alternative to blind smoothing is so-called “optimal” or Wiener filtering, as
discussed in �13.3 and more generally in �13.6. Data smoothing is probably most
justified when it is used simply as a graphical technique, to guide the eye through a
forest of data points all with large error bars, or as a means of making initial rough
estimates of simple parameters from a graph.

In this section we discuss a particular type of low-pass filter, well-adapted for
data smoothing, and termed variously Savitzky-Golay [1], least-squares [2], or DISPO
(Digital Smoothing Polynomial) [3] filters. Rather than having their properties de-
fined in the Fourier domain and then translated to the time domain, Savitzky-Golay
filters derive directly from a particular formulation of the data smoothing problem in
the time domain, as we will now see. Savitzky-Golay filters were initially (and are
still often) used to render visible the relative widths and heights of spectral lines in
noisy spectrometric data.

Recall that a digital filter is applied to a series of equally spaced data values
fi � f .ti /, where ti � t0 C i� for some constant sample spacing � and i D
: : : � 2;�1; 0; 1; 2; : : : . We have seen (�13.5) that the simplest type of digital filter
(the nonrecursive or finite impulse response filter) replaces each data value fi by a
linear combination gi of itself and some number of nearby neighbors,

gi D

nRX
nD�nL

cnfiCn (14.9.1)

Here nL is the number of points used “to the left” of a data point i , i.e., earlier than
it, while nR is the number used to the right, i.e., later. A so-called causal filter would
have nR D 0.

As a starting point for understanding Savitzky-Golay filters, consider the sim-
plest possible averaging procedure: For some fixed nL D nR, compute each gi
as the average of the data points from fi�nL to fiCnR . This is sometimes called
moving window averaging and corresponds to equation (14.9.1) with constant cn D
1=.nLCnRC 1/. If the underlying function is constant, or is changing linearly with
time (increasing or decreasing), then no bias is introduced into the result. Higher
points at one end of the averaging interval are on the average balanced by lower
points at the other end. A bias is introduced, however, if the underlying function has
a nonzero second derivative. At a local maximum, for example, moving window av-
eraging always reduces the function value. In the spectrometric application, a narrow
spectral line has its height reduced and its width increased. Since these parameters
are themselves of physical interest, the bias introduced is distinctly undesirable.

Note, however, that moving window averaging does preserve the area under a
spectral line, which is its zeroth moment, and also (if the window is symmetric with
nL D nR) its mean position in time, which is its first moment. What is violated is
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the second moment, equivalent to the line width.
The idea of Savitzky-Golay filtering is to find filter coefficients cn that preserve

higher moments. Equivalently, the idea is to approximate the underlying function
within the moving window not by a constant (whose estimate is the average), but by
a polynomial of higher order, typically quadratic or quartic: For each point fi , we
least-squares fit a polynomial to all nL C nR C 1 points in the moving window, and
then set gi to be the value of that polynomial at position i . (If you are not familiar
with least-squares fitting, you might want to look ahead to Chapter 15.) We make no
use of the value of the polynomial at any other point. When we move on to the next
point fiC1, we do a whole new least-squares fit using a shifted window.

All these least-squares fits would be laborious if done as described. Luckily,
since the process of least-squares fitting involves only a linear matrix inversion, the
coefficients of a fitted polynomial are themselves linear in the values of the data.
That means that we can do all the fitting in advance, for fictitious data consisting of
all zeros except for a single 1, and then do the fits on the real data just by taking
linear combinations. This is the key point, then: There are particular sets of filter
coefficients cn for which equation (14.9.1) “automatically” accomplishes the process
of polynomial least-squares fitting inside a moving window.

To derive such coefficients, consider how g0 might be obtained: We want to
fit a polynomial of degree M in i , namely a0 C a1i C 	 	 	 C aM iM , to the values
f�nL ; : : : ; fnR . Then g0 will be the value of that polynomial at i D 0, namely a0.
The design matrix for this problem (�15.4) is

Aij D i
j i D �nL; : : : ; nR; j D 0; : : : ;M (14.9.2)

and the normal equations for the vector of aj ’s in terms of the vector of fi ’s is in
matrix notation

.AT 	A/ 	 a D AT 	 f or a D .AT 	A/�1 	 .AT 	 f / (14.9.3)

We also have the specific forms

n
AT 	A

o
ij
D

nRX
kD�nL

AkiAkj D

nRX
kD�nL

kiCj (14.9.4)

and n
AT 	 f

o
j
D

nRX
kD�nL

Akjfk D

nRX
kD�nL

kjfk (14.9.5)

Since the coefficient cn is the component a0 when f is replaced by the unit
vector en, �nL 
 n < nR, we have

cn D
n
.AT 	A/�1 	 .AT 	 en/

o
0
D

MX
mD0

n
.AT 	A/�1

o
0m
nm (14.9.6)

Equation (14.9.6) says that we need only one row of the inverse matrix. (Numerically
we can get this by LU decomposition with only a single backsubstitution.)

The function savgol, below, implements equation (14.9.6). As input, it takes
the parameters nl D nL, nr D nR, and m D M (the desired order). Also input



�

�

“nr3” — 2007/5/1 — 20:53 — page 769 — #791
�

�

� �

14.9 Savitzky-Golay Smoothing Filters 769

M nL nR Sample Savitzky-Golay Coefficients

2 2 2 �0:086 0:343 0:486 0:343 �0:086

2 3 1 �0:143 0:171 0:343 0:371 0:257

2 4 0 0:086 �0:143 �0:086 0:257 0:886

2 5 5 �0:084 0:021 0:103 0:161 0:196 0:207 0:196 0:161 0:103 0:021 �0:084

4 4 4 0:035 �0:128 0:070 0:315 0:417 0:315 0:070 �0:128 0:035

4 5 5 0:042 �0:105 �0:023 0:140 0:280 0:333 0:280 0:140 �0:023 �0:105 0:042

is np, the physical length of the output array c, and a parameter ld that for data
fitting should be zero. In fact, ld specifies which coefficient among the ai ’s should
be returned, and we are here interested in a0. For another purpose, namely the com-
putation of numerical derivatives (already mentioned in �5.7), the useful choice is
ld � 1. With ld D 1, for example, the filtered first derivative is the convolution
(14.9.1) divided by the stepsize �. For ld D k > 1, the array c must be multi-
plied by kŠ to give derivative coefficients. For derivatives, one usually wants m D 4

or larger.

void savgol(VecDoub_O &c, const Int np, const Int nl, const Int nr, savgol.h
const Int ld, const Int m)

Returns in c[0..np-1], in wraparound order (N.B.!) consistent with the argument respns in
routine convlv, a set of Savitzky-Golay filter coefficients. nl is the number of leftward (past)
data points used, while nr is the number of rightward (future) data points, making the total
number of data points used nlC nrC 1. ld is the order of the derivative desired (e.g., ld D 0
for smoothed function. For the derivative of order k, you must multiply the array c by kŠ.) m
is the order of the smoothing polynomial, also equal to the highest conserved moment; usual
values are m D 2 or m D 4.
{

Int j,k,imj,ipj,kk,mm;
Doub fac,sum;
if (np < nl+nr+1 || nl < 0 || nr < 0 || ld > m || nl+nr < m)

throw("bad args in savgol");
VecInt indx(m+1);
MatDoub a(m+1,m+1);
VecDoub b(m+1);
for (ipj=0;ipj<=(m << 1);ipj++) { Set up the normal equations of the desired

least-squares fit.sum=(ipj ? 0.0 : 1.0);
for (k=1;k<=nr;k++) sum += pow(Doub(k),Doub(ipj));
for (k=1;k<=nl;k++) sum += pow(Doub(-k),Doub(ipj));
mm=MIN(ipj,2*m-ipj);
for (imj = -mm;imj<=mm;imj+=2) a[(ipj+imj)/2][(ipj-imj)/2]=sum;

}
LUdcmp alud(a); Solve them: LU decomposition.
for (j=0;j<m+1;j++) b[j]=0.0;
b[ld]=1.0;
Right-hand side vector is unit vector, depending on which derivative we want.
alud.solve(b,b); Get one row of the inverse matrix.
for (kk=0;kk<np;kk++) c[kk]=0.0; Zero the output array (it may be bigger than

number of coefficients).for (k = -nl;k<=nr;k++) {
sum=b[0]; Each Savitzky-Golay coefficient is the dot

product of powers of an integer with the
inverse matrix row.

fac=1.0;
for (mm=1;mm<=m;mm++) sum += b[mm]*(fac *= k);
kk=(np-k) % np; Store in wraparound order.
c[kk]=sum;

}
}
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As output, savgol returns the coefficients cn, for �nL 
 n 
 nR. These are
stored in c in “wraparound order”; that is, c0 is in c[0], c�1 is in c[1], and so on for
further negative indices. The value c1 is stored in c[np-1], c2 in c[np-2], and so
on for positive indices. This order may seem arcane, but it is the natural one where
causal filters have nonzero coefficients in low array elements of c. It is also the order
required by the function convlv in �13.1, which can be used to apply the digital
filter to a data set.

The table on the previous page shows some typical output from savgol. For
orders 2 and 4, the coefficients of Savitzky-Golay filters with several choices of nL
and nR are shown. The central column is the coefficient applied to the data fi in
obtaining the smoothed gi . Coefficients to the left are applied to earlier data, to the
right, to later. The coefficients always add (within roundoff error) to unity. One sees
that, as befits a smoothing operator, the coefficients always have a central positive
lobe, but with smaller, outlying corrections of both positive and negative sign. In
practice, the Savitzky-Golay filters are most useful for much larger values of nL and
nR, since these few-point formulas can accomplish only a relatively small amount
of smoothing.

Figure 14.9.1 shows a numerical experiment using a 33-point smoothing filter,
that is, nL D nR D 16. The upper panel shows a test function, constructed to have
six “bumps” of varying widths, all of height 8 units. To this function Gaussian white
noise of unit variance has been added. (The test function without noise is shown
as the dotted curves in the center and lower panels.) The widths of the bumps (full
width at half of maximum, or FWHM) are 140, 43, 24, 17, 13, and 10, respectively.

The middle panel of Figure 14.9.1 shows the result of smoothing by a mov-
ing window average. One sees that the window of width 33 does quite a nice
job of smoothing the broadest bump, but that the narrower bumps suffer consider-
able loss of height and increase of width. The underlying signal (dotted) is very
badly represented.

The lower panel shows the result of smoothing with a Savitzky-Golay filter of
the identical width and degree M D 4. One sees that the heights and widths of the
bumps are quite extraordinarily preserved. A trade-off is that the broadest bump is
less smoothed. That is because the central positive lobe of the Savitzky-Golay filter
coefficients fills only a fraction of the full 33-point width. As a rough guideline,
best results are obtained when the full width of the degree 4 Savitzky-Golay filter
is between 1 and 2 times the FWHM of desired features in the data. (References [3]

and [4] give additional practical hints.)
Figure 14.9.2 shows the result of smoothing the same noisy “data” with broader

Savitzky-Golay filters of three different orders. Here we have nL D nR D 32 (65-
point filter) and M D 2; 4; 6. One sees that, when the bumps are too narrow with
respect to the filter size, even the Savitzky-Golay filter must at some point give out.
The higher-order filter manages to track narrower features, but at the cost of less
smoothing on broad features.

To summarize: Within limits, Savitzky-Golay filtering does manage to provide
smoothing without loss of resolution. It does this by assuming that relatively distant
data points have some significant redundancy that can be used to reduce the level of
noise. The specific nature of the assumed redundancy is that the underlying func-
tion should be locally well-fitted by a polynomial. When this is true, as it is for
smooth line profiles not too much narrower than the filter width, the performance of
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Figure 14.9.1. Top: Synthetic noisy data consisting of a sequence of progressively narrower bumps
and additive Gaussian white noise. Center: Result of smoothing the data by a simple moving window
average. The window extends 16 points leftward and rightward, for a total of 33 points. Note that narrow
features are broadened and suffer corresponding loss of amplitude. The dotted curve is the underlying
function used to generate the synthetic data. Bottom: Result of smoothing the data by a Savitzky-Golay
smoothing filter (of degree 4) using the same 33 points. While there is less smoothing of the broadest
feature, narrower features have their heights and widths preserved.

Savitzky-Golay filters can be spectacular. When it is not true, these filters have no
compelling advantage over other classes of smoothing filter coefficients.

A last remark concerns irregularly sampled data, where the values fi are not
uniformly spaced in time. The obvious generalization of Savitzky-Golay filtering
would be to do a least-squares fit within a moving window around each data point,
one containing a fixed number of data points to the left (nL) and right (nR). Because
of the irregular spacing, however, there is no way to obtain universal filter coefficients
applicable to more than one data point. One must instead do the actual least-squares
fits for each data point. This becomes computationally burdensome for larger nL,
nR, and M .

As a cheap alternative, one can simply pretend that the data points are equally
spaced. This amounts to virtually shifting, within each moving window, the data
points to equally spaced positions. Such a shift introduces the equivalent of an addi-
tional source of noise into the function values. In those cases where smoothing is use-
ful, this noise will often be much smaller than the noise already present. Specifically,
if the location of the points is approximately random within the window, then a rough
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Figure 14.9.2. Result of applying wider 65-point Savitzky-Golay filters to the same data set as in Figure
14.9.1. Top: degree 2. Center: degree 4. Bottom: degree 6. All of these filters are inoptimally broad for
the resolution of the narrow features. Higher-order filters do best at preserving feature heights and widths,
but do less smoothing on broader features.

criterion is this: If the change in f across the full width of the N D nL C nR C 1

point window is less than
p
N=2 times the measurement noise on a single point, then

the cheap method can be used.
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15.0 Introduction

Given a set of observations, one often wants to condense and summarize the
data by fitting it to a model that depends on adjustable parameters. Sometimes the
model is simply a convenient class of functions, such as polynomials or Gaussians,
and the fit supplies the appropriate coefficients. Other times, the model’s parameters
come from some underlying theory that the data are supposed to satisfy; examples
are rate coefficients in a complex network of chemical reactions or orbital elements
of a binary star. Modeling can also be used as a kind of constrained interpolation,
where you want to extend a few data points into a continuous function, but with some
underlying idea of what that function should look like.

One very general approach has the following paradigm: You choose or design
a figure-of-merit function (merit function, for short) that measures the agreement
between the data and the model with a particular choice of parameters. In frequentist
statistics, the merit function is conventionally arranged so that small values represent
close agreement. Bayesians choose as their merit function the probability of the
parameters given the data (or often its logarithm) so that larger values represent closer
agreement.

In either case, the parameters of the model are then adjusted to find a happy
extremum in the merit function, yielding best-fit parameters. The adjustment process
is thus a problem in minimization in many dimensions. This optimization was the
subject of Chapter 10; however, there exist special, more efficient, methods that are
specific to modeling, and we will discuss these in this chapter.

There are important issues that go beyond the mere finding of best-fit parame-
ters. Data are generally not exact. They are subject to measurement errors (called
noise in the context of signal processing). Thus, typical data never exactly fit the
model that is being used, even when that model is correct. We need the means to
assess whether or not the model is appropriate, that is, we need to test the goodness-
of-fit against some useful statistical standard.

We usually also need to know the accuracy with which parameters are deter-
mined by the data set. In frequentist terms, we need to know the standard errors of
the best-fit parameters. Alternatively, in Bayesian language, we want to find not just
the peak of the joint parameter probability distribution, but the whole distribution.

773
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Or we at least want to be able to sample from that distribution, typically by Markov
chain Monte Carlo, as we will discuss at length in �15.8.

It is not uncommon in fitting data to discover that the merit function is not
unimodal, with a single minimum. In some cases, we may be interested in global
rather than local questions. Not, “how good is this fit?” but rather, “how sure am I
that there is not a very much better fit in some corner of parameter space?” As we
have seen in Chapter 10, especially �10.12, this kind of problem is generally quite
difficult to solve.

The important message is that fitting of parameters is not the end-all of model
parameter estimation. To be genuinely useful, a fitting procedure should provide (i)
parameters, (ii) error estimates on the parameters or a way to sample from their prob-
ability distribution, and (iii) a statistical measure of goodness-of-fit. When the third
item suggests that the model is an unlikely match to the data, then items (i) and (ii)
are probably worthless. Unfortunately, many practitioners of parameter estimation
never proceed beyond item (i). They deem a fit acceptable if a graph of data and
model “looks good.” This approach is known as chi-by-eye. Luckily, its practitioners
get what they deserve.

15.0.1 Basic Bayes
Because the discussion in this and subsequent chapters will move freely be-

tween frequentist and Bayesian methods, this is a good place to compare these two
powerfully useful ways of thinking. In �14.0, when we discussed tail, or p-value,
tests, we were adopting a frequentist viewpoint. The central frequentist idea is that,
given the details of a null hypothesis, there is an implied population (that is, probabil-
ity distribution) of possible data sets. If the assumed null hypothesis is correct, then
the actual, measured, data set is drawn from that population. (We expand on this in
�15.6.) It then makes sense to ask questions about how “frequently” some aspect of
the measured data occurs in the population. If the answer is “very infrequently,” then
the hypothesis is rejected. The frequentist viewpoint avoids questions like, “what is
the probability that this hypothesis is true?” because its focus is on the distribution
of data sets, not hypotheses. Indeed, whether by dogma or merely benign neglect, it
eschews the machinery needed to handle the concept of a probability distribution of
hypotheses.

That machinery is Bayes’ theorem, which follows from the standard axioms of
probability. Bayes’ theorem relates the conditional probabilities of two events, say
A and B:

P.AjB/ D P.A/
P.BjA/

P.B/
(15.0.1)

Here P.AjB/ is the probability of A given that B has occurred, and similarly for
P.BjA/, while P.A/ and P.B/ are unconditional probabilities.

Bayesians allow a broader set of uses for probabilities than frequentists. To a
Bayesian, P.AjB/ is a measure of the degree of plausibility of A (given B) on a
scale ranging from zero to one. In this broader view, A and B need not be repeatable
events; they can indeed be propositions or hypotheses. In equation (15.0.1), A might
be a hypothesis and B might be some data, so that P.AjB/ expresses the probability
of a hypothesis, given the data. The equations of probability theory thus become a set
of consistent rules for conducting inference [1,2]. Interestingly, this viewpoint was
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universal before the 20th century. The Bernoullis (both of them), Laplace, Gauss,
Legendre, and Poisson, among others, made little or no distinction between inference
and probability. An opposing frequentist view, that these concepts should be kept
separate, became explicit only with the work of Fisher, Box, Kendall, Neyman, and
Pearson (among others), much later.

Since plausibility is itself always conditioned on some, perhaps unarticulated,
set of assumptions, all Bayesian probabilities are viewed as conditional on some
collective background information I . Suppose H is some hypothesis. Even before
there exist any explicit data, a Bayesian can assign to H some degree of plausibility
P.H jI /, called the “Bayesian prior.” Now, when some dataD1 comes along, Bayes
theorem tells how to reassess the plausibility of H ,

P.H jD1I / D P.H jI /
P.D1jHI/

P.D1jI /
(15.0.2)

The factor in the numerator on the right of equation (15.0.2) is calculable as the
probability of a data set given the hypothesis (comparable to “likelihood” as we will
define it in �15.1). The denominator, called the “prior predictive probability” of the
data, is in this case merely a normalization constant that can be calculated by the
requirement that the probability of all hypotheses should sum to unity. (In other
Bayesian contexts, the prior predictive probabilities of two qualitatively different
models can be used to assess their relative plausibility.)

If some additional data D2 come along tomorrow, we can further refine our
estimate of H ’s probability, as

P.H jD2D1I / D P.H jD1I /
P.D2jHD1I /

P.D2jD1I /
(15.0.3)

Using the product rule for probabilities, P.ABjC/ D P.AjC/P.BjAC/, we find
that equations (15.0.2) and (15.0.3) imply

P.H jD2D1I / D P.H jI /
P.D2D1jHI/

P.D2D1jI /
(15.0.4)

which shows that we would have gotten the same answer if all the data D1D2 had
been taken together.

We might wonder, before we adopt the laws of probability as our calculus of
inference and thus become Bayesians, whether there are any other alternatives. The
answer is, basically, no. Cox [3] showed that making a small number of very reason-
able assumptions about “degree of belief” leads inevitably to the axioms of probabil-
ity, and thus the application of Bayes theorem to the evaluation of hypotheses, given
data. Either you become a Bayesian or else you must live in a world with no general
calculus of inference.
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15.1 Least Squares as a Maximum Likelihood
Estimator

Suppose that we are fittingN data points .xi ; yi /, i D 0; : : : ; N �1, to a model
that has M adjustable parameters aj , j D 0; : : : ;M � 1. The model predicts a
functional relationship between the measured independent and dependent variables,

y.x/ D y.xja0 : : : aM�1/ (15.1.1)

where the notation indicates dependence on the parameters explicitly on the right-
hand side, following the vertical bar.

What, exactly, do we want to minimize to get fitted values for the aj ’s? The
first thing that comes to mind is the familiar least-squares fit,

minimize over a0 : : : aM�1 W
N�1X
iD0

Œyi � y.xi ja0 : : : aM�1/�
2 (15.1.2)

But where does this come from? What general principles is it based on?
To answer these questions, let us start by asking, “Given a particular set of

parameters, what is the probability that the observed data set should have occurred?”
If the yi ’s take on continuous values, the probability will always be zero unless we
add the phrase, “. . . plus or minus some small, fixed �y on each data point.” So
let’s always take this phrase as understood. If the probability of obtaining the data
set is too small, then we can conclude that the parameters under consideration are
“unlikely” to be right. Conversely, our intuition tells us that the data set should not
be too improbable for the correct choice of parameters.

To be more quantitative, suppose that each data point yi has a measurement er-
ror that is independently random and distributed as a normal (Gaussian) distribution
around the “true” model y.x/. And suppose that the standard deviations � of these
normal distributions are the same for all points. Then the probability of the data set
is the product of the probabilities of each point:

P.data j model/ /
N�1Y
iD0

�
exp

�
�
1

2

�
yi � y.xi /

�

�2�
�y

�
(15.1.3)
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Notice that there is a factor �y in each term in the product.
If we are Bayesians, we proceed by invoking Bayes’ theorem, in the form

P.model j data/ / P.data j model/ P.model/ (15.1.4)

where P.model/ D P.a0 : : : aM�1/ is our prior probability distribution on all mod-
els. As often as not, we take a constant, noninformative prior. The most probable
model, then, is the one that maximizes equation (15.1.3) or, equivalently, minimizes
the negative of its logarithm,"

N�1X
iD0

Œyi � y.xi /�
2

2�2

#
�N log�y (15.1.5)

Since N , � , and �y are all constants, minimizing this equation is equivalent to
minimizing (15.1.2).

If we are frequentists, we must get to the same destination by a more tortuous
path (as is so often the case when Bayesian and frequentist methods coincide). We
are not allowed to think about the notion of probability as applied to parameter sets,
because, for frequentists, there is no statistical universe of models from which the
parameters are drawn. We instead substitute a dictum: We identify the probability
of the data given the parameters (which is computable as above), as the likelihood
of the parameters given the data. This identification is entirely based on intuition. It
has no formal mathematical basis in and of itself. Parameters derived in this way are
called maximum likelihood estimators.

What we see is that least-squares fitting gives an answer that is both (i) the most
probable parameter set in the Bayesian sense, assuming a flat prior, and (ii) the max-
imum likelihood estimate of the fitted parameters, in both cases if the measurement
errors are independent and normally distributed with constant standard deviation.
Notice that we made no assumption about the linearity or nonlinearity of the model
y.xja0 : : :/ in its parameters a0 : : : aM�1. Just below, we will relax our assump-
tion of constant standard deviations and obtain the very similar formulas for what is
called “chi-square fitting” or “weighted least-squares fitting.” First, however, let us
discuss further our very stringent assumption of a normal distribution.

For a hundred years or so, mathematical statisticians have been in love with
the fact that the probability distribution of the sum of a very large number of very
small random deviations almost always converges to a normal distribution. (For
precise statements of this central limit theorem, consult [1] or other standard works
on mathematical statistics.) This infatuation tended to focus interest away from the
fact that, for real data, the normal distribution is often rather poorly realized, if it is
realized at all. We are often taught, rather casually, that, on average, measurements
will fall within ˙� of the true value 68% of the time, within ˙2� 95% of the time,
and within˙3� 99.7% of the time. Extending this, one would expect a measurement
to be off by ˙20� only one time out of 2 � 1088. We all know that “glitches” are
much more likely than that!

In some instances, the deviations from a normal distribution are easy to un-
derstand and quantify. For example, in measurements obtained by counting events,
the measurement errors are usually distributed as a Poisson distribution, whose cu-
mulative probability function was already discussed in �6.2. When the number of
counts going into one data point is large, the Poisson distribution converges toward
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a Gaussian. However, the convergence is not uniform when measured in fractional
accuracy. The more standard deviations out on the tail of the distribution, the larger
the number of counts must be before a value close to the Gaussian is realized. The
sign of the effect is always the same: The Gaussian predicts that “tail” events are
much less likely than they actually (by Poisson) are. This causes such events, when
they occur, to skew a least-squares fit much more than they ought.

Other times, the deviations from a normal distribution are not so easy to under-
stand in detail. Experimental points are occasionally just way off. Perhaps the power
flickered during a point’s measurement, or someone kicked the apparatus, or some-
one wrote down a wrong number. Points like this are called outliers. They can easily
turn a least-squares fit on otherwise adequate data into nonsense. Their probability
of occurrence in the assumed Gaussian model is so small that the maximum likeli-
hood estimator is willing to distort the whole curve to try to bring them, mistakenly,
into line.

The subject of robust statistics deals with cases where the normal or Gaussian
model is a bad approximation, or cases where outliers are important. We will dis-
cuss robust methods briefly in �15.7. All the sections between this one and that one
assume, one way or the other, a Gaussian model for the measurement errors in the
data. It it quite important that you keep the limitations of that model in mind, even
as you use the very useful methods that follow from assuming it.

Finally, note that our discussion of measurement errors has been limited to sta-
tistical errors, the kind that will average away if we only take enough data. Measure-
ments are also susceptible to systematic errors that will not go away with any amount
of averaging. For example, the calibration of a metal meter stick might depend on its
temperature. If we take all our measurements at the same wrong temperature, then
no amount of averaging or numerical processing will correct for this unrecognized
systematic error.

15.1.1 Chi-Square Fitting
We considered the chi-square statistic once before, in �14.3. Here it arises in a

slightly different context.
If each data point .xi ; yi / has its own, known standard deviation �i , then equa-

tion (15.1.3) is modified only by putting a subscript i on the symbol � . That subscript
also propagates docilely into (15.1.5), so that the maximum likelihood estimate of the
model parameters (and also the Bayesian most probable parameter set) is obtained
by minimizing the quantity

�2 �

N�1X
iD0

�
yi � y.xi ja0 : : : aM�1/

�i

�2
(15.1.6)

called the “chi-square.”
To whatever extent the measurement errors actually are normally distributed,

the quantity �2 is correspondingly a sum of N squares of normally distributed quan-
tities, each normalized to unit variance. Once we have adjusted the a0 : : : aM�1
to minimize the value of �2, the terms in the sum are not all statistically indepen-
dent. For models that are linear in the a’s, however, it turns out that the probability
distribution for different values of �2 at its minimum can nevertheless be derived
analytically, and is the chi-square distribution for N �M degrees of freedom. We
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learned how to compute this probability function using the incomplete gamma func-
tion in �6.2. In particular, equation (6.14.39) gives the probability Q that the chi-
square should exceed a particular value �2 by chance, where 
 D N � M is the
number of degrees of freedom. The quantity Q, or its complement P � 1 � Q,
is frequently tabulated in appendices to statistics books, or it can be computed as
P D Chisqdist.
/.invcdf .�2/ by the routine in �6.14.8. It is quite common,
and usually not too wrong, to assume that the chi-square distribution holds even for
models that are not strictly linear in the a’s.

This computed probability gives a quantitative measure for the goodness-of-fit
of the model. If Q is a very small probability for some particular data set, then the
apparent discrepancies are unlikely to be chance fluctuations. Much more probably
either (i) the model is wrong — can be statistically rejected, or (ii) someone has
lied to you about the size of the measurement errors �i — they are really larger
than stated.

While above we were quick to poke fun at the frequentist’s foundations for
maximum likelihood estimation (or lack thereof), we must now take aim at strict
Bayesians: There are no good fully Bayesian methods for assessing goodness-of-
fit, that is, for comparing the probability of a best-fit model to that of a nonspecific
alternative hypothesis like “the model is wrong.” The problem is that the strict ap-
plication of Bayes theorem requires either (i) a comparison between two well-posed
hypotheses (the odds ratio), or (ii) a normalization of the probability of the best-fit
model against an integral of such probabilities over all possible models (the normal-
izing constant). In most situations neither of these is available. Sensible Bayesians
usually fall back to p-value tail statistics like chi-square probability when they really
need to know if a model is wrong.

Another important point is that the chi-square probability Q does not directly
measure the credibility of the assumption that the measurement errors are normally
distributed. It assumes they are. In most, but not all, cases, however, the effect
of nonnormal errors is to create an abundance of outlier points. These decrease the
probabilityQ, so that we can add another possible, though less definitive, conclusion
to the above list: (iii) the measurement errors may not be normally distributed.

Possibility (iii) is fairly common, and also fairly benign. It is for this reason
that reasonable experimenters are often rather tolerant of low probabilities Q. It is
not uncommon to deem acceptable on equal terms any models with, say,Q > 0:001.
This is not as sloppy as it sounds: Truly wrong models will often be rejected with
vastly smaller values of Q, 10�18, say. However, if day-in and day-out you find
yourself accepting models with Q � 10�3, you really should track down the cause.

If you happen to know the actual distribution law of your measurement errors,
then you might wish to Monte Carlo simulate some data sets drawn from a particular
model, cf. �7.3 – �7.4. You can then subject these synthetic data sets to your actual
fitting procedure, so as to determine both the probability distribution of the �2 statis-
tic and also the accuracy with which your model parameters are reproduced by the
fit. We discuss this further in �15.6. The technique is very general, but it can also
be slow.

At the opposite extreme, it sometimes happens that the probability Q is too
large, too near to 1, literally too good to be true! Nonnormal measurement errors
cannot in general produce this disease, since the normal distribution is about as
“compact” as a distribution can be. Almost always, the cause of too good a chi-
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square fit is that the experimenter, in a “fit” of conservativism, has overestimated his
or her measurement errors. Very rarely, too good a chi-square signals actual fraud,
data that have been “fudged” to fit the model.

A rule of thumb is that a “typical” value of �2 for a “moderately” good fit is
�2 � 
. More precise is the statement that the �2 statistic has a mean 
 and a stan-
dard deviation

p
2
 and, asymptotically for large 
, becomes normally distributed.

In some cases the uncertainties associated with a set of measurements are not
known in advance, and considerations related to �2 fitting are used to derive a value
for � . If we assume that all measurements have the same standard deviation, �i D � ,
and that the model does fit well, then we can proceed by first assigning an arbitrary
constant � to all points, next fitting for the model parameters by minimizing �2, and
finally recomputing

�2 D

N�1X
iD0

Œyi � y.xi /�
2=.N �M/ (15.1.7)

Obviously, this approach prohibits an independent assessment of goodness-of-fit, a
fact occasionally missed by its adherents. When, however, the measurement error
is not known, this approach at least allows some kind of error bar to be assigned to
the points.

If we take the derivative of equation (15.1.6) with respect to the parameters ak ,
we obtain equations that must hold at the chi-square minimum:

0 D

N�1X
iD0

�
yi � y.xi /

�2i

��
@y.xi j : : : ak : : :/

@ak

�
k D 0; : : : ;M � 1 (15.1.8)

Equation (15.1.8) is, in general, a set of M nonlinear equations for the M unknown
ak . Various of the procedures described subsequently in this chapter derive from
(15.1.8) and its specializations.

CITED REFERENCES AND FURTHER READING:

Lupton, R. 1993, Statistics in Theory and Practice (Princeton, NJ: Princeton University Press),
Chapters 10–11.[1]

Devore, J.L. 2003, Probability and Statistics for Engineering and the Sciences, 6th ed. (Belmont,
CA: Duxbury Press), Chapter 6.

Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. 2004, Bayesian Data Analysis, 2nd ed.
(Boca Raton, FL: Chapman & Hall/CRC), Chapter 8.

15.2 Fitting Data to a Straight Line
A concrete example will make the considerations of the previous section more

meaningful. We consider the problem of fitting a set of N data points .xi ; yi / to a
straight-line model

y.x/ D y.xja; b/ D aC bx (15.2.1)

This problem is often called linear regression, a terminology that originated, long
ago, in the social sciences. We assume that the uncertainty �i associated with each
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measurement yi is known, and that the xi ’s (values of the dependent variable) are
known exactly.

To measure how well the model agrees with the data, we use the chi-square
merit function (15.1.6), which in this case is

�2.a; b/ D

N�1X
iD0

�
yi � a � bxi

�i

�2
(15.2.2)

If the measurement errors are normally distributed, then this merit function will give
maximum likelihood parameter estimations of a and b; if the errors are not normally
distributed, then the estimations are not maximum likelihood but may still be useful
in a practical sense. In �15.7, we will treat the case where outlier points are so
numerous as to render the �2 merit function useless.

Equation (15.2.2) is minimized to determine a and b. At its minimum, deriva-
tives of �2.a; b/ with respect to a; b vanish:

0 D
@�2

@a
D �2

N�1X
iD0

yi � a � bxi

�2i

0 D
@�2

@b
D �2

N�1X
iD0

xi .yi � a � bxi /

�2i

(15.2.3)

These conditions can be rewritten in a convenient form if we define the following
sums:

S �

N�1X
iD0

1

�2i
Sx �

N�1X
iD0

xi

�2i
Sy �

N�1X
iD0

yi

�2i

Sxx �

N�1X
iD0

x2i
�2i

Sxy �

N�1X
iD0

xiyi

�2i

(15.2.4)

With these definitions (15.2.3) becomes

aS C bSx D Sy

aSx C bSxx D Sxy
(15.2.5)

The solution of these two equations in two unknowns is calculated as

� � SSxx � .Sx/
2

a D
SxxSy � SxSxy

�

b D
SSxy � SxSy

�

(15.2.6)

Equation (15.2.6) gives the solution for the best-fit model parameters a and b.
We are not done, however. We must estimate the probable uncertainties in the

estimates of a and b, since obviously the measurement errors in the data must in-
troduce some uncertainty in the determination of those parameters. If the data are
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independent, then each contributes its own bit of uncertainty to the parameters. Con-
sideration of propagation of errors shows that the variance �2

f
in the value of any

function will be

�2f D

N�1X
iD0

�2i

�
@f

@yi

�2
(15.2.7)

For the straight line, the derivatives of a and b with respect to yi can be directly
evaluated from the solution:

@a

@yi
D
Sxx � Sxxi

�2i �

@b

@yi
D
Sxi � Sx

�2i �

(15.2.8)

Summing over the points as in (15.2.7), we get

�2a D Sxx=�

�2b D S=�
(15.2.9)

which are the variances in the estimates of a and b, respectively. We will see in
�15.6 that an additional number is also needed to characterize properly the probable
uncertainty of the parameter estimation. That number is the covariance of a and b,
and (as we will see below) is given by

Cov.a; b/ D �Sx=� (15.2.10)

The coefficient of correlation between the uncertainty in a and the uncertainty
in b, which is a number between�1 and 1, follows from (15.2.10) (compare equation
14.5.1),

rab D
�Sx
p
SSxx

(15.2.11)

A positive value of rab indicates that the errors in a and b are likely to have the same
sign, while a negative value indicates the errors are anticorrelated, likely to have
opposite signs.

We are still not done. We must estimate the goodness-of-fit of the data to the
model. Absent this estimate, we have not the slightest indication that the parameters
a and b in the model have any meaning at all! The probability Q that a value of
chi-square as poor as the value (15.2.2) should occur by chance is

Q D 1 � Chisqdist.N � 2/.invcdf .�2/ (15.2.12)

Here Chisqdist is our object embodying the chi-square distribution function (see
�6.14.8) and invcdf is its inverse cumulative distribution function. If Q is larger
than, say, 0:1, then the goodness-of-fit is believable. If it is larger than, say, 0:001,
then the fit may be acceptable if the errors are nonnormal or have been moderately
underestimated. If Q is less than 0:001, then the model and/or estimation procedure
can rightly be called into question. In this latter case, turn to �15.7 to proceed further.

If you do not know the individual measurement errors of the points �i , and are
proceeding (dangerously) to use equation (15.1.7) for estimating these errors, then
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here is the procedure for estimating the probable uncertainties of the parameters a
and b: Set �i � 1 in all equations through (15.2.6), and multiply �a and �b , as
obtained from equation (15.2.9), by the additional factor

p
�2=.N � 2/, where �2 is

computed by (15.2.2) using the fitted parameters a and b. As discussed above, this
procedure is equivalent to assuming a good fit, so you get no independent goodness-
of-fit probability Q.

In �14.5 we promised a relation between the linear correlation coefficient r
(equation 14.5.1) and a goodness-of-fit measure, �2 (equation 15.2.2). For un-
weighted data (all �i D 1), that relation is

�2 D .1 � r2/

N�1X
iD0

.yi � xy/
2 (15.2.13)

For data with varying errors �i , the above equations remain valid if the sums in
equations (15.2.13) and (14.5.1) are weighted by 1=�2i .

The following object, Fitab, carries out exactly the operations that we have
discussed. You call its constructor either with, or without, errors �i . If the �i ’s
are known, the calculations exactly correspond to the formulas above. However,
when �i ’s are unavailable, the routine assumes equal values of � for each point and
assumes a good fit, as discussed in �15.1.

The formulas (15.2.6) are susceptible to roundoff error. Accordingly, we rewrite
them as follows: Define

ti D
1

�i

�
xi �

Sx

S

�
; i D 0; 1; : : : ; N � 1 (15.2.14)

and

St t D

N�1X
iD0

t2i (15.2.15)

Then, as you can verify by direct substitution,

b D
1

St t

N�1X
iD0

tiyi

�i
(15.2.16)

a D
Sy � Sxb

S
(15.2.17)

�2a D
1

S

�
1C

S2x
SSt t

�
(15.2.18)

�2b D
1

St t
(15.2.19)

Cov.a; b/ D �
Sx

SSt t
(15.2.20)

rab D
Cov.a; b/

�a�b
(15.2.21)
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struct Fitab {fitab.h
Object for fitting a straight line y D aCbx to a set of points .xi ; yi /, with or without available
errors �i . Call one of the two constructors to calculate the fit. The answers are then available
as the variables a, b, siga, sigb, chi2, and either q or sigdat.

Int ndata;
Doub a, b, siga, sigb, chi2, q, sigdat; Answers.
VecDoub_I &x, &y, &sig;

Fitab(VecDoub_I &xx, VecDoub_I &yy, VecDoub_I &ssig)
: ndata(xx.size()), x(xx), y(yy), sig(ssig), chi2(0.), q(1.), sigdat(0.) {
Constructor. Given a set of data points x[0..ndata-1], y[0..ndata-1] with individual
standard deviations sig[0..ndata-1], sets a,b and their respective probable uncertainties
siga and sigb, the chi-square chi2, and the goodness-of-fit probability q (that the fit

would have �2 this large or larger).
Gamma gam;
Int i;
Doub ss=0.,sx=0.,sy=0.,st2=0.,t,wt,sxoss;
b=0.0; Accumulate sums ...
for (i=0;i<ndata;i++) {

wt=1.0/SQR(sig[i]); ...with weights
ss += wt;
sx += x[i]*wt;
sy += y[i]*wt;

}
sxoss=sx/ss;
for (i=0;i<ndata;i++) {

t=(x[i]-sxoss)/sig[i];
st2 += t*t;
b += t*y[i]/sig[i];

}
b /= st2; Solve for a, b, �a, and �b .
a=(sy-sx*b)/ss;
siga=sqrt((1.0+sx*sx/(ss*st2))/ss);

sigb=sqrt(1.0/st2); Calculate �2.
for (i=0;i<ndata;i++) chi2 += SQR((y[i]-a-b*x[i])/sig[i]);
if (ndata>2) q=gam.gammq(0.5*(ndata-2),0.5*chi2); Equation (15.2.12).

}

Fitab(VecDoub_I &xx, VecDoub_I &yy)
: ndata(xx.size()), x(xx), y(yy), sig(xx), chi2(0.), q(1.), sigdat(0.) {
Constructor. As above, but without known errors (sig is not used). The uncertainties siga
and sigb are estimated by assuming equal errors for all points, and that a straight line is
a good fit. q is returned as 1.0, the normalization of chi2 is to unit standard deviation on
all points, and sigdat is set to the estimated error of each point.

Int i;
Doub ss,sx=0.,sy=0.,st2=0.,t,sxoss;
b=0.0; Accumulate sums ...
for (i=0;i<ndata;i++) {

sx += x[i]; ...without weights.
sy += y[i];

}
ss=ndata;
sxoss=sx/ss;
for (i=0;i<ndata;i++) {

t=x[i]-sxoss;
st2 += t*t;
b += t*y[i];

}
b /= st2; Solve for a, b, �a, and �b .
a=(sy-sx*b)/ss;
siga=sqrt((1.0+sx*sx/(ss*st2))/ss);

sigb=sqrt(1.0/st2); Calculate �2.
for (i=0;i<ndata;i++) chi2 += SQR(y[i]-a-b*x[i]);
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if (ndata > 2) sigdat=sqrt(chi2/(ndata-2)); For unweighted data evaluate typ-
ical sig using chi2, and ad-
just the standard deviations.

siga *= sigdat;
sigb *= sigdat;

}
};

CITED REFERENCES AND FURTHER READING:

Bevington, P.R., and Robinson, D.K. 2002, Data Reduction and Error Analysis for the Physical
Sciences, 3rd ed. (New York: McGraw-Hill), Chapter 6.

Devore, J.L. 2003, Probability and Statistics for Engineering and the Sciences, 6th ed. (Belmont,
CA: Duxbury Press), Chapter 12.

15.3 Straight-Line Data with Errors in Both
Coordinates

If experimental data are subject to measurement error not only in the yi ’s, but also in the
xi ’s, then the task of fitting a straight-line model

y.x/ D aC bx (15.3.1)

is considerably harder. It is straightforward to write down the �2 merit function for this case,

�2.a; b/ D

N�1X
iD0

.yi � a � bxi /
2

�2y i C b
2�2x i

(15.3.2)

where �x i and �y i are, respectively, the x and y standard deviations for the i th point. The
weighted sum of variances in the denominator of equation (15.3.2) can be understood both as
the variance in the direction of the smallest �2 between each data point and the line with slope
b, and also as the variance of the linear combination yi � a� bxi of two random variables xi
and yi ,

Var.yi � a � bxi / D Var.yi /C b
2Var.xi / D �

2
y i C b

2�2x i � 1=wi (15.3.3)

The sum of the square of N random variables, each normalized by its variance, is thus chi-
square distributed.

We want to minimize equation (15.3.2) with respect to a and b. Unfortunately, the
occurrence of b in the denominator of equation (15.3.2) makes the resulting equation for
the slope @�2=@b D 0 nonlinear. However, the corresponding condition for the intercept,
@�2=@a D 0, is still linear and yields

a D

�X
i

wi .yi � bxi /

� �X
i

wi (15.3.4)

where the wi ’s are defined by equation (15.3.3). A reasonable strategy, now, is to use the
machinery of Chapter 10 (e.g., a Brent object) for minimizing a general one-dimensional
function to minimize with respect to b while using equation (15.3.4) at each stage to ensure
that the minimum with respect to b is also minimized with respect to a.

Because of the finite error bars on the xi ’s, the minimum �2 as a function of b will be
finite, though usually large, when b equals infinity (line of infinite slope). The angle � �
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Δχ2 = 1

σa

A

B

σb

0

b

a

s

r

Figure 15.3.1. Standard errors for the parameters a and b. The pointB can be found by varying the slope
b while simultaneously minimizing the intercept a. This gives the standard error �b and also the value s.
The standard error �a can then be found by the geometric relation �2a D s

2 C r2.

arctan b is thus more suitable as a parametrization of slope than b itself. The value of �2 will
then be periodic in � with period 	 (not 2	!). If any data points have very small �y ’s but
moderate or large �x ’s, then it is also possible to have a maximum in �2 near zero slope,
� � 0. In that case, there can sometimes be two �2 minima, one at positive slope and the
other at negative. Only one of these is the correct global minimum. It is therefore important to
have a good starting guess for b (or � ). Our strategy, implemented below, is to scale the yi ’s
so as to have variance equal to the xi ’s, and then to do a conventional (as in �15.2) linear fit
with weights derived from the (scaled) sum �2y i C �

2
x i . This yields a good starting guess for

b if the data are even plausibly related to a straight-line model.
Finding the standard errors �a and �b on the parameters a and b is more complicated.

We will see in �15.6 that, in appropriate circumstances, the standard errors in a and b are the
respective projections onto the a- and b-axes of the “confidence region boundary” where �2

takes on a value one greater than its minimum, ��2 D 1. In the linear case of �15.2, these
projections follow from the Taylor series expansion

��2 �
1

2

"
@2�2

@a2
.�a/2 C

@2�2

@b2
.�b/2

#
C
@2�2

@a@b
�a�b (15.3.5)

Because of the present nonlinearity in b, however, analytic formulas for the second derivatives
are quite unwieldy; more important, the lowest-order term frequently gives a poor approxima-
tion to ��2. Our strategy is therefore to find the roots of ��2 D 1 numerically, by adjusting
the value of the slope b away from the minimum. In the program below, the general root finder
zbrent is used. It may occur that there are no roots at all — for example, if all error bars are
so large that all the data points are compatible with each other. It is important, therefore, to
make some effort at bracketing a putative root before refining it (cf. �9.1).

Because a is minimized at each stage of varying b, successful numerical root finding
leads to a value of �a that minimizes �2 for the value of �b that gives ��2 D 1. This (see
Figure 15.3.1) directly gives the tangent projection of the confidence region onto the b-axis,
and thus �b . It does not, however, give the tangent projection of the confidence region onto
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the a-axis. In the figure, we have found the point labeled B; to find �a we need to find the
point A. Geometry to the rescue: To the extent that the confidence region is approximated by
an ellipse, you can prove (see figure) that �2a D r

2C s2. The value of s is known from having
found the point B . The value of r follows from equations (15.3.2) and (15.3.3) applied at the
�2 minimum (point O in the figure), giving

r2 D 1
.X

i

wi (15.3.6)

Actually, since b can go through infinity, this whole procedure makes more sense in
.a; �/ space than in .a; b/ space. That is, in fact, how the following program works. Since it
is conventional, however, to return standard errors for a and b, not a and � , we finally use the
relation

�b D ��= cos2 � (15.3.7)

We caution that if b and its standard error are both large, so that the confidence region actually
includes infinite slope, then the standard error �b is not very meaningful. The functor Chixy is
normally called only by the routine Fitexy. However, if you want, you can yourself explore
the confidence region by making repeated calls to Chixy (whose argument is an angle � , not
a slope b), after a single initializing call to Fitexy.

Be aware that the literature on the seemingly straightforward subject of this section is
generally confusing and sometimes plain wrong. Deming’s [1] early treatment is sound, but its
reliance on Taylor expansions gives inaccurate error estimates. References [2-4] are reliable,
more recent, general treatments with critiques of earlier work. York [5] and Reed [6] usefully
discuss the simple case of a straight line as treated here, but the latter paper has some errors,
corrected in [7]. All this commotion has attracted the Bayesians [8-10], who have still different
points of view.

A final caution, repeated from �15.0, is that if the goodness-of-fit is not acceptable (re-
turned probability is too small), the standard errors �a and �b are surely not believable. In
dire circumstances, you might try scaling all your x and y error bars by a constant factor until
the probability is acceptable (0.5, say), to get more plausible values for �a and �b .

Implementing code is given in a Webnote [11].

CITED REFERENCES AND FURTHER READING:

Deming, W.E. 1943, Statistical Adjustment of Data (New York: Wiley), reprinted 1964 (New York:
Dover).[1]

Jefferys, W.H. 1980, “On the Method of Least Squares,” Astronomical Journal, vol. 85, pp. 177–
181; see also vol. 95, p. 1299 (1988).[2]

Jefferys, W.H. 1981, “On the Method of Least Squares — Part Two,” Astronomical Journal,
vol. 86, pp. 149–155; see also vol. 95, p. 1300 (1988).[3]

Lybanon, M. 1984, “A Better Least-Squares Method When Both Variables Have Uncertainties,”
American Journal of Physics, vol. 52, pp. 22–26.[4]

York, D. 1966, “Least-Squares Fitting of a Straight Line,” Canadian Journal of Physics, vol. 44,
pp. 1079–1086.[5]

Reed, B.C. 1989, “Linear Least-Squares Fits with Error in Both Coordinates,” American Journal
of Physics, vol. 57, pp. 642–646; see also vol. 58, p. 189, and vol. 58, p. 1209.[6]

Reed, B.C. 1992, “Linear Least-squares Fits with Errors in Both Coordinates. II: Comments on
Parameter Variances,” American Journal of Physics, vol. 60, pp. 59–62.[7]

Zellner, A. 1971, An Introduction to Bayesian Inference in Econometrics (New York: Wiley);
reprinted 1987 (Malabar, FL: R. E. Krieger).[8]

Gull, S.F. 1989, in Maximum Entropy and Bayesian Methods, J. Skilling, ed. (Boston: Kluwer).[9]

Jaynes, E.T. 1991, in Maximum-Entropy and Bayesian Methods, Proceedings of the 10th Inter-
national Workshop, W.T. Grandy, Jr., and L.H. Schick, eds. (Boston: Kluwer).[10]

Macdonald, J.R., and Thompson, W.J. 1992, “Least-Squares Fitting When Both Variables Con-
tain Errors: Pitfalls and Possibilities,” American Journal of Physics, vol. 60, pp. 66–73.
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Numerical Recipes Software 2007, “Code Implementation for Fitexy,” Numerical Recipes Web-
note No. 19, at http://www.nr.com/webnotes?19 [11]

15.4 General Linear Least Squares

An immediate generalization of �15.2 is to fit a set of data points .xi ; yi / to a
model that is not just a linear combination of 1 and x (namely a C bx), but rather
a linear combination of any M specified functions of x. For example, the functions
could be 1; x; x2; : : : ; xM�1, in which case their general linear combination,

y.x/ D a0 C a1x C a2x
2 C 	 	 	 C aM�1x

M�1 (15.4.1)

is a polynomial of degree M � 1. Or, the functions could be sines and cosines, in
which case their general linear combination is a Fourier series. The general form of
this kind of model is

y.x/ D

M�1X
kD0

akXk.x/ (15.4.2)

where the quantities X0.x/; : : : ; XM�1.x/ are arbitrary fixed functions of x, called
the basis functions.

Note that the functions Xk.x/ can be wildly nonlinear functions of x. In this
discussion, “linear” refers only to the model’s dependence on its parameters ak .

For these linear models we generalize the discussion of the previous section by
defining a merit function

�2 D

N�1X
iD0

"
yi �

PM�1
kD0 akXk.xi /

�i

#2
(15.4.3)

As before, �i is the measurement error (standard deviation) of the i th data point,
presumed to be known. If the measurement errors are not known, they may all (as
discussed at the end of �15.1) be set to the constant value � D 1.

Once again, we will pick as best parameters those that minimize �2. There are
several different techniques available for finding this minimum. Two are particularly
useful, and we will discuss both in this section. To introduce them and elucidate their
relationship, we need some notation.

Let A be a matrix whose N �M components are constructed from theM basis
functions evaluated at the N abscissas xi , and from the N measurement errors �i ,
by the prescription

Aij D
Xj .xi /

�i
(15.4.4)

The matrix A is called the design matrix of the fitting problem. Notice that in general
A has more rows than columns, N � M , since there must be more data points
than model parameters to be solved for. (You can fit a straight line to two points,
but not a very meaningful quintic!) The design matrix is shown schematically in
Figure 15.4.1.
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X0(x0)
σ0

x0 X1(x0)
σ0

. . . XM-1(x0)
σ0

X0( ) X1( ) . . . XM-1( )

X0(x1)
σ1

x1 X1(x1)
σ1

. . . XM-1(x1)
σ1

...
...

...
...

...
...

...

X0(xN-1)
σN-1

xN-1 X1(xN-1)
σN-1

. . . XM-1(xN-1)
σN-1

da
ta

 p
oi

nt
s

basis functions

Figure 15.4.1. Design matrix A for the least-squares fit of a linear combination of M basis functions to
N data points. The matrix elements involve the basis functions evaluated at the values of the independent
variable at which measurements are made and the standard deviations of the measured dependent variable.
The measured values of the dependent variable do not enter the design matrix.

Also define a vector b of length N by

bi D
yi

�i
(15.4.5)

and denote the M vector whose components are the parameters to be fitted, a0; : : : ;
aM�1, by a.

15.4.1 Solution by Use of the Normal Equations

The minimum of (15.4.3) occurs where the derivative of �2 with respect to all
M parameters ak vanishes. Specializing equation (15.1.8) to the case of the model
(15.4.2), this condition yields the M equations

0 D

N�1X
iD0

1

�2i

"
yi �

M�1X
jD0

ajXj .xi /

#
Xk.xi / k D 0; : : : ;M � 1 (15.4.6)

Interchanging the order of summations, we can write (15.4.6) as the matrix equation

M�1X
jD0

˛kjaj D ˇk (15.4.7)

where
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˛kj D

N�1X
iD0

Xj .xi /Xk.xi /

�2i
or, equivalently, ˛ D AT 	A (15.4.8)

an M �M matrix, and

ˇk D

N�1X
iD0

yiXk.xi /

�2i
or, equivalently, ˇ D AT 	 b (15.4.9)

a vector of length M .
The equations (15.4.6) or (15.4.7) are called the normal equations of the least-

squares problem. They can be solved for the vector of parameters a by the standard
methods of Chapter 2, notably LU decomposition and backsubstitution, Choleksy
decomposition, or Gauss-Jordan elimination. In matrix form, the normal equations
can be written as either

˛ 	 a D ˇ or as
�
AT 	A



	 a D AT 	 b (15.4.10)

The inverse matrix C � ˛�1, called the covariance matrix, is closely related to
the probable (or, more precisely, standard) uncertainties of the estimated parameters
a. To estimate these uncertainties, consider that

aj D

M�1X
kD0

˛�1jk ˇk D

M�1X
kD0

Cjk

"
N�1X
iD0

yiXk.xi /

�2i

#
(15.4.11)

and that the variance associated with the estimate aj can be found as in (15.2.7) from

�2.aj / D

N�1X
iD0

�2i

�
@aj

@yi

�2
(15.4.12)

Note that j̨k is independent of yi , so that

@aj

@yi
D

M�1X
kD0

CjkXk.xi /=�
2
i (15.4.13)

Consequently, we find that

�2.aj / D

M�1X
kD0

M�1X
lD0

CjkCjl

"
N�1X
iD0

Xk.xi /Xl .xi /

�2i

#
(15.4.14)

The final term in brackets is just the matrix ˛. Since this is the matrix inverse of C,
(15.4.14) reduces immediately to

�2.aj / D Cjj (15.4.15)

In other words, the diagonal elements of C are the variances (squared uncer-
tainties) of the fitted parameters a. It should not surprise you to learn that the off-
diagonal elements Cjk are the covariances between aj and ak (cf. 15.2.10); but we
shall defer discussion of these to �15.6.
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We will now give a routine that implements the above formulas for the general
linear least-squares problem, by the method of normal equations. Since we wish to
compute not only the solution vector a but also the covariance matrix C, it is most
convenient to use Gauss-Jordan elimination (routine gaussj of �2.1) to perform
the linear algebra. The operation count in this application is no larger than that
for LU decomposition. If you have no need for the covariance matrix, however,
you can save a factor of 3 on the linear algebra by switching to LU decomposition,
without computation of the matrix inverse. In theory, since AT 	A is positive-definite,
Cholesky decomposition is the most efficient way to solve the normal equations.
However, in practice, most of the computing time is spent in looping over the data to
form the equations, and Gauss-Jordan is quite adequate.

We need to warn you that the solution of a least-squares problem directly from
the normal equations is rather susceptible to roundoff error, because the condition
number of the matrix ˛ is the square of the condition number of A. An alternative,
and preferred, technique involvesQR decomposition (�2.10, �11.4, and �11.7) of the
design matrix A. This is essentially what we did at the end of �15.2 for fitting data to
a straight line, but without invoking all the machinery of QR to derive the necessary
formulas. Later in this section, we will discuss other difficulties in the least-squares
problem, for which the cure is singular value decomposition (SVD), of which we
give an implementation. It turns out that SVD also fixes the roundoff problem, so
it is our recommended technique for all but “easy” least-squares problems. It is for
these easy problems that the following routine, which solves the normal equations,
is intended.

The object Fitlin, below, has one “value-added feature” that can be quite use-
ful in practical work: Frequently it is a matter of art to decide which parameters ak
in a model should be fit from the data set, and which should be held constant at fixed
values, for example values predicted by a theory or measured in a previous exper-
iment. One wants, therefore, to have a convenient means for “freezing” and “un-
freezing” the parameters ak . In the following code, the total number of parameters
ak is denoted ma (called M above) and is deduced from the size of the vector that is
returned by the user-supplied fitting function routine. The Fitlin object maintains
a boolean array ia[0..ma-1]. Components that are false indicate that you want
the corresponding elements of the parameter vector a[0..ma-1] to be held fixed
at their input values. Components that are true indicate parameters that should be
fitted for. On output, any frozen parameters will have their variances, and all their
covariances, set to zero in the covariance matrix.

struct Fitlin { fitlin.h
Object for general linear least-squares fitting by solving the normal equations, also including
the ability to hold specified parameters at fixed, specified values. Call constructor to bind data
vectors and fitting functions. Then call any combination of hold, free, and fit as often as
desired. fit sets the output quantities a, covar, and chisq.

Int ndat, ma;
VecDoub_I &x,&y,&sig;
VecDoub (*funcs)(const Doub);
VecBool ia;

VecDoub a; Output values. a is the vector of fitted coefficients,
covar is its covariance matrix, and chisq is the
value of �2 for the fit.

MatDoub covar;
Doub chisq;

Fitlin(VecDoub_I &xx, VecDoub_I &yy, VecDoub_I &ssig, VecDoub funks(const Doub))
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: ndat(xx.size()), x(xx), y(yy), sig(ssig), funcs(funks) {
Constructor. Binds references to the data arrays xx, yy, and ssig, and to a user-supplied
function funks(x) that returns a VecDoub containing ma basis functions evaluated at x D x.
Initializes all parameters as free (not held).

ma = funcs(x[0]).size();
a.resize(ma);
covar.resize(ma,ma);
ia.resize(ma);
for (Int i=0;i<ma;i++) ia[i] = true;

}

void hold(const Int i, const Doub val) {ia[i]=false; a[i]=val;}
void free(const Int i) {ia[i]=true;}
Optional functions for holding a parameter, identified by a value i in the range 0; : : : ; ma-1,
fixed at the value val, or for freeing a parameter that was previously held fixed. hold and
free may be called for any number of parameters before calling fit to calculate best-fit
values for the remaining (not held) parameters, and the process may be repeated multiple
times. Alternatively, you can set the boolean vector ia directly, before calling fit.

void fit() {
Solve the normal equations for �2 minimization to fit for some or all of the coefficients
a[0..ma-1] of a function that depends linearly on a, y D

P
i ai � funksi .x/. Set answer

values for a[0..ma-1], �2 D chisq, and the covariance matrix covar[0..ma-1][0..ma-1].
(Parameters held fixed by calls to hold will return zero covariances.)

Int i,j,k,l,m,mfit=0;
Doub ym,wt,sum,sig2i;
VecDoub afunc(ma);
for (j=0;j<ma;j++) if (ia[j]) mfit++;
if (mfit == 0) throw("lfit: no parameters to be fitted");
MatDoub temp(mfit,mfit,0.),beta(mfit,1,0.);
for (i=0;i<ndat;i++) { Loop over data to accumulate coefficients of

the normal equations.afunc = funcs(x[i]);
ym=y[i];
if (mfit < ma) { Subtract off dependences on known pieces

of the fitting function.for (j=0;j<ma;j++)
if (!ia[j]) ym -= a[j]*afunc[j];

}
sig2i=1.0/SQR(sig[i]);
for (j=0,l=0;l<ma;l++) { Set up matrix and r.h.s. for matrix inversion.

if (ia[l]) {
wt=afunc[l]*sig2i;
for (k=0,m=0;m<=l;m++)

if (ia[m]) temp[j][k++] += wt*afunc[m];
beta[j++][0] += ym*wt;

}
}

}
for (j=1;j<mfit;j++) for (k=0;k<j;k++) temp[k][j]=temp[j][k];
gaussj(temp,beta); Matrix solution.
for (j=0,l=0;l<ma;l++) if (ia[l]) a[l]=beta[j++][0];

Spread the solution to appropriate positions in a, and evaluate �2 of the fit.
chisq=0.0;
for (i=0;i<ndat;i++) {

afunc = funcs(x[i]);
sum=0.0;
for (j=0;j<ma;j++) sum += a[j]*afunc[j];
chisq += SQR((y[i]-sum)/sig[i]);

}
for (j=0;j<mfit;j++) for (k=0;k<mfit;k++) covar[j][k]=temp[j][k];
for (i=mfit;i<ma;i++) Rearrange covariance matrix into the correct

order.for (j=0;j<i+1;j++) covar[i][j]=covar[j][i]=0.0;
k=mfit-1;
for (j=ma-1;j>=0;j--) {
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if (ia[j]) {
for (i=0;i<ma;i++) SWAP(covar[i][k],covar[i][j]);
for (i=0;i<ma;i++) SWAP(covar[k][i],covar[j][i]);
k--;

}
}

}
};

Typical use of Fitlin will look something like this:

const Int npts=: : :
VecDoub xx(npts),yy(npts),ssig(npts);

� � �
Fitlin myfit(xx,yy,ssig,cubicfit);

myfit.fit();

where (in this example) cubicfit is a user-supplied function that might look like
this:

VecDoub cubicfit(const Doub x) {

VecDoub ans(4);

ans[0] = 1.;

for (Int i=1;i<4;i++) ans[i] = x*ans[i-1];

return ans;

}

15.4.2 Solution by Use of Singular Value Decomposition

In some applications, the normal equations are perfectly adequate for linear
least-squares problems. However, in many other cases the normal equations are very
close to singular. A zero pivot element may be encountered during the solution of
the linear equations (e.g., in gaussj), in which case you get no solution at all. Or
a very small pivot may occur, in which case you typically get fitted parameters ak
with very large magnitudes that are delicately (and unstably) balanced to cancel out
almost precisely when the fitted function is evaluated.

Why does this commonly occur? A mathematical reason is that the condition
number of the matrix ˛ is the square of the condition number of A. But an addi-
tional physical reason is that, more often than experimenters would like to admit,
data do not clearly distinguish between two or more of the basis functions provided.
If two such functions, or two different combinations of functions, happen to fit the
data about equally well — or equally badly — then the matrix ˛, unable to distin-
guish between them, neatly folds up its tent and becomes singular. There is a certain
mathematical irony in the fact that least-squares problems are both overdetermined
(number of data points greater than number of parameters) and underdetermined
(ambiguous combinations of parameters exist); but that is how it frequently is. The
ambiguities can be extremely hard to notice a priori in complicated problems.

Enter singular value decomposition (SVD). This would be a good time for you
to review the material in �2.6, which we will not repeat here. In the case of an
overdetermined system, SVD produces a solution that is the best approximation in
the least-squares sense, cf. equation (2.6.10). That is exactly what we want. In the
case of an underdetermined system, SVD produces a solution whose values (for us,
the ak’s) are smallest in the least-squares sense, cf. equation (2.6.8). That is also
what we want: When some combination of basis functions is irrelevant to the fit, that
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combination will be driven down to a small, innocuous, value, rather than pushed up
to delicately canceling infinities.

In terms of the design matrix A (equation 15.4.4) and the vector b (equation
15.4.5), minimization of �2 in (15.4.3) can be written as

find a that minimizes �2 D jA 	 a � bj2 (15.4.16)

Comparing to equation (2.6.9), we see that this is precisely the problem that routines
in the SVD object are designed to solve. The solution, which is given by equation
(2.6.12), can be rewritten as follows: If U and V enter the SVD decomposition of
A according to equation (2.6.1), as computed by SVD, then let the vectors U .i/ i D

0; : : : ;M � 1 denote the columns of U (each one a vector of length N ), and let the
vectors V .i/ i D 0; : : : ;M � 1 denote the columns of V (each one a vector of length
M ). Then the solution (2.6.12) of the least-squares problem (15.4.16) can be written
as

a D

M�1X
iD0

�
U .i/ 	 b

wi

�
V .i/ (15.4.17)

where the wi are, as in �2.6, the singular values calculated by SVD.
Equation (15.4.17) says that the fitted parameters a are linear combinations of

the columns of V , with coefficients obtained by forming dot products of the columns
of U with the weighted data vector (15.4.5). Though it is beyond our scope to prove
here, it turns out that the standard (loosely, “probable”) errors in the fitted parameters
are also linear combinations of the columns of V . In fact, equation (15.4.17) can be
written in a form displaying these errors as

a D

"
M�1X
iD0

�
U .i/ 	 b

wi

�
V .i/

#
˙

1

w0
V .0/ ˙ 	 	 	 ˙

1

wM�1
V .M�1/ (15.4.18)

Here each ˙ is followed by a standard deviation. The amazing fact is that, decom-
posed in this fashion, the standard deviations are all mutually independent (uncorre-
lated). Therefore they can be added together in root-mean-square fashion. What is
going on is that the vectors V .i/ are the principal axes of the error ellipsoid of the
fitted parameters a (see �15.6).

It follows that the variance in the estimate of a parameter aj is given by

�2.aj / D

M�1X
iD0

1

w2i
ŒV .i/�

2
j D

M�1X
iD0

�
Vj i

wi

�2
(15.4.19)

whose result should be identical to (15.4.14). As before, you should not be surprised
at the formula for the covariances, here given without proof,

Cov.aj ; ak/ D
M�1X
iD0

�
Vj iVki

w2i

�
(15.4.20)

We introduced this subsection by noting that the normal equations can fail by
encountering a zero pivot. We have not yet, however, mentioned how SVD over-
comes this problem. The answer is: If any singular value wi is zero, its reciprocal
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in equation (15.4.18) should be set to zero, not infinity. (Compare the discussion
preceding equation 2.6.7.) This corresponds to adding to the fitted parameters a a
zero multiple, rather than some random large multiple, of any linear combination of
basis functions that are degenerate in the fit. It is a good thing to do!

Moreover, if a singular value wi is nonzero but very small, you should also
define its reciprocal to be zero, since its apparent value is probably an artifact of
roundoff error, not a meaningful number. A plausible answer to the question “how
small is small?” is to edit in this fashion all singular values whose ratio to the largest
singular value is less than N times the machine precision �. (This is a more conser-
vative recommendation than the default in �2.6, which scales as N 1=2.)

There is another reason for editing even additional singular values, ones large
enough that roundoff error is not a question. Singular value decomposition allows
you to identify linear combinations of variables that just happen not to contribute
much to reducing the �2 of your data set. Editing these can sometimes reduce the
probable error errors on your coefficients quite significantly, while increasing the
minimum �2 only negligibly. We will learn more about identifying and treating such
cases in �15.6.

Generally speaking, we recommend that you always use SVD techniques in-
stead of using the normal equations. SVD’s only significant disadvantage is that it
requires extra storage of order N �M for the design matrix and its decomposition.
Storage is also required for theM �M matrix V , but this is instead of the same-sized
matrix for the coefficients of the normal equations. SVD can be significantly slower
than solving the normal equations; however, its great advantage, that it (theoretically)
cannot fail, more than makes up for the speed disadvantage.

The following object, Fitsvd, has an interface almost identical to Fitlin,
above. An additional optional parameter in the constructor sets the threshold for
editing singular values.

struct Fitsvd { fitsvd.h
Object for general linear least-squares fitting using singular value decomposition. Call construc-
tor to bind data vectors and fitting functions. Then call fit, which sets the output quantities
a, covar, and chisq.

Int ndat, ma;
Doub tol;
VecDoub_I *x,&y,&sig; (Why is x a pointer? Explained in �15.4.4.)
VecDoub (*funcs)(const Doub);
VecDoub a; Output values. a is the vector of fitted coefficients,

covar is its covariance matrix, and chisq is the
value of �2 for the fit.

MatDoub covar;
Doub chisq;

Fitsvd(VecDoub_I &xx, VecDoub_I &yy, VecDoub_I &ssig,
VecDoub funks(const Doub), const Doub TOL=1.e-12)
: ndat(yy.size()), x(&xx), xmd(NULL), y(yy), sig(ssig),
funcs(funks), tol(TOL) {}
Constructor. Binds references to the data arrays xx, yy, and ssig, and to a user-supplied
function funks(x) that returns a VecDoub containing ma basis functions evaluated at x D x.
If TOL is positive, it is the threshold (relative to the largest singular value) for discarding
small singular values. If it is � 0, the default value in SVD is used.

void fit() {
Solve by singular value decomposition the �2 minimization that fits for the coefficients
a[0..ma-1] of a function that depends linearly on a, y D

P
i ai � funksi .x/. Set answer

values for a[0..ma-1], chisq D �2, and the covariance matrix covar[0..ma-1][0..ma-1].
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Int i,j,k;
Doub tmp,thresh,sum;
if (x) ma = funcs((*x)[0]).size();
else ma = funcsmd(row(*xmd,0)).size(); (Discussed in �15.4.4.)
a.resize(ma);
covar.resize(ma,ma);
MatDoub aa(ndat,ma);
VecDoub b(ndat),afunc(ma);
for (i=0;i<ndat;i++) { Accumulate coefficients of the

design matrix.if (x) afunc=funcs((*x)[i]);
else afunc=funcsmd(row(*xmd,i)); (Discussed in �15.4.4.)
tmp=1.0/sig[i];
for (j=0;j<ma;j++) aa[i][j]=afunc[j]*tmp;
b[i]=y[i]*tmp;

}
SVD svd(aa); Singular value decomposition.
thresh = (tol > 0. ? tol*svd.w[0] : -1.);
svd.solve(b,a,thresh); Solve for the coefficients.
chisq=0.0; Evaluate chi-square.
for (i=0;i<ndat;i++) {

sum=0.;
for (j=0;j<ma;j++) sum += aa[i][j]*a[j];
chisq += SQR(sum-b[i]);

}
for (i=0;i<ma;i++) { Sum contributions to covariance

matrix (15.4.20).for (j=0;j<i+1;j++) {
sum=0.0;
for (k=0;k<ma;k++) if (svd.w[k] > svd.tsh)

sum += svd.v[i][k]*svd.v[j][k]/SQR(svd.w[k]);
covar[j][i]=covar[i][j]=sum;

}
}

}

From here on, code for multidimensional fits, to be discussed in �15.4.4.
MatDoub_I *xmd;
VecDoub (*funcsmd)(VecDoub_I &);

Fitsvd(MatDoub_I &xx, VecDoub_I &yy, VecDoub_I &ssig,
VecDoub funks(VecDoub_I &), const Doub TOL=1.e-12)
: ndat(yy.size()), x(NULL), xmd(&xx), y(yy), sig(ssig),
funcsmd(funks), tol(TOL) {}
Constructor for multidimensional fits. Exactly the same as the previous constructor, except
that xx is now a matrix whose rows are the multidimensional data points and funks is now
a function of a multidimensional data point (as a VecDoub).

VecDoub row(MatDoub_I &a, const Int i) {
Utility. Returns the row of a MatDoub as a VecDoub.

Int j,n=a.ncols();
VecDoub ans(n);
for (j=0;j<n;j++) ans[j] = a[i][j];
return ans;

}
};

For degenerate or nearly degenerate problems, if you want to try different sin-
gular value thresholds, you call the Fitsvd constructor once. Then, as many times
as you want, “reach in” and increase tol, then call fit again and examine the result-
ing value of chisq (and optionally also the covariance matrix). Keep going as long
as chisq does not increase by too much. To learn what is “too much,” see �15.6; but
a few � 0:1 is almost always OK.
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15.4.3 Examples
Be aware that some apparently nonlinear problems can be expressed so that they

are linear. For example, an exponential model with two parameters a and b,

y.x/ D a exp.�bx/ (15.4.21)

can be rewritten as
logŒy.x/� D c � bx (15.4.22)

which is linear in its parameters c and b. (Of course you must be aware that such
transformations do not exactly take Gaussian errors into Gaussian errors.)

Also watch out for “nonparameters,” as in

y.x/ D a exp.�bx C d/ (15.4.23)

Here the parameters a and d are, in fact, indistinguishable. This is a good example
of where the normal equations will be exactly singular, and where SVD will find a
zero singular value. SVD will then make a least-squares choice for setting a balance
between a and d (or, rather, their equivalents in the linear model derived by taking the
logarithms). However — and this is true whenever SVD gives back a zero singular
value — you are better advised to figure out analytically where the degeneracy is
among your basis functions, and then make appropriate deletions in the basis set.

We already gave an example of a user-supplied fitting-function routine, cubic-
fit, above. Here are two further examples. First, we trivially generalize cubicfit
for polynomials of an arbitrary, preset, degree:

Int fpoly_np = 10; Global variable for the degree plus one. fit examples.h

VecDoub fpoly(const Doub x) {
Fitting routine for a polynomial of degree fpoly_np-1.

Int j;
VecDoub p(fpoly_np);
p[0]=1.0;
for (j=1;j<fpoly_np;j++) p[j]=p[j-1]*x;
return p;

}

The second example is slightly less trivial. It is used to fit Legendre polynomials
up to some order fleg_nl to a data set. (Note that, for most uses, the data should
satisfy �1 
 x 
 1.)

Int fleg_nl = 10; Global variable for the degree plus one. fit examples.h

VecDoub fleg(const Doub x) {
Fitting routine for an expansion with nl Legendre polynomials, evaluated using the recurrence
relation as in �5.4.

Int j;
Doub twox,f2,f1,d;
VecDoub pl(fleg_nl);
pl[0]=1.;
pl[1]=x;
if (fleg_nl > 2) {

twox=2.*x;
f2=x;
d=1.;
for (j=2;j<fleg_nl;j++) {
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f1=d++;
f2+=twox;
pl[j]=(f2*pl[j-1]-f1*pl[j-2])/d;

}
}
return pl;

}

15.4.4 Multidimensional Fits
If you are measuring a single variable y as a function of more than one variable

— say, a vector of variables x — then your basis functions will be functions of a
vector, X0.x/; : : : ; XM�1.x/. The �2 merit function is now

�2 D

N�1X
iD0

"
yi �

PM�1
kD0 akXk.xi /

�i

#2
(15.4.24)

All of the preceding discussion goes through unchanged, with x replaced by x. In
fact, we anticipated this in the coding of Fitsvd, above, which can do multidimen-
sional general linear fits as easily as one-dimensional. Here is how:

A second, overloaded, constructor in Fitsvd substitutes a matrix xx for what
was previously a vector. The rows of the matrix are the ndat data points. The
number of columns is the dimensionality of the space (that is, of x). Similarly, the
user-supplied function funks now takes a vector argument, an x. A simple example
(fitting a quadratic function to data in two dimensions) might be

VecDoub quadratic2d(VecDoub_I &xx) {

VecDoub ans(6);

Doub x=xx[0], y=xx[1];

ans[0] = 1;

ans[1] = x; ans[2] = y;

ans[3] = x*x; ans[4] = x*y; ans[5] = y*y;

return ans;

}

Be sure that the argument of your user function has exactly the type “VecDoub_I &”
(and not, for example, “VecDoub &” or “VecDoub_I”), since strict C++ compilers
are picky about this.

The two constructors in Fitsvd communicate to fit whether data points are
one-dimensional or multidimensional by setting either xmd or x to NULL. This ex-
plains the oddity that x was bound to the user data as a pointer, while y and sig were
bound as references. (Yes, we know this is a bit of a hack!)
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15.5 Nonlinear Models
We now consider fitting when the model depends nonlinearly on the set of M

unknown parameters ak; k D 0; 1; : : : ;M�1. We use the same approach as in previ-
ous sections, namely to define a �2 merit function and determine best-fit parameters
by its minimization. With nonlinear dependences, however, the minimization must
proceed iteratively. Given trial values for the parameters, we develop a procedure
that improves the trial solution. The procedure is then repeated until �2 stops (or
effectively stops) decreasing.

How is this problem different from the general nonlinear function minimization
problem already dealt with in Chapter 10? Superficially, not at all. Sufficiently close
to the minimum, we expect the �2 function to be well approximated by a quadratic
form, which we can write as

�2.a/ � � � d 	 aC 1
2
a 	D 	 a (15.5.1)

where d is an M -vector and D is an M �M matrix. (Compare equation 10.8.1.)
If the approximation is a good one, we know how to jump from the current trial
parameters acur to the minimizing ones amin in a single leap, namely

amin D acur CD�1 	
�
�r�2.acur/

	
(15.5.2)

(Compare equation 10.9.4.)
On the other hand, (15.5.1) might be a poor local approximation to the shape of

the function that we are trying to minimize at acur. In that case, about all we can do
is take a step down the gradient, as in the steepest descent method (�10.8). In other
words,

anext D acur � constant � r�2.acur/ (15.5.3)

where the constant is small enough not to exhaust the downhill direction.
To use (15.5.2) or (15.5.3), we must be able to compute the gradient of the �2

function at any set of parameters a. To use (15.5.2) we also need the matrix D, which
is the second derivative matrix (Hessian matrix) of the �2 merit function, at any a.

Now, this is the crucial difference from Chapter 10: There, we had no way of
directly evaluating the Hessian matrix. We were given only the ability to evaluate
the function to be minimized and (in some cases) its gradient. Therefore, we had
to resort to iterative methods not just because our function was nonlinear, but also
in order to build up information about the Hessian matrix. Sections 10.9 and 10.8
concerned themselves with two different techniques for building up this information.

Here, life is much simpler. We know exactly the form of �2, since it is based on
a model function that we ourselves have specified. Therefore, the Hessian matrix is
known to us. Thus we are free to use (15.5.2) whenever we care to do so. The only
reason to use (15.5.3) will be failure of (15.5.2) to improve the fit, signaling failure
of (15.5.1) as a good local approximation.
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15.5.1 Calculation of the Gradient and Hessian
The model to be fitted is

y D y.xja/ (15.5.4)

and the �2 merit function is

�2.a/ D

N�1X
iD0

�
yi � y.xi ja/

�i

�2
(15.5.5)

The gradient of �2 with respect to the parameters a, which will be zero at the �2

minimum, has components

@�2

@ak
D �2

N�1X
iD0

Œyi � y.xi ja/�

�2i

@y.xi ja/

@ak
k D 0; 1; : : : ;M � 1 (15.5.6)

Taking an additional partial derivative gives

@2�2

@ak@al
D 2

N�1X
iD0

1

�2i

�
@y.xi ja/

@ak

@y.xi ja/

@al
� Œyi � y.xi ja/�

@2y.xi ja/

@al@ak

�
(15.5.7)

It is conventional to remove the factors of 2 by defining

ˇk � �
1

2

@�2

@ak
˛kl �

1

2

@2�2

@ak@al
(15.5.8)

making ˛ D 1
2
D in equation (15.5.2), in terms of which that equation can be rewrit-

ten as the set of linear equations:

M�1X
lD0

˛kl ıal D ˇk (15.5.9)

This set is solved for the increments ıal that, added to the current approximation,
give the next approximation. In the context of least squares, the matrix ˛, equal to
one-half times the Hessian matrix, is usually called the curvature matrix.

Equation (15.5.3), the steepest descent formula, translates to

ıal D constant � ˇl (15.5.10)

Note that the components ˛kl of the Hessian matrix (15.5.7) depend both on the
first derivatives and on the second derivatives of the basis functions with respect to
their parameters. Some treatments proceed to ignore the second derivative without
comment. We will ignore it also, but only after a few comments.

Second derivatives occur because the gradient (15.5.6) already has a depen-
dence on @y=@ak , and so the next derivative simply must contain terms involving
@2y=@al@ak . The second derivative term can be dismissed when it is zero (as in the
linear case of equation 15.4.8) or small enough to be negligible when compared to
the term involving the first derivative. It also has an additional possibility of being
ignorably small in practice: The term multiplying the second derivative in equation
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(15.5.7) is Œyi � y.xi ja/�. For a successful model, this term should just be the ran-
dom measurement error of each point. This error can have either sign, and should in
general be uncorrelated with the model. Therefore, the second derivative terms tend
to cancel out when summed over i .

Inclusion of the second derivative term can in fact be destabilizing if the model
fits badly or is contaminated by outlier points that are unlikely to be offset by com-
pensating points of opposite sign. From this point on, we will always use as the
definition of ˛kl the formula

˛kl D

N�1X
iD0

1

�2i

�
@y.xi ja/

@ak

@y.xi ja/

@al

�
(15.5.11)

This expression more closely resembles its linear cousin (15.4.8). You should under-
stand that minor (or even major) fiddling with ˛ has no effect at all on what final set
of parameters a is reached, but affects only the iterative route that is taken in getting
there. The condition at the �2 minimum, that ˇk D 0 for all k, is independent of
how ˛ is defined.

15.5.2 Levenberg-Marquardt Method
Marquardt [1] put forth an elegant method, related to an earlier suggestion of

Levenberg, for varying smoothly between the extremes of the inverse-Hessian method
(15.5.9) and the steepest descent method (15.5.10). The latter method is used far
from the minimum, switching continuously to the former as the minimum is ap-
proached. This Levenberg-Marquardt method (also called the Marquardt method)
works very well in practice if you can guess plausible starting guesses for your pa-
rameters. It has become a standard nonlinear least-squares routine.

The method is based on two elementary, but important, insights. Consider the
“constant” in equation (15.5.10). What should it be, even in order of magnitude?
What sets its scale? There is no information about the answer in the gradient. That
tells only the slope, not how far that slope extends. Marquardt’s first insight is that
the components of the Hessian matrix, even if they are not usable in any precise
fashion, give some information about the order-of-magnitude scale of the problem.

The quantity �2 is nondimensional, i.e., is a pure number; this is evident from
its definition (15.5.5). On the other hand, ˇk has the dimensions of 1=ak , which
may well be dimensional, i.e., have units like cm�1, or kilowatt-hours, or whatever.
(In fact, each component of ˇk can have different dimensions!) The constant of
proportionality between ˇk and ıak must therefore have the dimensions of a2

k
. Scan

the components of ˛ and you see that there is only one obvious quantity with these
dimensions, and that is 1=˛kk , the reciprocal of the diagonal element. So that must
set the scale of the constant. But that scale might itself be too big. So let’s divide
the constant by some (nondimensional) fudge factor �, with the possibility of setting
�� 1 to cut down the step. In other words, replace equation (15.5.10) by

ıal D
1

�˛l l
ˇl or �˛l l ıal D ˇl (15.5.12)

It is necessary that ˛l l be positive, but this is guaranteed by definition (15.5.11) —
another reason for adopting that equation.
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Marquardt’s second insight is that equations (15.5.12) and (15.5.9) can be com-
bined if we define a new matrix ˛0 by the following prescription:

˛0jj � j̨j .1C �/

˛0jk � j̨k .j ¤ k/
(15.5.13)

and then replace both (15.5.12) and (15.5.9) by

M�1X
lD0

˛0kl ıal D ˇk (15.5.14)

When � is very large, the matrix ˛0 is forced into being diagonally dominant, so
equation (15.5.14) goes over to be identical to (15.5.12). On the other hand, as �
approaches zero, equation (15.5.14) goes over to (15.5.9).

Given an initial guess for the set of fitted parameters a, the recommended Mar-
quardt recipe is as follows:

� Compute �2.a/.
� Pick a modest value for �, say � D 0:001.
� (�) Solve the linear equations (15.5.14) for ıa and evaluate �2.aC ıa/.
� If �2.a C ıa/ ��2.a/, increase � by a factor of 10 (or any other substantial

factor) and go back to (�).
� If �2.aC ıa/ < �2.a/, decrease � by a factor of 10, update the trial solution
a aC ıa, and go back to (�).

Also necessary is a condition for stopping. Iterating to convergence (to machine
accuracy or to the roundoff limit) is generally wasteful and unnecessary since the
minimum is at best only a statistical estimate of the parameters a. As we will see
in �15.6, a change in the parameters that changes �2 by an amount � 1 is never
statistically meaningful.

Furthermore, it is not uncommon to find the parameters wandering around near
the minimum in a flat valley of complicated topography. The reason is that Mar-
quardt’s method generalizes the method of normal equations (�15.4); hence it has
the same problem as that method with regard to near-degeneracy of the minimum.
Outright failure by a zero pivot is possible, but unlikely. More often, a small pivot
will generate a large correction that is then rejected, the value of � being then in-
creased. For sufficiently large �, the matrix ˛0 is positive-definite and can have
no small pivots. Thus the method does tend to stay away from zero pivots, but
at the cost of a tendency to wander around doing steepest descent in very unsteep
degenerate valleys.

These considerations suggest that, in practice, one might as well stop iterating
after a few occurrences of �2 decreasing by a negligible amount, say either less than
0:001 absolutely or (in case roundoff prevents that being reached) fractionally. Don’t
stop after a step where �2 increases more than trivially: That only shows that � has
not yet adjusted itself optimally.

Once the acceptable minimum has been found, one wants to set � D 0 and
compute the matrix

C � ˛�1 (15.5.15)

which, as before, is the estimated covariance matrix of the standard errors in the
fitted parameters a (see next section).
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The following object, Fitmrq, implements Marquardt’s method for nonlinear
parameter estimation. The user interface is intentionally very close to that of Fitlin
in �15.4. In particular, the feature of being able to freeze or unfreeze chosen param-
eters is available here, too.

One difference from Fitlin is that you have to supply an initial guess for the
parameters a. Now that is a can of worms! When you are fitting for parameters
that enter highly nonlinearly, there is no reason in the world that the �2 surface
should have only a single minimum. Marquardt’s method embodies no magical in-
sight into finding the global minimum; it’s just a downhill search. Often, it should be
the endgame strategy for fitting parameters, preceded by perhaps cruder, and likely
problem-specific, methods for getting into the right general basin of convergence.

Another difference between Fitmrq and Fitlin is the format of the user-
supplied function funks. Since Fitmrq needs both function and gradient values,
funks is now coded as a void function returning answers through arguments passed
by reference. An example is given below. You call Fitmrq’s constructor once, to
bind your data vectors and function. Then (after any optional calls to hold or free)
you call fit, which sets values for a, chisq, and covar. The curvature matrix
alpha is also available. Note that the original vector of parameter guesses that you
send to the constructor is not modified; rather, the answer is returned in a.

struct Fitmrq { fitmrq.h
Object for nonlinear least-squares fitting by the Levenberg-Marquardt method, also including
the ability to hold specified parameters at fixed, specified values. Call constructor to bind data
vectors and fitting functions and to input an initial parameter guess. Then call any combination
of hold, free, and fit as often as desired. fit sets the output quantities a, covar, alpha,
and chisq.

static const Int NDONE=4, ITMAX=1000; Convergence parameters.
Int ndat, ma, mfit;
VecDoub_I &x,&y,&sig;
Doub tol;
void (*funcs)(const Doub, VecDoub_I &, Doub &, VecDoub_O &);
VecBool ia;
VecDoub a; Output values. a is the vector of fitted coefficients,

covar is its covariance matrix, alpha is the cur-
vature matrix, and chisq is the value of �2 for
the fit.

MatDoub covar;
MatDoub alpha;
Doub chisq;

Fitmrq(VecDoub_I &xx, VecDoub_I &yy, VecDoub_I &ssig, VecDoub_I &aa,
void funks(const Doub, VecDoub_I &, Doub &, VecDoub_O &), const Doub
TOL=1.e-3) : ndat(xx.size()), ma(aa.size()), x(xx), y(yy), sig(ssig),
tol(TOL), funcs(funks), ia(ma), alpha(ma,ma), a(aa), covar(ma,ma) {
Constructor. Binds references to the data arrays xx, yy, and ssig, and to a user-supplied
function funks that calculates the nonlinear fitting function and its derivatives. Also inputs
the initial parameters guess aa (which is copied, not modified) and an optional convergence
tolerance TOL. Initializes all parameters as free (not held).

for (Int i=0;i<ma;i++) ia[i] = true;
}

void hold(const Int i, const Doub val) {ia[i]=false; a[i]=val;}
void free(const Int i) {ia[i]=true;}
Optional functions for holding a parameter, identified by a value i in the range 0; : : : ;ma-1,
fixed at the value val, or for freeing a parameter that was previously held fixed. hold and
free may be called for any number of parameters before calling fit to calculate best-fit
values for the remaining (not held) parameters, and the process may be repeated multiple
times.

void fit() {
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Iterate to reduce the �2 of a fit between a set of data points x[0..ndat-1], y[0..ndat-1]
with individual standard deviations sig[0..ndat-1], and a nonlinear function that de-
pends on ma coefficients a[0..ma-1]. When �2 is no longer decreasing, set best-fit val-
ues for the parameters a[0..ma-1], and chisq D �2, covar[0..ma-1][0..ma-1], and
alpha[0..ma-1][0..ma-1]. (Parameters held fixed will return zero covariances.)

Int j,k,l,iter,done=0;
Doub alamda=.001,ochisq;
VecDoub atry(ma),beta(ma),da(ma);
mfit=0;
for (j=0;j<ma;j++) if (ia[j]) mfit++;
MatDoub oneda(mfit,1), temp(mfit,mfit);
mrqcof(a,alpha,beta); Initialization.
for (j=0;j<ma;j++) atry[j]=a[j];
ochisq=chisq;
for (iter=0;iter<ITMAX;iter++) {

if (done==NDONE) alamda=0.; Last pass. Use zero alamda.
for (j=0;j<mfit;j++) { Alter linearized fitting matrix, by augmenting di-

agonal elements.for (k=0;k<mfit;k++) covar[j][k]=alpha[j][k];
covar[j][j]=alpha[j][j]*(1.0+alamda);
for (k=0;k<mfit;k++) temp[j][k]=covar[j][k];
oneda[j][0]=beta[j];

}
gaussj(temp,oneda); Matrix solution.
for (j=0;j<mfit;j++) {

for (k=0;k<mfit;k++) covar[j][k]=temp[j][k];
da[j]=oneda[j][0];

}
if (done==NDONE) { Converged. Clean up and return.

covsrt(covar);
covsrt(alpha);
return;

}
for (j=0,l=0;l<ma;l++) Did the trial succeed?

if (ia[l]) atry[l]=a[l]+da[j++];
mrqcof(atry,covar,da);
if (abs(chisq-ochisq) < MAX(tol,tol*chisq)) done++;
if (chisq < ochisq) { Success, accept the new solution.

alamda *= 0.1;
ochisq=chisq;
for (j=0;j<mfit;j++) {

for (k=0;k<mfit;k++) alpha[j][k]=covar[j][k];
beta[j]=da[j];

}
for (l=0;l<ma;l++) a[l]=atry[l];

} else { Failure, increase alamda.
alamda *= 10.0;
chisq=ochisq;

}
}
throw("Fitmrq too many iterations");

}

void mrqcof(VecDoub_I &a, MatDoub_O &alpha, VecDoub_O &beta) {
Used by fit to evaluate the linearized fitting matrix alpha, and vector beta as in (15.5.8),

and to calculate �2.
Int i,j,k,l,m;
Doub ymod,wt,sig2i,dy;
VecDoub dyda(ma);
for (j=0;j<mfit;j++) { Initialize (symmetric) alpha, beta.

for (k=0;k<=j;k++) alpha[j][k]=0.0;
beta[j]=0.;

}
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chisq=0.;
for (i=0;i<ndat;i++) { Summation loop over all data.

funcs(x[i],a,ymod,dyda);
sig2i=1.0/(sig[i]*sig[i]);
dy=y[i]-ymod;
for (j=0,l=0;l<ma;l++) {

if (ia[l]) {
wt=dyda[l]*sig2i;
for (k=0,m=0;m<l+1;m++)

if (ia[m]) alpha[j][k++] += wt*dyda[m];
beta[j++] += dy*wt;

}
}
chisq += dy*dy*sig2i; And find �2.

}
for (j=1;j<mfit;j++) Fill in the symmetric side.

for (k=0;k<j;k++) alpha[k][j]=alpha[j][k];
}

void covsrt(MatDoub_IO &covar) {
Expand in storage the covariance matrix covar, so as to take into account parameters that
are being held fixed. (For the latter, return zero covariances.)

Int i,j,k;
for (i=mfit;i<ma;i++)

for (j=0;j<i+1;j++) covar[i][j]=covar[j][i]=0.0;
k=mfit-1;
for (j=ma-1;j>=0;j--) {

if (ia[j]) {
for (i=0;i<ma;i++) SWAP(covar[i][k],covar[i][j]);
for (i=0;i<ma;i++) SWAP(covar[k][i],covar[j][i]);
k--;

}
}

}

};

15.5.3 Example
The following function fgauss is an example of a user-supplied function funks.

Used with Fitmrq, it fits for the model

y.x/ D

K�1X
kD0

Bk exp

�
�

�
x �Ek

Gk

�2�
(15.5.16)

which is a sum of K Gaussians, each with a variable position, amplitude, and width.
We store the parameters in the order B0; E0; G0; B1; E1; G1; : : : ; BK�1; EK�1;
GK�1.

void fgauss(const Doub x, VecDoub_I &a, Doub &y, VecDoub_O &dyda) { fit examples.h
y.xIa/ is the sum of na/3 Gaussians (15.5.16). The amplitude, center, and width of the
Gaussians are stored in consecutive locations of a: a[3k] D Bk , a[3kC1] D Ek , a[3kC2] D
Gk , k D 0; :::; na/3� 1. The dimensions of the arrays are a[0..na-1], dyda[0..na-1].

Int i,na=a.size();
Doub fac,ex,arg;
y=0.;
for (i=0;i<na-1;i+=3) {

arg=(x-a[i+1])/a[i+2];
ex=exp(-SQR(arg));
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fac=a[i]*ex*2.*arg;
y += a[i]*ex;
dyda[i]=ex;
dyda[i+1]=fac/a[i+2];
dyda[i+2]=fac*arg/a[i+2];

}
}

15.5.4 More Advanced Methods for Nonlinear Least
Squares

You will need more capability than Fitmrq can supply if either (i) it is con-
verging too slowly, or (ii) it is converging to a local minimum that is not the one you
want. Several options are available.

NL2SOL [3] is a highly regarded nonlinear least-squares implementation with
many advanced features. For example, it keeps the second-derivative term we dropped
in the Levenberg-Marquardt method whenever it would be better to do so, a so-called
full Newton-type method.

A different variant on the Levenberg-Marquardt algorithm is to implement it as
a model-trust region method for minimization (see �9.7 and ref. [2]) applied to the
special case of a least-squares function. A code of this kind due to Moré [4] can be
found in MINPACK [5].
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15.6 Confidence Limits on Estimated Model
Parameters

Several times already in this chapter we have made statements about the stan-
dard errors, or uncertainties, in a set of M estimated parameters a. We have given
some formulas for computing standard deviations or variances of individual param-
eters (equations 15.2.9, 15.4.15, and 15.4.19), as well as some formulas for covari-
ances between pairs of parameters (equation 15.2.10; remark following equation
15.4.15; equation 15.4.20; equation 15.5.15).

In this section, we want to be more explicit regarding the precise meaning of
these quantitative uncertainties, and to give further information about how quanti-
tative confidence limits on fitted parameters can be estimated. The subject can get
somewhat technical, and even somewhat confusing, so we will try to make precise
statements, even when they must be offered without proof.

Figure 15.6.1 shows the conceptual scheme of an experiment that “measures”
a set of parameters. There is some underlying true set of parameters atrue that are
known to Mother Nature but hidden from the experimenter. These true parameters
are statistically realized, along with random measurement errors, as a measured data
set, which we will symbolize as D.0/. The data set D.0/ is known to the experi-
menter. He or she fits the data to a model by �2 minimization or some other tech-
nique and obtains measured, i.e., fitted, values for the parameters, which we here
denote a.0/.

Because measurement errors have a random component, D.0/ is not a unique
realization of the true parameters atrue. Rather, there are infinitely many other re-
alizations of the true parameters as “hypothetical data sets” each of which could
have been the one measured, but happened not to be. Let us symbolize these by
D.1/;D.2/; : : : . Each one, had it been realized, would have given a slightly differ-
ent set of fitted parameters, a.1/;a.2/; : : : , respectively. These parameter sets a.i/
therefore occur with some probability distribution in theM -dimensional space of all
possible parameter sets a. The actual measured set a.0/ is one member drawn from
this distribution.

Even more interesting than the probability distribution of a.i/ would be the
distribution of the difference a.i/ � atrue. This distribution differs from the former
one by a translation that puts Mother Nature’s true value at the origin. If we knew this
distribution, we would know everything that there is to know about the quantitative
uncertainties in our experimental measurement a.0/.

So the name of the game is to find some way of estimating or approximating
the probability distribution of a.i/ � atrue without knowing atrue and without having
available to us an infinite universe of hypothetical data sets.

15.6.1 Monte Carlo Simulation of Synthetic Data Sets
Although the measured parameter set a.0/ is not the true one, let us consider

a fictitious world in which it was the true one. Since we hope that our measured
parameters are not too wrong, we hope that that fictitious world is not too different
from the actual world with parameters atrue. In particular, let us hope — no, let us
assume — that the shape of the probability distribution a.i/ � a.0/ in the fictitious
world is the same, or very nearly the same, as the shape of the probability distribution
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actual data set

hypothetical
data set

hypothetical
data set

hypothetical
data set

a(3) 

a(2) 

a(1)  

fitted
parameters
      a(0)

χ2

min

true parameters
atrue

ex
pe

rim
en

tal
 re

ali
za

tio
n

.

.

.
.
.
.

Figure 15.6.1. A statistical universe of data sets from an underlying model. True parameters a true are
realized in a data set, from which fitted (observed) parameters a.0/ are obtained. If the experiment were
repeated many times, new data sets and new values of the fitted parameters would be obtained.

a.i/ � atrue in the real world. Notice that we are not assuming that a.0/ and atrue are
equal; they are certainly not. We are only assuming that the way in which random
errors enter the experiment and data analysis does not vary rapidly as a function of
atrue, so that a.0/ can serve as a reasonable surrogate.

Now, often, the distribution of a.i/ � a.0/ in the fictitious world is within our
power to calculate (see Figure 15.6.2). If we know something about the process that
generated our data, given an assumed set of parameters a.0/, then we can usually fig-
ure out how to simulate our own sets of “synthetic” realizations of these parameters
as “synthetic data sets.” The procedure is to draw random numbers from appropriate
distributions (cf. �7.3 – �7.4) so as to mimic our best understanding of the underlying
process and measurement errors in our apparatus. With such random draws, we con-
struct data sets with exactly the same numbers of measured points, and precisely the
same values of all control (independent) variables, as our actual data set D.0/. Let us
call these simulated data sets DS

.1/
;DS

.2/
; : : : . By construction, these are supposed

to have exactly the same statistical relationship to a.0/ as the D.i/’s have to atrue.
(For the case where you don’t know enough about what you are measuring to do a
credible job of simulating it, see below.)

Next, for each DS
.j /

, perform exactly the same procedure for estimation of pa-

rameters, e.g., �2 minimization, as was performed on the actual data to get the pa-
rameters a.0/, giving simulated measured parameters aS

.1/
;aS
.2/
; : : : . Each simulated

measured parameter set yields a point aS
.i/
� a.0/. Simulate enough data sets and

enough derived simulated measured parameters, and you map out the desired proba-
bility distribution in M dimensions.
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Figure 15.6.2. Monte Carlo simulation of an experiment. The fitted parameters from an actual experiment
are used as surrogates for the true parameters. Computer-generated random numbers are used to simulate
many synthetic data sets. Each of these is analyzed to obtain its fitted parameters. The distribution of
these fitted parameters around the (known) surrogate true parameters is thus studied.

In fact, the ability to do Monte Carlo simulations in this fashion has revolution-
ized many fields of modern experimental science. Not only is one able to characterize
the errors of parameter estimation in a very precise way; one can also try out on the
computer different methods of parameter estimation, or different data reduction tech-
niques, and seek to minimize the uncertainty of the result according to any desired
criteria. Offered the choice between mastery of a five-foot shelf of analytical statis-
tics books and middling ability at performing statistical Monte Carlo simulations, we
would surely choose to have the latter skill.

15.6.2 Quick-and-Dirty Monte Carlo: The Bootstrap
Method

Here is a powerful technique that can often be used when you don’t know
enough about the underlying process, or the nature of your measurement errors,
to do a credible Monte Carlo simulation. Suppose that your data set consists of
N independent and identically distributed (or iid) “data points.” Each data point
probably consists of several numbers, e.g., one or more control variables (uniformly
distributed, say, in the range that you have decided to measure) and one or more as-
sociated measured values (each distributed however Mother Nature chooses). “Iid”
means that the sequential order of the data points is not of consequence to the pro-
cess that you are using to get the fitted parameters a. For example, a �2 sum like
(15.5.5) does not care in what order the points are added. Even simpler examples
are the mean value of a measured quantity and the mean of some function of the
measured quantities.
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The bootstrap method [1] uses the actual data set DS
.0/

, with itsN data points, to

generate any number of synthetic data sets DS
.1/
;DS

.2/
; : : : , also with N data points.

The procedure is simply to draw N data points at a time with replacement from the
set DS

.0/
. Because of the replacement, you do not simply get back your original data

set each time. You get sets in which a random fraction of the original points, typically
� 1=e � 37%, are replaced by duplicated original points. Now, exactly as in the
previous discussion, you subject these data sets to the same estimation procedure as
was performed on the actual data, giving a set of simulated measured parameters
aS
.1/
;aS
.2/
; : : : . These will be distributed around a.0/ in close to the same way that

a.0/ is distributed around atrue.
Sounds like getting something for nothing, doesn’t it? In fact, it took a while for

the bootstrap method to become accepted by statisticians. By now, however, enough
theorems have been proved to render the bootstrap reputable (see [2] for references).
The basic idea behind the bootstrap is that the actual data set, viewed as a probability
distribution consisting of delta functions at the measured values, is in most cases the
best — or only — available estimator of the underlying probability distribution. It
takes courage, but one can often simply use that distribution as the basis for Monte
Carlo simulations.

Watch out for cases where the bootstrap’s iid assumption is violated. For ex-
ample, if you have made measurements at evenly spaced intervals of some control
variable, then you can usually get away with pretending that these are iid uniformly
distributed over the measured range. However, some estimators of a (e.g., ones in-
volving Fourier methods) might be particularly sensitive to all the points on a grid
being present. In that case, the bootstrap is going to give a wrong distribution. Also
watch out for estimators that look at anything like small-scale clumpiness within the
N data points, or estimators that sort the data and look at sequential differences. Ob-
viously the bootstrap will fail on these, too. (The theorems justifying the method are
still true, but some of their technical assumptions are violated by these examples.)

For a large class of problems, however, the bootstrap does yield easy, very quick,
Monte Carlo estimates of the errors in an estimated parameter set.

15.6.3 Confidence Limits
Rather than present all details of the probability distribution of errors in param-

eter estimation, it is common practice to summarize the distribution in the form of
confidence limits. The full probability distribution is a function defined on the M -
dimensional space of parameters a. A confidence region (or confidence interval) is
just a region of that M -dimensional space (hopefully a small region) that contains a
certain (hopefully large) percentage of the total probability distribution. You point
to a confidence region and say, e.g., “there is a 99% chance that the true parameter
values fall within this region around the measured value.”

It is worth emphasizing that you, the experimenter, get to pick both the con-
fidence level (99% in the above example) and the shape of the confidence region.
The only requirement is that your region does include the stated percentage of prob-
ability. Certain percentages are, however, customary in scientific usage: 68.3% (the
lowest confidence worthy of quoting), 90%, 95.4%, 99%, and 99.73%. Higher con-
fidence levels are conventionally “ninety-nine point nine : : : nine.” As for shape,
obviously you want a region that is compact and reasonably centered on your mea-
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68% confidence interval on a1

68% confidence
interval on a0

68% confidence region
on a0 and a1 jointly

bias

a(i)0 − a(0)0
(s)

a(i)1 − a(0)1
(s)

Figure 15.6.3. Confidence intervals in one and two dimensions. The same fraction of measured points
(here 68%) lies (i) between the two vertical lines, (ii) between the two horizontal lines, (iii) within the
ellipse.

surement a.0/, since the whole purpose of a confidence limit is to inspire confidence
in that measured value. In one dimension, the convention is to use a line segment
centered on the measured value; in higher dimensions, ellipses or ellipsoids are most
frequently used.

You might suspect, correctly, that the numbers 68.3%, 95.4%, and 99.73%,
and the use of ellipsoids, have some connection with a normal distribution. That
is true historically, but not always relevant nowadays. In general, the probability
distribution of the parameters will not be normal, and the above numbers, used as
levels of confidence, are purely matters of convention.

Figure 15.6.3 sketches a possible probability distribution for the case M D 2.
Shown are three different confidence regions that might usefully be given, all at the
same confidence level. The two vertical lines enclose a band (horizontal interval)
that represents the 68% confidence interval for the variable a0 without regard to the
value of a1. Similarly the horizontal lines enclose a 68% confidence interval for a1.
The ellipse shows a 68% confidence interval for a0 and a1 jointly. Notice that to
enclose the same probability as the two bands, the ellipse must necessarily extend
outside of both of them (a point we will return to below).
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15.6.4 Constant Chi-Square Boundaries as Confidence
Limits

When the method used to estimate the parameters a.0/ is chi-square minimiza-
tion, as in the previous sections of this chapter, then there is a natural choice for the
shape of confidence intervals, whose use is almost universal. For the observed data
set D.0/, the value of �2 is a minimum at a.0/. Call this minimum value �2min. If
the vector a of parameter values is perturbed away from a.0/, then �2 increases. The
region within which �2 increases by no more than a set amount ��2 defines some
M -dimensional confidence region around a.0/. If ��2 is set to be a large number,
this will be a big region; if it is small, it will be small. Somewhere in between there
will be choices of ��2 that cause the region to contain, variously, 68%, 90%, etc.,
of probability distribution for a’s, as defined above. These regions are taken as the
confidence regions for the parameters a.0/.

Very frequently one is interested not in the full M -dimensional confidence re-
gion, but in individual confidence regions for some smaller number 
 of parameters.
For example, one might be interested in the confidence interval of each parameter
taken separately (the bands in Figure 15.6.3), in which case 
 D 1. In that case,
the natural confidence regions in the 
-dimensional subspace of the M -dimensional
parameter space are the projections of the M -dimensional regions defined by fixed
��2 into the 
-dimensional spaces of interest. In Figure 15.6.4, for the caseM D 2,
we show regions corresponding to several values of ��2. The one-dimensional con-
fidence interval in a1 corresponding to the region bounded by��2 D 1 lies between
the lines A and A0.

Note that it is the projection of the higher-dimensional region on the lower-
dimension space that is used, not the intersection. The intersection would be the band
between Z and Z0. It is never used. It is shown in the figure only for the purpose of
making this cautionary point, that it should not be confused with the projection.

15.6.5 Probability Distribution of Parameters in the Normal
Case

You may be wondering why we have, in this section up to now, made no con-
nection at all with the error estimates that come out of the �2 fitting procedure, most
notably the covariance matrix Cij . The reason is this: �2 minimization is a useful
means for estimating parameters even if the measurement errors are not normally
distributed. While normally distributed errors are required if the �2 parameter esti-
mate is to be a maximum likelihood estimator (�15.1), one is often willing to give
up that property in return for the relative convenience of the �2 procedure. Only
in extreme cases, i.e., measurement error distributions with very large “tails,” is �2

minimization abandoned in favor of more robust techniques, as will be discussed in
�15.7.

However, the formal covariance matrix that comes out of a �2 minimization
has a clear quantitative interpretation only if (or to the extent that) the measurement
errors actually are normally distributed. In the case of nonnormal errors, you are
“allowed”

� to fit for parameters by minimizing �2

� to use a contour of constant ��2 as the boundary of your confidence region
� to use Monte Carlo simulation or detailed analytic calculation in determining
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Z ′

Z

C ′

Δχ2 = 6.63

Δχ2 = 2.71

Δχ2 = 1.00

Δχ2 = 2.30A′

B ′

Figure 15.6.4. Confidence region ellipses corresponding to values of chi-square larger than the fitted
minimum. The solid curves, with ��2 D 1:00; 2:71; 6:63, project onto one-dimensional intervals
AA0, BB0, CC 0. These intervals — not the ellipses themselves — contain 68.3%, 90%, and 99%
of normally distributed data. The ellipse that contains 68.3% of normally distributed data is shown dashed
and has��2 D 2:30. For additional numerical values, see the table on p. 815.

which contour ��2 is the correct one for your desired confidence level
� to give the covariance matrix Cij as the “formal covariance matrix of the fit.”

You are not allowed

� to use formulas that we now give for the case of normal errors, which establish
quantitative relationships among ��2, Cij , and the confidence level.

Here are the key theorems that hold when (i) the measurement errors are nor-
mally distributed, and either (ii) the model is linear in its parameters or (iii) the
sample size is large enough that the uncertainties in the fitted parameters a do not
extend outside a region in which the model could be replaced by a suitable linearized
model. [Note that condition (iii) does not preclude your use of a nonlinear routine
like Fitmrq to find the fitted parameters.]

Theorem A. �2min is distributed as a chi-square distribution with N �M de-
grees of freedom, where N is the number of data points and M is the number of
fitted parameters. This is the basic theorem that lets you evaluate the goodness-of-fit
of the model, as discussed above in �15.1. We list it first to remind you that unless
the goodness-of-fit is credible, the whole estimation of parameters is suspect.

Theorem B. If aS
.j /

is drawn from the universe of simulated data sets with

actual parameters a.0/, then the probability distribution of ıa � aS
.j /
� a.0/ is the

multivariate normal distribution
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P.ıa/ da0 : : : daM�1 D const. � exp
�
�1
2
ıa 	 ˛ 	 ıa



da0 : : : daM�1

where ˛ is the curvature matrix defined in equation (15.5.8).
Theorem C. If aS

.j /
is drawn from the universe of simulated data sets with

actual parameters a.0/, then the quantity��2 � �2.a.j //��2.a.0// is distributed as
a chi-square distribution withM degrees of freedom. Here the �2’s are all evaluated
using the fixed (actual) data set D.0/. This theorem makes the connection between
particular values of ��2 and the fraction of the probability distribution that they
enclose as anM -dimensional region, i.e., the confidence level of theM -dimensional
confidence region.

Theorem D. Suppose that aS
.j /

is drawn from the universe of simulated data
sets (as above); that its first 
 components a0; : : : ; a��1 are held fixed; and that its
remaining M � 
 components are varied so as to minimize �2. Call this minimum
value �2� . Then ��2� � �2� � �

2
min is distributed as a chi-square distribution with


 degrees of freedom. If you consult Figure 15.6.4, you will see that this theorem
connects the projected ��2 region with a confidence level. In the figure, a point that
is held fixed in a1 and allowed to vary in a0 minimizing �2 will seek out the ellipse
whose top or bottom edge is tangent to the line of constant a1, and is therefore the
line that projects it onto the smaller-dimensional space.

As a first example, let us consider the case 
 D 1, where we want to find
the confidence interval of a single parameter, say a0. Notice that the chi-square
distribution with 
 D 1 degree of freedom is the same distribution as that of the
square of a single normally distributed quantity. Thus ��2� < 1 occurs 68.3% of the
time (1-� for the normal distribution), ��2� < 4 occurs 95.4% of the time (2-� for
the normal distribution), ��2� < 9 occurs 99.73% of the time (3-� for the normal
distribution), etc. In this manner you find the ��2� that corresponds to your desired
confidence level. (Additional values are given in the table on the next page.)

Let ıa be a change in the parameters whose first component is arbitrary, ıa0,
but the rest of whose components are chosen to minimize the ��2. Then Theorem
D applies. The value of ��2 is given in general by

��2 D ıa 	 ˛ 	 ıa (15.6.1)

which follows from equation (15.5.8) applied at �2min where ˇk D 0. Since ıa
by hypothesis minimizes �2 in all but its zeroth component, components 1 through
M � 1 of the normal equations (15.5.9) continue to hold. Therefore, the solution of
(15.5.9) is

ıa D ˛�1 	

0BBB@
c

0
:::

0

1CCCA D C 	

0BBB@
c

0
:::

0

1CCCA (15.6.2)

where c is one arbitrary constant that we get to adjust to make (15.6.1) give the
desired left-hand value. Plugging (15.6.2) into (15.6.1) and using the fact that C and
˛ are inverse matrices of one another, we get

c D ıa0=C00 and ��2� D .ıa0/
2=C00 (15.6.3)

or
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��2 as a Function of Confidence Level p and
Number of Parameters of Interest 





p 1 2 3 4 5 6

68.27% 1.00 2.30 3.53 4.72 5.89 7.04

90% 2.71 4.61 6.25 7.78 9.24 10.6

95.45% 4.00 6.18 8.02 9.72 11.3 12.8

99% 6.63 9.21 11.3 13.3 15.1 16.8

99.73% 9.00 11.8 14.2 16.3 18.2 20.1

99.99% 15.1 18.4 21.1 23.5 25.7 27.9

ıa0 D ˙

q
��2�

p
C00 (15.6.4)

At last! A relation between the confidence interval ˙ıa0 and the formal stan-
dard error �0 �

p
C00. Not unreasonably, we find that the 68% confidence interval

is˙�0, the 95% confidence interval is˙2�0, etc.
These considerations hold not just for the individual parameters ai , but also for

any linear combination of them: If

b �

M�1X
kD0

ciai D c 	 a (15.6.5)

then the 68% confidence interval on b is

ıb D ˙
p
c 	C 	 c (15.6.6)

However, these simple, normal-sounding numerical relationships do not hold
in the case 
 > 1 [3]. In particular, ��2 D 1 is not the boundary, nor does it
project onto the boundary, of a 68.3% confidence region when 
 > 1. If you want
to calculate not confidence intervals in one parameter, but confidence ellipses in
two parameters jointly, or ellipsoids in three, or higher, then you must follow the
following prescription for implementing Theorems C and D above:

� Let 
 be the number of fitted parameters whose joint confidence region you
wish to display, 
 
M . Call these parameters the “parameters of interest.”
� Let p be the confidence limit desired, e.g., p D 0:68 or p D 0:95.
� Find � (i.e., ��2) such that the probability of a chi-square variable with 


degrees of freedom being less than � is p. For some useful values of p and

, � is given in the table above. For other values, you can use the invcdf
method of the Chisqdist object in �6.14.8 with p as the argument.
� Take the M � M covariance matrix C D ˛�1 of the chi-square fit. Copy

the intersection of the 
 rows and columns corresponding to the parameters of
interest into a 
 � 
 matrix denoted Cproj.
� Invert the matrix Cproj. (In the one-dimensional case this was just taking the

reciprocal of the element C00.)
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� The equation for the elliptical boundary of your desired confidence region in
the 
-dimensional subspace of interest is

� D ıa0 	C�1proj 	 ıa
0 (15.6.7)

where ıa0 is the 
-dimensional vector of parameters of interest.

If you are confused at this point, you may find it helpful to compare Figure
15.6.4 and the table on the previous page considering the caseM D 2with 
 D 1 and

 D 2. You should be able to verify the following statements: (i) The horizontal band
between C and C 0 contains 99% of the probability distribution, so it is a confidence
limit on a1 alone at this level of confidence. (ii) Ditto the band between B and
B 0 at the 90% confidence level. (iii) The dashed ellipse, labeled by ��2 D 2:30,
contains 68.3% of the probability distribution, so it is a confidence region for a0 and
a1 jointly, at this level of confidence.

Another point of possible confusion might also be worth airing here. In �15.1.1,
when we discussed the use of �2 as a goodness-of-fit statistic, we mentioned that a
“moderately good” fit could have a �2 value that differed by as much as˙

p
2
 from

its expected value 
 (now the total number of degrees of freedom N � M , not 

as used above). Indeed, the suggested tail probability that embodies this advice is
Q D 1 � Chisqdist.
/.invcdf .�2/. Yet, in the discussion above, we seem to be
saying that small changes in �2, as little as ˙1 or ˙2:71 (see table on the previous
page), are significant. Can both statements be true?

Yes. In �15.1.1 we were considering the variation in �2 over a population of hy-
pothetical data sets with the same parameter values, atrue (cf. Figure 15.6.1). These
values vary by typically˙

p
2
. By contrast, in the discussion above, we took a sin-

gle data set and held it fixed. We then asked, essentially as an exercise in propagation
of errors, how much uncertainty in the fitted parameter values a0 was generated by
the uncertainties in the data. One way to see that these are quite different concepts
is to think about how they should each scale with N , the number of data points. As
N gets large, �2 scales as N , while its variation over hypothetical data sets scales as
N 1=2, essentially a random walk. Now imagine a varying around its fitted value a0
by a small amount, a D a0 C ıa. The change in �2 scales with the number of terms
in the sum, N , and quadratically with distance from the minimum,

ı�2 / N.ıa/2 (15.6.8)

As the number of data points increases, we reasonably expect the parameters to be-
come more accurately determined, scaling as

ıa / N�1=2 (15.6.9)

Combining these two equations, we find that ı�2 for the minimum significant change
in parameters ıa scales asN 0, that is, as a constant. In fact, Theorems B and C above
tell us that this is not just reasonable expectation on our part; it is actually true.

15.6.6 Confidence Limits from Singular Value
Decomposition

When you have obtained your �2 fit by singular value decomposition (�15.4),
the information about the fit’s formal errors comes packaged in a somewhat different,
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Figure 15.6.5. Relation of the confidence region ellipse ��2 D 1 to quantities computed by singular
value decomposition. The vectors V .i/ are unit vectors along the principal axes of the confidence region.
The semi-axes have lengths equal to the reciprocal of the singular values wi . If the axes are all scaled by
some constant factor ˛,��2 is scaled by the factor ˛2.

but generally more convenient, form. The columns of the matrix V are an orthonor-
mal set of M vectors that are the principal axes of the ��2 D constant ellipsoids.
We denote the columns as V .0/ : : :V .M�1/. The lengths of those axes are inversely
proportional to the corresponding singular values w0 : : : wM�1; see Figure 15.6.5.
The boundaries of the ellipsoids are thus given by

��2 D w20.V .0/ 	 ıa/
2 C 	 	 	 C w2M�1.V .M�1/ 	 ıa/

2 (15.6.10)

which is the justification for writing equation (15.4.18) above. Keep in mind that it
is much easier to plot an ellipsoid given a list of its vector principal axes than given
its matrix quadratic form: Loop over points z on a unit sphere in any desired way
(e.g., by latitude and longitude) and plot the mapped points

ıa D
p
��2

X
i

1

wi
.z 	 V .i//V .i/ (15.6.11)

The formula for the covariance matrix C in terms of the columns V .i/ is

C D

M�1X
iD0

1

w2i
V .i/ ˝ V .i/ (15.6.12)

or, in components,

Cjk D

M�1X
iD0

1

w2i
Vj iVki (15.6.13)

A method for plotting error ellipses (2-dimensions) or ellipsoids (3-dimensions)
from the covariance matrix C directly, not using its principal axes, is described in
�16.1.1.
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15.7 Robust Estimation

The concept of robustness has been mentioned in passing several times already.
In �14.1 we noted that the median was a more robust estimator of central value than
the mean; in �14.6 it was mentioned that rank correlation is more robust than linear
correlation. The concept of outlier points as exceptions to a Gaussian model for
experimental error was discussed in �15.1.

The term “robust” was coined in statistics by G.E.P. Box in 1953. Various
definitions of greater or lesser mathematical rigor are possible for the term, but in
general, referring to a statistical estimator, it means “insensitive to small departures
from the idealized assumptions for which the estimator is optimized” [1,2,3]. The
word “small” can have two different interpretations, both important: either fraction-
ally small departures for all data points, or else fractionally large departures for a
small number of data points. It is the latter interpretation, leading to the notion of
outlier points, that is generally the most stressful for statistical procedures.

Statisticians have developed various sorts of robust statistical estimators. Many,
if not most, can be grouped into one of three categories.

M-estimates follow from maximum likelihood arguments very much as equa-
tions (15.1.6) and (15.1.8) followed from equation (15.1.3). M-estimates are usually
the most relevant class for model fitting, that is, estimation of parameters. We there-
fore consider these estimates in some detail below.

L-estimates are “linear combinations of order statistics.” These are most ap-
plicable to estimations of central value and central tendency, though they can occa-
sionally be applied to some problems in estimation of parameters. Two “typical”
L-estimates will give you the general idea. They are (i) the median, and (ii) Tukey’s
trimean, defined as the weighted average of the first, second, and third quartile points
in a distribution, with weights 1/4, 1/2, and 1/4, respectively.

R-estimates are estimates based on rank tests. For example, the equality or
inequality of two distributions can be estimated by the Wilcoxon test of comput-
ing the mean rank of one distribution in a combined sample of both distribu-
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narrow
central peak

tail of
outliers

least squares fit

robust straight-line fit

(a)

(b)

Figure 15.7.1. Examples where robust statistical methods are desirable: (a) A one-dimensional distribu-
tion with a tail of outliers; statistical fluctuations in these outliers can prevent accurate determination of
the position of the central peak. (b) A distribution in two dimensions fitted to a straight line; nonrobust
techniques such as least-squares fitting can have undesired sensitivity to outlying points.

tions. The Kolmogorov-Smirnov statistic (equation 14.3.17) and the Spearman rank-
order correlation coefficient (14.6.1) are R-estimates in essence, if not always by
formal definition.

Some other kinds of robust techniques, coming from the fields of optimal con-
trol and filtering rather than from the field of mathematical statistics, are mentioned
at the end of this section. Some examples where robust statistical methods are desir-
able are shown in Figure 15.7.1.

15.7.1 Estimation of Parameters by Local M-Estimates

Suppose we know that our measurement errors are not normally distributed.
Then, in deriving a maximum likelihood formula for the estimated parameters a in a
model y.xja/, we would write instead of equation (15.1.3)
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P D

N�1Y
iD0

fexp Œ��.yi ; y fxi jag/��yg (15.7.1)

where the function � is the negative logarithm of the probability density. Taking the
logarithm of (15.7.1) analogously with (15.1.5), we find that we want to minimize
the expression

N�1X
iD0

�.yi ; y fxi jag/ (15.7.2)

Very often, it is the case that the function � depends not independently on its
two arguments, measured yi and predicted y.xi /, but only on their difference, at
least if scaled by some weight factors �i that we are able to assign to each point.
In this case the M-estimate is said to be local, and we can replace (15.7.2) by the
prescription

minimize over a

N�1X
iD0

�

�
yi � y.xi ja/

�i

�
(15.7.3)

where the function �.z/ is a function of a single variable z � Œyi � y.xi /�=�i .
If we now define the derivative of �.z/ to be a function  .z/,

 .z/ �
d�.z/

dz
(15.7.4)

then the generalization of (15.1.8) to the case of a general M-estimate is

0 D

N�1X
iD0

1

�i
 

�
yi � y.xi /

�i

��
@y.xi ja/

@ak

�
k D 0; : : : ;M � 1 (15.7.5)

If you compare (15.7.3) to (15.1.3) and (15.7.5) to (15.1.8), you see at once that
the specialization for normally distributed errors is

�.z/ D 1
2
z2  .z/ D z (normal) (15.7.6)

If the errors are distributed as a double or two-sided exponential, namely

Prob fyi � y.xi /g � exp

�
�

ˇ̌̌̌
yi � y.xi /

�i

ˇ̌̌̌�
(15.7.7)

then, by contrast,

�.x/ D jzj  .z/ D sgn.z/ (double exponential) (15.7.8)

Comparing to equation (15.7.3), we see that in this case the maximum likelihood
estimator is obtained by minimizing the mean absolute deviation, rather than the
mean square deviation. Here the tails of the distribution, although exponentially
decreasing, are asymptotically much larger than any corresponding Gaussian.

A distribution with even more extensive — and therefore sometimes even more
realistic — tails is the Cauchy or Lorentzian distribution,

Prob fyi � y.xi /g �
1

1C
1

2

�
yi � y.xi /

�i

�2 (15.7.9)
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This implies

�.z/ D log

�
1C

1

2
z2
�

 .z/ D
z

1C 1
2
z2

(Lorentzian) (15.7.10)

Notice that the  function occurs as a weighting function in the generalized
normal equations (15.7.5). For normally distributed errors, equation (15.7.6) says
that the more deviant the points, the greater the weight. By contrast, when tails are
somewhat more prominent, as in (15.7.7), then (15.7.8) says that all deviant points
get the same relative weight, with only the sign information used. Finally, when
the tails are even larger, (15.7.10) says the  increases with deviation, then starts
decreasing, so that very deviant points — the true outliers — are not counted at all
in the estimation of the parameters.

This general idea, that the weight given individual points should first increase
with deviation, then decrease, motivates some additional prescriptions for  that
do not especially correspond to standard, textbook probability distributions. Two
examples are

Andrew’s sine

 .z/ D

(
sin.z=c/ jzj < c	

0 jzj > c	
(15.7.11)

If the measurement errors happen to be normal after all, with standard deviations �i ,
then it can be shown that the optimal value for the constant c is c D 2:1.

Tukey’s biweight

 .z/ D

(
z.1 � z2=c2/2 jzj < c

0 jzj > c
(15.7.12)

where the optimal value of c for normal errors is c D 6:0.

15.7.2 Numerical Calculation of M-Estimates
To fit a model by means of an M-estimate, you first decide which M-estimate

you want, that is, which matching pair �,  you want to use. We rather like (15.7.8)
or (15.7.10).

You then have to make an unpleasant choice between two fairly difficult prob-
lems. Either find the solution of the nonlinear set of M equations (15.7.5), or else
minimize the single function in M variables (15.7.3).

Notice that the function (15.7.8) has a discontinuous  and a discontinuous
derivative for �. Such discontinuities frequently wreak havoc on both general non-
linear equation solvers and general function minimizing routines. You might now
think of rejecting (15.7.8) in favor of (15.7.10), which is smoother. However, you
will find that the latter choice is also bad news for many general equation solving
or minimization routines: Small changes in the fitted parameters can drive  .z/ off
its peak into one or the other of its asymptotically small regimes. Therefore, dif-
ferent terms in the equation spring into or out of action (almost as bad as analytic
discontinuities).

Don’t despair. If your computer is fast enough, or if your patience is great
enough, this is an excellent application for the downhill simplex minimization algo-
rithm exemplified in Amoeba (�10.5) or Amebsa (�10.12). Those algorithms make



�

�

“nr3” — 2007/5/1 — 20:53 — page 822 — #844
�

�

� �

822 Chapter 15. Modeling of Data

no assumptions about continuity; they just ooze downhill and will work for virtually
any sane choice of the function �.

It is very much to your (patience) advantage to find good starting values, how-
ever. Often this is done by first fitting the model by the standard �2 (nonrobust)
techniques, e.g., as described in �15.4 or �15.5. The fitted parameters thus obtained
are then used as starting values in Amoeba, now using the robust choice of � and
minimizing the expression (15.7.3).

15.7.3 Fitting a Line by Minimizing Absolute Deviation
Occasionally there is a special case that happens to be much easier than is

suggested by the general strategy outlined above. The case of equations (15.7.7)
– (15.7.8), when the model is a simple straight line,

y.xja; b/ D aC bx (15.7.13)

and where the weights �i are all equal, happens to be such a case. The problem is
precisely the robust version of the problem posed in equation (15.2.1) above, namely
fit a straight line through a set of data points. The merit function to be minimized is

N�1X
iD0

jyi � a � bxi j (15.7.14)

rather than the �2 given by equation (15.2.2).
The key simplification is based on the following fact: The median cM of a set

of numbers ci is also the value that minimizes the sum of the absolute deviationsX
i

jci � cM j

(Proof: Differentiate the above expression with respect to cM and set it to zero.)
It follows that, for fixed b, the value of a that minimizes (15.7.14) is

a D median fyi � bxi g (15.7.15)

Equation (15.7.5) for the parameter b is

0 D

N�1X
iD0

xi sgn.yi � a � bxi / (15.7.16)

(where sgn.0/ is to be interpreted as zero). If we replace a in this equation by the
implied function a.b/ of (15.7.15), then we are left with an equation in a single vari-
able that can be solved by bracketing and bisection, as described in �9.1. (In fact, it
is dangerous to use any fancier method of root finding, because of the discontinuities
in equation 15.7.16.)

Here is an object that does all this. It calls select (�8.5) to find the median. The
bracketing and bisection are built into the routine, as is the linear fit that generates
the initial guesses for a and b.
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struct Fitmed { fitmed.h
Object for fitting a straight line y D aCbx to a set of points .xi ; yi /, by the criterion of least
absolute deviations. Call the constructor to calculate the fit. The answers are then available as
the variables a, b, and abdev (the mean absolute deviation of the points from the line).

Int ndata;
Doub a, b, abdev; Answers.
VecDoub_I &x, &y;

Fitmed(VecDoub_I &xx, VecDoub_I &yy) : ndata(xx.size()), x(xx), y(yy) {
Constructor. Given a set of data points xx[0..ndata-1], yy[0..ndata-1], sets a, b, and
abdev.

Int j;
Doub b1,b2,del,f,f1,f2,sigb,temp;
Doub sx=0.0,sy=0.0,sxy=0.0,sxx=0.0,chisq=0.0;
for (j=0;j<ndata;j++) { As a first guess for a and b, we will find the

least-squares fitting line.sx += x[j];
sy += y[j];
sxy += x[j]*y[j];
sxx += SQR(x[j]);

}
del=ndata*sxx-sx*sx;
a=(sxx*sy-sx*sxy)/del; Least-squares solutions.
b=(ndata*sxy-sx*sy)/del;
for (j=0;j<ndata;j++)

chisq += (temp=y[j]-(a+b*x[j]),temp*temp);
sigb=sqrt(chisq/del); The standard deviation will give some idea of

how big an iteration step to take.b1=b;
f1=rofunc(b1);
if (sigb > 0.0) {

b2=b+SIGN(3.0*sigb,f1); Guess bracket as 3-� away, in the downhill di-
rection known from f1.f2=rofunc(b2);

if (b2 == b1) {
abdev /= ndata;
return;

}
while (f1*f2 > 0.0) { Bracketing.

b=b2+1.6*(b2-b1);
b1=b2;
f1=f2;
b2=b;
f2=rofunc(b2);

}
sigb=0.01*sigb;
while (abs(b2-b1) > sigb) {

b=b1+0.5*(b2-b1); Bisection.
if (b == b1 || b == b2) break;
f=rofunc(b);
if (f*f1 >= 0.0) {

f1=f;
b1=b;

} else {
f2=f;
b2=b;

}
}

}
abdev /= ndata;

}

Doub rofunc(const Doub b) {
Evaluates the right-hand side of equation (15.7.16) for a given value of b.

const Doub EPS=numeric_limits<Doub>::epsilon();
Int j;
Doub d,sum=0.0;
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VecDoub arr(ndata);
for (j=0;j<ndata;j++) arr[j]=y[j]-b*x[j];
if ((ndata & 1) == 1) {

a=select((ndata-1)>>1,arr);
} else {

j=ndata >> 1;
a=0.5*(select(j-1,arr)+select(j,arr));

}
abdev=0.0;
for (j=0;j<ndata;j++) {

d=y[j]-(b*x[j]+a);
abdev += abs(d);
if (y[j] != 0.0) d /= abs(y[j]);
if (abs(d) > EPS) sum += (d >= 0.0 ? x[j] : -x[j]);

}
return sum;

}
};

15.7.4 Other Robust Techniques
Sometimes you may have a priori knowledge about the probable values and

probable uncertainties of some parameters that you are trying to estimate from a data
set. In such cases you may want to perform a fit that takes this advance information
properly into account, neither completely freezing a parameter at a predetermined
value (as in Fitlin �15.4) nor completely leaving it to be determined by the data
set. The formalism for doing this is called “use of a priori covariances.”

A related problem occurs in signal processing and control theory, where it is
sometimes desired to “track” (i.e., maintain an estimate of) a time-varying signal in
the presence of noise. If the signal is known to be characterized by some number of
parameters that vary only slowly, then the formalism of Kalman filtering tells how
the incoming raw measurements of the signal should be processed to produce best
parameter estimates as a function of time. For example, if the signal is a frequency-
modulated sine wave, then the slowly varying parameter might be the instantaneous
frequency. The Kalman filter for this case is called a phase-locked loop and is im-
plemented in the circuitry of modern radio receivers [4,5].
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15.8 Markov Chain Monte Carlo
In this section and the next we redress somewhat the imbalance, at this point,

between frequentist and Bayesian methods of modeling. Like Monte Carlo integra-
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tion, Markov chain Monte Carlo or MCMC is a random sampling method. Unlike
Monte Carlo integration, however, the goal of MCMC is not to sample a multidi-
mensional region uniformly. Rather, the goal is to visit a point x with a probability
proportional to some given distribution function 	.x/. The distribution 	.x/ is not
quite a probability, because it is not necessarily normalized to have unity integral
over the sampled region; but it is proportional to a probability.

Why would we want to sample a distribution in this way? The answer is that
Bayesian methods, often implemented using MCMC, provide a powerful way of
estimating the parameters of a model and their degree of uncertainty. A typical case
is that there is a given set of data D, and that we are able to calculate the probability of
the data set given the values of the model parameters x, that is, P.Djx/. If we assume
a prior P.x/, then Bayes’ theorem says that the (posterior) probability of the model
is proportional to 	.x/ � P.Djx/P.x/, but with an unknown normalizing constant.
Because of this unknown constant, 	.x/ is not a normalized probability density. But
if we can sample from it, we can estimate any quantity of interest, for example its
mean or variance. Indeed, we can readily recover a normalized probability density
by observing how often we sample a given volume dx. Often even more useful, we
can observe the distribution of any single component or set of components of the
vector x, equivalent to marginalizing (i.e., integrating over) the other components.

We could in principle obtain all the same information by ordinary Monte Carlo
integration over the region of interest, computing the value of 	.xi / at every (uni-
formly) sampled point xi . The huge advantage of MCMC is that it “automatically”
puts its sample points preferentially where 	.x/ is large (in fact, in direct propor-
tion). In a high-dimensional space, or where 	.x/ is expensive to compute, this can
be advantageous by many orders of magnitude.

Two insights, originally due to Metropolis and colleagues in the early 1950s,
lead to feasible MCMC methods. The first is the idea that we should try to sam-
ple 	.x/ not via unrelated, independent points, but rather by a Markov chain, a
sequence of points x0;x1;x2; : : : that, while locally correlated, can be shown to
eventually visit every point x in proportion to 	.x/, the ergodic property. Here the
word “Markov” means that each point xi is chosen from a distribution that depends
only on the value of the immediately preceding point xi�1. In other words, the
chain has memory extending only to one previous point and is completely defined
by a transition probability function of two variables p.xi jxi�1/, the probability with
which xi is picked given a previous point xi�1.

The second insight is that if p.xi jxi�1/ is chosen to satisfy the detailed balance
equation,

	.x1/p.x2jx1/ D 	.x2/p.x1jx2/ (15.8.1)

then (up to some technical conditions) the Markov chain will in fact sample 	.x/
ergodically. This amazing fact is worthy of some contemplation. Equation (15.8.1)
expresses the idea of physical equilibrium in the reversible transition

x1  ! x2 (15.8.2)

That is, if x1 and x2 occur in proportion to 	.x1/ and 	.x2/, respectively, then the
overall transition rates in each direction, each the product of a population density and
a transition probability, are the same. To see that this might have something to do
with the Markov chain being ergodic, integrate both sides of equation (15.8.1) with
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respect to x1:Z
p.x2jx1/	.x1/ dx1 D 	.x2/

Z
p.x1jx2/ dx1 D 	.x2/ (15.8.3)

The left-hand side of equation (15.8.3) is the probability of x2, computed by inte-
grating over all possible values of x1 with the corresponding transition probability.
The right-hand side is seen to be the desired 	.x2/. So equation (15.8.3) says that if
x1 is drawn from 	 , then so is its successor in the Markov chain, x2.

We also need to show that the equilibrium distribution is rapidly approached
from any starting point x0. While the formal proof is beyond our scope, a heuristic
proof is to recognize that, because of ergodicity, even very unlikely values x0 will
be visited by the equilibrium Markov chain once in a great while. Since the chain
has no past memory, choosing any such point as a starting point x0 is equivalent
to just picking up the equilibrium distribution chain at that particular point in time,
q.e.d. In practice we need to recognize that when we start from a very unlikely point,
successor points will themselves be quite unlikely until we rejoin a more probable
part of the distribution. There is thus a need to burn-in an MCMC chain by stepping
through, and discarding, a certain number of points xi . Below, we discuss how to
determine the length of the burn-in.

We can gain a better understanding the nature of the approach to 	 using concepts from
�11.0 and (in the next chapter) �16.3. Heuristically, let us pretend that the states xi are discrete.
Then p.xj jxi / � Pij is a transition matrix satisfying equation (16.3.1). The discussion
following equation (16.3.4) shows that the matrix PT must have at least one unity eigenvalue.
In fact, the vector � (the discrete form of the distribution 	.x/) is an eigenvector of PT with
unity eigenvalue, by equation (15.8.3).

Can there be eigenvalues with magnitude greater than unity? No. Suppose to the contrary
that � > 1 is the largest eigenvalue, with eigenvector v . Then, repeatedly applying PT ,

lim
n!1

.PT /n 	 v D �nv !1� v (15.8.4)

Any starting distribution that contains even a tiny piece of v (always possible to arrange) will
be driven to have values either < 0 or > 1, which is impossible. Hence it must be that � 
 1.

From an arbitrary starting distribution u, repeated steps of PT must thus converge to
� geometrically, with a rate that is asymptotically the magnitude of the second-largest eigen-
value, which will be < 1 if � is the unique equilibrium distribution. If the second eigenvalue
is small, the distribution p.xj jxi / is said to be rapidly mixing.

Obviously missing from this discussion, and beyond our scope, is a discussion of de-
generate eigenvalues (related to the question of uniqueness) and a continuous, rather than
discrete, treatment. In practice, one rarely knows enough about P to compute useful bounds
on the second eigenvalue a priori.

15.8.1 Metropolis-Hastings Algorithm
Unless we can find a transition probability function p.x2jx1/ that satisfies the

detailed balance equation (15.8.1), we have no way to proceed. Luckily, Hastings [1],
generalizing Metropolis’ work, has given a very general prescription:

Pick a proposal distribution q.x2jx1/. This can be pretty much anything you
want, as long as a succession of steps generated by it can, in principle, reach ev-
erywhere in the region of interest. For example, q.x2jx1/ might be a multivariate
normal distribution centered on x1.
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Now, to generate a step starting at x1, first generate a candidate point x2c by
drawing from the proposal distribution. Second, calculate an acceptance probability
˛.x1;x2c/ by the formula

˛.x1;x2c/ D min

�
1;
	.x2c/ q.x1jx2c/

	.x1/ q.x2c jx1/

�
(15.8.5)

Finally, with probability ˛.x1;x2c/, accept the candidate point and set x2 D x2c ;
otherwise reject it and leave the point unchanged (that is, x2 D x1). The net result
of this process is a transition probability,

p.x2jx1/ D q.x2jx1/ ˛.x1;x2/; .x2 ¤ x1/ (15.8.6)

To see how this satisfies detailed balance, first multiply equation (15.8.5) by
the denominator in the second argument of the min function. Then write down the
identical equation, but exchange x1 and x2. From these pieces, one writes,

	.x1/ q.x2jx1/ ˛.x1;x2/ D minŒ	.x1/ q.x2jx1/; 	.x2/ q.x1jx2/�

D minŒ	.x2/ q.x1jx2/; 	.x1/ q.x2jx1/�

D 	.x2/ q.x1jx2/ ˛.x2;x1/

(15.8.7)

which, using equation (15.8.6), can be seen to be exactly the detailed balance equa-
tion (15.8.1).

It is often possible to choose the proposal distribution q.x2jx1/ in such a way as
to simplify equation (15.8.5). For example, if q.x2jx1/ depends only on the absolute
difference jx1 � x2j, as in the case of a normal distribution with fixed covariance,
then the ratio q.x1jx2c/=q.x2c jx1/ is just 1. Another case that occurs frequently is
when, for some component x of x, q.x2c jx1/ is lognormally distributed with a mode
at x1. In that case the ratio for this component is x2c=x1 (cf. equation 6.14.31).

15.8.2 Gibbs Sampler
An important special case of the Metropolis-Hastings algorithm is the Gibbs

sampler. (Historically, the Gibbs sampler was developed independently of Metropo-
lis-Hastings, see [2,5], but we discuss it here in a unified framework.) The Gibbs
sampler is based on the fact that a multivariate distribution is uniquely determined
by the set of all of its full conditional distributions; but if you don’t know what this
means, just read on anyway.

A full conditional distribution of 	.x/ is obtained by holding all of the compo-
nents of x constant except one (call it x), and then sampling as a function of x alone.
In other words, it is the distribution that you see when you “drill through” 	.x/
along a coordinate direction, and with fixed values of all the other coordinates. We’ll
denote a full conditional distribution by the notation 	.x jx�/, where x� means
“values of all the coordinates except one.” (To keep the notation readable, we are
suppressing an index i that would tell which component of x is x.)

Suppose that we construct a Metropolis-Hastings chain that allows only the one
coordinate x to vary. Then equation (15.8.5) would look like this:

˛.x1; x2c jx
�/ D min

�
1;
	.x2c jx

�/ q.x1jx2c ;x
�/

	.x1jx�/ q.x2c jx1;x�/

�
(15.8.8)
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Now let’s pick as our proposal distribution,

q.x2jx1;x
�/ D 	.x2jx

�/ (15.8.9)

Look what happens: The second argument of the min function becomes 1, so the
acceptance probability ˛ is also 1. In other words, if we propose a value x2 from
the full conditional distribution 	.x2jx�/, we can always accept it. The advantage is
obvious. The disadvantage is that the full conditional distribution must be properly
normalized as a probability distribution — otherwise how could we use it as a tran-
sition probability? Thus, we will usually need to calculate (either analytically or by
numerical integration) the normalizing constantZ

	.xjx�/dx (15.8.10)

for every x� of interest, and we will need to have a practical algorithm for drawing x2
from the thus-normalized distribution. Note that these one-dimensional normalizing
constants are much easier to compute than would be the multidimensional normaliz-
ing constant for the whole distribution 	.x/.

The full Gibbs sampler operates as follows: Cycle through each component of x
in turn. (A fixed cyclical order is usually used, but choosing a component randomly
each time is also fine.) For each component, hold all the other components fixed and
draw a new value x from the full conditional distribution 	.x jx�/ of all possible
values of that component. (This is where you might have to do a numerical integral
at each step.) Set the component to the new value and go on to the next component.

You can see that the Gibbs sampler is “more global” than the regular Metropolis-
Hastings algorithm. At each step, a component of x gets reset to a value completely
independent of its previous value (independent, at least, in the conditional distri-
bution). If we tried to get behavior like this with regular Metropolis-Hastings, by
proposing really big multivariate normal steps, say, we would get nowhere, since the
steps would be almost always rejected!

On the other hand, the need to draw from a normalized conditional distribution
can be a real killer in terms of computational workload. Gibbs sampling can be rec-
ommended enthusiastically when the components of x have discrete, not continuous,
values, and not too many possible values for each component. In that case the nor-
malization is just a sum over not-too-many terms, and the Gibbs sampler can be very
efficient. For the case of continuous variables, you are probably better off with reg-
ular Metropolis-Hastings, unless your particular problem admits to some fast, tricky
way of getting the normalizations.

Don’t confuse the Gibbs sampler with the tactic of doing regular Metropolis-
Hastings steps along one component at a time. For the latter, we restrict the proposal
distribution to proposing a change in a single component, either randomly chosen or
else cycling through all the components in a regular order. This is sometimes useful
if it lets us compute 	.x/more efficiently (e.g., using saved pieces from the previous
calculation on components that have not changed). What makes this not Gibbs is that
we calculate an acceptance probability in the regular way, with equation (15.8.5) and
the full distribution 	.x/, which need not be normalized.
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15.8.3 MCMC: A Worked Example
A number of practical details regarding MCMC are best discussed in the context

of a worked example:

At the beginning of an experiment, events occur Poisson randomly with
a mean rate �1, but only every k1th event is recorded. Then, at time tc ,
the mean rate changes to �2, but now only every k2th event is recorded.
We are given the times t0; : : : ; tN�1 of the N recorded events. Oh, by
the way, the values �1, �2, k1, k2, and tc are all unknown. We want to
find them.

Let’s decompose the separate parts of the calculation into separate objects. First
we need an object that represents the point x. Although we’ve been discussing x as
if it were a vector, it can actually be a mixture of continuous, discrete, boolean, or
any other kind of variable. In our example we have both continuous and discrete
variables.

struct State { mcmc.h
Worked MCMC example: Structure containing the components of x.

Doub lam1, lam2; �1 and �2
Doub tc; tc
Int k1, k2; k1 and k2
Doub plog; Set to logP by Plog, below.

State(Doub la1, Doub la2, Doub t, Int kk1, Int kk2) :
lam1(la1), lam2(la2), tc(t), k1(kk1), k2(kk2) {}

State() {};
};

The constructor is used to set initial values. (The plog variable is not part of x, but
it will be used later.)

Next, we need an object for calculating 	.x/ D P.Djx/, the probability of the
data given the parameters. For our example, we need to use a couple of facts about
Poisson processes: If a Poisson process has a rate �, then the waiting time to the kth
event is distributed as Gamma.k; �/, that is,

p.� jk; �/ D
�k

.k � 1/Š
�k�1e��� (15.8.11)

where � D tiCk� ti . (Compare equation 6.14.41, and also �7.3.10.) The exponential
distribution is a special case with k D 1. Further, probabilities for non-overlapping
intervals such as tiCk � ti and tiC2k � tiCk are independent. It follows that, for our
example,

P.Djx/ D
Y
ti�tc

p.tiC1 � ti j k1; �1/ �
Y
ti>tc

p.tiC1 � ti j k2; �2/ (15.8.12)

where p.� jk; �/ is as given in (15.8.11), and where ti is now the i th recorded time.
(In the words following equation 15.8.11, ti was the i th event whether recorded
or not.)

Actually, as the amount of data gets large, P.Djx/ is likely to over- or un-
derflow, so it is best to calculate logP . It is important to make this calculation as
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efficient as possible, because it will be done at every step. Particularly important is
to minimize the amount of looping over all the data points. In our example, if you
take the logarithm of equations (15.8.11) and (15.8.12), you’ll see that the individual
ti ’s enter into logP only as a sum of intervals and sum of log of intervals, less than
and greater than tc . An efficient way to proceed is thus to digest the data once and
store two cumulative sums. Then, given a value tc , we can find our place in the table
of sums by bisection and read off the left and right sums directly. There is thus no
loop over the data at all! Life is rarely so good, but when it is, then carpe diem. The
resulting object looks like this:

struct Plog {mcmc.h
Functor that calculates logP of a State.

VecDoub &dat; Bind to data vector.
Int ndat;
VecDoub stau, slogtau;

Plog(VecDoub &data) : dat(data), ndat(data.size()),
stau(ndat), slogtau(ndat) {
Constructor. Digest the data vector for subsequent fast calculation of logP . The data are
assumed to be sorted in ascending order.

Int i;
stau[0] = slogtau[0] = 0.;
for (i=1;i<ndat;i++) {

stau[i] = dat[i]-dat[0]; Equal to sum of intervals.
slogtau[i] = slogtau[i-1] + log(dat[i]-dat[i-1]);

}
}

Doub operator() (State &s) {
Return logP of s, and also set s.plog.

Int i,ilo,ihi,n1,n2;
Doub st1,st2,stl1,stl2, ans;
ilo = 0;
ihi = ndat-1;
while (ihi-ilo>1) { Bisection to find where is tc in the data.

i = (ihi+ilo) >> 1;
if (s.tc > dat[i]) ilo=i;
else ihi=i;

}
n1 = ihi;
n2 = ndat-1-ihi;
st1 = stau[ihi];
st2 = stau[ndat-1]-st1;
stl1 = slogtau[ihi];
stl2 = slogtau[ndat-1]-stl1;
Equations (15.8.11) and (15.8.12):
ans = n1*(s.k1*log(s.lam1)-factln(s.k1-1))+(s.k1-1)*stl1-s.lam1*st1;
ans += n2*(s.k2*log(s.lam2)-factln(s.k2-1))+(s.k2-1)*stl2-s.lam2*st2;
return (s.plog = ans);

}
};

The Plog object is the only place that the data enter, and they enter only through
the constructor. All other parts of the calculation see the data only through the cal-
culation of logP .

Next we come to the proposal generator, which we call Proposal. It doesn’t
have any contact with the data, or with logP . All it needs to know about is the
domain of x (that is, State). It is worth thinking hard about the proposal gener-
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ator. Although “almost any” generator will work in theory, a poor generator will
take longer than the age of the universe to converge, while a good, rapidly mixing
generator can go like lightning. This is where MCMC starts becoming an art.

Our example is designed to furnish an illustration of this in the interaction be-
tween the � parameters and their corresponding k’s. The mean rate of recorded
counts is �=k. Since � is a continuous variable, we will be proposing relatively
small changes in it at each step. Since k is discrete, there is no such thing as a small
change, especially when k is small.

If we naively write a generator that proposes random independent changes in �
and k, then, after we have settled down to roughly the right value of �=k, essentially
all proposals for changing k will be rejected. The reason is that the acceptable step
in � required for a change in k from 1 to 2 (say) is so large (doubling �) that our
generator will pick it only, say, every billion years! If we are not smart enough to
recognize this problem ahead of time, we can find it experimentally by inspecting the
Markov chain as it evolves and noting the proposals to change k are never accepted.

A solution in our case is to have two kinds of steps. The first changes � (by a
small amount) and keeps k fixed. The second changes k and �, keeping �=k fixed.
We choose randomly between the two kinds of steps, mostly choosing the first kind.

The general issue here is what to do when 	.x/ defines some highly correlated
directions among the components in x. If you can recognize these directions, your
proposal generator should, at least sometimes, generate proposals along them. Oth-
erwise, it will have to propose very small steps, if they are ever to be accepted. In our
example, this latter choice was made impossible by the discreteness in k, forcing us
to diagnose and confront the issue directly. So, although Proposal doesn’t directly
have to know about logP , you may need a qualitative understanding of logP when
you design Proposal.

Since only Proposal knows the algorithm by which a proposal is generated,
this object must also calculate, and return, the ratio q.x1jx2c/=q.x2c jx1/, which is
needed in equation (15.8.5). Here is an example that proposes small lognormal steps
for the variables �1, �2, and tc , or else proposes incrementing k1 and k2 by 1, 0, or
�1, with corresponding changes in the �’s as described above.

struct Proposal { mcmc.h
Functor implementing the proposal distribution.

Normaldev gau;
Doub logstep;

Proposal(Int ranseed, Doub lstep) : gau(0.,1.,ranseed), logstep(lstep) {}

void operator() (const State &s1, State &s2, Doub &qratio) {
Given state s1, set state s2 to a proposed candidate. Also set qratio to q.s1js2/=q.s2js1/.

Doub r=gau.doub();
if (r < 0.9) { Lognormal steps holding the k’s constant.

s2.lam1 = s1.lam1 * exp(logstep*gau.dev());
s2.lam2 = s1.lam2 * exp(logstep*gau.dev());
s2.tc = s1.tc * exp(logstep*gau.dev());
s2.k1 = s1.k1;
s2.k2 = s1.k2;
qratio = (s2.lam1/s1.lam1)*(s2.lam2/s1.lam2)*(s2.tc/s1.tc);
Factors for lognormal steps.

} else { Steps that change k1 and/or k2.
r=gau.doub();
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if (s1.k1>1) {
if (r<0.5) s2.k1 = s1.k1;
else if (r<0.75) s2.k1 = s1.k1 + 1;
else s2.k1 = s1.k1 - 1;

} else { k1 D 1 requires special treatment.
if (r<0.75) s2.k1 = s1.k1;
else s2.k1 = s1.k1 + 1;

}
s2.lam1 = s2.k1*s1.lam1/s1.k1;
r=gau.doub(); Now all the same for k2.
if (s1.k2>1) {

if (r<0.5) s2.k2 = s1.k2;
else if (r<0.75) s2.k2 = s1.k2 + 1;
else s2.k2 = s1.k2 - 1;

} else {
if (r<0.75) s2.k2 = s1.k2;
else s2.k2 = s1.k2 + 1;

}
s2.lam2 = s2.k2*s1.lam2/s1.k2;
s2.tc = s1.tc;
qratio = 1.;

}
}

};

(We use the convenient fact that since Normaldev is derived from Ran, it contains
both normal and uniform random number generators.)

How shall we set logstep, the size of the proposed lognormal step? A rule of
thumb for proposals like this with an adjustable scale is that the average acceptance
probability ought to be roughly between 0:1 and 0:4. If it is very much smaller,
then decrease the step size parameter; if it is much larger, then increase the step size
parameter. In our example, the value logstep D 0:01 (i.e., proposed changes on
the order of˙1%) gives good results.

Finally, there is a function that takes a specified number of steps, implementing
equation (15.8.5). This short piece of code is about the only “universal” part of
MCMC; it has no persistent state and gets all the information it needs via the State,
Plog, and Proposal structures. As we have seen, these are all problem-dependent
and benefit from cleverness and special tricks.

Doub mcmcstep(Int m, State &s, Plog &plog, Proposal &propose) {mcmc.h
Take m MCMC steps, starting with (and updating) s.

State sprop; Storage for candidate.
Doub qratio,alph,ran;
Int accept=0;
plog(s);
for (Int i=0;i<m;i++) { Loop over steps.

propose(s,sprop,qratio);
alph = min(1.,qratio*exp(plog(sprop)-s.plog)); Equation (15.8.5).
ran = propose.gau.doub();
if (ran < alph) { Accept the candidate.

s = sprop;
plog(s);
accept++;

}
}
return accept/Doub(m);

}
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Figure 15.8.1. Evolution of model parameters �1, �2, and tc as a function of Markov chain Monte Carlo
step. In this example, the burn-in time is seen to be� 1000 steps, after which the Markov chain explores
the equilibrium distribution.

Let’s try it all out. We’ll assume N D 1000 data points ti and start x with the
values �1 D 1, �2 D 3, tc D 100, and k1 D k2 D 1. (Secretly, we know that the
data were generated using actual values 3; 2; 200; 1; 2; respectively.) The random
seed is 10102, and the lognormal stepsize is 0:01. We’ll take 1000 steps of burn-in,
and thereafter store values after every 10 steps. Driver code in main for this run is

VecDoub times(1000);
... Fill the vector times here.
State s(1.,3.,100.,1,1);
Plog plog(times);
Proposal propose(10102,.01);
for (i=0;i<1000;i++) accept = mcmcstep(1,s,plog,propose); Burn-in.
for (i=0;i<10000;i++) { Production.

accept = mcmcstep(10,s,plog,propose);
... Save values, increment averages, etc., here.

}

Figure 15.8.1 shows the evolution of the parameters �1, �2 and tc . During burn-
in, you can see the parameters heading toward equilibrium, mostly monotonically,
but with the exception of �2, which goes rapidly toward the value 1, with the value
k D 1. These values indeed replicate the mean rate of the recorded data. Only
when it is near convergence (around step 560), does the model discover that the ti ’s
greater than tc don’t actually fit an exponential distribution (k2 D 1) but do fit a
gamma distribution with the same mean rate, but with k2 D 2 (the correct answer).
Had we not provided Proposal with a step that tests for this, we would likely have
converged to a wrong answer. More precisely, we would have produced a model
whose true burn-in time was, unknowably, a figurative billion years.

Figure 15.8.2 shows how �1 and �2 distribute themselves during 105 steps after
step 1000. This is the payoff of MCMC: We learn not just about most likely param-
eter values, but also details about how well the parameters are determined by this
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Figure 15.8.2. After burn-in, the MCMC model is run for an additional 105 steps. Parameter values are
saved every 10 steps, giving the histograms shown for parameters �1 and �2. These histograms represent
the inferred parameter values and their uncertainties. The model data were generated with parameters
�1 D 3 and �2 D 2. The inferred values for this particular sample of 1000 data points are seen to be
about as accurate as should be expected from their uncertainties.

particular data set. We could also have shown any joint distribution of interest, or
computed any average quantity, for example

h�1i D
1

n � k

n�1X
iDk

.�1/i (15.8.13)

Here k D 1000 is the number of burn-in steps, which we reject; n D k C 105 is the
number of steps that are averaged; and .�1/i denotes the value of �1 at the i th step.
Sums like (15.8.13) are called ergodic averages.

Some remarks should be made about equation (15.8.13): One is allowed to
average all steps, even though successive steps are not independent samples of 	.x/.
One would also be allowed to include in the average only every mth step, where
you choose m to be greater than some empirically observed correlation time in the
Markov chain. The latter is sometimes recommended as a means of estimating the
standard error of h�1i, just as in Monte Carlo integration. (Compare equations 7.7.1
and 7.7.2.) Warning: Doing this in the context of a finite data set is often associated
with conceptual error. While it is true that as n ! 1, equation (15.8.13) does
converge to a precise value, it is not true that this value has anything to do with the
actual (population) value of �1. Rather, it is just the best apparent (sample) value
of �1 for this particular data set. The relation of this apparent value to the actual
value has nothing to do with the standard error of h�1i, but is instead indicated by
the width of the distribution of all the .�1/i ’s.

Figure 15.8.2 illustrates this point well. By running the model for a long time,
we could achieve beautifully precise distributions that have extremely well-converged
means. But they would not be centered on the (here secretly known) true values 3
and 2. You should run an MCMC model only (i) long enough to be sure (or sure
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enough) that there was sufficient burn-in, and (ii) long enough to characterize distri-
butions well enough that the error in mean quantities of interest is reasonably small
compared with the observed dispersion of those quantities in the Markov chain.

15.8.4 Other Aspects of MCMC
We have said little about how to determine the necessary length of burn-in,

other than to advise you to look at the output (which is always a good idea). There
is in fact a large literature on this subject [2-4]. A number of so-called convergence
diagnostic tools have been developed. The problem is that, even when you use these
tools, you really must look at the output anyway; so their added value is often not
large. It is always a good idea to have the length of burn-in be at least 1 or 2%
of the total length of your run, which will be determined by the accuracy that you
need in estimating model parameters. Keep in mind that it is easy to construct scary
examples of distributions 	.x/ full of false convergence traps. The more you know
about your distribution, the better off you will be.

Multiple, independent Markov chains can be run to explore a single distribution
	.x/. On a single processor the only reason to do this would be to meet some
unusual need for independent samples of the distribution. However, on machines
with multiple processors, this is a natural way of achieving efficient parallelization.

We have assumed that the number of dimensions in x is fixed. It is possible to
have models, however, in which the number of fitted parameters is itself a variable.
These variable dimension models require special care in the design of proposal dis-
tributions that can step between different numbers of dimensions. See the paper by
Phillips and Smith in [2] for an introduction.

15.8.5 Importance Sampling and MCMC
In �7.9 we noted that the error in Monte Carlo integration could be reduced by

importance sampling, where we write (in the notation of this section)

I �

Z
f .x/ dx D

Z
f .x/

p.x/
p.x/ dx (15.8.14)

for an aptly chosen p. We saw that the ideal p would (i) resemble f in functional
form, cf. equation (7.9.6), and (ii) admit to a good method for sampling uniformly
over p.x/ dx.

You might think that MCMC provides a great general-purpose way to sample
over any p and thus make importance sampling easy to implement in all cases. Un-
fortunately, no. The problem, once again (as for the Gibbs sampler), is the normaliz-
ing constant. MCMC’s great virtue is that it samples over a distribution 	.x/without
requiring that it be normalized. If you ask what normalized probability distribution
p.x/ is actually being sampled over, it is of course

p.x/ D
	.x/R
	.x/dx

(15.8.15)

Equation (15.8.14) then becomes

I �

Z
f .x/ dx D

Z
	.x/ dx �

Z
f .x/

	.x/
p.x/ dx (15.8.16)
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The differential p.x/ dx can be sampled over by MCMC, knowing only 	.x/; no
problem. The 	.x/ in the denominator of the integrand can also be readily computed.
But we have, in general, no easy way to calculate that pesky normalizing constant,R
	.x/ dx.

Sometimes, though not often, you can construct a function 	.x/ that both re-
sembles f and also can be integrated analytically, so that the normalizing constant is
knowable. Then, yes, by all means use MCMC to sample 	.x/. In this case the idea
of recording only every mth step, after choosing m large enough so that the points
thus chosen are independent samples, is not a bad idea after all. In fact you’ll have
to do this if you expect to use the error estimate in equation (7.9.3) as written.

Finally, if the integral that you really want is

J �

R
f .x/	.x/ dxR
	.x/ dx

D

Z
f .x/ p.x/ dx (15.8.17)

with f .x/ and 	.x/ both known (and p.x/ only implied), then MCMC is exactly
what you need. It provides uniform samples over p.x/dx, and no calculation of a
normalizing constant is needed.
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15.9 Gaussian Process Regression

Some types of statistical models do not depend on knowing (or guessing) pa-
rameterized functional forms, and thus lie outside of the parameter-fitting paradigm
that has thus far occupied our attention. As an alternative to assuming that our data
have some functional form, we can assume that they have some statistical property.
A common example is to assume that the data, viewed as an entire set, is drawn
from some multivariate normal (Gaussian) distribution in a high-dimensional space.
That distribution is allowed to have a complicated correlation structure: The indi-
vidual data points are not assumed to be independent. We can then ask, given the
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data points that we observe, what are the most probable values for other quantities of
interest, for example the values of variables at points other than the ones measured.
Of course, as previously, we are also encouraged to ask not just about the most prob-
able values, but about the whole distribution around the most probable values. This
general scheme is called Gaussian process regression.

We have already met examples of Gaussian process regression twice before in
this book, though under different names. In �3.7 we discussed kriging as a multidi-
mensional interpolation technique. Later, in �13.6, we discussed linear prediction,
mostly in the context of one-dimensional data such as time series. Here we can
usefully merge some of the ideas in those two sections.

As we presented it in �3.7, kriging was an interpolation, not a fitting, technique.
This was evident from the facts that (i) the interpolated function output by the Krig
object went exactly through the measured data points, and (ii) we never discussed
how to input measurement errors. However, the Krig object’s constructor did have
an argument err, introduced with the mysterious remark that you should leave it set
to NULL until you read �15.9. Well, here we are!

We did incorporate measurement errors in �13.6, although they were there
called noise. In particular, equations (13.6.6) and (13.6.7) can be used (after some
change of notation and algebraic manipulation) to derive the appropriate general-
ization of equations (3.7.14) and (3.7.15) to the case where the measurements yi ,
i D 0; : : : ; N � 1, have errors characterized by some covariance matrix †. In most
cases † will be simply a diagonal matrix with elements �2i , the squares of the indi-
vidual errors. The answers are

yy� D V � 	 .V �†
0/�1 	 Y (15.9.1)

and
Var.yy�/ D V � 	 .V �†

0/�1 	 V � (15.9.2)

where

†0 �

�
† 0

0 0

�
(15.9.3)

That is, we simply subtract † (suitably augmented by bordering zeros) from V
(equation 3.7.13) before inverting the matrix. The argument err, input as the �i ’s
(not squared), does this for the case of diagonal measurement errors. Note that err
has type Doub*. If your errors are stored in a VecDoub, then you’ll send &err[0]
to the Krig constructor. (Sorry about this hack. The purpose was to make NULL a
possible default value.)

So, no new code is needed in this section. In Krig, you already have a service-
able multidimensional Gaussian process regression fitting routine, all ready to go.

When you are fitting, rather than interpolating, it is a good idea to pay more
attention to the choice of variogram model than we did in �3.7. While for simple
applications there is nothing wrong with the power-law model implemented in the
Powvargram object

v.r/ D ˛rˇ (15.9.4)

several other models are widely used. These include the exponential model,

v.r/ D bŒ1 � exp.�r=a/� (15.9.5)
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the spherical model,

v.r/ D

(
b
�
3
2
r
a
� 1
2
r3

a3

�
0 
 r 
 a

b a 
 r
(15.9.6)

and various anisotropic models for which v.r/ is not just a function of the magnitude
r . See [1,2] for derivations and examples.

We should also mention the so-called nugget effect, though, in our opinion, its
name vastly outshines its utility. If v.r/ does not go to zero as r ! 0, but instead
goes to some constant v0, then the resulting variogram describes a distribution that
decorrelates by some finite amount in an infinitesimal distance. That is, if you find a
gold nugget at location x, there is no certainty that you’ll find another one at location
xC ıx, no matter how small you make ıx. Some practitioners deem it desirable to
allow for a nonzero nugget effect, allowing nonzero values of v0 when they empir-
ically fit v.r/ from a data set. That seems debatable to us; but in deference to such
opinion we have given the Powvargram constructor an otherwise undocumented ar-
gument, nug, for feeding in the value v0 of your choice. (We draw the line at actually
fitting for such a parameter!)

Beyond debatable, and actually incorrect, however, is to confuse the nugget
effect with the effect of measurement error. They seem superficially similar: Mea-
surement error also decorrelates measured values, even at arbitrarily small distances
(even zero). Conceptually, and mathematically, however, they are different. Refer-
ring to equation (3.7.13), a nugget effect adds a constant positive value to all the
off-diagonal vij ’s. Measurement errors, on the other hand, subtract (not necessarily
constant) negative values from the diagonal vi i ’s. These actions do not have equiv-
alent effects on equations (3.7.14) and (3.7.15). This can readily be seen in Figure
15.9.1, which may also help elucidate the difference between kriging interpolation
and kriging fitting. Only panel (d) in the figure shows a correct use of kriging for
data with measurement errors, that is, kriging fitting with errors �i . Panels (b) and
(c) show the results of kriging interpolation with and without a nugget effect. One
sees that even with a positive nugget, the interpolated curve goes exactly through
the data points, which is incorrect when measurement errors are significant. The
legitimate use of kriging interpolation (as in �3.7) is for smooth functions that are
“exactly” known at scattered points. Kriging fits using �i ’s (this section) are for data
with errors.

CITED REFERENCES AND FURTHER READING:

Cressie, N. 1991, Statistics for Spatial Data (New York: Wiley).[1]

Wackernagel, H. 1998, Multivariate Geostatistics, 2nd ed. (Berlin: Springer).[2]

Isaaks, E.H., and Srivastava, R.M. 1989, Applied Geostatistics (New York: Oxford University
Press).

Rasmussen, C.E., and Williams, C.K.I. 2006, Gaussian Processes for Machine Learning (Cam-
bridge, MA: MIT Press).

Rybicki, G.B., and Press, W.H. 1992, “Interpolation, Realization, and Reconstruction of Noisy,
Irregularly Sampled Data,” Astrophys. J., vol. 398, pp. 169–176.

Deutsch, C.V., and Journel, A.G. 1992, GSLIB: Geostatistical Software Library and User’s Guide
(New York: Oxford University Press).
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Figure 15.9.1. One-dimensional examples of interpolation and fitting by kriging. (a) Synthetic data points
generated from the known curve (dashed line) with Gaussian errors (r.m.s. magnitude 0.1). (b) Result of
kriging interpolation. Equation (3.7.14) is plotted as the solid line, while the 1-� estimated interpolation
errors (3.7.15) are shown as the shaded band. The interpolation error is seen to be meaningless for data
with measurement errors. (c) Same as (b), but with a nugget effect of 0:1. (d) Result of kriging fit
(equations 15.9.1 and 15.9.2) using the actual measurement errors. This is the correct use of kriging for
data with errors.
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Classification and
Inference

CHAPTER 16

16.0 Introduction

This chapter groups together a selection of computational techniques whose
common feature is that they treat problems of classification and inference on complex
models. Given substantially more space, the chapter might have been expanded to
be a more complete survey of machine learning; but at its present length, it cannot
pretend to be such. (A few general references are given below.)

Classification and inference, in a loose sense, are also the goals of many of
the purely statistical methods that we already discussed in Chapters 14 and 15, and
the line between such techniques and machine learning is a fuzzy one. This chap-
ter’s topics tend to have one or both of two characteristics: the underlying model
(i) has discrete or combinatorial aspects that distinguish it from “classical” statisti-
cal methods, and/or (ii) has empirical or heuristic aspects that make exact statistical
treatments unattainable.

There is a list of important topics, related to those in this chapter, that we would
have wanted to include if only they could have been reduced to suitable length.
Bayesian networks is at the top of this list. Section 16.0.1 gives an example of the
kind of problem that a Bayesian network can solve. Other significant topics that we
must omit include

� genetic algorithms
� neural nets
� kernel methods more general than those discussed in �16.5

16.0.1 Bayesian networks
These are sometimes called Bayes nets, Bayesian learning networks, or belief

networks. Here we want only to give a flavor of the method, so that you will know
when to consult the references below.

A Bayesian network consists of nodes, each of which can have a value. The
values can be ftrue,falseg, or a set of possibilities like flow, medium, highg, or an
integer. Figure 16.0.1 shows an example where all the nodes have true/false values.

840
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Illegally 

parked?

Bad 

neighborhood?
Alzheimers? Drunk?

Memory 

lapse?

Trouble 

walking?

Know spouse’s 

name?

Towed by 

police?

Car 

stolen?

Police have 

report?

Can’t find 

car?

Figure 16.0.1. Example of a Bayesian network. Evidence about any node can be propagated to give
probabilistic conclusions about any other node.

Each node in a network has a set of prior probabilities or priors that give the
likelihood of its values absent any additional evidence. If a node has one or more
parents, then its priors are conditioned on the values of the parents. For example,
referring to the Figure, we might have

P.Illegally-Parked D true/

0.20

Bad-N’hood P.Car-Stolen D true jBad-N’hood/

true 0.05
false 0.001

Alzheimers Drunk P.Memory-Lapse D true jAlzheimers;Drunk/

true true 0.999
true false 0.95
false true 0.50
false false 0.01

And so on, for all the other nodes.
Things get interesting when we have some evidence to assimilate into the net-

work. For example, you might be coming out of a bar in a bad neighborhood, walking
with some difficulty, and be unable to find your car. Is it stolen? The Bayesian net-
work theory gives algorithms for propagating information both up (from “Can’t find
car?”) and down (from “Bad neighborhood?”) to get new posterior estimates for the
probabilities at all nodes, including, here, “Car stolen?” You can also compute in
advance the value of new evidence. For example, how much would it help to call the
police and see if there is a police report of a towed or recovered, stolen, car?

For more than this brief taste, see [1-3].

CITED REFERENCES AND FURTHER READING:

Hastie, T., Tibshirani, R., and Friedman, J.H. 2003, The Elements of Statistical Learning (Berlin:
Springer).
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Duda, R.O., Hart, P.E., and Stork, D.G. 2000, Pattern Classification, 2nd ed. (New York: Wiley).

Witten, I.H., and Frank, E. 2005, Data Mining: Practical Machine Learning Tools and Techniques,
2nd ed. (San Francisco: Morgan Kaufmann).

Mitchell, T.M. 1997, Machine Learning (New York: McGraw-Hill).

Vapnik, V. 1998, Statistical Learning Theory (New York: Wiley).

Russell, S., and Norvig, P. 2002, Artificial Intelligence: A Modern Approach, 2nd ed. (Upper
Saddle River, NJ: Prentice-Hall).

Haykin, S. 1998, Neural Networks: A Comprehensive Foundation, 2nd ed. (Upper Saddle River,
NJ: Prentice-Hall).

Bishop, C.M. 1996, Neural Networks for Pattern Recognition (New York: Oxford University Press).

Korb, K.B., and Nicholson, A.E. 2004, Bayesian Artificial Intelligence (Boca Raton, FL: Chapman
& Hall/CRC).[1]

Neapolitan, R.E. 1990, Probabilistic Reasoning in Expert Systems (New York: Wiley).[2]

Jensen, F.V. 2001, Bayesian Networks and Decision Graphs (New York: Springer).[3]

16.1 Gaussian Mixture Models and k-Means
Clustering

Gaussian mixture models, so called, are one of the simplest examples of classi-
fication by unsupervised learning. They are also one of the simplest examples where
solution by the EM (expectation-maximization) algorithm proves highly successful.

Here is the setup: You are given N data points in an M -dimensional space,
usually with M in the range one to a few (say, three or four dimensions, tops). You
want to “fit” the data, in this special sense: Find a set of K multivariate Gaussian
distributions that best represents the observed distribution of data points. The number
K is fixed in advance but the means and covariances of the distributions are unknown,

What makes the exercise “unsupervised” is that you are not told which of the
N data points come from which of the K Gaussians. Indeed, one of the desired
outputs is, for each data point n, an estimate of the probability that it came from
distribution number k. This probability is denoted P.kjn/ or pnk , where (using a
zero-based counting scheme) 0 
 k < K and 0 
 n < N . The matrix pnk is
sometimes called the responsibility matrix, because its entries indicate how much
“responsibility” component k has for data point n.

Thus, given the data points, say as an N �M matrix whose rows are vectors of
length M , there are a whole bunch of parameters that we want to estimate:

�k (the K means, each a vector of length M )

†k (the K covariance matrices, each of size M �M )

P.kjn/ � pnk (the K probabilities for each of N data points)

(16.1.1)

We will also get some additional estimates as by-products: P.k/ denotes the
fraction of all data points in component k, that is, the probability that a data point
chosen at random is in k; P.x/ denotes the probability (actually a probability den-
sity) of finding a data point at some position x, where x is the M -dimensional posi-
tion vector; and L denotes the overall likelihood of the estimated parameter set.
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In fact, L is the key to the whole problem. L is defined, as usual, as proportional
to the probability of the data set, given all the fitted parameters. We find the best
values for the parameters by maximizing the likelihood L. You can also think of
this as maximizing the posterior probability of the parameters, given uniform or very
broad priors.

Let’s work backward from L. Since the data points are (assumed) independent,
L is the product of the probabilities of finding a point at each observed position xn,

L D
Y
n

P.xn/ (16.1.2)

We can split P.xn/ into its contribution from each of the K Gaussians and write

P.xn/ D
X
k

N.xn j�k;†k/P.k/ (16.1.3)

where N.x j�;†/ is the multivariate Gaussian density,

N.x j�;†/ D
1

.2	/M=2 det.†/1=2
expŒ�1

2
.x � �/ 	†�1 	 .x � �/� (16.1.4)

P.xn/ is sometimes called the mixture weight of the data point xn. We can “take
apart” P.xn/ into its K individual contributions, giving the individual probabilities

pnk � P.kjn/ D
N.xn j�k ;†k/P.k/

P.xn/
(16.1.5)

Equations (16.1.2) through (16.1.5) are a prescription for calculating L and the
pnk’s, given the data, and given values for the�k’s,†k’s, and P.k/. In the language
of the EM algorithm, this is called an expectation step or E-step.

But how do we get the �k’s, †k’s, and P.k/?

Suppose we knew the pnk’s. A familiar theorem for the one-dimensional Gauss-
ian distribution is that the maximum likelihood estimate of its mean is just the arith-
metic mean of a set of points drawn from it. This theorem straightforwardly general-
izes to yield maximum likelihood estimates for the means, and covariance matrices,
of multivariate Gaussians. A further small generalization is that, since we know only
probabilistically whether a particular point is drawn from a particular Gaussian, we
should count only the appropriate fraction pnk of each point. These considerations
result in the following maximum likelihood estimates:

y�k D
X
n

pnkxn

.X
n

pnk

�†k DX
n

pnk.xn � y�k/˝ .xn � y�k/
.X

n

pnk

(16.1.6)

and, in a similar vein,

yP .k/ D
1

N

X
n

pnk (16.1.7)

“Hats” here denote estimators; however, this is a notational nicety that we will hence-
forth ignore. Equations (16.1.6) and (16.1.7) are the so-called maximization step or
M-step of the EM algorithm.
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What we have motivated thus far is that right at the maximum likelihood so-
lution, both the E-step and the M-step relations will hold. That is, the maximum
likelihood parameters are a stationary point for both E-steps and M-steps. The power
of the EM algorithm derives from the more powerful theorem (beyond our scope to
prove here) that, starting from any parameter values, an iteration of E-step followed
by an M-step will increase the likelihood value L; and that repeated iterations will
converge to (at least a local) likelihood maximum. Often, happily, the convergence
is to the global maximum.

The EM algorithm, in brief, is thus

� Guess starting values for the �k’s, †k’s, and fractions P.k/.
� Repeat: An E-step to get new pnk’s and new L, followed by an M-step to get

new �k’s, †k’s, and P.k/.
� Quit when the value of L is no longer changing.

One important practical detail is that the values of the Gaussian density function
will often be so small as to underflow to zero. It is therefore important to work with
logarithms of these densities, rather than the densities themselves, e.g.,

logN.x j�;†/ D �1
2
.x��/ 	†�1 	.x��/�

M

2
log.2	/�

1

2
log det.†/ (16.1.8)

A problem arises with equation (16.1.3), where we need to take the sum of quanti-
ties, all of which may be so small as to underflow if ever reconstructed from their
logarithms. The solution to this problem is the so-called log-sum-exp formula,

log

�X
i

exp.zi /

�
D zmax C log

�X
i

exp.zi � zmax/

�
(16.1.9)

where the zi ’s are the logarithms that we are using to represent small quantities and
zmax is their maximum. Equation (16.1.9) guarantees that at least one exponentiation
won’t underflow, and that any that do could have been neglected anyway.

Figure 16.1.1 shows an example of how the EM algorithm converges to a so-
lution with 1000 two-dimensional data points and four components. As the number
of data points increases, the topography of the likelihood space gets smoother, with
fewer local minima, so that it becomes more and more likely that the global maxi-
mum will be found (as in this case).

You should always inspect an EM solution for reasonableness. If you are getting
hung up on an unacceptable local maximum, one strategy is to do a series of inde-
pendent runs, using K randomly chosen data points as the starting means in each
case. (Be sure that you don’t duplicate a data point in the starting guesses.) Then
pick the best one, i.e., the one that converges to the largest log-likelihood.

Here is a structure that implements the EM algorithm for Gaussian mixture
models, given only the data points and initial estimates of the means �k . The con-
structor sets the problem up, and does one initial E-step and M-step. Thereafter,
the user alternately calls the estep() and mstep() routines, until convergence is
achieved, as signaled by the return value of estep(), the change in log-likelihood,
becoming sufficiently small (say, 10�6). The results are then available in the struc-
ture members means, resp, frac, and sig.
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Figure 16.1.1. Example of a Gaussian mixture model in M D 2 dimensions, with N D 1000 data
points and K D 4 components. Left: Evolution of the estimated means and covariances, shown as 2-
sigma ellipses. The ellipses are plotted after each iteration of an E-step and M-step (see text). Right: The
converged result. The leftmost two components converged rapidly. The rightmost component took about
10 iterations to get to near-convergence; only after it had done so did the central component shrink down
to a converged result.

struct preGaumixmod { gaumixmod.h
For nonwizards, this is basically a typedev of Mat_mm as an mm�mm matrix. For wizards, what is
going on is that we need to set a static variable mmstat before defining Mat_mm, and this must
happen before the Gaumixmod constructor is invoked.

static Int mmstat;
struct Mat_mm : MatDoub {Mat_mm() : MatDoub(mmstat,mmstat) {} };
preGaumixmod(Int mm) {mmstat = mm;}

};
Int preGaumixmod::mmstat = -1;

struct Gaumixmod : preGaumixmod {
Solve for a Gaussian mixture model from a set of data points and initial guesses of k means.

Int nn, kk, mm; Nos. of data points, components, and dimensions.
MatDoub data, means, resp; Local copies of xn’s, �k ’s, and the pnk ’s.
VecDoub frac, lndets; P.k/’s and log det†k ’s.
vector<Mat_mm> sig; †k ’s
Doub loglike; logL.
Gaumixmod(MatDoub &ddata, MatDoub &mmeans) : preGaumixmod(ddata.ncols()),
nn(ddata.nrows()), kk(mmeans.nrows()), mm(mmstat), data(ddata), means(mmeans),
resp(nn,kk), frac(kk), lndets(kk), sig(kk) {
Constructor. Arguments are the data points (as rows in a matrix) and initial guesses for
the means (also as rows in a matrix).

Int i,j,k;
for (k=0;k<kk;k++) {

frac[k] = 1./kk; Uniform prior on P.k/.
for (i=0;i<mm;i++) {

for (j=0;j<mm;j++) sig[k][i][j] = 0.;
sig[k][i][i] = 1.0e-10; See text at end of this section.

}
}
estep(); Perform one initial E-step and M-step. User

is responsible for calling additional steps
until convergence is obtained.

mstep();
}
Doub estep() {
Perform one E-step of the EM algorithm.

Int k,m,n;
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Doub tmp,sum,max,oldloglike;
VecDoub u(mm),v(mm);
oldloglike = loglike;
for (k=0;k<kk;k++) { Outer loop for computing the pnk ’s.

Cholesky choltmp(sig[k]); Decompose †k in the outer loop.
lndets[k] = choltmp.logdet();
for (n=0;n<nn;n++) { Inner loop for pnk ’s.

for (m=0;m<mm;m++) u[m] = data[n][m]-means[k][m];
choltmp.elsolve(u,v); Solve L � v D u.
for (sum=0.,m=0; m<mm; m++) sum += SQR(v[m]);
resp[n][k] = -0.5*(sum + lndets[k]) + log(frac[k]);

}
}
At this point we have unnormalized logs of the pnk ’s. We need to normalize using
log-sum-exp and compute the log-likelihood.
loglike = 0;
for (n=0;n<nn;n++) { Separate normalization for each n.

max = -99.9e99; Log-sum-exp trick begins here.
for (k=0;k<kk;k++) if (resp[n][k] > max) max = resp[n][k];
for (sum=0.,k=0; k<kk; k++) sum += exp(resp[n][k]-max);
tmp = max + log(sum);
for (k=0;k<kk;k++) resp[n][k] = exp(resp[n][k] - tmp);
loglike +=tmp;

}
return loglike - oldloglike; When abs of this is small, then we have

converged.}
void mstep() {
Perform one M-step of the EM algorithm.

Int j,n,k,m;
Doub wgt,sum;
for (k=0;k<kk;k++) {

wgt=0.;
for (n=0;n<nn;n++) wgt += resp[n][k];
frac[k] = wgt/nn; Equation (16.1.7).
for (m=0;m<mm;m++) {

for (sum=0.,n=0; n<nn; n++) sum += resp[n][k]*data[n][m];
means[k][m] = sum/wgt; Equation (16.1.6).
for (j=0;j<mm;j++) {

for (sum=0.,n=0; n<nn; n++) {
sum += resp[n][k]*

(data[n][m]-means[k][m])*(data[n][j]-means[k][j]);
}
sig[k][m][j] = sum/wgt; Equation (16.1.6).

}
}

}
}

};

About the only place that Gaumixmod can fail algorithmically (as distinct from
converging to a poor, local, solution) is by encountering a zero or negative diagonal
element in the Cholesky decomposition. As a result, all sins tend to appear, some-
times confusingly, as exceptions at that point in the code. If you are getting such
exceptions, here are some possibilities:

� You have duplicated vectors in your initial guesses for the �k’s.
� One or more of your �k’s is so distant from all data points that it is not “at-

tracting” enough of them to solve for the parameters of its component. Try
using random data points as starting guesses, or reduce K.
� You may just have too few data points N to support a nondegenerate model

with K components. Reduce K or get more data!
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� Rarely, you might want to change the constant 1.0e-10 that initializes the
diagonal components of †k in the code. (See discussion under “K-Means
Clustering,” below.)
� You can reduce the number of parameters in †, as we now discuss.

Occasionally data are too sparse, or too noisy, to give meaningful results for
all the components of the covariance matrices †k . In such cases, you can impose
simpler covariance models by changing the re-estimation formulas for † in equa-
tion (16.1.6). One step of simplification is to make † diagonal, while still allowing
different variances for the different dimensions. The re-estimation formula for the
diagonal components of †k is then

.�†k/mm DX
n

pnk Œ.xn/m � .y�k/m�
2
.X

n

pnk (16.1.10)

where subscriptsm indicate that particular component of the vector. Set nondiagonal
components of †k to zero.

Even more drastic, we can replace †k by a single scalar (that is, spherical)
variance by using the re-estimation formula

.�†k/ D 1 � �X
n

pnk jxn � y�kj
2
.X

n

pnk

�
(16.1.11)

where 1 is the identity matrix.
We have not coded these options in Gaumixmod, but they are easy to add.

16.1.1 A Note on the Use of Cholesky Decomposition
It is worth remarking briefly on the use of Cholesky decomposition (�2.9) in

this and similar manipulations of multivariate Gaussians.
In the Gaumixmod routine above, we need a way of inverting the covariance

matrices — or, more precisely, an efficient way to compute expressions like y 	†�1	y .
Because the covariance matrix † is symmetric and positive-definite, the Cholesky
decomposition, which has fewer operations than other methods, can be used, giving

† D L 	 LT (16.1.12)

where L is a lower triangular matrix, implying

Q D y 	†�1 	 y D
ˇ̌
L�1 	 y

ˇ̌2
(16.1.13)

Since L is triangular, L�1 	 y can be obtained efficiently by backsubstitution.
Another very convenient use for the decomposition (16.1.12) is in the mundane

task of drawing error ellipses, as in Figure 16.1.1 (or, similarly, error ellipsoids in
three dimensions). The locus of points x that are one standard deviation (“1-sigma”)
away from the mean � is given by

1 D .x � �/ 	†�1 	 .x � �/ )
ˇ̌
L�1 	 .x � �/

ˇ̌
D 1 (16.1.14)

Now suppose that z is a point on the unit circle (two dimensions) or unit sphere (three
dimensions). Then, by substitution into equation (16.1.14), you can easily see that

x D L 	 zC � (16.1.15)
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Figure 16.1.2. Output of k-means clustering as applied to the same data as Figure 16.1.1, with K D 6
components. The final assignments are shown as different plotted symbols. The centers of the large
circles are the locations of the final means. (The radius of those circles is arbitrary, for visibility only.)
Unlike Gaussian mixture modeling, k-means clustering can’t split a point probabilistically between two
components, so many points from the Gaussian at the upper left are mistakenly assigned to the central
component. Also, k-means clustering needs more than one component to model a Gaussian with a large
aspect ratio, because it clusters by radial distance.

is a point on the 1-sigma locus. Going around the unit circle in z, and using the
mapping (16.1.15), gives the desired ellipse. Put a constant 2 in front of the L in
(16.1.15) for 2-sigma ellipses, and so forth.

We already remarked, in �7.4, on the closely related use of Cholesky decompo-
sition to generate multivariate Gaussian deviates from a given covariance matrix.

16.1.2 K-Means Clustering
One interesting simplification of Gaussian mixture modeling has an indepen-

dent history and is known as k-means clustering. We forget about the †k covari-
ances matrices completely, and we forget about probabilistic assignments of data
points to components. Instead, each data point gets assigned to one (and only one)
of the K components.

The E-step is simply: Assign each data point xn to the component k whose
mean �k it is closest to, by Euclidean distance.

The M-step is simply: For all k, re-estimate the mean �k as the average of data
points xn assigned to component k.

The convergence criterion is: Stop when an E-step doesn’t change the assign-
ment of any data point (in which case the M-step would also produce unchanged
�k’s).

Interestingly, convergence is guaranteed — you can’t get into an infinite loop
of, say, shifting a point back and forth between two components. Despite its sim-
plicity, k-means clustering can be quite useful: It is very fast, and it converges very
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rapidly. It can be used as a method to reduce a large number of data points to a
much smaller number of “centers,” which can then be used as starting points for
more sophisticated methods.

For example, you might use k-means clustering to get starting values for a
Gaussian mixture model that has difficulty converging to a good, global maximum.
If K is the ultimate number of components that you want, you might use k-means to
get down to � 3 � K components, then (repeatedly) randomly select K of these as
starting guesses for the Gaussian model.

Be alert to the fact that k-means clustering has an intrinsically “spherical” view
of the world, because of its Euclidean “nearest-to” assignments. If you have compo-
nents that might have big aspect ratios, be sure to set K large enough so that these
can be represented by several different centers. Figure 16.1.2 shows the same input
data as Figure 16.1.1, now clustered by k-means. The Gaussians at the lower left
and right have broken up into two centers each. The Gaussian at the upper left is
only a single component, because it has had many of its points misclassified into the
central component. (A Gaussian mixture model would have assigned those points
probabilistically to both components.)

Code for k-means classification is similar to, but much shorter than, the previous
code for a Gaussian mixture model:

struct Kmeans { kmeans.h
Solve for a k-means clustering model from a set of data points and initial guesses of the means.
Output is a set of means and an assignment of each data point to one component.

Int nn, mm, kk, nchg;
MatDoub data, means;
VecInt assign, count;
Kmeans(MatDoub &ddata, MatDoub &mmeans) : nn(ddata.nrows()), mm(ddata.ncols()),
kk(mmeans.nrows()), data(ddata), means(mmeans), assign(nn), count(kk) {
Constructor. Arguments are the data points (as rows in a matrix), and initial guesses for
the means (also as rows in a matrix).

estep(); Perform one initial E-step and M-step. User is re-
sponsible for calling additional steps until con-
vergence is obtained.

mstep();
}
Int estep() {
Perform one E-step.

Int k,m,n,kmin;
Doub dmin,d;
nchg = 0;
for (k=0;k<kk;k++) count[k] = 0;
for (n=0;n<nn;n++) {

dmin = 9.99e99;
for (k=0;k<kk;k++) {

for (d=0.,m=0; m<mm; m++) d += SQR(data[n][m]-means[k][m]);
if (d < dmin) {dmin = d; kmin = k;}

}
if (kmin != assign[n]) nchg++;
assign[n] = kmin;
count[kmin]++;

}
return nchg;

}
void mstep() {
Perform one M-step.

Int n,k,m;
for (k=0;k<kk;k++) for (m=0;m<mm;m++) means[k][m] = 0.;
for (n=0;n<nn;n++) for (m=0;m<mm;m++) means[assign[n]][m] += data[n][m];
for (k=0;k<kk;k++) {
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if (count[k] > 0) for (m=0;m<mm;m++) means[k][m] /= count[k];
}

}
};

Incidentally, k-means clustering is not only a simplification of Gaussian mixture
models; it is actually a limiting case. If the †k matrices are all held fixed as

†k D � 1 (16.1.16)

with � infinitesimal and 1 the identity matrix, then the component k with mean clos-
est to xn will be assigned all of the responsibility pnk for that n. The re-estimation
of the �k’s then is identical to k-means clustering. The theorem that proves that
the EM algorithm converges for Gaussian mixtures can easily be modified to prove
the convergence of k-means clustering. (Basically, there is a hidden log-likelihood
function that can be shown to increase at each step.)

Indeed, we can now explain the obscure constant 1.0e-10 in the initialization
part of Gaumixmod: It is a value for � that makes that routine’s first E-step, M-step
iteration be one of k-means clustering.

CITED REFERENCES AND FURTHER READING:

McLachlan, G. and Peel, D. 2000, Finite Mixture Models (New York: Wiley).

Moore, A.W. 2004, “Clustering with Gaussian Mixtures,” at http://www.cs.cmu.edu/~awm.

Dempster, A.P., Laird, N.M., and Rubin, D.B. 1977, “Maximum Likelihood from Incomplete Data
via the EM Algorithm,” Journal of the Royal Statistical Society, Series B, vol. 39, pp. 1-38.
[The original paper on EM methods.]

Tanner, M.A. 2005, Tools for Statistical Inference: Methods for the Exploration of Posterior Dis-
tributions and Likelihood Functions, 3rd ed. (New York: Springer).

16.2 Viterbi Decoding
In this section we discuss models with discrete states, and how to use data to

estimate what state a model is in, or what succession of states it traverses by allowed
transitions. By state, we mean some discrete condition that can be characterized as a
node on a directed graph like that in Figure 16.2.1. By transition, we mean moving
along one of the directed edges of the graph. If you want to characterize a continuous
variable in the context of this section, you need to define a set of discrete bins for its
possible values, and make these the states.

The setup we describe is slightly more general than its close cousin, the directed
graph of stages and states that defined the dynamic programming (DP) problem in
�10.13. For some applications, the estimation problem of interest does live on a
graph that has states and stages, exactly like DP; but for other applications, we need
a general directed graph. We’ll consider both types below.

Historically, problems involving the estimation of states have arisen in diverse,
and often noncommunicating, fields. There are often multiple names for single con-
cepts. (We saw this previously in the Bellman-Dijkstra-Viterbi algorithm for DP.)
This history also makes it hard to give, in this section, a unified treatment with a sin-
gle narrative. A more practical approach is to go through a couple of examples from
different fields, and then, afterward, make some comparisons and give some advice.
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State 0 State 2

State 1State 4

State 3

Figure 16.2.1. Graph of a dynamical system with five states. Allowed transitions are shown by arrows.

16.2.1 Error-Correcting Codes and Soft-Decision Decoding
An .N;K/ binary block code is a list of 2K binary codewords, each of length

N > K bits, designed to send a K-bit message in such a way that it can be received
correctly even if one or more of the N bits arrive garbled (that is, 0 instead of 1, or
vice versa). Two simple examples are shown below. In these particular cases, the
message bits are the initial bits of the codeword, but that need not be true in gen-
eral. Assigning any permutation of the codewords to message words is, effectively,
the same code; likewise an arbitrary permutation of the bits in all the codewords
(permuting bit-columns in the table).

(6,3) Shortened Hamming
message codeword

000 000000
001 001110
010 010101
011 011011
100 100011
101 101101
110 110110
111 111000

(7,4) Hamming
message codeword

0000 0000000
0001 0001011
0010 0010111
0011 0011100
0100 0100110
0101 0101101
0110 0110001
0111 0111010
1000 1000101
1001 1001110
1010 1010010
1011 1011001
1100 1100011
1101 1101000
1110 1110100
1111 1111111

Both of the codes shown have the property that their Hamming distance is 3.
This means that all pairs of codewords differ in at least three bits. This is the property
of the code that makes it “error correcting on one bit.” If you receive a codeword with
one of its bits wrong, then (i) it will not be in the above table, and (ii) there will be a
unique codeword in the table that differs from it in one bit position. So, trying each
bit position in turn, you can figure out what was the intended codeword.

A longer code, with a larger Hamming distance d , can be error correcting for
more than one garbled bit, in fact for .d � 1/=2 bits (rounding down). An .N;K/
code can have d as large as N � K. However, trying all possible corrections until
you find a valid codeword is a very poor decode strategy!

For so-called linear codes it is possible to construct a parity-check matrix P
with the property that multiplying it by the vector of received bits (and doing all
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arithmetic modulo 2) gives a vector, the so-called syndrome, that is either all zeros
(indicating that the received bits are ok) or else it uniquely corresponds to a mask
(termed a coset leader) that tells which bits need correcting. So this error-correction
algorithm, called syndrome decoding, can be summarized as:

� multiply the received bits by the parity-check matrix to get the syndrome,
� do a table lookup of the syndrome to get the coset leader, and
� XOR the coset leader with the received bits to get a valid codeword.

For example, the parity check matrix for the .7; 4/ Hamming code, above, is

P D

0@1 1 1 0 1 0 0

0 1 1 1 0 1 0

1 0 1 1 0 0 1

1A (16.2.1)

(Convert codewords to column vectors by reading from left to right.) The lookup
table relating syndrome to coset leader is

syndrome coset leader

000 0000000
001 0000001
010 0000010
011 0001000
100 0000100
101 1000000
110 0100000
111 0010000

This particular code is called a perfect code because the number of syndromes ex-
actly equals the number of coset leaders with one nonzero bit, plus 1 for the zero
syndrome, a numerological coincidence. There are very few perfect codes, because
there are very few sets of integers satisfying

1C

 
N

1

!
C 	 	 	 C

 
N

e

!
D 2N�K (16.2.2)

where e is the number of bits corrected. Probably the most nontrivial perfect code
is the Golay code, with N D 23, K D 12, and e D 3. (Check out the numerology
yourself.)

It’s no big deal if a code is not perfect. It just means that there are some extra
syndromes that correct some errors of more than e bits, but not enough to correct all
such errors. You include these extra syndromes in the table, and run the algorithm
exactly as already described. However, if a code is too far from perfect, you are
wasting syndromes without gaining more bits of sure correction.

In practical applications,N andK are larger than these examples. For example,
the lowest level of error correction on an audio compact disk (CD) is a .28; 24/
Reed-Solomon (RS) code, which can correct e D 2 bits. (On a CD, bits of the
output codewords from many consecutive blocks are then interleaved and further
protected by an RS(32,28) code.) Reed-Solomon codes are typically decoded by
a more efficient process than syndrome decoding, using the so-called Berlekamp-
Massey algorithm.
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R(3,1)

P(5,4)

H(6,3)

H(7,4)

Figure 16.2.2. Trellises associated with four binary codes. The graph is traversed from left to right.
A zero is output when any dotted edge is traversed, a one for a solid edge. Every path yields a valid
codeword.

Now take a deep breath. Everything we have discussed thus far is what is called
hard-decision decoding (HDD), meaning that hard decisions are made as to whether
each incoming bit is a 1 or 0, with the error-correction algorithm acting on the re-
sulting, possibly garbled, codeword. Virtually all coding theory utilized HDD until
the early 1970s. Then came the giant leap forward with the recognition by multi-
ple practitioners that Viterbi’s 1967 decoding algorithm (an independent rediscovery
of Bellman-Dijkstra, we might now say) could utilize “soft” data about each bit as
easily as hard.

To understand soft-decision decoding (SDD), let us first note that every binary
code can be represented by the kind of stage/state graph that we met in dynamic pro-
gramming (�10.13), which, in the present context, is called a trellis. Figure 16.2.2
shows the trellises for the two codes given explicitly above, as well as for the school-
book examples of a repetition code (“tell me three times”) and a parity code. The
latter, with d D 1, is error detecting, but not error correcting.

Although arrows are not shown, the trellis is traversed from left to right. Any
such path on the trellis generates a valid codeword. A zero bit is emitted when a
dotted edge is traversed, a one bit for a solid edge. You encode message bits by
deciding whether to branch up or down, when you have a choice. Notice that you
don’t get such a choice at every stage: “Forced” edges generate precisely the extra
codeword bits that the code’s redundancy requires.

Although every code has a trellis, it is not so easy to find the minimal trellis, the
one that has the fewest possible states at its maximum expansion. MacKay [1] gives
a brief introduction; many additional references are in [3].

The first great idea behind soft-decision decoding is that we don’t need to decide
whether an incoming bit is a 0 or 1. Rather, we just need to assign a probability to
each possibility (summing to unity, of course). For example, a bit’s value may be
determined by whether an instantaneous voltage is positive or negative — but the
voltage measurement has some Gaussian spread of errors. If the voltage is many
standard deviations positive, or negative, then the respective probabilities are very
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close to one or zero; but if the voltage is only t D 0:5 (say) standard deviations
away from zero, we may want to assign a probability of 0.6915 to one more favored
outcome, and 0.3085 to the less favored, since

1
p
2	

Z 0:5

�1

e�z
2=2dz � 0:6915 (16.2.3)

(By the end of this section we will be more sophisticated about the notion of assign-
ing probabilities to transitions.)

The second great idea is that the problem of finding the maximum likelihood
path through a trellis — that is, the path with the maximum product of the prob-
abilities at each stage — is just a dynamic programming problem, where the cost
of traversing an edge whose probability is p is taken as � log.p/, a positive num-
ber, since 0 
 p 
 1. The minimum cost path, with this metric, is the maximum
likelihood path. In each stage, all the 0 edges (dotted lines in the figure) get one
probability, and all the 1 edges (solid lines) get its complement. The edge probabili-
ties can, and in general will, vary with each bit received (that is, from stage to stage),
since the noise and path loss can vary with time.

Take these two ideas together and you have soft-decision decoding using the
Viterbi algorithm.

The following tableau decodes one codeword for the shortened Hamming .6; 3/
code given above. In this example, five of the six bits are received fairly unambigu-
ously, while one bit (the second) is seen to be rather ambiguous. Nevertheless, the
algorithm treats all bits equally “softly.” Reviewing �10.13 as necessary, you should
be able to see where all the numbers in the tableau come from, as well as how the
darker path (which is the final “hard” decision for the codeword 011011) is obtained
by backtracking. Given the appropriate cost function, the routine dynpro in �10.13
does exactly this calculation.

Prob(0) = 
Prob(1) = .03

.97
.38
.62

.96

.04
.04
.96

.99

.01
.94
.06

3.50

0.03

3.98

0.99

4.47

0.50

1.04

4.03

0.55

3.72

1.08

7.24

3.77

3.77

1.09

3.78

1.150.00

–log[Prob(0)] =

–log[Prob(1)] = 3.50
0.03

0.96
0.47

0.05
3.22

3.21
0.04

0.01
4.61

0.06
2.81

You might have the “bright idea” of converting the final minimum path length,
1.15 in the above example, into a probability by taking its negative exponential. The
result is 0.3166. Does this mean that you’ll get the right codeword only 31% of the
time? No! Go stand in the corner! You are confusing likelihood with probability.
The likelihoods of all eight codewords (not found by the DP algorithm, but computed
exhaustively) are, for this example,
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codeword likelihood

000000 0.000014
001110 0.001372
010101 0.000006
011011 0.316126
100011 0.000665
101101 0.000007
110110 0.000001
111000 0.000006

You can see that the likelihoods don’t add up to 1, and that the favored path wins
over any competitor by a large factor. (Bayesians: We know that this paragraph is
making you break out in a rash. We are on your side, and will have more to say about
this in �16.3.4.)

In the above example, the second bit was merely ambiguous. What if it had
instead been really wrong, indicating, say, 0.99 probability of having a value zero?
No problem. Since the underlying code is one-bit error correcting, the DP algorithm
will readily decide to traverse the unlikely single edge, since the alternative would
be to traverse two or more unlikely edges on other bits. However, if we made the
second bit incorrect with probability 0:999999, the algorithm would “correct” two
other bits instead, which, under the circumstances, would be the best decision.

You can see that it is not meaningful to say exactly how many bits e a soft-
decision decode algorithm can correct. It just makes the best choice determined by
the probabilities. As another example, we might consider the simple parity code
shown in Figure 16.2.2. With a hard-decision decode, parity does not give enough
information to correct a single bit. With a soft-decision algorithm, however, the
parity bit can cast the deciding vote if some other bit is wavering too close to an
ambiguous 50% probability level.

Soft-decision decoding algorithms are available for essentially all codes in use
today, including Reed-Solomon codes and the important turbo codes [2] that are be-
yond our scope. Some important applications (e.g., trellis coded modulation), use
short trellises whose end states loop around to become identified with their start
states. The Viterbi algorithm is applied to long sequences of input symbols that
loop through the trellis many times. In trellis coded modulation, the symbols be-
ing (softly) decoded are not single bits, but locations in the complex phase plane
that comprise a carefully chosen constellation centered at the origin (for example, a
hexagonal lattice).

CITED REFERENCES AND FURTHER READING:
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Prentice Hall).

Blahut, R.E. 2002, Algebraic Codes for Data Transmission (Cambridge, UK: Cambridge Univer-
sity Press).

MacKay, D.J.C. 2003, Information Theory, Inference, and Learning Algorithms (Cambridge, UK:
Cambridge University Press).[1]

Schlegel, C. and Perez, L. 2000, Trellis and Turbo Coding, (Piscataway, NJ: IEEE Press).[2]
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Eat Study

Hang

out
Sleep

Talk on

phone

0.8

0.1

0.1

0.2
0.7

0.1

1.0

0.3

0.7

0.2

0.4

0.2

0.2

Figure 16.3.1. Example of a Markov model. Transitions occur between states along the directed edges
shown. Each outgoing edge is labeled by its probability. The sum of the probabilities on the outgoing
edges from each state is 1. This model is called “Teen Life.”

16.3 Markov Models and Hidden Markov
Modeling

Trellises, like those in �16.2, are directed graphs without any loops, so a path
that begins at the leftmost node inevitably ends, after a finite number of stages, at
the rightmost node. The more general Markov model lives on a graph that can have
loops (as in Figure 16.2.1), so some paths can continue indefinitely. Indeed, as a
convention, one can add a self-loop (a directed edge connecting a state to itself) to
any state that would otherwise have “no way out.” Then, all paths can be continued
indefinitely, even those whose fate is to remain stuck in a single state.

To turn such a directed graph into a Markov model (also known as a Markov
chain or first-order Markov process), we simply label all of its edges with transition
probabilities, such that the sum of probabilities over the outgoing edges from each
node is 1. Figure 16.3.1 shows an example, a Markov model with five states, that we
call “Teen Life.”

A single realization of a Markov model is a random path that moves from state
to state according to the model’s probabilities. These are conveniently organized into
a transition matrix A whose element Aij is the probability associated with an i ! j

transition, that is, the probability of moving to state j , given state i as the starting
point. A valid transition matrix satisfies

0 
 Aij 
 1 and
X
j

Aij D 1 (16.3.1)

The transition matrix for Teen Life (Figure 16.3.1) is

A D

0BBBB@
0 0:7 0:1 0 0:2

0:2 0:4 0 0:2 0:2

0 1:0 0 0 0

0 0:3 0 0:7 0

0:1 0:1 0 0 0:8

1CCCCA (16.3.2)

where the states are numbered in the order (Eat, Hang, Study, Talk, and Sleep).
A routine for generating a realization of a Markov model from itsM�M transi-

tion matrix, using the Ran structure of �7.1 to get random numbers, is straightforward.
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void markovgen(const MatDoub_I &atrans, VecInt_O &out, Int istart=0, markovgen.h
Int seed=1) {

Generate a realization of an M -state Markov model, given its M �M transition matrix atrans.
The vector out is filled with integers in the range 0 : : :M �1. The starting state is the optional
argument istart (defaults to 0). seed is an optional argument that sets the seed of the random
number generator.

Int i, ilo, ihi, ii, j, m = atrans.nrows(), n = out.size();
MatDoub cum(atrans); Temporary matrix to hold cumulative probabilities.
Doub r;
Ran ran(seed); Use the random number generator Ran.
if (m != atrans.ncols()) throw("transition matrix must be square");
for (i=0; i<m; i++) { Fill cum and die if clearly not a transition matrix.

for (j=1; j<m; j++) cum[i][j] += cum[i][j-1];
if (abs(cum[i][m-1]-1.) > 0.01)

throw("transition matrix rows must sum to 1");
}
j = istart; The current state is kept in j.
out[0] = j;
for (ii=1; ii<n; ii++) { Main loop.

r = ran.doub()/cum[j][m-1]; Slightly-off normalization gets corrected here.
ilo = 0;
ihi = m;
while (ihi-ilo > 1) { Use bisection to find location among the cumu-

lative probabilities.i = (ihi+ilo) >> 1;
if (r>cum[j][i-1]) ilo = i;
else ihi = i;

}
out[ii] = j = ilo; Set new current state.

}
}

What makes the transition matrix a matrix, and not just a table of probabilities,
is its connection to ensembles of realizations of the corresponding Markov model.
An ensemble can be characterized by the components of a population vector st
whose components give the number of models in each state at time t . (Here and
below, we use t as an integer, discrete time variable. On a trellis it would be called a
stage instead of a time.) For Teen Life, we can give names to the components of st
corresponding to the states: .E;H; S; T;Z/.

If all the models in the ensemble are evolved by one timestep (one transition),
then the population vector st turns into stC1 by the matrix multiplication

stC1 D AT st (16.3.3)

The transpose operation is needed only because two common conventions are at
odds: The time order i ! j for Aij versus the left matrix multiplication of a column
vector (whose implicit time ordering is “from” the second index “to” the first). Given
a matrix, you can easily tell whether it is intended to be an A or an AT , by whether,
respectively, its rows or columns sum to unit probability.

Note that we can evolve more than one step at a time, by precomputing powers
of AT . So, stCn D .A

T /n st , for example.
Every Markov model has at least one equilibrium distribution of states that re-

mains unaffected when multiplied by AT . To prove this, we write

AT se D se ” .AT � 1/ se D 0 (16.3.4)

where se is the sought-after equilibrium state. Equation (16.3.4) can hold if and only
if AT � 1 is a singular matrix. Since the columns of AT all sum to 1, the columns
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of AT � 1 all sum to zero, and hence are linearly dependent, q.e.d. Equivalently,
we have proved that AT has at least one eigenvalue equal to 1. The corresponding
eigenvector is an equilibrium distribution of states. If there is only one eigenvalue
equal to 1, the equilibrium is unique. For the Teen Life model, there is one eigenvalue
of 1, and the corresponding eigenvector (normalized so that its components sum to
unity) is approximately .0:099; 0:297; 0:001; 0:198; 0:395/. (This teenager spends
about 39.5% of his/her time sleeping, 19.8% talking on the phone, 0.1% studying,
and so forth.)

Do almost all starting distributions converge to a unique equilibrium, in which
case the model is said to be ergodic? Not necessarily. Two things can go wrong.
First, if there is more than one eigenvalue equal to 1, a model will converge to some
different linear combination of the corresponding eigenvectors for different starting
distributions. Such models are said to fail the test of irreducibility. Second, the
model may have a periodic limit cycle, so that, for most starting distributions, it
doesn’t converge at all. Such models are said to fail the test of aperiodicity. The
theorem (and vocabulary test) is: Irreducibility and aperiodicity imply ergodicity.

One way to diagnose these conditions is to perform successive squarings of
the matrix AT to take it to a very high power, say 232. This requires O.32M 3/

operations for a model with M states. (While there are more sophisticated methods,
none scale better thanM 3.) If allM columns in the result are converging to identical
vectors, then there is just one eigenvalue (unity), and all starting distributions will
converge to its eigenvector (which is in fact the repeated column vector). The model
is then ergodic.

Otherwise, locate any rows in the power matrix that are zero, and cross out those
rows and their corresponding columns. (These are states that become permanently
unpopulated as the model evolves.) Then, check to see if the remaining columns
are all eigenvectors with unit eigenvalue. You can do the test by multiplying each
such column by the original AT . If all columns pass the test, then there are multiple
equilibria, but all starting distributions will converge to some combination of them.
If any column fails the test, then the model has a periodic limit cycle. There are still
equilibria, given by the eigenvectors of unit eigenvalue, but a starting state must be
very special to evolve to one. Indeed, such states are a set of measure zero, and we
can say that the equilibria are unstable.

A simple example with multiple equilibria and periodic limit cycles is the tran-
sition matrix

A0 D

0BBBB@
0 1:0 0 0 0

1:0 0 0 0 0

0 0:7 0 0:3 0

0 0 0 0 1:0

0 0 0 1:0 0

1CCCCA (16.3.5)

corresponding to the graph

1.0

1.0

1.0

1.0

0.7 0.3

A0T has two eigenvectors with unit eigenvalue (you can guess them from the graph):
.0:5; 0:5; 0; 0; 0/ and .0; 0; 0; 0:5; 0:5/. However, A0T to the power 232 does not have
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these as any of its columns, but is rather

.A0T /2
32

D

0BBBB@
1:0 0 0:7 0 0

0 1:0 0 0 0

0 0 0 0 0

0 0 0 1:0 0

0 0 0:3 0 1:0

1CCCCA (16.3.6)

thus showing that the model has only unstable equilibria. (The little identity matrix
blocks are merely artifacts of the limit cycles having period 2, while 232 is even. In
general, you will get some other pattern.)

Successive squaring is a poor way to get the equilibrium distribution for a model
that is known (or guessed) to have a single stable equilibrium. A better way, since
we already know the eigenvalue, is inverse iteration. Just solve the equation

.AT � 1/ se D b (16.3.7)

by LU decomposition (�2.3), with the right-hand vector b D .1; 1; : : : ; 1/. If your
solver complains about the zero pivot instead of substituting a small value for it
(which is what we want for this application), then use the matrix .AT �0:999999�1/
instead. In either case, you will want to renormalize se , to make, e.g., its components
have unit sum.

You can test for multiple equilibria by perturbing the right-hand side vector
and seeing if you get the same se . If you do have multiple equilibria, it is proba-
bly time to turn to the methods of Chapter 11 and calculate AT ’s eigenvalues and
eigenvectors directly.

That is all (in fact, more) than we want to tell about Markov models in general.
We turn now to the real business at hand, which is to estimate statistically the state
of a “hidden” Markov model, given only partial or imperfect information.

16.3.1 Hidden Markov Models
In a hidden Markov model (HMM), we don’t get to observe the state of the

model directly. Rather, whenever it is in any state i (one of M states), it emits
a symbol k, chosen probabilistically from a set of K symbols. The probability of
emitting symbol number k from state number i is denoted by

bi .k/ � P.symbol k j state i / .0 
 i < M; 0 
 k < K/ (16.3.8)

with the normalization condition

K�1X
kD0

bi .k/ D 1 .0 
 i < M/ (16.3.9)

Thus, when the model evolves throughN timesteps, the hidden states are a vector of
integers,

s D fstg D .s0; s1; : : : sN�1/ (16.3.10)

each in the range 0 
 si < M , while the observations or data are a vector of integers,

y D fytg D .y0; y1; : : : yN�1/ (16.3.11)
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each in the range 0 
 yi < K.
For the Teen Life example, here is a table of symbols and their probabilities of

being emitted from each state, in response to the repeated parental query, “What are
you doing?”:

i D 0 1 2 3 4

k symbol meaning Eat Hang Study Talk Sleep

0 o [silence] 0.2 0.2 0 0.3 0.5
1 s “I’m studying!” 0 0 1.0 0.2 0
2 b “I’m busy!” 0 0.6 0 0.4 0
3 g [grunt] 0.8 0.2 0 0.1 0
4 z [snore] 0 0 0 0 0.5

The key point is that the emitted symbols give only incomplete, or garbled, state
information (e.g., the claim of studying when actually talking on the phone). A state
can emit more than one possible symbol, and a symbol can be emitted by more than
one possible state. Nevertheless, our goal is to make the best statistical reconstruction
of the vector s from y .

More specifically, at each time t we want to estimate

Pt .i/ � P.st D i j y/ (16.3.12)

the probability that the actual state of the system is i at time t , given all the
data. (If the word “probability” in this context bothers you, you may think of it as
a likelihood.)

Let ˛t .i/ be defined for t D 0 : : : N � 1 and i D 0 : : :M � 1 as the probability
of the observed data up to time t (that is, y0 : : : yt ), given that we are in state i at
time t . Since we are not specifying any of the previous states, we must sum over all
possible paths that get to state i at time t . Thus,

˛0.i/ D bi .y0/

˛t .i/ D
X

i0;ii ;:::;it�1

bi0.y0/ Ai0i1bi1.y1/ : : : Ait�1ibi .yt / .1 
 t < N/

(16.3.13)

In other words, each transition contributes to the product both a transition probability
and a symbol probability, and we sum over all possible combinations of previous
states, that is, all possible values of i0; i1; : : : ; it�1, each in the range 0 : : :M � 1.

Since ˛t .i/ is the probability of data given state, it can also be interpreted as
the likelihood of the state, given the data; or, if we are Bayesians (and we are!), as
the unnormalized posterior probability of being in state i , which can be normalized
simply by dividing by

P
i ˛t .i/. However, equation (16.3.13) seems useless for a

big and a little reason. Big: It has exponentially many terms to evaluate. Little: it
uses only part of the data (the data earlier in time) to estimate the state i at time t . It
is what is called a forward estimate.

Amazingly, both problems are easy to fix. It is not hard to see that the ˛t .i/’s
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satisfy a recurrence relation that advances them all one step in t :

˛tC1.j / D

M�1X
iD0

˛t .i/Aij bj .ytC1/ .0 
 j < M/ for t D 0; : : : ; N � 2

(16.3.14)
One step of this recurrence takes only O.M 2/ operations, so the whole table of
˛t .i/’s can be computed in O.NM 2/.

To fix the second problem, we come at the issue from “the other end of time.”
Let ˇt .i/ be defined for t D N � 1 : : : 0 and i D 0 : : :M � 1 as the probability of
the future observed data (ytC1; ytC2; : : : yN�1) again given that we are in state i at
time t . Analogously to the ˛’s, we have

ˇt .i/ D
X

itC1;:::;iN�1

Ai itC1bitC1.ytC1/ : : : AiN�2iN�1biN�1.yN�1/ (16.3.15)

with the special case ˇN�1.i/ D 1. (Because there are no data to the future of
t D N � 1, those data’s probability is by definition 1.) In the formula for the ˇt .i/’s
there is a factor in the product for each future transition probability and each future
symbol probability (fixing the symbols to be the actual y’s of course). Just as for the
˛’s, the ˇ’s can be interpreted as likelihoods, or unnormalized posterior probabilities.
And, wonderfully, equation (16.3.15) can be solved by a backward recurrence,

ˇt�1.i/ D

M�1X
jD0

Aij bj .yt /ˇt .j / .0 
 i < M/ for t D N � 1; : : : ; 1

(16.3.16)
Calculating all the ˇ’s for t D N � 1;N � 2; : : : ; 0 is called a backward estimate.

Now here is the big payoff: From the definitions of the ˛’s and ˇ’s, the product
˛t .i/ˇt .i/ is the unnormalized posterior probability of state i at time t given all the
data. If we normalize it by dividing by

Lt D

M�1X
iD0

˛t .i/ˇt .i/ (16.3.17)

we get the desired estimate of the probability of each separate state at each separate
time,

Pt .i/ D
˛t .i/ˇt .i/

Lt

(16.3.18)

Further, it follows from the definitions (16.3.13) and (16.3.15) that Lt is actually in-
dependent of t , so we can omit the subscript t and calculate it only once. (In practice,
one often renormalizes at each time t for greater numerical stability, however.) The
value of L can be interpreted as the probability (or likelihood) of the whole data set,
given the parameters of the model.

Equations (16.3.14) and (16.3.16), taken together, are called the forward-back-
ward algorithm for state estimation in a hidden Markov model.

Translating HMM into code, we start with a structure that will hold the various
quantities that come into play, and its constructor. You construct an HMM structure
by specifying a transition probability matrix A (N.B.: not AT ), a symbol probability
matrix bik � bi .k/, and a vector of observed data y .
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struct HMM {hmm.h
Structure for a hidden Markov model and its methods.

MatDoub a, b; Transition matrix and symbol probability matrix.
VecInt obs; Observed data.
Int fbdone;
Int mstat, nobs, ksym; Number of states, observations, and symbols.
Int lrnrm;
MatDoub alpha, beta, pstate; Matrices ˛, ˇ , and Pi .t/.
VecInt arnrm, brnrm;
Doub BIG, BIGI, lhood;
HMM(MatDoub_I &aa, MatDoub_I &bb, VecInt_I &obs); Constructor; see below.
void forwardbackward(); HMM state estimation.
void baumwelch(); HMM parameter re-estimation.
Doub loglikelihood() {return log(lhood)+lrnrm*log(BIGI);}
Returns the log-likelihood computed by forwardbackward().

};

HMM::HMM(MatDoub_I &aa, MatDoub_I &bb, VecInt_I &obss) :
a(aa), b(bb), obs(obss), fbdone(0),
mstat(a.nrows()), nobs(obs.size()), ksym(b.ncols()),
alpha(nobs,mstat), beta(nobs,mstat), pstate(nobs,mstat),
arnrm(nobs), brnrm(nobs), BIG(1.e20), BIGI(1./BIG) {
Constructor. Input are the transition matrix aa, the symbol probability matrix bb, and the
observed vector of symbols obss. Local copies are made, so the input quantities need not
be preserved by the calling program.
Int i,j,k;
Doub sum;
Although space constraints make us generally stingy about printing code for checking input,
we will save you a lot of grief by doing so in this case. If you get “matrix not normalized”
errors, you probably have your matrix transposed. Note that normalization errors <1% are
silently fixed.
if (a.ncols() != mstat) throw("transition matrix not square");
if (b.nrows() != mstat) throw("symbol prob matrix wrong size");
for (i=0; i<nobs; i++) {

if (obs[i] < 0 || obs[i] >= ksym) throw("bad data in obs");
}
for (i=0; i<mstat; i++) {

sum = 0.;
for (j=0; j<mstat; j++) sum += a[i][j];
if (abs(sum - 1.) > 0.01) throw("transition matrix not normalized");
for (j=0; j<mstat; j++) a[i][j] /= sum;

}
for (i=0; i<mstat; i++) {

sum = 0.;
for (k=0; k<ksym; k++) sum += b[i][k];
if (abs(sum - 1.) > 0.01) throw("symbol prob matrix not normalized");
for (k=0; k<ksym; k++) b[i][k] /= sum;

}
}

Now, to actually do the forward-backward estimation, you call the function
forwardbackward. This fills the matrix pstate, so that pstatet i D Pt .i/. It also
sets the internal variables lhood and lrnrm so that the function loglikelihood
returns the logarithm of L. Don’t be surprised at how large in magnitude this (neg-
ative) number can be. The probability of any particular data set of more than trivial
length is astronomically small!

In the following code, the quantities BIG, BIGI, arnrm, brnrm, and lrnrm
all relate to dealing with values that would far underflow an ordinary floating for-
mat. The basic idea is to renormalize as necessary, keeping track of the accumulated
number of renormalizations. At the end, when an ˛, a ˇ, and an L are combined,
probability values of reasonable magnitude result.
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void HMM::forwardbackward() { hmm.h
HMM forward-backward algorithm. Using the stored a, b, and obs matrices, the matrices alpha,
beta, and pstate are calculated. The latter is the state estimation of the model, given the data.

Int i,j,t;
Doub sum,asum,bsum;
for (i=0; i<mstat; i++) alpha[0][i] = b[i][obs[0]];
arnrm[0] = 0;
for (t=1; t<nobs; t++) { Forward pass.

asum = 0;
for (j=0; j<mstat; j++) {

sum = 0.;
for (i=0; i<mstat; i++) sum += alpha[t-1][i]*a[i][j]*b[j][obs[t]];
alpha[t][j] = sum;
asum += sum;

}
arnrm[t] = arnrm[t-1]; Renormalize the ˛’s as necessary to avoid under-

flow, keeping track of how many renormal-
izations for each ˛.

if (asum < BIGI) {
++arnrm[t];
for (j=0; j<mstat; j++) alpha[t][j] *= BIG;

}
}
for (i=0; i<mstat; i++) beta[nobs-1][i] = 1.;
brnrm[nobs-1] = 0;
for (t=nobs-2; t>=0; t--) { Backward pass.

bsum = 0.;
for (i=0; i<mstat; i++) {

sum = 0.;
for (j=0; j<mstat; j++) sum += a[i][j]*b[j][obs[t+1]]*beta[t+1][j];
beta[t][i] = sum;
bsum += sum;

}
brnrm[t] = brnrm[t+1];
if (bsum < BIGI) { Similarly, renormalize the ˇ ’s as necessary.

++brnrm[t];
for (j=0; j<mstat; j++) beta[t][j] *= BIG;

}
}
lhood = 0.; Overall likelihood is lhood with lnorm renormal-

izations.for (i=0; i<mstat; i++) lhood += alpha[0][i]*beta[0][i];
lrnrm = arnrm[0] + brnrm[0];
while (lhood < BIGI) {lhood *= BIG; lrnrm++;}
for (t=0; t<nobs; t++) { Get state probabilities from ˛’s and ˇ ’s.

sum = 0.;
for (i=0; i<mstat; i++) sum += (pstate[t][i] = alpha[t][i]*beta[t][i]);
The next line is an equivalent calculation of sum. But we’d rather have the normaliza-
tion of the Pi .t/’s be more immune to roundoff error. Hence we do the above sum for
each value of t.
// sum = lhood*pow(BIGI, lrnrm - arnrm[t] - brnrm[t]);
for (i=0; i<mstat; i++) pstate[t][i] /= sum;

}
fbdone = 1; Flag prevents misuse of baumwelch(), later.

}

You may be wondering how well forwardbackward is able to do at predicting
the hidden states of Teen Life, given just a long string of output symbols. If we take
the prediction to be the state with the highest probability at each time, then this is
correct about 78% of the time. Another 17% of the time, the correct state has the
second-highest probability, often when the top two probabilities are nearly equal. It
is an important property of HMMs that the output is not only a prediction, but also a
quantitative assessment of how “sure” the model is of that prediction.
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16.3.2 Some Variations on HMM
HMM state estimation with the forward-backward algorithm is a very flexible

formalism, and many variants are possible. For example, in decoding codes on a
trellis, as we did above, the symbols 0 or 1 are emitted not by the states, but by the
transitions between the states. If we want to use HMM for that problem (we will
say more about this below), we must replace bi .k/ with bij .k/, the probability of
emitting symbol k in a transition from state i to state j . The forward and backward
recurrences now become

˛tC1.j / D

M�1X
iD0

˛t .i/Aij bij .ytC1/

ˇt�1.i/ D

M�1X
jD0

Aij bij .yt /ˇt .j /

(16.3.19)

and we start off the ˛’s with the special rule ˛0.i/ D 1, since (like the case of
ˇN�1.i/ previously) the probability of the data is 1 before there are any data.

Another variant case is where one or more intermediate states are known ex-
actly. In that case, one or more of the sums over i0; i1; : : : ; it�1 in equation (16.3.13)
is left out, and the corresponding index on an A and b gets replaced by the known
state number. If you track through how this affects the recurrence equation (16.3.14),
you’ll see that the new procedure is

� calculate the ˛’s forward to, and including, a known state;
� zero all the ˛ values at that time except for that of the known state;
� don’t renormalize anything (though you feel tempted to do so); and
� continue forward with the ˛’s for the next timestep.

Proceed similarly for the ˇ’s.
The opposite variant is where you have missing data, meaning that for some

values of t there is no observation of the symbol y t . In this case, all you need to do
is to make a special case for the symbol probability,

bi .yt / � 1; .0 
 i < M/ t 2 fmissingg (16.3.20)

meaning that, regardless of state i , the probability of observing the data (meaning
no data) at time t is unity. Now proceed as usual to calculate the state probabili-
ties. If you then want to reconstruct the missing data, you can calculate its posterior
probabilities,

P.yt D k j y/ D

M�1X
iD0

Pi .t/bi .k/ D

M�1X
iD0

˛i .t/ˇi .t/

L
bi .k/ t 2 fmissingg

(16.3.21)

16.3.3 Bayesian Re-Estimation of the Model Parameters
This is magical. The probability that we were in state i at time t is ˛t .i/ˇt .i/=L.

What is the probability, given the data y , that a given transition, say between time
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t and time t C 1, was a transition between state i and state j ? We write, applying
various of the laws of probability,

P.st D i; stC1 D j j y/

D P.stC1 D j j y; st D i /P.st D i j y/

D
P.y j stC1 D j; st D i /P.stC1 D j j st D i /P
j P.y j stC1 D j; st D i /P.stC1 D j j st D i /

P.st D i j y/

D
Œ˛t .i/bj .ytC1/ˇtC1.j /�ŒAij �P
j Œ˛t .i/bj .ytC1/ˇtC1.j /�ŒAij �

Œ˛t .i/ˇt .i/�

L

D
˛t .i/Aij bj .ytC1/ˇtC1.j /

L
(16.3.22)

Note how the sum over j in the denominator disappears by the recurrence (16.3.16)
for ˇt .i/.

So, for a long run of data, we can compute the fraction of the time that a state
i transitions to state j as the estimated number of i ! j transitions divided by the
estimated number of i states,

yAij D

P
t ˛t .i/Aij bj .ytC1/ˇtC1.j /P

t ˛t .i/ˇt .i/
(16.3.23)

noting that the L’s cancel out. The reason for calling this quotient yAij is that it is
a re-estimation of the transition probability Aij . The corresponding re-estimation of
the symbol probability matrix bi .k/ is the fraction of all i states that emit a symbol
k, namely

ybi .k/ D

P
t ı.yt ; k/˛t .i/ˇt .i/P

t ˛t .i/ˇt .i/
(16.3.24)

where ı.j; k/ is 1 if j D k, zero otherwise.
You might think that this process is somehow circular, or that re-estimating Aij

and bi .k/ in this fashion only introduces noise that degrades the model. Far from it!
Baum and Welch first showed that replacingAij by yAij and bj .k/ by ybj .k/, and then
recalculating the probabilities of each state at each time by the forward-backward al-
gorithm, always increases L, the overall likelihood of the model. It is, in fact, an EM
algorithm (cf. �16.1, and see below). You can continue this cycle of estimating states
(forward-backward) and re-estimating model probabilities (Baum-Welch), obtain-
ing further increases in L, until convergence to a maximum is achieved. Equations
(16.3.23) and (16.3.24) are known as Baum-Welch re-estimation.

So the magic is this: We began by estimating states in a known hidden Markov
model. We now see that, just from the data, we can get not only an estimate of the
states, but also an estimate of the model itself, that is, the transition probabilities and
symbol probabilities. Like any iterative process, this works best if we have a good
initial guess. But it will often converge to a good model from a fairly random initial
guess. (You should not start with exactly uniform probabilities, because that creates
a symmetry that the iteration finds hard to break.)

The code is straightforward. The updating of bi .k/ comes almost for free as a
byproduct of computing the denominator in the update for Aij . Like the forward-
backward algorithm, Baum-Welch re-estimation takes O.NM 2/ operations.
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void HMM::baumwelch() {hmm.h
Baum-Welch re-estimation of the stored matrices a and b, using the data obs and the matrices
alpha and beta as computed by forwardbackward() (which must be called first). The previous
values of a and b are overwritten.

Int i,j,k,t;
Doub num,denom,term;
MatDoub bnew(mstat,ksym);
Doub powtab[10]; Fill table of powers of BIGI.
for (i=0; i<10; i++) powtab[i] = pow(BIGI,i-6);
if (fbdone != 1) throw("must do forwardbackward first");
for (i=0; i<mstat; i++) { Looping over i, get denominators and new b.

denom = 0.;
for (k=0; k<ksym; k++) bnew[i][k] = 0.;
for (t=0; t<nobs-1; t++) {

term = (alpha[t][i]*beta[t][i]/lhood)
* powtab[arnrm[t] + brnrm[t] - lrnrm + 6];

denom += term;
bnew[i][obs[t]] += term;

}
for (j=0; j<mstat; j++) { Inner loop over j gets elements of a.

num = 0.;
for (t=0; t<nobs-1; t++) {

num += alpha[t][i]*b[j][obs[t+1]]*beta[t+1][j]
* powtab[arnrm[t] + brnrm[t+1] - lrnrm + 6]/lhood;

}
a[i][j] *= (num/denom);

}
for (k=0; k<ksym; k++) bnew[i][k] /= denom;

}
b = bnew;
fbdone = 0; Don’t let this routine be called again until forward-

backward() has been called.}

You must always precede a call to baumwelch by a call to forwardbackward,
since the latter updates the ˛ and ˇ tables. Also, as you alternate calls to the two
functions, you monitor convergence by the value of the log-likelihood calculated by
forwardbackward.

Be aware that convergence can be excruciatingly slow! The references describe
methods by which convergence can be accelerated in some cases. Common diffi-
culties are when a rare state is not correctly captured by the model, or when the
model thinks that there are two states, with nearly identical transition probabilities,
when there is really only one. If you have even a plausible guess for the transition
probability matrix, you should use it to start. There are many applications where
you shouldn’t use re-estimation at all: If you have a pretty good model to start
with, just use it (via forwardbackward) to analyze your data, and don’t even think
about re-estimating.

The Baum-Welch re-estimation algorithm, which dates from the mid-1960s,
was generalized in the mid-1970s by Dempster, Laird, and Rubin, as the expectation-
maximization (EM) algorithm, with a variety of applications to problems with miss-
ing or censored data. (An example is the Gaussian mixture model in �16.1.) In this
more general language, the forward-backward algorithm is an E-step, while Baum-
Welch is an M-step. Alas, one small cloud in an otherwise bright sky is that the
maximum of L achieved by multiple EM iterations is only guaranteed to be a local,
not a global, maximum.

HMM has found wide application in speech recognition, gene sequence com-
parison, financial models, and a variety of other fields. The references give specifics.
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16.3.4 Comparing the Viterbi Algorithm with HMM
It is important to understand the similarities and differences between the

Viterbi algorithm and hidden Markov modeling (its forward-backward algorithm
in particular).

When we discussed the Viterbi algorithm in the context of decoding, we made
the implicit assumption that a 1 bit was a priori as likely as a 0 bit. It is straight-
forward to generalize the Viterbi algorithm to include an arbitrary a priori transition
probability Aij , just like HMM. In that case, the probability factor on each edge
(whose negative logarithm is the edge cost) is the product of two terms, again just
like HMM, Aij bij .k/, where now bij .k/ is the probability of observing the observed
symbol k given that an i ! j transition occurred.

We discussed Baum-Welch parameter re-estimation for HMMs in some detail.
Re-estimation of the parameters in a Viterbi model, often called Viterbi training,
is analogous. Take the most probable path output by the algorithm (or ensemble
of paths collected from the decodes of many codewords). Count the number of
i ! j transitions seen along these paths and the numbers of each symbol k seen
for each pair i; j . Now re-estimate Aij and bij .k/ by the obvious normalizations of
these counts.

The Viterbi algorithm and the forward estimation part of the forward-backward
algorithm are structurally very similar. In both cases, we sweep forward in time (or
by stages) and assign a likelihood (or posterior probability) to each node, based on
the data already seen. The difference is that Viterbi assigns to a node the probabil-
ity of the single best path that reaches it, while forward-backward assigns the sum
of probabilities over all possible paths to that node. Indeed the Viterbi algorithm
is sometimes called the min-sum algorithm while forward-backward is referred to
as the sum-product algorithm, just to highlight this distinction. (In the context of
coding theory, the forward-backward algorithm is also sometimes called the BCJR
or Bahl-Cocke-Jelinek-Raviv algorithm. In other contexts it is sometimes called
belief propagation.)

The backward passes of the two algorithms have somewhat different structures.
For Viterbi, the backward pass simply consolidates the information about the sin-
gle most probable path that is already implicit in the node labeling. For forward-
backward, as we have seen, the backward pass is needed to get posterior probabilities
for each node that use all the data, both ahead of and behind any time t .

If you think you have a choice between using the Viterbi algorithm or using
HMM, you should probably think again. Most problems clearly favor only one or the
other method. If your desired output is a valid path on the graph, then HMM won’t
do: It might yield a set of highly probable nodes that just don’t lie on any single
path. For example, you might have the first half of one codeword and the second
half of another, with no graph edge connecting the two halves. That is why decoding
theory usually starts in the world of Viterbi (although, in some more complicated
constructs, it can end up with a foot in each world).

On the other hand, if you care about which nodes are visited, then HMM is most
likely what you want. In fact, Viterbi can give very poor results. The most proba-
ble path is often very improbable when compared to the sum of all paths that lead
through a particular node, one possibly not on the most probable path. Or, another
way of describing this, there may be exponentially many paths with not-too-different
probabilities, so the node probabilities are determined by the statistics of where they
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all channel, not by which one path happens to have the highest probability.
It is very easy to “mine” HMM for alternative possibilities, since it yields seem-

ingly every possible posterior probability that you might want to know. It is quite
difficult to get anything from the Viterbi algorithm other than the single most prob-
able path. That is because the enumeration of all possible paths is vastly harder
than the enumeration of all possible nodes; the Bellman-Dijkstra-Viterbi algorithm
is exquisitely good at keeping only the information that it needs. Data structures for
finding more than one probable path rapidly become very complex.

Finally, we must take aim at the myth, occasionally heard, that the Viterbi al-
gorithm, as a pure maximum likelihood (ML) estimate, is somehow “less Bayesian”
than HMM. In fact, HMM is also a pure ML estimate if you look only at the state i
with the largest ˛t .i/ˇt .i/ at each time t , neither normalizing its value nor looking
at any other i ’s. But you are then ignoring a wealth of useful information about the
other possible states. (This, in part, is why you should get with the Bayesian pro-
gram!) We think that both HMM and Viterbi are in fact Bayesian to the core. If there
were good ways to enumerate all the other paths and their likelihoods, we would
not hesitate to normalize the best-path likelihood and call it a posterior probability.
It is only because of the difficulty of this enumeration that it is possible to keep the
Viterbi algorithm’s Bayesian character “in the closet”; and there is no advantage, that
we can see, in doing so.

CITED REFERENCES AND FURTHER READING:
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Time Series (Boca Raton, FL: Chapman & Hall/CRC).
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16.4 Hierarchical Clustering by Phylogenetic
Trees

Hierarchical clustering is a type of unsupervised learning: We seek algorithms
that figure out how to cluster an unordered set of input data without ever being given
any training data with the “right answer.” As the name implies, the output of a
hierarchical clustering algorithm is a bunch of fully nested sets. The smallest sets
are the individual data elements. The largest set is the whole data set. Intermediate
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a b c d e f g

a b c d f ge

(((ab)(cd)e)(fg))

(zero-length branch 
shown as finite only 
for visibility here)

Figure 16.4.1. Representations of hierarchical classification. Top left: Diagram showing fully nested sets.
Bottom left: Equivalent parenthesized expression. Right: Binary tree (with possibly zero branch lengths).

sets are nested; that is, the intersection of any two sets is either the null set, or else
the smaller of the two sets.

What you need to get started with hierarchical clustering is either a set of se-
quences, or else a distance matrix. Character-based methods start with n sequences
each m characters long (for example, DNA bases or protein amino acids). A toy
example might be the n D 16 sequences of m D 12 characters,

0. CGGTTGGGAGCT
1. AGGTCGTGAGGT
2. TGGTTGGGGTTT
3. TGGGTGCGAGTT
4. ACGTTTGGGTGA
5. AAGGTTGGGGAA
6. GTCTTTCGGGTG
7. CACTTGCGGGGG

8. GCGCGGTGCAGC
9. AGGCGGTGCGGG

10. GGGCGGGGCGGG
11. GGGCGCTGCGGG
12. GGACGGAGGCTG
13. GGGTGGGAGCTG
14. AGGAGGCTGATG
15. TGGCGGATGATG

It is probably not immediately obvious that these sequences were generated from
a balanced five-level binary tree, with GGGGGGGGGGGG at the root, and with each
daughter node having two random mutations from her parent. We will see below the
extent to which some of the algorithms that we discuss can figure this out from the
data. A realistic case likely would have significantly longer sequences than this, and
fewer mean mutations per character; the number of sequences might be either more,
or fewer, than this toy.

The alternative starting point is with an n�nmatrix dij of distances between all
pairs of your n data points, which might now be sequences, points inN -dimensional
space, or whatever. You are responsible for making sure that the distance matrix
satisfies four conditions:

dij � 0 (positivity)

di i D 0 (zero self-distance)

dij D dj i (symmetry)

dik 
 dij C djk (triangle inequality)

(16.4.1)

for all i; j; k. We’ll discuss below how to get distances from sequences, if that’s the
way you want to go.

Figure 16.4.1 shows three representations of the same hierarchical clustering of
seven data elements. The two representations on the left are self-explanatory. The
one on the right, the binary tree, takes explaining on one point: If, in the set diagram,
.ab/, .cd/, and .e/ are clustered “democratically,” then why does the binary tree
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Figure 16.4.2. Types of trees. A cladogram (A) has arbitrary branch lengths. Only the topology is
intended to be represented. A phylogram or phylogenetic tree (B) is an additive tree, where the distance
between any two nodes/leaves is the sum of lengths of the horizontal connecting branches. An ultrametric
tree (C) is an additive tree with the property that any node has the same distance to all of its leaves
(as when all lengths represent time). Tree (D) is an alternative way of drawing tree (B). Again, only
horizontal distances are significant. In an unrooted tree (E), line lengths represent distances independent
of orientation. The tree (E) is the unrooted depiction of (B) or (D).

select .e/ arbitrarily as the descendant of a higher node, instead of having three
equal descendants from a common node?

The answer is just convention. Binary trees are the adopted common language
of hierarchical clustering because (i) they emerge naturally from the concept of mu-
tation events in biology, (ii) they are somewhat easier to represent in a computer
than more general trees, and, (iii) they are often easier to prove theorems about. Our
binary trees will almost always have the concept of branch length, a representation
of some measure of difference between a parent node and its child. When we need
to connect up democratically some number of nodes greater than two, we do it with
zero-length branches. A convention is to view all topologies of nodes so connected
as being equivalent.

16.4.1 Tree Basics
Figure 16.4.2 shows several ways of drawing binary trees and introduces some

further terminology. The data points are leaves, meaning that they are generally
taken as terminal nodes on the tree. Trees are often drawn either sideways (root left,
leaves right) or upside down (root top, leaves bottom) by comparison with their arbo-
real namesake whose roots are on the bottom, leaves on top — at least for most trees
that we see! A tree without meaningful branch lengths is usually called a cladogram.
These have a rich historical tradition in pre-molecular biology but are viewed with
alarm by most bioscientists today. A tree with meaningful branch lengths represent-
ing distances (in some metric) between nodes and their children, or between leaves,
is called a phylogram or phylogenetic tree. (However, some authors use the terms
cladogram and phylogram interchangeably, while some others use the words merely
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to distinguish different drawing styles.)
To a mathematician, a phylogenetic tree is an additive tree, meaning that the

tree’s path lengths induce a distance metric between any two leaves, namely the
sum of path lengths up and down that connect the two leaves through their unique
closest common ancestor. In real situations, the data we are given often are not
exactly represented by an additive distance metric. Thus, the problem of hierarchical
clustering amounts to finding a way of projecting such data onto the set of all additive
trees in a useful, or statistically justifiable, way.

Given an additive tree, it is easy to compute its distance matrix dij , defined now
as the matrix of all distances between pairs of leaf nodes. But what about the reverse?
Given some symmetric matrix dij , is it possible to determine whether there exists an
additive tree that instantiates it? Yes. One answer is the four-point condition for
additive trees: Given four distinct leaves i; j; k; l , an additive tree exists if and only
if

dij C dkl 
 max.dik C djl ; dil C djk/ (16.4.2)

for all choices of i; j; k; l . In words, this is equivalent to the statement: For all
distinct i; j; k; l , there is a tie for the maximum of the three sums of the form dij C

dkl . Later, when we discuss the neighbor-joining method, we will have a more
practical algorithmic answer.

As Figure 16.4.2 illustrates, a tree can either be rooted or unrooted. An unrooted
tree can always be rooted arbitrarily, by choosing any branch, grasping its midpoint
between your thumb and forefinger, and then shaking the tree so that all the other
branches drop downward into place. (We could give a much more mathematical de-
scription, but it would not add any clarity.) Some hierarchical clustering algorithms
yield rooted trees, where the root has some meaning with respect to the data; others
yield unrooted trees, although they may be drawn as if rooted, simply as a graphical
convention. It’s important to keep track of which kind of algorithm you are using.

You may wonder why the data points must always be leaves (terminal nodes).
Might not some data points actually be good ancestors of others? The answer is again
a mixture of history and convention: If the leaves are observed living taxa, then they
are by definition alive today. If “today” represents terminal nodes, then they are by
definition leaves. What makes this a mere convention is that we can always connect a
leaf to an ancestor node by a zero-length branch, so that ancestor-versus-living-taxon
becomes a distinction without a difference. A benefit of this convention is that we
always know in advance how many internal nodes will be generated by n data points:
n � 1 if the tree is rooted, or n � 2 for an unrooted tree, independent of the tree’s
topology. (If this isn’t obvious, then draw a few pictures.)

If path length denotes, literally, evolutionary time, then a phylogenetic tree has
the additional property of being ultrametric (refer to Figure 16.4.2). Ultrametric
trees are defined as additive trees with the property that the distance from any node
to all of its descendant leaves is the same for all such leaves. Clearly this is the
case if all the leaves have the same “time distance” from their common ancestor. In
the early 1960s, it was proposed that accepted mutation rates might be close enough
to constant that, at the molecular level, actual evolutionary data might be close to
ultrametric, i.e., that there was a “molecular clock.” For most cases, this is no longer
believed to be true. For example, mutation rates in E. coli have been found to vary
by two orders of magnitude. Ultrametric trees are important mathematically, as we
will see, but almost never realistic in their own right.
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(a)

(b)

(c)

Figure 16.4.3. Tree counting. (a) There is just one unrooted tree with three leaves. (b) There are three
ways to add a fourth leaf. (c) For each of the trees in (b), there are five ways to add a fifth leaf. Continuing
to add leaves, the number of trees with n leaves is 1� 3� 5� � � � � .2n� 5/.

The test, analogous to equation (16.4.2), for whether a given distance matrix is
ultrametric is the three-point condition,

dij 
 max.dik ; djk/ (16.4.3)

for all distinct i; j; k. Equivalently, in words: Among the three distances connecting
three distinct leaves, there is a tie for the maximum. Here too there is a more practical
algorithmic answer, which we will mention later.

There are a lot of possible ways to draw a tree that connects n leaves. As Figure
16.4.3 illustrates, the number of distinct, unrooted, possibilities is

Ntrees.n/ D 1 � 3 � 5 � 	 	 	 � .2n � 5/ � .2n � 5/ŠŠ (16.4.4)

The fact that this expression grows super-exponentially with n creates a dilemma
in the field of computational phylogenetics: An algorithm that requires an explicit
enumeration of, or explicit search over, all possible trees can be useful only for small
values of n. Thus, Ntrees.10/ � 2 � 106, is easy, but Ntrees.20/ � 2 � 1020 is
practically impossible.

16.4.2 Strategies for the Hierarchical Clustering Problem
If you are starting with a set of sequences, then, schematically, the goal of a

character-based method is to find the best of all possible trees, given the data, for
some definition of “best”:

�
sequences


 search for
“best” tree
������!

�
tree



(16.4.5)

The two most common definitions of “best” are maximum parsimony and maximum
likelihood, both of which we will say more about below [1]. Character methods are
generally limited by the super-exponential explosion in the number of trees. Al-
though the exhaustive search can be limited to some extent, for example by heuristics
of various kinds, its long shadow can never be avoided entirely.

Alternatively, if you are starting with a distance matrix, the problem is to find
the additive tree whose induced distance matrix (by branch lengths up and down) is
closest to dij , according to some criterion of closeness. This is also an exponentially
difficult problem. In practice, however, distance methods almost always use fast
heuristic methods that, while provably exact only for the unrealistic case where dij
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already comes from an ultrametric or additive tree, actually work pretty well for
distance matrices encountered in practice. In other words, the adopted scheme is�

distance

matrix

� ultrametric tree
heuristic

���������!
�
tree



(16.4.6)

or �
distance

matrix

� additive tree
heuristic
�������!

�
tree



(16.4.7)

The ability of these fast heuristic methods to give “pretty good” solutions to NP-hard
problems is remarkable, and only partially understood [2].

The most widely used heuristics are all agglomerative methods, meaning that
they start by connecting individual data points into small clusters, then connect those
clusters, and so forth. Common ultrametric-tree heuristic methods are UPGMA,
WPGMA, single linkage clustering, and complete linkage clustering. The most widely
used additive-tree heuristic method — and probably the most widely used phyloge-
netic clustering method overall — is the neighbor-joining (NJ) method [6]. We will
discuss, and implement, all the mentioned heuristic methods below.

There are a few, less-well-developed, distance-based methods that avoid heuris-
tics by finding provably error-bounded methods for transforming an arbitrary dis-
tance matrix into the matrix of an additive tree, then exactly constructing the result-
ing tree [3,4],�

distance

matrix

� find nearby
additive
������!

�
additive

matrix

� exact
construction
�������!

�
tree



(16.4.8)

Though more rigorous than the heuristic methods, there is little evidence that these
methods produce better results [5].

Evidently, one can always turn a character-based problem into a distance-based
one by defining a distance on character sequences,

�
sequences


 define a
distance
�����!

�
distance

matrix

�
(16.4.9)

and then continuing with schemes (16.4.6) or (16.4.7).
The obvious distance between two sequences is their Hamming distance

H.i; j /, which is defined as the number of character positions in which sequence
i differs from sequence j , an integer between 0 and m. However, when you are
given not just the data, but also a statistical model defining how it was generated
(i.e., “evolved”), there is often a corrected distance transformation that will give
better tree reconstructions [2]. For example, the popular Cavender-Felsenstein model
(whose discussion is beyond our scope) has the corrected distance transformation

dij D �
1
2

log .1 � 2H.i; j /=m/ (16.4.10)

This expression can be used directly when sequences are long enough, or mutation
probabilities small enough, that the argument of the logarithm is never negative. If
your data produce a negative argument, then a standard workaround is to use a mul-
tiple (1� or 2�) of the largest computable dij for all uncomputable dij ’s. Corrected
distance transformations also exist for general Markov models.
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Corrected distance transformations have the defining (and desirable) property
that as the sequence length increases, the matrix of observed corrected distances will
converge to the distance matrix of an additive tree. (This is not true for the uncor-
rected Hamming distance, incidentally.) In such a case, the power of an additive-tree
heuristic method like neighbor joining is much less mysterious. Corrected distance
transformations thus provide a statistical justification for the use of the neighbor-
joining method.

16.4.3 Implementation of Agglomerative Methods
The general scheme of an agglomerative method is, first, to initialize n active

clusters, each containing one data point, and, second, to repeat the following opera-
tions exactly n � 2 times:

� Find the two active clusters that are closest by some prescribed distance mea-
sure.
� Create a new active cluster that combines the two.
� Connect the new cluster, as parent, to the two closest clusters, as children, with

some prescription for the two branch lengths.
� Delete the two children from the active list.
� Compute, by some prescription, distances from the new cluster to the active

clusters that remain.

Each repetition of these steps reduces the active cluster list by exactly one (one ad-
dition, two deletions), so after n � 2 repetitions there will be exactly two active
clusters. You connect these either by a single branch (unrooted case), or by creating
a root node between them (rooted case) with some prescription as to the two root
branch lengths.

As we now turn to implementing phylogenetic tree routines, a few words of
caution are in order. Hamming’s dictum, that the purpose of computing is insight,
not numbers, applies here: Much of the value of a phylogenetic tree program lies in
its graphics and user interface, both areas outside of our scope. If you are working
with any significant quantity of real data, you probably want to use a sophisticated
package. As we write, PAUP (Phylogenetic Analysis Using Parsimony) [7] is the
most widely used commercial package, both for maximum parsimony trees and also
for the various heuristic methods. PHYLIP (Phylogeny Inference Package) [8] is a
free package for smaller trees (. 20 taxa). TreeView is a widely used, free, program
used for drawing trees in various formats. A user guide to the use of these and other
programs is [9]. If the insight you desire lies in algorithmics, not production data,
then you may read on.

Here is an abstract base class that implements the general agglomerative method,
leaving the various “prescriptions” to be specified by particular derived classes,
which we give later.

struct Phylagglomnode {phylo.h
Node for phylogenetic tree.

Int mo,ldau,rdau,nel; Pointers up and down; no. of elements.
Doub modist,dep,seq; Branch length to parent. See text re. dep and

seq.};

struct Phylagglom{
Abstract base class for constructing an agglomerative phylogenetic tree.
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Int n, root, fsroot; No. of data points, root node, forced root.
Doub seqmax, depmax; Max. values of seq, dep over the tree.
vector<Phylagglomnode> t; The tree.
virtual void premin(MatDoub &d, VecInt &nextp) = 0;
Function called before minimum search.
virtual Doub dminfn(MatDoub &d, Int i, Int j) = 0;
Distance function to be minimized
virtual Doub dbranchfn(MatDoub &d, Int i, Int j) = 0;
Branch length, node i to mother (j is sister).
virtual Doub dnewfn(MatDoub &d, Int k, Int i, Int j, Int ni, Int nj) = 0;
Distance function for newly constructed nodes.
virtual void drootbranchfn(MatDoub &d, Int i, Int j, Int ni, Int nj,
Doub &bi, Doub &bj) = 0;
Sets branch lengths to the final root node.
Int comancestor(Int leafa, Int leafb); See text discussion of NJ.
Phylagglom(const MatDoub &dist, Int fsr = -1)

: n(dist.nrows()), fsroot(fsr), t(2*n-1) {}
Constructor is always called by a derived class.

void makethetree(const MatDoub &dist) {
Routine that actually constructs the tree, called by the constructor of a derived class.

Int i, j, k, imin, jmin, ncurr, node, ntask;
Doub dd, dmin;
MatDoub d(dist); Matrix d is initialized with dist.
VecInt tp(n), nextp(n), prevp(n), tasklist(2*n+1);
VecDoub tmp(n);
for (i=0;i<n;i++) { Initializations on leaf elements.

nextp[i] = i+1; nextp and prevp are for looping on the distance
matrix even as it becomes sparse.prevp[i] = i-1;

tp[i] = i; tp points from a distance matrix row to a tree
element.t[i].ldau = t[i].rdau = -1;

t[i].nel = 1;
}
prevp[0] = nextp[n-1] = -1; Signifying end of loop.
ncurr = n;
for (node = n; node < 2*n-2; node++) { Main loop!

premin(d,nextp); Any calculations needed before min finding.
dmin = 9.99e99;
for (i=0; i>=0; i=nextp[i]) { Find i; j pair with min distance.

if (tp[i] == fsroot) continue;
for (j=nextp[i]; j>=0; j=nextp[j]) {

if (tp[j] == fsroot) continue;
if ((dd = dminfn(d,i,j)) < dmin) {

dmin = dd;
imin = i; jmin = j;

}
}

}
i = imin; j = jmin;
t[tp[i]].mo = t[tp[j]].mo = node; Now set properties of the parent

and children.t[tp[i]].modist = dbranchfn(d,i,j);
t[tp[j]].modist = dbranchfn(d,j,i);
t[node].ldau = tp[i];
t[node].rdau = tp[j];
t[node].nel = t[tp[i]].nel + t[tp[j]].nel;
for (k=0; k>=0; k=nextp[k]) { Get new-node distances.

tmp[k] = dnewfn(d,k,i,j,t[tp[i]].nel,t[tp[j]].nel);
}
for (k=0; k>=0; k=nextp[k]) d[i][k] = d[k][i] = tmp[k];
tp[i] = node; New node replaces child i in dist. matrix, while child

j gets patched around.if (prevp[j] >= 0) nextp[prevp[j]] = nextp[j];
if (nextp[j] >= 0) prevp[nextp[j]] = prevp[j];
ncurr--;

} End of main loop.
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i = 0; j = nextp[0]; Set properties of the root node.
root = node;
t[tp[i]].mo = t[tp[j]].mo = t[root].mo = root;
drootbranchfn(d,i,j,t[tp[i]].nel,t[tp[j]].nel,

t[tp[i]].modist,t[tp[j]].modist);
t[root].ldau = tp[i];
t[root].rdau = tp[j];
t[root].modist = t[root].dep = 0.;
t[root].nel = t[tp[i]].nel + t[tp[j]].nel;
We now traverse the tree computing seq and dep, hints for where to plot nodes in a
two-dimensional representation. See text.
ntask = 0;
seqmax = depmax = 0.;
tasklist[ntask++] = root;
while (ntask > 0) {

i = tasklist[--ntask];
if (i >= 0) { Meaning, process going down the tree.

t[i].dep = t[t[i].mo].dep + t[i].modist;
if (t[i].dep > depmax) depmax = t[i].dep;
if (t[i].ldau < 0) { A leaf node.

t[i].seq = seqmax++;
} else { Not a leaf node.

tasklist[ntask++] = -i-1;
tasklist[ntask++] = t[i].ldau;
tasklist[ntask++] = t[i].rdau;

}
} else { Meaning, process coming up the tree.

i = -i-1;
t[i].seq = 0.5*(t[t[i].ldau].seq + t[t[i].rdau].seq);

}
}

}
};

The Phylagglom structure creates a tree of Phylagglomnodes. Each node
carries pointers to its mother and two daughters, and knows its number of elements
(original data points), branch length to its mother, and two floating values dep and
seq, which we now explain: The final while block in makethetree() does a depth-
first traversal of the finished tree. When it reaches a node in the downward direction,
it sets dep to the sum of branch lengths to the root node. The variable dep is thus a
hint as to where to plot the node in the depth direction. When the traversal reaches
a leaf, it sets seq to a sequential numbering of leaves. When it reaches an internal
node in the upward direction, it sets its seq value to the average of the seq values
of its two children. The value of seq thus becomes a hint as to where to plot a node
perpendicular to the depth direction. If you plot nodes by dep and seq, then plotted
branches won’t cross each other.

Looking at the nested loops, you can see that makethetree() isO.n3/ in time.
Actually, it is straightforward to reduce this toO.n2/: With some extra bookkeeping,
you can keep the distances in a structure that allows the shortest to be found without
an n2 search. We have not coded this, just to keep the code shorter and simpler.

16.4.4 Algorithms That Are Exact for Ultrametric Trees
Given a distance matrix that is exactly ultrametric, all of the agglomerative al-

gorithms that we now discuss will (modulo some technical details) reconstruct its
tree exactly. The reason that we need more than one such algorithm is because their
behaviors can be somewhat different on realistic, nonultrametric, data, in the general
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CGGTTGGGAGCT (00)
AGGTCGTGAGGT (01)
TGGTTGGGGTTT (02)
TGGGTGCGAGTT (03)

ACGTTTGGGTGA (04)
AAGGTTGGGGAA (05)
GTCTTTCGGGTG (06)
CACTTGCGGGGG (07)

GCGCGGTGCAGC (08)
AGGCGGTGCGGG (09)
GGGCGGGGCGGG (10)

GGGCGCTGCGGG (11)
GGACGGAGGCTG (12)
GGGTGGGAGCTG (13)

AGGAGGCTGATG (14)
TGGCGGATGATG (15)

Figure 16.4.4. Example of WPGMA agglomerative clustering on a toy problem. Strings were mu-
tated hierarchically from GGGGGGGGGGGG to produce the input data. WPGMA and related methods
(UPGMA, SLC, CLC) yield perfect results for perfectly ultrametric input data, but can deviate badly when
that assumption is violated. In this example, however, it does quite well.

scheme of (16.4.6). The different algorithms are distinguished by their prescriptions
for computing the distances to new nodes.

The weighted pair group method using arithmetic averages (WPGMA) uses this
prescription: If a new cluster k is formed from old clusters i and j , then the distance
from k to another active cluster p is

dpk D dkp D
1
2
.dpi C dpj / (16.4.11)

that is, just the average of distances to the two children.
Implementing code, as a class derived from Phylagglom, is

struct Phylo_wpgma : Phylagglom { phylo.h
Derived class implementing the WPGMA method. Only need to define functions that are virtual
in Phylagglom.

void premin(MatDoub &d, VecInt &nextp) {} No pre-min calculations.
Doub dminfn(MatDoub &d, Int i, Int j) {return d[i][j];}
Doub dbranchfn(MatDoub &d, Int i, Int j) {return 0.5*d[i][j];}
Doub dnewfn(MatDoub &d, Int k, Int i, Int j, Int ni, Int nj) {

return 0.5*(d[i][k]+d[j][k]);} New-node distance is average.
void drootbranchfn(MatDoub &d, Int i, Int j, Int ni, Int nj,

Doub &bi, Doub &bj) {bi = bj = 0.5*d[i][j];}
Phylo_wpgma(const MatDoub &dist) : Phylagglom(dist)

{makethetree(dist);} This call actually makes the tree.
};

Figure 16.4.4 shows the result of applying the WPGMA method to the toy data
at the beginning of this section, using the Hamming distance as the distance metric.
You can see that the tree captures almost all of the correct underlying topology,
erring only in its pairing of 09 and 10 and thus missing the correct pairings 08-09
and 10-11.

The unweighted pair group method using arithmetic averages (UPGMA) uses

dpk D dkp D
nidpi C njdpj

ni C nj
(16.4.12)

Although, paradoxically, UPGMA looks “weighted” while WPGMA looks “un-
weighted,” the names derive from the fact that the UPGMA formula is equivalent
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to an unweighted average of distances to all of a node’s descendant leaves. The
UPGMA method is the most widely used of the ultrametric heuristic methods.

Implementing code is

struct Phylo_upgma : Phylagglom {phylo.h
Derived class implementing the UPGMA method. Only need to define functions that are virtual
in Phylagglom.

void premin(MatDoub &d, VecInt &nextp) {} No pre-min calculations.
Doub dminfn(MatDoub &d, Int i, Int j) {return d[i][j];}
Doub dbranchfn(MatDoub &d, Int i, Int j) {return 0.5*d[i][j];}
Doub dnewfn(MatDoub &d, Int k, Int i, Int j, Int ni, Int nj) {

return (ni*d[i][k] + nj*d[j][k]) / (ni+nj);} Distance is weighted.
void drootbranchfn(MatDoub &d, Int i, Int j, Int ni, Int nj,

Doub &bi, Doub &bj) {bi = bj = 0.5*d[i][j];}
Phylo_upgma(const MatDoub &dist) : Phylagglom(dist)

{makethetree(dist);} This call actually makes the
tree.};

The single linkage clustering method and the complete linkage clustering method
use, respectively, the minimum and maximum distances to the two children,

dpk D dkp D min.dpi ; dpj / (single linkage)

dpk D dkp D max.dpi ; dpj / (complete linkage)
(16.4.13)

Implementing code is

struct Phylo_slc : Phylagglom {phylo.h
Derived class implementing the single linkage clustering method.

void premin(MatDoub &d, VecInt &nextp) {} No pre-min calculations.
Doub dminfn(MatDoub &d, Int i, Int j) {return d[i][j];}
Doub dbranchfn(MatDoub &d, Int i, Int j) {return 0.5*d[i][j];}
Doub dnewfn(MatDoub &d, Int k, Int i, Int j, Int ni, Int nj) {

return MIN(d[i][k],d[j][k]);} New-node distance is min of children.
void drootbranchfn(MatDoub &d, Int i, Int j, Int ni, Int nj,

Doub &bi, Doub &bj) {bi = bj = 0.5*d[i][j];}
Phylo_slc(const MatDoub &dist) : Phylagglom(dist)

{makethetree(dist);} This call actually makes the tree.
};

struct Phylo_clc : Phylagglom {
Derived class implementing the complete linkage clustering method.

void premin(MatDoub &d, VecInt &nextp) {} No pre-min calculations.
Doub dminfn(MatDoub &d, Int i, Int j) {return d[i][j];}
Doub dbranchfn(MatDoub &d, Int i, Int j) {return 0.5*d[i][j];}
Doub dnewfn(MatDoub &d, Int k, Int i, Int j, Int ni, Int nj) {

return MAX(d[i][k],d[j][k]);} New-node distance is max of children.
void drootbranchfn(MatDoub &d, Int i, Int j, Int ni, Int nj,

Doub &bi, Doub &bj) {bi = bj = 0.5*d[i][j];}
Phylo_clc(const MatDoub &dist) : Phylagglom(dist)

{makethetree(dist);} This call actually makes the tree.
};

16.4.5 Neighbor Joining: Exact for Additive Trees
Saitou and Nei’s neighbor-joining method (NJ) [6] is an agglomerative method

with the remarkable property that it exactly reconstructs any additive tree, given that
tree’s distance matrix (again modulo some technical details). NJ is probably the
most widely used agglomerative method, and perhaps the most widely used method



�

�

“nr3” — 2007/5/1 — 20:53 — page 879 — #901
�

�

� �

16.4 Hierarchical Clustering by Phylogenetic Trees 879

for phylogenetic tree construction overall. Real biological trees are almost never
close enough to ultrametric to give UPGMA a significant advantage over NJ, so NJ
is likely the method, among the fast heuristic methods, that you will want to try first.

The prescriptions for treating NJ within the framework of Phyloagglom are
slightly more complicated than for the ultrametric heuristics. At each stage of form-
ing a new cluster, we compute an auxiliary quantity,

ui �
1

na � 2

X
j¤i

dij (16.4.14)

where the sum is over active clusters, whose number is na. Then, we find not the
minimum distance, per se, but the minimum of the expression

dij � ui � uj (16.4.15)

When we connect clusters i and j to form a new node k, the branch lengths from i

to k and from j to k are

dik D
1
2
.dij C ui � uj /

djk D
1
2
.dij C uj � ui /

(16.4.16)

Finally, the distance between new node k and another node p is

dpk D dkp D
1
2
.dpi C dpj � dij / (16.4.17)

(You can now see why Phylagglom was coded with some features that were not
exercised by the ultrametric heuristics.)

struct Phylo_nj : Phylagglom { phylo.h
Derived class implementing the neighbor joining (NJ) method.

VecDoub u;
void premin(MatDoub &d, VecInt &nextp) {
Before finding the minimum we (re-)calculate the u’s.

Int i,j,ncurr = 0;
Doub sum;
for (i=0; i>=0; i=nextp[i]) ncurr++; Count live entries.
for (i=0; i>=0; i=nextp[i]) { Compute u[i].

sum = 0.;
for (j=0; j>=0; j=nextp[j]) if (i != j) sum += d[i][j];
u[i] = sum/(ncurr-2);

}
}
Doub dminfn(MatDoub &d, Int i, Int j) {

return d[i][j] - u[i] - u[j]; NJ finds min of this.
}
Doub dbranchfn(MatDoub &d, Int i, Int j) {

return 0.5*(d[i][j]+u[i]-u[j]); NJ setting for branch lengths.
}
Doub dnewfn(MatDoub &d, Int k, Int i, Int j, Int ni, Int nj) {

return 0.5*(d[i][k] + d[j][k] - d[i][j]); NJ new distances.
}
void drootbranchfn(MatDoub &d, Int i, Int j, Int ni, Int nj,
Doub &bi, Doub &bj) {

Since NJ is unrooted, it is a matter of taste how to assign branch lengths to the root.
This prescription plots aesthetically.
bi = d[i][j]*(nj - 1 + 1.e-15)/(ni + nj -2 + 2.e-15);
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CGGTTGGGAGCT (00)
AGGTCGTGAGGT (01)

TGGTTGGGGTTT (02)
TGGGTGCGAGTT (03)

ACGTTTGGGTGA (04)
AAGGTTGGGGAA (05)
GTCTTTCGGGTG (06)

CACTTGCGGGGG (07)
GCGCGGTGCAGC (08)

AGGCGGTGCGGG (09)

GGGCGGGGCGGG (10)
GGGCGCTGCGGG (11)

GGACGGAGGCTG (12)
GGGTGGGAGCTG (13)

AGGAGGCTGATG (14)
TGGCGGATGATG (15)

Figure 16.4.5. Same data as previous figure, clustered by the neighbor-joining (NJ) method. The method
yields perfect results when the input data are the metric of an additive tree (which these data are not).
While displayed here as if rooted, the NJ method outputs an unrooted tree (see next figure).

bj = d[i][j]*(ni - 1 + 1.e-15)/(ni + nj -2 + 2.e-15);
}
Phylo_nj(const MatDoub &dist, Int fsr = -1)

: Phylagglom(dist,fsr), u(n) {makethetree(dist);}
};

Computing the ui ’s is here coded as an O.n2/ process, but it is repeated O.n/
times, so it adds O.n3/ to the workload. It is straightforward to make this O.n2/, in
line with the best coding for the rest of the tree construction. When you compute the
ui ’s, most distances have not changed; you just need to correct those that have. We
have not coded this, just to keep the code concise.

It is important to keep in mind that the neighbor-joining method intrinsically
produces an unrooted tree, regardless of how the graphical output may be drawn.
Figure 16.4.5 shows the tree produced by the above code, run on the same toy ex-
ample as above. It is clear by inspection that, if we want to root the tree at all, we
will likely do so at some different point than the one drawn. It is for just this rea-
son that Phylo_nj’s constructor has an optional integer argument for specifying a
node as an immediate daughter to a “forced” root. (You can’t specify a new root by
its node number, because it doesn’t exist yet.) Also, since you may not know how
Phyloagglom has numbered its internal nodes, there is a method that returns the
node number of an internal node, given two leaves that have it as their first common
ancestor.

Int Phylagglom::comancestor(Int leafa, Int leafb) {phylo.h
Given the node numbers of two leaves, return the node number of their first common ancestor.

Int i, j;
for (i = leafa; i != root; i = t[i].mo) {

for (j = leafb; j != root; j = t[j].mo) if (i == j) break;
if (i == j) break;

}
return i;

}

Figure 16.4.6 shows the result of rerooting the tree of Figure 16.4.5 to the com-
mon ancestor of leaves 08 and 15. The recovered topology is now seen to be almost
identical to that recovered by WPGMA, except for one additional mistake in not
giving 02 and 03 a common parent.

The two figures, 16.4.5 and 16.4.6, were produced by lines of code like
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CGGTTGGGAGCT (00)
AGGTCGTGAGGT (01)

TGGTTGGGGTTT (02)
TGGGTGCGAGTT (03)

ACGTTTGGGTGA (04)
AAGGTTGGGGAA (05)
GTCTTTCGGGTG (06)

CACTTGCGGGGG (07)
GCGCGGTGCAGC (08)

AGGCGGTGCGGG (09)

GGGCGGGGCGGG (10)
GGGCGCTGCGGG (11)

GGACGGAGGCTG (12)
GGGTGGGAGCTG (13)

AGGAGGCTGATG (14)
TGGCGGATGATG (15)

Figure 16.4.6. Same (NJ) tree as previous figure, but displayed with a different root, so as to produce a
more balanced tree.

Mat_DP dist(n,n);

� � �
Phylo_nj mytree(dist);

Int i = mytree.comancestor(8,15);

Phylo_nj myrerootedtree(dist,i);

Although an unlikely application, you can use neighbor joining to test whether
a given distance matrix is additive: Construct the NJ tree, and then see if its induced
(branch length) distance matrix is the same as the one you started with. Analogously,
you can use any of the ultrametric heuristic methods to test whether a distance matrix
is ultrametric.

To view a tree produced by Phyagglom, you can use the following routine
to produce an output file in the so-called “Newick” or “New Hampshire” format.
Most tree viewing programs (e.g., TreeView) can read such a file. Alternatively, see
Webnote [10] for a routine to convert a Phyagglom to PostScript graphics directly.

void newick(Phylagglom &p, MatChar str, char *filename) { phylo.h
Output a phylogenetic tree p in the “Newick” or “New Hampshire” standard format. Text labels
for the leaf nodes are input as the rows of str, each a null terminated string. The output file
name is specified by filename.

FILE *OUT = fopen(filename,"wb");
Int i, s, ntask = 0, n = p.n, root = p.root;
VecInt tasklist(2*n+1);
tasklist[ntask++] = (1 << 16) + root;
while (ntask-- > 0) { Depth-first traversal of the tree.

s = tasklist[ntask] >> 16; Code indicating context.
i = tasklist[ntask] & 0xffff; Node number to be processed.
if (s == 1 || s == 2) { Left or right dau, down.

tasklist[ntask++] = ((s+2) << 16) + p.t[i].mo;
if (p.t[i].ldau >= 0) {

fprintf(OUT,"(");
tasklist[ntask++] = (2 << 16) + p.t[i].rdau;
tasklist[ntask++] = (1 << 16) + p.t[i].ldau;

}
else fprintf(OUT,"%s:%f",&str[i][0],p.t[i].modist);

}
else if (s == 3) {if (ntask > 0) fprintf(OUT,",\n");} Left dau up.
else if (s == 4) { Right dau up.

if (i == root) fprintf(OUT,");\n");
else fprintf(OUT,"):%f",p.t[i].modist);

}
}
fclose(OUT);

}
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16.4.6 Maximum Likelihood and Maximum Parsimony
Both methods that we now discuss are character-based. If you have a problem

that starts with a distance matrix, you can skip this section.
Maximum likelihood (or its Bayesian equivalent, maximum posterior proba-

bility) sounds like a good idea for phylogenetic inference, but it has two crippling
disabilities:

First, its exact solution requires looping over (more or less) all possible trees,
so it must confront a super-exponential increase of workload with n, the number of
data points.

Second, since you need to compute the probability of each tree, given the ter-
minal node (leaf) data, you need to have a precise statistical model of how trees are
generated, i.e., how evolution works. While there are various such models, with
varying degrees of support by empirical data, no such model can convincingly claim
to be a universal truth. Under different models, maximum likelihood will produce
different trees.

There are heuristic methods, e.g. quartet puzzling [11], that finesse, to some ex-
tent, the first disability, at the price of yielding “solutions” that are not necessasrily
the absolute global optimum. However, the combination of both disabilities gener-
ally makes maximum likelihood a method of last resort.

Maximum parsimony shares maximum likelihood’s first disability, but not its
second. Since in many situations it has proved itself to be an accurate and robust
method [5], a lot of work has been done on heuristics that can overcome its work-
load limitations, again at the price of yielding only approximate solutions, and with
significant success.

The basic idea of maximum parsimony is very simple: Consider all trees that
have the observed data as their leaves. By “all trees” we mean not just all tree topolo-
gies, but rather all actual trees with interior nodes that are fully labeled by posited
ancestor sequences. Now, for each such tree, define its branch lengths to be the Ham-
ming distances between parent and child. For example, if a child’s sequence differs
from its parent’s in two character positions, then their connecting branch has length
two. The parsimony score for a tree is the sum of all of its branch lengths. The
maximum parsimony tree is the tree with the smallest parsimony score.

It turns out that one subpart of this search can be done in a computationally
efficient way. The small parsimony problem is: Given the topology of a tree over
the observed leaves, find the maximum parsimony way to assign sequences to all the
internal nodes. Fitch’s algorithm, which is beyond our scope to describe, solves this
in O.nmk/ time, where m is the length of the sequences and k is the number of
possible values for each character (e.g., k D 4 for DNA bases) [1].

The hard part of maximum parsimony is therefore the search over topologies.
When n is less than around 17, exhaustive search is possible. For larger n, various
techniques including random addition order, branch swapping, hill climbing, branch
and bound, simulated annealing, and genetic algorithms are used singly and in com-
bination. In general, these can give a result with only a local maximum parsimony;
but the results are often very good [1,5]. Unfortunately, the details are all beyond our
allowed scope here. PAUP [7] and TNT [12,13] both implement sophisticated maxi-
mum parsimony searches.
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16.5 Support Vector Machines

The support vector machine or SVM, first described by Vapnik and collaborators
in 1992 [1], has rapidly established itself as a powerful algorithmic approach to the
problem of classification within the larger context known as supervised learning.
SVMs are no more “machines” than are Turing “machines”; the use of the word is
inherited from that part of computer science long known as “machine learning.” A
number of classification problems whose solutions were previously dominated by
neural nets and more complicated methods have been found to be straightforwardly
solvable by SVMs [2]. Moreover, SVMs are generally easier to implement than are
neural nets; and it is generally easier to intuit what SVMs “think they are doing” than
for neural nets, which are famous for their opaqueness.

In the supervised learning problem of classification, we are given a set of train-
ing data consisting of m points,

.xi ; yi / i D 1; : : : ; m (16.5.1)
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Each xi is a feature vector in n dimensions (say) that describes the data point, while
each corresponding yi has the value˙1, indicating whether that data point is in .C1/
or out of .�1/ the set that we want to learn to recognize. We desire a decision rule,
in the form of a function f .x/ whose sign predicts the value of y, not just for the
data in the training set, but also for new values of x never before seen.

For some applications, the feature vector x truly lives in the continuous space
Rn. However, you are allowed to be creative in mapping your problem into this
framework: In many applications, the feature vector will be a binary vector that en-
codes the presence or absence of many “features” (hence its name). For example,
the feature vector describing a DNA sequence of length p could have n D 4p di-
mensions, with each base position using four dimensions, and having the value one
in one of the four (depending on whether it is A, C, G, or T), zero in the others.

16.5.1 Special Case of Linearly Separable Data
One can understand SVMs conceptually as a series of generalizations from an

idealized, and rather unrealistic, starting point, We discuss these generalizations se-
quentially in the rest of this section. The starting point is the special case of linearly
separable data. In this case, we are told (by an oracle?) that there exists a hyperplane
in n dimensions, that is, an n � 1 dimensional surface defined by the equation

f .x/ � w 	 xC b D 0 (16.5.2)

that completely separates the training data. In other words, all the training points
with yi D 1 lie on one side of the hyperplane (and thus have f .xi / > 0), while all
the training points with yi D �1 lie on the other side (and have f .xi / < 0). All we
have to do is find w (a normal vector to the hyperplane) and b (an offset). Then f .x/
in equation (16.5.2) will be the decision rule.

Actually, we can do better than this. In general, more than one hyperplane will
separate linearly separable data. Let’s pick the hyperplane that has the largest margin,
i.e., maximizes the perpendicular distance to points nearest to the hyperplane on both
sides. Specifically, given any hyperplane that separates the data, we can always scale
w by a constant and adjust b appropriately, to make

w 	 xi C b � C1 when yi D C1

w 	 xi C b 
 �1 when yi D �1
(16.5.3)

These equations represent parallel bounding hyperplanes that separate the data (see
Figure 16.5.1), a structure whimsically called a fat plane. With a bit of analytical
geometry, you can easily convince yourself that the perpendicular distance between
the bounding hyperplanes (twice the margin) is

2 �margin D 2.w 	 w/�1=2 (16.5.4)

Also note that both cases of equation (16.5.3) can be summarized as the single equa-
tion

yi .w 	 xi C b/ � 1 (16.5.5)

What we see is that the fattest fat plane, also known as the maximum margin SVM,
can be found by solving a particular problem in quadratic programming:

minimize: 1
2
w 	 w

subject to: yi .w 	 xi C b/ � 1 i D 1; : : : ; m
(16.5.6)
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f(x) =
 0f(x) =

 –
1

f(x) =
 +

1

“fat plane”

support vectors

m
ar
gi
n

Figure 16.5.1. Support vector machine (SVM) in the idealized case of linearly separable data. We want
to classify regions of the plane as containing x’s or o’s. The “fat plane” defined by �1 � f .x/ � 1
is chosen to maximize the margin (shown). At such a maximum, a small number of points, the “support
vectors,” will lie on the bounding planes.

Note that we minimize w 	 w instead of equivalently maximizing its reciprocal. The
factor of 1=2 merely simplifies some algebra, later.

General methods for solving quadratic programming problems like the above
are discussed in [3,4]. Later in this section, we discuss a method specialized for
some SVMs. For now, consider the solution of (16.5.6) and similar problems as an
available “black box.”

At a solution of (16.5.6), some (usually a small number) of the data points
must lie exactly on one or the other bounding hyperplane, because, otherwise, the fat
plane could have been made fatter. These data points, with f .x/ D ˙1, are called
the support vectors of the solution. However, despite the fact that support vector
machines were originally named after these support vectors, they don’t play much of
a role in the more realistic generalizations that we will soon discuss.

16.5.2 Primal and Dual Problems in Quadratic
Programming

The first of our promised generalizations may at first sight seem a puzzling
direction to go, since it consists merely of replacing one quadratic programming
problem with another. We will see later, however, that this replacement has profound
consequences.

The general problem in quadratic programming, known as the primal problem,
can be stated as

minimize: f .w/

subject to: gj .w/ 
 0

hk.w/ D 0

(16.5.7)

where f .w/ is quadratic in w ; g.w/ and h.w/ are affine in w (i.e., linear plus a con-
stant); and j and k index, respectively, the sets of inequality and equality constraints.
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Every primal problem has a dual problem, which can be thought of as an alter-
native way of solving the primal problem (cf. �10.11.1). To get from the primal to
the dual, one writes a Lagrangian that incorporates both the quadratic form, and —
with Lagrange multipliers — all the constraints, namely,

L � 1
2
f .w/C

X
j

j̨gj .w/C
X
k

ˇkhk.w/ (16.5.8)

One then writes this subset of conditions for an extremum:

@L

@wi
D 0;

@L

@ˇk
D 0; (16.5.9)

and uses the resulting equations algebraically to eliminate w from L, in favor of ˛
and ˇ (where we now write the j̨ ’s and ˇk’s as vectors). Call the result, the reduced
Lagrangian, L.˛;ˇ/. Then the important result, which follows from the so-called
strong duality and Kuhn-Tucker theorems (cf. �10.11.1), is that the solution of the
following dual problem is equivalent to the original primal problem:

maximize: L.˛;ˇ/

subject to: j̨ � 0 for all j
(16.5.10)

In fact, this result is more general than quadratic programming and is true, roughly
speaking, for any convex f .w/. Furthermore, if yw is the optimal solution of the
primal problem, and y̨; y̌ are the optimal solutions of the dual problem, we have

f .yw/ D L.y̨; y̌/

y̨j gj .yw/ D 0 for all j
(16.5.11)

The latter condition is called the Karush-Kuhn-Tucker complementarity condition. It
says that at least one of y̨j and gj .yw/ must be zero for each j . (We previously met
the linear case in equation 10.11.5.) This means that, from the solution of the dual
problem, you can instantly identify inequality constraints in the primal problem that
are “pinned” against their limit, namely those with nonzero y̨j ’s in the solution of
the dual.

16.5.3 Dual Formulation of the Maximum Margin SVM
The above procedure is readily performed on the quadratic programming prob-

lem (16.5.6) for the maximum margin SVM. There are no ˇk’s, since there are no
equality constraints. The Lagrangian (16.5.8) is

L D 1
2
w 	 w C

X
i

˛i Œ1 � yi .w 	 xi C b/� (16.5.12)

The conditions for an extremum are

0 D
@L

@w
D w �

X
i

˛iyixi H) yw D
X
i

y̨iyixi (16.5.13)
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and

0 D
@L

@b
D
X
i

˛iyi (16.5.14)

Substituting equations (16.5.13) and (16.5.14) back into (16.5.12) gives the reduced
Lagrangian

L.˛/ D
X
j

j̨ �
1
2

X
j;k

j̨yj .xj 	 xk/yk˛k

� e 	 ˛ � 1
2
˛ 	 diag.y/ 	G 	 diag.y/ 	 ˛

(16.5.15)

In the second form of the above equation we introduce some convenient matrix nota-
tion: e is the vector whose components are all unity, diag denotes a diagonal matrix
formed from a vector in the obvious way, and G is the Gram matrix of dot products
of all the xj ’s,

Gij � xi 	 xj (16.5.16)

Remember that subscripts on x don’t indicate components, but rather index which
data point is referenced.

The dual problem, in toto, thus turns out to be

minimize: 1
2
˛ 	 diag.y/ 	G 	 diag.y/ 	 ˛ � e 	 ˛

subject to: ˛i > 0 for all i

˛ 	 y D 0 (from 16.5.14)

(16.5.17)

We also have the Karush-Kuhn-Tucker relation,

y̨i Œyi .yw 	 xi C b/ � 1� D 0 (16.5.18)

Equation (16.5.13) tells how to get the optimal solution yw of the primal problem
from the solution y̨ of the dual. Equation (16.5.18) is then used to get yb: Find any
nonzero ˛i , then, with the corresponding yi , xi , and yw , solve the above relation
for yb. Alternatively, one can average out some roundoff error by taking a weighted
average of ˛i ’s,

yb D
X
i

y̨i .yi � yw 	 xi /
.X

i

˛i (16.5.19)

Finally, the decision rule is f .x/ D yw 	 xC yb.

A few observations will become important later:

� Data points with nonzero y̨i satisfy the constraints as equalities, i.e., they are
support vectors.
� The only place that the data xi ’s appear in (16.5.17) is in the Gram matrix G.
� The only part of the calculation that scales with n (the dimensionality of the

feature vector) is computing the components of the Gram matrix.
� All other parts of the calculation scale with m, the number of data points.

Thus, in going from primal to dual, we have substituted for a problem that scales
(mostly) with the dimensionality of the feature matrix a problem that scales (mostly)
with the number of data points. This might seem odd, because it makes problems
with huge numbers of data points difficult. However, it makes easy, as we will soon
see, problems with moderate amounts of data but huge feature vectors. This is in fact
the regime where SVMs really shine.
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16.5.4 The 1-Norm Soft-Margin SVM and Its Dual
The next important generalization is to relax the unrealistic assumption that

there exists a hyperplane that separates the training data, i.e., get rid of the “oracle.”
We do this by introducing a so-called slack variable �i for each data point xi . If the
data point is one that can be separated by a fat plane, then �i D 0. If it can’t be, then
�i > 0 is the amount of the discrepancy, expressed by the modified inequality

yi .w 	 xi C b/ � 1 � �i (16.5.20)

We must of course build in an inducement for the optimization to make the
�i ’s as small as possible, zero whenever possible. We thus have a trade-off between
making the �i ’s small and making the fat plane fat. In other words, we now have
a problem that requires not only optimization, but also regularization, in the same
sense as the discussion in �18.4. In the notation of equation (18.4.12), our quadratic
forms (w 	 w or L) are examples of A’s. We need to invent a regularizing operator
B that expresses our hopes for the �i ’s, and then minimize A C �B, instead of
just A alone. As we vary � in the range 0 < � < 1, we explore a regularization
trade-off curve.

The 1-norm soft-margin SVM adopts, as the name indicates, a linear sum of the
(positive) �i ’s as its regularization operator. The primal problem is thus

minimize: 1
2
w 	 w C �

X
i

�i

subject to: �i � 0;

yi .w 	 xi C b/ � 1 � �i i D 1; : : : ; m

(16.5.21)

A possible variant is the 2-norm soft-margin SVM, where the regularization term
would be

P
i �i

2; however, this gives somewhat more complicated equations, so we
will put it beyond our scope here.

Along the trade-off curve 0 < � < 1, we vary from a a solution that prefers
a really fat fat plane (no matter how many points are inside, or on the wrong side,
of it) to a solution that is so miserly in allowing discrepancies that it settles for a
fat plane with hardly any margin at all. The former is less accurate on the training
data but possibly more robust on new data; the latter is as accurate as possible on the
training data but possibly fragile (and less accurate) on new data. As in Chapter 19,
the choice of � is a design trade-off that you have to make. (However, we give you
some guidance, below.)

Importantly, any nonnegative value of � allows there to be some solution, whether
the data are linearly separable or not. You can see this by noting that w D 0 is always
a feasible (but not optimal) solution of (16.5.21) for sufficiently large positive �i ’s,
no matter what the value of �. If there is a feasible solution, there must, of course,
be an optimal solution.

The very astute reader might notice that � here seems to have the opposite
qualitative sense from the �’s in Chapter 19. Specifically, � ! 0 (here) gives the
“softer,” more robust, solution, while in Chapter 19 it is � ! 1 that, in a similar
way, favors a priori smoothness. The reason for this switch is that the quadratic
program (16.5.21) becomes the quadratic program (16.5.6) in the limit �!1, not
0. This is because there are no �i ’s in the constraints in (16.5.6), so (16.5.21) must, in
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the limit, force them to zero, requiring infinite �. Correspondingly, as � approaches
zero, the �i ’s become unconstrained. So the regularization term here indeed does
act with the opposite sense from Chapter 19, because of the way it acts through the
constraints, not the main functional.

Curiously, the dual to the 1-norm soft-margin SVM turns out to be almost iden-
tical to the dual of the (unrealistic) maximum margin SVM (16.5.17). Omitting
details of the calculation, the result is

minimize: 1
2
˛ 	 diag.y/ 	G 	 diag.y/ 	 ˛ � e 	 ˛

subject to: 0 
 ˛i 
 � for all i

˛ 	 y D 0

(16.5.22)

That is, the only difference is that there is now a constraining upper bound of � on
˛i in addition to the lower bound of zero. (This kind of constraint is called a box
constraint.)

The formula for yw is unchanged from equation (16.5.13), while the Karush-
Kuhn-Tucker conditions now become

.y̨i � �/y�i D 0

y̨i

h
yi .yw 	 xi C yb/ � 1C y�i

i
D 0

(16.5.23)

We see that, except for rare degenerate cases of double zeros,

y̨i D 0 ” data point i on correct side of fat plane

0 < y̨i < � ” data point i exactly on fat plane boundary (a support vector)

y̨i D � ” data point i inside, or on wrong side, of fat plane
(16.5.24)

Here again we see that, as we reduce � toward zero, pinning more and more ˛i ’s at
the value �, we get solutions with increasing numbers of “wrong” points, but fatter
fat planes.

The roundoff-averaged estimator for yb, analogous to equation (16.5.19), is

yb D
X
i

y̨i .� � y̨i /.yi � yw 	 xi /
.X

i

y̨i .� � y̨i / (16.5.25)

Although the linear assumption (that is, using hyperplanes to separate the data)
is still somewhat restrictive, the model defined by (16.5.22) does have some practical
utility in problems where there is some reason to believe that the response is (at least
somewhat) linear in the components of the feature vector. But that is far from the
end of the story.

16.5.5 The Kernel Trick
Finally, we get to the generalization that gives SVMs their real power. Imagine

an embedding function ' that maps n-dimensional feature vectors, in some manner,
into a much higher N -dimensional space,

x .n-dimensional/ �! '.x/ .N -dimensional/ (16.5.26)
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Figure 16.5.2. When feature vectors are mapped from a lower-dimensional space (here 2) to a higher-
dimensional embedding space (here 3), nonlinear separation surfaces can become well approximated by
linear ones. In practice, very high-dimensional embedding spaces are used, but they enter the SVM
calculation only implicitly, through the “kernel trick.”

The basic idea, as shown in Figure 16.5.2, is that a very nonlinear separating surface
in the n-dimensional space might map into (or be well approximated by) a linear
hyperplane in the N -dimensional space.

To see why this might work, consider this mapping from two to five dimensions:

.x0; x1/
'
�! .x20 ; x0x1; x

2
1 ; x0; x1/ (16.5.27)

With this mapping, a decision rule f .x/ that is constructed as linear in the embed-
ding space becomes general enough to include all linear and quadratic forms (lines,
ellipses, hyperbolas) in the original feature space, namely,

f .x/ D F Œ'.x/� �W 	 '.x/C B (16.5.28)

where we are using uppercase letters for quantities in the embedding space. Although
N D 5 in this example, it might instead have a value like a million or a billion (we’ll
see how this works in a minute).

Give our data, how do we find W and B in the embedding space? Let’s try
exactly as before, but just in the higher-dimensional space. The primal problem
(compare to equation 16.5.21) is

minimize: 1
2
W 	W C �

X
i

„i

subject to: „i � 0;

yi .W 	 '.xi /C B/ � 1 �„i i D 1; : : : ; m

(16.5.29)

Uh-oh! This is a quadratic programming problem in a million- or billion-dimensional
space, not likely to be tractable on your ordinary desktop computer.

What about the dual problem? It turns out to be

minimize: 1
2
˛ 	 diag.y/ 	K 	 diag.y/ 	 ˛ � e 	 ˛

subject to: 0 
 ˛i 
 � for all i

˛ 	 y D 0

(16.5.30)
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This is exactly the same as (16.5.22), except that the Gram matrix Gij has been
replaced by the so-called kernel Kij ,

Kij � K.xi ;xj / � '.xi / 	 '.xj / (16.5.31)

Well, this is progress. The quadratic programming problem (16.5.30) is no harder
than the original problem (16.5.22)! Both live in a space of dimensionm, the number
of data points, and both get fed a fixed matrix, precalculated from the data: Gij in
one case, Kij in the other.

We have succeeded in maneuvering the “curse of dimensionality” into a very
tight corner, namely the calculation of just the m2 values Kij . Now we annihilate it
entirely with the kernel trick:

The “trick” is that we never really need to know the mapping '.x/ at all. All we
need is a way of computing a kernel Kij that could have come from some mapping
'.x/, that is, a matrix of size m � m with the mathematical properties of an inner
product space in higher dimension. We already know one possible kernel, namely the
Gram matrix Gij . Here are some provable properties of kernel functions K.xi ;xj /
in general:

� Kij D K.xi ;xj / must be symmetric in i and j and must have nonnegative
eigenvalues (Mercer’s theorem).
� Any multinomial combination of kernel functions is a kernel function. That

is, you can freely combine kernel functions by multiplication, addition, and
scaling by a constant.
� K.'.xi /;'.xj // is a kernel if K.; / is one, for any '. This generalizes the

original idea of the embedding space.
� K.xi ;xj / D g.xi /g.xj / is always a kernel, for any function g.

Once you settle on a kernel and solve the quadratic programming problem
(16.5.30), then your final decision rule for any new feature vector x is

f .x/ D
X
i

y̨iyiK.xi ;x/ C yb (16.5.32)

where (again using the averaging trick)

yb D
X
i

y̨i .� � y̨i /Œyi �
X
j

y̨iyjK.xj ;xi /�
.X

i

y̨i .� � y̨i / (16.5.33)

While the construction of the ideal kernel for any particular problem can involve
some art, some very generic kernels turn out to be quite powerful in solving real-
world problems. Often you can just try a few of these and pick the one that works
best. The following are good ones to try first:

linear: K.xi ;xj / D xi 	 xj

power: K.xi ;xj / D .xi 	 xj /
d ; 2 
 d 
 20 (say)

polynomial: K.xi ;xj / D .a xi 	 xj C b/
d

sigmoid: K.xi ;xj / D tanh.a xi 	 xj C b/

Gaussian radial basis function: K.xi ;xj / D exp.�1
2
jxi � xj j

2=�2/

(16.5.34)
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Figure 16.5.3. SVMs that “learn” to partition the plane. The input data are drawn from four two-
dimensional Gaussians, slightly overlapping, with diagonally opposite ones given the same label (x or
o). Heavy solid lines are the decision rule surfaces f .x/ D 0 derived by the SVMs. Lighter lines show
f .x/ D ˙1. (a) Polynomial kernel with d D 8. (b) Gaussian radial basis function kernel.

See �2.3 of [5] for additional standard kernels. Chapter 13 of [5] describes many
specialized kernels, e.g., for comparing strings or passages of text, for image recog-
nition, and for a number of other applications.

Figure 16.5.3 shows a test example using both a polynomial kernel with d D
8 and a Gaussian radial basis kernel. It is characteristic of the Gaussian kernel
that it is more influenced by local nearest neighbor effects (which may be good or
bad, depending on the application), while polynomial kernels seek smoother, more
global solutions.

Although it is beyond our scope in this section, we should mention that the ker-
nel trick is applicable not only to SVMs (that is, to algorithms based on separating
hyperplanes), but also to a number of other pattern recognition algorithms, for ex-
ample principal component analysis (PCA) and the Fisher discriminant algorithm.
See [5] and [6] for extensive treatments of these kernel-based learning algorithms.

16.5.6 Some Practical Advice on SVMs
The Gaussian radial basis function kernel is very popular, because it has only

one adjustable parameter, � , and it is easy to guess a first value to try, namely any
characteristic distance between nearby points in the feature space. As mentioned, the
Gaussian kernel classifies to some degree by the local neighborhood consensus.

For the polynomial kernels, start by choosing a and b to make a xi 	 xj C b
lie between ˙1 for all i and j . The power d has a (very rough) interpretation as
how many different features you want the comparison to “mix.” That is, d D 1

(linear) partitions the space by one feature at at time; d D 2 looks at pairs of features
simultaneously, and so on. Also very roughly, the difference between power and
polynomial is whether you want to consider only exactly d features at a time (power),
or all combinations of d or fewer features (polynomial). These interpretations should
not be taken too seriously, however. Specifically, larger d is not always better.

We have not said much about how to choose �, the regularization parameter.
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Try � D 1 first, then try increasing and decreasing it by factors of 10. There is
typically a broad plateau, as a function of log10.�/, where the precise value of �
doesn’t matter much. There is some belief that hxi 	 xj i�1 or hK.xi ;xj /i�1, where
angle brackets denote averages over all i; j pairs, are good starting guesses; but for
properly scaled kernels these should not be too different from unity in any case.

As you vary � and repeatedly solve the quadratic program, look at the frac-
tion of ˛i ’s that are pinned at zero, pinned at �, or floating between these limits. A
good profile will often have the biggest fraction at zero, a smaller (but not necessar-
ily much smaller) fraction at �, and the smallest fraction in between (see equation
16.5.24 for interpretation). These fractions are also often good indicators for adjust-
ing parameters in your kernel. Naturally you will also be looking at the fraction of
your training data that is predicted correctly, that is, has yif .xi / > 0.

Below, we will give a short, self-contained program for finding the solution
to SVMs; but for anything other than small problems you will want to use a more
sophisticated software package. There are many tricks and shortcuts that can speed
the solution of an SVM relative to the general problem of quadratic programming —
good SVM packages take advantage of these. For example, a good package should
take advantage of sparseness in the feature vectors to save on computation. Our
favorite package is Thorsten Joachims’ SVMlight [7], available for free on the Web.
Gist [8] is another popular free implementation. The Web site cited in [2] has a page
with links to a wide variety of SVM software.

16.5.7 The Mangasarian-Musicant Variant and Its Solution
by SOR

Mangasarian and Musicant [9,10] have suggested a very slight variant of equa-
tion (16.5.21), and its kernel generalization, that has the interesting property that it
can be solved, quite compactly, by the method of successive overrelaxation (SOR;
see �20.5.1). In particular, a complete SVM solution program using SOR is less than
100 lines long. We discuss this M-M variant here, and implement it in code, just
because of its brevity. We have used this code for problems of up to several thou-
sand data points, with feature vectors of length several hundred. Such problems take
seconds to solve on a desktop machine. For larger problems, our advice is that you
use the more efficient specialized packages [7,8]. SVMlight, for example, is typically
about an order of magnitude faster than the code we give below.

The primal problem in the 1-norm soft-margin form of the M-M variant is

minimize: 1
2
w 	 w C b2 C �

X
i

�i

subject to: �i � 0;

yi .w 	 xi C b/ � 1 � �i i D 1; : : : ; m

(16.5.35)

The only difference from (16.5.21) is that a term b2 has been added to the functional
that is minimized. On its face, this should have the effect of slightly favoring hy-
perplanes closer to the origin, all else being equal, an innocuous (albeit arbitrary)
change. The real purpose of the b2 term, however, is its algebraic effect when we
calculate the dual problem:
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minimize: 1
2
˛ 	 diag.y/ 	 .G C e˝ e/ 	 diag.y/ 	 ˛ � e 	 ˛

subject to: 0 
 ˛i 
 � for all i
(16.5.36)

Aside from an extra term e ˝ e (the matrix of all ones) now added to the Gram
matrix, the main change from (16.5.21) is that the equality constraint is gone! This
renders the solution much more tractable numerically. The dual problem also now
has a simpler expression for yb,

yb D
X
i

y̨iyi (16.5.37)

(As before, yw is computed from 16.5.13.)
When we do the kernel trick, the only change in (16.5.36) is to change Gij to

Kij . Equation (16.5.37) still holds, but yb is actually superfluous since the decision
rule can be written directly as

f .x/ D
X
i

y̨iyi ŒK.xi ;x/C 1� (16.5.38)

Mangasarian and Musicant have shown that the solution of the M-M variant
SVM is often identical to the solution of the the standard 1-norm soft-margin SVM
(albeit with a different value of �) and is almost never significantly different. What
is quite different, however, is that (16.5.36) and its kernel version can be solved by
the following, linearly convergent, relaxation procedure:

� Define M � diag.y/ 	 .KC e˝ e/ 	 diag.y/.
� Initialize all the ˛i ’s to zero.
� Repeat ad libitum the relaxation replacement, for i D 1; 2; : : : ; m,

˛i  P

�
˛i � !

1

Mi i

�X
j

Mij j̨ � 1

��
(16.5.39)

Here P is the projection operator that just puts ˛ back into its allowed range. [Note
the similarity to the method of projection onto convex sets (POCS) in �19.5.2.]

P D

�
0; ˛ < 0

˛; 0 
 ˛ 
 �

�; ˛ > �

(16.5.40)

The constant ! is the overrelaxation parameter, exactly as in �20.5.1. You pick it
in the range 0 < ! < 2. In our experience, the convergence rate does not depend
sensitively on !. If you don’t have a better idea, take ! D 1:3.

Our implementation begins with a virtual class that defines the interface to a
kernel function,

struct Svmgenkernel {svm.h
Virtual class that defines what a kernel structure needs to provide.

Int m, kcalls; No. of data points; counter for kernel calls.
MatDoub ker; Locally stored kernel matrix.
VecDoub_I &y; Must provide reference to the yi ’s.
MatDoub_I &data; Must provide reference to the xi ’s.
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Svmgenkernel(VecDoub_I &yy, MatDoub_I &ddata)
: m(yy.size()),kcalls(0),ker(m,m),y(yy),data(ddata) {}

Every kernel structure must provide a kernel function that returns the kernel for arbitrary
feature vectors.
virtual Doub kernel(const Doub *xi, const Doub *xj) = 0;
inline Doub kernel(Int i, Doub *xj) {return kernel(&data[i][0],xj);}
Every kernel structure’s constructor must call fill to fill the ker matrix.
void fill() {

Int i,j;
for (i=0;i<m;i++) for (j=0;j<=i;j++) {

ker[i][j] = ker[j][i] = kernel(&data[i][0],&data[j][0]);
}

}
};

Basically, a kernel structure is required to provide references to the data (the xi ’s)
and the y i ’s, a matrix of kernel values for all pairs of data points, and two forms of
the kernel function: one with two arbitrary feature vectors as arguments, and another
with one argument a data point and the other an arbitrary feature vector. Here are
three examples of kernels, for three of the standard kernels in equation (16.5.34),
built on the above Svmgenkernel.

struct Svmlinkernel : Svmgenkernel { svm.h
Kernel structure for the linear kernel, the dot product of two feature vectors (with overall means
of each component subtracted).

Int n;
VecDoub mu;
Svmlinkernel(MatDoub_I &ddata, VecDoub_I &yy)
Constructor is called with the m� n data matrix, and the vector of yi ’s, length m.

: Svmgenkernel(yy,ddata), n(data.ncols()), mu(n) {
Int i,j;
for (j=0;j<n;j++) mu[j] = 0.;
for (i=0;i<m;i++) for (j=0;j<n;j++) mu[j] += data[i][j];
for (j=0;j<n;j++) mu[j] /= m;
fill();

}
Doub kernel(const Doub *xi, const Doub *xj) {

Doub dott = 0.;
for (Int k=0; k<n; k++) dott += (xi[k]-mu[k])*(xj[k]-mu[k]);
return dott;

}
};

struct Svmpolykernel : Svmgenkernel {
Kernel structure for the polynomial kernel.

Int n;
Doub a, b, d;
Svmpolykernel(MatDoub_I &ddata, VecDoub_I &yy, Doub aa, Doub bb, Doub dd)
Constructor is called with the m � n data matrix, the vector of yi ’s, length m, and the
constants a, b, and d .

: Svmgenkernel(yy,ddata), n(data.ncols()), a(aa), b(bb), d(dd) {fill();}
Doub kernel(const Doub *xi, const Doub *xj) {

Doub dott = 0.;
for (Int k=0; k<n; k++) dott += xi[k]*xj[k];
return pow(a*dott+b,d);

}
};

struct Svmgausskernel : Svmgenkernel {
Kernel structure for the Gaussian radial basis function kernel.

Int n;
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Doub sigma;
Svmgausskernel(MatDoub_I &ddata, VecDoub_I &yy, Doub ssigma)
Constructor is called with the m � n data matrix, the vector of yi ’s, length m, and the
constant � .

: Svmgenkernel(yy,ddata), n(data.ncols()), sigma(ssigma) {fill();}
Doub kernel(const Doub *xi, const Doub *xj) {

Doub dott = 0.;
for (Int k=0; k<n; k++) dott += SQR(xi[k]-xj[k]);
return exp(-0.5*dott/(sigma*sigma));

}
};

The above is all prefatory to the SVM solution structure. You declare an in-
stance of Svm with your kernel as the argument. It then makes available three func-
tions: relax performs one “group” of relaxation steps and returns the norm of how
much change in ˛ has occurred. (We define “group” below.) You call relax repeat-
edly, with � and ! as arguments, until the returned value is small enough: 10�3 or
10�4 is usually plenty. Then (and only then) you may repeatedly call either of two
forms of predict, which returns the decision rule f .x/. One form of predict re-
turns the prediction for data points, the other for arbitrary new feature vectors. If you
want to examine the ˛i ’s, or count how many are pinned at 0 or �, you can examine
the vector alph.

struct Svm {svm.h
Class for solving SVM problems by the SOR method.

Svmgenkernel &gker; Reference bound to user’s kernel (and data).
Int m, fnz, fub, niter;
VecDoub alph, alphold; Vectors of ˛’s before and after a step.
Ran ran; Random number generator.
Bool alphinit;
Doub dalph; Change in norm of the ˛’s in one step.
Svm(Svmgenkernel &inker) : gker(inker), m(gker.y.size()),

alph(m), alphold(m), ran(21), alphinit(false) {}
Constructor binds the user’s kernel and allocates storage.

Doub relax(Doub lambda, Doub om) {
Perform one group of relaxation steps: a single step over all the ˛’s, and multiple steps
over only the interior ˛’s.

Int iter,j,jj,k,kk;
Doub sum; Index when ˛’s are sorted by value.
VecDoub pinsum(m); Stored sums over noninterior variables.
if (alphinit == false) { Start all ˛’s at 0.

for (j=0; j<m; j++) alph[j] = 0.;
alphinit = true;

}
alphold = alph; Save old ˛’s.
Here begins the relaxation pass over all the ˛’s.
Indexx x(alph); Sort ˛’s, then find first nonzero one.
for (fnz=0; fnz<m; fnz++) if (alph[x.indx[fnz]] != 0.) break;
for (j=fnz; j<m-2; j++) { Randomly permute all the nonzero ˛’s.

k = j + (ran.int32() % (m-j));
SWAP(x.indx[j],x.indx[k]);

}
for (jj=0; jj<m; jj++) { Main loop over ˛’s.

j = x.indx[jj];
sum = 0.;
for (kk=fnz; kk<m; kk++) { Sums start with first nonzero.

k = x.indx[kk];
sum += (gker.ker[j][k] + 1.)*gker.y[k]*alph[k];

}
alph[j] = alph[j] - (om/(gker.ker[j][j]+1.))*(gker.y[j]*sum-1.);
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alph[j] = MAX(0.,MIN(lambda,alph[j])); Projection operator.
if (jj < fnz && alph[j]) SWAP(x.indx[--fnz],x.indx[jj]);

} (Above) Make an ˛ active if it becomes nonzero.
Here begins the relaxation passes over the interior ˛’s.
Indexx y(alph); Sort. Identify interior ˛’s.
for (fnz=0; fnz<m; fnz++) if (alph[y.indx[fnz]] != 0.) break;
for (fub=fnz; fub<m; fub++) if (alph[y.indx[fub]] == lambda) break;
for (j=fnz; j<fub-2; j++) { Permute.

k = j + (ran.int32() % (fub-j));
SWAP(y.indx[j],y.indx[k]);

}
for (jj=fnz; jj<fub; jj++) { Compute sums over pinned ˛’s just

once.j = y.indx[jj];
sum = 0.;
for (kk=fub; kk<m; kk++) {

k = y.indx[kk];
sum += (gker.ker[j][k] + 1.)*gker.y[k]*alph[k];

}
pinsum[jj] = sum;

}
niter = MAX(Int(0.5*(m+1.0)*(m-fnz+1.0)/(SQR(fub-fnz+1.0))),1);
Calculate a number of iterations that will take about half as long as the full pass just
completed.
for (iter=0; iter<niter; iter++) { Main loop over ˛’s.

for (jj=fnz; jj<fub; jj++) {
j = y.indx[jj];
sum = pinsum[jj];
for (kk=fnz; kk<fub; kk++) {

k = y.indx[kk];
sum += (gker.ker[j][k] + 1.)*gker.y[k]*alph[k];

}
alph[j] = alph[j] - (om/(gker.ker[j][j]+1.))*(gker.y[j]*sum-1.);
alph[j] = MAX(0.,MIN(lambda,alph[j]));

}
}
dalph = 0.; Return change in norm of ˛ vector.
for (j=0;j<m;j++) dalph += SQR(alph[j]-alphold[j]);
return sqrt(dalph);

}
Doub predict(Int k) {
Call only after convergence via repeated calls to relax. Returns the decision rule f .x/ for
data point k.

Doub sum = 0.;
for (Int j=0; j<m; j++) sum += alph[j]*gker.y[j]*(gker.ker[j][k]+1.0);
return sum;

}
Doub predict(Doub *x) {
Call only after convergence via repeated calls to relax. Returns the decision rule f .x/ for
an arbitrary feature vector.

Doub sum = 0.;
for (Int j=0; j<m; j++) sum += alph[j]*gker.y[j]*(gker.kernel(j,x)+1.0);
return sum;

}
};

Although the enforced brevity doesn’t allow for too many optimizing tricks,
Svm does have a couple that bear mentioning:

First, each call to the relax routine performs, as previously mentioned, a group
of relaxations. Specifically, it does one full relaxation pass over all the ˛i ’s, and then
multiple passes over only the “interior” ˛i ’s, i.e., those that are not pinned at either 0
or �. These passes are typically much faster than the full pass, since most variables
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are typically pinned. To realize the gain, sums over pinned variables that don’t vary
are computed only once at the beginning of these multiple passes. The number of
such passes is calculated dynamically so as to take about half as long as the full pass
just taken.

Second, before each pass (both the full and interior), the order of the variables
is randomized by a permutation generated from a Ran object (�7.1). This random-
ization speeds up the convergence by as much as an order of magnitude.
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Integration of Ordinary
Differential Equations

CHAPTER 17

17.0 Introduction

Problems involving ordinary differential equations (ODEs) can always be re-
duced to the study of sets of first-order differential equations. For example the
second-order equation

d2y

dx2
C q.x/

dy

dx
D r.x/ (17.0.1)

can be rewritten as two first-order equations,

dy

dx
D z.x/

dz

dx
D r.x/ � q.x/z.x/

(17.0.2)

where z is a new variable. This exemplifies the procedure for an arbitrary ODE. The
usual choice for the new variables is to let them be just derivatives of each other
(and of the original variable). Occasionally, it is useful to incorporate into their
definition some other factors in the equation, or some powers of the independent
variable, for the purpose of mitigating singular behavior that could result in overflows
or increased roundoff error. Let common sense be your guide: If you find that the
original variables are smooth in a solution, while your auxiliary variables are doing
crazy things, then figure out why and choose different auxiliary variables.

The generic problem in ordinary differential equations is thus reduced to the
study of a set ofN coupled first-order differential equations for the functions yi ; i D
0; 1; : : : ; N � 1, having the general form

dyi .x/

dx
D fi .x; y0; : : : ; yN�1/; i D 0; : : : ; N � 1 (17.0.3)

where the functions fi on the right-hand side are known.
A problem involving ODEs is not completely specified by its equations. Even

more crucial in determining how to attack the problem numerically is the nature of

899
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the problem’s boundary conditions. Boundary conditions are algebraic conditions
on the values of the functions yi in (17.0.3). In general they can be satisfied at
discrete specified points, but do not hold between those points, i.e., are not preserved
automatically by the differential equations. Boundary conditions can be as simple as
requiring that certain variables have certain numerical values, or as complicated as a
set of nonlinear algebraic equations among the variables.

Usually, it is the nature of the boundary conditions that determines which nu-
merical methods will be feasible. Boundary conditions divide into two broad cate-
gories.

� In initial value problems all the yi are given at some starting value xs , and it is
desired to find the yi ’s at some final point xf , or at some discrete list of points
(for example, at tabulated intervals).
� In two-point boundary value problems, on the other hand, boundary conditions

are specified at more than one x. Typically, some of the conditions will be
specified at xs and the remainder at xf .

This chapter will consider exclusively the initial value problem, deferring two-point
boundary value problems, which are generally more difficult, to Chapter 18.

The underlying idea of any routine for solving the initial value problem is al-
ways this: Rewrite the dy’s and dx’s in (17.0.3) as finite steps �y and �x, and
multiply the equations by �x. This gives algebraic formulas for the change in the
functions when the independent variable x is “stepped” by one “stepsize” �x. In
the limit of making the stepsize very small, a good approximation to the underlying
differential equation is achieved. Literal implementation of this procedure results in
Euler’s method (equation 17.1.1, below), which is, however, not recommended for
any practical use. Euler’s method is conceptually important, however; one way or
another, practical methods all come down to this same idea: Add small increments
to your functions corresponding to derivatives (right-hand sides of the equations)
multiplied by stepsizes.

In this chapter we consider three major types of practical numerical methods
for solving initial value problems for ODEs:

� Runge-Kutta methods
� Richardson extrapolation and its particular implementation as the Bulirsch-

Stoer method
� predictor-corrector methods, also known as multistep methods.

A brief description of each of these types follows.
1. Runge-Kutta methods propagate a solution over an interval by combining

the information from several Euler-style steps (each involving one evaluation of the
right-hand f ’s), and then using the information obtained to match a Taylor series
expansion up to some higher order.

2. Richardson extrapolation uses the powerful idea of extrapolating a com-
puted result to the value that would have been obtained if the stepsize had been
very much smaller than it actually was. In particular, extrapolation to zero stepsize
is the desired goal. The first practical ODE integrator that implemented this idea
was developed by Bulirsch and Stoer, and so extrapolation methods are often called
Bulirsch-Stoer methods.

3. Predictor-corrector methods or multistep methods store the solution along
the way, and use those results to extrapolate the solution one step advanced; they
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then correct the extrapolation using derivative information at the new point. These
are best for very smooth functions.

Runge-Kutta used to be what you used when (i) you didn’t know any better, or
(ii) you had an intransigent problem where Bulirsch-Stoer was failing, or (iii) you had
a trivial problem where computational efficiency was of no concern. However, ad-
vances in Runge-Kutta methods, particularly the development of higher-order meth-
ods, have made Runge-Kutta competitive with the other methods in many cases.
Runge-Kutta succeeds virtually always; it is usually the fastest method when evalu-
ating fi is cheap and the accuracy requirement is not ultra-stringent (. 10�10), or in
general when moderate accuracy (. 10�5) is required. Predictor-corrector methods
have a relatively high overhead and so come into their own only when evaluating
fi is expensive. However, for many smooth problems, they are computationally
more efficient than Runge-Kutta. In recent years, Bulirsch-Stoer has been replacing
predictor-corrector in many applications, but it is too soon to say that predictor-
corrector is dominated in all cases. However, it appears that only rather sophisti-
cated predictor-corrector routines are competitive. Accordingly, we have chosen not
to give an implementation of predictor-corrector in this book. We discuss predictor-
corrector further in �17.6, so that you can use a packaged routine knowledgeably
should you encounter a suitable problem. In our experience, the relatively simple
Runge-Kutta and Bulirsch-Stoer routines we give are adequate for most problems.

Each of the three types of methods can be organized to monitor internal consis-
tency. This allows numerical errors, which are inevitably introduced into the solu-
tion, to be controlled by automatic (adaptive) changing of the fundamental stepsize.
We always recommend that adaptive stepsize control be implemented, and we will
do so below.

In general, all three types of methods can be applied to any initial value problem.
Each comes with its own set of debits and credits that must be understood before it
is used.

Section 17.5 of this chapter treats the subject of stiff equations, relevant both to
ordinary differential equations and also to partial differential equations (Chapter 20).

17.0.1 Organization of the Routines in This Chapter
We have organized the routines in this chapter into three nested levels, enabling

modularity and sharing common code wherever possible.
The highest level is the driver object, which starts and stops the integration,

stores intermediate results, and generally acts as an interface with the user. There is
nothing canonical about our driver object, Odeint. You should consider it to be an
example, and you can customize it for your particular application.

The next level down is a stepper object. The stepper oversees the actual incre-
menting of the independent variable x. It knows how to call the underlying algorithm
routine. It may reject the result, set a smaller stepsize, and call the algorithm routine
again, until compatibility with a predetermined accuracy criterion has been achieved.
The stepper’s fundamental task is to take the largest stepsize consistent with specified
performance. Only when this is accomplished does the true power of an algorithm
come to light.

All our steppers are derived from a base object called StepperBase:
StepperDopr5 and StepperDopr853 (two Runge-Kutta routines), StepperBS and
StepperStoerm (two Bulirsch-Stoer routines), and StepperRoss and StepperSIE
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(for so-called stiff equations).
Standing apart from the stepper, but interacting with it at the same level, is an

Output object. This is basically a container into which the stepper writes the output
of the integration, but it has some intelligence of its own: It can save, or not save,
intermediate results according to several different prescriptions that are specified by
its constructor. In particular, it has the option to provide so-called dense output, that
is, output at user-specified intermediate points without loss of efficiency.

The lowest or “nitty-gritty” level is the piece we call the algorithm routine. This
implements the basic formulas of the method, starts with dependent variables yi at
x, and calculates new values of the dependent variables at the value x C h. The
algorithm routine also yields some information about the quality of the solution after
the step. The routine is dumb, however, in that it is unable to make any adaptive
decision about whether the solution is of acceptable quality. Each algorithm routine
is implemented as a member function dy() in its corresponding stepper object.

17.0.2 The Odeint Object
It is a real time saver to have a single high-level interface to what are otherwise

quite diverse methods. We use the Odeint driver for a variety of problems, notably
including garden-variety ODEs or sets of ODEs, and definite integrals (augmenting
the methods of Chapter 4). The Odeint driver is templated on the stepper. This
means that you can usually change from one ODE method to another in just a few
keystrokes. For example, changing from the Dormand-Prince fifth-order Runge-
Kutta method to Bulirsch-Stoer is as simple as changing the template parameter from
StepperDopr5 to StepperBS.

The Odeint constructor simply initializes a bunch of things, including a call
to the stepper constructor. The meat is in the integrate routine, which repeatedly
invokes the step routine of the stepper to advance the solution from x1 to x2. It also
calls the functions of the Output object to save the results at appropriate points.

template<class Stepper>odeint.h
struct Odeint {
Driver for ODE solvers with adaptive stepsize control. The template parameter should be one
of the derived classes of StepperBase defining a particular integration algorithm.

static const Int MAXSTP=50000; Take at most MAXSTP steps.
Doub EPS;
Int nok;
Int nbad;
Int nvar;
Doub x1,x2,hmin;
bool dense; true if dense output requested by

out.VecDoub y,dydx;
VecDoub &ystart;
Output &out;
typename Stepper::Dtype &derivs; Get the type of derivs from the

stepper.Stepper s;
Int nstp;
Doub x,h;
Odeint(VecDoub_IO &ystartt,const Doub xx1,const Doub xx2,

const Doub atol,const Doub rtol,const Doub h1,
const Doub hminn,Output &outt,typename Stepper::Dtype &derivss);

Constructor sets everything up. The routine integrates starting values ystart[0..nvar-1]
from xx1 to xx2 with absolute tolerance atol and relative tolerance rtol. The quantity
h1 should be set as a guessed first stepsize, hmin as the minimum allowed stepsize (can be
zero). An Output object out should be input to control the saving of intermediate values.
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On output, nok and nbad are the number of good and bad (but retried and fixed) steps
taken, and ystart is replaced by values at the end of the integration interval. derivs is
the user-supplied routine (function or functor) for calculating the right-hand side derivative.

void integrate(); Does the actual integration.
};

template<class Stepper>
Odeint<Stepper>::Odeint(VecDoub_IO &ystartt, const Doub xx1, const Doub xx2,

const Doub atol, const Doub rtol, const Doub h1, const Doub hminn,
Output &outt,typename Stepper::Dtype &derivss) : nvar(ystartt.size()),
y(nvar),dydx(nvar),ystart(ystartt),x(xx1),nok(0),nbad(0),
x1(xx1),x2(xx2),hmin(hminn),dense(outt.dense),out(outt),derivs(derivss),
s(y,dydx,x,atol,rtol,dense) {
EPS=numeric_limits<Doub>::epsilon();
h=SIGN(h1,x2-x1);
for (Int i=0;i<nvar;i++) y[i]=ystart[i];
out.init(s.neqn,x1,x2);

}

template<class Stepper>
void Odeint<Stepper>::integrate() {

derivs(x,y,dydx);
if (dense) Store initial values.

out.out(-1,x,y,s,h);
else

out.save(x,y);
for (nstp=0;nstp<MAXSTP;nstp++) {

if ((x+h*1.0001-x2)*(x2-x1) > 0.0)
h=x2-x; If stepsize can overshoot, decrease.

s.step(h,derivs); Take a step.
if (s.hdid == h) ++nok; else ++nbad;
if (dense)

out.out(nstp,x,y,s,s.hdid);
else

out.save(x,y);
if ((x-x2)*(x2-x1) >= 0.0) { Are we done?

for (Int i=0;i<nvar;i++) ystart[i]=y[i]; Update ystart.
if (out.kmax > 0 && abs(out.xsave[out.count-1]-x2) > 100.0*abs(x2)*EPS)

out.save(x,y); Make sure last step gets saved.
return; Normal exit.

}
if (abs(s.hnext) <= hmin) throw("Step size too small in Odeint");
h=s.hnext;

}
throw("Too many steps in routine Odeint");

}

The Odeint object doesn’t know in advance which specific stepper object it
will be instantiated with. It does, however, rely on the fact that the stepper object
will be derived from, and thus have the methods in, this StepperBase object, which
serves as the base class for all subsequent ODE algorithms in this chapter:

struct StepperBase { stepper.h
Base class for all ODE algorithms.

Doub &x;
Doub xold; Used for dense output.
VecDoub &y,&dydx;
Doub atol,rtol;
bool dense;
Doub hdid; Actual stepsize accomplished by the step routine.
Doub hnext; Stepsize predicted by the controller for the next step.
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Doub EPS;
Int n,neqn; neqn D n except for StepperStoerm.
VecDoub yout,yerr; New value of y and error estimate.
StepperBase(VecDoub_IO &yy, VecDoub_IO &dydxx, Doub &xx, const Doub atoll,

const Doub rtoll, bool dens) : x(xx),y(yy),dydx(dydxx),atol(atoll),
rtol(rtoll),dense(dens),n(y.size()),neqn(n),yout(n),yerr(n) {}
Input to the constructor are the dependent variable vector y[0..n-1] and its derivative
dydx[0..n-1] at the starting value of the independent variable x. Also input are the
absolute and relative tolerances, atol and rtol, and the boolean dense, which is true
if dense output is required.

};

17.0.3 The Output Object
Output is controlled by the various constructors in the Output structure. The

default constructor, with no arguments, suppresses all output. The constructor with
argument nsave provides dense output provided nsave > 0. This means output
at values of x of your choosing, not necessarily the natural places that the stepper
method would land. The output points are nsave C 1 uniformly spaced points in-
cluding x1 and x2. If nsave 
 0, output is saved at every integration step, that
is, only at the points where the stepper happens to land. While most of your needs
should be met by these options, you should find it easy to modify Output for your
particular application.

struct Output {odeint.h
Structure for output from ODE solver such as odeint.

Int kmax; Current capacity of storage arrays.
Int nvar;
Int nsave; Number of intervals to save at for dense output.
bool dense; true if dense output requested.
Int count; Number of values actually saved.
Doub x1,x2,xout,dxout;
VecDoub xsave; Results stored in the vector xsave[0..count-1] and the

matrix ysave[0..nvar-1][0..count-1].MatDoub ysave;
Output() : kmax(-1),dense(false),count(0) {}
Default constructor gives no output.
Output(const Int nsavee) : kmax(500),nsave(nsavee),count(0),xsave(kmax) {
Constructor provides dense output at nsave equally spaced intervals. If nsave � 0, output
is saved only at the actual integration steps.

dense = nsave > 0 ? true : false;
}
void init(const Int neqn, const Doub xlo, const Doub xhi) {
Called by Odeint constructor, which passes neqn, the number of equations, xlo, the starting
point of the integration, and xhi, the ending point.

nvar=neqn;
if (kmax == -1) return;
ysave.resize(nvar,kmax);
if (dense) {

x1=xlo;
x2=xhi;
xout=x1;
dxout=(x2-x1)/nsave;

}
}
void resize() {
Resize storage arrays by a factor of two, keeping saved data.

Int kold=kmax;
kmax *= 2;
VecDoub tempvec(xsave);
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xsave.resize(kmax);
for (Int k=0; k<kold; k++)

xsave[k]=tempvec[k];
MatDoub tempmat(ysave);
ysave.resize(nvar,kmax);
for (Int i=0; i<nvar; i++)

for (Int k=0; k<kold; k++)
ysave[i][k]=tempmat[i][k];

}
template <class Stepper>
void save_dense(Stepper &s, const Doub xout, const Doub h) {
Invokes dense_out function of stepper routine to produce output at xout. Normally called
by out rather than directly. Assumes that xout is between xold and xold+h, where the
stepper must keep track of xold, the location of the previous step, and x=xold+h, the
current step.

if (count == kmax) resize();
for (Int i=0;i<nvar;i++)

ysave[i][count]=s.dense_out(i,xout,h);
xsave[count++]=xout;

}
void save(const Doub x, VecDoub_I &y) {
Saves values of current x and y.

if (kmax <= 0) return;
if (count == kmax) resize();
for (Int i=0;i<nvar;i++)

ysave[i][count]=y[i];
xsave[count++]=x;

}
template <class Stepper>
void out(const Int nstp,const Doub x,VecDoub_I &y,Stepper &s,const Doub h) {
Typically called by Odeint to produce dense output. Input variables are nstp, the current
step number, the current values of x and y, the stepper s, and the stepsize h. A call with
nstp=-1 saves the initial values. The routine checks whether x is greater than the desired
output point xout. If so, it calls save_dense.

if (!dense)
throw("dense output not set in Output!");

if (nstp == -1) {
save(x,y);
xout += dxout;

} else {
while ((x-xout)*(x2-x1) > 0.0) {

save_dense(s,xout,h);
xout += dxout;

}
}

}
};

17.0.4 A Quick-Start Example
Before we dive deep into the pros and cons of the different stepper types (the

meat of this chapter), let’s see how to code the solution of an actual problem. Suppose
we want to solve Van der Pol’s equation, which when written in first-order form is

y00 D y1

y01 D Œ.1 � y
2
0/y1 � y0�=�

(17.0.4)

First encapsulate (17.0.4) in a functor (see �1.3.3). Using a functor instead of
a bare function gives you the opportunity to pass other information to the function,
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such as the values of fixed parameters. Every stepper class in this chapter is accord-
ingly templated on the type of the functor defining the right-hand side derivatives.
For our example, the right-hand side functor looks like:

struct rhs_van {

Doub eps;

rhs_van(Doub epss) : eps(epss) {}

void operator() (const Doub x, VecDoub_I &y, VecDoub_O &dydx) {

dydx[0]= y[1];

dydx[1]=((1.0-y[0]*y[0])*y[1]-y[0])/eps;

}

};

The key thing is the line beginning void operator(): It always should have this
form, with the definition of dydx following. Here we have chosen to specify � as
a parameter in the constructor so that the main program can easily pass a specific
value to the right-hand side. Alternatively, you could have omitted the constructor,
relying on the compiler-supplied default constructor, and hard-coded a value of � in
the routine. Note, of course, that there is nothing special about the name rhs_van.

We will integrate from 0 to 2 with initial conditions y0 D 2, y1 D 0 and with
� D 10�3. Then your main program will have declarations like the following:

const Int nvar=2;

const Doub atol=1.0e-3, rtol=atol, h1=0.01, hmin=0.0, x1=0.0, x2=2.0;

VecDoub ystart(nvar);

ystart[0]=2.0;

ystart[1]=0.0;

Output out(20); Dense output at 20 points plus x1.
rhs_van d(1.0e-3); Declare d as a rhs_van object.
Odeint<StepperDopr5<rhs_van> > ode(ystart,x1,x2,atol,rtol,h1,hmin,out,d);

ode.integrate();

Note how the Odeint object is templated on the stepper, which in turn is templated
on the derivative object, rhs_van in this case. The space between the two closing an-
gle brackets is necessary; otherwise the compiler parses >> as the right-shift operator!

The number of good steps taken is available in ode.nok and the number of
bad steps in ode.nbad. The output, which is equally spaced, can be printed by
statements like

for (Int i=0;i<out.count;i++)

cout << out.xsave[i] << " " << out.ysave[0][i] << " " <<

out.ysave[1][i] << endl;

You can alternatively save output at the actual integration steps by the declara-
tion

Output out(-1);

or suppress all saving of output with

Output out;

In this case, the solution values at the endpoint are available in ystart[0] and
ystart[1], overwriting the starting values.
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17.1 Runge-Kutta Method

The formula for the Euler method is

ynC1 D yn C hf .xn; yn/ (17.1.1)

which advances a solution from xn to xnC1 � xnCh. The formula is unsymmetrical:
It advances the solution through an interval h, but uses derivative information only at
the beginning of that interval (see Figure 17.1.1). That means (and you can verify by
expansion in power series) that the step’s error is only one power of h smaller than
the correction, i.e., O.h2/ added to (17.1.1).

There are several reasons that Euler’s method is not recommended for practical
use, among them, (i) the method is not very accurate when compared to other, fancier,
methods run at the equivalent stepsize, and (ii) neither is it very stable (see �17.5
below).

Consider, however, the use of a step like (17.1.1) to take a “trial” step to the
midpoint of the interval. Then use the values of both x and y at that midpoint to
compute the “real” step across the whole interval. Figure 17.1.2 illustrates the idea.
In equations,

k1 D hf .xn; yn/

k2 D hf
�
xn C

1
2
h; yn C

1
2
k1



ynC1 D yn C k2 CO.h
3/

(17.1.2)

As indicated in the error term, this symmetrization cancels out the first-order error
term, making the method second order. [A method is conventionally called nth order
if its error term isO.hnC1/.] In fact, (17.1.2) is called the second-order Runge-Kutta
or midpoint method.

We needn’t stop there. There are many ways to evaluate the right-hand side
f .x; y/ that all agree to first order, but that have different coefficients of higher-order
error terms. Adding up the right combination of these, we can eliminate the error
terms order by order. That is the basic idea of the Runge-Kutta method. Abramowitz
and Stegun [1] and Gear [2] give various specific formulas that derive from this basic
idea. By far the most often used is the classical fourth-order Runge-Kutta formula,
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y(x)

1

2

x1 x2 x3 x

Figure 17.1.1. Euler’s method. In this simplest (and least accurate) method for integrating an ODE, the
derivative at the starting point of each interval is extrapolated to find the next function value. The method
has first-order accuracy.

y(x)

1

2

x1 x2 x3 x

3

4

5

Figure 17.1.2. Midpoint method. Second-order accuracy is obtained by using the initial derivative at each
step to find a point halfway across the interval, then using the midpoint derivative across the full width of
the interval. In the figure, filled dots represent final function values, while open dots represent function
values that are discarded once their derivatives have been calculated and used.

which has a certain sleekness of organization about it:

k1 D hf .xn; yn/

k2 D hf .xn C
1
2
h; yn C

1
2
k1/

k3 D hf .xn C
1
2
h; yn C

1
2
k2/

k4 D hf .xn C h; yn C k3/

ynC1 D yn C
1
6
k1 C

1
3
k2 C

1
3
k3 C

1
6
k4 CO.h

5/

(17.1.3)

The fourth-order Runge-Kutta method requires four evaluations of the right-
hand side per step h (see Figure 17.1.3). This will be superior to the midpoint method
(17.1.2) if at least twice as large a step is possible with (17.1.3) for the same accuracy.
Is that so? The answer is: often, perhaps even usually, but surely not always! This
takes us back to a central theme, namely that high order does not always mean high
accuracy. The statement “fourth-order Runge-Kutta is generally superior to second-
order” is a true one, but as much a statement about the kind of problems that people
solve as a statement about strict mathematics.

For many scientific users, fourth-order Runge-Kutta is not just the first word
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1
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yn + 1
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Figure 17.1.3. Fourth-order Runge-Kutta method. In each step the derivative is evaluated four times:
once at the initial point, twice at trial midpoints, and once at a trial endpoint. From these derivatives the
final function value (shown as a filled dot) is calculated. (See text for details.)

on ODE integrators, but the last word as well. In fact, you can get pretty far on
this old workhorse, especially if you combine it with an adaptive stepsize algorithm.
Keep in mind, however, that the old workhorse’s last trip may well be to take you to
the poorhouse: Newer Runge-Kutta methods are much more efficient, and Bulirsch-
Stoer or predictor-corrector methods can be even more efficient for problems where
very high accuracy is a requirement. Those methods are the high-strung racehorses.
Runge-Kutta is for ploughing the fields. However, even the old workhorse is more
nimble with new horseshoes. In �17.2 we will give a modern implementation of a
Runge-Kutta method that is quite competitive as long as very high accuracy is not
required. An excellent discussion of the pitfalls in constructing a good Runge-Kutta
code is given in [3].

Here is the routine rk4 for carrying out one classical Runge-Kutta step on a
set of n differential equations. This routine is completely separate from the various
stepper routines introduced in the previous section and given in the rest of the chap-
ter. It is meant for only the most trivial applications. You input the values of the
independent variables, and you get out new values that are stepped by a stepsize h
(which can be positive or negative). You will notice that the routine requires you to
supply not only function derivs for calculating the right-hand side, but also values
of the derivatives at the starting point. Why not let the routine call derivs for this
first value? The answer will become clear only in the next section, but in brief is
this: This call may not be your only one with these starting conditions. You may
have taken a previous step with too large a stepsize, and this is your replacement. In
that case, you do not want to call derivs unnecessarily at the start. Note that the
routine that follows has, therefore, only three calls to derivs.

void rk4(VecDoub_I &y, VecDoub_I &dydx, const Doub x, const Doub h, rk4.h
VecDoub_O &yout, void derivs(const Doub, VecDoub_I &, VecDoub_O &))

Given values for the variables y[0..n-1] and their derivatives dydx[0..n-1] known at x, use
the fourth-order Runge-Kutta method to advance the solution over an interval h and return
the incremented variables as yout[0..n-1]. The user supplies the routine derivs(x,y,dydx),
which returns derivatives dydx at x.
{

Int n=y.size();
VecDoub dym(n),dyt(n),yt(n);
Doub hh=h*0.5;
Doub h6=h/6.0;
Doub xh=x+hh;



�

�

“nr3” — 2007/5/1 — 20:53 — page 910 — #932
�

�

� �

910 Chapter 17. Integration of Ordinary Differential Equations

for (Int i=0;i<n;i++) yt[i]=y[i]+hh*dydx[i]; First step.
derivs(xh,yt,dyt); Second step.
for (Int i=0;i<n;i++) yt[i]=y[i]+hh*dyt[i];
derivs(xh,yt,dym); Third step.
for (Int i=0;i<n;i++) {

yt[i]=y[i]+h*dym[i];
dym[i] += dyt[i];

}
derivs(x+h,yt,dyt); Fourth step.
for (Int i=0;i<n;i++) Accumulate increments with

proper weights.yout[i]=y[i]+h6*(dydx[i]+dyt[i]+2.0*dym[i]);
}

The Runge-Kutta method treats every step in a sequence of steps in an identical
manner. Prior behavior of a solution is not used in its propagation. This is mathemat-
ically proper, since any point along the trajectory of an ordinary differential equation
can serve as an initial point. The fact that all steps are treated identically also makes
it easy to incorporate Runge-Kutta into relatively simple “driver” schemes.

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions (Washington: Na-
tional Bureau of Standards); reprinted 1968 (New York: Dover); online at http://www.nr.
com/aands, �25.5.[1]

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall), Chapter 2.[2]

Shampine, L.F., and Watts, H.A. 1977, “The Art of Writing a Runge-Kutta Code, Part I,” in Math-
ematical Software III, J.R. Rice, ed. (New York: Academic Press), pp. 257–275; 1979,
“The Art of Writing a Runge-Kutta Code. II,” Applied Mathematics and Computation, vol. 5,
pp. 93–121.[3]

17.2 Adaptive Stepsize Control for
Runge-Kutta

A good ODE integrator should exert some adaptive control over its own progress,
making frequent changes in its stepsize. Usually the purpose of this adaptive stepsize
control is to achieve some predetermined accuracy in the solution with minimum
computational effort. Many small steps should tiptoe through treacherous terrain,
while a few great strides should speed through smooth uninteresting countryside.
The resulting gains in efficiency are not mere tens of percents or factors of two; they
can sometimes be factors of ten, a hundred, or more. Sometimes accuracy may be
demanded not directly in the solution itself, but in some related conserved quantity
that can be monitored.

Implementation of adaptive stepsize control requires that the stepping algorithm
signal information about its performance, most important, an estimate of its trunca-
tion error. In this section we will learn how such information can be obtained. Obvi-
ously, the calculation of this information will add to the computational overhead, but
the investment will generally be repaid handsomely.

With fourth-order Runge-Kutta, the most straightforward technique by far is
step doubling (see, e.g., [1]). We take each step twice, once as a full step, then,
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independently, as two half-steps (see Figure 17.2.1). How much overhead is this,
say in terms of the number of evaluations of the right-hand sides? Each of the three
separate Runge-Kutta steps in the procedure requires 4 evaluations, but the single and
double sequences share a starting point, so the total is 11. This is to be compared not
to 4, but to 8 (the two half-steps), since — stepsize control aside — we are achieving
the accuracy of the smaller (half-) stepsize. The overhead cost is therefore a factor
1.375. What does it buy us?

Let us denote the exact solution for an advance from x to xC 2h by y.xC 2h/
and the two approximate solutions by y1 (one step 2h) and y2 (two steps each of size
h). Since the basic method is fourth order, the true solution and the two numerical
approximations are related by

y.x C 2h/ D y1 C .2h/
5� CO.h6/C : : :

y.x C 2h/ D y2 C 2.h
5/� CO.h6/C : : :

(17.2.1)

where, to order h5, the value � remains constant over the step. [Taylor series expan-
sion tells us the � is a number whose order of magnitude is y.5/.x/=5Š.] The first
expression in (17.2.1) involves .2h/5 since the stepsize is 2h, while the second ex-
pression involves 2.h5/ since the error on each step is h5�. The difference between
the two numerical estimates is a convenient indicator of truncation error,

� � y2 � y1 (17.2.2)

It is this difference that we shall endeavor to keep to a desired degree of accuracy,
neither too large nor too small. We do this by adjusting h.

It might also occur to you that, ignoring terms of order h6 and higher, we can
solve the two equations in (17.2.1) to improve our numerical estimate of the true
solution y.x C 2h/, namely,

y.x C 2h/ D y2 C
�

15
CO.h6/ (17.2.3)

This estimate is accurate to fifth order, one order higher than the original Runge-
Kutta steps (Richardson extrapolation again!). However, we can’t have our cake and
eat it too: (17.2.3) may be fifth-order accurate, but we have no way of monitoring its
truncation error. Higher order is not always higher accuracy! Use of (17.2.3) rarely
does harm, but we have no way of directly knowing whether it is doing any good.
Therefore we should use � as the error estimate and take as “gravy” any additional
accuracy gain derived from (17.2.3). In the technical literature, use of a procedure
like (17.2.3) is called “local extrapolation.”

Step doubling has been superseded by a more efficient stepsize adjustment al-
gorithm based on embedded Runge-Kutta formulas, originally invented by Merson
and popularized in a method of Fehlberg. An interesting fact about Runge-Kutta
formulas is that for orders M higher than four, more than M function evaluations
are required. This accounts for the popularity of the classical fourth-order method:
It seems to give the most bang for the buck. However, Fehlberg discovered a fifth-
order method with six function evaluations where another combination of the six
functions gives a fourth-order method. The difference between the two estimates
of y.x C h/ can then be used as an estimate of the truncation error to adjust the
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two small steps

big step

x

Figure 17.2.1. Step doubling as a means for adaptive stepsize control in fourth-order Runge-Kutta. Points
where the derivative is evaluated are shown as filled circles. The open circle represents the same deriva-
tives as the filled circle immediately above it, so the total number of evaluations is 11 per two steps.
Comparing the accuracy of the big step with the two small steps gives a criterion for adjusting the stepsize
on the next step, or for rejecting the current step as inaccurate.

stepsize. Since Fehlberg’s original formula, many other embedded Runge-Kutta for-
mulas have been found.

As an aside, the general question of how many function evaluations are required
for a Runge-Kutta method of a given order is still open. Order 5 requires 6 function
evaluations, order 6 requires 7, order 7 requires 9, order 8 requires 11. It is known
that for order M � 8, at least M C 3 evaluations are required. The highest order
explicitly constructed method so far is order 10, with 17 evaluations. The calculation
of the coefficients of these high-order methods is very complicated.

We will spend most of this section setting up an efficient fifth-order Runge-
Kutta method, coded in the routine StepperDopr5. This will allow us to explore
the various issues that have to be dealt with in any Runge-Kutta scheme. However,
ultimately you should not use this routine except for low accuracy requirements (.
10�3) or trivial problems. Use the more efficient higher-order Runge-Kutta code
StepperDopr853 or the Bulirsch-Stoer code StepperBS.

The general form of a fifth-order Runge-Kutta formula is

k1 D hf .xn; yn/

k2 D hf .xn C c2h; yn C a21k1/

	 	 	

k6 D hf .xn C c6h; yn C a61k1 C 	 	 	 C a65k5/

ynC1 D yn C b1k1 C b2k2 C b3k3 C b4k4 C b5k5 C b6k6 CO.h
6/

(17.2.4)

The embedded fourth-order formula is

y�nC1 D yn C b
�
1k1 C b

�
2k2 C b

�
3k3 C b

�
4k4 C b

�
5k5 C b

�
6k6 CO.h

5/ (17.2.5)

and so the error estimate is

� � ynC1 � y
�
nC1 D

6X
iD1

.bi � b
�
i /ki (17.2.6)

The particular values of the various constants that we favor are those found by Dor-
mand and Prince [2] and given in the table on the next page. These give a more
efficient method than Fehlberg’s original values, with better error properties.

We said that the Dormand-Prince method needs six function evaluations per
step, yet the table on the next page shows seven and the sums in equations (17.2.5)
and (17.2.6) should really go up to i D 7. What’s going on? The idea is to use
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Dormand-Prince 5(4) Parameters for Embedded Runga-Kutta Method

i ci aij bi b�i

1 35
384

5179
57600

2 1
5

1
5 0 0

3 3
10

3
40

9
40

500
1113

7571
16695

4 4
5

44
45 �5615

32
9

125
192

393
640

5 8
9

19372
6561 �253602187

64448
6561 �212729 �21876784 � 92097

339200

6 1 9017
3168 �35533

46732
5247

49
176 � 5103

18656
11
84

187
2100

7 1 35
384 0 500

1113
125
192 �21876784

11
84 0 1

40

j D 1 2 3 4 5 6

ynC1 itself to provide a seventh stage. Because f .xnC h; ynC1/ has to be evaluated
anyway to start the next step, this costs nothing (unless the step is rejected because
the error is too big). This trick is called FSAL (first-same-as-last). You can see in
the table that the coefficients in the last row are the same as the bi column.

Now that we know, at least approximately, what our error is, we need to consider
how to keep it within desired bounds. We require

j�j D jynC1 � y
�
nC1j 
 scale (17.2.7)

where
scale D atolC jyj rtol (17.2.8)

Here atol is the absolute error tolerance and rtol is the relative error tolerance.
(Practical detail: In a code, you use max.jynj; jynC1j/ for jyj in the above formula
in case one of them is close to zero.)

Our notation hides the fact that � is actually a vector of desired accuracies,
�i , one for each equation in the set of ODEs. In practice one takes some norm of
the vector �. While taking the maximum component value is fine (i.e., rescaling
the stepsize according to the needs of the “worst-offender” equation), we will use
the usual Euclidean norm. Also, while atol and rtol could be different for each
component of y, we will take them as constant. So define

err D

s
1

N

N�1X
iD0

�
�i

scalei

�2
(17.2.9)

and accept the step if err 
 1, otherwise reject it.
What is the relation between the scaled error err and h? According to (17.2.4)

– (17.2.5), � scales as h5 and hence so does err. If we take a step h1 and produce
an error err1, therefore, the step h0 that would have given some other value err0 is
readily estimated as

h0 D h1

ˇ̌̌̌
err0
err1

ˇ̌̌̌1=5
(17.2.10)

Let err0 denote the desired error, which is 1 in an efficient integration. Then
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equation (17.2.10) is used in two ways: If err1 is larger than 1 in magnitude, the
equation tells how much to decrease the stepsize when we retry the present (failed)
step. If err1 is smaller than 1, on the other hand, then the equation tells how much
we can safely increase the stepsize for the next step. Local extrapolation means that
we use the fifth-order value ynC1, even though the error estimate actually applies to
the fourth-order value y�nC1.

How is the quantity err related to some looser prescription like “get a solution
good to one part in 106”? That can be a subtle question, and it depends on exactly
what your application is. You may be dealing with a set of equations whose depen-
dent variables differ enormously in magnitude. In that case, you probably want to
use fractional errors, atol D 0, rtol D �, where � is the number like 10�6 or
whatever. On the other hand, you may have oscillatory functions that pass through
zero but are bounded by some maximum values. In that case you probably want to
set atol D rtol D �. This latter choice is the safest in general, and should usually
be your first choice.

Here is a more technical point. The error criteria mentioned thus far are “local,”
in that they bound the error of each step individually. In some applications you may
be unusually sensitive about a “global” accumulation of errors, from beginning to end
of the integration and in the worst possible case where the errors all are presumed
to add with the same sign. Then, the smaller the stepsize h, the more steps between
your starting and ending values of x. In such a case you might want to set scale
proportional to h, typically to something like

scale D �h � dydx[i] (17.2.11)

This enforces fractional accuracy � not on the values of y but (much more strin-
gently) on the increments to those values at each step. But now look back at (17.2.10).
The exponent 1=5 is no longer correct: When the stepsize is reduced from a too-large
value, the new predicted value h1 will fail to meet the desired accuracy when scale
is also altered to this new h1 value. Instead of 1=5, we must scale by the exponent
1=4 for things to work out.

Error control that tries to constrain the global error by setting the scale factor
proportional to h is called “error per unit step,” as opposed to the original “error per
step” method. As a point of principle, controlling the global error by controlling the
local error is very difficult. The global error at any point is the sum of the global error
up to the start of the last step plus the local error of that step. This cumulative nature
of the global error means it depends on things that cannot always be controlled,
like stability properties of the differential equation. Accordingly, we recommend the
straightforward “error per step” method in most cases. If you want to estimate the
global error of your solution, you have to integrate again with a reduced tolerance
and use the change in the solution as an estimate of the global error. This works if
the stepsize controller produces errors roughly proportional to the tolerance, which
is not always guaranteed.

Because our error estimates are not exact, but only accurate to the leading order
in h, we are advised to put in a safety factor S that is a few percent smaller than
unity. Equation (17.2.10) (with err0 D 1 and the subscripts 1! n and 0! nC 1)
is thus replaced by

hnC1 D Shn

�
1

errn

�1=5
(17.2.12)
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Moreover, experience shows that it is not wise to let the stepsize increase or decrease
too fast, and not to let the stepsize increase at all if the previous step was rejected. In
StepperDopr5, the stepsize cannot increase by more than a factor of 10 nor decrease
by more than a factor of 5 in a single step.

17.2.1 PI Stepsize Control
One situation in which the above stepsize controller has difficulty is when the

stepsize is being limited by the stability properties of the integration method, rather
than the accuracy of the individual steps. (We will see more about this in �17.5 on
stiff differential equations.) The stepsize increases slowly as successive steps are
accepted, until the method becomes unstable. The controller responds to the sudden
increase in the error by cutting the stepsize drastically, and the cycle repeats itself.
Similar problems can occur when the solution to the differential equation enters a
region with drastically different behavior than the previous region. A long sequence
of alternating accepted and rejected steps ensues. Since rejected steps are expensive,
it is worth improving the stepsize control.

The most effective way to do this seems to be to use ideas from control theory.
The integration routine and the differential equation play the role of the process, like
a chemical plant manufacturing a product. The stepsize h is the input and the error
estimate err is the output. (The numerical solution is also output, but it is not used
for stepsize control.) The controller is the stepsize control algorithm. It tries to hold
the error at the prescribed tolerance by varying the stepsize. Deriving an improved
stepsize controller from control theory ideas is beyond our scope here, so we will
introduce some basic concepts and then refer you to the literature for derivations and
a fuller explanation [6-8].

The standard stepsize controller (17.2.12), when expressed in the language of
control theory, is known as an integrating controller, with logh as the discrete con-
trol variable. This means that the control variable is obtained by “integrating” the
control error signal. It is well known in control theory that more stable control can
be achieved by adding an additional term proportional to the control error. This is
called a PI controller, where the P stands for proportional feedback and the I for
integral feedback. Instead of (17.2.12), the resulting algorithm takes the simple form

hnC1 D Shnerr
�˛
n errˇn�1 (17.2.13)

Typically ˛ and ˇ should be scaled as 1=k, where k is the exponent of h in err
(k D 5 for a fifth-order method). Setting ˛ D 1=k, ˇ D 0 recovers the classical
controller (17.2.12). Nonzero ˇ improves the stability but loses some efficiency for
“easy” parts of the solution. A good compromise [6] is to set

ˇ � 0:4=k; ˛ � 0:7=k D 1=k � 0:75ˇ (17.2.14)

17.2.2 Dense Output
Adaptive stepsize control means the algorithm marches along producing y val-

ues at x’s that it chooses itself. What if you want output at values that you specify?
The simplest option is just to integrate from one desired output point to the next. But
if you specify a lot of output points, this is inefficient: The code has to take steps
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based on where you want output, rather than the “natural” stepsizes it would like
to choose. High-order methods like to take large steps for smooth solutions, so the
problem is especially acute in this case.

The solution is to find an interpolation method that uses information produced
during the integration and is of an order comparable to the order of the method
so that full accuracy of the solution is preserved. This is called providing a dense
output method.

For example, any method has available y and dy=dx D f at the beginning and
end of the step. These four quantities specify a cubic interpolating polynomial:

y.xnC�h/ D .1��/ynC�ynC1C�.��1/Œ.1�2�/.ynC1�yn/C.��1/hfnC�hfnC1�

(17.2.15)

where 0 
 � 
 1. Evaluating this polynomial at any � in the interval gives a
value of y that is third-order accurate, as you can verify by Taylor expansion in h.
(Equation 17.2.15 is an example of Hermite interpolation, which uses both function
and derivative values.)

We are interested, however, in integration methods with order higher than three,
so higher-order dense output formulas are needed. The general approach for Runge-
Kutta methods is to regard the bi coefficients in (17.2.4) as polynomials in � instead
of constants. This defines a continuous solution,

y.xnC �h/ D ynC b1.�/k1C b2.�/k2C b3.�/k3C b4.�/k4C b5.�/k5C b6.�/k6

(17.2.16)

and we require the polynomials bi .�/ to approximate the true solution to the required
order. Equation (17.2.15) is a special case of this.

The Dormand-Prince fifth-order method allows dense output of order four with-
out any further function evaluations. This is usually sufficient: The number of steps
to get to a typical point scales as 1=h, so the global error at that point is typically
O.h5/ (fourth order). (Fifth-order dense output, needed, for example, for full ac-
curacy in y0.xn C �h/, turns out to need two extra function evaluations per step.)
StepperDopr5 contains a dense output option based on the formulas in [3] as sim-
plified in [4].

Dense output simplifies problems where you don’t know in advance how far
to integrate. You want to locate the position xc where some condition is satisfied.
Examples include integrating the equations of stellar structure out from the center
of the star until the pressure goes to zero at the surface, or the study of limit cycles
when one integrates until the solution reaches the Poincaré section for the first time.
Write the condition as finding the zero of some function:

g .x; yi .x// D 0 (17.2.17)

Monitor g in the output routine. When g changes sign between two steps, use the
dense output routine to supply function values to your favorite root-finding routine,
such as bisection or Newton’s method.

17.2.3 Implementation
Here follows the implementation of the fifth-order Dormand-Prince method.
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template <class D> stepperdopr5.h
struct StepperDopr5 : StepperBase {
Dormand-Prince fifth-order Runge-Kutta step with monitoring of local truncation error to ensure
accuracy and adjust stepsize.

typedef D Dtype; Make the type of derivs available to odeint.
VecDoub k2,k3,k4,k5,k6;
VecDoub rcont1,rcont2,rcont3,rcont4,rcont5;
VecDoub dydxnew;
StepperDopr5(VecDoub_IO &yy, VecDoub_IO &dydxx, Doub &xx,

const Doub atoll, const Doub rtoll, bool dens);
void step(const Doub htry,D &derivs);
void dy(const Doub h,D &derivs);
void prepare_dense(const Doub h,D &derivs);
Doub dense_out(const Int i, const Doub x, const Doub h);
Doub error();
struct Controller {

Doub hnext,errold;
bool reject;
Controller();
bool success(const Doub err, Doub &h);

};
Controller con;

};

The constructor simply invokes the base class instructor and initializes vari-
ables:

template <class D> stepperdopr5.h
StepperDopr5<D>::StepperDopr5(VecDoub_IO &yy,VecDoub_IO &dydxx,Doub &xx,

const Doub atoll,const Doub rtoll,bool dens) :
StepperBase(yy,dydxx,xx,atoll,rtoll,dens), k2(n),k3(n),k4(n),k5(n),k6(n),
rcont1(n),rcont2(n),rcont3(n),rcont4(n),rcont5(n),dydxnew(n) {

Input to the constructor are the dependent variable y[0..n-1] and its derivative dydx[0..n-1]
at the starting value of the independent variable x. Also input are the absolute and relative
tolerances, atol and rtol, and the boolean dense, which is true if dense output is required.

EPS=numeric_limits<Doub>::epsilon();
}

The step method is the actual stepper. It attempts a step, invokes the controller
to decide whether to accept the step or try again with a smaller stepsize, and sets up
the coefficients in case dense output is needed between x and x C h.

template <class D> stepperdopr5.h
void StepperDopr5<D>::step(const Doub htry,D &derivs) {
Attempts a step with stepsize htry. On output, y and x are replaced by their new values, hdid
is the stepsize that was actually accomplished, and hnext is the estimated next stepsize.

Doub h=htry; Set stepsize to the initial trial value.
for (;;) {

dy(h,derivs); Take a step.
Doub err=error(); Evaluate accuracy.
if (con.success(err,h)) break; Step rejected. Try again with reduced h set

by controller.if (abs(h) <= abs(x)*EPS)
throw("stepsize underflow in StepperDopr5");

}
if (dense) Step succeeded. Compute coefficients for dense

output.prepare_dense(h,derivs);
dydx=dydxnew; Reuse last derivative evaluation for next step.
y=yout;
xold=x; Used for dense output.
x += (hdid=h);
hnext=con.hnext;

}
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The algorithm routine dy does the six steps plus the seventh FSAL step, and
computes ynC1 and the error �.

template <class D>stepperdopr5.h
void StepperDopr5<D>::dy(const Doub h,D &derivs) {
Given values for n variables y[0..n-1] and their derivatives dydx[0..n-1] known at x, use the
fifth-order Dormand-Prince Runge-Kutta method to advance the solution over an interval h and
store the incremented variables in yout[0..n-1]. Also store an estimate of the local truncation
error in yerr using the embedded fourth-order method.

static const Doub c2=0.2,c3=0.3,c4=0.8,c5=8.0/9.0,a21=0.2,a31=3.0/40.0,
a32=9.0/40.0,a41=44.0/45.0,a42=-56.0/15.0,a43=32.0/9.0,a51=19372.0/6561.0,
a52=-25360.0/2187.0,a53=64448.0/6561.0,a54=-212.0/729.0,a61=9017.0/3168.0,
a62=-355.0/33.0,a63=46732.0/5247.0,a64=49.0/176.0,a65=-5103.0/18656.0,
a71=35.0/384.0,a73=500.0/1113.0,a74=125.0/192.0,a75=-2187.0/6784.0,
a76=11.0/84.0,e1=71.0/57600.0,e3=-71.0/16695.0,e4=71.0/1920.0,
e5=-17253.0/339200.0,e6=22.0/525.0,e7=-1.0/40.0;
VecDoub ytemp(n);
Int i;
for (i=0;i<n;i++) First step.

ytemp[i]=y[i]+h*a21*dydx[i];
derivs(x+c2*h,ytemp,k2); Second step.
for (i=0;i<n;i++)

ytemp[i]=y[i]+h*(a31*dydx[i]+a32*k2[i]);
derivs(x+c3*h,ytemp,k3); Third step.
for (i=0;i<n;i++)

ytemp[i]=y[i]+h*(a41*dydx[i]+a42*k2[i]+a43*k3[i]);
derivs(x+c4*h,ytemp,k4); Fourth step.
for (i=0;i<n;i++)

ytemp[i]=y[i]+h*(a51*dydx[i]+a52*k2[i]+a53*k3[i]+a54*k4[i]);
derivs(x+c5*h,ytemp,k5); Fifth step.
for (i=0;i<n;i++)

ytemp[i]=y[i]+h*(a61*dydx[i]+a62*k2[i]+a63*k3[i]+a64*k4[i]+a65*k5[i]);
Doub xph=x+h;
derivs(xph,ytemp,k6); Sixth step.
for (i=0;i<n;i++) Accumulate increments with proper weights.

yout[i]=y[i]+h*(a71*dydx[i]+a73*k3[i]+a74*k4[i]+a75*k5[i]+a76*k6[i]);
derivs(xph,yout,dydxnew); Will also be first evaluation for next step.
for (i=0;i<n;i++) {

Estimate error as difference between fourth- and fifth-order methods.
yerr[i]=h*(e1*dydx[i]+e3*k3[i]+e4*k4[i]+e5*k5[i]+e6*k6[i]+e7*dydxnew[i]);

}
}

The routine prepare_dense uses the coefficients of [4] to set up the dense out-
put quantities. Our coding of the dense output is closely based on that of the Fortran
code DOPRI5 of [5].

template <class D>stepperdopr5.h
void StepperDopr5<D>::prepare_dense(const Doub h,D &derivs) {
Store coefficients of interpolating polynomial for dense output in rcont1...rcont5.

VecDoub ytemp(n);
static const Doub d1=-12715105075.0/11282082432.0,
d3=87487479700.0/32700410799.0, d4=-10690763975.0/1880347072.0,
d5=701980252875.0/199316789632.0, d6=-1453857185.0/822651844.0,
d7=69997945.0/29380423.0;
for (Int i=0;i<n;i++) {

rcont1[i]=y[i];
Doub ydiff=yout[i]-y[i];
rcont2[i]=ydiff;
Doub bspl=h*dydx[i]-ydiff;
rcont3[i]=bspl;
rcont4[i]=ydiff-h*dydxnew[i]-bspl;
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rcont5[i]=h*(d1*dydx[i]+d3*k3[i]+d4*k4[i]+d5*k5[i]+d6*k6[i]+
d7*dydxnew[i]);

}
}

The next routine, dense_out, uses the coefficients stored by the previous rou-
tine to evaluate the solution at an arbitrary point.

template <class D> stepperdopr5.h
Doub StepperDopr5<D>::dense_out(const Int i,const Doub x,const Doub h) {
Evaluate interpolating polynomial for y[i] at location x, where xold � x � xoldC h.

Doub s=(x-xold)/h;
Doub s1=1.0-s;
return rcont1[i]+s*(rcont2[i]+s1*(rcont3[i]+s*(rcont4[i]+s1*rcont5[i])));

}

The error routine converts � into the scaled quantity err.

template <class D> stepperdopr5.h
Doub StepperDopr5<D>::error() {
Use yerr to compute norm of scaled error estimate. A value less than one means the step was
successful.

Doub err=0.0,sk;
for (Int i=0;i<n;i++) {

sk=atol+rtol*MAX(abs(y[i]),abs(yout[i]));
err += SQR(yerr[i]/sk);

}
return sqrt(err/n);

}

Finally, the controller tests whether err 
 1 and adjusts the stepsize. The
default setting is beta D 0 (no PI control). Set beta to 0.04 or 0.08 to turn on PI
control.

template <class D> stepperdopr5.h
StepperDopr5<D>::Controller::Controller() : reject(false), errold(1.0e-4) {}
Step size controller for fifth-order Dormand-Prince method.
template <class D>
bool StepperDopr5<D>::Controller::success(const Doub err,Doub &h) {
Returns true if err � 1, false otherwise. If step was successful, sets hnext to the estimated
optimal stepsize for the next step. If the step failed, reduces h appropriately for another try.

static const Doub beta=0.0,alpha=0.2-beta*0.75,safe=0.9,minscale=0.2,
maxscale=10.0;

Set beta to a nonzero value for PI control. beta D 0:04–0.08 is a good default.
Doub scale;
if (err <= 1.0) { Step succeeded. Compute hnext.

if (err == 0.0)
scale=maxscale;

else { PI control if beta ¤ 0.
scale=safe*pow(err,-alpha)*pow(errold,beta);
if (scale<minscale) scale=minscale; Ensure minscale � hnext=h � maxscale.
if (scale>maxscale) scale=maxscale;

}
if (reject) Don’t let step increase if last one was re-

jected.hnext=h*MIN(scale,1.0);
else

hnext=h*scale;
errold=MAX(err,1.0e-4); Bookkeeping for next call.
reject=false;
return true;

} else { Truncation error too large, reduce stepsize.
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scale=MAX(safe*pow(err,-alpha),minscale);
h *= scale;
reject=true;
return false;

}
}

A warning: Don’t be too greedy in specifying atol and rtol. The punishment
for excessive greediness is interesting and worthy of Gilbert and Sullivan’s Mikado:
The routine can always achieve an apparent zero error by making the stepsize so
small that quantities of order hy0 add to quantities of order y as if they were zero.
Then the routine chugs happily along taking infinitely many infinitesimal steps and
never changing the dependent variables one iota. (On a supercomputer, you guard
against this catastrophic loss of your time allocation by signaling on abnormally
small stepsizes or on the dependent variable vector remaining unchanged from step
to step. On a desktop computer, you guard against it by not taking too long a lunch
hour while the program is running.)

17.2.4 Dopr853 — An Eighth-Order Method
Once you understand the above implementation of StepperDopr5, then you

have the framework for essentially any Runge-Kutta method. For production work,
we recommend that you use the following method, StepperDopr853. It is again a
Dormand-Prince embedded method, this time of eighth order that uses 12 function
evaluations. The original version used a sixth-order embedded method for error esti-
mation. However, it turned out that the error estimation was not robust in certain cir-
cumstances because the last evaluation point happened not to be used in computing
the error. Accordingly, Hairer, Nörsett, and Wanner [5] constructed both fifth-order
and third-order embedded methods that use the last point. Then the error is estimated
as

err D err5
err5p

.err3/2 C 0:01.err5/2
(17.2.18)

Most of the time, err5 � err3, so err D O.h8/. If the estimation breaks down so
that either err3 gets small or err5 gets large, then err will still give a reasonable
basis for stepsize control. This method has worked well in practice and is the basis
for the “853” in the name of the method.

For an eighth-order method we would like seventh-order dense output. It turns
out this requires three more function evaluations. Our coding of the dense out-
put follows closely the Fortran implementation of [5]. Since the code is somewhat
lengthy, but basically similar to StepperDopr5, we give it as StepperDopr853 in
a Webnote [9].
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17.3 Richardson Extrapolation and the
Bulirsch-Stoer Method

The techniques in this section are for differential equations containing smooth
functions. With just three caveats, we believe that the Bulirsch-Stoer method, dis-
cussed here, is the best-known way to obtain high accuracy solutions to ordinary
differential equations with minimal computational effort. The caveats are these:

� If you have a nonsmooth problem, for example, a differential equation whose
right-hand side involves a function that is evaluated by table look-up and in-
terpolation, go back to Runge-Kutta with an adaptive stepsize choice. That
method does an excellent job of feeling its way through rocky or discontinu-
ous terrain. It is also an excellent choice for a quick-and-dirty, low accuracy
solution of a set of equations.
� The techniques in this section are not particularly good for differential equa-

tions that have singular points inside the interval of integration. A regular solu-
tion must tiptoe very carefully across such points. Runge-Kutta with adaptive
stepsize can sometimes effect this; more generally, there are special techniques
available for such problems, beyond our scope here but touched on in �18.6.
� There may be a few problems that are both very smooth and have right-hand

sides that are very expensive to evaluate, for which predictor-corrector meth-
ods, discussed in �17.6, are the methods of choice.

The methods in this section involve three key ideas. The first is Richardson’s
deferred approach to the limit, which we already met in �4.3 on Romberg integration.
The idea is to consider the final answer of a numerical calculation as itself being an
analytic function (if a complicated one) of an adjustable parameter like the stepsize
h. That analytic function can be probed by performing the calculation with various
values of h, none of them being necessarily small enough to yield the accuracy that
we desire. When we know enough about the function, we fit it to some analytic form
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6 steps

2 steps 4 steps ⊗
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to ∞ steps
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y

Figure 17.3.1. Richardson extrapolation as used in the Bulirsch-Stoer method. A large interval H is
spanned by different sequences of finer and finer substeps. Their results are extrapolated to an answer that
is supposed to correspond to infinitely fine substeps. In the Bulirsch-Stoer method, the integrations are
done by the modified midpoint method, and the extrapolation technique is polynomial extrapolation.

and then evaluate it at that mythical and golden point h D 0 (see Figure 17.3.1).
Richardson extrapolation is a method for turning straw into gold! (Lead into gold for
alchemist readers.)

The second idea has to do with what kind of fitting function is used. Bu-
lirsch and Stoer first recognized the strength of rational function extrapolation in
Richardson-type applications. That strength is to break the shackles of the power
series and its limited radius of convergence, out only to the distance of the first pole
in the complex plane. Rational function fits can remain good approximations to
analytic functions even after the various terms in powers of h all have comparable
magnitudes. In other words, h can be so large as to make the whole notion of the
“order” of the method meaningless — and the method can still work superbly. Nev-
ertheless, more recent experience suggests that for smooth problems straightforward
polynomial extrapolation is slightly more efficient than rational function extrapola-
tion. (This may tell us more about the kinds of problems used for tests than about
the methods themselves.) In any event, we will adopt polynomial extrapolation as
our default. You might wish at this point to review �3.2, where polynomial function
extrapolation was already discussed.

The third idea is to to use an integration method whose error function is strictly
even, allowing the rational function or polynomial approximation to be in terms of
the variable h2 instead of just h. We will expand on this idea in the next subsection,
on the modified midpoint method.

Put these ideas together and you have the Bulirsch-Stoer method [1]. A single
Bulirsch-Stoer step takes us from x to x C H , where H is supposed to be quite a
large — not at all infinitesimal — distance. That single step is a grand leap consisting
of many (e.g., dozens to hundreds) substeps of the modified midpoint method, which
are then extrapolated to zero stepsize.
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17.3.1 Modified Midpoint Method
The modified midpoint method advances a vector of dependent variables y.x/

from a point x to a point x CH by a sequence of n substeps each of size h,

h D H=n (17.3.1)

In principle, one could use the modified midpoint method in its own right as an ODE
integrator. In practice, the method finds its most important application as a part of
the more powerful Bulirsch-Stoer technique,.

The number of right-hand side evaluations required by the modified midpoint
method is nC 1. The formulas for the method are

z0 � y.x/

z1 D z0 C hf .x; z0/

zmC1 D zm�1 C 2hf .x Cmh; zm/ for m D 1; 2; : : : ; n � 1

y.x CH/ � yn �
1
2
Œzn C zn�1 C hf .x CH; zn/� (17.3.2)

Here the z’s are intermediate approximations that march along in steps of h, while
yn is the final approximation to y.x C H/. The method is basically a “centered
difference” or “midpoint” method (compare equation 17.1.2), except at the first and
last points. Those give the qualifier “modified.”

The modified midpoint method is a second-order method, like (17.1.2), but with
the advantage of requiring (asymptotically for large n) only one derivative evaluation
per step h instead of the two required by second-order Runge-Kutta.

The usefulness of the modified midpoint method to the Bulirsch-Stoer technique
(�17.3) derives from a “deep” result about equations (17.3.2), due to Gragg. It turns
out that the error of (17.3.2), expressed as a power series in h, the stepsize, contains
only even powers of h,

yn � y.x CH/ D

1X
iD1

˛ih
2i (17.3.3)

where H is held constant but h changes by varying n in (17.3.1). The importance of
this even power series is that, if we play our usual tricks of combining steps to knock
out higher-order error terms, we can gain two orders at a time!

For example, suppose n is even, and let yn=2 denote the result of applying
(17.3.1) and (17.3.2) with half as many steps, n! n=2. Then the estimate

y.x CH/ �
4yn � yn=2

3
(17.3.4)

is fourth-order accurate, the same as fourth-order Runge-Kutta, but requires only
about 1.5 derivative evaluations per step h instead of Runge-Kutta’s four evaluations.
Don’t be too anxious to implement (17.3.4), since we will soon do even better.

Now would be a good time to look back at the routine qsimp in �4.2, and
especially to compare equation (4.2.4) with equation (17.3.4) above. You will see
that the transition in Chapter 4 to the idea of Richardson extrapolation, as embodied
in Romberg integration of �4.3, is exactly analogous to the transition in going from
this section to the next one.

A routine that implements the modified midpoint method will be given as part
of the implementation of StepperBS, in the dy member function.
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17.3.2 The Bulirsch-Stoer Method

Consider attempting to cross the intervalH using the modified midpoint method
with increasing values of n, the number of substeps. Bulirsch and Stoer originally
proposed the sequence

n D 2; 4; 6; 8; 12; 16; 24; 32; 48; 64; 96; : : : ; Œnj D 2nj�2�; : : : (17.3.5)

More recent work by Deuflhard [2,3] suggests that the sequence

n D 2; 4; 6; 8; 10; 12; 14; : : : ; Œnj D 2.j C 1/�; : : : (17.3.6)

is usually more efficient. For each step, we do not know in advance how far up this
sequence we will go. After each successive n is tried, a polynomial extrapolation is
attempted. That extrapolation gives both extrapolated values and error estimates. If
the errors are not satisfactory, we go higher in n. If they are satisfactory, we go on to
the next step and begin anew with n D 2.

Of course there must be some upper limit, beyond which we conclude that there
is some obstacle in our path in the interval H , so that we must reduce H rather than
just subdivide it more finely. Moreover, precision loss sets in if we choose too fine a
subdivision. In the implementations below, the maximum number of n’s to be tried
is called KMAXX. We usually take this equal to 8; the eighth value of the sequence
(17.3.6) is 16, so this is the maximum number of subdivisions of H that we allow.

We enforce error control, as in the Runge-Kutta method, by monitoring internal
consistency and adapting the stepsize to match a prescribed bound on the local trun-
cation error. Each new result from the sequence of modified midpoint integrations
allows a tableau like that in equation (3.2.2) to be extended by one additional set of
diagonals. Write the tableau as a lower triangular matrix:

T00
T10 T11
T20 T21 T22
	 	 	 	 	 	 	 	 	 	 	 	

(17.3.7)

Here Tk0 D yk , where yk is y.xn CH/ computed with the stepsize hk D H=nk .
Neville’s algorithm, equation (3.2.3), with P replaced by T , xi D h2i , and x D 0,
can be written

Tk;jC1 D Tkj C
Tkj � Tk�1;j

.nk=nk�j /2 � 1
j D 0; 1; : : : ; k � 1 (17.3.8)

Each new stepsize hi starts a new row in the tableau, and then the polynomial ex-
trapolation fills the rest of the row. Each new element in the tableau comes from the
two closest elements in the previous column. Elements in the same column have the
same order, and Tkk , the last element in each row, is the highest-order approximation
with that stepsize. The difference between the last two elements in a row is taken as
the (conservative) error estimate. How should we use this error estimate to adjust the
stepsize? A good strategy was originally proposed by Deuflhard [2,3]. We will use a
modified version [4], next described.
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17.3.3 Stepsize Control Algorithm for Bulirsch-Stoer
The elements in the tableau are actually vectors corresponding to the vector y of depen-

dent variables. Accordingly, define

errk D kTkk � Tk;k�1k (17.3.9)

where the norm is the same scaled norm used in equation (17.2.9). Error control is enforced
by requiring errk 
 1.

Now Tkk is of order 2k C 2 and Tk;k�1 is of order 2k, which is therefore the order of
errk . In other words,

errk � H
2kC1 (17.3.10)

Thus a simple estimate of a new stepsizeHk to obtain convergence in a fixed column k would
be (cf. equation 17.2.12)

Hk D HS1

�
S2

errk

�1=.2kC1/
(17.3.11)

where S1 and S2 are safety factors smaller than one.
Which column k should we aim to achieve convergence in? Let’s compare the work

required for different k. Suppose Ak is the work to obtain row k of the extrapolation tableau.
Assume the work is dominated by the cost of evaluating the functions defining the right-
hand sides of the differential equations. For nk subdivisions in H , the number of function
evaluations can be found from the recurrence

A0 D n0 C 1

AkC1 D Ak C nkC1
(17.3.12)

The work per unit step to get column k is therefore

Wk D
Ak

Hk
(17.3.13)

The optimal column index is the one that minimizes Wk . The strategy is to set a target k
for the next step, and then choose the stepsize from (17.3.11) to try to get convergence (i.e.,
errk 
 1) for that value of k on the next step.

In practice, you compute the extrapolation tableau (17.3.7) row by row, but only test for
convergence within an order window between k � 1 and k C 1. The rationale for the order
window is that if convergence appears to occur before column k � 1, it is often spurious,
resulting from some fortuitously small error estimate in the extrapolation. On the other hand,
if you need to go beyond k C 1 to obtain convergence, your local model of the convergence
behavior is obviously not very good and you need to cut the stepsize and reestablish it.

Here are the steps:

� Test for convergence in column k � 1: If errk�1 
 1, accept Tk�1;k�1. Set the new
target as

knew D

˚
k � 2 if Wk�2 < 0:8Wk�1 (order decrease)
k if Wk�1 < 0:9Wk�2 (order increase)
k � 1 otherwise

(17.3.14)

Set the corresponding stepsize as

Hnew D

˚
Hknew

if knew D k � 1 or k � 2

Hk�1
Ak

Ak�1
if knew D k

(17.3.15)

The idea behind the last formula is that you can’t set Hnew D Hk because you’re
stopping the integration in row k � 1 so you don’t compute Hk . However, since k is
supposedly optimal, Wk � Wk�1, which gives the last formula for Hnew.
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� If errk�1 > 1: Check if you can expect convergence by row kC 1 by estimating what
errkC1 will be. Assuming one is in the asymptotic regime, one can show that

errk �

�
n0

nk

�2
errk�1 (17.3.16)

and hence that errkC1 will be greater than one if approximately

errk�1 >

�
nk

n0

�2 �nkC1
n0

�2
(17.3.17)

If this condition is satisfied, reject the step and restart with knew and Hnew chosen
according to (17.3.14) and (17.3.15).

� If (17.3.17) is not satisfied, compute the next row of the tableau (i.e., for the target
value of k) and see if convergence is attained for column k. Thus, if errk 
 1, accept
the step and continue with

knew D

˚
k � 1 if Wk�1 < 0:8Wk (order decrease)
k C 1 if Wk < 0:9Wk�1 (order increase)
k otherwise

(17.3.18)

Set the corresponding stepsize as

Hnew D

˚
Hknew

if knew D k or k � 1

Hk
AkC1

Ak
if knew D k C 1

(17.3.19)

� If errk > 1, check if you can expect convergence by the next row. Analogously to
(17.3.17), check if

errk >

�
nkC1

n0

�2
(17.3.20)

If this condition is satisfied, reject the step and restart with knew and Hnew chosen
according to (17.3.18) and (17.3.19).

� If (17.3.17) is not satisfied, compute row k C 1 of the tableau. If errkC1 
 1, accept
the step. Set the new target with the following prescription:

knew D k

if Wk�1 < 0:8Wk knew D k � 1 (order decrease)

if WkC1 < 0:9Wknew
knew D k C 1 (order increase)

(17.3.21)

The stepsize is set as in (17.3.19).

� If errkC1 > 1, reject the step. Restart with knew and Hnew chosen according to
(17.3.18) and (17.3.19).

Two important refinements to this strategy are

� After a step is rejected, the order and stepsize are not allowed to increase.
� Hnew computed from equation (16.4.5) is not allowed to change too rapidly in one step.

It is restricted by
F

S4


Hnew

H


1

F
F � S

1=.2kC1/
3 (17.3.22)

The default values of the parameters are S3 D 0:02, S4 D 4.

For the first step, the target k is estimated crudely from the requested precision, but the
step is accepted if the error is small enough for any smaller k. For the last step, the stepsize
is decreased to be the length of the remaining integration interval, so a similar increase in the
order window is allowed.
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17.3.4 Dense Output
The basic Bulirsch-Stoer step H is typically much larger than in Runge-Kutta

methods because of the high orders invoked, so a dense output option is even more
important. Our implementation once again is based closely on the coding in [4],
which is based on [5].

A dense output algorithm turns out to be possible only for certain stepsize se-
quences, for example increasing by fours:

n D 2; 6; 10; 14; 18; 22; 26; 30; : : : (17.3.23)

The idea is to do Hermite interpolation using the function and derivative values at the
beginning and end of the step. These are supplemented with values of the function
and its derivatives at the midpoint obtained by extrapolation of values saved during
the integration.

The error of the Hermite interpolation needs to be monitored. If it is too big,
the step is rejected and the stepsize reduced appropriately. The error estimate of
the interpolation is also used if necessary to limit the size of the next step after a
successful step.

17.3.5 Implementation
The use of StepperBS is exactly the same as the use of the Runge-Kutta rou-

tines. For example, to solve the problem at the end of �17.2, everything is exactly
the same except the line

Odeint<StepperDopr5<rhs_van> > ode(ystart,x1,x2,atol,rtol,h1,hmin,out,d);

is replaced by

Odeint<StepperBS<rhs_van> > ode(ystart,x1,x2,atol,rtol,h1,hmin,out,d);

The object StepperBS implements a Bulirsch-Stoer step. Some of its functions
are declared virtual because the algorithm StepperStoerm will be implemented
as a derived class from it in the next section, and these functions will be overridden.
As with StepperDopr5, the class is templated on the functor class defining the
right-hand side derivatives.

template <class D> stepperbs.h
struct StepperBS : StepperBase {
Bulirsch-Stoer step with monitoring of local truncation error to ensure accuracy and adjust
stepsize.

typedef D Dtype; Make the type of derivs available to odeint.
static const Int KMAXX=8,IMAXX=KMAXX+1;
KMAXX is the maximum number of rows used in the extrapolation.
Int k_targ; Optimal row number for convergence.
VecInt nseq; Stepsize sequence.
VecInt cost; Ak .
MatDoub table; Extrapolation tableau.
VecDoub dydxnew;
Int mu; Used for dense output.
MatDoub coeff; Coefficients used in extrapolation tableau.
VecDoub errfac; Used to compute dense interpolation error.
MatDoub ysave; ysave and fsave store values and derivatives to be

used for dense output.MatDoub fsave;
VecInt ipoint; Keeps track of where values are stored in fsave.
VecDoub dens; Stores quantities for dense interpolating polynomial.
StepperBS(VecDoub_IO &yy, VecDoub_IO &dydxx, Doub &xx, const Doub atol,
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const Doub rtol, bool dens);
void step(const Doub htry,D &derivs);
virtual void dy(VecDoub_I &y, const Doub htot, const Int k, VecDoub_O &yend,

Int &ipt, D &derivs);
void polyextr(const Int k, MatDoub_IO &table, VecDoub_IO &last);
virtual void prepare_dense(const Doub h,VecDoub_I &dydxnew, VecDoub_I &ysav,

VecDoub_I &scale, const Int k, Doub &error);
virtual Doub dense_out(const Int i,const Doub x,const Doub h);
virtual void dense_interp(const Int n, VecDoub_IO &y, const Int imit);

};

Detailed implementations of the member functions are given in a Webnote [6].

CITED REFERENCES AND FURTHER READING:

Stoer, J., and Bulirsch, R. 2002, Introduction to Numerical Analysis, 3rd ed. (New York: Springer),
�7.2.14.[1]

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall), �6.1.4 and �6.2.

Deuflhard, P. 1983, “Order and Stepsize Control in Extrapolation Methods,” Numerische Mathe-
matik, vol. 41, pp. 399–422.[2]

Deuflhard, P. 1985, “Recent Progress in Extrapolation Methods for Ordinary Differential Equa-
tions,” SIAM Review, vol. 27, pp. 505–535.[3]

Hairer, E., Nørsett, S.P., and Wanner, G. 1993, Solving Ordinary Differential Equations I. Nonstiff
Problems, 2nd ed. (New York: Springer). Fortran codes at
http://www.unige.ch/~hairer/software.html.[4]

Hairer, E., and Ostermann, A. 1990, “Dense Output for Extrapolation Methods,” Numerische
Mathematik, vol. 58, pp. 419–439.[5]

Numerical Recipes Software 2007, “StepperBS Implementations,” Numerical Recipes Webnote
No. 21, at http://www.nr.com/webnotes?21 [6]

17.4 Second-Order Conservative Equations

Usually when you have a system of high-order differential equations to solve it is best
to reformulate them as a system of first-order equations, as discussed in �17.0. There is a
particular class of equations that occurs quite frequently in practice where you can gain about
a factor of two in efficiency by differencing the equations directly. The equations are second-
order systems where the derivative does not appear on the right-hand side:

y00 D f .x; y/; y.x0/ D y0; y0.x0/ D z0 (17.4.1)

As usual, y can denote a vector of values.
Stoermer’s rule, dating back to 1907, has been a popular method for discretizing such

systems. With h D H=m we have

y1 D y0 C hŒz0 C
1
2hf .x0; y0/�

ykC1 � 2yk C yk�1 D h
2f .x0 C kh; yk/; k D 1; : : : ; m � 1

zm D .ym � ym�1/=hC
1
2hf .x0 CH;ym/

(17.4.2)

Here zm is y0.x0CH/. Henrici showed how to rewrite equations (17.4.2) to reduce roundoff
error by using the quantities �k � ykC1 � yk . Start with

�0 D hŒz0 C
1
2hf .x0; y0/�

y1 D y0 C�0
(17.4.3)
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Then, for k D 1; : : : ; m � 1, set

�k D �k�1 C h
2f .x0 C kh; yk/

ykC1 D yk C�k
(17.4.4)

Finally compute the derivative from

zm D �m�1=hC
1
2hf .x0 CH;ym/ (17.4.5)

Gragg again showed that the error series for equations (17.4.3) – (17.4.5) contains only
even powers of h, and so the method is a logical candidate for extrapolation à la Bulirsch-Stoer.

Here is the StepperStoerm routine:

template <class D> stepperstoerm.h
struct StepperStoerm : StepperBS<D> {
Stoermer’s rule for integrating y00 D f .x; y/ for a system of equations.

using StepperBS<D>::x; using StepperBS<D>::xold; using StepperBS<D>::y;
using StepperBS<D>::dydx; using StepperBS<D>::dense; using StepperBS<D>::n;
using StepperBS<D>::KMAXX; using StepperBS<D>::IMAXX; using StepperBS<D>::nseq;
using StepperBS<D>::cost; using StepperBS<D>::mu; using StepperBS<D>::errfac;
using StepperBS<D>::ysave; using StepperBS<D>::fsave;
using StepperBS<D>::dens; using StepperBS<D>::neqn;
MatDoub ysavep;
StepperStoerm(VecDoub_IO &yy, VecDoub_IO &dydxx, Doub &xx,

const Doub atol, const Doub rtol, bool dens);
void dy(VecDoub_I &y, const Doub htot, const Int k, VecDoub_O &yend,

Int &ipt,D &derivs);
void prepare_dense(const Doub h,VecDoub_I &dydxnew, VecDoub_I &ysav,

VecDoub_I &scale, const Int k, Doub &error);
Doub dense_out(const Int i,const Doub x,const Doub h);
void dense_interp(const Int n, VecDoub_IO &y, const Int imit);

};

Because the base class StepperBS is templated on the derivs class, the derived class
StepperStoerm does not automatically inherit its member variables. This is the reason for
the using declarations.

Note that in order to reuse the StepperBS code and make StepperStoerm a derived
class, the arrays y and dydx are of length 2n for a system of n second-order equations. The
values of y are stored in the first n elements of y, while the first derivatives are stored in the
second n elements. The right-hand side f is stored in the first n elements of the array dydx,
which therefore actually contains y00; the second n elements are unused.

The constructor has to redefine the costs Ak because there are half the number of func-
tion evaluations per step compared with the midpoint method:

template <class D> stepperstoerm.h
StepperStoerm<D>::StepperStoerm(VecDoub_IO &yy, VecDoub_IO &dydxx, Doub &xx,

const Doub atoll,const Doub rtoll, bool dens)
: StepperBS<D>(yy,dydxx,xx,atoll,rtoll,dens),ysavep(IMAXX,n/2) {

Constructor. On input, y[0..n-1] contains y in its first n/2 elements and y0 in its second n/2
elements, all evaluated at x. The vector dydx[0..n-1] contains the right-hand side function f
(also evaluated at x) in its first n/2 elements. Its second n/2 elements are not referenced. Also
input are the absolute and relative tolerances, atol and rtol, and the boolean dense, which is
true if dense output is required.

neqn=n/2; Number of equations.
cost[0]=nseq[0]/2+1; Redefine cost: half as many function evalu-

ations as Bulirsch-Stoer.for (Int k=0;k<KMAXX;k++)
cost[k+1]=cost[k]+nseq[k+1]/2;

for (Int i=0; i<2*IMAXX+1; i++) { Coefficients for interpolation error are differ-
ent too.Int ip7=i+7;

Doub fac=1.5/ip7;
errfac[i]=fac*fac*fac;
Doub e = 0.5*sqrt(Doub(i+1)/ip7);
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for (Int j=0; j<=i; j++) {
errfac[i] *= e/(j+1);

}
}

}

Here is the routine dy that implements Stoermer’s rule:

template <class D>stepperstoerm.h
void StepperStoerm<D>::dy(VecDoub_I &y, const Doub htot, const Int k,

VecDoub_O &yend, Int &ipt, D &derivs) {
Stoermer step. Inputs are y,H , and k. The output is returned as yend[0..2n-1]. The counter
ipt keeps track of saving the right-hand sides in the correct locations for dense output.

VecDoub ytemp(n);
Int nstep=nseq[k];
Doub h=htot/nstep; Stepsize this trip.
Doub h2=2.0*h;
for (Int i=0;i<neqn;i++) { First step.

ytemp[i]=y[i];
Int ni=neqn+i;
ytemp[ni]=y[ni]+h*dydx[i];

}
Doub xnew=x;
Int nstp2=nstep/2;
for (Int nn=1;nn<=nstp2;nn++) { General step.

if (dense && nn == (nstp2+1)/2) {
for (Int i=0;i<neqn;i++) {

ysavep[k][i]=ytemp[neqn+i];
ysave[k][i]=ytemp[i]+h*ytemp[neqn+i];

}
}
for (Int i=0;i<neqn;i++)

ytemp[i] += h2*ytemp[neqn+i];
xnew += h2;
derivs(xnew,ytemp,yend); Store derivatives temporarily in yend.
if (dense && abs(nn-(nstp2+1)/2) < k+1) {

ipt++;
for (Int i=0;i<neqn;i++)

fsave[ipt][i]=yend[i];
}
if (nn != nstp2) {

for (Int i=0;i<neqn;i++)
ytemp[neqn+i] += h2*yend[i];

}
}
for (Int i=0;i<neqn;i++) { Last step.

Int ni=neqn+i;
yend[ni]=ytemp[ni]+h*yend[i];
yend[i]=ytemp[i];

}
}

The dense output routines are in a Webnote [1].

CITED REFERENCES AND FURTHER READING:

Deuflhard, P. 1985, “Recent Progress in Extrapolation Methods for Ordinary Differential Equa-
tions,” SIAM Review, vol. 27, pp. 505–535.

Hairer, E., Nørsett, S.P., and Wanner, G. 1993, Solving Ordinary Differential Equations I. Nonstiff
Problems, 2nd ed. (New York: Springer). Fortran codes at
http://www.unige.ch/~hairer/software.html.
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Numerical Recipes Software 2007, “Dense Output for Stoermer’s Rule,” Numerical Recipes
Webnote No. 22, at http://www.nr.com/webnotes?22 [1]

17.5 Stiff Sets of Equations

As soon as one deals with more than one first-order differential equation, the
possibility of a stiff set of equations arises. Stiffness typically occurs in a problem
where there are two or more very different scales of the independent variable on
which the dependent variables are changing. For example, consider the following set
of equations [1]:

u0 D 998uC 1998v

v0 D �999u � 1999v
(17.5.1)

with boundary conditions

u.0/ D 1 v.0/ D 0 (17.5.2)

By means of the transformation

u D 2y � z v D �y C z (17.5.3)

we find the solution

u D 2e�x � e�1000x

v D �e�x C e�1000x
(17.5.4)

If we integrated the system (17.5.1) with any of the methods given so far in this
chapter, the presence of the e�1000x term would require a stepsize h � 1=1000 for
the method to be stable (the reason for this is explained below). This is so even
though the e�1000x term is completely negligible in determining the values of u and
v as soon as one is away from the origin (see Figure 17.5.1).

This is the generic disease of stiff equations: We are required to follow the
variation in the solution on the shortest length scale to maintain the stability of the
integration, even though accuracy requirements allow a much larger stepsize.

To see how we might cure this problem, consider the single equation

y0 D �cy (17.5.5)

where c > 0 is a constant. The explicit (or forward) Euler scheme for integrating
this equation with stepsize h is

ynC1 D yn C hy
0
n D .1 � ch/yn (17.5.6)

The method is called explicit because the new value ynC1 is given explicitly in terms
of the old value yn. Clearly the method is unstable if h > 2=c, for then jynj ! 1
as n!1 even though the solution of (17.5.5) is bounded.
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x

y

Figure 17.5.1. Example of an instability encountered in integrating a stiff equation (schematic). Here
it is supposed that the equation has two solutions, shown as solid and dashed lines. Although the initial
conditions are such as to give the solid solution, the stability of the integration (shown as the unstable
dotted sequence of segments) is determined by the more rapidly varying dashed solution, even after that
solution has effectively died away to zero. Implicit integration methods are the cure.

The simplest cure is to resort to implicit differencing, where the right-hand side
is evaluated at the new y location. In this case, we get the backward Euler scheme:

ynC1 D yn C hy
0
nC1 (17.5.7)

or

ynC1 D
yn

1C ch
(17.5.8)

The method is absolutely stable: Even as h ! 1, ynC1 ! 0, which is in fact the
correct solution of the differential equation. If we think of x as representing time,
then the implicit method converges to the true equilibrium solution (i.e., the solution
at late times) for large stepsizes. This nice feature of implicit methods holds only for
linear systems, but even in the general case implicit methods give better stability. Of
course, we give up accuracy in following the evolution toward equilibrium if we use
large stepsizes, but we maintain stability.

These considerations can easily be generalized to sets of linear equations with
constant coefficients:

y 0 D �C 	 y (17.5.9)

Consider first the usual case where the matrix C can be diagonalized by a similarity
transformation (cf. eqn. 11.0.11)

T 	C 	 T�1 D diag.�0 : : : �N�1/ (17.5.10)

where �i are the eigenvalues of C. If we define the vector z.x/ by z D T�1 	 y.x/,
then equation (17.5.9) becomes

z0 D �diag.�0 : : : �N�1/ 	 z (17.5.11)

This is a set of N independent equations for the components of z with solution

z D diag.e��0x : : : e��N�1x/ 	 z0 (17.5.12)
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Thus the solution of the original equation is

y D T 	 diag.e��0x : : : e��N�1x/ 	 T�1 	 y0 (17.5.13)

We will be interested in the stable solutions, that is, those that decay as x !1.
(This notion can be made more rigorous by considering Liapunov stability, the idea
that if y0 is small then y is small for all x > 0.) From equation (17.5.13) we see that
the criterion for stable solutions is

Re�i > 0 i D 0; : : : ; N � 1 (17.5.14)

What if the matrix C in equation (17.5.9) cannot be diagonalized? Then it can
always be transformed to so-called Jordan canonical form, which is the “closest”
it can come to being made diagonal. Using this form, one can show that criterion
(17.5.14) is still the stability criterion [2].

Now consider solving equation (17.5.9) by explicit differencing as in equation
(17.5.6):

ynC1 D .1 �Ch/ 	 yn (17.5.15)

and so
yn D .1 �Ch/n 	 y0 (17.5.16)

If C can be diagonalized, it has a complete set of eigenvectors f�ig that can be used
as a basis to expand y0:

y0 D

N�1X
iD0

˛i�i (17.5.17)

Substituting this expansion in equation (17.5.16) gives

yn D

N�1X
iD0

˛i .1 � h�i /
n�i (17.5.18)

If the original differential equation is stable, we require the difference scheme to be
stable in that it must have bounded solutions, that is, yn must be bounded as n!1.
From equation (17.5.18) we see that stability of the difference scheme requires

j1 � h�i j < 1 i D 0; : : : ; N � 1 (17.5.19)

If the �i are all real, then since they are positive for the differential equation to be
stable, the stability criterion for the difference scheme is

h <
2

�max
(17.5.20)

where �max is the largest eigenvalue of C.
As usual, if C cannot be diagonalized and so does not have a complete set of

eigenvectors, then by working with the Jordan canonical form one can show the same
result.

Consider now implicit differencing, which gives

ynC1 D yn C hy
0
nC1 (17.5.21)

or
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ynC1 D .1CCh/�1 	 yn (17.5.22)

Criterion (17.5.19) becomes

j1C h�i j
�1 < 1 i D 0; : : : ; N � 1 (17.5.23)

which is satisfied for all h — the method is stable for all stepsizes. The penalty we
pay for this stability is that we are required to invert a matrix at each step.

Not all equations are linear with constant coefficients, unfortunately! For the
system

y 0 D f .y/ (17.5.24)

implicit differencing gives

ynC1 D yn C hf .ynC1/ (17.5.25)

In general this is some nasty set of nonlinear equations that has to be solved itera-
tively at each step. Suppose we try linearizing the equations, as in Newton’s method:

ynC1 D yn C h

"
f .yn/C

@f

@y

ˇ̌̌̌
yn

	 .ynC1 � yn/

#
(17.5.26)

Here @f=@y is the matrix of the partial derivatives of the right-hand side (the Jacobian
matrix). Rearrange equation (17.5.26) into the form

ynC1 D yn C h

�
1 � h

@f

@y

��1
	 f .yn/ (17.5.27)

If h is not too big, only one iteration of Newton’s method may be accurate enough
to solve equation (17.5.25) using equation (17.5.27). In other words, at each step we
have to invert the matrix

1 � h
@f

@y
(17.5.28)

to find ynC1. Solving implicit methods by linearization is called a “semi-implicit”
method, so equation (17.5.27) is the semi-implicit Euler method. It is not guaranteed
to be stable, but it usually is, because the behavior is locally similar to the case of a
constant matrix C described above.

So far we have dealt only with implicit methods that are first-order accurate.
While these are very robust, most problems will benefit from higher-order methods.
There are three important classes of higher-order methods for stiff systems:

� Generalizations of the Runge-Kutta method. These consist of implicit meth-
ods, where nonlinear equations are solved by Newton iteration at each step,
and semi-implicit methods that solve linear equations analogous to (17.5.27).
These semi-implicit methods are often called Rosenbrock methods. The first
good implementation of these ideas was by Kaps and Rentrop, and so these
methods are also called Kaps-Rentrop methods.
� Generalizations of the Bulirsch-Stoer method, which extrapolate a semi-implicit

sequence of integrations to zero stepsize.
� Predictor-corrector methods, most of which are descendants of Gear’s back-

ward differentiation method.
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We shall give implementations of Rosenbrock and extrapolation methods. An exam-
ple of a good implicit Runge-Kutta code in Fortran is RADAU [3], while several stiff
predictor-corrector–type Fortran codes (LSODE, DEBDF, VODE and MEBDF) are
available from Netlib [5].

Here is an important point: It is absolutely crucial to scale your variables prop-
erly when integrating stiff problems with automatic stepsize adjustment. As in our
nonstiff routines, you will be asked to supply absolute and relative tolerances atol
and rtol. In stiff problems, there are often strongly decreasing pieces of the solution
that you are not particularly interested in following once they are small. Thus you
should almost never integrate with a pure relative error criterion by setting atol D 0.
A good default choice is atol D rtol, or sometimes a few orders of magnitude
smaller.

One final warning: Solving stiff problems can sometimes lead to catastrophic
precision loss. Double precision is often a requirement, not an option.

17.5.1 Rosenbrock Methods
These methods have the advantage of being relatively simple to understand and imple-

ment. For moderate accuracies (tolerances of order 10�4–10�5) and moderate-sized systems
(N . 10), they are competitive with the more complicated algorithms. For more stringent
parameters, Rosenbrock methods remain reliable; they merely become less efficient than com-
petitors like the semi-implicit extrapolation method (see below).

A Rosenbrock method seeks a solution of the form

y.x0 C h/ D y0 C

sX
iD1

biki (17.5.29)

where the corrections ki are found by solving s linear equations that generalize the structure
in (17.5.27):

.1 � �hf 0/ 	 ki D hf
�
y0 C

i�1X
jD1

˛ijkj

�
C hf 0 	

i�1X
jD1

�ijkj ; i D 1; : : : ; s (17.5.30)

Here we denote the Jacobian matrix by f 0. The coefficients � , bi , ˛ij , and �ij are fixed
constants independent of the problem. If � D �ij D 0, this is simply a Runge-Kutta scheme.
Equations (17.5.30) can be solved successively for k1;k2; : : : .

To minimize the matrix-vector multiplications on the right-hand side of (17.5.30), rewrite
the equations in terms of quantities

gi D

i�1X
jD1

�ijkj C �ki (17.5.31)

The equations then take the form (for four stages as an example)

.1=�h � f 0/ 	 g1 D f .y0/

.1=�h � f 0/ 	 g2 D f .y0 C a21g1/C c21g1=h

.1=�h � f 0/ 	 g3 D f .y0 C a31g1 C a32g2/C .c31g1 C c32g2/=h

.1=�h � f 0/ 	 g4 D f .y0 C a41g1 C a42g2 C a43g3/C .c41g1 C c42g2 C c43g3/=h

(17.5.32)

Here aij and cij can be expressed in terms of ˛ij and �ij .
Note that systems where the right-hand side f .y ; x/ depends explicitly on x can be han-

dled by adding x to the list of dependent variables so that the system to be solved is�
y
x

�0
D

�
f
1

�
(17.5.33)



�

�

“nr3” — 2007/5/1 — 20:53 — page 936 — #958
�

�

� �

936 Chapter 17. Integration of Ordinary Differential Equations

In the routine given below, we have explicitly carried out this replacement for you, so the
routines can handle right-hand sides of the form f .y ; x/without any special effort on your part.

Crucial to the success of a stiff integration scheme is an automatic stepsize adjustment
algorithm. Kaps and Rentrop [6] discovered an embedded or Runge-Kutta-Fehlberg method
as described in �17.2: Two estimates of the form (17.5.29) are computed, the “real” one y and
a lower-order estimate yy with different coefficients ybi ; i D 1; : : : ; ys, where ys < s but the ki
are the same. The difference between y and yy leads to an estimate of the local truncation error,
which can then be used for stepsize control. Kaps and Rentrop showed that the smallest value
of s for which embedding is possible is s D 4, ys D 3, leading to a fourth-order method. By
a suitable choice of parameters, only three function evaluations are needed for the four stages
in each step.

In recent years, Kaps-Rentrop has lost favor to so-called stiffly stable methods, an im-
plementation of which we give here as the routine StepperRoss (Rosenbrock Stiffly Stable),
based on the Fortran routine RODAS [3]. It is also a fourth-order method with a third-order
embedded method for stepsize control. Despite having six stages with six function evaluations,
the enhanced stability makes it significantly more efficient than the Kaps-Rentrop method.
Moreover, it has a simple dense output feature.

As with the earlier stepper routines in this chapter, you have to provide a functor for
derivs, the right-hand side routine. In the structure you now must also supply a function
called jacobian that returns f 0 and @f=@x as functions of x and y . If x does not occur
explicitly on the right-hand side, then dfdx will be zero. Usually the Jacobian matrix will be
available to you by analytic differentiation of the right-hand side f . If not, your routine will
have to compute it by numerical differencing with appropriate increments �y . We will give
an example of a complete derivative and jacobian structure at the end of this subsection.

The class StepperRoss uses a set of constants, which are provided by deriving the
class from a class Ross_constants. This latter class is listed in a Webnote [4]. Here is the
declaration of StepperRoss:

template <class D>stepperross.h
struct StepperRoss : StepperBase, Ross_constants {
Fourth-order stiffly stable Rosenbrock step for integrating stiff ODEs, with monitoring of local
truncation error to adjust stepsize.

typedef D Dtype; Make the type of derivs available to odeint.
MatDoub dfdy; f 0

VecDoub dfdx; @f=@x
VecDoub k1,k2,k3,k4,k5,k6;
VecDoub cont1,cont2,cont3,cont4;
MatDoub a;
StepperRoss(VecDoub_IO &yy, VecDoub_IO &dydxx, Doub &xx, const Doub atoll,

const Doub rtoll, bool dens);
void step(const Doub htry,D &derivs);
void dy(const Doub h,D &derivs);
void prepare_dense(const Doub h,VecDoub_I &dydxnew);
Doub dense_out(const Int i, const Doub x, const Doub h);
Doub error();
struct Controller {

Doub hnext;
bool reject;
bool first_step; first_step, errold, and hold are used by

the predictive controller.Doub errold;
Doub hold;
Controller();
bool success(Doub err, Doub &h);

};
Controller con;

};

The implementation will seem very familiar if you’ve looked at StepperDopr5, the
explicit Runge-Kutta routine. Note that in the algorithm routine dy of StepperRoss, the
linear equations (17.5.32) are solved by first computing the LU decomposition of the matrix
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1=�h � f 0 using the routine LUdcmp. Then the six gi are found by backsubstitution of the six
different right-hand sides using the routine solve in LUdcmp. Thus each step of the integration
requires one call to jacobian and six calls to derivs (one call outside dy and five calls
inside). The evaluation of the Jacobian matrix is roughly equivalent to N evaluations of the
right-hand side f (although it can often be less than this, especially if commonality of code
can be exploited). Thus this scheme involves about N C 6 function evaluations per step. Note
that if N is large and the Jacobian matrix is sparse, you should replace the LU decomposition
by a suitable sparse matrix procedure.

template <class D> stepperross.h
StepperRoss<D>::StepperRoss(VecDoub_IO &yy, VecDoub_IO &dydxx, Doub &xx,

const Doub atoll,const Doub rtoll, bool dens) :
StepperBase(yy,dydxx,xx,atoll,rtoll,dens),dfdy(n,n),dfdx(n),k1(n),k2(n),
k3(n),k4(n),k5(n),k6(n),cont1(n),cont2(n),cont3(n),cont4(n),a(n,n) {

Input to the constructor are the dependent variable y[0..n-1] and its derivative dydx[0..n-1]
at the starting value of the independent variable x. Also input are the absolute and relative
tolerances, atol and rtol, and the boolean dense, which is true if dense output is required.

EPS=numeric_limits<Doub>::epsilon();
}
template <class D>
void StepperRoss<D>::step(const Doub htry,D &derivs) {
Attempts a step with stepsize htry. On output, y and x are replaced by their new values, hdid
is the stepsize that was actually accomplished, and hnext is the estimated next stepsize.

VecDoub dydxnew(n);
Doub h=htry; Set stepsize to the initial trial value.
derivs.jacobian(x,y,dfdx,dfdy); Compute the Jacobian and @f=@x.
for (;;) {

dy(h,derivs); Take a step.
Doub err=error(); Evaluate accuracy.
if (con.success(err,h)) break; Step rejected. Try again with reduced h set

by controller.if (abs(h) <= abs(x)*EPS)
throw("stepsize underflow in StepperRoss");

}
derivs(x+h,yout,dydxnew); Step succeeded.
if (dense) Compute coefficients for dense output.

prepare_dense(h,dydxnew);
dydx=dydxnew; Reuse last derivative evaluation for next step.
y=yout;
xold=x; Used for dense output.
x += (hdid=h);
hnext=con.hnext;

}
template<class D>
void StepperRoss<D>::dy(const Doub h,D &derivs) {
Given values for n variables y[0..n-1] and their derivatives dydx[0..n-1] known at x, use the
fourth-order stiffly stable Rosenbrock method to advance the solution over an interval h and
store the incremented variables in yout[0..n-1]. Also store an estimate of the local truncation
error in yerr using the embedded third-order method.

VecDoub ytemp(n),dydxnew(n);
Int i;
for (i=0;i<n;i++) { Set up the matrix 1=�h� f 0.

for (Int j=0;j<n;j++) a[i][j] = -dfdy[i][j];
a[i][i] += 1.0/(gam*h);

}
LUdcmp alu(a); LU decomposition of the matrix.
for (i=0;i<n;i++) Set up right-hand side for g1.

ytemp[i]=dydx[i]+h*d1*dfdx[i];
alu.solve(ytemp,k1); Solve for g1.

for (i=0;i<n;i++) Compute intermediate values of y.
ytemp[i]=y[i]+a21*k1[i];

derivs(x+c2*h,ytemp,dydxnew); Compute dydx at the intermediate values.
for (i=0;i<n;i++) Set up right-hand side for g2.

ytemp[i]=dydxnew[i]+h*d2*dfdx[i]+c21*k1[i]/h;
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alu.solve(ytemp,k2); Solve for g2.
for (i=0;i<n;i++) Compute intermediate values of y.

ytemp[i]=y[i]+a31*k1[i]+a32*k2[i];
derivs(x+c3*h,ytemp,dydxnew); Compute dydx at the intermediate values.
for (i=0;i<n;i++) Set up right-hand side for g3.

ytemp[i]=dydxnew[i]+h*d3*dfdx[i]+(c31*k1[i]+c32*k2[i])/h;
alu.solve(ytemp,k3); Solve for g3.
for (i=0;i<n;i++) Compute intermediate values of y.

ytemp[i]=y[i]+a41*k1[i]+a42*k2[i]+a43*k3[i];
derivs(x+c4*h,ytemp,dydxnew); Compute dydx at the intermediate values.
for (i=0;i<n;i++) Set up right-hand side for g4.

ytemp[i]=dydxnew[i]+h*d4*dfdx[i]+(c41*k1[i]+c42*k2[i]+c43*k3[i])/h;
alu.solve(ytemp,k4); Solve for g4.
for (i=0;i<n;i++) Compute intermediate values of y.

ytemp[i]=y[i]+a51*k1[i]+a52*k2[i]+a53*k3[i]+a54*k4[i];
Doub xph=x+h;
derivs(xph,ytemp,dydxnew); Compute dydx at the intermediate values.
for (i=0;i<n;i++) Set up right-hand side for g5.

k6[i]=dydxnew[i]+(c51*k1[i]+c52*k2[i]+c53*k3[i]+c54*k4[i])/h;
alu.solve(k6,k5); Solve for g5.
for (i=0;i<n;i++) Compute the embedded solution.

ytemp[i] += k5[i];
derivs(xph,ytemp,dydxnew); Last derivative evaluation.
for (i=0;i<n;i++) Compute the solution and the error.

k6[i]=dydxnew[i]+(c61*k1[i]+c62*k2[i]+c63*k3[i]+c64*k4[i]+c65*k5[i])/h;
alu.solve(k6,yerr);
for (i=0;i<n;i++)

yout[i]=ytemp[i]+yerr[i];
}
template <class D>
void StepperRoss<D>::prepare_dense(const Doub h,VecDoub_I &dydxnew) {
Store coefficients of interpolating polynomial for dense output in cont1...cont4.

for (Int i=0;i<n;i++) {
cont1[i]=y[i];
cont2[i]=yout[i];
cont3[i]=d21*k1[i]+d22*k2[i]+d23*k3[i]+d24*k4[i]+d25*k5[i];
cont4[i]=d31*k1[i]+d32*k2[i]+d33*k3[i]+d34*k4[i]+d35*k5[i];

}
}
template <class D>
Doub StepperRoss<D>::dense_out(const Int i,const Doub x,const Doub h) {
Evaluate interpolating polynomial for y[i] at location x, where xold � x � xoldC h.

Doub s=(x-xold)/h;
Doub s1=1.0-s;
return cont1[i]*s1+s*(cont2[i]+s1*(cont3[i]+s*cont4[i]));

}
template <class D>
Doub StepperRoss<D>::error() {
Use yerr to compute norm of scaled error estimate. A value less than one means the step was
successful.

Doub err=0.0,sk;
for (Int i=0;i<n;i++) {

sk=atol+rtol*MAX(abs(y[i]),abs(yout[i]));
err += SQR(yerr[i]/sk);

}
return sqrt(err/n);

}

Stepsize control depends on the fact that

yexact D y CO.h5/

yexact D yy CO.h
4/

(17.5.34)
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Thus
jy � yyj D O.h4/ (17.5.35)

Referring back to the steps leading from equation (17.2.4) to equation (17.2.12), we see that
the new stepsize should be chosen as in equation (17.2.12) but with the exponent 1/5 replaced
by 1/4. Also, experience shows that it is wise to prevent too large a stepsize change in one
step, otherwise we will probably have to undo the large change in the next step. We adopt 0.2
and 6 as the maximum allowed decrease and increase of h in one step.

Methods for integrating stiff equations do not suffer from the stability limitations that led
to the PI controller of �17.2.1. However, stiff problems often need a rapid decrease in stepsize
even when the previous step is successful. Also, sometimes the effective order of the method
can be lower than the simple Taylor series prediction. Gustafsson [7] has proposed a predictive
controller that does a good job of dealing with these problems. The resulting formula is

hnC1 D Shn

�
1

errn

�1=4 hn

hn�1

�
errn�1

errn

�1=4
(17.5.36)

It is used only when a step is accepted.

template <class D> stepperross.h
StepperRoss<D>::Controller::Controller() : reject(false), first_step(true) {}
Step size controller for fourth-order Rosenbrock method.
template <class D>
bool StepperRoss<D>::Controller::success(Doub err, Doub &h) {
Returns true if err � 1, false otherwise. If step was successful, sets hnext to the estimated
optimal stepsize for the next step. If the step failed, reduces h appropriately for another try.

static const Doub safe=0.9,fac1=5.0,fac2=1.0/6.0;
Doub fac=MAX(fac2,MIN(fac1,pow(err,0.25)/safe));
Doub hnew=h/fac; Ensure 1=fac1 � hnew=h � 1=fac2.
if (err <= 1.0) { Step succeeded.

if (!first_step) { Predictive control.
Doub facpred=(hold/h)*pow(err*err/errold,0.25)/safe;
facpred=MAX(fac2,MIN(fac1,facpred));
fac=MAX(fac,facpred);
hnew=h/fac;

}
first_step=false;
hold=h;
errold=MAX(0.01,err);
if (reject) Don’t let step increase if last one was rejected.

hnew=(h >= 0.0 ? MIN(hnew,h) : MAX(hnew,h));
hnext=hnew;
reject=false;
return true;

} else { Truncation error too large, reduce stepsize.
h=hnew;
reject=true;
return false;

}
}

As an example of how StepperRoss is used, one can solve the system

y00 D �:013y0 � 1000y0y2

y01 D �2500y1y2

y02 D �:013y0 � 1000y0y2 � 2500y1y2

(17.5.37)

with initial conditions

y0.0/ D 1; y1.0/ D 1; y2.0/ D 0 (17.5.38)
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(This is test problem D4 in [8].) We integrate the system up to x D 50 with an initial stepsize
of h D 2:9� 10�4 using Odeint. We set atol D rtol D 10�5. The right-hand side routine
for this problem is given below. Even though the ratio of largest to smallest decay constants
for this problem is around 106, StepperRoss succeeds in integrating this set in only 11 steps
with 67 function evaluations. By contrast, the explicit Runge-Kutta routine StepperDopr5
requires almost 60,000 steps and over 400,000 function evaluations!

struct rhs {
void operator() (const Doub x, VecDoub_I &y, VecDoub_O &dydx) {

dydx[0] = -0.013*y[0]-1000.0*y[0]*y[2];
dydx[1] = -2500.0*y[1]*y[2];
dydx[2] = -0.013*y[0]-1000.0*y[0]*y[2]-2500.0*y[1]*y[2];

}
void jacobian(const Doub x, VecDoub_I &y, VecDoub_O &dfdx,

MatDoub_O &dfdy) {
Int n=y.size();
for (Int i=0;i<n;i++) dfdx[i]=0.0;
dfdy[0][0] = -0.013-1000.0*y[2];
dfdy[0][1] = 0.0;
dfdy[0][2] = -1000.0*y[0];
dfdy[1][0] = 0.0;
dfdy[1][1] = -2500.0*y[2];
dfdy[1][2] = -2500.0*y[1];
dfdy[2][0] = -0.013-1000.0*y[2];
dfdy[2][1] = -2500.0*y[2];
dfdy[2][2] = -1000.0*y[0]-2500.0*y[1];

}
};

17.5.2 Semi-Implicit Extrapolation Method
The Bulirsch-Stoer method, which discretizes the differential equation using the modi-

fied midpoint rule, does not work for stiff problems. For many years, successful extrapolation-
type routines for stiff equations were based on an algorithm of Bader and Deuflhard [9]. This
algorithm uses a semi-implicit version of the midpoint method that has an even error series.

Not long afterward, however, Deuflhard [10] investigated a semi-implicit version of the
Euler method, equation (17.5.27). This does not have an even error series. Nevertheless, it
turns out that for high precision, using this method as the basis of an extrapolation scheme is
even more efficient than using the semi-implicit midpoint rule. (Some theoretical insight into
this behavior is provided in �VI.5 of [3].) Since StepperRoss is generally satisfactory for
low precision, this method is a good companion. We give it as StepperSie (“Semi-Implicit
Euler”).

The basic equation of the method is equation (17.5.27) rewritten in the form�
1=h �

@f

@y

�
	 .ynC1 � yn/ D f .yn/ (17.5.39)

A sequence of stepsizes hi D H=ni is used with this equation to advance the solution a dis-
tance H . The linear equations are solved with LU decomposition. Polynomial extrapolation
is used as in the original Bulirsch-Stoer method, except that in equation (17.3.8) the ratio of
stepsizes is not squared because the error series is not even.

Instead of making the replacement (17.5.33) in the above formula, it turns out to be
slightly better to add a single simplified Newton iteration of the fully implicit Euler step
(17.5.25):

ynC1 D yn C hf .xnC1; ynC1/ �!

�
1 � h

@f

@y

�
	 .ynC1 � yn/ D hf .xnC1; yn/ (17.5.40)

This costs an extra function evaluation but avoids the computation of @f=@x. In the code, we
leave @f=@x as an argument of the jacobian function for compatibility with StepperRoss,
but it is not used.
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Another difference from StepperRoss is that the Jacobian does not have to be exact.
Its main role is to ensure stability, not accuracy. Accordingly, the code has a test to see when
the Jacobian needs to be recomputed.

Differences from StepperBS include

� The default stepsize sequence is

n D 2; 3; 4; 6; 8; 12; 16; 24; 32; 48; 64; : : : ; Œnj D 2nj�2�; : : : (17.5.41)

� The work per unit step now includes the cost of Jacobian evaluations as well as func-
tion evaluations. We count one Jacobian evaluation as equivalent to five function eval-
uations by default, but it could be as large as N , the number of equations. The work
per unit step also includes the cost of the LU decomposition and the backsubstitutions,
each set by default to the cost of a function evaluation.

� Several checks for instability are included. If the estimated error errk starts increasing
with k during a step, the step is restarted with the stepsize reduced by a factor of two.
Similarly, a stability test is made for k D 0; 1 during the Euler step and the step is
rejected if the test is failed. You could add a test for failure of the LU decomposition
and similarly reduce the stepsize if that happened.

The routine, which is based on the Fortran routine SEULEX [3], next follows.

17.5.3 Implementation of Semi-Implicit Extrapolation
Method

The routine StepperSie is an excellent routine for all stiff problems, compet-
itive with the best Gear-type routines. StepperRoss is often better in execution
time for moderate N and � . 10�5. The detailed implementation is listed in a
Webnote [11].
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17.6 Multistep, Multivalue, and
Predictor-Corrector Methods

The terms “multistep” and “multivalue” describe two different ways of imple-
menting essentially the same integration technique for ODEs. Predictor-corrector is
a particular subcategory of these methods — in fact, the most widely used. Accord-
ingly, the name predictor-corrector is often loosely used to denote all these methods.

We suspect that predictor-corrector integrators have had their day, and that they
are no longer the method of choice for most problems in ODEs. For high-precision
applications, or applications where evaluations of the right-hand sides are expensive,
Bulirsch-Stoer dominates. For convenience, or for moderate precision, adaptive-
stepsize Runge-Kutta dominates. Predictor-corrector methods have been, we think,
squeezed out in the middle. There is possibly only one exceptional case: high-
precision solution of very smooth equations with very complicated right-hand sides,
as we will describe later.

Nevertheless, these methods have had a long historical run. Textbooks are full
of information on them, and there are a lot of standard ODE programs around that
are based on predictor-corrector methods. Many capable researchers have a lot of
experience with predictor-corrector routines, and they see no reason to make a pre-
cipitous change of habit. It is not a bad idea for you to be familiar with the principles
involved, and even with the sorts of bookkeeping details that are the bane of these
methods. Otherwise, there will be a big surprise in store when you first have to fix a
problem in a predictor-corrector routine.

Let us first consider the multistep approach. Think about how integrating an
ODE is different from finding the integral of a function: For a function, the integrand
has a known dependence on the independent variable x and can be evaluated at will.
For an ODE, the “integrand” is the right-hand side, which depends both on x and on
the dependent variables y. Thus, to advance the solution of y0 D f .x; y/ from xn to
x, we have

y.x/ D yn C

Z x

xn

f .x0; y/ dx0 (17.6.1)

In a single-step method like Runge-Kutta or Bulirsch-Stoer, the value ynC1 at xnC1
depends only on yn. In a multistep method, we approximate f .x; y/ by a polyno-
mial passing through several previous points xn; xn�1; : : : and possibly also through
xnC1. The result of evaluating the integral (17.6.1) at x D xnC1 is then of the form

ynC1 D yn C h.ˇ0y
0
nC1 C ˇ1y

0
n C ˇ2y

0
n�1 C ˇ3y

0
n�2 C 	 	 	 / (17.6.2)
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where y0n denotes f .xn; yn/, and so on. If ˇ0 D 0, the method is explicit; otherwise
it is implicit. The order of the method depends on how many previous steps we use
to get each new value of y.

Consider how we might solve an implicit formula of the form (17.6.2) for ynC1.
Two methods suggest themselves: functional iteration and Newton’s method. In
functional iteration, we take some initial guess for ynC1, insert it into the right-hand
side of (17.6.2) to get an updated value of ynC1, insert this updated value back into
the right-hand side, and continue iterating. But how are we to get an initial guess
for ynC1? Easy! Just use some explicit formula of the same form as (17.6.2). This
is called the predictor step. In the predictor step we are essentially extrapolating
the polynomial fit to the derivative from the previous points to the new point xnC1
and then doing the integral (17.6.1) in a Simpson-like manner from xn to xnC1. The
subsequent Simpson-like integration, using the prediction step’s value of ynC1 to
interpolate the derivative, is called the corrector step. The difference between the
predicted and corrected function values supplies information on the local truncation
error that can be used to control accuracy and to adjust stepsize.

If one corrector step is good, aren’t many better? Why not use each corrector
as an improved predictor and iterate to convergence on each step? Answer: Even if
you had a perfect predictor, the step would still be accurate only to the finite order
of the corrector. This incurable error term is on the same order as that which your
iteration is supposed to cure, so you are at best changing only the coefficient in front
of the error term by a fractional amount. So dubious an improvement is certainly not
worth the effort. Your extra effort would be better spent in taking a smaller stepsize.

As described so far, you might think it desirable or necessary to predict several
intervals ahead at each step, then to use all these intervals, with various weights, in
a Simpson-like corrector step. That is not a good idea. Extrapolation is the least
stable part of the procedure, and it is desirable to minimize its effect. Therefore, the
integration steps of a predictor-corrector method are overlapping, each one involv-
ing several stepsize intervals h, but extending just one such interval farther than the
previous ones. Only that one extended interval is extrapolated by each predictor step.

The most popular predictor-corrector methods are probably the Adams-Bash-
forth-Moulton schemes, which have good stability properties. The Adams-Bashforth
part is the predictor. For example, the third-order case is

predictor: ynC1 D yn C
h

12
.23y0n � 16y

0
n�1 C 5y

0
n�2/CO.h

4/ (17.6.3)

Here information at the current point xn, together with the two previous points xn�1
and xn�2 (assumed equally spaced), is used to predict the value ynC1 at the next
point, xnC1. The Adams-Moulton part is the corrector. The third-order case is

corrector: ynC1 D yn C
h

12
.5y0nC1 C 8y

0
n � y

0
n�1/CO.h

4/ (17.6.4)

Without the trial value of ynC1 from the predictor step to insert on the right-hand
side, the corrector would be a nasty implicit equation for ynC1. (Despite the names,
these formulas are actually all due to Adams.)

There are actually three separate processes occurring in a predictor-corrector
method: the predictor step, which we call P; the evaluation of the derivative y0nC1
from the latest value of y, which we call E; and the corrector step, which we call C.
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In this notation, iteratingm times with the corrector (a practice we inveighed against
earlier) would be written P(EC)m. One also has the choice of finishing with a C or
an E step. The lore is that a final E is superior, so the strategy usually recommended
is PECE.

Notice that a PC method with a fixed number of iterations (say, one) is an ex-
plicit method. When we fix the number of iterations in advance, the final value of
ynC1 can be written as some complicated function of known quantities. Thus fixed
iteration PC methods lose the strong stability properties of implicit methods and
should only be used for nonstiff problems.

For stiff problems we must use an implicit method if we want to avoid having
tiny stepsizes. (Not all implicit methods are good for stiff problems, but fortunately
some good ones such as the Gear formulas are known.) We then appear to have two
choices for solving the implicit equations: functional iteration to convergence, or
Newton iteration. However, it turns out that for stiff problems functional iteration
will not even converge unless we use tiny stepsizes, no matter how close our predic-
tion is! Thus Newton iteration is usually an essential part of a multistep stiff solver.
For convergence, Newton’s method doesn’t particularly care what the stepsize is, as
long as the prediction is accurate enough.

Multistep methods, as we have described them so far, suffer from two serious
difficulties when one tries to implement them:

� Since the formulas require results from equally spaced steps, adjusting the
stepsize is difficult.
� Starting and stopping present problems. For starting, we need the initial values

plus several previous steps to prime the pump. Stopping is a problem because
equal steps are unlikely to land directly on the desired termination point.

Older implementations of PC methods have various cumbersome ways of deal-
ing with these problems. For example, they might use Runge-Kutta to start and
stop. Changing the stepsize requires considerable bookkeeping to do some kind
of interpolation procedure. Fortunately, both these drawbacks disappear with the
multivalue approach.

For multivalue methods (also called Nordsieck methods), the basic data avail-
able to the integrator are the first few terms of the Taylor series expansion of the
solution at the current point xn. The aim is to advance the solution and obtain the
expansion coefficients at the next point xnC1. This is in contrast to multistep meth-
ods, where the data are the values of the solution at xn; xn�1; : : : . We’ll illustrate the
idea by considering a four-value method, for which the basic data are

yn �

0BB@
yn
hy0n

.h2=2/y00n

.h3=6/y000n

1CCA (17.6.5)

It is also conventional to scale the derivatives with the powers of h D xnC1 � xn as
shown. Note that here we use the vector notation y to denote the solution and its first
few derivatives at a point, not the fact that we are solving a system of equations with
many components y.

In terms of the data in (17.6.5), we can approximate the value of the solution y
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at some point x:

y.x/ D yn C .x � xn/y
0
n C

.x � xn/
2

2
y00n C

.x � xn/
3

6
y000n (17.6.6)

Set x D xnC1 in equation (17.6.6) to get an approximation to ynC1. Differentiate
equation (17.6.6) and set x D xnC1 to get an approximation to y0nC1, and similarly
for y00nC1 and y000nC1. Call the resulting approximation zynC1, where the tilde is a
reminder that all we have done so far is a polynomial extrapolation of the solution
and its derivatives; we have not yet used the differential equation. You can easily
verify that

zynC1 D B 	 yn (17.6.7)

where the matrix B is

B D

0BB@
1 1 1 1

0 1 2 3

0 0 1 3

0 0 0 1

1CCA (17.6.8)

We now write the actual approximation to ynC1 that we will use by adding a correc-
tion to zynC1:

ynC1 D zynC1 C ˛r (17.6.9)

Here r will be a fixed vector of numbers, in the same way that B is a fixed matrix.
We fix ˛ by requiring that the differential equation

y0nC1 D f .xnC1; ynC1/ (17.6.10)

be satisfied. The second of the equations in (17.6.9) is

hy0nC1 D hzy
0
nC1 C ˛r1 (17.6.11)

and this will be consistent with (17.6.10) provided

r1 D 1; ˛ D hf .xnC1; ynC1/ � hzy
0
nC1 (17.6.12)

The values of r0, r2, and r3 are free for the inventor of a given four-value method to
choose. Different choices give different orders of method (i.e., through what order
in h the final expression 17.6.9 actually approximates the solution) and different
stability properties.

An interesting result, not obvious from our presentation, is that multivalue and
multistep methods are entirely equivalent. In other words, the value ynC1 given by
a multivalue method with given B and r is exactly the same value given by some
multistep method with given ˇ’s in equation (17.6.2). For example, it turns out
that the Adams-Bashforth formula (17.6.3) corresponds to a four-value method with
r0 D 0, r2 D 3=4, and r3 D 1=6. The method is explicit because r0 D 0. The
Adams-Moulton method (17.6.4) corresponds to the implicit four-value method with
r0 D 5=12, r2 D 3=4, and r3 D 1=6. Implicit multivalue methods are solved the
same way as implicit multistep methods: either by a predictor-corrector approach
using an explicit method for the predictor, or by Newton iteration for stiff systems.
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Why go to all the trouble of introducing a whole new method that turns out to
be equivalent to a method you already knew? The reason is that multivalue meth-
ods allow an easy solution to the two difficulties we mentioned above in actually
implementing multistep methods.

Consider first the question of stepsize adjustment. To change stepsize from h

to h0 at some point xn, simply multiply the components of yn in (17.6.5) by the
appropriate powers of h0=h, and you are ready to continue to xn C h0.

Multivalue methods also allow a relatively easy change in the order of the
method: Simply change r . The usual strategy for this is first to determine the new
stepsize with the current order from the error estimate. Then check what stepsize
would be predicted using an order one greater and one smaller than the current or-
der. Choose the order that allows you to take the biggest next step. Being able to
change order also allows an easy solution to the starting problem: Simply start with
a first-order method and let the order automatically increase to the appropriate level.

For moderate accuracy requirements, the most efficient choice is almost always
a Runge-Kutta routine like StepperDopr853. For high accuracy, StepperBS is
both robust and efficient. For very smooth functions, a variable-order PC method
can invoke very high orders. If the right-hand side of the equation is relatively com-
plicated, so that the expense of evaluating it outweighs the bookkeeping expense,
then the best PC packages can outperform Bulirsch-Stoer on such problems. As you
can imagine, however, such a variable-stepsize, variable-order method is not triv-
ial to program. If you suspect that your problem is suitable for this treatment, we
recommend the use of a packaged PC routine. For further details consult [1-3].

Our prediction is that, as extrapolation methods like Bulirsch-Stoer continue to
gain sophistication, they will eventually beat out PC methods in all applications. We
are willing, however, to be corrected.

CITED REFERENCES AND FURTHER READING:

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall), Chapter 9.[1]

Shampine, L.F., and Gordon, M.K. 1975, Computer Solution of Ordinary Differential Equations.
The Initial Value Problem. (San Francisco: W.H Freeman).[2]

Hairer, E., Nørsett, S.P., and Wanner, G. 1993, Solving Ordinary Differential Equations I. Nonstiff
Problems, 2nd ed. (New York: Springer).[3]

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington, DC:
Mathematical Association of America), Chapter 5.

Kahaner, D., Moler, C., and Nash, S. 1989, Numerical Methods and Software (Englewood Cliffs,
NJ: Prentice-Hall), Chapter 8.

Stoer, J., and Bulirsch, R. 2002, Introduction to Numerical Analysis, 3rd ed. (New York: Springer),
Chapter 7.

17.7 Stochastic Simulation of Chemical
Reaction Networks

We are so used to thinking of chemical (or nuclear) reaction networks as im-
plying sets of continuous differential equations, that it takes an effort to remember
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their underlying discrete, atomic, nature. To give an example, we have all learned to
translate a set of reactions like

ACX
k0
�! 2X

X C Y
k1
�! 2Y

Y
k2
�! B

(17.7.1)

into a set of differential equations (rate equations) governing the concentrations of
each species,

dŒA�

dt
D �k0ŒA�ŒX� � �a0

dŒX�

dt
D k0ŒA�ŒX� � k1ŒX�ŒY � � a0 � a1

dŒY �

dt
D k1ŒX�ŒY � � k2ŒY � � a1 � a2

dŒB�

dt
D k2ŒY � � a2

(17.7.2)

where a0, a1, and a2 are respectively the rates of the three reactions in equation
(17.7.1).

Increasingly in biological applications, however, one is faced with situations
where the actual numbers of reacting molecules is so small that discreteness effects
and fluctuations become important. In such cases, one needs to replace continuum
concentrations like ŒX� and ŒY � with actual numbers of molecular species. The equa-
tions (17.7.2) now become meaningless. What we need to do is directly simulate the
discrete reactions in (17.7.1), assigning a sequence of stochastically generated times,
and corresponding discrete changes in species numbers, to the occurrences of each
reaction. This task is known as stochastic simulation, from the original work of
Gillespie [1]. Stochastic simulation is a remarkably simple, and elegant, technique.
Like many powerful tools, it can be both used and misused, as we will discuss.

Before we get to the details, it is useful to formalize some aspects of the struc-
ture of equations (17.7.1) and (17.7.2). In general, we have M reactions occurring
among N species. Each reaction j D 0; : : : ;M � 1, has an instantaneous rate, de-
noted aj . In the discrete case, 1=aj is the mean time until the next occurrence of
reaction j , if no other reaction happens first. An important point is that each rate aj
depends only on the numbers of those species on the left-hand side of reaction j , its
reactants. Define a reactant matrix �ij by

�ij D

(
1 if species Si is an input to reaction j

0 otherwise
(17.7.3)

On the output side (products), each set of reactions j is characterized by a state
change matrix 
ij whose i; j component is the net change in the number of species
Si due to one occurrence of reaction j . (The j th column of this matrix is often called
the state change vector for reaction j .) In terms of these quantities, the conventional
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rate equations, like (17.7.2), can be written in general as

dŒSi �

dt
D

M�1X
jD0


ij aj . fŒSk �g /; k s.t. �kj ¤ 0, i D 0; : : : ; N � 1 (17.7.4)

But back to the discrete case: At an instant in time, if we know all the Si ’s,
we can compute all the rates aj . Since rates are additive, the total rate at which
something will happen is

atot D

M�1X
jD0

aj (17.7.5)

Moreover, because the system is assumed to be “memoryless” (except for the Sj ’s)
and “well-mixed,” the probability distribution of times to this next occurrence of
some reaction j must be exponentially distributed (like radioactive decay). Fur-
thermore, given that some reaction occurs, it is easy to state what is the probability
distribution of which reaction it is: It will be reaction j with probability aj =atot.

This is all there is, conceptually, to stochastic simulation. The rest is just im-
plementation details, including some clever tricks to speed up the calculation. The
steps in the so-called direct method are

� From all the Si ’s, compute all the aj ’s and atot.
� Draw a random number U1, uniform in Œ0; 1�, and compute the time � to the

next reaction by

� D
1

atot
log

�
1

U1

�
(17.7.6)

(This generates an exponential distribution; cf. �7.3.)
� Draw a second uniform random number U2 in Œ0; 1� and find the smallest k

such that
kX

jD0

aj > atotU2 (17.7.7)

A value k will thus be chosen with probability ak=atot.
� Increment the time t by � .
� Update each Si by adding the value 
ik .
� Go back to the first step.

17.7.1 Speeding Up the Direct Method
We can speed up the direct method, first, by identifying all steps that are (naively)

ofO.M/ orO.N/ and finding ways to make themO.1/ (or maybe log); and second,
by hand-crafting the inner loop of the program to have the fastest possible execution.
The second of these tasks is very important and can make or break a stochastic sim-
ulation code’s performance; but, unfortunately, it is very machine-, compiler-, and
problem-dependent, so it is outside our scope here.

As for the first task, we first note that realistic reaction networks of any size
almost always have very sparse reactant and state change matrices: Reactions gener-
ally involve only one or two reactants and produce at most a few products. Therefore,
it is important to use some kind of sparse matrix structure for the matrices that occur.
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When 
ij is stored sparsely, for example, the updating step is reduced from O.N/

to O.1/.
Next, we note that most aj ’s are unchanged after each reaction occurs. After

a reaction k, for example, the only aj ’s that need to be recomputed are those with
reactants (inputs) that were changed by a nonzero entry in the kth column of the 
jk
matrix. A way to formalize this is by a dependency graph or dependency matrix G,
whose componentGjk is nonzero only if reaction k changes a species that is an input
to reaction j . With a moment of thought, you will figure out that the matrix G can
be obtained by the logical matrix multiplication of �T and 
, namely

Gij D
[
k

�ki \ 
kj (17.7.8)

where [ denotes logical-or, \ denotes logical-and, and the C convention of “true iff
nonzero” is assumed. Now, after each reaction j , we only update the ai ’s indicated
by the j th column of Gij . Of course we must also store G in a sparse format.

Finally, there is the question of how to speed up the choice of which reaction to
update, equation (17.7.7), which can be at worst O.M/. Here there are two schools
of thought. The one that we implement below, following advice in [3], takes advan-
tage of the fact that for many, if not most, actual applications, a small number of
reactions (� M ) dominate the reaction rates. If we arrange the order of the aj ’s
in equation (17.7.7) with these dominant reactions first, then it can take, on average,
only O(1) tests to select the next reaction. In [3], it is suggested to do preliminary runs
to find which reactions dominate. We prefer the more transparent alternative, imple-
mented below, of just letting frequent reactions adaptively bubble up in a priority list.

The other school of thought, called the next reaction method [2], is discussed
separately, below. It cleverly changes O.M/ to something like O.logM/, even in
the most unfavorable case. However, the number of operations in the inner program
loop is significantly larger than for the (optimized, as above) direct method. Which
method is fastest is very likely problem- and implementation-dependent.

For the modest test case illustrated, namely the set of three reactions (17.7.1),
most of the optimizations illustrated in the following code are unnecessary, and likely
counterproductive. However, the intent is to be illustrative of what a code for larger
problems would look like.

struct Stochsim { stochsim.h
Object for stochastic simulation of a set of chemical reactions.

VecDoub s; Vector of species numbers.
VecDoub a; Vector of rates.
MatDoub instate, outstate;
NRvector<NRsparseCol> outchg, depend; Sparse matrices �ij and Gij
VecInt pr; Priority list.
Doub t, asum;
Ran ran;
typedef Doub(Stochsim::*rateptr)(); Obscure C++ used to create a vec-

tor dispatch of function point-
ers to the rate functions.

rateptr *dispatch;

// begin user section
Replace this section, using as a template the example (17.7.1) shown here, by the particulars
of your reaction network. If you have a large number of reactions, you will want to generate
the matrices instate and outstate externally, and pass them as globals (or read them
here).
static const Int mm=3; Set number of reactions.
static const Int nn=4; Set number of species.
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Doub k0,k1,k2; Declare any rate constants needed.
Doub rate0() {return k0*s[0]*s[1];} Your rate functions go here.
Doub rate1() {return k1*s[1]*s[2];}
Doub rate2() {return k2*s[2];}
void describereactions () {
You provide a function with this name that sets any constants that you have defined and
sets the instate and outstate matrices to describe your reactions.

k0 = 0.01;
k1 = .1;
k2 = 1.;
Doub indat[] = { The reactant matrix �ij .

1.,0.,0.,
1.,1.,0.,
0.,1.,1.,
0.,0.,0.

};
instate = MatDoub(nn,mm,indat);
Doub outdat[] = { The state change matrix �ij .

-1.,0.,0.,
1.,-1.,0.,
0.,1.,-1.,
0.,0.,1.

};
outstate = MatDoub(nn,mm,outdat);
dispatch[0] = &Stochsim::rate0; You must also point the dispatch ta-

ble entries to the correct rate
functions.

dispatch[1] = &Stochsim::rate1;
dispatch[2] = &Stochsim::rate2;

}
// end user section

Stochsim(VecDoub &sinit, Int seed=1)
Constructor. Input initial species numbers and an optional random seed.
: s(sinit), a(mm,0.), outchg(mm), depend(mm), pr(mm), t(0.),
asum(0.), ran(seed), dispatch(new rateptr[mm]) {

Int i,j,k,d;
describereactions();
sparmatfill(outchg,outstate);
MatDoub dep(mm,mm);
for (i=0;i<mm;i++) for (j=0;j<mm;j++) { Logical matrix multiply calculates the

dependency matrix.d = 0;
for (k=0;k<nn;k++) d = d || (instate[k][i] && outstate[k][j]);
dep[i][j] = d;

}
sparmatfill(depend,dep);
for (i=0;i<mm;i++) { Calculate all initial rates.

pr[i] = i;
a[i] = (this->*dispatch[i])();
asum += a[i];

}
}
~Stochsim() {delete [] dispatch;}

Doub step() {
Take a single stochastic step (one reaction) and return the new time.

Int i,n,m,k=0;
Doub tau,atarg,sum,anew;
if (asum == 0.) {t *= 2.; return t;} Rare: All reactions have stopped ex-

actly, so double the time until
the user notices!

tau = -log(ran.doub())/asum;
atarg = ran.doub()*asum;
sum = a[pr[0]];
while (sum < atarg) sum += a[pr[++k]]; Equation (17.7.7).
m = pr[k];
if (k > 0) SWAP(pr[k],pr[k-1]); Move reaction up on the priority list.
if (k == mm-1) asum = sum; Free update of asum fixes accumu-

lated roundoff.
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n = outchg[m].nvals;
for (i=0;i<n;i++) { Apply state change vector.

k = outchg[m].row_ind[i];
s[k] += outchg[m].val[i];

}
n = depend[m].nvals;
for (i=0;i<n;i++) { Recalculate rates required by depen-

dency matrix.k = depend[m].row_ind[i];
anew = (this->*dispatch[k])();
asum += (anew - a[k]);
a[k] = anew;

}
if (t*asum < 0.1) Rare: Rates heading toward zero.

Better recalculate asum.for (asum=0.,i=0;i<mm;i++) asum += a[i];
return (t += tau);

}
};

Note that Stochsim uses some arcane C++ syntax (“array of pointers to mem-
ber functions”) in connection with the identifier dispatch. The underlying idea is
simple, and important: We want to jump directly to the appropriate user-supplied
rate function, as directed by an integer index. There are various ways of coding this,
but what you don’t want to have is a long chain of if tests that would be O.M/

instead of O.1/. (Perhaps we should believe that C’s switch statement is always
properly implemented by compilers as a fast table dispatch, but we don’t.)

The utility routine that constructs a sparse matrix out of a full one is this (cf. �2.7):

void sparmatfill(NRvector<NRsparseCol> &sparmat, MatDoub &fullmat) { stochsim.h
Utility that fills a sparse matrix from a full one. See �2.7.

Int n,m,nz,nn=fullmat.nrows(),mm=fullmat.ncols();
if (sparmat.size() != mm) throw("bad sizes");
for (m=0;m<mm;m++) {

for (nz=n=0;n<nn;n++) if (fullmat[n][m]) nz++;
sparmat[m].resize(nn,nz);
for (nz=n=0;n<nn;n++) if (fullmat[n][m]) {

sparmat[m].row_ind[nz] = n;
sparmat[m].val[nz++] = fullmat[n][m];

}
}

}

As a cultural note, the system (17.7.1) is not just any old chemical reaction net-
work, but is actually a form of the Lotka-Volterra equation, discovered independently
by Alfred J. Lotka and Vito Volterra in 1925–1926. In fact, it’s not originally a chem-
ical reaction network at all, but a set of relationships intended to model predator-prey
relationships. The first equation says, roughly, that rabbits (X) eat grass (A) to pro-
duce more rabbits. The second says that foxes (Y) eat rabbits (X) to produce more
foxes. The third says that foxes don’t live forever. (For some reason, rabbits do live
forever in this model, unless they are eaten by foxes.)

Figure 17.7.1 shows an example of the system’s evolution, starting with initial
conditions A D 150, X D Y D 10, and B D 0. One sees two cycles of prey popula-
tion growth, with predator growth following, and then a collapse of both populations.
After the second cycle, by a fluctuation, the predator population goes to zero, from
which it cannot recover. At the end of the evolution shown, the prey population is
starting to recover; but it is not a happy ending, because, by now, the food supply
is running out. The world of stochastic simulation is a harsh one. Stochastic ef-
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Figure 17.7.1. Evolution of the reaction network (17.7.1). This network evolves by the Lotka-Volterra
equations, originally developed as a model for predator-prey interactions. Stochastic effects are important;
with different random seeds, different time histories occur.

fects are genuinely dominant in this example: Exactly the same equations and initial
conditions, but with a different random seed, give entirely different evolutions.

17.7.2 Next Reaction Method
The next reaction method [2] starts by computing not a single reaction time,

equation (17.7.6), but rather a separate next reaction time for each reaction j ,

�j D
1

aj
log

�
1

Uj

�
(17.7.9)

where the Uj ’s are independent uniform random deviates in Œ0; 1�. These times are
all stored in a heap (see �8.3), so that the smallest value can be easily accessed at the
top of the heap (call it k). The following steps are now repeatedly executed:

� Do reaction k and update the affected Si ’s (using the matrix 
ik). Increment
time t by �k .
� Compute a next time for reaction k (using equation 17.7.9 and adding t ) and

store it on the heap.
� For every affected reaction j (as determined by a nonzero entry Gjk), correct

its stored next time by the formula

�j  
aj;old

aj;new
.�j � t /C t (17.7.10)

This is called time reuse. In effect, it reuses the random deviate Uj that origi-
nally generated �j , but it corrects the resulting time prediction for an interme-
diate step function change in aj . Sounds dodgy, we know, but it is probabilis-
tically sound.
� Get the heap back into order by bubbling elements up or down as required.

This is where the complexity of the inner loop gets increased, to as much as
O.logM/.
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Unquestionably, one can construct reaction networks for which the next reaction
method is considerably faster than the optimized direct method. However, networks
dominated by a small number of fast reactions are so common in practice that this
performance advantage should not be assumed a priori [3].

17.7.3 Practical Advice
Don’t ever use a stochastic simulation method — of any flavor — unless your

problem is genuinely stochastic. Instead, use the deterministic rate equations (17.7.4)
with a good stiff equation solver like StepperSie in �17.5. Such solvers are not
limited by the rate of the fastest reaction, and will frequently be orders of magni-
tude faster than any stochastic method. (We are reliably informed that an uncon-
scionable number of CPU hours are wasted by misguided researchers who think that
the stochastic simulation method is an all-purpose tool for reaction networks.)

Just to show you how easy this is, here is how you would do the Lotka-Volterra
problem (17.7.2) by integrating the equations directly. First encode the right-hand
side f and the Jacobian of the right-hand side in a structure. (The .i; j / element of
the Jacobian is @fi=@yj .)

struct rhs {

Doub k0,k1,k2;

rhs(Doub kk0, Doub kk1, Doub kk2) : k0(kk0),k1(kk1),k2(kk2) {}

void operator() (const Doub x, VecDoub_I &y, VecDoub_O &dydx) {

dydx[0]= -k0*y[0]*y[1];

dydx[1]= k0*y[0]*y[1]-k1*y[1]*y[2];

dydx[2]= k1*y[1]*y[2]-k2*y[2];

dydx[3]= k2*y[2];

}

void jacobian(const Doub x, VecDoub_I &y, VecDoub_O &dfdx,

MatDoub_O &dfdy) {

Int n=y.size();

for (Int i=0;i<n;i++) dfdx[i]=0.0;

dfdy[0][0] = -k0*y[1];

dfdy[0][1] = -k0*y[0];

dfdy[0][2] = 0.0;

dfdy[0][3] = 0.0;

dfdy[1][0] = k0*y[1];

dfdy[1][1] = k0*y[0]-k1*y[2];

dfdy[1][2] = -k1*y[1];

dfdy[1][3] = 0.0;

dfdy[2][0] = 0.0;

dfdy[2][1] = k1*y[2];

dfdy[2][2] = k1*y[1]-k2;

dfdy[2][3] = 0.0;

dfdy[3][0] = 0.0;

dfdy[3][1] = 0.0;

dfdy[3][2] = k2;

dfdy[3][3] = 0.0;

}

};

Next set the parameters for Odeint, for example

const Int n=4;

Doub rtol=1.0e-7,atol=1.0e-4*rtol,h1=1.0e-6,hmin=0.0,x1=0.0,x2=15.0;

VecDoub ystart(n);

ystart[0]=150.0;

ystart[1]=10.0;
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ystart[2]=10.0;

ystart[3]=0.0;

Output out(100); Output at 100 uniform points
rhs d(0.01,0.1,1.0); Declare d as a rhs object.
Odeint<StepperSIE<rhs> > ode(ystart,x1,x2,atol,rtol,h1,hmin,out,d);

ode.integrate();

Note how the values of k0, k1, and k2 are passed as arguments in the constructor
call that declares d. These particular values don’t make the system of equations
particularly stiff, so you could use a standard integrator. However, this is not true in
general for real-world examples.

The output, which is equally spaced, can be printed by statements like

for (Int i=0;i<out.count;i++)

cout << out.xsave[i] << " " << out.ysave[0][i] << " " <<

out.ysave[1][i] << " " << out.ysave[2][i] << endl;

If your network’s fastest reactions are not stochastic, but there are some slower
reactions where stochastic effects are important, then look into so-called hybrid
methods (e.g., [4]).

CITED REFERENCES AND FURTHER READING:
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Two-Point Boundary
Value Problems

CHAPTER 18

18.0 Introduction

When ordinary differential equations are required to satisfy boundary condi-
tions at more than one value of the independent variable, the resulting problem is
called a two-point boundary value problem. As the terminology indicates, the most
common case by far is where boundary conditions are supposed to be satisfied at
two points — usually the starting and ending values of the integration. However,
the phrase “two-point boundary value problem” is also used loosely to include more
complicated cases, e.g., where some conditions are specified at endpoints, others at
interior (usually singular) points.

The crucial distinction between initial value problems (Chapter 17) and two-
point boundary value problems (this chapter) is that in the former case we are able to
start an acceptable solution at its beginning (initial values) and just march it along by
numerical integration to its end (final values), while in the present case the boundary
conditions at the starting point do not determine a unique solution to start with —
and a “random” choice among the solutions that satisfy these (incomplete) starting
boundary conditions is almost certain not to satisfy the boundary conditions at the
other specified point(s).

It should not surprise you that iteration is in general required to meld these spa-
tially scattered boundary conditions into a single global solution of the differential
equations. For this reason, two-point boundary value problems require considerably
more effort to solve than do initial value problems. You have to integrate your dif-
ferential equations over the interval of interest, or perform an analogous “relaxation”
procedure (see below), at least several, and sometimes very many, times. Only in the
special case of linear differential equations can you say in advance just how many
such iterations will be required.

The “standard” two-point boundary value problem has the following form: We
desire the solution to a set of N coupled first-order ordinary differential equations,
satisfying n1 boundary conditions at the starting point x1 and a remaining set of
n2 D N � n1 boundary conditions at the final point x2. (Recall that all differen-
tial equations of order higher than first can be written as coupled sets of first-order

955
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required
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Figure 18.0.1. Shooting method (schematic). Trial integrations that satisfy the boundary condition at one
endpoint are “launched.” The discrepancies from the desired boundary condition at the other endpoint are
used to adjust the starting conditions, until boundary conditions at both endpoints are ultimately satisfied.

equations; cf. �17.0.)
The differential equations are

dyi .x/

dx
D gi .x; y0; y1; : : : ; yN�1/ i D 0; 1; : : : ; N � 1 (18.0.1)

At x1, the solution is supposed to satisfy

B1j .x1; y0; y1; : : : ; yN�1/ D 0 j D 0; : : : ; n1 � 1 (18.0.2)

while at x2, it is supposed to satisfy

B2k.x2; y0; y1; : : : ; yN�1/ D 0 k D 0; : : : ; n2 � 1 (18.0.3)

There are two distinct classes of numerical methods for solving two-point bound-
ary value problems. In the shooting method (�18.1) we choose values for all of
the dependent variables at one boundary. These values must be consistent with any
boundary conditions for that boundary, but otherwise are arranged to depend on arbi-
trary free parameters whose values we initially “randomly” guess. We then integrate
the ODEs by initial value methods, arriving at the other boundary (and/or any interior
points with boundary conditions specified). In general, we find discrepancies from
the desired boundary values there. Now we have a multidimensional root-finding
problem, as was treated in �9.6 and �9.7: Find the adjustment of the free parameters
at the starting point that zeros the discrepancies at the other boundary point(s). If
we liken integrating the differential equations to following the trajectory of a shot
from gun to target, then picking the initial conditions corresponds to aiming (see
Figure 18.0.1). The shooting method provides a systematic approach to taking a set
of “ranging” shots that allow us to improve our “aim” systematically.

As another variant of the shooting method (�18.2), we can guess unknown free
parameters at both ends of the domain, integrate the equations to a common mid-
point, and seek to adjust the guessed parameters so that the solution joins “smoothly”
at the fitting point. In all shooting methods, trial solutions satisfy the differential
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required
boundary
value

required
boundary
value

initial guess
1st iteration

2nd iteration

true solution

Figure 18.0.2. Relaxation method (schematic). An initial solution is guessed that approximately satisfies
the differential equation and boundary conditions. An iterative process adjusts the function to bring it into
close agreement with the true solution.

equations “exactly” (or as exactly as we care to make our numerical integration), but
the trial solutions come to satisfy the required boundary conditions only after the
iterations are finished.

Relaxation methods use a different approach. The differential equations are re-
placed by finite difference equations on a mesh of points that covers the range of
the integration. A trial solution consists of values for the dependent variables at
each mesh point, not satisfying the desired finite difference equations, nor neces-
sarily even satisfying the required boundary conditions. The iteration, now called
relaxation, consists of adjusting all the values on the mesh so as to bring them into
successively closer agreement with the finite difference equations and, simultane-
ously, with the boundary conditions (see Figure 18.0.2). For example, if the problem
involves three coupled equations and a mesh of 100 points, we must guess and im-
prove 300 variables representing the solution.

With all this adjustment, you may be surprised that relaxation is ever an effi-
cient method, but (for the right problems) it really is! Relaxation works better than
shooting when the boundary conditions are especially delicate or subtle, or where
they involve complicated algebraic relations that cannot easily be solved in closed
form. Relaxation works best when the solution is smooth and not highly oscillatory.
Such oscillations would require many grid points for accurate representation. The
number and position of required points may not be known a priori. Shooting meth-
ods are usually preferred in such cases, because their variable stepsize integrations
adjust naturally to a solution’s peculiarities.

Relaxation methods are often preferred when the ODEs have extraneous solu-
tions that, while not appearing in the final solution satisfying all boundary conditions,
may wreak havoc on the initial value integrations required by shooting. The typical
case is that of trying to maintain a dying exponential in the presence of growing
exponentials.

Good initial guesses are the secret of efficient relaxation methods. Often one
has to solve a problem many times, each time with a slightly different value of some
parameter. In that case, the previous solution is usually a good initial guess when the
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parameter is changed, and relaxation will work well.
Until you have enough experience to make your own judgment between the two

methods, you might wish to follow the advice of your authors, who are notorious
computer gunslingers: We always shoot first, and only then relax.

18.0.1 Problems Reducible to the Standard Boundary
Problem

There are two important problems that can be reduced to the standard boundary
value problem described by equations (18.0.1) – (18.0.3). The first is the eigenvalue
problem for differential equations. Here the right-hand side of the system of differ-
ential equations depends on a parameter �,

dyi .x/

dx
D gi .x; y0; : : : ; yN�1; �/ (18.0.4)

and one has to satisfy N C 1 boundary conditions instead of just N . The problem
is overdetermined and in general there is no solution for arbitrary values of �. For
certain special values of �, the eigenvalues, equation (18.0.4) does have a solution.

We reduce this problem to the standard case by introducing a new dependent
variable

yN � � (18.0.5)

and another differential equation

dyN

dx
D 0 (18.0.6)

An example of this trick is given in �18.4.
The other case that can be put in the standard form is a free boundary problem.

Here only one boundary abscissa x1 is specified, while the other boundary x2 is to
be determined so that the system (18.0.1) has a solution satisfying a total of N C 1
boundary conditions. Here we again add an extra constant dependent variable:

yN � x2 � x1 (18.0.7)

dyN

dx
D 0 (18.0.8)

We also define a new independent variable t by setting

x � x1 � tyN ; 0 
 t 
 1 (18.0.9)

The system of N C 1 differential equations for dyi=dt is now in the standard form,
with t varying between the known limits 0 and 1.

CITED REFERENCES AND FURTHER READING:

Keller, H.B. 1968, Numerical Methods for Two-Point Boundary-Value Problems; reprinted 1991
(New York: Dover).

Kippenhan, R., Weigert, A., and Hofmeister, E. 1968, in Methods in Computational Physics,
vol. 7 (New York: Academic Press), pp. 129ff.
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London, R.A., and Flannery, B.P. 1982, “Hydrodynamics of X-Ray Induced Stellar Winds,” As-
trophysical Journal, vol. 258, pp. 260–269.

Stoer, J., and Bulirsch, R. 2002, Introduction to Numerical Analysis, 3rd ed. (New York: Springer),
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18.1 The Shooting Method

In this section we discuss “pure” shooting, where the integration proceeds from
x1 to x2, and we try to match boundary conditions at the end of the integration.
In the next section, we describe shooting to an intermediate fitting point, where the
solution to the equations and boundary conditions is found by launching “shots”
from both sides of the interval and trying to match continuity conditions at some
intermediate point.

Our implementation of the shooting method exactly implements multidimen-
sional, globally convergent Newton-Raphson (�9.7). It seeks to zero n2 functions
of n2 variables. The functions are obtained by integrating N differential equations
from x1 to x2. Let us see how this works.

At the starting point x1 there areN starting values yi to be specified, but subject
to n1 conditions. Therefore there are n2 D N � n1 freely specifiable starting values.
Let us imagine that these freely specifiable values are the components of a vector V
that lives in a vector space of dimension n2. Then you, the user, knowing the func-
tional form of the boundary conditions (18.0.2), can write a function or functor that
generates a complete set of N starting values y , satisfying the boundary conditions
at x1, from an arbitrary vector value of V in which there are no restrictions on the n2
component values. In other words, (18.0.2) converts to a prescription

yi .x1/ D yi .x1IV0; : : : ; Vn2�1/ i D 0; : : : ; N � 1 (18.1.1)

In the routine Shoot below, the function or functor that implements (18.1.1) will
be called load, but you can pass it as an argument to the routine with any name of
your choosing.

Notice that the components of V might be exactly the values of certain “free”
components of y , with the other components of y determined by the boundary con-
ditions. Alternatively, the components of V might parametrize the solutions that
satisfy the starting boundary conditions in some other convenient way. Boundary
conditions often impose algebraic relations among the yi , rather than specific values
for each of them. Using some auxiliary set of parameters often makes it easier to
“solve” the boundary relations for a consistent set of yi ’s. It makes no difference
which way you go, as long as your vector space of V ’s generates (through 18.1.1) all
allowed starting vectors y .

Given a particular V , a particular y.x1/ is thus generated. It can then be turned
into a y.x2/ by integrating the ODEs to x2 as an initial value problem (e.g., using
Chapter 17’s Odeint). Now, at x2, let us define a discrepancy vector F , also of
dimension n2, whose components measure how far we are from satisfying the n2



�

�

“nr3” — 2007/5/1 — 20:53 — page 960 — #982
�

�

� �

960 Chapter 18. Two-Point Boundary Value Problems

boundary conditions at x2 (18.0.3). Simplest of all is just to use the right-hand sides
of (18.0.3),

Fk D B2k.x2; y/ k D 0; : : : ; n2 � 1 (18.1.2)

As in the case of V , however, you can use any other convenient parametrization,
as long as your space of F’s spans the space of possible discrepancies from the
desired boundary conditions, with all components of F equal to zero if and only if
the boundary conditions at x2 are satisfied. Below, you will be asked to supply a
user-written function or functor that uses (18.0.3) to convert an N -vector of ending
values y.x2/ into an n2-vector of discrepancies F . Inside Shoot, this function is
called score.

Now, as far as Newton-Raphson is concerned, we are nearly in business. We
want to find a vector value of V that zeros the vector value of F . We do this by
invoking the globally convergent Newton’s method implemented in the routine newt
of �9.7. Recall that the heart of Newton’s method involves solving the set of n2 linear
equations

J 	 ıV D �F (18.1.3)

and then adding the correction back,

V new D V old C ıV (18.1.4)

In (18.1.3), the Jacobian matrix J has components given by

Jij D
@Fi

@Vj
(18.1.5)

It is not feasible to compute these partial derivatives analytically. Rather, each re-
quires a separate integration of the N ODEs, followed by the evaluation of

@Fi

@Vj
�
Fi .V0; : : : ; Vj C�Vj ; : : :/ � Fi .V0; : : : ; Vj ; : : :/

�Vj
(18.1.6)

This is done automatically for you in the functor NRfdjac that comes with newt. The
only input to newt that you have to provide is the routine vecfunc that calculates
F by integrating the ODEs. Here is the appropriate routine, a functor called Shoot,
that is to be passed as the actual argument in newt:

template <class L, class R, class S>shoot.h
struct Shoot {
Functor for use with newt to solve a two-point boundary value problem by shooting.

Int nvar; Number of coupled ODEs.
Doub x1,x2; Start and end points.
L &load; Supplies initial values for ODEs from v[0..n2-1].
R &d; Supplies derivative information to the ODE integrator.
S &score; Returns the n2 functions that ought to be zero to satisfy

the boundary conditions at x2.Doub atol,rtol;
Doub h1,hmin;
VecDoub y;
Shoot(Int nvarr, Doub xx1, Doub xx2, L &loadd, R &dd, S &scoree) :

nvar(nvarr), x1(xx1), x2(xx2), load(loadd), d(dd),
score(scoree), atol(1.0e-14), rtol(atol), hmin(0.0), y(nvar) {}

Routine for use with newt to solve a two-point boundary value problem for nvar coupled
ODEs by shooting from x1 to x2. Initial values for the nvar ODEs at x1 are generated
from the n2 input coefficients v[0..n2-1], using the user-supplied routine load.
VecDoub operator() (VecDoub_I &v) {
This is the functor used by newt. It integrates the ODEs to x2 using an eighth-order Runge-
Kutta method with absolute and relative tolerances atol and rtol, initial stepsize h1, and
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minimum stepsize hmin. At x2 it calls the user-supplied routine score and returns the
n2 functions that ought to be zero. newt uses a globally convergent Newton’s method to
adjust the values of v until the returned functions are in fact zero.

h1=(x2-x1)/100.0;
y=load(x1,v);
Output out; No output generated by Odeint.
Odeint<StepperDopr853<R> > integ(y,x1,x2,atol,rtol,h1,hmin,out,d);
integ.integrate();
return score(x2,y);

}
};

Note that Shoot is templated on the load, right-hand side for Odeint, and score
routines. In practice, you will almost always want to write these as functors rather
than functions. This makes communicating the various parameters in the problem
easy — just pass them as parameters in the constructors.

For some problems the initial stepsize �V might depend sensitively upon the
initial conditions. It is straightforward to alter load to compute a suggested stepsize
h1 as a member variable and feed it fist to Shoot and hence to NRfdjac when the
Shoot object is passed to newt.

A complete cycle of the shooting method thus requires n2 C 1 integrations of
the N coupled ODEs: one integration to evaluate the current degree of mismatch,
and n2 for the partial derivatives. Each new cycle requires a new round of n2 C 1
integrations. This illustrates the enormous extra effort involved in solving two-point
boundary value problems compared with initial value problems.

If the differential equations are linear, then only one complete cycle is required,
since (18.1.3) – (18.1.4) should take us right to the solution. A second round can be
useful, however, in mopping up some (never all) of the roundoff error.

As given here, Shoot uses the high-efficiency eighth-order Runge-Kutta method
of �17.2 to integrate the ODEs, but any of the other methods of Chapter 17 could just
as well be used.

You, the user, must supply Shoot with: (i) a function or functor load(x1,v)
that returns the n-vector y[0..n-1] (satisfying the starting boundary conditions, of
course), given the freely specifiable variables of v[0..n2-1] at the initial point x1;
(ii) a function or functor score(x2,y) that returns the discrepancy vector f[0..
n2-1] of the ending boundary conditions, given the vector y[0..n-1] at the end-
point x2; (iii) a starting vector v[0..n2-1]; (iv) a function or functor, called d in
the routine, for the ODE integration; and other obvious parameters as described in
the header comment above.

In �18.4 we give a sample program illustrating how to use Shoot.

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington, DC:
Mathematical Association of America).

Keller, H.B. 1968, Numerical Methods for Two-Point Boundary-Value Problems; reprinted 1991
(New York: Dover).
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18.2 Shooting to a Fitting Point
The shooting method described in �18.1 tacitly assumed that the “shots” would

be able to traverse the entire domain of integration, even at the early stages of con-
vergence to a correct solution. In some problems it can happen that, for very wrong
starting conditions, an initial solution can’t even get from x1 to x2 without encoun-
tering some incalculable, or catastrophic, result. For example, the argument of a
square root might go negative, causing the numerical code to crash. Simple shooting
would be stymied.

A different, but related, case is where the endpoints are both singular points
of the set of ODEs. One frequently needs to use special methods to integrate near
the singular points, analytic asymptotic expansions, for example. In such cases it is
feasible to integrate in the direction away from a singular point, using the special
method to get through the first little bit and then reading off “initial” values for
further numerical integration. However, it is generally not feasible to integrate into
a singular point. Usually the desired boundary condition is that one wants a regular
solution at the singular point, but integrating into a singularity is guaranteed to pick
out a singular solution, which by definition is growing as one integrates inward. Any
small numerical inaccuracy will include some admixture of the “wrong” solution,
which grows and swamps the desired solution.

The solution to the above-mentioned difficulties is shooting to a fitting point.
Instead of integrating from x1 to x2, we integrate first from x1 to some point xf that
is between x1 and x2; and second from x2 (in the opposite direction) to xf .

If (as before) the number of boundary conditions imposed at x1 is n1, and the
number imposed at x2 is n2, then there are n2 freely specifiable starting values at x1
and n1 freely specifiable starting values at x2. (If you are confused by this, go back
to �18.1.) We can therefore define an n2-vector V .1/ of starting parameters at x1 and
a prescription load1(x1,v1) for mapping V .1/ into a y that satisfies the boundary
conditions at x1:

yi .x1/ D yi .x1IV
.1/
0 ; : : : ; V

.1/
n2�1

/ i D 0; : : : ; N � 1 (18.2.1)

Likewise we can define an n1-vector V .2/ of starting parameters at x2 and a prescrip-
tion load2(x2,v2) for mapping V .2/ into a y that satisfies the boundary conditions
at x2:

yi .x2/ D yi .x2IV
.2/
0 ; : : : ; V

.2/
n1�1

/ i D 0; : : : ; N � 1 (18.2.2)

We thus have a total of N freely adjustable parameters in the combination of
V .1/ and V .2/. The N conditions that must be satisfied are that there be agreement
in N components of y at xf between the values obtained integrating from one side
and from the other,

yi .xf IV
.1// D yi .xf IV

.2// i D 0; : : : ; N � 1 (18.2.3)

In some problems, the N matching conditions can be better described (physically,
mathematically, or numerically) by using N different functions Fi ; i D 0 : : : N � 1,
each possibly depending on theN components yi . In those cases, (18.2.3) is replaced
by

Fi Œy.xf IV
.1//� D Fi Œy.xf IV

.2//� i D 0; : : : ; N � 1 (18.2.4)
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In the program below, a user-supplied function or functor, called score(xf,y)
in the routine, is supposed to map an inputN -vector y into an outputN -vector F . In
most cases, you can simply use the identity mapping F D y .

Shooting to a fitting point uses globally convergent Newton-Raphson exactly
as in �18.1. Comparing closely with the routine Shoot of the previous sec-
tion, you should have no difficulty in understanding the following routine Shootf.
The main differences in use are that you have to supply both load1 and load2.
Also, in the calling program you must supply initial guesses for v1[0..n2-1] and
v2[0..n1-1]. Once again, a sample program illustrating shooting to a fitting point
is given in �18.4.

template <class L1, class L2, class R, class S> shootf.h
struct Shootf {
Functor for use with newt to solve a two-point boundary value problem by shooting to a fitting
point.

Int nvar,n2; nvar is the number of coupled ODEs.
Doub x1,x2,xf; Start and end points and fitting point.
L1 &load1; load1 and load2 supply initial values for the ODEs.
L2 &load2;
R &d; Supplies derivative information to the ODE integrator.
S &score; Computes the mismatch of the solutions at the fitting

point.Doub atol,rtol;
Doub h1,hmin;
VecDoub y,f1,f2;
Shootf(Int nvarr, Int nn2, Doub xx1, Doub xx2, Doub xxf, L1 &loadd1,

L2 &loadd2, R &dd, S &scoree) : nvar(nvarr), n2(nn2), x1(xx1),
x2(xx2), xf(xxf), load1(loadd1), load2(loadd2), d(dd),
score(scoree), atol(1.0e-14), rtol(atol), hmin(0.0), y(nvar),
f1(nvar), f2(nvar) {}

Routine for use with newt to solve a two-point boundary value problem for nvar coupled
ODEs by shooting from x1 and x2 to a fitting point xf. Initial values for the nvar ODEs at
x1 are generated from the n2 coefficients v1 and the user-supplied routine load1. Likewise,
those at x2 are from the n1=nvar-n2 coefficients v2, using load2. The coefficients v1
and v2 should be stored in a single array v[0..nvar-1] in the main program with v1 in
v[0..n2-1] and v2 in v[n2..nvar-1].
VecDoub operator() (VecDoub_I &v) {
This is the functor used by newt. It integrates the ODEs to xf using an eighth-order
Runge-Kutta method with absolute and relative tolerances atol and rtol, initial stepsize
h1, and minimum stepsize hmin. At xf it calls the user-supplied routine score to evaluate
the nvar functions f1 and f2 that ought to match at xf. The differences are returned on
output. newt uses a globally convergent Newton’s method to adjust the values of v until the
differences are zero. A user-supplied function or functor d supplies derivative information
to the ODE integrator (see Chapter 17).

VecDoub v2(nvar-n2,&v[n2]);
h1=(x2-x1)/100.0;
y=load1(x1,v); Path from x1 to xf with best trial values v1.
Output out; No output generated by Odeint.
Odeint<StepperDopr853<R> > integ1(y,x1,xf,atol,rtol,h1,hmin,out,d);
integ1.integrate();
f1=score(xf,y);
y=load2(x2,v2); Path from x2 to xf with best trial values v2.
Odeint<StepperDopr853<R> > integ2(y,x2,xf,atol,rtol,h1,hmin,out,d);
integ2.integrate();
f2=score(xf,y);
for (Int i=0;i<nvar;i++) f1[i] -= f2[i];
return f1;

}
};

There are boundary value problems where even shooting to a fitting point fails
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— the integration interval has to be partitioned by several fitting points with the
solution being matched at each such point. For more details see [1].

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington, DC:
Mathematical Association of America).

Keller, H.B. 1968, Numerical Methods for Two-Point Boundary-Value Problems; reprinted 1991
(New York: Dover).

Stoer, J., and Bulirsch, R. 2002, Introduction to Numerical Analysis, 3rd ed. (New York: Springer),
�7.3.5 – �7.3.6.[1]

18.3 Relaxation Methods

In relaxation methods we replace ODEs by approximate finite difference equations
(FDEs) on a grid or mesh of points that spans the domain of interest. As a typical exam-
ple, we could replace a general first-order differential equation

dy

dx
D g.x; y/ (18.3.1)

with an algebraic equation relating function values at two points k; k � 1:

yk � yk�1 � .xk � xk�1/ g
h
1
2 .xk C xk�1/;

1
2 .yk C yk�1/

i
D 0 (18.3.2)

The form of the FDE in (18.3.2) illustrates the idea, but not uniquely: There are many ways
to turn the ODE into an FDE. When the problem involves N coupled first-order ODEs rep-
resented by FDEs on a mesh of M points, a solution consists of values for N dependent
functions given at each of the M mesh points, or N � M variables in all. The relaxation
method determines the solution by starting with a guess and improving it, iteratively. As the
iterations improve the solution, the result is said to relax to the true solution.

While several iteration schemes are possible, for most problems our old standby, multi-
dimensional Newton’s method, works well. The method produces a matrix equation that must
be solved, but the matrix takes a special, “block diagonal” form that allows it to be inverted
far more economically both in time and storage than would be possible for a general matrix
of size .MN/ � .MN/. Since MN can easily be several thousand or more, this is crucial for
the feasibility of the method.

Our implementation couples at most pairs of points, as in equation (18.3.2). More points
can be coupled, but then the method becomes more complex. We will provide enough back-
ground so that you can write a more general scheme if you have the patience to do so.

Let us develop a general set of algebraic equations that represent the ODEs by FDEs.
The ODE problem is exactly identical to that expressed in equations (18.0.1) – (18.0.3), where
we had N coupled first-order equations that satisfy n1 boundary conditions at one end of the
interval and n2 D N �n1 boundary conditions at the other. We first define a mesh or grid by a
set of k D 0; 1; :::;M �1 points at which we supply values for the independent variable xk . In
particular, x0 is the initial boundary and xM�1 is the final boundary. We use the notation yk
to refer to the entire set of dependent variables y0; y1; : : : ; yN�1 at point xk . At an arbitrary
point k in the middle of the mesh, we approximate the set of N first-order ODEs by algebraic
relations of the form

0 D Ek � yk � yk�1 � .xk � xk�1/gk.xk ; xk�1; yk ; yk�1/; k D 1; 2; : : : ;M � 1
(18.3.3)

The notation signifies that gk can be evaluated using information from both points k; k � 1.
The FDEs labeled by Ek provideN equations coupling 2N variables at points k; k�1. There
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are M � 1 points, k D 1; 2; : : : ;M � 1, at which difference equations of the form (18.3.3)
apply. Thus the FDEs provide a total of .M � 1/N equations for the MN unknowns. The
remaining N equations come from the boundary conditions.

At the first boundary we have

0 D E0 � B.x0; y0/ (18.3.4)

while at the second boundary

0 D EM � C.xM�1; yM�1/ (18.3.5)

The vectors E0 and B have only n1 nonzero components, corresponding to the n1 boundary
conditions at x0. It will turn out to be useful to take these nonzero components to be the last
n1 components. In other words, Ej;0 ¤ 0 only for j D n2; n2 C 1; : : : ; N � 1. At the
other boundary, only the first n2 components of EM and C are nonzero: Ej;M ¤ 0 only for
j D 0; 1; : : : ; n2 � 1.

The “solution” of the FDE problem in (18.3.3) – (18.3.5) consists of a set of variables
yj;k , the values of the N variables yj at the M points xk . The algorithm we describe below
requires an initial guess for the yj;k . We then determine increments �yj;k such that yj;k C
�yj;k is an improved approximation to the solution.

Equations for the increments are developed by expanding the FDEs in first-order Taylor
series with respect to small changes�yk . At an interior point, k D 1; 2; : : : ;M �1, this gives

Ek.ykC�yk ; yk�1C�yk�1/ � Ek.yk ; yk�1/C

N�1X
nD0

@Ek
@yn;k�1

�yn;k�1C

N�1X
nD0

@Ek
@yn;k

�yn;k

(18.3.6)
For a solution we want the updated value E.yC�y/ to be zero, so the general set of equations
at an interior point can be written in matrix form as

N�1X
nD0

Sj;n�yn;k�1 C

2N�1X
nDN

Sj;n�yn�N;k D �Ej;k ; j D 0; 1; : : : ; N � 1 (18.3.7)

where

Sj;n D
@Ej;k

@yn;k�1
; Sj;nCN D

@Ej;k

@yn;k
; n D 0; 1; : : : ; N � 1 (18.3.8)

The quantity Sj;n is an N � 2N matrix at each point k. Each interior point thus supplies a
block of N equations coupling 2N corrections to the solution variables at the points k; k � 1.

Similarly, the algebraic relations at the boundaries can be expanded in a first-order Taylor
series for increments that improve the solution. Since E0 depends only on y0, we find at the
first boundary

N�1X
nD0

Sj;n�yn;0 D �Ej;0; j D n2; n2 C 1; : : : ; N � 1 (18.3.9)

where

Sj;n D
@Ej;0

@yn;0
; n D 0; 1; : : : ; N � 1 (18.3.10)

At the second boundary,

N�1X
nD0

Sj;n�yn;M�1 D �Ej;M ; j D 0; 1; : : : ; n2 � 1 (18.3.11)

where

Sj;n D
@Ej;M

@yn;M�1
; n D 0; 1; : : : ; N � 1 (18.3.12)
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Figure 18.3.1. Matrix structure of a set of linear finite difference equations (FDEs) with boundary condi-
tions imposed at both endpoints. Here X represents a coefficient of the FDEs, V represents a component
of the unknown solution vector, and B is a component of the known right-hand side. Empty spaces rep-
resent zeros. The matrix equation is to be solved by a special form of Gaussian elimination. (See text for
details.)

We thus have in equations (18.3.7) – (18.3.12) a set of linear equations to be solved for
the corrections �y , iterating until the corrections are sufficiently small. The equations have a
special structure, because each Sj;n couples only points k; k � 1. Figure 18.3.1 illustrates the
typical structure of the complete matrix equation for the case of five variables and four mesh
points, with three boundary conditions at the first boundary and two at the second. The 3 � 5
block of nonzero entries in the top left-hand corner of the matrix comes from the boundary
condition Sj;n at point k D 0. The next three 5 � 10 blocks are the Sj;n at the interior
points, coupling variables at mesh points (2,1), (3,2), and (4,3). Finally we have the block
corresponding to the second boundary condition.

We can solve equations (18.3.7) – (18.3.12) for the increments �y using a form of
Gaussian elimination that exploits the special structure of the matrix to minimize the total
number of operations, and that minimizes storage of matrix coefficients by packing the ele-
ments in a special blocked structure. (You might wish to review Chapter 2, especially �2.2,
if you are unfamiliar with the steps involved in Gaussian elimination.) Recall that Gaussian
elimination consists of manipulating the equations by elementary operations such as dividing
rows of coefficients by a common factor to produce unity in diagonal elements, and adding ap-
propriate multiples of other rows to produce zeros below the diagonal. Here we take advantage
of the block structure by performing a bit more reduction than in pure Gaussian elimination,
so that the storage of coefficients is minimized. Figure 18.3.2 shows the form that we wish
to achieve by elimination, just prior to the backsubstitution step. Only a small subset of the
reduced MN �MN matrix elements needs to be stored as the elimination progresses. Once
the matrix elements reach the stage in Figure 18.3.2, the solution follows quickly by a back-
substitution procedure.

Furthermore, the entire procedure, except the backsubstitution step, operates only on
one block of the matrix at a time. The procedure contains four types of operations: (1) par-
tial reduction to zero of certain elements of a block using results from a previous step; (2)
elimination of the square structure of the remaining block elements such that the square sec-
tion contains unity along the diagonal, and zero in off-diagonal elements; (3) storage of the
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Figure 18.3.2. Target structure of the Gaussian elimination. Once the matrix of Figure 18.3.1 has been
reduced to this form, the solution follows quickly by backsubstitution.
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Figure 18.3.3. Reduction process for the first (upper-left) block of the matrix in Figure 18.3.1.
(a) Original form of the block, (b) final form. (See text for explanation.)

remaining nonzero coefficients for use in later steps; and (4) backsubstitution. We illustrate
the steps schematically by figures.

Consider the block of equations describing corrections available from the initial bound-
ary conditions. We have n1 equations for N unknown corrections. We wish to transform the
first block so that its left-hand n1 � n1 square section becomes unity along the diagonal and
zero in off-diagonal elements. Figure 18.3.3 shows the original and final forms of the first
block of the matrix. In the figure we designate matrix elements that are subject to diagonal-
ization by “D” and elements that will be altered by “A”; in the final block, elements that are
stored are labeled by “S.” We get from start to finish by selecting in turn n1 “pivot” elements
from among the first n1 columns, normalizing the pivot row so that the value of the “pivot”
element is unity, and adding appropriate multiples of this row to the remaining rows so that
they contain zeros in the pivot column. In its final form, the reduced block expresses values
for the corrections to the first n1 variables at mesh point 0 in terms of values for the remaining
n2 unknown corrections at point 0, i.e., we now know what the first n1 elements are in terms
of the remaining n2 elements. We store only the final set of n2 nonzero columns from the
initial block, plus the column for the altered right-hand side of the matrix equation.

We must emphasize here an important detail of the method. To exploit the reduced
storage allowed by operating on blocks, it is essential that the ordering of columns in the s
matrix of derivatives be such that pivot elements can be found among the first n1 rows of
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Figure 18.3.4. Reduction process for intermediate blocks of the matrix in Figure 18.3.1. (a) Original
form, (b) final form. (See text for explanation.)

the matrix. This means that the n1 boundary conditions at the first point must contain some
dependence on the first j=0,1,...,n1 � 1 dependent variables, y[j][0]. If not, then the
original square n1�n1 subsection of the first block will appear to be singular, and the method
will fail. Alternatively, we would have to allow the search for pivot elements to involve all
N columns of the block, and this would require column swapping and far more bookkeeping.
The code provides a simple method of reordering the variables, i.e., the columns of the s
matrix, so that this can be done easily. End of important detail.

Next consider the block of N equations representing the FDEs that describe the relation
between the 2N corrections at points 1 and 0. The elements of that block, together with results
from the previous step, are illustrated in Figure 18.3.4. Note that by adding suitable multiples
of rows from the first block we can reduce to zero the first n1 columns of the block (labeled
by “Z”), and, to do so, we will need to alter only the columns from n1 to N � 1 and the
vector element on the right-hand side. Of the remaining columns we can diagonalize a square
subsection of N � N elements, labeled by “D” in the figure. In the process we alter the final
set of n2 columns, denoted “A” in the figure. The second half of the figure shows the block
when we finish operating on it, with the stored n2 �N elements labeled by “S.”

If we operate on the next set of equations corresponding to the FDEs coupling corrections
at points 2 and 1, we see that the state of available results and new equations exactly reproduces
the situation described in the previous paragraph. Thus, we can carry out those steps again
for each block in turn through block M � 1. Finally on block M we encounter the remaining
boundary conditions.

Figure 18.3.5 shows the final block of n2 FDEs relating the N corrections for variables
at mesh point M � 1, together with the result of reducing the previous block. Again, we can
first use the prior results to zero the first n1 columns of the block. Now, when we diagonalize
the remaining square section, we strike gold: We get values for the final n2 corrections at
mesh point M � 1.

With the final block reduced, the matrix has the desired form shown previously in Figure
18.3.2, and the matrix is ripe for backsubstitution. Starting with the bottom row and working
up toward the top, at each stage we can simply determine one unknown correction in terms of
known quantities.

The object Solvde organizes the steps described above. The principal procedures used
in the algorithm are performed by functions called internally by Solvde. The function red
eliminates leading columns of the s matrix using results from prior blocks. pinvs diago-
nalizes the square subsection of s and stores unreduced coefficients. bksub carries out the
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Figure 18.3.5. Reduction process for the last (lower-right) block of the matrix in Figure 18.3.1.
(a) Original form, (b) final form. (See text for explanation.)

backsubstitution step. The user of Solvde must understand the calling arguments, as de-
scribed below, and supply an object Difeq, called by Solvde, with a method smatrix that
evaluates the s matrix for each block.

Most of the arguments in the constructor call to Solvde have already been described, but
some require discussion. On input, array y[j][k] contains the initial guess for the solution,
with j labeling the dependent variables at mesh points k. The problem involves ne FDEs
spanning points k=0,..., m-1. nb boundary conditions apply at the first point k=0. The
array indexv[j] establishes the correspondence between columns of the s matrix; equations
(18.3.8), (18.3.10), and (18.3.12); and the dependent variables. As described above, it is
essential that the nb boundary conditions at k=0 involve the dependent variables referenced
by the first nb columns of the s matrix. Thus, columns j of the s matrix can be ordered by the
user in Difeq to refer to derivatives with respect to the dependent variable indexv[j].

The function only attempts itmax correction cycles before returning, even if the solution
has not converged. The parameters conv, slowc, and scalv relate to convergence. Each
inversion of the matrix produces corrections for ne variables at m mesh points. We want these
to become vanishingly small as the iterations proceed, but we must define a measure for the
size of corrections. This error “norm” is very problem-specific, so the user might wish to
rewrite this section of the code as appropriate. In the program below we compute a value for
the average correction err by summing the absolute value of all corrections, weighted by a
scale factor appropriate to each type of variable:

err D
1

m � ne

m-1X
k=0

ne-1X
j=0

j�Y [j][k]j

scalv[j]
(18.3.13)

When err 
 conv, the method has converged. Note that the user gets to supply an array
scalv that measures the typical size of each variable.

Obviously, if err is large, we are far from a solution, and perhaps it is a bad idea to
believe that the corrections generated from a first-order Taylor series are accurate. The number
slowc modulates the application of corrections. After each iteration we apply only a fraction
of the corrections found by matrix inversion:

Y [j][k]! Y [j][k]C
slowc

max.slowc,err/
�Y [j][k] (18.3.14)

Thus, when err > slowc only a fraction of the corrections are used, but when err 
 slowc
the entire correction gets applied.
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As already mentioned, the constructor initializes the array y[0..ne-1][0..m-1] in
Solvdewith the trial solution. Internally, workspace arrays c[0..ne-1][0..ne-nb][0..m],
s[0..ne-1][0..2*ne] are allocated. The array c is the blockbuster: It stores the unreduced
elements of the matrix built up for the backsubstitution step. If there are m mesh points, then
there will be m+1 blocks, each requiring ne rows and ne-nb+1 columns. Although large, this
is small compared with .ne � m/2 elements required for the whole matrix if we did not break
it into blocks.

We now describe the workings of the user-supplied object Difeq. The constructor can be
used to pass problem-specific information from your main program. The object must contain
a method smatrix with the following declaration:

void smatrix(const Int k, const Int k1, const Int k2, const Int jsf,
const Int is1, const Int isf, VecInt_I &indexv, MatDoub_O &s,
MatDoub_I &y);

As the declaration shows, the only information passed from Difeq to Solvde is the
matrix of derivatives s[0..ne-1][0..2*ne]; all other arguments are input to smatrix and
should not be altered. k indicates the current mesh point, or block number. k1, k2 label the
first and last points in the mesh. If k D k1 or k > k2, the block involves the boundary
conditions at the first or final point; otherwise the block acts on FDEs coupling variables at
points k-1, k.

The convention on storing information into the array s[i][j] follows that used in equa-
tions (18.3.8), (18.3.10), and (18.3.12): Rows i label equations and columns j refer to deriva-
tives with respect to dependent variables in the solution. Recall that each equation will depend
on the ne dependent variables at either one or two points. Thus, j runs from 0 to either ne-1
or 2*ne-1. The column ordering for dependent variables at each point must agree with the
list supplied in indexv[j]. Thus, for a block not at a boundary, the first column multiplies
�Y.l=indexv[0],k-1/, and the column ne multiplies �Y.l=indexv[0],k/. The param-
eters is1, isf give the numbers of the starting and final rows that need to be filled in the s
matrix for this block. jsf labels the column in which the difference equations Ej;k of equa-
tions (18.3.3) – (18.3.5) are stored. Thus, �s[i][jsf] is the vector on the right-hand side of
the matrix. The reason for the minus sign is that smatrix supplies the actual difference equa-
tion, Ej;k , not its negative. Note that Solvde supplies a value for jsf such that the difference
equation is put in the column just after all derivatives in the s matrix. Thus, smatrix expects
to find values entered into s[i][j] for rows is1 
 i 
 isf and 0 
 j 
 jsf.

Finally, the quantities s[0..nsi-1][0..nsj-1] and y[0..nyj-1][0..nyk-1] sup-
ply smatrix with storage for s and the values of the solution variables y for this iteration. An
example of how to use this routine is given in the next section.

Detailed implementing code for Solvde is given in a Webnote [1], many ideas in which
are due to Eggleton [2].

18.3.1 “Algebraically Difficult” Sets of Differential
Equations

Relaxation methods allow you to take advantage of an additional opportunity that, while
not obvious, can speed up some calculations enormously. It is not necessary that the set
of variables yj;k correspond exactly with the dependent variables of the original differential
equations. They can be related to those variables through algebraic equations. Obviously, it
is necessary only that the solution variables allow us to evaluate the functions y; g;B;C that
are used to construct the FDEs from the ODEs. In some problems, g depends on functions of
y that are known only implicitly, so that iterative solutions are necessary to evaluate functions
in the ODEs. Often one can dispense with this “internal” nonlinear problem by defining a new
set of variables from which both y; g and the boundary conditions can be obtained directly.
A typical example occurs in physical problems where the equations require the solution of
a complex equation of state that can be expressed in more convenient terms using variables
other than the original dependent variables in the ODE. While this approach is analogous to
performing an analytic change of variables directly on the original ODEs, such an analytic
transformation might be prohibitively complicated. The change of variables in the relaxation
method is easy and requires no analytic manipulations.
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18.4 A Worked Example: Spheroidal
Harmonics

The best way to understand the algorithms of the previous sections is to see
them employed to solve an actual problem. As a sample problem, we have selected
the computation of spheroidal harmonics. (The more common name is spheroidal
angle functions, but we prefer the explicit reminder of the kinship with spherical
harmonics.) We will show how to find spheroidal harmonics, first by the method of
relaxation (�18.3), and then by the methods of shooting (�18.1) and shooting to a
fitting point (�18.2).

Spheroidal harmonics typically arise when certain partial differential equations
are solved by separation of variables in spheroidal coordinates. They satisfy the
following differential equation on the interval �1 
 x 
 1:

d

dx

�
.1 � x2/

dS

dx

�
C

�
� � c2x2 �

m2

1 � x2

�
S D 0 (18.4.1)

Herem is an integer, c is the “oblateness parameter,” and � is the eigenvalue. Despite
the notation, c2 can be positive or negative. For c2 > 0, the functions are called
“prolate,” while if c2 < 0 they are called “oblate.” The equation has singular points
at x D ˙1 and is to be solved subject to the boundary conditions that the solution be
regular at x D ˙1. Only for certain values of �, the eigenvalues, will this be possible.

If we consider first the spherical case, where c D 0, we recognize the dif-
ferential equation for Legendre functions Pmn .x/. In this case the eigenvalues are
�mn D n.n C 1/, n D m;m C 1; : : : . The integer n labels successive eigenvalues
for fixed m: When n D m we have the lowest eigenvalue, and the corresponding
eigenfunction has no nodes in the interval �1 < x < 1; when n D mC 1 we have
the next eigenvalue, and the eigenfunction has one node inside .�1; 1/; and so on.

A similar situation holds for the general case c2 6D 0. We write the eigenvalues
of (18.4.1) as �mn.c/ and the eigenfunctions as Smn.xI c/. For fixedm, n D m;mC
1; : : : labels the successive eigenvalues.

The computation of �mn.c/ and Smn.xI c/ traditionally has been quite diffi-
cult. Complicated recurrence relations, power series expansions, etc., can be found
in [1-3]. Cheap computing makes evaluation by direct solution of the differential
equation quite feasible.

The first step is to investigate the behavior of the solution near the singular
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points x D ˙1. Substituting a power series expansion of the form

S D .1˙ x/˛
1X
kD0

ak.1˙ x/
k (18.4.2)

in equation (18.4.1), we find that the regular solution has ˛ D m=2. (Without loss
of generality we can take m � 0 since m ! �m is a symmetry of the equation.)
We get an equation that is numerically more tractable if we factor out this behavior.
Accordingly we set

S D .1 � x2/m=2y (18.4.3)

We then find from (18.4.1) that y satisfies the equation

.1 � x2/
d2y

dx2
� 2.mC 1/x

dy

dx
C .� � c2x2/y D 0 (18.4.4)

where
� � � �m.mC 1/ (18.4.5)

Both equations (18.4.1) and (18.4.4) are invariant under the replacement x !
�x. Thus the functions S and y must also be invariant, except possibly for an overall
scale factor. (Since the equations are linear, a constant multiple of a solution is also
a solution.) Because the solutions will be normalized, the scale factor can only be
˙1. If n �m is odd, there are an odd number of zeros in the interval .�1; 1/. Thus
we must choose the antisymmetric solution y.�x/ D �y.x/, which has a zero at
x D 0. Conversely, if n �m is even, we must have the symmetric solution. Thus

ymn.�x/ D .�1/
n�mymn.x/ (18.4.6)

and similarly for Smn.
The boundary conditions on (18.4.4) require that y be regular at x D ˙1. In

other words, near the endpoints the solution takes the form

y D a0 C a1.1 � x
2/C a2.1 � x

2/2 C 	 	 	 (18.4.7)

Substituting this expansion in equation (18.4.4) and letting x ! 1, we find that

a1 D �
� � c2

4.mC 1/
a0 (18.4.8)

Equivalently,

y0.1/ D
� � c2

2.mC 1/
y.1/ (18.4.9)

A similar equation holds at x D �1 with a minus sign on the right-hand side.
The irregular solution has a different relation between function and derivative at
the endpoints.

Instead of integrating the equation from �1 to 1, we can exploit the symmetry
(18.4.6) to integrate from 0 to 1. The boundary condition at x D 0 is

y.0/ D 0; n �m odd

y0.0/ D 0; n �m even
(18.4.10)
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A third boundary condition comes from the fact that any constant multiple of a
solution y is a solution. We can thus normalize the solution. We adopt the normal-
ization that the function Smn has the same limiting behavior as Pmn at x D 1:

lim
x!1

.1 � x2/�m=2Smn.xI c/ D lim
x!1

.1 � x2/�m=2Pmn .x/ (18.4.11)

Various normalization conventions in the literature are tabulated by Flammer [1].
Imposing three boundary conditions for the second-order equation (18.4.4) turns

it into an eigenvalue problem for � or equivalently for �. We write it in the standard
form by setting

y0 D y (18.4.12)

y1 D y
0 (18.4.13)

y2 D � (18.4.14)

Then
y00 D y1 (18.4.15)

y01 D
1

1 � x2

�
2x.mC 1/y1 � .y2 � c

2x2/y0
	

(18.4.16)

y02 D 0 (18.4.17)

The boundary condition at x D 0 in this notation is

y0 D 0; n �m odd

y1 D 0; n �m even
(18.4.18)

At x D 1 we have two conditions:

y1 D
y2 � c

2

2.mC 1/
y0 (18.4.19)

y0 D lim
x!1

.1 � x2/�m=2Pmn .x/ D
.�1/m.nCm/Š

2mmŠ.n �m/Š
� � (18.4.20)

We are now ready to illustrate the use of the methods of previous sections on
this problem.

18.4.1 Relaxation
If we just want a few isolated values of � or S , shooting is probably the quickest

method. However, if we want values for a large sequence of values of c, relaxation
is better. Relaxation rewards a good initial guess with rapid convergence, and the
previous solution should be a good initial guess if c is changed only slightly.

For simplicity, we choose a uniform grid on the interval 0 
 x 
 1. For a total
of M mesh points, we have

h D
1

M � 1
(18.4.21)

xk D kh; k D 0; 1; : : : ;M � 1 (18.4.22)
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At interior points k D 1; 2; : : : ;M � 1, equation (18.4.15) gives

E0;k D y0;k � y0;k�1 �
h

2
.y1;k C y1;k�1/ (18.4.23)

Equation (18.4.16) gives

E1;k D y1;k � y1;k�1 � ˇk

�

�
.xk C xk�1/.mC 1/.y1;k C y1;k�1/

2
� ˛k

.y0;k C y0;k�1/

2

�
(18.4.24)

where

˛k D
y2;k C y2;k�1

2
�
c2.xk C xk�1/

2

4
(18.4.25)

ˇk D
h

1 � 1
4
.xk C xk�1/2

(18.4.26)

Finally, equation (18.4.17) gives

E2;k D y2;k � y2;k�1 (18.4.27)

Now recall that the matrix of partial derivatives Si;j of equation (18.3.8) is
defined so that i labels the equation and j the variable. In our case, j runs from 0 to
2 for yj at k � 1 and from 3 to 5 for yj at k. Thus equation (18.4.23) gives

S0;0 D �1; S0;1 D �
h

2
; S0;2 D 0

S0;3 D 1; S0;4 D �
h

2
; S0;5 D 0

(18.4.28)

Similarly equation (18.4.24) yields

S1;0 D ˛kˇk=2; S1;1 D �1 � ˇk.xk C xk�1/.mC 1/=2;

S1;2 D ˇk.y0;k C y0;k�1/=4; S1;3 D S1;0;

S1;4 D 2C S1;1; S1;5 D S1;2
(18.4.29)

while from equation (18.4.27) we find

S2;0 D 0; S2;1 D 0; S2;2 D �1

S2;3 D 0; S2;4 D 0; S2;5 D 1
(18.4.30)

At x D 0 we have the boundary condition

E2;0 D

(
y0;0; n �m odd

y1;0; n �m even
(18.4.31)

Recall the convention adopted in the solvde routine that for one boundary condi-
tion at k D 0 only S2;j can be nonzero. Also, j takes on the values 3 to 5 since
the boundary condition involves only yk , not yk�1. Accordingly, the only nonzero
values of S2;j at x D 0 are

S2;3 D 1; n �m odd

S2;4 D 1; n �m even
(18.4.32)
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At x D 1 we have

E0;M D y1;M�1 �
y2;M�1 � c

2

2.mC 1/
y0;M�1 (18.4.33)

E1;M D y0;M�1 � � (18.4.34)

Thus

S0;3 D �
y2;M�1 � c

2

2.mC 1/
; S0;4 D 1; S0;5 D �

y0;M�1

2.mC 1/
(18.4.35)

S1;3 D 1; S1;4 D 0; S1;5 D 0 (18.4.36)

Here now is the sample program that implements the above algorithm. We need
a main program, sfroid, that calls the routine Solvde, and we must supply the
object Difeq to be passed to Solvde. For simplicity we choose an equally spaced
mesh of m = 41 points, that is, h D :025. As we shall see, this gives good accuracy
for the eigenvalues up to moderate values of n �m.

Since the boundary condition at x D 0 does not involve y0 if n � m is even,
we have to use the indexv feature of Solvde. Recall that the value of indexv[j]
describes which column of s[i][j] the variable y[j] has been put in. If n � m is
even, we need to interchange the columns for y0 and y1 so that there is not a zero
pivot element in s[i][j].

The program prompts for values of m and n. It then computes an initial guess
for y based on the Legendre function Pmn . It next prompts for c2, solves for y,
prompts for c2, solves for y using the previous values as an initial guess, and so on.

Int main_sfroid(void) sfroid.h
Sample program using Solvde. Computes eigenvalues of spheroidal harmonics Smn.xI c/ for
m 
 0 and n 
 m. In the program, m is mm, c2 is c2, and � of equation (18.4.20) is anorm.
{

const Int M=40,MM=4;
const Int NE=3,NB=1,NYJ=NE,NYK=M+1;
Int mm=3,n=5,mpt=M+1;
VecInt indexv(NE);
VecDoub x(M+1),scalv(NE);
MatDoub y(NYJ,NYK);
Int itmax=100;
Doub c2[]={16.0,20.0,-16.0,-20.0};
Doub conv=1.0e-14,slowc=1.0,h=1.0/M;
if ((n+mm & 1) != 0) { No interchanges necessary.

indexv[0]=0;
indexv[1]=1;
indexv[2]=2;

} else { Interchange y0 and y1.
indexv[0]=1;
indexv[1]=0;
indexv[2]=2;

}
Doub anorm=1.0; Compute � .
if (mm != 0) {

Doub q1=n;
for (Int i=1;i<=mm;i++) anorm = -0.5*anorm*(n+i)*(q1--/i);

}
for (Int k=0;k<M;k++) { Initial guess.

x[k]=k*h;
Doub fac1=1.0-x[k]*x[k];
Doub fac2=exp((-mm/2.0)*log(fac1));
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y[0][k]=plgndr(n,mm,x[k])*fac2; Pmn from �6.7.
Doub deriv = -((n-mm+1)*plgndr(n+1,mm,x[k])- Derivative of Pmn from a recur-

rence relation.(n+1)*x[k]*plgndr(n,mm,x[k]))/fac1;
y[1][k]=mm*x[k]*y[0][k]/fac1+deriv*fac2;
y[2][k]=n*(n+1)-mm*(mm+1);

}
x[M]=1.0; Initial guess at x D 1 done sep-

arately.y[0][M]=anorm;
y[2][M]=n*(n+1)-mm*(mm+1);
y[1][M]=y[2][M]*y[0][M]/(2.0*(mm+1.0));
scalv[0]=abs(anorm); Set scaling.
scalv[1]=(y[1][M] > scalv[0] ? y[1][M] : scalv[0]);
scalv[2]=(y[2][M] > 1.0 ? y[2][M] : 1.0);
for (Int j=0;j<MM;j++) {

Difeq difeq(mm,n,mpt,h,c2[j],anorm,x); Set up Difeq object.
Solvde solvde(itmax,conv,slowc,scalv,indexv,NB,y,difeq);
cout << endl << " m = " << setw(3) << mm;
cout << " n = " << setw(3) << n << " c**2 = ";
cout << fixed << setprecision(3) << setw(7) << c2[j];
cout << " lamda = " << setprecision(6) << (y[2][0]+mm*(mm+1));

cout << endl; Return for another value of c2.
}
return 0;

}

struct Difeq {difeq.h
Provides matrix s for Solvde.

const Int &mm,&n,&mpt; These variables are defined in sfroid.
const Doub &h,&c2,&anorm;
const VecDoub &x;
Difeq(const Int &mmm, const Int &nn, const Int &mptt, const Doub &hh,

const Doub &cc2, const Doub &anormm, VecDoub_I &xx) : mm(mmm),
n(nn), mpt(mptt), h(hh), c2(cc2), anorm(anormm), x(xx) {}

void smatrix(const Int k, const Int k1, const Int k2, const Int jsf,
const Int is1, const Int isf, VecInt_I &indexv, MatDoub_O &s,
MatDoub_I &y)

Returns matrix s for solvde.
{

Doub temp,temp1,temp2;

if (k == k1) { Boundary condition at first point.
if ((n+mm & 1) != 0) {

s[2][3+indexv[0]]=1.0; Equation (18.4.32).
s[2][3+indexv[1]]=0.0;
s[2][3+indexv[2]]=0.0;
s[2][jsf]=y[0][0]; Equation (18.4.31).

} else {
s[2][3+indexv[0]]=0.0; Equation (18.4.32).
s[2][3+indexv[1]]=1.0;
s[2][3+indexv[2]]=0.0;
s[2][jsf]=y[1][0]; Equation (18.4.31).

}
} else if (k > k2-1) { Boundary conditions at last point.

s[0][3+indexv[0]] = -(y[2][mpt-1]-c2)/(2.0*(mm+1.0)); (18.4.35).
s[0][3+indexv[1]]=1.0;
s[0][3+indexv[2]] = -y[0][mpt-1]/(2.0*(mm+1.0));
s[0][jsf]=y[1][mpt-1]-(y[2][mpt-1]-c2)*y[0][mpt-1]/ (18.4.33).

(2.0*(mm+1.0));
s[1][3+indexv[0]]=1.0; Equation (18.4.36).
s[1][3+indexv[1]]=0.0;
s[1][3+indexv[2]]=0.0;
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s[1][jsf]=y[0][mpt-1]-anorm; Equation (18.4.34).
} else { Interior point.

s[0][indexv[0]] = -1.0; Equation (18.4.28).
s[0][indexv[1]] = -0.5*h;
s[0][indexv[2]]=0.0;
s[0][3+indexv[0]]=1.0;
s[0][3+indexv[1]] = -0.5*h;
s[0][3+indexv[2]]=0.0;
temp1=x[k]+x[k-1];
temp=h/(1.0-temp1*temp1*0.25);
temp2=0.5*(y[2][k]+y[2][k-1])-c2*0.25*temp1*temp1;
s[1][indexv[0]]=temp*temp2*0.5; Equation (18.4.29).
s[1][indexv[1]] = -1.0-0.5*temp*(mm+1.0)*temp1;
s[1][indexv[2]]=0.25*temp*(y[0][k]+y[0][k-1]);
s[1][3+indexv[0]]=s[1][indexv[0]];
s[1][3+indexv[1]]=2.0+s[1][indexv[1]];
s[1][3+indexv[2]]=s[1][indexv[2]];
s[2][indexv[0]]=0.0; Equation (18.4.30).
s[2][indexv[1]]=0.0;
s[2][indexv[2]] = -1.0;
s[2][3+indexv[0]]=0.0;
s[2][3+indexv[1]]=0.0;
s[2][3+indexv[2]]=1.0;
s[0][jsf]=y[0][k]-y[0][k-1]-0.5*h*(y[1][k]+y[1][k-1]); (18.4.23).
s[1][jsf]=y[1][k]-y[1][k-1]-temp*((x[k]+x[k-1]) (18.4.24).

*0.5*(mm+1.0)*(y[1][k]+y[1][k-1])-temp2
*0.5*(y[0][k]+y[0][k-1]));

s[2][jsf]=y[2][k]-y[2][k-1]; Equation (18.4.27).
}

}
};

You can run the program and check it against values of �mn.c/ given in the ta-
bles at the back of Flammer’s book [1] or in Table 21.1 of Abramowitz and Stegun [2].
Typically it converges in about three iterations. The table below gives a few compar-
isons.

Selected Output of sfroid

m n c2 �exact �sfroid

2 2 0.1 6.01427 6.01427
1.0 6.14095 6.14095
4.0 6.54250 6.54253

2 5 1.0 30.4361 30.4372
16.0 36.9963 37.0135

4 11 �1:0 131.560 131.554

18.4.2 Shooting
To solve the same problem via shooting (�18.1), we supply a functor Rhs that

implements equations (18.4.15) – (18.4.17). We will integrate the equations over the
range �1 
 x 
 0. We provide the functor Load, which sets the eigenvalue y2 to
its current best estimate, v[0]. It also sets the boundary values of y0 and y1 using
equations (18.4.20) and (18.4.19) (with a minus sign corresponding to x D �1).
Note that the boundary condition is actually applied a distance dx from the boundary
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to avoid having to evaluate y01 right on the boundary. The functor Score follows
from equation (18.4.18).

struct Rhs {sphoot.h
Evaluates derivatives for Odeint.

Int m;
Doub c2;
Rhs(Int mm, Doub cc2) : m(mm), c2(cc2) {}
Constructor gets parameters from main.
void operator() (const Doub x, VecDoub_I &y, VecDoub_O &dydx)
{

dydx[0]=y[1];
dydx[1]=(2.0*x*(m+1.0)*y[1]-(y[2]-c2*x*x)*y[0])/(1.0-x*x);
dydx[2]=0.0;

}
};

struct Load {
Supplies starting values for integration at x D �1C dx.

Int n,m;
Doub gmma,c2,dx;
VecDoub y;
Load(Int nn, Int mm, Doub gmmaa, Doub cc2, Doub dxx) : n(nn), m(mm),

gmma(gmmaa), c2(cc2), dx(dxx), y(3) {}
Constructor gets parameters from main.
VecDoub operator() (const Doub x1, VecDoub_I &v)
{

Doub y1 = ((n-m & 1) != 0 ? -gmma : gmma);
y[2]=v[0];
y[1] = -(y[2]-c2)*y1/(2*(m+1));
y[0]=y1+y[1]*dx;
return y;

}
};

struct Score {
Computes amount by which boundary condition at x D 0 is violated.

Int n,m;
VecDoub f;
Score(Int nn, Int mm) : n(nn), m(mm), f(1) {}
Constructor gets parameters from main.
VecDoub operator() (const Doub xf, VecDoub_I &y)
{

f[0]=((n-m & 1) != 0 ? y[0] : y[1]);
return f;

}
};

Int main_sphoot(void) {
Sample program using Shoot. Computes eigenvalues of spheroidal harmonics Smn.xI c/ for
m 
 0 and n 
 m. Note how the functor vecfunc for newt is provided by Shoot (�18.1).

const Int N2=1,MM=3;
Bool check;
VecDoub v(N2);
Int j,m=3,n=5;
Doub c2[]={1.5,-1.5,0.0};
Int nvar=3; Number of equations.
Doub dx=1.0e-8; Avoid evaluating derivatives exactly at x D �1.
for (j=0;j<MM;j++) {

Doub gmma=1.0; Compute � of equation (18.4.20).
Doub q1=n;
for (Int i=1;i<=m;i++) gmma *= -0.5*(n+i)*(q1--/i);
v[0]=n*(n+1)-m*(m+1)+c2[j]/2.0; Initial guess for eigenvalue.
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Doub x1= -1.0+dx; Set range of integration.
Doub x2=0.0;
Load load(n,m,gmma,c2[j],dx); Set up Load, Rhs, and Score objects ...
Rhs d(m,c2[j]);
Score score(n,m); ... use them to set up Shoot object ...
Shoot<Load,Rhs,Score> shoot(nvar,x1,x2,load,d,score);
newt(v,check,shoot); ... and use it to find v that zeros vector f in

Score.if (check) {
cout << "shoot failed; bad initial guess" << endl;

} else {
cout << " " << "mu(m,n)" << endl;
cout << fixed << setprecision(6);
cout << setw(12) << v[0] << endl;

}
}
return 0;

}

18.4.3 Shooting to a Fitting Point
For variety we illustrate Shootf from �18.2 by integrating over the whole range

�1C dx 
 x 
 1 � dx, with the fitting point chosen to be at x D 0. The routine
Rhsfpt is identical to Rhs for Shoot since we are integrating the same equation.
Now, however, there are two load routines. The functor Load1 for x D �1 is es-
sentially identical to Load above. At x D 1, Load2 sets the function value y0 and
the eigenvalue y2 to their best current estimates, v2[0] and v2[1], respectively. If
you quite sensibly make your initial guess of the eigenvalue the same in the two in-
tervals, then v1[0] will stay equal to v2[1] during the iteration. The functor Score
computes the degree of mismatch of the three function values at the fitting point.

struct Rhsfpt { sphfpt.h
Int m;
Doub c2;
Rhsfpt(Int mm, Doub cc2) : m(mm), c2(cc2) {}
void operator() (const Doub x, VecDoub_I &y, VecDoub_O &dydx)
{

dydx[0]=y[1];
dydx[1]=(2.0*x*(m+1.0)*y[1]-(y[2]-c2*x*x)*y[0])/(1.0-x*x);
dydx[2]=0.0;

}
};

struct Load1 {
Supplies starting values for integration at x D �1C dx.

Int n,m;
Doub gmma,c2,dx;
VecDoub y;
Load1(Int nn, Int mm, Doub gmmaa, Doub cc2, Doub dxx) : n(nn), m(mm),

gmma(gmmaa), c2(cc2), dx(dxx), y(3) {}
VecDoub operator() (const Doub x1, VecDoub_I &v1)
{

Doub y1 = ((n-m & 1) != 0 ? -gmma : gmma);
y[2]=v1[0];
y[1] = -(y[2]-c2)*y1/(2*(m+1));
y[0]=y1+y[1]*dx;
return y;

}
};
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struct Load2 {
Supplies starting values for integration at x D 1� dx.

Int m;
Doub c2;
VecDoub y;
Load2(Int mm, Doub cc2) : m(mm), c2(cc2), y(3) {}
VecDoub operator() (const Doub x2, VecDoub_I &v2)
{

y[2]=v2[1];
y[0]=v2[0];
y[1]=(y[2]-c2)*y[0]/(2*(m+1));
return y;

}
};

struct Score {
Computes the mismatch of the solutions at the fitting point x D 0.

VecDoub f;
Score() : f(3) {}
VecDoub operator() (const Doub xf, VecDoub_I &y)
{

for (Int i=0;i<3;i++) f[i]=y[i];
return f;

}
};

Int main_sphfpt(void) {
Sample program using Shootf. Computes eigenvalues of spheroidal harmonics Smn.xI c/ for
m 
 0 and n 
 m. Note how the functor vecfunc for newt is provided by Shootf (�18.2). The
routine Rhsfpt is the same as Rhs for sphoot.

const Int N1=2,N2=1,NTOT=N1+N2,MM=3;
Bool check;
VecDoub v(NTOT);
Int j,m=3,n=5,n2=N2;
Doub c2[]={1.5,-1.5,0.0};
Int nvar=NTOT; Number of equations.
Doub dx=1.0e-8; Avoid evaluating derivatives exactly at x D ˙1.
for (j=0;j<MM;j++) {

Doub gmma=1.0; Compute � of equation (18.4.20).
Doub q1=n;
for (Int i=1;i<=m;i++) gmma *= -0.5*(n+i)*(q1--/i);
v[0]=n*(n+1)-m*(m+1)+c2[j]/2.0;Initial guess for eigenvalue and function value.
v[2]=v[0];
v[1]=gmma*(1.0-(v[2]-c2[j])*dx/(2*(m+1)));
Doub x1= -1.0+dx; Set range of integration.
Doub x2=1.0-dx;
Doub xf=0.0; Fitting point.
Load1 load1(n,m,gmma,c2[j],dx);Set up Load1, Load2, Rhsfpt, and Score

objects ...Load2 load2(m,c2[j]);
Rhsfpt d(m,c2[j]);
Score score;
Shootf<Load1,Load2,Rhsfpt,Score> shootf(nvar,n2,x1,x2,xf,load1,

load2,d,score); ... use them to set up Shootf object ...
newt(v,check,shootf); ... and use it to find v that zeros vector f in

Score.if (check) {
cout << "shootf failed; bad initial guess" << endl;

} else {
cout << " " << "mu(m,n)" << endl;
cout << fixed << setprecision(6);
cout << setw(12) << v[0] << endl;

}
}
return 0;

}
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CITED REFERENCES AND FURTHER READING:

Flammer, C. 1957, Spheroidal Wave Functions (Stanford, CA: Stanford University Press); reprinted
2005 (New York: Dover).[1]

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions (Washington: Na-
tional Bureau of Standards); reprinted 1968 (New York: Dover); online at http://www.nr.
com/aands, �21.[2]

Morse, P.M., and Feshbach, H. 1953, Methods of Theoretical Physics, Part II (New York: McGraw-
Hill), pp. 1502ff.[3]

18.5 Automated Allocation of Mesh Points

In relaxation problems, you have to choose values for the independent variable at the
mesh points. This is called allocating the grid or mesh. The usual procedure is to pick a
plausible set of values and, if it works, to be content. If it doesn’t work, increasing the number
of points usually cures the problem.

If we know ahead of time where our solutions will be rapidly varying, we can put more
grid points there and less elsewhere. Alternatively, we can solve the problem first on a uniform
mesh and then examine the solution to see where we should add more points. We then repeat
the solution with the improved grid. The object of the exercise is to allocate points in such a
way as to represent the solution accurately.

It is also possible to automate the allocation of mesh points, so that it is done “dy-
namically” during the relaxation process. This powerful technique not only improves the
accuracy of the relaxation method, but also (as we will see in the next section) allows in-
ternal singularities to be handled in quite a neat way. Here we learn how to accomplish the
automatic allocation.

We want to focus attention on the independent variable x and consider two alternative
reparametrizations of it. The first, we term q; this is just the coordinate corresponding to the
mesh points themselves, so that q D 0 at k D 0, q D 1 at k D 1, and so on. Between any two
mesh points we have �q D 1. In the change of independent variable in the ODEs from x to
q,

dy

dx
D g (18.5.1)

becomes
dy

dq
D g

dx

dq
(18.5.2)

In terms of q, equation (18.5.2) as an FDE might be written

yk � yk�1 �
1

2

��
g
dx

dq

�
k

C

�
g
dx

dq

�
k�1

�
D 0 (18.5.3)

or some related version. Note that dx=dq should accompany g. The transformation between
x and q depends only on the Jacobian dx=dq. Its reciprocal dq=dx is proportional to the
density of mesh points.

Now, given the function y.x/, or its approximation at the current stage of relaxation,
we are supposed to have some idea of how we want to specify the density of mesh points.
For example, we might want dq=dx to be larger where y is changing rapidly, or near to
the boundaries, or both. In fact, we can probably make up a formula for what we would
like dq=dx to be proportional to. The problem is that we do not know the proportionality
constant. That is, the formula that we might invent would not have the correct integral over
the whole range of x so as to make q vary from 0 toM�1, according to its definition. To solve
this problem we introduce a second reparametrization Q.q/, where Q is a new independent
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variable. The relation between Q and q is taken to be linear, so that a mesh spacing formula
for dQ=dx differs only in its unknown proportionality constant. A linear relation implies

d2Q

dq2
D 0 (18.5.4)

or, expressed in the usual manner as coupled first-order equations,

dQ.x/

dq
D  

d 

dq
D 0 (18.5.5)

where  is a new intermediate variable. We add these two equations to the set of ODEs
being solved.

Completing the prescription, we add a third ODE that is just our desired mesh-density
function, namely

�.x/ D
dQ

dx
D
dQ

dq

dq

dx
(18.5.6)

where �.x/ is chosen by us. Written in terms of the mesh variable q, this equation is

dx

dq
D

 

�.x/
(18.5.7)

Notice that �.x/ should be chosen to be positive-definite, so that the density of mesh points is
everywhere positive. Otherwise (18.5.7) can have a zero in its denominator.

To use automated mesh spacing, you add the three ODEs (18.5.5) and (18.5.7) to your
set of equations, i.e., to the array y[j][k]. Now x becomes a dependent variable! Q and  
also become new dependent variables. Normally, evaluating � requires little extra work since
it will be composed from pieces of the g’s that exist anyway. The automated procedure allows
one to investigate quickly how the numerical results might be affected by various strategies
for mesh spacing. (A special case occurs if the desired mesh spacing functionQ can be found
analytically, i.e., dQ=dx is directly integrable. Then, you need to add only two equations,
those in 18.5.5, and two new variables x; .)

As an example of a typical strategy for implementing this scheme, consider a system
with one dependent variable y.x/. We could set

dQ D
dx

�
C
jd ln yj

ı
(18.5.8)

or

�.x/ D
dQ

dx
D
1

�
C

ˇ̌̌̌
dy=dx

yı

ˇ̌̌̌
(18.5.9)

where � and ı are constants that we choose. The first term would give a uniform spacing in
x if it alone were present. The second term forces more grid points to be used where y is
changing rapidly. The constants act to make every logarithmic change in y of an amount ı
about as “attractive” to a grid point as a change in x of amount �. You adjust the constants
according to taste. Other strategies are possible, such as a logarithmic spacing in x, where dx
in the first term is replaced with d ln x.

CITED REFERENCES AND FURTHER READING:
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ical Society, vol. 151, pp. 351–364.

Kippenhan, R., Weigert, A., and Hofmeister, E. 1968, in Methods in Computational Physics,
vol. 7 (New York: Academic Press), pp. 129ff.
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18.6 Handling Internal Boundary Conditions or
Singular Points

Singularities can occur in the interiors of two-point boundary value problems. Typically,
there is a point xs at which a derivative must be evaluated by an expression of the form

S.xs/ D
N.xs ; y/

D.xs ; y/
(18.6.1)

where the denominator D.xs ; y/ D 0. In physical problems with finite answers, singular
points usually come with their own cure: Where D ! 0, there the physical solution y must
be such as to make N ! 0 simultaneously, in such a way that the ratio takes on a meaningful
value. This constraint on the solution y is often called a regularity condition. The condition
that D.xs ; y/ satisfy some special constraint at xs is entirely analogous to an extra boundary
condition, an algebraic relation among the dependent variables that must hold at a point.

We discussed a related situation earlier, in �18.2, when we described the “fitting point
method” to handle the task of integrating equations with singular behavior at the boundaries.
In those problems you are unable to integrate from one side of the domain to the other. How-
ever, the ODEs do have well-behaved derivatives and solutions in the neighborhood of the
singularity, so it is readily possible to integrate away from the point. Both the relaxation
method and the method of shooting to a fitting point handle such problems easily. Also, in
those problems the presence of singular behavior served to isolate some special boundary
values that had to be satisfied to solve the equations.

The difference here is that we are concerned with singularities arising at intermediate
points, where the location of the singular point depends on the solution, so is not known
a priori. Consequently, we face a circular task: The singularity prevents us from finding a
numerical solution, but we need a numerical solution to find its location. Such singularities
are also associated with selecting a special value for some variable that allows the solution
to satisfy the regularity condition at the singular point. Thus, internal singularities take on
aspects of being internal boundary conditions.

One way of handling internal singularities is to treat the problem as a free boundary
problem, as discussed at the end of �18.0. Suppose, as a simple example, we consider the
equation

dy

dx
D
N.x; y/

D.x; y/
(18.6.2)

where N and D are required to pass through zero at some unknown point xs . We add the
equation

z � xs � x1
dz

dx
D 0 (18.6.3)

where xs is the unknown location of the singularity, and change the independent variable to t
by setting

x � x1 D tz; 0 
 t 
 1 (18.6.4)

The boundary conditions at t D 1 become

N.x; y/ D 0; D.x; y/ D 0 (18.6.5)

Use of an adaptive mesh as discussed in the previous section is another way to overcome
the difficulties of an internal singularity. For the problem (18.6.2), we add the mesh spacing
equations

dQ

dq
D  (18.6.6)

d 

dq
D 0 (18.6.7)
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with a simple mesh spacing function that maps x uniformly into q, where q runs from 0 to
M � 1, with M the number of mesh points:

Q.x/ D x � x1;
dQ

dx
D 1 (18.6.8)

Having added three first-order differential equations, we must also add their corresponding
boundary conditions. If there were no singularity, these could simply be

at q D 0 W x D x1; Q D 0 (18.6.9)

at q DM � 1 W x D x2 (18.6.10)

and a total of N values yi specified at q D 0. In this case the problem is essentially an initial
value problem with all boundary conditions specified at x1 and the mesh spacing function
is superfluous.

However, in the actual case at hand we impose the conditions

at q D 0 W x D x1; Q D 0 (18.6.11)

at q DM � 1 W N.x; y/ D 0; D.x; y/ D 0 (18.6.12)

and N � 1 values yi at q D 0. The “missing” yi is to be adjusted, in other words, so as
to make the solution go through the singular point in a regular (zero-over-zero) rather than
irregular (finite-over-zero) manner. Notice also that these boundary conditions do not directly
impose a value for x2, which becomes an adjustable parameter that the code varies in an
attempt to match the regularity condition.

In this example the singularity occurred at a boundary, and the complication arose be-
cause the location of the boundary was unknown. In other problems we might wish to continue
the integration beyond the internal singularity. For the example given above, we could simply
integrate the ODEs to the singular point, and then as a separate problem recommence the inte-
gration from the singular point on as far we care to go. However, in other cases the singularity
occurs internally, but does not completely determine the problem: There are still some more
boundary conditions to be satisfied further along in the mesh. Such cases present no difficulty
in principle, but do require some adaptation of the relaxation code given in �18.3. In effect,
all you need to do is to add a “special” block of equations at the mesh point where the internal
boundary conditions occur, and do the proper bookkeeping.

Figure 18.6.1 illustrates a concrete example where the overall problem contains five
equations with two boundary conditions at the first point, one “internal” boundary condition,
and two final boundary conditions. The figure shows the structure of the overall matrix equa-
tions along the diagonal in the vicinity of the special block. In the middle of the domain,
blocks typically involve five equations (rows) in ten unknowns (columns). For each block
prior to the special block, the initial boundary conditions provided enough information to zero
the first two columns of the blocks. The five FDEs eliminate five more columns, and the fi-
nal three columns need to be stored for the backsubstitution step (as described in �18.3). To
handle the extra condition, we break the normal cycle and add a special block with only one
equation: the internal boundary condition. This effectively reduces the required storage of
unreduced coefficients by one column for the rest of the grid, and allows us to reduce to zero
the first three columns of subsequent blocks. The functions red, pinvs, and bksub can read-
ily handle these cases with minor recoding, but each problem makes for a special case, and
you will have to make the modifications as required.

CITED REFERENCES AND FURTHER READING:

London, R.A., and Flannery, B.P. 1982, “Hydrodynamics of X-Ray Induced Stellar Winds,” As-
trophysical Journal, vol. 258, pp. 260–269.
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Figure 18.6.1. FDE matrix structure with an internal boundary condition. The internal condition intro-
duces a special block. (a) Original form, compare with Figure 18.3.1; (b) final form, compare with Figure
18.3.2.
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Integral Equations and
Inverse Theory

CHAPTER 19

19.0 Introduction

Many people, otherwise numerically knowledgable, imagine that the numerical
solution of integral equations must be an extremely arcane topic, since, until recently,
it was almost never treated in numerical analysis textbooks. Actually there is a large
and growing literature on the numerical solution of integral equations, including sev-
eral good monographs [1-3]. One reason for the sheer volume of this activity is that
there are many different kinds of equations, each with many different possible pit-
falls; often many different algorithms have been proposed to deal with a single case.

There is a close correspondence between linear integral equations, which spec-
ify linear, integral relations among functions in an infinite-dimensional function
space, and plain old linear equations, which specify analogous relations among vec-
tors in a finite-dimensional vector space. Because this correspondence lies at the
heart of most computational algorithms, it is worth making it explicit as we recall
how integral equations are classified.

Fredholm equations involve definite integrals with fixed upper and lower limits.
An inhomogeneous Fredholm equation of the first kind has the form

g.t/ D

Z b

a

K.t; s/f .s/ ds (19.0.1)

Here f .t/ is the unknown function to be solved for, while g.t/ is a known “right-
hand side.” (In integral equations, for some odd reason, the familiar “right-hand
side” is conventionally written on the left!) The function of two variables,K.t; s/, is
called the kernel. Equation (19.0.1) is analogous to the matrix equation

K 	 f D g (19.0.2)

whose solution is f D K�1 	 g, where K�1 is the matrix inverse. Like equation
(19.0.2), equation (19.0.1) has a unique solution whenever g is nonzero (the homo-
geneous case with g D 0 is almost never useful) and K is invertible. However, as
we shall see, this latter condition is as often the exception as the rule.

986
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The analog of the finite-dimensional eigenvalue problem

.K � �1/ 	 f D g (19.0.3)

is called a Fredholm equation of the second kind, usually written

f .t/ D �

Z b

a

K.t; s/f .s/ ds C g.t/ (19.0.4)

Again, the notational conventions do not exactly correspond: � in equation (19.0.4)
is 1=� in (19.0.3), while g is �g=�. If g (or g) is zero, then the equation is said
to be homogeneous. If the kernel K.t; s/ is bounded, then, like equation (19.0.3),
equation (19.0.4) has the property that its homogeneous form has solutions for at
most a denumerably infinite set � D �n, n D 1; 2; : : : , the eigenvalues. The cor-
responding solutions fn.t/ are the eigenfunctions. The eigenvalues are real if the
kernel is symmetric.

In the inhomogeneous case of nonzero g (or g), equations (19.0.3) and (19.0.4)
are soluble except when � (or � ) is an eigenvalue — because the integral opera-
tor (or matrix) is singular then. In integral equations this dichotomy is called the
Fredholm alternative.

Fredholm equations of the first kind are often extremely ill-conditioned. Ap-
plying the kernel to a function is generally a smoothing operation, so the solution,
which requires inverting the operator, will be extremely sensitive to small changes
or errors in the input. Smoothing often actually loses information, and there is no
way to get it back in an inverse operation. Specialized methods have been developed
for such equations, which are often called inverse problems. In general, a method
must augment the information given with some prior knowledge of the nature of the
solution. This prior knowledge is then used, in one way or another, to restore lost
information. We will introduce such techniques in �19.4.

Inhomogeneous Fredholm equations of the second kind are much less often ill-
conditioned. Equation (19.0.4) can be rewritten asZ b

a

ŒK.t; s/ � �ı.t � s/�f .s/ ds D ��g.t/ (19.0.5)

where ı.t � s/ is a Dirac delta function (and where we have changed from � to its
reciprocal � for clarity). If � is large enough in magnitude, then equation (19.0.5) is,
in effect, diagonally dominant and thus well-conditioned. Only if � is small do we
go back to the ill-conditioned case.

Homogeneous Fredholm equations of the second kind are likewise not partic-
ularly ill-posed. If K is a smoothing operator, then it will map many f ’s to zero,
or near-zero; there will thus be a large number of degenerate or nearly degenerate
eigenvalues around � D 0 (�!1), but this will cause no particular computational
difficulties. In fact, we can now see that the magnitude of � needed to rescue the
inhomogeneous equation (19.0.5) from an ill-conditioned fate is generally much less
than that required for diagonal dominance. Since the � term shifts all eigenvalues,
it is enough that it be large enough to shift a smoothing operator’s forest of near-
zero eigenvalues away from zero, so that the resulting operator becomes invertible
(except, of course, at the discrete eigenvalues).
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Volterra equations are a special case of Fredholm equations with K.t; s/ D 0

for s > t . Chopping off the unnecessary part of the integration, Volterra equations are
written in a form where the upper limit of integration is the independent variable t .
The Volterra equation of the first kind,

g.t/ D

Z t

a

K.t; s/f .s/ ds (19.0.6)

has as its analog the matrix equation (now written out in components)

kX
jD0

Kkjfj D gk (19.0.7)

Comparing with equation (19.0.2), we see that the Volterra equation corresponds to
a matrix K that is lower (i.e., left) triangular, with zero entries above the diagonal.
As we know from Chapter 2, such matrix equations are trivially soluble by forward
substitution. Techniques for solving Volterra equations are similarly straightforward.
When experimental measurement noise does not dominate, Volterra equations of the
first kind tend not to be ill-conditioned; the upper limit to the integral introduces a
sharp step that conveniently spoils any smoothing properties of the kernel.

The Volterra equation of the second kind is written

f .t/ D

Z t

a

K.t; s/f .s/ ds C g.t/ (19.0.8)

whose matrix analog is the equation

.K � 1/ 	 f D g (19.0.9)

with K lower triangular. The reason there is no � in these equations is that (i) in
the inhomogeneous case (nonzero g) it can be absorbed into K, while (ii) in the
homogeneous case (g D 0), it is a theorem that Volterra equations of the second kind
with bounded kernels have no eigenvalues with square-integrable eigenfunctions.

We have specialized our definitions to the case of linear integral equations. In
a nonlinear version of equation (19.0.1) or (19.0.6), instead of K.t; s/f .s/ the inte-
grand would be K.t; s; f .s//. A nonlinear version of equation (19.0.4) or (19.0.8)
would have an integrandK.t; s; f .t/; f .s//. Nonlinear Fredholm equations are con-
siderably more complicated than their linear counterparts. Fortunately, they do not
occur as frequently in practice and we shall by and large ignore them in this chap-
ter. By contrast, solving nonlinear Volterra equations usually involves only a slight
modification of the algorithm for linear equations, as we shall see.

Almost all methods for solving integral equations numerically make use of
quadrature rules, frequently Gaussian quadratures. This would be a good time for
you to go back and review �4.6, especially the advanced material toward the end of
that section.

In the sections that follow, we first discuss Fredholm equations of the second
kind with smooth kernels (�19.1). Nontrivial quadrature rules come into the discus-
sion, but we will be dealing with well-conditioned systems of equations. We then
return to Volterra equations (�19.2), and find that simple and straightforward meth-
ods are generally satisfactory for these equations.
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In �19.3 we discuss how to proceed in the case of singular kernels, focusing
largely on Fredholm equations (both first and second kinds). Singularities require
special quadrature rules, but they are also sometimes blessings in disguise, since
they can spoil a kernel’s smoothing and make problems well-conditioned.

In �19.4 – �19.7 we face up to the issues of inverse problems. Section 19.4 is
an introduction to this large subject.

We should note here that wavelet transforms, already discussed in �13.10, are
applicable not only to data compression and signal processing, but can also be used
to transform some classes of integral equations into sparse linear problems that allow
fast solution. You may wish to review �13.10 as part of reading this chapter.

Some subjects, such as integro-differential equations, we must simply declare
to be beyond our scope. For a review of methods for integro-differential equations,
see Brunner [4].

It should go without saying that this one short chapter can only barely touch on
a few of the most basic methods involved in this complicated subject.

CITED REFERENCES AND FURTHER READING:

Delves, L.M., and Mohamed, J.L. 1985, Computational Methods for Integral Equations (Cam-
bridge, UK: Cambridge University Press).[1]

Linz, P. 1985, Analytical and Numerical Methods for Volterra Equations (Philadelphia: S.I.A.M.).[2]

Atkinson, K.E. 1976, A Survey of Numerical Methods for the Solution of Fredholm Integral Equa-
tions of the Second Kind (Philadelphia: S.I.A.M.).[3]

Brunner, H. 1988, in Numerical Analysis 1987, Pitman Research Notes in Mathematics vol. 170,
D.F. Griffiths and G.A. Watson, eds. (Harlow, Essex, UK: Longman Scientific and Techni-
cal), pp. 18–38.[4]

Smithies, F. 1958, Integral Equations (Cambridge, UK: Cambridge University Press).

Kanwal, R.P. 1971, Linear Integral Equations (New York: Academic Press).

Green, C.D. 1969, Integral Equation Methods (New York: Barnes & Noble).

19.1 Fredholm Equations of the Second Kind

We desire a numerical solution for f .t/ in the equation

f .t/ D �

Z b

a

K.t; s/f .s/ ds C g.t/ (19.1.1)

The method we describe, a very basic one, is called the Nystrom method. It requires
the choice of some approximate quadrature rule:Z b

a

y.s/ ds D

N�1X
jD0

wjy.sj / (19.1.2)

Here the set fwj g are the weights of the quadrature rule, while the N points fsj g are
the abscissas.

What quadrature rule should we use? It is certainly possible to solve integral
equations with low-order quadrature rules like the extended trapezoidal or Simpson’s



�

�

“nr3” — 2007/5/1 — 20:53 — page 990 — #1012
�

�

� �

990 Chapter 19. Integral Equations and Inverse Theory

rules. We will see, however, that the solution method involves O.N 3/ operations,
and so the most efficient methods tend to use high-order quadrature rules to keep
N as small as possible. For smooth, nonsingular problems, nothing beats Gauss-
ian quadrature (e.g., Gauss-Legendre quadrature, �4.6). (For nonsmooth or singular
kernels, see �19.3.)

Delves and Mohamed [1] investigated methods more complicated than the Nys-
trom method. For straightforward Fredholm equations of the second kind, they con-
cluded “. . . the clear winner of this contest has been the Nystrom routine . . . with the
N -point Gauss-Legendre rule. This routine is extremely simple. . . . Such results are
enough to make a numerical analyst weep.”

If we apply the quadrature rule (19.1.2) to equation (19.1.1), we get

f .t/ D �

N�1X
jD0

wjK.t; sj /f .sj /C g.t/ (19.1.3)

Evaluate equation (19.1.3) at the quadrature points:

f .ti / D �

N�1X
jD0

wjK.ti ; sj /f .sj /C g.ti / (19.1.4)

Let fi be the vector f .ti /, gi the vector g.ti /, Kij the matrix K.ti ; sj /, and define

zKij D Kijwj (19.1.5)

Then, in matrix notation, equation (19.1.4) becomes

.1 � �zK/ 	 f D g (19.1.6)

This is a set of N linear algebraic equations in N unknowns that can be solved
by standard triangular decomposition techniques (�2.3) — that is where the O.N 3/

operations count comes in. The solution is usually well-conditioned, unless � is very
close to an eigenvalue.

Having obtained the solution at the quadrature points ftig, how do you get the
solution at some other point t? You do not simply use polynomial interpolation.
This destroys all the accuracy you have worked so hard to achieve. Nystrom’s key
observation was that you should use equation (19.1.3) as an interpolatory formula,
maintaining the accuracy of the solution.

Our routine for solving linear Fredholm equations of the second kind is coded
as the object Fred2. The constructor sets up equation (19.1.6) and then solves it by
LU decomposition with LUdcmp. The Gauss-Legendre quadrature is implemented
by first getting the weights and abscissas with a call to gauleg. The routine Fred2
requires that you provide an external function or functor that returns g.t/ and another
that returns �Kij . It then computes the solution f at the quadrature points in the
member variable f. It also stores the quadrature points and weights. These are used
by the member function fredin to carry out the Nystrom interpolation of equation
(19.1.3) and return the value of f at any point in the interval Œa; b�.

To be sure the usage is clear, here is the calling sequence when you have coded
the external routines as functions:
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Doub g(const Doub t) { ... }

Doub ak(const Doub t, const Doub s) { ... }

...

Fred2<Doub (Doub), Doub (Doub,Doub)> fred2(a,b,n,g,ak);

Doub ans=fred2.fredin(x);

If the external routines are functors Gfunc and Kernel, say, then the declarations
are

Gfunc g; This could have arguments if you like.
Kernel ak;

Fred2<Gfunc, Kernel> fred2(a,b,n,g,ak);

Here is the routine:

template <class G, class K> fred2.h
struct Fred2 {
Solves a linear Fredholm equation of the second kind.

const Doub a,b;
const Int n;
G &g;
K &ak;
VecDoub t,f,w;
Fred2(const Doub aa, const Doub bb, const Int nn, G &gg, K &akk) :

a(aa), b(bb), n(nn), g(gg), ak(akk), t(n), f(n), w(n)
Quantities a and b are input as the limits of integration. The quantity n is the number of
points to use in the Gaussian quadrature. g and ak are user-supplied functions or functors
that respectively return g.t/ and �K.t; s/. This constructor computes arrays t[0..n-1]
and f[0..n-1] containing the abscissas ti of the Gaussian quadrature and the solution f
at these abscissas. Also computed is the array w[0..n-1] of Gaussian weights for use with
the Nystrom interpolation routine fredin.
{

MatDoub omk(n,n);
gauleg(a,b,t,w); Replace gauleg with another routine if not using

Gauss-Legendre quadrature.for (Int i=0;i<n;i++) {
for (Int j=0;j<n;j++) Form 1� �zK.

omk[i][j]=Doub(i == j)-ak(t[i],t[j])*w[j];
f[i]=g(t[i]);

}
LUdcmp alu(omk); Solve linear equations.
alu.solve(f,f);

}

Doub fredin(const Doub x)
Given arrays t[0..n-1] and w[0..n-1] containing the abscissas and weights of the Gauss-
ian quadrature, and given the solution array f[0..n-1], this function returns the value of
f at x using the Nystrom interpolation formula.
{

Doub sum=0.0;
for (Int i=0;i<n;i++) sum += ak(x,t[i])*w[i]*f[i];
return g(x)+sum;

}
};

One disadvantage of a method based on Gaussian quadrature is that there is no
simple way to obtain an estimate of the error in the result. The best practical method
is to increase N by 50%, say, and treat the difference between the two estimates as a
conservative estimate of the error in the result obtained with the larger value of N .

Turn now to solutions of the homogeneous equation. If we set � D 1=� and
g D 0, then equation (19.1.6) becomes a standard eigenvalue equation,
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zK 	 f D �f (19.1.7)

which we can solve with any convenient matrix eigenvalue routine (see Chapter 11).
Note that if our original problem had a symmetric kernel, then the matrix K would be
symmetric. However, since the weights wj are not equal for most quadrature rules,
the matrix zK (equation 19.1.5) is not symmetric. The matrix eigenvalue problem
is much easier for symmetric matrices, and so we should restore the symmetry if
possible. Provided the weights are positive (which they are for Gaussian quadrature),
we can define the diagonal matrix D D diag.wj / and its square root, D1=2 D
diag.

p
wj /. Then equation (19.1.7) becomes

K 	D 	 f D �f

Multiplying by D1=2, we get�
D1=2 	K 	D1=2

�
	 h D �h (19.1.8)

where h D D1=2 	 f . Equation (19.1.8) is now in the form of a symmetric eigenvalue
problem.

Solution of equations (19.1.7) or (19.1.8) will in general give N eigenvalues,
where N is the number of quadrature points used. For square-integrable kernels,
these will provide good approximations to the lowest N eigenvalues of the integral
equation. Kernels of finite rank (also called degenerate or separable kernels) have
only a finite number of nonzero eigenvalues (possibly none). You can diagnose this
situation by a cluster of eigenvalues � that are zero to machine precision. The num-
ber of nonzero eigenvalues will stay constant as you increase N to improve their
accuracy. Some care is required here: A nondegenerate kernel can have an infinite
number of eigenvalues that have an accumulation point at � D 0. You distinguish
the two cases by the behavior of the solution as you increase N . If you suspect a de-
generate kernel, you will usually be able to solve the problem by analytic techniques
described in all the textbooks.

CITED REFERENCES AND FURTHER READING:

Delves, L.M., and Mohamed, J.L. 1985, Computational Methods for Integral Equations (Cam-
bridge, UK: Cambridge University Press).[1]

Atkinson, K.E. 1976, A Survey of Numerical Methods for the Solution of Fredholm Integral Equa-
tions of the Second Kind (Philadelphia: S.I.A.M.).

19.2 Volterra Equations

Let us now turn to Volterra equations, of which our prototype is the Volterra
equation of the second kind,

f .t/ D

Z t

a

K.t; s/f .s/ ds C g.t/ (19.2.1)
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Most algorithms for Volterra equations march out from t D a, building up the so-
lution as they go. In this sense they resemble not only forward substitution (as dis-
cussed in �19.0), but also initial value problems for ordinary differential equations.
In fact, many algorithms for ODEs have counterparts for Volterra equations.

The simplest way to proceed is to solve the equation on a mesh with uniform
spacing:

ti D aC ih; i D 0; 1; : : : ; N; h �
b � a

N
(19.2.2)

To do so, we must choose a quadrature rule. For a uniform mesh, the simplest scheme
is the trapezoidal rule, equation (4.1.11):Z ti

a

K.ti ; s/f .s/ ds D h

 
1
2
Ki0f0 C

i�1X
jD1

Kijfj C
1
2
Ki ifi

!
(19.2.3)

Thus the trapezoidal method for equation (19.2.1) is

f0 D g0

.1 � 1
2
hKi i /fi D h

 
1
2
Ki0f0 C

i�1X
jD1

Kijfj

!
C gi ; i D 1; : : : ; N

(19.2.4)

(For a Volterra equation of the first kind, the leading 1 on the left would be absent,
and g would have opposite sign, with corresponding straightforward changes in the
rest of the discussion.)

Equation (19.2.4) is an explicit prescription that gives the solution in O.N 2/

operations. Unlike Fredholm equations, it is not necessary to solve a system of linear
equations. Volterra equations thus usually involve less work than the corresponding
Fredholm equations, which, as we have seen, do involve the inversion of, sometimes
large, linear systems.

The efficiency of solving Volterra equations is somewhat counterbalanced by
the fact that systems of these equations occur more frequently in practice. If we
interpret equation (19.2.1) as a vector equation for the vector of m functions f .t/,
then the kernel K.t; s/ is an m � m matrix. Equation (19.2.4) must now also be
understood as a vector equation. For each i , we have to solve them�m set of linear
algebraic equations by Gaussian elimination.

The routine voltra below implements this algorithm. You must supply an
external function or functor that returns the kth function of the vector g.t/ at the
point t and another that returns the .k; l/ element of the matrix K.t; s/ at .t; s/. The
routine voltra then returns the vector f .t/ at the regularly spaced points ti .

template <class G, class K> voltra.h
void voltra(const Doub t0, const Doub h, G &g, K &ak, VecDoub_O &t, MatDoub_O &f)
Solves a set of m linear Volterra equations of the second kind using the extended trapezoidal
rule. On input, t0 is the starting point of the integration and h is the stepsize. g(k,t) is
a user-supplied function or functor that returns gk.t/, while ak(k,l,t,s) is another user-
supplied function or functor that returns the .k; l/ element of the matrix K.t; s/. The solution
is returned in f[0..m-1][0..n-1], with the corresponding abscissas in t[0..n-1], where n-1
is the number of steps to be taken. The value of m is determined from the row-dimension of
the solution matrix f.
{

Int m=f.nrows();
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Int n=f.ncols();
VecDoub b(m);
MatDoub a(m,m);
t[0]=t0;
for (Int k=0;k<m;k++) f[k][0]=g(k,t[0]); Initialize.
for (Int i=1;i<n;i++) { Take a step h.

t[i]=t[i-1]+h;
for (Int k=0;k<m;k++) {

Doub sum=g(k,t[i]); Accumulate right-hand side of linear
equations in sum.for (Int l=0;l<m;l++) {

sum += 0.5*h*ak(k,l,t[i],t[0])*f[l][0];
for (Int j=1;j<i;j++)

sum += h*ak(k,l,t[i],t[j])*f[l][j];
if (k == l) Left-hand side goes in matrix a.

a[k][l]=1.0-0.5*h*ak(k,l,t[i],t[i]);
else

a[k][l] = -0.5*h*ak(k,l,t[i],t[i]);
}
b[k]=sum;

}
LUdcmp alu(a); Solve linear equations.
alu.solve(b,b);
for (Int k=0;k<m;k++) f[k][i]=b[k];

}
}

For nonlinear Volterra equations, equation (19.2.4) holds with the productKi ifi
replaced by Ki i .fi /, and similarly for the other two products of K’s and f ’s. Thus,
for each i we solve a nonlinear equation for fi with a known right-hand side. New-
ton’s method (�9.4 or �9.6) with an initial guess of fi�1 usually works very well
provided the stepsize is not too big.

Higher-order methods for solving Volterra equations are, in our opinion, not as
important as for Fredholm equations, since Volterra equations are relatively easy to
solve. However, there is an extensive literature on the subject. Several difficulties
arise. First, any method that achieves higher order by operating on several quadrature
points simultaneously will need a special method to get started, when values at the
first few points are not yet known.

Second, stable quadrature rules can give rise to unexpected instabilities in in-
tegral equations. For example, suppose we try to replace the trapezoidal rule in the
algorithm above with Simpson’s rule. Simpson’s rule naturally integrates over an
interval 2h, so we easily get the function values at the even mesh points. For the odd
mesh points, we could try appending one panel of the trapezoidal rule. But to which
end of the integration should we append it? We could do one step of the trapezoidal
rule followed by all Simpson’s rule, or Simpson’s rule with one step of the trape-
zoidal rule at the end. Surprisingly, the former scheme is unstable, while the latter is
fine!

A simple approach that can be used with the trapezoidal method given above
is Richardson extrapolation: Compute the solution with stepsizes h and h=2. Then,
assuming the error scales with h2, compute

fE D
4f .h=2/ � f .h/

3
(19.2.5)

This procedure can be repeated as with Romberg integration.
The general consensus is that the best of the higher-order methods is the block-

by-block method (see [1]). Another important topic is the use of variable stepsize
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methods, which are much more efficient if there are sharp features in K or f . Vari-
able stepsize methods are quite a bit more complicated than their counterparts for
differential equations; we refer you to the literature [1,2] for a discussion.

You should also be on the lookout for singularities in the integrand. If you find
them, look to �19.3 for additional ideas.

CITED REFERENCES AND FURTHER READING:

Linz, P. 1985, Analytical and Numerical Methods for Volterra Equations (Philadelphia: S.I.A.M.).[1]

Delves, L.M., and Mohamed, J.L. 1985, Computational Methods for Integral Equations (Cam-
bridge, UK: Cambridge University Press).[2]

19.3 Integral Equations with Singular Kernels

Many integral equations have singularities in either the kernel or the solution or both.
A simple quadrature method will show poor convergence with N if such singularities are
ignored. There is sometimes art in how singularities are best handled.

We start with a few straightforward suggestions:
1. Integrable singularities can often be removed by a change of variable. For example,

the singular behavior K.t; s/ � s1=2 or s�1=2 near s D 0 can be removed by the transfor-
mation z D s1=2. Note that we are assuming that the singular behavior is confined to K,
whereas the quadrature actually involves the product K.t; s/f .s/, and it is this product that
must be “fixed.” Ideally, you must deduce the singular nature of the product before you try
a numerical solution, and take the appropriate action. Commonly, however, a singular kernel
does not produce a singular solution f .t/. (The highly singular kernel K.t; s/ D ı.t � s/ is
simply the identity operator, for example.)

2. If K.t; s/ can be factored as w.s/ xK.t; s/, where w.s/ is singular and xK.t; s/ is
smooth, then a Gaussian quadrature based on w.s/ as a weight function will work well. Even
if the factorization is only approximate, the convergence is often improved dramatically. All
you have to do is replace gauleg in the routine fred2 by another quadrature routine. Sec-
tion 4.6 explained how to construct such quadratures; or you can find tabulated abscissas and
weights in the standard references [1,2]. You must of course supply xK instead of K.

This method is a special case of the product Nystrom method [3,4], where one factors out
a singular term p.t; s/ depending on both t and s from K and constructs suitable weights for
its Gaussian quadrature. The calculations in the general case are quite cumbersome, because
the weights depend on the chosen fti g as well as the form of p.t; s/.

We prefer to implement the product Nystrom method on a uniform grid, with a quadra-
ture scheme that generalizes the extended Simpson’s 3/8 rule (equation 4.1.5) to arbitrary
weight functions. We discuss this in the subsections below.

3. Special quadrature formulas are also useful when the kernel is not strictly singular,
but is “almost” so. One example is when the kernel is concentrated near t D s on a scale much
smaller than the scale on which the solution f .t/ varies. In that case, a quadrature formula
can be based on locally approximating f .s/ by a polynomial or spline, while calculating the
first few moments of the kernelK.t; s/ at the tabulation points ti . In such a scheme the narrow
width of the kernel becomes an asset, rather than a liability: The quadrature becomes exact as
the width of the kernel goes to zero.

4. An infinite range of integration is also a form of singularity. Truncating the range at a
large finite value should be used only as a last resort. If the kernel goes rapidly to zero, then a
Gauss-Laguerre [w � exp.�˛s/] or Gauss-Hermite [w � exp.�s2/] quadrature should work
well. Long-tailed functions often succumb to the transformation

s D
2˛

z C 1
� ˛ (19.3.1)
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which maps 0 < s <1 to 1 > z > �1 so that Gauss-Legendre integration can be used. Here
˛ > 0 is a constant that you adjust to improve the convergence.

5. A common situation in practice is that K.t; s/ is singular along the diagonal line
t D s. Here the Nystrom method fails completely because the kernel gets evaluated at .ti ; si /.
Subtraction of the singularity is one possible cure:Z b

a
K.t; s/f .s/ ds D

Z b

a
K.t; s/Œf .s/ � f .t/� ds C

Z b

a
K.t; s/f .t/ ds

D

Z b

a
K.t; s/Œf .s/ � f .t/� ds C r.t/f .t/

(19.3.2)

where r.t/ D
R b
a K.t; s/ ds is computed analytically or numerically. If the first term on the

right-hand side is now regular, we can use the Nystrom method. Instead of equation (19.1.4),
we get

fi D �

N�1X
jD0
j¤i

wjKij Œfj � fi �C �rifi C gi (19.3.3)

Sometimes the subtraction process must be repeated before the kernel is completely regular-
ized. See [3] for details. (And read on for a different, we think better, way to handle diagonal
singularities.)

19.3.1 Quadrature on a Uniform Mesh with Arbitrary
Weight

It is possible in general to find n-point linear quadrature rules that approximate the in-
tegral of a function f .x/, times an arbitrary weight function w.x/, over an arbitrary range of
integration .a; b/, as the sum of weights times n evenly spaced values of the function f .x/,
say at x D kh; .kC 1/h; : : : ; .kC n� 1/h. The general scheme for deriving such quadrature
rules is to write down the n linear equations that must be satisfied if the quadrature rule is to
be exact for the n functions f .x/ D const; x; x2; : : : ; xn�1, and then solve these for the coef-
ficients. This can be done analytically, once and for all, if the moments of the weight function
over the same range of integration,

Wn �
1

hn

Z b

a
xnw.x/dx (19.3.4)

are assumed to be known. Here the prefactor h�n is chosen to make Wn scale as h if (as in
the usual case) b � a is proportional to h.

Carrying out this prescription for the four-point case gives the resultZ b

a
w.x/f .x/dx D

1
6f .kh/

�
.k C 1/.k C 2/.k C 3/W0 � .3k

2 C 12k C 11/W1 C 3.k C 2/W2 �W3
	

C 1
2f .Œk C 1�h/

�
� k.k C 2/.k C 3/W0 C .3k

2 C 10k C 6/W1 � .3k C 5/W2 CW3
	

C 1
2f .Œk C 2�h/

�
k.k C 1/.k C 3/W0 � .3k

2 C 8k C 3/W1 C .3k C 4/W2 �W3
	

C 1
6f .Œk C 3�h/

�
� k.k C 1/.k C 2/W0 C .3k

2 C 6k C 2/W1 � 3.k C 1/W2 CW3
	

(19.3.5)

While the terms in brackets superficially appear to scale as k2, there is typically cancellation
at both O.k2/ and O.k/.

Equation (19.3.5) can be specialized to various choices of .a; b/. The obvious choice is
a D kh, b D .k C 3/h, in which case we get a four-point quadrature rule that generalizes
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Simpson’s 3/8 rule (equation 4.1.5). In fact, we can recover this special case by settingw.x/ D
1, in which case (19.3.4) becomes

Wn D
h

nC 1
Œ.k C 3/nC1 � knC1� (19.3.6)

The four terms in square brackets in equation (19.3.5) each become independent of k, and
(19.3.5) in fact reduces toZ .kC3/h

kh
f .x/dx D

3h

8
f .kh/C

9h

8
f .ŒkC1�h/C

9h

8
f .ŒkC2�h/C

3h

8
f .ŒkC3�h/ (19.3.7)

Back to the case of general w.x/, some other choices for a and b are also useful. For ex-
ample, we may want to choose .a; b/ to be .ŒkC1�h; ŒkC3�h/ or .ŒkC2�h; ŒkC3�h/, allowing
us to finish off an extended rule whose number of intervals is not a multiple of three, without
loss of accuracy: The integral will be estimated using the four values f .kh/; : : : ; f .ŒkC3�h/.
Even more useful is to choose .a; b/ to be .Œk C 1�h; Œk C 2�h/, thus using four points to
integrate a centered single interval. These weights, when sewed together into an extended for-
mula, give quadrature schemes that have smooth coefficients, i.e., without the Simpson-like
2; 4; 2; 4; 2 alternation. (In fact, this was the technique that we used to derive equation 4.1.14,
which you may now wish to re-examine.)

All these rules are of the same order as the extended Simpson’s rule, that is, exact for
f .x/ a cubic polynomial. Rules of lower order, if desired, are similarly obtained. The three-
point formula isZ b

a
w.x/f .x/dx D 1

2f .kh/
�
.k C 1/.k C 2/W0 � .2k C 3/W1 CW2

	
C f .Œk C 1�h/

�
� k.k C 2/W0 C 2.k C 1/W1 �W2

	
C 1
2f .Œk C 2�h/

�
k.k C 1/W0 � .2k C 1/W1 CW2

	 (19.3.8)

Here the simple special case is to take w.x/ D 1, so that

Wn D
h

nC 1
Œ.k C 2/nC1 � knC1� (19.3.9)

Then equation (19.3.8) becomes Simpson’s rule,Z .kC2/h

kh
f .x/dx D

h

3
f .kh/C

4h

3
f .Œk C 1�h/C

h

3
f .Œk C 2�h/ (19.3.10)

For nonconstant weight functions w.x/, however, equation (19.3.8) gives rules of one order
less than Simpson, since they do not benefit from the extra symmetry of the constant case.

The two-point formula is simplyZ .kC1/h

kh
w.x/f .x/dx D f .kh/Œ.kC 1/W0 �W1�C f .ŒkC 1�h/Œ�kW0CW1� (19.3.11)

Here is a routine Wwghts that uses the above formulas to compute an extended N -point
quadrature rule for the interval .a; b/ D .0; ŒN � 1�h/. Input to Wwghts is a user-supplied
object called quad in the routine. This object must contain a function kermom, which is called
to get the first four indefinite-integral moments of w.x/, namely

Fm.y/ �

Z y

smw.s/ds m D 0; 1; 2; 3 (19.3.12)

(The lower limit is arbitrary and can be chosen for convenience.) Cautionary note: When
called with N < 4, Wwghts returns a rule of lower order than Simpson; you should structure
your problem to avoid this.
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template <class Q>fred singular.h
struct Wwghts {
Constructs weights for the n-point equal-interval quadrature from 0 to .n�1/h of a function f .x/
times an arbitrary (possibly singular) weight function w.x/. The indefinite-integral moments
Fn.y/ of w.x/ are provided by the user-supplied function kermom in the quad object.

Doub h;
Int n;
Q &quad;
VecDoub wghts;
Wwghts(Doub hh, Int nn, Q &q) : h(hh), n(nn), quad(q), wghts(n) {}
Constructor arguments are h, n, and the user-supplied quad object.
VecDoub weights()
This function returns the weights in wghts[0..n-1].
{

Int k;
Doub fac;
Doub hi=1.0/h;
for (Int j=0;j<n;j++) Zero all the weights so we can sum into

them.wghts[j]=0.0;
if (n >= 4) { Use highest available order.

VecDoub wold(4),wnew(4),w(4);
wold=quad.kermom(0.0); Evaluate indefinite integrals at lower end.
Doub b=0.0; For another problem, you might change

this lower limit.for (Int j=0;j<n-3;j++) {
Doub c=j; This is called k in equation (19.3.5).
Doub a=b; Set upper and lower limits for this step.
b=a+h;
if (j == n-4) b=(n-1)*h; Last interval: Go all the way to end.
wnew=quad.kermom(b);
for (fac=1.0,k=0;k<4;k++,fac*=hi) Equation (19.3.4).

w[k]=(wnew[k]-wold[k])*fac;
wghts[j] += (((c+1.0)*(c+2.0)*(c+3.0)*w[0] Equation (19.3.5).

-(11.0+c*(12.0+c*3.0))*w[1]+3.0*(c+2.0)*w[2]-w[3])/6.0);
wghts[j+1] += ((-c*(c+2.0)*(c+3.0)*w[0]

+(6.0+c*(10.0+c*3.0))*w[1]-(3.0*c+5.0)*w[2]+w[3])*0.5);
wghts[j+2] += ((c*(c+1.0)*(c+3.0)*w[0]

-(3.0+c*(8.0+c*3.0))*w[1]+(3.0*c+4.0)*w[2]-w[3])*0.5);
wghts[j+3] += ((-c*(c+1.0)*(c+2.0)*w[0]

+(2.0+c*(6.0+c*3.0))*w[1]-3.0*(c+1.0)*w[2]+w[3])/6.0);
for (k=0;k<4;k++) wold[k]=wnew[k]; Reset lower limits for moments.

}
} else if (n == 3) { Lower-order cases; not recommended.

VecDoub wold(3),wnew(3),w(3);
wold=quad.kermom(0.0);
wnew=quad.kermom(h+h);
w[0]=wnew[0]-wold[0];
w[1]=hi*(wnew[1]-wold[1]);
w[2]=hi*hi*(wnew[2]-wold[2]);
wghts[0]=w[0]-1.5*w[1]+0.5*w[2];
wghts[1]=2.0*w[1]-w[2];
wghts[2]=0.5*(w[2]-w[1]);

} else if (n == 2) {
VecDoub wold(2),wnew(2),w(2);
wold=quad.kermom(0.0);
wnew=quad.kermom(h);
wghts[0]=wnew[0]-wold[0]-(wghts[1]=hi*(wnew[1]-wold[1]));

}
return wghts;

}
};

We will now give an example of how to apply Wwghts to a singular integral equation.
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19.3.2 Worked Example: A Diagonally Singular Kernel
As a particular example, consider the integral equation

f .x/C

Z 	

0
K.x; y/f .y/dy D sin x (19.3.13)

with the (arbitrarily chosen) nasty kernel

K.x; y/ D cos x cosy �

(
� ln.x � y/ y < x
p
y � x y � x

(19.3.14)

which has a logarithmic singularity on the left of the diagonal, combined with a square-root
discontinuity on the right.

The first step is to do (analytically, in this case) the required moment integrals over the
singular part of the kernel, equation (19.3.12). Since these integrals are done at a fixed value
of x, we can use x as the lower limit. For any specified value of y, the required indefinite
integral is then either

Fm.yIx/ D

Z y

x
sm.s � x/1=2ds D

Z y�x

0
.x C t /mt1=2dt if y > x (19.3.15)

or

Fm.yIx/ D �

Z y

x
sm ln.x � s/ds D

Z x�y

0
.x � t /m ln t dt if y < x (19.3.16)

(where a change of variable has been made in the second equality in each case). Doing these
integrals analytically (e.g., using a symbolic integration package), we package the resulting
formulas in the function kermom in the following routine, Quad_matrix. Note that w.j C 1/
returns Fj .yI x/. The constructor of Quad_matrix calls Wwghts to get the quadrature weights
and then constructs the quadrature matrix.

struct Quad_matrix { fred singular.h
Constructs in a[0..n-1][0..n-1] the quadrature matrix for an example Fredholm equation of
the second kind.

Int n;
Doub x; Communicates with kermom.
Quad_matrix(MatDoub_O &a) : n(a.nrows())
The constructor obtains the quadrature weights that integrate the singular part of the kernel
via calls to Wwghts. It then sums the weights with the nonsingular part of the kernel to
obtain the quadrature matrix.
{

const Doub PI=3.14159263589793238;
VecDoub wt(n);
Doub h=PI/(n-1);
Wwghts<Quad_matrix> w(h,n,*this);
for (Int j=0;j<n;j++) {

x=j*h; Set x for kermom.
wt=w.weights();
Doub cx=cos(x); Part of nonsingular kernel.
for (Int k=0;k<n;k++) Put together all the pieces of the kernel.

a[j][k]=wt[k]*cx*cos(k*h);
++a[j][j]; For equations of the second kind, there is a diagonal

piece independent of h.}
}
VecDoub kermom(const Doub y)
Returns w[0..m-1], the first m indefinite-integral moments of one row of the singular part
of the kernel. (For this example, m is hard-wired to be 4.) The input variable y labels
the column, while the member variable x is the row. We can take x as the lower limit of
integration. Thus, we return the moment integrals either purely to the left or purely to the
right of the diagonal.
{
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Doub d,df,clog,x2,x3,x4,y2;
VecDoub w(4);
if (y >= x) {

d=y-x;
df=2.0*sqrt(d)*d;
w[0]=df/3.0;
w[1]=df*(x/3.0+d/5.0);
w[2]=df*((x/3.0 + 0.4*d)*x + d*d/7.0);
w[3]=df*(((x/3.0 + 0.6*d)*x + 3.0*d*d/7.0)*x+d*d*d/9.0);

} else {
x3=(x2=x*x)*x;
x4=x2*x2;
y2=y*y;
d=x-y;
w[0]=d*((clog=log(d))-1.0);
w[1] = -0.25*(3.0*x+y-2.0*clog*(x+y))*d;
w[2]=(-11.0*x3+y*(6.0*x2+y*(3.0*x+2.0*y))

+6.0*clog*(x3-y*y2))/18.0;
w[3]=(-25.0*x4+y*(12.0*x3+y*(6.0*x2+y*

(4.0*x+3.0*y)))+12.0*clog*(x4-(y2*y2)))/48.0;
}
return w;

}
};

Finally, we solve the linear system for any particular right-hand side, here sin x.

Int main_fredex(void)fred singular.h
This sample program shows how to solve a Fredholm equation of the second kind using the
product Nystrom method and a quadrature rule especially constructed for a particular, singular,
kernel.
{

const Int N=40; Here the size of the grid is specified.
const Doub PI=3.141592653589793238;
VecDoub g(N);
MatDoub a(N,N);
Quad_matrix qmx(a); Make the quadrature matrix; all the action is here.
LUdcmp alu(a); Decompose the matrix.
for (Int j=0;j<N;j++) Construct the right-hand side, here sinx.

g[j]=sin(j*PI/(N-1));
alu.solve(g,g); Backsubstitute.
for (Int j=0;j<N;j++) { Write out the solution.

Doub x=j*PI/(N-1);
cout << fixed << setprecision(2) << setw(6) << (j+1);
cout << setprecision(6) << setw(13) << x << setw(13) << g[j] << endl;

}
return 0;

}

With N D 40, this program gives accuracy at about the 10�5 level. The accuracy in-
creases as N 4 (as it should for our Simpson-order quadrature scheme) despite the highly sin-
gular kernel. Figure 19.3.1 shows the solution obtained, also plotting the solution for smaller
values of N , which are themselves seen to be remarkably faithful. Notice that the solution is
smooth, even though the kernel is singular, a common occurrence.

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions (Washington: Na-
tional Bureau of Standards); reprinted 1968 (New York: Dover); online at http://www.nr.
com/aands.[1]

Stroud, A.H., and Secrest, D. 1966, Gaussian Quadrature Formulas (Englewood Cliffs, NJ:
Prentice-Hall).[2]
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Figure 19.3.1. Solution of the example integral equation (19.3.14) with grid sizesN D 10, 20, and 40.
The tabulated solution values have been connected by straight lines; in practice, one would interpolate a
smallN solution more smoothly.

Delves, L.M., and Mohamed, J.L. 1985, Computational Methods for Integral Equations (Cam-
bridge, UK: Cambridge University Press).[3]

Atkinson, K.E. 1976, A Survey of Numerical Methods for the Solution of Fredholm Integral Equa-
tions of the Second Kind (Philadelphia: S.I.A.M.).[4]

19.4 Inverse Problems and the Use of A Priori
Information

Later discussion will be facilitated by some preliminary mention of a couple
of mathematical points. Suppose that u is an “unknown” vector that we plan to
determine by some minimization principle. Let AŒu� > 0 and BŒu� > 0 be two
positive functionals of u, so that we can try to determine u by either

minimize: AŒu� or minimize: BŒu� (19.4.1)

(Of course these will generally give different answers for u.) As another possibility,
now suppose that we want to minimize AŒu� subject to the constraint that BŒu� have
some particular value, say b. The method of Lagrange multipliers gives the variation

ı

ıu
fAŒu�C �1.BŒu� � b/g D

ı

ıu
.AŒu�C �1BŒu�/ D 0 (19.4.2)

where �1 is a Lagrange multiplier. Notice that b is absent in the second equality,
since it doesn’t depend on u.

Next, suppose that we change our minds and decide to minimize BŒu� subject
to the constraint that AŒu� have a particular value, a. Instead of equation (19.4.2) we
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have

ı

ıu
fBŒu�C �2.AŒu� � a/g D

ı

ıu
.BŒu�C �2AŒu�/ D 0 (19.4.3)

with, this time, �2 the Lagrange multiplier. Multiplying equation (19.4.3) by the con-
stant 1=�2, and identifying 1=�2 with �1, we see that the actual variations are exactly
the same in the two cases. Both cases will yield the same one-parameter family of
solutions, say u.�1/. As �1 varies from 0 to 1, the solution u.�1/ varies along a
so-called trade-off curve between the problem of minimizing A and the problem of
minimizing B. Any solution along this curve can equally well be thought of as ei-
ther (i) a minimization of A for some constrained value of B, or (ii) a minimization
of B for some constrained value of A, or (iii) a weighted minimization of the sum
AC �1B.

The second preliminary point has to do with degenerate minimization princi-
ples. In the example above, now suppose that AŒu� has the particular form

AŒu� D jA 	 u � cj2 (19.4.4)

for some matrix A and vector c. If A has fewer rows than columns, or if A is square
but degenerate (has a nontrivial nullspace; see �2.6, especially Figure 2.6.1), then
minimizing AŒu� will not give a unique solution for u. (To see why, review �15.4,
and note that for a “design matrix” A with fewer rows than columns, the matrix
AT 	 A in the normal equations 15.4.10 is degenerate.) However, if we add any
multiple � times a nondegenerate quadratic form BŒu�, for example u 	H 	u with H
a positive-definite matrix, then minimization of AŒu�C �BŒu� will lead to a unique
solution for u. (The sum of two quadratic forms is itself a quadratic form, with the
second piece guaranteeing nondegeneracy.)

We can combine these two points, for this conclusion: When a quadratic min-
imization principle is combined with a quadratic constraint, and both are positive,
only one of the two need be nondegenerate for the overall problem to be well-posed.
We are now equipped to face the subject of inverse problems.

19.4.1 The Inverse Problem with Zeroth-Order
Regularization

Suppose that u.x/ is some unknown or underlying (u stands for both unknown
and underlying!) physical process, which we hope to determine by a set of N mea-
surements ci , i D 0; 1; : : : ; N � 1. The relation between u.x/ and the ci ’s is that
each ci measures a (hopefully distinct) aspect of u.x/ through its own linear response
kernel ri , and with its own measurement error ni . In other words,

ci � si C ni D

Z
ri .x/u.x/dx C ni (19.4.5)

(compare this to equations 13.3.1 and 13.3.2). Within the assumption of linearity,
this is quite a general formulation. The ci ’s might approximate values of u.x/ at
certain locations xi , in which case ri .x/ would have the form of a more or less
narrow instrumental response centered around x D xi . Or, the ci ’s might “live” in an
entirely different function space from u.x/, measuring different Fourier components
of u.x/, for example.
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The inverse problem is, given the ci ’s, the ri .x/’s, and perhaps some informa-
tion about the errors ni such as their covariance matrix,

Sij � CovarŒni ; nj � (19.4.6)

how do we find a good statistical estimator of u.x/, call it yu.x/?
It should be obvious that this is an ill-posed problem. After all, how can we

reconstruct a whole function yu.x/ from only a finite number of discrete values ci?
Yet, whether formally or informally, we do this all the time in science. We routinely
measure “enough points” and then “draw a curve through them.” In doing so, we
are making some assumptions, either about the underlying function u.x/, or about
the nature of the response functions ri .x/, or both. Our purpose now is to formalize
these assumptions, and to extend our abilities to cases where the measurements and
underlying function live in quite different function spaces. (How do you “draw a
curve” through a scattering of Fourier coefficients?)

We can’t really want every point x of the function yu.x/. We do want some
large numberM of discrete points x�, � D 0; 1; : : : ;M �1, whereM is sufficiently
large, and the x�’s are sufficiently evenly spaced, that neither u.x/ nor ri .x/ varies
much between any x� and x�C1. (Here and following we will use Greek letters like
� to denote values in the space of the underlying process, and Roman letters like i
to denote values of immediate observables.) For such a dense set of x�’s, we can
replace equation (19.4.5) by a quadrature like

ci D
X
�

Ri�u.x�/C ni (19.4.7)

where the N �M matrix R has components

Ri� � ri .x�/.x�C1 � x��1/=2 (19.4.8)

(or any other simple quadrature — it rarely matters which). We will view equations
(19.4.5) and (19.4.7) as being equivalent for practical purposes.

How do you solve a set of equations like equation (19.4.7) for the unknown
u.x�/’s? Here is a bad way, but one that contains the germ of some correct ideas:
Form a �2 measure of how well a model u.x/ agrees with the measured data,

�2 D

N�1X
iD0

N�1X
jD0

"
ci �

M�1X
�D0

Ri�u.x�/

#
S�1ij

"
cj �

M�1X
�D0

Rj�u.x�/

#

�

N�1X
iD0

"
ci �

PM�1
�D0 Ri�u.x�/

�i

#2 (19.4.9)

(compare with equation 15.1.6). Here S�1 is the inverse of the covariance matrix,
and the approximate equality holds if you can neglect the off-diagonal covariances,
with �i � .CovarŒi; i �/1=2.

Now you can use the method of singular value decomposition (SVD) in �15.4
to find the vector u that minimizes equation (19.4.9). Don’t try to use the method
of normal equations; since M is greater than N , they will be singular, as we already
discussed. The SVD process will thus surely find a large number of zero singular



�

�

“nr3” — 2007/5/1 — 20:53 — page 1004 — #1026
�

�

� �

1004 Chapter 19. Integral Equations and Inverse Theory

values, indicative of a highly nonunique solution. Among the infinity of degenerate
solutions (most of them badly behaved with arbitrarily large u.x�/’s) SVD will select
the one of them, call it yu, with the smallest norm jyuj in the sense ofX

�

Œyu.x�/�
2 a minimum (19.4.10)

(look at Figure 2.6.1). This solution is often called the principal solution. It is a lim-
iting case of what is called zeroth-order regularization, corresponding to minimizing
the sum of the two positive functionals

yu minimizes: �2Œu�C �.u 	 u/ (19.4.11)

in the limit of small �. Below, we will learn how to do such minimizations, as well
as more general ones, without the ad hoc use of SVD.

What happens if we determine yu by equation (19.4.11) with a non-infinitesimal
value of �? First, note that if M � N (many more unknowns than equations),
then u will often have enough freedom to be able to make �2 (equation 19.4.9) quite
unrealistically small, if not zero. In the language of �15.1, the number of degrees of
freedom 
 D N �M , which is approximately the expected value of �2 when 
 is
large, is being driven down to zero (and, not meaningfully, beyond). Yet, we know
that for the true underlying function u.x/, which has no adjustable parameters, the
number of degrees of freedom and the expected value of �2 should be about 
 � N .

Increasing � pulls the solution away from minimizing �2 in favor of minimizing
yu 	 yu. From the preliminary discussion above, we can view this as minimizing yu 	 yu
subject to the constraint that �2 have some constant nonzero value. A popular choice,
in fact, is to find that value of � which yields �2 D N , that is, to get about as much
extra regularization as a plausible value of �2 dictates. The resulting yu.x/ is called
the solution of the inverse problem with zeroth-order regularization.

The value N is actually a surrogate for any value drawn from a Gaussian dis-
tribution with mean N and standard deviation .2N /1=2 (the asymptotic �2 distri-
bution). One might equally plausibly try two values of �, one giving �2 D N C

.2N /1=2, the other N � .2N /1=2.
Zeroth-order regularization, though dominated by better methods, demonstrates

most of the basic ideas that are used in inverse problem theory. In general, there are
two positive functionals, call them A and B. The first, A, measures something like
the agreement of a model to the data (e.g., �2), or sometimes a related quantity like
the “sharpness” of the mapping between the solution and the underlying function.
When A by itself is minimized, the agreement or sharpness becomes very good
(often impossibly good), but the solution becomes unstable, wildly oscillating, or in
other ways unrealistic, reflecting that A alone typically defines a highly degenerate
minimization problem.

That is where B comes in. It measures something like the “smoothness” of the
desired solution, or sometimes a related quantity that parametrizes the stability of
the solution with respect to variations in the data, or sometimes a quantity reflecting
a priori judgments about the likelihood of a solution. B is called the stabilizing
functional or regularizing operator. In any case, minimizing B by itself is supposed
to give a solution that is “smooth” or “stable” or “likely” — and that has nothing at
all to do with the measured data.
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Figure 19.4.1. Almost all inverse problem methods involve a trade-off between two optimizations: agree-
ment between data and solution, or “sharpness” of mapping between true and estimated solutions (here
denoted A), and smoothness or stability of the solution (here denoted B). Among all possible solutions,
shown here schematically as the shaded region, those on the boundary connecting the unconstrained min-
imum of A and the unconstrained minimum of B are the “best” solutions, in the sense that every other
solution is dominated by at least one solution on the curve.

The single central idea in inverse theory is the prescription

minimize: AC �B (19.4.12)

for various values of 0 < � < 1 along the so-called trade-off curve (see Figure
19.4.1), and then to settle on a “best” value of � by one or another criterion, rang-
ing from fairly objective (e.g., making �2 D N ) to entirely subjective. Successful
methods, several of which we will now describe, differ as to their choices of A and
B, as to whether the prescription (19.4.12) yields linear or nonlinear equations, as
to their recommended method for selecting a final �, and as to their practicality for
computer-intensive two-dimensional problems like image processing.

Equation (19.4.12) has a natural Bayesian interpretation that gives some addi-
tional insight. Given the data points c and measurements u, we can use Bayes’ law,
equation (15.0.1), to write

P.ujc; I / / P.cju; I /P.ujI / (19.4.13)

where P.ujI / is the Bayesian prior on u before we see any data, given any back-
ground information I . Often, we can usefully write the right-hand side as the product
of two exponentials, that is,

P.cju; I / � e�A.c;u/; P.ujI / � e��B.u/ (19.4.14)
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For example, if the measurement errors are distributed as a multivariate Gaussian,
then equation (19.4.9) implies

A D 1
2
�2.c;u/ (19.4.15)

while a Bayesian prior expressing the belief that u should not have wild, large-
amplitude oscillations might be captured by the multivariate Gaussian prior

B D �.u 	 u/ (19.4.16)

Maximizing P.ujc; I / to find the most probable yu is now exactly equivalent to equa-
tion (19.4.11). The constant � is now merely a convenient parameterization for the
narrowness of the Gaussian prior. It acts as a trade-off parameter, exactly as de-
scribed above. In subsequent sections we will learn how to devise more sophisticated
smoothness priors. In several cases these will be positive-definite quadratic forms in
u; those cases correspond to more complicated multivariate Gaussian priors on u.
In �19.7 we will meet a prior that is not exactly Gaussian, but rather based on the
concept of entropy.

Within the Bayesian framework, you can do more than just solve for the most
likely model yu. For example, you can use Markov chain Monte Carlo (�15.8) to
sample from the distribution of u’s given the observed data.

CITED REFERENCES AND FURTHER READING:

Craig, I.J.D., and Brown, J.C. 1986, Inverse Problems in Astronomy (Bristol, UK: Adam Hilger).

Twomey, S. 1977, Introduction to the Mathematics of Inversion in Remote Sensing and Indirect
Measurements (Amsterdam: Elsevier).

Tikhonov, A.N., and Arsenin, V.Y. 1977, Solutions of Ill-Posed Problems (New York: Wiley).

Tikhonov, A.N., and Goncharsky, A.V. (eds.) 1987, Ill-Posed Problems in the Natural Sciences
(Moscow: MIR).

Parker, R.L. 1977, “Understanding Inverse Theory,” Annual Review of Earth and Planetary Sci-
ence, vol. 5, pp. 35–64.

Frieden, B.R. 1975, in Picture Processing and Digital Filtering, T.S. Huang, ed. (New York:
Springer).

Tarantola, A. 1995, Inverse Problem Theory and Methods for Model Parameter Estimation (Phil-
adelphia: S.I.A.M.). Also available at http://www.ipgp.jussieu.fr/~tarantola/
Files/Professional/SIAM.

Baumeister, J. 1987, Stable Solution of Inverse Problems (Braunschweig, Germany: Friedr.
Vieweg) [mathematically oriented].

Titterington, D.M. 1985, “General Structure of Regularization Procedures in Image Reconstruc-
tion,” Astronomy and Astrophysics, vol. 144, pp. 381–387.

Jeffrey, W., and Rosner, R. 1986, “On Strategies for Inverting Remote Sensing Data,” Astrophys-
ical Journal, vol. 310, pp. 463–472.

19.5 Linear Regularization Methods

What we will call linear regularization is also called the Phillips-Twomey meth-
od [1,2], the constrained linear inversion method [3], the method of regularization [4],
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and Tikhonov-Miller regularization [5-7]. (It probably has other names also, since
it is so obviously a good idea.) In its simplest form, the method is an immediate
generalization of zeroth-order regularization (equation 19.4.11, above). As before,
the functional A is taken to be the �2 deviation, equation (19.4.9), but the functional
B is replaced by more sophisticated measures of smoothness that derive from first
or higher derivatives.

For example, suppose that your a priori belief is that a credible u.x/ is not too
different from a constant. Then a reasonable functional to minimize is

B /

Z
Œyu0.x/�2dx /

M�2X
�D0

Œyu� � yu�C1�
2 (19.5.1)

since it is nonnegative and equal to zero only when yu.x/ is constant. Here yu� �
yu.x�/, and the second equality (proportionality) assumes that the x�’s are uniformly
spaced. We can write the second form of B as

B D jB 	 yuj2 D yu 	 .BT 	 B/ 	 yu � yu 	H 	 yu (19.5.2)

where yu is the vector of components yu�; � D 0; : : : ;M � 1; B is the .M � 1/�M
first difference matrix

B D

0BBBBB@
�1 1 0 0 0 0 0 	 	 	 0

0 �1 1 0 0 0 0 	 	 	 0
:::

: : :
:::

0 	 	 	 0 0 0 0 �1 1 0

0 	 	 	 0 0 0 0 0 �1 1

1CCCCCA (19.5.3)

and H is the M �M matrix

H D BT 	 B D

0BBBBBBBBB@

1 �1 0 0 0 0 0 	 	 	 0

�1 2 �1 0 0 0 0 	 	 	 0

0 �1 2 �1 0 0 0 	 	 	 0
:::

: : :
:::

0 	 	 	 0 0 0 �1 2 �1 0

0 	 	 	 0 0 0 0 �1 2 �1

0 	 	 	 0 0 0 0 0 �1 1

1CCCCCCCCCA
(19.5.4)

Note that B has one fewer row than column. It follows that the symmetric H is de-
generate; it has exactly one zero eigenvalue corresponding to the value of a constant
function, any one of which makes B exactly zero.

If, just as in �15.4, we write

Ai� � Ri�=�i bi � ci=�i (19.5.5)

then, using equation (19.4.9), the minimization principle (19.4.12) is

minimize: AC �B D jA 	 yu � bj2 C �yu 	H 	 yu (19.5.6)

This can readily be reduced to a linear set of normal equations, just as in �15.4: The
components yu� of the solution satisfy the set of M equations in M unknowns,X

�

��X
i

Ai�Ai�

�
C �H��

�
yu� D

X
i

Ai�bi � D 0; 1; : : : ;M � 1 (19.5.7)
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or, in vector notation,
.AT 	AC �H/ 	 yu D AT 	 b (19.5.8)

Equations (19.5.7) or (19.5.8) can be solved by the standard techniques of Chap-
ter 2, e.g., LU decomposition. The usual warnings about normal equations being ill-
conditioned do not apply, since the whole purpose of the � term is to cure that same
ill-conditioning. Note, however, that the � term by itself is ill-conditioned, since it
does not select a preferred constant value. You hope your data can at least do that!

Although inversion of the matrix .AT 	 AC �H/ is not generally the best way
to solve for yu, let us digress to write the solution to equation (19.5.8) schematically
as

yu D

�
1

AT 	AC �H
	AT 	A

�
A�1 	 b (schematic only!) (19.5.9)

where the identity matrix in the form A 	A�1 has been inserted. This is schematic not
only because the matrix inverse is fancifully written as a denominator, but also be-
cause, in general, the inverse matrix A�1 does not exist. However, it is illuminating
to compare equation (19.5.9) with equation (13.3.6) for optimal or Wiener filtering,
or with equation (13.6.6) for general linear prediction. (The concepts of �15.9 are
also related.) One sees that AT 	 A plays the role of S2, the signal power or auto-
correlation, while �H plays the role of N 2, the noise power or autocorrelation. The
term in parentheses in equation (19.5.9) is something like an optimal filter, whose
effect is to pass the ill-posed inverse A�1 	 b through unmodified when AT 	 A is
sufficiently large, but to suppress it when AT 	A is small.

The above choices of B and H are only the simplest in an obvious sequence of
derivatives. If your a priori belief is that a linear function is a good approximation to
u.x/, then minimize

B /

Z
Œyu00.x/�2dx /

M�3X
�D0

Œ�yu� C 2yu�C1 � yu�C2�
2 (19.5.10)

implying

B D

0BBBBB@
�1 2 �1 0 0 0 0 	 	 	 0

0 �1 2 �1 0 0 0 	 	 	 0
:::

: : :
:::

0 	 	 	 0 0 0 �1 2 �1 0

0 	 	 	 0 0 0 0 �1 2 �1

1CCCCCA (19.5.11)

and

H D BT 	 B D

0BBBBBBBBBBBBB@

1 �2 1 0 0 0 0 	 	 	 0

�2 5 �4 1 0 0 0 	 	 	 0

1 �4 6 �4 1 0 0 	 	 	 0

0 1 �4 6 �4 1 0 	 	 	 0
:::

: : :
:::

0 	 	 	 0 1 �4 6 �4 1 0

0 	 	 	 0 0 1 �4 6 �4 1

0 	 	 	 0 0 0 1 �4 5 �2

0 	 	 	 0 0 0 0 1 �2 1

1CCCCCCCCCCCCCA
(19.5.12)
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This H has two zero eigenvalues, corresponding to the two undetermined parameters
of a linear function.

If your a priori belief is that a quadratic function is preferable, then minimize

B /

Z
Œyu000.x/�2dx /

M�4X
�D0

Œ�yu� C 3yu�C1 � 3yu�C2 C yu�C3�
2 (19.5.13)

with

B D

0BBBBB@
�1 3 �3 1 0 0 0 	 	 	 0

0 �1 3 �3 1 0 0 	 	 	 0
:::

: : :
:::

0 	 	 	 0 0 �1 3 �3 1 0

0 	 	 	 0 0 0 �1 3 �3 1

1CCCCCA (19.5.14)

and now

H D

0BBBBBBBBBBBBBBBBB@

1 �3 3 �1 0 0 0 0 0 	 	 	 0

�3 10 �12 6 �1 0 0 0 0 	 	 	 0

3 �12 19 �15 6 �1 0 0 0 	 	 	 0

�1 6 �15 20 �15 6 �1 0 0 	 	 	 0

0 �1 6 �15 20 �15 6 �1 0 	 	 	 0
:::

: : :
:::

0 	 	 	 0 �1 6 �15 20 �15 6 �1 0

0 	 	 	 0 0 �1 6 �15 20 �15 6 �1

0 	 	 	 0 0 0 �1 6 �15 19 �12 3

0 	 	 	 0 0 0 0 �1 6 �12 10 �3

0 	 	 	 0 0 0 0 0 �1 3 �3 1

1CCCCCCCCCCCCCCCCCA
(19.5.15)

(We’ll leave the calculation of cubics and above to the compulsive reader.)
Notice that you can regularize with “closeness to a differential equation,” if

you want. Just pick B to be the appropriate sum of finite difference operators (the
coefficients can depend on x) and calculate H D BT 	 B. You don’t need to know
the values of your boundary conditions, since B can have fewer rows than columns,
as above; hopefully, your data will determine them. Of course, if you do know some
boundary conditions, you can build these into B, too.

With all the proportionality signs above, you may have lost track of what actual
value of � to try first. A simple trick for at least getting “on the map” is to first try

� D Tr.AT 	A/=Tr.H/ (19.5.16)

where Tr is the trace of the matrix (sum of diagonal components). This choice will
tend to make the two parts of the minimization have comparable weights, and you
can adjust from there.

As for what is the “correct” value of �, an objective criterion, if you know
your errors �i with reasonable accuracy, is to make �2 (that is, jA 	 yu � bj2) equal
to N , the number of measurements. We remarked above on the twin acceptable
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choices N ˙ .2N /1=2. A subjective criterion is to pick any value that you like in
the range 0 < � < 1, depending on your relative degree of belief in the a priori
and a posteriori evidence. (Yes, people actually do that.) The problem with being a
rigorous Bayesian at this stage is that rarely, if ever, is your understanding of the prior
so complete as to give a firm, objective, value for �, and, as we pointed out in �15.1.1,
purely Bayesian methods for assessing goodness-of-fit are largely nonexistent.

19.5.1 Two-Dimensional Problems and Iterative Methods
Up to now our notation has been indicative of a one-dimensional problem, find-

ing yu.x/ or yu� D yu.x�/. However, all of the discussion easily generalizes to the
problem of estimating a two-dimensional set of unknowns yu�� , � D 0; : : : ;M � 1;
� D 0; : : : ; K � 1, corresponding, say, to the pixel intensities of a measured image.
In this case, equation (19.5.8) is still the one we want to solve.

In image processing, it is usual to have the same number of input pixels in a
measured “raw” or “dirty” image as desired “clean” pixels in the processed output
image, so the matrices R and A (equation 19.5.5) are square and of sizeMK �MK.
A is typically too large to represent as a full matrix, but often it is either (i) sparse,
with coefficients blurring an underlying pixel .i; j / only into measurements .i ˙
few; j ˙ few/, or (ii) translationally invariant, so that A.i;j /.�;�/ D A.i ��; j � 
/.
Both of these situations lead to tractable problems.

In the case of translational invariance, fast Fourier transforms (FFTs) are the ob-
vious method of choice. The general linear relation between underlying function and
measured values (19.4.7) now becomes a discrete convolution like equation (13.1.1).
If k denotes a two-dimensional wave vector, then the two-dimensional FFT takes us
back and forth between the transform pairs

A.i � �; j � 
/ ” zA.k/ b.i;j / ” zb.k/ yu.i;j / ” zu.k/
(19.5.17)

We also need a regularization or smoothing operator B and the derived H D BT 	 B.
One popular choice for B is the five-point finite difference approximation of the
Laplacian operator, that is, the difference between the value of each point and the
average of its four Cartesian neighbors. In Fourier space, this choice implies

zB.k/ / sin2.	k1=M/ sin2.	k2=K/

zH.k/ / sin4.	k1=M/ sin4.	k2=K/
(19.5.18)

In Fourier space, equation (19.5.7) is merely algebraic, with solution

zu.k/ D
zA�.k/zb.k/

j zA.k/j2 C � zH.k/
(19.5.19)

where the asterisk denotes complex conjugation. You can make use of the FFT
routines for real data in �12.6.

Turn now to the case where A is not translationally invariant. Direct solution of
(19.5.8) is now hopeless, since the matrix A is just too large. We need some kind of
iterative scheme.
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One way to proceed is to use the full machinery of the conjugate gradient
method in �10.8 to find the minimum of A C �B, equation (19.5.6). Of the var-
ious methods in Chapter 10, the conjugate gradient is the unique best choice because
(i) it does not require storage of a Hessian matrix, which would be infeasible here,
and (ii) it does exploit gradient information, which we can readily compute: The
gradient of equation (19.5.6) is

r.AC �B/ D 2Œ.AT 	AC �H/ 	 yu �AT 	 b� (19.5.20)

(cf. 19.5.8). Evaluation of both the function and the gradient should of course take
advantage of the sparsity of A, for example using the methods ax and atx in the
NRsparseMat object in �2.7.5. We will discuss the conjugate gradient technique
further in �19.7, in the context of the (nonlinear) maximum entropy method. Some
of that discussion can apply here as well.

The conjugate gradient method notwithstanding, application of the unsophis-
ticated steepest descent method (see �10.8) can sometimes produce useful results,
particularly when combined with projections onto convex sets (see below). If the
solution after k iterations is denoted yu.k/, then after k C 1 iterations we have

yu.kC1/ D Œ1 � �.AT 	AC �H/� 	 yu.k/ C �AT 	 b (19.5.21)

Here � is a parameter that dictates how far to move in the downhill gradient direction.
The method converges when � is small enough, in particular satisfying

0 < � <
2

max eigenvalue .AT 	AC �H/
(19.5.22)

There exist complicated schemes for finding optimal values or sequences for �,
see [7]; or, one can adopt an experimental approach, evaluating (19.5.6) to be sure
that downhill steps are in fact being taken.

In those image processing problems where the final measure of success is some-
what subjective (e.g., “how good does the picture look?”), iteration (19.5.21) some-
times produces significantly improved images long before convergence is achieved.
This probably accounts for much of its use, since its mathematical convergence is
extremely slow. In fact, (19.5.21) can be used with H D 0, in which case the solu-
tion is not regularized at all, and full convergence would be disastrous! This is called
Van Cittert’s method and goes back to the 1930s. A number of iterations the order of
103 is not uncommon [7].

19.5.2 Deterministic Constraints: Projections onto Convex
Sets

A set of possible underlying functions (or images) fyug is said to be convex if,
for any two elements yua and yub in the set, all the linearly interpolated combinations

.1 � 
/yua C 
yub 0 
 
 
 1 (19.5.23)

are also in the set. Many deterministic constraints that one might want to impose on
the solution yu to an inverse problem in fact define convex sets, for example:
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� positivity
� compact support (i.e., zero value outside of a certain region)
� known bounds (i.e., uL.x/ 
 yu.x/ 
 uU .x/ for specified functions uL and
uU ).

(In this last case, the bounds might be related to an initial estimate and its error bars,
e.g., yu0.x/ ˙ ��.x/, where � is of order 1 or 2.) Notice that these, and similar,
constraints can be either in the image space, or in the Fourier transform space, or (in
fact) in the space of any linear transformation of yu.

If Ci is a convex set, then Pi is called a nonexpansive projection operator onto
that set if (i) Pi leaves unchanged any yu already in Ci , and (ii) Pi maps any yu outside
Ci to the closest element of Ci , in the sense that

jPi yu � yuj 
 jyua � yuj for all yua in Ci (19.5.24)

While this definition sounds complicated, examples are very simple: A nonexpansive
projection onto the set of positive yu’s is “set all negative components of yu equal
to zero.” A nonexpansive projection onto the set of yu.x/’s bounded by uL.x/ 

yu.x/ 
 uU .x/ is “set all values less than the lower bound equal to that bound, and
set all values greater than the upper bound equal to that bound.” A nonexpansive
projection onto functions with compact support is “zero the values outside of the
region of support.”

The usefulness of these definitions is the following remarkable theorem: Let C
be the intersection of m convex sets C1; C2; : : : ; Cm. Then the iteration

yu.kC1/ D .P1P2 	 	 	Pm/yu
.k/ (19.5.25)

will converge to C from all starting points, as k ! 1. Also, if C is empty (there
is no intersection), then the iteration will have no limit point. Application of this
theorem is called the method of projections onto convex sets or sometimes POCS [7].

A generalization of the POCS theorem is that the Pi ’s can be replaced by a set
of Ti ’s,

Ti � 1C ˇi .Pi � 1/ 0 < ˇi < 2 (19.5.26)

A well-chosen set of ˇi ’s can accelerate the convergence to the intersection set C .
Some inverse problems can be completely solved by iteration (19.5.25) alone!

For example, a problem that occurs in both astronomical imaging and X-ray diffrac-
tion work is to recover an image given only the modulus of its Fourier transform
(equivalent to its power spectrum or autocorrelation) and not the phase. Here two
convex sets can be utilized: the set of all positive images, and the set of all images
with zero intensity outside of some specified region. A third set, the set of all images
whose Fourier transform has the specified modulus to within specified error bounds,
is not convex: It is an annulus in the complex plane for each Fourier component. (Of
course FFTs are used to get in and out of Fourier space each time the Fourier con-
straint is imposed.) The POCS iteration (19.5.25) that cycles among all three sets,
imposing each constraint in turn, is thus not guaranteed (by the POCS theorem) to
converge; it can get stuck in traps [8]. However, it often does work.

The specific application of POCS to constraints (not necessarily all convex)
alternately in the spatial and Fourier domains is known as the Gerchberg-Saxton
algorithm [9]. While this algorithm is nonexpansive, and is frequently convergent
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in practice, it does not converge in all cases [8,10]. In the phase-retrieval problem
just mentioned, the algorithm often gets stuck in traps for many iterations. After
as many as 104 to 105 iterations, sudden, dramatic improvements may occur. In
principle, some traps may be permanent, requiring more interventional “unsticking”
procedures; see [8,11]. The uniqueness of the solution is also not well understood,
although for two-dimensional images of reasonable complexity it is believed to be
unique. The use of nonconvex sets in an iteration like (19.5.25) is called the method
of generalized projections.

Deterministic constraints can be incorporated, via projection operators, into it-
erative methods of linear regularization. In particular, rearranging terms somewhat,
we can write the iteration (19.5.21) as

yu.kC1/ D .1 � ��H/ 	 yu.k/ C �AT 	 .b �A 	 yu.k// (19.5.27)

If the iteration is modified by the insertion of projection operators at each step

yu.kC1/ D .P1P2 	 	 	Pm/Œ.1 � ��H/ 	 yu
.k/
C �AT 	 .b �A 	 yu.k//� (19.5.28)

(or, instead of Pi ’s, the Ti operators of equation 19.5.26), then it can be shown that
the convergence condition (19.5.22) is unmodified, and the iteration will converge to
minimize the quadratic functional (19.5.6) subject to the desired nonlinear determin-
istic constraints. See [7] for references to more sophisticated, and faster converging,
iterations along these lines.
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19.6 Backus-Gilbert Method

The Backus-Gilbert method [1,2], also known as the optimally localized aver-
age (OLA) method (see, e.g., [3] or [4] for summaries) differs from other regulariza-
tion methods in the nature of its functionals A and B. For B, the method seeks
to maximize the stability of the solution yu.x/ rather than, in the first instance, its
smoothness. That is,

B � VarŒyu.x/� (19.6.1)

is used as a measure of how much the solution yu.x/ varies as the data vary within
their measurement errors. Note that this variance is not the expected deviation of
yu.x/ from the true u.x/ — that will be constrained by A — but rather measures
the expected experiment-to-experiment scatter among estimates yu.x/ if the whole
experiment were to be repeated many times.

For A the Backus-Gilbert method looks at the relationship between the solution
yu.x/ and the true function u.x/, and seeks to make the mapping between these as
close to the identity map as possible in the limit of error-free data. The method is
linear, so the relationship between yu.x/ and u.x/ can be written as

yu.x/ D

Z
yı.x; x0/u.x0/dx0 (19.6.2)

for some so-called resolution function or averaging kernel yı.x; x0/. The Backus-
Gilbert method seeks to minimize the width or spread of yı (that is, maximize the
resolving power). A is chosen to be some positive measure of the spread.

While Backus-Gilbert’s philosophy is thus rather different from that of Phillips-
Twomey and related methods, in practice the differences between the methods are
less than one might think. A stable solution is almost inevitably bound to be smooth:
The wild, unstable oscillations that result from an unregularized solution are always
exquisitely sensitive to small changes in the data. Likewise, making yu.x/ close
to u.x/ inevitably will bring error-free data into agreement with the model. Thus
A and B play roles closely analogous to their corresponding roles in the previous
two sections.

The principal advantage of the Backus-Gilbert formulation is that it gives good
control over just those properties that it seeks to measure, namely stability and re-
solving power. Moreover, in the Backus-Gilbert method, the choice of � (playing its
usual role of compromise between A and B) is conventionally made, or at least can
easily be made, before any actual data are processed. One’s uneasiness at making a
post hoc, and therefore potentially subjectively biased, choice of � is thus removed.
Backus-Gilbert is often recommended as the method of choice for designing and
predicting the performance of experiments that require data inversion.

Let’s see how this all works. Starting with equation (19.4.5),

ci � si C ni D

Z
ri .x/u.x/dx C ni (19.6.3)

and building in linearity from the start, we seek a set of inverse response kernels
qi .x/ such that

yu.x/ D
X
i

qi .x/ci (19.6.4)
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is the desired estimator of u.x/. It is useful to define the integrals of the response
kernels for each data point,

Ri �

Z
ri .x/dx (19.6.5)

Substituting equation (19.6.4) into equation (19.6.3), and comparing with equation
(19.6.2), we see that

yı.x; x0/ D
X
i

qi .x/ri .x
0/ (19.6.6)

We can require this averaging kernel to have unit area at every x, giving

1 D

Z
yı.x; x0/dx0 D

X
i

qi .x/

Z
ri .x

0/dx0 D
X
i

qi .x/Ri � q.x/ 	R (19.6.7)

where q.x/ and R are each vectors of length N , the number of measurements.
Standard propagation of errors, and equation (19.6.1), give

B D VarŒyu.x/� D
X
i

X
j

qi .x/Sij qj .x/ D q.x/ 	 S 	 q.x/ (19.6.8)

where Sij is the covariance matrix (equation 19.4.6). If one can neglect off-diagonal
covariances (as when the errors on the ci ’s are independent), then Sij D ıij�

2
i

is diagonal.
We now need to define a measure of the width or spread of yı.x; x0/ at each

value of x. While many choices are possible, Backus and Gilbert choose the second
moment of its square. This measure becomes the functional A,

A � w.x/ D

Z
.x0 � x/2Œyı.x; x0/�2dx0

D
X
i

X
j

qi .x/Wij .x/qj .x/ � q.x/ 	W .x/ 	 q.x/
(19.6.9)

where we have here used equation (19.6.6) and defined the spread matrix W .x/ by

Wij .x/ �

Z
.x0 � x/2ri .x

0/rj .x
0/dx0 (19.6.10)

The functions qi .x/ are now determined by the minimization principle

minimize: AC �B D q.x/ 	
�
W .x/C �S

	
	 q.x/ (19.6.11)

subject to the constraint (19.6.7) that q.x/ 	R D 1.
The solution of equation (19.6.11) is

q.x/ D
ŒW .x/C �S��1 	R

R 	 ŒW .x/C �S��1 	R
(19.6.12)

(Reference [4] gives an accessible proof.) For any particular data set c (set of mea-
surements ci ), the solution yu.x/ is thus

yu.x/ D
c 	 ŒW .x/C �S��1 	R

R 	 ŒW .x/C �S��1 	R
(19.6.13)
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(Don’t let this notation mislead you into inverting the full matrix W .x/C �S. You
only need to solve the linear system .W .x/C�S/ 	 y D R for the vector y , and then
substitute y into both the numerators and denominators of 19.6.12 or 19.6.13.)

Equations (19.6.12) and (19.6.13) have a completely different character from
the linearly regularized solutions to (19.5.7) and (19.5.8). The vectors and matrices in
(19.6.12) all have sizeN , the number of measurements. There is no discretization of
the underlying variable x, soM does not come into play at all. One solves a different
N � N set of linear equations for each desired value of x. By contrast, in (19.5.8),
one solves anM �M linear set, but only once. In general, the computational burden
of repeatedly solving linear systems makes the Backus-Gilbert method unsuitable
for other than one-dimensional problems.

How does one choose � within the Backus-Gilbert scheme? As already men-
tioned, you can (in some cases should) make the choice before you see any actual
data. For a given trial value of �, and for a sequence of x’s, use equation (19.6.12) to
calculate q.x/; then use equation (19.6.6) to plot the resolution functions yı.x; x0/ as
a function of x0. These plots will exhibit the amplitude with which different under-
lying values x0 contribute to the point yu.x/ of your estimate. For the same value of
�, also plot the function

p
VarŒyu.x/� using equation (19.6.8). (You need an estimate

of your measurement covariance matrix for this.)
As you change � you will see very explicitly the trade-off between resolution

and stability. Pick the value that meets your needs. You can even choose � to be a
function of x, � D �.x/, in equations (19.6.12) and (19.6.13), should you desire to
do so. (This is one benefit of solving a separate set of equations for each x.) For
the chosen value or values of �, you now have a quantitative understanding of your
inverse solution procedure. This can prove invaluable if — once you are processing
real data — you need to judge whether a particular feature, a spike or jump for
example, is genuine, and/or is actually resolved. The Backus-Gilbert method has
found particular success among geophysicists, who use it to obtain information about
the structure of the Earth (e.g., density run with depth) from seismic travel time data.

CITED REFERENCES AND FURTHER READING:

Backus, G.E., and Gilbert, F. 1968, “The Resolving Power of Gross Earth Data,” Geophysical
Journal of the Royal Astronomical Society, vol. 16, pp. 169–205.[1]

Backus, G.E., and Gilbert, F. 1970, “Uniqueness in the Inversion of Inaccurate Gross Earth Data,”
Philosophical Transactions of the Royal Society of London A, vol. 266, pp. 123–192.[2]

Parker, R.L. 1977, “Understanding Inverse Theory,” Annual Review of Earth and Planetary Sci-
ence, vol. 5, pp. 35–64.[3]

Loredo, T.J., and Epstein, R.I. 1989, “Analyzing Gamma-Ray Burst Spectral Data,” Astrophysical
Journal, vol. 336, pp. 896–919.[4]

19.7 Maximum Entropy Image Restoration

We must first comment in passing that the connection between maximum en-
tropy inverse methods, considered here, and maximum entropy spectral estimation,
discussed in �13.7, is rather distant. For practical purposes, the two techniques,
though both named maximum entropy method or MEM, are unrelated. On the other
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hand, what we discuss here has a close connection to the discussion of entropy
in �14.7.

The entropy of a physical system in some macroscopic state, usually denoted S ,
is the logarithm of the number of microscopically distinct configurations that all have
the same macroscopic observables (i.e., consistent with the observed macroscopic
state). Actually, we will find it useful to denote the negative of the entropy, also called
the negentropy, by H � �S (a notation that goes back to Boltzmann). In situations
where there is reason to believe that the a priori probabilities of the microscopic
configurations are all the same (these situations are called ergodic), the Bayesian
prior P.ujI / for a macroscopic state with entropy S is proportional to exp.S/ or
exp.�H/.

MEM uses this concept to assign a prior probability to any given underly-
ing function u. This very general idea is applicable to much more than image
restoration [1,2]. For definiteness, however, we consider that application only. Sup-
pose [3-5] that the measurement of luminance in each pixel in an image is quantized
to (in some units) an integer value. Let

U D

M�1X
�D0

u� (19.7.1)

be the total number of luminance quanta in the whole image. Then we can base our
“prior” on the notion that each luminance quantum has an equal a priori chance of
being in any pixel. (See [6] for a more abstract justification of this idea.) The number
of ways of getting a particular configuration u is

U Š

u0Šu1Š 	 	 	uM�1Š
/ exp

"
�
X
�

u� ln.u�=U /C 1
2

�
lnU �

X
�

lnu�

�#
(19.7.2)

Here the left side can be understood as the number of distinct orderings of all the lu-
minance quanta, divided by the numbers of equivalent reorderings within each pixel,
while the right side follows by Stirling’s approximation to the factorial function. Tak-
ing the negative of the logarithm, and neglecting terms of order logU in the presence
of terms of order U , we get the negentropy

H.u/ D

M�1X
�D0

u� ln.u�=U / (19.7.3)

As discussed for equations (19.4.13) – (19.4.15), we now seek to maximize

P.ujc; I / / exp

�
�1
2
�2
�

expŒ�H.u/� (19.7.4)

or, equivalently,

minimize: � ln Œ P.ujc; I / � D 1
2
�2Œu�CH.u/ D 1

2
�2Œu�C

M�1X
�D0

u� ln.u�=U /

(19.7.5)
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This ought to remind you of equation (19.4.11), or equation (19.5.6), or in fact any of
our previous minimization principles along the lines of AC�B, where �B D H.u/
is a regularizing operator. Where is �? We need to put it in for exactly the reason
discussed following equation (19.4.11): Degenerate inversions are likely to be able to
achieve unrealistically small values of �2. We need an adjustable parameter to bring
�2 into its expected narrow statistical range of N ˙ .2N /1=2. The discussion at the
beginning of �19.4 showed that it makes no difference which term we attach the �
to. For consistency in notation, we absorb a factor 2 into � and put it on the entropy
term. (Another way to see the necessity of an undetermined � factor is to note that it
is necessary if our minimization principle is to be invariant under changing the units
in which u is quantized, e.g., if an 8-bit analog-to-digital converter is replaced by a
12-bit one.) We can now also put “hats” back to indicate that this is the procedure
for obtaining our chosen statistical estimator:

yu minimizes: AC �B D �2Œu�C �H.u/ D �2Œu�C �

M�1X
�D0

u� ln.u�/ (19.7.6)

(Formally, we might also add a second Lagrange multiplier �0U , to constrain the
total intensity U to be constant.)

It is not hard to see that the negentropy,H.u/, is in fact a regularizing operator,
similar to u 	 u (equation 19.4.11) or u 	H 	 u (equation 19.5.6). The following of its
properties are noteworthy:

1. When U is held constant, H.u/ is minimized for yu� D U=M D constant,
so it smooths in the sense of trying to achieve a constant solution, similar to
equation (19.5.4). The fact that the constant solution is a minimum follows
from the fact that the second derivative of u lnu is positive.

2. Unlike equation (19.5.4), however, H.yu/ is local, in the sense that it does not
difference neighboring pixels. It simply sums some function f , here

f .u/ D u lnu (19.7.7)

over all pixels; it is invariant, in fact, under a complete scrambling of the pixels
in an image. This form implies that H.u/ is not seriously increased by the
occurrence of a small number of very bright pixels (point sources) embedded
in a low-intensity smooth background.

3. H.u/ goes to infinite slope as any one pixel goes to zero. This causes it to en-
force positivity of the image, without the necessity of additional deterministic
constraints.

4. The biggest difference betweenH.u/ and the other regularizing operators that
we have met is that H.u/ is not a quadratic functional of u, so the equations
obtained by varying equation (19.7.6) are nonlinear. This fact is itself worthy
of some additional discussion.

Nonlinear equations are harder to solve than linear equations. For image pro-
cessing, however, the large number of equations usually dictates an iterative solution
procedure, even for linear equations, so the practical effect of the nonlinearity is
somewhat mitigated. Below, we will summarize some of the methods that are suc-
cessfully used for MEM inverse problems.

For some problems, notably the problem in radio-astronomy of image recovery
from an incomplete set of Fourier coefficients, the superior performance of MEM
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inversion can be, in part, traced to the nonlinearity of H.u/. One way to see this [3]

is to consider the limit of perfect measurements �i ! 0. In this case, the �2 term in
the minimization principle (19.7.6) gets replaced by a set of constraints, each with
its own Lagrange multiplier, requiring agreement between model and data; that is,

yu minimizes:
X
j

�j

�
cj �

X
�

Rj�u�

�
CH.u/ (19.7.8)

(cf. equation 19.4.7). Setting the formal derivative with respect to u� to zero gives

@H

@u�
D f 0.u�/ D

X
j

�jRj� (19.7.9)

or defining a function G as the inverse function of f 0,

u� D G

�X
j

�jRj�

�
(19.7.10)

This solution is only formal, since the �j ’s must be found by requiring that equation
(19.7.10) satisfy all the constraints built into equation (19.7.8). However, equation
(19.7.10) does show the crucial fact that if G is linear, then the solution yu contains
only a linear combination of basis functions Rj� corresponding to actual measure-
ments j . This is equivalent to setting unmeasured cj ’s to zero. Notice that the
principal solution obtained from equation (19.4.11) in fact has a linear G.

In the problem of incomplete Fourier image reconstruction, the typical Rj� has
the form exp.�2	ikj 	 x�/, where x� is a two-dimensional vector in the image
space and k� is a two-dimensional wave vector. If an image contains strong point
sources, then the effect of setting unmeasured cj ’s to zero is to produce sidelobe
ripples throughout the image plane. These ripples can mask any actual extended,
low-intensity image features lying between the point sources. If, however, the slope
of G is smaller for small values of its argument and larger for large values, then
ripples in low-intensity portions of the image are relatively suppressed, while strong
point sources will be relatively sharpened (“superresolution”). This behavior on the
slope of G is equivalent to requiring f 000.u/ < 0. For f .u/ D u lnu, we in fact have
f 000.u/ D �1=u2 < 0.

In more picturesque language, the nonlinearity acts to “create” nonzero values
for the unmeasured ci ’s, so as to suppress the low-intensity ripple and sharpen the
point sources.

19.7.1 Is MEM Really Magical?
How unique is the negentropy functional (19.7.3)? Recall that that equation is

based on the assumption that luminance elements are a priori distributed over the
pixels uniformly. If we instead had some other preferred a priori image in mind, one
with pixel intensities m�, then it is easy to show that the negentropy becomes

H.u/ D

M�1X
�D0

u� ln.u�=m�/C constant (19.7.11)
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(the constant can then be ignored). All the rest of the discussion then goes through.
More fundamentally, and despite statements by zealots to the contrary [5], there

is actually nothing universal about the functional form f .u/ D u lnu. In some
other physical situations (for example, the entropy of an electromagnetic field in the
limit of many photons per mode, as in radio-astronomy) the physical negentropy
functional is actually f .u/ D � lnu (see [3] for other examples). In general, the
question, “Entropy of what?” is not uniquely answerable in any particular situation.
(See reference [7] for an attempt at articulating a more general principle that reduces
to one or another entropy functional under appropriate circumstances.)

The four numbered properties summarized above, plus the desirable sign for
nonlinearity, f 000.u/ < 0, are all as true for the function f .u/ D � lnu as for
f .u/ D u lnu. In fact, these properties are shared by a nonlinear function as simple
as f .u/ D �

p
u, which has no information-theoretic justification at all (no loga-

rithms!). MEM reconstructions of test images using any of these entropy forms are
virtually indistinguishable [3].

By all available evidence, MEM seems to be neither more nor less than one
usefully nonlinear version of the general regularization scheme AC�B that we have
by now considered in many forms. Its peculiarities become strengths when applied
to the reconstruction from incomplete Fourier data of images that are expected to
be dominated by very bright point sources, but which also contain interesting low-
intensity, extended sources. For images of some other character, there is no reason to
suppose that MEM methods will generally dominate other regularization schemes,
either ones already known or yet to be invented.

19.7.2 Algorithms for MEM
The goal is to find the vector yu that minimizes AC �B where in the notation

of equations (19.5.5), (19.5.6), and (19.7.7),

A D jb �A 	 uj2 B D
X
�

f .u�/ (19.7.12)

Compared with a “general” minimization problem, we have the advantage that we
can compute the gradients and the second partial derivative matrices (Hessian matri-
ces) explicitly,

rA D 2.AT 	A 	 u �AT 	 b/
@2A

@u�@u�
D Œ2AT 	A���

ŒrB�� D f
0.u�/

@2B

@u�@u�
D ı��f

00.u�/

(19.7.13)

It is important to note that while A’s second partial derivative matrix cannot be stored
(its size is the square of the number of pixels), it can be applied to any vector by first
applying A, then AT . In the case of reconstruction from incomplete Fourier data,
or in the case of convolution with a translation invariant point spread function, these
applications will typically involve several FFTs. Likewise, the calculation of the
gradient rA will involve FFTs in the application of A and AT .

While some success has been achieved with the classical conjugate gradient
method (�10.8), it is often found that the nonlinearity in f .u/ D u lnu causes prob-
lems. Attempted steps that give u with even one negative value must be cut in mag-
nitude, sometimes so severely as to slow the solution to a crawl. The underlying
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problem is that the conjugate gradient method develops its information about the in-
verse of the Hessian matrix a bit at a time, while changing its location in the search
space. When a nonlinear function is quite different from a pure quadratic form, the
old information becomes obsolete before it gets usefully exploited.

Skilling and collaborators [4,5,8,9] developed a complicated but highly success-
ful scheme, wherein a minimum is repeatedly sought not along a single search di-
rection, but in a small- (typically three-) dimensional subspace, spanned by vectors
that are calculated anew at each landing point. The subspace basis vectors are cho-
sen in such a way as to avoid directions leading to negative values. One of the most
successful choices is the three-dimensional subspace spanned by the vectors with
components given by

e.1/� D u�ŒrA��

e.2/� D u�ŒrB��

e.3/� D
u�
P
�.@

2A=@u�@u�/u�ŒrB��qP
� u�

�
ŒrB��


2 �
u�
P
�.@

2A=@u�@u�/u�ŒrA��qP
� u�

�
ŒrA��


2
(19.7.14)

(In these equations there is no sum over �.) The form of the e.3/ has some justifica-
tion if one views dot products as occurring in a space with the metric g�� D ı��=u�,
chosen to make zero values “far away”; see [4].

Within the three-dimensional subspace, the three-component gradient and nine-
component Hessian matrix are computed by projection from the large space, and
the minimum in the subspace is estimated by (trivially) solving three simultaneous
linear equations, as in �10.9, equation (10.9.4). The size of a step �u is required to
be limited by the inequalityX

�

.�u�/
2=u� < .0:1 to 0:5/U (19.7.15)

Because the gradient directions rA and rB are separately available, it is possible
to combine the minimum search with a simultaneous adjustment of � so as finally to
satisfy the desired constraint. There are various further tricks employed.

A less general, but in practice often equally satisfactory, approach is due to
Cornwell and Evans [10]. Here, noting that B’s Hessian (second partial derivative)
matrix is diagonal, one asks whether there is a useful diagonal approximation to
A’s Hessian, namely 2AT 	 A. If ƒ� denotes the diagonal components of such an
approximation, then a useful step in u would be

�u� D �
1

ƒ� C �f 00.u�/
.rAC �rB/ (19.7.16)

(again compare equation 10.9.4). Even more extreme, one might seek an approxi-
mation with constant diagonal elements, ƒ� D ƒ, so that

�u� D �
1

ƒC �f 00.u�/
.rAC �rB/ (19.7.17)

Since AT 	 A has something of the nature of a doubly convolved point spread
function, and since in real cases one often has a point spread function with a sharp
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central peak, even the more extreme of these approximations is often fruitful. One
starts with a rough estimate of ƒ obtained from the Ai�’s, e.g.,

ƒ �

�X
i

ŒAi��
2

�
(19.7.18)

An accurate value is not important, since in practice ƒ is adjusted adaptively: If ƒ
is too large, then equation (19.7.17)’s steps will be too small (that is, larger steps
in the same direction will produce even greater decrease in A C �B). If ƒ is too
small, then attempted steps will land in an unfeasible region (negative values of u�)
or will result in an increased A C �B. There is an obvious similarity between the
adjustment of ƒ here and the Levenberg-Marquardt method of �15.5; this should
not be too surprising, since MEM is closely akin to the problem of nonlinear least-
squares fitting. Reference [10] also discusses how the value of ƒC �f 00.u�/ can be
used to adjust the Lagrange multiplier � so as to converge to the desired value of �2.

All practical MEM algorithms are found to require on the order of 30 to 50
iterations to converge. This convergence behavior is not now understood in any
fundamental way.

19.7.3 “Bayesian” versus “Historic” Maximum Entropy
Several generalizations of the basic maximum entropy image restoration tech-

nique go under the rubric “Bayesian” to distinguish them from the previous “his-
toric” methods. See [11] for details and references. (Our view, of course, is that all
the methods are about equally Bayesian, as discussed in �19.4.)

� Better priors: We already noted that the entropy functional (equation 19.7.7)
is invariant under scrambling all pixels and has no notion of smoothness. The
so-called “intrinsic correlation function” (ICF) model (reference [11], where it
is called “New MaxEnt”) is similar enough to the entropy functional to allow
similar algorithms, but it makes the values of neighboring pixels correlated,
enforcing smoothness.
� Better estimation of �: Above we chose � to bring �2 into its expected narrow

statistical range of N ˙ .2N /1=2. This in effect overestimates �2, however,
since some effective number � of parameters are being “fitted” in doing the
reconstruction. A Bayesian approach leads to a self-consistent estimate of this
� and an objectively better choice for �.
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Partial Differential
Equations

CHAPTER 20

20.0 Introduction
The numerical treatment of partial differential equations (PDEs) is, by itself,

a vast subject. Partial differential equations are at the heart of many, if not most,
computer analyses or simulations of continuous physical systems, such as fluids,
electromagnetic fields, the human body, and so on. The intent of this chapter is to
give the briefest possible useful introduction. Ideally, there would be an entire second
volume of Numerical Recipes dealing with partial differential equations alone. (The
references [1-4] provide, of course, available alternatives.)

Mathematicians like to classify the partial differential equations that typically
occur in applications into three categories, hyperbolic, parabolic, and elliptic, on the
basis of their characteristics, or curves of information propagation. The prototypical
example of a hyperbolic equation is the one-dimensional wave equation

@2u

@t2
D v2

@2u

@x2
(20.0.1)

where v D constant is the velocity of wave propagation. The prototypical parabolic
equation is the diffusion equation

@u

@t
D

@

@x

�
D
@u

@x

�
(20.0.2)

whereD is the diffusion coefficient. The prototypical elliptic equation is the Poisson
equation

@2u

@x2
C
@2u

@y2
D �.x; y/ (20.0.3)

where the source term � is given. If the source term is equal to zero, the equation is
Laplace’s equation.

From a computational point of view, the classification into these three canonical
types is not very meaningful — or at least not as important as some other essential
distinctions. Equations (20.0.1) and (20.0.2) both define initial value or Cauchy
problems: If information on u (perhaps including time derivative information) is
given at some initial time t0 for all x, then the equations describe how u.x; t/ propa-
gates itself forward in time. In other words, equations (20.0.1) and (20.0.2) describe

1024
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Figure 20.0.1. Initial value problem (a) and boundary value problem (b) are contrasted. In (a), initial
values are given on one “time slice,” and it is desired to advance the solution in time, computing successive
rows of open dots in the direction shown by the arrows. Boundary conditions at the left and right edges of
each row (˝) must also be supplied, but only one row at a time. Only one, or a few, previous rows need
be maintained in memory. In (b), boundary values are specified around the edge of a grid, and an iterative
process is employed to find the values of all the internal points (open circles). All grid points must be
maintained in memory.

time evolution. The goal of a numerical code should be to track that time evolution
with some desired accuracy.

By contrast, equation (20.0.3) directs us to find a single “static” function u.x; y/
that satisfies the equation within some .x; y/ region of interest, and that — one must
also specify — has some desired behavior on the boundary of the region of interest.
These problems are called boundary value problems (see Figure 20.0.1). In general
it is not possible stably to just “integrate in from the boundary” in the same sense
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that an initial value problem can be “integrated forward in time.” Therefore, the goal
of a numerical code is somehow to converge on the correct solution everywhere at
once.

This, then, is the most important classification from a computational point of
view: Is the problem at hand an initial value (time evolution) problem? or is it a
boundary value (static solution) problem? Figure 20.0.1 emphasizes the distinction.
Notice that while the italicized terminology is standard, the terminology in parenthe-
ses is a much better description of the dichotomy from a computational perspective.
The subclassification of initial value problems into parabolic and hyperbolic is much
less important because (i) many actual problems are of a mixed type, and (ii) as we
will see, most hyperbolic problems get parabolic pieces mixed into them by the time
one is discussing practical computational schemes.

20.0.1 Initial Value Problems
An initial value problem is defined by answers to the following questions:

� What are the dependent variables to be propagated forward in time?
� What is the evolution equation for each variable? Usually the evolution equa-

tions will all be coupled, with more than one dependent variable appearing on
the right-hand side of each equation.
� What is the highest time derivative that occurs in each variable’s evolution

equation? If possible, this time derivative should be put alone on the equation’s
left-hand side. Not only the value of a variable, but also the value of all its
time derivatives — up to the highest one — must be specified to define the
evolution.
� What special equations (boundary conditions) govern the evolution in time of

points on the boundary of the spatial region of interest? Examples: Dirichlet
conditions specify the values of the boundary points as a function of time; Neu-
mann conditions specify the values of the normal gradients on the boundary;
outgoing wave boundary conditions are just what they say.

Sections 20.1 – 20.3 of this chapter deal with initial value problems of several
different forms. We make no pretense of completeness, but rather hope to convey a
certain amount of generalizable information through a few carefully chosen model
examples. These examples will illustrate an important point: One’s principal compu-
tational concern must be the stability of the algorithm. Many reasonable-looking al-
gorithms for initial value problems just don’t work — they are numerically unstable.

20.0.2 Boundary Value Problems
The questions that define a boundary value problem are

� What are the variables?
� What equations are satisfied in the interior of the region of interest?
� What equations are satisfied by points on the boundary of the region of inter-

est? (Here Dirichlet and Neumann conditions are possible choices for elliptic
second-order equations, but more complicated boundary conditions can also
be encountered.)

In contrast to initial value problems, stability is relatively easy to achieve for
boundary value problems. Thus, the efficiency of the algorithms, both in computa-
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tional load and storage requirements, becomes the principal concern.
Because all the conditions on a boundary value problem must be satisfied “si-

multaneously,” these problems usually boil down, at least conceptually, to the so-
lution of large numbers of simultaneous algebraic equations. When such equations
are nonlinear, they are usually solved by linearization and iteration; so without much
loss of generality we can view the problem as being the solution of special, large
linear sets of equations.

As an example, one that we will refer to in �20.4 – �20.6 as our “model prob-
lem,” let us consider the solution of equation (20.0.3) by the finite difference method.
We represent the function u.x; y/ by its values at the discrete set of points

xj D x0 C j�; j D 0; 1; :::; J

yl D y0 C l�; l D 0; 1; :::; L
(20.0.4)

where � is the grid spacing. From now on, we will write uj;l for u.xj ; yl / and �j;l
for �.xj ; yl /. For (20.0.3) we substitute a finite difference representation (see Figure
20.0.2),

ujC1;l � 2uj;l C uj�1;l

�2
C
uj;lC1 � 2uj;l C uj;l�1

�2
D �j;l (20.0.5)

or, equivalently,

ujC1;l C uj�1;l C uj;lC1 C uj;l�1 � 4uj;l D �
2�j;l (20.0.6)

To write this system of linear equations in matrix form we need to make a
vector out of u. Let us number the two dimensions of grid points in a single one-
dimensional sequence by defining

i � j.LC 1/C l for j D 0; 1; :::; J; l D 0; 1; :::; L (20.0.7)

In other words, i increases most rapidly along the columns representing y values.
Equation (20.0.6) now becomes

uiCLC1 C ui�.LC1/ C uiC1 C ui�1 � 4ui D �
2�i (20.0.8)

This equation holds only at the interior points j D 1; 2; :::; J �1I l D 1; 2; :::; L�1.
The points where

j D 0 Œi.e., i D 0; :::; L�

j D J Œi.e., i D J.LC 1/; :::; J.LC 1/C L�

l D 0 Œi.e., i D 0;LC 1; :::; J.LC 1/�

l D L Œi.e., i D L;LC 1C L; :::; J.LC 1/C L�

(20.0.9)

are boundary points where either u or its derivative has been specified. If we pull all
this “known” information over to the right-hand side of equation (20.0.8), then the
equation takes the form

A 	 u D b (20.0.10)
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yL

Δ

y1

y0
x0 xJx1 . . .

Δ

A

B

Figure 20.0.2. Finite difference representation of a second-order elliptic equation on a two-dimensional
grid. The second derivatives at the pointA are evaluated using the points to whichA is shown connected.
The second derivatives at point B are evaluated using the connected points and also using “right-hand
side” boundary information, shown schematically as˝.

where A has the form shown in Figure 20.0.3. The matrix A is called “tridiagonal
with fringes.” A general linear second-order elliptic equation

a.x; y/
@2u

@x2
C b.x; y/

@u

@x
C c.x; y/

@2u

@y2
C d.x; y/

@u

@y

C e.x; y/
@2u

@x@y
C f .x; y/u D g.x; y/

(20.0.11)

will lead to a matrix of similar structure except that the nonzero entries will not
be constants.

As a rough classification, there are three different approaches to the solution
of equation (20.0.10), not all applicable in all cases: relaxation methods, “rapid”
methods (e.g., Fourier methods), and direct matrix methods.

Relaxation methods make immediate use of the structure of the sparse matrix
A. The matrix is split into two parts,

A D E � F (20.0.12)
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Figure 20.0.3. Matrix structure derived from a second-order elliptic equation (here equation 20.0.6). All
elements not shown are zero. The matrix has diagonal blocks that are themselves tridiagonal, and sub-
and superdiagonal blocks that are diagonal. This form is called “tridiagonal with fringes.” A matrix this
sparse would never be stored in its full form as shown here.

where E is easily invertible and F is the remainder. Then (20.0.10) becomes

E 	 u D F 	 uC b (20.0.13)

The relaxation method involves choosing an initial guess u.0/ and then solving suc-
cessively for iterates u.r/ from

E 	 u.r/ D F 	 u.r�1/ C b (20.0.14)

Since E is chosen to be easily invertible, each iteration is fast. We will discuss
relaxation methods in some detail in �20.5 and �20.6.

So-called rapid methods [5] apply for only a rather special class of equations:
those with constant coefficients, or, more generally, those that are separable in the
chosen coordinates. In addition, the boundaries must coincide with coordinate lines.
This special class of equations is met quite often in practice. We defer detailed
discussion to �20.4. Note, however, that the multigrid relaxation methods discussed
in �20.6 can be faster than “rapid” methods.
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Matrix methods attempt to solve the equation

A 	 x D b (20.0.15)

directly. The degree to which this is practical depends very strongly on the exact
structure of the matrix A for the problem at hand, so our discussion can go no farther
than a few remarks and references at this point.

Sparseness of the matrix must be the guiding force. Otherwise the matrix prob-
lem becomes prohibitively large. For example, a problem on a 1000 � 1000 spatial
grid would involve 106 unknown uj;l ’s, implying a 106 � 106 matrix A contain-
ing 1012 elements. A non-sparse O.N 3/ solution method would require O.1018/
operations.

As we discussed at the end of �2.7, if A is symmetric and positive-definite (as
it usually is in elliptic problems), the conjugate gradient algorithm can be used. In
practice, rounding error often spoils the effectiveness of the conjugate gradient algo-
rithm for solving finite difference equations. However, it is useful when incorporated
in methods that first rewrite the equations so that A is transformed to a matrix A0

that is close to the identity matrix. The quadratic surface defined by the equations
then has almost spherical contours, and the conjugate gradient algorithm works very
well. In �2.7, in the routine linbcg, an analogous preconditioner was exploited for
non-positive-definite problems with the more general biconjugate gradient method.
There is a huge literature on the general subject of iterative methods to solve the
sparse equations that typically arise in solving PDEs. Good places to start are [6-8].

Another class of matrix methods is the analyze-factorize-operate approach as
described in �2.7.

Generally speaking, when you have the storage available to implement these
methods — not nearly as much as the 1012 above, but usually much more than is
required by relaxation methods — then you should consider doing so. Only multigrid
relaxation methods (�20.6) are competitive with the best matrix methods. For grids
larger than, say, 1000 � 1000, however, it is typically found that only relaxation
methods, or “rapid” methods when they are applicable, are possible.

20.0.3 There Is More to Life than Finite Differencing
Besides finite differencing, there are other methods for solving PDEs. Most

important are finite element, Monte Carlo, spectral, and variational methods. Unfor-
tunately, we shall barely be able to do justice to finite differencing in this chapter,
and we will give a brief introduction to spectral methods in �20.7. We shall not be
able to discuss the other methods in this book. Finite element methods [9-11] are
often preferred by practitioners in solid mechanics and structural engineering; these
methods allow considerable freedom in putting computational elements where you
want them, which is important when dealing with highly irregular geometries.
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20.1 Flux-Conservative Initial Value Problems

A large class of initial value (time-evolution) PDEs in one space dimension can
be cast into the form of a flux-conservative equation,

@u

@t
D �

@F.u/

@x
(20.1.1)

where u and F are vectors, and where (in some cases) F may depend not only on u
but also on spatial derivatives of u. The vector F is called the conserved flux.

For example, the prototypical hyperbolic equation, the one-dimensional wave
equation with constant velocity of propagation v,

@2u

@t2
D v2

@2u

@x2
(20.1.2)

can be rewritten as a set of two first-order equations:

@r

@t
D v

@s

@x
@s

@t
D v

@r

@x

(20.1.3)

where

r � v
@u

@x

s �
@u

@t

(20.1.4)

In this case, r and s become the two components of u, and the flux is given by the
linear matrix relation

F.u/ D

�
0 �v

�v 0

�
	 u (20.1.5)
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(The physicist reader may recognize equations 20.1.3 as analogous to Maxwell’s
equations for one-dimensional propagation of electromagnetic waves.)

We will consider, in this section, a prototypical example of the general flux-
conservative equation (20.1.1), namely the equation for a scalar u,

@u

@t
D �v

@u

@x
(20.1.6)

with v a constant. As it happens, we already know analytically that the general
solution of this equation is a wave propagating in the positive x-direction,

u D f .x � vt/ (20.1.7)

where f is an arbitrary function. However, the numerical strategies that we develop
will be equally applicable to the more general equations represented by (20.1.1). In
some contexts, equation (20.1.6) is called an advective equation, because the quantity
u is transported by a “fluid flow” with a velocity v.

How do we go about finite differencing equation (20.1.6) (or, analogously,
20.1.1)? The straightforward approach is to choose equally spaced points along both
the t - and x-axes. Thus denote

xj D x0 C j�x; j D 0; 1; : : : ; J

tn D t0 C n�t; n D 0; 1; : : : ; N
(20.1.8)

Let unj denote u.tn; xj /. We have several choices for representing the time
derivative term. The obvious way is to set

@u

@t

ˇ̌̌̌
j;n

D
unC1j � unj

�t
CO.�t/ (20.1.9)

This is called forward Euler differencing (cf. equation 17.1.1). While forward Euler
is only first-order accurate in �t , it has the advantage that one is able to calculate
quantities at timestep nC 1 in terms of only quantities known at timestep n. For the
space derivative, we can use a second-order representation still using only quantities
known at timestep n:

@u

@x

ˇ̌̌̌
j;n

D
unjC1 � u

n
j�1

2�x
CO.�x2/ (20.1.10)

The resulting finite difference approximation to equation (20.1.6) is called the FTCS
representation (forward time centered space),

unC1j � unj

�t
D �v

�
unjC1 � u

n
j�1

2�x

�
(20.1.11)

which can easily be rearranged to be a formula for unC1j in terms of the other quan-
tities. The FTCS scheme is illustrated in Figure 20.1.1. It’s a fine example of an
algorithm that is easy to derive, takes little storage, and executes quickly. Too bad it
doesn’t work! (See below.)

The FTCS representation is an explicit scheme. This means that unC1j for each
j can be calculated explicitly from the quantities that are already known. Later we
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t or n

x or j

FTCS

Figure 20.1.1. Representation of the forward time centered space (FTCS) differencing scheme. In this
and subsequent figures, the open circle is the new point at which the solution is desired; filled circles are
known points whose function values are used in calculating the new point; the solid lines connect points
that are used to calculate spatial derivatives; the dashed lines connect points that are used to calculate time
derivatives. The FTCS scheme is generally unstable for hyperbolic problems and cannot usually be used.

shall meet implicit schemes, which require us to solve implicit equations coupling the
unC1j for various j . (Explicit and implicit methods for ordinary differential equations
were discussed in �17.5.) The FTCS algorithm is also an example of a single-level
scheme, since only values at time level n have to be stored to find values at time level
nC 1.

20.1.1 von Neumann Stability Analysis
Unfortunately, equation (20.1.11) is of very limited usefulness. It is an unstable

method, which can be used only (if at all) to study waves for a short fraction of one
oscillation period. To find alternative methods with more general applicability, we
introduce the von Neumann stability analysis.

The von Neumann analysis is local: Imagine that the coefficients of the differ-
ence equations are so slowly varying as to be considered constant in space and time.
In that case, the independent solutions, or eigenmodes, of the difference equations
are all of the form

unj D �
neikj�x (20.1.12)

where k is a real spatial wave number (which can have any value) and � D �.k/

is a complex number that depends on k. The key fact is that the time dependence
of a single eigenmode is nothing more than successive integer powers of the com-
plex number �. Therefore, the difference equations are unstable (have exponentially
growing modes) if j�.k/j > 1 for some k. The number � is called the amplification
factor at a given wave number k.

To find �.k/, simply substitute (20.1.12) back into (20.1.11). Divide by �n to
get

�.k/ D 1 � i
v�t

�x
sin k�x (20.1.13)

whose modulus is > 1 for all k; so the FTCS scheme is unconditionally unstable.
If the velocity v were a function of t and x, then we would write vnj in equation

(20.1.11). In the von Neumann stability analysis we would still treat v as a constant,
the idea being that for v slowly varying the analysis is local. In fact, even in the case
of strictly constant v, the von Neumann analysis does not rigorously treat the end
effects at j D 0 and j D N .

More generally, if the equation’s right-hand side were nonlinear in u, then a
von Neumann analysis would linearize by writing u D u0C ıu, expanding to linear
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t or n

x or j

Lax

Figure 20.1.2. Representation of the Lax differencing scheme, as in the previous figure. The stability
criterion for this scheme is the Courant condition.

order in ıu. Assuming that the u0 quantities already satisfy the difference equation
exactly, the analysis would look for an unstable eigenmode of ıu.

Despite its lack of rigor, the von Neumann method generally gives valid an-
swers and is much easier to apply than more careful methods. We accordingly adopt
it exclusively. (See, for example, [1] for a discussion of other methods of stability
analysis.)

20.1.2 Lax Method
The instability in the FTCS method can be cured by a simple change due to Lax.

One replaces the term unj in the time derivative term by its average (Figure 20.1.2):

unj !
1
2

�
unjC1 C u

n
j�1



(20.1.14)

This turns (20.1.11) into

unC1j D
1

2

�
unjC1 C u

n
j�1



�
v�t

2�x

�
unjC1 � u

n
j�1



(20.1.15)

Substituting equation (20.1.12), we find for the amplification factor

� D cos k�x � i
v�t

�x
sin k�x (20.1.16)

The stability condition j�j2 
 1 leads to the requirement

jvj�t

�x

 1 (20.1.17)

This is the famous Courant-Friedrichs-Lewy stability criterion, often called sim-
ply the Courant condition. Intuitively, the stability condition can be understood as
follows (Figure 20.1.3): The quantity unC1j in equation (20.1.15) is computed from
information at points j � 1 and j C 1 at time n. In other words, xj�1 and xjC1
are the boundaries of the spatial region that is allowed to communicate informa-
tion to unC1j . Now recall that in the continuum wave equation, information actually

propagates with a maximum velocity v. If the point unC1j is outside of the shaded
region in Figure 20.1.3, then it requires information from points more distant than
the differencing scheme allows. Lack of that information gives rise to an instability.
Therefore, �t cannot be made too large.�

�Actually, this simple picture works only for hyperbolic equations with the order of the spatial differ-
encing not higher than the order of the PDE. In general, the stability analysis determines the eigenvalues of
a matrix. These eigenvalues correspond to the characteristic velocities of the difference scheme. Stability
requires that all these velocities be greater than or equal to the characteristic velocities of the PDE.
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t or n

Δt

x or j

Δt

ΔxΔx

unstablestable

(a) (b)

Figure 20.1.3. Courant condition for stability of a differencing scheme. The solution of a hyperbolic
problem at a point depends on information within some domain of dependency to the past, shown here
shaded. The differencing scheme (20.1.15) has its own domain of dependency determined by the choice
of points on one time slice (shown as connected solid dots) whose values are used in determining a new
point (shown connected by dashed lines). A differencing scheme is Courant stable if the differencing
domain of dependency is larger than that of the PDEs, as in (a), and unstable if the relationship is the
reverse, as in (b). For more complicated differencing schemes, the domain of dependency might not be
determined simply by the outermost points.

The surprising result, that the simple replacement (20.1.14) stabilizes the FTCS
scheme, is our first encounter with the fact that differencing PDEs is an art as much
as a science. To see if we can demystify the art somewhat, let us compare the FTCS
and Lax schemes by rewriting equation (20.1.15) so that it is in the form of equation
(20.1.11) with a remainder term:

unC1j � unj

�t
D �v

�
unjC1 � u

n
j�1

2�x

�
C
1

2

�
unjC1 � 2u

n
j C u

n
j�1

�t

�
(20.1.18)

But this is exactly the FTCS representation of the equation

@u

@t
D �v

@u

@x
C
.�x/2

2�t
r2u (20.1.19)

where r2 D @2=@x2 in one dimension. We have, in effect, added a diffusion term to
the equation, or, if you recall the form of the Navier-Stokes equation for viscous fluid
flow, a dissipative term. The Lax scheme is thus said to have numerical dissipation,
or numerical viscosity. We can see this also in the amplification factor. Unless jvj�t
is exactly equal to �x; j�j < 1 and the amplitude of the wave decreases spuriously.

Isn’t a spurious decrease as bad as a spurious increase? No. The scales that we
hope to study accurately are those that encompass many grid points, so that they have
k�x � 1. (The spatial wave number k is defined by equation 20.1.12.) For these
scales, the amplification factor can be seen to be very close to one, in both the stable
and unstable schemes. The stable and unstable schemes are therefore about equally
accurate. For the unstable scheme, however, short scales with k�x � 1, which we
are not interested in, will blow up and swamp the interesting part of the solution. It
is much better to have a stable scheme in which these short wavelengths die away
innocuously. Both the stable and the unstable schemes are inaccurate for these short
wavelengths, but the inaccuracy is of a tolerable character when the scheme is stable.
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When the independent variable u is a vector, the von Neumann analysis is
slightly more complicated. For example, we can consider equation (20.1.3), rewrit-
ten as

@

@t

�
r

s

�
D

@

@x

�
vs

vr

�
(20.1.20)

The Lax method for this equation is

rnC1j D
1

2
.rnjC1 C r

n
j�1/C

v�t

2�x
.snjC1 � s

n
j�1/

snC1j D
1

2
.snjC1 C s

n
j�1/C

v�t

2�x
.rnjC1 � r

n
j�1/

(20.1.21)

The von Neumann stability analysis now proceeds by assuming that the eigenmode
is of the following (vector) form:�

rnj
snj

�
D �neikj�x

�
r0

s0

�
(20.1.22)

Here the vector on the right-hand side is a constant (both in space and in time) eigen-
vector, and � is a complex number, as before. Substituting (20.1.22) into (20.1.21)
and dividing by the power �n, gives the homogeneous vector equation264.cos k�x/ � � i

v�t

�x
sin k�x

i
v�t

�x
sin k�x .cos k�x/ � �

375 	
264r0
s0

375 D
2640
0

375 (20.1.23)

This admits a solution only if the determinant of the matrix on the left vanishes, a
condition easily shown to yield the two roots �,

� D cos k�x ˙ i
v�t

�x
sin k�x (20.1.24)

The stability condition is that both roots satisfy j�j 
 1. This again turns out to be
simply the Courant condition (20.1.17).

20.1.3 Other Varieties of Error
Thus far we have been concerned with amplitude error, because of its intimate

connection with the stability or instability of a differencing scheme. Other varieties
of error are relevant when we shift our concern to accuracy, rather than stability.

Finite difference schemes for hyperbolic equations can exhibit dispersion, or
phase errors. For example, equation (20.1.16) can be rewritten as

� D e�ik�x C i

�
1 �

v�t

�x

�
sin k�x (20.1.25)

An arbitrary initial wave packet is a superposition of modes with different k’s. At
each timestep the modes get multiplied by different phase factors (20.1.25), depend-
ing on their value of k. If �t D �x=v, then the exact solution for each mode of
a wave packet f .x � vt/ is obtained if each mode gets multiplied by exp.�ik�x/.
For this value of�t , equation (20.1.25) shows that the finite difference solution gives
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the exact analytic result. However, if v�t=�x is not exactly 1, the phase relations
of the modes can become hopelessly garbled and the wave packet disperses. Note
from (20.1.25) that the dispersion becomes large as soon as the wavelength becomes
comparable to the grid spacing �x.

A third type of error is one associated with nonlinear hyperbolic equations and
is therefore sometimes called nonlinear instability. For example, a piece of the Euler
or Navier-Stokes equations for fluid flow looks like

@v

@t
D �v

@v

@x
C : : : (20.1.26)

The nonlinear term in v can cause a transfer of energy in Fourier space from
long wavelengths to short wavelengths. This results in a wave profile steepening un-
til a vertical profile or “shock” develops. Since the von Neumann analysis suggests
that the stability can depend on k�x, a scheme that was stable for shallow profiles
can become unstable for steep profiles. This kind of difficulty arises in a differencing
scheme where the cascade in Fourier space is halted at the shortest wavelength rep-
resentable on the grid, that is, at k � 1=�x. If energy simply accumulates in these
modes, it eventually swamps the energy in the long wavelength modes of interest.

Nonlinear instability and shock formation are thus somewhat controlled by nu-
merical viscosity such as that discussed in connection with equation (20.1.18) above.
In some fluid problems, however, shock formation is not merely an annoyance, but an
actual physical behavior of the fluid whose detailed study is a goal. Then, numerical
viscosity alone may not be adequate or sufficiently controllable. This is a compli-
cated subject that we discuss further in the subsection on fluid dynamics, below.

For wave equations, propagation errors (amplitude or phase) are usually most
worrisome. For advective equations, on the other hand, transport errors are usually
of greater concern. In the Lax scheme, equation (20.1.15), a disturbance in the ad-
vected quantity u at mesh point j propagates to mesh points j C 1 and j � 1 at the
next timestep. In reality, however, if the velocity v is positive, then only mesh point
j C 1 should be affected.

The simplest way to model the transport properties “better” is to use upwind
differencing (see Figure 20.1.4):

unC1j � unj

�t
D �vnj

‚
unj � u

n
j�1

�x
; vnj > 0

unjC1 � u
n
j

�x
; vnj < 0

(20.1.27)

Note that this scheme is only first-order, not second-order, accurate in the cal-
culation of the spatial derivatives. So how can it be “better”? The answer is one
that annoys the mathematicians: The goal of numerical simulations is not always
“accuracy” in a strictly mathematical sense, but sometimes “fidelity” to the under-
lying physics in a sense that is looser and more pragmatic. In such contexts, some
kinds of error are much more tolerable than others. Upwind differencing generally
adds fidelity to problems where the advected variables are liable to undergo sudden
changes of state, e.g., as they pass through shocks or other discontinuities. You will
have to be guided by the specific nature of your own problem.
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t or n

x or j

v

upwind

v

Figure 20.1.4. Representation of upwind differencing schemes. The upper scheme is stable when the
advection constant v is negative, as shown; the lower scheme is stable when the advection constant v is
positive, also as shown. The Courant condition must, of course, also be satisfied.

For the differencing scheme (20.1.27), the amplification factor (for constant v)
is

� D 1 �

ˇ̌̌̌
v�t

�x

ˇ̌̌̌
.1 � cos k�x/ � i

v�t

�x
sin k�x (20.1.28)

j�j2 D 1 � 2

ˇ̌̌̌
v�t

�x

ˇ̌̌̌ �
1 �

ˇ̌̌̌
v�t

�x

ˇ̌̌̌�
.1 � cos k�x/ (20.1.29)

So the stability criterion j�j2 
 1 is (again) simply the Courant condition (20.1.17).
There are various ways of improving the accuracy of first-order upwind differ-

encing. In the continuum equation, material originally a distance v�t away arrives at
a given point after a time interval �t . In the first-order method, the material always
arrives from �x away. If v�t � �x (to insure accuracy), this can cause a large
error. One way of reducing this error is to interpolate u between j � 1 and j before
transporting it. This gives effectively a second-order method. Various schemes for
second-order upwind differencing are discussed and compared in [2,3].

20.1.4 Second-Order Accuracy in Time
When using a method that is first-order accurate in time but second-order accu-

rate in space, one generally has to take v�t significantly smaller than �x to achieve
the desired accuracy, say, by at least a factor of 5. Thus the Courant condition is
not actually the limiting factor with such schemes in practice. However, there are
schemes that are second-order accurate in both space and time, and these can often be
pushed right to their stability limit, with correspondingly smaller computation times.

For example, the staggered leapfrog method for the conservation equation
(20.1.1) is defined as follows (Figure 20.1.5): Using the values of un at time tn,
compute the fluxes F nj . Then compute new values unC1 using the time-centered
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staggered
leapfrog

t or n

x or j

Figure 20.1.5. Representation of the staggered leapfrog differencing scheme. Note that information from
two previous time slices is used in obtaining the desired point. This scheme is second-order accurate in
both space and time.

values of the fluxes:

unC1j � un�1j D �
�t

�x
.F njC1 � F

n
j�1/ (20.1.30)

The name arises because the time levels in the time derivative term “leapfrog” over
the time levels in the space derivative term. The method requires that un�1 and un

be stored to compute unC1.
For our simple model equation (20.1.6), staggered leapfrog takes the form

unC1j � un�1j D �
v�t

�x
.unjC1 � u

n
j�1/ (20.1.31)

The von Neumann stability analysis now gives a quadratic equation for �, rather than
a linear one, because of the occurrence of three consecutive powers of � when the
form (20.1.12) for an eigenmode is substituted into equation (20.1.31),

�2 � 1 D �2i�
v�t

�x
sin k�x (20.1.32)

whose solution is

� D �i
v�t

�x
sin k�x ˙

s
1 �

�
v�t

�x
sin k�x

�2
(20.1.33)

Thus the Courant condition is again required for stability. In fact, j�j2 D 1 in equa-
tion (20.1.33) for any v�t 
 �x. This is the great advantage of the staggered
leapfrog method: There is no amplitude dissipation.

Staggered leapfrog differencing of equations like (20.1.20) is most transparent
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if the variables are centered on appropriate half-mesh points:

rnjC1=2 � v
@u

@x

ˇ̌̌̌n
jC1=2

D v
unjC1 � u

n
j

�x

s
nC1=2
j �

@u

@t

ˇ̌̌̌nC1=2
j

D
unC1j � unj

�t

(20.1.34)

This is purely a notational convenience: We can think of the mesh on which r and
s are defined as being twice as fine as the mesh on which the original variable u is
defined. The leapfrog differencing of equation (20.1.20) is

rnC1
jC1=2

� rn
jC1=2

�t
D
s
nC1=2
jC1 � s

nC1=2
j

�x

s
nC1=2
j � s

n�1=2
j

�t
D v

rn
jC1=2

� rn
j�1=2

�x

(20.1.35)

If you substitute equation (20.1.22) in equation (20.1.35), you will find that once
again the Courant condition is required for stability, and that there is no amplitude
dissipation when it is satisfied.

If we substitute equation (20.1.34) in equation (20.1.35), we find that equation
(20.1.35) is equivalent to

unC1j � 2unj C u
n�1
j

.�t/2
D v2

unjC1 � 2u
n
j C u

n
j�1

.�x/2
(20.1.36)

This is just the “usual” second-order differencing of the wave equation (20.1.2). We
see that it is a two-level scheme, requiring both un and un�1 to obtain unC1. In
equation (20.1.35), this shows up as both sn�1=2 and rn being needed to advance
the solution.

For equations more complicated than our simple model equation, especially
nonlinear equations, the leapfrog method usually becomes unstable when the gradi-
ents get large. The instability is related to the fact that odd and even mesh points are
completely decoupled, like the black and white squares of a chess board, as shown
in Figure 20.1.6. This mesh drifting instability is cured by coupling the two meshes
through a numerical viscosity term, e.g., adding to the right side of (20.1.31) a small
coefficient (� 1) times unjC1 � 2u

n
j C unj�1. For more on stabilizing difference

schemes by adding numerical dissipation, see, e.g., [4,5].
The two-step Lax-Wendroff scheme is a second-order in time method that avoids

large numerical dissipation and mesh drifting. One defines intermediate values ujC1=2
at the half-timesteps tnC1=2 and the half-mesh points xjC1=2. These are calculated
by the Lax scheme:

u
nC1=2

jC1=2
D
1

2
.unjC1 C u

n
j / �

�t

�x
.F njC1 � F

n
j / (20.1.37)

Using these variables, one calculates the fluxes F nC1=2
jC1=2

. Then the updated values

unC1j are calculated by the properly centered expression

unC1j D unj �
�t

�x

�
F
nC1=2

jC1=2
� F

nC1=2

j�1=2

�
(20.1.38)
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Figure 20.1.6. Origin of mesh drift instabilities in a staggered leapfrog scheme. If the mesh points are
imagined to lie in the squares of a chess board, then white squares couple to themselves and black to
themselves, but there is no coupling between white and black. The fix is to introduce a small diffusive
mesh-coupling piece.

t or n

x or j

halfstep points

two-step Lax Wendroff

Figure 20.1.7. Representation of the two-step Lax-Wendroff differencing scheme. Two half-step points
(˝) are calculated by the Lax method. These, plus one of the original points, produce the new point via
staggered leapfrog. Half-step points are used only temporarily and do not require storage allocation on
the grid. This scheme is second-order accurate in both space and time.

The provisional values unC1=2
jC1=2

are now discarded. (See Figure 20.1.7.)
Let us investigate the stability of this method for our model advective equation,

where F D vu. Substitute (20.1.37) in (20.1.38) to get

unC1j D unj � ˛
�
1
2
.unjC1 C u

n
j / �

1
2
˛.unjC1 � u

n
j /

�1
2
.unj C u

n
j�1/C

1
2
˛.unj � u

n
j�1/

	 (20.1.39)

where
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˛ �
v�t

�x
(20.1.40)

Then

� D 1 � i˛ sin k�x � ˛2.1 � cos k�x/ (20.1.41)

so

j�j2 D 1 � ˛2.1 � ˛2/.1 � cos k�x/2 (20.1.42)

The stability criterion j�j2 
 1 is therefore ˛2 
 1; or v�t 
 �x as usual. Inciden-
tally, you should not think that the Courant condition is the only stability requirement
that ever turns up in PDEs. It keeps doing so in our model examples just because
those examples are so simple in form. The method of analysis is, however, general.

Except when ˛ D 1, j�j2 < 1 in (20.1.42), so some amplitude damping does
occur. The effect is relatively small, however, for wavelengths large compared with
the mesh size �x. If we expand (20.1.42) for small k�x, we find

j�j2 D 1 � ˛2.1 � ˛2/
.k�x/4

4
C 	 	 	 (20.1.43)

The departure from unity occurs only at fourth order in k. This should be contrasted
with equation (20.1.16) for the Lax method, which shows that

j�j2 D 1 � .1 � ˛2/.k�x/2 C 	 	 	 (20.1.44)

for small k�x.

In summary, our recommendation for initial value problems that can be cast in
flux-conservative form, and especially problems related to the wave equation, is to
use the staggered leapfrog method when possible. We have personally had better suc-
cess with it than with the two-step Lax-Wendroff method. For problems sensitive to
transport errors, upwind differencing or one of its refinements should be considered.

20.1.5 Fluid Dynamics with Shocks
As we alluded to earlier, the treatment of fluid dynamics problems with shocks

has become a very complicated and very sophisticated subject. All we can attempt
to do here is to guide you to some starting points in the literature.

There are basically three important general methods for handling shocks. The
oldest and simplest method, invented by von Neumann and Richtmyer, is to add
artificial viscosity to the equations, modeling the way Nature uses real viscosity to
smooth discontinuities. A good starting point for trying out this method is the differ-
encing scheme in �12.11 of [1]. This scheme is excellent for nearly all problems in
one spatial dimension.

The second method combines a high-order differencing scheme that is accurate
for smooth flows with a low-order scheme that is very dissipative and can smooth
the shocks. Typically, various upwind differencing schemes are combined using
weights chosen to zero the low-order scheme unless steep gradients are present, and
also chosen to enforce various “monotonicity” constraints that prevent nonphysical
oscillations from appearing in the numerical solution. References [2,3,6] are a good
place to start with these methods.



�

�

“nr3” — 2007/5/1 — 20:53 — page 1043 — #1065
�

�

� �

20.2 Diffusive Initial Value Problems 1043

The third, and potentially most powerful method, is Godunov’s approach. Here
one gives up the simple linearization inherent in finite differencing based on Taylor
series and includes the nonlinearity of the equations explicitly. There is an analytic
solution for the evolution of two uniform states of a fluid separated by a discontinu-
ity, the Riemann shock problem. Godunov’s idea was to approximate the fluid by a
large number of cells of uniform states, and piece them together using the Riemann
solution. There have been many generalizations of Godunov’s approach, which are
now called high resolution shock capturing methods. The most influential such algo-
rithm has probably been the PPM method [7]. General discussions of high resolution
shock capturing methods and other modern algorithms are given in [8-10].
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20.2 Diffusive Initial Value Problems

Recall the model parabolic equation, the diffusion equation in one space dimen-
sion,

@u

@t
D

@

@x

�
D
@u

@x

�
(20.2.1)

where D is the diffusion coefficient. Actually, this equation is a flux-conservative
equation of the form considered in the previous section, with

F D �D
@u

@x
(20.2.2)
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the flux in the x-direction. We will assume D � 0, otherwise equation (20.2.1)
has physically unstable solutions: A small disturbance evolves to become more and
more concentrated instead of dispersing. (Don’t make the mistake of trying to find
a stable differencing scheme for a problem whose underlying PDEs are themselves
unstable!)

Even though (20.2.1) is of the form already considered, it is useful to consider
it as a model in its own right. The particular form of flux (20.2.2), and its direct
generalizations, occur quite frequently in practice. Moreover, we have already seen
that numerical viscosity and artificial viscosity can introduce diffusive pieces like the
right-hand side of (20.2.1) in many other situations.

Consider first the case when D is a constant. Then the equation

@u

@t
D D

@2u

@x2
(20.2.3)

can be differenced in the obvious way:

unC1j � unj

�t
D D

�
unjC1 � 2u

n
j C u

n
j�1

.�x/2

�
(20.2.4)

This is the FTCS scheme again, except that it is a second derivative that has been
differenced on the right-hand side. But this makes a world of difference! The FTCS
scheme was unstable for the hyperbolic equation; however, a quick calculation shows
that the amplification factor for equation (20.2.4) is

� D 1 �
4D�t

.�x/2
sin2

�
k�x

2

�
(20.2.5)

The requirement j�j 
 1 leads to the stability criterion

2D�t

.�x/2

 1 (20.2.6)

The physical interpretation of the restriction (20.2.6) is that the maximum al-
lowed timestep is, up to a numerical factor, the diffusion time across a cell of width
�x.

More generally, the diffusion time � across a spatial scale of size � is of order

� �
�2

D
(20.2.7)

Usually we are interested in modeling accurately the evolution of features with spa-
tial scales � � �x. If we are limited to timesteps satisfying (20.2.6), we will need
to evolve through of order �2=.�x/2 steps before things start to happen on the scale
of interest. This number of steps is usually prohibitive. We must therefore find a sta-
ble way of taking timesteps comparable to, or perhaps — for accuracy — somewhat
smaller than, the time scale of (20.2.7).

This goal poses an immediate “philosophical” question. Obviously the large
timesteps that we propose to take are going to be woefully inaccurate for the small
scales that we have decided not to be interested in. We want those scales to do
something stable, “innocuous,” and perhaps not too physically unreasonable. We
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want to build this innocuous behavior into our differencing scheme. What should
it be?

There are two different answers, each of which has its pros and cons. The first
answer is to seek a differencing scheme that drives small-scale features to their equi-
librium forms, e.g., satisfying equation (20.2.3) with the left-hand side set to zero.
This answer generally makes the best physical sense; but, as we will see, it leads to
a differencing scheme (“fully implicit”) that is only first-order accurate in time for
the scales that we are interested in. The second answer is to let small-scale features
maintain their initial amplitudes, so that the evolution of the larger-scale features
of interest takes place superposed with a kind of “frozen in” (though fluctuating)
background of small-scale stuff. This answer gives a differencing scheme (Crank-
Nicolson) that is second-order accurate in time. Toward the end of an evolution
calculation, however, one might want to switch over to some steps of the other kind,
to drive the small-scale stuff into equilibrium. Let us now see where these distinct
differencing schemes come from.

Consider the following differencing of (20.2.3):

unC1j � unj

�t
D D

"
unC1jC1 � 2u

nC1
j C unC1j�1

.�x/2

#
(20.2.8)

This is exactly like the FTCS scheme (20.2.4), except that the spatial derivatives on
the right-hand side are evaluated at timestep n C 1. Schemes with this character
are called fully implicit or backward time, by contrast with FTCS (which is called
fully explicit). To solve equation (20.2.8), one has to solve a set of simultaneous
linear equations at each timestep for the unC1j . Fortunately, this is a simple problem
because the system is tridiagonal: Just group the terms in equation (20.2.8) appro-
priately:

�˛unC1j�1 C .1C 2˛/u
nC1
j � ˛unC1jC1 D u

n
j ; j D 1; 2:::J � 1 (20.2.9)

where

˛ �
D�t

.�x/2
(20.2.10)

Supplemented by Dirichlet or Neumann boundary conditions at j D 0 and j D J ,
equation (20.2.9) is clearly a tridiagonal system, which can easily be solved at each
timestep by the method of �2.4.

What is the behavior of (20.2.8) for very large timesteps? The answer is seen
most clearly in (20.2.9), in the limit ˛ !1 (�t !1). Dividing by ˛, we see that
the difference equations are just the finite difference form of the equilibrium equation

@2u

@x2
D 0 (20.2.11)

What about stability? The amplification factor for equation (20.2.8) is

� D
1

1C 4˛ sin2
�
k�x

2

� (20.2.12)

Clearly j�j < 1 for any stepsize �t . The scheme is unconditionally stable. The de-
tails of the small-scale evolution from the initial conditions are obviously inaccurate
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for large �t . But, as advertised, the correct equilibrium solution is obtained. This is
the characteristic feature of implicit methods.

Here, on the other hand, is how one gets to the second of our above philosoph-
ical answers, combining the stability of an implicit method with the accuracy of a
method that is second order in both space and time. Simply form the average of the
explicit and implicit FTCS schemes:

unC1j � unj

�t
D
D

2

"
.unC1jC1 � 2u

nC1
j C unC1j�1 /C .u

n
jC1 � 2u

n
j C u

n
j�1/

.�x/2

#
(20.2.13)

Here both the left- and right-hand sides are centered at timestep nC 1
2

, so the method
is second-order accurate in time as claimed. The amplification factor is

� D

1 � 2˛ sin2
�
k�x

2

�
1C 2˛ sin2

�
k�x

2

� (20.2.14)

so the method is stable for any size �t . This scheme is called the Crank-Nicolson
scheme and is our recommended method for any simple diffusion problem (perhaps
supplemented by a few fully implicit steps at the end). (See Figure 20.2.1.)

Now turn to some generalizations of the simple diffusion equation (20.2.3).
Suppose first that the diffusion coefficientD is not constant, sayD D D.x/. We can
adopt either of two strategies. First, we can make an analytic change of variable

y D

Z
dx

D.x/
(20.2.15)

Then

@u

@t
D

@

@x
D.x/

@u

@x
(20.2.16)

becomes

@u

@t
D

1

D.y/

@2u

@y2
(20.2.17)

and we evaluateD at the appropriate yj . Heuristically, the stability criterion (20.2.6)
in an explicit scheme becomes

�t 
 min
j

"
.�y/2

2D�1j

#
(20.2.18)

Note that constant spacing �y in y does not imply constant spacing in x.
An alternative method that does not require analytically tractable forms for D

is simply to difference equation (20.2.16) as it stands, centering everything appropri-
ately. Thus the FTCS method becomes

unC1j � unj

�t
D
DjC1=2.u

n
jC1 � u

n
j / �Dj�1=2.u

n
j � u

n
j�1/

.�x/2
(20.2.19)
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t or n

x or j

FTCS

(a)

Fully Implicit(b) Crank-Nicolson(c)

Figure 20.2.1. Three differencing schemes for diffusive problems (shown as in Figure 20.1.2). (a) For-
ward time centered space is first-order accurate but stable only for sufficiently small timesteps. (b) Fully
implicit is stable for arbitrarily large timesteps but is still only first-order accurate. (c) Crank-Nicolson is
second-order accurate and is usually stable for large timesteps.

where
DjC1=2 � D.xjC1=2/ (20.2.20)

and the heuristic stability criterion is

�t 
 min
j

�
.�x/2

2DjC1=2

�
(20.2.21)

The Crank-Nicolson method can be generalized similarly.
The second complication one can consider is a nonlinear diffusion problem, for

example whereD D D.u/. Explicit schemes can be generalized in the obvious way.
For example, in equation (20.2.19) write

DjC1=2 D
1
2

�
D.unjC1/CD.u

n
j /
	

(20.2.22)

Implicit schemes are not as easy. The replacement (20.2.22) with n! nC 1 leaves
us with a nasty set of coupled nonlinear equations to solve at each timestep. Often
there is an easier way: If the form of D.u/ allows us to integrate

dz D D.u/du (20.2.23)

analytically for z.u/, then the right-hand side of (20.2.1) becomes @2z=@x2, which
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we difference implicitly as

znC1jC1 � 2z
nC1
j C znC1j�1

.�x/2
(20.2.24)

Now linearize each term on the right-hand side of equation (20.2.24), for example

znC1j � z.unC1j / D z.unj /C .u
nC1
j � unj /

@z

@u

ˇ̌̌̌
j;n

D z.unj /C .u
nC1
j � unj /D.u

n
j /

(20.2.25)

This reduces the problem to tridiagonal form again and in practice usually retains the
stability advantages of fully implicit differencing.

20.2.1 Schrödinger Equation
Sometimes the physical problem being solved imposes constraints on the dif-

ferencing scheme that we have not yet taken into account. For example, consider
the time-dependent Schrödinger equation of quantum mechanics. This is basically a
parabolic equation for the evolution of a complex quantity  . For the scattering of a
wavepacket by a one-dimensional potential V.x/, the equation has the form

i
@ 

@t
D �

@2 

@x2
C V.x/ (20.2.26)

(Here we have chosen units so that Planck’s constant „ D 1 and the particle mass
m D 1=2.) One is given the initial wavepacket,  .x; t D 0/, together with boundary
conditions that  ! 0 at x ! ˙1. Suppose we content ourselves with first-
order accuracy in time but want to use an implicit scheme, for stability. A slight
generalization of (20.2.8) leads to

i

"
 nC1j �  nj

�t

#
D �

"
 nC1jC1 � 2 

nC1
j C  nC1j�1

.�x/2

#
C Vj 

nC1
j (20.2.27)

for which

� D
1

1C i

�
4�t

.�x/2
sin2

�
k�x

2

�
C Vj�t

� (20.2.28)

This is unconditionally stable but unfortunately is not unitary. The underly-
ing physical problem requires that the total probability of finding the particle some-
where remains unity. This is represented formally by the modulus-square norm of  
remaining unity: Z 1

�1

j j2dx D 1 (20.2.29)

The initial wave function .x; 0/ is normalized to satisfy (20.2.29). The Schrödinger
equation (20.2.26) then guarantees that this condition is satisfied at all later times.

Let us write equation (20.2.26) in the form

i
@ 

@t
D H (20.2.30)
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where the operator H is

H D �
@2

@x2
C V.x/ (20.2.31)

The formal solution of equation (20.2.30) is

 .x; t/ D e�iHt .x; 0/ (20.2.32)

where the exponential of the operator is defined by its power series expansion.
The unstable explicit FTCS scheme approximates (20.2.32) as

 nC1j D .1 � iH�t/ nj (20.2.33)

whereH is represented by a centered finite difference approximation in x. The stable
implicit scheme (20.2.27) is, by contrast,

 nC1j D .1C iH�t/�1 nj (20.2.34)

These are both first-order accurate in time, as can be seen by expanding equation
(20.2.32). However, neither operator in (20.2.33) or (20.2.34) is unitary.

The correct way to difference Schrödinger’s equation [1,2] is to use Cayley’s
form for the finite difference representation of e�iHt , which is second-order accurate
and unitary:

e�iHt '
1 � 1

2
iH�t

1C 1
2
iH�t

(20.2.35)

In other words, �
1C 1

2
iH�t



 nC1j D

�
1 � 1

2
iH�t



 nj (20.2.36)

On replacingH by its finite difference approximation in x, we have a complex tridi-
agonal system to solve. The method is stable, unitary, and second-order accurate in
space and time. In fact, it is simply the Crank-Nicolson method once again!

CITED REFERENCES AND FURTHER READING:

Thomas, J.W. 1995, Numerical Partial Differential Equations: Finite Difference Methods (New
York: Springer).

Ames, W.F. 1992, Numerical Methods for Partial Differential Equations, 3rd ed. (New York: Aca-
demic Press), Chapter 2.

Goldberg, A., Schey, H.M., and Schwartz, J.L. 1967, “Computer-Generated Motion Pictures of
One-Dimensional Quantum-Mechanical Transmission and Reflection Phenomena,” Amer-
ican Journal of Physics, vol. 35, pp. 177–186.[1]

Galbraith, I., Ching, Y.S., and Abraham, E. 1984, “Two-Dimensional Time-Dependent Quantum-
Mechanical Scattering Event,” American Journal of Physics, vol. 52, pp. 60–68.[2]

20.3 Initial Value Problems in Multidimensions

The methods described in �20.1 and �20.2 for problems in 1 C 1 dimension
(one space and one time dimension) can easily be generalized to N C 1 dimen-
sions. However, the computing power necessary to solve the resulting equations
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grows extremely rapidly as the number of dimensions increases. If you have solved
a one-dimensional problem with 100 spatial grid points, solving the two-dimensional
version with 100 � 100 mesh points requires at least 100 times as much computing.
You generally have to be content with very modest spatial resolution in multidimen-
sional problems.

Indulge us in offering a bit of advice about the development and testing of mul-
tidimensional PDE codes: You should always first run your programs on very small
grids, e.g., 8 � 8, even though the resulting accuracy is so poor as to be useless.
When your program is all debugged and demonstrably stable, then you can increase
the grid size to a reasonable one and start looking at the results. We have actually
heard someone protest, “my program would be unstable for a crude grid, but I am
sure the instability will go away on a larger grid.” That is nonsense of a most per-
nicious sort, evidencing total confusion between accuracy and stability. In fact, new
instabilities sometimes do show up on larger grids; but old instabilities never (in our
experience) just go away.

Forced to live with modest grid sizes, some people recommend going to higher-
order methods in an attempt to improve accuracy. This can be very dangerous. Un-
less the solution you are looking for is known to be smooth, and the high-order
method you are using is known to be extremely stable, we do not recommend any-
thing higher than second-order in time (for sets of first-order equations). For spatial
differencing, we recommend the order of the underlying PDEs, perhaps allowing
second-order spatial differencing for first-order-in-space PDEs. When you increase
the order of a differencing method to greater than the order of the original PDEs,
you introduce spurious solutions to the difference equations. This does not create a
problem if they all happen to decay exponentially; otherwise you are going to see all
hell break loose!

20.3.1 Lax Method for a Flux-Conservative Equation
As an example, we show now how to generalize the Lax method (20.1.15) to

two dimensions for the conservation equation

@u

@t
D �r 	 F D �

�
@Fx

@x
C
@Fy

@y

�
(20.3.1)

Use a spatial grid with

xj D x0 C j�

yl D y0 C l�
(20.3.2)

We have chosen �x D �y � � for simplicity. Then the Lax scheme is

unC1
j;l
D
1

4
.unjC1;l C u

n
j�1;l C u

n
j;lC1 C u

n
j;l�1/

�
�t

2�
.F njC1;l � F

n
j�1;l C F

n
j;lC1 � F

n
j;l�1/

(20.3.3)

Note that as an abbreviated notation FjC1 and Fj�1 refer to Fx , while FlC1 and
Fl�1 refer to Fy .
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Let us carry out a stability analysis for the model advective equation (analog of
20.1.6) with

Fx D vxu; Fy D vyu (20.3.4)

This requires an eigenmode with two dimensions in space, though still only a simple
dependence on powers of � in time:

unj;l D �
neikxj�eiky l� (20.3.5)

Substituting in equation (20.3.3), we find

� D 1
2
.cos kx�C cos ky�/ � i˛x sin kx� � i˛y sin ky� (20.3.6)

where

˛x D
vx�t

�
; ˛y D

vy�t

�
(20.3.7)

The expression for j�j2 can be manipulated into the form

j�j2 D 1 � .sin2 kx�C sin2 ky�/

�
1
2
� .˛2x C ˛

2
y/

�
� 1
4
.cos kx� � cos ky�/

2 � .˛y sin kx� � ˛x sin ky�/
2

(20.3.8)

The last two terms are negative, and so the stability requirement j�j2 
 1 becomes

1
2
� .˛2x C ˛

2
y/ � 0 (20.3.9)

or

�t 

�

p
2.v2x C v

2
y/
1=2

(20.3.10)

This is an example of the general result for the N -dimensional Courant condi-
tion: If jvj is the maximum propagation velocity in the problem, then

�t 

�

p
N jvj

(20.3.11)

is the Courant condition.

20.3.2 Diffusion Equation in Multidimensions
Let us consider the two-dimensional diffusion equation,

@u

@t
D D

�
@2u

@x2
C
@2u

@y2

�
(20.3.12)

An explicit method, such as FTCS, can be generalized from the one-dimensional
case in the obvious way. However, we have seen that diffusive problems are usually
best treated implicitly. Suppose we try to implement the Crank-Nicolson scheme in
two dimensions. This would give us

unC1
j; l
D unj; l C

1
2
˛
�
ı2xu

nC1
j; l
C ı2xu

n
j; l C ı

2
yu

nC1
j; l
C ı2yu

n
j; l

�
(20.3.13)
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Here

˛ �
D�t

�2
� � �x D �y (20.3.14)

ı2xu
n
j; l � u

n
jC1; l � 2u

n
j; l C u

n
j�1; l (20.3.15)

and similarly for ı2yu
n
j; l

. This is certainly a viable scheme; the problem arises in
solving the coupled linear equations. Whereas in one space dimension the system
was tridiagonal, that is no longer true, though the matrix is still very sparse. One
possibility is to use a suitable sparse matrix technique (see �2.7 and �20.0).

Another possibility, which we generally prefer, is a slightly different way of
generalizing the Crank-Nicolson algorithm. It is still second-order accurate in time
and space, and unconditionally stable, but the equations are easier to solve than
(20.3.13). Called the alternating-direction implicit method (ADI), this embodies the
powerful concept of operator splitting or time splitting, about which we will say
more below. Here, the idea is to divide each timestep into two steps of size�t=2. In
each substep, a different dimension is treated implicitly:

u
nC1=2

j; l
D unj; l C

1
2
˛
�
ı2xu

nC1=2

j; l
C ı2yu

n
j; l

�
unC1
j; l
D u

nC1=2

j; l
C 1

2
˛
�
ı2xu

nC1=2

j; l
C ı2yu

nC1
j; l

� (20.3.16)

The advantage of this method is that each substep requires only the solution of a
simple tridiagonal system.

20.3.3 Operator Splitting Methods Generally
The basic idea of operator splitting, which is also called time splitting or the

method of fractional steps, is this: Suppose you have an initial value equation of the
form

@u

@t
D Lu (20.3.17)

where L is some operator. While L is not necessarily linear, suppose that it can at
least be written as a linear sum of m pieces, which act additively on u,

Lu D L1uCL2uC 	 	 	 CLmu (20.3.18)

Finally, suppose that for each of the pieces, you already know a differencing scheme
for updating the variable u from timestep n to timestep nC 1, valid if that piece of
the operator were the only one on the right-hand side. We will write these updatings
symbolically as

unC1 D U1.u
n; �t/

unC1 D U2.u
n; �t/

	 	 	

unC1 D Um.u
n; �t/

(20.3.19)

Now, one form of operator splitting would be to get from n to n C 1 by the
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following sequence of updatings:

unC.1=m/ D U1.u
n; �t/

unC.2=m/ D U2.u
nC.1=m/; �t/

	 	 	

unC1 D Um.u
nC.m�1/=m; �t/

(20.3.20)

For example, a combined advective-diffusion equation, such as

@u

@t
D �v

@u

@x
CD

@2u

@x2
(20.3.21)

might profitably use an explicit scheme for the advective term combined with a
Crank-Nicolson or other implicit scheme for the diffusion term.

The alternating-direction implicit (ADI) method, equation (20.3.16), is an ex-
ample of operator splitting with a slightly different twist. Let us reinterpret (20.3.19)
to have a different meaning: Let U1 now denote an updating method that includes
algebraically all the pieces of the total operator L, but which is desirably stable only
for the L1 piece; likewise U2; : : :Um. Then a method of getting from un to unC1 is

unC1=m D U1.u
n; �t=m/

unC2=m D U2.u
nC1=m; �t=m/

	 	 	

unC1 D Um.u
nC.m�1/=m; �t=m/

(20.3.22)

The timestep for each fractional step in (20.3.22) is now only 1=m of the full timestep,
because each partial operation acts with all the terms of the original operator.

Equation (20.3.22) is usually, though not always, stable as a differencing scheme
for the operator L. In fact, as a rule of thumb, it is often sufficient to have stable Ui ’s
only for the operator pieces having the highest number of spatial derivatives — the
other Ui ’s can be unstable — to make the overall scheme stable!

It is at this point that we turn our attention from initial value problems to bound-
ary value problems. These will occupy us for most of the remainder of the chapter.

CITED REFERENCES AND FURTHER READING:

Thomas, J.W. 1995, Numerical Partial Differential Equations: Finite Difference Methods (New
York: Springer).

Ames, W.F. 1992, Numerical Methods for Partial Differential Equations, 3rd ed. (New York: Aca-
demic Press).

20.4 Fourier and Cyclic Reduction Methods for
Boundary Value Problems

As discussed in �20.0, most boundary value problems (elliptic equations, for
example) reduce to solving large sparse linear systems of the form

A 	 u D b (20.4.1)
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either once, for boundary value equations that are linear, or iteratively, for boundary
value equations that are nonlinear.

Two important techniques lead to a “rapid” solution of equation (20.4.1) when
the sparse matrix is of certain frequently occurring forms. The Fourier transform
method is directly applicable when the equations have coefficients that are constant
in space. The cyclic reduction method is somewhat more general; its applicabil-
ity is related to the question of whether the equations are separable (in the sense of
“separation of variables”). Both methods require the boundaries to coincide with
the coordinate lines. Finally, for some problems, there is a powerful combination
of these two methods called FACR (Fourier analysis and cyclic reduction). We now
consider each method in turn, using equation (20.0.3), with finite difference rep-
resentation (20.0.6), as a model example. Generally speaking, the methods in this
section are faster, when they apply, than the simpler relaxation methods discussed
in �20.5, but they are not necessarily faster than the more complicated multigrid
methods discussed in �20.6.

20.4.1 Fourier Transform Method
The discrete inverse Fourier transform in both x and y is

ujl D
1

JL

J�1X
mD0

L�1X
nD0

yumne
�2	ijm=J e�2	iln=L (20.4.2)

This can be computed using the FFT independently in each dimension, or else all at
once via the routine fourn of �12.5 or the routine rlft3 of �12.6. Similarly,

�jl D
1

JL

J�1X
mD0

L�1X
nD0

y�mne
�2	ijm=J e�2	iln=L (20.4.3)

If we substitute expressions (20.4.2) and (20.4.3) in our model problem (20.0.6), we
find

yumn

�
e2	im=J C e�2	im=J C e2	in=L C e�2	in=L � 4

�
D y�mn�

2 (20.4.4)

or

yumn D
y�mn�

2

2

�
cos

2	m

J
C cos

2	n

L
� 2

� (20.4.5)

Thus the strategy for solving equation (20.0.6) by FFT techniques is

� Compute y�mn as the Fourier transform

y�mn D

J�1X
jD0

L�1X
lD0

�jl e
2	imj=J e2	inl=L (20.4.6)

� Compute yumn from equation (20.4.5).
� Compute ujl by the inverse Fourier transform (20.4.2).
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The above procedure is valid for periodic boundary conditions. In other words,
the solution satisfies

ujl D ujCJ; l D uj; lCL (20.4.7)

Next consider a Dirichlet boundary condition u D 0 on the rectangular bound-
ary. Instead of the expansion (20.4.2), we now need an expansion in sine waves:

ujl D
2

J

2

L

J�1X
mD1

L�1X
nD1

yumn sin
	jm

J
sin

	ln

L
(20.4.8)

This satisfies the boundary conditions that u D 0 at j D 0; J and at l D 0;L. If
we substitute this expansion and the analogous one for �jl into equation (20.0.6), we
find that the solution procedure parallels that for periodic boundary conditions:

� Compute y�mn by the sine transform

y�mn D

J�1X
jD1

L�1X
lD1

�jl sin
	jm

J
sin

	ln

L
(20.4.9)

(A fast sine transform algorithm was given in �12.3.)
� Compute yumn from the expression analogous to (20.4.5),

yumn D
�2y�mn

2
�

cos
	m

J
C cos

	n

L
� 2

� (20.4.10)

� Compute ujl by the inverse sine transform (20.4.8).

If we have inhomogeneous boundary conditions, for example u D 0 on all
boundaries except u D f .y/ on the boundary x D J�, we have to add to the above
solution a solution uH of the homogeneous equation

@2u

@x2
C
@2u

@y2
D 0 (20.4.11)

that satisfies the required boundary conditions. In the continuum case, this would be
an expression of the form

uH D
X
n

An sinh
n	x

L�
sin

n	y

L�
(20.4.12)

where An would be found by requiring that u D f .y/ at x D J�. In the discrete
case, we have

uHjl D
2

L

L�1X
nD1

An sinh
	nj

L
sin

	nl

L
(20.4.13)

If f .y D l�/ � fl , then we get An from the inverse formula

An D
1

sinh .	nJ=L/

L�1X
lD1

fl sin
	nl

L
(20.4.14)
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The complete solution to the problem is

u D ujl C u
H
jl (20.4.15)

By adding appropriate terms of the form (20.4.12), we can handle inhomogeneous
terms on any boundary surface.

A much simpler procedure for handling inhomogeneous terms is to note that
whenever boundary terms appear on the left-hand side of (20.0.6), they can be taken
over to the right-hand side since they are known. The effective source term is there-
fore �jl plus a contribution from the boundary terms. To implement this idea for-
mally, write the solution as

u D u0 C uB (20.4.16)

where u0 D 0 on the boundary, while uB vanishes everywhere except on the bound-
ary. There it takes on the given boundary value. In the above example, the only
nonzero values of uB would be

uBJ; l D fl (20.4.17)

The model equation (20.0.3) becomes

r2u0 D �r2uB C � (20.4.18)

or, in finite difference form,

u0jC1; l C u
0
j�1; l C u

0
j; lC1 C u

0
j; l�1 � 4u

0
j; l D

� .uBjC1; l C u
B
j�1; l C u

B
j; lC1 C u

B
j; l�1 � 4u

B
j; l /C�

2�j; l
(20.4.19)

All the uB terms in equation (20.4.19) vanish except when the equation is evaluated
at j D J � 1, where

u0J; l C u
0
J�2; l C u

0
J�1; lC1 C u

0
J�1; l�1 � 4u

0
J�1; l D �fl C�

2�J�1; l (20.4.20)

Thus the problem is now equivalent to the case of zero boundary conditions, except
that one row of the source term is modified by the replacement

�2�J�1; l ! �2�J�1; l � fl (20.4.21)

The case of Neumann boundary conditions ru D 0 is handled by the cosine
expansion (12.4.11):

ujl D
2

J

2

L

JX00

mD0

LX00

nD0

yumn cos
	jm

J
cos

	ln

L
(20.4.22)

Here the double prime notation means that the terms for m D 0 and m D J should
be multiplied by 1

2
, and similarly for n D 0 and n D L. Inhomogeneous terms

ru D g can be again included by adding a suitable solution of the homogeneous
equation, or more simply by taking boundary terms over to the right-hand side. For
example, the condition

@u

@x
D g.y/ at x D 0 (20.4.23)
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becomes
u1; l � u�1; l

2�
D gl (20.4.24)

where gl � g.y D l�/. Once again we write the solution in the form (20.4.16),
where now ru0 D 0 on the boundary. This time ruB takes on the prescribed value
on the boundary, but uB vanishes everywhere except just outside the boundary. Thus
equation (20.4.24) gives

uB�1; l D �2�gl (20.4.25)

All the uB terms in equation (20.4.19) vanish except when j D 0:

u01; l C u
0
�1; l C u

0
0; lC1 C u

0
0; l�1 � 4u

0
0; l D 2�gl C�

2�0; l (20.4.26)

Thus u0 is the solution of a zero-gradient problem, with the source term modified by
the replacement

�2�0; l ! �2�0; l C 2�gl (20.4.27)

Sometimes Neumann boundary conditions are handled by using a staggered
grid, with the u’s defined midway between zone boundaries so that first derivatives
are centered on the mesh points. You can solve such problems using similar tech-
niques to those described above if you use the alternative form of the cosine trans-
form, equation (12.4.17).

20.4.2 Cyclic Reduction
Evidently the FFT method works only when the original PDE has constant co-

efficients and boundaries that coincide with the coordinate lines. An alternative al-
gorithm, which can be used on somewhat more general equations, is called cyclic
reduction (CR).

We illustrate cyclic reduction on the equation

@2u

@x2
C
@2u

@y2
C b.y/

@u

@y
C c.y/u D g.x; y/ (20.4.28)

This form arises very often in practice from the Helmholtz or Poisson equations in
polar, cylindrical, or spherical coordinate systems. More general separable equations
are treated in [1].

The finite difference form of equation (20.4.28) can be written as a set of vector
equations

uj�1 C T 	 uj C ujC1 D gj�
2 (20.4.29)

Here the index j comes from differencing in the x-direction, while the y-differencing
(denoted by the index l previously) has been left in vector form. The matrix T has
the form

T D B � 21 (20.4.30)

where the 21 comes from the x-differencing and the matrix B from the y-differencing.
The matrix B, and hence T , is tridiagonal with variable coefficients.

The CR method is derived by writing down three successive equations like
(20.4.29):

uj�2 C T 	 uj�1 C uj D gj�1�
2

uj�1 C T 	 uj C ujC1 D gj�
2

uj C T 	 ujC1 C ujC2 D gjC1�
2

(20.4.31)
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Matrix-multiplying the middle equation by �T and then adding the three equations,
we get

uj�2 C T .1/ 	 uj C ujC2 D g
.1/
j �2 (20.4.32)

This is an equation of the same form as (20.4.29), with

T .1/ D 21 � T2

g
.1/
j D �

2.gj�1 � T 	 gj C gjC1/
(20.4.33)

After one level of CR, we have reduced the number of equations by a factor of
two. Since the resulting equations are of the same form as the original equation, we
can repeat the process. Taking the number of mesh points to be a power of 2 for
simplicity, we finally end up with a single equation for the central line of variables:

T .f / 	 uJ=2 D �
2g
.f /

J=2
� u0 � uJ (20.4.34)

Here we have moved u0 and uJ to the right-hand side because they are known
boundary values. Equation (20.4.34) can be solved for uJ=2 by the standard tridi-
agonal algorithm. The two equations at level f � 1 involve uJ=4 and u3J=4. The
equation for uJ=4 involves u0 and uJ=2, both of which are known and hence can be
solved by the usual tridiagonal routine. A similar result holds true at every stage, so
we end up solving J � 1 tridiagonal systems.

In practice, equations (20.4.33) should be rewritten to avoid numerical instabil-
ity. For these and other practical details, refer to [2].

20.4.3 FACR Method
The best way to solve equations of the form (20.4.28), including the constant co-

efficient problem (20.0.3), is a combination of Fourier analysis and cyclic reduction,
the FACR method [3-6]. If at the r th stage of CR we Fourier analyze the equations of
the form (20.4.32) along y, that is, with respect to the suppressed vector index, we
will have a tridiagonal system in the x-direction for each y-Fourier mode:

yukj�2r C �
.r/

k
yukj C yu

k
jC2r D �

2g
.r/k
j (20.4.35)

Here �.r/
k

is the eigenvalue of T .r/ corresponding to the kth Fourier mode. For the

equation (20.0.3), we see from equation (20.4.5) that �.r/
k

will involve terms like
cos.2	k=L/� 2 raised to a power. Solve the tridiagonal systems for yukj at the levels
j D 2r ; 2 � 2r ; 4 � 2r ; :::; J � 2r . Fourier synthesize to get the y-values on these
x-lines. Then fill in the intermediate x-lines as in the original CR algorithm.

The trick is to choose the number of levels of CR so as to minimize the total
number of arithmetic operations. One can show that for a typical case of a 128�128
mesh, the optimal level is r D 2; asymptotically, r ! log2.log2 J /.

A rough estimate of running times for these algorithms for equation (20.0.3)
is as follows: The FFT method (in both x and y) and the CR method are roughly
comparable. FACR with r D 0 (that is, FFT in one dimension and solve the tridiag-
onal equations by the usual algorithm in the other dimension) gives about a factor of
two gain in speed. The optimal FACR with r D 2 gives another factor of two gain
in speed.
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20.5 Relaxation Methods for Boundary Value
Problems

As we mentioned in �20.0, relaxation methods involve splitting the sparse ma-
trix that arises from finite differencing and then iterating until a solution is found.

There is another way of thinking about relaxation methods that is somewhat
more physical. Suppose we wish to solve the elliptic equation

Lu D � (20.5.1)

where L represents some elliptic operator and � is the source term. Rewrite the
equation as a diffusion equation,

@u

@t
D Lu � � (20.5.2)

An initial distribution u relaxes to an equilibrium solution as t ! 1. This equilib-
rium has all time derivatives vanishing. Therefore, it is the solution of the original
elliptic problem (20.5.1). We see that all the machinery of �20.2, on diffusive initial
value equations, can be brought to bear on the solution of boundary value problems
by relaxation methods.

Let us apply this idea to our model problem (20.0.3). The diffusion equation is

@u

@t
D
@2u

@x2
C
@2u

@y2
� � (20.5.3)

If we use FTCS differencing (cf. equation 20.2.4), we get

unC1
j; l
D unj; l C

�t

�2

�
unjC1; l C u

n
j�1; l C u

n
j; lC1 C u

n
j; l�1 � 4u

n
j; l

�
� �j; l�t

(20.5.4)
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Recall from (20.2.6) that FTCS differencing is stable in one spatial dimension only if
�t=�2 
 1

2
. In two dimensions this becomes �t=�2 
 1

4
. Suppose we try to take

the largest possible timestep and set �t D �2=4. Then equation (20.5.4) becomes

unC1
j; l
D
1

4

�
unjC1; l C u

n
j�1; l C u

n
j; lC1 C u

n
j; l�1

�
�
�2

4
�j; l (20.5.5)

Thus the algorithm consists of using the average of u at its four nearest-neighbor
points on the grid (plus the contribution from the source). This procedure is then
iterated until convergence.

This method is in fact a classical method with origins dating back to the last
century, called Jacobi’s method (not to be confused with the Jacobi method for eigen-
values). The method is not practical because it converges too slowly. However, it is
the basis for understanding the modern methods, which are always compared with it.

Another classical method is the Gauss-Seidel method, which turns out to be
important in multigrid methods (�20.6). Here we make use of updated values of u
on the right-hand side of (20.5.5) as soon as they become available. In other words,
the averaging is done “in place” instead of being “copied” from an earlier timestep
to a later one. If we are proceeding along the rows, incrementing j for fixed l , we
have

unC1
j; l
D
1

4

�
unjC1; l C u

nC1
j�1; l

C unj; lC1 C u
nC1
j; l�1

�
�
�2

4
�j; l (20.5.6)

This method is also slowly converging and only of theoretical interest when used by
itself, but some analysis of it will be instructive.

Let us look at the Jacobi and Gauss-Seidel methods in terms of the matrix split-
ting concept. We change notation and call u “x,” to conform to standard matrix
notation. To solve

A 	 x D b (20.5.7)

we can consider splitting A as

A D LCD CU (20.5.8)

where D is the diagonal part of A, L is the lower triangle of A with zeros on the
diagonal, and U is the upper triangle of A with zeros on the diagonal.

In the Jacobi method we write for the r th step of iteration

D 	 x.r/ D �.LCU/ 	 x.r�1/ C b (20.5.9)

For our model problem (20.5.5), D is simply the identity matrix. The Jacobi method
converges for matrices A that are “diagonally dominant” in a sense that can be made
mathematically precise. For matrices arising from finite differencing, this condition
is usually met.

What is the rate of convergence of the Jacobi method? A detailed analysis is
beyond our scope, but here is some of the flavor: The matrix �D�1 	 .L C U/ is
the iteration matrix that, apart from an additive term, maps one set of x’s into the
next. The iteration matrix has eigenvalues, each one of which reflects the factor by
which the amplitude of a particular eigenmode of undesired residual is suppressed
during one iteration. Evidently those factors had better all have modulus < 1 for the
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relaxation to work at all! The rate of convergence of the method is set by the rate
for the slowest-decaying eigenmode, i.e., the factor with the largest modulus. The
modulus of this largest factor, therefore lying between 0 and 1, is called the spectral
radius of the relaxation operator, denoted �s .

The number of iterations r required to reduce the overall error by a factor 10�p

is thus estimated by

r �
p ln 10

.� ln �s/
(20.5.10)

In general, the spectral radius �s goes asymptotically to the value 1 as the grid
size J is increased, so that more iterations are required. For any given equation,
grid geometry, and boundary condition, the spectral radius can, in principle, be com-
puted analytically. For example, for equation (20.5.5) on a J � J grid with Dirichlet
boundary conditions on all four sides, the asymptotic formula for large J turns out
to be

�s ' 1 �
	2

2J 2
(20.5.11)

The number of iterations r required to reduce the error by a factor of 10�p is thus

r '
2pJ 2 ln 10

	2
'
1

2
pJ 2 (20.5.12)

In other words, the number of iterations is proportional to the number of mesh points,
J 2. Since 100 � 100 and larger problems are common, it is clear that the Jacobi
method is only of theoretical interest.

The Gauss-Seidel method, equation (20.5.6), corresponds to the matrix decom-
position

.LCD/ 	 x.r/ D �U 	 x.r�1/ C b (20.5.13)

The fact that L is on the left-hand side of the equation follows from the updating
in place, as you can easily check if you write out (20.5.13) in components. One can
show [1-3] that the spectral radius is just the square of the spectral radius of the Jacobi
method. For our model problem, therefore,

�s ' 1 �
	2

J 2
(20.5.14)

r '
pJ 2 ln 10

	2
'
1

4
pJ 2 (20.5.15)

The factor of two improvement in the number of iterations over the Jacobi method
still leaves the method impractical.

20.5.1 Successive Overrelaxation (SOR)
We get a better algorithm — one that was the standard algorithm until the 1970s

— if we make an overcorrection to the value of x.r/ at the r th stage of Gauss-
Seidel iteration, thus anticipating future corrections. Solve (20.5.13) for x.r/, add
and subtract x.r�1/ on the right-hand side, and hence write the Gauss-Seidel method
as

x.r/ D x.r�1/ � .LCD/�1 	 Œ.LCD CU/ 	 x.r�1/ � b� (20.5.16)
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The term in square brackets is just the residual vector �.r�1/, so

x.r/ D x.r�1/ � .LCD/�1 	 �.r�1/ (20.5.17)

Now overcorrect, defining

x.r/ D x.r�1/ � !.LCD/�1 	 �.r�1/ (20.5.18)

Here ! is called the overrelaxation parameter, and the method is called successive
overrelaxation (SOR).

The following theorems can be proved [1-3]:

� The method is convergent only for 0 < ! < 2. If 0 < ! < 1, we speak of
underrelaxation.
� Under certain mathematical restrictions generally satisfied by matrices arising

from finite differencing, only overrelaxation (1 < ! < 2 ) can give faster
convergence than the Gauss-Seidel method.
� If �Jacobi is the spectral radius of the Jacobi iteration (so that the square of it is

the spectral radius of the Gauss-Seidel iteration), then the optimal choice for
! is given by

! D
2

1C
p
1 � �2Jacobi

(20.5.19)

� For this optimal choice, the spectral radius for SOR is

�SOR D

�
�Jacobi

1C
p
1 � �2Jacobi

�2
(20.5.20)

As an application of the above results, consider our model problem for which
�Jacobi is given by equation (20.5.11). Then equations (20.5.19) and (20.5.20) give

! '
2

1C 	=J
(20.5.21)

�SOR ' 1 �
2	

J
for large J (20.5.22)

Equation (20.5.10) gives for the number of iterations to reduce the initial error by a
factor of 10�p ,

r '
pJ ln 10

2	
'
1

3
pJ (20.5.23)

Comparing with equation (20.5.12) or (20.5.15), we see that optimal SOR requires
of order J iterations, as opposed to of order J 2. Since J is typically 100 or larger,
this makes a tremendous difference! Equation (20.5.23) leads to the mnemonic that
three-figure accuracy (p D 3) requires a number of iterations equal to the number of
mesh points along a side of the grid. For six-figure accuracy, we require about twice
as many iterations.

How do we choose ! for a problem for which the answer is not known analyti-
cally? That is just the weak point of SOR! The advantages of SOR obtain only in a
fairly narrow window around the correct value of !. It is better to take ! slightly too
large, rather than slightly too small, but best to get it right.



�

�

“nr3” — 2007/5/1 — 20:53 — page 1063 — #1085
�

�

� �

20.5 Relaxation Methods for Boundary Value Problems 1063

One way to choose ! is to map your problem approximately onto a known
problem, replacing the coefficients in the equation by average values. Note, however,
that the known problem must have the same grid size and boundary conditions as the
actual problem. We give for reference purposes the value of �Jacobi for our model
problem on a rectangular J � L grid, allowing for the possibility that �x 6D �y:

�Jacobi D

cos
	

J
C

�
�x

�y

�2
cos

	

L

1C

�
�x

�y

�2 (20.5.24)

Equation (20.5.24) holds for homogeneous Dirichlet or Neumann boundary condi-
tions. For periodic boundary conditions, make the replacement 	 ! 2	 .

A second way, which is especially useful if you plan to solve many similar
elliptic equations each time with slightly different coefficients, is to determine the
optimum value ! empirically on the first equation and then use that value for the
remaining equations. Various automated schemes for doing this and for “seeking
out” the best values of ! are described in the literature.

While the matrix notation introduced earlier is useful for theoretical analyses,
for practical implementation of the SOR algorithm we need explicit formulas. Con-
sider a general second-order elliptic equation in x and y, finite differenced on a
square as for our model equation. Corresponding to each row of the matrix A is an
equation of the form

aj; lujC1; l C bj; luj�1; l C cj; luj; lC1 C dj; luj; l�1 C ej; luj; l D fj; l (20.5.25)

For our model equation, we had a D b D c D d D 1; e D �4. The quantity
f is proportional to the source term. The iterative procedure is defined by solving
(20.5.25) for uj; l :

u�j; l D
1

ej; l

�
fj; l � aj; lujC1; l � bj; luj�1; l � cj; luj; lC1 � dj; luj; l�1



(20.5.26)

Then unew
j; l

is a weighted average,

unew
j; l D !u

�
j; l C .1 � !/u

old
j; l (20.5.27)

We calculate it as follows: The residual at any stage is

�j; l D aj; lujC1; lCbj; luj�1; lCcj; luj; lC1Cdj; luj; l�1Cej; luj; l�fj; l (20.5.28)

and the SOR algorithm (20.5.18) or (20.5.27) is

unew
j; l D u

old
j; l � !

�j; l

ej; l
(20.5.29)

This formulation is very easy to program, and the norm of the residual vector �j; l
can be used as a criterion for terminating the iteration.

Another practical point concerns the order in which mesh points are processed.
The obvious strategy is simply to proceed in order down the rows (or columns).
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Alternatively, suppose we divide the mesh into “odd” and “even” meshes, like the
red and black squares of a checkerboard. Then equation (20.5.26) shows that the
odd points depend only on the even mesh values, and vice versa. Accordingly, we
can carry out one half-sweep updating the odd points, say, and then another half-
sweep updating the even points with the new odd values. For the version of SOR
implemented below, we shall adopt odd-even ordering.

The last practical point is that in practice the asymptotic rate of convergence in
SOR is not attained until of order J iterations. The error often grows by a factor of
20 before convergence sets in. A trivial modification to SOR resolves this problem.
It is based on the observation that, while ! is the optimum asymptotic relaxation
parameter, it is not necessarily a good initial choice. In SOR with Chebyshev accel-
eration, one uses odd-even ordering and changes ! at each half-sweep according to
the following prescription:

!.0/ D 1

!.1=2/ D 1=.1 � �2Jacobi=2/

!.nC1=2/ D 1=.1 � �2Jacobi!
.n/=4/; n D 1=2; 1; : : : ;1

!.1/ ! !optimal

(20.5.30)

The beauty of Chebyshev acceleration is that the norm of the error always decreases
with each iteration. (This is the norm of the actual error in uj; l . The norm of the
residual �j; l need not decrease monotonically.) While the asymptotic rate of conver-
gence is the same as ordinary SOR, there is never any excuse for not using Chebyshev
acceleration to reduce the total number of iterations required.

Here we give a routine for SOR with Chebyshev acceleration.

void sor(MatDoub_I &a, MatDoub_I &b, MatDoub_I &c, MatDoub_I &d, MatDoub_I &e,sor.h
MatDoub_I &f, MatDoub_IO &u, const Doub rjac)

Successive overrelaxation solution of equation (20.5.25) with Chebyshev acceleration. a, b, c,
d, e, and f are input as the coefficients of the equation, each dimensioned to the grid size
[0..jmax-1][0..jmax-1]. u is input as the initial guess to the solution, usually zero, and
returns with the final value. rjac is input as the spectral radius of the Jacobi iteration, or an
estimate of it.
{

const Int MAXITS=1000;
const Doub EPS=1.0e-13;
Doub anormf=0.0,omega=1.0;
Int jmax=a.nrows();
for (Int j=1;j<jmax-1;j++)
Compute initial norm of residual and terminate iterations when norm has been reduced by
a factor EPS.

for (Int l=1;l<jmax-1;l++)
anormf += abs(f[j][l]); Assumes initial u is zero.

for (Int n=0;n<MAXITS;n++) {
Doub anorm=0.0;
Int jsw=1;
for (Int ipass=0;ipass<2;ipass++) { Odd-even ordering.

Int lsw=jsw;
for (Int j=1;j<jmax-1;j++) {

for (Int l=lsw;l<jmax-1;l+=2) {
Doub resid=a[j][l]*u[j+1][l]+b[j][l]*u[j-1][l]

+c[j][l]*u[j][l+1]+d[j][l]*u[j][l-1]
+e[j][l]*u[j][l]-f[j][l];
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anorm += abs(resid);
u[j][l] -= omega*resid/e[j][l];

}
lsw=3-lsw;

}
jsw=3-jsw;
omega=(n == 0 && ipass == 0 ? 1.0/(1.0-0.5*rjac*rjac) :

1.0/(1.0-0.25*rjac*rjac*omega));
}
if (anorm < EPS*anormf) return;

}
throw("MAXITS exceeded");

}

The main advantage of SOR is that it is very easy to program. Its main disad-
vantage is that it is still very inefficient on large problems.

20.5.2 ADI (Alternating-Direction Implicit) Method
The ADI method of �20.3 for diffusion equations can be turned into a relax-

ation method for elliptic equations [1-4]. In �20.3, we discussed ADI as a method for
solving the time-dependent heat-flow equation

@u

@t
D r2u � � (20.5.31)

By letting t !1, one also gets an iterative method for solving the elliptic equation

r2u D � (20.5.32)

In either case, the operator splitting is of the form

L D Lx CLy (20.5.33)

where Lx represents the differencing in x and Ly that in y.
For example, in our model problem (20.0.6) with �x D �y D �, we have

Lxu D 2uj; l � ujC1; l � uj�1; l

Lyu D 2uj; l � uj; lC1 � uj; l�1
(20.5.34)

More complicated operators may be similarly split, but there is some art involved.
A bad choice of splitting can lead to an algorithm that fails to converge. Usually
one tries to base the splitting on the physical nature of the problem. We know for
our model problem that an initial transient diffuses away, and we set up the x and y
splitting to mimic diffusion in each dimension.

Having chosen a splitting, we difference the time-dependent equation (20.5.31)
implicitly in two half-steps:

unC1=2 � un

�t=2
D �

Lxu
nC1=2 CLyu

n

�2
� �

unC1 � unC1=2

�t=2
D �

Lxu
nC1=2 CLyu

nC1

�2
� �

(20.5.35)
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(cf. equation 20.3.16). Here we have suppressed the spatial indices (j; l). In matrix
notation, equations (20.5.35) are

.Lx C r1/ 	 u
nC1=2 D .r1 � Ly/ 	 u

n ��2� (20.5.36)

.Ly C r1/ 	 u
nC1 D .r1 � Lx/ 	 u

nC1=2 ��2� (20.5.37)

where

r �
2�2

�t
(20.5.38)

The matrices on the left-hand sides of equations (20.5.36) and (20.5.37) are
tridiagonal (and usually positive-definite), so the equations can be solved by the stan-
dard tridiagonal algorithm. Given un, one solves (20.5.36) for unC1=2, substitutes on
the right-hand side of (20.5.37), and then solves for unC1. The key question is how
to choose the iteration parameter r , the analog of a choice of timestep for an initial
value problem.

As usual, the goal is to minimize the spectral radius of the iteration matrix.
Although it is beyond our scope to go into details here, it turns out that, for the
optimal choice of r , the ADI method has the same rate of convergence as SOR.
The individual iteration steps in the ADI method are much more complicated than
in SOR, so the ADI method would appear to be inferior. This is in fact true if we
choose the same parameter r for every iteration step. However, it is possible to
choose a different r for each step. If this is done optimally, then ADI is generally
more efficient than SOR. We refer you to the literature [1-4] for details.

Our reason for not fully implementing ADI here is that, in most applications,
it has been superseded by the multigrid methods described in the next section. Our
advice is to use SOR for trivial problems (e.g., 30� 30) or for solving a larger prob-
lem once only, where ease of programming outweighs expense of computer time.
Occasionally, the sparse matrix methods of �2.7 are useful for solving a set of differ-
ence equations directly. For production solution of large elliptic problems, however,
multigrid is now almost always the method of choice.

CITED REFERENCES AND FURTHER READING:

Hockney, R.W., and Eastwood, J.W. 1981, Computer Simulation Using Particles (New York:
McGraw-Hill), Chapter 6.

Young, D.M. 1971, Iterative Solution of Large Linear Systems (New York: Academic Press);
reprinted 2003 (New York: Dover).[1]

Stoer, J., and Bulirsch, R. 2002, Introduction to Numerical Analysis, 3rd ed. (New York: Springer),
�8.3 – �8.6.[2]

Varga, R.S. 2000, Matrix Iterative Analysis, 2nd ed. (New York: Springer).[3]

Spanier, J. 1967, in Mathematical Methods for Digital Computers, Volume 2 (New York: Wiley),
Chapter 11.[4]

20.6 Multigrid Methods for Boundary Value
Problems

Practical multigrid methods were first introduced in the 1970s by Brandt [1,2].
These methods can solve elliptic PDEs discretized on N grid points in O.N/ op-
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erations. The “rapid” direct elliptic solvers discussed in �20.4 solve special kinds
of elliptic equations in O.N logN/ operations. The numerical coefficients in these
estimates are such that multigrid methods are comparable to the rapid methods in
execution speed. Unlike the rapid methods, however, the multigrid methods can
solve general elliptic equations with nonconstant coefficients with hardly any loss in
efficiency. Even nonlinear equations can be solved with comparable speed.

Unfortunately, there is not a single multigrid algorithm that solves all elliptic
problems. Rather, there is a multigrid technique that provides the framework for
solving these problems. You have to adjust the various components of the algorithm
within this framework to solve your specific problem. We can only give a brief intro-
duction to the subject here. In particular, we will give two sample multigrid routines,
one linear and one nonlinear. By following these prototypes and by perusing the
references [3-6], you should be able to develop routines to solve your own problems.

There are two related, but distinct, approaches to the use of multigrid tech-
niques. The first, termed the multigrid method, is a means for speeding up the
convergence of a traditional relaxation method, as defined by you on a grid of pre-
specified fineness. In this case, you need to define your problem (e.g., evaluate its
source terms) only on this grid. Other, coarser, grids defined by the method can be
viewed as temporary computational adjuncts.

The second approach, termed (perhaps confusingly) the full multigrid (FMG)
method, requires you to be able to define your problem on grids of various sizes
(generally by discretizing the same underlying PDE into different-sized sets of finite
difference equations). In this approach, the method obtains successive solutions on
finer and finer grids. You can stop the solution either at a pre-specified fineness, or
you can monitor the truncation error due to the discretization, quitting only when it
is tolerably small.

In this section we will first discuss the multigrid method and then use the con-
cepts developed to introduce the FMG method. The latter algorithm is the one that
we implement in the accompanying programs.

20.6.1 From One-Grid, through Two-Grid, to Multigrid
The key idea of the multigrid method can be understood by considering the

simplest case of a two-grid method. Suppose we are trying to solve the linear elliptic
problem

Lu D f (20.6.1)

where L is some linear elliptic operator and f is the source term. Discretize equation
(20.6.1) on a uniform grid with mesh size h. Write the resulting set of linear algebraic
equations as

Lhuh D fh (20.6.2)

Let zuh denote some approximate solution to equation (20.6.2). We will use the
symbol uh to denote the exact solution to the difference equations (20.6.2). Then the
error in zuh or the correction is

vh D uh � zuh (20.6.3)

The residual or defect is
dh D Lhzuh � fh (20.6.4)
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(Beware: Some authors define residual as minus the defect, and there is not universal
agreement about which of these two quantities 20.6.4 defines.) Since Lh is linear,
the error satisfies

Lhvh D �dh (20.6.5)

At this point we need to make an approximation to Lh in order to find vh. The
classical iteration methods, such as Jacobi or Gauss-Seidel, do this by finding, at
each stage, an approximate solution of the equation

yLhyvh D �dh (20.6.6)

where yLh is a “simpler” operator than Lh. For example, yLh is the diagonal part of
Lh for Jacobi iteration, or the lower triangle for Gauss-Seidel iteration. The next
approximation is generated by

zunew
h D zuh C yvh (20.6.7)

Now consider, as an alternative, a completely different type of approximation
for Lh, one in which we “coarsify” rather than “simplify.” That is, we form some
appropriate approximation LH of Lh on a coarser grid with mesh size H (we will
always take H D 2h, but other choices are possible). The residual equation (20.6.5)
is now approximated by

LHvH D �dH (20.6.8)

Since LH has smaller dimension, this equation will be easier to solve than equation
(20.6.5). To define the defect dH on the coarse grid, we need a restriction operator
R that restricts dh to the coarse grid:

dH D Rdh (20.6.9)

The restriction operator is also called the fine-to-coarse operator or the injection
operator. Once we have a solution zvH to equation (20.6.8), we need a prolongation
operator P that prolongates or interpolates the correction to the fine grid:

zvh D P zvH (20.6.10)

The prolongation operator is also called the coarse-to-fine operator or the interpola-
tion operator. Both R and P are chosen to be linear operators. Finally, the approxi-
mation zuh can be updated:

zunew
h D zuh C zvh (20.6.11)

One step of this coarse-grid correction scheme is thus:

Coarse-Grid Correction

� Compute the defect on the fine grid from (20.6.4).
� Restrict the defect by (20.6.9).
� Solve (20.6.8) exactly on the coarse grid for the correction.
� Interpolate the correction to the fine grid by (20.6.10).
� Compute the next approximation by (20.6.11).
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Let’s contrast the advantages and disadvantages of relaxation and the coarse-
grid correction scheme. Consider the error vh expanded into a discrete Fourier se-
ries. Call the components in the lower half of the frequency spectrum the smooth
components and the high-frequency components the nonsmooth components. We
have seen that relaxation becomes very slowly convergent in the limit h ! 0, i.e.,
when there are a large number of mesh points. The reason turns out to be that the
smooth components are only slightly reduced in amplitude on each iteration. How-
ever, many relaxation methods reduce the amplitude of the nonsmooth components
by large factors on each iteration: They are good smoothing operators.

For the two-grid iteration, on the other hand, components of the error with wave-
lengths. 2H are not even representable on the coarse grid and so cannot be reduced
to zero on this grid. But it is exactly these high-frequency components that can be re-
duced by relaxation on the fine grid! This leads us to combine the ideas of relaxation
and coarse-grid correction:

Two-Grid Iteration

� Pre-smoothing: Compute xuh by applying 
1 � 0 steps of a relaxation method
to zuh.
� Coarse-grid correction: As above, using xuh to give xunew

h
.

� Post-smoothing: Compute zunew
h

by applying 
2 � 0 steps of the relaxation
method to xunew

h
.

It is only a short step from the above two-grid method to a multigrid method.
Instead of solving the coarse-grid defect equation (20.6.8) exactly, we can get an
approximate solution of it by introducing an even coarser grid and using the two-
grid iteration method. If the convergence factor of the two-grid method is small
enough, we will need only a few steps of this iteration to get a good enough approx-
imate solution. We denote the number of such iterations by � . Obviously we can
apply this idea recursively down to some coarsest grid. There the solution is found
easily, for example by direct matrix inversion or by iterating the relaxation scheme
to convergence.

One iteration of a multigrid method, from finest grid to coarser grids and back
to finest grid again, is called a cycle. The exact structure of a cycle depends on the
value of � , the number of two-grid iterations at each intermediate stage. The case
� D 1 is called a V-cycle, while � D 2 is called a W-cycle (see Figure 20.6.1).
These are the most important cases in practice.

Note that once more than two grids are involved, the pre-smoothing steps after
the first one on the finest grid need an initial approximation for the error v. This
should be taken to be zero.

20.6.2 Smoothing, Restriction, and Prolongation Operators
The most popular smoothing method, and the one you should try first, is Gauss-

Seidel, since it usually leads to a good convergence rate. If we order the mesh points
from 0 to N � 1, then the Gauss-Seidel scheme is

ui D �
�N�1X
jD0
j¤i

Lijuj � fi

� 1

Li i
i D 0; : : : ; N � 1 (20.6.12)
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Figure 20.6.1. Structure of multigrid cycles. S denotes smoothing, while E denotes exact solution on
the coarsest grid. Each descending line n denotes restriction (R) and each ascending line = denotes
prolongation (P ). The finest grid is at the top level of each diagram. For the V-cycles (� D 1) the E
step is replaced by one two-grid iteration each time the number of grid levels is increased by one. For the
W-cycles (� D 2), each E step gets replaced by two two-grid iterations.

where new values of u are used on the right-hand side as they become available.
The exact form of the Gauss-Seidel method depends on the ordering chosen for the
mesh points. For typical second-order elliptic equations like our model problem
equation (20.0.3), as differenced in equation (20.0.8), it is usually best to use red-
black ordering, making one pass through the mesh updating the “even” points (like
the red squares of a checkerboard) and another pass updating the “odd” points (the
black squares). When quantities are more strongly coupled along one dimension
than another, one should relax a whole line along that dimension simultaneously.
Line relaxation for nearest-neighbor coupling involves solving a tridiagonal system,
and so is still efficient. Relaxing odd and even lines on successive passes is called
zebra relaxation and is usually preferred over simple line relaxation.

Note that SOR should not be used as a smoothing operator. The overrelaxation
destroys the high-frequency smoothing that is so crucial for the multigrid method.

A succint notation for the prolongation and restriction operators is to give their
symbol. The symbol of P is found by considering vH to be 1 at some mesh point
.x; y/, zero elsewhere, and then asking for the values of PvH . The most popular
prolongation operator is simple bilinear interpolation. It gives nonzero values at the
nine points .x; y/, .x C h; y/; : : : ; .x � h; y � h/, where the values are 1; 1

2
; : : : ; 1

4
.
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Its symbol is therefore 264
1
4

1
2

1
4

1
2

1 1
2

1
4

1
2

1
4

375 (20.6.13)

The symbol of R is defined by considering vh to be defined everywhere on the
fine grid, and then asking what is Rvh at .x; y/ as a linear combination of these
values. The simplest possible choice for R is straight injection, which means simply
filling each coarse-grid point with the value from the corresponding fine-grid point.
Its symbol is “Œ1�.” However, difficulties can arise in practice with this choice. It
turns out that a safe choice for R is to make it the adjoint operator to P . To define
the adjoint, define the scalar product of two grid functions uh and vh for mesh size
h as

huhjvhih � h
2
X
x;y

uh.x; y/vh.x; y/ (20.6.14)

Then the adjoint of P , denoted P �, is defined by

huH jP
�vhiH D hPuH jvhih (20.6.15)

Now take P to be bilinear interpolation, and choose uH D 1 at .x; y/, zero else-
where. Set P � D R in (20.6.15) and H D 2h. You will find that

.Rvh/.x;y/ D
1
4
vh.x; y/C

1
8
vh.x C h; y/C

1
16
vh.x C h; y C h/C 	 	 	 (20.6.16)

so that the symbol of R is 264
1
16

1
8

1
16

1
8

1
4

1
8

1
16

1
8

1
16

375 (20.6.17)

Note the simple rule: The symbol of R is 1
4

the transpose of the matrix defining
the symbol of P , equation (20.6.13). This rule is general whenever R D P � and
H D 2h.

The particular choice of R in (20.6.17) is called full weighting. Another pop-
ular choice for R is half weighting, “halfway” between full weighting and straight
injection. Its symbol is 2640

1
8

0
1
8

1
2

1
8

0 1
8

0

375 (20.6.18)

A similar notation can be used to describe the difference operator Lh. For
example, the standard differencing of the model problem, equation (20.0.6), is rep-
resented by the five-point difference star

Lh D
1

h2

240 1 0

1 �4 1

0 1 0

35 (20.6.19)

If you are confronted with a new problem and you are not sure what P and R

choices are likely to work well, here is a safe rule: Suppose mp is the order of the
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interpolation P (i.e., it interpolates polynomials of degreemp � 1 exactly). Suppose
mr is the order of R, and that R is the adjoint of some P (not necessarily the P you
intend to use). Then, if m is the order of the differential operator Lh, you should
satisfy the inequality mp C mr > m. For example, bilinear interpolation and its
adjoint, full weighting for Poisson’s equation satisfy mp Cmr D 4 > m D 2.

Of course the P and R operators should enforce the boundary conditions for
your problem. The easiest way to do this is to rewrite the difference equation to
have homogeneous boundary conditions by modifying the source term if necessary
(cf. �20.4). Enforcing homogeneous boundary conditions simply requires the P

operator to produce zeros at the appropriate boundary points. The corresponding R

is then found by R D P �.

20.6.3 Full Multigrid Algorithm
So far we have described multigrid as an iterative scheme, where one starts

with some initial guess on the finest grid and carries out enough cycles (V-cycles,
W-cycles,. . . ) to achieve convergence. This is the simplest way to use multigrid:
Simply apply enough cycles until some appropriate convergence criterion is met.
However, efficiency can be improved by using the full multigrid algorithm (FMG),
also known as nested iteration.

Instead of starting with an arbitrary approximation on the finest grid (e.g., uh D
0), the first approximation is obtained by interpolating from a coarse-grid solution:

uh D PuH (20.6.20)

The coarse-grid solution itself is found by a similar FMG process from even coarser
grids. At the coarsest level, you start with the exact solution. Rather than proceed as
in Figure 20.6.1, then, FMG gets to its solution by a series of increasingly tall “N’s,”
each taller one probing a finer grid (see Figure 20.6.2).

Note that P in (20.6.20) need not be the same P used in the multigrid cycles.
It should be at least of the same order as the discretization Lh, but sometimes a
higher-order operator leads to greater efficiency.

It turns out that you usually need one or at most two multigrid cycles at each
level before proceeding down to the next finer grid. While there is theoretical guid-
ance on the required number of cycles (e.g., [3]), you can easily determine it empir-
ically. Fix the finest level and study the solution values as you increase the number
of cycles per level. The asymptotic value of the solution is the exact solution of the
difference equations. The difference between this exact solution and the solution for
a small number of cycles is the iteration error. Now fix the number of cycles to be
large, and vary the number of levels, i.e., the smallest value of h used. In this way
you can estimate the truncation error for a given h. In your final production code,
there is no point in using more cycles than you need to get the iteration error down
to the size of the truncation error.

The simple multigrid iteration (cycle) needs the right-hand side f only at the
finest level. FMG needs f at all levels. If the boundary conditions are homogeneous,
you can use fH D Rfh. This prescription is not always safe for inhomogeneous
boundary conditions. In that case it is better to discretize f on each coarse grid.

Note that the FMG algorithm produces the solution on all levels. It can therefore
be combined with techniques like Richardson extrapolation.
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Figure 20.6.2. Structure of cycles for the full multigrid (FMG) method (notation as in Figure 20.6.1).
This method starts on the coarsest grid, interpolates, and then refines (by “V’s”) the solution onto grids of
increasing fineness.

We now give a routine Mglin that implements the full multigrid algorithm for
a linear equation, the model problem (20.0.6). It uses red-black Gauss-Seidel as
the smoothing operator, bilinear interpolation for P , and half-weighting for R. To
change the routine to handle another linear problem, all you need do is modify the
functions relax, resid, and slvsml appropriately. A feature of the routine is the
dynamical allocation of storage for variables defined on the various grids.

struct Mglin { mglin.h
Full multigrid algorithm for solution of linear elliptic equation, here the model problem (20.0.6)
on a square domain of side 1, so that � D 1=.n� 1/.

Int n,ng;
MatDoub *uj,*uj1;
NRvector<NRmatrix<Doub> *> rho; Vector of pointers to � on each level.

Mglin(MatDoub_IO &u, const Int ncycle) : n(u.nrows()), ng(0)
On input u[0..n-1][0..n-1] contains the right-hand side �, while on output it returns the
solution. The dimension n must be of the form 2j C 1 for some integer j . (j is actually
the number of grid levels used in the solution, called ng below.) ncycle is the number of
V-cycles to be used at each level.
{

Int nn=n;
while (nn >>= 1) ng++;
if ((n-1) != (1 << ng))

throw("n-1 must be a power of 2 in mglin.");
nn=n;
Int ngrid=ng-1;
rho.resize(ng);
rho[ngrid] = new MatDoub(nn,nn); Allocate storage for r.h.s. on grid ng� 1,
*rho[ngrid]=u; and fill it with the input r.h.s.
while (nn > 3) { Similarly allocate storage and fill r.h.s. on

all coarse grids by restricting from finer
grids.

nn=nn/2+1;
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rho[--ngrid]=new MatDoub(nn,nn);
rstrct(*rho[ngrid],*rho[ngrid+1]);

}
nn=3;
uj=new MatDoub(nn,nn);
slvsml(*uj,*rho[0]); Initial solution on coarsest grid.
for (Int j=1;j<ng;j++) { Nested iteration loop.

nn=2*nn-1;
uj1=uj;
uj=new MatDoub(nn,nn);
interp(*uj,*uj1); Interpolate from grid j-1 to next finer grid

j.delete uj1;
for (Int jcycle=0;jcycle<ncycle;jcycle++) V-cycle loop.

mg(j,*uj,*rho[j]);
}
u = *uj; Return solution in u.

}

~Mglin()
Destructor deletes storage.
{

if (uj != NULL) delete uj;
for (Int j=0;j<ng;j++)

if (rho[j] != NULL) delete rho[j];
}

void interp(MatDoub_O &uf, MatDoub_I &uc)
Coarse-to-fine prolongation by bilinear interpolation. If nf is the fine-grid dimension, the
coarse-grid solution is input as uc[0..nc-1][0..nc-1], where nc D nf=2C 1. The fine-
grid solution is returned in uf[0..nf-1][0..nf-1].
{

Int nf=uf.nrows();
Int nc=nf/2+1;
for (Int jc=0;jc<nc;jc++) Do elements that are copies.

for (Int ic=0;ic<nc;ic++) uf[2*ic][2*jc]=uc[ic][jc];
for (Int jf=0;jf<nf;jf+=2) Do even-numbered columns, interpolating ver-

tically.for (Int iif=1;iif<nf-1;iif+=2)
uf[iif][jf]=0.5*(uf[iif+1][jf]+uf[iif-1][jf]);

for (Int jf=1;jf<nf-1;jf+=2) Do odd-numbered columns, interpolating hor-
izontally.for (Int iif=0;iif<nf;iif++)

uf[iif][jf]=0.5*(uf[iif][jf+1]+uf[iif][jf-1]);
}

void addint(MatDoub_O &uf, MatDoub_I &uc, MatDoub_O &res)
Does coarse-to-fine interpolation and adds result to uf. If nf is the fine-grid dimension,
the coarse-grid solution is input as uc[0..nc-1][0..nc-1], where nc D nf=2C 1. The
fine-grid solution is returned in uf[0..nf-1][0..nf-1]. res[0..nf-1][0..nf-1] is used
for temporary storage.
{

Int nf=uf.nrows();
interp(res,uc);
for (Int j=0;j<nf;j++)

for (Int i=0;i<nf;i++)
uf[i][j] += res[i][j];

}

void slvsml(MatDoub_O &u, MatDoub_I &rhs)
Solution of the model problem on the coarsest grid, where h D 1

2
. The right-hand side is

input in rhs[0..2][0..2] and the solution is returned in u[0..2][0..2].
{

Doub h=0.5;
for (Int i=0;i<3;i++)

for (Int j=0;j<3;j++)
u[i][j]=0.0;
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u[1][1] = -h*h*rhs[1][1]/4.0;
}

void relax(MatDoub_IO &u, MatDoub_I &rhs)
Red-black Gauss-Seidel relaxation for model problem. Updates the current value of the
solution u[0..n-1][0..n-1], using the right-hand side function rhs[0..n-1][0..n-1].
{

Int n=u.nrows();
Doub h=1.0/(n-1);
Doub h2=h*h;
for (Int ipass=0,jsw=1;ipass<2;ipass++,jsw=3-jsw) { Red and black sweeps.

for (Int j=1,isw=jsw;j<n-1;j++,isw=3-isw)
for (Int i=isw;i<n-1;i+=2) Gauss-Seidel formula.

u[i][j]=0.25*(u[i+1][j]+u[i-1][j]+u[i][j+1]
+u[i][j-1]-h2*rhs[i][j]);

}
}

void resid(MatDoub_O &res, MatDoub_I &u, MatDoub_I &rhs)
Returns minus the residual for the model problem. Input quantities are u[0..n-1][0..n-1]
and rhs[0..n-1][0..n-1], while res[0..n-1][0..n-1] is returned.
{

Int n=u.nrows();
Doub h=1.0/(n-1);
Doub h2i=1.0/(h*h);
for (Int j=1;j<n-1;j++) Interior points.

for (Int i=1;i<n-1;i++)
res[i][j] = -h2i*(u[i+1][j]+u[i-1][j]+u[i][j+1]

+u[i][j-1]-4.0*u[i][j])+rhs[i][j];
for (Int i=0;i<n;i++) Boundary points.

res[i][0]=res[i][n-1]=res[0][i]=res[n-1][i]=0.0;
}

void rstrct(MatDoub_O &uc, MatDoub_I &uf)
Half-weighting restriction. If nc is the coarse-grid dimension, the fine-grid solution is input
in uf[0..2*nc-2][0..2*nc-2].The coarse-grid solution obtained by restriction is returned
in uc[0..nc-1][0..nc-1].
{

Int nc=uc.nrows();
Int ncc=2*nc-2;
for (Int jf=2,jc=1;jc<nc-1;jc++,jf+=2) { Interior points.

for (Int iif=2,ic=1;ic<nc-1;ic++,iif+=2) {
uc[ic][jc]=0.5*uf[iif][jf]+0.125*(uf[iif+1][jf]+uf[iif-1][jf]

+uf[iif][jf+1]+uf[iif][jf-1]);
}

}
for (Int jc=0,ic=0;ic<nc;ic++,jc+=2) { Boundary points.

uc[ic][0]=uf[jc][0];
uc[ic][nc-1]=uf[jc][ncc];

}
for (Int jc=0,ic=0;ic<nc;ic++,jc+=2) {

uc[0][ic]=uf[0][jc];
uc[nc-1][ic]=uf[ncc][jc];

}
}

void mg(Int j, MatDoub_IO &u, MatDoub_I &rhs)
Recursive multigrid iteration. On input, j is the current level, u is the current value of the
solution, and rhs is the right-hand side. On output u contains the improved solution at the
current level.
{

const Int NPRE=1,NPOST=1; Number of relaxation sweeps before and af-
ter the coarse-grid correction is computed.Int nf=u.nrows();

Int nc=(nf+1)/2;
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if (j == 0) Bottom of V: Solve on coarsest grid.
slvsml(u,rhs);

else { On downward stoke of the V.
MatDoub res(nc,nc),v(nc,nc,0.0),temp(nf,nf);
v is zero for initial guess in each relaxation.
for (Int jpre=0;jpre<NPRE;jpre++)

relax(u,rhs); Pre-smoothing.
resid(temp,u,rhs);
rstrct(res,temp); Restriction of the residual is the next r.h.s.
mg(j-1,v,res); Recursive call for the coarse-grid correction.
addint(u,v,temp); On upward stroke of V.
for (Int jpost=0;jpost<NPOST;jpost++)

relax(u,rhs); Post-smoothing.
}

}
};

The routine Mglin is written for clarity, not maximum efficiency, so that it is
easy to modify. Several simple changes will speed up the execution time:

� The defect dh vanishes identically at all black mesh points after a red-black
Gauss-Seidel step. Thus dH D Rdh for half-weighting reduces to simply
copying half the defect from the fine grid to the corresponding coarse-grid
point. The calls to resid followed by rstrct in the first part of the V-cycle
can be replaced by a routine that loops only over the coarse grid, filling it with
half the defect.
� Similarly, the quantity zunew

h
D zuh C P zvH need not be computed at red mesh

points, since they will immediately be redefined in the subsequent Gauss-
Seidel sweep. This means that addint need only loop over black points.
� You can speed up relax in several ways. First, you can have a special form

when the initial guess is zero. Next, you can store h2fh on the various grids
and save a multiplication. Finally, it is possible to save an addition in the
Gauss-Seidel formula by rewriting it with intermediate variables.
� For typical problems, Mglin with ncycle D 1 will return a solution with the

iteration error bigger than the truncation error for the given size of h. To knock
the error down to the size of the truncation error, you have to set ncycle D 2
or, more cheaply, NPRE D 2. A more efficient way turns out to be to use a
higher-order P in (20.6.20) than the linear interpolation used in the V-cycle.

Implementing all the above features typically gives up to a factor of two im-
provement in execution time and is certainly worthwhile in a production code.

20.6.4 Nonlinear Multigrid: The FAS Algorithm

Now turn to solving a nonlinear elliptic equation, which we write symbolically as

L.u/ D 0 (20.6.21)

Any explicit source term has been moved to the left-hand side. Suppose equation (20.6.21) is
suitably discretized:

Lh.uh/ D 0 (20.6.22)

We will see below that in the multigrid algorithm we will have to consider equations where a
nonzero right-hand side is generated during the course of the solution:

Lh.uh/ D fh (20.6.23)
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One way of solving nonlinear problems with multigrid is to use Newton’s method, which
produces linear equations for the correction term at each iteration. We can then use linear
multigrid to solve these equations. A great strength of the multigrid idea, however, is that it
can be applied directly to nonlinear problems. All we need is a suitable nonlinear relaxation
method to smooth the errors, plus a procedure for approximating corrections on coarser grids.
This direct approach is Brandt’s full approximation storage algorithm (FAS). No nonlinear
equations need be solved, except perhaps on the coarsest grid.

To develop the nonlinear algorithm, suppose we have a relaxation procedure that can
smooth the residual vector as we did in the linear case. Then we can seek a smooth correction
vh to solve (20.6.23):

Lh.zuh C vh/ D fh (20.6.24)

To find vh, note that

Lh.zuh C vh/ �Lh.zuh/ D fh �Lh.zuh/

D �dh
(20.6.25)

The right-hand side is smooth after a few nonlinear relaxation sweeps. Thus we can transfer
the left-hand side to a coarse grid:

LH .uH / �LH .Rzuh/ D �Rdh (20.6.26)

that is, we solve
LH .uH / D LH .Rzuh/ �Rdh (20.6.27)

on the coarse grid. (This is how nonzero right-hand sides appear.) Suppose the approximate
solution is zuH . Then the coarse-grid correction is

zvH D zuH �Rzuh (20.6.28)

and
zunew
h
D zuh CP .zuH �Rzuh/ (20.6.29)

Note that P R ¤ 1 in general, so zunew
h
¤ P zuH . This is a key point: In equation (20.6.29),

the interpolation error comes only from the correction, not from the full solution zuH .
Equation (20.6.27) shows that one is solving for the full approximation uH , not just the

error as in the linear algorithm. This is the origin of the name FAS.
The FAS multigrid algorithm thus looks very similar to the linear multigrid algorithm.

The only differences are that both the defect dh and the relaxed approximation uh have to
be restricted to the coarse grid, where now it is equation (20.6.27) that is solved by recursive
invocation of the algorithm. However, instead of implementing the algorithm this way, we
will first describe the so-called dual viewpoint, which leads to a powerful alternative way of
looking at the multigrid idea.

The dual viewpoint considers the local truncation error, defined as

� � Lh.u/ � fh (20.6.30)

where u is the exact solution of the original continuum equation. If we rewrite this as

Lh.u/ D fh C � (20.6.31)

we see that � can be regarded as the correction to fh so that the solution of the fine-grid
equation will be the exact solution u.

Now consider the relative truncation error �h, which is defined on the H -grid relative
to the h-grid:

�h � LH .Ruh/ �RLh.uh/ (20.6.32)

Since Lh.uh/ D fh, this can be rewritten as

LH .uH / D fH C �h (20.6.33)
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In other words, we can think of �h as the correction to fH that makes the solution of the
coarse-grid equation equal to the fine-grid solution. Of course we cannot compute �h, but we
do have an approximation to it from using zuh in equation (20.6.32):

�h ' z�h � LH .Rzuh/ �RLh.zuh/ (20.6.34)

Replacing �h by z�h in equation (20.6.33) gives

LH .uH / D LH .Rzuh/ �Rdh (20.6.35)

which is just the coarse-grid equation (20.6.27)!
Thus we see that there are two complementary viewpoints for the relation between coarse

and fine grids:

� Coarse grids are used to accelerate the convergence of the smooth components of the
fine-grid residuals.

� Fine grids are used to compute correction terms to the coarse-grid equations, yielding
fine-grid accuracy on the coarse grids.

One benefit of this new viewpoint is that it allows us to derive a natural stopping criterion
for a multigrid iteration. Normally the criterion would be

kdhk 
 � (20.6.36)

and the question is how to choose �. There is clearly no benefit in iterating beyond the point
when the remaining error is dominated by the local truncation error � . The computable quan-
tity is z�h. What is the relation between � and z�h? For the typical case of a second-order
accurate differencing scheme,

� D Lh.u/ �Lh.uh/ D h
2�2.x; y/C 	 	 	 (20.6.37)

Assume the solution satisfies uh D u C h2u2.x; y/ C 	 	 	 . Then, assuming R is of high
enough order that we can neglect its effect, equation (20.6.32) gives

�h ' LH .uC h
2u2/ �Lh.uC h

2u2/

D LH .u/ �Lh.u/C h
2ŒL0H .u2/ �L0h.u2/�C 	 	 	

D .H2 � h2/�2 CO.h
4/

(20.6.38)

For the usual case of H D 2h, we therefore have

� ' 1
3 �h '

1
3 z�h (20.6.39)

The stopping criterion is thus equation (20.6.36) with

� D ˛kz�hk; ˛ � 1
3 (20.6.40)

We have one remaining task before implementing our nonlinear multigrid algorithm:
choosing a nonlinear relaxation scheme. Once again, your first choice should probably be
the nonlinear Gauss-Seidel scheme. If the discretized equation (20.6.23) is written with some
choice of ordering as

Li .u0; : : : ; uN�1/ D fi ; i D 0; : : : ; N � 1 (20.6.41)

then the nonlinear Gauss-Seidel schemes solves

Li .u0; : : : ; ui�1; u
new
i ; uiC1; : : : ; uN�1/ D fi (20.6.42)

for unew
i . As usual, new u’s replace old u’s as soon as they have been computed. Often

equation (20.6.42) is linear in unew
i , since the nonlinear terms are discretized by means of
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its neighbors. If this is not the case, we replace equation (20.6.42) by one step of a Newton
iteration:

unew
i D uold

i �
Li .u

old
i / � fi

@Li .u
old
i /=@ui

(20.6.43)

For example, consider the simple nonlinear equation

r2uC u2 D � (20.6.44)

In two-dimensional notation, we have

L.ui;j / D .uiC1;j Cui�1;j Cui;jC1Cui;j�1 � 4ui;j /=h
2Cu2i;j � �i;j D 0 (20.6.45)

Since
@L

@ui;j
D �4=h2 C 2ui;j (20.6.46)

the Newton Gauss-Seidel iteration is

unew
i;j D ui;j �

L.ui;j /

�4=h2 C 2ui;j
(20.6.47)

Here is a routine Mgfas that solves equation (20.6.44) using the full multigrid algorithm
and the FAS scheme. Restriction and prolongation are done as in Mglin. We have included the
convergence test based on equation (20.6.40). A successful multigrid solution of a problem
should aim to satisfy this condition with the maximum number of V-cycles, maxcyc, equal to
1 or 2. The routine Mgfas uses the same functions interp and rstrct as Mglin.

struct Mgfas { mgfas.h
Full multigrid algorithm for FAS solution of nonlinear elliptic equation, here equation (20.6.44)
on a square domain of side 1, so that h D 1=.n� 1/.

Int n,ng;
MatDoub *uj,*uj1;
NRvector<NRmatrix<Doub> *> rho; Vector of pointers to � on each level.

Mgfas(MatDoub_IO &u, const Int maxcyc) : n(u.nrows()), ng(0)
On input u[0..n-1][0..n-1] contains the right-hand side �, while on output it returns the
solution. The dimension n must be of the form 2j C 1 for some integer j . (j is actually
the number of grid levels used in the solution, called ng below.) maxcyc is the maximum
number of V-cycles to be used at each level.
{

Int nn=n;
while (nn >>= 1) ng++;
if ((n-1) != (1 << ng))

throw("n-1 must be a power of 2 in mgfas.");
nn=n;
Int ngrid=ng-1;
rho.resize(ng);
rho[ngrid]=new MatDoub(nn,nn); Allocate storage for r.h.s. on grid ng� 1,
*rho[ngrid]=u; and fill it with the input r.h.s.
while (nn > 3) { Similarly allocate storage and fill r.h.s. by

restriction on all coarse grids.nn=nn/2+1;
rho[--ngrid]=new MatDoub(nn,nn);
rstrct(*rho[ngrid],*rho[ngrid+1]);

}
nn=3;
uj=new MatDoub(nn,nn);
slvsm2(*uj,*rho[0]); Initial solution on coarsest grid.
for (Int j=1;j<ng;j++) { Nested iteration loop.

nn=2*nn-1;
uj1=uj;
uj=new MatDoub(nn,nn);
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MatDoub temp(nn,nn);
interp(*uj,*uj1); Interpolate from grid j-1 to next finer grid

j.delete uj1;
for (Int jcycle=0;jcycle<maxcyc;jcycle++) { V-cycle loop.

Doub trerr=1.0; R.h.s. is dummy.
mg(j,*uj,temp,rho,trerr);
lop(temp,*uj); Form residual kdhk.
matsub(temp,*rho[j],temp);
Doub res=anorm2(temp);
if (res < trerr) break; No more V-cycles needed if residual small

enough.}
}
u = *uj; Return solution in u.

}

~Mgfas()
Destructor deletes storage.
{

if (uj != NULL) delete uj;
for (Int j=0;j<ng;j++)

if (rho[j] != NULL) delete rho[j];
}

void matadd(MatDoub_I &a, MatDoub_I &b, MatDoub_O &c)
Matrix addition: Adds a[0..n-1][0..n-1] to b[0..n-1][0..n-1] and returns result in
c[0..n-1][0..n-1].
{

Int n=a.nrows();
for (Int j=0;j<n;j++)

for (Int i=0;i<n;i++)
c[i][j]=a[i][j]+b[i][j];

}

void matsub(MatDoub_I &a, MatDoub_I &b, MatDoub_O &c)
Matrix subtraction: Subtracts b[0..n-1][0..n-1] from a[0..n-1][0..n-1] and returns
result in c[0..n-1][0..n-1].
{

Int n=a.nrows();
for (Int j=0;j<n;j++)

for (Int i=0;i<n;i++)
c[i][j]=a[i][j]-b[i][j];

}

void slvsm2(MatDoub_O &u, MatDoub_I &rhs)
Solution of equation (20.6.44) on the coarsest grid, where h D 1

2
. The right-hand side is

input in rhs[0..2][0..2] and the solution is returned in u[0..2][0..2].
{

Doub h=0.5;
for (Int i=0;i<3;i++)

for (Int j=0;j<3;j++)
u[i][j]=0.0;

Doub fact=2.0/(h*h);
Doub disc=sqrt(fact*fact+rhs[1][1]);
u[1][1]= -rhs[1][1]/(fact+disc);

}

void relax2(MatDoub_IO &u, MatDoub_I &rhs)
Red-black Gauss-Seidel relaxation for equation (20.6.44). The current value of the solution
u[0..n-1][0..n-1] is updated, using the right-hand side function rhs[0..n-1][0..n-1].

{
Int n=u.nrows();
Int jsw=1;
Doub h=1.0/(n-1);
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Doub h2i=1.0/(h*h);
Doub foh2 = -4.0*h2i;
for (Int ipass=0;ipass<2;ipass++,jsw=3-jsw) { Red and black sweeps.

Int isw=jsw;
for (Int j=1;j<n-1;j++,isw=3-isw) {

for (Int i=isw;i<n-1;i+=2) {
Doub res=h2i*(u[i+1][j]+u[i-1][j]+u[i][j+1]+u[i][j-1]-

4.0*u[i][j])+u[i][j]*u[i][j]-rhs[i][j];
u[i][j] -= res/(foh2+2.0*u[i][j]); Newton Gauss-Seidel formula.

}
}

}
}

void rstrct(MatDoub_O &uc, MatDoub_I &uf)
Half-weighting restriction. If nc is the coarse-grid dimension, the fine-grid solution is input
in uf[0..2*nc-2][0..2*nc-2].The coarse-grid solution obtained by restriction is returned
in uc[0..nc-1][0..nc-1].
{

Int nc=uc.nrows();
Int ncc=2*nc-2;
for (Int jf=2,jc=1;jc<nc-1;jc++,jf+=2) { Interior points.

for (Int iif=2,ic=1;ic<nc-1;ic++,iif+=2) {
uc[ic][jc]=0.5*uf[iif][jf]+0.125*(uf[iif+1][jf]+uf[iif-1][jf]

+uf[iif][jf+1]+uf[iif][jf-1]);
}

}
for (Int jc=0,ic=0;ic<nc;ic++,jc+=2) { Boundary points.

uc[ic][0]=uf[jc][0];
uc[ic][nc-1]=uf[jc][ncc];

}
for (Int jc=0,ic=0;ic<nc;ic++,jc+=2) {

uc[0][ic]=uf[0][jc];
uc[nc-1][ic]=uf[ncc][jc];

}
}

void lop(MatDoub_O &out, MatDoub_I &u)
Given u[0..n-1][0..n-1], returns Lh.zuh/ for eqn. (20.6.44) in out[0..n-1][0..n-1].
{

Int n=u.nrows();
Doub h=1.0/(n-1);
Doub h2i=1.0/(h*h);
for (Int j=1;j<n-1;j++) Interior points.

for (Int i=1;i<n-1;i++)
out[i][j]=h2i*(u[i+1][j]+u[i-1][j]+u[i][j+1]+u[i][j-1]-

4.0*u[i][j])+u[i][j]*u[i][j];
for (Int i=0;i<n;i++) Boundary points.

out[i][0]=out[i][n-1]=out[0][i]=out[n-1][i]=0.0;
}

void interp(MatDoub_O &uf, MatDoub_I &uc)
Coarse-to-fine prolongation by bilinear interpolation. If nf is the fine-grid dimension, the
coarse-grid solution is input as uc[0..nc-1][0..nc-1], where nc D nf=2C 1. The fine-
grid solution is returned in uf[0..nf-1][0..nf-1].
{

Int nf=uf.nrows();
Int nc=nf/2+1;
for (Int jc=0;jc<nc;jc++) Do elements that are copies.

for (Int ic=0;ic<nc;ic++) uf[2*ic][2*jc]=uc[ic][jc];
for (Int jf=0;jf<nf;jf+=2) Do even-numbered columns, interpolating ver-

tically.for (Int iif=1;iif<nf-1;iif+=2)
uf[iif][jf]=0.5*(uf[iif+1][jf]+uf[iif-1][jf]);

for (Int jf=1;jf<nf-1;jf+=2) Do odd-numbered columns, interpolating hor-
izontally.
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for (Int iif=0;iif<nf;iif++)
uf[iif][jf]=0.5*(uf[iif][jf+1]+uf[iif][jf-1]);

}

Doub anorm2(MatDoub_I &a)
Returns the Euclidean norm of the matrix a[0..n-1][0..n-1].
{

Doub sum=0.0;
Int n=a.nrows();
for (Int j=0;j<n;j++)

for (Int i=0;i<n;i++)
sum += a[i][j]*a[i][j];

return sqrt(sum)/n;
}

void mg(const Int j, MatDoub_IO &u, MatDoub_I &rhs,
NRvector<NRmatrix<Doub> *> &rho, Doub &trerr)

Recursive multigrid iteration. On input, j is the current level and u is the current value of the
solution. For the first call on a given level, the right-hand side is zero, and the argument rhs
is dummy. This is signaled by inputting trerr positive. Subsequent recursive calls supply
a nonzero rhs as in equation (20.6.33). This is signaled by inputting trerr negative. rho
is the vector of pointers to � on each level. On output u contains the improved solution at
the current level. When the first call on a given level is made, the relative truncation error
� is returned in trerr.
{

const Int NPRE=1,NPOST=1;
Number of relaxation sweeps before and after the coarse-grid correction is computed.
const Doub ALPHA=0.33; Relates the estimated truncation error to the

norm of the residual.Doub dum=-1.0;
Int nf=u.nrows();
Int nc=(nf+1)/2;
MatDoub temp(nf,nf);
if (j == 0) { Bottom of V: Solve on coarsest grid.

matadd(rhs,*rho[j],temp);
slvsm2(u,temp);

} else { On downward stoke of the V.
MatDoub v(nc,nc),ut(nc,nc),tau(nc,nc),tempc(nc,nc);
for (Int jpre=0;jpre<NPRE;jpre++) { Pre-smoothing.

if (trerr < 0.0) {
matadd(rhs,*rho[j],temp);
relax2(u,temp);

}
else

relax2(u,*rho[j]);
}
rstrct(ut,u); Rzuh.
v=ut; Make a copy in v.
lop(tau,ut); LH .Rzuh/ stored temporarily in z�h.
lop(temp,u); Lh.zuh/.
if (trerr < 0.0) Lh.zuh/� fh.

matsub(temp,rhs,temp);
rstrct(tempc,temp); RLh.zuh/� fH .
matsub(tau,tempc,tau); z�hC fH D LH .Rzuh/�RLh.zuh/C fH .
if (trerr > 0.0)

trerr=ALPHA*anorm2(tau); Estimate truncation error � .
mg(j-1,v,tau,rho,dum); Recursive call for the coarse-grid correction.
matsub(v,ut,tempc); On upward stroke of V, form zunew

h
D zuh C

P .zuH �Rzuh/.interp(temp,tempc);
matadd(u,temp,u);
for (Int jpost=0;jpost<NPOST;jpost++) { Post-smoothing.

if (trerr < 0.0) {
matadd(rhs,*rho[j],temp);
relax2(u,temp);

}
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else
relax2(u,*rho[j]);

}
}

}
};
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20.7 Spectral Methods

Spectral methods are a very powerful tool for solving PDEs. When they can
be used, they are the method of choice if you need high spatial resolution in multi-
dimensions. For a second-order accurate finite difference code in three dimensions,
increasing the resolution by a factor of 2 in each dimension requires eight times as
many grid points, and improves the error typically by a factor of 4. In a spectral code,
a similar increase in resolution often gives an improvement of a factor of 106. Even
for one-dimensional problems, spectral methods will amaze you with their power
and efficiency.

Spectral methods work well for smooth solutions. Discontinuities like shocks
are bad — don’t even try spectral methods. Even mild nonsmoothness (like a dis-
continuity in some high-order derivative of the solution) can spoil the convergence
of spectral methods. (Actually, getting spectral methods to work with discontinuities
and shocks is an active research area; see [1] for an introduction.)

The key difference between finite difference methods and spectral methods is
that in finite difference methods you approximate the equation you are trying to
solve, whereas in spectral methods you approximate the solution you are trying to
find. While finite differencing replaces the continuum equation by an equation on
grid points, a spectral method expresses the solution as a truncated expansion in a set
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of basis functions:

f .x/ ' fN .x/ D

NX
nD0

an�n.x/ (20.7.1)

Different choices of basis functions and methods of computing an give different
flavors of spectral methods.

20.7.1 Example
We illustrate the idea of spectral methods with an example. Consider the one-

sided wave equation (advective equation) in one dimension:

@u

@t
D
@u

@x
(20.7.2)

with periodic boundary conditions on Œ0; 2	� and initial condition

u.t D 0; x/ D f .x/ (20.7.3)

You get the analytic spectral solution by expanding u in a Fourier series,

u.t; x/ D

1X
nD�1

an.t/e
inx (20.7.4)

Substituting this expansion into equation (20.7.2) gives

dan

dt
D inan (20.7.5)

with solution
an.t/ D an.0/e

int (20.7.6)

You get an.0/ from the initial condition: Expand

f .x/ D

1X
nD�1

fne
inx (20.7.7)

from which you see that
an.0/ D fn (20.7.8)

For example, suppose

f .x/ D sin.	 cos x/ (20.7.9)

which gives the analytic solution

u.t; x/ D sinŒ	 cos.x C t /� (20.7.10)

The spectral coefficients in the solution (20.7.4) are

an.0/ D
1

2	

Z 2	

0

sin.	 cos x/e�inxdx

D .�1/.n�1/=2Jn.	/; n odd (20.7.11)
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In a numerical version of this spectral solution, we would truncate the expansion
at n D N . How well does uN .t; x/ approximate the exact solution? One measure is
the root-mean-square error,

L2 D

�
1

2	

Z 2	

0

ju.t; x/ � uN .t; x/j
2 dx

�1=2
D

�
1

2	

Z 2	

0

ˇ̌̌ X
jnj>N

an.0/e
inxeint

ˇ̌̌2
dx

�1=2

D

� X
jnj>N

jan.0/j
2

�1=2
(20.7.12)

Now Jn.	/ goes to zero exponentially as n ! 1, so the error decreases exponen-
tially with N for any t � 0. This is the key feature of a good spectral method, one
you should always strive for. By contrast, a second-order finite difference method
has an error that scales as 1=N 2.

This exponential convergence of spectral methods sets in when one has resolved
the main features of the solution. In the above example, the Bessel functions go
rapidly to zero once n & 	 , which corresponds to having about 	 basis functions per
wavelength. On can show that this is a general property of spectral methods [2]. By
contrast, second-order accurate finite differencing needs about 20 points per wave-
length for 1% accuracy [2]. Moreover, once the solution is resolved, the accuracy
improves much more quickly with spectral methods.

There are three properties of the functions einx that are crucial for this analytic
spectral solution, which is just the separation of variables technique:

1. They are a complete set of basis functions.
2. Each basis function by itself obeys the boundary conditions.
3. They are eigenfunctions of the operator in the problem, d=dx.

As we’ll see, only property 1 is essential for numerical spectral methods. Spectral
methods are not limited to Fourier series — a wide choice of basis functions can
be used.

20.7.2 Choice of Basis Functions
You can’t simply use Fourier series as basis functions for all problems — it

depends on the boundary conditions. Here is a recipe that will take care of 99% of
cases you’ll encounter:

� If the solution is periodic, use Fourier series.
� If the solution is not periodic and the domain is a square or a cube, or can

be mapped to a rectangular region by a simple coordinate transformation, use
Chebyshev polynomials along each dimension.
� If the domain is spherical, use spherical harmonics for the angles. In the ra-

dial direction, use Chebyshev polynomials for a spherical shell. For a sphere
that includes the origin, use the radial basis functions in [8]. These incorpo-
rate the correct analytic behavior at the origin and are much better than other
choices. They can also be used for cylindrical domains. If the domain is infi-
nite, consult [9,10,4].
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Expansions based on for example Chebyshev or Legendre polynomials have the
property that their convergence rate is governed by the smoothness of the solution
only, not the boundary conditions it satisfies. Fourier expansions, on the other hand,
require periodic boundary conditions as well as smoothness for rapid convergence.
(These properties are proved, e.g., in [2]. The key point is that basis functions whose
convergence rate is independent of the boundary conditions are solutions of singular
Sturm-Liouville equations.) It is this independence from the details of the boundary
conditions that makes basis functions like Chebyshev polynomials “magical.”

Another reason for the popularity of Chebyshev polynomials is that they are re-
ally just trigonometric functions whose argument � has been mapped by x D cos � :

Tn.x/ D cos.n�/; x D cos � (20.7.13)

Thus an expansion in Chebyshev polynomials can be evaluated efficiently by the
FFT. Moreover, the derivatives of such an expansion can also be evaluated by FFT
techniques, as discussed below.

For spherical domains, spherical harmonics are products of Legendre functions
in cos � and Fourier series in �. Once again one gets exponential convergence for
smooth functions.

20.7.3 Computing the Expansion Coefficients

How do we compute the an? There are three basic ways, which can be com-
pared by considering the residual when the expansion (20.7.1) is substituted into the
equation you are trying to solve:

1. Tau method. Here we require that the an be computed so that the boundary
conditions are satisfied, and that the residual be orthogonal to as many of the
basis functions as possible.

2. Galerkin method. In this case you combine the basis functions into a new
set, each of which satifies the boundary conditions. Then make the residual
orthogonal to as many of the new basis functions as possible. (This is essen-
tially what you do when you separate variables in solving a PDE, as we did for
equation 20.7.2. Usually you start with basis functions that already satisfy the
boundary conditions individually.)

3. Collocation or pseudospectral method. As in the tau method, require the
boundary conditions to be satisfied, but make the residual zero at a set of suit-
ably chosen points.

As we will see, the pseudospectral method has an alternative interpretation that
makes it very easy to use. Accordingly, we will only discuss this method, leaving
the others to the references.

The big advantage of the pseudospectral method is that it is easy to implement
for nonlinear problems. Instead of working with the spectral coefficients, as with the
other two methods, you work with the values of the solution at the special grid points
associated with the basis functions (typically, the Gaussian quadrature points). These
are called the collocation points. Often we say we are working with the solution in
physical space as opposed to in spectral space.
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A pseudospectral method is an interpolating method: Think of the representa-
tion

y.x/ D

NX
nD0

an�n.x/ (20.7.14)

as a polynomial that interpolates the solution. Require this interpolating polyno-
mial to be exactly equal to the solution at the N C 1 collocation points. If we
do things right, then as N ! 1, the errors in between the points tend to zero
exponentially fast.

20.7.4 Spectral Methods and Gaussian Quadrature
Recall the formula for Gaussian quadrature (�4.6.1):

Z b

a

y.x/w.x/ dx �

NX
iD0

wiy.xi / (20.7.15)

Here w.x/ is the so-called weight function that typically factors out some singular
behavior of the integrand, leaving y.x/ as a smooth function. The formula is derived
by choosing the 2N C 2 weights and abscissas, wi and xi , by requiring that the
formula be exact for the polynomials 1; x; x2; : : : ; x2NC1. (Don’t be confused by
the notation: There is no direct relationship between wi and w.x/.) As shown in
�4.6, Gaussian quadrature is related to the orthogonal polynomials �n.x/ with the
given weight function:

h�nj�mi �

Z b

a

�n.x/�m.x/w.x/ dx D ımn (20.7.16)

The abscissas xi turn out to be the N C 1 roots of �NC1.x/, and the weights wi are
given by equation (4.6.9).

We can use Gaussian quadrature to define the discrete inner product of two
functions:

hf jgiG �

NX
iD0

wif .xi /g.xi / (20.7.17)

Here the subscript G stands for Gaussian.
An important property of Gaussian quadrature is the discrete orthogonality re-

lation
h�nj�miG D ımn; mC n 
 2N C 1 (20.7.18)

Proof: Equation (20.7.18) is the Gaussian quadrature version of equation (20.7.16).
By assumption, the integrand �n.x/�m.x/ of equation (20.7.16) is a polynomial
of degree m C n 
 2N C 1. But Gaussian quadrature is arranged to integrate
polynomials of degree 
 2N C 1 exactly. QED.

Now suppose we approximate y.x/ by the pseudospectral interpolating poly-
nomial

PN .x/ D

NX
nD0

xan�n.x/ (20.7.19)
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where the collocation points are chosen to be the Gaussian quadrature points:

PN .xi / D y.xi /; i D 0; 1; : : : ; N (20.7.20)

This is always possible, since the interpolating polynomial through N C 1 points is
a polynomial of degree N , and the functions up to �N .x/ are a basis for such poly-
nomials. The perhaps unexpected result is that the coefficients fxang of the expansion
(20.7.19) are given exactly by the Gaussian quadrature

xan D hyj�niG (20.7.21)

To see this, take the discrete inner product of both sides of equation (20.7.19) with
�m:

hPN j�miG D

NX
nD0

xanh�nj�miG (20.7.22)

If we use the discrete orthogonality relation (20.7.18), the right-hand side evaluates
to xam. On the left-hand side, we can replace PN .xi / in the Gaussian quadrature by
y.xi / since PN is the interpolating polynomial. Hence the result follows.

Now comes the key point. The actual spectral expansion of y.x/ is

y.x/ D

1X
nD0

an�n.x/ (20.7.23)

where the exact spectral coefficients are

an D hyj�ni D

Z b

a

y.x/�n.x/w.x/ dx (20.7.24)

The pseudospectral expansion coefficients xan are the exact expansion coefficients of
PN .x/, the interpolating polynomial (20.7.19). The relation between the exact spec-
tral coefficients and the pseudospectral expansion coefficients follows from equation
(20.7.21):

xan D hyj�niG

D

1X
mD0

amh�mj�niG (using equation 20.7.23)

D

NX
mD0

amh�mj�niG C
X
m>N

amh�mj�niG

D an C
X
m>N

amh�mj�niG (20.7.25)

Thus, since for large N the exact spectral coefficients give an exponentially good
approximation to y.x/, so do the pseudospectral coefficients. By the way, this is
the reason for the name pseudospectral method: We use coefficients that are not
the actual spectral coefficients, but are very close to them. From now on we won’t
bother to distinguish between the two sets of coefficients; we just write an for either
an or xan.
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The Gaussian quadrature collocation points, the roots of �NC1.x/, all lie inside
the interval .a; b/, away from the endpoints. There is another version of Gaussian
quadrature that includes the two endpoints of the interval. This is called Gauss-
Lobatto quadrature, and the collocation points are the Gauss-Lobatto points (�4.6.4).
These points are as effective as the ordinary Gaussian points, and are more conve-
nient when you need to impose boundary conditions at the endpoints.

As a slight digression, you may be under the mistaken impression that the only advan-
tage of Gaussian integration over integration with equally spaced points is that its degree of
exactness is 2N C 1 as opposed to N , the maximum you can get with only the N C 1 weights
at your disposal. In fact, however, the main advantage of Gaussian integration is that it con-
verges exponentially with N for smooth functions. You can see this explicitly from the above
formulas by setting m D 0 in equation (20.7.21):

xa0 D �0

NX
iD0

wiy.xi / (20.7.26)

where �0 is a constant. But this converges exponentially to the expression given by equation
(20.7.24):

a0 D �0

Z b

a
y.x/w.x/ dx (20.7.27)

as claimed.
How do Fourier series fit into this discussion? After all, the collocation points are equally

spaced (usually xj D 2	j=N , j D 0; : : : ; N �1). But in fact these are the correct collocation
points if we think of Fourier series as interpolating y.x/ by a trigonometric polynomial. The
corresponding Gaussian quadrature (using the equally spaced points) is the midpoint rule,
and the Gauss-Lobatto quadrature, which includes the endpoints, is the trapezoidal rule. The
textbooks tell you that the midpoint and trapezoidal rules are low-order methods. This is true
for arbitrary functions. But if you apply them to periodic functions (�5.8.1), or functions that
go rapidly to zero at infinity (�4.5 and �13.11), they are in fact exponentially convergent, like
any self-respecting Gaussian quadrature method should be.

20.7.5 Cardinal Functions
You can write any polynomial interpolation formula for a function f .x/ as

PN .x/ D

NX
iD0

f .xi /Ci .x/ (20.7.28)

where the Ci .x/ are called cardinal functions. They are polynomials of degree N
that satisfy

Ci .xj / D ıij (20.7.29)

i.e., Ci .x/ is 1 at the i th collocation point and 0 at all the others.
One explicit representation of cardinal functions comes from the formula for

Lagrange interpolation (see equation 3.2.1):

Ci .x/ D

NY
jD0
j¤i

x � xj

xi � xj
(20.7.30)

If you substitute this in equation (20.7.28), it is just the Lagrange interpolation for-
mula. Each choice of basis functions implies a corresponding choice of collocation
points xj , and so a corresponding choice of cardinal functions by equation (20.7.30).
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There are other equivalent ways of writing Ci .x/. For example, if �n.x/ is a
set of orthogonal polynomials, and the collocation points are the zeros of �NC1.x/
(Gaussian quadrature points), then Ci .x/ is almost �NC1.x/, except �NC1.x/ van-
ishes at all the grid points. Since near x D xi

�NC1.x/ D �NC1.xi /C .x � xi /�
0
NC1.xi /C 	 	 	 (20.7.31)

we get the cardinal function by dividing out the zero at x D xi :

Ci .x/ D
�NC1.x/

.x � xi /�
0
NC1.xi /

(20.7.32)

In practice you don’t need to know any of the formulas like equations (20.7.30)
or (20.7.32). The books in the references have formulas for the Ci .x/ for all the
standard basis functions if you are curious. What you do need are the derivatives of
the cardinal functions, the differentiation matrices (see below).

You might be nervous about using very high-order polynomial interpolation to represent
your solution, especially if you’ve ever encountered the Runge phenomenon: If the grid points
are equally spaced, then the error in PN .x/ can tend to infinity as N ! 1. What happens
is that the error shows up near the endpoints of the interval — the middle is fine. The fix is
to make the points more concentrated toward the endpoints, which is exactly what choosing
the Gaussian points does. This is the same reason why Chebyshev approximation often works
when polynomial approximation fails, as was discussed in �5.8.1.

20.7.6 Spectral vs. Grid Point Representation
Let’s contrast the representations of the solution of

Ly D f (20.7.33)

in spectral space and in physical space. Assume that L is a linear differential operator
for simplicity.

Spectral Space Physical Space

y.x/ D

NX
nD0

an�n.x/ y.x/ D

NX
jD0

yjCj .x/

NX
nD0

anL�n.x/ D f .x/

NX
jD0

yjLCj .x/ D f .x/

Impose at collocation points only:

NX
nD0

anL�n.xj / D f .xj /

NX
jD0

yjLCj .xi / D f .xi /

i.e., La D f; where Ljn D L�n.xj / i.e., L.c/y D f; where L.c/ij D LCj .xi /

The two representations are related as follows: To go from grid point values to
spectral coefficients you project y.x/ along each basis function:

ai D h�i j yi

D
X
j

wj�i .xj /yj (doing the integral by Gaussian quadrature) (20.7.34)
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That is,
a DM 	 y ; where Mij D �i .xj /wj (20.7.35)

Thus the relation in spectral space L 	 a D f becomes L 	M 	 y D f . But in physical
space L.c/ 	 y D f , so

L.c/ D L 	M (20.7.36)

with inverse

L D L.c/ 	M�1 (20.7.37)

Note also that equation (20.7.35) implies

y DM�1 	 a (20.7.38)

Since y D
P
an�n, we see that M�1 is the matrix that sums the spectral series to

get the grid point values, i.e.,
M�1ij D �j .xi / (20.7.39)

You can check that these relations are all consistent:

.M 	M�1/ij D
X
k

MikM
�1
kj

D
X
k

Œ�i .xk/wk �Œ�j .xk/�

D h�i j�j iG

D ıij (by discrete orthogonality) (20.7.40)

In practice, the transformations (20.7.35) and (20.7.38) are often done with
FFTs for Fourier or Chebyshev basis functions if N is large. For simple programs,
just do matrix multiplication.

20.7.7 Differentiation Matrices
We’ve seen above that the key ingredient in the pseudospectral method is to

form
L
.c/
ij D LCj .xi / (20.7.41)

which involves taking derivatives of the cardinal functions at the collocation points.
Consider the first derivative @x . You then need the matrix

D
.1/
ij D @xCj .xi / (20.7.42)

This quantity can be computed ahead of time and stored. Then, to compute the vector
of first derivatives at the grid points, just do a matrix multiplication:

@y

@x
 !

NX
jD0

D
.1/
ij yj (20.7.43)

Similarly one can define the second derivative matrix D.2/
ij , and so on.
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The matrix multiplication in equation (20.7.43) requiresO.N 2/ operations. For
Fourier basis functions eikx , one can compute the derivative alternatively as follows:

y
FFT
��! a

a ��! ika

ika
inverse FFT
������! y0

For Chebyshev basis functions, there is a simple O.N/ recurrence relation in the
middle step to get the coefficients for the derivative from the coefficients for the
function (see equation 5.9.2). Thus the procedure isO.N logN/. However, it is typ-
ically faster than theO.N 2/matrix multiplication only forN & 16 – 128, depending
on the computer. So just use matrix multiplication for simple programs.

It is worth pointing out that this idea of using recurrence relations to evaluate
operators in spectral space is much more general than the simple example of deriva-
tives of Chebyshev functions. It is important for efficient production codes when
the operators consist of derivatives times simple powers of the coordinates. See the
references for details.

20.7.8 Computing Differentiation Matrices
There are several options for computing differentiation matrices:

1. Derive the formulas by differentiating the Lagrange polynomial representation
(20.7.30).

2. Differentiate the basis function representation (20.7.32).
3. Look up the explicit formulas that have been derived for the various basis

functions in books, e.g. Chapter 2 of [3].
4. Use the routine given below, based on the routine in [6]. This algorithm com-

putes any order of differentiation matrix given only a set of collocation points
fxig.

Obviously, the last choice is the easiest. However, it does have the potential draw-
back for high-precision work that roundoff error can be larger than necessary. If this
is a problem, see [7].

void weights(const Doub z, VecDoub_I &x, MatDoub_O &c)weights.h
Compute the differentiation matrices for pseudospectral collocation. Input are z, the location
where the matrices are to be evaluated, and x[0..n], the set of n+1 grid points. On output,
c[0..n][0..m] contains the weights at grid locations x[0..n] for derivatives of order 0..m.
The element c[j][k] contains the weight to be applied to the function value at x[j] when the
kth derivative is approximated by the set of nC1 collocation points x. Note that the elements
of the zeroth derivative matrix are returned in c[0..n][0]. These are just the values of the
cardinal functions, i.e., the weights for interpolation.
{

Int n=c.nrows()-1;
Int m=c.ncols()-1;
Doub c1=1.0;
Doub c4=x[0]-z;
for (Int k=0;k<=m;k++)

for (Int j=0;j<=n;j++)
c[j][k]=0.0;

c[0][0]=1.0;
for (Int i=1;i<=n;i++) {

Int mn=MIN(i,m);
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Doub c2=1.0;
Doub c5=c4;
c4=x[i]-z;
for (Int j=0;j<i;j++) {

Doub c3=x[i]-x[j];
c2=c2*c3;
if (j == i-1) {

for (Int k=mn;k>0;k--)
c[i][k]=c1*(k*c[i-1][k-1]-c5*c[i-1][k])/c2;

c[i][0]=-c1*c5*c[i-1][0]/c2;
}
for (Int k=mn;k>0;k--)

c[j][k]=(c4*c[j][k]-k*c[j][k-1])/c3;
c[j][0]=c4*c[j][0]/c3;

}
c1=c2;

}
}

Typical usage of the weights routine to compute first- and second-order derivative
matrices is

VecDoub x(n);

MatDoub c(n,3),d1(n,n),d2(n,n);

for (j=0;j<n;j++)

x[j]= ...

for (i=0;i<n;i++) {

weights(x[i],x,c);

for (j=0;j<n;j++) {

d1[i][j]=c[j][1];

d2[i][j]=c[j][2];

}

}

20.7.9 A Note on Interpolation
Often you want to evaluate the solution at points that are not the collocation

points. This requires an interpolation. To preserve the full spectral accuracy, you
want to use all the information in the solution. However, it is not necessary to trans-
form the solution to spectral space and then evaluate the representation (20.7.1) at
the desired point, e.g., by Clenshaw’s method. Just use the interpolation formula
(20.7.28). A simple way to do this is to use the above routine, which will return
the interpolation weights Ci .xk/ for any set of target points xk when m, the second
dimension of c in the code, is zero. So interpolating to a set of points can again be
done as a matrix multiplication.

20.7.10 Pseudospectral Collocation as a Finite Difference
Method

Consider finite difference approximations for d=dx at the center of an equally spaced
grid, for example

hf 0.x/ D �12f .x � h/C
1
2f .x C h/CO.h

2/

D 1
12f .x � 2h/ �

2
3f .x � h/C

2
3f .x C h/ �

1
12f .x C 2h/CO.h

4/

D : : : (20.7.44)
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For centered differences like these, the limit as N ! 1 of the weights (coefficients of
f ) is finite. But for one-sided approximations, or partially one-sided approximations, the
weights diverge [5]. Since one has to use such approximations near the endpoints of the
grid, it’s not surprising that high-order finite difference approximations have large errors near
the boundaries.

But suppose the grid points are not equally spaced. In particular, suppose they are closer
together near the endpoints, like the Gaussian quadrature points. Then the finite difference
approximation is convergent as N !1.

The pseudospectral method gives the exact derivative of the interpolating polynomial
that passes through the data at the N C 1 grid points. You would get the same result for a
finite difference method that uses all N C 1 grid points, This follows from the uniqueness of
the interpolating polynomial, a polynomial of degree N through all N C 1 points.

With this point of view, think of a pseudospectral method as a way to find high-order nu-
merical approximations to derivatives at grid points. Then, just like finite difference methods,
satisfy the equation you want to solve at the grid points.

20.7.11 Variable Coefficients and Nonlinearities

Suppose you have a term like sinh.x/ y.x/ in your equation. No need to ex-
pand sinh.x/ in basis functions — just multiply sinh.x/ by y at each collocation
point. Similarly, nonlinear terms like y2 are evaluated directly using the values at
the collocation points. This is the big advantage over the tau and Galerkin methods
— handling nonlinearities in physical space rather than spectral space is much easier.

20.7.12 A Worked Example

Here is a simple one-dimensional example, taken from Appendix B of [5]. Con-
sider the equation

y00 C y0 � 2y C 2 D 0; �1 
 x 
 1; (20.7.45)

y.�1/ D y.1/ D 0 (20.7.46)

The exact solution is

y.x/ D 1 �
ex sinh 2C e�2x sinh 1

sinh 3
(20.7.47)

Let’s make an expansion in Chebyshev polynomials with N D 4:

y D

4X
nD0

anTn.x/ (20.7.48)

Choose the collocation points to be

xi D � cos
i	

4
; i D 0; : : : ; 4 (20.7.49)

These are the Gauss-Lobatto points associated with Chebyshev polynomials, i.e.,
they include the endpoints. We always include the endpoints when we want to im-
pose Dirichlet boundary conditions, that is, function values on the boundaries. Using
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one of the methods for finding differentiation matrices, we get

ŒD.1/y�i D

26666664

�11
2

4C 2
p
2 �2 4 � 2

p
2 �1

2

�1 � 1
2

p
2 1

2

p
2

p
2 �1

2

p
2 1 � 1

2

p
2

1
2

�
p
2 0

p
2 �1

2

�1C 1
2

p
2 1

2

p
2 �

p
2 �1

2

p
2 1C 1

2

p
2

1
2

�4C 2
p
2 2 �4 � 2

p
2 11

2

37777775

26666664

y0

y1

y2

y3

y4

37777775
(20.7.50)

and

ŒD.2/y�i D

26666664

17 �20 � 6
p
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Requiring that the differential equation hold at the interior collocation points xk ,
k D 1; 2; 3, uses the middle three rows of these matrices. Enforcing the boundary
conditions y0 D y4 D 0means we don’t need the first and last columns. So equation
(20.7.45) gives264�16C
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375 (20.7.52)

with solution 264y1y2
y3

375 D
264
101
350
C 13

350

p
2

13
25

101
350
� 13
350

p
2

375 (20.7.53)

The exact solution (20.7.47) gives for example y.x D 0/ D 0:52065, compared with
y2 D 0:52000. Not bad for five grid points! The real point, however, is that the error
is about 10�16 for N D 16. With a second-order finite difference scheme, the error
would go down by only a factor of 10 or so with this increase in N .

20.7.13 Multidimensional Spectral Methods
For a time-dependent problem, the simplest approach is the method of lines.

Expand the solution as
y.t; x/ D

X
j

Cj .x/yj .t/ (20.7.54)

where now the coefficients yj are functions of time. Then

@y

@t

ˇ̌̌̌
i

D Pyi ;
@y

@x

ˇ̌̌̌
i

D
X
j

D
.1/
ij yj ; etc. (20.7.55)
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You get a system of ODEs in t for the yj , which you can solve in the standard way.
Runge-Kutta is a good method to start with.

Problems with two or three spatial dimensions are usually handled by making
expansions along each dimension separately:

u.x; y; z/ D
X
ijk

uijkCi .x/Cj .y/Ck.z/ (20.7.56)

Elliptic equations give simultaneous algebraic equations for the coefficients that are
typically solved with iterative methods because of the large number of variables.
See [11] for an example and references to the literature.

CITED REFERENCES AND FURTHER READING:

Hesthaven, J., Gottlieb, S., and Gottlieb, D. 2007, Spectral Methods for Time-Dependent Prob-
lems (New York: Cambridge University Press), Chapter 9.[1]

Gottlieb, D., and Orszag, S.A. 1977, Numerical Analysis of Spectral Methods: Theory and Appli-
cations (Philadelphia: S.I.A.M.).[2] [A classic, and still somewhat useful.]

Canuto, C., Hussaini, M.Y., Quarteroni, A., and Zang, T.A. 1988, Spectral Methods in Fluid Dy-
namics (Berlin: Springer).[3] [Standard reference for fluid dynamics applications, but appli-
cable to other areas.]

Boyd, J.P. 2001, Chebyshev and Fourier Spectral Methods, 2nd ed. (New York: Dover Pub-
lications). Available at http://www-personal.engin.umich.edu/~jpboyd.[4] [Best
single book: complete, and not too formal.]

Fornberg, B. 1996, A Practical Guide to Pseudospectral Methods (New York: Cambridge Uni-
versity Press).[5] [Good for getting started, but not for large-scale problems.]

Fornberg, B. 1998, “Calculation of Weights in Finite Difference Formulas,” SIAM Review vol. 40,
pp. 685–691.[6]

Baltensperger, R., and Trummer, M.R. 2003, “Spectral Differencing with a Twist,” SIAM Journal
on Scientific Computing, vol. 24, pp. 1465–1487.[7]

Matsushima, T., and Marcus, P.S. 1995, “A Spectral Method for Polar Coordinates,” Journal of
Computational Physics vol. 120, pp. 365–374.[8]

Matsushima, T., and Marcus, P.S. 1997, “A Spectral Method for Unbounded Domains,” Journal
of Computational Physics vol. 137, pp. 321–345.[9]

Rawitscher, G.H. 1991, “Accuracy Analysis of a Bessel Spectral Function Method for the Solution
of Scattering Equations,” Journal of Computational Physics vol. 94, pp. 81–101.[10]

Pfeiffer, H.P., Kidder, L.E., Scheel, M.A., and Teukolsky, S.A. 2003, “A Multidomain Spectral
Method for Solving Elliptic Equations,” Computer Physics Communications, vol. 152, pp. 253–
273.[11]

Bjørhus, M. 1995, “The ODE Formulation of Hyperbolic PDEs Discretized by the Spectral Collo-
cation Method,” SIAM Journal on Scientific Computing, vol. 16, pp. 542–557. [Describes a
good algorithm for hyperbolic equations.]
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CHAPTER 21

21.0 Introduction

It is a safe bet that more computer cycles are expended on the formulas of
computational geometry than on all other uses of computers put together. We include
not just the computer’s nominal CPU, of course, but also those other other, often
vastly more powerful, CPUs hidden in the computer’s graphics chipset, and in all the
video entertainment and high-definition television boxes in the world.

Indeed, computational geometry, and the broader fields of computer graphics
and computer vision in which it is embedded, have become central areas of com-
puter science, supporting a huge industrial base of applied work and employment
for computer scientists and program developers at all professional levels. It is im-
possible for us to do justice to this colossus in a single chapter. Yet, there are a
number of elementary techniques from the field that ought to be in the repertory of
any practicing computational scientist.

In this chapter we will build a body of methods sufficient to construct efficient
Delaunay triangulations in two dimensions, and to use such triangulations for inter-
polating functions of two variables on an irregular grid, and other applications. In
getting to this goal (and a bit beyond it) we will allow ourselves to be diverted into
various other interesting, and often useful, topics, including:

� tree data structures for sets of points
� nearest-neighbor problems
� much about lines, triangles, and polygons
� spheres in n dimensions, and rotation matrices
� Voronoi and all that
� convex hulls
� minimum spanning trees
� finding intersecting objects

and more.
In the spirit of full disclosure, we must mention that our treatment of some of

the most interesting topics in the above list will be restricted to the two-dimensional

1097
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case, even when the three-dimensional case may be equally relevant to computa-
tional science. The reason is simply one of space on the page. Three-dimensional
algorithms are often more complex, have more special cases that must be treated,
and generally result in codes that are too long for us to include. We have struggled
to condense working, reasonably efficient, two-dimensional codes to an appropriate
size for this chapter. You will be able to use these for two-dimensional problems, or
you can mine them for understanding before seeking out three-dimensional solutions
in the references.

An additional disclosure relates to our use of floating-point arithmetic, and our
treatment of special cases of “exact” equality. Since floating-point numbers and their
arithmetic are not exact, it usually does not make computational sense to test for
cases of exact equality. However, historically, geometers have always distinguished,
e.g., between a point being “inside” a triangle versus “on an edge” or “at a vertex.”
This has introduced a certain schizophrenia into the field. On the one hand (and
especially before about 1990), practitioners have labored to create algorithms that
use exact (integer) arithmetic, so that the traditional distinctions can be elegantly
preserved. On the other hand (and especially after about 1990, when fast floating
operations in special-purpose graphics processors started to be available), many of
these niceties are no longer needed, and sloppiness at the level of “machine epsilon”
can be tolerated in the interest of speed. In this chapter we are unapologetically in the
sloppy camp. In boundary cases, our code is supposed to produce reasonable results,
but not necessarily choose that specific reasonable result that you might think you
want. Caveat emptor.

A less specific goal in this chapter is to give some of the “flavor” of the field of
computational geometry. It is a flavor that deliciously combines elements of Euclid
(pardon!) with elements of modern computer science and mathematics.

Some good general references are listed here.

CITED REFERENCES AND FURTHER READING:

de Berg, M., van Kreveld, M., Overmars, M., and Schwarzkopf, O. 2000, Computational Ge-
ometry: Algorithms and Applications, 2nd revised ed. (Berlin: Springer). [Best-selling text,
especially strong on references to the published literature.]

O’Rourke, J. 1998, Computational Geometry in C, 2nd ed. (Cambridge, UK: Cambridge Univer-
sity Press). [Well written, with clear explanations and C code.]

Preparata, F.P. and Shamos, M.I. 1991, Computational Geometry: An Introduction (Berlin:
Springer).

Schneider, P.J. and Eberly, D.H. 2003, Geometric Tools for Computer Graphics (San Francisco:
Morgan Kaufmann). [Huge compendium of formulas and code.]

Bowyer, A. and Woodwark, J. 1983, A Programmer’s Geometry (London: Butterworths). [De-
lightful classic, especially for those who get nostalgic at seeing Fortran printed in all upper-
case.]

Glassner, A.S., ed. 1990, Graphics Gems (San Diego: Academic Press). [Series of books full of
algorithmic tricks-of-the-trade.]

Arvo, J., ed. 1991, Graphics Gems II (San Diego: Academic Press).

Kirk, D., ed. 1992, Graphics Gems III (Cambridge, MA: Academic Press).

Heckbert, P.S., ed. 1994, Graphics Gems IV (Cambridge, MA: Academic Press).

Euclid, ca. 300BC, Euclid’s Elements; reprinted 2002 (Santa Fe, NM: Green Lion Press).
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21.1 Points and Boxes

A point p in aD-dimensional space is specified by itsD Cartesian coordinates,
.x0; x1; : : : ; xD�1/. Generally we will concern ourselves only with the cases D D 2
(points in a plane) and D D 3 (points in 3-space), but the concept is more general.

The representation in code follows just this paradigm. By eschewing special
names for individual coordinates — like x, y, z — we keep the ability to loop easily
over coordinates in D dimensions.

template<Int DIM> struct Point { pointbox.h
Simple structure to represent a point in DIM dimensions.

Doub x[DIM]; The coordinates.
Point(const Point &p) { Copy constructor.

for (Int i=0; i<DIM; i++) x[i] = p.x[i];
}
Point& operator= (const Point &p) { Assignment operator.

for (Int i=0; i<DIM; i++) x[i] = p.x[i];
return *this;

}
bool operator== (const Point &p) const {

for (Int i=0; i<DIM; i++) if (x[i] != p.x[i]) return false;
return true;

}
Point(Doub x0 = 0.0, Doub x1 = 0.0, Doub x2 = 0.0) {

x[0] = x0; Constructor by coordinate values. Arguments
beyond the required number are not used
and can be omitted.

if (DIM > 1) x[1] = x1;
if (DIM > 2) x[2] = x2;
if (DIM > 3) throw("Point not implemented for DIM > 3");

}
};

In the interest of concise code, the constructor above may pass some unnecessary
default arguments of zero. You can easily clean this up if you care.

If we have two points p and q, we can compute their distance d ,

d D jp � qj D

"
D�1X
iD0

.pi � qi /
2

#1=2
(21.1.1)

where pi and qi are now the respective Cartesian coordinates for each point.
In code, we have

template<Int DIM> Doub dist(const Point<DIM> &p, const Point<DIM> &q) { pointbox.h
Returns the distance between two points in DIM dimensions.

Doub dd = 0.0;
for (Int j=0; j<DIM; j++) dd += SQR(q.x[j]-p.x[j]);
return sqrt(dd);

}

Note that dist is not a member of the class Point, but rather a freestanding
function whose arguments are Points. We will overload dist with other types of
arguments, signifying other kinds of distances between objects.

21.1.1 Boxes
By a box, we mean a rectangle (for D D 2) or rectangular parallelepiped (for

D D 3, a “brick” in other words) that is aligned with the coordinate axes. Boxes are
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interesting because they can tessellate (that is, partition) D-dimensional space, and
they can contain other objects. Indeed, every finite, extended object has a bounding
box, which is the unique smallest box that contains it. One way to represent a box
is by the points at two special, diagonally opposite, corners. The first point (“low”)
has coordinate values that are the minima on the surface of the box; the second point
(“high”) has coordinate values that are the maxima. All other corners of a box, it
should be obvious, have coordinate values that are, dimension by dimension, either
the value of “low” or the value of “high”; and all such permutations are corners, 2D

in all.
The code follows this description:

template<Int DIM> struct Box {pointbox.h
Structure to represent a Cartesian box in DIM dimensions.

Point<DIM> lo, hi; Diagonally opposite corners (min of all coordinates and
max of all coordinates) are stored as two points.Box() {}

Box(const Point<DIM> &mylo, const Point<DIM> &myhi) : lo(mylo), hi(myhi) {}
};

Note that a copy constructor and assignment operator are not needed, since by default
the two Points will be appropriately copied or assigned (one convenience of this
representation).

A point can be either outside a box, inside it, or — in principle — on its surface.
As mentioned in �21.0, we represent all coordinates as (approximate) floating-point
numbers, not (exact) integers, so it would not be prudent to depend on any exact
equalities of coordinate values or distances. We will be careful, therefore, not to put
too much credence in the idea of the exact surface of a box; usually we’ll consider
the surface (should some exact equality happen to hold) as a part of the box’s interior.

If a point is outside a box, then we define its distance from the box to be the
distance to the nearest point on the surface of (or inside) the box. A glance at Figure
21.1.1 shows that this distance is the Pythagorean sum (that is, square root of sum of
squares) of the distances from the point to some — but not all — of the hyperplanes
that bound the box. The rule is that when a point has a coordinate that is greater
than the corresponding max of the box, or less than the corresponding min, then that
coordinate contributes to the sum. When the point has a coordinate between the max
and min, then it does not contribute to the sum, since (along that coordinate) the
shortest line can be perpendicular to the hyperplane. When a point is inside, or on
the surface of, a box, we define its distance to the box to be zero.

These definitions of distance are embodied in the following code.

template<Int DIM> Doub dist(const Box<DIM> &b, const Point<DIM> &p) {pointbox.h
If point p lies outside box b, the distance to the nearest point on b is returned. If p is inside b
or on its surface, zero is returned.

Doub dd = 0;
for (Int i=0; i<DIM; i++) {

if (p.x[i]<b.lo.x[i]) dd += SQR(p.x[i]-b.lo.x[i]);
if (p.x[i]>b.hi.x[i]) dd += SQR(p.x[i]-b.hi.x[i]);

}
return sqrt(dd);

}

Frequently we want to know if a point is inside or outside a box. The above
dist routine can be used for this. A positive return means outside, zero means
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A

A'

B'B

C'

C

D' D

Figure 21.1.1. Distance from a point to aD-dimensional box. The general formula (as for linesAA0 and
CC 0) is a Pythagorean sum ofD distances to the plane that includes the nearer side of the box. But when
the point is between two such parallel planes (as forBB0 andDD0) then the corresponding coordinate is
omitted from the sum.

inside. If inside-versus-outside, and not distance, is all you want to know, then some
streamlining is possible: Replace dd by a Boolean variable, substitute logical-or’s
for the additions, and of course omit the square root. The logic remains otherwise
the same.

21.1.2 Nodes for Binary Trees of Boxes
In the next section we will construct a binary tree of nested boxes, wherein each

box is subdivided into, and linked to, two daughter boxes. Each box in the tree will
also contain a list of points that lie inside the box. For use in such a task, we here
give a structure, derived from the Box structure, but with additional variables that
can point to a mother box, two daughter boxes, and the low and high indices on a list
of points (designating the range of points inside the box). The constructor just sets
all the values explicitly.

template<Int DIM> struct Boxnode : Box<DIM> { kdtree.h
Node in a binary tree of boxes containing points. See text for details.

Int mom, dau1, dau2, ptlo, pthi;
Boxnode() {}
Boxnode(Point<DIM> mylo, Point<DIM> myhi, Int mymom, Int myd1,

Int myd2, Int myptlo, Int mypthi) :
Box<DIM>(mylo, myhi), mom(mymom), dau1(myd1), dau2(myd2),
ptlo(myptlo), pthi(mypthi) {}

};

21.2 KD Trees and Nearest-Neighbor Finding
Once, long ago, the term “kd tree” (or “k-D tree”) was an abbreviation for

“k-dimensional tree.” However, the term has come to mean a very specific, and



�

�

“nr3” — 2007/5/1 — 20:53 — page 1102 — #1124
�

�

� �

1102 Chapter 21. Computational Geometry

useful, kind of tree structure for partitioning points, especially in small numbers of
dimensions, like 2 or 3. A KD tree that contains N points can be constructed in
O.N logN/ time and O.N/ space. Once constructed, the KD tree facilitates such
operations as finding a point’s nearest neighbor in O.logN/ time, or all nearest
neighbors inO.N logN/ time. KD trees were first described by Bentley [8] in 1975.
Let’s see how this works.

Start with a very large box, one that easily contains all possible points that are
of interest. There is no penalty for making this root box humongous, so coordinates
of ˙1099 are fine. Now generate a list of N points (of interest to your application)
that lie inside the root box. The defining principles of a KD tree are

� Boxes are successively partitioned into two daughter boxes.
� Each partition is along the axis of one coordinate.
� The coordinates are used cyclically in successive partitions.
� In making the partition, the position of the “cut” is chosen to leave equal num-

bers of points on the two sides (or differing by one in the case of an odd number
of points).

Within these principles, there are some arbitrary design choices to be made. In
the implementation below, the partition “cut” goes exactly through one of the points
(i.e., shares one of its coordinate values). This avoids a bit of extra bookkeeping
incurred by other possible choices. Also, we terminate the tree when a box node
contains either one or two points, avoiding the additional partitioning of two-point
boxes into two one-point boxes. This choice is natural because the Boxnode structure
already has pointers to two points (ptlo and pthi), and it reduces the total number
of stored boxes by as much as 50%.

With these principles and design rules in mind, you can decode Figure 21.2.1,
which shows a two-dimensional KD tree containing 1000 points. (As a bit of artistic
license, the root box in the figure has been shrunk to just contain the points, instead
of being off near infinity.)

Interestingly, given N , the number of points, it is possible to give an exact
formula for the number of boxes generated by our KD tree partition rules. (This
makes memory allocation for the tree very straightforward.) IfNB.N / is the number
of boxes needed for N points, then two obvious recurrence relations describe what
happens in the initial partitioning of 2n points into n plus n, or 2n � 1 points into n
plus n � 1:

NB.2n/ D 2NB.n/C 1

NB.2n � 1/ D NB.n/CNB.n � 1/C 1
(21.2.1)

The C1 in both formulas refers to the additional mother box that “glues together”
two daughter partial trees at each stage. The solution to these recurrences is

NB.N / D min.M � 1; 2N � 1
2
M � 1/ (21.2.2)

where M is the smallest power of 2 greater or equal to N , that is,

M D 2dlog2N e (21.2.3)

(You can verify this solution by induction, working out the various possibilities of
the min function. Or — much more fun — you can write a program to verify it
numerically for N < 109, say.)
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Figure 21.2.1. KD tree constructed from 1000 points in the plane. The first subdivision is visible as a full-
height vertical line about halfway across the figure. The next subdivisions are horizontal lines, extending
halfway across the figure. The subdivisions alternate between horizontal and vertical, and partition into
(nearly) equal numbers of points at each stage. This tree terminates when there are either one or two
points in a box (one of which is usually on the box boundary).

21.2.1 Implementation of the KD Tree

We implement the KD tree as a structure that gets built from a vector of Points
and contains methods that embody the principal applications that we will discuss
below, mainly various kinds of nearest-neighbor problems.

template<Int DIM> struct KDtree { kdtree.h
Structure for implementing a KD tree.

static const Doub BIG; Size of the root box, value set below.
Int nboxes, npts; Number of boxes, number of points.
vector< Point<DIM> > &ptss; Reference to the vector of points in the KD tree.
Boxnode<DIM> *boxes; The array of Boxnodes that form the tree.
VecInt ptindx, rptindx; Index of points (see text), and reverse index.
Doub *coords; Point coordinates rearranged contiguously.
KDtree(vector< Point<DIM> > &pts); Constructor.
~KDtree() {delete [] boxes;}
Next, utility functions for use after the tree is constructed. See below.
Doub disti(Int jpt, Int kpt);
Int locate(Point<DIM> pt);
Int locate(Int jpt);
Next, applications that use the KD tree. See text.
Int nearest(Int jpt);
Int nearest(Point<DIM> pt);
void nnearest(Int jpt, Int *nn, Doub *dn, Int n);
static void sift_down(Doub *heap, Int *ndx, Int nn); Used by nnearest.
Int locatenear(Point<DIM> pt, Doub r, Int *list, Int nmax);

};

template<Int DIM> const Doub KDtree<DIM>::BIG(1.0e99);
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Note that the KDtree structure keeps a reference to the vector of Points that
created it. This is used in some of the applications and has the implication that the
user should not modify the vector of points while its derived KD tree is in scope. The
array coords is an internal representation of the points-vector that is used during the
construction of the KD tree, and then is immediately returned to the memory pool.

What makes the KD tree fast to construct is the existence of fast partition algo-
rithms, O.N/ in time, that not only find the median value in an array of N values,
but also move all smaller values to one side of the array and all larger values to the
other. We already met such an algorithm in �8.5, in the routine select. Here, we
need a slight variant, selecti, that partitions an array of integers not by their values,
but by using them to index a separate array of values that remain unaltered. Because
we will want to partition subsegments of arrays, we pass all references to the arrays
by address.

Int selecti(const Int k, Int *indx, Int n, Doub *arr)kdtree.h
Permutes indx[0..n-1] to make arr[indx[0..k-1]] � arr[indx[k]] � arr[indx[k+1..n-1]].
The array arr is not modified. See comments in the routine select.
{

Int i,ia,ir,j,l,mid;
Doub a;

l=0;
ir=n-1;
for (;;) {

if (ir <= l+1) {
if (ir == l+1 && arr[indx[ir]] < arr[indx[l]])

SWAP(indx[l],indx[ir]);
return indx[k];

} else {
mid=(l+ir) >> 1;
SWAP(indx[mid],indx[l+1]);
if (arr[indx[l]] > arr[indx[ir]]) SWAP(indx[l],indx[ir]);
if (arr[indx[l+1]] > arr[indx[ir]]) SWAP(indx[l+1],indx[ir]);
if (arr[indx[l]] > arr[indx[l+1]]) SWAP(indx[l],indx[l+1]);
i=l+1;
j=ir;
ia = indx[l+1];
a=arr[ia];
for (;;) {

do i++; while (arr[indx[i]] < a);
do j--; while (arr[indx[j]] > a);
if (j < i) break;
SWAP(indx[i],indx[j]);

}
indx[l+1]=indx[j];
indx[j]=ia;
if (j >= k) ir=j-1;
if (j <= k) l=i;

}
}

}

The basic strategy for constructing the KD tree is this: Set up an array of inte-
gers that index the N points (ptindx, below). Next, copy all the point coordinates
into an array (coords) in which all the x0 coordinates are contiguous, followed by
all the x1 coordinates, and so on through all the dimensions. Now use selecti to
partition (and rearrange) the index of points according to the value of their x0 co-
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ordinates, with half the points on each side of the partition. These two halves, now
viewed as separate arrays, contain the points in two new daughter boxes. Now parti-
tion each of them into half by the value of the x1 coordinate. And so on, recursively,
going through the coordinates cyclically.

The recursion is so simple that it is easy to code it as a simple “pending task
list,” thus avoiding the overhead of recursive function calls. A pending task consists
of an index pointing to the box ready for further partitioning (the expectant mother,
as it were) and a value that remembers which dimension is next to partition along.
Because the tree is constructed “depth first,” the task list never grows larger than the
log of the total number of boxes. Every new daughter box is born with a pointer
to its mother, and pointers to its beginning and end elements in the points index
array ptindx. Although these elements will generally be permuted in subsequent
partitionings, none will ever be moved out of the range specified when a daughter
box is first created. That is why the whole process can be done in a single point-
index array, with all boxes simply pointing into some subrange of that array.

The KDtree constructor, below, should now be straightforward to understand.

template<Int DIM> KDtree<DIM>::KDtree(vector< Point<DIM> > &pts) : kdtree.h
ptss(pts), npts(pts.size()), ptindx(npts), rptindx(npts) {
Construct a KD tree from a vector of points.

Int ntmp,m,k,kk,j,nowtask,jbox,np,tmom,tdim,ptlo,pthi;
Int *hp;
Doub *cp;

Int taskmom[50], taskdim[50]; Enough stack for 250 points!
for (k=0; k<npts; k++) ptindx[k] = k; Initialize the index of points.
Calculate the number of boxes and allocate memory for them.
m = 1;
for (ntmp = npts; ntmp; ntmp >>= 1) {

m <<= 1;
}
nboxes = 2*npts - (m >> 1);
if (m < nboxes) nboxes = m;
nboxes--;
boxes = new Boxnode<DIM>[nboxes];
Copy the point coordinates into a contiguous array.
coords = new Doub[DIM*npts];
for (j=0, kk=0; j<DIM; j++, kk += npts) {

for (k=0; k<npts; k++) coords[kk+k] = pts[k].x[j];
}
Initialize the root box and put it on the task list for subdivision.
Point<DIM> lo(-BIG,-BIG,-BIG), hi(BIG,BIG,BIG); Syntax OK for 2-D too.
boxes[0] = Boxnode<DIM>(lo, hi, 0, 0, 0, 0, npts-1);
jbox = 0;
taskmom[1] = 0; Which box.
taskdim[1] = 0; Which dimension.
nowtask = 1;
while (nowtask) { Main loop over pending tasks.

tmom = taskmom[nowtask];
tdim = taskdim[nowtask--];
ptlo = boxes[tmom].ptlo;
pthi = boxes[tmom].pthi;
hp = &ptindx[ptlo]; Points to left end of subdivision.
cp = &coords[tdim*npts]; Points to coordinate list for current dim.
np = pthi - ptlo + 1; Number of points in the subdivision.
kk = (np-1)/2; Index of last point on left (boundary point).
(void) selecti(kk,hp,np,cp); Here is where all the work is done.
Now create the daughters and push them onto the task list if they need further subdi-
viding.
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hi = boxes[tmom].hi;
lo = boxes[tmom].lo;
hi.x[tdim] = lo.x[tdim] = coords[tdim*npts + hp[kk]];
boxes[++jbox] = Boxnode<DIM>(boxes[tmom].lo,hi,tmom,0,0,ptlo,ptlo+kk);
boxes[++jbox] = Boxnode<DIM>(lo,boxes[tmom].hi,tmom,0,0,ptlo+kk+1,pthi);
boxes[tmom].dau1 = jbox-1;
boxes[tmom].dau2 = jbox;
if (kk > 1) {

taskmom[++nowtask] = jbox-1;
taskdim[nowtask] = (tdim+1) % DIM;

}
if (np - kk > 3) {

taskmom[++nowtask] = jbox;
taskdim[nowtask] = (tdim+1) % DIM;

}
}
for (j=0; j<npts; j++) rptindx[ptindx[j]] = j; Create reverse index.
delete [] coords; Don’t need them anymore.

}

There are a small number of utility functions that are easy to provide. Although
we generally prefer to have our distance (dist) functions be freestanding, it is useful
to have a KDtree member routine that returns the distance between two points in a
KD tree, referenced by their integer position in the underlying vector of points.

template<Int DIM> Doub KDtree<DIM>::disti(Int jpt, Int kpt) {kdtree.h
Returns the distance between two points in the kdtree given their indices in the array of points,
but returns a large value if the points are identical.

if (jpt == kpt) return BIG;
else return dist(ptss[jpt], ptss[kpt]);

}

There is a special reason for returning BIG when the two points are identical: Later,
when we find a point’s nearest neighbor, we don’t want the invariable answer to
be “itself!”

Another simple function takes an arbitrary Point as the argument and returns
the index of the box that uniquely contains it. In this function we first see an example
of traversing the tree hierarchically, starting at the root box and then choosing only
one of two daughter boxes at each stage. Also, by keeping track of which dimension
is next to be partitioned on (jdim, below), we need only check one of the point’s
coordinates at each stage. Evidently, the whole process is O.logN/ in time, since
there can be only that many levels in the tree.

template<Int DIM> Int KDtree<DIM>::locate(Point<DIM> pt) {kdtree.h
Given an arbitrary point pt, return the index of which kdtree box it is in.

Int nb,d1,jdim;
nb = jdim = 0; Start with the root box.
while (boxes[nb].dau1) { As far as possible down the tree.

d1 = boxes[nb].dau1;
if (pt.x[jdim] <= boxes[d1].hi.x[jdim]) nb=d1;
else nb=boxes[nb].dau2;
jdim = ++jdim % DIM; Increment the dimension cyclically.

}
return nb;

}

The actual Box can be obtained from the returned integer, say j, by referencing
boxes[j] in the KDtree, since Boxnode is a derived class of Box.
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A very similar utility returns the index of the box that contains one of the points
used to construct the KDtree. This is not necessarily the same box as the above
routine would return, because of the possibility of multiple ties in coordinate values,
in which case some tied points can lie on one side of the median partition and others
on the other side.

template<Int DIM> Int KDtree<DIM>::locate(Int jpt) { kdtree.h
Given the index of a point in the kdtree, return the index of which box it is in.

Int nb,d1,jh;
jh = rptindx[jpt]; The reverse index tells where the point lies in the

index of points.nb = 0;
while (boxes[nb].dau1) {

d1 = boxes[nb].dau1;
if (jh <= boxes[d1].pthi) nb=d1;
else nb = boxes[nb].dau2;

}
return nb;

}

21.2.2 Applications of KD Trees
Most applications of KD trees make use of locality properties of its nested

boxes. This is best seen in a few examples.
Suppose we want to know which of the N points in a KD tree is closest to an

arbitrary point p (not necessarily one of the points in the tree). Without the tree, this
is evidently a calculation that requires O.N/ operations, as we compare p to each
candidate point in turn. However, if we have invested the O.N logN/ operations
required to construct the tree, then we can proceed in the following way. First, find
the box in which p lies, and find the closest point in the tree that lies in that box. This
takes O.logN/ operations, as we saw above. The found point might in fact be the
nearest neighbor (we don’t know yet), but in any case its distance is now an upper
bound on how far away the true nearest neighbor can be.

Second, traverse the tree by a depth-first recursion (exactly the way we did when
we constructed the tree). As we encounter each new box, we check whether it could
possibly contain a point closer than the nearest point found so far. Since we start with
a point that is already pretty close (in the same box as p), most boxes get rejected
at this step. When a box is rejected, we don’t need to open its daughter boxes, so
a whole branch of the tree gets “pruned.” On average, only about O.logN/ boxes
actually get opened, so the total work load to find the nearest point is O.logN/.

If we are really interested in only a single point p, then the “slow,” O.N/,
method would have been faster. But if we are repeating the operation for many
different points pi , comparing to the sameN points in the tree each time, then calling
the following routine for each pi in turn is a big win.

template<Int DIM> Int KDtree<DIM>::nearest(Point<DIM> pt) { kdtree.h
Given an arbitrary location pt, return the index of the nearest point in the kdtree.

Int i,k,nrst,ntask;
Int task[50]; Stack for boxes waiting to be opened.
Doub dnrst = BIG, d;
First stage, we find the nearest kdtree point in same box as pt.
k = locate(pt); Which box is pt in?
for (i=boxes[k].ptlo; i<=boxes[k].pthi; i++) { Find nearest.

d = dist(ptss[ptindx[i]],pt);
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if (d < dnrst) {
nrst = ptindx[i];
dnrst = d;

}
}
Second stage, we traverse the tree opening only possibly better boxes.
task[1] = 0;
ntask = 1;
while (ntask) {

k = task[ntask--];
if (dist(boxes[k],pt) < dnrst) { Distance to closest point in box.

if (boxes[k].dau1) { If not an end node, put on task list.
task[++ntask] = boxes[k].dau1;
task[++ntask] = boxes[k].dau2;

} else { Check the 1 or 2 points in the box.
for (i=boxes[k].ptlo; i<=boxes[k].pthi; i++) {

d = dist(ptss[ptindx[i]],pt);
if (d < dnrst) {

nrst = ptindx[i];
dnrst = d;

}
}

}
}

}
return nrst;

}

What if we want to know the nearest-neighbor point not of an arbitrary location,
but of one of the points stored in the KD tree? The above routine won’t do. If we
send it a point in the tree, it will give the obvious result that the point is its own
nearest neighbor! We need to modify the routine so as to use disti from KDtree,
which defined a point’s self-distance as being large, rather than small.

An additional useful feature is to find not the single nearest neighbor, but the n
nearest neighbors for some specified n < N � 1. The trick here is to avoid making
the algorithmO.n logN/, which is what it would be if, for each candidate point, we
compared the candidate to all n of the best points so far. A good way to proceed is
with a heap structure, as described in �8.3 and used (for a very similar purpose) in
the routine hpsel in �8.5. The work load then scales as O.logn logN/.

The following routine is coded so as to lose hardly any efficiency in the case
n D 1 (find the single nearest neighbor) while using a heap structure in the case
n > 1.

template<Int DIM> void KDtree<DIM>::nnearest(Int jpt, Int *nn, Doub *dn, Int n)kdtree.h
Given the index jpt of a point in a kdtree, return a list nn[0..n-1] of the indices of the n
points in the tree nearest to point j, and a list dd[0..n-1] of their distances.
{

Int i,k,ntask,kp;
Int task[50]; Stack for boxes to be opened.
Doub d;
if (n > npts-1) throw("too many neighbors requested");
for (i=0; i<n; i++) dn[i] = BIG;
Find smallest mother box with enough points to initialize the heap.
kp = boxes[locate(jpt)].mom;
while (boxes[kp].pthi - boxes[kp].ptlo < n) kp = boxes[kp].mom;
Examine its points and save the n closest.
for (i=boxes[kp].ptlo; i<=boxes[kp].pthi; i++) {

if (jpt == ptindx[i]) continue;
d = disti(ptindx[i],jpt);
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if (d < dn[0]) {
dn[0] = d;
nn[0] = ptindx[i];
if (n>1) sift_down(dn,nn,n); Maintain the heap structure.

}
}
Now we traverse the tree opening only possibly better boxes.
task[1] = 0;
ntask = 1;
while (ntask) {

k = task[ntask--];
if (k == kp) continue; Don’t redo the box used to initialize.
if (dist(boxes[k],ptss[jpt]) < dn[0]) {

if (boxes[k].dau1) { If not an end node, put on task list.
task[++ntask] = boxes[k].dau1;
task[++ntask] = boxes[k].dau2;

} else { Check the 1 or 2 points in the box.
for (i=boxes[k].ptlo; i<=boxes[k].pthi; i++) {

d = disti(ptindx[i],jpt);
if (d < dn[0]) {

dn[0] = d;
nn[0] = ptindx[i];
if (n>1) sift_down(dn,nn,n); Maintain the heap.

}
}

}
}

}
return;

}

The following routine is used by the above for the sift-down process on the heap,
differing from the sift_down used by hpsort (�8.3) only in its tailored interface
for the present application, and the fact that it simultaneously rearranges two arrays,
the distances (forming a heap) and the corresponding point numbers.

template<Int DIM> void KDtree<DIM>::sift_down(Doub *heap, Int *ndx, Int nn) { kdtree.h
Fix heap[0..nn-1], whose first element (only) may be wrongly filed. Make a corresponding
permutation in ndx[0..nn-1]. The algorithm is identical to that used by sift_down in hpsort.

Int n = nn - 1;
Int j,jold,ia;
Doub a;
a = heap[0];
ia = ndx[0];
jold = 0;
j = 1;
while (j <= n) {

if (j < n && heap[j] < heap[j+1]) j++;
if (a >= heap[j]) break;
heap[jold] = heap[j];
ndx[jold] = ndx[j];
jold = j;
j = 2*j + 1;

}
heap[jold] = a;
ndx[jold] = ia;

}

As a final illustrative example, here is how to find all points in a KD tree that lie
within a specified radius r of some arbitrary location p.
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template<Int DIM>kdtree.h
Int KDtree<DIM>::locatenear(Point<DIM> pt, Doub r, Int *list, Int nmax) {
Given a point pt and radius r, returns a value nret such that list[0..nret-1] is a list of all
kdtree points within a radius r of pt, up to a user-specified maximum of nmax points.

Int k,i,nb,nbold,nret,ntask,jdim,d1,d2;
Int task[50];
nb = jdim = nret = 0;
if (r < 0.0) throw("radius must be nonnegative");
Find the smallest box that contains the ”ball” of radius r.
while (boxes[nb].dau1) {

nbold = nb;
d1 = boxes[nb].dau1;
d2 = boxes[nb].dau2;
Only need to check the dimension that divides the daughters.
if (pt.x[jdim] + r <= boxes[d1].hi.x[jdim]) nb = d1;
else if (pt.x[jdim] - r >= boxes[d2].lo.x[jdim]) nb = d2;
jdim = ++jdim % DIM;
if (nb == nbold) break; Neither daughter encloses the ball.

}
Now traverse the tree below the starting box only as needed.
task[1] = nb;
ntask = 1;
while (ntask) {

k = task[ntask--];
if (dist(boxes[k],pt) > r) continue; Box and ball are disjoint.
if (boxes[k].dau1) { Expand box further when possible.

task[++ntask] = boxes[k].dau1;
task[++ntask] = boxes[k].dau2;

} else { Otherwise process points in the box.
for (i=boxes[k].ptlo; i<=boxes[k].pthi; i++) {

if (dist(ptss[ptindx[i]],pt) <= r && nret < nmax)
list[nret++] = ptindx[i];

if (nret == nmax) return nmax; Not enough space!
}

}
}
return nret;

}

You might wonder why the above routine doesn’t also use the tree structure to
find cases where a box lies entirely inside the “ball” of radius r , in which case it
could add the box’s points to the output list without further opening of its daughters.
The improvement is potentially a factor of O.logn/, where n is the typical number
of neighbors returned. The resulting routine is slightly too long for us to include,
however. A good exercise is to code this modification yourself. You’ll see that it is
harder to check whether a box is inside a ball than vice versa: You have to check all
2D corners of the box, not just the diagonally opposite “low” and “high” ones.
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21.3 Triangles in Two and Three Dimensions

Not since the time of Euclid has the lowly triangle attracted as much attention as
it does today in computer graphics. Triangles and triangulation (the decomposition,
or approximation, of complicated geometrical objects using only triangles) are at the
heart of practically every computer-generated image.

Three points, call them a, b, c, define a triangle. They are its vertices. If the
points are two-dimensional, the triangle lies in the two-dimensional plane. If the
points have higher dimensionality, then the triangle floats in the corresponding D-
dimensional space (most commonly D D 3). For now, consider only the former
case, with D D 2, so that a has coordinates .a0; a1/, and similarly for b and c.

Area. The area A.abc/ of the triangle 4abc can be written in a number of
equivalent ways, including

2A.abc/ D

ˇ̌̌̌
ˇ̌ a0 a1 1

b0 b1 1

c0 c1 1

ˇ̌̌̌
ˇ̌

D .b � a/ � .c � a/ D .b0 � a0/.c1 � a1/ � .b1 � a1/.c0 � a0/

D .c � b/ � .a � b/ D .c0 � b0/.a1 � b1/ � .c1 � b1/.a0 � b0/

D .a � c/ � .b � c/ D .a0 � c0/.b1 � c1/ � .a1 � c1/.b0 � c0/

(21.3.1)

Here � denotes the vector cross product, defined in two dimensions simply by

A � B D A0B1 � B1A0 (two dimensions only) (21.3.2)

Below, when we consider triangles in three dimensions, it will be the vector cross
product forms in equation (21.3.1) that give a generalized formula for the area. Let
us also note in passing that the formulas for area are separately linear in each of the
six coordinates a0, a1, b0, b1, c0, and c1.

Equation (21.3.1) can yield a value that is positive, zero, or negative: The area
is a signed area. By convention (embodied in equation 21.3.1), the area is positive
if a traversal from a to b to c goes counterclockwise (CCW) around the triangle, and
negative if it goes clockwise (CW). The area is zero if and only if the three points are
collinear, in which case the triangle is degenerate. (In the formulas that follow, we
will generally assume the nondegenerate case.)

The absolute value jAj is the (unsigned) “area” of the triangle in the conven-
tional geometrical sense. It can also be calculated directly from the side lengths dab ,
dbc , and dca as follows:

jAj D
p
s.s � dab/.s � dbc/.s � dca/ (21.3.3)

where s is half the perimeter,

s � 1
2
.dab C dbc C dca/ (21.3.4)

(Does it go without saying that you compute the side lengths by taking the coordinate
differences and using the Pythagorean theorem?)
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Figure 21.3.1. Three kinds of triangle centers. (a) Incircle and incenter; bisectors of the three vertex
angles meet at the incenter. (b) Circumcircle and circumcenter; perpendicular bisectors of the edges meet
at the circumcenter. (c) Centroid; lines from the edge midpoints to the opposite vertices meet at the
centroid.

Related Circles. Every nondegenerate triangle has an inscribed circle or incir-
cle, which is the largest circle that can be drawn inside the triangle. The incircle is
tangent to all three sides of the triangle. Lines from its center, the incenter, to each
vertex bisect the angle at that vertex (see Figure 21.3.1). If q is the incenter point,
with coordinates .q0; q1/, then its location is given by

qi D
1

2s
.dbcai C dcabi C dabci / .i D 0; 1/ (21.3.5)

while its radius is given by

rin D

�
.s � dab/.s � dbc/.s � dca/

s

�1=2
(21.3.6)

Every nondegenerate triangle also has a circumscribed circle or circumcircle,
which is the unique circle that goes through its three vertices. Suppose Q is the
circumcenter point, with coordinates .Q0;Q1/. Let Œba�0 and Œba�1 denote the co-
ordinate differences b0 � a0 and b1 � a1, respectively; and similarly for Œca�0 and
Œca�1. Then, in 2 � 2 determinant form,

Q0 D a0 C
1

2

ˇ̌̌̌
.Œba�0/

2 C .Œba�1/
2 Œba�1

.Œca�0/
2 C .Œca�1/

2 Œca�1

ˇ̌̌̌ � ˇ̌̌̌
Œba�0 Œba�1
Œca�0 Œca�1

ˇ̌̌̌
Q1 D a1 C

1

2

ˇ̌̌̌
Œba�0 .Œba�0/

2 C .Œba�1/
2

Œca�0 .Œca�0/
2 C .Œca�1/

2

ˇ̌̌̌ � ˇ̌̌̌
Œba�0 Œba�1
Œca�0 Œca�1

ˇ̌̌̌ (21.3.7)

The circumcenter is, by definition, the same distance from all three vertices.
Therefore the radius of the circumcircle is

rcircum D
p
.Q0 � a0/2 C .Q1 � a1/2 (21.3.8)

whereQ0 andQ1 are given above. (Obviously you can save the semi-final results in
equation 21.3.7 for this computation, before adding a0 or a1.)

Later, in �21.6, we will be calculating a lot of circumcircles. We use the fol-
lowing simple definition of a structure Circle, and a routine circumcircle() that
directly implements equations (21.3.7) and (21.3.8).
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q

a

b

c

Figure 21.3.2. Any point in the plane q can be expressed as a linear combination of a triangle’s three
vertices. The coefficients .˛; ˇ; �/, called barycentric coordinates, sum to 1 and are proportional to the
areas of4qbc,4qca, and4qab, respectively.

struct Circle { circumcircle.h
Point<2> center;
Doub radius;
Circle(const Point<2> &cen, Doub rad) : center(cen), radius(rad) {}

};

Circle circumcircle(Point<2> a, Point<2> b, Point<2> c) {
Doub a0,a1,c0,c1,det,asq,csq,ctr0,ctr1,rad2;
a0 = a.x[0] - b.x[0]; a1 = a.x[1] - b.x[1];
c0 = c.x[0] - b.x[0]; c1 = c.x[1] - b.x[1];
det = a0*c1 - c0*a1;
if (det == 0.0) throw("no circle thru colinear points");
det = 0.5/det;
asq = a0*a0 + a1*a1;
csq = c0*c0 + c1*c1;
ctr0 = det*(asq*c1 - csq*a1);
ctr1 = det*(csq*a0 - asq*c0);
rad2 = ctr0*ctr0 + ctr1*ctr1;
return Circle(Point<2>(ctr0 + b.x[0], ctr1 + b.x[1]), sqrt(rad2));

}

Centroid and Barycentric Coordinates. Distinct from both its incenter and
its circumcenter is a triangle’s centroid, or center of gravity, M. This point lies at
the intersections of the lines drawn from each vertex to the midpoint of the opposite
side. Its coordinates are simply the means of the coordinates of the vertices,

Mi D
1
3
.ai C bi C ci / .i D 0; 1/ (21.3.9)

The centroid is also the point M where the areas A.abM/, A.bcM/, and A.caM/

are all equal. In �21.7 we will be using a triangular mesh to interpolate a function.
The significance of the centroid is that it is the point where a linearly interpolated
function takes on the value that is the mean of the function values at the three vertices.

In fact, generalizing the idea of the centroid, any point q in the plane can be
written as a linear combination of the three vertices a, b, c, with coefficients that
sum to unity. These coefficients are called q’s barycentric coordinates and can be
intuitively expressed in terms of the area formulas for triangles (see Figure 21.3.2).
The equations are
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q D ˛aC ˇbC �c

˛ D A.bcq/=A.abc/

ˇ D A.caq/=A.abc/

� D A.abq/=A.abc/

(21.3.10)

with, by construction,

˛ C ˇ C � D 1 (21.3.11)

The first line in equation (21.3.10) is thus equivalent to

q D cC ˛.a � c/C ˇ.b � c/ (21.3.12)

This can be viewed as the equation for a coordinate transformation, one that trans-
forms from .˛; ˇ/ coordinates to .q0; q1/ coordinates. Evidently, since it is linear, its
inverse — the formulas for ˛ and ˇ in equation (21.3.10) — must also be linear. But
we knew this already, having remarked on the fact that the area formulas (21.3.1)
are linear in all their coordinates, so linear in q0 and q1 in particular. Barycentric
coordinates generalize to triangles in three or more dimensions in a useful way, as
we will see below.

Note that ˛, ˇ, or � go to 1 as the point q approaches a, b, or c, respectively;
and that along any edge of the triangle (say ab) the coefficient of the opposite vertex
(here, � ) vanishes. The point q is inside the triangle4abc if and only if ˛, ˇ, and �
are all positive. In fact, this is a good way to test for a point’s “insideness” in a trian-
gle. (You can of course omit calculating the denominator area in this application.)

Barycentric coordinates are also useful when you want to pick a uniformly ran-
dom point q inside 4abc: First pick ˛ and ˇ as each uniformly random in .0; 1/.
Next, if ˛ C ˇ > 1, modify them both by ˛  1 � ˛ and ˇ  1 � ˇ. Finally,
apply equation (21.3.12). The idea is that the first choice of ˛ and ˇ is random in the
parallelogram spanned by two sides of the triangle; then, if it is on the wrong side of
the diagonal, we move it to the correct side by a reflection.

21.3.1 Triangles in Three Dimensions
Our favorite triangle is still defined by the three points a, b, and c, but these

are now points in three dimensions, with coordinates (e.g., for a) .a0; a1; a2/. The

generalization of the signed area A (equation 21.3.1) is now a vector area
�!
A whose

direction is normal to the plane of the triangle and whose length is the area of the
triangle. It is most easily written using a vector cross product, defined in three di-
mensions by

A � B D

ˇ̌̌̌
ˇ̌ye0 ye1 ye2
A0 A1 A2
B0 B1 B2

ˇ̌̌̌
ˇ̌

D .A1B2 � A2B1/ye0 C .A2B0 � A0B2/ye1 C .A0B1 � A1B0/ye2
(21.3.13)

where ye0, ye1, and ye2 are respectively the unit vectors .1; 0; 0/, .0; 1; 0/, and .0; 0; 1/.
Then we have (cf. equation 21.3.1)
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2
�!
A.abc/ D .b � a/ � .c � a/

D .c � b/ � .a � b/

D .a � c/ � .b � c/

(21.3.14)

You calculate the positive scalar area A � j
�!
Aj by the usual square-root sum of the

squares of
�!
A’s three components; or you can instead use equation (21.3.3), with

dab D ja � bj, etc.
Plane Defined by Triangle. A point q lies in the plane defined by 4abc if

and only if the volume of the tetrahedron abcq is zero. The tetrahedral volume, in
general, is given by

6V D

ˇ̌̌̌
ˇ̌̌̌a0 a1 a2 1

b0 b1 b2 1

c0 c1 c2 1

q0 q1 q2 1

ˇ̌̌̌
ˇ̌̌̌

D .b � a/ 	 Œ.c � a/ � .q � a/�

D .c � a/ 	 Œ.q � a/ � .b � a/�

D .q � a/ 	 Œ.b � a/ � .c � a/�

(21.3.15)

where “	” signifies vector dot product. You can also cyclically permute a, b, and c in
the above equation, for a seemingly infinite number of variations of the same formula!

The volume V is signed and is positive if 4abc is counterclockwise when
viewed from outside (side away from q), that is, the right-hand rule gives an outward-
pointing normal.

The last form in equation (21.3.15) is particularly nice, because setting it to zero
gives the equation satisfied by any point q in the plane defined by4abc:

q 	N D D (21.3.16)

with

N D .b � a/ � .c � a/ (or cyclic permutation of a, b, c)

D D a 	N (or, for that matter) D b 	N D c 	N
(21.3.17)

We could also divide equation (21.3.16) by jNj, in which case the vector on the left
will be yN D N=jNj, the unit vector normal to the plane, and yD D D=jNj will be
the plane’s distance from the origin.

With the same machinery, we can readily project any point p into a new point
b0 that lies in the plane of4abc:

p �! p0 D pC
Œ.a � p/ 	N�N

jNj2
(21.3.18)

where N is as above. For a in this formula, you can substitute b, c, or any other
point in the plane.

We can project one triangle into the plane defined by another triangle by pro-
jecting its three points in turn. (This is a very common operation in rendering a tri-
angulated three-dimensional model in the two-dimensional “camera plane” of your
computer’s screen.)
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Barycentric Coordinates. Barycentric coordinates are valid in three dimen-
sions for points q in the triangle’s plane, and equation (21.3.10), in particular, still
holds. To compute .˛; ˇ/, one can in principle calculate the various A’s from
(21.3.14), but an easier equivalent calculation is

˛ D
b0
2
.a0 	 q0/ � .a0 	 b0/ .b0 	 q0/

a02b0
2
� .a0 	 b0/2

ˇ D
a02.b0 	 q0/ � .a0 	 b0/ .a0 	 q0/

a02b0
2
� .a0 	 b0/2

(21.3.19)

(compute identical denominators only once) where

a0 � a � c; b0 � b � c; q0 � q � c (21.3.20)

By the way, if q is not in the plane of4abc, you can still use equation (21.3.19).
In that case, you get the .˛; ˇ/ coordinates of the projected point in the plane. Also,
notice what happens in the special case that4abc is a right triangle, with right vertex
c, and with sides ac and bc of unit length, i.e., dac D dbc D 1. Then the coordinate
transformations, in both directions, are simply

q D cC ˛.a � c/C ˇ.b � c/

Œ˛; ˇ� D Œ.a � c/ 	 .q � c/; .b � c/ 	 .q � c/�
(21.3.21)

In other words, we project into an orthonormal coordinate system in the plane by a
simple change of origin (to c) and dot products with the two “axes” a� c and b� c.

Frequently, barycentric coordinates are the coordinates of choice for operations
in a plane in three dimensions that is (or can be) specified by a triangle. A trivial
example is that we can test whether a projected point p0 is inside or outside of4abc
by using equation (21.3.19) (or, if applicable, 21.3.21) to get ˛ and ˇ, and then
checking that ˛, ˇ, and � D 1 � ˛ � ˇ are all positive.

Angle Between Two Triangles. The dihedral angle between two triangles (with
a common edge, say) is the same as the angle between the normal vectors of the two
triangles. The normal vectors are given by the vector area formula (21.3.14). The
angle is best computed using equation (21.4.13), in the next section.

CITED REFERENCES AND FURTHER READING:

Bowyer, A. and Woodwark, J. 1983, A Programmer’s Geometry (London: Butterworths), Chap-
ter 4.

Schneider, P.J. and Eberly, D.H. 2003, Geometric Tools for Computer Graphics (San Francisco:
Morgan Kaufmann), �3.5 and Appendix C.

López-López, F.J. 1992, “Triangles Revisited,” in Graphics Gems III, Kirk, D., ed. (Cambridge,
MA: Academic Press).

Glassner, A.S. 1990, “Useful 3D Geometry,” in Graphics Gems, Glassner, A.S., ed. (San Diego:
Academic Press).
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21.4 Lines, Line Segments, and Polygons

A line is defined by any two points through which it passes. Call them a and b.
As in �21.1, the points can be two-dimensional, if the domain of interest is a plane, or
three-dimensional (or higher), if the line is embedded in a higher-dimensional space.
For now, consider only the two-dimensional case.

Parametrically, any point c that lies on the line defined by a and b must be a
linear combination of those two points. One way to write this is

c D aC s.b � a/ .�1 < s <1/ (21.4.1)

where s is a parameter along the line. The chosen normalization is to make s D 0 at
a and s D 1 at b. The part of the line between a and b has 0 
 s 
 1 and is a line

segment, denoted ab. The whole line is denoted
 !
ab .

The easiest way to get the equation satisfied by all points c on the line
 !
ab is to

take the vector cross product of equation (21.4.1) with .b � a/ on the right. Using
the fact that the cross product of any vector with itself is zero, we get

c � .b � a/ D a � b (21.4.2)

or writing out the components,

c0.b1 � a1/ � c1.b0 � a0/ D a0b1 � a1b0 (21.4.3)

which is indeed a linear relation between the coordinates c0 and c1. While it is
tempting to divide this equation by b0�a0 to get an equation in that old familiar high
school form “y D mxC b,” one should often resist that temptation since, as written,
equation (21.4.3) remains valid for the case of a vertical line, when b0 � a0 D 0.

Intersection of Two Lines. In the plane, two lines
 !
ab and  !xy most always

intersect. We can solve for the point of intersection by equating the two lines’ para-
metric forms,

aC s.b � a/ D x � t .y � x/ (21.4.4)

and then solving the two equations (components 0 and 1) for the two unknowns s
and t . The result is

s D
.x � y/ � .a � x/

.b � a/ � .x � y/
D
.x0 � y0/.a1 � x1/ � .x1 � y1/.a0 � x0/

.b0 � a0/.x1 � y1/ � .b1 � a1/.x0 � y0/

t D
.a � x/ � .b � a/

.b � a/ � .x � y/
D
.a0 � x0/.b1 � a1/ � .a1 � x1/.b0 � a0/

.b0 � a0/.x1 � y1/ � .b1 � a1/.x0 � y0/

(21.4.5)

Of course, the special case of parallel lines with no intersection is indicated by the
vanishing of the denominators.

All those cross products might make you think that equation (21.4.5) has a geo-
metrical interpretation. Indeed so. In Figure 21.4.1, the lines intersect at o. Segment
xo is therefore just xy scaled by t , while ao is similarly ab scaled by s. The area of
4oxa is therefore given (cf. equation 21.3.1) by

2A.oxa/ D st .x � y/ � .a � b/ (21.4.6)
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x

y

a

b

o

sj
b
�
ajt jy

�
xj

Figure 21.4.1. Geometrical construction that yields the intersection point of two lines in terms of ratios
of triangle areas. See text for details.

By linearity of a triangle’s area with its height (holding the base fixed), we also have

A.oxa/=A.yxa/ D t A.oxa/=A.bxa/ D s (21.4.7)

Equation (21.4.5) follows immediately from these relations and equation (21.3.1).
Point-to-Line Distance. What is the perpendicular distance d from an arbitrary

point q to the line
 !
ab that passes through points a and b? Evidently d is the height

of4abq when its base is the segment ab. Therefore, from the schoolbook “one-half
base times height” formula,

d D
2A.abq/

ja � bj
D
.q0 � b0/.a1 � b1/ � .q1 � b1/.a0 � b0/p

.a0 � b0/2 C .a1 � b1/2
(21.4.8)

Note that d is signed, positive if it is to the left of the directed line from a to b,
negative if it is to the right, and a good segue to our next topic.

21.4.1 Line Segment Intersections and “Left-Of” Relations
You can use equation (21.4.5) to test whether two line segments, ab and xy , in-

tersect: Calculate s and t and then check if they are both in the range .0; 1/. (To keep
our discussion brief, we won’t say much here, or in what follows, about the various
degenerate cases where s or t or both are exactly 0 or 1. These are straightforward
to figure out if your application so demands.)

A related, but slightly different, approach is to use the fact that the formulas for
triangle areas given in equation (21.3.1) are signed. This means that, as equivalent
statements, we have

A.abc/ > 0 ”

24 c is to the left of line
 !
ab

when it is traversed in
the direction from a to b

35 (21.4.9)

while A.abc/ < 0 implies that c is to the right of the same line. We refer to either
statement in (21.4.9) as a left-of relation.
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A necessary and sufficient condition for two segments ab and xy to intersect is

that x and y be on opposite sides of
 !
ab , and a and b be on opposite sides of !xy .

(We again omit discussion of the various special cases of collinearity.) This test,
using the triangle area formulas in equation (21.3.1), involves evaluating four left-
of relations, each computationally a cross product, which is just slightly more work
than computing s and t (which share a denominator). However, you can sometimes
use the same cross products, once computed, in other parts of your calculation. So,
it is often a toss-up whether to use the “s, t” method or the “left-of” method — you
should consider both.

Fig. 4abx 4aby 4xya 4xyb Intersection Hull

1 � C C � ab � xy �axby

2 C � � C ab � xy �aybx

3 C � � �
!
ab � xy 4ayx

4 � C � �
!
ba � xy 4byx

5 C � C C
!
ba � xy 4bxy

6 � C C C
!
ab � xy 4axy

7 � � � C
!
yx � ab 4yba

8 � � C �
!
xy � ab 4xba

9 C C � C
!
xy � ab 4xab

10 C C C �
!
yx � ab 4yab

11 � � � � external �ayxb

12 C C � � external �abxy

13 C C C C external �abxy

14 � � C C external �axyb

� C � C Not possible!

C � C � Not possible!

Table 21.4.1. Relationship between two line segments classified by the signs of the areas of various
triangles. Refer to Figure 21.4.2 for an illustration of each case.

Table 21.4.1 enumerates the 16 cases that you get if you compute all four pos-
sible “left-of” tests for two line segments. (Actually, only 14 are geometrically pos-
sible!) The table classifies each possibility as to whether the segments intersect (in-
tersection denoted by �, not to be confused with vector cross product!), whether
the unidirectional extension of one segment (a ray) intersects the other segment, or
(lastly) whether an ordinary line intersection occurs external to both segments. Also
shown for each case is the outer hull of the two segments (the smallest triangle or
quadrilateral enclosing both segments) and how it is traversed in clockwise order.
Figure 21.4.2 shows an example of each possibility.

You can use the table to find combinations that test for specific circumstances.
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(1) (2)
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Figure 21.4.2. Two line segments, ab and xy, define four triangles (4abx, 4aby, 4xya, and
4xyb), each of which can have positive or negative area. Of the 16 combinations of signs, 14 (shown
here) correspond to to possible intersection relationships between the line segments or their extensions
as rays.

For example, if you need a test for whether the ray
�!
ab intersects the segment xy

(including the possibility of the segments intersecting), you examine rows 1, 2, 3,
and 6 in the table and read off a test that involves just three left-of relations:

A.abx/A.aby/ < 0 and A.aby/A.xya/ > 0 (21.4.10)

Of course there are exactly equivalent tests using s and t , for this example (with s
and t as in equation 21.4.4) s > 0 and 0 < t < 1.

Angle Between Two Vectors. Suppose that U and V are difference vectors
along each of two lines, and that � is the angle between the lines (measured from U
to V ). In the previous notation, U D y � x and V D b � a. Elementary vector
analysis tells us that

U 	 V D U0V0 C U1V1 D jU jjV j cos.�/

U � V D U0V1 � U1V0 D jU jjV j sin.�/
(21.4.11)

Many people try to get � by using one or the other of the above relations, computing
the vector norms and taking an inverse cosine or inverse sine. Big mistake! Not only
are there quadrant ambiguities in the inverse trig functions, but there are also angles
near the flat extrema of the sine and cosine functions where you can lose up to half
of your significant figures in the answer. Not to mention the need to calculate square
roots for the norms! The better approach is

� D atan2.U � V ;U 	 V / D atan2.U0V1 � U1V0; U0V0 C U1V1/ (21.4.12)
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where atan2() is C’s or C++’s quadrant-sensitive arctangent function. That function
allows either of its arguments to be zero and returns a value in the range �	=2 to
	=2. (An identical function exists in Fortran and most other languages.)

21.4.2 Lines in Three Dimensions
The immediate generalization of equation (21.4.12) to three-dimensional space

gives the angle between two 3-vectors,

� D atan2 .jU � V j;U 	 V / (21.4.13)

Note the occurrence of the modulus of the vector cross product, which requires taking
a square root.

Brevity constraints allow us to say only a little more about lines in three-dimen-
sional space. The parameterization

c D aC s v .�1 < s <1/ (21.4.14)

(equation 21.4.1 with v � b� a) still works, with a, v , and c now points in 3-space.
The parameter s at which a line intersects a plane specified by N andD (see equation
21.3.16) is given by

s D
D � a 	N

v 	N
(21.4.15)

with the denominator vanishing if the line is parallel to the plane.
The closest approach of a line to a point q occurs when

s D
.q � a/ 	 v

jv j2
(21.4.16)

You can also use this to see whether a line intersects a sphere in 3-space: Calculate
the closest point on the line to the sphere’s center, and then check if the distance is
less than the sphere’s radius (or compare squares of distances to avoid the square
root).

Two lines, call them aC s v and xC t u, will not, in general, share a common
point; rather, they will be skew to one another. However, their points of closest
approach can be calculated as [2]

s D
det f.a � x/;u;u � v/g

ju � v j2
t D

det f.a � x/; v ;u � v/g

ju � v j2
(21.4.17)

where det is the 3 � 3 determinant whose columns are the indicated 3-vectors. The
denominator vanishes if the lines are parallel. If you really must check for an actual
intersection, plug these values for s and t into the parametric forms for each line,
and check whether the distance between two points thus obtained is less than some
roundoff tolerance.

A common operation in computer graphics is to test whether a line intersects a
triangle in three dimensions. To do this with methods already discussed, use equation
(21.3.17) to get N and D for the triangle’s plane. Then use equations (21.4.14)
and (21.4.15) to get the line’s intersection with that plane. Finally, use equation
(21.3.19) to get the barycentric coordinates ˛ and ˇ of the intersection. If ˛, ˇ, and
� � 1 � ˛ � ˇ are all positive, then the intersection is inside the triangle. See [4,1]

for various ways to streamline this procedure.
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(a) (b) (c)

Figure 21.4.3. Polygons are classified as simple if they have no intersecting edge, as in (a) and (b), or
complex (c) otherwise. Simple polygons are either convex (a) or concave (b).

21.4.3 Polygons
We define a polygon as a vector of N points (vertices), numbered from 0 to

N � 1, and the N directed line segments that connect them in cyclic order, that is 0
to 1, 1 to 2, : : :, N � 2 to N � 1, and (importantly!) N � 1 to 0. (In some formulas
below we will use the convention that vertex N is to be taken as meaning vertex 0.)

We consider two polygons to be the same if they differ only by a cyclical renum-
bering of the points, so that all their line segments are the same. However, if we
reverse the order of traversing the points, we consider the resulting polygon to be
different. (For example, the sign of its area will change.) If the boundary of a re-
gion cannot be traversed by a single cyclical vector (e.g., the region between an outer
square and an enclosed triangle), we don’t call it a polygon; other conventions are of
course also possible.

With the definition given, it is useful to classify a polygon as either simple,
meaning that none of its N line segments intersect, or complex if there are one or
more segment intersections. We classify simple polygons according to whether they
are convex or concave. A convex polygon can be defined either by (i) allN.N �1/=2
line segments connecting two vertices lie in its interior (or on its boundary), or (ii) its
exterior angles all have the same sign (zeros allowed). Whichever property is taken
as the definition, the other becomes a theorem. Figure 21.4.3 shows examples of the
three types.

For simple polygons, the sum of the exterior angles is always ˙2	 . That is,
you turn through exactly one circle in driving around the polygon. If the polygon
is concave, then the sign of the exterior angles must be taken into account when
doing the sum. This is shown in Figure 21.4.4. The sign of the 2	 is positive for a
counterclockwise (CCW) traversal, negative for clockwise (CW).

Complex (that is, self-intersecting) polygons can also have exterior angles that
sum to 2	 , as the polygon in Figure 21.4.3(c), so the exterior angles do not provide,
in general, any magical way of finding intersections. However, one small bit of
magic does exist: If the exterior angles of a polygon are all of one sign (or zero),
and if they sum to ˙2	 , then the polygon is both simple and convex. This provides
a very rapid way to test for the simple-and-convex case, but it does not distinguish
between simple-concave and complex polygons. Doing so requires a detailed check
for intersecting edges (which we will implement in code below).

Winding Number. If you sit on a point p in the plane, and watch someone drive
around a polygon, then they will drive around you some net integer number of times
(with the usual sign convention, CCW being positive). This is the polygon’s winding
number with respect to a point. For simple polygons, the winding number is 1 for
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112 .1 °

105. 2°

89 .5 °
140. 5°

104 .7 °

117 .2 °

102. 0°

104 .0 °(a) (b)

Figure 21.4.4. The exterior angles of simple polygons sum to one full circle. (a) If the polygon is convex,
all the angles have the same sign. (b) If the polygon is concave, one or more angles (here, the shaded
angle) has opposite sign.

+1

+2

+2

+2
0

0

Figure 21.4.5. Complex polygon with different winding numbers (indicated by integers) around points in
different regions. The total winding number of the polygon (sum of exterior angles divided by 2	) is 3, a
value not realized in any single region. Note that interior regions can have winding number 0.

points inside a CCW polygon, �1 for points inside a CW polygon, and 0 for points
outside. For complex polygons, however, there are no simple rules. Figure 21.4.5
shows a complicated case. Note that interior regions of a complex polygon can have
winding number 0, so a point’s winding number (alone) does not determine whether
it is inside or outside a complex polygon. Note also that the sum of a polygon’s
exterior angles, divided by 2	 , is not necessarily the winding number of that polygon
with respect to any point in the plane.

Doubtless the worst way to compute a polygon’s winding number with respect
to a point q is to add up theN incremental angles between q and consecutive vertices
pi of the polygon, that is,

W.N..q/ D
1

2	

N�1X
iD0

†.piC1qpi / (21.4.18)

(with the usual convention pN � p0). Even using the trick in equation (21.4.12)
to get the angles, there is an enormous amount of unnecessary computation in
this approach.

Instead, we can observe that if a polygon winds M times around q, then its
edges must cross any ray from q to infinity a net of exactly M times, where ray
crossings in the CCW direction are counted as positive, CW as negative. In particu-
lar, if we take the ray to be the horizontal ray to the right of q, we can immediately
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reject edges that fail to cross the horizontal line that contains q, and then check for
the ray crossing (and its sign) with a single “left-of” test [5]. These ideas are embod-
ied in the following routine.

Int polywind(const vector< Point<2> > &vt, const Point<2> &pt) {polygon.h
Return the winding number of a polygon (specified by a vector of vertex points vt) around an
arbitrary point pt.

Int i,np, wind = 0;
Doub d0,d1,p0,p1,pt0,pt1;
np = vt.size();
pt0 = pt.x[0];
pt1 = pt.x[1];
p0 = vt[np-1].x[0]; Save last vertex as ”previous” to first.
p1 = vt[np-1].x[1];
for (i=0; i<np; i++) { Loop over edges.

d0 = vt[i].x[0];
d1 = vt[i].x[1];
if (p1 <= pt1) {

if (d1 > pt1 && Upward-crossing edge. Is pt to its left?
(p0-pt0)*(d1-pt1)-(p1-pt1)*(d0-pt0) > 0) wind++;

}
else {

if (d1 <= pt1 && Downward-crossing edge. Is pt to its right?
(p0-pt0)*(d1-pt1)-(p1-pt1)*(d0-pt0) < 0) wind--;

}
p0=d0; Current vertex becomes previous one.
p1=d1;

}
return wind;

}

Is there a similarly efficient way to find the total winding number of a poly-
gon pi (i D 0; : : : ; N � 1), that is, the sum of its exterior angles divided by 2	?
Yes. Consider the derived polygon whose vertex points qi are given by the vector
differences

qi D piC1 � pi .i D 0; : : : ; N � 1/ (21.4.19)

Then the winding number of this derived polygon around the origin is just the total
winding number of the original polygon. (Draw a picture if this isn’t immediately
obvious to you.) The routine polywind() can be used for the computation.

Point Inside Polygon. How can you tell whether an arbitrary point q is inside
or outside a polygon [5]? Let us first assume that your polygon is known to be sim-
ple. For simple polygons, two commonly used approaches are the “winding number
method” and the “Jordan curve theorem method.” However, when these are each
implemented efficiently, they become virtually identical!

The winding number method is simply to compute the winding number of the
polygon around the point (e.g., using polywind(), above). If the answer is˙1, then
the point is inside the polygon. If it is zero, it is outside. Any other answer indicates
that the polygon wasn’t simple as assumed.

The Jordan curve theorem method observes that any ray from the point to infin-
ity will cross the polygon an odd number of times if the point is inside, or an even
number of times if it is outside [Figure 21.4.6(a)]. If we implemented this in code,
it would be almost identical to the code in polywind except for one detail: Instead
of incrementing or decrementing a counter at each ray crossing (according to the di-
rection of the crossing), we would always increment it. Then, at the end, we would
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(a) (b)

Figure 21.4.6. Is a point inside a polygon? (a) For a simple polygon, either the winding number, or the
Jordan curve theorem (even or odd number of crossings of a ray) can be used. (b) For complex polygons,
there is no simple test.

check whether the counter is even or odd. But if polywind as written returns 0, it
must have encountered the same number of increments as decrements, hence an even
number of crossings. And if it returns˙1 (the only other possible value for a simple
polygon), it must similarly have encountered an odd number. So the two methods
are really the same.

What if your polygon is not simple? As Figure 21.4.6(b) illustrates, you are
in deep waters. Both the winding number method and the Jordan curve theorem
method will say that the upper point in the figure is inside the complex polygon
shown, and this seems intuitively correct. However, both methods will say that the
lower point is outside the polygon. Indeed, there are some self-consistent ways of
defining “insideness” for complex polygons that make this the case. The result is
so counterintuitive, however, as to be useless in most practical applications. It is
generally better just to avoid using the idea of “insideness” with complex polygons.

Classification of Polygons. We are now in a position to combine several of
the ideas already introduced into a function that classifies any polynomial as either
simple or complex, and (if it is simple) whether it is convex or concave, and whether
it is CCW (total winding number 1) or CW (total winding number �1).

Int ispolysimple(const vector< Point<2> > &vt) { polygon.h
Classifies a polygon specified by a vector of vertex points vt. Returns 0 if the polygon is complex
(has intersecting edges). Returns ˙1 if it is simple and convex. Returns ˙2 if it is simple and
concave. The sign of the returned value indicates whether the polygon is CCW (C) or CW (�).

Int i,ii,j,jj,np,schg=0,wind=0; Initialize sign change and winding number.
Doub p0,p1,d0,d1,pp0,pp1,dd0,dd1,t,tp,t1,t2,crs,crsp=0.0;
np = vt.size();
p0 = vt[0].x[0]-vt[np-1].x[0];
p1 = vt[0].x[1]-vt[np-1].x[1];
for (i=0,ii=1; i<np; i++,ii++) { Loop over edges.

if (ii == np) ii = 0;
d0 = vt[ii].x[0]-vt[i].x[0];
d1 = vt[ii].x[1]-vt[i].x[1];
crs = p0*d1-p1*d0; Cross product at this vertex.
if (crs*crsp < 0) schg = 1; Sign change (i.e., concavity) found.
if (p1 <= 0.0) { Winding number logic as in polywind.

if (d1 > 0.0 && crs > 0.0) wind++;
} else {

if (d1 <= 0.0 && crs < 0.0) wind--;
}
p0=d0;
p1=d1;
if (crs != 0.0) crsp = crs; Save previous cross product only if it has a

sign!}
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if (abs(wind) != 1) return 0; Can already conclude polygon is complex.
if (schg == 0) return (wind>0? 1 : -1); Polygon is simple and convex.
Drat, we’ve exhausted all the quick tricks and now have to check all pairs of edges for
intersections:
for (i=0,ii=1; i<np; i++,ii++) {

if (ii == np) ii=0;
d0 = vt[ii].x[0];
d1 = vt[ii].x[1];
p0 = vt[i].x[0];
p1 = vt[i].x[1];
tp = 0.0;
for (j=i+1,jj=i+2; j<np; j++,jj++) {

if (jj == np) {if (i==0) break; jj=0;}
dd0 = vt[jj].x[0];
dd1 = vt[jj].x[1];
t = (dd0-d0)*(p1-d1) - (dd1-d1)*(p0-d0);
if (t*tp <= 0.0 && j>i+1) { First loop is only to compute starting tp,

hence test on j.pp0 = vt[j].x[0];
pp1 = vt[j].x[1];
t1 = (p0-dd0)*(pp1-dd1) - (p1-dd1)*(pp0-dd0);
t2 = (d0-dd0)*(pp1-dd1) - (d1-dd1)*(pp0-dd0);
if (t1*t2 <= 0.0) return 0; Found an intersection, so done.

}
tp = t;

}
}
return (wind>0? 2 : -2); No intersections found, so simple concave.

}

When ispolysimple finds that the quick indicators are not enough, and that it
needs to check all pairs of edges for intersections, it does so by the obvious O.N 2/

method of two nested loops. For small N , say less than 10, this is likely as fast as
any other strategy. If you are dealing with large numbers of large-N polygons, how-
ever, you will want to substitute a method with better scaling in N . One way, using
the code from �21.8, would be to define a class for segments with a collides()
method, then store the segments into a QO tree one at a time, looking for collisions
at each step. (Don’t forget that adjacent edges of a simple polynomial are allowed to
“collide” at their shared vertex.)

Area of Polygons. As a next topic, let us turn to the area of a polygon. The
(signed) area of a polygon is the sum of the areas of each of its regions weighted by
that region’s winding number. For simple polygons the area is thus what you would
expect geometrically, except that its sign will be negative for a polygon traversed
CW rather than CCW. (We previously saw this in the special case of triangles.) For
a complex polygon like that shown in Figure 21.4.5, the answer is less intuitive (and
generally less useful) since some regions, such as the interior region with winding
number 0, are not counted at all, while others are counted (in this case) twice.

The great advantage of this definition of area, however, is that it results in a
simple expression for the area that applies to both simple and complex polygons. Let
xi and yi be, respectively, the 0 and 1 coordinates of the polygon’s vertex pi , and let
A be the polygon’s area. Then, in three equivalent forms,

2 A D

N�1X
iD0

xiyiC1 � xiC1yi
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D

N�1X
iD0

.xiC1 C xi /.yiC1 � yi /

D

N�1X
iD0

xi .yiC1 � yi�1/ (21.4.20)

Evaluation of any of these forms takes just one loop over the polygon’s vertices.
(These formulas go back as far as Meister in 1769 and Gauss in 1795.)

Although we won’t derive equation (21.4.20) in detail, the middle form does
have an intuitive interpretation. It sums the areas of trapezoids each with two points
on the y-axis (x D 0) at yi and yiC1, and with the other two points the points on the
polygon at these y’s. In going around the polygon, negative-area trapezoids subtract
from positive-area ones so as to leave just the area inside.

Interestingly, there are very similar formulas for the x and y coordinates of the
centroid or center-of-mass of an arbitrary polygon [3],

x D
1

6

N�1X
iD0

.xiC1 C xi /.xiyiC1 � xiC1yi /

y D
1

6

N�1X
iD0

.yiC1 C yi /.xiyiC1 � xiC1yi /

(21.4.21)

Note the common subexpressions with equation (21.4.20), so that it is efficient to
calculate the area and centroid position together.

Finally, a couple of polygon tidbits for your edification or amusement:

� If two simple polygons have the same area, then the first can be cut into a finite
number of polygonal pieces that can be reassembled into the second. This is
known as the Bolyai-Gerwien theorem. (The corresponding statement about
polyhedra in three dimensions, “Hilbert’s Third Problem,” was proved false by
Dehn in 1900.)
� The regular polygon withN sides is constructible with a compass and straight-

edge if the factorization of N contains only the factors 2, 3, 5, 17, 257, 257,
and 65537 (whose odd members are the Fermat primes), with each odd fac-
tor occurring at most once. It is not known whether any other N -gons are
also constructible; but, if so, then their N must contain a factor at least as
large as 22

33
C 1. The product of the known Fermat primes, which is per-

force the largest known constructible polygon with an odd number of sides, is
232� 1 D 4294967295, a number well known to computer trolls as the largest
positive 32-bit integer. Go figure.
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21.5 Spheres and Rotations

The surface of the Earth is called a 2-sphere by topologists, but a 3-sphere
by geometers; so the term n-sphere is somewhat unclear. We’ll say “sphere in n
dimensions” to avoid any ambiguity. (For Earth, n D 3.) Sphere refers to the surface,
ball to the interior volume.

A sphere of radius r in n dimensions, centered on the origin, is the locus of
points for which

x20 C 	 	 	 C x
2
n�1 D r

2 (21.5.1)

Points on the sphere in n dimensions can be specified by n � 1 angular coordinates,
roughly the analogs of latitude and longitude on the sphere in three dimensions,

x0 D r cos 0
x1 D r sin 0 cos 1
	 	 	

xn�2 D r sin 0 sin 1 	 	 	 cos n�2
xn�1 D r sin 0 sin 1 	 	 	 sin n�2

(21.5.2)

All the angles except the last have the range

0 
  i 
 	; i D 0; : : : ; n � 3 (21.5.3)

i.e., are “latitude-like.” The last angle is “longitude-like,”

0 
  n�2 
 2	 (21.5.4)

The surface area Sn of the sphere in n dimensions has a simple recurrence,

S1 D 2 (two points)

S2 D 2	r (circumference of circle)

Sn D
2	r2

n � 2
Sn�2; n > 2

(21.5.5)
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The volume Vn of the n-dimensional ball is equal to r=n times the area of the en-
closing sphere in n dimensions, and also has a simple recurrence,

V1 D 2r (length of line)

V2 D 	r
2 (area of circle)

	 	 	

Vn D
r

n
Sn D

2	r2

n
Vn�2

(21.5.6)

Closed-form formulas require a gamma function,

Sn D
2	n=2

�.1
2
n/
rn�1

Vn D
2	n=2

n�.1
2
n/
rn

(21.5.7)

As n becomes large, the ratio of the volume of a ball to the volume of the
circumscribed (hyper-) cube rapidly becomes small,

Vn

2n
! 0; n!1 (21.5.8)

21.5.1 Picking a Random Point on the Sphere
You don’t get a random point on the sphere in n dimensions by picking uni-

formly random values for the n� 1 angles in equation (21.5.2), just as you don’t get
a random point on the Earth’s surface by throwing darts at a Mercator map (or any
other non-equal-area projection).

An elegant general method is to generate n independent, identically distributed,
normal (Gaussian) deviates of zero mean, say y0; : : : ; yn�1 (see �7.3), and then cal-
culate a point x on the unit sphere in n dimensions by

x D
y

jyj
(21.5.9)

or, in other words,

xi D yi

,p
n�1X
jD0

y2j (21.5.10)

This works because the spherically symmetric Gaussian distribution in n dimensions
trivially factorizes into a product of independent one-dimensional Gaussians. If you
want a random point inside the enclosed n-volume, generate an additional uniform
random deviate u in Œ0; 1� and calculate the point’s coordinates as

xi D u
1=n yi

,p
n�1X
jD0

y2j (21.5.11)

You can of course scale to any other radius of sphere.



�

�

“nr3” — 2007/5/1 — 20:53 — page 1130 — #1152
�

�

� �

1130 Chapter 21. Computational Geometry

Faster special methods are available for the spheres in two, three, and four di-
mensions. For two dimensions, the circle, pick u0 and u1 uniform in Œ�1; 1�, reject-
ing choices for which u20 C u

2
1 > 1. This picks a random point inside the unit circle.

Now scale in the obvious way to get a point on the circle,

x0 D
u0q
u20 C u

2
1

; x1 D
u1q
u20 C u

2
1

(21.5.12)

(We already discussed this method in �7.3, under Cauchy deviates.)
A faster method for three dimensions, also using only two random deviates, is

due to Marsalgia [1]. Pick a point inside the unit circle .u0; u1/ as above. Then a
random point on the sphere in three dimensions is

x0 D 2u0

q
1 � u20 � u

2
1

x1 D 2u1

q
1 � u20 � u

2
1

x2 D 1 � 2.u
2
0 C u

2
1/

(21.5.13)

For the sphere in four dimensions, pick two independent points inside the unit
circle as above, .u0; u1/ and .u2; u3/. Then a random point on the sphere in four
dimensions is [1]

x0 D u0

x1 D u1

x2 D u2

s
1 � u20 � u

2
1

u22 C u
2
3

x3 D u3

s
1 � u20 � u

2
1

u22 C u
2
3

(21.5.14)

Unfortunately, there is no known generalization to higher dimensions.

21.5.2 Picking a Random Rotation Matrix
Don’t confuse this with picking a point on a sphere. A rotation matrix M in n

dimensions is an orthogonal n � n matrix. For a proper rotation, M must have de-
terminant 1. The other possibility, determinant �1, represents an improper rotation,
decomposable into a proper rotation followed by a reflection. The rotation matrix M
maps any point x to a new point x0 by

x0 DM 	 x (21.5.15)

A general method for picking a uniformly random rotation matrix is to fill an
n � n matrix G with independent, identically distributed, normal (Gaussian) devi-
ates of zero mean. Then, use QRdcmp in �2.10 to construct the QR decomposition,
namely G D Q 	 R. Except for the possibility that it might have the wrong sign of
determinant, the matrix Q is now a uniformly random rotation matrix. The method
used in QRdcmp is to apply n � 1 Householder transformations, each of which is
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a reflection with determinant �1. Thus, to get determinant 1, we do nothing to Q
if n is odd; if n is even, we simply interchange any pair of rows in Q, giving the
final answer.

For large n the work of doing the decomposition scales as O.n3/, which can be
burdensome. For faster, but more complicated, methods, see [2,3].

Faster special methods are available for two and three dimensions. A random
two-dimensional rotation matrix has components that are the sine and cosine of a
random angle � in Œ0; 2	�, �

cos � sin �
� sin � cos �

�
(21.5.16)

We get the components without trigonometric function calls by using (21.5.12) to
find a random point on the unit circle and then taking cos � D x0 and sin � D x1.

In the case of three dimensions, a fast method is to use equation (21.5.14) to
generate a random point on the sphere in four dimensions, and then to construct the
3 � 3 orthogonal matrix,241 � 2.x21 C x22/ 2.x0x1 � x3x2/ 2.x0x2 C x3x1/

2.x0x1 C x3x2/ 1 � 2.x20 C x
2
2/ 2.x1x2 � x3x0/

2.x0x2 � x3x1/ 2.x1x2 C x3x0/ 1 � 2.x20 C x
2
1/

35 (21.5.17)

which will be uniformly random among all rotations [4,5].
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21.6 Triangulation and Delaunay Triangulation
We can informally define a triangulation of a set ofN points in the plane as fol-

lows: Connect the given points by straight-line segments as many times as you can
without any two segments crossing. When you can’t connect any more, you have
a triangulation. Obviously there are many triangulations of a given set of points.
Figure 21.6.1 shows three triangulations of the same set of 50 points. Two are “ran-
dom,” where the informal definition was pretty much followed literally. The third
one is a very special triangulation, called a Delaunay triangulation. In a sense that
we will make more precise below, it is the triangulation whose triangles best avoid
small angles and long sides.
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(a) (b) (c)

Figure 21.6.1. Three triangulations of the same 50 random points: (a) and (b) are “bad” (random) trian-
gulations, while (c) is a “good” (Delaunay) triangulation. The number of lines and triangles is the same
in each case.

(a) (b)

Figure 21.6.2. How to count lines and triangles in a triangulation. (a) Each triangle “uses up” 1=2 of a
point, and 3=2 lines. (b) The n points in the convex hull “use up” n=2C 1 points and n=2 lines.

All triangulations of a given set of points have the same outer boundary, called
the convex hull of the point set. This should be evident, again informally, from the
definition of triangulation: A line segment (edge) on the outer convex boundary can’t
interfere with any other actual or potential interior edges, so it will always be added
before the stopping rule is reached. The number of points n (and also edges) in the
convex hull is at least three, and can be as large as N , e.g., if the points all lie on
a circle. (Here and below, we will ignore degenerate cases like “all points lie on a
line.”)

It is surprising, perhaps, that all triangulations of a given point set have the same
number of lines (L) and triangles (T ), given explicitly by the relations

L D 3N � n � 3

T D 2N � n � 2
(21.6.1)

The proof, known to Gauss, is very easy if you consult Figure 21.6.2. Since the inte-
rior angles of a triangle sum to 	 radians, each triangle “uses up” half a point’s worth
of angle. It is useful to think about each line as being two half-lines, representing the
two possible directions of traversal in clockwise triangles. Then, each triangle uses
up three half-lines. We must separately account for the vertices on the convex hull,
as follows: Each such point uses up 	 radians on its own (dark-shaded angles in the
figure), plus (sum of the light-shaded exterior angles) 2	 additional radians in going
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P1

P2

P3

P4

P5

P6

P10

P7

P8

P9

P11

P12

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

T11

T12

T13

T14 T15

T16

Figure 21.6.3. Example of a triangulation with N D 12, n D 6, T D 16, and L D 27, values that
satisfy equation (21.6.1).

around the convex hull. These considerations give the relations

2	N D 	T C 	nC 2	 (account for radians)

2L D 3T C n (account for half-lines)
(21.6.2)

which can be rearranged to give equation (21.6.1). Figure 21.6.3 shows the triangu-
lation of Figure 21.6.2(b) with its points and triangles enumerated.

21.6.1 Delaunay Triangulation
Boris Nikolaevich Delone (1890–1980), a Russian mathematician also cele-

brated as a rock climber, first published the ideas behind Delaunay triangulation in
1934. Since his paper was written in French, his name was transliterated so as to be
pronounced (approximately) correctly by French speakers. A better English pronun-
ciation might be “dyeh-LOAN-yeh.”

Delaunay triangulations have a number of remarkable properties and can be
defined in various abstract ways. However, we’ll take as the definition one very
concrete property, shown in Figure 21.6.4. Consider all triangulations in which four
points, A;B;C;D; are the vertices of two back-to-back triangles. Then, one can
get a different triangulation by deleting the common edge (BD in the figure) and
replacing it by the other diagonal of the quadrilateral (AC in the figure). A Delaunay
triangulation is defined as one that always chooses the diagonal that gives the largest
minimum angle for the six interior angles in the two triangles. The edge shown as
BD is thus illegal for a Delaunay triangulation, while AC is termed legal. Changing
a triangulation from an illegal edge to a legal one is called an edge flip. When any
two triangles have a common edge, exactly one configuration, unchanged or edge-
flipped, is legal (unless all four points lie on a circle, in which case both are legal).

This “largest minimum angle” property is geometrically equivalent to other
statements about the points A;B;C;D. One such statement is that the circumcir-
cle of an illegal triangle, like ABD or BCD in part (a) of the figure, always contains
another point, C or A, respectively. For a legal triangle, as in part (b) of the figure,
this is never the case. One can use this as a starting point to prove the theorem:

� The circumcircle of any triangle in a Delaunay triangulation contains no other
vertices.
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A

B

C

D

ok!

(b)

A

B

C

D

ill
eg
al
!

(a)

Figure 21.6.4. A Delaunay triangulation can be defined as one in which back-to-back triangles always
have a larger minimum angle than they would have if their common edge were flipped to the other di-
agonal. Equivalently, any triangle’s circumcircle does not contain another vertex. A so-called edge flip
converts (a) to (b) in the figure.

Although the largest minimum angle property was defined locally, for one quadri-
lateral at a time, it can be shown to imply a remarkable global theorem:

� Among all triangulations of a set of points, a Delaunay triangulation has the
largest minimum angles, as defined by sorting all angles from smallest to
largest and comparing lexicographically to the angles of any other triangulation.

Comparing lexicographically means: First compare the smallest angle; if there is a
winner, stop. If there is a tie on the smallest angle, compare the second-smallest
angle. And so on.

Another theorem is

� Two vertices are connected by a Delaunay edge if and only if there is some
circle that contains them and contains no other vertices.

If the points in a set have generic positions, meaning that no three are collinear
and no four lie on the same circle, then the Delaunay triangulation exists and is
unique; any method for constructing it will give the identical set of triangles.

You might wonder whether a Delaunay triangulation is also a minimum weight
triangulation, defined as the triangulation with the smallest total of edge lengths. The
answer is, in general, no. While minimum weight triangulations might be useful in
applications, it is not even known whether they can be constructed in less than time
that grows exponentially with N . Delaunay construction, on the other hand, is fast,
O.N logN/. So, in practice, Delaunay is what we’ve got!

So, how do we construct a Delaunay triangulation? Conceptually, we can start
with any triangulation and then eliminate illegal edges, by edge flips, as long as
possible. This must terminate in a Delaunay triangulation after a finite number of
flips because (i) each flip changes and increases the lexicographic order in the list of
angles, and (ii) there are only a finite number of possible triangulations. Although,
as stated, this is not an efficient algorithm, it can be readily be turned into one, the
so-called randomized incremental algorithm [1].

This algorithm, which we now implement, is “incremental” in that it adds points
to the triangulation one at a time, maintaining a Delaunay triangulation at each
stage. It is “randomized” in that the points are added in a random order. It turns
out that the randomization (almost) guarantees O.N logN/ expected time for the
algorithm. (Without randomization, one could encounter pathological cases with
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Figure 21.6.5. Steps in inserting a new point into a Delaunay triangulation. (a) Connect new point P
to vertices of enclosing triangle. (b) Check enclosing triangle for illegal edges (here, replace QR by
PS). (c) Recursively check any new triangles created that have P as a vertex. (Here, RS is legal, so we
terminate.)

O.N 2/ running time.)
Figure 21.6.5 shows the procedure for adding a new point P that lies within

an existing triangle. First, connect it to the vertices of the enclosing triangle. This
creates three new triangles. (We exclude the special case where P is exactly on an
existing line. More on this below.) Next, check whether the edges opposite P in the
three new triangles are legal or illegal. If they are illegal, do edge flips. Each edge flip
creates two new triangles with P as a vertex, and (therefore) with two edges opposite
P that now also need to be checked for legality. So the process is recursive, but it
never wanders away from P . That is the key point: The only edges that can be made
illegal by inserting point a point P are edges opposite P in triangles that include
P . The proof that the algorithm is O.N logN/ uses this fact, and then bounds the
average number of triangles of which P can be a vertex by relations like those of
equation (21.6.1). (For details in the proof, see [2].)

Since, up to now, we only know how to add a point P that falls inside the
triangulation, how can we get started? An easy way is to add three “fictitious” points
to the set of points, forming a very large starting triangle that will enclose all the
“real” points subsequently added. Then, at the very end, the fictitious points and all
edges connecting to them are removed. Strictly speaking, the fictitious points must
actually be treated as if at infinity (thus requiring special logic in the code whenever
they are referenced). If their distance is merely finite, the constructed triangulation
may be “not-quite” Delaunay. For example, its outer boundary (convex hull) could
in unusual cases be left slightly concave, with small negative angles on the order of
the diameter of the “real” point set divided by the distance to the “fictitious” points.

That’s enough general information. We next get into the details.

21.6.2 Implementation Details
Since most readers skip a section with this title, this is a good place for us to confess a

couple of dirty tricks in our Delaunay implementation, whose purpose is to keep the code and
its explication to manageable length. If you need a bullet-proof Delaunay code, with no such
tricks, a Web search will turn up several that are freely available. Our code is short and fast,
and fine for its intended purpose; but it is approximate in two respects: First, we don’t take
the initial bounding triangle off to infinity (as we sanctimoniously advised, above). Instead, it
lies at a distance of about bigscale (an adjustable parameter, default value 1000), measured
in units of the bounding-box size of the set of points. Second, we don’t provide for the special
case, mentioned above, where the point being added falls on an existing edge (or does so
within roundoff tolerance). For generic point locations, this should “never” happen; but in real
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life it “always” happens, because users love to try test examples with points in regular patterns!
When we detect this problem, we randomly alter the location of the offending point by a small
fraction fuzz (another adjustable parameter, default 10�6) of the bounding box dimensions.

A very important implementation detail, not yet discussed, is how to find in which ex-
isting triangle a new point lies. Conceptually, we might throw the triangles into a QO tree
(�21.8), but this would not yield the desired O.N logN/ behavior for our algorithm. A better
solution, well established in the literature, is to maintain a tree structure of the descendants of
any given triangle that ever existed in the construction. That is, starting with the huge “root”
triangle, whenever a triangle is subdivided into three new triangles, we set pointers to its three
daughters. And, when two triangles are lost in an edge flip, and two new triangles are created,
we make the new triangles daughters of both of the lost triangles (even though each lost trian-
gle contains only a part of each new one). In this scheme a triangle has two or three daughters
at most, so we can easily reserve space for the pointers explicitly (i.e., no expandable linked
lists needed).

With this structure, it is very fast to locate a point within the existing triangulation: Start
at the root triangle, and recursively pick whichever daughter contains the point. When you
reach a terminal node in the tree, you will have found a triangle in the current triangulation
that contains the point. We thus need a structure for a “triangle element” or Triel:

struct Triel {delaunay.h
Structure for an element in a descendancy tree of triangles, each having at most three daughters.

Point<2> *pts; Pointer to the array of the points.
Int p[3]; The triangle’s three vertices, always in CCW order.
Int d[3]; Pointers for up to three daughters.
Int stat; Nonzero if this element is “live.”
void setme(Int a, Int b, Int c, Point<2> *ptss) {

Set the data in a Triel.
pts = ptss;
p[0] = a; p[1] = b; p[2] = c;
d[0] = d[1] = d[2] = -1; The values �1 mean no daughters.
stat = 1; Create as “live.”

}
Int contains(Point<2> point) {

Return 1 if point is in the triangle, 0 if on boundary, �1 if outside. (CCW triangle is
assumed.)
Doub d;
Int i,j,ztest = 0;
for (i=0; i<3; i++) {

j = (i+1) %3;
d = (pts[p[j]].x[0]-pts[p[i]].x[0])*(point.x[1]-pts[p[i]].x[1]) -

(pts[p[j]].x[1]-pts[p[i]].x[1])*(point.x[0]-pts[p[i]].x[0]);
if (d < 0.0) return -1;
if (d == 0.0) ztest = 1;

}
return (ztest? 0 : 1);

}
};

We create an big enough array of Triels at the start, and use integers to point to array
elements. We’ve omitted any explicit constructor or assignment operators in Triel, since they
are not needed for our use here. Be sure to add them if you use Triel in any other way.

We will need a way to do two other fast lookups: (1) Given a point and opposite edge in
a triangle, find the fourth point in the quadrilateral, that is, the point (if any) on the other side
of the given edge. (2) Given three points, find the index of their triangle (if it exists) in an array
of Triel elements. Our strategy is to use hash memories (respectively called linehash and
trihash) for these two functions. In particular, whenever we create a triangle (always CCW)
with vertices A;B; C , we store an index pointing to each point under a specially constructed
key,

linehash.h.B/ � h.C // A (et cyc.) (21.6.3)

where the function h is a 64-bit hash function, and “et cyc.” means do the same thing for the
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other two cyclic permutations of A;B;C . The trick here is that, if we ever want to find the
point on the other side of edge BC , we just look for a key h.C / � h.B/ (“negative” of the
key in equation 21.6.3) in the hash table. The similar trick for storing and retrieving Triels
is that, when we create a Triel at location j in the storage array, we set

trihash.h.A/ ^ h.B/ ^ h.C // j (21.6.4)

where ^ is the XOR operation. Since this key is symmetric inA;B;C;we can find a triangle
knowing its vertices in any order.

Since we are computing hash keys “by hand,” we can signal the two hash memories to
use a null (therefore fast) hash of their own. That, and a utility for determining whether a point
is inside the circumcircle of three other points, are the following two code fragments:

Doub incircle(Point<2> d, Point<2> a, Point<2> b, Point<2> c) { delaunay.h
Return positive, zero, or negative value if point d is respectively inside, on, or outside the circle
through points a, b, and c.

Circle cc = circumcircle(a,b,c); Routine defined in �21.3.
Doub radd = SQR(d.x[0]-cc.center.x[0]) + SQR(d.x[1]-cc.center.x[1]);
return (SQR(cc.radius) - radd);

}

struct Nullhash {
Null hash function. Use a key (assumed to be already hashed) as its own hash.

Nullhash(Int nn) {}
inline Ullong fn(const void *key) const { return *((Ullong *)key); }

};

These are all the preliminaries we need before declaring the Delaunay structure.

struct Delaunay { delaunay.h
Structure for constructing a Delaunay triangulation from a given set of points.

Int npts,ntri,ntree,ntreemax,opt; Number of points, triangles, elements in the
Triel list, and maximum of same. Size
of the bounding box.

Doub delx,dely;
vector< Point<2> > pts;
vector<Triel> thelist; The list of Triel elements.
Hash<Ullong,Int,Nullhash> *linehash; Create the hash memories with null hash

function.Hash<Ullong,Int,Nullhash> *trihash;
Int *perm;
Delaunay(vector<Point<2> > &pvec, Int options = 0);
Construct the Delaunay triangulation from a vector of points. The variable options is used
by some applications.
Ranhash hashfn; The raw hash function.
Doub interpolate(const Point<2> &p, const vector<Doub> &fnvals,

Doub defaultval=0.0);
The next four functions are explained in detail below.
void insertapoint(Int r);
Int whichcontainspt(const Point<2> &p, Int strict = 0);
Int storetriangle(Int a, Int b, Int c);
void erasetriangle(Int a, Int b, Int c, Int d0, Int d1, Int d2);
static Uint jran; Random number counter.
static const Doub fuzz, bigscale;

};
const Doub Delaunay::fuzz = 1.0e-6; Adjust if you wish. See text.
const Doub Delaunay::bigscale = 1000.0; Adjust if you wish. See text.
Uint Delaunay::jran = 14921620;

The variable jran is used in conjunction with the hash function as a convenient random
number generator. The function interpolate() is for the application of interpolating a
function on an irregular mesh, to be discussed in �21.7. Everything else should become clear
as we proceed.

The action starts with the constructor. We compute a bounding box for the set of points,
construct and store the “huge” root triangle enclosing the points, create a random permuta-
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tion to be the order in which points are added, and then (for the real work) call the function
insertapoint() for each point in turn. After that there is just some cleanup housekeeping.

Delaunay::Delaunay(vector< Point<2> > &pvec, Int options) :delaunay.h
npts(pvec.size()), ntri(0), ntree(0), ntreemax(10*npts+1000),
opt(options), pts(npts+3), thelist(ntreemax) {

Construct Delaunay triangulation from a vector of points pvec. If bit 0 in options is nonzero,
hash memories used in the construction are deleted. (Some applications may want to use them
and will set options to 1.)

Int j;
Doub xl,xh,yl,yh;
linehash = new Hash<Ullong,Int,Nullhash>(6*npts+12,6*npts+12);
trihash = new Hash<Ullong,Int,Nullhash>(2*npts+6,2*npts+6);
perm = new Int[npts]; Permutation for randomizing point order.
xl = xh = pvec[0].x[0]; Copy points to local store and calculate their

bounding box.yl = yh = pvec[0].x[1];
for (j=0; j<npts; j++) {

pts[j] = pvec[j];
perm[j] = j;
if (pvec[j].x[0] < xl) xl = pvec[j].x[0];
if (pvec[j].x[0] > xh) xh = pvec[j].x[0];
if (pvec[j].x[1] < yl) yl = pvec[j].x[1];
if (pvec[j].x[1] > yh) yh = pvec[j].x[1];

}
delx = xh - xl; Store bounding box dimensions, then construct

the three fictitious points and store them.dely = yh - yl;
pts[npts] = Point<2>(0.5*(xl + xh), yh + bigscale*dely);
pts[npts+1] = Point<2>(xl - 0.5*bigscale*delx,yl - 0.5*bigscale*dely);
pts[npts+2] = Point<2>(xh + 0.5*bigscale*delx,yl - 0.5*bigscale*dely);
storetriangle(npts,npts+1,npts+2);
Create a random permutation:
for (j=npts; j>0; j--) SWAP(perm[j-1],perm[hashfn.int64(jran++) % j]);
for (j=0; j<npts; j++) insertapoint(perm[j]); All the action is here!
for (j=0; j<ntree; j++) { Delete the huge root triangle and all of its con-

necting edges.if (thelist[j].stat > 0) {
if (thelist[j].p[0] >= npts || thelist[j].p[1] >= npts ||
thelist[j].p[2] >= npts) {

thelist[j].stat = -1;
ntri--;

}
}

}
if (!(opt & 1)) { Clean up, unless option bit says not to.

delete [] perm;
delete trihash;
delete linehash;

}
}

The guts of the algorithm as previously described are in insertapoint(). We first
locate the triangle that contains the new point. (Failure here can mean only that the point lies
on an existing line, in which case we fuzz the point’s location, as we confessed above, and try
again.) We store three new triangles and delete the old one. Then, we locate and fix any illegal
edges, doing the recursion by a simple last-in-first-out stack of pending edges to check.

void Delaunay::insertapoint(Int r) {delaunay.h
Add the point with index r incrementally to the Delaunay triangulation.

Int i,j,k,l,s,tno,ntask,d0,d1,d2;
Ullong key;
Int tasks[50], taski[50], taskj[50]; Stacks (3 vertices) for legalizing edges.
for (j=0; j<3; j++) { Find triangle containing point. Fuzz if it

lies on an edge.tno = whichcontainspt(pts[r],1);
if (tno >= 0) break; The desired result: Point is OK.
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pts[r].x[0] += fuzz * delx * (hashfn.doub(jran++)-0.5);
pts[r].x[1] += fuzz * dely * (hashfn.doub(jran++)-0.5);

}
if (j == 3) throw("points degenerate even after fuzzing");
ntask = 0;
i = thelist[tno].p[0]; j = thelist[tno].p[1]; k = thelist[tno].p[2];
The following line is relevant only when the indicated bit in opt is set. This feature is used
by the convex hull application and causes any points already known to be interior to the
convex hull to be omitted from the triangulation, saving time (but giving in an incomplete
triangulation).
if (opt & 2 && i < npts && j < npts && k < npts) return;
d0 =storetriangle(r,i,j); Create three triangles and queue them

for legal edge tests.tasks[++ntask] = r; taski[ntask] = i; taskj[ntask] = j;
d1 = storetriangle(r,j,k);
tasks[++ntask] = r; taski[ntask] = j; taskj[ntask] = k;
d2 = storetriangle(r,k,i);
tasks[++ntask] = r; taski[ntask] = k; taskj[ntask] = i;
erasetriangle(i,j,k,d0,d1,d2); Erase the old triangle.
while (ntask) { Legalize edges recursively.

s=tasks[ntask]; i=taski[ntask]; j=taskj[ntask--];
key = hashfn.int64(j) - hashfn.int64(i); Look up fourth point.
if ( ! linehash->get(key,l) ) continue; Case of no triangle on other side.
if (incircle(pts[l],pts[j],pts[s],pts[i]) > 0.0){ Needs legalizing?

d0 = storetriangle(s,l,j); Create two new triangles
d1 = storetriangle(s,i,l);
erasetriangle(s,i,j,d0,d1,-1); and erase old ones.
erasetriangle(l,j,i,d0,d1,-1);
key = hashfn.int64(i)-hashfn.int64(j); Erase line in both directions.
linehash->erase(key);
key = 0 - key; Unsigned, hence binary minus.
linehash->erase(key);
Two new edges now need checking:
tasks[++ntask] = s; taski[ntask] = l; taskj[ntask] = j;
tasks[++ntask] = s; taski[ntask] = i; taskj[ntask] = l;

}
}

}

The only pieces left are the utility functions for finding the triangle that contains a point,
and for storing and erasing a triangle. When we “erase” a triangle, we actually only mark it
as inactive in the current triangulation, and we set its daughters in the descendancy tree, as
already discussed.

Int Delaunay::whichcontainspt(const Point<2> &p, Int strict) { delaunay.h
Given point p, return index in thelist of the triangle in the triangulation that contains it, or
return �1 for failure. If strict is nonzero, require strict containment, otherwise allow the point
to lie on an edge.

Int i,j,k=0;
while (thelist[k].stat <= 0) { Descend in tree until reach a “live” triangle.

for (i=0; i<3; i++) { Check up to three daughters.
if ((j = thelist[k].d[i]) < 0) continue; Daughter doesn’t exist.
if (strict) {

if (thelist[j].contains(p) > 0) break;
} else { Yes, descend on this branch.

if (thelist[j].contains(p) >= 0) break;
}

}
if (i == 3) return -1; No daughters contain the point.
k = j; Set new mother.

}
return k; Normal return.

}
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void Delaunay::erasetriangle(Int a, Int b, Int c, Int d0, Int d1, Int d2) {
Erase triangle abc in trihash and inactivate it in thelist after setting its daughters.

Ullong key;
Int j;
key = hashfn.int64(a) ^ hashfn.int64(b) ^ hashfn.int64(c);
if (trihash->get(key,j) == 0) throw("nonexistent triangle");
trihash->erase(key);
thelist[j].d[0] = d0; thelist[j].d[1] = d1; thelist[j].d[2] = d2;
thelist[j].stat = 0;
ntri--;

}

Int Delaunay::storetriangle(Int a, Int b, Int c) {
Store a triangle with vertices a, b, c in trihash. Store its points in linehash under keys to
opposite sides. Add it to thelist, returning its index there.

Ullong key;
thelist[ntree].setme(a,b,c,&pts[0]);
key = hashfn.int64(a) ^ hashfn.int64(b) ^ hashfn.int64(c);
trihash->set(key,ntree);
key = hashfn.int64(b)-hashfn.int64(c);
linehash->set(key,a);
key = hashfn.int64(c)-hashfn.int64(a);
linehash->set(key,b);
key = hashfn.int64(a)-hashfn.int64(b);
linehash->set(key,c);
if (++ntree == ntreemax) throw("thelist is sized too small");
ntri++;
return (ntree-1);

}

You might wonder how to get the answer out of our Delaunay structure. We
have not provided a function for this, because it so much depends on what you want
to do with the answer. The general idea, however, is that you just loop through
thelistŒj � for 0 
 j < nlist. Each element is a Triel. If its value of save is

 0, ignore it and go on. If it is 1, then the element represents a triangle in the final
Delaunay triangulation. There should be ntri of these elements in all. The element’s
array p[] has integers that point to the triangle’s three points in your vector of points.
Several routines in the next section mine the Delaunay structure for points, edges,
or triangles and can be used as template examples.

Figure 21.6.6 shows sample output for a Delaunay triangulation of 300 points.

CITED REFERENCES AND FURTHER READING:

Guibas, L.J., Knuth, D.E., and Sharir, M. 1992, “Randomized Incremental Construction of De-
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Lischinski, D. 1994, “Incremental Delaunay Triangulation,” in Graphics Gems IV, Heckbert, P.S.,
ed. (Cambridge, MA: Academic Press). [Shows use of linked data structure instead of our
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de Berg, M., van Kreveld, M., Overmars, M., and Schwarzkopf, O. 2000, Computational Geom-
etry: Algorithms and Applications, 2nd revised ed. (Berlin: Springer), Chapter 9.[2]

O’Rourke, J. 1998, Computational Geometry in C, 2nd ed. (Cambridge, UK: Cambridge Univer-
sity Press), �5.3.
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Figure 21.6.6. Delaunay triangulation of 300 points randomly chosen within a circle, as computed by the
routines in this section.

21.7 Applications of Delaunay Triangulation

Emerging from the thicket of detail that was needed to implement the Delaunay
triangulation, we are now ready to make use of it in several important applications.
In this section we assume that you have a vector of points (say, vecp), and that
you have invoked the code in �21.6 to construct a Delaunay structure. This usually
means writing just the one line of code,

Delaunay mygrid(vecp);

So, what next?

21.7.1 Two-Dimensional Interpolation on an Irregular Grid
This is probably the most-asked-for algorithm that was missing from the previ-

ous two editions of Numerical Recipes. The basic setup is very simple. You are given
a set of N points in the plane. You triangulate that set with a “good” triangulation,
that is, one favoring short lines and big angles — in other words, Delaunay. You
evaluate a function of interest at each of the points, and store the values in a vector
(in the same order as the vector of points, of course).

Now it is easy to interpolate the function at a new point p that lies within the
triangulation, that is, specifically, within the convex hull of your set of points. First,
locate which triangle the point falls in. This takes only O.logN/ operations if you
use the whichcontainspt() method of the Delaunay structure. Then, linearly
interpolate between the three function values at the three triangle vertices. The linear
interpolation is uniquely defined, because (imagining your function plotted in the
third dimension above the plane in which p lies) three points uniquely define a plane
in three dimensions .

Constructively, the linear interpolation is easily done using barycentric coordi-
nates as defined in equation (21.3.10), which in turn reduces to using the triangle
area formula (equation 21.3.1) three times. Appropriately normalized, each bary-
tropic coordinate value is exactly the weight of its corresponding vertex.
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These ideas are implemented in the following function:

Doub Delaunay::interpolate(const Point<2> &p,delaunay.h
const vector<Doub> &fnvals, Doub defaultval) {
Triangular grid interpolation of a function. Given an arbitrary point p and a vector of func-
tion values fnvals at the points that were used to construct the Delaunay structure, return
the linearly interpolated function value in the triangle in which p lies. If p lies outside of the
triangulation, instead return defaultval.

Int n,i,j,k;
Doub wgts[3];
Int ipts[3];
Doub sum, ans = 0.0;
n = whichcontainspt(p); Locate the point in the triangulation.
if (n < 0) return defaultval; Point outside of convex hull.
for (i=0; i<3; i++) ipts[i] = thelist[n].p[i];
for (i=0,j=1,k=2; i<3; i++,j++,k++) { Calculate the barycentric coordinates, pro-

portional to the weights.if (j == 3) j=0;
if (k == 3) k=0;
wgts[k]=(pts[ipts[j]].x[0]-pts[ipts[i]].x[0])*(p.x[1]-pts[ipts[i]].x[1])

- (pts[ipts[j]].x[1]-pts[ipts[i]].x[1])*(p.x[0]-pts[ipts[i]].x[0]);
}
sum = wgts[0] + wgts[1] + wgts[2]; Normalization of the weights.
if (sum == 0) throw("degenerate triangle");
for (i=0; i<3; i++) ans += wgts[i]*fnvals[ipts[i]]/sum; Linear interpolation.
return ans;

}

Keep in mind that you should not expect high accuracy from linear interpola-
tion. The interpolated function is piecewise linear, and continuous within the convex
hull, but it has discontinuous derivatives in the direction perpendicular to the trian-
gle’s edges. On a triangle edge, it interpolates between the two function values at
each end of the edge. You need a lot of triangles to get a reasonable representation
of any function with much detailed structure.

21.7.2 Voronoi Diagrams
Around 1907, the Ukrainian mathematician Georgy Fedoseevich Voronoi re-

visited a problem that had been previously discussed by Dirichlet as early as 1850:
Given N points, or sites, in the plane, each site p defines a region that is closer to p
than to any of the other N � 1 sites. That region is called p’s Voronoi region. What
are the properties of the Voronoi regions, and how can we construct them?

If you imagine that everyone in a city shops at the closest supermarket (“as the
crow flies”), then the Voronoi regions map out the districts served by each supermar-
ket. If you imagine that fires are simultaneously set at sites in a forest, and that they
spread circularly at a fixed speed, then the Voronoi regions are the areas burned by
each different fire.

Figure 21.7.1, an example of a Voronoi diagram, shows the Voronoi regions
around 40 sites chosen randomly in the plane. Yes, the boundaries of the Voronoi
regions are polygons, although possibly open and extending to infinity. It is obvious,
in fact, that the boundary of a site p’s Voronoi region must consist of line segments
each lying on the perpendicular bisector of the line connecting p to some other site,
say qi . That is because the perpendicular bisector is the locus of points equidistant
from p and qi . So the real questions are, for a given p, which are the qi ’s that
contribute boundary segments? and is there a fast way to compute their intersections
(the vertices of the Voronoi diagram)?
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Figure 21.7.1. Voronoi diagram for 40 random sites. Each site has a Voronoi region, the area closer to
it than to any other site. The boundaries of the Voronoi regions are straight-line segments that lie on the
perpendicular bisectors between pairs of sites.

Remarkably, these questions are completely answered by the Delaunay trian-
gulation of the Voronoi sites. (In fact, many texts start with the Voronoi diagram as
fundamental, and then consider Delaunay triangulation as an application. We find it
easier to go the other way.)

Some facts are

� Every edge in a site p’s Voronoi region boundary lies on the perpendicular
bisector of a Delaunay edge that connects to p.
� In fact, every Delaunay edge corresponds to exactly one Voronoi edge, and

vice versa.
� The vertices of the Voronoi diagram are exactly the circumcenters of the De-

launay triangles.
� The Voronoi diagram and the Delaunay triangulation are dual graphs (but

don’t worry if you don’t know what this means)

Figure 21.7.2 shows the key ideas in the proof of the first two facts above. We
already know that the boundary is made of some perpendicular bisector segments.
We need to show that (i) every one of a point’s Delaunay edges does contribute
a segment, and (ii) lines drawn from that point to any other sites don’t contribute
any segments.

Part (a) of the figure shows a piece of Delaunay triangulation around site O .
The perpendicular bisectors of OA and OC meet at the point X , which is therefore
the center of the circle containing A, O , and C . The issue is whether the Delaunay
edge OB can be “blocked” by the other two edges. Now, B must lie inside the cir-
cumcircle just mentioned; otherwise, the edge OB would have been an illegal edge
when the Delaunay triangulation was constructed. But this means that the perpen-
dicular bisector of OB , labeled UV , must “cut off the corner” at X . Thus it does
contribute a segment to the boundary.
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Figure 21.7.2. Key ideas in the proof that every Delaunay edge contributes exactly one Voronoi edge,
lying on its perpendicular bisector. (a) Delaunay requires B to lie inside the circle AOC , hence its
bisector must clip the corner inside X . (b) Delaunay requires any other site P to lie outside of the circle
AOB , hence its bisector can’t clip the corner insideX .
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Figure 21.7.3. The circumcenters of the Delaunay triangles around a point O are the vertices of O’s
Voronoi region (shown as shaded), because the perpendicular bisectors of the Delaunay edges meet at
these circumcenters. Notice that a Voronoi edge need not actually intersect the Delaunay edge with which
it is associated, as SR andOC .

Part (b) of the figure shows a Delaunay triangleOAB whose edgesOA andOB
are contributing perpendicular bisector segments to the Voronoi boundary around
O . Point P is some other site. Can it somehow worm its way in close enough to
contribute a segment of its own bisector, between the other two? Evidently not: We
know that the circumcircle of any Delaunay triangle contains no other sites. Since P
must lie outside the circumcircle, its bisector UV can’t cut off the corner at X .

The fact that the Voronoi vertices are the circumcenters of Delaunay triangles
is an immediate consequence of the previous discussion (see Figure 21.7.3). The
circumcenters are where the perpendicular bisectors of the edges meet. Since every
Delaunay edge contributes a segment, every such circumcenter must be a vertex.
Notice, however, that not every Delaunay triangle contains its own circumcenter (as
OCD in the figure), so that a segment on the boundary of a Voronoi region need not
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actually intersect the Delaunay edge with which it is associated (as RS and OC in
the figure).

We can count the number of edges and vertices in a Voronoi diagram with N
sites (n of which are on the convex hull) simply by knowing that its dual is the
Delaunay triangulation and using equation (21.6.1). The number of Voronoi edges
is thus L in that equation, while the number of Voronoi vertices is T . The number
of Voronoi regions is by definition N . The unbounded Voronoi regions are exactly
those whose points lie on the convex hull of the sites, so there are n of these. It turns
out (not immediately obviously) that the average number of edges in one Voronoi
region (averaged over all the sites) does not exceed six.

Turning to the implementing code, it is convenient to have a structure for hold-
ing Voronoi edges, and also their association with the site that they surround (as an
integer pointer to a list of sites).

struct Voredge { voronoi.h
Structure for an edge in a Voronoi diagram, containing its two endpoints and an integer pointer
to the site of which it is a boundary.

Point<2> p[2];
Int nearpt;
Voredge() {}
Voredge(Point<2> pa, Point<2> pb, Int np) : nearpt(np) {

p[0] = pa; p[1] = pb;
}

};

Now it is straightforward to define a Voronoi structure, as a derived class of
the Delaunay structure. The constructor creates a Delaunay triangulation of the
sites, and then loops over the sites. For each, it first finds any one triangle with
the site as a vertex, and then works its way around the site in a circle, navigating
counterclockwise from one triangle to the next by looking up their common edge
in the linehash hash memory. Each triangle’s circumcenter is a Voronoi vertex,
and a Voronoi edge is stored for each two consecutive circumcenters as the site is
circumnavigated.

struct Voronoi : Delaunay { voronoi.h
Structure for creating a Voronoi diagram, derived from the Delaunay structure.

Int nseg; Number of edges in the diagram.
VecInt trindx; Will index triangles.
vector<Voredge> segs; Will be array of all segments.
Voronoi(vector< Point<2> > pvec); Construct Voronoi diagram from array of points.

};

Voronoi::Voronoi(vector< Point<2> > pvec) :
Delaunay(pvec,1), nseg(0), trindx(npts), segs(6*npts+12) {

Constructor for Voronoi diagram of a vector of sites pvec. Bit ”1” sent to the Delaunay con-
structor tells it not to delete linehash.

Int i,j,k,p,jfirst;
Ullong key;
Triel tt;
Point<2> cc, ccp; Create a table so that, given a point num-

ber, we can find one triangle with it as
a vertex.

for (j=0; j<ntree; j++) {
if (thelist[j].stat <= 0) continue;
tt = thelist[j];
for (k=0; k<3; k++) trindx[tt.p[k]] = j;

} Now loop over the sites.
for (p=0; p<npts; p++) {
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tt = thelist[trindx[p]];
if (tt.p[0] == p) {i = tt.p[1]; j = tt.p[2];} Get the vertices into canon-

ical order.else if (tt.p[1] == p) {i = tt.p[2]; j = tt.p[0];}
else if (tt.p[2] == p) {i = tt.p[0]; j = tt.p[1];}
else throw("triangle should contain p");
jfirst = j; Save starting vertex and its circumcircle.
ccp = circumcircle(pts[p],pts[i],pts[j]).center;
while (1) { Go around CCW, find circumcenters and store segments.

key = hashfn.int64(i) - hashfn.int64(p);
if ( ! linehash->get(key,k) ) throw("Delaunay is incomplete");
cc = circumcircle(pts[p],pts[k],pts[i]).center;
segs[nseg++] = Voredge(ccp,cc,p);
if (k == jfirst) break; Circumnavigation completed. Normal way out.
ccp = cc;
j=i;
i=k;

}
}

}

The result of the Voronoi construct is available by looping through the segs
array from 0 to nseg-1. Each array element is a Voredge that stores the endpoints,
and also the site number with which it is associated. Note that each segment appears
twice in the list, with opposite sense, as it is associated in turn with the sites on its
two sides.

If you read our confession about dirty tricks in the previous section, you’ll want to keep
in mind that the “open” Voronoi polygons are actually closed by segments that lie at a dis-
tance of order bigscale times the size of the bounding box of the sites. Those segments are
included in segs but appear only once, since there is no site on their other side.

21.7.3 Other Applications

Nearest Neighbors, Again. A line segment that connects a point to its near-
est neighbor among a set of points will be an edge in the set’s Delaunay triangula-
tion. Informal proof: The nearest neighbor obviously must contribute a boundary
to the Voronoi diagram. Formal proof (using a theorem mentioned above): The cir-
cle whose diameter connects a point to its nearest neighbor can’t contain any other
points (they’d be closer than the nearest neighbor), so that diameter must be a De-
launay edge.

Since we can construct the Delaunay triangulation in O.N logN/ time, it fol-
lows that we can use it to find all nearest neighbors of a set ofN points inO.N logN/
time. The process is as follows: (i) Construct Delaunay. (ii) For each point, circum-
navigate it. (We saw how to do this in our implementation of Voronoi, above.) (iii)
Pick the shortest of the edges with the point at one end.

Convex Hull. Sometimes you may need to know the convex hull of a set of
points in the plane for some other application. Although it might seem wasteful to
construct the whole Delaunay triangulation just to get the hull, doing so is not too
bad a method. Better efficiency can be achieved by ignoring, during the triangulation,
points that are found to be already inside interior triangles. To sort the edges into the
order of a CCW polygon, we create a nextpt table of edge destinations as we go,
then chain through it once to output the vertices of the convex hull in proper order.
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struct Convexhull : Delaunay { delaunay.h
Structure for constructing the convex hull of a set of points in the plane. After construction,
nhull is the number of points in the hull, and hullpoints[0..nhull-1] are integers pointing
to points in the vector pvec that are in the hull, in CCW order.

Int nhull;
Int *hullpts;
Convexhull(vector< Point<2> > pvec); Construct from a vector of points.

};

Convexhull::Convexhull(vector< Point<2> > pvec) : Delaunay(pvec,2), nhull(0) {
Constructor for convex hull of a vector of points pvec. Bit ”2” sent to the Delaunay constructor
tells it to ignore interior points when it can, for extra speed.

Int i,j,k,pstart;
vector<Int> nextpt(npts);
for (j=0; j<ntree; j++) { Triangles with statD �1 may contain

hull segments.if (thelist[j].stat != -1) continue;
for (i=0,k=1; i<3; i++,k++) { Need two valid points to qualify.

if (k == 3) k=0;
if (thelist[j].p[i] < npts && thelist[j].p[k] < npts) break;

}
if (i==3) continue; Case where failed to qualify.
++nhull; Yes! Put its other end in the lookup table, and save

its value in case it’s
the last one we find.

nextpt[(pstart = thelist[j].p[k])] = thelist[j].p[i];
}
if (nhull == 0) throw("no hull segments found");
hullpts = new Int[nhull]; Now we know how many, can allocate.
j=0; One chain through the lookup table, start-

ing with pstart, gives the answer.i = hullpts[j++] = pstart;
while ((i=nextpt[i]) != pstart) hullpts[j++] = i;

}

Largest Empty Circle Problem. The largest empty circle whose center lies
(strictly) inside the convex hull of a set of points in the plane has its center on a
Voronoi vertex. So, you can find it by looping through the Voronoi vertices, calculat-
ing the radius of the largest circle centered on each one, and taking the maximum of
these. Even better, loop through the Delaunay triangles, calculate the circumcenter
of each, and pick the one with the largest circumradius (since Delaunay circumcen-
ters are exactly Voronoi vertices). Think of yourself as finding the best location for a
fast-food restaurant within the (convex) city limits, one that best avoids all the other
fast-food restaurants.

Avoiding Obstacles. If you want to navigate around the plane staying as far as
possible from a set of points, your path will be along the edges of a Voronoi diagram.
Think of yourself as a fighter pilot avoiding enemy radars.

Minimum Spanning Tree. The minimum spanning tree (sometimes Euclidean
minimum spanning tree) is the set of line segments of shortest total length that con-
nect N points (see, e.g., Figure 21.7.4). Think of it as the highway map of the
cheapest highway system that lets you visit all N cities. It is topologically a tree
(i.e., has no loops) because if it did have a loop, you could save highway money by
deleting one of the loop’s segments.

The important theorem is: The minimum spanning tree is a subset of the De-
launay edges. You might think this isn’t very useful, since it doesn’t tell you which
subset. Fortunately, there is a fast algorithm, Kruskal’s algorithm, for doing the con-
struction. The basic idea is to sort all the Delaunay edges by length, and then add
them one at a time to the growing tree, in order from smallest to largest.

Your tree starts off growing in multiple disconnected components, but when
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Figure 21.7.4. Minimum spanning tree of 1001 points at random locations within a circle. The tree is
composed of 1000 segments that connect all the points with the shortest total length and is a subset of the
Delaunay triangulation of the same points.

you have added exactly N � 1 segments, it will be a single piece, and the answer.
There is only one catch: As you add segments, you must not add a segment if both
its ends are already in the same component (else it would form a loop). So, you have
to maintain an “equivalence class” relation for each vertex, making it equivalent
to all other vertices in its connected component. We already know how to do this
efficiently, as in �8.6’s routine eclass. In the code below, there is a similar logic of
sweeping up pointers to single “mother” representatives. Do this properly, and the
method is O.N logN/.

Kruskal’s algorithm is a so-called greedy algorithm, since it just takes the best
edge at each step willy nilly. It is rare for a greedy algorithm to yield the true global
optimum; but this is the happy case where it does.

struct Minspantree : Delaunay {delaunay.h
Structure for constructing the minimum spanning tree of a set of points in the plane. After
construction, nspan is the number of segments (always D npts�1), and minsega[0..nspan-1]
and minsegb[0..nspan-1] contain integers pointing to points in the vector pvec that are the
two ends of each segment.

Int nspan;
VecInt minsega, minsegb; Allocate arrays for the output.
Minspantree(vector< Point<2> > pvec);

};

Minspantree::Minspantree(vector< Point<2> > pvec) :
Delaunay(pvec,0), nspan(npts-1), minsega(nspan), minsegb(nspan) {

Constructor for the minimum spanning tree of a vector of points pvec. The Delaunay construc-
tor gives the triangulation. We need only find the correct subset of edges.

Int i,j,k,jj,kk,m,tmp,nline,n = 0;
Triel tt;
nline = ntri + npts -1; Number of edges in the triangulation.
VecInt sega(nline); Allocate working space for two ends of each edge,

edge length, and index on which we will sort.
Also the ”mother” tree for equivalence classes.

VecInt segb(nline);
VecDoub segd(nline);
VecInt mo(npts);
for (j=0; j<ntree; j++) { Find all edges in the triangulation, store them

and their lengths.if (thelist[j].stat == 0) continue;
tt = thelist[j];
for (i=0,k=1; i<3; i++,k++) {

if (k==3) k=0;
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if (tt.p[i] > tt.p[k]) continue; Ensure we get each edge only once.
if (tt.p[i] >= npts || tt.p[k] >= npts) continue; No edges connect-

ing to fictitious
points.

sega[n] = tt.p[i];
segb[n] = tt.p[k];
segd[n] = dist(pts[sega[n]],pts[segb[n]]);
n++;

}
}
Indexx idx(segd); Sort the edges by creating an index array.
for (j=0; j<npts; j++) mo[j] = j; Initialize equivalence relation tree.
n = -1;
for (i=0; i<nspan; i++) { Add exactly nspan segments.

for (;;) { Loop for the shortest valid segment n.
jj = j = idx.el(sega,++n);
kk = k = idx.el(segb,n);
while (mo[jj] != jj) jj = mo[jj]; Track each end to its highest ances-

tor.while (mo[kk] != kk) kk = mo[kk];
if (jj != kk) { The segment is valid only if it connects different

highest ancestors.minsega[i] = j;
minsegb[i] = k;
m = mo[jj] = kk; Now, equate the highest ancestors, and retrace

our steps pointing all nodes encountered to
that highest node, necessary for speed of the
algorithm.

jj = j;
while (mo[jj] != m) {

tmp = mo[jj];
mo[jj] = m;
jj = tmp;

}
kk = k;
while (mo[kk] != m) {

tmp = mo[kk];
mo[kk] = m;
kk = tmp;

}
break; A segment has been successfully added.

}
}

}
}
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21.8 Quadtrees and Octrees: Storing
Geometrical Objects

Different from a KD tree is another kind of box tree, usually called a quadtree
in two dimensions or a octree in three dimensions. Yes, we know that it ought to
be spelled “octtree,” not “octree,” but the latter usage has become standard. We’ll
refer to quadtrees and octrees generically as “QO trees” and thus avoid linguistic
controversy.
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Figure 21.8.1. In a quadtree, the initial square 1 is first subdivided into squares 2, 3, 4, and 5. At the next
level of subdivision, 2 is subdivided into 6, 7, 8, 9; 3 into 10, 11, 12, 13; and so forth.

QO trees start with a finite-sized box, usually square or cubical, rather than the
near-infinite box used in the KD tree. A QO tree then subdivides each box not in
one dimension at a time (as a KD tree) but rather in all dimensions. Thus, a square
is subdivided into four daughter squares, a cube into eight daughter cubes — quite a
brood. The coordinates of the subdivisions are taken to exactly bisect the mother box
in each dimension, so all the boxes at one level of the tree are congruent, differing
from the original box by a fixed power-of-two factor. Figure 21.8.1 illustrates this in
the case of two dimensions.

QO trees thus provide a kind of addressing scheme for two- or three-dimensional
space. Accordingly, they can be used to store and retrieve finite-sized geometrical
objects that fit into the boxes of the tree at one or another level, and to test for in-
tersections of such objects, for nearness relationships, and so on. The general idea
(although there can be variations on this) is to store each object in the smallest box
that completely contains it — or, in the case of a zero-sized object like a point, in the
appropriate box at the deepest level of tree that we care to implement. Then, when
doing a collision or nearness test, we traverse only those parts of the tree that are
relevant, much as we did in the applications of KD trees.

Although we will illustrate only the most elementary of applications, QO trees
are often at the heart of more complicated algorithms, for example [1-3],

� Hidden polygon removal in the visual plane (which projected polygons inter-
sect a given pixel in the visual field?)
� Fast gravitational or Coulomb N-body calculations (store fictitious objects on

various scales that sweep up the multipole moments of the collections of point
masses that they contain) [4,5,6]

� Mesh generation (choose a local mesh scale to match the scale in the QO tree
at which obstacles or boundaries are stored; the concept of a balanced QO tree
is often used)
� Image compression (store slowly varying parts of the image as objects high in

the tree, and prune unnecessary daughters).

A main weakness of QO trees follows just from their geometrical regularity. If
a finite-sized object being stored in a QO tree falls on the boundary between two
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1

2 3 4 5

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

22 23 24 25 ... 82 83 84 85...... ...

Figure 21.8.2. Quadtree shown in tree form. Because of its regularity, a quadtree’s relationships can be
described numerically. For example, the mother of box n is the integer part of n=4. The left daughter of
box n is 4n� 2.

boxes of about its size, then it can’t be stored in either of them. Instead, it gets stored
in the larger — sometimes very much larger — box that first completely contains
it. If N “small” objects are stored, then the number that fall on boundaries of the
highest-level boxes scales in two dimensions as N 1=2, or in three dimensions as
N 2=3. These objects will thus end up stored in just a few boxes at the top of the tree,
and they will participate in almost all operations that check for collisions or nearness.
Thus, QO trees can usually effect a time savings that turns a naive algorithm scaling
as N into one that scales as N 1=2 (in the two-dimensional case); but only rarely, or
with specialized methods, can they get to that Nirvana of logN or constant scaling.
Still, the square- (or, in three dimensions, cube-) root of a large number can be a
large factor, and well worth saving in time. So QO trees are good to know about.

That same geometrical regularity of QO trees allows them to be implemented,
at least optionally, as an efficient hash structure where most boxes in the tree, if they
are empty, require no storage space. We will give such an implementation here, both
for its intrinsic advantages and because it is fairly concise to code, using the Hash
and Mhash classes from �7.6.

The key observations follow from Figure 21.8.2, which shows a QO tree laid out
in tree form. The boxes are numbered as in Figure 21.8.1, starting with box 1 at the
root of the tree. With this numbering scheme, there exist simple numerical relations
between the mother and daughter boxes. This enables one to navigate the tree —
up, down, and sideways — without the use of any stored pointers. In particular, if
k � 1 is a box’s number, the following relationships hold in D (for us, two or three)
dimensions:

mother .k/ D b.k C 2D � 2/=2Dc

leftmost daughter .k/ D 2Dk � 2D C 2

rightmost daughter .k/ D 2Dk C 1

total boxes through level p D Œ.2D/p � 1�=.2D � 1/

(21.8.1)

Note that the integer divide by 2D implied by the b c notation can be implemented
simply as a right shift by D bits. You should check the formulas in (21.8.1) against
Figure 21.8.2 to be sure that you understand how they work. The “levels” of the tree
are numbered starting with p D 1 for (only) box 1. Notice that the mother of box 1
computes to 0, indicating that it has no mother; this is convenient for testing when to
exit loops over ancestry.

Before we get to implementation details for the implementing class Qotree,
we need to discuss the prerequisites for a class of geometrical objects to be stored
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in the tree. Qotree will be templated by a type parameter elT representing those
objects. To store an object myel of type elT, you must be sure to provide a method
myel.isinbox() whose argument is a Box, and which returns 1 if myel is in the
Box, or 0 otherwise. Similarly, to erase an object, you need to provide an == opera-
tor, to decide (by comparison) which is the object to be erased. Those two methods
are all that Qotree needs for itself. However, many applications of Qotree (includ-
ing some that we illustrate later in this section) need either or both of the methods
myel.contains() and myel.collides(), the first returning whether myel con-
tains a given point, the second returning whether myel collides with another ele-
ment of type elT.

Here is a simple example of a class, representing a circle (when DIM is 2) or
sphere (when DIM is 3), that has these methods and can thus be stored and processed
with a Qotree:

template<Int DIM> struct Sphcirc {sphcirc.h
Circle (DIM=2) or sphere (DIM=3) object, with methods suitable for use with Qotree.

Point<DIM> center;
Doub radius;
Sphcirc() {} Default constructor is needed to make arrays.
Sphcirc(const Point<DIM> &mycenter, Doub myradius) Construct by explicit center

and radius.: center(mycenter), radius(myradius) {}
bool operator== (const Sphcirc &s) const { Test if identical.

return (radius == s.radius && center == s.center);
}
Int isinbox(const Box<DIM> &box) { Is the circle/sphere inside a box?

for (Int i=0; i<DIM; i++) {
if ((center.x[i] - radius < box.lo.x[i]) ||

(center.x[i] + radius > box.hi.x[i])) return 0;
}
return 1;

}
Int contains(const Point<DIM> &point) { Is a given point inside the circle/sphere?

if (dist(point,center) > radius) return 0;
else return 1;

}
Int collides(const Sphcirc<DIM> &circ) { Does it collide with another circle/sphere?

if (dist(circ.center,center) > circ.radius+radius) return 0;
else return 1;

}
};

21.8.1 A Hashed QO Tree Implementation
We will implement the QO tree using two hash memories. First, there is an Mhash

multimap memory (called elhash) whose keys are box numbers and whose stored elements
are the geometrical objects that may be stored in the QO tree, with possibly multiple objects in
a single box. Second, there is a single-valued Hash memory (called pophash) that associates
an integer with every box that either (i) contains one or more elements (is “populated”), or (ii)
is an ancestor to a box that is populated. In that integer, bit 0 (least significant bit) is used to
indicate whether the box is populated, while bits 1 : : : 2D (that is, 1 : : : 4 or 1 : : : 8) are used
to indicate which (if any) daughters are themselves either populated or are an ancestor to a
populated box. In other words, pophash, combined with the relationships in equation (21.8.1),
substitutes for the entire structure of doubly linked pointers that might more conventionally
implement the tree.

The maximum number of levels pmax that we can represent is limited only by the largest
value that can be represented by the integer type that stores box numbers k. Using 32-bit
signed integers, 16 levels are possible in two dimensions, since .416 � 1/=3 < 231 � 1
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(cf. equation 21.8.1). In three dimensions, 11 levels can be represented, since .811 � 1/=7 <
231 � 1. Often there is no need for this much resolution (� 109 boxes), so we will provide
for setting a smaller value of pmax, a good idea since the time to traverse one branch of the
tree from root to leaf (a frequently occurring “atom” in other procedures) scales linearly with
pmax.

template<class elT, Int DIM> struct Qotree { qotree.h
Quadtree (DIM=2) or octree (DIM=3) object to store geometrical objects of type elT.

static const Int PMAX = 32/DIM; Roughly how many levels fit in 32 bits.
static const Int QO = (1 << DIM); I.e., 4 for quad-, 8 for oct-.
static const Int QL = (QO - 2); Offset constant to leftmost daughter.
Int maxd;
Doub blo[DIM];
Doub bscale[DIM];
Mhash<Int,elT,Hashfn1> elhash; Contains stored elements hashed by box #.
Hash<Int,Int,Hashfn1> pophash; Contains node population info.
Qotree(Int nh, Int nv, Int maxdep); The constructor. See below.
void setouterbox(Point<DIM> lo, Point<DIM> hi); Set scale and position.
Box<DIM> qobox(Int k); Return the box whose number is k.
Int qowhichbox(elT tobj); Return smallest box containing tobj.
Int qostore(elT tobj); Store an elT object in the Qotree.
Int qoerase(elT tobj); Erase an elT object in the Qotree.
Int qoget(Int k, elT *list, Int nmax); Retrieve all objects in box k.
Int qodump(Int *k, elT *list, Int nmax); Retrieve all objects.
Int qocontainspt(Point<DIM> pt, elT *list, Int nmax); See below.
Int qocollides(elT qt, elT *list, Int nmax); See below.

};

template<class elT, Int DIM>
Qotree<elT,DIM>::Qotree(Int nh, Int nv, Int maxdep) :

elhash(nh, nv), maxd(maxdep), pophash(maxd*nh, maxd*nv) {
Constructor for a quad- (DIM=2) or oc- (DIM=3) tree that can store a max of nv elements of
type elT, using hash tables of length nh (typically 	 nv). maxdep is the number of levels to be
represented.

if (maxd > PMAX) throw("maxdep too large in Qotree");
setouterbox(Point<DIM>(0.0,0.0,0.0),Point<DIM>(1.0,1.0,1.0)); Default scale.

}

template<class elT, Int DIM>
void Qotree<elT,DIM>::setouterbox(Point<DIM> lo, Point<DIM> hi) {
Sets the scale of Qotree to an outer box defined by points lo and hi. Must be called before
any elements are stored in the tree.

for (Int j=0; j<DIM; j++) {
blo[j] = lo.x[j];
bscale[j] = hi.x[j] - lo.x[j];

}
}

You will normally call setouterbox() immediately after invoking the qotree con-
structor to create a QO tree. Otherwise, you get the default box with a corner at the origin and
unit size in each dimension.

Right away, we need two utility routines. The first takes a box’s number (e.g., as in
Figure 21.8.1) and returns the actual box (as a Box<DIM>). The second takes an object of the
type to be stored in the tree (elT) and returns the number of the smallest box that contains it.
It does this by starting at the top of the tree, trying each possible daughter, and moving deeper
into the tree only when a containment is found.

template<class elT, Int DIM> qotree.h
Box<DIM> Qotree<elT,DIM>::qobox(Int k) {
Returns the box indexed by k.

Int j, kb;
Point<DIM> plo, phi;
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Doub offset[DIM];
Doub del = 1.0;
for (j=0; j<DIM; j++) offset[j] = 0.0;
while (k > 1) { Up through ancestors until get to root.

kb = (k + QL) % QO; Which daughter is k? Add its offset.
for (j=0; j<DIM; j++) { if (kb & (1 << j)) offset[j] += del; }
k = (k + QL) >> DIM; Replace k by its mother,
del *= 2.0; where offsets will be twice as big.

}
for (j=0; j<DIM; j++) { At the end, scale the offsets by the final del to

make them metrically correct.plo.x[j] = blo[j] + bscale[j]*offset[j]/del;
phi.x[j] = blo[j] + bscale[j]*(offset[j]+1.0)/del;

}
return Box<DIM>(plo,phi); Construct the box and return it.

}

template<class elT, Int DIM>
Int Qotree<elT,DIM>::qowhichbox(elT tobj) {
Return the box number of the smallest box that can contain an element tobj, without regard
to whether tobj is already stored in the tree.

Int p,k,kl,kr,ks=1; Answer is box 1 unless a smaller box found.
for (p=2; p<=maxd; p++) { Go down through the levels.

kl = QO * ks - QL; Leftmost daughter.
kr = kl + QO -1; Rightmost daughter.
for (k=kl; k<=kr; k++) { Do any daughters contain tobj?

if (tobj.isinbox(qobox(k))) { ks = k; break; }
}
if (k > kr) break; No. Therefore, discontinue descent here.

}
return ks;

}

Now we are ready to store elements into the tree, or to erase elements previously stored.
With qowhichbox(), above, and the methods that belong to the Mhash, it is trivial to do
the actual store or erase. Trickier to code is to create or erase the trail of “breadcrumbs” in
pophash that connect the box to its ancestors. When we erase, we must be sure not to cut off
the trail to any remaining elements in the same box, or to elements in descendant boxes.

template<class elT, Int DIM>qotree.h
Int Qotree<elT,DIM>::qostore(elT tobj){
Store the element tobj in the Qotree, and return the box number into which it was stored.

Int k,ks,kks,km;
ks = kks = qowhichbox(tobj);
elhash.store(ks, tobj); Store the element in elhash
pophash[ks] |= 1; and mark its box as populated.
while (ks > 1){ Now leave trail of breadcrumbs to the root mother.

km = (ks + QL) >> DIM; Mother of ks.
k = ks - (QO*km - QL); Which daughter of km is ks.
ks = km; Now set the daughter bit in the mother.
pophash[ks] |= (1 << (k+1));

}
return kks;

}

template<class elT, Int DIM>
Int Qotree<elT,DIM>::qoerase(elT tobj) {
Erase the element tobj, returning the box number into which it was stored or 0 if the element
was not found in the Qotree. Note logic very similar to qostore.

Int k,ks,kks,km;
Int *ppop;
ks = kks = qowhichbox(tobj); Find the box.
if (elhash.erase(ks, tobj) == 0) return 0; It ain’t there!
if (elhash.count(ks)) return kks; Sisters still in same box, so we are done.
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ppop = &pophash[ks]; Must now erase any unneeded breadcrumbs.
*ppop &= ~((Uint)1); Unmark the pop bit.
while (ks > 1) { Up through the ancestors...

if (*ppop) break; Box is populated or has daughters, so done.
pophash.erase(ks); Erase unneeded (zero) pophash entry.
km = (ks + QL) >> DIM; Mother of ks.
k = ks - (QO*km - QL); Which daughter of km is ks.
ks = km;
ppop = &pophash[ks];
*ppop &= ~((Uint)(1 << (k+1))); Unset the daughter bit in the mother.

}
return kks;

}

Finally, we need methods to retrieve elements previously stored, either those in a given
box (by number), or else all the elements in the tree. In the former case, the Mhash does all
the work. In the latter case, however, we must provide the machinery for a recursive search of
the tree, since at any stage we may encounter a box with multiple populated daughters. Notice
that the calling routine is responsible for supplying storage (as an array list[]) for the result
and declaring the maximum number nmax of elements that it is prepared to accept.

template<class elT, Int DIM> qotree.h
Int Qotree<elT,DIM>::qoget(Int k, elT *list, Int nmax) {
Retrieve all (or up to nmax if it is smaller) elements that are stored in box k of the Qotree. The
elements are copied into list[0..nlist-1] and the value nlist (� nmax) is returned.

Int ks, pop, nlist;
ks = k;
nlist = 0;
pophash.get(ks,pop);
if ((pop & 1) && elhash.getinit(ks)) {

while (nlist < nmax && elhash.getnext(list[nlist])) {nlist++;}
}
return nlist;

}

template<class elT, Int DIM>
Int Qotree<elT,DIM>::qodump(Int *klist, elT *list, Int nmax) {
Retrieve all (or up to nmax if it is smaller) elements that are stored anywhere in the Qotree, along
with their corresponding box numbers. The elements are copied into list[0..nlist-1] and
the value nlist (� nmax) is returned. The box numbers are copied into klist[0..nlist-1].

Int nlist, ntask, ks, pop, k;
Int tasklist[200]; Stack of pending box numbers as we recur-

sively traverse the tree.nlist = 0;
ntask = 1;
tasklist[1] = 1;
while (ntask) { As long as tasks remain...

ks = tasklist[ntask--];
if (pophash.get(ks,pop) == 0) continue; Box empty and no daughters.
if ((pop & 1) && elhash.getinit(ks)) { The box is populated, so we output

its contents.while (nlist < nmax && elhash.getnext(list[nlist])) {
klist[nlist] = ks;
nlist++;

}
}
if (nlist == nmax) break; No more room for output!
k = QO*ks - QL; Leftmost daughter.
while (pop >>= 1) { Loop over the daughter bits in pop.

if (pop & 1) tasklist[++ntask] = k; Daughter exists. Add to task list.
k++; Next daughter.

}
}
return nlist;

}
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The additional functions declared in Qotree pertain to applications, as we now discuss.

21.8.2 QO Tree Elementary Applications
Two important building blocks for applications of QO trees are, first, a routine

that returns a list of all stored elT elements that intersect (i.e., contain) a specified
point; and, second, a routine that returns a similar list of all stored elT elements that
intersect (i.e., collide with) a specified elT element.

An element that intersects a point will evidently be stored in a box that is an
ancestor to the box that the point is in, or else in the same box as the point. It takes
just one pass down through the levels of the tree to find all such elements.

template<class elT, Int DIM>qotree.h
Int Qotree<elT,DIM>::qocontainspt(Point<DIM>pt, elT *list, Int nmax) {
Retrieve all (or up to nmax if it is smaller) elements in Qotree that contain the point pt. The
elements are copied into list[0..nlist-1] and the value nlist (� nmax) is returned.

Int j,k,ks,pop,nlist;
Doub bblo[DIM], bbscale[DIM];
for (j=0; j<DIM; j++) { bblo[j] = blo[j]; bbscale[j] = bscale[j]; }
nlist = 0;
ks = 1; Start at the top of the tree.
while (pophash.get(ks,pop)) { Descend as long as something is there.

if (pop & 1) { The box is populated, so we check its con-
tained elements,elhash.getinit(ks);

while (nlist < nmax && elhash.getnext(list[nlist])) {
if (list[nlist].contains(pt)) {nlist++;} returning any that contain

pt.}
}
if ((pop >>= 1) == 0) break; The box has no daughters, so we are done.
for (k=0, j=0; j<DIM; j++) { Compute k, the single daughter containing

pt.bbscale[j] *= 0.5;
if (pt.x[j] > bblo[j] + bbscale[j]) {

k += (1 << j);
bblo[j] += bbscale[j];

}
}
if (((pop >> k) & 1) == 0) break; No such daughter exists in the tree.
ks = QO * ks - QL + k; Daughter exists and is the next node to check.

}
return nlist;

}

When an element A intersects another element B , either A and B are in the
same box, or else A is in an ancestor box to B , or else B is in an ancestor box to A.
Equivalently, for a fixed A, we can find all intersecting B’s by searching A’s box, its
ancestors, and its descendants. The latter search requires a task list stack, as we have
seen before (e.g., in qodump).

template<class elT, Int DIM>qotree.h
Int Qotree<elT,DIM>::qocollides(elT qt, elT *list, Int nmax) {
Retrieve all (or up to nmax if it is smaller) elements in Qotree that collide with an element qt
(which needn’t be in the tree itself). The elements are copied into list[0..nlist-1] and the
value nlist (� nmax) is returned.

Int k,ks,kks,pop,nlist,ntask;
Int tasklist[200]; Stack of pending box numbers.
nlist = 0;
kks = ks = qowhichbox(qt); kks saves the starting box.
ntask = 0;
while (ks > 0) { Put the starting box and all its ancestors on the

task list.
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tasklist[++ntask] = ks;
ks = (ks + QL) >> DIM; Move to mother.

}
while (ntask) {

ks = tasklist[ntask--];
if (pophash.get(ks,pop) == 0) continue; Box empty and no daughters.
if (pop & 1) { The box is populated, so we check its contained

elements,elhash.getinit(ks);
while (nlist < nmax && elhash.getnext(list[nlist])) {

if (list[nlist].collides(qt)) {nlist++;} returning any that col-
lide with qt.}

}
if (ks >= kks) { Recurse only for descendants, not ancestors!

k = QO*ks - QL; Leftmost daughter.
while (pop >>= 1) {

if (pop & 1) Daughter exists. Add to task list.
tasklist[++ntask] = k;

k++; Next daughter.
}

}
}
return nlist;

}

As an example of a simple application of a QO tree, let’s replicate the func-
tionality of KDtree::locatenear (�21.2) with a routine that finds all stored points
within a specified radius r of a test point. Using the class Sphcirc, points are repre-
sented as circles/spheres of zero radius, the test point as a circle/sphere of radius r ,
and we use qocollides to find the collisions.

We implement this application as a structure, Nearpoints, whose construc-
tor creates the QO tree out of a vector of points, and whose member function
locatenear can then be called to find all stored points within any specified radius
of any specified point.

template <int DIM> struct Nearpoints { qotree.h
Object for constructing a QO tree containing a set of points, and for repeatedly querying which
stored points are within a specified radius of a specified new point.

Int npts;
Qotree<Sphcirc<DIM>,DIM> thetree;
Sphcirc<DIM> *sphlist;
Nearpoints(const vector< Point<DIM> > &pvec)

: npts(pvec.size()), thetree(npts,npts,32/DIM) {
Constructor. Creates the QO tree from a vector of points pvec.
Int j,k;
sphlist = new Sphcirc<DIM>[npts];
Point<DIM> lo = pvec[0], hi = pvec[0]; Find bounding box for the points.
for (j=1; j<npts; j++) for (k=0; k<DIM; k++) {

if (pvec[j].x[k] < lo.x[k]) lo.x[k] = pvec[j].x[k];
if (pvec[j].x[k] > hi.x[k]) hi.x[k] = pvec[j].x[k];

}
for (k=0; k<DIM; k++) { Expand it by 10% so that all points

are well interior.lo.x[k] -= 0.1*(hi.x[k]-lo.x[k]);
hi.x[k] += 0.1*(hi.x[k]-lo.x[k]);

}
thetree.setouterbox(lo,hi); Set the tree’s outer box and store all the points.
for (j=0; j<npts; j++) thetree.qostore(Sphcirc<DIM>(pvec[j],0.0));

}
~Nearpoints() { delete [] sphlist; }
Int locatenear(Point<DIM> pt, Doub r, Point<DIM> *list, Int nmax) {
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Once the tree is constructed, this function can be called repeatedly with varying points pt
and radii r. It returns n, the number of stored points within radius r of pt (but no larger
than nmax), and copies those points into list[0..n-1].

Int j,n;
n = thetree.qocollides(Sphcirc<DIM>(pt,r),sphlist,nmax);
for (j=0; j<n; j++) list[j] = sphlist[j].center;
return n;

}
};

In practice, the routine above is rather slower than KDtree::locatenear for
this application, because there is a lot of overhead involved in copying Point and
Sphcirc elements around, and in computing Boxes as we drill down the tree. By
contrast, KDtree is lean and mean, since it only stores points and, in our implemen-
tation, copies them internally to a fast store of coordinates.

Unlike the KD tree, however, the technique illustrated here can be generalized
to much more complicated situations. For example, instead of being simple points,
the stored objects could be broadcast reception areas for FM radio stations on a
given frequency, and we might want to know where collisions occur with proposed
new stations. The collides() function between two broadcast areas might involve
a lengthy calculation taking into account their powers, the surrounding detailed to-
pography, and so on. In such a case, the overhead of the QO tree might well be
negligible as we seek to minimize the number of calls to collides().

As a second example of a simple application, consider a square Petri dish on
which spores land, in random positions, one at a time. Each such spore quickly
grows into a circular colony that just touches the nearest existing colony (or the edge
of the dish), and then stops. (Don’t ask us why. This is only an example.) What does
the dish look like after N spores have landed?

Rather than give the code in detail, a simple description should suffice: The
objects stored in the QO tree are circles. Looping over the number of spores, we
pick a random location for each in turn. If the QO tree method qocontainspt()
indicates that the location lies within an already-stored colony, go on to the next
spore. Otherwise, start with a small trial radius and increase it (by doubling, e.g.)
until qotreecollides() first indicates collisions. Now adjust the trial radius to be
the minimum of distances to the colliding elements, add that colony to the tree, and
go on to the next spore.

Figure 21.8.3 shows an example of the resulting configuration, after 1000
colonies have grown. (Another 3592 spores landed inside existing colonies and
died immediately.)
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Figure 21.8.3. Spores land randomly on a square (!) Petri dish, and grow to colonies that barely touch
the nearest pre-existing colony, or the edge of the dish. A QO tree can be used to keep track of collisions.
Here, 1000 colonies have grown to their maximum size.
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Less-Numerical
Algorithms

CHAPTER 22

22.0 Introduction
You can stop reading now. You are done with Numerical Recipes, as such. This

final chapter is an idiosyncratic set of “less-numerical recipes” that, for one reason
or another, we have decided to include between the covers of an otherwise more-
numerically oriented book. Authors of computer science texts, we’ve noticed, like
to throw in a token numerical subject (usually quite a dull one — quadrature, for
example). We find that we are not free of the reverse tendency.

Our selection of material is not completely arbitrary. In �9.0 we promised to
provide a simple plotting routine. Another promised topic, Gray codes, was already
used in the construction of quasi-random sequences (�7.8) and here needs only some
additional explication. Two other topics, on diagnosing a computer’s floating-point
parameters, and on arbitrary precision arithmetic, give additional insight into the
machinery behind the casual assumption that computers are useful for doing things
with real numbers (as opposed to integers or characters). The latter of these topics
also shows a very different use for Chapter 12’s fast Fourier transform.

The three other topics (checksums, Huffman, and arithmetic coding) involve
different aspects of data coding, compression, and validation. The material here
is intended to be somewhat less abstract, and somewhat more practical, than the
discussion of coding in �16.2, where coding was used to illustrate statistical aspects
of state estimation. If you handle a large amount of data (numerical data, even),
then a passing familiarity with these subjects might at some point come in handy. In
�13.6, for example, we already encountered a good use for Huffman coding.

But again, you don’t have to read this chapter. (And you should learn about
quadrature from Chapters 4 and 17, not from a computer science textbook!)

22.1 Plotting Simple Graphs
Yes, we all have our favorite plotting or graphics packages, and our favorite

ways of generating plots from within C++ programs. But wait: Are your C++ pro-

1160
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Figure 22.1.1. Simple plot generated using the objects PSpage and PSplot, which are wrappers for
generating PostScript.

grams generating long text files of numbers, just so that you can read those num-
bers into a separate plotting or graphics package? If so, you might benefit from
this section.

We find it useful to have on hand a couple of short C++ objects, implemented
in simple source code, that generate simple plots. (By “simple,” we mean “like most
of the figures in this book.”) We are then able to make plots from anywhere in our
programs, whether as an aid in debugging or as final output. Equally important, we
can make changes to the plotting source code at will, adding features or modifying
the look of the plot.

One way of accomplishing these goals is by means of a C++ “wrapper” that does
no more, nor less, than to write out a valid PostScript [1] file, which can be viewed or
printed using a PostScript viewer such as the freely available Ghostscript/GSview [2].
In fact, the viewer can readily be invoked by a method within the wrapper object, so
that the plot simply pops up in its own window on your screen.

An example will make this clearer. Figure 22.1.1 shows a sample plot that has
a couple of x; y scaled boxes, some lines and points of varying types, and some text
labels. Here is the code that generates the figure:

void psplot_example() { psplotexample.h
Routine for creating Figure 22.1.1.

VecDoub x1(500),x2(500),y1(500),y2(500),y3(500),y4(500);
for (Int i=0;i<500;i++) { Generate some data.
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x1[i] = 5.*i/499.;
y1[i] = exp(-0.5*x1[i]);
y2[i] = exp(-0.5*SQR(x1[i]));
y3[i] = exp(-0.5*sqrt(5.-x1[i]));
x2[i] = cos(0.062957*i);
y4[i] = sin(0.088141*i);

}

PSpage pg("d:\\nr3\\newchap20\\myplot.ps"); Instantiate a page.
PSplot plot1(pg,100.,500.,100.,500.); Instantiate a plot on the page. Po-

sition is specified in pt (72 pt =
1 in, or 28 pt = 1 cm).

plot1.setlimits(0.,5.,0.,1.);
plot1.frame();
plot1.autoscales();
plot1.xlabel("abscissa");
plot1.ylabel("ordinate");
plot1.lineplot(x1,y1);
plot1.setdash("2 4");
plot1.lineplot(x1,y2);
plot1.setdash("6 2 4 2");
plot1.lineplot(x1,y3);
plot1.setdash(""); Unsets dash.
plot1.pointsymbol(1.,exp(-0.5),72,16.);
plot1.pointsymbol(2.,exp(-1.),108,12.);
plot1.pointsymbol(2.,exp(-2.),115,12.);
plot1.label("dingbat 72",1.1,exp(-0.5));
plot1.label("dingbat 108",2.1,exp(-1.));
plot1.label("dingbat 115",2.1,exp(-2.));

PSplot plot2(pg,325.,475.,325.,475.); Instantiate a second plot.
plot2.clear(); Erase what’s underneath it.
plot2.setlimits(-1.2,1.2,-1.2,1.2);
plot2.frame();
plot2.scales(1.,0.5,1.,0.5);
plot2.lineplot(x2,y4);

pg.close();
pg.display(); Pop up a window displaying the plot

file.}

The general idea is that a PSpage object (pg in the example above) represents
a whole sheet of paper, or window on the screen. It can contain one or more PSplot
objects. In the above example there are two: plot1 and plot2. PSplot objects can
be separate on the page, or overlapping. Each has its own x; y coordinate system,
its own x- and y-axis labels, and so forth. With no more explanation than this, you
should be able to find a program line above that corresponds to each feature in the
figure. The last line makes the plot pop up on our screen.

Point symbols are referenced by their character number in the Zapf Dingbats
font, which is built into PostScript. If you want to see all the possible symbols, a
Web search for “LaTeX Postscript Dingbats” will turn up several charts. Or, just
write a program to plot them all. (Hint: There are possibly useful symbols from 33
to 126, and from 161 to 254.)

A Webnote [3] gives the complete source code for the PSpage and PSplot ob-
jects, which is only about 150 lines long. In the course of writing this book, our
personal version of the code expanded to about 450 lines. This is an order of mag-
nitude or two less than the standard packages that are available in open source code,
GNUPLOT, for example [4]. It is a question of trading off capability (theirs much
greater) for ease of modifying the source code (you be the judge).
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If you choose to go down this road, you’ll soon want to learn more of PostScript
as a language. A good reference is [5].

CITED REFERENCES AND FURTHER READING:

Adobe Systems, Inc. 1999, PostScript Language Reference, 3rd ed. (Reading, MA: Addison-
Wesley).[1]

Ghostscript and GSview 2007+, at http://www.cs.wisc.edu/~ghost/.[2]

Numerical Recipes Software 2007, “Code for PSpage and PSplot,” Numerical Recipes Webnote
No. 26, at http://www.nr.com/webnotes?26 [3]

GNUPLOT 2007+, at http://www.gnuplot.info.[4]

McGilton, H., and Campione, M. 1992, PostScript by Example (Reading, MA: Addison-Wesley).[5]

22.2 Diagnosing Machine Parameters
A convenient fiction is that a computer’s floating-point arithmetic is “accurate

enough.” If you believe this fiction, then numerical analysis becomes a very clean
subject. Roundoff error disappears, and many finite algorithms are exact. Only
manageable truncation error (�1.1) stands between you and a perfect calculation.
Sounds rather naive, doesn’t it?

Yes, it is naive. Notwithstanding, we have adopted this fiction throughout most
of this book. To do a good job of answering the question of how roundoff error
propagates, or can be bounded, for every algorithm that we have discussed would be
impractical. In fact, it would not be possible: Rigorous analysis of many practical
algorithms has never been made, by us or anyone.

Almost all processors today share the same floating-point data representation,
namely that specified in IEEE Standard 754-1985 [1], and therefore the same strengths
and weaknesses as regards roundoff error. But this was not always so! The history of
computing is full of machines with strange floating-point representations by modern
standards. Many early computers had 36-bit words, typically partitioned as a sign
bit, 8 bits of exponent, and 27 bits of mantissa. The influential IBM 7090/7094 series
was of this type. The legendary CDC 6600 and 7600 machines, designed by Sey-
mour Cray, had 60-bit words (sign, 11-bit exponent, 48-bit mantissa). A particularly
odd design was the IBM STRETCH, whose 64 bits were allocated to an exponent
flag bit, 10 exponent bits, the exponent sign, a 48-bit mantissa, its sign, and three flag
bits. The exponent flag bit was used to signal overflow or underflow, while the other
flag bits could be set by the user to indicate — anything! So let us all be grateful for
IEEE 754.

Likewise, almost all numerical computing today is done in double precision,
that is, in 64-bit words, what C++ defines as double and we denote as Doub. This,
also, was not always so. It has happened (one might argue) because the availability
of memory has increased even more rapidly than the appetite for it in numerical
computation. Many programmers born before 1960 still feel a small frisson when
they type double instead of float. Indeed, the vast majority of routines in this
book will work just fine, for the vast majority of applications, with merely float
precision. In most cases, the use of double simply serves to reinforce an erroneous
belief in the above “convenient fiction.”
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Still, every once in a while, you will need to know what the limitations of your
machine’s floating-point arithmetic actually are — the more so when your treatment
of floating-point roundoff error is going to be intuitive, experimental, or casual. This
will certainly be true if you ever encounter a processor with nonstandard (that is, non-
IEEE compliant) hardware. Such processors still do exist, though generally hidden
away in embedded special-purpose devices.

If you are lucky, then calls to the methods in the C++ standard library class
numeric_limits will tell you what you need to know. It is a good idea to familiar-
ize yourself with that class, including some of its esoterica, like round_style and
has_denorm [2].

A more experimental approach is to use methods that were developed to ferret
out machine parameters in the bad old days before standards [3,4], especially param-
eters that were supposed to be transparent to the (ordinary) user. The object Machar,
listed in full in a Webnote [5], gives an implementation of a number of of these meth-
ods. The quantities determined are

� ibeta is the radix in which numbers are represented, almost always 2, but
historically sometimes 16, or even 10.
� it is the number of base-ibeta digits in the floating-point mantissa M .
� machep is the exponent of the smallest (most negative) power of ibeta that,

added to 1:0, gives something different from 1:0.
� eps is the floating-point number ibetamachep, loosely referred to as the

“floating-point precision.”
� negep is the exponent of the smallest power of ibeta that, subtracted from
1:0, gives something different from 1:0.
� epsneg is ibetanegep, another way of defining floating-point precision. Not

infrequently, epsneg is 0.5 times eps; occasionally eps and epsneg are equal.
� iexp is the number of bits in the exponent (including its sign or bias).
� minexp is the smallest (most negative) power of ibeta consistent with there

being no leading zeros in the mantissa.
� xmin is the floating-point number ibetaminexp, generally the smallest (in

magnitude) useable floating value.
� maxexp is the smallest (positive) power of ibeta that causes overflow.
� xmax is .1 � epsneg/ � ibetamaxexp, generally the largest (in magnitude)

useable floating value.
� irnd returns a code in the range 0 : : : 5, giving information on what kind of

rounding is done in addition, and on how underflow is handled. See below.
� ngrd is the number of “guard digits” used when truncating the product of two

mantissas to fit the representation.

The parameter irnd needs some additional explanation. In the IEEE standard,
bit patterns correspond to exact, “representable” numbers. The specified method for
rounding an addition is to add two representable numbers “exactly,” and then round
the sum to the closest representable number. If the sum is precisely halfway between
two representable numbers, it should be rounded to the even one (low-order bit zero).
The same behavior should hold for all the other arithmetic operations, that is, they
should be done in a manner equivalent to infinite precision, and then rounded to the
closest representable number.

If irnd returns 2 or 5, then your processor is compliant with this standard. If it
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Sample Results Returned by Machar

IEEE-compliant processor historical

precision float double DEC-VAX

ibeta 2 2 2

it 24 53 24

machep �23 �52 �24

eps 1:19 � 10�7 2:22 � 10�16 5:96 � 10�8

negep �24 �53 �24

epsneg 5:96 � 10�8 1:11 � 10�16 5:96 � 10�8

iexp 8 11 8

minexp �126 �1022 �128

xmin 1:18 � 10�38 2:23 � 10�308 2:94 � 10�39

maxexp 128 1024 127

xmax 3:40 � 1038 1:79 � 10308 1:70 � 1038

irnd 5 5 1

ngrd 0 0 0

returns 1 or 4, then it is doing some kind of rounding, but not the IEEE standard. If
irnd returns 0 or 3, then it is truncating the result, not rounding it — not desirable.

The other issue addressed by irnd concerns underflow. If a floating value is
less than xmin, many computers underflow its value to zero. Values irnd D 0; 1;

or 2 indicate this behavior. The IEEE standard specifies a more graceful kind of
underflow: As a value becomes smaller than xmin, its exponent is frozen at the
smallest allowed value while its mantissa is decreased, acquiring leading zeros and
“gracefully” losing precision. This is indicated by irnd D 3; 4; or 5.

Sometimes results can be compiler-dependent. For example, some compilers
underflow intermediate results ungracefully, yielding irnd D 2 rather than 5.

Call the report method in Machar to see the comparison between its results
and those returned by numeric_limits. Some values returned by Machar for IEEE
compliant processors are given in the table above and compared with an important
historical processor, the DEC-VAX. This processor, like its predecessor PDP-11,
used a representation with a “phantom” leading 1 bit in the mantissa. You can see
that this achieved a smaller eps for the same wordlength but could not underflow
gracefully, since there were no denormalized numbers.

CITED REFERENCES AND FURTHER READING:

IEEE Standard for Binary Floating-Point Numbers, ANSI/IEEE Std 754–1985 (New York: IEEE,
1985).[1]

Josuttis, N.M. 1999, The C++ Standard Library: A Tutorial and Reference (Boston: Addison-
Wesley), �4.3.[2]
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Cody, W.J. 1988, “MACHAR: A Subroutine to Dynamically Determine Machine Parameters,”
ACM Transactions on Mathematical Software, vol. 14, pp. 303–311.[3]

Malcolm, M.A. 1972, “Algorithms to Reveal Properties of Floating-Point Arithmetic,” Communi-
cations of the ACM, vol. 15, pp. 949–951.[4]

Numerical Recipes Software 2007, “Code for Machar,” Numerical Recipes Webnote No. 27, at
http://www.nr.com/webnotes?27 [5]

Goldberg, D. 1991, “What Every Computer Scientist Should Know About Floating-Point Arith-
metic,” ACM Computing Surveys, vol. 23, pp. 5–48.

22.3 Gray Codes

A Gray code is a function G.i/ of the integers i that for each integer N � 0 is
one-to-one for 0 
 i 
 2N � 1, and that has the following remarkable property: The
binary representations of G.i/ and G.i C 1/ differ in exactly one bit. An example
of a Gray code (in fact, the most commonly used one) is the sequence 0000, 0001,
0011, 0010, 0110, 0111, 0101, 0100, 1100, 1101, 1111, 1110, 1010, 1011, 1001,
and 1000, for i D 0; : : : ; 15. The algorithm for generating this code is simply to
form the bitwise exclusive-or (XOR) of i with i=2 (integer part). Think about how
the carries work when you add one to a number in binary, and you will be able to see
why this works. You will also see that G.i/ and G.i C 1/ differ in the bit position of
the rightmost zero bit of i (prefixing a leading zero if necessary).

The spelling is “Gray,” not “gray”: The codes are named after one Frank Gray,
who first patented the idea for use in shaft encoders. A shaft encoder is a wheel
with concentric coded stripes, each of which is “read” by a fixed optical sensor or
conducting brush. The idea is to generate a binary code describing the angle of the
wheel. The obvious, but wrong, way to build a shaft encoder is to have one stripe
(the innermost, say) present on half the wheel, but absent on the other half; the next
stripe is present in quadrants 1 and 3; the next stripe is present in octants 1, 3, 5, and
7; and so on. The optical or electrical sensors together then read a direct binary code
for the position of the wheel.

The reason this method is bad is that there is no way to guarantee that all the
brushes will make or break contact exactly simultaneously as the wheel turns. Going
from position 7 (0111) to 8 (1000), one might pass spuriously and transiently through
6 (0110), 14 (1110), and 10 (1010), as the different brushes make or break contact.
Use of a Gray code on the encoding stripes guarantees that there is no transient state
between 7 (0100 in the sequence above) and 8 (1100).

Of course we then need circuitry, or algorithmics, to translate from G.i/ to i .
Figure 22.3.1(b) shows how this is done by a cascade of XOR gates. The idea is that
each output bit should be the XOR of all more significant input bits. To do N bits
of Gray code inversion requires N � 1 steps (or gate delays) in the circuit. (Never-
theless, this is typically very fast in circuitry.) In a register with word-wide binary
operations, we don’t have to do N consecutive operations, but only ln2N . The trick
is to use the associativity of XOR and group the operations hierarchically. This in-
volves sequential right-shifts by 1; 2; 4; 8; : : : bits until the wordlength is exhausted.
Here is a piece of code for doing both G.i/ and its inverse:
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Figure 22.3.1. Single-bit operations for calculating the Gray code G.i/ from i (a), or the inverse (b).
LSB and MSB indicate the least and most significant bits, respectively. XOR denotes exclusive-or.

struct Gray { igray.h
Methods for the Gray code and its inverse.

Uint gray(const Uint n) {return n ^ (n >> 1);}
Return the Gray code of an integer n. This is the easy direction!

Uint invgray(const Uint n) {
Return the inverse of the Gray code.

Int ish=1;
Uint ans=n,idiv;
for (;;) { In hierarchical stages, starting with a one-bit right-shift,

cause each bit to be XORed with all more sig-
nificant bits.

ans ^= (idiv=ans >> ish);
if (idiv <= 1 || ish == 16) return ans;
ish <<= 1; Double the amount of shift on the next cycle.

}
}

};

In numerical work, Gray codes can be useful when you need to do some task
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that depends intimately on the bits of i , looping over many values of i . Then, if there
are economies in repeating the task for values differing by only one bit, it makes
sense to do things in Gray code order rather than consecutive order. We saw an
example of this in �7.8, for the generation of quasi-random sequences.

CITED REFERENCES AND FURTHER READING:

Horowitz, P., and Hill, W. 1989, The Art of Electronics, 2nd ed. (New York: Cambridge University
Press), �8.02.

Knuth, D.E. 2005, Generating All Tuples and Permutations, fascicle 2 of vol. 4 of The Art of
Computer Programming (Upper Saddle River, NJ: Addison-Wesley), �7.2.1.1.

22.4 Cyclic Redundancy and Other Checksums

There are networks all around you: not just “the” Internet with its IP and TCP
protocols, but also embedded networks that move bits around within a device or
among closely coupled devices. Examples include the SMBus network that com-
municates power management information between smart batteries and the devices
that they power, or the Bluetooth network that connects cell phones to nearby acces-
sories. We wouldn’t be overly surprised to find a network inside of our wristwatch
or electric toothbrush!

Different networks have different protocols, but standard engineering practice
is to package the raw information into packets with fixed or variable numbers of
bits. Packet lengths are typically in the range from a few tens to a few thousand bits.
Smaller would imply proportionally too much overhead per packet, while longer
would make excessive demands on buffer sizes, collision avoidance, etc.

When a packet is sent from point A to point B, one wants to know that it has ar-
rived without error. The simplest form of insurance is to add a “parity bit,” chosen so
as to make the total number of one-bits (versus zero-bits) either always even (“even
parity”) or always odd (“odd parity”). Any single-bit error in a packet will thereby be
detected. When errors are sufficiently rare, or their consequence sufficiently minor,
use of parity provides enough error detection. For example, the ASCII character set
was originally designed for 7-bit characters, with an 8th parity bit.

Since the parity bit has two possible values (0 and 1), it has, on average, only a
50% chance of detecting an erroneous packet with multiple wrong bits. That is not
nearly good enough for most applications. Most communications protocols [1] use a
multibit generalization of the parity bit called a “cyclic redundancy check” or CRC.
Often, the CRC is 16 bits (two bytes) long. Then the chance of a random set of errors
going undetected is 1 in 216 D 65536.

Now enters mathematics. It is easy to find M -bit CRCs that have the property
of detecting all errors that occur in M or fewer consecutive bits, for any length of
message. (We prove this below.) Since noise in communication channels tends to be
“bursty,” with short sequences of adjacent bits getting corrupted, this consecutive-bit
property is highly desirable. Furthermore, for packets with a fixed (or bounded) pay-
load size of N bits, one can find CRCs that find all occurrences of D or fewer errors
anywhere in the payload. Obviously, the game is to find the CRC that maximizesD.
The value DC 1 is the Hamming distance of the CRC for that value of N using that
checksum (cf. �16.2).
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Useful 16-bit CRC Polynomials (after [3])

j Name Polynomial BestN (bits)

0 0x755B

D .x3Cx2C1/�.x6Cx5Cx2CxC1/�.x7Cx3C1/�
242–2048+

1 0xA7D3

D .x3C x2C 1/�.x6C x5C x2C xC 1/�.x7C x6C
x5 C x4 C 1/�

256–2048+

2 ANSI-16 0x8005

D .xC 1/.x15 C xC 1/�
242–2048+

3 CCITT-16 0x1021

D .xC1/.x15Cx14Cx13Cx12Cx4Cx3Cx2CxC1/�
242–2048+

4 0x5935

D .x16 C x14 C x12 C x11 C x8 C x5 C x4 C x2 C 1/
136–241

5 0x90D9

D .x C 1/.x15 C x11 C x10 C x9 C x8 C x7 C x5 C
x4 C x2 C xC 1/

20–135

6 IEC-16 0x5B93

D .xC 1/.xC 1/.x7 C x6 C x3 C xC 1/�.x7 C x6 C
x5 C x4 C x3 C x2 C 1/�

20–112

7 0x2D17

D .x2CxC 1/�.x14Cx13Cx9Cx7Cx5Cx4C 1/
16–19

* denotes primitive factor

The design of CRCs lies in the province of communications software experts
and chip-level hardware designers — people with bits under their fingernails. A
passing familiarity with some of the concepts involved can be useful, however, both
because the mathematics involved has connections to other applications (for exam-
ple, random number generation, cf. �7.1 and �7.5), and because you might actually
want to add a couple of bytes of checksum to your own data records in some appli-
cations where you are handling, or moving, large amounts of data.

Sometimes CRCs can be used to compress data as they are recorded. If identi-
cal data records occur frequently, one can keep sorted in memory the CRCs of pre-
viously encountered records. A new record is archived in full if its CRC is different,
otherwise only a pointer to a previous record need be archived. In this application
one might use 8 bytes of CRC, to make the odds of mistakenly discarding a differ-
ent data record tolerably small; or, if previous records can be randomly accessed, a
full comparison can be made to decide whether records with identical CRCs are in
fact identical.

Now let us briefly discuss the theory of CRCs. After that, we will give an
implementation that generates 16-bit CRCs that are known to be particularly good,
or else are enshrined as standard (and, it turns out, this is not the same thing!).

The mathematics underlying CRCs is “polynomials over the integers modulo
2.” Any binary message can be thought of as a polynomial with coefficients 0 and 1.
For example, the message “1100001101” is the polynomial x9C x8C x3C x2C 1.
Since 0 and 1 are the only integers modulo 2, a power of x in the polynomial is either
present (1) or absent (0).
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AnM -bit-long CRC is based on a polynomial of degreeM , called the generator
polynomial. Given the generator polynomial G (which can be written either in poly-
nomial form or as a bit-string, e.g., 10001000000100001 for x16 C x12 C x5 C 1),
here is how you compute the CRC for a sequence of bits S : First, multiply S by
xM , that is, append M zero bits to it. Second, divide, by long division, G into
SxM . Keep in mind that the subtractions in the long division are done modulo 2,
so that there are never any “borrows”: Modulo 2 subtraction is the same as logical
exclusive-or (XOR). Third, ignore the quotient you get. Fourth, when you eventu-
ally get to a remainder, it is the CRC; call it C . C will be a polynomial of degree
M � 1 or less, otherwise you would not have finished the long division. Therefore,
in bit-string form, it hasM bits, which may include leading zeros. (C might even be
all zeros; see below.)

If you work through the above steps in an example, you will see that most of
what you write down in the long-division tableau is superfluous. You are actually
just left-shifting sequential bits of S , from the right, into an M -bit register. Every
time a 1 bit gets shifted off the left end of this register, you zap the register by an
XOR with the M low-order bits of G (that is, all the bits of G except its leading 1).
When a 0 bit is shifted off the left end you don’t zap the register. When the last bit
that was originally part of S gets shifted off the left end of the register, what remains
is the CRC.

You can immediately recognize how efficiently this procedure can be imple-
mented in hardware. It requires only a shift register with a few hard-wired XOR
taps into it. That is how CRCs are computed in communications devices, taking a
tiny part of a single chip. In software, the implementation is not so elegant, since
bit-shifting is not generally very efficient. One therefore typically finds (as in our
implementation below) table-driven routines that pre-calculate the result of a bunch
of shifts and XORs, say for each of 256 possible 8-bit inputs [2].

Every generator polynomial of degree M with a nonzero x0 term yields a CRC
that detects all possible combinations of errors in any frame of M consecutive bits.
(A special case of this is that it detects any single-bit error in a message of arbitrary
lengthN .) To see how this works, suppose two messages, S and T , differ only within
a frame of M bits. Then their CRCs differ by an amount that is the remainder when
G is divided into .S � T /xM � R. Now R has the form of leading zeros (which
can be ignored), followed by some 1’s in an M -bit frame, followed by trailing zeros
(which are just multiplicative factors of x): R D xnF , where F is a polynomial
of degree at most M � 1 and n > 0. But since G has a nonzero x0 term, it is not
divisible by x. So G cannot divide R. Therefore S and T must have different CRCs.

What about two-bit errors, not necessarily in a frame of sizeM ? That leads us to
primitive polynomials: A polynomial over the integers modulo 2 may be irreducible,
meaning that it can’t be factored. A subset of the irreducible polynomials is the
primitive polynomials. These generate maximum length sequences when used in
shift registers, as described in �7.5. The polynomial x2 C 1 is not irreducible: x2 C
1 D .xC1/.xC1/, so it is also not primitive. The polynomial x4Cx3Cx2CxC1
is irreducible, but it turns out not to be primitive. The polynomial x4C xC 1 is both
irreducible and primitive.

Primitive polynomials are here interesting because they have a very high order.
Don’t confuse order with degree: The order e of a polynomial is the smallest integer
e such that the polynomial divides (in the present mod 2 case) xe C 1. Primitive
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polynomials, it turns out, have the largest possible order e for their degree n, given
by

e D 2n � 1 (22.4.1)

(In fact, this is why their shift registers have maximum length.) If two messages
differ on exactly two bits, spaced k bits apart, then their difference is xk C 1 times
some trailing powers of x. If the generator G contains a primitive factor of order e,
then G can’t possibly divide this difference, as long as k < e.

Thus, a primitive factor of degree n guarantees two-bit error detection for spac-
ings up to 2n � 1. For this reason, generators are often chosen to be primitive poly-
nomials of degree M . Alternatively, the generator may be chosen be a primitive
polynomial times .1 C x/, which turns out to detect parity errors for all message
sizes N , while the range of two-bit detections is reduced only by a factor of 2.

A number of “standard” CRC polynomials were chosen by no other criteria,
sometimes adding only the criterion that they should have only a small number
of terms. (This was at one time important for hardware design.) For example,
the CCITT (Comité Consultatif International Télégraphique et Téléphonique) has
anointed x16Cx12Cx5C1 as “CCITT-16”; it is the product of xC1 and a primitive
polynomial. The polynomial ANSI-16 (see table on p. 1169) also has this character.

Similarly for some choices other than 16 bits: “CRC-12” is .xC1/.x11Cx2C
1/, the latter factor being primitive. The most common 32-bit CRC, “CRC-32,” used
in the ethernet standard (IEEE 802.3) and elsewhere, is x32 C x26 C x23 C x22 C
x16 C x12 C x11 C x10 C x8 C x7 C x5 C x4 C x2 C x C 1, which is primitive.

Now here is something relatively new in this ancient field [3]: For carefully cho-
sen generators G, all two-bit errors in a packet with payload size N can be detected
even if e < N . This is because the previous argument was sufficient, but not neces-
sary: A cleverly chosen G can fail to divide xk � 1 for other reasons than having a
primitive factor of large order. This idea opens up the design space to search, essen-
tially by brute force, for generators that have D > 2, that is, are capable of finding
not just all two-bit errors, but all three-bit errors, all four-bit errors, etc., up to some
bound that depends on N and M . Several of these “new” generators are shown in
the table on p. 1169, which is based on [3] (which see for details), along with their
recommended values of N . A generator that is good for large N is not necessarily
good for small N , and vice versa, so you should stick to the recommended values.
The hexadecimal values in the table give binary representations of the polynomials,
with the convention that each must be prefaced by a leading 1 (the x16 term).

In most protocols, a transmitted block of data consists of some N data bits,
directly followed by the M bits of their CRC (or the CRC XORed with a constant;
see below). There are two equivalent ways of validating a block at the receiving end.
Most obviously, the receiver can compute the CRC of the data bits, and compare it to
the transmitted CRC bits. Less obviously, but more elegantly, the receiver can simply
compute the CRC of the total block, withN CM bits, and verify that a result of zero
is obtained. Proof: The total block is the polynomial SxM C C (data left-shifted to
make room for the CRC bits). The definition of C is that Sxm D QG C C , where
Q is the discarded quotient. But then SxM CC D QGCC CC D QG (remember
modulo 2), which is a perfect multiple of G. It remains a multiple of G when it gets
multiplied by an additional xM on the receiving end, so it has a zero CRC, q.e.d.

A couple of small variations on the basic procedure need to be mentioned [1]:
First, when the CRC is computed, the M -bit register need not be initialized to zero.
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Initializing it to some other M -bit value (e.g., all 1’s) in effect prefaces all blocks by
a phantom message that would have given the initialization value as its remainder.
It is advantageous to do this, since the CRC described thus far otherwise cannot
detect the addition or removal of any number of initial zero bits. (Loss of an initial
bit, or insertion of zero bits, are common “clocking errors.”) Second, one can add
(XOR) any M -bit constant K to the CRC before it is transmitted. This constant
can either be XORed away at the receiving end, or else it just changes the expected
CRC of the whole block by a known amount, namely the remainder of dividing G
into KxM . The constant K is frequently “all bits,” changing the CRC into its ones
complement. This has the advantage of detecting another kind of error that the CRC
would otherwise not find: deletion of an initial 1 bit in the message with spurious
insertion of a 1 bit at the end of the block.

The following object Icrc implements the calculation of 16-bit CRCs for the
generators listed in the table. The constructor sets which generator is to be used, and
also whether the initial register should be all bits (the default) or zero. Icrc is loosely
based on the function in [2]. Here is how to understand its operation: First look at the
function icrc1. This is used only by the constructor, to initialize a table of length
256, incorporating one character into a 16-bit CRC register. The only trick used is
that a character’s bits are XORed into the most significant bits of the register, all eight
together, instead of being fed into the least significant bit, one bit at a time, at the
time of the register shift. This works because XOR is associative and commutative
— we can feed in character bits any time before they will determine whether to zap
with the generator polynomial.

Now look at the methods crc and concat. Go back to thinking about a char-
acter’s bits being shifted into the CRC register from the least significant end. The
key observation is that while 8 bits are being shifted into the register’s low end, all
the generator zapping is being determined by the bits already in the high end. Since
XOR is commutative and associative, all we need is a table of the results of all this
zapping, for each of 256 possible high-bit configurations. Then we can play catch-up
and XOR an input character into the result of a lookup into this table. But this is ex-
actly the table that was constructed by icrc1. References [2,4,5] give further details
on table-driven CRC computations.

struct Icrc {icrc.h
Object for computing 16-bit cyclic redundancy checksums.

Uint jcrc,jfill,poly;
static Uint icrctb[256];

Icrc(const Int jpoly, const Bool fill=true) : jfill(fill ? 255 : 0) {
Constructor. Choose one of 8 generators (see table) by the value of jpoly. Initialize the
CRC register to all bits if fill is true, otherwise to zero.

Int j;
Uint okpolys[8] = {0x755B,0xA7D3,0x8005,0x1021,0x5935,0x90D9,0x5B93,0x2D17};
Generator polynomials, see table.
poly = okpolys[jpoly & 7];
for (j=0;j<256;j++) {

icrctb[j]=icrc1(j << 8,0); Table of CRCs of all characters.
}
jcrc = (jfill | (jfill << 8));

}
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Uint crc(const string &bufptr) {
Initialize the CRC register, compute and return the 16-bit CRC for the string bufptr.

jcrc = (jfill | (jfill << 8));
return concat(bufptr);

}

Uint concat(const string &bufptr) {
Without reinitializing the CRC register, compute and return the 16-bit CRC for the string
bufptr. In effect, this appends bufptr to previous strings since the last call of crc and
returns the overall CRC.

Uint j,cword=jcrc,len=bufptr.size();
for (j=0;j<len;j++) { Loop over the characters in the string.

cword=icrctb[Uchar(bufptr[j]) ^ hibyte(cword)] ^ (lobyte(cword) << 8);
}
return jcrc = cword;

}

Uint icrc1(const Uint jcrc, const Uchar onech) {
Given a remainder up to now, return the new CRC after one character is added. Used by
Icrc to initialize its table.

Int i;
Uint ans=(jcrc ^ onech << 8);
for (i=0;i<8;i++) { Here is where 8 one-bit shifts, and some XORs

with the generator poly-
nomial, are done.

if (ans & 0x8000) ans = (ans <<= 1) ^ poly;
else ans <<= 1;
ans &= 0xffff;

}
return ans;

}

inline Uchar lobyte(const unsigned short x) {
return (Uchar)(x & 0xff); }

inline Uchar hibyte(const unsigned short x) {
return (Uchar)((x >> 8) & 0xff); }

};
Uint Icrc::icrctb[256];

What if you need more than 16 bits of checksum? For a true 32-bit CRC, you
will need to rewrite the routines given to work with a longer generating polynomial.
For example, x32 C x7 C x5 C x3 C x2 C x C 1 is primitive modulo 2 and has
nonleading, nonzero bits only in its least significant byte (which makes for some
simplification). The idea of table lookup on only the most significant byte of the
CRC register goes through unchanged.

Easier, if you don’t care about theM -consecutive bit property of the checksum,
is to just instantiate more than one copy of Icrc, each with a different generator (first
argument in constructor). These provide statistically independent checks.

22.4.1 Other Kinds of Checksums

Quite different from CRCs are the various techniques used to append a decimal
“check digit” to numbers that are handled by human beings (e.g., typed into a com-
puter). Check digits need to be proof against the kinds of highly structured errors that
humans tend to make, such as transposing consecutive digits. Wagner and Putter [6]

give an interesting introduction to this subject, including specific algorithms.
Checksums now in widespread use vary from fair to poor. The 10-digit ISBN

(International Standard Book Number) that you find on most books, including this
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one, uses the check equation

10d1 C 9d2 C 8d3 C 	 	 	 C 2d9 C d10 D 0 .mod 11/ (22.4.2)

where d10 is the right-hand check digit. The character “X” is used to represent a
check digit value of 10. Another popular scheme is the so-called “IBM check,” often
used for account numbers (including, e.g., MasterCard). Here, the check equation is

2#d1 C d2 C 2#d3 C d4 C 	 	 	 D 0 .mod 10/ (22.4.3)

where 2#d means, “multiply d by two and add the resulting decimal digits.”
United States banks code checks with a nine-digit processing number whose check
equation is

3a1 C 7a2 C a3 C 3a4 C 7a5 C a6 C 3a7 C 7a8 C a9 D 0 .mod 10/ (22.4.4)

The familiar 12-digit Universal Product Code (UPC) is printed with both a decimal
representation and a synonymous bar code. The digits are divided into a one-digit
“category,” a five-digit manufacturer, a five-digit product identification, and one-digit
checksum. The check equation is

3a1 C a2 C 3a3 C a4 C 3a5 C 	 	 	 C 3a11 C a12 D 0 .mod 10/ (22.4.5)

The bar code put on many envelopes by the U.S. Postal Service is decoded by re-
moving the single tall marker bars at each end and breaking the remaining bars into
six or ten groups of five. In each group the five bars signify (from left to right) the
values 7; 4; 2; 1; 0. Exactly two of them will be tall. Their sum is the represented
digit, except that zero is represented as 7 C 4. The five- or nine-digit zip code is
followed by a check digit, with the check equationX

di D 0 .mod 10/ (22.4.6)

None of these schemes is close to optimal. An elegant scheme due to Verhoeff
is described in [6]. The underlying idea is to use the ten-element dihedral group D5,
which corresponds to the symmetries of a pentagon, instead of the cyclic group of
the integers modulo 10. The check equation is

a1 
 f .a2/ 
 f
2.a3/ 
 	 	 	 
 f

n�1.an/ D 0 (22.4.7)

where 
 is (noncommutative) multiplication in D5, and f i denotes the i th iteration
of a certain fixed permutation. Verhoeff’s method finds all single errors in a string,
and all adjacent transpositions. It also finds about 95% of twin errors (aa ! bb),
jump transpositions (acb ! bca), and jump twin errors (aca ! bcb). Here is an
implementation:

Bool decchk(string str, char &ch) {decchk.h
Decimal check digit computation or verification. Returns as ch a check digit for appending to
string[0..n-1], that is, for storing into string[n]. In this mode, ignore the returned boolean
value. If string[0..n-1] already ends with a check digit (string[n-1]), returns the function
value true if the check digit is valid, otherwise false. In this mode, ignore the returned value
of ch. Note that string and ch contain ASCII characters corresponding to the digits 0-9, not
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byte values in that range. Other ASCII characters are allowed in string, and are ignored in
calculating the check digit.

char c;
Int j,k=0,m=0,n=str.length();
static Int ip[10][8]={{0,1,5,8,9,4,2,7},{1,5,8,9,4,2,7,0},

{2,7,0,1,5,8,9,4},{3,6,3,6,3,6,3,6},{4,2,7,0,1,5,8,9},
{5,8,9,4,2,7,0,1},{6,3,6,3,6,3,6,3},{7,0,1,5,8,9,4,2},
{8,9,4,2,7,0,1,5},{9,4,2,7,0,1,5,8}};

static Int ij[10][10]={{0,1,2,3,4,5,6,7,8,9},{1,2,3,4,0,6,7,8,9,5},
{2,3,4,0,1,7,8,9,5,6},{3,4,0,1,2,8,9,5,6,7},{4,0,1,2,3,9,5,6,7,8},
{5,9,8,7,6,0,4,3,2,1},{6,5,9,8,7,1,0,4,3,2},{7,6,5,9,8,2,1,0,4,3},
{8,7,6,5,9,3,2,1,0,4},{9,8,7,6,5,4,3,2,1,0}};
Group multiplication and permutation tables.

for (j=0;j<n;j++) { Look at successive characters.
c=str[j];
if (c >= 48 && c <= 57) Ignore everything except digits.

k=ij[k][ip[(c+2) % 10][7 & m++]];
}
for (j=0;j<10;j++) Find which appended digit will check properly.

if (ij[k][ip[j][m & 7]] == 0) break;
ch=char(j+48); Convert to ASCII.
return k==0;

}
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Wagner, N.R., and Putter, P.S. 1989, “Error Detecting Decimal Digits,” Communications of the
ACM, vol. 32, pp. 106–110.[6]

22.5 Huffman Coding and Compression of Data

A lossless data compression algorithm takes a string of symbols (typically ASCII
characters or bytes) and translates it reversibly into another string, one that is on the
average of shorter length. The words “on the average” are crucial; it is obvious
that no reversible algorithm can make all strings shorter — there just aren’t enough
short strings to be in one-to-one correspondence with longer strings. Compression
algorithms are possible only when, on the input side, some strings, or some input
symbols, are more common than others. These can then be encoded in fewer bits
than rarer input strings or symbols, giving a net average gain. We already quantified
this idea, with the concept of entropy, in �14.7.

There exist many, quite different, compression techniques, corresponding to dif-
ferent ways of detecting and using departures from equiprobability in input strings.
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In this section and the next we shall consider only variable length codes with de-
fined word inputs. In these, the input is sliced into fixed units, for example ASCII
characters, while the corresponding output comes in chunks of variable size. The
simplest such method is Huffman coding [1], discussed in this section. Another ex-
ample, arithmetic compression, is discussed in �22.6.

At the opposite extreme from defined-word, variable length codes are schemes
that divide up the input into units of variable length (words or phrases of En-
glish text, for example) and then transmit these, often with a fixed length output
code. The most widely used code of this general type is the Ziv-Lempel code [2].
References [3-5] give the flavor of some other compression techniques, with refer-
ences to the large literature.

The idea behind Huffman coding is simply to use shorter bit patterns for more
common characters. Suppose the input alphabet has Nch characters, and that these
occur in the input string with respective probabilities pi , i D 1; : : : ; Nch, so thatP
pi D 1. As we saw in �14.7, strings consisting of independently random se-

quences of these characters (a conservative, but not always realistic assumption) re-
quire, on the average, at least

H D �
X

pi log2 pi (22.5.1)

bits per character, where H is the entropy of the probability distribution. Moreover,
coding schemes exist that approach the bound arbitrarily closely. For the case of
equiprobable characters, with all pi D 1=Nch, one easily sees that H D log2Nch,
which is the case of no compression at all. Any other set of pi ’s gives a smaller
entropy, allowing some useful compression.

Notice that the bound of (22.5.1) would be achieved if we could encode charac-
ter i with a code of length Li D � log2 pi bits: Equation (22.5.1) would then be the
average

P
piLi . The trouble with such a scheme is that � log2 pi is not generally

an integer. How can we encode the letter “Q” in 5.32 bits? Huffman coding makes
a stab at this by, in effect, approximating all the probabilities pi by integer powers
of 1/2, so that all the Li ’s are integral. If all the pi ’s are in fact of this form, then a
Huffman code does achieve the entropy bound H .

The construction of a Huffman code is best illustrated by example. Imagine a
language, Vowellish, with the Nch D 5 character alphabet A, E, I, O, and U, oc-
curring with the respective probabilities 0.12, 0.42, 0.09, 0.30, and 0.07. Then the
construction of a Huffman code for Vowellish is accomplished in the table on the
next page.

Here is how it works, proceeding in sequence through Nch stages, represented
by the columns of the table. The first stage starts with Nch nodes, one for each
letter of the alphabet, containing their respective relative frequencies. At each stage,
the two smallest probabilities are found, summed to make a new node, and then
dropped from the list of active nodes. (A “block” denotes the stage where a node is
dropped.) All active nodes (including the new composite) are then carried over to
the next stage (column). In the table, the names assigned to new nodes (e.g., AUI)
are inconsequential. In the example shown, it happens that (after stage 1) the two
smallest nodes are always an original node and a composite one; this need not be
true in general: The two smallest probabilities might be both original nodes, or both
composites, or one of each. At the last stage, all nodes will have been collected into
one grand composite of total probability 1.
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Node Stage: 1 2 3 4 5

1 A: 0.12 0.12

2 E: 0.42 0.42 0.42 0.42

3 I: 0.09

4 O: 0.30 0.30 0.30

5 U: 0.07

6 UI: 0.16

7 AUI: 0.28

8 AUIO: 0.58

9 EAUIO: 1.00

E

EAUIO

A

U

AUI

AUIO

UI

I

O

1.00

0.58

0.28 0.30

0.090.07 35

0.1660.12

0.422

9

8

7 4

1

10

10

10

10

Figure 22.5.1. Huffman code for the fictitious language Vowellish, in tree form. A letter (A, E, I, O, or
U) is encoded or decoded by traversing the tree from the top down; the code is the sequence of 0’s and 1’s
on the branches. The value to the right of each node is its probability; to the left, its node number in the
table.

Now, to see the code, you redraw the data in the table as a tree (Figure 22.5.1).
As shown, each node of the tree corresponds to a node (row) in the table, indicated
by the integer to its left and probability value to its right. Terminal nodes, so called,
are shown as circles; these are single alphabetic characters. The branches of the tree
are labeled 0 and 1. The code for a character is the sequence of zeros and ones that
lead to it, from the top down. For example, E is simply 0, while U is 1010.

Any string of zeros and ones can now be decoded into an alphabetic sequence.
Consider, for example, the string 1011111010. Starting at the top of the tree we
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descend through 1011 to I, the first character. Since we have reached a terminal
node, we reset to the top of the tree, next descending through 11 to O. Finally 1010
gives U. The string thus decodes to IOU.

These ideas are embodied in the following Huffcode object. The constructor
lets you specify Nch, and an integer frequency-of-occurrence table of length Nch

telling how often each character occurs in some large corpus of text. These integers
are, of course, proportional to the pi ’s. The reason for using integers is so that any
two computers will produce exactly the same code from the same input data. This
might not be true if we used floating-point values. The constructor utilizes a heap
structure (see �8.3) for efficiency; for a detailed description, see Sedgewick [6].

Once you have created an instance of Huffcode, you code a message by calling
codeone for each message character in turn. This writes bits into a byte array code
that you supply as an argument. There is no message-dependent saved state, so you
could interleave different messages if there were some reason to do so.

Decoding a Huffman-encoded message is slightly more complicated. The cod-
ing tree must be traversed from the top down, using up a variable number of bits.
This is done by the method decodeone.

There is no such thing as an “end of message” (EOM) marker in Huffman codes
— not unless you provide one. Successive calls to decodeone will happily decode
bits into characters until your hardware traps an illegal memory read! That is because
every path on the tree (cf. Figure 22.5.1) terminates in a valid character. In practice,
one increases Nch by 1, and gives the extra character a frequency of occurrence of
1 (versus large values for the other characters). The new character becomes the
EOM marker. Similarly, one can add other extra characters for other “out-of-band”
signaling. If these occur rarely, the overhead on the message is negligible.

struct Huffcode {huffcode.h
Object for Huffman encoding and decoding.

Int nch,nodemax,mq;
Int ilong,nlong;
VecInt ncod,left,right;
VecUint icod;
Uint setbit[32];

Huffcode(const Int nnch, VecInt_I &nfreq)
: nch(nnch), mq(2*nch-1), icod(mq), ncod(mq), left(mq), right(mq) {
Constructor. Given the frequency of occurrence table nfreq[0..nnch-1] for nnch charac-
ters, constructs the Huffman code. Also sets ilong and nlong as the character number
that produced the longest code symbol, and the length of that symbol.

Int ibit,j,node,k,n,nused;
VecInt index(mq), nprob(mq), up(mq);
for (j=0;j<32;j++) setbit[j] = 1 << j;
for (nused=0,j=0;j<nch;j++) {

nprob[j]=nfreq[j];
icod[j]=ncod[j]=0;
if (nfreq[j] != 0) index[nused++]=j;

}
for (j=nused-1;j>=0;j--) Sort nprob into a heap structure in index.

heep(index,nprob,nused,j);
k=nch;
while (nused > 1) { Combine heap nodes, remaking the heap at

each stage.node=index[0];
index[0]=index[(nused--)-1];
heep(index,nprob,nused,0);
nprob[k]=nprob[index[0]]+nprob[node];
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left[k]=node; Store left and right children of a node.
right[k++]=index[0];
up[index[0]] = -Int(k); Indicate whether a node is a left or right child

of its parent.index[0]=k-1;
up[node]=k;
heep(index,nprob,nused,0);

}
up[(nodemax=k)-1]=0;
for (j=0;j<nch;j++) { Make the Huffman code from the tree.

if (nprob[j] != 0) {
for (n=0,ibit=0,node=up[j];node;node=up[node-1],ibit++) {

if (node < 0) {
n |= setbit[ibit];
node = -node;

}
}
icod[j]=n;
ncod[j]=ibit;

}
}
nlong=0;
for (j=0;j<nch;j++) {

if (ncod[j] > nlong) {
nlong=ncod[j];
ilong=j;

}
}
if (nlong > numeric_limits<Uint>::digits)

throw("Code too long in Huffcode. See text.");
}

void codeone(const Int ich, char *code, Int &nb) {
Huffman encode the single character ich (in the range 0..nch-1), write the result to the
byte array code starting at bit nb (whose smallest valid value is zero), and increment nb to
the first unused bit. This routine is called repeatedly to encode consecutive characters in a
message. The user is responsible for monitoring that the value of nb does not overrun the
length of code.

Int m,n,nc;
if (ich >= nch) throw("bad ich (out of range) in Huffcode");
if (ncod[ich]==0) throw("bad ich (zero prob) in Huffcode");
for (n=ncod[ich]-1;n >= 0;n--,++nb) { Loop over the bits in the stored

Huffman code for ich.nc=nb >> 3;
m=nb & 7;
if (m == 0) code[nc]=0; Set appropriate bits in code.
if ((icod[ich] & setbit[n]) != 0) code[nc] |= setbit[m];

}
}

Int decodeone(char *code, Int &nb) {
Starting at bit number nb in the byte array code, decode a single character (returned as
ich in the range 0..nch-1) and increment nb appropriately. Repeated calls, starting with
nb D 0, will return successive characters in a compressed message. The user is responsible
for detecting EOM from the message content.

Int nc;
Int node=nodemax-1;
for (;;) { Set node to the top of the decoding tree, and

loop until a valid character is obtained.nc=nb >> 3;
node=((code[nc] & setbit[7 & nb++]) != 0 ?

right[node] : left[node]);
Branch left or right in tree, depending on its value.

if (node < nch) return node; If we reach a terminal node, we have a com-
plete character and can return.}

}
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void heep(VecInt_IO &index, VecInt_IO &nprob, const Int n, const Int m) {
Used by the constructor to maintain a heap structure in the array index[0..m-1].

Int i=m,j,k;
k=index[i];
while (i < (n >> 1)) {

if ((j = 2*i+1) < n-1
&& nprob[index[j]] > nprob[index[j+1]]) j++;

if (nprob[k] <= nprob[index[j]]) break;
index[i]=index[j];
i=j;

}
index[i]=k;

}
};

Huffcode requires that the longest code for a single character fits into your
machine’s integer wordlength (typically 32 bits), and will tell you if this is violated.
If this happens, you’ll need to increase the frequency-of-occurrence value for the
rarest characters. This will affect your compression hardly at all.

It is a feature, not a bug, that Huffcode allows you to specify some characters as
having zero frequency of occurrence, and then completely omits these from the code.
This can be very useful when, for example, you want to compress a file consisting
only of ASCII characters 0–9, +, -, and “.”, as might occur in a file of numerical
values. But don’t then try to encode one of the omitted characters!

22.5.1 Run-Length Encoding
For the compression of highly correlated bit streams (for example the black or

white values along a facsimile scan line), Huffman compression is often combined
with run-length encoding: Instead of sending each bit, the input stream is converted
to a series of integers indicating how many consecutive bits have the same value.
These integers are then Huffman-compressed. The Group 3 CCITT facsimile stan-
dard functions in this manner, with a fixed, immutable, Huffman code, optimized for
a set of eight standard documents [7].
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22.6 Arithmetic Coding

We saw in the previous section, as well as �14.7, that a perfect coding scheme
would use Li D � log2 pi bits to encode character i (in the range 1 
 i 
 Nch),
if pi is its probability of occurrence and characters occur independently randomly.
Huffman coding gives a way of rounding the Li ’s to close integer values and con-
structing a code with those lengths. Arithmetic coding [1], which we now discuss,
actually does manage to encode characters using noninteger numbers of bits! It
also provides a convenient way to output the result not as a stream of bits, but as a
stream of symbols in any desired radix. This latter property is particularly useful if
you want, e.g., to convert data from bytes (radix 256) to printable ASCII characters
(radix 94), or to case-independent alphanumeric sequences containing only A-Z and
0-9 (radix 36).

In arithmetic coding, an input message of any length is represented as a real
number R in the range 0 
 R < 1. The longer the message, the more precision re-
quired ofR. This is best illustrated by an example, so let us return to the fictitious lan-
guage, Vowellish, of the previous section. Recall that Vowellish has a five-character
alphabet (A, E, I, O, U), with occurrence probabilities 0.12, 0.42, 0.09, 0.30, and
0.07, respectively. Figure 22.6.1 shows how a message beginning “IOU” is encoded:
The interval Œ0; 1/ is divided into segments corresponding to the five alphabetical
characters; the length of a segment is the corresponding pi . We see that the first mes-
sage character, “I”, narrows the range of R to 0:37 
 R < 0:46. This interval is now
subdivided into five subintervals, again with lengths proportional to the pi ’s. The
second message character, “O”, narrows the range of R to 0:3763 
 R < 0:4033.
The “U” character further narrows the range to 0:37630 
 R < 0:37819. Any value
of R in this range can be sent as encoding “IOU”. In particular, the binary fraction
:011000001 is in this range, so “IOU” can be sent in 9 bits. (Huffman coding took
10 bits for this example; see �22.5.)

Of course there is the problem of knowing when to stop decoding. The fraction
:011000001 represents not simply “IOU,” but “IOU. . . ,” where the ellipses repre-
sent an infinite string of successor characters. We had a similar problem in Huff-
man coding, but there we would at least stop when we ran off the edge of the input
buffer. Here, the real number :011000001 actually does represent an infinite mes-
sage! Arithmetic coding therefore always must assume the existence of a special
Nch C 1st character, EOM (end of message), which occurs only once at the end of
the input. Since EOM has a low probability of occurrence, it gets allocated only a
very tiny piece of the number line.

In the above example, we gave R as a binary fraction. We could just as well
have output it in any other radix, e.g., base 94 or base 36, whatever is convenient for
the anticipated storage or communication channel.

You might wonder how one deals with the seemingly incredible precision re-
quired of R for a long message. The answer is that R is never actually represented
all at once. At any give stage we have upper and lower bounds for R represented as
a finite number of digits in the output radix. As digits of the upper and lower bounds
become identical, we can left-shift them away and bring in new digits at the low-
significance end. The object below has a parameter NWK for the number of working
digits to keep around. This must be large enough to make the chance of an acciden-
tal degeneracy vanishingly small. (The object signals if a degeneracy ever occurs.)



�

�

“nr3” — 2007/5/1 — 20:53 — page 1182 — #1204
�

�

� �

1182 Chapter 22. Less-Numerical Algorithms
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0.46

0.42

0.41

0.37

0.385

0.380

0.4033

0.3763

0.37819

0.37630

0.3780

0.3764

0.44

0.43

0.390

0.395

0.400

0.3766

0.3768

0.3772

0.3774

0.3778

0.3776

0.45

0.40

0.39

0.38

0.3770

Figure 22.6.1. Arithmetic coding of the message “IOU...” in the fictitious language Vowellish. Successive
characters give successively finer subdivisions of the initial interval between 0 and 1. The final value can
be output as the digits of a fraction in any desired radix. Note how the subinterval allocated to a character
is proportional to its probability of occurrence.

Since the process of discarding old digits and bringing in new ones is performed
identically on encoding and decoding, everything stays synchronized.

In the Arithcode object below, the constructor has arguments to specify the
number of characters and an integer frequency-of-occurrence table (as in Huffcode),
plus an argument that allows you to specify an output radix for the code. Because
there is some saved state between coding successive characters (the upper and lower
bounds forR, for example), you must call messageinit prior to encoding or decod-
ing the first character of a new message, and not interleave the encoding of different
messages in a single instance of Arithcode. If you want to interleave messages,
create more than one instance.

Successive calls to codeone for each input character encode the message. A
final call with character nch (that is, one larger than your specified character set)
adds the EOM marker and is mandatory. After this final call, lcd will be set to
the number of bytes in the coded message (i.e., will point to the first unused loca-
tion in code). The decodeone routine similarly returns successive characters of the
decoded message in turn, with nch returned to indicate EOM.

Unlike the Huffcode object, Arithcode has no provision for omitting speci-
fied message characters from the code. Therefore, it also refuses to believe zero val-
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ues in the table nfreq; a 0 is treated as if it were a 1. If you want to live dangerously,
with a very slightly more efficient coding, you can change this in the constructor.

struct Arithcode { arithcode.h
Object for arithmetic coding.

Int nch,nrad,ncum;
Uint jdif,nc,minint;
VecUint ilob,iupb;
VecInt ncumfq;
static const Int NWK=20; Number of working digits.

Arithcode(VecInt_I &nfreq, const Int nnch, const Int nnrad)
: nch(nnch), nrad(nnrad), ilob(NWK), iupb(NWK), ncumfq(nch+2) {
Constructor. Given the frequency of occurrence table nfreq[0..nnch-1] for nnch charac-
ters, constructs the Huffman code whose output has radix nnrad (which must be � 256).

Int j;
if (nrad > 256) throw("output radix must be <= 256 in Arithcode");
minint=numeric_limits<Uint>::max()/nrad;
ncumfq[0]=0;
for (j=1;j<=nch;j++) ncumfq[j]=ncumfq[j-1]+MAX(nfreq[j-1],1);
ncum=ncumfq[nch+1]=ncumfq[nch]+1;

}

void messageinit() {
Clear saved state for a new message (either encode or decode). This is mandatory before
encoding or decoding the first character.

Int j;
jdif=nrad-1;
for (j=NWK-1;j>=0;j--) { Initialize enough digits of the upper and lower

bounds.iupb[j]=nrad-1;
ilob[j]=0;
nc=j;
if (jdif > minint) return; Initialization complete.
jdif=(jdif+1)*nrad-1;

}
throw("NWK too small in arcode.");

}

void codeone(const Int ich, char *code, Int &lcd) {
Encode the single character ich in the range 0 : : : nch-1 into the byte array code, starting
at location code[lcd] and (if necessary) incrementing lcd so that, on return, it points to
the first unused byte in code. A final call with ich=nch encodes “end of message.” Byte
values written into code will be in the range 0 : : : nrad� 1.

if (ich > nch) throw("bad ich in Arithcode"); Check for valid input char-
acter.advance(ich,code,lcd,1);

}

Int decodeone(char *code, Int &lcd) {
Decode and return a single message character, using code starting at location code[lcd],
and (if necessary) increment lcd appropriately. Successive calls return successive message
characters. The returned value nch indicates end of message (subsequent calls will return
nonsense).

Int ich;
Uint j,ihi,ja,m;
ja=(Uchar) code[lcd]-ilob[nc];
for (j=nc+1;j<NWK;j++) {

ja *= nrad;
ja += Uchar(code[lcd+j-nc])-ilob[j];

}
ihi=nch+1;
ich=0;
while (ihi-ich > 1) { If decoding, locate the character ich by bisection.
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m=(ich+ihi)>>1;
if (ja >= multdiv(jdif,ncumfq[m],ncum)) ich=m;
else ihi=m;

}
if (ich != nch) advance(ich,code,lcd,-1);
return ich;

}

void advance(const Int ich, char *code, Int &lcd, const Int isign) {
Used internally. Operations common to encoding and decoding. Convert character ich to
a new subrange [ilob,iupb).

Uint j,k,jh,jl;
jh=multdiv(jdif,ncumfq[ich+1],ncum);
jl=multdiv(jdif,ncumfq[ich],ncum);
jdif=jh-jl;
arrsum(ilob,iupb,jh,NWK,nrad,nc);
arrsum(ilob,ilob,jl,NWK,nrad,nc);
for (j=nc;j<NWK;j++) { How many leading digits to output (if en-

coding) or skip over?if (ich != nch && iupb[j] != ilob[j]) break;
if (isign > 0) code[lcd] = ilob[j];
lcd++;

}
if (j+1 > NWK) return; Ran out of message. Did someone forget to

encode a terminating ncd?nc=j;
for(j=0;jdif<minint;j++) How many digits to shift?

jdif *= nrad;
if (j > nc) throw("NWK too small in arcode.");
if (j != 0) { Shift them.

for (k=nc;k<NWK;k++) {
iupb[k-j]=iupb[k];
ilob[k-j]=ilob[k];

}
}
nc -= j;
for (k=NWK-j;k<NWK;k++) iupb[k]=ilob[k]=0;
return; Normal return.

}

inline Uint multdiv(const Uint j, const Uint k, const Uint m) {
Calculate (k*j)/m without overflow by use of double-length integers.

return Uint((Ullong(j)*Ullong(k)/Ullong(m)));
}

void arrsum(VecUint_I &iin, VecUint_O &iout, Uint ja,
const Int nwk, const Uint nrad, const Uint nc) {
Add the integer ja to the radix nrad multiple-precision integer iin[nc..nwk-1]. Return
the result in iout[nc..nwk-1].

Uint karry=0,j,jtmp;
for (j=nwk-1;j>nc;j--) {

jtmp=ja;
ja /= nrad;
iout[j]=iin[j]+(jtmp-ja*nrad)+karry;
if (iout[j] >= nrad) {

iout[j] -= nrad;
karry=1;

} else karry=0;
}
iout[nc]=iin[nc]+ja+karry;

}
};

A few further notes: When an interval of size jdif is to be partitioned in the
proportions of some n to some ntot, say, then we must compute (n*jdif)/ntot.
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With ordinary integer arithmetic, the numerator is likely to overflow; and, unfortu-
nately, an expression like jdif/(ntot/n) is not equivalent. We therefore need to
use double-length integers, type Ullong, usually 64 bits, just for this operation.

The internally set variable minint, which is the minimum allowed number
of discrete steps between the upper and lower bounds, determines when new low-
significance digits are added. minint must be large enough to provide resolution
of all the input characters. That is, we must have pi � minint > 1 for all i . A
value of 100Nch, or 1:1=minpi , whichever is larger, is generally adequate. How-
ever, for safety, the routine takes minint to be as large as possible, with the product
minint*nradd just smaller than overflow. This results in some time inefficiency,
and in a few unnecessary characters being output at the end of a message. You can
decrease minint if you want to live closer to the edge.

If radix-changing, rather than compression, is your primary aim (for example to
convert an arbitrary file into printable characters), then you are of course free to set
all the components of nfreq equal, say, to 1.

While the output radix is limited to 256 (so that values fit into a byte), the input
alphabet size Nch D nch can be less than, equal to, or greater than 256.

CITED REFERENCES AND FURTHER READING:

Sayood, K. 2005, Introduction to Data Compression, 3rd ed. (San Francisco: Morgan Kauf-
mann).

Salomon, D. 2004, Data Compression: The Complete Reference, 3rd ed. (New York: Springer).

Wayner, P. 1999, Compression Algorithms for Real Programmers (San Francisco: Morgan Kauf-
mann).

Witten, I.H., Neal, R.M., and Cleary, J.G. 1987, “Arithmetic Coding for Data Compression,” Com-
munications of the ACM, vol. 30, pp. 520–540.[1]

22.7 Arithmetic at Arbitrary Precision
Let’s compute the number 	 to a couple of thousand decimal places. In doing

so, we’ll learn some things about multiple precision arithmetic on computers and
meet quite an unusual application of the fast Fourier transform (FFT). We’ll also
develop a set of routines that you can use for other calculations at any desired level
of arithmetic precision.

To start with, we need an analytic algorithm for 	 . Useful algorithms are quad-
ratically convergent, i.e., they double the number of significant digits at each itera-
tion. Quadratically convergent algorithms for 	 are based on the AGM (arithmetic
geometric mean) method, which also finds application to the calculation of elliptic
integrals (cf. �6.12) and in advanced implementations of the ADI method for ellip-
tic partial differential equations (�20.5). Borwein and Borwein [1] treat this subject,
which is beyond our scope here. One of their algorithms for 	 starts with the initial-
izations

X0 D
p
2

	0 D 2C
p
2

Y0 D
4
p
2

(22.7.1)
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and then, for i D 0; 1; : : : , repeats the iteration

XiC1 D
1

2

�p
Xi C

1
p
Xi

�
	iC1 D 	i

�
XiC1 C 1

Yi C 1

�

YiC1 D

Yi
p
XiC1 C

1p
XiC1

Yi C 1

(22.7.2)

The value 	 emerges as the limit 	1.
Now to the question of how to do arithmetic to arbitrary precision: In a high-

level language like C++, a natural choice is to work in radix (base) 256, so that
character arrays can be directly interpreted as strings of digits. At the very end of
our calculation, we will want to convert our answer to radix 10, but that is essentially
a frill for the benefit of human ears, accustomed to the familiar chant, “three point
one four one five nine. . . .” For any less frivolous calculation, we would likely never
leave base 256 (or the thence trivially reachable hexadecimal, octal, or binary bases).

We will adopt the convention of storing digit strings in the “human” ordering,
that is, with the first stored digit in an array being most significant, the last stored digit
being least significant. The opposite convention would, of course, also be possible.
“Carries,” where we need to partition a number larger than 255 into a low-order
byte and a high-order carry, present a minor programming annoyance, solved, in the
routines below, by the use of the functions lobyte and hibyte. It will be our usual
convention to assume that the digit strings represent floating-point numbers with the
radix point falling after the the first digit. When an operation results in a number
that requires more digits in front of the decimal point, it is the responsibility of the
user to shift the digits to the right and keep track of any excess factors of 256 that
this implies.

It is easy at this point, following Knuth [2], to write a routines for the “fast”
arithmetic operations: short addition (adding a single byte to a string), addition,
subtraction, short multiplication (multiplying a string by a single byte), short di-
vision, ones-complement negation, and a couple of utility operations, copying and
left-shifting strings. These are implemented in the following MParith object. The
additional routines that are declared, but not defined, are discussed below.

struct MParith {mparith.h
Multiple precision arithmetic operations done on character strings, interpreted as radix 256
numbers with the radix point after the first digit. Implementations for the simpler operations
are listed here.

void mpadd(VecUchar_O &w, VecUchar_I &u, VecUchar_I &v) {
Adds the unsigned radix 256 numbers u and v, yielding the unsigned result w. To achieve
the full available accuracy, the array w must be longer, by one element, than the shorter of
the two arrays u and v.

Int j,n=u.size(),m=v.size(),p=w.size();
Int n_min=MIN(n,m),p_min=MIN(n_min,p-1);
Uint ireg=0;
for (j=p_min-1;j>=0;j--) {

ireg=u[j]+v[j]+hibyte(ireg);
w[j+1]=lobyte(ireg);

}
w[0]=hibyte(ireg);
if (p > p_min+1)
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for (j=p_min+1;j<p;j++) w[j]=0;
}

void mpsub(Int &is, VecUchar_O &w, VecUchar_I &u, VecUchar_I &v) {
Subtracts the unsigned radix 256 number v from u yielding the unsigned result w. If the
result is negative (wraps around), is is returned as �1; otherwise it is returned as 0. To
achieve the full available accuracy, the array w must be as long as the shorter of the two
arrays u and v.

Int j,n=u.size(),m=v.size(),p=w.size();
Int n_min=MIN(n,m),p_min=MIN(n_min,p-1);
Uint ireg=256;
for (j=p_min-1;j>=0;j--) {

ireg=255+u[j]-v[j]+hibyte(ireg);
w[j]=lobyte(ireg);

}
is=hibyte(ireg)-1;
if (p > p_min)

for (j=p_min;j<p;j++) w[j]=0;
}

void mpsad(VecUchar_O &w, VecUchar_I &u, const Int iv) {
Short addition: The integer iv (in the range 0 � iv � 255) is added to the least significant
radix position of unsigned radix 256 number u, yielding result w. To ensure that the result
does not require two digits before the radix point, one may first right-shift the operand u
so that the first digit is 0, and keep track of multiples of 256 separately.

Int j,n=u.size(),p=w.size();
Uint ireg=256*iv;
for (j=n-1;j>=0;j--) {

ireg=u[j]+hibyte(ireg);
if (j+1 < p) w[j+1]=lobyte(ireg);

}
w[0]=hibyte(ireg);
for (j=n+1;j<p;j++) w[j]=0;

}

void mpsmu(VecUchar_O &w, VecUchar_I &u, const Int iv) {
Short multiplication: The unsigned radix 256 number u is multiplied by the integer iv (in
the range 0 � iv � 255), yielding result w. To ensure that the result does not require two
digits before the radix point, one may first right-shift the operand u so that the first digit
is 0, and keep track of multiples of 256 separately.

Int j,n=u.size(),p=w.size();
Uint ireg=0;
for (j=n-1;j>=0;j--) {

ireg=u[j]*iv+hibyte(ireg);
if (j < p-1) w[j+1]=lobyte(ireg);

}
w[0]=hibyte(ireg);
for (j=n+1;j<p;j++) w[j]=0;

}

void mpsdv(VecUchar_O &w, VecUchar_I &u, const Int iv, Int &ir) {
Short division: The unsigned radix 256 number u is divided by the integer iv (in the range
0 � iv � 255), yielding a quotient w and a remainder ir (with 0 � ir � 255). To achieve
the full available accuracy, the array w must be as long as the array u.

Int i,j,n=u.size(),p=w.size(),p_min=MIN(n,p);
ir=0;
for (j=0;j<p_min;j++) {

i=256*ir+u[j];
w[j]=Uchar(i/iv);
ir=i % iv;

}
if (p > p_min)

for (j=p_min;j<p;j++) w[j]=0;
}
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void mpneg(VecUchar_IO &u) {
Ones-complement negate the unsigned radix 256 number u.

Int j,n=u.size();
Uint ireg=256;
for (j=n-1;j>=0;j--) {

ireg=255-u[j]+hibyte(ireg);
u[j]=lobyte(ireg);

}
}

void mpmov(VecUchar_O &u, VecUchar_I &v) {
Move the unsigned radix 256 number v into u. To achieve full accuracy, the array v must
be as long as the array u.

Int j,n=u.size(),m=v.size(),n_min=MIN(n,m);
for (j=0;j<n_min;j++) u[j]=v[j];
if (n > n_min)

for(j=n_min;j<n-1;j++) u[j]=0;
}

void mplsh(VecUchar_IO &u) {
Left-shift digits of unsigned radix 256 number u. The final element of the array is set to 0.

Int j,n=u.size();
for (j=0;j<n-1;j++) u[j]=u[j+1];
u[n-1]=0;

}

Uchar lobyte(Uint x) {return (x & 0xff);}
Uchar hibyte(Uint x) {return ((x >> 8) & 0xff);}

The following, more complicated, methods have discussion and implementation below.
void mpmul(VecUchar_O &w, VecUchar_I &u, VecUchar_I &v);
void mpinv(VecUchar_O &u, VecUchar_I &v);
void mpdiv(VecUchar_O &q, VecUchar_O &r, VecUchar_I &u, VecUchar_I &v);
void mpsqrt(VecUchar_O &w, VecUchar_O &u, VecUchar_I &v);
void mp2dfr(VecUchar_IO &a, string &s);
string mppi(const Int np);

};

Full multiplication of two strings of digits, if done by the traditional hand
method, is not a fast operation: In multiplying two strings of length N , the mul-
tiplicand would be short-multiplied in turn by each byte of the multiplier, requiring
O.N 2/ operations in all. We will see, however, that all the arithmetic operations on
numbers of length N can in fact be done in O.N � logN � log logN/ operations.

The trick is to recognize that multiplication is essentially a convolution (�13.1)
of the digits of the multiplicand and multiplier, followed by some kind of carry op-
eration. Consider, for example, two ways of writing the calculation 456 � 789:

456
� 789

4104
3648

3192
359784

4 5 6
� 7 8 9

36 45 54
32 40 48

28 35 42
28 67 118 93 54

3 5 9 7 8 4

The tableau on the left shows the conventional method of multiplication, in which
three separate short multiplications of the full multiplicand (by 9, 8, and 7) are added
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to obtain the final result. The tableau on the right shows a different method (some-
times taught for mental arithmetic), where the single-digit cross products are all com-
puted (e.g. 8 � 6 D 48), then added in columns to obtain an incompletely carried
result (here, the list 28; 67; 118; 93; 54). The final step is a single pass from right to
left, recording the single least-significant digit and carrying the higher digit or digits
into the total to the left (e.g. 93C 5 D 98, record the 8, carry 9).

You can see immediately that the column sums in the right-hand method are
components of the convolution of the digit strings, for example 118 D 4 � 9C 5 �

8C 6 � 7. In �13.1, we learned how to compute the convolution of two vectors by
the fast Fourier transform (FFT): Each vector is FFT’d, the two complex transforms
are multiplied, and the result is inverse-FFT’d. Since the transforms are done with
floating arithmetic, we need sufficient precision so that the exact integer value of each
component of the result is discernible in the presence of roundoff error. We should
therefore allow a (conservative) few times log2.log2N/ bits for roundoff in the FFT.
A number of length N bytes in radix 256 can generate convolution components as
large as the order of .256/2N , thus requiring 16C log2N bits of precision for exact
storage. If it is the number of bits in the floating mantissa (cf. �22.2), we obtain the
condition

16C log2N C few � log2 log2N < it (22.7.3)

We see that single precision, say with it D 24, is inadequate for any interesting
value of N , while double precision, say with it D 53, allows N to be greater
than 106, corresponding to some millions of decimal digits. The use of Doub in the
routines realft (�12.3) and four1 (�12.2) is therefore a necessity, not merely a
convenience, for this application.

void MParith::mpmul(VecUchar_O &w, VecUchar_I &u, VecUchar_I &v) { mparith.h
Uses fast Fourier transform to multiply the unsigned radix 256 integers u[0..n-1] and v[0..m-1],
yielding a product w[0..n+m-1].

const Doub RX=256.0;
Int j,nn=1,n=u.size(),m=v.size(),p=w.size(),n_max=MAX(m,n);
Doub cy,t;
while (nn < n_max) nn <<= 1; Find the smallest usable power of 2 for the transform.
nn <<= 1;
VecDoub a(nn,0.0),b(nn,0.0);
for (j=0;j<n;j++) a[j]=u[j]; Move U and V to double precision floating arrays.
for (j=0;j<m;j++) b[j]=v[j];
realft(a,1); Perform the convolution: First, the two Fourier trans-

forms.realft(b,1);
b[0] *= a[0]; Then multiply the complex results (real and imagi-

nary parts).b[1] *= a[1];
for (j=2;j<nn;j+=2) {

b[j]=(t=b[j])*a[j]-b[j+1]*a[j+1];
b[j+1]=t*a[j+1]+b[j+1]*a[j];

}
realft(b,-1); Then do the inverse Fourier transform.
cy=0.0; Make a final pass to do all the carries.
for (j=nn-1;j>=0;j--) {

t=b[j]/(nn >> 1)+cy+0.5; The 0.5 allows for roundoff error.
cy=Uint(t/RX);
b[j]=t-cy*RX;

}
if (cy >= RX) throw("cannot happen in mpmul");
for (j=0;j<p;j++) w[j]=0;
w[0]=Uchar(cy); Copy answer to output.
for (j=1;j<MIN(n+m,p);j++) w[j]=Uchar(b[j-1]);

}
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With multiplication thus a “fast” operation, division is best performed by mul-
tiplying the dividend by the reciprocal of the divisor. The reciprocal of a value V is
calculated by iteration of Newton’s rule,

UiC1 D Ui .2 � V Ui / (22.7.4)

which results in the quadratic convergence of U1 to 1=V , as you can easily prove.
(Many historical supercomputers, and some more recent RISC processors, actually
use this iteration to perform divisions.) We can now see where the operations count
N logN log logN , mentioned above, originates: N logN is in the Fourier trans-
form, with the iteration to converge Newton’s rule giving an additional factor of
log logN .

void MParith::mpinv(VecUchar_O &u, VecUchar_I &v) {mparith.h
Character string v[0..m-1] is interpreted as a radix 256 number with the radix point after
(nonzero) v[0]; u[0..n-1] is set to the most significant digits of its reciprocal, with the radix
point after u[0].

const Int MF=4;
const Doub BI=1.0/256.0;
Int i,j,n=u.size(),m=v.size(),mm=MIN(MF,m);
Doub fu,fv=Doub(v[mm-1]);
VecUchar s(n+m),r(2*n+m);
for (j=mm-2;j>=0;j--) { Use ordinary floating arithmetic to get an initial

approximation.fv *= BI;
fv += v[j];

}
fu=1.0/fv;
for (j=0;j<n;j++) {

i=Int(fu);
u[j]=Uchar(i);
fu=256.0*(fu-i);

}
for (;;) { Iterate Newton’s rule to convergence.

mpmul(s,u,v); Construct 2�UV in S .
mplsh(s);
mpneg(s);
s[0] += Uchar(2); Multiply SU into U .
mpmul(r,s,u);
mplsh(r);
mpmov(u,r);
for (j=1;j<n-1;j++) If fractional part of S is not zero, it has not

converged to 1.if (s[j] != 0) break;
if (j==n-1) return;

}
}

Division now follows as a simple corollary, with only the necessity of calculat-
ing the reciprocal to sufficient accuracy to get an exact quotient and remainder.

void MParith::mpdiv(VecUchar_O &q, VecUchar_O &r, VecUchar_I &u, VecUchar_I &v) {mparith.h
Divides unsigned radix 256 integers u[0..n-1] by v[0..m-1] (with m � n required), yielding a
quotient q[0..n-m] and a remainder r[0..m-1].

const Int MACC=1;
Int i,is,mm,n=u.size(),m=v.size(),p=r.size(),n_min=MIN(m,p);
if (m > n) throw("Divisor longer than dividend in mpdiv");
mm=m+MACC;
VecUchar s(mm),rr(mm),ss(mm+1),qq(n-m+1),t(n);
mpinv(s,v); Set S D 1=V .
mpmul(rr,s,u); Set Q D SU .
mpsad(ss,rr,1);
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mplsh(ss);
mplsh(ss);
mpmov(qq,ss);
mpmov(q,qq);
mpmul(t,qq,v); Multiply and subtract to get the remainder.
mplsh(t);
mpsub(is,t,u,t);
if (is != 0) throw("MACC too small in mpdiv");
for (i=0;i<n_min;i++) r[i]=t[i+n-m];
if (p>m) for (i=m;i<p;i++) r[i]=0;

}

Square roots are calculated by a Newton’s rule much like division. If

UiC1 D
1
2
Ui .3 � V U

2
i / (22.7.5)

then U1 converges quadratically to 1=
p
V . A final multiplication by V gives

p
V .

void MParith::mpsqrt(VecUchar_O &w, VecUchar_O &u, VecUchar_I &v) { mparith.h
Character string v[0..m-1] is interpreted as a radix 256 number with the radix point after
v[0]; w[0..n-1] is set to its square root (radix point after w[0]), and u[0..n-1] is set to the
reciprocal thereof (radix point before u[0]). w and u need not be distinct, in which case they
are set to the square root.

const Int MF=3;
const Doub BI=1.0/256.0;
Int i,ir,j,n=u.size(),m=v.size(),mm=MIN(m,MF);
VecUchar r(2*n),x(n+m),s(2*n+m),t(3*n+m);
Doub fu,fv=Doub(v[mm-1]);
for (j=mm-2;j>=0;j--) { Use ordinary floating arithmetic to get an initial ap-

proximation.fv *= BI;
fv += v[j];

}
fu=1.0/sqrt(fv);
for (j=0;j<n;j++) {

i=Int(fu);
u[j]=Uchar(i);
fu=256.0*(fu-i);

}
for (;;) { Iterate Newton’s rule to convergence.

mpmul(r,u,u); Construct S D .3� VU 2/=2.
mplsh(r);
mpmul(s,r,v);
mplsh(s);
mpneg(s);
s[0] += Uchar(3);
mpsdv(s,s,2,ir);
for (j=1;j<n-1;j++) { If fractional part of S is not zero, it has not con-

verged to 1.if (s[j] != 0) {
mpmul(t,s,u); Replace U by SU .
mplsh(t);
mpmov(u,t);
break;

}
}
if (j<n-1) continue;
mpmul(x,u,v); Get square root from reciprocal and return.
mplsh(x);
mpmov(w,x);
return;

}
}
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We already mentioned that radix conversion to decimal is a merely cosmetic
operation that should normally be omitted. The simplest way to convert a fraction to
decimal is to multiply it repeatedly by 10, picking off (and subtracting) the resulting
integer part. This has an operations count of O.N 2/, however, since each liberated
decimal digit takes an O.N/ operation. It is possible to do the radix conversion as
a fast operation by a “divide-and-conquer” strategy, in which the fraction is (fast)
multiplied by a large power of 10, enough to move about half the desired digits
to the left of the radix point. The integer and fractional pieces are now processed
independently, each further subdivided. If our goal were a few billion digits of 	 ,
instead of a few thousand, we would need to implement this scheme. For present
purposes, the following lazy routine is adequate:

void MParith::mp2dfr(VecUchar_IO &a, string &s)mparith.h
Converts a radix 256 fraction a[0..n-1] (radix point before a[0]) to a decimal fraction repre-
sented as an ASCII string s[0..m-1], where m is a returned value. The input array a[0..n-1]
is destroyed. NOTE: For simplicity, this routine implements a slow (/ N 2) algorithm. Fast
(/ N lnN ), more complicated, radix conversion algorithms do exist.
{

const Uint IAZ=48;
char buffer[4];
Int j,m;

Int n=a.size();
m=Int(2.408*n);
sprintf(buffer,"%d",a[0]);
s=buffer;
s += ’.’;
mplsh(a);
for (j=0;j<m;j++) {

mpsmu(a,a,10);
s += a[0]+IAZ;
mplsh(a);

}
}

Finally, then, we arrive at a routine implementing equations (22.7.1) and (22.7.2):

string MParith::mppi(const Int np) {mparith.h
Demonstrate multiple precision routines by calculating and printing the first np bytes of 	.

const Uint IAOFF=48,MACC=2;
Int ir,j,n=np+MACC;
Uchar mm;
string s;
VecUchar x(n),y(n),sx(n),sxi(n),z(n),t(n),pi(n),ss(2*n),tt(2*n);
t[0]=2; Set T D 2.
for (j=1;j<n;j++) t[j]=0;

mpsqrt(x,x,t); Set X0 D
p
2.

mpadd(pi,t,x); Set 	0 D 2C
p
2.

mplsh(pi);

mpsqrt(sx,sxi,x); Set Y0 D 2
1=4.

mpmov(y,sx);
for (;;) {

mpadd(z,sx,sxi); Set XiC1 D .X
1=2

i
CX

�1=2

i
/=2.

mplsh(z);
mpsdv(x,z,2,ir);

mpsqrt(sx,sxi,x); Form the temporary T D YiX
1=2

iC1
CX

�1=2

iC1
.

mpmul(tt,y,sx);
mplsh(tt);
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mpadd(tt,tt,sxi);
mplsh(tt);
x[0]++; Increment XiC1 and Yi by 1.
y[0]++;
mpinv(ss,y); Set YiC1 D T=.Yi C 1/.
mpmul(y,tt,ss);
mplsh(y);
mpmul(tt,x,ss); Form temporary T D .XiC1 C 1/=.Yi C 1/.
mplsh(tt);
mpmul(ss,pi,tt); Set 	iC1 D T	i .
mplsh(ss);
mpmov(pi,ss);
mm=tt[0]-1; If T D 1, then we have converged.
for (j=1;j < n-1;j++)

if (tt[j] != mm) break;
if (j == n-1) {

mp2dfr(pi,s);
Convert to decimal for printing. NOTE: The conversion routine, for this demon-
stration only, is a slow (/ N 2) algorithm. Fast (/ N lnN ), more complicated,
radix conversion algorithms do exist.
s.erase(Int(2.408*np),s.length());
return s;

}
}

}

Figure 22.7.1 gives the result, computed with n D 1000. As an exercise, you
might enjoy checking the first hundred digits of the figure against the first 12 terms
of Ramanujan’s celebrated identity [3]

1

	
D

p
8

9801

1X
nD0

.4n/Š .1103C 26390n/

.nŠ 396n/4
(22.7.6)

using the above routines. You might also use the routines to verify that the
number 2512 C 1 is not a prime, but has factors 2,424,833 and
7,455,602,825,647,884,208,337,395,736,200,454,918,783,366,342,657 (which are
in fact prime; the remaining prime factor being about 7:416 � 1098) [4].

CITED REFERENCES AND FURTHER READING:

Borwein, J.M., and Borwein, P.B. 1987, Pi and the AGM: A Study in Analytic Number Theory and
Computational Complexity (New York: Wiley).[1]

Knuth, D.E. 1997, Seminumerical Algorithms, 3rd ed., vol. 2 of The Art of Computer Program-
ming (Reading, MA: Addison-Wesley), �4.3.[2]

Ramanujan, S. 1927, Collected Papers of Srinivasa Ramanujan, G.H. Hardy, P.V. Seshu Aiyar,
and B.M. Wilson, eds. (Cambridge, UK: Cambridge University Press), pp. 23–39.[3]

Kolata, G. 1990, June 20, “Biggest Division a Giant Leap in Math,” The New York Times.[4]

Kronsjö, L. 1987, Algorithms: Their Complexity and Efficiency, 2nd ed. (New York: Wiley).
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3.1415926535897932384626433832795028841971693993751058209749445923078164062
862089986280348253421170679821480865132823066470938446095505822317253594081
284811174502841027019385211055596446229489549303819644288109756659334461284
756482337867831652712019091456485669234603486104543266482133936072602491412
737245870066063155881748815209209628292540917153643678925903600113305305488
204665213841469519415116094330572703657595919530921861173819326117931051185
480744623799627495673518857527248912279381830119491298336733624406566430860
213949463952247371907021798609437027705392171762931767523846748184676694051
320005681271452635608277857713427577896091736371787214684409012249534301465
495853710507922796892589235420199561121290219608640344181598136297747713099
605187072113499999983729780499510597317328160963185950244594553469083026425
223082533446850352619311881710100031378387528865875332083814206171776691473
035982534904287554687311595628638823537875937519577818577805321712268066130
019278766111959092164201989380952572010654858632788659361533818279682303019
520353018529689957736225994138912497217752834791315155748572424541506959508
295331168617278558890750983817546374649393192550604009277016711390098488240
128583616035637076601047101819429555961989467678374494482553797747268471040
475346462080466842590694912933136770289891521047521620569660240580381501935
112533824300355876402474964732639141992726042699227967823547816360093417216
412199245863150302861829745557067498385054945885869269956909272107975093029
553211653449872027559602364806654991198818347977535663698074265425278625518
184175746728909777727938000816470600161452491921732172147723501414419735685
481613611573525521334757418494684385233239073941433345477624168625189835694
855620992192221842725502542568876717904946016534668049886272327917860857843
838279679766814541009538837863609506800642251252051173929848960841284886269
456042419652850222106611863067442786220391949450471237137869609563643719172
874677646575739624138908658326459958133904780275900994657640789512694683983
525957098258226205224894077267194782684826014769909026401363944374553050682
034962524517493996514314298091906592509372216964615157098583874105978859597
729754989301617539284681382686838689427741559918559252459539594310499725246
808459872736446958486538367362226260991246080512438843904512441365497627807
977156914359977001296160894416948685558484063534220722258284886481584560285

Figure 22.7.1. The first 2398 decimal digits of 	 , computed by the routines in this section.
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Abstract Base Class (ABC) 24, 33, 34, 87, 114,
703, 874

Accelerated convergence of series 177, 211–218
Accuracy 8–12

achievable in minimization 493, 497, 503
achievable in root finding 448
contrasted with fidelity 1037, 1046
CPU different from memory 230
vs. stability 907, 931, 932, 1035, 1050

Adams-Bashford-Moulton method 943
Adams’ stopping criterion 467
Adaptive integration 901, 910–921, 928, 930,

935, 946, 995
Monte Carlo 410–418
PI stepsize control 915
predictive stepsize control 939
see also Adaptive quadrature

Adaptive quadrature 155, 167, 194–196
and singularities 195
termination criterion 194

Addition
multiple precision 1186
theorem, elliptic integrals 310

ADI (alternating direction implicit) method 1052,
1053, 1065, 1066, 1185

Adjoint operator 1071
Advanced topics (explanation) 6
Advective equation 1032
Affine scaling 543
Agglomerative clustering 873–882
AGM (arithmetic geometric mean) 1185
Airy function 254, 283, 289, 291

routine for 290
Aitken’s

delta squared process 212, 214
interpolation algorithm 118

Algorithms, less-numerical 1160–1193
Aliasing 606, 685

see also Fourier transform
Alignment of strings by DP 559–562
All-poles or all-zeros models 681, 682

see also Maximum entropy method (MEM);
Periodogram

Alternating-direction implicit method (ADI)
1052, 1053, 1065, 1066, 1185

Alternating series 211, 216

Alternative extended Simpson’s rule 160
AMD (approximate minimum degree) 544, 548
Amoeba 503

see also Simplex, method of Nelder and Mead
Amplification factor 1033, 1035, 1038, 1045,

1046
Amplitude error 1036
Analog-to-digital converter 1018, 1166
Analyticity 246
Analyze/factorize/operate package 76, 1030
Anderson-Darling statistic 739
Andrew’s sine 821
Angle

between vectors 1120, 1121
coordinates on n-sphere 1128
exterior, of polygons 1122

Annealing, method of simulated 487, 488,
549–555
assessment 554, 555
for continuous variables 550, 552–554
schedule 551, 552
thermodynamic analogy 550
traveling salesman problem 551, 552

ANSI-16 1171
ANSI/ISO C++ standard 5
Antonov-Saleev variant of Sobol’ sequence

404–406, 408, 409
Apple Mac OS X 5
Approximate inverse of matrix 63
Approximation of functions 110

by Chebyshev polynomials 234, 625
by rational functions 247–251
by wavelets 711, 712, 989
Padé approximant 212, 245–247
see also Fitting

Area
polygon 1126
sphere in n-dimensions 1128
triangle 1111

Arithmetic
arbitrary precision 1160, 1185–1193
floating point 1163
IEEE standard 1164, 1165
rounding 1164, 1165
64 bit 341

Arithmetic coding 755, 1160, 1181–1185

1195
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Arithmetic-geometric mean (AGM) method 1185
Array

assign function 27
centered subarray of 115
classes for 24–29
resize function 27
size function 27
three-dimensional 36
unit-offset 36
zero-offset 36

Artificial viscosity 1037, 1042
Ascending transformation, elliptic integrals 310
ASCII character set 1168, 1175, 1181
assign 27
Associated Legendre polynomials 971

recurrence relation for 294
relation to Legendre polynomials 293

Association, measures of 721, 741, 758–761
Asymptotic series 210, 216

exponential integral 216, 269
Attenuation factors 698
Autocorrelation

in linear prediction 673–675
use of FFT 648, 649
Wiener-Khinchin theorem 602, 682

Autoregressive model (AR) see Maximum entropy
method (MEM)

Average deviation of distribution 723
Averaging kernel, in Backus-Gilbert method

1014

B-spline 148
Backsubstitution 47, 49, 53, 56, 103

complex equations 55
direct for computing A�1 �B 53
in band-diagonal matrix 60
relaxation solution of boundary value

problems 966
Backtracking 522

in quasi-Newton methods 478–483
Backus-Gilbert method 1014–1016
Backward deflation 464, 465
Bader-Deuflhard method 940
Bahl-Cocke-Jelinek-Raviv algorithm

forward-backward algorithm 867
Bairstow’s method 466, 471
Balancing 592, 594
Band-diagonal matrix 56, 58–61

backsubstitution 60
LU decomposition 59
multiply by vector 58
storage 58

Band-pass filter 667, 670
wavelets 701

Bandwidth limited function 605
Bank accounts, checksum for 1174
Bar codes, checksum for 1174
Barrier method 541
Bartels-Golub update 535
Bartlett window 657

Barycentric coordinates 1114, 1116
Barycentric rational interpolation 113, 127, 128
Base class 23
Base of representation 8, 1164
Basin of convergence 461, 463
Basis functions in general linear least squares 788
Baum-Welch re-estimation

hidden Markov model 865–867
relation to expectation-maximization 866

Bayes’ theorem 774, 777, 825
Bayesian

approach to inverse problems 1005, 1022
contrasted with frequentist 774
estimation of parameters by MCMC 774,

824–835
lack of goodness-of-fit methods 779, 1010
normalizing constant 779
odds ratio 757, 779
parameter estimation 777, 778
prior 757, 775, 777, 1005
views on straight line fitting 787
vs. historic maximum entropy method 1022

Bayesian algorithms
hidden Markov model 868
Viterbi decoding 868

Bayesian networks 840, 841
node parents 841
nodes 840
posterior probabilities 841
prior probabilities 841

Bayesian re-estimation
hidden Markov model 864–866

Belief networks 840
forward-backward algorithm 867

Bellman-Dijkstra-Viterbi algorithm 556, 850,
853

Berlekamp-Massey decoding algorithm 852
Bernoulli number 164
Bessel functions 274–292

asymptotic form 274, 279, 284
complex 254
continued fraction 283, 284, 287, 288
fractional order 274, 283–292
Miller’s algorithm 221, 278
modified 279–283
modified, fractional order 287–289
modified, normalization formula 282, 288
modified, routines for 280
normalization formula 221
recurrence relation 219, 274, 275, 278, 281,

283–285
reflection formulas 286
reflection formulas, modified functions 289
routines for 276, 286
routines for modified functions 289
series for 210, 274
series forK� 288
series for Y� 284, 285
spherical 283, 291, 292
turning point 283
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Wronskian 283, 284, 287
Best-fit parameters 773, 781, 785, 822–824

see also Fitting
Beta function 256, 258, 259

incomplete see Incomplete beta function
Beta probability distribution 333, 334

deviates 371
gamma as limiting case 333

Betting 755–758, 760, 761
fair bet 755, 756, 758, 760, 761
proportional 758, 760

Bezier curve 148
BFGS algorithm see

Broyden-Fletcher-Goldfarb-Shanno algorithm
Bias

of exponent 8
removal in linear prediction 145, 678, 679

Biconjugacy 88
Biconjugate gradient method

elliptic partial differential equations 1030
for sparse system 88, 716
preconditioning 89, 1030

Bicubic interpolation 136–138
Bicubic spline 135
Big-endian 9
Biharmonic equation 153
Bilinear interpolation 133, 134
Binary block code 851
Binomial coefficients 256, 258

recurrences for 258
Binomial probability function 258, 338, 339

deviates from 374–377
moments of 735
Poisson as limiting case 338

Binormal distribution 746, 813
Biorthogonality 88
Bisection 115, 460

compared to minimum bracketing 492
root finding 445, 447–449, 454, 492, 584

Bispectrum 604
Bit 8, 754–756, 760, 761

phantom 9
pop count 16
reversal in fast Fourier transform (FFT) 610,

638
Bit-parallel random comparison 374
Bit-twiddling hacks 16
Bitwise logical functions 1170

test if integer a power of 2 16, 611
trick for next power of 2 16, 361

Black-Scholes formula 329
BLAST (software) 562
BLAT (software) 562
Block-by-block method 994
Bluetooth 1168
Bode’s rule 158
Boltzmann probability distribution 550
Boltzmann’s constant 550
Bolyai-Gerwien theorem 1127
Bookie, information theory view of 758

Bool 25
Bootstrap method 809, 810
Bordering method for Toeplitz matrix 96
Borwein and Borwein method for � 1185
Boundary 196, 528, 955
Boundary conditions

for differential equations 900
for spheroidal harmonics 972, 973
in multigrid method 1072
initial value problems 900
partial differential equations 620, 1025,

1053–1058
two-point boundary value problems 900,

955–984
Boundary value problems 1026

see also Differential equations; Elliptic partial
differential equations; Two-point boundary
value problems

Bounds checking 35
in vector by at 35

Box 1099–1101
test if point inside 1100
tree of, as data structure 1101

Box-Muller algorithm for normal deviate 364
Bracketing

of function minimum 445, 490–496, 503
of roots 443, 445–447, 454, 455, 464, 465,

470, 492
Branch cut, for hypergeometric function 252–254
Break iteration 15
Brenner’s FFT implementation 611, 628
Brent’s method

minimization 489, 496–499, 785
minimization, using derivative 489, 499, 500
root finding 443, 449, 453–456, 459, 786

Broyden-Fletcher-Goldfarb-Shanno algorithm
490, 521–525

Broyden’s method 474, 483–486
singular Jacobian 486

Bubble sort 420
Bugs, how to report 5
Bulirsch-Stoer

algorithm for rational function interpolation
125

for second order equations 929
method 252, 318, 900, 901, 909, 921–929,

942
method, dense output 927
method, implementation 927
method, stepsize control 924–926, 929

Burg’s LP algorithm 677
Burn-in 826, 833–835
Butterfly 360, 361, 610
Byte 8

C (programming language) 1
__FILE__ and __LINE__ macros 30
idioms 16
syntax 12–17

C++
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ANSI/ISO standard 5
C family syntax 12–17
const statement 31, 32
contiguous storage for vector 27
control structures 14, 15
error class 30
inline directive 29
NR not a textbook on 2
operator associativity 12
operator precedence 12
overloading 28
scope, temporary 20, 21
standard library 10, 24
templates 17, 22, 26, 33, 34, 419, 421
throw 30
try and catch 30
types 25
types used in NR 4
user-defined conversions 31
valarray class 25
vector class 24
virtual function 33
why used in NR 1

C# (programming language) 1, 12
Calendar algorithms 2, 3, 6, 7
Calibration 778
Cardinal functions 1089–1091
Cards, sorting a hand of 420, 422
Carlson’s elliptic integrals 310–316
Carpe diem 830
catch 30
Cauchy principal value integrals 178
Cauchy probability distribution 322, 323

deviates from 367
see also Lorentzian probability distribution

Cauchy problem for partial differential equations
1024

Cavender-Felsenstein model 873
Cayley’s representation of exp.�iHt/ 1049
CCITT (Comité Consultatif International

Télégraphique et Téléphonique) 1171, 1180
CCITT-16 1171
CDF see Cumulative Distribution Function
Center of mass 399, 400, 1113, 1127
Central limit theorem 777
Central tendency, measures of 721
Centroid see Center of mass
Change of variable

in integration 170–172, 995
in Monte Carlo integration 401
in probability distribution 362

Char 25
Character-based clustering methods 869
Characteristic polynomial

digital filter 670
eigensystems 563, 583, 665
linear prediction 676
matrix with a specified 469
of recurrence relation 221
of tridiagonal system 665

Characteristics of partial differential equations
1024–1026

Chebyshev acceleration in successive
over-relaxation (SOR) 1064

Chebyshev approximation 95, 156, 232–239
Clenshaw-Curtis quadrature 241
Clenshaw’s recurrence formula 236
coefficients for 234
contrasted with Padé approximation 245
derivative of approximated function 232, 240,

241
economization of series 243–245
even function 237
fast cosine transform and 625
for error function 264
gamma functions 285
integral of approximated function 240, 241
odd function 237
polynomial fits derived from 241, 243, 248
rational function 247–251
Remes exchange algorithm for filter 669

Chebyshev polynomials 183, 187, 233–239
basis functions for spectral methods 1085
continuous orthonormality 233
discrete orthonormality 233
explicit formulas for 233
formula for xk in terms of 233

Check digit (decimal) 1173
Checksum 1160, 1168–1175

cyclic redundancy (CRC) 1168–1173
Chemical reaction networks 946–954
Chi-by-eye 774
Chi-square fitting see Fitting; Least-squares fitting
Chi-square probability function 330, 331, 732,

778, 779, 1003
as boundary of confidence region 812
deviates from 371

Chi-square test 731–734
and confidence limit estimation 812
chi-by-eye 774
chi-square-gamma test 735
degrees of freedom 732, 733
for binned data 731–734
for contingency table 742–745
for inverse problems 1003
for straight line fitting 781
for straight line fitting, errors in both

coordinates 785
for two binned data sets 732
goodness-of-fit 780
how much��2 is significant 816
least-squares fitting 778–780
and likelihood ratio test 735
modified Neyman 735
nonlinear models 799
small numbers of counts 734, 735
for two binned data sets 735
unequal size samples 733

Chirp signal 672
Cholesky decomposition 100–102, 525, 568
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and covariance structure 378, 379
decorrelating random variables 379
multivariate Gaussian distribution 847, 848
operation count 100
pivoting 101
solution of normal equations 543, 790, 791
sparse decomposition 544, 548

Circle
inscribed or circumscribed 1112
largest empty 1147
random point on 1131

Circulant 700
Circumscribed circle (circumcircle) 1112
CLAPACK 567
Class 17–24

abstract base (ABC) 24, 33, 34, 87, 114, 703,
874

base class 23
derived 23
error class 30
inheritance 23, 24
is-a relationship 23
matrix 24–29
partial abstraction via 24
prerequisite relationship 23
public vs. private 17
pure virtual 34
suffix _I, _O, _IO 26, 32
templated 22, 33, 34
vector 24–29
see also Object

Class library 2
Classification 840–898

kernel methods 889, 892
support vector machine 883–898

Clenshaw-Curtis quadrature 156, 241, 624, 625
Clenshaw’s recurrence formula 219, 222, 223

for Chebyshev polynomials 236
stability 223

Clock, program timing routine 355
Clocking errors 1172
CLP (linear programming package) 536
Clustering

agglomerative 873–882
hierarchical 868–882
k-means 848–850
neighbor-joining (NJ) 873, 878–882

cn function 316
Coarse-grid correction 1068
Coarse-to-fine operator 1068
Codes

binary block codes 851
codeword 851
correcting bit errors 855
error-correcting 851–855
Golay code 852
Hamming code 852
Hamming distance 851, 1168
hard-decision decoding 853
linear codes 851

minimal trellis 853
perfect code 852
Reed-Solomon 852, 855
soft-decision decoding 853
syndrome decoding 852
trellis 853, 856
turbo codes 855
Viterbi decoding 854

Coding
arithmetic 755, 1181–1185
checksums 1168–1175
compression 754, 756
decoding a Huffman-encoded message 1178
Huffman 713, 1175–1180
run-length 1180
variable length code 1176
Ziv-Lempel 1176
see also Arithmetic coding; Huffman coding

Coefficients
binomial 258
for Gaussian quadrature 179, 180
for Gaussian quadrature, nonclassical weight

function 189–191, 995
for quadrature formulas 157–162, 995

Column operations on matrix 43, 45
Column totals 743, 759
Combinatorial minimization see Annealing
Comité Consultatif International Télégraphique et

Téléphonique (CCITT) 1171, 1180
Communications protocol 1168
Comparison function for rejection method 366
Compiler

check on via constructors 36
tested 5

Complementary error function see Error function
Complete elliptic integral see Elliptic integrals
Complex arithmetic 225, 226

access vector as if complex 613, 620
avoidance of in path integration 253
Complex type 25
cubic equations 228, 229
linear equations 55
quadratic equations 227

Complex error function 302
Complex plane

fractal structure for Newton’s rule 462
path integration for function evaluation

251–254, 318
poles in 124, 210, 252, 256, 670, 682, 922

Complex systems of linear equations 55
Compression of data 713, 715, 1160, 1175–1185
Computational geometry

floating point arithmetic in 1098
Computer graphics 1097
Computer vision 1097
Concordant pair for Kendall’s tau 751
Condition number 69, 89, 791, 793
Conditional entropy 758–761
Confidence level 810, 811, 814–816
Confidence limits



�

�

“nr3index” — 2007/5/1 — 20:54 — page 1200 — #6
�

�

� �

1200 Index

and chi-square 811
bootstrap method 809, 810
by Monte Carlo simulation 807–810
confidence region, confidence interval 810,

811
from singular value decomposition (SVD)

816, 817
on estimated model parameters 807–817

Confluent hypergeometric function 254, 287
Conjugate directions 509, 511, 512, 516
Conjugate gradient method

and wavelets 716
biconjugate 88
compared to variable metric method 521
elliptic partial differential equations 1030
for minimization 489, 515–520, 1011, 1020
for sparse system 87–92, 716
minimum residual method 89
preconditioner 89, 90

Conservative differential equations 928, 930
const

correctness 26, 31, 32
protects container, not contents 31, 32
to protect data 32

Constellation in Viterbi decoding 855
Constrained linear inversion method 1006
Constrained linear optimization see Linear

programming
Constrained optimization 487
Constraints

deterministic 1011–1013
linear 526, 530

Constructor 18, 27
Container, STL 421
Contingency coefficient C 743, 744
Contingency table 741–745, 753, 758, 759

statistics based on chi-square 742–745
statistics based on entropy 758–761

Continue statement 15
Continued fraction 206–209

and recurrence relation 222
Bessel functions 283, 284, 288
convergence criterion 208
equivalence transformation 208
evaluation 206–209
evaluation along with normalization condition

288
even and odd parts 208, 260, 267, 298, 301
exponential integral 267
Fresnel integral 298
incomplete beta function 270
incomplete gamma function 260
Lentz’s method 207, 260
modified Lentz’s method 208
Pincherle’s theorem 222
ratio of Bessel functions 287
rational function approximation 207, 260
recurrence for evaluating 207, 208
sine and cosine integrals 301
Steed’s method 207

tangent function 206
typography for 206

Continuous variable (statistics) 741
Control structures and scope 21
Convergence

accelerated, for series 177, 211–218
basin of 461, 463
criteria for 448, 493, 503, 598, 599, 802, 969
eigenvalues accelerated by shifting 585
exponential 174–178, 180, 238, 239,

1083–1096
golden ratio 449, 500
hyperlinear (series) 211
linear 448, 495
linear (series) 211
logarithmic (series) 211
Markov model 858
of algorithm for � 1185
of golden section search 494, 495
of Levenberg-Marquardt method 802
ofQL method 584, 585
of Ridders’ method 452
quadratic 64, 452, 459, 511, 512, 522, 1185
rate 448, 454, 457, 459
recurrence relation 222
series vs. continued fraction 206
spectral radius and 1061, 1066

Conversions, user-defined 31
Convex hull 1097, 1132, 1146
Convex sets, use in inverse problems 1011–1013
Convolution

and polynomial interpolation 129
denoted by asterisk 602
finite impulse response (FIR) 642, 643
multiple precision arithmetic 1188
multiplication as 1188
necessity for optimal filtering 645
of functions 602, 616, 617, 631
of large data sets 646, 647
overlap-add method 647
overlap-save method 646
relation to wavelet transform 700, 701
theorem 602, 641, 656
theorem, discrete 642, 643
treatment of end effects 643
use of FFT 641–647
wraparound problem 643

Cooley-Tukey FFT algorithm 616
Cornwell-Evans algorithm 1021
Corporate promotion ladder 427
Corrected distance transformation 873
Corrected two-pass algorithm 724
Correction, in multigrid method 1067
Correlation coefficient (linear) 745–748
Correlation function 602, 617

and Fourier transforms 602, 617
autocorrelation 602, 649, 673–675
theorem 602, 648
three-point 604
treatment of end effects 648
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using FFT 648, 649
Wiener-Khinchin theorem 602, 682

Correlation, statistical 721, 741
among parameters in a fit 782, 793
Kendall’s tau 749, 751–754
linear correlation coefficient 745–748, 783
linear related to least-squares fitting 745, 783
nonparametric or rank statistical 748–754
Spearman rank-order coefficient 749–751
sum squared difference of ranks 749
uncertainty coefficient 761

Coset leader 852
Cosine function, recurrence 219
Cosine integral 297, 300–302

continued fraction 301
routine for 301
series 301

Cosine transform see Fast Fourier transform
(FFT); Fourier transform

Coulomb wave function 254, 283
Counts, small numbers of 734, 735
Courant condition 1034, 1036, 1038–1040, 1042

multidimensional 1051
Courant-Friedrichs-Lewy stability criterion see

Courant condition
Covariance

a priori 824
from singular value decomposition (SVD)

817
in general linear least squares 790, 791, 794
in nonlinear models 802
in straight line fitting 782
matrix, and normal equations 790
matrix, Cholesky decomposition 101
matrix, is inverse of Hessian matrix 802
matrix, of errors 1003, 1015
matrix, when it is meaningful 812, 813
relation to chi-square 812–816

CR method see Cyclic reduction (CR)
Cramer’s V 743, 744
Crank-Nicolson method 1045, 1049, 1051, 1052
Cray, Seymour 1163
CRC (cyclic redundancy check) 1168–1173
CRC-12 1171
Critical (Nyquist) sampling 605, 607, 653
Cross˝ (denotes matrix outer product) 78
Crosstabulation analysis 742

see also Contingency table
Crout’s algorithm 49, 59
Cubic equations 227–229, 461
Cubic spline interpolation 120–124

see also Spline
Cumulative Distribution Function (cdf) 435
Curse of dimensionality 556, 891
Curvature matrix see Hessian matrix
Curve interpolation 147
Cycle, in multigrid method 1069
Cyclic Jacobi method 573
Cyclic reduction (CR) 224, 1054, 1057, 1058
Cyclic redundancy check (CRC) 1168–1173

Cyclic tridiagonal systems 79, 80

D.C. (direct current) 602
Danielson-Lanczos lemma 609, 610, 638
Data

continuous vs. binned 731
entropy 754–761, 1176
essay on 720
fitting 773–838
fraudulent 780
glitches in 777
iid (independent and identically distributed)

809
linearly separable 884
missing data points 150–154
modeling 773–838
smoothing 721, 766–772
statistical tests 720–772
unevenly or irregularly sampled 139–154,

685, 690, 771
use of CRCs in manipulating 1169
windowing 655–667
see also Statistical tests

Data compression 713, 715, 1160
arithmetic coding 1181–1185
cosine transform 625
Huffman coding 713, 1175–1181
linear predictive coding (LPC) 679–681
lossless 1175

Data Encryption Standard (DES) 358–361
Data type 8
DAUB4 700, 702, 706, 707, 711, 715
DAUB6 702
DAUB20 706
Daubechies wavelet coefficients 700–702, 704,

706–708, 715
Davidon-Fletcher-Powell algorithm 490, 521,

522
Dawson’s integral 302, 304, 717

approximation for 303
routine for 303

DE rule 174
implementation 175
infinite range 176

Decoding
Berlekamp-Massey algorithm for

Reed-Solomon code 852
directed graph 556, 850
hard-decision 853
hard-decision vs. soft-decision 855
maximum likelihood 854
Reed-Solomon codes 855
soft-decision decoding 853
syndrome decoding 852
Turbo codes 855
Viterbi algorithm 854
Viterbi, compared to hidden Markov model

867, 868
Decomposition see Cholesky decomposition; LU

decomposition;QR decomposition; Singular
value decomposition (SVD)



�

�

“nr3index” — 2007/5/1 — 20:54 — page 1202 — #8
�

�

� �

1202 Index

Deconvolution 645–647, 650
see also Convolution; Fast Fourier transform

(FFT); Fourier transform
Decorrelating random variables 379
Defect, in multigrid method 1067
Deferred approach to the limit see Richardson’s

deferred approach to the limit
Deflation

of matrix 585
of polynomials 464–466, 471

Degeneracy
kernel 992
linear algebraic equations 73, 793
minimization principle 1002

Degrees of freedom 732, 733, 778, 779, 813–815
Delaunay triangulation 1097, 1131–1149

applications of 1141–1149
incremental constructions 1134
interpolation using 1141
largest minimum angle property 1134
minimum spanning tree 1147
not minimum weight 1134

Delone, B.N. see Delaunay Triangulation
Dense output, for differential equations 904, 915,

927
Dependencies, program 4
Dependency graph or matrix 949
Derivatives

approximation by sinc expansion 178
computation via Chebyshev approximation

232, 240, 241
computation via Savitzky-Golay filters 232,

769
matrix of first partial see Jacobian determinant
matrix of second partial see Hessian matrix
numerical computation 229–232, 480, 769,

936, 960, 978
of polynomial 202
use in optimization 499–502

Derived class 23
DES see Data Encryption Standard
Descending transformation, elliptic integrals 310
Descent direction 478, 484, 522
Descriptive statistics 720–772

see also Statistical tests
Design matrix 768, 788, 1002
Design of experiments 410
Detailed balance equation 825–827
Determinant 39, 54, 55
Devex 535
Deviates, random see Random deviates
DFP algorithm see Davidon-Fletcher-Powell

algorithm
Diagonal dominance 57, 802, 987, 1060
Diagonal rational function 125
Diehard test, for random numbers 345
Difference equations, finite see Finite difference

equations (FDEs)
Difference operator 212
Differential equations 899–954

accuracy vs. stability 907, 931
Adams-Bashforth-Moulton schemes 943
adaptive stepsize control 901, 910–921,

924–926, 929, 939, 941, 943, 944, 946
algebraically difficult sets 970
backward Euler’s method 932
Bader-Deuflhard method for stiff 940
boundary conditions 900, 955, 962, 977
Bulirsch-Stoer method 252, 318, 900, 901,

909, 921–928, 942
Bulirsch-Stoer method for conservative

equations 928, 930
comparison of methods 900, 901, 942, 946,

957
conservative 928, 930
dense output 904, 915, 927
discreteness effects 946–954
eigenvalue problem 958, 973, 977–981
embedded Runge-Kutta method 911, 936
equivalence of multistep and multivalue

methods 945
Euler’s method 900, 907, 931
forward Euler’s method 931
free boundary problem 958, 983
global vs. local error 914
high-order implicit methods 934
implicit differencing 932, 933, 944
initial value problems 900
integrating to an unknown point 916
internal boundary conditions 983, 984
internal singular points 983, 984
interpolation on right-hand sides 115
Kaps-Rentrop method for stiff 934
local extrapolation 911
modified midpoint method 922, 923
multistep methods 900, 942–946
multivalue methods 942–946
Nordsieck method 944
order of method 907, 922
path integration for function evaluation

251–254, 318
predictor-corrector methods 900, 909, 934,

942–946
r.h.s. independent of x 932, 934
reduction to first-order sets 899, 956
relaxation method 957, 964–970
relaxation method, example of 971, 973–977
Rosenbrock methods for stiff 934–940
Runge-Kutta method 900, 907–921, 934, 942,

1096
Runge-Kutta method, high-order 907–910,

912
scaling stepsize to required accuracy 913, 914
second order 928, 930
semi-implicit differencing 934
semi-implicit Euler method 934, 940
semi-implicit extrapolation method 934, 935,

940, 941
semi-implicit midpoint rule 940
shooting method 956, 959–961
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shooting method, example 971, 977–981
similarity to Volterra integral equations 993
singular points 921, 962, 983, 984
solving with sinc expansions 178
step doubling 910
stepsize control 901, 910–920, 924, 929, 938,

941, 944, 946
stepsize, danger of too small 920
stiff 901, 931–941
stiff methods compared 941
stochastic simulation 946–954
Stoermer’s rule 928
see also Partial differential equations;

Two-point boundary value problems
Differentiation matrix 1091

routine for 1092
Diffusion equation 1024, 1043–1049, 1059

Crank-Nicolson method 1045, 1049, 1051,
1052

forward time centered space (FTCS) 1044,
1046, 1059

implicit differencing 1045
multidimensional 1051, 1052

Digamma function 267
Digital filtering see Filter
Dihedral angle 1116
Dihedral groupD5 1174
Dimensionality, curse of 556, 891
Dimensions (units) 801
Diminishing increment sort 422
Dingbats, Zapf 1162
Dirac delta function 700, 987
Direct method see Periodogram
Direct methods for linear algebraic equations 40
Direct product see Outer product of matrices
Directed graph

Markov model 856
stages and states 556, 850
transition matrix 856
transition probability 856
trellis 856
Viterbi decoding 850

Direction numbers, Sobol’s sequence 404
Direction of largest decrease 512
Direction set methods for minimization 489,

509–514
Dirichlet boundary conditions 1026, 1045, 1055,

1061, 1063
Discordant pair for Kendall’s tau 751
Discrete convolution theorem 642, 643
Discrete Fourier transform (DFT) 605–608

approximation to continuous transform 607,
608

see also Fast Fourier transform (FFT)
Discrete optimization 536, 549
Discrete prolate spheroidal sequence (dpss)

662–667
Discretization error 173
Discriminant 227, 572
Dispersion 1036

DISPO see Savitzky-Golay filters
Dissipation, numerical 1035
Distance matrix 869
Distributions, statistical see Statistical distributions
Divergent series 210, 211, 216
Divide-and-conquer method 589
Division

complex 226
integer vs. floating 8
multiple precision 1190
of polynomials 204, 464, 471

dn function 316
DNA sequence 559–562, 869, 884
Do-while iteration 15
Dogleg step methods 486
Domain of integration 196
Dominant solution of recurrence relation 220
Dormand-Prince parameters 912, 920
Dot �

denotes matrix multiplication 37
denotes row or column sums 759

Doub 25
Double exponential error distribution 820
Double root 443
Doubling rate 756
Downhill simplex method see Simplex, method of

Nelder and Mead
DP see Dynamic programming
dpss (discrete prolate spheroidal sequence)

662–667
Dual problem 538, 886
Dual viewpoint, in multigrid method 1077
Duality gap 538
Duplication theorem, elliptic integrals 311
DWT (discrete wavelet transform) see Wavelet

transform
Dynamic programming 555–562

Bellman-Dijkstra-Viterbi algorithm 556, 850
directed graph 556, 850

e-folding rate 756
Eardley’s equivalence class method 440
Economization of power series 243–245
Eigensystems 563–599

and integral equations 987, 992
balancing matrix 592, 594
bounds on eigenvalues 64
calculation of few eigenvectors or eigenvalues

568, 598
canned routines 567
characteristic polynomial 563, 583
completeness 564, 565
defective 564, 591, 598, 599
deflation 585
degenerate eigenvalues 563, 565
divide-and-conquer method 589
eigenvalues 563
elimination method 567, 594
factorization method 567
fast Givens reduction 578
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generalized eigenproblem 568, 569
Givens reduction 578–583
Givens transformation 587
Hermitian matrix 590
Hessenberg matrix 567, 585, 590–595, 598
Householder transformation 567, 578–584,

587, 590, 594
ill-conditioned eigenvalues 591, 592
implicit shifts 586–589
invariance under similarity transform 566
inverse iteration 568, 584, 589, 597–599
Jacobi transformation 567, 570–576, 578,

590, 599
left eigenvalues 565
list of tasks 568
Markov model transition matrix 858, 859
MRRR algorithm 589, 599
multiple eigenvalues 599
nonlinear 568, 569
nonsymmetric matrix 590–595
operation count of balancing 592
operation count of Givens reduction 578
operation count of Householder reduction

582
operation count of inverse iteration 598, 599
operation count of Jacobi method 573, 574
operation count ofQL method 585, 588
operation count ofQR method for Hessenberg

matrices 596
operation count of reduction to Hessenberg

form 594
orthogonality 564
polynomial roots and 469
QL method 584–586, 590
QR method 67, 567, 571, 584–586
QR method for Hessenberg matrices 596
real symmetric matrix 188, 576, 577, 582,

992
reduction to Hessenberg form 594, 595
relation to singular value decomposition

(SVD) 569, 570
right eigenvalues 565
shifting eigenvalues 563, 585, 596
special matrices 568
termination criterion 598, 599
tridiagonal matrix 567, 576, 577, 583–589,

598
Eigenvalue and eigenvector, defined 563
Eigenvalue problem for differential equations

958, 973, 977–981
Eigenvalues and polynomial root finding 469
EISPACK 567
Electromagnetic potential 631
Elimination see Gaussian elimination
Ellipse in confidence limit estimation 811, 814,

815
Elliptic integrals 309–316, 1185

addition theorem 310
Carlson’s forms and algorithms 310–316
Cauchy principal value 311

duplication theorem 311
Legendre 309, 314, 315
routines for 311–315
symmetric form 309, 310
Weierstrass 310

Elliptic partial differential equations 1024
alternating-direction implicit method (ADI)

1065, 1066, 1185
analyze/factorize/operate package 1030
biconjugate gradient method 1030
boundary conditions 1026
comparison of rapid methods 1058
conjugate gradient method 1030
cyclic reduction 1054, 1057, 1058
Fourier analysis and cyclic reduction (FACR)

1053–1058
Gauss-Seidel method 1060, 1061, 1068, 1078
Jacobi’s method 1060, 1061, 1068
matrix methods 1028, 1030
multigrid method 1030, 1066–1083
rapid (Fourier) method 1029, 1054–1057
relaxation method 1028, 1059–1066
spectral methods 1096
successive over-relaxation (SOR) 1061–1066,

1070
EM algorithm see Expectation-maximization

algorithm
Embedded networks 1168
Embedded Runge-Kutta method 911, 936
Encryption 358
Entropy 754–761, 1006, 1176

chain rule 759
conditional 758–761
of data 1017
relative 756

EOM (end of message) 1178, 1181
epsilon (�) algorithm 212
Equality constraints 526, 528
Equations

cubic 227–229, 461
differential see Differential equations
normal (fitting) 768, 789–793, 1007
quadratic 10, 227–229
see also Differential equations; Partial

differential equations; Root finding
Equilibrium, physical 825
Equivalence classes 419, 439–441
Equivalence transformation 208
Ergodic

Markov model 858
Ergodic property 825
Error 8–12

checksums for preventing 1172
clocking 1172
discretization 173
double exponential distribution 820
in multigrid method 1067
interpolation 113
local truncation 1077, 1078
Lorentzian distribution 820



�

�

“nr3index” — 2007/5/1 — 20:54 — page 1205 — #11
�

�

� �

Index 1205

nonnormal 779, 812, 818–824
relative truncation 1077
roundoff 10, 11, 229, 1163, 1164
series, advantage of an even 165, 923
systematic vs. statistical 778
trimming 173
truncation 11, 173, 229, 500, 910, 911, 1163
varieties of, in PDEs 1036–1038
see also Roundoff error

Error-correcting codes 851–855
Berlekamp-Massey decoding algorithm 852
binary block code 851
codeword 851
correcting bit errors 855
coset leader 852
Golay code 852
Hamming code 852
Hamming distance 851, 1168
hard-decision decoding 853
linear codes 851
minimal trellis 853
parity-check matrix 851
perfect code 852
Reed-Solomon 852, 855
soft-decision decoding 853
syndrome 852
syndrome decoding 852
trellis 853, 856
turbo codes 855
Viterbi decoding 854, 855

Error ellipse, how to draw 817, 847
Error function 259, 264–266, 718

approximation via sampling theorem 718,
719

Chebyshev approximation 264
complex 302
Fisher’s z-transformation 747
inverse 264
relation to Dawson’s integral 302
relation to Fresnel integrals 298
relation to incomplete gamma function 264
routine for 264
significance of correlation 746
sum squared difference of ranks 750

Error handling in programs 2, 30, 31, 35
Estimation of parameters see Fitting; Maximum

likelihood estimate
Estimation of power spectrum 681–684
Euclid 1098
Euler equation (fluid flow) 1037
Euler-Maclaurin summation formula 164, 167
Euler’s constant 267, 269, 300
Euler’s method for differential equations 900,

907, 931
Euler’s transformation 211, 212
Evaluation of functions see Function
Even and odd parts, of continued fraction 208,

260, 267
Even parity 1168
Exception handling in programs 2, 30, 31, 35

Expectation-maximization algorithm 842–844
expectation step (E-step) 843
for hidden Markov model 866
maximization step (M-step) 843
relation to Baum-Welch re-estimation 866

Explicit differencing 1032
Exponent in floating point format 8, 1164
Exponential convergence 174–178, 180, 238,

239, 1083–1096
Exponential integral 266–269

asymptotic expansion 269
continued fraction 267
recurrence relation 219
related to incomplete gamma function 267
relation to cosine integral 301
routine for Ei.x/ 269
routine for En.x/ 268
series 267

Exponential probability distribution 326, 327,
686
deviate from 362
relation to Poisson process 369, 829

Extended midpoint rule 157, 161, 167
Extended precision, use in iterative improvement

62
Extended Simpson’s rule 160, 994, 997

three-eighths rule 995
Extended trapezoidal rule 157, 159, 162, 167,

993
roundoff error 165

Extirpolation (so-called) 690, 691
Extrapolation 110–154

Bulirsch-Stoer method 922, 924
by linear prediction 673–681
differential equations 900
local 911
maximum entropy method as type of 683
polynomial 922, 924, 943
rational function 922
relation to interpolation 110
Romberg integration 166
see also Interpolation

Extremization see Minimization

F -distribution probability function 332, 333
deviates 371

F-test for differences of variances 728, 730
FACR see Fourier analysis and cyclic reduction

(FACR)
Facsimile standard 1180
Factorial

evaluation of 210
relation to gamma function 256
representability 257
routine for 257
routine for log 258

False position 449, 452, 454
Family tree 440
FAS (full approximation storage algorithm)

1076–1083
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Fast Fourier transform (FFT) 608–616, 640, 1160
alternative algorithms 615, 616
applications 640–719
approximation to continuous transform 608
bare routine for 611
bit reversal 610, 638
butterfly 360, 361, 610
Clenshaw-Curtis quadrature 241
convolution 616, 631, 641–647, 1189
convolution of large data sets 646, 647
Cooley-Tukey algorithm 616
correlation 648, 649
cosine transform 241, 624–627, 1056
cosine transform, second form 625, 1057
Danielson-Lanczos lemma 609, 610, 638
data sets not a power of 2 616
data smoothing 766, 767
data windowing 655–667
decimation-in-frequency algorithm 616
decimation-in-time algorithm 615
decomposition into blocks 614
differentiation matrix using 1092
discrete autocorrelation 649
discrete convolution theorem 642, 643
discrete correlation theorem 648
double frequency 690
endpoint corrections 694
external storage 637, 638
figures of merit for data windows 658
filtering 667–672
FIR filter 668, 669
for quadrature 156
for spherical harmonic transforms 296
four-step framework 615
Fourier integrals 692–699
Fourier integrals,infinite range 699
history 609
IIR filter 668–672
image processing 1010, 1012
integrals using 156
inverse of sine transform 623
large data sets 637, 638
leakage 655, 656
Lomb periodogram and 689
memory-local algorithm 638
multidimensional 627–630
multiple precision arithmetic 1185
multiple precision multiplication 1189
number-theoretic transforms 616
of real data in 2D and 3D 631–637
of real functions 617–627, 631–637
of single real function 618–620
of two real functions simultaneously 617, 618
operation count 609, 610
optimal (Wiener) filtering 649–652, 673, 674
order of storage in 611
parallel 614
partial differential equations 1029,

1054–1057
periodicity of 608

periodogram 653–656, 681, 683
power spectrum estimation 652–667
related algorithms 615, 616
Sande-Tukey algorithm 616
sine transform 620–623, 1055
Singleton’s algorithm 637, 638
six-step framework 615
spectral methods 1086
treatment of end effects in convolution 643
treatment of end effects in correlation 648
Tukey’s trick for frequency doubling 690
two real functions simultaneously 617
use in smoothing data 766, 767
virtual memory machine 638
Winograd algorithms 616
zoom transforms 615
see also Discrete Fourier transform (DFT);

Fourier transform; Spectral density
Fast Legendre transform 295, 297
Fast multipole methods 140, 1150
FASTA (software) 562
Faure sequence 404
Fax (facsimile) Group 3 standard 1180
Feasible vector 526, 538

basis vector 528
Fermi-Dirac integral 178
FFT see Fast Fourier transform (FFT)
Field, in data record 428
Figure-of-merit function 773
__FILE__ (ANSI C macro) 30
Fill-in, sparse linear equations 59, 76, 535, 544
Filon’s method 698
Filter 667–672

acausal 668
bilinear transformation method 670, 672
by fast Fourier transform (FFT) 637, 649,

667–672
causal 668, 767, 770
characteristic polynomial 670
data smoothing 766
digital 667–672
DISPO 767
finite impulse response (FIR) 642, 643, 668,

669
homogeneous modes of 670
infinite impulse response (IIR) 668–672, 681
Kalman 824
linear 668–672
low-pass for smoothing 766
nonrecursive 668
optimal (Wiener) 645, 649–652, 673, 674,

767
quadrature mirror 701, 708
realizable 668, 670, 671
recursive 668–672, 681
Remes exchange algorithm 669
Savitzky-Golay 232, 766–772
stability of 670, 671
time domain 667–672

Fine-to-coarse operator 1068
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Finite difference equations (FDEs) 964, 970, 981
accuracy of 1085
alternating-direction implicit method (ADI)

1052, 1053, 1065, 1066
art, not science 1035
Cayley’s form for unitary operator 1049
Courant condition 1034, 1036, 1038, 1042
Courant condition (multidimensional) 1051
Crank-Nicolson method 1045, 1049, 1051,

1052
eigenmodes of 1033, 1034
explicit vs. implicit schemes 1033
forward Euler 1032
forward time centered space (FTCS) 1032,

1044, 1049, 1059
implicit scheme 1045
in relaxation methods 964
Lax method 1034–1036, 1042
Lax method (multidimensional) 1050, 1051
mesh drifting instability 1040
numerical derivatives 229
partial differential equations 1027
relation to spectral methods 1093
staggered leapfrog method 1038, 1039
two-step Lax-Wendroff method 1040
upwind differencing 1037, 1042
see also Partial differential equations

Finite element methods 132, 1030
Finite impulse response (FIR) 642, 643
FIR (finite impulse response) filter 668, 669
First-class objects 397
Fisher discriminant algorithm 892
Fisher’s z-transformation 746
Fitting 773–838

basis functions 788
by Chebyshev approximation 234
by rational Chebyshev approximation

247–251
chi-square 778–780
confidence levels from singular value

decomposition (SVD) 816, 817
confidence levels related to chi-square values

812–816
confidence limits on fitted parameters

807–817
covariance matrix not always meaningful

774, 812
degeneracy of parameters 797
exponential, an 797
freezing parameters in 791, 824
Gaussians, a sum of 805
general linear least squares 788–798
how much��2 is significant 816
K–S test, caution regarding 740
Kalman filter 824
kriging 836–838
least squares 776–780
Legendre polynomials 797
Levenberg-Marquardt method 801–806, 1022
linear regression 780–785

Markov chain Monte Carlo 824–835
maximum likelihood estimation 777, 818
Monte Carlo simulation 740, 779, 807–810
multidimensional 798, 836–838
nonlinear models 799–806
nonlinear models, advanced methods 806
nonlinear problems that are linear 797
nonnormal errors 781, 812, 818–824
of sharp spectral features 682
polynomial 94, 129, 241, 243, 768, 788, 797
robust methods 818–824
standard (probable) errors on fitted parameters

781, 782, 786, 787, 790, 794, 795,
807–817

straight line 780–785, 822–824
straight line, errors in both coordinates

785–787
see also Error; Least-squares fitting; Maximum

likelihood estimate; Robust estimation
Five-point difference star 1071
Fixed point format 8
Fletcher-Powell algorithm see

Davidon-Fletcher-Powell algorithm
Fletcher-Reeves algorithm 489, 515–519
Floating point format 8–11, 1163–1165

care in numerical derivatives 229, 230
in computational geometry 1098
enabling exceptions 35, 575
history 1163
IEEE 9, 10, 34, 1164
little- vs. big-endian 9
NaN 34, 35

Flux-conservative initial value problems
1031–1043

FMG (full multigrid method) 1067, 1072–1076
for iteration 14
Formats of numbers 8–11, 1163–1165
Fortran 1

INTENT attribute 26
Forward-backward algorithm

as a sum-product algorithm 867
Bahl-Cocke-Jelinek-Raviv algorithm 867
belief propagation 867
compared to Viterbi decoding 867
hidden Markov model 861, 862, 864–867
renormalization 862

Forward deflation 464, 465
Forward difference operator 212
Forward Euler differencing 1032
Forward Time Centered Space see FTCS
Four-step framework, for FFT 615
Fourier analysis and cyclic reduction (FACR)

1054, 1058
Fourier and spectral applications 600, 640–719
Fourier integrals

attenuation factors 698
endpoint corrections 694
tail integration by parts 699
use of fast Fourier transform (FFT) 692–699
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Fourier series as basis functions for spectral
methods 1085

Fourier transform 110, 600–640
aliasing 606, 685
approximation of Dawson’s integral 303
autocorrelation 602
basis functions compared 621
contrasted with wavelet transform 699, 700,

711
convolution 602, 616, 617, 631, 641–647,

1189
correlation 602, 617, 648, 649
cosine transform 241, 624–627, 1056
cosine transform, second form 625, 1057
critical sampling 605, 653, 655
decomposition into blocks 614
definition 600
discrete Fourier transform (DFT) 233, 236,

605–608
Gaussian function 717, 718
image processing 1010, 1012
infinite range 699
inverse of discrete Fourier transform 608
method for partial differential equations

1054–1057
missing data 685
missing data, fast algorithm 689–692
Nyquist frequency 605, 607, 632, 653, 655,

685
optimal (Wiener) filtering 649–652, 673, 674
Parseval’s theorem 602, 603, 608, 654
power spectral density (PSD) 602, 603
power spectrum estimation by FFT 652–667
power spectrum estimation by maximum

entropy method 681–684
properties of 601
sampling rate 605
sampling theorem 605, 653, 655, 717–719
scalings of 601
significance of a peak in 686
sine transform 620–623, 1055
symmetries of 601
uneven sampling, fast algorithm 689–692
unevenly sampled data 685–692
wavelets and 707, 708
Wiener-Khinchin theorem 602, 674, 682
see also Fast Fourier transform (FFT); Spectral

density
Fractal region 462
Fractional step methods 1052
Fredholm alternative 987
Fredholm equations 986

eigenvalue problems 987, 992
error estimate in solution 991
first kind 986
Fredholm alternative 987
homogeneous vs. inhomogeneous 987
homogeneous, second kind 991
ill-conditioned 987
infinite range 995

inverse problems 987, 1001–1006
kernel 986
nonlinear 988
Nystrom method 989–992, 995
product Nystrom method 995
second kind 987–992
subtraction of singularity 996
symmetric kernel 992
with singularities 995–1000
with singularities, worked example 999, 1000
see also Inverse problems

Frequency domain 600
Frequency spectrum see Fast Fourier transform

(FFT)
Frequentist, contrasted with Bayesian 774
Fresnel integrals 297–300

asymptotic form 298
continued fraction 298
routine for 299
series 298

Friday the 13th 7
FSAL (first-same-as-last) 913
FTCS (forward time centered space) 1032, 1044,

1049
stability of 1033, 1044, 1060

Full approximation storage (FAS) algorithm
1076–1083

Full conditional distribution 827
Full moon 7
Full multigrid method (FMG) 1067, 1072–1076
Full Newton methods, nonlinear least squares

806
Full pivoting 43
Full weighting 1071
Function

Airy 254, 283, 289, 291
approximation 110, 233–239
associated Legendre polynomial 293, 971
autocorrelation of 602
bandwidth limited 605
Bessel 219, 254, 274–292
beta 258, 259
branch cuts of 252–254
chi-square probability 1003
complex 251
confluent hypergeometric 254, 287
convolution of 602, 617
correlation of 602, 617
Coulomb wave 254, 283
cumulative distribution (cdf) 320–339
Dawson’s integral 302, 304, 717
digamma 267
elliptic integrals 309–316, 1185
error 264–266, 298, 302, 718, 746, 750
error function 259
evaluation 201–254
evaluation by path integration 251–254, 318
exponential integral 219, 266–269, 301
factorial 256, 257
Fermi-Dirac integral 178
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Fresnel integral 297–300
functor 21–23, 444, 459, 905
gamma 256, 257
hypergeometric 252, 318–320
incomplete beta 270–273
incomplete gamma 259–263, 732, 779
inverse cumulative distribution 320–339
inverse hyperbolic 227, 310
inverse incomplete gamma 263
inverse of x log.x/ 307–309, 335
inverse trigonometric 310
Jacobian elliptic 309, 316, 317
Kolmogorov-Smirnov probability 737, 763
Legendre polynomial 219, 293, 797
log factorial 258
logarithm 310
minimization 487–562
modified Bessel 279–283
modified Bessel, fractional order 287–289
object 21
path integration to evaluate 251–254
pathological 111, 445
probability 320–339
representations of 600
routine for plotting a 444
sine and cosine integrals 297, 300–302
sn, dn, cn 316, 317
spherical Bessel 283
spherical harmonics 292–297
spheroidal harmonic 971–981
statistical 320–339
templated 17, 22, 26
utility 17
virtual 33
Weber 254

Function object see Functor
Functional iteration, for implicit equations 943
Functor 21–23, 202, 204, 237, 240, 444, 459,

660, 905, 936, 940
FWHM (full width at half maximum) 659

g++ 5
Gambling 755–758, 760, 761
Gamma function 256, 257

and area of sphere 1129
complex 257
incomplete see Incomplete gamma function

Gamma probability distribution 331, 332
as limiting case of beta 333
deviates from 369
relation to Poisson process 829
sum rule for deviates 370

Gauss-Chebyshev integration 180, 183, 187, 625
Gauss-Hermite integration 183, 995

abscissas and weights 185
normalization 185

Gauss-Jacobi integration 183
abscissas and weights 186

Gauss-Jordan elimination 41–46, 75
operation count 47, 54

solution of normal equations 790
storage requirements 44

Gauss-Kronrod quadrature 192, 195
Gauss-Laguerre integration 183, 995
Gauss-Legendre integration 183, 193

see also Gaussian integration
Gauss-Lobatto quadrature 191, 192, 195, 241,

624, 1089
Gauss-Markov estimation 144
Gauss-Radau quadrature 191
Gauss-Seidel method (relaxation) 1060–1062,

1068
nonlinear 1078

Gauss transformation 310
Gaussian

Hardy’s theorem on Fourier transforms 717
multivariate 378, 379, 842, 843, 847, 848,

1006, 1129, 1130
see also Gaussian (normal) distribution

Gaussian (normal) distribution 341, 776, 778,
1004
central limit theorem 777
Cholesky decomposition of 847, 848
deviates from 364, 365, 368, 686
kurtosis of 723, 724
multivariate 813, 842
semi-invariants of 725
sum of 12 uniform 377
tails compared to Poisson 778
two-dimensional (binormal) 746
variance of skewness of 723
see also Normal (Gaussian) distribution

Gaussian elimination 46–48, 65, 71
fill-in 59, 76, 535
in reduction to Hessenberg form 594
integral equations 993
operation count 47
relaxation solution of boundary value

problems 966, 984
Gaussian integration 159, 179–193, 238, 296,

995, 997, 1086–1089
and orthogonal polynomials 181, 1087
calculation of abscissas and weights 182–188
discrete orthogonality relation 1087
error estimate in solution 991
exponential convergence of 180, 1089
extensions of 191–193, 1089
for integral equations 988, 990
from known recurrence relation 188, 189
Golub-Welsch algorithm for weights and

abscissas 188
for incomplete beta function 271
for incomplete gamma function 260, 262
nonclassical weight function 189–191, 995
preassigned nodes 191
weight function logx 190, 191
weight functions 179–181, 995

Gaussian mixture model 842–848
Gaussian process regression 144, 836–838
Gear’s method (stiff ODEs) 934, 941
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Geiger counter 340
Gene sequencing

alignment algorithms 559–562
hidden Markov model 866

Generalized eigenvalue problems 568, 569
Generalized minimum residual method

(GMRES) 89
Genetic algorithms 840
Geometric series 211, 214
Geophysics, use of Backus-Gilbert method 1016
Gerchberg-Saxton algorithm 1012
Ghostscript 1161
Gibbs sampler 827, 828

recommended for discrete distributions 828
Gilbert and Sullivan 920
Gillespie method 947
Givens reduction 578–583, 587

fast 578
operation count 578

Glassman, A.J. 229
Global optimization 487, 488, 549–555, 774

continuous variables 552–554
difficulty of 803

Globally convergent
minimization 521–525
root finding 474, 477–486, 959, 960, 963

GLPK (linear programming package) 536
GMRES (generalized minimum residual method)

89
GNU C++ compiler 5
GNU Scientific Library 3
Gnuplot 1162
Godunov’s method 1043
Golden mean (golden ratio) 11, 449, 494, 500
Golden section search 443, 489, 496
Goldman-Tucker theorem 539
Golub-Welsch algorithm, for Gaussian quadrature

188
Goodness-of-fit 773, 779, 782, 783, 787, 813

no good Bayesian methods 779, 1010
Gram-Schmidt

orthogonalization 105, 564, 565, 589, 598
SVD as alternative to 74

Graphics, function plotting 444, 1160–1163
Gravitational potential 631
Gray code 405, 1160, 1166–1168
Greenbaum, A. 90
Gregorian calendar 6
Grid square 132
Gridding 150–154
Group, dihedral 1174
Guard digits 1164

Half weighting 1071
Halley’s method 263, 264, 271, 335, 463
Halton’s quasi-random sequence 404
Hamming code 852
Hamming distance 873

error-correcting codes 851, 1168
Hamming window 658

Hamming’s motto 443
Hann window 657
Hard-decision

decoding 853
error correction 855

Harmonic analysis see Fourier transform
Harwell-Boeing format 83
Hash

collision strategy 387, 390
examples 396
function 352, 387–389
key 387
memory 392–397
multimap memory 394–397
table 386–392
of whole array 358–361

Heap (data structure) 426, 434, 952, 1178
Heapsort 420, 426–428, 434
Helmholtz equation 1057
Hermite interpolation 916
Hermite polynomials 183, 185
Hermitian matrix 564, 590
Hertz (unit of frequency) 600
Hessenberg matrix 105, 567, 585, 590–595, 598
QR algorithm 596
see also Matrix

Hessian matrix 483, 510, 517, 521, 522,
799–801, 1011, 1020, 1021
is inverse of covariance matrix 802
second derivatives in 800, 801

Hidden Markov model 856–868
backward estimate 861
Baum-Welch re-estimation 865–867
Bayesian nature of 868
Bayesian posterior probability 860, 861, 864
Bayesian re-estimation 864–866
compared to Viterbi algorithm 867, 868
convergence of Baum-Welch re-estimation

866
expectation-maximization algorithm 866
forward-backward algorithm 861, 862,

864–867
forward estimate 860
gene sequencing 866
hidden state 859
know intermediate states 864
missing data 864
observations 859
re-estimation of symbol probability matrix

865
re-estimation of transition probabilities 865
renormalization 862
speech recognition 866
symbols 859
trellis decoding 864
variations 864

Hierarchical clustering 868–882
Hierarchically band-diagonal matrix 716
High-order not same as high-accuracy 112, 156,

238, 489, 500, 908, 911, 943
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High-pass filter 667
Higher-order statistics 604
Hilbert matrix 94
Hilbert’s Third Problem 1127
Histogram, variable-size bins 438
Historic maximum entropy method 1022
Hobson’s choice 704
Homogeneous linear equations 69
Hook step methods 486
HOPDM (software) 548
Hotelling’s method for matrix inverse 64, 716
Householder transformation 67, 567, 578–584,

586, 587, 590, 594
inQR decomposition 103
operation count 582

Huffman coding 680, 713, 1160, 1175–1181
Hull, convex 1097, 1132, 1146
Hyperbolic functions, explicit formulas for inverse

227
Hyperbolic partial differential equations 1024

advective equation 1032
flux-conservative initial value problems

1031–1043
Hypergeometric function 252, 318–320

routine for 318, 319
Hypothesis, null 720

_I 26, 32, 36
IBM

bad random number generator 344
checksum 1174
radix base for floating point arithmetic 592

ICF (intrinsic correlation function) model 1022
Identity (unit) matrix 39
Idioms 16
IEEE floating point format 9, 10, 34, 257
if structure 14

warning about nesting 14
IIR (infinite impulse response) filter 668–672,

681
Ill-conditioned integral equations 987
Image processing 631, 1010

as an inverse problem 1010
cosine transform 625
fast Fourier transform (FFT) 631, 637, 1010
from modulus of Fourier transform 1012
maximum entropy method (MEM)

1016–1022
QO tree and 1150
wavelet transform 713, 715

Implicit
function theorem 442
pivoting 44
shifts inQL method 586–589

Implicit differencing 1033
for diffusion equation 1045
for stiff equations 932, 933, 944

Importance sampling, in Monte Carlo 411, 412,
414, 835, 836

Improper integrals 167–172

Impulse response function 641–643, 649, 668
IMSL 3, 40, 76, 466, 470, 568
IMT (Iri, Moriguti, Takasawa) rule 173
In-place selection 439
Include files 3, 4
Incomplete beta function 270–273

for F-test 730
for Student’s t 729
routine for 273

Incomplete gamma function 259–263
deviates from 369
for chi-square 732, 779
inverse 263

Increment of linear congruential generator 343
Incremental quantile estimation 435

changes with time 438
Indentation of blocks 14
Index table 419, 426, 428–431
Inequality constraints 526, 528, 538
Inference 840–898
Information

mutual 758–761
side 760, 761
theory 754–761

Inheritance 23, 24
examples of in NR 23

Initial value problems 900, 1024, 1026
see also Differential equations;

Injection operator 1068
inline directive 29
Inscribed circle (incircle) 1112
Instability see Stability
Instantiation 18, 19
Int, __int32, __int64 25
Integer programming 536
Integral equations 986–1023

adaptive stepsize control 995
block-by-block method 994
correspondence with linear algebraic equations

986
degenerate kernel 992
eigenvalue problems 987, 992
error estimate in solution 991
Fredholm 986, 989–992
Fredholm alternative 987
homogeneous, second kind 991
ill-conditioned 987
infinite range 995
inverse problems 987, 1001–1006
kernel 986
nonlinear 988, 994
Nystrom method 989–992, 995
product Nystrom method 995
solving with sinc expansions 178
subtraction of singularity 996
symmetric kernel 992
unstable quadrature 994
Volterra 988, 992–995
wavelets 989
with singularities 995–1000
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with singularities, worked example 999, 1000
see also Inverse problems

Integral operator, wavelet approximation of 715,
989

Integration of functions 155–200
Chebyshev approximation 240, 241
cosine integrals 300
Fourier integrals 692–699
Fourier integrals, infinite range 699
Fresnel integrals 297
Gauss-Hermite 185
Gauss-Jacobi 186
Gauss-Laguerre 184
Gauss-Legendre 183
infinite ranges 176–178
integrals that are elliptic integrals 309
path integration 251–254
sine integrals 300
see also Quadrature

Integro-differential equations 989
INTENT attribute (Fortran) 26
Interior-point method 85, 536–549

see also Linear Programming
Intermediate value theorem 445
Interpolation 110–154

Aitken’s algorithm 118
avoid in Fourier analysis 685
barycentric rational 113, 127, 128
bicubic 136–138
biharmonic 153
bilinear 133, 134
caution on high-order 112, 113
coefficients of polynomial 111, 129–131,

241, 243, 690
curve 139, 147
error estimates for 111
for computing Fourier integrals 694
for differential equation output 916
functions with poles 124
grid, on a 132–135
Hermite 916
inverse multiquadric 142
inverse quadratic 454, 496
irregular grid 139–149, 1097, 1141, 1142
kriging 144–147
Laplace/Poisson 150–154
minimum curvature 153
multidimensional 113, 132–135, 139–154
multigrid method, in 1070–1072
multiquadric 141
Neville’s algorithm 118, 231, 924
normalized radial basis functions 140
Nystrom 990
open vs. closed curve 148
operation count for 111
operator 1068
order of 112
ordinary differential equations and 113
oscillations of polynomial 112, 129, 489, 500
parabolic, for minimum finding 496–499

polynomial 110, 118–120, 231, 924
pseudospectral method and 1087
radial basis functions 139–144
rational Chebyshev approximation 247–251
rational function 110, 113, 124–128, 245,

275, 922
reverse (extirpolation) 690, 691
scattered data 139–154
Shepard’s method 140
spline 111, 120–124, 135
trigonometric 110
see also Fitting

Intersection
line and sphere 1121
line and triangle 1121
line segments 1118
lines 1117
QO tree used to find 1150

Intersections 1097
Interval variable (statistics) 741
Intrinsic correlation function (ICF) model 1022
Inverse function of x log.x/ 307–309, 335
Inverse hyperbolic function 227, 310
Inverse iteration see Eigensystems

stable equilibrium of Markov model 859
Inverse multiquadric 142
Inverse problems 987, 1001–1006

and integral equations 987
Backus-Gilbert method 1014–1016
Bayesian approach 1005, 1022
central idea 1005
constrained linear inversion method 1006
data inversion 1014
deterministic constraints 1011–1013
Gerchberg-Saxton algorithm 1012
in geophysics 1016
incomplete Fourier coefficients 1018, 1020
linear regularization 1006–1013
maximum entropy method (MEM)

1016–1022
MEM demystified 1019, 1020
optimally localized average 1014–1016
Phillips-Twomey method 1006
principal solution 1004
regularization 1002–1006
regularizing operator 1004
stabilizing functional 1004
Tikhonov-Miller regularization 1007
trade-off curve 1002, 1016
two-dimensional regularization 1010, 1011
use of conjugate gradient minimization 1011,

1020
use of convex sets 1011–1013
use of Fourier transform 1010, 1012
Van Cittert’s method 1011

Inverse quadratic interpolation 454, 496
Inverse response kernel, in Backus-Gilbert method

1014
Inverse trigonometric function 310
_IO 26, 32, 36
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IQ (incremental quantile) agent 435
Irreducibility of Markov model 858
Irreducible polynomials modulo 2 382
Irregular grid, interpolation on 139–149, 1141,

1142
Is-a relationship 23
ISBN (International Standard Book Number)

checksum 1173
Iterated integrals 196, 197
Iteration 14

for linear algebraic equations 40
functional 943
in root finding 443
required for two-point boundary value

problems 955–957
to improve solution of linear algebraic

equations 61–65, 245
Iteration matrix 1060

Jacobi matrix, for Gaussian quadrature 188
Jacobi transformation (or rotation) 105, 567,

570–576, 578, 590, 599
decorrelating random variables 380

Jacobi’s method (relaxation) 1060, 1061, 1068
Jacobian determinant 364, 981
Jacobian elliptic functions 309, 316, 317
Jacobian matrix 475, 477, 480, 483, 540, 935,

936
singular in Newton’s rule 486

Java 1, 12
Jenkins-Traub method 470
Jordan curve theorem 1124
JPEG-2000 standard 712
Julian Day 3, 6
Jump transposition errors 1174

K-means clustering 848–850
K-S test see Kolmogorov-Smirnov test
Kalman filter 824
Kaps-Rentrop method 934
KD tree 1101–1110

construction of 1102–1106
number of boxes in 1102

Kelly’s formula 758
Kendall’s tau 749, 751–754
Kernel 986

averaging, in Backus-Gilbert method 1014
degenerate 992
finite rank 992
inverse response 1014
separable 992
singular 995
symmetric 992

Kernel methods of classification 840, 889, 892
Keys used in sorting 428
KKT (Karush-Kuhn-Tucker) conditions 539,

542, 886, 889
Kolmogorov-Smirnov probability distribution

334–336
Kolmogorov-Smirnov test 731, 736–738, 819

two-dimensional 762–766
variants 738, 762

Kriging 139
fitting by 836–838
fitting not same as interpolation 838
interpolation by 144–147
is Gaussian process regression 837
linear prediction and 674, 679
nugget effect 838

Kuiper’s statistic 739
Kullback-Leibler distance 756–758

symmetrized 757
Kurtosis 723, 725

L-estimate 818
Lag 602, 648, 669
Lagged Fibonacci generator 354
Lagrange multiplier 758, 760, 1001
Lagrange’s formula for polynomial interpolation

94, 118, 690, 691, 694, 1089, 1092
Laguerre polynomials 183
Laguerre’s method 444, 466–469

convergence 466
Lanczos lemma 609, 610
Lanczos method for gamma function 256
Landen transformation 310
LAPACK 40, 567
Laplace’s equation 292, 1024

see also Poisson equation
Laplace/Poisson interpolation 150–154
Las Vegas 744
Latin square or hypercube 409, 410
Latitude/longitude in n-dimensions 1128
Laurent series 681, 682
Lax method 1034–1036, 1042, 1050, 1051

multidimensional 1050, 1051
Lax-Wendroff method 1040
LCG see Linear congruential random number

generator
ldexp 207, 279, 283
LDL 544, 548
Ldoub 25
Leakage in power spectrum estimation 655, 656,

658, 662–665
Leakage width 658, 659
Leapfrog method 1038, 1039
Least-squares filters see Savitzky-Golay filters
Least-squares fitting 776–798

degeneracies in 794, 795, 797
Fourier components 686
freezing parameters in 791, 824
general linear case 788–798
how much��2 is significant 816
Levenberg-Marquardt method 801–806, 1022
Lomb periodogram 686
maximum likelihood estimator 777
method for smoothing data 768
multidimensional 798
nonlinear 486, 799–806, 1022
nonlinear, advanced methods 806
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normal equations 768, 789–793, 1007
normal equations often singular 793, 797
optimal (Wiener) filtering 650
QR method in 105, 791
rational Chebyshev approximation 249
relation to linear correlation 745, 783
Savitzky-Golay filter as 768
singular value decomposition (SVD) 39,

65–75, 249, 793
skewed by outliers 778
spectral analysis 686
standard (probable) errors on fitted parameters

794
weighted 777
see also Fitting

Left eigenvalues or eigenvectors 564, 565
Legendre elliptic integral see Elliptic integrals
Legendre polynomials 183, 293

basis functions for spectral methods 1086
fitting data to 797
recurrence relation 219
see also Associated Legendre polynomials;

Spherical harmonics
Lehmer-Schur algorithm 470
Lemarie’s wavelet 708
Lentz’s method for continued fraction 207, 260
Lepage, P. 414
Leptokurtic distribution 723
Levenberg-Marquardt algorithm 486, 801–806,

1022
advanced implementation 806

Levin transformation 214
Levinson’s method 96
Liapunov stability 933
Likelihood ratio 735, 757
Limbo 457
Limit cycle

Laguerre’s method 466
Markov model 858

Line 1097, 1117–1121
closest approach of two 1121
closest approach to point 1121
distance of point to 1118
equation satisfied by 1117
in 3 dimensions 1121
intersection of two 1117
intersection with sphere 1121
intersection with triangle 1121
left-of relations 1118
segments 1118–1120
skew 1121

__LINE__ (ANSI C macro) 30
Line minimization see Minimization, along a ray
Line search see Minimization, along a ray
Linear algebraic equations 37–109

and integral equations 986, 990
band-diagonal 58–61
biconjugate gradient method 88
Cholesky decomposition 100–102, 378, 379,

525, 543, 568, 791

complex 55
computing A�1 �B 53
conjugate gradient method 87–92, 716
cyclic tridiagonal 79, 80
direct methods 40, 76
Gauss-Jordan elimination 41–46
Gaussian elimination 46, 48
Hilbert matrix 94
Hotelling’s method 64, 716
iterative improvement 61–65, 245, 548
iterative methods 40, 87–92
large sets of 38, 39
least-squares solution 65, 70, 73, 249, 793
LU decomposition 48–55, 245, 483, 484,

486, 534, 936, 990, 1008
nonsingular 38, 39
overdetermined 39, 249, 793, 1004
parallel solution 57
partitioned 81
QR decomposition 102–106, 483, 484, 486,

791
row vs. column elimination 45, 46
Schultz’s method 64, 716
Sherman-Morrison formula 76–79, 94, 534
singular 38, 69, 73, 249, 793
singular value decomposition (SVD) 65–75,

249, 793, 1003
sparse 39, 58, 75–92, 534, 544, 548, 937,

1011
summary of tasks 39, 40
Toeplitz 93, 96–99, 245
Vandermonde 93–96, 130
wavelet solution 715, 716, 989
Woodbury formula 80, 81, 94
see also Eigensystems

Linear codes 851
Linear congruential random number generator

341, 343, 348
Linear constraints 526, 530
Linear convergence 448, 495
Linear correlation (statistics) 745–748
Linear dependency

constructing orthonormal basis 74, 105
in linear algebraic equations 38
of directions inN -dimensional space 511

Linear equations see Differential equations;
Integral equations; Linear algebraic equations

Linear feedback shift register (LFSR) 346,
380–386
state vector 380
update rule 380

Linear inversion method, constrained 1006
Linear optimization 526
Linear prediction 673–681

characteristic polynomial 676
coefficients 673–681
compared with regularization 1008
contrasted to polynomial extrapolation 675,

677
is Gaussian process regression 837
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kriging and 144
multidimensional 836–838
related to optimal filtering 673, 674
removal of bias in 145, 678, 679
stability 676

Linear predictive coding (LPC) 679–681
Linear programming 488, 526–549

affine scaling 543
artificial variables 530, 531
augmented equations 543, 548
auxiliary objective function 530
barrier method 541
basic variables 529, 531
boundary 528
bounded variables 535, 546
centering parameter 541
central path 540
complementarity condition 539
complementary slackness theorem 539
constraints 526, 530
cycling 534
degenerate basis 533
Devex 535
dual algorithm 535
dual feasible basis vector 538
dual interior-point method 542
dual problem 538, 539
duality gap 538
duality measure 541
efficiency 537, 541
ellipsoid method 537
equality constraints 526, 528
feasible basis vector 528, 529, 532
feasible vector 526, 538
free variables 538
fundamental theorem 528
Goldman-Tucker theorem 539
inequality constraints 526, 528, 538
infeasible method 537
interior-point method 85, 488, 536–549
KKT conditions 539, 542
logical variables 530, 538
long-step method 541
minimum ratio test 532
multiple pricing 535
nonbasic variables 529, 531
normal equations 85, 543, 548
objective function 526, 528, 530
optimal feasible vector 526, 528, 532
path-following method 541
phases one and two 530
predictor-corrector method 547
primal algorithm 535
primal-dual interior-point method 542
primal-dual solution 539
primal interior-point method 542
primal problem 538
reduced cost 531
scaling of variables 535, 546
short-step method 541

simplex method 488, 502, 526–536, 548
simplex vs. interior-point 548
slack variables 529, 531, 535, 538, 547
sparse linear algebra 534, 544, 548
stalling 534
standard form 529, 530, 538
steepest edge pricing 535
strict complementarity 539
strong duality theorem 539
structural variables 530
surplus variables 529
unbounded objective function 532, 538
vertex of simplex 528, 531
weak duality theorem 538
worked example 530–533
zero variables 530

Linear regression 780–787
see also Fitting

Linear regularization 1006–1013
Linearly separable data 884
LINPACK 40, 567
Little-endian 9, 34
Llong 25
Local extrapolation 911, 914
Local extremum 487, 551
Localization of roots see Bracketing
Log-sum-exp formula 844
Logarithmic function 310

barrier function 541
inverse of x log.x/ 307–309, 335

Logistic probability distribution 324–326
deviates from 363

Lognormal probability distribution 328, 329, 827
Lomb periodogram method of spectral analysis

685–687
fast algorithm 689–692

long long int 25
Loops 14
Lorentzian distribution 322
Lorentzian probability distribution 820
Low-pass filter 667, 766
LP coefficients see Linear prediction
LPC (linear predictive coding) 679–681
lp solve 535, 536
LU decomposition 48–55, 62, 65, 71, 75, 108,

475, 534, 790, 936
band-diagonal matrix 59
Bartels-Golub update 535
complex equations 55
Crout’s algorithm 49, 59
fill-in, minimizing 535
for A�1 �B 53
for integral equations 990
for inverse iteration of eigenvectors 598
for inverse problems 1008
for matrix inverse 54
for nonlinear sets of equations 475, 486
for Padé approximant 245
for Toeplitz matrix 98
operation count 49, 54
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pivoting 50, 535
repeated backsubstitution 54, 60
solution of linear algebraic equations 54
solution of normal equations 790
stable equilibrium of Markov model 859
threshold partial pivoting 535

Lucifer (encryption algorithm) 358
Lucy’s Y 2 andZ2 statistic 735
LUSOL 535

M-estimates 818
how to compute 821, 822
local 819–821
see also Maximum likelihood estimate

Machine accuracy 10, 1163
Machine learning 840

supervised 883
support vector machine 883–898
unsupervised 842, 868

Macintosh, see Apple Macintosh
Maehly’s procedure 465, 472
Magic

in MEM image restoration 1019, 1020
in Padé approximation 246, 247

Mantissa in floating point format 8–10, 1164
Mantissa in floating-point format 1189
Maple (software) 3
Marginals 743, 759, 825
Markov chain 825
Markov chain Monte Carlo 551, 774, 824–836

acceptance probability 827, 832
best stepsize 832
burn-in 826, 833–835
candidate point 827
compared to Monte Carlo integration 825
convergence diagnostics 835
converges to sample, not population, values

834
correlated directions 831
correlation time 834
detailed balance equation 825, 827
ergodic average 834
ergodic behavior 825
fitting model parameters 825
full conditional distributions 827
Gibbs sampler 827, 828
and inverse problems 1006
lognormal steps 827
Metropolis-Hastings algorithm 826, 827
normalizing constant 825, 828, 835, 836
parallel computing 835
parameter uncertainties 833
proposal distribution 826–828, 835
proposal generator 830
rapid mixing 826, 831
variable dimension models 835

Markov model 856–868
aperiodic 858
as ensemble 857
convergence 858

corrected phylogenetic distance for 873
diagnosing 858, 859
directed graph 856
equilibrium distribution 857
ergodic 858
evolution in time 857
hidden 856–868
inverse iteration 859
irreducible 858
limit cycle 858
LU decomposition 859
multiple equilibria 859
population vector 857
transition matrix 856
transition probability 856
unstable equilibria 858, 859

Markowitz criterion 535
Marquardt method (least-squares fitting)

801–806, 1022
Mass, center of 399, 400
MasterCard checksum 1174
MatDoub, MatInt, etc. 26
Mathematica (software) 1, 3
Mathematical Center (Amsterdam) 454
Matlab 1, 3
Matrix 37, 38

approximation of 74, 75, 715
band-diagonal 56, 58–61, 76
band triangular 76
banded 40, 568
bidiagonal 67
block diagonal 76, 964, 966
block triangular 76
block tridiagonal 76
bordered 76
characteristic polynomial 563, 583
Cholesky decomposition 100–102, 378, 379,

525, 543, 568, 791
class for 24–29
column augmented 42, 43
complex 55
condition number 69, 89
curvature 800
cyclic banded 76
cyclic tridiagonal 79, 80
defective 564, 591, 598, 599
of derivatives see Hessian matrix; Jacobian

determinant
design (fitting) 768, 788
determinant of 39, 54, 55
diagonalization 566
distance 869
elementary row and column operations 42, 43
finite differencing of partial differential

equations 1027
Hermitian 564, 568, 590
Hermitian conjugate 564
Hessenberg 105, 567, 585, 590–596, 598
Hessian see Hessian matrix
hierarchically band-diagonal 716
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Hilbert 94
identity 39
ill-conditioned 69, 71, 130, 131
indexed storage of 82–87
integral equations and 986, 990
inverse 39, 41, 47, 54, 76, 78, 81, 82,

106–108, 565
inverse by Hotelling’s method 64, 716
inverse by Schultz’s method 64, 716
inverse multiplied by a matrix 53
inverse, approximate 63
iteration for inverse 63–65, 716
Jacobi rotation 573
Jacobi transformation 567, 570–576, 578
Jacobian 935, 936
logical multiplication 949
lower triangular 48, 100, 988
Moore-Penrose inverse 70
multiplication denoted by dot 37
multiplication, optimizing order of 558, 559
norm 64
normal 564, 565
nullity 67, 68
nullspace 39, 67–70, 72, 563, 1002
orthogonal 103, 564, 579, 703, 1130
orthogonal transformation 566, 578, 584
orthonormal basis 74, 105
outer product denoted by˝ 78, 523
partitioning for determinant 82
partitioning for inverse 81, 82
positive-definite 40, 100, 543, 791
pseudoinverse 70, 73
QR decomposition 102–106, 483, 484, 486,

791
range 67, 68
rank 67
rank-nullity theorem 68
residual 63
responsibility 842
rotation 1097, 1130, 1131
row and column indices 38
row vs. column operations 45, 46
self-adjoint 564, 565
similarity transform 566, 567, 570, 592, 594
singular 69, 71, 73, 563
singular value decomposition 39, 65–75,

1003
sparse 39, 75–92, 534, 544, 548, 715, 937,

964, 966, 1011
special forms 40
splitting in relaxation method 1060
spread 1015
storage schemes in C++ 38
suffix _I, _O, _IO 26, 32, 36
symmetric 40, 100, 563, 565, 568, 571,

576–583, 992
Toeplitz 93, 96–99, 245
transpose of sparse 85
triangular 567

tridiagonal 40, 56–61, 75, 76, 78, 122, 188,
576–589, 598, 1045, 1057, 1058, 1066

tridiagonal with fringes 1028
unitary 564
updating 105, 106, 484
upper Hessenberg 594
upper triangular 48, 103
Vandermonde 93–96, 130
see also Eigensystems; NRmatrix

Matrix equations see Linear algebraic equations
Matterhorn 723
MAX utility function 17
Maximization see Minimization
Maximum entropy method (MEM) 681–684,

1006
algorithms for image restoration 1020
Bayesian 1022
Cornwell-Evans algorithm 1021
demystified 1019, 1020
for inverse problems 1016–1022
historic vs. Bayesian 1022
image restoration 1016–1022
intrinsic correlation function (ICF) model

1022
operation count 683
see also Linear prediction

Maximum likelihood
compared with probability 854
trellis decoding 854

Maximum likelihood estimate (M-estimates) 812,
818
chi-square test 812
defined 777
how to compute 821, 822
mean absolute deviation 820, 822
relation to least squares 777

Maxwell’s equations 1032
MCMC see Markov chain Monte Carlo
Mean absolute deviation of distribution 723, 820

related to median 822
Mean value theorem 151
Mean(s)

of distribution 722, 723, 725
statistical differences between two 726–730

Measurement errors 773
Median 419

by selection 822
calculating 432
changes with time 438
incremental estimation 435
as L-estimate 818
of distribution 722, 725, 726
role in robust straight line fitting 822

Median-of-three, in Quicksort 423
MEM see Maximum entropy method (MEM)
Memory, using scope to manage 20
Merit function 773

for inverse problems 1004
for straight line fitting 781, 822
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for straight line fitting, errors in both
coordinates 785

in general linear least squares 788
nonlinear models 799

Mesh-drift instability 1040
Mesh generation 1150
Mesokurtic distribution 723
Message 754
Method of lines 1095
Method of regularization 1006
Metropolis algorithm 550, 552, 825
Metropolis-Hastings algorithm 551, 826, 827

Gibbs sampler as special case 827
Microsoft

integer types 26
NaN handling poor 35
Visual C++ 5
Windows 5

Midpoint method see Modified midpoint method;
Semi-implicit midpoint rule

Mikado, or the Town of Titipu 920
Miller’s algorithm 221, 278
Min-sum algorithm

dynamic programming 556
Viterbi decoding 867

MIN utility function 17
Minimal solution of recurrence relation 220, 221
Minimal trellis 853
Minimax

polynomial 235, 248
rational function 248, 249

Minimization 487–562
along a ray 88, 478, 489, 507–509, 511, 512,

519–521, 524, 540
annealing, method of simulated 487, 488,

549–555
bracketing of minimum 490–496, 503
Brent’s method 489, 496–500, 785
Broyden-Fletcher-Goldfarb-Shanno algorithm

490, 521–525
by searching smaller subspaces 1021
chi-square 778–780, 799
choice of methods 488–490
combinatorial 549
conjugate gradient method 489, 515–520,

1011, 1020
convergence rate 495, 511
Davidon-Fletcher-Powell algorithm 490, 521,

522
degenerate 1002
direction set methods 489, 509–514
downhill simplex method 489, 502–507, 552,

821
finding best-fit parameters 773
Fletcher-Reeves algorithm 489, 515–519
functional 1001, 1002
global 487, 552–554, 774
globally convergent multidimensional

521–525
golden section search 492–496

in nonlinear model fitting 799
KKT conditions 539, 542
line methods 507–509
linear 526
multidimensional 502–525
of path length 555–562
Polak-Ribiere algorithm 489, 517
Powell’s method 489, 502, 509–514
quasi-Newton methods 477, 489, 521–525
root finding and 476, 477
scaling of variables 523
steepest descent method 516, 1011
termination criterion 493, 503
use for sparse linear systems 87, 89
use in finding double roots 443
using derivatives 489, 499–502
variable metric methods 489, 521–525
see also Linear programming

Minimum curvature method 153
Minimum residual method, for sparse system 89
Minimum spanning tree 1147
MINPACK 806
Missing data 150–154, 685

in hidden Markov model 864
Mississippi River 552, 555
Mixture model, Gaussian 842–848
Mixture weight 843
Mode of distribution 722, 725, 726
Model-trust region 486, 806
Modeling of data see Fitting
Modes, homogeneous, of recursive filters 670
Modified Bessel functions see Bessel functions
Modified Lentz’s method, for continued fractions

208
Modified midpoint method 922, 923
Modified moments 190
Modulation, trellis coded 855
Modulus of linear congruential generator 343
Moments

and quadrature formulas 996
filter that preserves 768
modified problem of 190
of distribution 721–726
problem of 94
semi-invariants 725

Monic polynomial 181
Monotonicity constraint, in upwind differencing

1042
Monte Carlo 197, 341, 397–418

adaptive 410–418
and Kolmogorov-Smirnov statistic 740, 762,

764
bootstrap method 809, 810
comparison of sampling methods 412–414
importance sampling 411, 412, 414, 835, 836
integration 156, 197, 397–403, 410–418
integration compared to MCMC 825
integration, recursive 416
integration, using Sobol’ sequence 408, 409
integration, VEGAS algorithm 414–416
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Markov chain 774, 824–836
partial differential equations 1030
quasi-random sequences in 403–410
quick and dirty 809, 810
recursive 410–418
significance of Lomb periodogram 686, 687
simulation of data 779, 807–810, 812
stratified sampling 412–414, 416

Moore-Penrose inverse 70
Mother functions 700
Mother Nature 807, 809
Moving average (MA) model 681
Moving window averaging 767
MRRR algorithm (Multiple Relatively Robust

Representations) 589, 599
Muller’s method 466, 473
Multidimensional

confidence levels of fitting 810, 812, 814, 816
data, use of binning 741
fitting 798, 836–838
Fourier transform 627–630
Fourier transform, real data 631–637
initial value problems 1049–1053
integrals 156, 196–199, 398, 410
interpolation 132–135, 139–154
Kolmogorov-Smirnov test 762–766
minimization 502–525
Monte Carlo integration 397–403, 410
normal (Gaussian) distribution 813
partial differential equations 1049–1053,

1083, 1095
root finding 442–486, 956, 959, 960, 963, 964
search using quasi-random sequence 404
secant method 474, 483
wavelet transform 712, 713

Multigrid method 1030, 1066–1083
avoid SOR 1070
boundary conditions 1072
choice of operators 1071
coarse-grid correction 1068
coarse-to-fine operator 1068
cycle 1069
dual viewpoint 1077
fine-to-coarse operator 1068
full approximation storage (FAS) algorithm

1076–1083
full multigrid method (FMG) 1067,

1072–1076
full weighting 1071
Gauss-Seidel relaxation 1069
half weighting 1071
importance of adjoint operator 1071
injection operator 1068
interpolation operator 1068
line relaxation 1070
local truncation error 1077, 1078
Newton’s rule 1077, 1079
nonlinear equations 1077
nonlinear Gauss-Seidel relaxation 1078
odd-even ordering 1070, 1073

operation count 1067
prolongation operator 1068
recursive nature 1069
relative truncation error 1077
relaxation as smoothing operator 1069
restriction operator 1068
speeding up FMG algorithm 1076
stopping criterion 1078
straight injection 1071
symbol of operator 1070, 1071
use of Richardson extrapolation 1072
V-cycle 1069
W-cycle 1069
zebra relaxation 1070

Multiple precision arithmetic 1185–1193
Multiple roots 443, 464
Multiplication

complex 225
multiple precision 1188

Multiplicative linear congruential generator
(MLCG) 341, 344, 348, 349

Multiplier of linear congruential generator 343
Multiply-with-carry (MWC) 347
Multipole methods, fast 140, 1150
Multiquadric 141
Multistep and multivalue methods (ODEs) 900,

942–946
see also Differential Equations;

Predictor-corrector methods
Multitaper methods 662–665
Multivariate normal

deviates 378, 379
distribution 813, 847, 848

Murphy’s Law 509
Mutual information 758–761

NAG 3, 40, 76, 568
Namespace, why no NR 36
NaN (not-a-number) 34, 35

how to set and test 34
isnan 35
quiet vs. signalling 35

Nat 755, 756, 760, 761
Natural cubic spline 122
Navier-Stokes equation 1035
Nearest neighbor 1097, 1101–1110, 1146

all points within specified radius 1109
Delaunay edges connect 1146

Needle, eye of (minimization) 503
Needleman-Wunsch algorithm 559
Negation, multiple precision 1186
Negentropy 1017–1019
Neighbor-joining (NJ) method 873, 878–882
Nelder-Mead minimization method 489, 502–507
Nested iteration 1072
Netlib 3
Networks 1168
Neumann boundary conditions 1026, 1045, 1056,

1057, 1063
Neural networks 840, 883
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Neutrino 762
Neville’s algorithm 118, 125, 166, 231
Newton-Cotes formulas 158, 179

open 158, 159
Newton-Raphson method see Newton’s rule
Newton’s rule 182, 229, 443, 444, 456–462, 464,

466, 470, 584
caution on use of numerical derivatives 459
extended by Halley 463
first published by Raphson 456
for interior-point method 539
for matrix inverse 64, 716
for reciprocal of number 1190
for square root of number 1191
fractal domain of convergence 462
globally convergent multidimensional 474,

477–486, 959, 960, 963
in multidimensions 472–476, 959, 960, 963,

964
in nonlinear multigrid 1077, 1079
nonlinear Volterra equations 994
safe 460
scaling of variables 484
singular Jacobian 486
solving stiff ODEs 943, 944
with backtracking 478–483

Next reaction method 952
Niederreiter sequence 404
NIST-STS, for random number tests 345
NL2SOL 806
Noise

bursty 1168
effect on maximum entropy method 683
equivalent bandwidth 658
fitting data that contains 770, 773
model, for optimal filtering 651

Nominal variable (statistics) 741
Non-interfering directions see Conjugate

directions
Nonexpansive projection operator 1012
Nonlinear eigenvalue problems 568, 569
Nonlinear equations

finding roots of 442–486
in MEM inverse problems 1018
integral equations 988, 994
multigrid method for elliptic PDEs 1077

Nonlinear instability 1037
Nonlinear programming 536
Nonnegativity constraints 526, 527

barrier function 541
Nonparametric statistics 748–754
Nonpolynomial complete (NP-complete) 551
Nordsieck method 944
Norm, of matrix 64
Normal (Gaussian) distribution 320, 321, 341,

776, 778, 805, 1004
central limit theorem 777
deviates from 364, 365, 368, 377, 686
kurtosis of 723, 724

multivariate 378, 379, 813, 842, 843, 847,
848, 1006, 1129, 1130

semi-invariants of 725
sum of 12 uniform 377
tails compared to Poisson 778
two-dimensional (binormal) 746
variance of skewness of 723
see also Gaussian (normal) distribution

Normal equations (fitting) 40, 768, 789–793,
1002, 1007
often are singular 793

Normal equations (interior-point method) 85, 543
Normalization

normalizing constant 825, 828, 835, 836
of Bessel functions 221
of floating-point representation 9
of functions 181, 973
of modified Bessel functions 282

Normalized Radial Basis Functions 140
Not a Number see NaN
Notch filter 667, 671
NP-complete problem 551
NR::, why missing in 3rd ed. 36
nr3.h file 3, 4, 17, 28–30, 34–36
NRmatrix 26, 28, 29

bounds checking 35
instrumenting 36
methods in 27

NRvector 26, 28, 29
bounds checking 35
instrumenting 36
methods in 27

Nugget effect 838
different from measurement error 838

Null hypothesis 720
Nullity 67, 68
Nullspace 39, 67–70, 72, 563, 1002
Number-theoretic transforms 616
numeric_limits 10, 34
Numerical derivatives 178, 229–232, 769
Numerical integration see Quadrature
Numerical Recipes

bugs in 5
compilers tested 5
cookbook, not menu 3
dependencies 4
electronic versions 5
how to use routines in 3
is not a program library 2, 18
is not a programming text 2
machines tested 5
obtaining source code 3
types 25
webnotes 4

Nyquist frequency 605, 607, 632, 653, 655,
685–687, 693

Nystrom method 989–992, 995
product version 995

_O 26, 32, 36
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Object 17–24
avoid copying large 36
constructor 18, 27
definition 18
destruction 20, 21
functor 21–23
grouping related functions 18
hides internal structure 17
inheritance 23, 24
instantiation 18, 19
multiple instances of 20
returning multiple values via 19
saving internal state 20
simple uses of 18–20
standardizing an interface 19
struct vs. class 17
see also Class

Object-oriented programming (OOP) 17–21, 23
Objective function 526, 528, 530
Oblateness parameter 971
Octave (software) 3
Octree see QO tree
Odd-even ordering

in Gauss-Seidel relaxation 1070, 1073
in successive over-relaxation (SOR) 1064

Odd parity 1168
Odds ratio 757
ODE see Differential equations
One-sided power spectral density 602
OOP see Object-oriented programming
Operation count

balancing 592
Baum-Welch re-estimation of hidden Markov

model 865
Bessel function evaluation 278
bisection method 448
Cholesky decomposition 100
coefficients of interpolating polynomial 130
complex multiplication 108
cubic spline interpolation 122
evaluating polynomial 203
fast Fourier transform (FFT) 609, 610
Gauss-Jordan elimination 47, 54
Gaussian elimination 47
Givens reduction 578
Householder reduction 582
interpolation 111
inverse iteration 598, 599
iterative improvement 63
Jacobi transformation 573, 574
Kendall’s tau 752
LU decomposition 49, 54
Markov model diagnosis 858
matrix inversion 108
matrix multiplication 107
maximum entropy method 683
multidimensional minimization 515
multigrid method 1067
multiplication 1188, 1190
polynomial evaluation 108, 203

QL method 585, 588
QR decomposition 103, 105
QR method for Hessenberg matrices 596
reduction to Hessenberg form 594
selection by partitioning 433
sorting 420, 422, 423
Toeplitz matrix 93
Vandermonde matrix 93

Operator
precedence, in C++ 12
splitting 1028, 1052, 1053, 1065

Optimal (Wiener) filtering 645, 649–652, 673,
674, 767
compared with regularization 1008

Optimal feasible vector 526, 528
Optimally Localized Average (OLA) 1014–1016
Optimization see Minimization
Options, financial 329
Ordinal variable (statistics) 741
Ordinary differential equations see Differential

equations
Orthogonal see Orthonormal functions;

Orthonormal polynomials
Orthogonal transformation 566, 578, 584, 699
Orthonormal basis, constructing 74, 105
Orthonormal functions 181, 292
Orthonormal polynomials

and Gaussian quadrature 181, 1087
Chebyshev 183, 187, 233
construct for arbitrary weight 189–191
Gaussian weights from recurrence 188, 189
Hermite 183
in Gauss-Hermite integration 185
Jacobi 183
Laguerre 183
Legendre 183
weight function logx 190, 191

Orthonormality 66, 68, 70, 181, 579
Out-of-band signaling 1178
Outer product of matrices (denoted by˝) 78,

523
Outgoing wave boundary conditions 1026
Outlier 723, 778, 779, 781, 818, 821

see also Robust estimation
Overcorrection 1061, 1062
Overflow 1164

in complex arithmetic 225, 226
Overlap-add and overlap-save methods 646, 647
Overrelaxation parameter 1062

choice of 1062–1064

p-value test 720
Packet-switched networks 1168
Padé approximant 125, 212, 245–247
Parabolic interpolation 496, 497
Parabolic partial differential equations 1024,

1043
Parallel axis theorem 413
Parallel programming

cyclic reduction 224
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FFT 614
polynomial evaluation 205
recurrence relations 223, 224
recursive doubling 223
tridiagonal systems 57

Parameters in fitting function 776–780, 807–817
Parentheses, annoying 12
Parity bit 1168
Parity-check matrix 851
Parseval’s theorem 602, 603, 654

discrete form 608
Parsimony, maximum 882
Partial abstraction 24
Partial differential equations 1024–1096

advective equation 1032
alternating-direction implicit method (ADI)

1052, 1053, 1065, 1066
amplification factor 1033, 1038
analyze/factorize/operate package 1030
artificial viscosity 1037, 1042
biconjugate gradient method 1030
boundary conditions 1025
boundary value problems 1025–1030,

1053–1058
Cauchy problem 1024
Cayley’s form 1049
characteristics 1024–1026
Chebyshev acceleration 1064
classification of 1024–1030
comparison of rapid methods 1058
conjugate gradient method 1030
Courant condition 1034, 1036, 1038–1040,

1042
Courant condition (multidimensional) 1051
Crank-Nicolson method 1045, 1047, 1049,

1051, 1052
cyclic reduction (CR) method 1054, 1057,

1058
diffusion equation 1024, 1043–1049, 1051,

1052, 1059
Dirichlet boundary conditions 1026, 1045,

1055, 1061, 1063
elliptic, defined 1024
error, varieties of 1036–1038
explicit vs. implicit differencing 1033
FACR method 1058
finite difference method 1027
finite element methods 1030
flux-conservative initial value problems

1031–1043
forward Euler differencing 1032
forward time centered space (FTCS) 1032,

1044, 1049, 1059
Fourier analysis and cyclic reduction (FACR)

1053–1058
Gauss-Seidel method (relaxation) 1060,

1061, 1068, 1078
Godunov’s method 1043
Helmholtz equation 1057
high-order methods, caution on 1050

hyperbolic 1024, 1031
implicit differencing 1045
inhomogeneous boundary conditions 1055
initial value problems 1024, 1026
initial value problems, recommendations on

1042
Jacobi’s method (relaxation) 1060, 1061,

1068
Laplace’s equation 1024
Lax method 1034–1036, 1042, 1050, 1051
Lax method (multidimensional) 1050, 1051
matrix methods 1028, 1030
mesh drift instability 1040
Monte Carlo methods 1030
multidimensional initial value problems

1049–1053
multigrid method 1029, 1066–1083
Neumann boundary conditions 1026, 1045,

1056, 1057, 1063
nonlinear diffusion equation 1047
nonlinear instability 1037
numerical dissipation or viscosity 1035
operator splitting 1028, 1052, 1053, 1065
outgoing wave boundary conditions 1026
parabolic 1024, 1043
periodic boundary conditions 1055, 1063
piecewise parabolic method (PPM) 1043
Poisson equation 1024, 1057
rapid (Fourier) methods 620, 1029, 1054
relaxation methods 1028, 1059–1066
Schrödinger equation 1048, 1049
second-order accuracy 1038–1042, 1045
shock 1037, 1042, 1043
sparse matrices from 76
spectral methods 239, 1030, 1083–1096
spectral radius 1061, 1066
stability vs. accuracy 1035
stability vs. efficiency 1027
staggered grids 625, 1057
staggered leapfrog method 1038, 1039
successive over-relaxation (SOR) 1061–1066,

1070
time splitting 1052, 1053, 1065
two-step Lax-Wendroff method 1040
upwind differencing 1037, 1042
variational methods 1030
varieties of error 1036–1038
von Neumann stability analysis 1033, 1034,

1036, 1039, 1045, 1046
wave equation 1024, 1031
see also Elliptic partial differential equations;

Finite difference equations (FDEs)
Partial pivoting 43, 45, 535
Partition-exchange 423, 433
Partitioned matrix, inverse of 81, 82
Party tricks 106, 203
Parzen window 657
Pascal (language) 1
Path integration, for function evaluation

251–254, 318
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Path length, minimization of 555–562
PAUP (software) 874
PBCG (preconditioned biconjugate gradient

method) 89, 1030
PC methods see Predictor-corrector methods
PCx (software) 548
PDEs see Partial differential equations
PDF (probability density function) see Statistical

distributions
Pearson’s r 745
PECE method 944
Penalty function 541
Pentagon, symmetries of 1174
Percentile 320, 419, 435
Perfect code 852
Period of linear congruential generator 343
Periodic boundary conditions 1055, 1063
Periodogram 653–657, 681, 683

Lomb’s normalized 685–687, 689
variance of 655, 656

Perron’s theorems 221
Perturbation methods for matrix inversion 76–79
Peter Principle 427
Phantom bit 9
Phase error 1036
Phase-locked loop 824
Phi statistic 744
Phillips-Twomey method 1006
PHYLIP (software) 874
Phylogenetic tree see Tree, phylogenetic
� , computation of 1185
PI stepsize control 915
Piecewise parabolic method (PPM) 1043
Pigeonhole principle 387
Pincherle’s theorem 222
Pivot element 43, 46, 47, 967
Pivoting 41, 43–45, 60, 76, 78, 101

andQR decomposition 103, 105
for tridiagonal systems 57
full 43
implicit 44, 51
in LU decomposition 50
in reduction to Hessenberg form 594
in relaxation method 967
Markowitz criterion 535
partial 43, 45, 46, 50, 535
threshold partial 535

Pixel 631, 714, 715, 1010, 1017
Planck’s constant 1048
Plane rotation see Givens reduction; Jacobi

transformation (or rotation)
Plane, defined by triangle 1115
Platykurtic distribution 723
Plotting of functions 444, 1160–1163
POCS (projection onto convex sets) 1012
Point 1099–1101

closest approach of line to 1121
distance between two 1099
distance to line 1118
projection into plane 1115

random in triangle 1114
random on sphere 1129, 1130
test if inside box 1100
test if inside polygon 1124

Poisson equation 631, 1024, 1057
Poisson probability function 336–338, 390

as limiting case of binomial 338
deviates from 372–374, 686
moments of 725, 734
semi-invariants of 725
tails compared to Gaussian 778

Poisson process 362, 369, 829, 830
Polak-Ribiere algorithm 489, 517
Poles see Complex plane, poles in
Polishing of roots 459, 465, 471
Polygon 1097, 1122–1127

area 1126
Bolyai-Gerwien theorem 1127
CCW vs. CW 1122
centroid of 1127
constructable by compass/straightedge 1127
convex vs. concave 1122
Jordan curve theorem 1124
pentagon, symmetries of 1174
removal of hidden 1150
routine for classifying 1125
simple vs. complex 1122, 1125
sum of exterior angles 1122
test if point inside 1124
winding number 1122–1124

Polynomial interpolation 110, 118–120
Aitken’s algorithm 118
coefficients for 129–131
in Bulirsch-Stoer method 924
in predictor-corrector method 943
Lagrange’s formula 94, 118, 1089, 1092
multidimensional 132–135
Neville’s algorithm 118, 125, 166, 231, 924
pathology in determining coefficients for 130
Runge phenomenon 1090
smoothing filters 768
see also Interpolation

Polynomials 201–205
algebraic manipulations 203
approximation from Chebyshev coefficients

241, 243
characteristic 469
characteristic, for digital filters 670, 676
characteristic, for eigenvalues of matrix 563,

583
Chebyshev 187
deflation 464–466, 471
derivatives of 202
division 95, 204, 464, 471
evaluation of 201, 202
evaluation of derivatives 202
extrapolation in Bulirsch-Stoer method 922,

924
extrapolation in Romberg integration 166
fitting 94, 129, 241, 243, 768, 788, 797
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generator for CRC 1170
ill-conditioned 463
irreducible modulo 2 382
matrix method for roots 469
minimax 235, 248
modulo 2 381, 1169
monic 181
multiplication 203, 204
operation count for 203
order, distinct from degree 1170
orthonormal 181, 1087
parallel evaluation 205
primitive modulo 2 382–386, 406
roots of 227–229, 463–473
shifting of 243
stopping criterion in root finding 467

Population count of bits 16
Population vector 857
Portable random number generator see Random

number generator
Positive-definite matrix, testing for 101
Positivity constraints 526, 527
Postal Service (U.S.), barcode 1174
PostScript 1161
Powell’s method 489, 502, 509–514
Power (in a signal) 602
Power of 2

next higher 16, 361
test if integer is a 16, 611

Power series 201–205, 209–218, 246
economization of 243, 244
Padé approximant of 245–247

Power spectral density see Fourier transform;
Spectral density

Power spectrum 655
Bartlett window 657
data windowing 655–660
estimation by FFT 652–667
figures of merit for data windows 658
Hamming window 658
Hann window 657
leakage 655, 656, 658, 662–665
mean squared amplitude 653
multitaper methods 662–667
normalization conventions 652, 653
overlapping data segments 660–662
Parzen window 657
periodogram 653–657
power spectral density 652
PSD 652
Slepian tapers 662–667
square window 656
sum squared amplitude 653
time-integral squared amplitude 653
variance reduction in spectral estimation 656,

662
Welch window 658

Power spectrum estimation see Fourier transform;
Spectral density

PPM (piecewise parabolic method) 1043

Precedence of operators, in C++ 12
Precision

floating point 1164
multiple 1185–1193

Preconditioned biconjugate gradient method
(PBCG) 89

Preconditioning, in conjugate gradient methods
1030

Predictive stepsize control 939
Predictor-corrector methods 900, 909, 934,

942–946
Adams-Bashforth-Moulton schemes 943
adaptive order methods 946
compared to other methods 942, 946
fallacy of multiple correction 943
functional iteration vs. Newton’s rule 944
multivalue compared with multistep 945, 946
Nordsieck method 944
starting and stopping 944
stepsize control 943, 944, 946
with fixed number of iterations 944

Prerequisite relationship 23
Primitive polynomials modulo 2 382–386, 406,

1170
Principal component analysis (PCA) 892
Principal directions 509, 512
Principal solution, of inverse problem 1004
Principal value integrals 178
Prior probability 757, 775, 841, 1005

smoothness 1006
Prize, $1000 offer revoked 342
Probability see Random number generator;

Statistical tests; Statistical distributions
Process loss 658
Product Nystrom method 995
Products, reaction 947
Program(s)

as black boxes 67, 255, 443, 507
dependencies 4
NR not a program library 2
typography of 14
validation 5

Programming, NR not a textbook on 2
Projection onto convex sets (POCS) 1011–1013

generalizations 1013
Projection operator, nonexpansive 1012
Prolongation operator 1068
Proportional betting 758, 760
Proposal distribution 826–828, 835
Protocol, for communications 1168
PSD (power spectral density) see Fourier

transform; Spectral density; Power spectrum
Pseudo-random numbers 340–386
Pseudoinverse 70
Pseudospectral method see Spectral methods
Puns, particularly bad 35, 202, 946, 958, 1098
Pure virtual class 34
Pyramidal algorithm 702, 703
Pythagorean theorem 1111
Pythagoreans 494
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QO tree 1149–1158
applications of 1156–1158
intersecting objects 1150
use of hash in implementing 1151

QR decomposition 102–106, 483, 484, 486
and least squares 791
backsubstitution 103
operation count 103
pivoting 103
updating 105, 106, 483
use for orthonormal basis 74, 105
use for random rotation 1130
see also Eigensystems

Quadratic
convergence 64, 310, 452, 459, 511, 512,

522, 1185
equations 10, 227–229, 494, 572
interpolation 454, 466
programming 536, 884–886

Quadrature 155–200
adaptive 155, 167, 194–196, 241, 995
alternative extended Simpson’s rule 160
and computer science 1160
arbitrary weight function 189–191, 995
Bode’s rule 158
Cauchy principal values 178
change of variable in 170–172, 995
Chebyshev fitting 156, 240, 241
classical formulas for 156–162
Clenshaw-Curtis 156, 241, 624, 625
closed formulas 157–160
cubic splines 156
DE rule 174
error estimate in solution 991
extended formula of order 1=N 3 160
extended midpoint rule 161, 167
extended rules 159–162, 166, 993, 995, 997
extended Simpson’s rule 160
extended trapezoidal rule 159, 162
for improper integrals 167–172, 995–1000
for integral equations 988, 993
Fourier integrals 692–699
Fourier integrals, infinite range 699
functors and 22
Gauss-Chebyshev 183, 187, 625
Gauss-Hermite 183, 995
Gauss-Jacobi 183
Gauss-Kronrod 192, 195
Gauss-Laguerre 183, 995
Gauss-Legendre 183, 193, 990, 996
Gauss-Lobatto 191, 192, 195, 241, 624
Gauss-Radau 191
Gaussian integration 159, 179–193, 238, 296,

988, 990, 995, 1086–1089
Gaussian integration, nonclassical weight

function 189–191, 995
IMT rule 173
infinite ranges 176–178
Monte Carlo 156, 197, 397–403, 410
multidimensional 156, 196–199

Newton-Cotes formulas 158, 179
Newton-Cotes open formulas 158, 159
open formulas 157–162, 167
oscillatory function 217
related to differential equations 155
related to predictor-corrector methods 943
Romberg integration 156, 166, 169, 231, 923,

994
semi-open formulas 160–162
Simpson’s rule 158, 165, 169, 698, 990, 994,

997
Simpson’s three-eighths rule 158, 995, 997
singularity removal 170, 171, 173, 995
singularity removal, worked example 999,

1000
TANH rule 173
trapezoidal rule 158, 160, 162, 166, 173, 175,

178, 695, 698, 989, 993
using FFTs 156
variable transformation 172–178
weight function logx 190, 191
see also Integration of functions

Quadrature mirror filter 701, 708
Quadtree see QO tree
Quantile

changes with time 438
estimation 435
values 320, 419

Quantum mechanics, Uncertainty Principle 717
Quartet puzzling 882
Quartile value 419
Quasi-Newton methods for minimization 489,

521–525
Quasi-random sequence 403–410, 418, 1160,

1168
for Monte Carlo integration 408, 413, 418
Halton’s 404
Sobol’s 404–406
see also Random number generator

Quicksort 420, 422–426, 429, 433
Quotient-difference algorithm 206

R (programming language) 3
R-estimates 818
Racetrack betting 757, 760
Radial Basis Functions 139–144

Gaussian 142
inverse multiquadric 142
multiquadric 141
thin-plate spline 142
Wendland 142

Radioactive decay 362
Radix base for floating point arithmetic 592, 1164
Radix base for floating-point arithmetic 1186,

1192
Radix conversion 1181, 1185, 1192
Ramanujan’s identity for � 1193
Random

angle variables 364
bits 380–386
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byte 352
point in triangle 1114
point on circle 1131
point on sphere 1129, 1130
rotation matrix 1130, 1131
variables, decorrelating 379
walk 10
walk, multiplicative 329

Random deviates 340–386
angles 364
beta distribution 371
binomial 374–377
Cauchy distribution 367
chi-square distribution 371
exponential 362
F -distribution 371
faster 377
gamma distribution 369
Gaussian 341, 364, 365, 368, 377, 686, 1004
integer range 343
logistic 363
multivariate Gaussian 378, 379
normal 341, 364, 365, 368, 377, 686
Poisson 372–374, 686
quasi-random sequences 403–410, 1160,

1168
Rayleigh 365
squeeze 368
Student’s-t distribution 371
sum of 12 uniform 377
trig functions 364
uniform 341–357

Random number generator
32-bit limited 355–357
Box-Muller algorithm 364
combined generators 342, 345–352
Data Encryption Standard 358–361
Diehard test 345
floating point 354
for everyday use 351
for hash function 387
for integer-valued probability distribution 372
hash function 352
highest quality 342, 351
inheritance 23
lagged Fibonnaci 354
linear congruential generator 341, 343, 348
linear feedback shift register (LSFR) 346,

380–386
MLCG 341, 344, 348, 349
multiply with carry method (MWC) 347
NIST-STS test 345
nonrandomness of low-order bits 344
planes, numbers lie on 344
primitive polynomials modulo 2 382
pseudo-DES 358
quasi-random sequences 403–410, 1160,

1168
Quicksort use of 423
random bits 380–386

random byte 352
ratio-of-uniforms method 367–371
recommended methods 345–352
rejection method 365–368
simulated annealing method 551, 552
spectral test 344
subtractive method 354
successor relation 350, 352
system-supplied 342
timings 355
transformation method 362–365
trick for trigonometric functions 364, 367
uniform 341–357
xorshift method 345

Random numbers see Monte Carlo; Random
deviates

RANDU, infamous routine 344
Range 67, 68, 70
Rank (matrix) 67

kernel of finite 992
Rank (sorting) 419, 428–431
Rank (statistics) 748–754, 818

Kendall’s tau 751–754
Spearman correlation coefficient 749–751
sum squared differences of 749

Rank-nullity theorem 68
Raphson, Joseph 456
Rate equations 947, 948
Ratio-of-uniforms method for random number

generator 367–371
Ratio variable (statistics) 741
Rational Chebyshev approximation 247–251
Rational function 110, 201–205, 245, 248, 670

approximation for Bessel functions 275
approximation for continued fraction 207,

260
as power spectrum estimate 681
Chebyshev approximation 247–251
diagonal 125
evaluation of 204, 205
extrapolation in Bulirsch-Stoer method 922
interpolation and extrapolation using 110,

124–128, 245, 247–251, 922
minimax 248, 249
response of recursive filter 670

Rayleigh deviates 365
RBF see Radial Basis Functions
Reactions, chemical or nuclear 946–954

reaction products 947
Realizable (causal) 668, 670, 671
Rearranging see Sorting
Reciprocal, multiple precision 1190
Record, in data file 428
Recurrence relation 219–223

and continued fraction 222
associated Legendre polynomials 294
Bessel function 219, 274, 275, 278, 283–285
binomial coefficients 258
Bulirsch-Stoer 125
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characteristic polynomial of tridiagonal matrix
583, 665

Clenshaw’s recurrence formula 222, 223
continued fraction evaluation 207, 208
convergence 222
cosine function 219, 610
dominant solution 220
exponential integrals 219
gamma function 256
Golden Mean 11
hidden Markov model 861
Legendre polynomials 219
minimal vs. dominant solution 220
modified Bessel function 281
Neville’s 118, 231
orthonormal polynomials 181
parallel evaluation 223, 224
Perron’s theorems 221
Pincherle’s theorem 222
polynomial interpolation 118, 119, 231
random number generator 343
rational function interpolation 125
sequence of trig functions 219
sine function 219, 610
spherical harmonics 294
stability of 12, 220, 222, 223, 275, 278, 282,

294
trig functions 687
weight of Gaussian quadrature 183

Recursive
doubling (parallel method) 223
Monte Carlo integration 410–418
multigrid method 1069
stratified sampling 416–418

Red-black see Odd-even ordering
Reduction of variance in Monte Carlo integration

402, 410
Reed-Solomon code 852, 855

Berlekamp-Massey algorithm 852
syndrome decoding 852

References (explanation) 6
Reflection formula for gamma function 256
Regula falsi (false position) 449
Regularity condition 983
Regularization

compared with optimal filtering 1008
constrained linear inversion method 1006
linear 1006–1013
nonlinear 1018
objective criterion 1009
of inverse problems 1002–1006
Phillips-Twomey method 1006
support vector machines 893
Tikhonov-Miller 1007
trade-off curve 1005
two-dimensional 1010, 1011
zeroth order 1002–1006
see also Inverse problems

Regularizing operator 1004

Rejection method for random number generator
365–368

Relative entropy 756
Relaxation method

automated allocation of mesh points 981–983
computation of spheroidal harmonics 971,

973–977
elliptic partial differential equations 1028,

1059–1066
example 971, 973–977
for algebraically difficult sets 970
for differential equations 957, 964–970
Gauss-Seidel method 1060, 1061, 1068, 1078
internal boundary conditions 983, 984
internal singular points 983, 984
Jacobi’s method 1060, 1061, 1068
successive over-relaxation (SOR) 1061–1066,

1070
see also Multigrid method

Remes algorithms
exchange algorithm 669
for minimax rational function 249

Residual 63, 70, 88
in multigrid method 1067

resize 27
Resolution function, in Backus-Gilbert method

1014
Response function 641–643, 649
Responsibility matrix 842
Restriction operator 1068
Reward, $1000 offer revoked 342
Richardson’s deferred approach to the limit 166,

169, 231, 900, 911, 921, 922, 994, 1072
see also Bulirsch-Stoer method

Richtmyer artificial viscosity 1042
Ridders’ method

for numerical derivatives 231
root finding 443, 449, 452–454

Riemann shock problem 1043
Riemann zeta function 211
Right eigenvalues or eigenvectors 564, 565
Rights management 5
Rise/fall time 659
Robust estimation 723, 778, 818–824

Andrew’s sine 821
average deviation 723
double exponential errors 820
Kalman filtering 824
Lorentzian errors 820
mean absolute deviation 723
nonparametric correlation 748–754
Tukey’s biweight 821
use of a priori covariances 824
see also Statistical tests

Romberg integration 156, 166, 169, 231, 923,
994

Root finding 181, 182, 442–486
advanced implementations of Newton’s rule

486
Bairstow’s method 466, 471
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bisection 445, 447–449, 454, 460, 492, 584,
822

bracketing of roots 443, 445–447, 454, 455,
464, 465, 470

Brent’s method 443, 449, 453–456, 459, 786
Broyden’s method 474, 483–486
compared with multidimensional minimization

476, 477
complex analytic functions 466
convergence criteria 448, 475
deflation of polynomials 464, 471
double root 443
eigenvalue methods 469, 470
false position 449, 452, 454
Halley’s method 263, 264, 271, 335, 463
in complex plane 254
in one dimension 442
in relaxation method 964
in shooting method 956, 959
Jenkins-Traub method 470
Laguerre’s method 444, 466–469
Lehmer-Schur algorithm 470
Maehly’s procedure 465, 472
matrix method 469, 470
Muller’s method 466, 473
multidimensional 442, 459
multiple roots 443
Newton’s rule 182, 229, 443, 444, 456–462,

464, 466, 470–477, 539, 584, 944, 959,
964, 994, 1077, 1079, 1190, 1191

pathological cases 445, 457, 464, 474
polynomials 444, 463–473, 563
Ridders’ method 443, 449, 452–454
root polishing 459, 465, 470–473
safe Newton’s rule 460
secant method 449, 454, 466, 500
singular Jacobian in Newton’s rule 486
stopping criterion for polynomials 467
use of minimum finding 443
using derivatives 456
without derivatives 456
zero suppression 473
see also Roots

Root polishing 459, 465, 470–473
Roots

Chebyshev polynomials 233
cubic equations 228
multiple 443, 466
nonlinear equations 442–486
polynomials 444, 464, 563
quadratic equations 227
reflection in unit circle 676
square, multiple precision 1191
see also Root finding

Rosenbrock method 934–940
compared with semi-implicit extrapolation

941
stepsize control 938

Rotation matrix 1097, 1130, 1131
Roundoff error 10, 11, 1163, 1164

bracketing a minimum 500
conjugate gradient method 1030
eigensystems 572, 573, 582, 584, 586, 591,

594
extended trapezoidal rule 165
general linear least squares 791, 795
graceful 1165
hardware aspects 1164
Householder reduction 581, 582
IEEE standard 1165
least-squares fitting 783, 791
Levenberg-Marquardt method 802
linear algebraic equations 38, 41, 43, 61, 72,

95
linear predictive coding (LPC) 680
magnification of 10, 11, 61
maximum entropy method (MEM) 683
multidimensional minimization 521, 525
multiple roots 464
numerical derivatives 229
recurrence relations 220
reduction to Hessenberg form 594
series 207, 210
straight line fitting 783
variance 724

Row
degeneracy 38
operations on matrix 42, 45
totals 743, 759

RSS algorithm 416, 417
RST properties (reflexive, symmetric, transitive)

440
Run-length encoding 1180
Runge-Kutta method 900, 901, 907–910, 935,

942, 1096
dense output 915
Dormand-Prince parameters 912, 920
embedded 911, 936
FSAL (first-same-as-last) 913
high-order 907–910, 912, 920
implementation 916–920
number of function evaluations 912
stepsize control 910–920

Runge phenomenon 1090
Rybicki, G.B. 96, 130, 183, 303, 634, 689, 717

Sampling
a distribution 825
importance 411, 412, 414
Latin square or hypercube 409, 410
Markov chain Monte Carlo 825
recursive stratified 416–418
stratified 412–414
uneven or irregular 685, 771

Sampling theorem 178, 239, 605, 653
for numerical approximation 717–719

Sande-Tukey FFT algorithm 616
Savitzky-Golay filters

for data smoothing 766–772
for numerical derivatives 232, 769
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ScaLAPACK 40
Scallop loss 658
Schrödinger equation 1048, 1049
Schrage’s algorithm 344
Schultz’s method for matrix inverse 64, 716
Scilab (software) 3
Scope, temporary 20, 21
Searching

an ordered table 114–118
selection 431–439
with correlated values 115

Secant method 443, 449, 454, 466, 500
Broyden’s method 483–486
multidimensional (Broyden’s) 474, 483–486

Second Euler-Maclaurin summation formula 167
Second order differential equations 928, 930
Seed of random number generator 343
Selection 419, 431–439

by partition-exchange 433
findm largest elements 434
for median 822
heap algorithm 434
in place 432, 439
incremental quantile estimation 435
largest or smallest 434
operation count 433, 439
single-pass 432
use to find median 726

Semi-implicit Euler method 934, 940
Semi-implicit extrapolation method 934, 935,

940, 941
compared with Rosenbrock method 941
stepsize control 941

Semi-implicit midpoint rule 940
Semi-invariants of a distribution 725
Sentinel, in Quicksort 424, 433
Separable kernel 992
Separation of variables 292
Sequence, alignment of by DP 559–562
Sequential quantile estimation 435

changes with time 438
Series 209–218

accelerating convergence of 177, 211–218
alternating 211, 216
asymptotic 210, 216
Bessel functionK� 288
Bessel function Y� 284, 285
Bessel functions 210, 274
divergent 210, 211, 216
economization 243–245
� algorithm 212
Euler’s transformation 211, 212
exponential integral 267, 269
Fresnel integral 298
geometric 211, 214
hypergeometric 252, 318
hyperlinear convergence 211
incomplete beta function 270
incomplete gamma function 259
Laurent 681, 682

Levin transformation 214
linear convergence 211
logarithmic convergence 211
relation to continued fractions 206
Riemann zeta function 211
roundoff error in 207
sine and cosine integrals 301
sine function 210
Taylor 456, 510, 900, 911, 965, 969
transformation of 211, 212
van Wijngaarden’s algorithm 217

Set bits, counting 16
Shaft encoder 1166
Shell algorithm (Shell’s sort) 420–423
Shepard interpolation 140
Sherman-Morrison formula 76–79, 94, 483, 534
Shifting of eigenvalues 563, 585, 596
Shock wave 1037, 1042, 1043
Shooting method

computation of spheroidal harmonics 979
example 971, 977–981
for differential equations 956, 959–961, 971,

977–981
for difficult cases 962
interior fitting point 962

Side information 760, 761
Sidelobe level 658
Sign bit in floating point format 8
SIGN utility function 17
Signal, bandwidth limited 605
Significance (statistical) 727

of 2-d K-S test 763, 764
one- vs. two-sided 747
peak in Lomb periodogram 686, 687
two-tailed 730

Similarity transform 566, 567, 570, 592, 594
Simplex

defined 502
method in linear programming 489, 502,

526–536, 548
method of Nelder and Mead 489, 502–507,

552, 821
use in simulated annealing 552

Simplex method see Linear Programming
Simpson’s rule 156, 158, 160, 165, 169, 698,

990, 994
Simpson’s three-eighths rule 158, 995, 997
Simulated annealing see Annealing, method of

simulated
Simulation see Monte Carlo
Sinc expansion 178
Sine function

evaluated from tan.�=2/ 219
recurrence 219
series 210

Sine integral 297, 300–302
continued fraction 301
routine for 301
series 301
see also Cosine integral
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Sine transform see Fast Fourier transform (FFT);
Fourier transform

Singleton’s algorithm for FFT 637, 638
Singular value decomposition (SVD) 39, 65–75

and least squares 65, 70, 73, 249, 791, 793
and rational Chebyshev approximation 249
approximation of matrices 74, 75
basis for nullspace and range 68
confidence levels from 816, 817
covariance matrix 817
fewer equations than unknowns 73
for inverse problems 1003
in minimization 512
more equations than unknowns 73, 74
of square matrix 69–73
relation to eigendecomposition 569, 570
use for ill-conditioned matrices 71, 73, 563
use for orthonormal basis 74, 105

Singularities
in integral equations 995–1000
in integral equations, worked example 999,

1000
in integrands 167, 173, 195, 995
of hypergeometric function 252, 253, 318
removal in numerical integration 170, 171,

173, 995
Singularity, subtraction of the 996
Six-step framework, for FFT 615
size 27
Skewness of distribution 723, 725
Slack variables 529, 538, 888
Slepian functions 662–667
SMBus 1168
Smith-Waterman algorithm 562
Smoothing

data 129, 766–772
in multigrid methods 1069
operator in integral equations 987

Smoothness prior 1006
sn function 316
Sobol’s quasi-random sequence 404–406
Soft-decision decoding 851–855

error correction 855
minimal trellis 853
trellis 853, 856
Viterbi algorithm 854

Software engineering 2
Sorting 419–441

bubble sort cautioned against 420
compared to selection 431
eigenvectors 575
Heapsort 420, 426–428, 434
index table 419, 426, 428–431
operation count 420, 422, 423
Quicksort 420, 422–426, 429, 433
rank table 419, 431
ranking 428–431
Shell’s method 420–423
straight insertion 420, 423, 575

Source code, obtaining NR 3

Sparse linear equations 39, 75–92, 534, 544, 548,
937
band-diagonal 58
Bartels-Golub update 535
biconjugate gradient method 88, 716
fill-in, minimizing 59, 76, 535, 544
in inverse problems 1011
indexed storage 82–87
minimum residual method 89
named patterns 76, 1028
partial differential equations 1028
relaxation method for boundary value

problems 964
wavelet transform 700, 716
see also Matrix

Spearman rank-order coefficient 749–751, 819
Special functions see Function
Spectral analysis see Fourier transform;

Periodogram
Spectral density

one-sided PSD 602
periodogram 681, 683
power spectral density (PSD) 602, 603, 652
power spectral density per unit time 603
power spectrum estimation by MEM 681–684
two-sided PSD 603
see also Power spectrum

Spectral lines, how to smooth 767
Spectral methods 239, 1030, 1083–1096

analytic example 1084
and discontinuities 1083
and Gaussian quadrature 1087–1089
as finite difference methods 1093
cardinal functions 1089–1091
choice of basis functions 1085
collocation method 1086
contrasted with finite differencing 1083, 1085
differentiation matrix 1091
efficiency of 1083
exponential convergence of 1085
Galerkin method 1086
grid point representation 1090
interpolation of solution 1093
method of lines 1095
multidimensional equations 1095
nonlinear equations 1094
pseudospectral 1088
tau method 1086
variable coefficient equations 1094
worked example 1094, 1095

Spectral radius 1061, 1066
Spectral test for random number generator 344
Spectrum see Fourier transform
Speech recognition by hidden Markov model 866
Sphere 1097, 1128–1130

2- vs. 3-sphere 1128
angular coordinates 1128
find all points within a 1109
intersection with line 1121
random point on 1129, 1130
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surface area in n-dimensions 1128
volume in n-dimensions 1129

Spherical Bessel functions 283
routine for 291

Spherical coordinates 1128
Spherical harmonics 292–297

basis functions for spectral methods 1085
fast transform 295, 297
orthogonality 292
routine for 294
stable recurrence for 294
table of 293
see also Associated Legendre polynomials

Spheroidal harmonics 971–981
boundary conditions 972, 973
normalization 973
routines for 975–977

Spline 111
cubic 120–124
gives tridiagonal system 122
interpolating 148
natural 122
operation count 122
two-dimensional (bicubic) 135

Spread matrix 1015
Square root

complex 226
multiple precision 1191

Square window 656
Squeeze, for computing random deviates 368
Stability 8–12

and stiff differential equations 932
Courant condition 1034, 1036, 1038, 1042,

1051
diffusion equation 1045, 1046
in quadrature solution of Volterra equation

994
mesh drift in PDEs 1040
nonlinear 1037
of Clenshaw’s recurrence 223
of Gauss-Jordan elimination 41, 43
of implicit differencing 932, 1046
of Markov model 858, 859
of polynomial deflation 464, 465
of recurrence relations 220, 222, 223, 275,

278, 282, 294
partial differential equations 1026, 1033
von Neumann analysis for PDEs 1033, 1034,

1036, 1039, 1045, 1046
see also Accuracy

Stabilized Kolmogorov-Smirnov test 739
Stabilizing functional 1004
Stage, trellis 857
Staggered leapfrog method 1038, 1039
Standard (probable) errors 727, 781, 783, 786,

787, 790, 794, 807–817
Standard deviation

of a distribution 722, 723
of Fisher’s z 747
of linear correlation coefficient 746

of sum squared difference of ranks 750
Standard Template Library (STL) containers 421
State change vector 947
Statistical distributions 320–339

beta 333, 334
binomial 338, 339
Cauchy 322, 323
chi-square 330, 331
density, change of variables in 362
exponential 326, 327
F -distribution 332, 333
full conditional 827
gamma 331, 332
Kolmogorov-Smirnov 334–336
logistic 324–326
lognormal 328, 329
Lorentzian 322
normal 320, 321
Poisson 336–338
Student’s 323, 324
Weibull 327, 328

Statistical error 778
Statistical tests 720–772

Anderson-Darling 739
average deviation 723
bootstrap method 809, 810
chi-square 731–734, 742–745
contingency coefficient C 743, 744
contingency tables 741–745, 753, 758
correlation 721
Cramer’s V 743, 744
difference of distributions 730–740
difference of means 727
difference of variances 728, 730
entropy measures of association 758–761
F-test 728, 730
Fisher’s z-transformation 746
general paradigm 720
Kendall’s tau 749, 751–754
Kolmogorov-Smirnov 731, 736–738, 762,

819
Kuiper’s statistic 739
kurtosis 723, 725
L-estimates 818
linear correlation coefficient 745–748
Lucy’s Y 2 andZ2 735
M-estimates 818
mean 721–723, 725, 726
mean absolute deviation 723
measures of association 721, 741, 759
measures of central tendency 721–726
median 722, 725, 726, 818
mode 722, 725, 726
moments 721–726
nonparametric correlation 748–754
p-value test 720
Pearson’s r 745
periodic signals 686, 687
phi statistic 744
R-estimates 818
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rank correlation 748–754
robust 723, 749, 818–824
semi-invariants 725
shift vs. spread 739
significance 727
significance, one- vs. two-sided 730, 747
skewness 723, 725
small numbers of counts 734, 735
Spearman rank-order coefficient 749–751,

819
standard deviation 722, 723
strength vs. significance 727, 741
Student’s t 727–730, 746
Student’s t, for correlation 746
Student’s t, paired samples 729
Student’s t, Spearman rank-order coefficient

749
Student’s t, unequal variances 728
sum squared difference of ranks 749
tail test 720
Tukey’s trimean 818
two-dimensional 762–766
variance 721, 722, 724, 725, 729
Wilcoxon 818
see also Error; Robust estimation

Statistics, higher-order 604
Steed’s method

Bessel functions 283, 287
continued fractions 207

Steepest descent method 516
in inverse problems 1011

Step
doubling 162, 174, 177, 910
tripling 168, 169

Stieltjes, procedure of 189
Stiff equations 901, 931–941

Kaps-Rentrop method 934
methods compared 941
predictor-corrector method 934
Rosenbrock method 934–940
scaling of variables 935
semi-implicit Euler method 940
semi-implicit extrapolation method 934, 935
semi-implicit midpoint rule 940

Stiff functions 111, 500
Stirling’s approximation 256, 1017
STL see Standard Template Library
Stochastic simulation 946–954

when not to use 953
Stock market prices 329
Stoermer’s rule 928
Stopping criterion

multigrid method 1078
polynomial root finding 467

Storage
band-diagonal matrix 58
sparse matrices 82–87

Straight injection 1071
Straight insertion 420, 423, 575
Straight-line fitting 780–785

errors in both coordinates 785–787
robust estimation 822–824

Strassen’s fast matrix algorithms 107
Stratified sampling, Monte Carlo 412–414, 416
Strings, aligning by DP 559–562
struct see Class; Object
Student-t deviates 371
Student’s probability distribution 323, 324

Cauchy as special case 323
normal as limiting case 323

Student’s t-test
for correlation 746
for difference of means 727–730
for difference of means (paired samples) 729
for difference of means (unequal variances)

728
for difference of ranks 750
Spearman rank-order coefficient 749

Sturmian sequence 583
Sub-random sequences see Quasi-random

sequence
Subtraction, multiple precision 1186
Subtractive method for random number generator

354
Successive over-relaxation (SOR) 1061–1066

bad in multigrid method 1070
Chebyshev acceleration 1064
choice of overrelaxation parameter

1062–1064
Successor relation, random generators 350
Sum-product algorithm 867
Sum squared difference of ranks 749
Sums see Series
Supernova 1987A 762
Support vector machine 883–898

dual formulation 886–889
kernel examples 891
kernel trick 889–892
linearly separable data 884
Mangasarian-Musicant variant 893–898
margin 884
regularization parameter 888, 893
SVMlight package 893

SVD see Singular value decomposition (SVD)
SVM see Support vector machine
SWAP utility function 17
Symbol, of operator 1070, 1071
Syndrome decoding

coset leader 852
error-correcting codes 852
Golay code 852
Hamming code 852
perfect code 852
Reed-Solomon code 852

Synthetic division 95, 202, 243, 464, 471
Systematic errors 778

Tableau (interpolation) 118, 125
Tail test 720
Tangent function, continued fraction 206
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TANH rule 173
infinite range 176

Taylor series 229, 456, 510, 900, 911, 944, 965,
969

Templates (C++) 17, 22, 26, 419, 421
Thermodynamics, and simulated annealing 550
Thin-plate spline 142
Three-dimensional array 36
Threshold partial pivoting 535
throw statement 30
Tides 677
Tikhonov-Miller regularization 1007
Time domain 600
Time reuse 952
Time splitting 1052, 1053, 1065
Timing, C routine for 355
TNT parsimony software 882
Toeplitz matrix 93, 96–99, 245
LU decomposition 98
new, fast algorithms 99
nonsymmetric 96–98

Tongue twisters 431
Torus 400, 401, 408
Trade-off curve 1002, 1016
Transformation

Gauss 310
Landen 310
method for random number generator

362–365
Transforms, number theoretic 616
Transition matrix

directed graph 856
eigenvalues and eigenvectors 858, 859
Markov model 856

Transition probability
directed graph 856
Markov model 856

Transport error 1037
Transpose of sparse matrix 85
Trapezoidal rule 158, 160, 162, 166, 173, 175,

178, 695, 698, 989, 993
Traveling salesman problem 549, 551, 552
Tree

data structure 1097
KD see KD tree
minimum spanning 1097, 1147
of boxes as data structure 1101
quadtree/octree see QO tree

Tree, phylogenetic 868–882
additive 871
agglomerative clustering 874–882
branch length 870
corrected distance transformation 873
maximum likelihood 882
maximum parsimony 882
rooted vs. unrooted 871
search over topologies 882
software packages 874
ultrametric 871
UPGMA 877

WPGMA 877
Trellis 853, 856

directed graph 856
maximum likelihood 854
stage 857

Trellis coded modulation 855
Triangle 1097, 1111–1116

angle between two 1116
area of 1111
centroid or barycenter 1113
circumscribed circle (circumcircle) 1112
in 3 dimensions 1114
inscribed circle (incircle) 1112
intersection with line 1121
plane defined by 1115
random point in 1114

Triangulation
and interpolation 132
applications of 1141–1149
definition 1131
Delaunay 1097, 1131–1149
hashing and 1136
incremental construction 1134
interpolation using 1141
largest minimum angle property 1134
minimum weight 1134
number of lines and triangles in 1132

Tridiagonal matrix 56–61, 188, 567, 598
cyclic 79, 80
eigenvalues 576, 577, 583–589, 665
from cubic spline 122
from operator splitting 1066
in alternating-direction implicit method (ADI)

1066
in cyclic reduction 1057, 1058
parallel solution 57
reduction of symmetric matrix to 576–583
with fringes 1028
see also Matrix

Trigonometric
functions, tan.�=2/ as minimal 219
functions, recurrence relation 219, 687
interpolation 110
solution of cubic equation 228

Trimming error 173
Truncation error 11, 173, 500, 910, 911, 1163

exponentially decreasing 238
in multigrid method 1077
in numerical derivatives 229

try 30
Tukey’s biweight 821
Tukey’s trimean 818
Turbo codes 855
Twenty questions 755, 758, 761
Twin errors 1174
Two-dimensional see Multidimensional
Two-dimensional K–S test 762–766
Two-pass algorithm for variance 724
Two-point boundary value problems 900,

955–984



�

�

“nr3index” — 2007/5/1 — 20:54 — page 1234 — #40
�

�

� �

1234 Index

automated allocation of mesh points 981–983
boundary conditions 955, 962, 977
difficult cases 962
eigenvalue problem for differential equations

958, 973, 977–981
free boundary problem 958, 983
grid (mesh) points 957, 964, 981–983
internal boundary conditions 983, 984
internal singular points 983, 984
linear requires no iteration 961
multiple shooting 964
problems reducible to standard form 958
regularity condition 983
relaxation method 957, 964–970
relaxation method, example of 973–977
shooting method 956, 959–961, 971, 977–981
shooting method, example of 977–981
shooting to a fitting point 962
singular endpoints 962, 972, 978
see also Elliptic partial differential equations

Two-sided exponential error distribution 820
Two-sided power spectral density 603
Two-step Lax-Wendroff method 1040
Types used in NR 4, 25, 26

Uchar 25
Uint 25
Ullong 25
Ultrametric tree 871
Uncertainty coefficient 761
Uncertainty principle 717
Underflow, in IEEE arithmetic 9, 1165
Underrelaxation 1062
Uniform deviates see Random deviates, uniform
Unit-offset array 36
Unitary (function) 1048, 1049
Unitary (matrix) see Matrix
Universal Product Code (UPC) 1174
Unnormalized value 9
Unsupervised learning 842, 868
UPC checksum 1174
UPGMA 877
Upper Hessenberg matrix see Hessenberg matrix
Upwind differencing 1037, 1042
U.S. Postal Service barcode 1174
Utility functions 17

V-cycle 1069
valarray class 25
Validation of Numerical Recipes procedures 5
Valley, long or narrow 503, 509, 512, 516, 550,

552
Van Cittert’s method 1011
Van Wijngaarden-Dekker-Brent method see

Brent’s method
Vandermonde matrix 93–96, 130
Variable length code 1176
Variable metric method 489, 521–525

compared to conjugate gradient method 521
Variable step-size integration 155, 167, 901, 924,

928–930, 938, 941, 943, 944, 946

Variance(s)
of distribution 721, 722, 725, 728–730
pooled 727
reduction of (in Monte Carlo) 402, 410
statistical differences between two 726–730
two-pass algorithm for computing 724
see also Covariance

Variational methods, partial differential equations
1030

Variogram 145, 837
various models for 837

VecDoub, VecInt, etc. 26
Vector

angle between two 1120, 1121
C++ vector class 24
class for 24–29
contiguous storage for 27
of matrices 36
suffix _I, _O, _IO 26, 32, 36
see also Array; NRvector

VEGAS algorithm for Monte Carlo 414–416
Verhoeff’s algorithm for checksums 1174
Viète’s formulas for cubic roots 228
Viscosity

artificial 1037, 1042
numerical 1035, 1042

Viterbi decoding 850–855
as a min-sum algorithm 867
Bayesian nature of 868
compared to forward-backward algorithm

867
compared to hidden Markov model 867, 868
constellation 855
directed graph 850
state defined 850
training 867
transition 850
with arbitrary transition probability 867
with parameter re-estimation 867

Volterra equations 988
adaptive stepsize control 995
analogy with ODEs 993
block-by-block method 994
first kind 988, 993
nonlinear 988, 994
second kind 988, 992–995
unstable quadrature 994

von Neumann-Richtmyer artificial viscosity 1042
von Neumann stability analysis for PDEs 1033,

1034, 1036, 1039, 1045, 1046
Voronoi diagram 1097, 1142–1146

and Delaunay triangulation 1143
avoiding obstacles 1147

Vowellish (coding example) 1176, 1181

W-cycle 1069
Wave equation 292, 1024, 1031
Wavelet transform 699–716

and Fourier domain 707, 708
appearance of wavelets 706, 707
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approximation condition of order p 701
coefficient values 703, 704
contrasted with Fourier transform 699, 700,

711
Daubechies wavelet filter coefficients 700,

702, 704, 706–708, 715
detail information 701, 702
discrete wavelet transform (DWT) 702–706
DWT (discrete wavelet transform) 702–706
eliminating wraparound 703, 709
fast solution of linear equations 715, 716
filters 707, 708
for integral equations 989
image processing 713, 715
inheritance 23
inverse 703
JPEG-2000 712
Lemarie’s wavelet 708
mother-function coefficient 703
mother functions 700
multidimensional 712, 713
nonsmoothness of wavelets 707
of linear operator 715
on the interval 709
pyramidal algorithm 702, 703
quadrature mirror filter 701
smooth information 701, 702
truncation 711, 712
wavelet filter coefficient 700, 703
wavelets 700, 706, 707

Wavelets see Wavelet transform
Weber function 254
Webnotes, Numerical Recipes 4
Weibull probability distribution 327, 328
Weighted Kolmogorov-Smirnov test 739
Weighted least-squares fitting see Least-squares

fitting
Weighting, full vs. half in multigrid 1071
Weights for Gaussian quadrature 179, 180, 995

nonclassical weight function 189–191, 995
Welch window 658
while iteration 14
Wiener filtering 645, 649–652, 673, 674, 767

compared to regularization 1008
Wiener-Khinchin theorem 602, 674, 682
Wilcoxon test 818
Winding number 1122–1124
Window function 660

Bartlett 657
flat-topped 658, 659
Hamming 658
Hann 657
Parzen 657
Slepian 662
square 656
Welch 658

Winograd Fourier transform algorithms 616
Woodbury formula 80, 81, 94
Wordlength 8, 12
WPGMA 877

Wraparound
object for accessing vector 613
order for storing spectrum 611, 628, 632
problem in convolution 643

Wronskian, of Bessel functions 283, 284, 287

X-ray diffraction pattern, processing of 1012
Xorshift random number generator 345

Yale Sparse Matrix Package 76

Z-transform 670, 681
Z-transformation, Fisher’s 746
Zapf Dingbats 1162
Zealots 1020
Zebra relaxation 1070
Zero contours 474
Zero-offset array 36
Zeroth-order regularization 1002–1006
Zip code, barcode for 1174
Ziv-Lempel compression 1176
ZooAnimal (OOP example) 23
Zoom transforms 615
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