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Preface to the Third Edition (2007)

“I was just going to say, when I was interrupted. ..” begins Oliver Wendell
Holmes in the second series of his famous essays, The Autocrat of the Breakfast
Table. The interruption referred to was a gap of 25 years. In our case, as the autocrats
of Numerical Recipes, the gap between our second and third editions has been “only”
15 years. Scientific computing has changed enormously in that time.

The first edition of Numerical Recipes was roughly coincident with the first
commercial success of the personal computer. The second edition came at about the
time that the Internet, as we know it today, was created. Now, as we launch the third
edition, the practice of science and engineering, and thus scientific computing, has
been profoundly altered by the mature Internet and Web. It is no longer difficult to
find somebody’s algorithm, and usually free code, for almost any conceivable scien-
tific application. The critical questions have instead become, “How does it work?”
and “Is it any good?” Correspondingly, the second edition of Numerical Recipes has
come to be valued more and more for its text explanations, concise mathematical
derivations, critical judgments, and advice, and less for its code implementations
per se.

Recognizing the change, we have expanded and improved the text in many
places in this edition and added many completely new sections. We seriously consid-
ered leaving the code out entirely, or making it available only on the Web. However,
in the end, we decided that without code, it wouldn’t be Numerical Recipes. That is,
without code you, the reader, could never know whether our advice was in fact hon-
est, implementable, and practical. Many discussions of algorithms in the literature
and on the Web omit crucial details that can only be uncovered by actually coding
(our job) or reading compilable code (your job). Also, we needed actual code to
teach and illustrate the large number of lessons about object-oriented programming
that are implicit and explicit in this edition.

Our wholehearted embrace of a style of object-oriented computing for scientific
applications should be evident throughout this book. We say “a style,” because,
contrary to the claims of various self-appointed experts, there can be no one rigid
style of programming that serves all purposes, not even all scientific purposes. Our
style is ecumenical. If a simple, global, C-style function will fill the need, then we
use it. On the other hand, you will find us building some fairly complicated structures
for something as complicated as, e.g., integrating ordinary differential equations. For
more on the approach taken in this book, see §1.3 — §1.5.

In bringing the text up to date, we have luckily not had to bridge a full 15-year
gap. Significant modernizations were incorporated into the second edition versions
in Fortran 90 (1996)* and C++ (2002), in which, notably, the last vestiges of unit-
based arrays were expunged in favor of C-style zero-based indexing. Only with this
third edition, however, have we incorporated a substantial amount (several hundred
pages!) of completely new material. Highlights include:

e a new chapter on classification and inference, including such topics as Gaus-
sian mixture models, hidden Markov modeling, hierarchical clustering (phy-
logenetic trees), and support vector machines

*“Alas, poor Fortran 90! We knew him, Horatio: a programming language of infinite jest, of most
excellent fancy: he hath borne us on his back a thousand times.”

xi



xii Preface to the Third Edition

a new chapter on computational geometry, including topics like KD trees,

quad- and octrees, Delaunay triangulation and applications, and many useful

algorithms for lines, polygons, triangles, spheres, etc.

e many new statistical distributions, with pdfs, cdfs, and inverse cdfs

e an expanded treatment of ODEs, emphasizing recent advances, and with com-
pletely new routines

e much expanded sections on uniform random deviates and on deviates from

many other statistical distributions

an introduction to spectral and pseudospectral methods for PDEs

interior point methods for linear programming

more on sparse matrices

interpolation on scattered data in multidimensions

curve interpolation in multidimensions

quadrature by variable transformation and adaptive quadrature

more on Gaussian quadratures and orthogonal polynomials

more on accelerating the convergence of series

improved incomplete gamma and beta functions and new inverse functions

improved spherical harmonics and fast spherical harmonic transforms

generalized Fermi-Dirac integrals

multivariate Gaussian deviates

algorithms and implementations for hash memory functions

incremental quantile estimation

chi-square with small numbers of counts

dynamic programming

hard and soft error correction and Viterbi decoding

eigensystem routines for real, nonsymmetric matrices

multitaper methods for power spectral estimation

wavelets on the interval

information-theoretic properties of distributions

Markov chain Monte Carlo

Gaussian process regression and kriging

stochastic simulation of chemical reaction networks

code for plotting simple graphs from within programs

The Numerical Recipes Web site, www.nr.com, is one of the oldest active sites on
the Internet, as evidenced by its two-letter domain name. We will continue to make
the Web site useful to readers of this edition. Go there to find the latest bug reports, to
purchase the machine-readable source code, or to participate in our readers’ forum.
With this third edition, we also plan to offer, by subscription, a completely electronic
version of Numerical Recipes — accessible via the Web, downloadable, printable,
and, unlike any paper version, always up to date with the latest corrections. Since
the electronic version does not share the page limits of the print version, it will grow
over time by the addition of completely new sections, available only electronically.
This, we think, is the future of Numerical Recipes and perhaps of technical reference
books generally. If it sounds interesting to you, look at http:/www.nr.com/electronic.

This edition also incorporates some “user-friendly” typographical and stylistic
improvements: Color is used for headings and to highlight executable code. For
code, a label in the margin gives the name of the source file in the machine-readable
distribution. Instead of printing repetitive #include statements, we provide a con-
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venient Web tool at http://www.nr.com/dependencies that will generate exactly the state-
ments you need for any combination of routines. Subsections are now numbered and
referred to by number. References to journal articles now include, in most cases, the
article title, as an aid to easy Web searching. Many references have been updated;
but we have kept references to the grand old literature of classical numerical analysis
when we think that books and articles deserve to be remembered.

Acknowledgments

Regrettably, over 15 years, we were not able to maintain a systematic record of
the many dozens of colleagues and readers who have made important suggestions,
pointed us to new material, corrected errors, and otherwise improved the Numerical
Recipes enterprise. It is a tired cliché to say that “you know who you are.” Actually,
in most cases, we know who you are, and we are grateful. But a list of names
would be incomplete, and therefore offensive to those whose contributions are no
less important than those listed. We apologize to both groups, those we might have
listed and those we might have missed.

We prepared this book for publication on Windows and Linux machines, gen-
erally with Intel Pentium processors, using LaTeX in the TeTeX and MiKTeX im-
plementations. Packages used include amsmath, amsfonts, txfonts, and graphicx,
among others. Our principal development environments were Microsoft Visual Stu-
dio / Microsoft Visual C++ and GNU C++. We used the SourceJammer cross-
platform source control system. Many tasks were automated with Perl scripts. We
could not live without GNU Emacs. To all the developers: ““You know who you are,”
and we thank you.

Research by the authors on computational methods was supported in part by the
U.S. National Science Foundation and the U.S. Department of Energy.



Preface to the Second Edition (1992)

Our aim in writing the original edition of Numerical Recipes was to provide
a book that combined general discussion, analytical mathematics, algorithmics, and
actual working programs. The success of the first edition puts us now in a difficult,
though hardly unenviable, position. We wanted, then and now, to write a book that is
informal, fearlessly editorial, unesoteric, and above all useful. There is a danger that,
if we are not careful, we might produce a second edition that is weighty, balanced,
scholarly, and boring.

It is a mixed blessing that we know more now than we did six years ago. Then,
we were making educated guesses, based on existing literature and our own research,
about which numerical techniques were the most important and robust. Now, we
have the benefit of direct feedback from a large reader community. Letters to our
alter-ego enterprise, Numerical Recipes Software, are in the thousands per year.
(Please, don’t telephone us.) Our post office box has become a magnet for letters
pointing out that we have omitted some particular technique, well known to be im-
portant in a particular field of science or engineering. We value such letters and digest
them carefully, especially when they point us to specific references in the literature.

The inevitable result of this input is that this second edition of Numerical Recipes
is substantially larger than its predecessor, in fact about 50% larger in both words and
number of included programs (the latter now numbering well over 300). “Don’t let
the book grow in size,” is the advice that we received from several wise colleagues.
We have tried to follow the intended spirit of that advice, even as we violate the letter
of it. We have not lengthened, or increased in difficulty, the book’s principal discus-
sions of mainstream topics. Many new topics are presented at this same accessible
level. Some topics, both from the earlier edition and new to this one, are now set
in smaller type that labels them as being “advanced.” The reader who ignores such
advanced sections completely will not, we think, find any lack of continuity in the
shorter volume that results.

Here are some highlights of the new material in this second edition:

e a new chapter on integral equations and inverse methods

adetailed treatment of multigrid methods for solving elliptic partial differential

equations

routines for band-diagonal linear systems

improved routines for linear algebra on sparse matrices

Cholesky and QR decomposition

orthogonal polynomials and Gaussian quadratures for arbitrary weight func-

tions

methods for calculating numerical derivatives

e Padé approximants and rational Chebyshev approximation

e Bessel functions, and modified Bessel functions, of fractional order and sev-
eral other new special functions

e improved random number routines

e quasi-random sequences

e routines for adaptive and recursive Monte Carlo integration in high-dimensional
spaces

e globally convergent methods for sets of nonlinear equations

e simulated annealing minimization for continuous control spaces

Xiv
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fast Fourier transform (FFT) for real data in two and three dimensions
fast Fourier transform using external storage

improved fast cosine transform routines

wavelet transforms

Fourier integrals with upper and lower limits

spectral analysis on unevenly sampled data

Savitzky-Golay smoothing filters

fitting straight line data with errors in both coordinates

a two-dimensional Kolmogorov-Smirnoff test

the statistical bootstrap method

embedded Runge-Kutta-Fehlberg methods for differential equations
high-order methods for stiff differential equations

a new chapter on “less-numerical” algorithms, including Huffman and arith-
metic coding, arbitrary precision arithmetic, and several other topics

Consult the Preface to the first edition, following, or the Contents, for a list of the
more “basic” subjects treated.

Acknowledgments

It is not possible for us to list by name here all the readers who have made
useful suggestions; we are grateful for these. In the text, we attempt to give specific
attribution for ideas that appear to be original and are not known in the literature. We
apologize in advance for any omissions.

Some readers and colleagues have been particularly generous in providing us
with ideas, comments, suggestions, and programs for this second edition. We es-
pecially want to thank George Rybicki, Philip Pinto, Peter Lepage, Robert Lupton,
Douglas Eardley, Ramesh Narayan, David Spergel, Alan Oppenheim, Sallie Baliu-
nas, Scott Tremaine, Glennys Farrar, Steven Block, John Peacock, Thomas Loredo,
Matthew Choptuik, Gregory Cook, L. Samuel Finn, P. Deuflhard, Harold Lewis, Pe-
ter Weinberger, David Syer, Richard Ferch, Steven Ebstein, Bradley Keister, and
William Gould. We have been helped by Nancy Lee Snyder’s mastery of a compli-
cated TgX manuscript. We express appreciation to our editors Lauren Cowles and
Alan Harvey at Cambridge University Press, and to our production editor Russell
Hahn. We remain, of course, grateful to the individuals acknowledged in the Preface
to the first edition.

Special acknowledgment is due to programming consultant Seth Finkelstein,
who wrote, rewrote, or influenced many of the routines in this book, as well as in its
Fortran-language twin and the companion Example books. Our project has benefited
enormously from Seth’s talent for detecting, and following the trail of, even very
slight anomalies (often compiler bugs, but occasionally our errors), and from his
good programming sense. To the extent that this edition of Numerical Recipes in C
has a more graceful and “C-like” programming style than its predecessor, most of
the credit goes to Seth. (Of course, we accept the blame for the Fortranish lapses that
still remain.)

We prepared this book for publication on DEC and Sun workstations running
the UNIX operating system and on a 486/33 PC compatible running MS-DOS 5.0 /
Windows 3.0. We enthusiastically recommend the principal software used: GNU
Emacs, TgX, Perl, Adobe Illustrator, and PostScript. Also used were a variety of C



Xvi Preface to the Second Edition

compilers — too numerous (and sometimes too buggy) for individual acknowledg-
ment. It is a sobering fact that our standard test suite (exercising all the routines in
this book) has uncovered compiler bugs in many of the compilers tried. When possi-
ble, we work with developers to see that such bugs get fixed; we encourage interested
compiler developers to contact us about such arrangements.

WHP and SAT acknowledge the continued support of the U.S. National Sci-
ence Foundation for their research on computational methods. DARPA support is
acknowledged for §13.10 on wavelets.



Preface to the First Edition (1985)

We call this book Numerical Recipes for several reasons. In one sense, this
book is indeed a “cookbook” on numerical computation. However, there is an im-
portant distinction between a cookbook and a restaurant menu. The latter presents
choices among complete dishes in each of which the individual flavors are blended
and disguised. The former — and this book — reveals the individual ingredients and
explains how they are prepared and combined.

Another purpose of the title is to connote an eclectic mixture of presentational
techniques. This book is unique, we think, in offering, for each topic considered,
a certain amount of general discussion, a certain amount of analytical mathematics,
a certain amount of discussion of algorithmics, and (most important) actual imple-
mentations of these ideas in the form of working computer routines. Our task has
been to find the right balance among these ingredients for each topic. You will find
that for some topics we have tilted quite far to the analytic side; this where we have
felt there to be gaps in the “standard” mathematical training. For other topics, where
the mathematical prerequisites are universally held, we have tilted toward more in-
depth discussion of the nature of the computational algorithms, or toward practical
questions of implementation.

We admit, therefore, to some unevenness in the “level” of this book. About half
of it is suitable for an advanced undergraduate course on numerical computation for
science or engineering majors. The other half ranges from the level of a graduate
course to that of a professional reference. Most cookbooks have, after all, recipes at
varying levels of complexity. An attractive feature of this approach, we think, is that
the reader can use the book at increasing levels of sophistication as his/her experience
grows. Even inexperienced readers should be able to use our most advanced routines
as black boxes. Having done so, we hope that these readers will subsequently go
back and learn what secrets are inside.

If there is a single dominant theme in this book, it is that practical methods
of numerical computation can be simultaneously efficient, clever, and — important
— clear. The alternative viewpoint, that efficient computational methods must nec-
essarily be so arcane and complex as to be useful only in “black box” form, we
firmly reject.

Our purpose in this book is thus to open up a large number of computational
black boxes to your scrutiny. We want to teach you to take apart these black boxes
and to put them back together again, modifying them to suit your specific needs. We
assume that you are mathematically literate, i.e., that you have the normal mathe-
matical preparation associated with an undergraduate degree in a physical science,
or engineering, or economics, or a quantitative social science. We assume that you
know how to program a computer. We do not assume that you have any prior formal
knowledge of numerical analysis or numerical methods.

The scope of Numerical Recipes is supposed to be “everything up to, but not
including, partial differential equations.” We honor this in the breach: First, we do
have one introductory chapter on methods for partial differential equations. Second,
we obviously cannot include everything else. All the so-called “standard” topics of
a numerical analysis course have been included in this book: linear equations, in-
terpolation and extrapolation, integration, nonlinear root finding, eigensystems, and
ordinary differential equations. Most of these topics have been taken beyond their
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standard treatments into some advanced material that we have felt to be particularly
important or useful.

Some other subjects that we cover in detail are not usually found in the standard
numerical analysis texts. These include the evaluation of functions and of particular
special functions of higher mathematics; random numbers and Monte Carlo meth-
ods; sorting; optimization, including multidimensional methods; Fourier transform
methods, including FFT methods and other spectral methods; two chapters on the
statistical description and modeling of data; and two-point boundary value problems,
both shooting and relaxation methods.

Acknowledgments

Many colleagues have been generous in giving us the benefit of their numer-
ical and computational experience, in providing us with programs, in commenting
on the manuscript, or with general encouragement. We particularly wish to thank
George Rybicki, Douglas Eardley, Philip Marcus, Stuart Shapiro, Paul Horowitz,
Bruce Musicus, Irwin Shapiro, Stephen Wolfram, Henry Abarbanel, Larry Smarr,
Richard Muller, John Bahcall, and A.G.W. Cameron.

We also wish to acknowledge two individuals whom we have never met: For-
man Acton, whose 1970 textbook Numerical Methods That Work (New York: Harper
and Row) has surely left its stylistic mark on us; and Donald Knuth, both for his
series of books on The Art of Computer Programming (Reading, MA: Addison-
Wesley), and for TgX, the computer typesetting language that immensely aided pro-
duction of this book.

Research by the authors on computational methods was supported in part by the
U.S. National Science Foundation.



License and Legal Information

You must read this section if you intend to use the code in this book on a com-
puter. You’ll need to read the following Disclaimer of Warranty, acquire a Numerical
Recipes software license, and get the code onto your computer. Without the license,
which can be the limited, free “immediate license” under terms described below, this
book is intended as a text and reference book, for reading and study purposes only.

For purposes of licensing, the electronic version of the Numerical Recipes book
is equivalent to the paper version. It is not equivalent to a Numerical Recipes soft-
ware license, which must still be acquired separately or as part of a combined elec-
tronic product. For information on Numerical Recipes electronic products, go to
http://www.nr.com/electronic.

Disclaimer of Warranty

We make no warranties, express or implied, that the programs contained
in this volume are free of error, or are consistent with any particular standard
of merchantability, or that they will meet your requirements for any particular
application. They should not be relied on for solving a problem whose incorrect
solution could result in injury to a person or loss of property. If you do use the
programs in such a manner, it is at your own risk. The authors and publisher
disclaim all liability for direct or consequential damages resulting from your use
of the programs.

The Restricted, Limited Free License

We recognize that readers may have an immediate, urgent wish to copy a small
amount of code from this book for use in their own applications. If you personally
keyboard no more than 10 routines from this book into your computer, then we au-
thorize you (and only you) to use those routines (and only those routines) on that
single computer. You are not authorized to transfer or distribute the routines to any
other person or computer, nor to have any other person keyboard the programs into
a computer on your behalf. We do not want to hear bug reports from you, because
experience has shown that virtually all reported bugs in such cases are typing errors!
This free license is not a GNU General Public License.

Regular Licenses

When you purchase a code subscription or one-time code download from the
Numerical Recipes Web site (http://www.nr.com), or when you buy physical Numerical
Recipes media published by Cambridge University Press, you automatically get a
Numerical Recipes Personal Single-User License. This license lets you personally
use Numerical Recipes code on any one computer at a time, but not to allow anyone
else access to the code. You may also, under this license, transfer precompiled,
executable programs incorporating the code to other, unlicensed, users or computers,
providing that (i) your application is noncommercial (i.e., does not involve the selling
of your program for a fee); (ii) the programs were first developed, compiled, and
successfully run by you; and (iii) our routines are bound into the programs in such a
manner that they cannot be accessed as individual routines and cannot practicably be
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unbound and used in other programs. That is, under this license, your program user
must not be able to use our programs as part of a program library or “mix-and-match”
workbench. See the Numerical Recipes Web site for further details.

Businesses and organizations that purchase code subscriptions, downloads, or
media, and that thus acquire one or more Numerical Recipes Personal Single-User
Licenses, may permanently assign those licenses, in the number acquired, to indi-
vidual employees. In most cases, however, businesses and organizations will instead
want to purchase Numerical Recipes licenses “by the seat,” allowing them to be used
by a pool of individuals rather than being individually permanently assigned. See
http://www.nr.com/licenses for information on such licenses.

Instructors at accredited educational institutions who have adopted this book for
a course may purchase on behalf of their students one-semester subscriptions to both
the electronic version of the Numerical Recipes book and to the Numerical Recipes
code. During the subscription term, students may download, view, save, and print all
of the book and code. See http://www.nr.com/licenses for further information.

Other types of corporate licenses are also available. Please see the Numerical
Recipes Web site.

About Copyrights on Computer Programs

Like artistic or literary compositions, computer programs are protected by copy-
right. Generally it is an infringement for you to copy into your computer a program
from a copyrighted source. (It is also not a friendly thing to do, since it deprives the
program’s author of compensation for his or her creative effort.) Under copyright
law, all “derivative works” (modified versions, or translations into another computer
language) also come under the same copyright as the original work.

Copyright does not protect ideas, but only the expression of those ideas in a par-
ticular form. In the case of a computer program, the ideas consist of the program’s
methodology and algorithm, including the necessary sequence of steps adopted by
the programmer. The expression of those ideas is the program source code (partic-
ularly any arbitrary or stylistic choices embodied in it), its derived object code, and
any other derivative works.

If you analyze the ideas contained in a program, and then express those ideas
in your own completely different implementation, then that new program implemen-
tation belongs to you. That is what we have done for those programs in this book
that are not entirely of our own devising. When programs in this book are said to be
“based” on programs published in copyright sources, we mean that the ideas are the
same. The expression of these ideas as source code is our own. We believe that no
material in this book infringes on an existing copyright.

Trademarks

Several registered trademarks appear within the text of this book. Words that
are known to be trademarks are shown with an initial capital letter. However, the
capitalization of any word is not an expression of the authors’ or publisher’s opinion
as to whether or not it is subject to proprietary rights, nor is it to be regarded as
affecting the validity of any trademark.

Numerical Recipes, NR, and nr.com (when identifying our products) are trade-
marks of Numerical Recipes Software.
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Attributions

The fact that ideas are legally “free as air” in no way supersedes the ethical
requirement that ideas be credited to their known originators. When programs in
this book are based on known sources, whether copyrighted or in the public domain,
published or “handed-down,” we have attempted to give proper attribution. Unfor-
tunately, the lineage of many programs in common circulation is often unclear. We
would be grateful to readers for new or corrected information regarding attributions,
which we will attempt to incorporate in subsequent printings.

Routines by Chapter and Section

Previous editions included a table of all the routines in the book, along with a
short description, arranged by chapter and section. This information is now available
as an interactive Web page at http://www.nr.com/routines. The following illustration
gives the idea.

) Numerical Recipes Routines Index - Mozilla Firefox =lo/x|

Fle Edit View Go Bookmarks Tools Help

NUMERICAL RECIPES 4
Index of Routines

Each line corresponds to a printed piece of code in the book. These pieces have unique
internal names (not visible in the book, though related to the struct or function names), as
well as chapter, section. and page numbers. Multiple pieces are comhbined into source
code #include files. The following table shows the correspondences.

sort by name sort by section sort by file
Internal Name Chapter Section Page File

flmoon 1 1.0 2 calendar.h
julday 1.0 3 calendar.h
caldat 1 1.0 6 calendar.h
gaussj 2 2.1 43 gaussy.h
ludcmp 2 2.3 51 ludcmp.h
ludemp ludemp ] 2.3 51 ludcmp.h
ludemp solwve 2 2.3 52 ludcmp.h
ludemp_inverse 2 23 33 luderp . h
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Preliminaries

1.0 Introduction

This book is supposed to teach you methods of numerical computing that are
practical, efficient, and (insofar as possible) elegant. We presume throughout this
book that you, the reader, have particular tasks that you want to get done. We view
our job as educating you on how to proceed. Occasionally we may try to reroute you
briefly onto a particularly beautiful side road; but by and large, we will guide you
along main highways that lead to practical destinations.

Throughout this book, you will find us fearlessly editorializing, telling you what
you should and shouldn’t do. This prescriptive tone results from a conscious deci-
sion on our part, and we hope that you will not find it irritating. We do not claim
that our advice is infallible! Rather, we are reacting against a tendency, in the text-
book literature of computation, to discuss every possible method that has ever been
invented, without ever offering a practical judgment on relative merit. We do, there-
fore, offer you our practical judgments whenever we can. As you gain experience,
you will form your own opinion of how reliable our advice is. Be assured that it is
not perfect!

We presume that you are able to read computer programs in C++. The ques-
tion, “Why C++?7”, is a complicated one. For now, suffice it to say that we wanted a
language with a C-like syntax in the small (because that is most universally readable
by our audience), which had a rich set of facilities for object-oriented programming
(because that is an emphasis of this third edition), and which was highly backward-
compatible with some old, but established and well-tested, tricks in numerical pro-
gramming. That pretty much led us to C++, although Java (and the closely related
C#) were close contenders.

Honesty compels us to point out that in the 20-year history of Numerical Recipes,
we have never been correct in our predictions about the future of programming
languages for scientific programming, not once! At various times we convinced
ourselves that the wave of the scientific future would be ...Fortran ...Pascal ...C
... Fortran 90 (or 95 or 2000) ...Mathematica ...Matlab ...C++ or Java .... In-
deed, several of these enjoy continuing success and have significant followings (not
including Pascal!). None, however, currently command a majority, or even a large
plurality, of scientific users.
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With this edition, we are no longer trying to predict the future of programming
languages. Rather, we want a serviceable way of communicating ideas about scien-
tific programming. We hope that these ideas transcend the language, C++, in which
we are expressing them.

When we include programs in the text, they look like this:

void flmoon(const Int n, const Int nph, Int &jd, Doub &frac) {
Our routines begin with an introductory comment summarizing their purpose and explaining
their calling sequence. This routine calculates the phases of the moon. Given an integer n and
a code nph for the phase desired (nph = 0 for new moon, 1 for first quarter, 2 for full, 3 for
last quarter), the routine returns the Julian Day Number jd, and the fractional part of a day
frac to be added to it, of the nth such phase since January, 1900. Greenwich Mean Time is
assumed.

const Doub RAD=3.141592653589793238/180.0;

Int i;

Doub am,as,c,t,t2,xtra;

c=n+nph/4.0; This is how we comment an individual line.

t=c/1236.85;

t2=t*t;

as=359.2242+29.105356%*c; You aren't really intended to understand

am=306.0253+385.816918%c+0.010730*t2; this algorithm, but it does work!

jd=2415020+28%*n+7*nph;

xtra=0.75933+1.53058868*c+((1.178e-4)-(1.55e-7)*t)*t2;

if (nph == 0 || nph == 2)

xtra += (0.1734-3.93e-4%*t)*sin(RAD*as)-0.4068*sin (RAD*am) ;
else if (nph == || nph == 3)
xtra += (0.1721-4.0e-4x*t)*sin(RAD*as)-0.6280*sin (RAD*am) ;

else throw("nph is unknown in flmoon"); This indicates an error condition.

i=Int(xtra >= 0.0 ? floor(xtra) : ceil(xtra-1.0));

jd += i;

frac=xtra-i;

Note our convention of handling all errors and exceptional cases with a state-
ment like throw("some error message") ;. Since C++ has no built-in exception
class for type char*, executing this statement results in a fairly rude program abort.
However we will explain in §1.5.1 how to get a more elegant result without having
to modify the source code.

1.0.1 What Numerical Recipes Is Not

We want to use the platform of this introductory section to emphasize what
Numerical Recipes is not:

1. Numerical Recipes is not a textbook on programming, or on best program-
ming practices, or on C++, or on software engineering. We are not opposed to good
programming. We try to communicate good programming practices whenever we
can — but only incidentally to our main purpose, which is to teach how practical
numerical methods actually work. The unity of style and subordination of function
to standardization that is necessary in a good programming (or software engineering)
textbook is just not what we have in mind for this book. Each section in this book has
as its focus a particular computational method. Our goal is to explain and illustrate
that method as clearly as possible. No single programming style is best for all such
methods, and, accordingly, our style varies from section to section.

2. Numerical Recipes is not a program library. That may surprise you if you are
one of the many scientists and engineers who use our source code regularly. What
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makes our code not a program library is that it demands a greater intellectual com-
mitment from the user than a program library ought to do. If you haven’t read a
routine’s accompanying section and gone through the routine line by line to under-
stand how it works, then you use it at great peril! We consider this a feature, not a
bug, because our primary purpose is to teach methods, not provide packaged solu-
tions. This book does not include formal exercises, in part because we consider each
section’s code to be the exercise: If you can understand each line of the code, then
you have probably mastered the section.

There are some fine commercial program libraries [1,2] and integrated numerical
environments [3-5] available. Comparable free resources are available, both program
libraries [6,7] and integrated environments [8-10]. When you want a packaged solu-
tion, we recommend that you use one of these. Numerical Recipes is intended as a
cookbook for cooks, not a restaurant menu for diners.

1.0.2 Frequently Asked Questions

This section is for people who want to jump right in.

1. How do I use NR routines with my own program?

The easiest way is to put a bunch of #include’s at the top of your program.
Always start with nr3.h, since that defines some necessary utility classes and func-
tions (see §1.4 for a lot more about this). For example, here’s how you compute the
mean and variance of the Julian Day numbers of the first 20 full moons after January
1900. (Now there’s a useful pair of quantities!)

#include "nr3.h"
#include "calendar.h"
#include "moment.h"

Int main(void) {
const Int NTOT=20;
Int i,jd,nph=2;
Doub frac,ave,vrnce;
VecDoub data(NTOT) ;
for (i=0;i<NTOT;i++) {
flmoon(i,nph, jd,frac);

datalil=jd;
}
avevar (data,ave,vrnce) ;
cout << "Average = " << setw(12) << ave;
cout << " Variance = " << setw(13) << vrnce << endl;
return O;

Be sure that the NR source code files are in a place that your compiler can find
them to #include. Compile and run the above file. (We can’t tell you how to do this
part.) Output should be something like this:

Average = 2.41532e+06 Variance = 30480.7

2. Yes, but where do I actually get the NR source code as computer files?

You can buy a code subscription, or a one-time code download, at the Web
site http://www.nr.com, or you can get the code on media published by Cambridge
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Figure 1.0.1. The interactive page located at http://www.nr.com/dependencies sorts out the dependen-
cies for any combination of Numerical Recipes routines, giving an ordered list of the necessary #include
files.

University Press (e.g., from Amazon.com or your favorite online or physical book-
store). The code comes with a personal, single-user license (see License and Legal
Information on p. xix). The reason that the book (or its electronic version) and the
code license are sold separately is to help keep down the price of each. Also, making
these products separate meets the needs of more users: Your company or educational
institution may have a site license — ask them.

3. How do I know which files to #include? It’s hard to sort out the dependen-
cies among all the routines.

In the margin next to each code listing is the name of the source code file
that it is in. Make a list of the source code files that you are using. Then go to
http://www.nr.com/dependencies and click on the name of each source code file. The in-
teractive Web page will return a list of the necessary #includes, in the correct order,
to satisfy all dependencies. Figure 1.0.1 will give you an idea of how this works.

4. What is all this Doub, Int, VecDoub, efc., stuff?

We always use defined types, not built-in types, so that they can be redefined if
necessary. The definitions are in nr3.h. Generally, as you can guess, Doub means
double, Int means int, and so forth. Our convention is to begin all defined types
with an uppercase letter. VecDoub is a vector class type. Details on our types are in
§1.4.

5. What are Numerical Recipes Webnotes?

Numerical Recipes Webnotes are documents, accessible on the Web, that in-
clude some code implementation listings, or other highly specialized topics, that
are not included in the paper version of the book. A list of all Webnotes is at
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Tested Operating Systems and Compilers
0O/S Compiler

Microsoft Windows XP SP2 Visual C++ ver. 14.00 (Visual Studio 2005)
Microsoft Windows XP SP2 Visual C++ ver. 13.10 (Visual Studio 2003)
Microsoft Windows XP SP2 Intel C++ Compiler ver. 9.1

Novell SUSE Linux 10.1 GNU GCC (g++) ver. 4.1.0

Red Hat Enterprise Linux 4 (64-bit) GNU GCC (g++) ver. 3.4.6 and ver. 4.1.0
Red Hat Linux 7.3 Intel C++ Compiler ver. 9.1

Apple Mac OS X 10.4 (Tiger) Intel Core  GNU GCC (g++) ver. 4.0.1

http://www.nr.com/webnotes. By moving some specialized material into Webnotes, we
are able to keep down the size and price of the paper book. Webnotes are automati-
cally included in the electronic version of the book; see next question.

6. I am a post-paper person. I want Numerical Recipes on my laptop. Where
do I get the complete, fully electronic version?

A fully electronic version of Numerical Recipes is available by annual sub-
scription. You can subscribe instead of, or in addition to, owning a paper copy of
the book. A subscription is accessible via the Web, downloadable, printable, and,
unlike any paper version, always up to date with the latest corrections. Since the
electronic version does not share the page limits of the printed version, it will grow
over time by the addition of completely new sections, available only electronically.
This, we think, is the future of Numerical Recipes and perhaps of technical refer-
ence books generally. We anticipate various electronic formats, changing with time
as technologies for display and rights management continuously improve: We place
a big emphasis on user convenience and usability. See http:/www.nr.com/electronic for
further information.

7. Are there bugs in NR?

Of course! By now, most NR code has the benefit of long-time use by a large
user community, but new bugs are sure to creep in. Look at http://www.nr.com for
information about known bugs, or to report apparent new ones.

1.0.3 Computational Environment and Program Validation

The code in this book should run without modification on any compiler that
implements the ANSI/ISO C++ standard, as described, for example, in Stroustrup’s
book [11].

As surrogates for the large number of hardware and software configurations, we
have tested all the code in this book on the combinations of operating systems and
compilers shown in the table above.

In validating the code, we have taken it directly from the machine-readable form
of the book’s manuscript, so that we have tested exactly what is printed. (This does
not, of course, mean that the code is bug-free!)
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1.0.4 About References

You will find references, and suggestions for further reading, listed at the end
of most sections of this book. References are cited in the text by bracketed numbers
like this [12].

We do not pretend to any degree of bibliographical completeness in this book.
For topics where a substantial secondary literature exists (discussion in textbooks,
reviews, etc.) we often limit our references to a few of the more useful secondary
sources, especially those with good references to the primary literature. Where the
existing secondary literature is insufficient, we give references to a few primary
sources that are intended to serve as starting points for further reading, not as com-
plete bibliographies for the field.

Since progress is ongoing, it is inevitable that our references for many topics are
already, or will soon become, out of date. We have tried to include older references
that are good for “forward” Web searching: A search for more recent papers that cite
the references given should lead you to the most current work.

Web references and URLSs present a problem, because there is no way for us to
guarantee that they will still be there when you look for them. A date like 2007+
means “it was there in 2007.” We try to give citations that are complete enough for
you to find the document by Web search, even if it has moved from the location listed.

The order in which references are listed is not necessarily significant. It re-
flects a compromise between listing cited references in the order cited, and listing
suggestions for further reading in a roughly prioritized order, with the most useful
ones first.

1.0.5 About “Advanced Topics”

Material set in smaller type, like this, signals an “advanced topic,” either one outside of
the main argument of the chapter, or else one requiring of you more than the usual assumed
mathematical background, or else (in a few cases) a discussion that is more speculative or
an algorithm that is less well tested. Nothing important will be lost if you skip the advanced
topics on a first reading of the book.

Here is a function for getting the Julian Day Number from a calendar date.

Int julday(const Int mm, const Int id, comnst Int iyyy) {
In this routine julday returns the Julian Day Number that begins at noon of the calendar date
specified by month mm, day id, and year iyyy, all integer variables. Positive year signifies A.D.;
negative, B.C. Remember that the year after 1 B.C. was 1 A.D.
const Int IGREG=15+31%(10+12%1582); Gregorian Calendar adopted Oct. 15, 1582.
Int ja,jul,jy=iyyy,jm;
if (jy == 0) throw("julday: there is no year zero.");
if (jy < 0) ++jy;
if (mm > 2) {

jm=mm+1;
} else {
—-3ys
jm=mm+13;
}
jul = Int(floor(365.25%jy)+floor(30.6001%jm)+id+1720995) ;
if (id+31*(mm+12*iyyy) >= IGREG) { Test whether to change to Gregorian Cal-
ja=Int (0.01%jy); endar.
jul += 2-ja+Int(0.25%ja);
}

return jul;
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And here is its inverse.

void caldat(const Int julian, Int &mm, Int &id, Int &iyyy) {
Inverse of the function julday given above. Here julian is input as a Julian Day Number, and
the routine outputs mm,id, and iyyy as the month, day, and year on which the specified Julian
Day started at noon.

const Int IGREG=2299161;

Int ja,jalpha,jb,jc,jd,je;

if (julian >= IGREG) { Cross-over to Gregorian Calendar produces this correc-
jalpha=Int ((Doub(julian-1867216)-0.25)/36524.25) ; tion.
ja=julian+1i+jalpha-Int(0.25%jalpha);

} else if (julian < 0) { Make day number positive by adding integer number of

ja=julian+36525%(1-julian/36525); Julian centuries, then subtract them off
} else at the end.

ja=julian;
jb=ja+1524;

jc=Int (6680.0+(Doub(jb-2439870)-122.1)/365.25) ;
jd=Tnt (365%jc+(0.25%jc)) ;

je=Int ((jb-jd)/30.6001);

id=jb-jd-Int (30.6001*je) ;

mm=je-1;

if (mm > 12) mm -= 12;

iyyy=jc-4715;

if (mm > 2) --iyyy;

if (iyyy <= 0) --iyyy;

if (julian < 0) iyyy -= 100*(1-julian/36525);

As an exercise, you might try using these functions, along with f1moon in §1.0, to search
for future occurrences of a full moon on Friday the 13th. (Answers, in time zone GMT minus
5: 9/13/2019 and 8/13/2049.) For additional calendrical algorithms, applicable to various
historical calendars, see [13].

CITED REFERENCES AND FURTHER READING:

Visual Numerics, 2007+, IMSL Numerical Libraries, at http://www.vni.com.[1]

Numerical Algorithms Group, 2007+, NAG Numerical Library, at http://www.nag.co.uk.[2]
Wolfram Research, Inc., 2007+, Mathematica, at http://www.wolfram. com.[3]

The MathWorks, Inc., 2007+, MATLAB, at http://www.mathworks. com.[4]

Maplesoft, Inc., 2007+, Maple, at http://www.maplesoft.com.[5]

GNU Scientific Library, 2007+, at http://www.gnu.org/software/gsl.[6]

Netlib Repository, 2007+, at http://www.netlib.org.[7]

Scilab Scientific Software Package, 2007+, at http://www.scilab.org.[8]

GNU Octave, 2007+, at http://www.gnu.org/software/octave.[9]

R Software Environment for Statistical Computing and Graphics, 2007+, at
http://www.r-project.org.[10]

Stroustrup, B. 1997, The C++ Programming Language, 3rd ed. (Reading, MA: Addison-
Wesley).[11]

Meeus, J. 1982, Astronomical Formulae for Calculators, 2nd ed., revised and enlarged (Rich-
mond, VA: Willmann-Bell).[12]

Hatcher, D.A. 1984, “Simple Formulae for Julian Day Numbers and Calendar Dates,” Quarterly
Journal of the Royal Astronomical Society, vol. 25, pp. 53-55; see also op. cit. 1985, vol. 26,
pp. 151-155, and 1986, vol. 27, pp. 506-507.[13]

calendar.h
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1.1 Error, Accuracy, and Stability

Computers store numbers not with infinite precision but rather in some approxi-
mation that can be packed into a fixed number of bizs (binary digits) or bytes (groups
of 8 bits). Almost all computers allow the programmer a choice among several dif-
ferent such representations or data types. Data types can differ in the number of bits
utilized (the wordlength), but also in the more fundamental respect of whether the
stored number is represented in fixed-point (like int) or floating-point (like £loat
or double) format.

A number in integer representation is exact. Arithmetic between numbers in
integer representation is also exact, with the provisos that (i) the answer is not outside
the range of (usually, signed) integers that can be represented, and (ii) that division
is interpreted as producing an integer result, throwing away any integer remainder.

1.1.1 Floating-Point Representation

In a floating-point representation, a number is represented internally by a sign
bit S (interpreted as plus or minus), an exact integer exponent E, and an exactly
represented binary mantissa M . Taken together these represent the number

Sx M xbEe (1.1.1)

where b is the base of the representation (b = 2 almost always), and e is the bias of
the exponent, a fixed integer constant for any given machine and representation.

S E F Value

float | any | 1-254 any (—1)S x2E-127 « 1. F

any 0 nonzero | (—1)5 x 27126 x 0. F*
0 0 0 + 0.0
1 0 0 —-0.0
0 255 0 + o0
1 255 0 — 00
any 255 nonzero NaN

double | any | 1-2046 | any (=1)S x2E-1023 | F

any 0 nonzero | (—1)% x 271022 x 0. F*
0 0 0 + 0.0
1 0 0 —-0.0
0 2047 0 + o0
1 2047 0 — 00
any 2047 nonzero NaN

*unnormalized values
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Several floating-point bit patterns can in principle represent the same number. If
b = 2, for example, a mantissa with leading (high-order) zero bits can be left-shifted,
i.e., multiplied by a power of 2, if the exponent is decreased by a compensating
amount. Bit patterns that are “as left-shifted as they can be” are termed normalized.

Virtually all modern processors share the same floating-point data representa-
tions, namely those specified in IEEE Standard 754-1985 [1]. (For some discussion
of nonstandard processors, see §22.2.) For 32-bit f1oat values, the exponent is rep-
resented in 8 bits (with e = 127), the mantissa in 23; for 64-bit double values, the
exponent is 11 bits (with e = 1023), the mantissa, 52. An additional trick is used for
the mantissa for most nonzero floating values: Since the high-order bit of a properly
normalized mantissa is always one, the stored mantissa bits are viewed as being pre-
ceded by a “phantom” bit with the value 1. In other words, the mantissa M has the
numerical value 1.F, where F (called the fraction) consists of the bits (23 or 52 in
number) that are actually stored. This trick gains a little “bit” of precision.

Here are some examples of IEEE 754 representations of double values:

001111111111 0000 (+ 48 more zeros) = +1 x 2192371023 1 0, = 1.
101111111111 0000 (+ 48 more zeros) = —1 x 2102371023 » 1 0, = —1.
001111111111 1000 (4 48 more zeros) = +1 x 2192371023 , 1 1, = 1.5
0 10000000000 0000 (+ 48 more zeros) = +1 x 2102471023 5 1 0, = 2.
0 10000000001 1010 (4 48 more zeros) = +1 x 2192571023 5 1 1010, = 6.5
(1.1.2)
You can examine the representation of any value by code like this:

union Udoub {
double d;
unsigned char c[8];

};

void main() {
Udoub u;
u.d = 6.5;

for (int i=7;i>=0;i--) printf("%02x",u.c[i]);
printf("\n");
}

This is C, and deprecated style, but it will work. On most processors, includ-
ing Intel Pentium and successors, you’ll get the printed result 401a000000000000,
which (writing out each hex digit as four binary digits) is the last line in equation
(1.1.2). If you get the bytes (groups of two hex digits) in reverse order, then your
processor is big-endian instead of little-endian: The IEEE 754 standard does not
specify (or care) in which order the bytes in a floating-point value are stored.

The IEEE 754 standard includes representations of positive and negative infin-
ity, positive and negative zero (treated as computationally equivalent, of course), and
also NaN (“not a number”). The table on the previous page gives details of how these
are represented.

The reason for representing some unnormalized values, as shown in the table,
is to make “underflow to zero” more graceful. For a sequence of smaller and smaller
values, after you pass the smallest normalizable value (with magnitude 2727 or
271023, ee table), you start right-shifting the leading bit of the mantissa. Although
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you gradually lose precision, you don’t actually underflow to zero until 23 or 52
bits later.

When a routine needs to know properties of the floating-point representation, it
can reference the numeric_limits class, which is part of the C++ Standard Library.
For example, numeric_limits<double>: :min() returns the smallest normalized
double value, usually 271922 &~ 2.23 x 1073%%, For more on this, see §22.2.

1.1.2 Roundoff Error

Arithmetic among numbers in floating-point representation is not exact, even if
the operands happen to be exactly represented (i.e., have exact values in the form of
equation 1.1.1). For example, two floating numbers are added by first right-shifting
(dividing by two) the mantissa of the smaller (in magnitude) one and simultaneously
increasing its exponent until the two operands have the same exponent. Low-order
(least significant) bits of the smaller operand are lost by this shifting. If the two
operands differ too greatly in magnitude, then the smaller operand is effectively re-
placed by zero, since it is right-shifted to oblivion.

The smallest (in magnitude) floating-point number that, when added to the
floating-point number 1.0, produces a floating-point result different from 1.0 is term-
ed the machine accuracy €,,. IEEE 754 standard float has €, about 1.19 x 1077,
while double has about 2.22 x 1076, Values like this are accessible as, e.g.,
numeric _limits <double>::epsilon(). (A more detailed discussion of ma-
chine characteristics is in §22.2.) Roughly speaking, the machine accuracy €, is
the fractional accuracy to which floating-point numbers are represented, correspond-
ing to a change of one in the least significant bit of the mantissa. Pretty much any
arithmetic operation among floating numbers should be thought of as introducing an
additional fractional error of at least €,,. This type of error is called roundoff error.

It is important to understand that €, is not the smallest floating-point number
that can be represented on a machine. That number depends on how many bits there
are in the exponent, while ¢€,, depends on how many bits there are in the mantissa.

Roundoff errors accumulate with increasing amounts of calculation. If, in the
course of obtaining a calculated value, you perform N such arithmetic operations,
you might be so lucky as to have a total roundoff error on the order of ~/Ne,,, if
the roundoff errors come in randomly up or down. (The square root comes from
a random-walk.) However, this estimate can be very badly off the mark for two
reasons:

(1) It very frequently happens that the regularities of your calculation, or the
peculiarities of your computer, cause the roundoff errors to accumulate preferentially
in one direction. In this case the total will be of order N¢,,.

(2) Some especially unfavorable occurrences can vastly increase the roundoff
error of single operations. Generally these can be traced to the subtraction of two
very nearly equal numbers, giving a result whose only significant bits are those (few)
low-order ones in which the operands differed. You might think that such a “co-
incidental” subtraction is unlikely to occur. Not always so. Some mathematical
expressions magnify its probability of occurrence tremendously. For example, in the
familiar formula for the solution of a quadratic equation,

—b + ~/b?% —4ac
X =
2a

(1.1.3)
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the addition becomes delicate and roundoff-prone whenever b > 0 and |ac| < b2.
(In §5.6 we will learn how to avoid the problem in this particular case.)

1.1.3 Truncation Error

Roundoff error is a characteristic of computer hardware. There is another, dif-
ferent, kind of error that is a characteristic of the program or algorithm used, indepen-
dent of the hardware on which the program is executed. Many numerical algorithms
compute “discrete” approximations to some desired “continuous” quantity. For ex-
ample, an integral is evaluated numerically by computing a function at a discrete set
of points, rather than at “every” point. Or, a function may be evaluated by summing
a finite number of leading terms in its infinite series, rather than all infinity terms.
In cases like this, there is an adjustable parameter, e.g., the number of points or of
terms, such that the “true” answer is obtained only when that parameter goes to in-
finity. Any practical calculation is done with a finite, but sufficiently large, choice of
that parameter.

The discrepancy between the true answer and the answer obtained in a practical
calculation is called the truncation error. Truncation error would persist even on a
hypothetical, “perfect” computer that had an infinitely accurate representation and no
roundoff error. As a general rule there is not much that a programmer can do about
roundoff error, other than to choose algorithms that do not magnify it unnecessarily
(see discussion of “stability”” below). Truncation error, on the other hand, is entirely
under the programmer’s control. In fact, it is only a slight exaggeration to say that
clever minimization of truncation error is practically the entire content of the field of
numerical analysis!

Most of the time, truncation error and roundoff error do not strongly interact
with one another. A calculation can be imagined as having, first, the truncation error
that it would have if run on an infinite-precision computer, “plus” the roundoff error
associated with the number of operations performed.

1.1.4 Stability

Sometimes an otherwise attractive method can be unstable. This means that
any roundoff error that becomes “mixed into” the calculation at an early stage is
successively magnified until it comes to swamp the true answer. An unstable method
would be useful on a hypothetical, perfect computer; but in this imperfect world it
is necessary for us to require that algorithms be stable — or if unstable that we use
them with great caution.

Here is a simple, if somewhat artificial, example of an unstable algorithm: Sup-
pose that it is desired to calculate all integer powers of the so-called “Golden Mean,”
the number given by

5-1
¢ = fT ~ 0.61803398 (1.1.4)

It turns out (you can easily verify) that the powers ¢” satisfy a simple recursion
relation,

"t =" — 9" (1.1.5)

Thus, knowing the first two values ¢ = 1 and ¢! = 0.61803398, we can suc-
cessively apply (1.1.5) performing only a single subtraction, rather than a slower
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multiplication by ¢, at each stage.

Unfortunately, the recurrence (1.1.5) also has another solution, namely the
value —%(\/5 + 1). Since the recurrence is linear, and since this undesired solution
has magnitude greater than unity, any small admixture of it introduced by roundoff
errors will grow exponentially. On a typical machine, using a 32-bit float, (1.1.5)
starts to give completely wrong answers by about n = 16, at which point ¢” is down
to only 10, The recurrence (1.1.5) is unstable and cannot be used for the purpose
stated.

We will encounter the question of stability in many more sophisticated guises
later in this book.

CITED REFERENCES AND FURTHER READING:

IEEE, 1985, ANSI/IEEE Std 754—1985: IEEE Standard for Binary Floating-Point Numbers (New
York: IEEE).[1]

Stoer, J., and Bulirsch, R. 2002, Introduction to Numerical Analysis, 3rd ed. (New York: Springer),
Chapter 1.

Kahaner, D., Moler, C., and Nash, S. 1989, Numerical Methods and Software (Englewood Cliffs,
NJ: Prentice-Hall), Chapter 2.

Johnson, L.W., and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: Addison-

Wesley), §1.3.
Wilkinson, J.H. 1964, Rounding Errors in Algebraic Processes (Englewood Cliffs, NJ: Prentice-
Hall).

1.2 C Family Syntax

Not only C++, but also Java, C#, and (to varying degrees) other computer lan-
guages, share a lot of small-scale syntax with the older C language [1]. By small
scale, we mean operations on built-in types, simple expressions, control structures,
and the like. In this section, we review some of the basics, give some hints on good
programming, and mention some of our conventions and habits.

1.2.1 Operators

A first piece of advice might seem superfluous if it were not so often ignored:
You should learn all the C operators and their precedence and associativity rules.
You might not yourself want to write

n<<1] 1

as a synonym for 2#n+1 (for positive integer n), but you definitely do need to be able
to see at a glance that

n<<1+1
is not at all the same thing! Please study the table on the next page while you brush
your teeth every night. While the occasional set of unnecessary parentheses, for

clarity, is hardly a sin, code that is habitually overparenthesized is annoying and hard
to read.
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Operator Precedence and Associativity Rules in C and C++

scope resolution

left-to-right

O function call left-to-right

[1 array element (subscripting)

. member selection

-> member selection (by pointer)

++ post increment right-to-left

-- post decrement

! logical not right-to-left

- bitwise complement

- unary minus

++ pre increment

-- pre decrement

& address of

* contents of (dereference)

new create

delete destroy

(type) castto type

sizeof  size in bytes

* multiply left-to-right

/ divide

% remainder

+ add left-to-right

- subtract

<< bitwise left shift left-to-right

>> bitwise right shift

< arithmetic less than left-to-right

> arithmetic greater than

<= arithmetic less than or equal to

>= arithmetic greater than or equal to

== arithmetic equal left-to-right
= arithmetic not equal

& bitwise and left-to-right

- bitwise exclusive or left-to-right

| bitwise or left-to-right

&& logical and left-to-right
Il logical or left-to-right

? conditional expression right-to-left

= assignment operator right-to-left

also += —-= %= /= %:

<K= >>= &= "= |=

sequential expression

left-to-right
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1.2.2 Control Structures

These should all be familiar to you.
Iteration. In C family languages simple iteration is performed with a for
loop, for example
for (j=2;3j<=1000;j++) {
bljl=alj-11;

alj-11=j;
}

It is conventional to indent the block of code that is acted upon by the control struc-
ture, leaving the structure itself unindented. We like to put the initial curly brace on
the same line as the for statement, instead of on the next line. This saves a full line
of white space, and our publisher loves us for it.

Conditional. The conditional or if structure looks, in full generality, like
this:

if (... {
}
else if (...) {

}
else {

}

However, since compound-statement curly braces are required only when there is
more than one statement in a block, the if construction can be somewhat less ex-
plicit than that shown above. Some care must be exercised in constructing nested if
clauses. For example, consider the following:

if (b > 3)

if (a > 3) b += 1;
else b -= 1; /* questionable! */

As judged by the indentation used on successive lines, the intent of the writer of this
code is the following: ‘If b is greater than 3 and a is greater than 3, then increment
b. If b is not greater than 3, then decrement b.” According to the rules, however, the
actual meaning is ‘If b is greater than 3, then evaluate a. If a is greater than 3, then
increment b, and if a is less than or equal to 3, decrement b.” The point is that an else
clause is associated with the most recent open if statement, no matter how you lay it
out on the page. Such confusions in meaning are easily resolved by the inclusion of
braces that clarify your intent and improve the program. The above fragment should
be written as

if (b > 3) {

if (a > 3) b += 1;
} else {

b -=1;
}

While iteration. Alternative to the for iteration is the while structure, for
example,
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while (n < 1000) {
n *= 2;
=1

}

The control clause (in this case n < 1000) is evaluated before each iteration. If the
clause is not true, the enclosed statements will not be executed. In particular, if this
code is encountered at a time when n is greater than or equal to 1000, the statements
will not even be executed once.

Do-While iteration. Companion to the while iteration is a related control
structure that tests its control clause at the end of each iteration:

do {
n x= 2;
jo+=1;
} while (n < 1000);

In this case, the enclosed statements will be executed at least once, independent of
the initial value of n.

Break and Continue. You use the break statement when you have a loop that
is to be repeated indefinitely until some condition tested somewhere in the middle of
the loop (and possibly tested in more than one place) becomes true. At that point you
wish to exit the loop and proceed with what comes after it. In C family languages
the simple break statement terminates execution of the innermost for, while, do,
or switch construction and proceeds to the next sequential instruction. A typical
usage might be

for(;;) {

S (statements before the test)

if (...) break;
(statements after the test)

(next sequential instruction)

Companion to break is continue, which transfers program control to the end
of the body of the smallest enclosing for, while, or do statement, but just inside
that body’s terminating curly brace. In general, this results in the execution of the
next loop test associated with that body.

1.2.3 How Tricky Is Too Tricky?

Every programmer is occasionally tempted to write a line or two of code that is
so elegantly tricky that all who read it will stand in awe of its author’s intelligence.
Poetic justice is that it is usually that same programmer who gets stumped, later on,
trying to understand his or her own creation. You might momentarily be proud of
yourself at writing the single line

k=(2-j)*(1+3*3) /2;

if you want to permute cyclically one of the values j = (0, 1, 2) into respectively
k = (1,2,0). You will regret it later, however. Better, and likely also faster, is
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k=j+1;
if (k == 3) k=0;
On the other hand, it can also be a mistake, or at least suboptimal, to be too
ploddingly literal, as in
switch (§) {
case 0: k=1; break;

case 1: k=2; break;
case 2: k=0; break;

default: {
cerr << "unexpected value for j";
exit(1);

}

}

This (or similar) might be the house style if you are one of 10> programmers
working for a megacorporation, but if you are programming for your own research,
or within a small group of collaborators, this kind of style will soon cause you to lose
the forest for the trees. You need to find the right personal balance between obscure
trickery and boring prolixity. A good rule is that you should always write code that
is slightly less tricky than you are willing to read, but only slightly.

There is a fine line between being tricky (bad) and being idiomatic (good). Id-
ioms are short expressions that are sufficiently common, or sufficiently self-explan-
atory, that you can use them freely. For example, testing an integer n’s even- or
odd-ness by

if m& 1) ...

is, we think, much preferable to
if m%h2==1) ...

We similarly like to double a positive integer by writing
n <<= 1;

or construct a mask of n bits by writing
(1 <<n) -1

and so forth.

Some idioms are worthy of consideration even when they are not so immedi-
ately obvious. S.E. Anderson [2] has collected a number of “bit-twiddling hacks,” of
which we show three here:

The test

if ((v&(v-1))==0) {} Is a power of 2 or zero

tests whether v is a power of 2. If you care about the case v = 0, you have to write
if (v&&((v&(v-1))==0)) {} Is a power of 2.

The idiom

for (c=0;v;c++) v &= v - 1;

gives as c the number of set (= 1) bits in a positive or unsigned integer v (destroying
v in the process). The number of iterations is only as many as the number of bits set.
The idiom

v--;
viEv> 1, vi=v> 2, vi=v>4; viI=v> 8 v |=v > 16;

v+t
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rounds a positive (or unsigned) 32-bit integer v up to the next power of 2 that is > v.
When we use the bit-twiddling hacks, we’ll include an explanatory comment in
the code.

1.2.4 Utility Macros or Templated Functions
The file nr3.h includes, among other things, definitions for the functions

MAX(a,b)

MIN(a,b)

SWAP (a,b)

SIGN(a,b)
These are all self-explanatory, except possibly the last. SIGN(a,b) returns a value
with the same magnitude as a and the same sign as b. These functions are all imple-
mented as templated inline functions, so that they can be used for all argument types
that make sense semantically. Implementation as macros is also possible.

CITED REFERENCES AND FURTHER READING:
Harbison, S.P., and Steele, G.L., Jr. 2002, C: A Reference Manual, 5th ed. (Englewood Cliffs,
NJ: Prentice-Hall).[1]

Anderson, S.E. 2006, “Bit Twiddling Hacks,” athttp://graphics.stanford.edu/ seander/
bithacks.html.[2]

1.3 Objects, Classes, and Inheritance

An object or class (the terms are interchangeable) is a program structure that
groups together some variables, or functions, or both, in such a way that all the in-
cluded variables or functions “see” each other and can interact intimately, while most
of this internal structure is hidden from other program structures and units. Objects
make possible object-oriented programming (OOP), which has become recognized
as the almost unique successful paradigm for creating complex software. The key
insight in OOP is that objects have state and behavior. The state of the object is
described by the values stored in its member variables, while the possible behavior
is determined by the member functions. We will use objects in other ways as well.

The terminology surrounding OOP can be confusing. Objects, classes, and
structures pretty much refer to the same thing. Member functions in a class are often
referred to as methods belonging to that class. In C++, objects are defined with either
the keyword class or the keyword struct. These differ, however, in the details of
how rigorously they hide the object’s internals from public view. Specifically,

struct SomeName { ...
is defined as being the same as

class SomeName {

public: ...
In this book we always use struct. This is not because we deprecate the use of
public and private access specifiers in OOP, but only because such access control
would add little to understanding the underlying numerical methods that are the focus
of this book. In fact, access specifiers could impede your understanding, because
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you would be constantly moving things from private to public (and back again) as
you program different test cases and want to examine different internal, normally
private, variables.

Because our classes are declared by struct, not class, use of the word “class”
is potentially confusing, and we will usually try to avoid it. So “object” means
struct, which is really a class!

If you are an OOP beginner, it is important to understand the distinction between
defining an object and instantiating it. You define an object by writing code like this:

struct Twovar {
Doub a,b;
Twovar (const Doub aa, const Doub bb) : a(aa), b(bb) {}
Doub sum() {return a+b;}

Doub diff() {return a-b;}
};

This code does not create a Twovar object. It only tells the compiler how to create
one when, later in your program, you tell it to do so, for example by a declaration
like,

Twovar mytwovar(3.,5.);

which invokes the Twovar constructor and creates an instance of (or instantiates)
a Twovar. In this example, the constructor also sets the internal variables a and
b to 3 and 5, respectively. You can have any number of simultaneously existing,
noninteracting, instances:

Twovar anothertwovar(4.,6.);

Twovar athirdtwovar(7.,8.);
We have already promised you that this book is not a textbook in OOP, or the C++
language; so we will go no farther here. If you need more, good references are [1-4].

1.3.1 Simple Uses of Objects

We use objects in various ways, ranging from trivial to quite complex, depend-
ing on the needs of the specific numerical method that is being discussed. As men-
tioned in §1.0, this lack of consistency means that Numerical Recipes is not a useful
examplar of a program library (or, in an OOP context, a class library). It also means
that, somewhere in this book, you can probably find an example of every possible
way to think about objects in numerical computing! (We hope that you will find this
a plus.)

Object for Grouping Functions. Sometimes an object just collects together a
group of closely related functions, not too differently from the way that you might
use a namespace. For example, a simplification of Chapter 6’s object Erf looks
like:

struct Erf { No constructor needed.
Doub erf (Doub x);
Doub erfc(Doub x);
Doub inverf (Doub p);
Doub inverfc(Doub p);
Doub erfccheb(Doub z);
};
As will be explained in §6.2, the first four methods are the ones intended to be called
by the user, giving the error function, complementary error function, and the two
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corresponding inverse functions. But these methods share some code and also use
common code in the last method, erfccheb, which the user will normally ignore
completely. It therefore makes sense to group the whole collection as an Erf object.
About the only disadvantage of this is that you must instantiate an Erf object before
you can use (say) the erf function:

Erf myerf; The name myerf is arbitrary.

Doub y = myerf.erf(3.);

Instantiating the object doesn’t actually do anything here, because Erf contains no
variables (i.e., has no stored state). It just tells the compiler what local name you are
going to use in referring to its member functions. (We would normally use the name
erf for the instance of Erf, but we thought that erf .erf (3.) would be confusing
in the above example.)

Object for Standardizing an Interface. In §6.14 we’ll discuss a number of
useful standard probability distributions, for example, normal, Cauchy, binomial,
Poisson, etc. Each gets its own object definition, for example,

struct Cauchydist {
Doub mu, sig;
Cauchydist(Doub mmu = 0., Doub ssig = 1.) : mu(mmu), sig(ssig) {}
Doub p(Doub x);
Doub cdf (Doub x);
Doub invcdf (Doub p);
};
where the function p returns the probability density, the function cdf returns the
cumulative distribution function (cdf), and the function invcdf returns the inverse
of the cdf. Because the interface is consistent across all the different probability
distributions, you can change which distribution a program is using by changing a
single program line, for example from

Cauchydist mydist();
to
Normaldist mydist();

All subsequent references to functions like mydist.p, mydist.cdf, and so on, are
thus changed automatically. This is hardly OOP at all, but it can be very convenient.
Object for Returning Multiple Values. It often happens that a function com-
putes more than one useful quantity, but you don’t know which one or ones the user
is actually interested in on that particular function call. A convenient use of objects
is to save all the potentially useful results and then let the user grab those that are
of interest. For example, a simplified version of the Fitab structure in Chapter 15,
which fits a straight line y = a + bx to a set of data points xx and yy, looks like
this:
struct Fitab {
Doub a, b;

Fitab(const VecDoub &xx, const VecDoub &yy); Constructor.
}s;

(We’ll discuss VecDoub and related matters below, in §1.4.) The user calculates
the fit by calling the constructor with the data points as arguments,

Fitab myfit(xx,yy);
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Then the two “answers” a and b are separately available as myfit.a and myfit.b.
We will see more elaborate examples throughout the book.

Objects That Save Internal State for Multiple Uses. This is classic OOP,
worthy of the name. A good example is Chapter 2’s LUdcmp object, which (in abbre-
viated form) looks like this:

struct LUdcmp {
Int n;
MatDoub 1lu;
LUdcmp (const MatDoub &a); Constructor.
void solve(const VecDoub &b, VecDoub &x);
void inverse(MatDoub &ainv);
Doub det();

};

This object is used to solve linear equations and/or invert a matrix. You use it by cre-
ating an instance with your matrix a as the argument in the constructor. The construc-
tor then computes and stores, in the internal matrix 1u, a so-called LU decomposi-
tion of your matrix (see §2.3). Normally you won’t use the matrix 1u directly (though
you could if you wanted to). Rather, you now have available the methods solve (),
which returns a solution vector x for any right-hand side b, inverse (), which re-
turns the inverse matrix, and det (), which returns the determinant of your matrix.

You can call any or all of LUdcmp’s methods in any order; you might well want
to call solve multiple times, with different right-hand sides. If you have more than
one matrix in your problem, you create a separate instance of LUdcmp for each one,
for example,

LUdcmp alu(a), aalu(aa);
after which alu.solve() and aalu.solve() are the methods for solving linear

equations for each respective matrix, a and aa; alu.det () and aalu.det () return
the two determinants; and so forth.

We are not finished listing ways to use objects: Several more are discussed in
the next few sections.

1.3.2 Scope Rules and Object Destruction

This last example, LUdcmp, raises the important issue of how to manage an
object’s time and memory usage within your program.

For a large matrix, the LUdcmp constructor does a lot of computation. You
choose exactly where in your program you want this to occur in the obvious way, by
putting the declaration

LUdcmp alu(a);

in just that place. The important distinction between a non-OOP language (like C)
and an OOP language (like C++) is that, in the latter, declarations are not passive
instructions to the compiler, but executable statments at run-time.

The LUdcmp constructor also, for a large matrix, grabs a lot of memory, to store
the matrix 1u. How do you take charge of this? That is, how do you communicate
that it should save this state for as long as you might need it for calls to methods like
alu.solve (), but not indefinitely?
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The answer lies in C++’s strict and predictable rules about scope. You can start
a temporary scope at any point by writing an open bracket, “{”. You end that scope
by a matching close bracket, “}”. You can nest scopes in the obvious way. Any
objects that are declared within a scope are destroyed (and their memory resources
returned) when the end of the scope is reached. An example might look like this:

MatDoub a(1000,1000); Create a big matrix
VecDoub b(1000),x(1000); and a couple of vectors.
{ Begin temporary scope.
LUdcmp alu(a); Create object alu.
alu.solve(b,x); Use alu.
} End temporary scope. Resources in alu are freed.
Doub d = alu.det(); ERROR! alu is out of scope.

This example presumes that you have some other use for the matrix a later on. If not,
then the the declaration of a should itself probably be inside the temporary scope.

Be aware that all program blocks delineated by braces are scope units. This
includes the main block associated with a function definition and also blocks associ-
ated with control structures. In code like this,

for (5;) {
LUdcmp alu(a);
}

anew instance of alu is created at each iteration and then destroyed at the end of that

iteration. This might sometimes be what you intend (if the matrix a changes on each
iteration, for example); but you should be careful not to let it happen unintentionally.

1.3.3 Functions and Functors

Many routines in this book take functions as input. For example, the quadrature
(integration) routines in Chapter 4 take as input the function f(x) to be integrated.
For a simple case like f(x) = x2, you code such a function simply as

Doub f(const Doub x) {

return x*x;

}
and pass f as an argument to the routine. However, it is often useful to use a more
general object to communicate the function to the routine. For example, f(x) may
depend on other variables or parameters that need to be communicated from the
calling program. Or the computation of f(x) may be associated with other sub-
calculations or information from other parts of the program. In non-OOP program-
ing, this communication is usually accomplished with global variables that pass the
information “over the head” of the routine that receives the function argument f.

C++ provides a better and more elegant solution: function objects or functors.
A functor is simply an object in which the operator () has been overloaded to play
the role of returning a function value. (There is no relation between this use of the
word functor and its different meaning in pure mathematics.) The case f(x) = x?
would now be coded as
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struct Square {
Doub operator() (const Doub x) {
return x*x;
}
};
To use this with a quadrature or other routine, you declare an instance of Square
Square g;
and pass g to the routine. Inside the quadrature routine, an invocation of g (x) returns
the function value in the usual way.

In the above example, there’s no point in using a functor instead of a plain
function. But suppose you have a parameter in the problem, for example, f(x) =
c¢x?, where ¢ and p are to be communicated from somewhere else in your program.
You can set the parameters via a constructor:

struct Contimespow {
Doub c,p;
Contimespow(const Doub cc, const Doub pp) : c(cc), p(pp) {}
Doub operator () (const Doub x) {

return c¥pow(x,p);

}

};

In the calling program, you might declare the instance of Contimespow by

Contimespow h(4.,0.5); Communicate ¢ and p to the functor.

and later pass h to the routine. Clearly you can make the functor much more compli-
cated. For example, it can contain other helper functions to aid in the calculation of
the function value.

So should we implement all our routines to accept only functors and not func-
tions? Luckily, we don’t have to decide. We can write the routines so they can accept
either a function or a functor. A routine accepting only a function to be integrated
from a to b might be declared as

Doub someQuadrature(Doub func(const Doub), const Doub a, const Doub b);

To allow it to accept either functions or functors, we instead make it a templated
function:

template <class T>

Doub someQuadrature(T &func, const Doub a, const Doub b);
Now the compiler figures out whether you are calling someQuadrature with a func-
tion or a functor and generates the appropriate code. If you call the routine in one
place in your program with a function and in another with a functor, the compiler
will handle that too.

We will use this capability to pass functors as arguments in many different
places in the book where function arguments are required. There is a tremendous
gain in flexibility and ease of use.

As a convention, when we write Ftor, we mean a functor like Square or
Contimespow above; when we write fbare, we mean a “bare” function like £ above;
and when we write ftor (all in lower case), we mean an instantiation of a functor,
that is, something declared like

Ftor ftor(...); Replace the dots by your parameters, if any.

Of course your names for functors and their instantiations will be different.
Slightly more complicated syntax is involved in passing a function to an object
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that is templated to accept either a function or functor. So if the object is

template <class T>
struct SomeStruct {
SomeStruct (T &func, ...); constructor

we would instantiate it with a functor like this:

Ftor ftor;
SomeStruct<Ftor> s(ftor,

but with a function like this:
SomeStruct<Doub (const Doub)> s(fbare,

In this example, fbare takes a single const Doub argument and returns a Doub.
You must use the arguments and return type for your specific case, of course.

1.3.4 Inheritance

Objects can be defined as deriving from other, already defined, objects. In such
inheritance, the “parent” class is called a base class, while the “child” class is called
a derived class. A derived class has all the methods and stored state of its base class,
plus it can add any new ones.

“Is-a” Relationships. The most straightforward use of inheritance is to de-
scribe so-called is-a relationships. OOP texts are full of examples where the base
class is ZooAnimal and a derived class is Lion. In other words, Lion “is-a” ZooAni-
mal. The base class has methods common to all ZooAnimals, for example eat ()
and sleep (), while the derived class extends the base class with additional methods
specific to Lion, for example roar () and eat_visitor ().

In this book we use is-a inheritance less often than you might expect. Except
in some highly stylized situations, like optimized matrix classes (“triangular matrix
is-a matrix”), we find that the diversity of tasks in scientific computing does not
lend itself to strict is-a hierarchies. There are exceptions, however. For example,
in Chapter 7, we define an object Ran with methods for returning uniform random
deviates of various types (e.g., Int or Doub). Later in the chapter, we define objects
for returning other kinds of random deviates, for example normal or binomial. These
are defined as derived classes of Ran, for example,

struct Binomialdev : Ran {};

so that they can share the machinery already in Ran. This is a true is-a relationship,
because “binomial deviate is-a random deviate.”

Another example occurs in Chapter 13, where objects Daub4, Daub4i, and
Daubs are all derived from the Wavelet base class. Here Wavelet is an abstract
base class or ABC [1,4] that has no content of its own. Rather, it merely specifies
interfaces for all the methods that any Wavelet is required to have. The relationship
is nevertheless is-a: “Daub4 is-a Wavelet”.

“Prerequisite” Relationships. Not for any dogmatic reason, but simply be-
cause it is convenient, we frequently use inheritance to pass on to an object a set of
methods that it needs as prerequisites. This is especially true when the same set of
prerequisites is used by more than one object. In this use of inheritance, the base
class has no particular ZooAnimal unity; it may be a grab-bag. There is not a logical
is-a relationship between the base and derived classes.

An example in Chapter 10 is Bracketmethod, which is a base class for several
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minimization routines, but which simply provides a common method for the initial
bracketing of a minimum. In Chapter 7, the Hashtable object provides prerequisite
methods to its derived classes Hash and Mhash, but one cannot say, “Mhash is-a
Hashtable” in any meaningful way. An extreme example, in Chapter 6, is the base
class Gauleg18, which does nothing except provide a bunch of constants for Gauss-
Legendre integration to derived classes Beta and Gamma, both of which need them.
Similarly, long lists of constants are provided to the routines StepperDopr853 and
StepperRoss in Chapter 17 by base classes to avoid cluttering the coding of the
algorithms.

Partial Abstraction. Inheritance can be used in more complicated or situation-
specific ways. For example, consider Chapter 4, where elementary quadrature rules
such as Trapzd and Midpnt are used as building blocks to construct more elaborate
quadrature algorithms. The key feature these simple rules share is a mechanism for
adding more points to an existing approximation to an integral to get the “next” stage
of refinement. This suggests deriving these objects from an abstract base clase called
Quadrature, which specifies that all objects derived from it must have a next ()
method. This is not a complete specification of a common is-a interface; it abstracts
only one feature that turns out to be useful.

For example, in §4.6, the Stiel object invokes, in different situations, two dif-
ferent quadrature objects, Trapzd and DErule. These are not interchangeable. They
have different constructor arguments and could not easily both be made ZooAnimals
(as it were). Stiel of course knows about their differences. However, one of
Stiel’s methods, quad(), doesn’t (and shouldn’t) know about these differences.
It uses only the method next (), which exists, with different definitions, in both
Trapzd and DErule.

While there are several different ways to deal with situations like this, an easy
one is available once Trapzd and DErule have been given a common abstract base
class Quadrature that contains nothing except a virtual interface to next. In a
case like this, the base class is a minor design feature as far as the implementation of
Stiel is concerned, almost an afterthought, rather than being the apex of a top-down
design. As long as the usage is clear, there is nothing wrong with this.

Chapter 17, which discusses ordinary differential equations, has some even
more complicated examples that combine inheritance and templating. We defer fur-
ther discussion to there.

CITED REFERENCES AND FURTHER READING:

Stroustrup, B. 1997, The C++ Programming Language, 3rd ed. (Reading, MA: Addison-
Wesley).[1]

Lippman, S.B., Lajoie, J., and Moo, B.E. 2005, C++ Primer, 4th ed. (Boston: Addison-Wesley).[2]
Keogh, J., and Giannini, M. 2004, OOP Demystified (Emeryville, CA: McGraw-Hill/Osborne).[3]
Cline, M., Lomow, G., and Girou, M. 1999, C++ FAQs, 2nd ed. (Boston: Addison-Wesley).[4]

1.4 Vector and Matrix Objects

The C++ Standard Library [1] includes a perfectly good vector<> template
class. About the only criticism that one can make of it is that it is so feature-rich
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that some compiler vendors neglect to squeeze the last little bit of performance out
of its most elementary operations, for example returning an element by its subscript.
That performance is extremely important in scientific applications; its occasional
absence in C++ compilers is a main reason that many scientists still (as we write)
program in C, or even in Fortran!

Also included in the C++ Standard Library is the class valarray<>. At one
time, this was supposed to be a vector-like class that was optimized for numerical
computation, including some features associated with matrices and multidimensional
arrays. However, as reported by one participant,

The valarray classes were not designed very well. In fact, nobody tried to
determine whether the final specification worked. This happened because no-
body felt “responsible” for these classes. The people who introduced valarrays
to the C++ standard library left the committee a long time before the standard
was finished. [1]

The result of this history is that C++, at least now, has a good (but not always
reliably optimized) class for vectors and no dependable class at all for matrices or
higher-dimensional arrays. What to do? We will adopt a strategy that emphasizes
flexibility and assumes only a minimal set of properties for vectors and matrices.
We will then provide our own, basic, classes for vectors and matrices. For most
compilers, these are at least as efficient as vector<> and other vector and matrix
classes in common use. But if, for you, they’re not, then it is easy to change to a
different set of classes, as we will explain.

1.4.1 Typedefs

Flexibility is achieved by having several layers of typedef type-indirection,
resolved at compile time so that there is no run-time performance penalty. The first
level of type-indirection, not just for vectors and matrices but for virtually all vari-
ables, is that we use user-defined type names instead of C++ fundamental types.
These are defined in nr3.h. If you ever encounter a compiler with peculiar built-
in types, these definitions are the “hook™ for making any necessary changes. The
complete list of such definitions is

NR Type | Usual Definition Intent

Char char 8-bit signed integer
Uchar unsigned char 8-bit unsigned integer
Int int 32-bit signed integer
Uint unsigned int 32-bit unsigned integer
Llong long long int 64-bit signed integer
Ullong | unsigned long long int | 64-bit unsigned integer
Doub double 64-bit floating point
Ldoub long double [reserved for future use]
Complex | complex<double> 2 x 64-bit floating complex
Bool bool true or false

An example of when you might need to change the typedefs in nr3.h is if your
compiler’s int is not 32 bits, or if it doesn’t recognize the type long long int.
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You might need to substitute vendor-specific types like (in the case of Microsoft)
__int32 and __int64.

The second level of type-indirection returns us to the discussion of vectors and
matrices. The vector and matrix types that appear in Numerical Recipes source
code are as follows. Vectors: VecInt, VecUint, VecChar, VecUchar, VecCharp,
VecLlong, VecUllong, VecDoub, VecDoubp, VecComplex, and VecBool. Matri-
ces: MatInt, MatUint, MatChar, MatUchar, MatLlong, MatUllong, MatDoub,
MatComplex, and MatBool. These should all be understandable, semantically, as
vectors and matrices whose elements are the corresponding user-defined types, above.
Those ending in a “p”” have elements that are pointers, e.g., VecCharp is a vector of
pointers to char, that is, char*. If you are wondering why the above list is not
combinatorially complete, it is because we don’t happen to use all possible combi-
nations of Vec, Mat, fundamental type, and pointer in this book. You can add further
analogous types as you need them.

Wait, there’s more! For every vector and matrix type above, we also define types
with the same names plus one of the suffixes “_I”, “_0”, and “_I0”, for example
VecDoub_I0. We use these suffixed types for specifying argument types in function
definitions. The meaning, respectively, is that the argument is “input”, “output”, or
“both input and output”.* The _I types are automatically defined to be const. We
discuss this further in §1.5.2 under the topic of const correctness.

It may seem capricious for us to define such a long list of types when a much
smaller number of templated types would do. The rationale is flexibility: You have a
hook into redefining each and every one of the types individually, according to your
needs for program efficiency, local coding standards, const-correctness, or whatever.
In fact, in nr3.h, all these types are typedef’d to one vector and one matrix class,
along the following lines:

typedef NRvector<Int> VecInt, VecInt_0, VecInt_IO;
typedef const NRvector<Int> VecInt_I;

typedef NRvector<Doub> VecDoub, VecDoub_0, VecDoub_IO;
typedef const NRvector<Doub> VecDoub_I;

typedef NRmatrix<Int> MatInt, MatInt_0, MatInt_IO;
typedef const NRmatrix<Int> MatInt_I;

typedef NRmatrix<Doub> MatDoub, MatDoub_0, MatDoub_IO;
typedef const NRmatrix<Doub> MatDoub_I;

So (flexibility, again) you can change the definition of one particular type, like
VecDoub, or else you can change the implementation of all vectors by changing
the definition of NRvector<>. Or, you can just leave things the way we have them
in nr3.h. That ought to work fine in 99.9% of all applications.

1.4.2 Required Methods for Vector and Matrix Classes

The important thing about the vector and matrix classes is not what names they
are typedef’d to, but what methods are assumed for them (and are provided in the
NRvector and NRmatrix template classes). For vectors, the assumed methods are a

*This is a bit of history, and derives from Fortran 90’s very useful INTENT attributes.
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subset of those in the C++ Standard Library vector<> class. If v is a vector of type
NRvector<T>, then we assume the methods:

v

v(Int n)

v(Int n, const T &a)

v(Int n, const T *a)

v(const NRvector &rhs)
v.size()

v.resize(Int newn)
v.assign(Int newn, const T &a)
v[Int i]

v = rhs

typedef T value_type;

Constructor, zero-length vector.

Constructor, vector of length n.

Constructor, initialize all elements to the
value a.

Constructor, initialize elements to values in a
C-style array, a[0], a[1], ...

Copy constructor.

Returns number of elements in v.

Resizes v to size newn. We do not assume
that contents are preserved.

Resize v to size newn, and set all elements to
the value a.

Element of v by subscript, either an |-value
and an r-value.

Assignment operator. Resizes v if necessary
and makes it a copy of the vector rhs.
Makes T available externally (useful in tem-
plated functions or classes).

As we will discuss later in more detail, you can use any vector class you like with
Numerical Recipes, as long as it provides the above basic functionality. For exam-
ple, a brute force way to use the C++ Standard Library vector<> class instead of
NRvector is by the preprocessor directive

#define NRvector vector

(In fact, there is a compiler switch, _USESTDVECTOR_, in the file nr3.h that will do
just this.)

The methods for matrices are closely analogous. If vv is a matrix of type
NRmatrix<T>, then we assume the methods:

vv()
vv(Int n, Int m)
vv(Int n, Int m, const T &a)

vv(Int n, Int m, const T *a)
vv(const NRmatrix &rhs)
vv.nrows ()

vv.ncols()

vv.resize(Int newn, Int newm)

vv.assign(Int newn, Int newnm,
const t &a)

vv[Int il

v[Int i][Int j]

vv = rhs

typedef T value_type;

Constructor, zero-length vector.
Constructor, n X m matrix.
Constructor, initialize all
value a.

Constructor, initialize elements by rows to the
values in a C-style array.

Copy constructor.

Returns number of rows n.

Returns number of columns m.

Resizes vv to newn Xnewm. We do not assume
that contents are preserved.

Resizes vv to newn X newm,

and sets all elements to the value a.

Return a pointer to the first element in row i
(not often used by itself).

Element of vv by subscript, either an I-value
and an r-value.

Assignment operator. Resizes vv if necessary
and makes it a copy of the matrix rhs.
Makes T available externally.

elements to the

For more precise specifications, see §1.4.3.

There is one additional property that we assume of the vector and matrix classes,
namely that all of an object’s elements are stored in sequential order. For a vector,
this means that its elements can be addressed by pointer arithmetic relative to the
first element. For example, if we have
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VecDoub a(100);
Doub *b = &al[0];
then a[i] and b[i] reference the same element, both as an l-value and as an r-
value. This capability is sometimes important for inner-loop efficiency, and it is
also useful for interfacing with legacy code that can handle Doub* arrays, but not
VecDoub vectors. Although the original C++ Standard Library did not guarantee this
behavior, all known implementations of it do so, and the behavior is now required by
an amendment to the standard [2].
For matrices, we analogously assume that storage is by rows within a single
sequential block so that, for example,
Int n=97, m=103;
MatDoub a(n,m);
Doub *b = &a[0][0];
implies that a[i] [j] and b [m*i+j] are equivalent.
A few of our routines need the capability of taking as an argument either a vector
or else one row of a matrix. For simplicity, we usually code this using overloading,
as, e.g.,

void someroutine(Doub *v, Int m) { Version for a matrix row.
}
inline void someroutine(VecDoub &v) { Version for a vector.

someroutine (&v[0],v.size());

}

For a vector v, a call looks like someroutine (v), while for row i of a matrix vv
it is someroutine (&vv[i] [0] ,vv.ncols()). While the simpler argument vv [i]
would in fact work in our implementation of NRmatrix, it might not work in some
other matrix class that guarantees sequential storage but has the return type for a
single subscript different from Tx*.

1.4.3 Implementations in nr3.h
For reference, here is a complete declaration of NRvector.

template <class T>
class NRvector {

private:
int nn; Size of array, indices 0. .nn-1.
T *v; Pointer to data array.

public:
NRvector () ; Default constructor.
explicit NRvector(int n); Construct vector of size n.
NRvector(int n, const T &a); Initialize to constant value a.
NRvector(int n, const T *a); Initialize to values in C-style array a.
NRvector (const NRvector &rhs); Copy constructor.
NRvector & operator=(const NRvector &rhs); Assignment operator.
typedef T value_type; Make T available.
inline T & operator[](const int i); Return element number i.
inline const T & operator[](const int i) const; const version.
inline int size() const; Return size of vector.
void resize(int newn); Resize, losing contents.
void assign(int newn, const T &a); Resize and assign a to every element.
“NRvector() ; Destructor.
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The implementations are straightforward and can be found in the file nr3.h. The
only issues requiring finesse are the consistent treatment of zero-length vectors and
the avoidance of unnecessary resize operations.

A complete declaration of NRmatrix is

template <class T>
class NRmatrix {

private:
int nn; Number of rows and columns. Index
int mm; range is 0..nn-1, 0. .mm-1.
T **v; Storage for data.

public:
NRmatrix () ; Default constructor.
NRmatrix(int n, int m); Construct n X m matrix.
NRmatrix(int n, int m, const T &a); Initialize to constant value a.
NRmatrix(int n, int m, const T *a); Initialize to values in C-style array a.
NRmatrix(const NRmatrix &rhs); Copy constructor.
NRmatrix & operator=(const NRmatrix &rhs); Assignment operator.
typedef T value_type; Make T available.
inline T* operator[](const int 1i); Subscripting: pointer to row i.
inline const T* operator[](const int i) const; const version.
inline int nrows() const; Return number of rows.
inline int ncols() const; Return number of columns.
void resize(int newn, int newm); Resize, losing contents.
void assign(int newn, int newm, const T &a); Resize and assign a to every element.
“NRmatrix(); Destructor.

};

A couple of implementation details in NRmatrix are worth commenting on.
The private variable **v points not to the data but rather to an array of pointers to the
data rows. Memory allocation of this array is separate from the allocation of space
for the actual data. The data space is allocated as a single block, not separately for
each row. For matrices of zero size, we have to account for the separate possibilities
that there are zero rows, or that there are a finite number of rows, but each with zero
columns. So, for example, one of the constructors looks like this:

template <class T>
NRmatrix<T>::NRmatrix(int n, int m) : nn(n), mm(m), v(n>0 ? new T*[n] : NULL)
{

int i,nel=m*n;

if (v) v[0] = nel>0 ? new T[nel] : NULL;

for (i=1;i<n;i++) v[i] = v[i-1] + m;

Finally, it matters a lot whether your compiler honors the inline directives in
NRvector and NRmatrix above. If it doesn’t, then you may be doing full function
calls, saving and restoring context within the processor, every time you address a
vector or matrix element. This is tantamount to making C++ useless for most nu-
merical computing! Luckily, as we write, the most commonly used compilers are all
“honorable” in this respect.

CITED REFERENCES AND FURTHER READING:

Josuttis, N.M. 1999, The C++ Standard Library: A Tutorial and Reference (Boston: Addison-
Wesley).[1]

International Standardization Organization 2003, Technical Corrigendum ISO 14882:2003.[2]
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1.5 Some Further Conventions and
Capabilities

We collect in this section some further explanation of C++ language capabilities
and how we use them in this book.

1.5.1 Error and Exception Handling

We already mentioned that we code error conditions with simple throw state-
ments, like this

throw("error foo in routine bah");

If you are programming in an environment that has a defined set of error classes,
and you want to use them, then you’ll need to change these lines in the routines that
you use. Alternatively, without any additional machinery, you can choose between a
couple of different, useful behaviors just by making small changes in nr3. h.
By default, nr3.h redefines throw () by a preprocessor macro,
#define throw(message) \
{printf ("ERROR: %s\n in file %s at line %d\n", \
message,__FILE__, _LINE__); \
exit(1);}
This uses standard ANSI C features, also present in C++, to print the source code
file name and line number at which the error occurs. It is inelegant, but perfectly
functional.
Somewhat more functional, and definitely more elegant, is to set nr3.h’s com-
piler switch _USENRERRORCLASS_, which instead substitutes the following code:

struct NRerror {
char *message;
char x*file;
int line;
NRerror (char *m, char *f, int 1) : message(m), file(f), line(1l) {3}

};
void NRcatch(NRerror err) {
printf ("ERROR: %s\n in file %s at line %d\n",
err.message, err.file, err.line);
exit(1);
}
#define throw(message) throw(NRerror(message,__FILE__,__LINE__));

Now you have a (rudimentary) error class, NRerror, available. You use it by
putting a try...catch control structure at any desired point (or points) in your
code, for example (§2.9),

try {
Cholesky achol(a);
}
catch (NRerror err) {
NRcatch(err); Executed if Cholesky throws an exception.
}
As shown, the use of the NRcatch function above simply mimics the behavior of the

previous macro in the global context. But you don’t have to use NRcatch at all: You
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can substitute any code that you want for the body of the catch statement. If you
want to distinguish between different kinds of exceptions that may be thrown, you
can use the information returned in err. We’ll let you figure this out yourself. And
of course you are welcome to add more complicated error classes to your own copy
of nr3.h.

1.5.2 Const Correctness

Few topics in discussions about C++ evoke more heat than questions about the
keyword const. We are firm believers in using const wherever possible, to achieve
what is called “const correctness.” Many coding errors are automatically trapped
by the compiler if you have qualified identifiers that should not change with const
when they are declared. Also, using const makes your code much more readable:
When you see const in front of an argument to a function, you know immediately
that the function will not modify the object. Conversely, if const is absent, you
should be able to count on the object being changed somewhere.

We are such strong const believers that we insert const even where it is theo-
retically redundant: If an argument is passed by value to a function, then the function
makes a copy of it. Even if this copy is modified by the function, the original value is
unchanged after the function exits. While this allows you to change, with impunity,
the values of arguments that have been passed by value, this usage is error-prone and
hard to read. If your intention in passing something by value is that it is an input
variable only, then make it clear. So we declare a function f(x) as, for example,

Doub f(const Doub x);

If in the function you want to use a local variable that is initialized to x but then gets
changed, define a new quantity — don’t use x. If you put const in the declaration,
the compiler will not let you get this wrong.

Using const in your function arguments makes your function more general:
Calling a function that expects a const argument with a non-const variable involves
a “trivial” conversion. But trying to pass a const quantity to a non-const argument
is an error.

A final reason for using const is that it allows certain user-defined conversions
to be made. As discussed in [1], this can be useful if you want to use Numerical
Recipes routines with another matrix/vector class library.

We now need to elaborate on what exactly const does for a nonsimple type
such as a class that is an argument of a function. Basically, it guarantees that the
object is not modified by the function. In other words, the object’s data members are
unchanged. But if a data member is a pointer to some data, and the data itself is not
a member variable, then the data can be changed even though the pointer cannot be.

Let’s look at the implications of this for a function f that takes an NRvec-
tor<Doub> argument a. To avoid unnecessary copying, we always pass vectors
and matrices by reference. Consider the difference between declaring the argument
of a function with and without const:

void f(NRvector<Doub> &a) versus void f(const NRvector<Doub> &a)

The const version promises that £ does not modify the data members of a. But a
statement like

alil = 4.;
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inside the function definition is in principle perfectly OK — you are modifying the
data pointed to, not the pointer itself.

“Isn’t there some way to protect the data?” you may ask. Yes, there is: You can
declare the return type of the subscript operator, operator[], to be const. This is
why there are two versions of operator [] in the NRvector class,

T & operator[] (const int i);
const T & operator[](const int i) const;

The first form returns a reference to a modifiable vector element, while the second re-
turns a nonmodifiable vector element (because the return type has a const in front).

But how does the compiler know which version to invoke when you just write
ali]? That is specified by the frailing word const in the second version. It
refers not to the returned element, nor to the argument i, but to the object whose
operator[] is being invoked, in our example the vector a. Taken together, the
two versions say this to the compiler: “If the vector a is const, then transfer that
const’ness to the returned element a[i]. If it isn’t, then don’t.”

The remaining question is thus how the compiler determines whether a is const.
In our example, where a is a function argument, it is trivial: The argument is either
declared as const or else it isn’t. In other contexts, a might be const because you
originally declared it as such (and initialized it via constructor arguments), or be-
cause it is a const reference data member in some other object, or for some other,
more arcane, reason.

As you can see, getting const to protect the data is a little complicated. Judg-
ing from the large number of matrix/vector libraries that follow this scheme, many
people feel that the payoff is worthwhile. We urge you always to declare as const
those objects and variables that are not intended to be modified. You do this both at
the time an object is actually created and in the arguments of function declarations
and definitions. You won’t regret making a habit of const correctness.

In §1.4 we defined vector and matrix type names with trailing _TI labels, for
example, VecDoub_T and MatInt_I. The _I, which stands for “input to a function,”
means that the type is declared as const. (This is already done in the typedef
statement; you don’t have to repeat it.) The corresponding labels _0 and _IO are to
remind you when arguments are not just non-const, but will actually be modified
by the function in whose argument list they appear.

Having rightly put all this emphasis on const correctness, duty compels us
also to recognize the existence of an alternative philosophy, which is to stick with
the more rudimentary view “const protects the container, not the contents.” In this
case you would want only one form of operator [], namely

T & operator[](const int i) conmst;

It would be invoked whether your vector was passed by const reference or not. In
both cases element i is returned as potentially modifiable. While we are opposed to
this philosophically, it turns out that it does make possible a tricky kind of automatic
type conversion that allows you to use your favorite vector and matrix classes instead
of NRvector and NRmatrix, even if your classes use a syntax completely different
from what we have assumed. For information on this very specialized application,
see [1].
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1.5.3 Abstract Base Class (ABC), or Template?

There is sometimes more than one good way to achieve some end in C++. Heck,
let’s be honest: There is always more than one way. Sometimes the differences
amount to small tweaks, but at other times they embody very different views about
the language. When we make one such choice, and you prefer another, you are going
to be quite annoyed with us. Our defense against this is to avoid foolish consisten-
cies,* and to illustrate as many viewpoints as possible.

A good example is the question of when to use an abstract base class (ABC)
versus a template, when their capabilities overlap. Suppose we have a function func
that can do its (useful) thing on, or using, several different types of objects, call them
ObjA, ObjB, and O0bjC. Moreover, func doesn’t need to know much about the object
it interacts with, only that it has some method tellme.

We could implement this setup as an abstract base class:

struct ObjABC { Abstract Base Class for objects with tellme.
virtual void tellme() = 0;
};
struct ObjA : ObjABC { Derived class.
Qéid tellme() {...}
i‘éruct ObjB : 0bjABC { Derived class.
void tellme() {...}
Z‘iruct 0bjC : ObjABC { Derived class.
Qéid tellme() {...}
};

void func(ObjABC &x) {

x.tellme(); References the appropriate tellme.

}

On the other hand, using a template, we can write code for func without ever
seeing (or even knowing the names of) the objects for which it is intended:

template<class T>
void func(T &x) {

x.tellme();
}
That certainly seems easier! Is it better?

Maybe. A disadvantage of templates is that the template must be available to
the compiler every time it encounters a call to func. This is because it actually
compiles a different version of func for every different type of argument T that
it encounters. Unless your code is so large that it cannot easily be compiled as a
single unit, however, this is not much of a disadvantage. On the other side, favoring
templates, is the fact that virtual functions incur a small run-time penalty when they
are called. But this is rarely significant.

The deciding factors in this example relate to software engineering, not per-
formance, and are hidden in the lines with ellipses (. ..). We haven’t really told

*“A foolish consistency is the hobgoblin of little minds.” —Emerson
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you how closely related 0bjA, 0bjB, and 0bjC are. If they are close, then the ABC
approach offers possibilities for putting more than just tellme into the base class.
Putting things into the base class, whether data or pure virtual methods, lets the com-
piler enforce consistency across the derived classes. If you later write another derived
object ObjD, its consistency will also be enforced. For example, the compiler will
require you to implement a method in every derived class corresponding to every
pure virtual method in the base class.

By contrast, in the template approach, the only enforced consistency will be
that the method tellme exists, and this will only be enforced at the point in the code
where func is actually called with an 0bjD argument (if such a point exists), not at
the point where ObjD is defined. Consistency checking in the template approach is
thus somewhat more haphazard.

Laid-back programmers will opt for templates. Up-tight programmers will opt
for ABCs. We opt for...both, on different occasions. There can also be other rea-
sons, having to do with subtle features of class derivation or of templates, for choos-
ing one approach over the other. We will point these out as we encounter them in
later chapters. For example, in Chapter 17 we define an abstract base class called
StepperBase for the various “stepper” routines for solving ODEs. The derived
classes implement particular stepping algorithms, and they are templated so they can
accept function or functor arguments (see §1.3.3).

1.5.4 NaN and Floating Point Exceptions

We mentioned in §1.1.1 that the IEEE floating-point standard includes a rep-
resentation for NaN, meaning “not a number.” NaN is distinct from positive and
negative infinity, as well as from every representable number. It can be both a bless-
ing and a curse.

The blessing is that it can be useful to have a value that can be used with mean-
ings like “don’t process me” or “missing data” or “not yet initialized.” To use NaN
in this fashion, you need to be able to set variables to it, and you need to be able to
test for its having been set.

Setting is easy. The “approved” method is to use numeric_limits. Innr3.h
the line

static const Doub NaN = numeric_limits<Doub>::quiet_NaN();
defines a global value NaN, so that you can write things like

x = Nal;
at will. If you ever encounter a compiler that doesn’t do this right (it’s a pretty
obscure corner of the standard library!), then try either

Uint proto_nan[2]=0xffffffff, Ox7fffffff;
double NalN = *( double* )proto_nan;

(which assumes little-endian behavior; cf. §1.1.1) or the self-explanatory

Doub NaN = sqrt(-1.);
which may, however, throw an immediate exception (see below) and thus not work
for this purpose. But, one way or another, you can generally figure out how to get a
NaN constant into your environment.

Testing also requires a bit of (one-time) experimentation: According to the
IEEE standard, NaN is guaranteed to be the only value that is not equal to itself!
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So, the “approved” method of testing whether Doub value x has been set to NaN is
if (x '=x) {...} It's a NaN!

(or test for equality to determine that it’s not a NaN). Unfortunately, at time of writ-
ing, some otherwise perfectly good compilers don’t do this right. Instead, they pro-
vide a macro isnan() that returns true if the argument is NaN, otherwise false.
(Check carefully whether the required #include ismath.h or float.h — it varies.)

What, then, is the curse of NaN? It is that some compilers, notably Microsoft,
have poorly thought-out default behaviors in distinguishing quiet NaNs from sig-
nalling NaNs. Both kinds of NaNs are defined in the IEEE floating-point standard.
Quiet NaNs are supposed to be for uses like those above: You can set them, test
them, and propagate them by assignment, or even through other floating operations.
In such uses they are not supposed to signal an exception that causes your program
to abort. Signalling NaNs, on the other hand, are, as the name implies, supposed to
signal exceptions. Signalling NaNs should be generated by invalid operations, such
as the square root or logarithm of a negative number, or pow(0.,0.).

If all NaNs are treated as signalling exceptions, then you can’t make use of
them as we have suggested above. That’s annoying, but OK. On the other hand, if all
NaNs are treated as quiet (the Microsoft default at time of writing), then you will run
long calculations only to find that all the results are NaN — and you have no way of
locating the invalid operation that triggered the propagating cascade of (quiet) NaNs.
That’s not OK. It makes debugging a nightmare. (You can get the same disease if
other floating-point exceptions propagate, for example overflow or division-by-zero.)

Tricks for specific compilers are not within our normal scope. But this one is so
essential that we make it an “exception”: If you are living on planet Microsoft, then
the lines of code,

int cw = _controlfp(0,0);

cw &="(EM_INVALID | EM_OVERFLOW | EM_ZERODIVIDE );

_controlfp(cw,MCW_EM) ;
at the beginning of your program will turn NaNs from invalid operations, overflows,
and divides-by-zero into signalling NaNs, and leave all the other NaNs quiet. There
is a compiler switch, _TURNONFPES_ in nr3.h that will do this for you automatically.
(Further options are EM_UNDERFLOW, EM_INEXACT, and EM_DENORMAL, but we think
these are best left quiet.)

1.5.5 Miscellany

e Bounds checking in vectors and matrices, that is, verifying that subscripts are
in range, is expensive. It can easily double or triple the access time to sub-
scripted elements. In their default configuration, the NRvector and NRmatrix
classes never do bounds checking. However, nr3.h has a compiler switch,
_CHECKBOUNDS_, that turns bounds checking on. This is implemented by pre-
processor directives for conditional compilation so there is no performance
penalty when you leave it turned off. This is ugly, but effective.

The vector<> class in the C++ Standard Library takes a different tack. If
you access a vector element by the syntax v [i], there is no bounds checking.
If you instead use the at () method, as v.at (i), then bounds checking is
performed. The obvious weakness of this approach is that you can’t easily
change a lengthy program from one method to the other, as you might want to
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do when debugging.

The importance to performance of avoiding unnecessary copying of large ob-
jects, such as vectors and matrices, cannot be overemphasized. As already
mentioned, they should always be passed by reference in function arguments.
But you also need to be careful about, or avoid completely, the use of func-
tions whose return type is a large object. This is true even if the return type is a
reference (which is a tricky business anyway). Our experience is that compil-
ers often create temporary objects, using the copy constructor, when the need
to do so is obscure or nonexistent. That is why we so frequently write void
functions that have an argument of type (e.g.) MatDoub_0 for returning the
“answer.” (When we do use vector or matrix return types, our excuse is either
that the code is pedagogical, or that the overhead is negligible compared to
some big calculation that has just been done.)

You can check up on your compiler by instrumenting the vector and matrix
classes: Add a static integer variable to the class definition, increment it within
the copy constructor and assignment operator, and look at its value before and
after operations that (you think) should not require any copies. You might be
surprised.

There are only two routines in Numerical Recipes that use three-dimensional
arrays, r1ft3in §12.6, and solvde in §18.3. The file nr3.h includes a rudi-
mentary class for three-dimensional arrays, mainly to service these two rou-
tines. In many applications, a better way to proceed is to declare a vector of
matrices, for example,

vector<MatDoub> threedee(17);
for (Int i=0;i<17;i++) threedee[i] .resize(19,21);

which creates, in effect, a three-dimensional array of size 17 x 19 x 21. You
can address individual components as threedee[1] [j] [k].

“Why no namespace?”’ Industrial-strength programmers will notice that, un-
like the second edition, this third edition of Numerical Recipes does not shield
its function and class names by a NR: : namespace. Therefore, if you are so
bold as to #include every single file in the book, you are dumping on the
order of 500 names into the global namespace, definitely a bad idea!

The explanation, quite simply, is that the vast majority of our users are not
industrial-strength programmers, and most found the NR: : namespace annoy-
ing and confusing. As we emphasized, strongly, in §1.0.1, NR is not a program
library. If you want to create your own personal namespace for NR, please go
ahead.

In the distant past, Numerical Recipes included provisions for unit- or one-
based, instead of zero-based, array indices. The last such version was pub-
lished in 1992. Zero-based arrays have become so universally accepted that
we no longer support any other option.

CITED REFERENCES AND FURTHER READING:
Numerical Recipes Software 2007, “Using Other Vector and Matrix Libraries,” Numerical Recipes

Webnote No. 1, athttp://www.nr.com/webnotes?1 [1]



Solution of Linear
Algebraic Equations

2.0 Introduction

The most basic task in linear algebra, and perhaps in all of scientific computing,
is to solve for the unknowns in a set of linear algebraic equations. In general, a set
of linear algebraic equations looks like this:

apoXo + ao1 X1 + apax2 + -+ aoN—1XN-1 = bo
ajoxo +ainxy +apxs+ - +ayjN-1xy—1 = b

a20X0 + a21X1 + azpXxa + -+ + Az N—1XN—1 = b2 (2.0.1)

am—1,0X0 +am—11xX1 + -+ apm—1,N—1XN—1 = by—1

Here the N unknowns x;, j = 0,1,..., N — 1 are related by M equations. The
coefficients a¢;; withi = 0,1,...,.M —1and j = 0,1,..., N — 1 are known
numbers, as are the right-hand side quantities b;,i = 0,1,..., M — 1.

If N = M, then there are as many equations as unknowns, and there is a good
chance of solving for a unique solution set of x;’s. Otherwise, if N # M, things are
even more interesting; we’ll have more to say about this below.

If we write the coefficients a;; as a matrix, and the right-hand sides b; as a
column vector,

aopo aol e ao,N—1 bo
a a a;.N— b
A= 10 11 1,N—1 b = 1 (2.0.2)
am-1,0 dmM-1,1 ... AdM—-1,N-1 by—1

then equation (2.0.1) can be written in matrix form as
A-x=b (2.0.3)

Here, and throughout the book, we use a raised dot to denote matrix multiplica-
tion, or the multiplication of a matrix and a vector, or the dot product of two vectors.

37
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This usage is nonstandard, but we think it adds clarity: the dot is, in all of these cases,
a contraction operator that represents the sum over a pair of indices, for example

C=A'B — Cikzzaijbjk
J

b=A -x — biZZainj
J

(2.0.4)
d=x-A <~ dj:le-a,-j
i

g=xy <= CI=inyi
i

In matrices, by convention, the first index on an element a;; denotes its row
and the second index its column. For most purposes you don’t need to know how a
matrix is stored in a computer’s physical memory; you just reference matrix elements
by their two-dimensional addresses, e.g., as4 = a[3] [4]. This C++ notation can
in fact hide a variety of subtle and versatile physical storage schemes, see §1.4 and
§1.5.

2.0.1 Nonsingular versus Singular Sets of Equations

You might be wondering why, above, and for the case M = N, we credited
only a “good” chance of solving for the unknowns. Analytically, there can fail to
be a solution (or a unique solution) if one or more of the M equations is a linear
combination of the others, a condition called row degeneracy, or if all equations
contain certain variables only in exactly the same linear combination, called column
degeneracy. It turns out that, for square matrices, row degeneracy implies column
degeneracy, and vice versa. A set of equations that is degenerate is called singular.
We will consider singular matrices in some detail in §2.6.

Numerically, at least two additional things prevent us from getting a good solu-
tion:

e While not exact linear combinations of each other, some of the equations may
be so close to linearly dependent that roundoff errors in the machine render
them linearly dependent at some stage in the solution process. In this case
your numerical procedure will fail, and it can tell you that it has failed.

e Accumulated roundoff errors in the solution process can swamp the true so-
Iution. This problem particularly emerges if N is too large. The numerical
procedure does not fail algorithmically. However, it returns a set of x’s that
are wrong, as can be discovered by direct substitution back into the original
equations. The closer a set of equations is to being singular, the more likely
this is to happen, since increasingly close cancellations will occur during the
solution. In fact, the preceding item can be viewed as the special case in which
the loss of significance is unfortunately total.

Much of the sophistication of well-written “linear equation-solving packages”
is devoted to the detection and/or correction of these two pathologies. It is difficult
to give any firm guidelines for when such sophistication is needed, since there is no
such thing as a “typical” linear problem. But here is a rough idea: Linear sets with
N no larger than 20 or 50 are routine if they are not close to singular; they rarely
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require more than the most straightforward methods, even in only single (that is,
float) precision. With double precision, this number can readily be extended to N
as large as perhaps 1000, after which point the limiting factor anyway soon becomes
machine time, not accuracy.

Even larger linear sets, NV in the thousands or millions, can be solved when the
coefficients are sparse (that is, mostly zero), by methods that take advantage of the
sparseness. We discuss this further in §2.7.

Unfortunately, one seems just as often to encounter linear problems that, by
their underlying nature, are close to singular. In this case, you might need to resort
to sophisticated methods even for the case of N = 10 (though rarely for N = 5).
Singular value decomposition (§2.6) is a technique that can sometimes turn singular
problems into nonsingular ones, in which case additional sophistication becomes
unnecessary.

2.0.2 Tasks of Computational Linear Algebra

There is much more to linear algebra than just solving a single set of equations
with a single right-hand side. Here, we list the major topics treated in this chapter.
(Chapter 11 continues the subject with discussion of eigenvalue/eigenvector prob-
lems.)

When M = N:

e Solution of the matrix equation A - x = b for an unknown vector x (§2.1 —
§2.10).

e Solution of more than one matrix equation A-x; = b;, for a set of vectors x;,
j =0,1,...,each corresponding to a different, known right-hand side vector
b;. In this task the key simplification is that the matrix A is held constant,
while the right-hand sides, the b’s, are changed (§2.1 — §2.10).

e Calculation of the matrix A™! that is the matrix inverse of a square matrix A,
ie, A-A7!l = A71. A = 1, where 1 is the identity matrix (all zeros except
for ones on the diagonal). This task is equivalent, for an N x N matrix A,
to the previous task with N differentb;’s (j = 0,1,..., N — 1), namely the
unit vectors (b; = all zero elements except for 1 in the jth component). The
corresponding x’s are then the columns of the matrix inverse of A (§2.1 and
§2.3).

e Calculation of the determinant of a square matrix A (§2.3).

If M < N,orif M = N but the equations are degenerate, then there are effec-
tively fewer equations than unknowns. In this case there can be either no solution, or
else more than one solution vector X. In the latter event, the solution space consists
of a particular solution X, added to any linear combination of (typically) N — M
vectors (which are said to be in the nullspace of the matrix A). The task of finding
the solution space of A involves

e Singular value decomposition of a matrix A (§2.6).

If there are more equations than unknowns, M > N, there is in general no
solution vector X to equation (2.0.1), and the set of equations is said to be overde-
termined. It happens frequently, however, that the best “compromise” solution is
sought, the one that comes closest to satisfying all equations simultaneously. If
closeness is defined in the least-squares sense, i.e., that the sum of the squares of
the differences between the left- and right-hand sides of equation (2.0.1) be mini-
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mized, then the overdetermined linear problem reduces to a (usually) solvable linear
problem, called the

e Linear least-squares problem.

The reduced set of equations to be solved can be written as the N x N set of equations
AT-A).-x = (AT -b) (2.0.5)

where AT denotes the transpose of the matrix A. Equations (2.0.5) are called the

normal equations of the linear least-squares problem. There is a close connection

between singular value decomposition and the linear least-squares problem, and the

latter is also discussed in §2.6. You should be warned that direct solution of the

normal equations (2.0.5) is not generally the best way to find least-squares solutions.
Some other topics in this chapter include

e [terative improvement of a solution (§2.5)

e Various special forms: symmetric positive-definite (§2.9), tridiagonal (§2.4),
band-diagonal (§2.4), Toeplitz (§2.8), Vandermonde (§2.8), sparse (§2.7)

e Strassen’s “fast matrix inversion” (§2.11).

2.0.3 Software for Linear Algebra

Going beyond what we can include in this book, several good software packages
for linear algebra are available, though not always in C++. LAPACK, a successor
to the venerable LINPACK, was developed at Argonne National Laboratories and
deserves particular mention because it is published, documented, and available for
free use. ScaLAPACK is a version available for parallel architectures. Packages
available commercially include those in the IMSL and NAG libraries.

Sophisticated packages are designed with very large linear systems in mind.
They therefore go to great effort to minimize not only the number of operations,
but also the required storage. Routines for the various tasks are usually provided in
several versions, corresponding to several possible simplifications in the form of the
input coefficient matrix: symmetric, triangular, banded, positive-definite, etc. If you
have a large matrix in one of these forms, you should certainly take advantage of the
increased efficiency provided by these different routines, and not just use the form
provided for general matrices.

There is also a great watershed dividing routines that are direct (i.e., execute
in a predictable number of operations) from routines that are iterative (i.e., attempt
to converge to the desired answer in however many steps are necessary). Iterative
methods become preferable when the battle against loss of significance is in danger
of being lost, either due to large N or because the problem is close to singular. We
will treat iterative methods only incompletely in this book, in §2.7 and in Chapters
19 and 20. These methods are important but mostly beyond our scope. We will,
however, discuss in detail a technique that is on the borderline between direct and
iterative methods, namely the iterative improvement of a solution that has been ob-
tained by direct methods (§2.5).

CITED REFERENCES AND FURTHER READING:

Golub, G.H., and Van Loan, C.F. 1996, Matrix Computations, 3rd ed. (Baltimore: Johns Hopkins
University Press).



2.1 Gauss-Jordan Elimination 41

Gill, PE., Murray, W., and Wright, M.H. 1991, Numerical Linear Algebra and Optimization, vol. 1
(Redwood City, CA: Addison-Wesley).

Stoer, J., and Bulirsch, R. 2002, Introduction to Numerical Analysis, 3rd ed. (New York: Springer),
Chapter 4.

Ueberhuber, C.W. 1997, Numerical Computation: Methods, Software, and Analysis, 2 vols. (Berlin:
Springer), Chapter 13.

Coleman, T.F,, and Van Loan, C. 1988, Handbook for Matrix Computations (Philadelphia: S.I.A.M.).

Forsythe, G.E., and Moler, C.B. 1967, Computer Solution of Linear Algebraic Systems (Engle-
wood Cliffs, NJ: Prentice-Hall).

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. || of Handbook for Automatic Com-
putation (New York: Springer).

Westlake, J.R. 1968, A Handbook of Numerical Matrix Inversion and Solution of Linear Equations
(New York: Wiley).

Johnson, L.W., and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: Addison-
Wesley), Chapter 2.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed.; reprinted
2001 (New York: Dover), Chapter 9.

2.1 Gauss-Jordan Elimination

Gauss-Jordan elimination is probably the way you learned to solve linear equa-
tions in high school. (You may have learned it as “Gaussian elimination,” but, strictly
speaking, that term refers to the somewhat different technique discussed in §2.2.) The
basic idea is to add or subtract linear combinations of the given equations until each
equation contains only one of the unknowns, thus giving an immediate solution. You
might also have learned to use the same technique for calculating the inverse of a
matrix.

For solving sets of linear equations, Gauss-Jordan elimination produces both
the solution of the equations for one or more right-hand side vectors b, and also the
matrix inverse A~!. However, its principal deficiencies are (i) that it requires all the
right-hand sides to be stored and manipulated at the same time, and (ii) that when
the inverse matrix is not desired, Gauss-Jordan is three times slower than the best
alternative technique for solving a single linear set (§2.3). The method’s principal
strength is that it is as stable as any other direct method, perhaps even a bit more
stable when full pivoting is used (see §2.1.2).

For inverting a matrix, Gauss-Jordan elimination is about as efficient as any
other direct method. We know of no reason not to use it in this application if you are
sure that the matrix inverse is what you really want.

You might wonder about deficiency (i) above: If we are getting the matrix in-
verse anyway, can’t we later let it multiply a new right-hand side to get an additional
solution? This does work, but it gives an answer that is very susceptible to roundoff
error and not nearly as good as if the new vector had been included with the set of
right-hand side vectors in the first instance.

Thus, Gauss-Jordan elimination should not be your method of first choice for
solving linear equations. The decomposition methods in §2.3 are better. Why do
we discuss Gauss-Jordan at all? Because it is straightforward, solid as a rock, and
a good place for us to introduce the important concept of pivoting which will also
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be important for the methods described later. The actual sequence of operations
performed in Gauss-Jordan elimination is very closely related to that performed by
the routines in the next two sections.

2.1.1 Elimination on Column-Augmented Matrices

For clarity, and to avoid writing endless ellipses (- - - ) we will write out equations
only for the case of four equations and four unknowns, and with three different right-
hand side vectors that are known in advance. You can write bigger matrices and
extend the equations to the case of N x N matrices, with M sets of right-hand side
vectors, in completely analogous fashion. The routine implemented below in §2.1.2
is, of course, general.

Consider the linear matrix equation

apo d4doi1 4o2 aos X00 X01 X02 Yoo Yoir Yo2 )o3
ato ann a2 a3 | | fxwo|  fxof frezf  [yie yiioyiz vz
azp dz1 d4zz daz3s X20 X21 X22 Y20 Y21 Y22 )23
asp dasp asz dass X30 X31 X32 Y30 Y31 Y32 )33
boo bo1 boa 1 0 0 O
_ b1o b11 b12 0O 1 0 O
= bao U bay L bay U 00 1 0 (2.1.1)
b3o b31 b3o 0 0 0 1

Here the raised dot (-) signifies matrix multiplication, while the operator LI just sig-
nifies column augmentation, that is, removing the abutting parentheses and making
a wider matrix out of the operands of the LI operator.

It should not take you long to write out equation (2.1.1) and to see that it simply
states that x;; is the ith component (i = 0, 1,2, 3) of the vector solution of the jth
right-hand side (j = 0, 1, 2), the one whose coefficients are b,-j,i =0,1,2,3; and
that the matrix of unknown coefficients y;; is the inverse matrix of a;;. In other
words, the matrix solution of

[A] - [xo Ux; Uxy LUY] = [bgUbyUbyUl] (2.1.2)

where A and Y are square matrices, the b;’s and x;’s are column vectors, and 1 is
the identity matrix, simultaneously solves the linear sets

A-xg=by A-x;=b; A-x,=h (2.1.3)

and
A-Y=1 (2.1.4)

Now it is also elementary to verify the following facts about (2.1.1):

e Interchanging any two rows of A and the corresponding rows of the b’s and of
1 does not change (or scramble in any way) the solution x’s and Y. Rather, it
just corresponds to writing the same set of linear equations in a different order.

e Likewise, the solution set is unchanged and in no way scrambled if we replace
any row in A by a linear combination of itself and any other row, as long as
we do the same linear combination of the rows of the b’s and 1 (which then is
no longer the identity matrix, of course).
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e Interchanging any two columns of A gives the same solution set only if we
simultaneously interchange corresponding rows of the x’s and of Y. In other
words, this interchange scrambles the order of the rows in the solution. If we
do this, we will need to unscramble the solution by restoring the rows to their
original order.

Gauss-Jordan elimination uses one or more of the above operations to reduce
the matrix A to the identity matrix. When this is accomplished, the right-hand side
becomes the solution set, as one sees instantly from (2.1.2).

2.1.2 Pivoting

In “Gauss-Jordan elimination with no pivoting,” only the second operation in
the above list is used. The zeroth row is divided by the element ago (this being a
trivial linear combination of the zeroth row with any other row — zero coefficient
for the other row). Then the right amount of the zeroth row is subtracted from each
other row to make all the remaining a;¢’s zero. The zeroth column of A now agrees
with the identity matrix. We move to column 1 and divide row 1 by a1, then subtract
the right amount of row 1 from rows 0, 2, and 3, so as to make their entries in column
1 zero. Column 1 is now reduced to the identity form. And so on for columns 2 and 3.
As we do these operations to A, we of course also do the corresponding operations to
the b’s and to 1 (which by now no longer resembles the identity matrix in any way!).

Obviously we will run into trouble if we ever encounter a zero element on the
(then current) diagonal when we are going to divide by the diagonal element. (The
element that we divide by, incidentally, is called the pivot element or pivot.) Not so
obvious, but true, is the fact that Gauss-Jordan elimination with no pivoting (no use of
the first or third procedures in the above list) is numerically unstable in the presence
of any roundoff error, even when a zero pivot is not encountered. You must never do
Gauss-Jordan elimination (or Gaussian elimination; see below) without pivoting!

So what is this magic pivoting? Nothing more than interchanging rows (partial
pivoting) or rows and columns (full pivoting), so as to put a particularly desirable
element in the diagonal position from which the pivot is about to be selected. Since
we don’t want to mess up the part of the identity matrix that we have already built up,
we can choose among elements that are both (i) on rows below (or on) the one that
is about to be normalized, and also (ii) on columns to the right (or on) the column
we are about to eliminate. Partial pivoting is easier than full pivoting, because we
don’t have to keep track of the permutation of the solution vector. Partial pivoting
makes available as pivots only the elements already in the correct column. It turns
out that partial pivoting is “almost” as good as full pivoting, in a sense that can be
made mathematically precise, but which need not concern us here (for discussion
and references, see [1]). To show you both variants, we do full pivoting in the routine
in this section and partial pivoting in §2.3.

We have to state how to recognize a particularly desirable pivot when we see
one. The answer to this is not completely known theoretically. It is known, both
theoretically and in practice, that simply picking the largest (in magnitude) available
element as the pivot is a very good choice. A curiosity of this procedure, however, is
that the choice of pivot will depend on the original scaling of the equations. If we take
the third linear equation in our original set and multiply it by a factor of a million, it
is almost guaranteed that it will contribute the first pivot; yet the underlying solution
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of the equations is not changed by this multiplication! One therefore sometimes sees
routines which choose as pivot that element which would have been largest if the
original equations had all been scaled to have their largest coefficient normalized to
unity. This is called implicit pivoting. There is some extra bookkeeping to keep track
of the scale factors by which the rows would have been multiplied. (The routines in
§2.3 include implicit pivoting, but the routine in this section does not.)

Finally, let us consider the storage requirements of the method. With a little
reflection you will see that at every stage of the algorithm, either an element of A is
predictably a one or zero (if it is already in a part of the matrix that has been reduced
to identity form) or else the exactly corresponding element of the matrix that started
as 1 is predictably a one or zero (if its mate in A has not been reduced to the identity
form). Therefore the matrix 1 does not have to exist as separate storage: The matrix
inverse of A is gradually built up in A as the original A is destroyed. Likewise, the
solution vectors x can gradually replace the right-hand side vectors b and share the
same storage, since after each column in A is reduced, the corresponding row entry
in the b’s is never again used.

Here is a routine that does Gauss-Jordan elimination with full pivoting, replac-
ing its input matrices by the desired answers. Immediately following is an over-
loaded version for use when there are no right-hand sides, i.e., when you want only
the matrix inverse.

void gaussj(MatDoub_IO &a, MatDoub_IO &b)
Linear equation solution by Gauss-Jordan elimination, equation (2.1.1) above. The input matrix
is a[0..n-11[0..n-1]. b[0..n-1][0..m-1] is input containing the m right-hand side vectors.
On output, a is replaced by its matrix inverse, and b is replaced by the corresponding set of
solution vectors.
{

Int i,icol,irow,j,k,1,11,n=a.nrows(),m=b.ncols();

Doub big,dum,pivinv;

VecInt indxc(n),indxr(n),ipiv(n); These integer arrays are used for bookkeeping on

for (j=0;j<n;j++) ipiv[jl1=0; the pivoting.
for (i=0;i<n;i++) { This is the main loop over the columns to be
big=0.0; reduced.
for (j=0;j<n;j++) This is the outer loop of the search for a pivot
if (ipiv[j] != 1) element.

for (k=0;k<n;k++) {
if (ipivl[k] == 0) {
if (abs(aljl[k]) >= big) {
big=abs(aljl[k]);
irow=j;
icol=k;

}
}

++(ipiv[icoll);
We now have the pivot element, so we interchange rows, if needed, to put the pivot
element on the diagonal. The columns are not physically interchanged, only relabeled:
indxc[i], the column of the (i + 1)th pivot element, is the (i 4+ 1)th column that is
reduced, while indxr[i] is the row in which that pivot element was originally located.
If indxr[i] # indxc[i], there is an implied column interchange. With this form of
bookkeeping, the solution b's will end up in the correct order, and the inverse matrix
will be scrambled by columns.
if (irow != icol) {

for (1=0;1<n;1++) SWAP(al[irow][1],alicol]l[1]);

for (1=0;1<m;1++) SWAP(b[irow] [1],b[icol]l[1]);
}
indxr[i]=irow; We are now ready to divide the pivot row by the

pivot element, located at irow and icol.
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indxc[i]=icol;
if (alicol][icol] == 0.0) throw("gaussj: Singular Matrix");
pivinv=1.0/alicol] [icol];
alicol] [icol]l=1.0;
for (1=0;1<n;1++) alicol] [1] *= pivinv;
for (1=0;1<m;1++) blicol] [1] *= pivinv;
for (11=0;11<n;11++) Next, we reduce the rows...
if (11 != icol) { ...except for the pivot one, of course.
dum=a[11] [icol];
al[11] [icol]=0.0;
for (1=0;1<n;1++) al[ll][1] -= alicol] [1]*dum;
for (1=0;1<m;1++) b[11][1] -= blicol] [1]*dum;
}
}
This is the end of the main loop over columns of the reduction. It only remains to unscram-
ble the solution in view of the column interchanges. We do this by interchanging pairs of
columns in the reverse order that the permutation was built up.
for (1=n-1;1>=0;1--) {
if (indxr[1] != indxc[1])
for (k=0;k<n;k++)
SWAP (a[k] [indxr[1]],alk] [indxc[11]);
} And we are done.

3

void gaussj(MatDoub_I0 &a)

Overloaded version with no right-hand sides. Replaces a by its inverse.

{
MatDoub b(a.nrows(),0); Dummy vector with zero columns.
gaussj(a,b);

2.1.3 Row versus Column Elimination Strategies

The above discussion can be amplified by a modest amount of formalism. Row opera-
tions on a matrix A correspond to pre- (that is, left-) multiplication by some simple matrix R.
For example, the matrix R with components

1 ifi =jandi #2,4
)1 ifi=2j=4
Rij = 1 ifi=4,j=2 2.1.5)
0 otherwise

effects the interchange of rows 2 and 4. Gauss-Jordan elimination by row operations alone
(including the possibility of partial pivoting) consists of a series of such left-multiplications,
yielding successively

A-x=Db>b
...R>-Ri-Ro-A)-Xx=--R>-R1-Rp-b
(--R2-Ri-Rg-A) 2-Ri-Ryp 2.16)

(1)-x =---Ry-R; -Rg -b

x=--Ry-R;-Rg-b

The key point is that since the R’s build from right to left, the right-hand side is simply
transformed at each stage from one vector to another.

Column operations, on the other hand, correspond to post-, or right-, multiplications
by simple matrices, call them C. The matrix in equation (2.1.5), if right-multiplied onto a
matrix A, will interchange columns 2 and 4 of A. Elimination by column operations involves
(conceptually) inserting a column operator, and also its inverse, between the matrix A and the
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unknown vector X:

A-x=b
A-Co-Cyl-x=b
A-Co-Ci-CTl-Cyl-x=b (2.1.7)

(A.CO.CI.CZ...)...C;1 .Cl—l.co—l .x=b
(1)---C51-C1_1-C0_1-x =b

which (peeling off the C ~1s one at a time) implies a solution
x=Cyp-C;-Cy---b (2.1.8)

Notice the essential difference between equation (2.1.8) and equation (2.1.6). In the
latter case, the C’s must be applied to b in the reverse order from that in which they become
known. That is, they must all be stored along the way. This requirement greatly reduces
the usefulness of column operations, generally restricting them to simple permutations, for
example in support of full pivoting.
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2.2 Gaussian Elimination with
Backsubstitution

Any discussion of Gaussian elimination with backsubstitution is primarily ped-
agogical. The method stands between full elimination schemes such as Gauss-
Jordan, and triangular decomposition schemes such as will be discussed in the next
section. Gaussian elimination reduces a matrix not all the way to the identity matrix,
but only halfway, to a matrix whose components on the diagonal and above (say)
remain nontrivial. Let us now see what advantages accrue.

Suppose that in doing Gauss-Jordan elimination, as described in §2.1, we at
each stage subtract away rows only below the then-current pivot element. When
api is the pivot element, for example, we divide the row 1 by its value (as before),
but now use the pivot row to zero only a,; and @31, not ag; (see equation 2.1.1).
Suppose, also, that we do only partial pivoting, never interchanging columns, so that
the order of the unknowns never needs to be modified.
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Then, when we have done this for all the pivots, we will be left with a reduced
equation that looks like this (in the case of a single right-hand side vector):

agg gy dop g3 X0 by
0 a/ll a/12 Cl/13 BRI bll (2.2.1)
0 0 dy dy x2| | b -
0 0 0 aj X3 A

Here the primes signify that the a’s and b’s do not have their original numerical
values, but have been modified by all the row operations in the elimination to this
point. The procedure up to this point is termed Gaussian elimination.

2.2.1 Backsubstitution

But how do we solve for the x’s? The last x (x3 in this example) is already
isolated, namely
x3 = by /a5, (2.2.2)

With the last x known we can move to the penultimate x,

1
X2 = ——[by — x3d}s] (2.2.3)

5P)

and then proceed with the x before that one. The typical step is

1 N-1
x; = Z{b; — Z a;jxj} (2.2.4)
11

j=i+1

The procedure defined by equation (2.2.4) is called backsubstitution. The combi-
nation of Gaussian elimination and backsubstitution yields a solution to the set of
equations.

The advantage of Gaussian elimination and backsubstitution over Gauss-Jordan
elimination is simply that the former is faster in raw operations count: The inner-
most loops of Gauss-Jordan elimination, each containing one subtraction and one
multiplication, are executed N3 and N2m times (where there are N equations and
unknowns, and m different right-hand sides). The corresponding loops in Gaussian
elimination are executed only %N 3 times (only half the matrix is reduced, and the
increasing numbers of predictable zeros reduce the count to one-third), and %N 2m
times, respectively. Each backsubstitution of a right-hand side is %N 2 executions of
a similar loop (one multiplication plus one subtraction). For m <« N (only a few
right-hand sides) Gaussian elimination thus has about a factor three advantage over
Gauss-Jordan. (We could reduce this advantage to a factor 1.5 by not computing the
inverse matrix as part of the Gauss-Jordan scheme.)

For computing the inverse matrix (which we can view as the case of m = N
right-hand sides, namely the N unit vectors that are the columns of the identity
matrix), Gaussian elimination and backsubstitution at first glance require %N 3 (ma-
trix reduction) 4+ N (right-hand side manipulations) +2 N (N backsubstitutions)
= %N 3 loop executions, which is more than the N3 for Gauss-Jordan. However, the
unit vectors are quite special in containing all zeros except for one element. If this
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is taken into account, the right-side manipulations can be reduced to only %N 3 loop
executions, and, for matrix inversion, the two methods have identical efficiencies.
Both Gaussian elimination and Gauss-Jordan elimination share the disadvan-
tage that all right-hand sides must be known in advance. The LU decomposition
method in the next section does not share that deficiency, and also has an equally
small operations count, both for solution with any number of right-hand sides and

for matrix inversion.
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2.3 LU Decomposition and Its Applications

Suppose we are able to write the matrix A as a product of two matrices,
L-U=A (2.3.1)

where L is lower triangular (has elements only on the diagonal and below) and U
is upper triangular (has elements only on the diagonal and above). For the case of a
4 x 4 matrix A, for example, equation (2.3.1) would look like this:

ago O 0 0 Boo Bor Boz Pos ago do1 do2 do3
arp a0 01 10 i Pz P3| _ |aw an arz ais
Q20 O21 022 0 0 0 ,322 ,323 dzp d21 dz2 d23
Q30 031 O3y 033 0 0 0 PBss asp as1 aspy ass
(2.3.2)

We can use a decomposition such as (2.3.1) to solve the linear set
A-x=([L-U)-x=L-(U-x)=b (2.3.3)
by first solving for the vector y such that
L-y=b (2.3.4)

and then solving
U-x=y (2.3.5)

What is the advantage of breaking up one linear set into two successive ones?
The advantage is that the solution of a triangular set of equations is quite trivial, as
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we have already seen in §2.2 (equation 2.2.4). Thus, equation (2.3.4) can be solved
by forward substitution as follows:

bo
Yo = —
Qo0
! i1 (2.3.6)
yi=;|:bi—zaijyji| i=1,2,...,N—1
ii =0

while (2.3.5) can then be solved by backsubstitution exactly as in equations (2.2.2) —
(2.2.4),

N1 2.3.7)
[yi— 3 ﬂijxj] i=N—2.N—3.....0

j=i+1

. 1
" B

Equations (2.3.6) and (2.3.7) total (for each right-hand side b) N? executions
of an inner loop containing one multiply and one add. If we have N right-hand sides
that are the unit column vectors (which is the case when we are inverting a matrix),
then taking into account the leading zeros reduces the total execution count of (2.3.6)
from N3 to ¢ N3, while (2.3.7) is unchanged at 1 N 3.

Notice that, once we have the LU decomposition of A, we can solve with as
many right-hand sides as we then care to, one at a time. This is a distinct advantage
over the methods of §2.1 and §2.2.

2.3.1 Performing the LU Decomposition

How then can we solve for L and U, given A? First, we write out the i,;jth
component of equation (2.3.1) or (2.3.2). That component always is a sum beginning
with

ajofoj + - =ajj
The number of terms in the sum depends, however, on whether i or j is the smaller
number. We have, in fact, the three cases,

i <j: ajofo; + iy + -+ Bij = aij (2.3.8)
i=j:  ioBoj +airBr + o+ aiiB = ai (2.3.9)
i>j: oo +anPry +-+ B = ai (2.3.10)

Equations (2.3.8) — (2.3.10) total N2 equations for the N2 + N unknown o’s
and B’s (the diagonal being represented twice). Since the number of unknowns is
greater than the number of equations, we are invited to specify N of the unknowns
arbitrarily and then try to solve for the others. In fact, as we shall see, it is always
possible to take

i =1 i=0,...,.N—1 (2.3.11)

A surprising procedure, now, is Crout’s algorithm, which quite trivially solves
the set of N2+ N equations (2.3.8) — (2.3.11) for all the o’s and B’s by just arranging
the equations in a certain order! That order is as follows:
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e Setaj; = 1,0 =0,..., N — 1 (equation 2.3.11).
e For each j = 0,1,2,..., N — 1 do these two procedures: First, for i =
0,1,...,j,use (2.3.8),(2.3.9), and (2.3.11) to solve for B;;, namely

i—1
Bij = aij — Z ik B (2.3.12)
k=0

(When i = 0in 2.3.12 the summation term is taken to mean zero.) Second,
fori =j+1,j+2,...,N —1use (2.3.10) to solve for ;;, namely

1 T
wjj = B (aij - Zaikﬂkj) (2.3.13)
JJ k=0

Be sure to do both procedures before going on to the next ;.

If you work through a few iterations of the above procedure, you will see that
the «’s and B’s that occur on the right-hand side of equations (2.3.12) and (2.3.13)
are already determined by the time they are needed. You will also see that every a;;
is used only once and never again. This means that the corresponding «;; or f8;; can
be stored in the location that the a used to occupy: the decomposition is “in place.”
[The diagonal unity elements «;; (equation 2.3.11) are not stored at all.] In brief,
Crout’s method fills in the combined matrix of «’s and B,

Boo Bor Boz Pos
ao B Bz Bz

2.3.14
Q20 (21 ﬁ22 ,323 ( )
30 31 a3 Pi3

by columns from left to right, and within each column from top to bottom (see
Figure 2.3.1).

What about pivoting? Pivoting (i.e., selection of a salubrious pivot element for
the division in equation 2.3.13) is absolutely essential for the stability of Crout’s
method. Only partial pivoting (interchange of rows) can be implemented efficiently.
However this is enough to make the method stable. This means, incidentally, that
we don’t actually decompose the matrix A into LU form, but rather we decompose
a rowwise permutation of A. (If we keep track of what that permutation is, this
decomposition is just as useful as the original one would have been.)

Pivoting is slightly subtle in Crout’s algorithm. The key point to notice is that
equation (2.3.12) in the case of i = j (its final application) is exactly the same as
equation (2.3.13) except for the division in the latter equation; in both cases the upper
limit of the sumis k = j — 1 (=i — 1). This means that we don’t have to commit
ourselves as to whether the diagonal element §;; is the one that happens to fall on
the diagonal in the first instance, or whether one of the (undivided) «;;’s below it in
the column, i = j + 1,..., N — 1, is to be “promoted” to become the diagonal S.
This can be decided after all the candidates in the column are in hand. As you should
be able to guess by now, we will choose the largest one as the diagonal 8 (pivot
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— -/

Figure 2.3.1. Crout’s algorithm for LU decomposition of a matrix. Elements of the original matrix
are modified in the order indicated by lowercase letters: a, b, c, etc. Shaded boxes show the previously
modified elements that are used in modifying two typical elements, each indicated by an “X”.

element), and then do all the divisions by that element en masse. This is Crout’s
method with partial pivoting. Our implementation has one additional wrinkle: It
initially finds the largest element in each row, and subsequently (when it is looking
for the maximal pivot element) scales the comparison as if we had initially scaled all
the equations to make their maximum coefficient equal to unity; this is the implicit
pivoting mentioned in §2.1.

The inner loop of the LU decomposition, equations (2.3.12) and (2.3.13), re-
sembles the inner loop of matrix multiplication. There is a triple loop over the in-
dices i, j, and k. There are six permutations of the order in which these loops can
be done. The straightforward implementation of Crout’s algorithm corresponds to
the jik permutation, where the order of the indices is the order of the loops from
outermost to innermost. On modern processors with a hierarchy of cache memory,
and when matrices are stored by rows, the fastest execution time is usually the kij or
ikj ordering. Pivoting is easier with kij ordering, so that is the implementation we
use. This is called “outer product Gaussian elimination” by Golub and Van Loan [1].

LU decomposition is well suited for implementation as an object (a class or
struct). The constructor performs the decomposition, and the object itself stores
the result. Then, a method for forward- and backsubstitution can be called once,
or many times, to solve for one or more right-hand sides. Methods for additional
functionality are also easy to include. The object’s declaration looks like this:
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struct LUdcmp
Object for solving linear equations A - X = b using LU decomposition, and related functions.

{

Int n;

MatDoub lu; Stores the decomposition.

VecInt indx; Stores the permutation.

Doub d; Used by det.

LUdcmp (MatDoub_I &a); Constructor. Argument is the matrix A.

void solve(VecDoub_I &b, VecDoub_0 &x);  Solve for a single right-hand side.
void solve(MatDoub_I &b, MatDoub_0 &x);  Solve for multiple right-hand sides.

void inverse(MatDoub_0 &ainv); Calculate matrix inverse A~ 1.
Doub det(); Return determinant of A.
void mprove(VecDoub_I &b, VecDoub_IO0 &x); Discussed in §2.5.
MatDoub_I &aref; Used only by mprove.

Here is the implementation of the constructor, whose argument is the input ma-
trix that is to be LU decomposed. The input matrix is not altered; a copy is made,
on which outer product Gaussian elimination is then done in-place.

LUdcmp: :LUdcmp (MatDoub_I &a) : n(a.nrows()), lu(a), aref(a), indx(n) {
Given a matrix a[0..n-1]1[0..n-1], this routine replaces it by the LU decomposition of a
rowwise permutation of itself. a is input. On output, it is arranged as in equation (2.3.14)
above; indx[0..n-1] is an output vector that records the row permutation effected by the
partial pivoting; d is output as +1 depending on whether the number of row interchanges
was even or odd, respectively. This routine is used in combination with solve to solve linear
equations or invert a matrix.

const Doub TINY=1.0e-40; A small number.

Int i,imax,j,k;

Doub big,temp;

VecDoub vv(n); vv stores the implicit scaling of each row.

d=1.0; No row interchanges yet.

for (i=0;i<n;i++) { Loop over rows to get the implicit scaling infor-
big=0.0; mation.

for (j=0;j<n;j++)

if ((temp=abs(lulil[j])) > big) big=temp;
if (big == 0.0) throw("Singular matrix in LUdcmp");
No nonzero largest element.

vv[i]l=1.0/big; Save the scaling.
}
for (k=0;k<n;k++) { This is the outermost kij loop.
big=0.0; Initialize for the search for largest pivot element.

for (i=k;i<n;i++) {
temp=vv[i]*abs(luli] [k]);

if (temp > big) { Is the figure of merit for the pivot better than
big=temp; the best so far?
imax=i;
}
}
if (k !'= imax) { Do we need to interchange rows?
for (j=0;j<n;j++) { Yes, do so...
temp=1lul[imax] [j];
lulimax] [j1=1lulk] [j];
lulk] [jl=temp;
}
d = -d; ...and change the parity of d.
vv[imax]=vv[k]; Also interchange the scale factor.
}

indx [k]=imax;

if (lulk] [k] == 0.0) lulk] [k]=TINY;

If the pivot element is zero, the matrix is singular (at least to the precision of the
algorithm). For some applications on singular matrices, it is desirable to substitute
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TINY for zero.
for (i=k+1;i<n;i++) {
temp=1lulil [k] /= lul[k][k]; Divide by the pivot element.
for (j=k+1;j<n;j++) Innermost loop: reduce remaining submatrix.
1ulil[j] -= tempx*lulk][j]l;

Once the LUdcmp object is constructed, two functions implementing equations
(2.3.6) and (2.3.7) are available for solving linear equations. The first solves a single
right-hand side vector b for a solution vector x. The second simultaneously solves
multiple right-hand vectors, arranged as the columns of a matrix B. In other words,
it calculates the matrix A~! - B.

void LUdcmp: :solve(VecDoub_I &b, VecDoub_0 &x)

Solves the set of n linear equations A - X = b using the stored LU decomposition of A.
b[0..n-1] is input as the right-hand side vector b, while x returns the solution vector X; b and
x may reference the same vector, in which case the solution overwrites the input. This routine
takes into account the possibility that b will begin with many zero elements, so it is efficient for
use in matrix inversion.

{

Int i,ii=0,ip,j;

Doub sum;

if (b.size() !'=n || x.size() '= n)
throw("LUdcmp: :solve bad sizes");

for (i=0;i<n;i++) x[i] = blil;

for (i=0;i<n;i++) { When ii is set to a positive value, it will become the
ip=indx[il]; index of the first nonvanishing element of b. We now
sum=x [ip] ; do the forward substitution, equation (2.3.6). The
x[ipl=x[i]; only new wrinkle is to unscramble the permutation
if (ii != 0) as we go.

for (j=ii-1;j<i;j++) sum -= luli] [j1*x[j];
else if (sum !'= 0.0) A nonzero element was encountered, so from now on we
ii=i+1; will have to do the sums in the loop above.

x[i]=sum;

}

for (i=n-1;i>=0;i--) { Now we do the backsubstitution, equation (2.3.7).
sum=x[1i];
for (j=i+1;j<n;j++) sum -= lulil [jI*x[j];
x[il=sum/1uli] [i]; Store a component of the solution vector X.

} All done!

}

void LUdcmp::solve(MatDoub_I &b, MatDoub_0 &x)
Solves m sets of n linear equations A - X = B using the stored LU decomposition of A. The
matrix b[0..n-1][0..m-1] inputs the right-hand sides, while x[0..n-1][0..m-1] returns the
solution A~!-B. b and x may reference the same matrix, in which case the solution overwrites
the input.
{
int i,j,m=b.ncols();
if (b.nrows() != n || x.nrows() !'= n || b.ncols() '= x.ncols())
throw("LUdcmp: :solve bad sizes");
VecDoub xx(n);
for (j=0;j<m;j++) { Copy and solve each column in turn.
for (i=0;i<n;i++) xx[i] = b[i][j];
solve (xx,xx);
for (i=0;i<n;i++) x[i][j] = xx[i];

ludemp.h
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The LU decomposition in LUdcmp requires about %N 3 executions of the inner
loops (each with one multiply and one add). This is thus the operation count for
solving one (or a few) right-hand sides, and is a factor of 3 better than the Gauss-
Jordan routine gaussj that was given in §2.1, and a factor of 1.5 better than a Gauss-
Jordan routine (not given) that does not compute the inverse matrix. For inverting
a matrix, the total count (including the forward- and backsubstitution as discussed
following equation 2.3.7 above) is (% + % + %)N3 = N3, the same as gaussj.

To summarize, this is the preferred way to solve the linear set of equations
A-x=b:
const Int n = ...

MatDoub a(n,n);
VecDoub b(n),x(n);

LUdcmp alu(a);
alu.solve(b,x);

The answer will be given back in x. Your original matrix a and vector b are not
altered. If you need to recover the storage in the object alu, then start a temporary
scope with “{” before alu is declared, and end that scope with “}” when you want
alu to be destroyed.

If you subsequently want to solve a set of equations with the same A but a
different right-hand side b, you repeat only

alu.solve(b,x);

2.3.2 Inverse of a Matrix

LUdcmp has a member function that gives the inverse of the matrix A. Simply,
it creates an identity matrix and then invokes the appropriate solve method.

void LUdcmp: :inverse(MatDoub_0 &ainv)
Using the stored LU decomposition, return in ainv the matrix inverse AL

{

Int i,j;

ainv.resize(n,n);

for (i=0;i<n;i++) {
for (j=0;j<n;j++) ainv[il[j] = 0.;
ainv[i] [i] = 1.;

}

solve(ainv,ainv);

}

The matrix ainv will now contain the inverse of the original matrix a. Alternatively,
there is nothing wrong with using a Gauss-Jordan routine like gaussj (§2.1) to invert
a matrix in place, destroying the original. Both methods have practically the same
operations count.

2.3.3 Determinant of a Matrix

The determinant of an LU decomposed matrix is just the product of the diago-
nal elements,
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N-1
det =[] 8y (2.3.15)
j=0

We don’t, recall, compute the decomposition of the original matrix, but rather a de-
composition of a rowwise permutation of it. Luckily, we have kept track of whether
the number of row interchanges was even or odd, so we just preface the product
by the corresponding sign. (You now finally know the purpose of d in the LUdcmp
structure.)

Doub LUdcmp::det ()
Using the stored LU decomposition, return the determinant of the matrix A.
{

Doub dd = d;

for (Int i=0;i<n;i++) dd *= lu[i][il;

return dd;

For a matrix of any substantial size, it is quite likely that the determinant will
overflow or underflow your computer’s floating-point dynamic range. In such a case
you can easily add another member function that, e.g., divides by powers of ten, to
keep track of the scale separately, or, e.g., accumulates the sum of logarithms of the
absolute values of the factors and the sign separately.

2.3.4 Complex Systems of Equations

If your matrix A is real, but the right-hand side vector is complex, say b + id, then (i)
LU decompose A in the usual way, (i) backsubstitute b to get the real part of the solution
vector, and (iii) backsubstitute d to get the imaginary part of the solution vector.

If the matrix itself is complex, so that you want to solve the system

(A+iC)-(x +iy) = (b+id) (2.3.16)

then there are two possible ways to proceed. The best way is to rewrite LUdcmp with complex
routines. Complex modulus substitutes for absolute value in the construction of the scaling
vector vv and in the search for the largest pivot elements. Everything else goes through in the
obvious way, with complex arithmetic used as needed.

A quick-and-dirty way to solve complex systems is to take the real and imaginary parts
of (2.3.16), giving

A-x—C-.y=b>b

2.3.17
C-x+A.y=d ( )

which can be written as a 2N x 2N set of real equations,

(é _AC ) ' (;) - (3) (2.3.18)

and then solved with LUdcmp’s routines in their present forms. This scheme is a factor of 2
inefficient in storage, since A and C are stored twice. It is also a factor of 2 inefficient in time,
since the complex multiplies in a complexified version of the routines would each use 4 real
multiplies, while the solution of a 2N x 2N problem involves 8 times the work of an N x N
one. If you can tolerate these factor-of-two inefficiencies, then equation (2.3.18) is an easy
way to proceed.
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2.4 Tridiagonal and Band-Diagonal Systems of
Equations

The special case of a system of linear equations that is tridiagonal, that is, has
nonzero elements only on the diagonal plus or minus one column, is one that occurs
frequently. Also common are systems that are band-diagonal, with nonzero elements
only along a few diagonal lines adjacent to the main diagonal (above and below).

For tridiagonal sets, the procedures of LU decomposition, forward- and back-
substitution each take only O(N) operations, and the whole solution can be encoded
very concisely. The resulting routine tridag is one that we will use in later chapters.

Naturally, one does not reserve storage for the full N x N matrix, but only for
the nonzero components, stored as three vectors. The set of equations to be solved is

b() Co 0 Uo ro

a by ¢ - 231 ri
= 24.1)

an—> by_2 cn-2 UN—2 IN—2

0 an-1 by UN—1 IN—1

Notice that a¢ and cy—; are undefined and are not referenced by the routine that
follows.

void tridag(VecDoub_I &a, VecDoub_I &b, VecDoub_I &c, VecDoub_I &r, VecDoub_0 &u)
Solves for a vector u[0..n-1] the tridiagonal linear set given by equation (2.4.1). a[0..n-1],
b[0..n-1], c[0..n-1], and r[0..n-1] are input vectors and are not modified.
{
Int j,n=a.size();
Doub bet;
VecDoub gam(n) ; One vector of workspace, gam, is needed.
if (b[0] == 0.0) throw("Error 1 in tridag");
If this happens, then you should rewrite your equations as a set of order N — 1, with u;
trivially eliminated.
u[0]=r[0]/(bet=b[0]);
for (j=1;j<n;j++) { Decomposition and forward substitution.
gam[jl=c[j-1]/bet;
bet=b[jl-aljl*gam[j];
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if (bet == 0.0) throw("Error 2 in tridag"); Algorithm fails; see below.
uljl=(r[jl-aljl*ulj-11)/bet;

}

for (j=(n-2);j>=0;j--)

uljl -= gam[j+1]*ulj+1]; Backsubstitution.

There is no pivoting in tridag. It is for this reason that tridag can fail even
when the underlying matrix is nonsingular: A zero pivot can be encountered even for
anonsingular matrix. In practice, this is not something to lose sleep about. The kinds
of problems that lead to tridiagonal linear sets usually have additional properties
which guarantee that the algorithm in tridag will succeed. For example, if

|bj| > |aj| +|e;|  j=0....N—1 242)

(called diagonal dominance), then it can be shown that the algorithm cannot en-
counter a zero pivot.

It is possible to construct special examples in which the lack of pivoting in
the algorithm causes numerical instability. In practice, however, such instability is
almost never encountered — unlike the general matrix problem where pivoting is
essential.

The tridiagonal algorithm is the rare case of an algorithm that, in practice, is
more robust than theory says it should be. Of course, should you ever encounter a
problem for which tridag fails, you can instead use the more general method for
band-diagonal systems, described below (the Bandec object).

Some other matrix forms consisting of tridiagonal with a small number of ad-
ditional elements (e.g., upper right and lower left corners) also allow rapid solution;
see §2.7.

2.4.1 Parallel Solution of Tridiagonal Systems

It is possible to solve tridiagonal systems doing many of the operations in parallel. We
illustrate by the special case with N = 7:

[bo  co uo ro
ay by Uy r
ax by ¢ U )

as by c3 lus | =1|r3 (2.4.3)
aq b4 C4 Ug rg4
as bs cs us rs
as be | |us | 76

The basic idea is to partition the problem into even and odd elements, recurse to solve
the latter, and then solve the former in parallel. Specifically, we first rewrite equation (2.4.3)
by permuting its rows and columns,

bo co uo ro
by ap ¢ Uy r
b4 ag Cq Ug raq
be ag |- |ue| = |re (2.4.4)
ar 1 by uy r
as c¢3 b3 u3 r3
L as cs bs| |us| |75

Now observe that, by row operations that subtract multiples of the first four rows from
each of the last three rows, we can eliminate all nonzero elements in the lower-left quad-
rant. The price we pay is bringing some new elements into the lower-right quadrant, whose
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nonzero elements we now call x’s, y’s, and z’s. We call the modified right-hand sides g. The
transformed problem is now

_bo (o)) T _u()_ _ro T
by a ¢ Uy r
by as c4 Ug r4
b6 de | - | Ue = re (2.4.5)
Yo 2o ui q0
X1 )1 Z1 us q1
L X2 y2| [us] 1 92 ]

Notice that the last three rows form a new, smaller, tridiagonal problem, which we can
solve simply by recursing. Once its solution is known, the first four rows can be solved by a
simple, parallelizable, substitution. For discussion of this and related methods for parallelizing
tridiagonal systems, and references to the literature, see [2].

2.4.2 Band-Diagonal Systems

Where tridiagonal systems have nonzero elements only on the diagonal plus or minus
one, band-diagonal systems are slightly more general and have (say) m1 > 0 nonzero elements
immediately to the left of (below) the diagonal and m» > 0 nonzero elements immediately to
its right (above it). Of course, this is only a useful classification if m1 and m are both < N.
In that case, the solution of the linear system by LU decomposition can be accomplished
much faster, and in much less storage, than for the general N x N case.

The precise definition of a band-diagonal matrix with elements a;; is that

ajj =0 when j>i+mp or i>j+m (2.4.6)

Band-diagonal matrices are stored and manipulated in a so-called compact form, which results
if the matrix is tilted 45° clockwise, so that its nonzero elements lie in a long, narrow matrix
with m1 + 1 + my columns and N rows. This is best illustrated by an example: The band-
diagonal matrix

3 1.0 0 0 0 O
4 1 5 0 0 0 O
9 2 6 5 0 0 O
0 3 58 9 0 0 2.4.7)
o0 7 9 3 2 0
0 0 0 3 8 4 6
0O 0 0 0 2 4 4
which has N = 7, m1 = 2, and my = 1, is stored compactly as the 7 x 4 matrix,
(2.4.8)

N W QWO = =
£ 000 NN A=
AR WO~ W
= AN O W N —

Here x denotes elements that are wasted space in the compact format; these will not be ref-
erenced by any manipulations and can have arbitrary values. Notice that the diagonal of the
original matrix appears in column 71, with subdiagonal elements to its left and superdiagonal
elements to its right.

The simplest manipulation of a band-diagonal matrix, stored compactly, is to multiply
it by a vector to its right. Although this is algorithmically trivial, you might want to study
the following routine as an example of how to pull nonzero elements a;; out of the compact
storage format in an orderly fashion.
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void banmul (MatDoub_I &a, const Int ml, const Int m2, VecDoub_I &x,
VecDoub_0 &b)

Matrix multiply b = A - X, where A is band-diagonal with m1 rows below the diagonal and
m2 rows above. The input vector is x[0..n-1] and the output vector is b[0..n-1]. The ar-
ray a[0..n-1][0..m1+m2] stores A as follows: The diagonal elements are in a[0..n-1] [m1].
Subdiagonal elements are in a[j..n-1]1[0..m1-1] with j > 0 appropriate to the number of
elements on each subdiagonal. Superdiagonal elements are in a[0..;j][mi+1..m1+m2] with
J < n-1 appropriate to the number of elements on each superdiagonal.

{
Int i,j,k,tmploop,n=a.nrows();
for (i=0;i<n;i++) {
k=i-ml;
tmploop=MIN(m1+m2+1,Int(n-k));
b[i]=0.0;
for (j=MAX(0,-k);j<tmploop;j++) bl[i] += alil [j1*x[j+k];
}
}

It is not possible to store the LU decomposition of a band-diagonal matrix A quite as
compactly as the compact form of A itself. The decomposition (essentially by Crout’s method;
see §2.3) produces additional nonzero “fill-ins.” One straightforward storage scheme is to store
the upper triangular factor (U) in a space with the same shape as A, and to store the lower
triangular factor (L) in a separate compact matrix of size N x mj. The diagonal elements of
U (whose product, times d = +1, gives the determinant) are in the first column of U'.

Here is an object, analogous to LUdcmp in §2.3, for solving band-diagonal linear equa-
tions:

struct Bandec {
Object for solving linear equations A - x = b for a band-diagonal matrix A, using LU decom-

position.
Int n,ml,m2;
MatDoub au,al; Upper and lower triangular matrices, stored compactly.
VecInt indx;
Doub d;
Bandec (MatDoub_I &a, const int mml, const int mm2); Constructor.
void solve(VecDoub_I &b, VecDoub_0 &x); Solve a right-hand side vector.
Doub det(); Return determinant of A.
};

The constructor takes as arguments the compactly stored matrix A, and the integers m
and m»>. (One could of course define a “band-diagonal matrix object” to encapsulate these
quantities, but in this brief treatment we want to keep things simple.)

Bandec: :Bandec (MatDoub_I &a, const Int mml, const Int mm2)

: n(a.nrows()), au(a), mi(mml), m2(mm2), al(n,ml), indx(n)
Constructor. Given an nXxn band-diagonal matrix A with m1 subdiagonal rows and m2 superdiag-
onal rows, compactly stored in the array a[0..n-1][0..m1+m2] as described in the comment
for routine banmul, an LU decomposition of a rowwise permutation of A is constructed. The
upper and lower triangular matrices are stored in au and al, respectively. The stored vector
indx[0..n-1] records the row permutation effected by the partial pivoting; d is =1 depending
on whether the number of row interchanges was even or odd, respectively.
{

const Doub TINY=1.0e-40;

Int i,j,k,1,mm;

Doub dum;

mm=m1+m2+1;

1=m1;

for (i=0;i<mil;i++) { Rearrange the storage a bit.
for (j=ml-ij;j<mm;j++) aulil [j-1]=aulil [j];
1--;

for (j=mm-1-1;j<mm;j++) aulil [j1=0.0;

banded.h

banded.h

banded.h
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d=1.0;
1=m1;
for (k=0;k<n;k++) { For each row...
dum=au[k] [0] ;
i=k;
if (1<n) 1++;
for (j=k+1;j<1l;j++) { Find the pivot element.
if (abs(auljl[0]) > abs(dum)) {
dum=au[j] [0];
i=j;
}
}

indx [k]=i+1;

if (dum == 0.0) aulk] [0]=TINY;

Matrix is algorithmically singular, but proceed anyway with TINY pivot (desirable in
some applications).

if (i !'= k) { Interchange rows.
d = -d;
for (j=0;j<mm;j++) SWAP(aulk][jl,auli]l[j1);

}

for (i=k+1;i<1;i++) { Do the elimination.
dum=au[i] [0]/aulk] [0];
allk] [i-k-1]=dum;
for (j=1;j<mm;j++) auli] [j-1]=auli] [j]-dum*aulk] [j];
auli] [mm-1]1=0.0;

}

Some pivoting is possible within the storage limitations of bandec, and the above routine
does take advantage of the opportunity. In general, when TINY is returned as a diagonal ele-
ment of U, then the original matrix (perhaps as modified by roundoff error) is in fact singular.
In this regard, bandec is somewhat more robust than tridag above, which can fail algorith-
mically even for nonsingular matrices; bandec is thus also useful (with m1 = my = 1) for
some ill-behaved tridiagonal systems.

Once the matrix A has been decomposed, any number of right-hand sides can be solved
in turn by repeated calls to the solve method, the forward- and backsubstitution routine anal-
ogous to its same-named cousin in §2.3.

banded.h void Bandec::solve(VecDoub_I &b, VecDoub_0 &x)
Given a right-hand side vector b[0..n-1], solves the band-diagonal linear equations A -x = b.
The solution vector X is returned as x[0..n-1].
{
Int i,j,k,1,mm;
Doub dum;
mm=m1+m2+1;
1=m1;
for (k=0;k<n;k++) x[k] = blk];
for (k=0;k<n;k++) { Forward substitution, unscrambling the permuted rows
j=indx[k]-1; as we go.
if (j!'=k) SWAP(x[k],x[j1);
if (1<n) 1++;
for (j=k+1;j<l;j++) x[jl -= allk][j-k-11*x[k];

}

1=1;

for (i=n-1;i>=0;i--) { Backsubstitution.
dum=x[i];
for (k=1;k<1l;k++) dum -= auli] [k]*x[k+i];
x[i]=dum/aul[i] [0];
if (1<mm) 1++;

}
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And, finally, a method for getting the determinant:

Doub Bandec::det() {

Using the stored decomposition, return the determinant of the matrix A.
Doub dd = d;
for (int i=0;i<n;i++) dd *= aul[i] [0];
return dd;

The routines in Bandec are based on the Handbook routines bandetI and bansoll in [1].
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2.5 Iterative Improvement of a Solution to
Linear Equations

Obviously it is not easy to obtain greater precision for the solution of a linear set
than the precision of your computer’s floating-point word. Unfortunately, for large
sets of linear equations, it is not always easy to obtain precision equal to, or even
comparable to, the computer’s limit. In direct methods of solution, roundoff errors
accumulate, and they are magnified to the extent that your matrix is close to singular.
You can easily lose two or three significant figures for matrices that (you thought)
were far from singular.

If this happens to you, there is a neat trick to restore the full machine preci-
sion, called iterative improvement of the solution. The theory is straightforward (see
Figure 2.5.1): Suppose that a vector X is the exact solution of the linear set

A-x=b 2.5.1)

You don’t, however, know x. You only know some slightly wrong solution x + §x,
where §x is the unknown error. When multiplied by the matrix A, your slightly
wrong solution gives a product slightly discrepant from the desired right-hand side
b, namely

A-(x+68x)=b+db (2.5.2)

Subtracting (2.5.1) from (2.5.2) gives
A-6x =6b (2.5.3)

banded.h
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Figure 2.5.1. Iterative improvement of the solution to A - X = b. The first guess X + §X is multiplied by
A to produce b + 8b. The known vector b is subtracted, giving §b. The linear set with this right-hand
side is inverted, giving §X. This is subtracted from the first guess giving an improved solution X.

But (2.5.2) can also be solved, trivially, for 6b. Substituting this into (2.5.3) gives
A-5x=A-(x+6x)—b (2.5.4)

In this equation, the whole right-hand side is known, since x + §x is the wrong
solution that you want to improve. It is good to calculate the right-hand side in
higher precision than the original solution, if you can, since there will be a lot of
cancellation in the subtraction of b. Then, we need only solve (2.5.4) for the error
8x, and then subtract this from the wrong solution to get an improved solution.

An important extra benefit occurs if we obtained the original solution by LU
decomposition. In this case we already have the LU decomposed form of A, and all
we need do to solve (2.5.4) is compute the right-hand side, forward- and backsubsti-
tute.

Because so much of the necessary machinery is already in LUdcmp, we im-
plement iterative improvement as a member function of that class. Since iterative
improvement requires the matrix A (as well as its LU decomposition), we have,
with foresight, caused LUdcmp to save a reference to the matrix a from which it was
constructed. If you plan to use iterative improvement, you must not modify a or let
it go out of scope. (No other method in LUdcmp makes use of this reference to a.)

void LUdcmp: :mprove(VecDoub_I &b, VecDoub_IO0 &x)

Improves a solution vector x[0..n-1] of the linear set of equations A - x = b. The vectors
b[0..n-1] and x[0..n-1] are input. On output, x[0..n-1] is modified, to an improved set of
values.

{
Int i,j;
VecDoub r(n);
for (i=0;i<n;i++) { Calculate the right-hand side, accumulating
Ldoub sdp = -b[i]; the residual in higher precision.

for (j=0;j<n;j++)
sdp += (Ldoub)aref[i][j] * (Ldoub)x[j];
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r[i]=sdp;
}
solve(r,r); Solve for the error term,
for (i=0;i<n;i++) x[i] -= r[il; and subtract it from the old solution.

Iterative improvement is highly recommended: It is a process of order only N2
operations (multiply vector by matrix, forward- and backsubstitute — see discussion
following equation 2.3.7); it never hurts; and it can really give you your money’s
worth if it saves an otherwise ruined solution on which you have already spent of
order N3 operations.

You can call mprove several times in succession if you want. Unless you are
starting quite far from the true solution, one call is generally enough; but a second
call to verify convergence can be reassuring.

If you cannot compute the right-hand side in equation (2.5.4) in higher preci-
sion, iterative refinement will still often improve the quality of a solution, although
not in all cases as much as if higher precision is available. Many textbooks assert the
contrary, but you will find the proof in [1].

2.5.1 More on Iterative Improvement

It is illuminating (and will be useful later in the book) to give a somewhat more solid
analytical foundation for equation (2.5.4), and also to give some additional results. Implicit in
the previous discussion was the notion that the solution vector X + §x has an error term; but
we neglected the fact that the LU decomposition of A is itself not exact.

A different analytical approach starts with some matrix B¢ that is assumed to be an
approximate inverse of the matrix A, so that Bg - A is approximately the identity matrix 1.
Define the residual matrix R of Bg as

R=1-Bj A (25.5)
which is supposed to be “small” (we will be more precise below). Note that therefore

Bp-A=1—-R (2.5.6)
Next consider the following formal manipulation:

AT =A"1. By Bo)= (A1 -By!)-Bo = (Bo-A)"'-Bg

(2.5.7)
=(1-R)™'Bp=(1+R+R?>+R3+-.)-By
We can define the nth partial sum of the last expression by
B,=(1+R+---+R" By (2.5.8)

so that Boo — AL, if the limit exists.
It now is straightforward to verify that equation (2.5.8) satisfies some interesting recur-
rence relations. As regards solving A - x = b, where x and b are vectors, define

X, =B,-b (2.5.9)
Then it is easy to show that
Xp4+1 =Xn +Bo-(b—A-xy) (2.5.10)

This is immediately recognizable as equation (2.5.4), with —§x = X, 41 — X, and with Bg
taking the role of A~L. We see, therefore, that equation (2.5.4) does not require that the LU
decomposition of A be exact, but only that the implied residual R be small. In rough terms,
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if the residual is smaller than the square root of your computer’s roundoft error, then after one
application of equation (2.5.10) (that is, going from x¢9 = Bg - b to x1) the first neglected
term, of order R2, will be smaller than the roundoff error. Equation (2.5.10), like equation
(2.5.4), moreover, can be applied more than once, since it uses only Bg, and not any of the
higher B’s.

A much more surprising recurrence that follows from equation (2.5.8) is one that more
than doubles the order n at each stage:

Bani1 =2B, —B,-A-B, n=0137... (2.5.11)

Repeated application of equation (2.5.11), from a suitable starting matrix Bg, converges quad-
ratically to the unknown inverse matrix A~! (see §9.4 for the definition of “quadratically”).
Equation (2.5.11) goes by various names, including Schultz’s Method and Hotelling’s Method,
see Pan and Reif [2] for references. In fact, equation (2.5.11) is simply the iterative Newton-
Raphson method of root finding (§9.4) applied to matrix inversion.

Before you get too excited about equation (2.5.11), however, you should notice that it
involves two full matrix multiplications at each iteration. Each matrix multiplication involves
N3 adds and multiplies. But we already saw in §2.1 — §2.3 that direct inversion of A requires
only N 3 adds and N3 multiplies in foto. Equation (2.5.11) is therefore practical only when
special circumstances allow it to be evaluated much more rapidly than is the case for general
matrices. We will meet such circumstances later, in §13.10.

In the spirit of delayed gratification, let us nevertheless pursue the two related issues:
When does the series in equation (2.5.7) converge; and what is a suitable initial guess By (if,
for example, an initial LU decomposition is not feasible)?

We can define the norm of a matrix as the largest amplification of length that it is able to
induce on a vector,

(2.5.12)

If we let equation (2.5.7) act on some arbitrary right-hand side b, as one wants a matrix inverse
to do, it is obvious that a sufficient condition for convergence is

IR| < 1 (2.5.13)

Pan and Reif [2] point out that a suitable initial guess for B is any sufficiently small constant
€ times the matrix transpose of A, that is,

Bo=eAT or R=1-€AT.A (2.5.14)

To see why this is so involves concepts from Chapter 11; we give here only the briefest sketch:
AT . Aisa symmetric, positive-definite matrix, so it has real, positive eigenvalues. In its
diagonal representation, R takes the form

R = diag(l —€Ag,1 —€Aq,...,1 —€Ay—_1) (2.5.15)

where all the A;’s are positive. Evidently any € satisfying 0 < € < 2/(max; A;) will give
R|| < 1. It is not difficult to show that the optimal choice for €, giving the most rapid
convergence for equation (2.5.11), is

€ =2/(maxA; + minA;) (2.5.16)
4 l
Rarely does one know the eigenvalues of AT Ain equation (2.5.16). Pan and Reif derive

several interesting bounds, which are computable directly from A. The following choices
guarantee the convergence of B, as n — oo:

€< I/Za]zk or €< 1/(ml;1XZ|a,-j|ijaXZ|aij|) 2.5.17)
Jk J i
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The latter expression is truly a remarkable formula, which Pan and Reif derive by noting that
the vector norm in equation (2.5.12) need not be the usual L, norm, but can instead be either
the Lo (max) norm, or the L (absolute value) norm. See their work for details.

Another approach, with which we have had some success, is to estimate the largest
eigenvalue statistically, by calculating s; = |A-v; |2 for several unit vector v; ’s with randomly
chosen directions in N -space. The largest eigenvalue A can then be bounded by the maximum
of 2maxs; and 2N Var(s;)/(s;), where Var and p denote the sample variance and mean,
respectively.
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2.6 Singular Value Decomposition

There exists a very powerful set of techniques for dealing with sets of equations
or matrices that are either singular or else numerically very close to singular. In
many cases where Gaussian elimination and LU decomposition fail to give satisfac-
tory results, this set of techniques, known as singular value decomposition, or SVD,
will diagnose for you precisely what the problem is. In some cases, SVD will not
only diagnose the problem, it will also solve it, in the sense of giving you a useful
numerical answer, although, as we shall see, not necessarily “the” answer that you
thought you should get.

SVD is also the method of choice for solving most linear least-squares prob-
lems. We will outline the relevant theory in this section, but defer detailed discussion
of the use of SVD in this application to Chapter 15, whose subject is the parametric
modeling of data.

SVD methods are based on the following theorem of linear algebra, whose proof
is beyond our scope: Any M x N matrix A can be written as the product of an M x N
column-orthogonal matrix U, an N x N diagonal matrix W with positive or zero
elements (the singular values), and the transpose of an N x N orthogonal matrix
V. The various shapes of these matrices are clearer when shown as tableaus. If
M > N (which corresponds to the overdetermined situation of more equations than
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unknowns), the decomposition looks like this:

Wo
w1

WN-1

(2.6.1)
If M < N (the undetermined situation of fewer equations than unknowns), it looks
like this:

Wo
w1
(o )=( v ) v
WN—1

(2.6.2)

The matrix V is orthogonal in the sense that its columns are orthonormal,
S V=g OSKEN- 263
jgojkjn—kn 0<n<N-—1 ()

that is, VI .V = 1. Since V is square, it is also row-orthonormal, V - vl = 1.
When M > N, the matrix U is also column-orthogonal,

M-1
0<k=<N-1I
;U,-kvmzskn O=m=N_1 (2.64)

that is, U7 - U = 1. In the case M < N, however, two things happen: (i) The
singular values w; for j = M,..., N — 1 are all zero, and (ii) the corresponding
columns of U are also zero. Equation (2.6.4) then holds only for k,n < M — 1.

The decomposition (2.6.1) or (2.6.2) can always be done, no matter how singu-
lar the matrix is, and it is “almost” unique. That is to say, it is unique up to (i) making
the same permutation of the columns of U, elements of W, and columns of V (or
rows of VT); or (ii) performing an orthogonal rotation on any set of columns of U
and V whose corresponding elements of W happen to be exactly equal. (A special
case is multiplying any column of U, and the corresponding column of V by —1.)
A consequence of the permutation freedom is that for the case M < N, a numerical
algorithm for the decomposition need not return zero w;’s in the canonical positions
j =M,....N —1; the N — M zero singular values can be scattered among all
positions j = 0,1,..., N — 1, and one needs to perform a sort to get the canonical
order. In any case, it is conventional to sort all the singular values into descending
order.

A Webnote [1] gives the details of the routine that actually performs SVD on
an arbitrary matrix A, yielding U, W, and V. The routine is based on a routine
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by Forsythe et al. [2], which is in turn based on the original routine of Golub and
Reinsch, found, in various forms, in [4-6] and elsewhere. These references include
extensive discussion of the algorithm used. As much as we dislike the use of black-
box routines, we need to ask you to accept this one, since it would take us too far
afield to cover its necessary background material here. The algorithm is very stable,
and it is very unusual for it ever to misbehave. Most of the concepts that enter
the algorithm (Householder reduction to bidiagonal form, diagonalization by QR
procedure with shifts) will be discussed further in Chapter 11.

As we did for LU decomposition, we encapsulate the singular value decom-
position and also the methods that depend on it into an object, SVD. We give its
declaration here. The rest of this section will give the details on how to use it.

struct SVD {
Object for singular value decomposition of a matrix A, and related functions.

Int m,n;
MatDoub u,v; The matrices U and V.
VecDoub w; The diagonal matrix W.

Doub eps, tsh;
SVD(MatDoub_I &a) : m(a.nrows()), n(a.ncols()), u(a), v(n,n), w(n) {
Constructor. The single argument is A. The SVD computation is done by decompose, and
the results are sorted by reorder.

eps = numeric_limits<Doub>::epsilon();

decompose () ;

reorder() ;

tsh = 0.5*%sqrt(m+n+1.)*w[0] *eps; Default threshold for nonzero singular
} values.

void solve(VecDoub_I &b, VecDoub_0 &x, Doub thresh);
void solve(MatDoub_I &b, MatDoub_0 &x, Doub thresh);
Solve with (apply the pseudoinverse to) one or more right-hand sides.

Int rank(Doub thresh); Quantities associated with the range and
Int nullity(Doub thresh); nullspace of A.

MatDoub range(Doub thresh);

MatDoub nullspace(Doub thresh);

Doub inv_condition() { Return reciprocal of the condition num-
return (w[0] <= 0. || w[n-1] <= 0.) ? 0. : w[n-11/w[0]; ber of A.

}

void decompose(); Functions used by the constructor.

void reorder();
Doub pythag(const Doub a, const Doub b);

2.6.1 Range, Nullspace, and All That

Consider the familiar set of simultaneous equations
A-x=b (2.6.5)

where A isan M x N matrix, and x and b are vectors of dimension N and M respec-
tively. Equation (2.6.5) defines A as a linear mapping from an N -dimensional vector
space to (generally) an M -dimensional one. But the map might be able to reach
only a lesser-dimensional subspace of the full M -dimensional one. That subspace is
called the range of A. The dimension of the range is called the rank of A. The rank

svd.h
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of A is equal to its number of linearly independent columns, and also (perhaps less
obviously) to its number of linearly independent rows. If A is not identically zero,
its rank is at least 1, and at most min(M, N).

Sometimes there are nonzero vectors x that are mapped to zero by A, that is,
A - x = 0. The space of such vectors (a subspace of the N -dimensional space that
x lives in) is called the nullspace of A, and its dimension is called A’s nullity. The
nullity can have any value from zero to N. The rank-nullity theorem states that, for
any A, the rank plus the nullity is N, the number of columns.

An important special case is M = N, so the A is square, N x N. If the
rank of A is NV, its maximum possible value, then A is nonsingular and invertible:
A - x = b has a unique solution for any b, and only the zero vector is mapped to
zero. This is a case where LU decomposition (§2.3) is the preferred solution method
for x. However, if A has rank less than N (i.e., has nullity greater than zero), then
two things happen: (i) most right-hand side vectors b yield no solution, but (ii) some
have multiple solutions (in fact a whole subspace of them). We consider this situation
further, below.

What has all this to do with singular value decomposition? SVD explicitly con-
structs orthonormal bases for the nullspace and range of a matrix! Specifically, the
columns of U whose same-numbered elements w; are nonzero are an orthonormal
set of basis vectors that span the range; the columns of V whose same-numbered
elements w; are zero are an orthonormal basis for the nullspace. Our SVD object has
methods that return the rank or nullity (integers), and also the range and nullspace,
each of these packaged as a matrix whose columns form an orthonormal basis for
the respective subspace.

Int SVD::rank(Doub thresh = -1.) {
Return the rank of A, after zeroing any singular values smaller than thresh. If thresh is
negative, a default value based on estimated roundoff is used.

Int j,nr=0;

tsh = (thresh >= 0. 7 thresh : 0.5*sqrt(m+n+1.)*w[0]*eps);

for (j=0;j<n;j++) if (w[j] > tsh) nr++;

return nr;

}

Int SVD::nullity(Doub thresh = -1.) {
Return the nullity of A, after zeroing any singular values smaller than thresh. Default value as
above.

Int j,nn=0;

tsh = (thresh >= 0. 7 thresh : 0.5*sqrt(m+n+1.)*w[0]*eps);

for (j=0;j<n;j++) if (w[j] <= tsh) nn++;

return nn;

}

MatDoub SVD::range(Doub thresh = -1.){
Give an orthonormal basis for the range of A as the columns of a returned matrix. thresh as
above.
Int i,j,nr=0;
MatDoub rnge(m,rank(thresh));
for (j=0;j<n;j++) {
if (w[jl > tsh) {
for (i=0;i<m;i++) rngelil [nr]l = ul[il[j];
nr++;
}
}

return rnge;
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MatDoub SVD::nullspace(Doub thresh = -1.){
Give an orthonormal basis for the nullspace of A as the columns of a returned matrix. thresh
as above.
Int j,jj,nn=0;
MatDoub nullsp(n,nullity(thresh));
for (j=0;j<n;j++) {
if (w[jl <= tsh) {
for (jj=0;jj<n;jj++) nullspl[jjl[nn] = v[jjI1[j];
nn++;
}
}

return nullsp;

The meaning of the optional parameter thresh is discussed below.

2.6.2 SVD of a Square Matrix

We return to the case of a square N x N matrix A. U, V, and W are also
square matrices of the same size. Their inverses are also trivial to compute: U and
V are orthogonal, so their inverses are equal to their transposes; W is diagonal, so
its inverse is the diagonal matrix whose elements are the reciprocals of the elements
w;. From (2.6.1) it now follows immediately that the inverse of A is

A7 = V. [diag (1/w))]-UT (2.6.6)

The only thing that can go wrong with this construction is for one of the w;’s to be
zero, or (numerically) for it to be so small that its value is dominated by roundoff
error and therefore unknowable. If more than one of the w;’s has this problem, then
the matrix is even more singular. So, first of all, SVD gives you a clear diagnosis of
the situation.

Formally, the condition number of a matrix is defined as the ratio of the largest
(in magnitude) of the w;’s to the smallest of the w;’s. A matrix is singular if its
condition number is infinite, and it is ill-conditioned if its condition number is too
large, that is, if its reciprocal approaches the machine’s floating-point precision (for
example, less than about 1075 for values of type double). A function returning
the condition number (or, rather, its reciprocal, to avoid overflow) is implemented in
SVD.

Now let’s have another look at solving the set of simultaneous linear equations
(2.6.5) in the case that A is singular. We already saw that the set of homogeneous
equations, where b = 0, is solved immediately by SVD. The solution is any linear
combination of the columns returned by the nullspace method above.

When the vector b on the right-hand side is not zero, the important question is
whether it lies in the range of A or not. If it does, then the singular set of equations
does have a solution x; in fact it has more than one solution, since any vector in the
nullspace (any column of V with a corresponding zero w;) can be added to x in any
linear combination.

If we want to single out one particular member of this solution set of vectors as
a representative, we might want to pick the one with the smallest length |x |2. Here
is how to find that vector using SVD: Simply replace 1/w; by zero if w; = 0. (Itis
not very often that one gets to set co = 0 !) Then compute, working from right to
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left,
x = V- [diag (1/w;)]- (UT -b) (2.6.7)

This will be the solution vector of smallest length; the columns of V that are in the
nullspace complete the specification of the solution set.

Proof: Consider |x + x’|, where x lies in the nullspace. Then, if W' denotes
the modified inverse of W with some elements zeroed,

x+x|=|V- W UT b4 x

- )V-(w—1 UT - b+ VT .x) (2.6.8)

=)W—1-UT-b+VT.x’

Here the first equality follows from (2.6.7), and the second and third from the or-
thonormality of V. If you now examine the two terms that make up the sum on
the right-hand side, you will see that the first one has nonzero j components only
where w; # 0, while the second one, since x’ is in the nullspace, has nonzero j
components only where w; = 0. Therefore the minimum length obtains for x’ = 0,
g.e.d.

If b is not in the range of the singular matrix A, then the set of equations (2.6.5)
has no solution. But here is some good news: If b is not in the range of A, then
equation (2.6.7) can still be used to construct a “solution” vector x. This vector x
will not exactly solve A - x = b. But, among all possible vectors x, it will do the
closest possible job in the least-squares sense. In other words, (2.6.7) finds

X which minimizes r = |A-x —b| (2.6.9)

The number r is called the residual of the solution.

The proof is similar to (2.6.8): Suppose we modify x by adding some arbitrary
x’. Then A - x — b is modified by adding some b’ = A - x’. Obviously b’ is in the
range of A. We then have

JA-x=b+b|=[U-W-VI). (Vv.W.U" -b)—b+1

=|(U-W-W'.U"~1)-b+b

(2.6.10)
=U-[(W-W'-1).UT.-b+UT .V

=|{(W-Wl=-1).UT.b+UT.»

Now, (W - W™ — 1) is a diagonal matrix that has nonzero j components only for
w; = 0, while U’ has nonzero Jj components only for w; # 0, since b’ lies in the
range of A. Therefore the minimum obtains for b’ = 0, g.e.d.

Equation (2.6.7), which is also equation (2.6.6) applied associatively to b, is
thus very general. If no w;’s are zero, it solves a nonsingular system of linear equa-
tions. If some w;’s are zero, and their reciprocals are made zero, then it gives a
“best” solution, either the one of shortest length among many, or the one of min-
imum residual when no exact solution exists. Equation (2.6.6), with the singular
1/w;’s zeroized, is called the Moore-Penrose inverse or pseudoinverse of A.
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Equation (2.6.7) is implemented in the SVD object as the method solve. (As
in LUdcmp, we also include an overloaded form that solves for multiple right-hand
sides simultaneously.) The argument thresh inputs a value below which w;’s are to
be considered as being zero; if you omit this argument, or set it to a negative value,
then the program uses a default value based on expected roundoff error.

void SVD::solve(VecDoub_I &b, VecDoub_0 &x, Doub thresh = -1.) {
Solve A -x = b for a vector X using the pseudoinverse of A as obtained by SVD. If positive,
thresh is the threshold value below which singular values are considered as zero. If thresh is
negative, a default based on expected roundoff error is used.

Int i,3,3j;

Doub s;

if (b.size() !'=m || x.size() '= n) throw("SVD::solve bad sizes");

VecDoub tmp(n);

tsh = (thresh >= 0. 7 thresh : 0.5%sqrt(m+n+1.)*w[0]*eps);

for (j=0;j<n;j++) { Calculate UT B.
s=0.0;
if (w[jl > tsh) { Nonzero result only if w; is nonzero.
for (i=0;i<m;i++) s += uli]l[j1*b[i];
s /= wljl; This is the divide by w; .
}
tmp[jl=s;
}
for (j=0;j<n;j++) { Matrix multiply by V' to get answer.
s=0.0;
for (jj=0;jj<n;jj++) s += v[jl[jjl*tmp[jjl;
x[jl=s;
}

}

void SVD::solve(MatDoub_I &b, MatDoub_0 &x, Doub thresh = -1.)
Solves m sets of n equations A - X = B using the pseudoinverse of A. The right-hand sides are
inputasb[0..n-1][0..m-1], while x[0..n-1] [0. .m-1] returns the solutions. thresh as above.
{
int i,j,m=b.ncols();
if (b.nrows() !=n || x.nrows() !'=n || b.ncols() '= x.ncols())
throw("SVD: :solve bad sizes");
VecDoub xx(n);
for (j=0;j<m;j++) { Copy and solve each column in turn.
for (i=0;i<n;i++) xx[i] = b[i][j];
solve(xx,xx,thresh);
for (i=0;i<n;i++) x[i][j] = xx[i];

Figure 2.6.1 summarizes the situation for the SVD of square matrices.

There are cases in which you may want to set the value of thresh to larger
than its default. (You can retrieve the default as the member value tsh.) In the
discussion since equation (2.6.5), we have been pretending that a matrix either is
singular or else isn’t. Numerically, however, the more common situation is that
some of the w;’s are very small but nonzero, so that the matrix is ill-conditioned. In
that case, the direct solution methods of LU decomposition or Gaussian elimination
may actually give a formal solution to the set of equations (that is, a zero pivot
may not be encountered); but the solution vector may have wildly large components
whose algebraic cancellation, when multiplying by the matrix A, may give a very
poor approximation to the right-hand vector b. In such cases, the solution vector x
obtained by zeroing the small w;’s and then using equation (2.6.7) is very often better
(in the sense of the residual |A - x — b| being smaller) than both the direct-method

svd.h
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Figure 2.6.1. (a) A nonsingular matrix A maps a vector space into one of the same dimension. The vector
X is mapped into b, so that x satisfies the equation A - x = b. (b) A singular matrix A maps a vector
space into one of lower dimensionality, here a plane into a line, called the “range” of A. The “nullspace”
of A is mapped to zero. The solutions of A -X = d consist of any one particular solution plus any vector
in the nullspace, here forming a line parallel to the nullspace. Singular value decomposition (SVD) selects
the particular solution closest to zero, as shown. The point ¢ lies outside of the range of A,so A-x = ¢
has no solution. SVD finds the least-squares best compromise solution, namely a solution of A - X = ¢/,
as shown.

solution and the SVD solution where the small w;’s are left nonzero.

It may seem paradoxical that this can be so, since zeroing a singular value cor-
responds to throwing away one linear combination of the set of equations that we are
trying to solve. The resolution of the paradox is that we are throwing away precisely
a combination of equations that is so corrupted by roundoff error as to be at best
useless; usually it is worse than useless since it “pulls” the solution vector way off
toward infinity along some direction that is almost a nullspace vector. In doing this,
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it compounds the roundoff problem and makes the residual |A - x — b| larger.

You therefore have the opportunity of deciding at what threshold thresh to zero
the small w;’s, based on some idea of what size of computed residual |A - x —b] is
acceptable.

For discussion of how the singular value decomposition of a matrix is related to
its eigenvalues and eigenvectors, see §11.0.6.

2.6.3 SVD for Fewer Equations than Unknowns

If you have fewer linear equations M than unknowns N, then you are not ex-
pecting a unique solution. Usually there will be an N — M dimensional family of
solutions (which is the nullity, absent any other degeneracies), but the number could
be larger. If you want to find this whole solution space, then SVD can readily do
the job: Use solve to get one (the shortest) solution, then use nullspace to get a
set of basis vectors for the nullspace. Your solutions are the former plus any linear
combination of the latter.

2.6.4 SVD for More Equations than Unknowns

This situation will occur in Chapter 15, when we wish to find the least-squares
solution to an overdetermined set of linear equations. In tableau, the equations to be
solved are

A Axl=1»p (2.6.11)

The proofs that we gave above for the square case apply without modification
to the case of more equations than unknowns. The least-squares solution vector X is
given by applying the pseudoinverse (2.6.7), which, with nonsquare matrices, looks
like this,

x| = \Y - | diag(1/w;) | - uT “Ib

(2.6.12)

In general, the matrix W will not be singular, and no w;’s will need to be set to

zero. Occasionally, however, there might be column degeneracies in A. In this case

you will need to zero some small w; values after all. The corresponding column in V

gives the linear combination of x’s that is then ill-determined even by the supposedly
overdetermined set.
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Sometimes, although you do not need to zero any w;’s for computational rea-
sons, you may nevertheless want to take note of any that are unusually small: Their
corresponding columns in V are linear combinations of x’s that are insensitive to
your data. In fact, you may then wish to zero these w;’s, by increasing the value
of thresh, to reduce the number of free parameters in the fit. These matters are
discussed more fully in Chapter 15.

2.6.5 Constructing an Orthonormal Basis

Suppose that you have N vectors in an M -dimensional vector space, with
N < M. Then the N vectors span some subspace of the full vector space. Often you
want to construct an orthonormal set of N vectors that span the same subspace. The
elementary textbook way to do this is by Gram-Schmidt orthogonalization, starting
with one vector and then expanding the subspace one dimension at a time. Nu-
merically, however, because of the build-up of roundoff errors, naive Gram-Schmidt
orthogonalization is ferrible.

The right way to construct an orthonormal basis for a subspace is by SVD: Form
an M x N matrix A whose N columns are your vectors. Construct an SVD object
from the matrix. The columns of the matrix U are your desired orthonormal basis
vectors.

You might also want to check the w;’s for zero values. If any occur, then the
spanned subspace was not, in fact, N -dimensional; the columns of U corresponding
to zero w;’s should be discarded from the orthonormal basis set. The method range
does this.

OR factorization, discussed in §2.10, also constructs an orthonormal basis;
see [3].

2.6.6 Approximation of Matrices

Note that equation (2.6.1) can be rewritten to express any matrix A;; as a sum
of outer products of columns of U and rows of VT, with the “weighting factors”
being the singular values w;,

N—1
Aij =Y wi UnVik (2.6.13)
k=0

If you ever encounter a situation where most of the singular values w; of a
matrix A are very small, then A will be well-approximated by only a few terms in
the sum (2.6.13). This means that you have to store only a few columns of U and
V (the same k ones) and you will be able to recover, with good accuracy, the whole
matrix.

Note also that it is very efficient to multiply such an approximated matrix by a
vector X: You just dot x with each of the stored columns of V, multiply the resulting
scalar by the corresponding wy, and accumulate that multiple of the corresponding
column of U. If your matrix is approximated by a small number K of singular
values, then this computation of A - x takes only about K(M + N') multiplications,
instead of M N for the full matrix.
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2.6.7 Newer Algorithms

Analogous to the newer methods for eigenvalues of symmetric tridiagonal ma-
trices mentioned in §11.4.4, there are newer methods for SVD. There is a divide-and-
conquer algorithm, implemented in LAPACK as dgesdd, which is typically faster by
a factor of about 5 for large matrices than the algorithm we give (which is similar to
the LAPACK routine dgesvd). Another routine based on the MRRR algorithm (see
§11.4.4) promises to be even better, but it is not available in LAPACK as of 2006. It
will appear as routine dbdscr.
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2.7 Sparse Linear Systems

A system of linear equations is called sparse if only a relatively small number
of its matrix elements a;; are nonzero. It is wasteful to use general methods of
linear algebra on such problems, because most of the O(N3) arithmetic operations
devoted to solving the set of equations or inverting the matrix involve zero operands.
Furthermore, you might wish to work problems so large as to tax your available
memory space, and it is wasteful to reserve storage for unfruitful zero elements.
Note that there are two distinct (and not always compatible) goals for any sparse
matrix method: saving time and/or saving space.

We considered one archetypal sparse form in §2.4, the band-diagonal matrix.
In the tridiagonal case, e.g., we saw that it was possible to save both time (order
N instead of N3) and space (order N instead of N2). The method of solution was
not different in principle from the general method of LU decomposition; it was
just applied cleverly, and with due attention to the bookkeeping of zero elements.
Many practical schemes for dealing with sparse problems have this same character.
They are fundamentally decomposition schemes, or else elimination schemes akin
to Gauss-Jordan, but carefully optimized so as to minimize the number of so-called
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fill-ins, initially zero elements that must become nonzero during the solution process,
and for which storage must be reserved.

Direct methods for solving sparse equations, then, depend crucially on the pre-
cise pattern of sparsity of the matrix. Patterns that occur frequently, or that are useful
as way stations in the reduction of more general forms, already have special names
and special methods of solution. We do not have space here for any detailed review
of these. References listed at the end of this section will furnish you with an “in” to
the specialized literature, and the following list of buzz words (and Figure 2.7.1) will
at least let you hold your own at cocktail parties:

tridiagonal

band-diagonal (or banded) with bandwidth M
band triangular

block diagonal

block tridiagonal

block triangular

cyclic banded

singly (or doubly) bordered block diagonal
singly (or doubly) bordered block triangular
singly (or doubly) bordered band-diagonal
singly (or doubly) bordered band triangular
other (!)

You should also be aware of some of the special sparse forms that occur in the solu-
tion of partial differential equations in two or more dimensions. See Chapter 20.

If your particular pattern of sparsity is not a simple one, then you may wish to
try an analyze/factorize/operate package, which automates the procedure of figuring
out how fill-ins are to be minimized. The analyze stage is done once only for each
pattern of sparsity. The factorize stage is done once for each particular matrix that fits
the pattern. The operate stage is performed once for each right-hand side to be used
with the particular matrix. Consult [2,3] for references on this. The NAG library [4]
has an analyze/factorize/operate capability. A substantial collection of routines for
sparse matrix calculation is also available from IMSL [5] as the Yale Sparse Matrix
Package [6].

You should be aware that the special order of interchanges and eliminations,
prescribed by a sparse matrix method so as to minimize fill-ins and arithmetic op-
erations, generally acts to decrease the method’s numerical stability as compared
to, e.g., regular LU decomposition with pivoting. Scaling your problem so as to
make its nonzero matrix elements have comparable magnitudes (if you can do it)
will sometimes ameliorate this problem.

In the remainder of this section, we present some concepts that are applicable
to some general classes of sparse matrices, and which do not necessarily depend on
details of the pattern of sparsity.

2.7.1 Sherman-Morrison Formula

Suppose that you have already obtained, by herculean effort, the inverse matrix
A~! of a square matrix A. Now you want to make a “small” change in A, for example
change one element a;;, or a few elements, or one row, or one column. Is there any
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Figure 2.7.1. Some standard forms for sparse matrices. (a) Band-diagonal; (b) block triangular; (c) block
tridiagonal; (d) singly bordered block diagonal; (e) doubly bordered block diagonal; (f) singly bordered
block triangular; (g) bordered band-triangular; (h) and (i) singly and doubly bordered band-diagonal; (j)
and (k) other! (after Tewarson) [1].

way of calculating the corresponding change in A~! without repeating your difficult
labors? Yes, if your change is of the form

A—> A+u®v) 2.7.1)
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for some vectors u and v. If u is a unit vector €;, then (2.7.1) adds the components
of v to the i th row. (Recall that u ® v is a matrix whose i, j th element is the product
of the i th component of u and the jth component of v.) If v is a unit vector e, then
(2.7.1) adds the components of u to the j th column. If both u and v are proportional
to unit vectors e; and e;, respectively, then a term is added only to the element a;; .

The Sherman-Morrison formula gives the inverse (A +u ® v)~! and is derived
briefly as follows:

A+u®v)'=0+A1Tuv) - A1
=1-A1 " u®@v+A T u@v- AT u@v—..)-A!
AT AN u@v- AT T -A4+2%2-0)
AT weEr-AT)
14+ A

=A"! (2.7.2)

where
A=v-Al.u (2.7.3)

The second line of (2.7.2) is a formal power series expansion. In the third line, the
associativity of outer and inner products is used to factor out the scalars A.

The use of (2.7.2) is this: Given A~! and the vectors u and v, we need only
perform two matrix multiplications and a vector dot product,

z=A"u w=ANH.v A=v-z (2.7.4)
to get the desired change in the inverse

1 ZIR®W

A—l
- [

(2.7.5)

The whole procedure requires only 3N 2 multiplies and a like number of adds (an
even smaller number if u or v is a unit vector).

The Sherman-Morrison formula can be directly applied to a class of sparse
problems. If you already have a fast way of calculating the inverse of A (e.g., a
tridiagonal matrix or some other standard sparse form), then (2.7.4) — (2.7.5) allow
you to build up to your related but more complicated form, adding for example a row
or column at a time. Notice that you can apply the Sherman-Morrison formula more
than once successively, using at each stage the most recent update of A~! (equation
2.7.5). Of course, if you have to modify every row, then you are back to an N3
method. The constant in front of the N3 is only a few times worse than the bet-
ter direct methods, but you have deprived yourself of the stabilizing advantages of
pivoting — so be careful.

For some other sparse problems, the Sherman-Morrison formula cannot be di-
rectly applied for the simple reason that storage of the whole inverse matrix A™! is
not feasible. If you want to add only a single correction of the form u ® v and solve
the linear system

A+u®v)-x=b (2.7.6)

then you proceed as follows. Using the fast method that is presumed available for
the matrix A, solve the two auxiliary problems

A-y=b A-z=u 2.7.7)
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for the vectors y and z. In terms of these,

|y
X =Yy |:1+(v-z)]z (2.7.8)

as we see by multiplying (2.7.2) on the right by b.

2.7.2 Cyclic Tridiagonal Systems

So-called cyclic tridiagonal systems occur quite frequently and are a good ex-
ample of how to use the Sherman-Morrison formula in the manner just described.
The equations have the form

bo co O --- B Xo ro
ay by ¢y - X1 r
= .. (2.7.9)
an-2 by cN—2 XN-2 IN—2
o o0 ay-—1 by XN-1 IN-1

This is a tridiagonal system, except for the matrix elements o and § in the corners.
Forms like this are typically generated by finite differencing differential equations
with periodic boundary conditions (§20.4).

We use the Sherman-Morrison formula, treating the system as tridiagonal plus
a correction. In the notation of equation (2.7.6), define vectors u and v to be

y 1
0 0
u=|: v=| : (2.7.10)
0 0
o Bly

Here y is arbitrary for the moment. Then the matrix A is the tridiagonal part of the
matrix in (2.7.9), with two terms modified:

b=bo—y, Dby_i=by_1—aB/y @.7.11)

We now solve equations (2.7.7) with the standard tridiagonal algorithm and then get
the solution from equation (2.7.8).

The routine cyclic below implements this algorithm. We choose the arbitrary
parameter y = —bg to avoid loss of precision by subtraction in the first of equations
(2.7.11). In the unlikely event that this causes loss of precision in the second of these
equations, you can make a different choice.

void cyclic(VecDoub_I &a, VecDoub_I &b, VecDoub_I &c, const Doub alpha,

const Doub beta, VecDoub_I &r, VecDoub_0 &x)
Solves for a vector x[0..n-1] the “cyclic” set of linear equations given by equation (2.7.9). a,
b, ¢, and r are input vectors, all dimensioned as [0..n-1], while alpha and beta are the corner
entries in the matrix. The input is not modified.
{

Int i,n=a.size();

Doub fact,gamma;

if (n <= 2) throw("n too small in cyclic");

tridag.h
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VecDoub bb(n),u(n),z(n);

gamma = -b[0]; Avoid subtraction error in forming bb [0].
bb[0]=b[0] -gamma; Set up the diagonal of the modified tridi-
bb[n-1]=b[n-1]-alpha*beta/gamma; agonal system.

for (i=1;i<n-1;i++) bb[il=b[i];

tridag(a,bb,c,r,x); Solve A-x =r.

ul[0]=gamma; Set up the vector u.

u[n-1]=alpha;
for (i=1;i<n-1;i++) ul[i]=0.0;

tridag(a,bb,c,u,z); Solve A -z = u.

fact=(x[0]+beta*x[n-1]/gamma)/ Form v -x/(1 + vV -z).
(1.0+z[0] +beta*z[n-1]/gamma) ;

for (i=0;i<n;i++) x[i] -= fact*z[i]; Now get the solution vector X.

2.7.3 Woodbury Formula

If you want to add more than a single correction term, then you cannot use (2.7.8) re-
peatedly, since without storing a new A7l you will not be able to solve the auxiliary problems
(2.7.7) efficiently after the first step. Instead, you need the Woodbury formula, which is the
block-matrix version of the Sherman-Morrison formula,

A+U-vH1

2.7.12)
Al _ [A_l U-A+VT.AL Uy L.yl -A—l]

Here A is, as usual, an N x N matrix, while U and V are N x P matrices with P < N and
usually P < N. The inner piece of the correction term may become clearer if written as the
tableau,

U Jr+vi.aTtou| o vT (2.7.13)

where you can see that the matrix whose inverse is needed is only P x P rather than N x N.

The relation between the Woodbury formula and successive applications of the Sherman-
Morrison formula is now clarified by noting that, if U is the matrix formed by columns out
of the P vectors ug,...,up_q, and V is the matrix formed by columns out of the P vectors
vo,...,Vp_1,

c
Il
=
(=}

up—1 A\

Vo |- |VYP—1 (2.7.14)

then two ways of expressing the same correction to A are

P-1
<A+ > g ®vk) =A+U.VD (2.7.15)
k=0
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(Note that the subscripts on u and v do not denote components, but rather distinguish the
different column vectors.)

Equation (2.7.15) reveals that, if you have A~! in storage, then you can either make the
P corrections in one fell swoop by using (2.7.12) and inverting a P x P matrix, or else make
them by applying (2.7.5) P successive times.

If you don’t have storage for A~ then you must use (2.7.12) in the following way: To
solve the linear equation

(A—i—filuk@wk) -x=Db (2.7.16)
k=0
first solve the P auxiliary problems
A-z9g=ug
A =m 2.7.17)
A-zp_1 =up_y
and construct the matrix Z by columns from the z’s obtained,
Z=|zo|---|zp_1 (2.7.18)
Next, do the P x P matrix inversion
H=(1+Vl.z)7! (2.7.19)
Finally, solve the one further auxiliary problem
A-y=b (2.7.20)
In terms of these quantities, the solution is given by
X =y—z.[H.(VT-y)] (2.7.21)

2.7.4 Inversion by Partitioning

Once in a while, you will encounter a matrix (not even necessarily sparse) that
can be inverted efficiently by partitioning. Suppose that the N x N matrix A is

partitioned into
A= [II; (ng| (2.7.22)

where P and S are square matrices of size p X p and s X s, respectively (p +s5 = N).
The matrices Q and R are not necessarily square and have sizes p x s and s X p,
respectively.

If the inverse of A is partitioned in the same manner,

A7l = [Ij 9} (2.7.23)
R S
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then 13, Q, ﬁ, g, which have the same sizes as P, Q, R, S, respectively, can be found
by either the formulas

P=P-Q-S7'.R)!
0O = — — . -1 . -1 . . -1
?_ P-Q-S7T-R)y"-(Q-S7) (2.7.24)
R=—-S"'"R).-P-Q-S'.R)!
S=S"'"+6S"R)-P-Q-ST"-R)'-(Q-STH

or else by the equivalent formulas
P=P'4+®P1.Q-S—R-P1.Q7 ' R-P
O=—-P'-Q0)-(S—R-P!1.0)!
9_ P7-Q)-(S—R-P7-Q) 27.25)
R=—-S-R-PL.Q7' - R-PY

S=ES-R-P'.Q"

The parentheses in equations (2.7.24) and (2.7.25) highlight repeated factors that you
may wish to compute only once. (Of course, by associativity, you can instead do the
matrix multiplications in any order you like.) The choice between using equations
(2.7.24) and (2.7.25) depends on whether you want P or S to have the simpler for-
mula; or on whether the repeated expression (S —R-P~!.Q)~! is easier to calculate
than the expression (P —Q - S™! - R)™'; or on the relative sizes of P and S; or on
whether P~! or S™! is already known.

Another sometimes useful formula is for the determinant of the partitioned ma-
trix,

detA = detPdet(S—R-P71.Q) =detSdet(P—Q-S™!-R)  (2.7.26)

2.7.5 Indexed Storage of Sparse Matrices

We have already seen (§2.4) that tri- or band-diagonal matrices can be stored in a com-
pact format that allocates storage only to elements that can be nonzero, plus perhaps a few
wasted locations to make the bookkeeping easier. What about more general sparse matrices?
When a sparse matrix of dimension M x N contains only a few times M or N nonzero ele-
ments (a typical case), it is surely inefficient — and often physically impossible — to allocate
storage for all M N elements. Even if one did allocate such storage, it would be inefficient or
prohibitive in machine time to loop over all of it in search of nonzero elements.

Obviously some kind of indexed storage scheme is required, one that stores only nonzero
matrix elements, along with sufficient auxiliary information to determine where an element
logically belongs and how the various elements can be looped over in common matrix opera-
tions. Unfortunately, there is no one standard scheme in general use. Each scheme has its own
pluses and minuses, depending on the application.

Before we look at sparse matrices, let’s consider the simpler problem of a sparse vector.
The obvious data structure is a list of the nonzero values and another list of the corresponding
locations:

struct NRsparseCol
Sparse vector data structure.
{
Int nrows; Number of rows.
Int nvals; Maximum number of nonzeros.
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VecInt row_ind; Row indices of nonzeros.
VecDoub val; Array of nonzero values.

NRsparseCol(Int m,Int nnvals) : nrows(m), nvals(nnvals),
row_ind(nnvals,0),val(nnvals,0.0) {} Constructor. Initializes vector to zero.

NRsparseCol() : nrows(0),nvals(0),row_ind(),val() {} Default constructor.

void resize(Int m, Int nnvals) {
nrows = m;
nvals = nnvals;
row_ind.assign(nnvals,0);
val.assign(nnvals,0.0);

While we think of this as defining a column vector, you can use exactly the same data
structure for a row vector — just mentally interchange the meaning of row and column for the
variables. For matrices, however, we have to decide ahead of time whether to use row-oriented
or column-oriented storage.

One simple scheme is to use a vector of sparse columns:

NRvector<NRsparseCol *> a;
for (i=0;i<n;i++) {
nvals=...
a[il=new NRsparseCol(m,nvals);

}
Each column is filled with statements like

count=0;

for (j=...) {
ali]l->row_ind[count]=...
a[i]l->val[count]=...
count++;

}

This data structure is good for an algorithm that primarily works with columns of the matrix,
but it is not very efficient when one needs to loop over all elements of the matrix.

A good general storage scheme is the compressed column storage format. It is sometimes
called the Harwell-Boeing format, after the two large organizations that first systematically
provided a standard collection of sparse matrices for research purposes. In this scheme, three
vectors are used: val for the nonzero values as they are traversed column by column, row_ind
for the corresponding row indices of each value, and col_ptr for the locations in the other
two arrays that start a column. In other words, if val[k]=a[i] [j], then row_ind[k]=i.
The first nonzero in column j is at col_ptr[j]. The last is at col_ptr[j+1]-1. Note that
col_ptr[0] is always 0, and by convention we define col_ptr[n] equal to the number of
nonzeros. Note also that the dimension of the col_ptr array is N + 1, not N. The advantage
of this scheme is that it requires storage of only about two times the number of nonzero matrix
elements. (Other methods can require as much as three or five times.)

As an example, consider the matrix

30 00 1.0 2.0 0.0
0.0 40 0.0 0.0 0.0
00 70 50 90 0.0 (2.7.27)
00 00 00 0.0 0.0
00 00 00 6.0 5.0

In compressed column storage mode, matrix (2.7.27) is represented by two arrays of length 9
and an array of length 6, as follows
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index k 0 1 2 3 4 5 6 7 8

val [k] 3040 | 70| 10| 5012090 60| 50

row_ind [k] 0 1 2 0 2 0 2 4 4 (2.7.28)
index i O 1|23 ]4]|5

col_ptr[il || O | 1 |3 |5 |8 |9

Notice that, according to the storage rules, the value of N (namely 5) is the maximum valid
index in col_ptr. The value of col_ptr[5] is 9, the length of the other two arrays. The el-
ements 1.0 and 5.0 in column number 2, for example, are located in positions col_ptr[2] <
k < col_ptr[3].

Here is a data structure to handle this storage scheme:

struct NRsparseMat
Sparse matrix data structure for compressed column storage.

{
Int nrows; Number of rows.
Int ncols; Number of columns.
Int nvals; Maximum number of nonzeros.
VecInt col_ptr; Pointers to start of columns. Length is ncols+1.
VecInt row_ind; Row indices of nonzeros.
VecDoub val; Array of nonzero values.
NRsparseMat () ; Default constructor.
NRsparseMat (Int m,Int n,Int nnvals); Constructor. Initializes vector to zero.
VecDoub ax(const VecDoub &x) const; Multiply A by a vector x[0..ncols-1].
VecDoub atx(const VecDoub &x) const; Multiply AT by a vector x[0. .nrows-1].
NRsparseMat transpose() const; Form AT.

};

The code for the constructors is standard:

NRsparseMat: :NRsparseMat () : nrows(0),ncols(0),nvals(0),col_ptr(),
row_ind(),val() {}

NRsparseMat: :NRsparseMat (Int m,Int n,Int nnvals) : nrows(m),ncols(n),
nvals(nnvals),col_ptr(n+1,0),row_ind(nnvals,0),val(nnvals,0.0) {}

The single most important use of a matrix in compressed column storage mode is to
multiply a vector to its right. Don’t implement this by traversing the rows of A, which is
extremely inefficient in this storage mode. Here’s the right way to do it:

VecDoub NRsparseMat::ax(const VecDoub &x) const {
VecDoub y(nrows,0.0);
for (Int j=0;j<ncols;j++) {
for (Int i=col_ptr[jl;i<col_ptr[j+1];i++)
ylrow_ind[i]] += vallil*x[j1;
}

return y;

Some inefficiency occurs because of the indirect addressing. While there are other storage
modes that minimize this, they have their own drawbacks.

It is also simple to multiply the franspose of a matrix by a vector to its right, since we just
traverse the columns directly. (Indirect addressing is still required.) Note that the transpose
matrix is not actually constructed.
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VecDoub NRsparseMat::atx(const VecDoub &x) const { sparse.h
VecDoub y(ncols);
for (Int i=0;i<ncols;i++) {
y[i1=0.0;
for (Int j=col_ptr[il;j<col_ptr[i+1];j++)
y[i] += val[jl*x[row_ind[jl];
}

return y;

Because the choice of compressed column storage treats rows and columns quite differ-
ently, it is rather an involved operation to construct the transpose of a matrix, given the matrix
itself in compressed column storage mode. When the operation cannot be avoided, it is

NRsparseMat NRsparseMat::transpose() const { sparse.h
Int i,j,k,index,m=nrows,n=ncols;
NRsparseMat at(n,m,nvals); Initialized to zero.
First find the column lengths for A7 i.e. the row lengths of A.
VecInt count(m,0); Temporary counters for each row of A.

for (i=0;i<n;i++)
for (j=col_ptrl[il;j<col_ptr[i+1];j++) {
k=row_ind[j];
count [k]++;

}

for (j=0;j<m;j++) Now set at.col_ptr. Oth entry stays 0.
at.col_ptr[j+i]=at.col_ptr[jl+count[j];

for(j=0; j<m; j++) Reset counters to zero.
count [j]1=0;

for (i=0;i<n;i++) Main loop.

for (j=col_ptrl[il;j<col_ptr[i+1];j++) {
k=row_ind[j];
index=at.col_ptr[kl+count[k]; Element's position in column of AT,
at.row_ind[index]=i;
at.val[index]=vall[j];
count [k]++; Increment counter for next element in that
} column.
return at;

The only sparse matrix-matrix multiply routine we give is to form the product ADAT,
where D is a diagonal matrix. This particular product is used to form the so-called normal
equations in the interior-point method for linear programming (§10.11). We encapsulate the
algorithm in its own structure, ADAT:

struct ADAT { sparse.h
const NRsparseMat &a,&at; Store references to A and A7 .
NRsparseMat *adat; This will hold ADAT .

ADAT (const NRsparseMat &A,const NRsparseMat &AT);

Allocates compressed column storage for AAT where A and A7 are input in compressed
column format, and fills in values of col_ptr and row_ind. Each column must be in sorted
order in input matrices. Matrix is output with each column sorted.

void updateD(const VecDoub &D);

Computes ADA” | where D is a diagonal matrix. This function can be called repeatedly
to update ADA7 for fixed A.

NRsparseMat &ref();

Returns reference to adat, which holds ADAT.

“ADAT();
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The algorithm proceeds in two steps. First, the nonzero pattern of AAT is found by acall
to the constructor. Since D is diagonal, AAT and ADAT have the same nonzero structure.
Algorithms using ADAT will typically have both A and AT available, so we pass them both

to the constructor rather than recompute A7 from A. The constructor allocates storage and
assigns values to col_ptr and row_ind. The structure of ADAT is returned with columns in
sorted order because routines like the AMD ordering algorithm used in §10.11 require it.

sparse.h ADAT: : ADAT(const NRsparseMat &A,const NRsparseMat &AT) : a(A), at(AT) {
Int h,i,j,k,1,nvals,m=AT.ncols;
VecInt done(m);

for (i=0;i<m;i++) Initialize to not done.
done[i]l=-1;
nvals=0; First pass determines number of nonzeros.
for (j=0;j<m;j++) { Outer loop over columns of A7 in AAT .
for (i=AT.col_ptr[j]l;i<AT.col_ptr[j+1];i++) {
k=AT.row_ind[i]; Agj # 0. Find column k in first matrix, A.
for (1=A.col_ptr([k];1l<A.col_ptr[k+1];1++) {
h=A.row_ind[1]; Ay #0.
if (done[h] != j) { Test if contribution already included.
done [h]=j;
nvals++;
}
}
}
}
adat = new NRsparseMat(m,m,nvals); Allocate storage for ADAT.
for (i=0;i<m;i++) Re-initialize.
done[i]l=-1;
nvals=0;

Second pass: Determine columns of adat. Code is identical to first pass except adat->col_ptr
and adat->row_ind get assigned at appropriate places.
for (j=0;j<m;j++) {
adat->col_ptr[jl=nvals;
for (i=AT.col_ptr[jl;i<AT.col_ptr[j+1];i++) {
k=AT.row_ind[i];
for (1=A.col_ptrl[k];1<A.col_ptr[k+1];1++) {
h=A.row_ind[1];
if (donel[h] != j) {

done[h]=j;
adat->row_ind[nvals]=h;
nvals++;
}
}
}
}
adat->col_ptr[m]=nvals; Set last value.
for (j=0;j<m;j++) { Sort columns
i=adat->col_ptr([j];
Int size=adat->col_ptr[j+1]-i;
if (size > 1) {
VecInt col(size,&adat->row_ind[i]);
sort(col);
for (k=0;k<size;k++)
adat->row_ind[i+k]=col[k];
}
}

The next routine, updateD, actually fills in the values in the val array. It can be called
repeatedly to update ADAT for fixed A.
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void ADAT::updateD(const VecDoub &D) { sparse.h
Int h,i,j,k,1,m=a.nrows,n=a.ncols;
VecDoub temp(n),temp2(m,0.0);

for (i=0;i<m;i++) { Outer loop over columns of AT,
for (j=at.col_ptrl[il;j< at.col_ptr[i+1];j++) {
k=at.row_ind[j]; Scale elements of each column with D and
temp [k]=at.val[jI*D[k]; store in temp.
}
for (j=at.col_ptrl[il;j<at.col_ptrl[i+1];j++) { Go down column again.
k=at.row_ind[j];
for (l=a.col_ptr[k];l<a.col_ptr[k+1];1++) { Go down column k in
h=a.row_ind[1]; A.
temp2[h] += temp[k]l*a.vall[l]; All terms from temp[k] used here.
}
}

for (j=adat->col_ptr[i];j<adat->col_ptr[i+1];j++) {
Store temp2 in column of answer.

k=adat->row_ind[j];

adat->val[jl=temp2[k];

temp2[k]=0.0; Restore temp2.

The final two functions are simple. The ref routine returns a reference to the matrix

ADAT stored in the structure for other routines that may need to work with it. And the
destructor releases the storage.

NRsparseMat & ADAT::ref() { sparse.h
return *adat;

¥

ADAT: : "ADAT() {
delete adat;
}

By the way, if you invoke ADAT with different matrices A and BT, everything will work
fine as long as A and B have the same nonzero pattern.

In Numerical Recipes second edition, we gave a related sparse matrix storage mode in
which the diagonal of the matrix is stored first, followed by the off-diagonal elements. We
now feel that the added complexity of that scheme is not worthwhile for any of the uses in
this book. For a discussion of this and other storage schemes, see [7,8]. To see how to work
with the diagonal in the compressed column mode, look at the code for asolve at the end of
this section.

2.7.6 Conjugate Gradient Method for a Sparse System

So-called conjugate gradient methods provide a quite general means for solving the

N x N linear system

A-x=b (2.7.29)
The attractiveness of these methods for large sparse systems is that they reference A only
through its multiplication of a vector, or the multiplication of its transpose and a vector. As we
have seen, these operations can be very efficient for a properly stored sparse matrix. You, the
“owner” of the matrix A, can be asked to provide functions that perform these sparse matrix
multiplications as efficiently as possible. We, the “grand strategists,” supply an abstract base
class, Linbcg below, that contains the method for solving the set of linear equations, (2.7.29),
using your functions.

The simplest, “ordinary” conjugate gradient algorithm [9-11] solves (2.7.29) only in the
case that A is symmetric and positive-definite. It is based on the idea of minimizing the
function

fx)=2x-A-x-b-x (2.7.30)
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This function is minimized when its gradient
Vf=A-x—-b (2.7.31)

is zero, which is equivalent to (2.7.29). The minimization is carried out by generating a
succession of search directions p; and improved minimizers Xz . At each stage a quantity oy
is found that minimizes f(X; + Py ), and X 41 is set equal to the new point X + g py.
The pj and Xy, are built up in such a way that X 1 is also the minimizer of f over the whole
vector space of directions already taken, {pg, Py, ....Pr_1}- After N iterations you arrive at
the minimizer over the entire vector space, i.e., the solution to (2.7.29).

Later, in §10.8, we will generalize this “ordinary” conjugate gradient algorithm to the
minimization of arbitrary nonlinear functions. Here, where our interest is in solving linear,
but not necessarily positive-definite or symmetric, equations, a different generalization is im-
portant, the biconjugate gradient method. This method does not, in general, have a simple
connection with function minimization. It constructs four sequences of vectors, ry, Tk, Pk,
Pr.k =0,1,.... You supply the initial vectors r¢ and T, and set py = ro, py = To. Then
you carry out the following recurrence:

[ §%
o = —————
Pi APk
Tiy1 =T —apA-pg
_ = AT-_
Te+1 l'_k O Pk (2.7.32)
B = P41 Th+1
k Ty T

Pi+1 = Ti+1 + PPk
Pi+1 = Trt1 + PPk
This sequence of vectors satisfies the biorthogonality condition
r-r=r;-r; =0, Jj<i (2.7.33)
and the biconjugacy condition
p,A-p;=p; AT p; =0, j<i (2.7.34)
There is also a mutual orthogonality,
ri-p;=r;-p; =0, Jj<i (2.7.35)

The proof of these properties proceeds by straightforward induction [12]. As long as the recur-
rence does not break down earlier because one of the denominators is zero, it must terminate
after m < N steps with ry,, = 1y, = 0. This is basically because after at most N steps you
run out of new orthogonal directions to the vectors you’ve already constructed.

To use the algorithm to solve the system (2.7.29), make an initial guess x¢ for the solu-
tion. Choose r to be the residual

rog = b—A- X0 (2.7.36)
and choose ro = rg. Then form the sequence of improved estimates
Xk4+1 = Xk + P (2.7.37)

while carrying out the recurrence (2.7.32). Equation (2.7.37) guarantees that ry_ | from the
recurrence is in fact the residual b — A - x4 corresponding to Xy 4 1. Since ry, = 0, Xz is
the solution to equation (2.7.29).

While there is no guarantee that this whole procedure will not break down or become
unstable for general A, in practice this is rare. More importantly, the exact termination in at
most N iterations occurs only with exact arithmetic. Roundoff error means that you should
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regard the process as a genuinely iterative procedure, to be halted when some appropriate error
criterion is met.

The ordinary conjugate gradient algorithm is the special case of the biconjugate gradient
algorithm when A is symmetric, and we choose ro = ro. Then ¥y = ry and p; = py, forall
k; you can omit computing them and halve the work of the algorithm. This conjugate gradient
version has the interpretation of minimizing equation (2.7.30). If A is positive-definite as
well as symmetric, the algorithm cannot break down (in theory!). The solve routine Linbcg
below indeed reduces to the ordinary conjugate gradient method if you input a symmetric A,
but it does all the redundant computations.

Another variant of the general algorithm corresponds to a symmetric but non-positive-
definite A, with the choice 9 = A - rg instead of Tp = ro. In thiscasery = A -ry and
Pr = A - py for all k. This algorithm is thus equivalent to the ordinary conjugate gradient
algorithm, but with all dot products a -b replaced by a- A -b. It is called the minimum residual
algorithm, because it corresponds to successive minimizations of the function

d(x)=4r-r=73]A-x—b? (2.7.38)

where the successive iterates Xz minimize ® over the same set of search directions p; gener-
ated in the conjugate gradient method. This algorithm has been generalized in various ways
for unsymmetric matrices. The generalized minimum residual method (GMRES; see [13,14])
is probably the most robust of these methods.

Note that equation (2.7.38) gives

Vox) =AT - (A-x—b) (2.7.39)

For any nonsingular matrix A, AT As symmetric and positive-definite. You might therefore
be tempted to solve equation (2.7.29) by applying the ordinary conjugate gradient algorithm
to the problem

AT - A).-x=AT.p (2.7.40)

Don’t! The condition number of the matrix A7 - A is the square of the condition number of
A (see §2.6 for definition of condition number). A large condition number both increases the
number of iterations required and limits the accuracy to which a solution can be obtained. It
is almost always better to apply the biconjugate gradient method to the original matrix A.

So far we have said nothing about the rate of convergence of these methods. The ordi-
nary conjugate gradient method works well for matrices that are well-conditioned, i.e., “close”
to the identity matrix. This suggests applying these methods to the preconditioned form of

equation (2.7.29),

A 'A)x=K""p (2.7.41)

The idea is that you might already be able to solve your linear system easily for some A close
to A, in which case A™1-A ~ 1, allowing the algorithm to converge in fewer steps. The matrix

A is called a preconditioner [9], and the overall scheme given here is known as the precon-
ditioned biconjugate gradient method or PBCG. In the code below, the user-supplied routine
atimes does sparse matrix multiplication by A, while the user-supplied routine asolve ef-

. NRTIr . .. ~—1
fects matrix multiplication by the inverse of the preconditioner A .
For efficient implementation, the PBCG algorithm introduces an additional set of vectors
zj and Z;, defined by

~ ~T
A- Zp =T and A -ik = Fk (2.7.42)
and modifies the definitions of o, By, px, and Py in equation (2.7.32):
T - Zk
o = —————
Pic APk
r ¥/
B = KEL Tkt (2.7.43)
Tp-Zg

Pk+1 = Zk+1 + BrPk
Pk+1 =Zg+1 + BrPx
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To use Linbcg, below, you will need to supply routines that solve the auxiliary linear systems

(2.7.42). If you have no idea what to use for the preconditioner A, then use the diagonal part
of A, or even the identity matrix, in which case the burden of convergence will be entirely on
the biconjugate gradient method itself.

Linbcg’s routine solve, below, is based on a program originally written by Anne Green-
baum. (See [11] for a different, less sophisticated, implementation.) There are a few wrinkles
you should know about.

What constitutes “good” convergence is rather application-dependent. The routine solve
therefore provides for four possibilities, selected by setting the flag itol on input. If itol=1,
iteration stops when the quantity |A -x —b|/|b] is less than the input quantity tol. If itol=2,
the required criterion is

A7 (A-x=b)|/]A " -b| < tol (2.7.44)

If itol=3, the routine uses its own estimate of the error in x and requires its magnitude,
divided by the magnitude of X, to be less than tol. The setting itol=4 is the same as itol=3,
except that the largest (in absolute value) component of the error and largest component of x
are used instead of the vector magnitude (that is, the Lo norm instead of the L, norm). You
may need to experiment to find which of these convergence criteria is best for your problem.

On output, err is the tolerance actually achieved. If the returned count iter does not
indicate that the maximum number of allowed iterations itmax was exceeded, then err should
be less than tol. If you want to do further iterations, leave all returned quantities as they are
and call the routine again. The routine loses its memory of the spanned conjugate gradient
subspace between calls, however, so you should not force it to return more often than about
every N iterations.

linbcg.h struct Linbcg {
Abstract base class for solving sparse linear equations by the preconditioned biconjugate gradient
method. To use, declare a derived class in which the methods atimes and asolve are defined
for your problem, along with any data that they need. Then call the solve method.
virtual void asolve(VecDoub_I &b, VecDoub_0 &x, const Int itrnsp) = 0;
virtual void atimes(VecDoub_I &x, VecDoub_0 &r, const Int itrnsp) = 0;
void solve(VecDoub_I &b, VecDoub_IO &x, const Int itol, const Doub tol,
const Int itmax, Int &iter, Doub &err);
Doub snrm(VecDoub_I &sx, const Int itol); Utility used by solve.
};

void Linbcg: :solve(VecDoub_I &b, VecDoub_IO &x, const Int itol, const Doub tol,
const Int itmax, Int &iter, Doub &err)
Solves A-x = b for x[0. .n-1], given b[0..n-1], by the iterative biconjugate gradient method.
On input x[0. .n-1] should be set to an initial guess of the solution (or all zeros); itol is 1,2,3,
or 4, specifying which convergence test is applied (see text); itmax is the maximum number
of allowed iterations; and tol is the desired convergence tolerance. On output, x[0..n-1] is
reset to the improved solution, iter is the number of iterations actually taken, and err is the
estimated error. The matrix A is referenced only through the user-supplied routines atimes,
which computes the product of either A or its transpose on a vector, and asolve, which solves

A-x=bor AT -X = b for some preconditioner matrix A (possibly the trivial diagonal part
of A). This routine can be called repeatedly, with itmax<n, to monitor how err decreases;
or it can be called once with a sufficiently large value of itmax so that convergence to tol is
achieved.
{

Doub ak,akden,bk,bkden=1.0,bknum,bnrm,dxnrm,xnrm,zminrm,znrm;

const Doub EPS=1.0e-14;

Int j,n=b.size();

VecDoub p(n),pp(n),r(n),rr(n),z(n),zz(n);

iter=0; Calculate initial residual.
atimes(x,r,0); Input to atimes is x[0..n-1], outputis r[0. .n-1];
for (j=0;j<n;j++) { the final 0 indicates that the matrix (not its
r(jl=bljl-r[jl; transpose) is to be used.
rr[jl=r[jl;
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//atimes(r,rr,0); Uncomment this line to get the “minimum resid-
if (itol == 1) { ual” variant of the algorithm.
bnrm=snrm(b,itol) ;
asolve(r,z,0); Inputtoasolveisr[O..n—1],outputisz£9..n—1]
X the final 0 indicates that the matrix A (not
else if (itol == 2) { its transpose) is to be used.

asolve(b,z,0);
bnrm=snrm(z,itol);
asolve(r,z,0);
}
else if (itol == |l itol == 4) {
asolve(b,z,0);
bnrm=snrm(z,itol);
asolve(r,z,0);
znrm=snrm(z,itol);
} else throw("illegal itol in linbecg");

while (iter < itmax) { Main loop.
++iter; —_
asolve(rr,zz,1); Final 1 indicates use of transpose matrix AT,

for (bknum=0.0,3j=0;j<n;j++) bknum += z[jl*rr[j];
Calculate coefficient bk and direction vectors p and pp.
if (iter == 1) {
for (j=0;j<n;j++) {
pljl=z[j];
ppljl=zz[j];

}
} else {
bk=bknum/bkden;
for (j=0;j<n;j++) {
pljl=bk*p[jl+z[j];
pp[jl=bk*pp[jl+zz[j];

}
bkden=bknum; Calculate coefficient ak, new iterate x, and new
atimes(p,z,0); residuals r and rr.

for (akden=0.0,3j=0;j<n;j++) akden += z[jl*pp[jl;
ak=bknum/akden;
atimes(pp,zz,1);
for (j=0;j<n;j++) {
x[j] += ak*p[jl;
r[j] -= ak*z[j];
rr[j]l -= akx*zz[j];
¥ ~
asolve(r,z,0); Solve A -z =r and check stopping criterion.
if (itol == 1)
err=snrm(r,itol) /bnrm;
else if (itol == 2)
err=snrm(z,itol) /bnrm;
else if (itol == || itol == 4) {
zmlnrm=znrm;
znrm=snrm(z,itol) ;
if (abs(zmlnrm-znrm) > EPS*znrm) {
dxnrm=abs (ak) *snrm(p,itol);
err=znrm/abs (zminrm-znrm) *dxnrm;

} else {
err=znrm/bnrm; Error may not be accurate, so loop again.
continue;

}

xnrm=snrm(x,itol) ;

if (err <= 0.5%xnrm) err /= xnrm;

else {
err=znrm/bnrm; Error may not be accurate, so loop again.
continue;
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}
if (err <= tol) break;

The solve routine uses this short utility for computing vector norms:

Doub Linbcg::snrm(VecDoub_I &sx, const Int itol)
Compute one of two norms for a vector sx[0..n-1], as signaled by itol. Used by solve.

{

Int i,isamax,n=sx.size();
Doub ans;
if (itol <= 3) {

ans = 0.0;

for (i=0;i<n;i++) ans += SQR(sx[i]); Vector magnitude norm.
return sqrt(ans);
} else {
isamax=0;
for (i=0;i<n;i++) { Largest component norm.

if (abs(sx[i]) > abs(sx[isamax])) isamax=i;
}

return abs(sx[isamax]);

Here is an example of a derived class that solves A-x = b for a matrix A in NRsparseMat’s

compressed column sparse format. A naive diagonal preconditioner is used.

struct NRsparseLinbcg : Linbcg {

}s

NRsparseMat &mat;
Int n;
NRsparseLinbcg(NRsparseMat &matrix) : mat(matrix), n(mat.nrows) {}
The constructor just binds a reference to your sparse matrix, making it available to asolve
and atimes. To solve for a right-hand side, you call this object’s solve method, as defined
in the base class.
void atimes(VecDoub_I &x, VecDoub_0 &r, const Int itrmnsp) {
if (itrnsp) r=mat.atx(x);
else r=mat.ax(x);

}
void asolve(VecDoub_I &b, VecDoub_0 &x, const Int itrnsp) {
Int i,j;
Doub diag;
for (i=0;i<n;i++) {
diag=0.0;
for (j=mat.col_ptr[i];j<mat.col_ptr[i+1];j++)
if (mat.row_ind[j] == i) {
diag=mat.vall[j];
break;
}
x[i]l=(diag !'= 0.0 ? b[il/diag : b[il);
The matrix A is the diagonal part of A. Since the transpose matrix has the same
diagonal, the flag itrnsp is not used in this example.
}
}

For another example of using a class derived from Linbcg to solve a sparse matrix

problem, see §3.8.
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2.8 Vandermonde Matrices and Toeplitz
Matrices

In §2.4 the case of a tridiagonal matrix was treated specially, because that par-
ticular type of linear system admits a solution in only of order N operations, rather
than of order N3 for the general linear problem. When such particular types exist,
it is important to know about them. Your computational savings, should you ever
happen to be working on a problem that involves the right kind of particular type,
can be enormous.

This section treats two special types of matrices that can be solved in of or-
der N2 operations, not as good as tridiagonal, but a lot better than the general case.
(Other than the operations count, these two types having nothing in common.) Matri-
ces of the first type, termed Vandermonde matrices, occur in some problems having
to do with the fitting of polynomials, the reconstruction of distributions from their
moments, and also other contexts. In this book, for example, a Vandermonde prob-
lem crops up in §3.5. Matrices of the second type, termed Toeplitz matrices, tend
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to occur in problems involving deconvolution and signal processing. In this book, a
Toeplitz problem is encountered in §13.7.

These are not the only special types of matrices worth knowing about. The
Hilbert matrices, whose components are of the forma;; = 1/(i + j + 1), i,j =
0,...,N — 1, can be inverted by an exact integer algorithm and are very difficult to
invert in any other way, since they are notoriously ill-conditioned (see [1] for details).
The Sherman-Morrison and Woodbury formulas, discussed in §2.7, can sometimes
be used to convert new special forms into old ones. Reference [2] gives some other
special forms. We have not found these additional forms to arise as frequently as the
two that we now discuss.

2.8.1 Vandermonde Matrices

A Vandermonde matrix of size N x N is completely determined by N arbitrary numbers

X0,X1,...,XN—1, in terms of which its N2 components are the integer powers xij, i,j =
0,...,N — 1. Evidently there are two possible such forms, depending on whether we view
the i’s as rows and j’s as columns, or vice versa. In the former case, we get a linear system
of equations that looks like this,

1 xo xz e X! co Y0

O Al I O U G 28.1)
) 2 N-1 '

L xy—1 xy_; 0 Xy CN-1 YN-1

Performing the matrix multiplication, you will see that this equation solves for the unknown
coefficients ¢; that fit a polynomial to the N pairs of abscissas and ordinates (x;, y;). Pre-
cisely this problem will arise in §3.5, and the routine given there will solve (2.8.1) by the
method that we are about to describe.

The alternative identification of rows and columns leads to the set of equations

! b wo q0

_xg x; e x]ZV—I w1 ql

x() xl e xN—l . wo = q2 (282)
xN-1 xN-1 . legzl WN—1 dN-1

Write this out and you will see that it relates to the problem of moments: Given the values of
N points x;, find the unknown weights w;, assigned so as to match the given values g; of the
first N moments. (For more on this problem, consult [3].) The routine given in this section
solves (2.8.2).

The method of solution of both (2.8.1) and (2.8.2) is closely related to Lagrange’s poly-
nomial interpolation formula, which we will not formally meet until §3.2. Notwithstanding,
the following derivation should be comprehensible:

Let P;(x) be the polynomial of degree N — 1 defined by

N-1 N-1

X — X,
P =[] = _x" => Ajpxk (2.8.3)
n=0 " 7" k=0
n#j

Here the meaning of the last equality is to define the components of the matrix 4;; as the
coefficients that arise when the product is multiplied out and like terms collected.
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The polynomial P; (x) is a function of x generally. But you will notice that it is specifi-
cally designed so that it takes on a value of zero at all x; with i # j and has a value of unity
atx = x;j. In other words,

N-—1
Pi(xj) =68 =Y Apexk (2.8.4)
k=0

But (2.8.4) says that A4 is exactly the inverse of the matrix of components xlk , which
appears in (2.8.2), with the subscript as the column index. Therefore the solution of (2.8.2) is
just that matrix inverse times the right-hand side,

N-1

wj = Z Ajqu (2.8.5)
k=0

As for the transpose problem (2.8.1), we can use the fact that the inverse of the transpose
is the transpose of the inverse, so

N—-1
cj= Y Agjyk (2.8.6)
k=0

The routine in §3.5 implements this.

It remains to find a good way of multiplying out the monomial terms in (2.8.3), in order
to get the components of 4 ;. This is essentially a bookkeeping problem, and we will let you
read the routine itself to see how it can be solved. One trick is to define a master P(x) by

N—-1

P(x)= [] (x—xn) (2.8.7)

n=0

work out its coefficients, and then obtain the numerators and denominators of the specific P;’s
via synthetic division by the one supernumerary term. (See §5.1 for more on synthetic divi-
sion.) Since each such division is only a process of order N, the total procedure is of order N 2.

You should be warned that Vandermonde systems are notoriously ill-conditioned, by
their very nature. (As an aside anticipating §5.8, the reason is the same as that which makes
Chebyshev fitting so impressively accurate: There exist high-order polynomials that are very
good uniform fits to zero. Hence roundoff error can introduce rather substantial coefficients
of the leading terms of these polynomials.) It is a good idea always to compute Vandermonde
problems in double precision or higher.

The routine for (2.8.2) that follows is due to G.B. Rybicki.

void vander(VecDoub_I &x, VecDoub_0 &w, VecDoub_I &q)

Solves the Vandermonde linear system Z,N:_Ol xlkw,- =qx (k=0,...,N —1). Input consists
of the vectors x[0..n-1] and q[0..n-1]; the vector w[0. .n-1] is output.
{

Int i,j,k,n=q.size();

Doub b,s,t,xx;

VecDoub c(n);

if (n == 1) w[0]=q[0];

else {
for (i=0;i<n;i++) c[i]=0.0; Initialize array.
c[n-11 = -x[0]; Coefficients of the master polynomial are found
for (i=1;i<n;i++) { by recursion.
xx = -x[il;
for (j=(n-1-i);j<(n-1);j++) cljl += xx*c[j+1];
cln-1] += xx;
}

for (i=0;i<n;i++) { Each subfactor in turn

vander.h
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xx=x[1];

t=b=1.0;

s=q[n-1];

for (k=n-1;k>0;k--) { is synthetically divided,
b=c [k]+xx*Db;
s += ql[k-1]*b; matrix-multiplied by the right-hand side,
t=xx*t+b;

}

wlil=s/t; and supplied with a denominator.

2.8.2 Toeplitz Matrices

An N x N Toeplitz matrix is specified by giving 2N — 1 numbers Ry, where the index
k ranges overk = —N + 1,...,—1,0,1,..., N — 1. Those numbers are then emplaced as
matrix elements constant along the (upper-left to lower-right) diagonals of the matrix:

Ro Ry Ry -+ R_(n—2 R_(y-1)

R, Ry R-1 -+ R (-3 Ry

R2 Ry Ro -+ R_(n—s4) R_(n—3) (2.8.8)
RN 2> Ry—3 Ry—4 -- Ro Ry
Ry_1 Ry—> Ry_3 - Ry Ro

The linear Toeplitz problem can thus be written as
Y Rijxj=y (i=0...N-1 (2.8.9)

where the x;’s, j = 0,..., N — 1, are the unknowns to be solved for.

The Toeplitz matrix is symmetric if R = R_j for all k. Levinson [4] developed an
algorithm for fast solution of the symmetric Toeplitz problem, by a bordering method, that is,
a recursive procedure that solves the (M + 1)-dimensional Toeplitz problem

ZR, —j J = (i=0,....M) (2.8.10)

in turn for M = 0,1,...until M = N — 1, the desired result, is finally reached. The vector
xM) s the result at the Mth stage and becomes the desired answer only when N — 1 is
reached.

Levinson’s method is well documented in standard texts (e.g., [5]). The useful fact that
the method generalizes to the nonsymmetric case seems to be less well known. At some risk
of excessive detail, we therefore give a derivation here, due to G.B. Rybicki.

In following a recursion from step M to step M + 1 we find that our developing solution

xM) changes in this way:

M

Z M=y i=o0...M 2.8.11)
becomes

Z Rijx™*V 4 Re_pinxiyitD =y i=0. M 41 (2.8.12)
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By eliminating y; we find

(M) _  (M+1)

ZR, /<(M—11)>:Rl-_(M+1) i=0,....M (2.8.13)
M1

or by lettingi - M —iand j - M — j,

Z Rj—iGi"™) = R_(i41 (2.8.14)

where
M) (M+1)

G(M)_XM j M-

) (2.8.15)
*M+1
To put this another way,
gD = a D -V =0 M (2.8.16)

Thus, if we can use recursion to find the order M quantities xM) and GM) and the single
order M + 1 quantity xl(‘yﬂl) then all of the other xj( +0.

quantity xl(w 1 Y follows from equation (2.8.12) withi = M + 1,

s will follow. Fortunately, the

M
M+1 M+1
3 Ragr—jx M+ Rox{y Y = ypr (2.8.17)
Jj=0
For the unknown order M + 1 quantities x( +1)
tities in G since

we can substitute the previous order quan-

LD (M)

WMy _ 7 X
GM_j = —(M+1) (2.8.18)
M+1

The result of this operation is

M M
(M-H) Zj:o RM-H—jx_/(' )_J’M—f-l
M+1 -

(2.8.19)

M (M)

2 =0 Ry+1-jGp—; — Ro
The only remaining problem is to develop a recursion relation for G. Before we do that,

however, we should point out that there are actually two distinct sets of solutions to the original

linear problem for a nonsymmetric matrix, namely right-hand solutions (which we have been

discussing) and left-hand solutions z;. The formalism for the left-hand solutions differs only
in that we deal with the equations

M
3 Rj_,-zj(.M) =y i=0,...M (2.8.20)
Then, the same sequence of operations on this set leads to

M
3 Ri_jH;M) = Risq (2.8.21)
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where

M) _ _(M+1)

M) _ M= M)
;o (M+1)
M+1

(compare with 2.8.14 — 2.8.15). The reason for mentioning the left-hand solutions now is
that, by equation (2.8.21), the H;’s satisfy exactly the same equation as the x;’s except for
the substitution y; — R; 41 on the right-hand side. Therefore we can quickly deduce from

equation (2.8.19) that

(2.8.22)

M (M)
D _ Yj=0 Rm41—jH;"" — Ry
M+l T T oy M
S Ra1-7G s = Ro

By the same token, G satisfies the same equation as z, except for the substitution y; —
R_(; +1)- This gives

(2.8.23)

M (M)
GO+ _ =0 Rj-m—1G;" — Ry

M+1 M M
2 i=0 Rj—M—lH]El_)j - Ro

(2.8.24)

The same “morphism” also turns equation (2.8.16), and its partner for z, into the final equa-
tions

(M+1) _ (M) (M+1) (M)
G; =G =Gy Hy )

(2.8.25)
M+1) _ (M) (M+1) ~(M)
H; =H;" = Hy o "Gy
Now, starting with the initial values
O =yo/re GO =R_j/Re  H =Ri/Ro (2.8.26)

we can recurse away. At each stage M we use equations (2.8.23) and (2.8.24) to find H 1541\{1—41_ D s

G](VIIM:;I)’ and then equation (2.8.25) to find the other components of H M 'H), GM+1D)

From there the vectors x(™ +1) and/or z(+1) are easily calculated.
The program below does this. It incorporates the second equation in (2.8.25) in the form

M+1 M M+1 M
HIEJ_JJT ) — H}l_)j — =M )G](. ) (2.8.27)
so that the computation can be done “in place.”

Notice that the above algorithm fails if Rg = 0. In fact, because the bordering method
does not allow pivoting, the algorithm will fail if any of the diagonal principal minors of the
original Toeplitz matrix vanish. (Compare with discussion of the tridiagonal algorithm in
§2.4.) If the algorithm fails, your matrix is not necessarily singular — you might just have to
solve your problem by a slower and more general algorithm such as LU decomposition with
pivoting.

The routine that implements equations (2.8.23) — (2.8.27) is also due to Rybicki. Note
that the routine’s r [n-1+3] is equal to R; above, so that subscripts on the r array vary from
0to2N —2.

void toeplz(VecDoub_I &r, VecDoub_0 &x, VecDoub_I &y)
Solves the Toeplitz system Z}v:_ol Rin-14i—j)x; = yi (i =0,...,N —1). The Toeplitz
matrix need not be symmetric. y[0..n-1] and r[0..2*n-2] are input arrays; x[0..n-1] is the
output array.
{

Int j,k,m,m1,m2,nl,n=y.size();

Doub pp,ptl,pt2,qq,qtl,qt2,sd,sgd,sgn,shn,sxn;

nl=n-1;
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if (r[n1] == 0.0) throw("toeplz-1 singular principal minor");
x[0]=y[0]/r[n1]; Initialize for the recursion.
if (nl1 == 0) return;

VecDoub g(n1),h(nl);
glo]l=r[n1-1]/r[n1l;
h[0]=r[ni1+1]/r[ni];

for (m=0;m<n;m++) { Main loop over the recursion.
ml=m+1;
sxn = -y[m1]; Compute numerator and denominator for x from eq.
sd = -r[ni]; (2.8.19),

}

for (j=0;j<m+1;j++) {
sxn += r[nl+mi-jl*x[j];
sd += r[ni+mi1-jl*glm-jl;

}
if (sd == 0.0) throw("toeplz-2 singular principal minor");
x[m1]=sxn/sd; whence x.
for (j=0;j<m+1;j++) Eq. (2.8.16).
x[j] -= x[m1l*gm-j1;
if (m1 == nl1) return;
sgn = -r[ni-m1-1]; Compute numerator and denominator for G and H,
shn = -r[nl+mi+1]; egs. (2.8.24) and (2.8.23),
sgd = -r[n1];

for (j=0;j<m+1;j++) {
sgn += rlni+j-milx*gl[jl;
shn += r[nl+m1-jl*h([j];
sgd += r[ni+j-m1l*h[m-j];

}

if (sgd == 0.0) throw("toeplz-3 singular principal minor");

glmi]=sgn/sgd; whence G and H.

h[mi]=shn/sd;

k=m;

m2=(m+2) >> 1;

pp=g[mi];

qq=h[m1];

for (j=0;j<m2;j++) {
pti=gl[jl;
pt2=glk];
qt1=h[jl;
qt2=h[k];
gljl=pti-pp*qt2;
glk]=pt2-pp*qt1;
h[jl=qt1-qq*pt2;
h[k--1=qt2-qq*pt1;

}

Back for another recurrence.

throw("toeplz - should not arrive here!");

If you are in the business of solving very large Toeplitz systems, you should find out

about so-called “new, fast” algorithms, which require only on the order of N(log N)? opera-
tions, compared to N2 for Levinson’s method. These methods are too complicated to include
here. Papers by Bunch [6] and de Hoog [7] will give entry to the literature.
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2.9 Cholesky Decomposition

If a square matrix A happens to be symmetric and positive-definite, then it has a spe-
cial, more efficient, triangular decomposition. Symmetric means that a;; = aj; for i, j =
0,..., N — 1, while positive-definite means that

v-A-v >0 forall vectors v 2.9.1)

(In Chapter 11 we will see that positive-definite has the equivalent interpretation that A has
all positive eigenvalues.) While symmetric, positive-definite matrices are rather special, they
occur quite frequently in some applications, so their special factorization, called Cholesky
decomposition, is good to know about. When you can use it, Cholesky decomposition is about
a factor of two faster than alternative methods for solving linear equations.

Instead of seeking arbitrary lower and upper triangular factors L and U, Cholesky de-
composition constructs a lower triangular matrix L. whose transpose L T can itself serve as the
upper triangular part. In other words we replace equation (2.3.1) by

L-LT=A (2.9.2)

This factorization is sometimes referred to as “taking the square root” of the matrix A, though,
because of the transpose, it is not literally that. The components of LT are of course related
to those of L by

Ll =Lji (2.9.3)

Writing out equation (2.9.2) in components, one readily obtains the analogs of equations
(2.3.12) - (2.3.13),

i—1 1/2
Li = (ai,- -> Ll?k) (2.9.4)
k=0
and
1 i—1
Lji:L—ii(a;j—ZLiijk) j=i+1,i+4+2...,N—1 (2.9.5)
k=0

If you apply equations (2.9.4) and (2.9.5) in the order i = 0,1,..., N — 1, you will
see that the L’s that occur on the right-hand side are already determined by the time they are
needed. Also, only components a;; with j > i are referenced. (Since A is symmetric, these
have complete information.) If storage is at a premium, it is possible to have the factor L over-
write the subdiagonal (lower triangular but not including the diagonal) part of A, preserving
the input upper triangular values of A; one extra vector of length N is then needed to store the
diagonal part of L. The operations count is N 3/6 executions of the inner loop (consisting of
one multiply and one subtract), with also N square roots. As already mentioned, this is about
a factor 2 better than LU decomposition of A (where its symmetry would be ignored).
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You might wonder about pivoting. The pleasant answer is that Cholesky decomposition
is extremely stable numerically, without any pivoting at all. Failure of the decomposition
simply indicates that the matrix A (or, with roundoff error, another very nearby matrix) is
not positive-definite. In fact, this is an efficient way to test whether a symmetric matrix is
positive-definite. (In this application, you may want to replace the throw in the code below
with some less drastic signaling method.)

By now you should be familiar with, if not bored by, our conventions for objects im-
plementing decomposition methods, so we list the object Cholesky as a single big mouthful.
The methods elmult and elsolve perform manipulations using the matrix L. The first mul-
tiplies L - y = ¢ for a given y, returning c¢. The second solves this same equation, given ¢ and
returning y. These manipulations are useful in contexts such as multivariate Gaussians (§7.4
and §16.5) and in the analysis of covariance matrices (§15.6).

struct Cholesky{
Object for Cholesky decomposition of a matrix A, and related functions.
Int n;
MatDoub el; Stores the decomposition.
Cholesky(MatDoub_I &a) : n(a.nrows()), el(a) {
Constructor. Given a positive-definite symmetric matrix a[0..n-1][0..n-1], construct
and store its Cholesky decomposition, A =L LT,
Int i,j,k;
VecDoub tmp;
Doub sum;
if (el.ncols() != n) throw("need square matrix");
for (i=0;i<n;i++) {
for (j=i;j<n;j++) {
for (sum=ell[i] [j],k=i-1;k>=0;k--) sum -= el[i] [k]*el[j][k];
if (i == 3j) {
if (sum <= 0.0) A, with rounding errors, is not positive-definite.
throw("Cholesky failed");
el[i] [il=sqrt(sum);
} else el[jl[il=sum/el[i][i];
}
}
for (i=0;i<n;i++) for (j=0;j<i;j++) el[jl[i] = 0.;
}
void solve(VecDoub_I &b, VecDoub_0 &x) {
Solve the set of n linear equations A-X = b, where a is a positive-definite symmetric matrix
whose Cholesky decomposition has been stored. b[0..n-1] is input as the right-hand side
vector. The solution vector is returned in x[0..n-1].

Int i,k;

Doub sum;

if (b.size() != n || x.size() != n) throw("bad lengths in Cholesky");
for (i=0;i<n;i++) { Solve L -y = b, storing y in Xx.

for (sum=b[i],k=i-1;k>=0;k--) sum -= el[i] [k]*x[k];
x[i]=sum/el[i] [i];

}

for (i=n-1;i>=0;i--) { Solve LT -x =y.
for (sum=x[i],k=i+1;k<n;k++) sum -= ell[k] [i]*x[k];
x[i]=sum/el[i] [i];

}

}
void elmult(VecDoub_I &y, VecDoub_0 &b) {
Multiply L -y = b, where L is the lower triangular matrix in the stored Cholesky decom-
position. y[0..n-1] is input. The result is returned in b[0..n-1].
Int i,j;
if (b.size() !'=n || y.size() != n) throw("bad lengths");
for (i=0;i<n;i++) {
b[i] = 0.;
for (j=0;j<=i;j++) blil += el[i]l[jI*y[jl;

cholesky.h
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void elsolve(VecDoub_I &b, VecDoub_0 &y) {
Solve L -y = b, where L is the lower triangular matrix in the stored Cholesky decomposi-
tion. b[0..n-1] is input as the right-hand side vector. The solution vector is returned in
y[0..n-1].
Int i,j;
Doub sum;
if (b.size() !=n || y.size() != n) throw("bad lengths");
for (i=0;i<n;i++) {
for (sum=b[i],j=0; j<i; j++) sum -= el[il [jl*y[jl;
y[i] = sum/el[i][i];
}
}
void inverse(MatDoub_0 &ainv) {
Set ainv[0..n-1] [0..n-1] to the matrix inverse of A, the matrix whose Cholesky decom-
position has been stored.
Int i,j,k;
Doub sum;
ainv.resize(n,n);
for (i=0;i<n;i++) for (j=0;j<=i;j++){
sum = (i==j7 1. : 0.);
for (k=i-1;k>=j;k--) sum -= el[i] [k]*ainv[j][k];
ainv[j][i]l= sum/el[i] [i];

}

for (i=n-1;i>=0;i--) for (j=0;j<=i;j++){
sum = (i<j? 0. : ainv[jl[il);
for (k=i+1;k<n;k++) sum -= el[k][i]*ainv[j][k];
ainv[i][j] = ainv[j1[i] = sun/el[il[il;

}

}
Doub logdet() {
Return the logarithm of the determinant of A, the matrix whose Cholesky decomposition
has been stored.
Doub sum = O0.;
for (Int i=0; i<n; i++) sum += log(el[i][il);
return 2.*sum;

CITED REFERENCES AND FURTHER READING:
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2.10 QR Decomposition

There is another matrix factorization that is sometimes very useful, the so-called QR

decomposition,
A=Q-R (2.10.1)
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Here R is upper triangular, while Q is orthogonal, that is,
QT.Q=1 (2.10.2)

where QT is the transpose matrix of Q. Although the decomposition exists for a general
rectangular matrix, we shall restrict our treatment to the case when all the matrices are square,
with dimensions N x N.

Like the other matrix factorizations we have met (LU, SVD, Cholesky), O R decompo-
sition can be used to solve systems of linear equations. To solve

A-x=h (2.10.3)

first form QT - b and then solve
R-x=Q7.p (2.10.4)

by backsubstitution. Since QR decomposition involves about twice as many operations as
LU decomposition, it is not used for typical systems of linear equations. However, we will
meet special cases where QR is the method of choice.

The standard algorithm for the QR decomposition involves successive Householder
transformations (to be discussed later in §11.3). We write a Householder matrix in the form
1—-u®u/c, where c = %u -u. An appropriate Householder matrix applied to a given matrix
can zero all elements in a column of the matrix situated below a chosen element. Thus we
arrange for the first Householder matrix Q to zero all elements in column 0 of A below the
zeroth element. Similarly, Q zeroes all elements in column 1 below element 1, and so on up
to Q,,_». Thus

R=Q;2---Qp-A (2.10.5)
Since the Householder matrices are orthogonal,
Q=Qu2-Q) "' =Qo--Qu2 (2.10.6)

In many applications Q is not needed explicitly, and it is sufficient to store only the factored
form (2.10.6). (We do, however, store Q, or rather its transpose, in the code below.) Pivoting
is not usually necessary unless the matrix A is very close to singular. A general QR algorithm
for rectangular matrices including pivoting is given in [1]. For square matrices and without
pivoting, an implementation is as follows:

struct QRdcmp {
Object for QR decomposition of a matrix A, and related functions.

Int n;

MatDoub qt, r; Stored QT and R.

Bool sing; Indicates whether A is singular.
QRdcmp (MatDoub_I &a); Constructor from A.

void solve(VecDoub_I &b, VecDoub_0 &x); Solve A -x = b for x.

void qtmult(VecDoub_I &b, VecDoub_0 &x); Multiply QT ‘b =x.

void rsolve(VecDoub_I &b, VecDoub_0 &x); Solve R-x = b for x.

void update(VecDoub_I &u, VecDoub_I &v); See next subsection.

void rotate(const Int i, const Doub a, const Doub b); Used by update.

As usual, the constructor performs the actual decomposition:

QRdcmp: : QRdcmp (MatDoub_I &a)

: n(a.nrows()), qt(n,n), r(a), sing(false) {
Construct the QR decomposition of a[0..n-1][0..n-1]. The upper triangular matrix R and
the transpose of the orthogonal matrix Q are stored. sing is set to true if a singularity is
encountered during the decomposition, but the decomposition is still completed in this case;
otherwise it is set to false.

Int i,j,k;

VecDoub c(n), d(n);

Doub scale,sigma,sum,tau;

grdcmp.h

grdcmp.h
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for (k=0;k<n-1;k++) {

scale=0.0;

for (i=k;i<n;i++) scale=MAX(scale,abs(r[i][k]));

if (scale == 0.0) { Singular case.
sing=true;
c[k]=d[k]=0.0;

} else { Form Qx and Qg - A.

for (i=k;i<n;i++) r[i] [k] /= scale;
for (sum=0.0,i=k;i<n;i++) sum += SQR(r[i] [k]);
sigma=SIGN(sqrt (sum) ,r [k] [k]);
r[k] [k] += sigma;
c[k]=sigmaxr[k] [k];
d[k] = -scale*sigma;
for (j=k+1;j<n;j++) {
for (sum=0.0,i=k;i<n;i++) sum += r[i] [k]*r[i][j];
tau=sum/c[k] ;
for (i=k;i<n;i++) r[il[j] -= tauxr[i] [k];

}
}
d[n-1]=r[n-1] [n-1];
if (d[n-1] == 0.0) sing=true;
for (i=0;i<n;i++) { Form Q7 explicitly.
for (j=0;j<n;j++) qtl[i][j]1=0.0;
qt[i]1[i]1=1.0;
}
for (k=0;k<n-1;k++) {
if (clk] '= 0.0) {
for (j=0;j<n;j++) {
sum=0.0;
for (i=k;i<n;i++)
sum += r[i] [kIx*qt[i] [j];
sum /= c[k];
for (i=k;i<n;i++)
qt[i1[j] -= sum*r[i] [k];

}
}
}
for (i=0;i<n;i++) { Form R explicitly.
rli] [i]=d[i];
for (j=0;j<i;j++) r[il1[j1=0.0;
}

The next set of member functions is used to solve linear systems. In many applications
only the part (2.10.4) of the algorithm is needed, so we put in separate routines the multipli-

cation QT - b and the backsubstitution on R.

grdcmp.h void QRdcmp::solve(VecDoub_I &b, VecDoub_0 &x) {
Solve the set of n linear equations A-xX = b. b[0..n-1] is input as the right-hand side vector,
and x[0..n-1] is returned as the solution vector.
qtmult(b,x) ; Form QT -b.
rsolve(x,x); Solve R-x = QT -b.
}

void QRdcmp::qtmult(VecDoub_I &b, VecDoub_0 &x) {
Multiply QT -b and put the result in X. Since Q is orthogonal, this is equivalent to solving
Q-x =b for x.
Int i,j;
Doub sum;
for (i=0;i<n;i++) {
sum = O.;
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for (j=0;j<n;j++) sum += qt[i]l[j1*b[j];
x[i] = sum;

}

void QRdcmp::rsolve(VecDoub_I &b, VecDoub_0 &x) {
Solve the triangular set of n linear equations R-x = b. b[0..n-1] is input as the right-hand
side vector, and x[0..n-1] is returned as the solution vector.
Int i,j;
Doub sum;
if (sing) throw("attempting solve in a singular QR");
for (i=n-1;i>=0;i--) {
sum=b[i];
for (j=i+1;j<m;j++) sum -= r[i]l [j1*x[j];
x[i]=sum/r[i] [i];

See [2] for details on how to use QR decomposition for constructing orthogonal bases,
and for solving least-squares problems. (We prefer to use SVD, §2.6, for these purposes,
because of its greater diagnostic capability in pathological cases.)

2.10.1 Updating a QR decomposition

Some numerical algorithms involve solving a succession of linear systems each of which
differs only slightly from its predecessor. Instead of doing O(N 3) operations each time to
solve the equations from scratch, one can often update a matrix factorization in O(N?) op-
erations and use the new factorization to solve the next set of linear equations. The LU
decomposition is complicated to update because of pivoting. However, QR turns out to be
quite simple for a very common kind of update,

A—->A+s®t (2.10.7)
(compare equation 2.7.1). In practice it is more convenient to work with the equivalent form
A=Q-R - A'=Q R =Q-R+u®v) (2.10.8)

One can go back and forth between equations (2.10.7) and (2.10.8) using the fact that Q is
orthogonal, giving

t=v andeither s=Q-u or u=QT-s (2.10.9)

The algorithm [2] has two phases. In the first we apply N — 1 Jacobi rotations (§11.1) to
reduce R + u ® v to upper Hessenberg form. Another N — 1 Jacobi rotations transform this
upper Hessenberg matrix to the new upper triangular matrix R’. The matrix Q’ is simply the
product of Q with the 2(N — 1) Jacobi rotations. In applications we usually want Q7 , so the
algorithm is arranged to work with this matrix (which is stored in the QRdcmp object) instead
of with Q.

void QRdcmp::update(VecDoub_I &u, VecDoub_I &v) {
Starting from the stored QR decomposition A = Q-R, update it to be the QR decomposition
of the matrix Q - (R +u ® v). Input quantities are u[0..n-1], and v[0..n-1].

Int i,k;
VecDoub w(u);
for (k=n-1;k>=0;k--) Find largest k such that u[k] # 0.

if (wlk] !'= 0.0) break;
if (k < 0) k=0;
for (i=k-1;i>=0;i--) { Transform R 4+ u ® v to upper Hessenberg.
rotate(i,wli],-w[i+1]);
if (w[i] == 0.0)
wlil=abs(wli+1]);

grdcmp.h
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else if (abs(w[i]) > abs(w[i+1]))
wli]=abs(w[i])*sqrt(1.0+SQR(w[i+1]/w[i]));
else wlil=abs(w[i+1])*sqrt(1.0+SQR(w[i]l/w[i+1]));

}
for (i=0;i<n;i++) r[0][i] += w[0]*v[i];
for (i=0;i<k;i++) Transform upper Hessenberg matrix to upper tri-

rotate(i,r[i] [i],-r[i+1][i]); angular.
for (i=0;i<n;i++)
if (r[i]J[i] == 0.0) sing=true;
}

void QRdcmp::rotate(const Int i, const Doub a, const Doub b)
Utility used by update. Given matrices r[0..n-1]1[0..n-1] and qt[0..n-1]1[0..n-1], carry
out a Jacobi rotation on rows i and i + 1 of each matrix. a and b are the parameters of the

rotation: cosf = a/~/a? + b2, sinf = b/~/a? + b2.

{

Int j;

Doub c,fact,s,w,y;

if (a == 0.0) { Avoid unnecessary overflow or underflow.
c=0.0;
s=(b >= 0.0 7 1.0 : -1.0);

} else if (abs(a) > abs(b)) {
fact=b/a;
c=SIGN(1.0/sqrt(1.0+(fact*fact)),a);
s=fact*c;

} else {
fact=a/b;
s=SIGN(1.0/sqrt(1.0+(fact*fact)),b);
c=fact*s;

}

for (j=i;j<n;j++) { Premultiply r by Jacobi rotation.
y=r[i] [j1;
w=r[i+1]1[j1;
r[i] [jl=c*y-s*w;
r[i+1] [jI=s*y+c*w;

}

for (j=0;j<n;j++) { Premultiply qt by Jacobi rotation.
y=qt [i]1 [j];
w=qt [i+11[j];
qt [i] [j1=c*y-s*w;
qt [i+1] [jl=s*y+c*w;

}

}

We will make use of QR decomposition, and its updating, in §9.7.

CITED REFERENCES AND FURTHER READING:

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. || of Handbook for Automatic Com-
putation (New York: Springer), Chapter 1/8.[1]

Golub, G.H., and Van Loan, C.F. 1996, Matrix Computations, 3rd ed. (Baltimore: Johns Hopkins
University Press), §5.2, §5.3, §12.5.[2]

2.11 Is Matrix Inversion an N 3 Process?

We close this chapter with a little entertainment, a bit of algorithmic prestidig-
itation that probes more deeply into the subject of matrix inversion. We start with a
seemingly simple question:
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How many individual multiplications does it take to perform the matrix multi-
plication of two 2 x 2 matrices,

ago ao1 boo  boi Coo  Cot
. = 2.11.1
(alo 011) (blo bll) (6’10 011) ( )

Eight, right? Here they are written explicitly:

Coo = aoo X boo + ao1 x bio
Co1 = ago X bo1 + a1 X b1y
(2.11.2)
c10 = a1o X boo + a1 X bio
ci1 = aio X bo1 + a1 x by

Do you think that one can write formulas for the ¢’s that involve only seven
multiplications? (Try it yourself, before reading on.)
Such a set of formulas was, in fact, discovered by Strassen [1]. The formulas are

Qo = (aoo + a11) X (boo + b11)

01 = (a10 + a11) X boo

02 = ago X (bo1 — b11)

03 = an x (—=boo + b10) (2.11.3)
Q4 = (aoo + ao1) X b1y

Os = (—aogo + aio) x (boo + bo1)

Q6 = (ao1 —an) x (bio + b11)

in terms of which

coo = Qo+ 03— 04+ Os
c10=01+ 03
co1 = Q2+ Q4
ci1 =00+ 02— 01+ 0s

(2.11.4)

What’s the use of this? There is one fewer multiplication than in equation
(2.11.2), but many more additions and subtractions. It is not clear that anything
has been gained. But notice that in (2.11.3) the a’s and b’s are never commuted.
Therefore (2.11.3) and (2.11.4) are valid when the a’s and b’s are themselves ma-
trices. The problem of multiplying two very large matrices (of order N = 2™ for
some integer m) can now be broken down recursively by partitioning the matrices
into quarters, sixteenths, etc. And note the key point: The savings is not just a factor
“7/8; it is that factor at each hierarchical level of the recursion. In total it reduces
the process of matrix multiplication to order N'°227 instead of N3.

What about all the extra additions in (2.11.3) — (2.11.4)? Don’t they outweigh
the advantage of the fewer multiplications? For large N, it turns out that there are
six times as many additions as multiplications implied by (2.11.3) — (2.11.4). But, if
N 1is very large, this constant factor is no match for the change in the exponent from
N3 to N7,
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With this “fast” matrix multiplication, Strassen also obtained a surprising result
for matrix inversion [1]. Suppose that the matrices

(“00 “01) and (C"O C‘”) (2.11.5)
ajp dii 1o C11

are inverses of each other. Then the ¢’s can be obtained from the a’s by the following
operations (compare equations 2.7.11 and 2.7.25):

Ry = Inverse(agg)
Ry =a10 X Ry
R, = Ry xap
R3 = a0 X R2
R4 = R3—an
Rs = Inverse(Ry4) (2.11.6)
co1 = Ry X Rs
c10 = Rs X R,

Rs = Ry x c10
coo = Ro — Re¢
c11 = —Rs

In (2.11.6) the “inverse” operator occurs just twice. It is to be interpreted as the
reciprocal if the a’s and c’s are scalars, but as matrix inversion if the a’s and ¢’s are
themselves submatrices. Imagine doing the inversion of a very large matrix, of order
N = 2™, recursively by partitions in half. At each step, halving the order doubles
the number of inverse operations. But this means that there are only N divisions in
all! So divisions don’t dominate in the recursive use of (2.11.6). Equation (2.11.6)
is dominated, in fact, by its 6 multiplications. Since these can be done by an N'°¢27
algorithm, so can the matrix inversion!

This is fun, but let’s look at practicalities: If you estimate how large N has to be
before the difference between exponent 3 and exponent log, 7 = 2.807 is substantial
enough to outweigh the bookkeeping overhead, arising from the complicated nature
of the recursive Strassen algorithm, you will find that LU decomposition is in no
immediate danger of becoming obsolete. However, the fast matrix multiplication
routine itself is beginning to appear in libraries like BLAS, where it is typically used
for N = 100.

Strassen’s original result for matrix multiplication has been steadily improved.
The fastest currently known algorithm [2] has an asymptotic order of N2-37¢, but it
is not likely to be practical to implement it.

If you like this kind of fun, then try these: (1) Can you multiply the complex
numbers (a+ib) and (c +id) in only three real multiplications? [Answer: See §5.5.]
(2) Can you evaluate a general fourth-degree polynomial in x for many different
values of x with only three multiplications per evaluation? [Answer: See §5.1.]
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Interpolation and
Extrapolation

3.0 Introduction

We sometimes know the value of a function f(x) at a set of points xg, x1, ...,
xny—1 (say, with xg < ... < xy—1), but we don’t have an analytic expression for
f(x) that lets us calculate its value at an arbitrary point. For example, the f(x;)’s
might result from some physical measurement or from long numerical calculation
that cannot be cast into a simple functional form. Often the x;’s are equally spaced,
but not necessarily.

The task now is to estimate f(x) for arbitrary x by, in some sense, drawing a
smooth curve through (and perhaps beyond) the x;. If the desired x is in between the
largest and smallest of the x;’s, the problem is called interpolation; if x is outside
that range, it is called extrapolation, which is considerably more hazardous (as many
former investment analysts can attest).

Interpolation and extrapolation schemes must model the function, between or
beyond the known points, by some plausible functional form. The form should be
sufficiently general so as to be able to approximate large classes of functions that
might arise in practice. By far most common among the functional forms used are
polynomials (§3.2). Rational functions (quotients of polynomials) also turn out to
be extremely useful (§3.4). Trigonometric functions, sines and cosines, give rise to
trigonometric interpolation and related Fourier methods, which we defer to Chapters
12 and 13.

There is an extensive mathematical literature devoted to theorems about what
sort of functions can be well approximated by which interpolating functions. These
theorems are, alas, almost completely useless in day-to-day work: If we know enough
about our function to apply a theorem of any power, we are usually not in the pitiful
state of having to interpolate on a table of its values!

Interpolation is related to, but distinct from, function approximation. That task
consists of finding an approximate (but easily computable) function to use in place of
a more complicated one. In the case of interpolation, you are given the function f at
points not of your own choosing. For the case of function approximation, you are al-
lowed to compute the function f at any desired points for the purpose of developing
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your approximation. We deal with function approximation in Chapter 5.
One can easily find pathological functions that make a mockery of any interpo-
lation scheme. Consider, for example, the function

fx) =3x>+ % In[(r —x)*] +1 (3.0.1)

which is well-behaved everywhere except at x = 7, very mildly singular at x = 7,
and otherwise takes on all positive and negative values. Any interpolation based on
the values x = 3.13,3.14,3.15, 3.16, will assuredly get a very wrong answer for the
value x = 3.1416, even though a graph plotting those five points looks really quite
smooth! (Try it.)

Because pathologies can lurk anywhere, it is highly desirable that an interpo-
lation and extrapolation routine should provide an estimate of its own error. Such
an error estimate can never be foolproof, of course. We could have a function that,
for reasons known only to its maker, takes off wildly and unexpectedly between two
tabulated points. Interpolation always presumes some degree of smoothness for the
function interpolated, but within this framework of presumption, deviations from
smoothness can be detected.

Conceptually, the interpolation process has two stages: (1) Fit (once) an inter-
polating function to the data points provided. (2) Evaluate (as many times as you
wish) that interpolating function at a target point x.

However, this two-stage method is usually not the best way to proceed in prac-
tice. Typically it is computationally less efficient, and more susceptible to roundoff
error, than methods that construct a functional estimate f(x) directly from the N
tabulated values every time one is desired. Many practical schemes start at a nearby
point f(x;), and then add a sequence of (hopefully) decreasing corrections, as in-
formation from other nearby f(x;)’s is incorporated. The procedure typically takes
O(M?) operations, where M < N is the number of local points used. If everything
is well behaved, the last correction will be the smallest, and it can be used as an in-
formal (though not rigorous) bound on the error. In schemes like this, we might also
say that there are two stages, but now they are: (1) Find the right starting position in
the table (x; ori). (2) Perform the interpolation using M nearby values (for example,
centered on x;).

In the case of polynomial interpolation, it sometimes does happen that the co-
efficients of the interpolating polynomial are of interest, even though their use in
evaluating the interpolating function should be frowned on. We deal with this possi-
bility in §3.5.

Local interpolation, using M nearest-neighbor points, gives interpolated values
f(x) that do not, in general, have continuous first or higher derivatives. That hap-
pens because, as x crosses the tabulated values x;, the interpolation scheme switches
which tabulated points are the “local” ones. (If such a switch is allowed to occur
anywhere else, then there will be a discontinuity in the interpolated function itself at
that point. Bad idea!)

In situations where continuity of derivatives is a concern, one must use the
“stiffer” interpolation provided by a so-called spline function. A spline is a polyno-
mial between each pair of table points, but one whose coefficients are determined
“slightly” nonlocally. The nonlocality is designed to guarantee global smoothness in
the interpolated function up to some order of derivative. Cubic splines (§3.3) are the
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Figure 3.0.1. (a) A smooth function (solid line) is more accurately interpolated by a high-order polyno-
mial (shown schematically as dotted line) than by a low-order polynomial (shown as a piecewise linear
dashed line). (b) A function with sharp corners or rapidly changing higher derivatives is less accurately
approximated by a high-order polynomial (dotted line), which is too “stiff,” than by a low-order polyno-
mial (dashed lines). Even some smooth functions, such as exponentials or rational functions, can be badly
approximated by high-order polynomials.

most popular. They produce an interpolated function that is continuous through the
second derivative. Splines tend to be stabler than polynomials, with less possibility
of wild oscillation between the tabulated points.

The number M of points used in an interpolation scheme, minus 1, is called
the order of the interpolation. Increasing the order does not necessarily increase
the accuracy, especially in polynomial interpolation. If the added points are distant
from the point of interest x, the resulting higher-order polynomial, with its additional
constrained points, tends to oscillate wildly between the tabulated values. This os-
cillation may have no relation at all to the behavior of the “true” function (see Figure
3.0.1). Of course, adding points close to the desired point usually does help, but a
finer mesh implies a larger table of values, which is not always available.

For polynomial interpolation, it turns out that the worst possible arrangement
of the x;’s is for them to be equally spaced. Unfortunately, this is by far the most
common way that tabulated data are gathered or presented. High-order polynomial
interpolation on equally spaced data is ill-conditioned: small changes in the data can
give large differences in the oscillations between the points. The disease is particu-
larly bad if you are interpolating on values of an analytic function that has poles in
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the complex plane lying inside a certain oval region whose major axis is the M -point
interval. But even if you have a function with no nearby poles, roundoff error can, in
effect, create nearby poles and cause big interpolation errors. In §5.8 we will see that
these issues go away if you are allowed to choose an optimal set of x;’s. But when
you are handed a table of function values, that option is not available.

As the order is increased, it is typical for interpolation error to decrease at first,
but only up to a certain point. Larger orders result in the error exploding.

For the reasons mentioned, it is a good idea to be cautious about high-order
interpolation. We can enthusiastically endorse polynomial interpolation with 3 or 4
points; we are perhaps tolerant of 5 or 6; but we rarely go higher than that unless there
is quite rigorous monitoring of estimated errors. Most of the interpolation methods
in this chapter are applied piecewise using only M points at a time, so that the order
is a fixed value M — 1, no matter how large N is. As mentioned, splines (§3.3) are a
special case where the function and various derivatives are required to be continuous
from one interval to the next, but the order is nevertheless held fixed a a small value
(usually 3).

In §3.4 we discuss rational function interpolation. In many, but not all, cases,
rational function interpolation is more robust, allowing higher orders to give higher
accuracy. The standard algorithm, however, allows poles on the real axis or nearby in
the complex plane. (This is not necessarily bad: You may be trying to approximate
a function with such poles.) A newer method, barycentric rational interpolation
(§3.4.1) suppresses all nearby poles. This is the only method in this chapter for
which we might actually encourage experimentation with high order (say, > 6).
Barycentric rational interpolation competes very favorably with splines: its error is
often smaller, and the resulting approximation is infinitely smooth (unlike splines).

The interpolation methods below are also methods for extrapolation. An impor-
tant application, in Chapter 17, is their use in the integration of ordinary differential
equations. There, considerable care is taken with the monitoring of errors. Other-
wise, the dangers of extrapolation cannot be overemphasized: An interpolating func-
tion, which is perforce an extrapolating function, will typically go berserk when the
argument x is outside the range of tabulated values by more (and often significantly
less) than the typical spacing of tabulated points.

Interpolation can be done in more than one dimension, e.g., for a function
f(x,y,z). Multidimensional interpolation is often accomplished by a sequence of
one-dimensional interpolations, but there are also other techniques applicable to scat-
tered data. We discuss multidimensional methods in §3.6 — §3.8.
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3.1 Preliminaries: Searching an Ordered Table

We want to define an interpolation object that knows everything about interpo-
lation except one thing — how to actually interpolate! Then we can plug mathemati-
cally different interpolation methods into the object to get different objects sharing a
common user interface. A key task common to all objects in this framework is find-
ing your place in the table of x;’s, given some particular value x at which the function
evaluation is desired. It is worth some effort to do this efficiently; otherwise you can
easily spend more time searching the table than doing the actual interpolation.

Our highest-level object for one-dimensional interpolation is an abstract base
class containing just one function intended to be called by the user: interp(x)
returns the interpolated function value at x. The base class “promises,” by declaring
a virtual function rawinterp(jlo,x), that every derived interpolation class will
provide a method for local interpolation when given an appropriate local starting
point in the table, an offset jlo. Interfacing between interp and rawinterp must
thus be a method for calculating jlo from x, that is, for searching the table. In fact,
we will use two such methods.

struct Base_interp
Abstract base class used by all interpolation routines in this chapter. Only the routine interp
is called directly by the user.

{
Int n, mm, jsav, cor, dj;
const Doub *xx, *yy;
Base_interp(VecDoub_I &x, const Doub *y, Int m)
Constructor: Set up for interpolating on a table of x's and y's of length m. Normally called
by a derived class, not by the user.
: n(x.size()), mm(m), jsav(0), cor(0), xx(&x[0]), yy(y) {
dj = MIN(1, (int)pow((Doub)n,0.25));
}
Doub interp(Doub x) {
Given a value x, return an interpolated value, using data pointed to by xx and yy.
Int jlo = cor ? hunt(x) : locate(x);
return rawinterp(jlo,x);
}
Int locate(const Doub x); See definitions below.
Int hunt(const Doub x);
Doub virtual rawinterp(Int jlo, Doub x) = O;
Derived classes provide this as the actual interpolation method.
};

Formally, the problem is this: Given an array of abscissas x;, j = 0,...,N—1,
with the abscissas either monotonically increasing or monotonically decreasing, and
given an integer M < N, and a number x, find an integer jj, such that x is centered
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among the M abscissas x, , ..., X +m—1. By centered we mean that x lies between
Xm and X, 41 insofar as possible, where
, M -2
m = ji + T 3.1.1)

By “insofar as possible” we mean that jj, should never be less than zero, nor should
Jio + M — 1 be greater than N — 1.

In most cases, when all is said and done, it is hard to do better than bisection,
which will find the right place in the table in about log, N tries.

Int Base_interp::locate(const Doub x)
Given a value x, return a value j such that x is (insofar as possible) centered in the subrange
xx[j..j+mm-1], where xx is the stored pointer. The values in xx must be monotonic, either
increasing or decreasing. The returned value is not less than O, nor greater than n-1.
{

Int ju,jm,jl;

if @ <2 || mm< 2 || mm > n) throw("locate size error");
Bool ascnd=(xx[n-1] >= xx[0]); True if ascending order of table, false otherwise.
j1=0; Initialize lower
ju=n-1; and upper limits.
while (ju-jl > 1) { If we are not yet done,
jm = (Gu+jl) >> 1; compute a midpoint,
if (x >= xx[jm] == ascnd)
jl=jm; and replace either the lower limit
else
ju=jm; or the upper limit, as appropriate.
} Repeat until the test condition is satisfied.
cor = abs(jl-jsav) > dj ? 0 : 1;  Decide whether to use hunt or locate next time.
jsav = jl;

return MAX(O,MIN(n-mm,jl-((mm-2)>>1)));

The above locate routine accesses the array of values xx [] via a pointer stored by the
base class. This rather primitive method of access, avoiding the use of a higher-level vector
class like VecDoub, is here preferable for two reasons: (1) It’s usually faster; and (2) for two-
dimensional interpolation, we will later need to point directly into a row of a matrix. The
peril of this design choice is that it assumes that consecutive values of a vector are stored
consecutively, and similarly for consecutive values of a single row of a matrix. See discussion
in §1.4.2.

3.1.1 Search with Correlated Values

Experience shows that in many, perhaps even most, applications, interpolation
routines are called with nearly identical abscissas on consecutive searches. For ex-
ample, you may be generating a function that is used on the right-hand side of a
differential equation: Most differential equation integrators, as we shall see in Chap-
ter 17, call for right-hand side evaluations at points that hop back and forth a bit, but
whose trend moves slowly in the direction of the integration.

In such cases it is wasteful to do a full bisection, ab initio, on each call. Much
more desirable is to give our base class a tiny bit of intelligence: If it sees two calls
that are “close,” it anticipates that the next call will also be. Of course, there must
not be too big a penalty if it anticipates wrongly.

The hunt method starts with a guessed position in the table. It first “hunts,”
either up or down, in increments of 1, then 2, then 4, etc., until the desired value is
bracketed. It then bisects in the bracketed interval. At worst, this routine is about a

interp_1d.h
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Figure 3.1.1. Finding a table entry by bisection. Shown here is the sequence of steps that converge to
element 50 in a table of length 64. (b) The routine hunt searches from a previous known position in
the table by increasing steps and then converges by bisection. Shown here is a particularly unfavorable
example, converging to element 31 from element 6. A favorable example would be convergence to an
element near 6, such as 8, which would require just three “hops.”

factor of 2 slower than 1ocate above (if the hunt phase expands to include the whole
table). At best, it can be a factor of log,n faster than locate, if the desired point is
usually quite close to the input guess. Figure 3.1.1 compares the two routines.

Int Base_interp::hunt(const Doub x)

Given a value x, return a value j such that x is (insofar as possible) centered in the subrange
xx[j..j+mm-1], where xx is the stored pointer. The values in xx must be monotonic, either
increasing or decreasing. The returned value is not less than 0, nor greater than n-1.

{

Int jl=jsav, jm, ju, inc=1;

if M <2 || mm< 2 || mm > n) throw("hunt size error");
Bool ascnd=(xx[n-1] >= xx[0]); True if ascending order of table, false otherwise.
if (L <0 |l j1 > n-1) { Input guess not useful. Go immediately to bisec-
j1=0; tion.
ju=n-1;
} else {
if (x >= xx[jl] == ascnd) { Hunt up:
for (5;) {
ju = jl + inc;
if (ju >= n-1) { ju = n-1; break;} Off end of table.
else if (x < xx[ju]l == ascnd) break; Found bracket.
else { Not done, so double the increment and try again.
jl = ju;
inc += inc;
}
}
} else { Hunt down:
ju = jl;
for (;;) {
jl = jl - inc;
if (31 <= 0) { j1 = 0; break;} Off end of table.
else if (x >= xx[jl] == ascnd) break; Found bracket.
else { Not done, so double the increment and try again.

ju = jl;
inc += inc;
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}
}
}
}
while (ju-jl > 1) { Hunt is done, so begin the final bisection phase:
jm = (u+jl) >> 1;
if (x >= xx[jm] == ascnd)
jl=jm;
else
ju=jm;
}
cor = abs(jl-jsav) > dj ? 0 : 1; Decide whether to use hunt or locate next
jsav = jl; time.

return MAX(O,MIN(n-mm, j1-((mm-2)>>1)));

The methods locate and hunt each update the boolean variable cor in the
base class, indicating whether consecutive calls seem correlated. That variable is
then used by interp to decide whether to use locate or hunt on the next call. This
is all invisible to the user, of course.

3.1.2 Example: Linear Interpolation

You may think that, at this point, we have wandered far from the subject of
interpolation methods. To show that we are actually on track, here is a class that
efficiently implements piecewise linear interpolation.

struct Linear_interp : Base_interp
Piecewise linear interpolation object. Construct with X and y vectors, then call interp for
interpolated values

{
Linear_interp(VecDoub_I &xv, VecDoub_I &yv)
: Base_interp(xv,&yv[0],2) {}
Doub rawinterp(Int j, Doub x) {
if (xx[jl==xx[j+1]) return yyl[jl; Table is defective, but we can recover.
else return yy[jl + ((x-xx[j1)/(xx[j+11-xx[j1))*(yy[j+1]1-yy[j1);
}
};

You construct a linear interpolation object by declaring an instance with your
filled vectors of abscissas x; and function values y; = f(x;),

Int n=...;
VecDoub xx(n), yy(n);
Linear_interp myfunc(xx,yy);

Behind the scenes, the base class constructor is called with M = 2 because linear
interpolation uses just the two points bracketing a value. Also, pointers to the data
are saved. (You must ensure that the vectors xx and yy don’t go out of scope while
myfunc is in use.)

When you want an interpolated value, it’s as simple as

Doub x,y;

y = myfunc.interp(x);

If you have several functions that you want to interpolate, you declare a separate
instance of Linear_interp for each one.

interp_linear.h



118 Chapter 3. Interpolation and Extrapolation

We will now use the same interface for more advanced interpolation methods.

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1997, Sorting and Searching, 3rd ed., vol. 3 of The Art of Computer Programming
(Reading, MA: Addison-Wesley), §6.2.1.

3.2 Polynomial Interpolation and Extrapolation

Through any two points there is a unique line. Through any three points there is
a unique quadratic. Et cetera. The interpolating polynomial of degree M — 1 through

the M points yo = f(x0),y1 = f(x1),...,ym—1 = f(xp—1) is given explicitly
by Lagrange’s classical formula,

P(x) = (x —x)(x —x2)...(x — xpr—1)
(x0 — x1)(Xo — X2).--(X0 — Xpr—1)"
(x —x0)(x — x2)..(x — xpr-1)
(x1 —x0)(x1 — x2)...(x1 —XM—l)y1 o 621
(x —x0)(x — x1)...(x — Xpr-2)
(xpr—1 — x0)(Xpr—1 — X1)...(Xpr—1 — Xp—2)

YmM—1

There are M terms, each a polynomial of degree M — 1 and each constructed to be
zero at all of the x;’s except one, at which it is constructed to be y;.

It is not terribly wrong to implement the Lagrange formula straightforwardly,
but it is not terribly right either. The resulting algorithm gives no error estimate, and
it is also somewhat awkward to program. A much better algorithm (for constructing
the same, unique, interpolating polynomial) is Neville’s algorithm, closely related to
and sometimes confused with Aitken’s algorithm, the latter now considered obsolete.

Let Py be the value at x of the unique polynomial of degree zero (i.e., a con-
stant) passing through the point (xg, yo); so Po = yo. Likewise define Py, P, ...,
Par—1. Now let Py be the value at x of the unique polynomial of degree one passing
through both (xo, yo) and (x1, y1). Likewise P12, P23, ..., P(pr—2)(m—1)- Similarly,
for higher-order polynomials, up to Py;5...(ar—1), which is the value of the unique in-
terpolating polynomial through all M points, i.e., the desired answer. The various
P’s form a “tableau” with “ancestors” on the left leading to a single “descendant” at
the extreme right. For example, with M = 4,

Xo - Yo = Po

Po1
X1 y1 =P Po12

P12 Po123 (3.2.2)
X3 y2 =P Pr23

P>

X3 y3=P;3

Neville’s algorithm is a recursive way of filling in the numbers in the tableau
a column at a time, from left to right. It is based on the relationship between a
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“daughter” P and its two “parents,”

(X = Xi4m) Pii+1)...(i+m—1) + (Xi = X) PG 1) +2)...(+m)

PiG41)..(i+m) =

Xi = Xi+m
(3.2.3)
This recurrence works because the two parents already agree at points Xj4q ...
Xi+m—1-
An improvement on the recurrence (3.2.3) is to keep track of the small differ-
ences between parents and daughters, namely to define (form = 1,2,..., M — 1),
Cm,i = Pi._(i+m) — Pi.i+m-1) (3.2.4)
Dm,i = Pi. (i+m) = Pi+1)...i+m)-
Then one can easily derive from (3.2.3) the relations
D _ (xi4m+1 =) (Cmit1 — Dm,i)
m+1,i — Xi — Xitm1
l 1rm
(3.2.5)
C _ (xi _x)(cm,i-i-l - Dm,i)
m+1,i —

Xi = Xi+m+1

At each level m, the C’s and D’s are the corrections that make the interpolation one
order higher. The final answer Py __(ar—1) is equal to the sum of any y; plus a set of
C’s and/or D’s that form a path through the family tree to the rightmost daughter.

Here is the class implementing polynomial interpolation or extrapolation. All
of its “support infrastructure” is in the base class Base_interp. It needs only to
provide a rawinterp method that contains Neville’s algorithm.

struct Poly_interp : Base_interp
Polynomial interpolation object. Construct with X and y vectors, and the number M of points
to be used locally (polynomial order plus one), then call interp for interpolated values.
{

Doub dy;

Poly_interp(VecDoub_I &xv, VecDoub_I &yv, Int m)

: Base_interp(xv,&yv[0],m), dy(0.) {}

Doub rawinterp(Int jl, Doub x);

};

Doub Poly_interp::rawinterp(Int jl, Doub x)
Given a value x, and using pointers to data xx and yy, this routine returns an interpolated
value y, and stores an error estimate dy. The returned value is obtained by mm-point polynomial
interpolation on the subrange xx[j1..jl+mm-1].
{

Int i,m,ns=0;

Doub y,den,dif,dift,ho,hp,w;

const Doub *xa = &xx[jl], *ya = &yy[jll;

VecDoub c(mm) ,d(mm) ;

dif=abs(x-xal0]);

for (i=0;i<mm;i++) { Here we find the index ns of the closest table entry,
if ((dift=abs(x-xal[i])) < dif) {
ns=i;
dif=dift;
}
clil=yalil; and initialize the tableau of c’s and d’s.
dlil=yalil;
}
y=yalns--]1; This is the initial approximation to y.

for (m=1;m<mm;m++) { For each column of the tableau,

interp_1d.h
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for (i=0;i<mm-m;i++) { we loop over the current c's and d's and update
ho=xal[i]-x; them.
hp=xa[i+m]-x;
w=c[i+1]-d[i];
if ((den=ho-hp) == 0.0) throw("Poly_interp error");
This error can occur only if two input xa's are (to within roundoff) identical.
den=w/den;
d[i]l=hp*den; Here the c's and d's are updated.
c[il=ho*den;
}
y += (dy=(2*%(ns+1) < (mm-m) ? c[ns+1] : d[ns--1));
After each column in the tableau is completed, we decide which correction, c or d, we
want to add to our accumulating value of y, i.e., which path to take through the tableau
— forking up or down. We do this in such a way as to take the most “straight line”
route through the tableau to its apex, updating ns accordingly to keep track of where
we are. This route keeps the partial approximations centered (insofar as possible) on
the target x. The last dy added is thus the error indication.
}

return y;

The user interface to Poly_interp is virtually the same as for Linear_interp
(end of §3.1), except that an additional argument in the constructor sets M, the num-
ber of points used (the order plus one). A cubic interpolator looks like this:

Int n=...;
VecDoub xx(n), yy(n);

Poly_interp myfunc(xx,yy,4);
Poly_interp stores an error estimate dy for the most recent call to its interp
function:

Doub x,y,err;

y = myfunc.interp(x);
err = myfunc.dy;

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, |.A. 1964, Handbook of Mathematical Functions (Washington: Na-
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com/aands, §25.2.

Stoer, J., and Bulirsch, R. 2002, Introduction to Numerical Analysis, 3rd ed. (New York: Springer),
§2.1.

Gear, C.W. 1971, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood
Cliffs, NJ: Prentice-Hall), §6.1.

3.3 Cubic Spline Interpolation

Given a tabulated function y; = y(x;), i = 0...N — 1, focus attention on one
particular interval, between x; and x; 1. Linear interpolation in that interval gives
the interpolation formula

y =Ay; + Byj+1 (3.3.1)
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where )
Xj41—X X —X;

A B=1—-A4=

Xj+1 = Xj Xj+1 = Xj

(3.3.2)

Equations (3.3.1) and (3.3.2) are a special case of the general Lagrange interpolation
formula (3.2.1).

Since it is (piecewise) linear, equation (3.3.1) has zero second derivative in the
interior of each interval and an undefined, or infinite, second derivative at the abscis-
sas x;. The goal of cubic spline interpolation is to get an interpolation formula that
is smooth in the first derivative and continuous in the second derivative, both within
an interval and at its boundaries.

Suppose, contrary to fact, that in addition to the tabulated values of y;, we
also have tabulated values for the function’s second derivatives, y”, that is, a set
of numbers ylf’ . Then, within each interval, we can add to the right-hand side of
equation (3.3.1) a cubic polynomial whose second derivative varies linearly from a
value y7 on the left to a value y7, | on the right. Doing so, we will have the desired
continuous second derivative. If we also construct the cubic polynomial to have
zero values at x; and x; 11, then adding it in will not spoil the agreement with the
tabulated functional values y; and y;; at the endpoints x; and x; 1.

A little side calculation shows that there is only one way to arrange this con-
struction, namely replacing (3.3.1) by

y = Ayj + Byj+1+Cy] + Dy}, (3.3.3)
where A and B are defined in (3.3.2) and

C=LA-MDjn-x) D=iB>-B(xn—-x) (334

1
6
Notice that the dependence on the independent variable x in equations (3.3.3) and
(3.3.4) is entirely through the linear x-dependence of A and B, and (through A and
B) the cubic x-dependence of C and D.

We can readily check that y” is in fact the second derivative of the new inter-
polating polynomial. We take derivatives of equation (3.3.3) with respect to x, using
the definitions of A, B, C, and D to compute dA/dx,dB/dx,dC/dx,and dD/dx.
The result is

dy yiy1—y; 342-1 3B% -1
dx Xj‘+1 —xj- ——  Win —x;)y;] + —  Win = X))yt (3.3.5)
J J
for the first derivative, and
d?y

for the second derivative. Since A = 1 at x;, A = 0 at x; 4, while B is just the
other way around, (3.3.6) shows that y” is just the tabulated second derivative, and
also that the second derivative will be continuous across, e.g., the boundary between
the two intervals (x;_1, x;) and (x;, X;41).

The only problem now is that we supposed the y/”’s to be known, when, actually,
they are not. However, we have not yet required that the first derivative, computed
from equation (3.3.5), be continuous across the boundary between two intervals. The
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key idea of a cubic spline is to require this continuity and to use it to get equations
for the second derivatives y!".

The required equations are obtained by setting equation (3.3.5) evaluated for
x = x; in the interval (x;_1, x;) equal to the same equation evaluated for x = Xx;
but in the interval (x;, x;41). With some rearrangement, this gives (for j = 1,...,
N —2)

xj_xj—ly{/ +x]+1_xj—1 {/+xj+1_x/ "o Vi+1—)j _yj_YJ'—l
6 J=1 3 J 6 J+1 x]-‘rl_xj xj'_-xj—l
(3.3.7)
These are N —2 linear equations in the N unknowns ylf’ ,1 =0,..., N—1. Therefore

there is a two-parameter family of possible solutions.

For a unique solution, we need to specify two further conditions, typically taken
as boundary conditions at x¢ and xy—_;. The most common ways of doing this are
either

e setone or both of y¢ and y7,_, equal to zero, giving the so-called natural cubic
spline, which has zero second derivative on one or both of its boundaries, or

e set either of yj and yJ;_, to values calculated from equation (3.3.5) so as to
make the first derivative of the interpolating function have a specified value on
either or both boundaries.

Although the boundary condition for natural splines is commonly used, another
possibility is to estimate the first derivatives at the endpoints from the first and last
few tabulated points. For details of how to do this, see the end of §3.7. Best, of
course, is if you can compute the endpoint first derivatives analytically.

One reason that cubic splines are especially practical is that the set of equations
(3.3.7), along with the two additional boundary conditions, are not only linear, but
also tridiagonal. Each yj’-’ is coupled only to its nearest neighbors at j 4 1. There-
fore, the equations can be solved in O(N) operations by the tridiagonal algorithm
(§2.4). That algorithm is concise enough to build right into the function called by the
constructor.

The object for cubic spline interpolation looks like this:

struct Spline_interp : Base_interp
Cubic spline interpolation object. Construct with X and y vectors, and (optionally) values of
the first derivative at the endpoints, then call interp for interpolated values.
{
VecDoub y2;

Spline_interp(VecDoub_I &xv, VecDoub_I &yv, Doub ypl=1.e99, Doub ypn=1.e99)
: Base_interp(xv,&yv[0],2), y2(xv.size())
{sety2(&xv[0],&yv[0],ypl,ypn);}

Spline_interp(VecDoub_I &xv, const Doub *yv, Doub ypl=1.e99, Doub ypn=1.e99)
: Base_interp(xv,yv,2), y2(xv.size())
{sety2(&xv[0],yv,ypl,ypn);}

void sety2(const Doub *xv, const Doub *yv, Doub ypl, Doub ypn);
Doub rawinterp(Int jl, Doub xv);
};

For now, you can ignore the second constructor; it will be used later for two-dimen-
sional spline interpolation.
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The user interface differs from previous ones only in the addition of two con-
structor arguments, used to set the values of the first derivatives at the endpoints, y;,
and y_,. These are coded with default values that signal that you want a natural
spline, so they can be omitted in most situations. Both constructors invoke sety2 to
do the actual work of computing, and storing, the second derivatives.

void Spline_interp::sety2(const Doub *xv, const Doub *yv, Doub ypl, Doub ypn)
This routine stores an array y2[0..n-1] with second derivatives of the interpolating function
at the tabulated points pointed to by xv, using function values pointed to by yv. If yp1 and/or
ypn are equal to 1 X 1090 or larger, the routine is signaled to set the corresponding boundary
condition for a natural spline, with zero second derivative on that boundary; otherwise, they are
the values of the first derivatives at the endpoints.

{

Int i,k;

Doub p,qn,sig,un;

Int n=y2.size();

VecDoub u(n-1);

if (ypl > 0.99e99) The lower boundary condition is set either to be “nat-
y2[0]1=u[0]=0.0; ural”

else { or else to have a specified first derivative.
y2[0] = -0.5;
ul01=(3.0/(xv[1]1-xv[01))*((yv[1]1-yv[01)/(xv[1]-xv[0])-ypl);

}

for (i=1;i<n-1;i++) { This is the decomposition loop of the tridiagonal al-
sig=(xv[il-xv[i-1]1)/(xv[i+1]-xv[i-1]);  gorithm. y2 and u are used for tem-
p=sigxy2[i-1]+2.0; porary storage of the decomposed
y2[i]l=(sig-1.0)/p; factors.
ulil=(yv[i+1]-yv[i])/(xv[i+1]-xv[i]) - (yv[il-yv[i-11)/(xv[i]l-xv[i-1]);
ulil=(6.0*%uli]/(xv[i+1]-xv[i-1])-sig*ul[i-1])/p;

}

if (ypn > 0.99e99) The upper boundary condition is set either to be
gqn=un=0.0; “natural”

else { or else to have a specified first derivative.
qn=0.5;
un=(3.0/(xv[n-1]-xv[n-21))*(ypn-(yv[n-1]-yv[n-2]) / (xv[n-1]1-xv[n-2]1));

}

y2[n-1]=(un-gn*u[n-2])/(qn*y2[n-2]+1.0) ;

for (k=n-2;k>=0;k--) This is the backsubstitution loop of the tridiagonal
y2[k]l=y2[k]*y2[k+1]+ulk] ; algorithm.

}

Note that, unlike the previous object Poly_interp, Spline_interp stores
data that depend on the contents of your array of y;’s at its time of creation — a
whole vector y2. Although we didn’t point it out, the previous interpolation object
actually allowed the misuse of altering the contents of their x and y arrays on the fly
(as long as the lengths didn’t change). If you do that with Spline_interp, you’ll
get definitely wrong answers!

The required rawinterp method, never called directly by the users, uses the
stored y2 and implements equation (3.3.3):

Doub Spline_interp::rawinterp(Int jl, Doub x)
Given a value x, and using pointers to data xx and yy, and the stored vector of second derivatives
y2, this routine returns the cubic spline interpolated value y.
{
Int klo=j1,khi=j1+1;
Doub y,h,b,a;
h=xx [khi]-xx [klo];
if (h == 0.0) throw("Bad input to routine splint"); The xa's must be dis-
a=(xx[khi]l-x) /h; tinct.

interp_1d.h
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b=(x-xx[klo])/h; Cubic spline polynomial is now evaluated.
y=a*yy [klo] +b*yy [khi]+((a*a*a-a)*y2[klo]

+(b*b*b-b) *y2 [khi])* (h*h)/6.0;
return y;

Typical use looks like this:
Int n=...;
VecDoub xx(n), yy(n);
Spline_interp myfunc(xx,yy);
and then, as often as you like,

Doub x,y;

y = myfunc.interp(x);

Note that no error estimate is available.

CITED REFERENCES AND FURTHER READING:
De Boor, C. 1978, A Practical Guide to Splines (New York: Springer).

Ueberhuber, C.W. 1997, Numerical Computation: Methods, Software, and Analysis, vol. 1 (Berlin:
Springer), Chapter 9.

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical Com-
putations (Englewood Cliffs, NJ: Prentice-Hall), §4.4 — §4.5.

Stoer, J., and Bulirsch, R. 2002, Introduction to Numerical Analysis, 3rd ed. (New York: Springer),
§2.4.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed.; reprinted
2001 (New York: Dover), §3.8.

3.4 Rational Function Interpolation and
Extrapolation
Some functions are not well approximated by polynomials but are well ap-
proximated by rational functions, that is quotients of polynomials. We denote by

Ri(i+1)...(i+m) a rational function passing through the m + 1 points (x;, y;),...,
(Xi4+m» Vi+m)- More explicitly, suppose

Py (x) _ po+ pix +--- 4 puxt
0v(x)  qo+qix+--+qux¥

Since there are 1 4+ v 4+ 1 unknown p’s and ¢’s (qo being arbitrary), we must have

RiG+1)..(i+m) = (3.4.1)

m+l=pu+v+1 (3.4.2)

In specifying a rational function interpolating function, you must give the desired
order of both the numerator and the denominator.

Rational functions are sometimes superior to polynomials, roughly speaking,
because of their ability to model functions with poles, that is, zeros of the denomina-
tor of equation (3.4.1). These poles might occur for real values of x, if the function
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to be interpolated itself has poles. More often, the function f(x) is finite for all finite
real x but has an analytic continuation with poles in the complex x-plane. Such poles
can themselves ruin a polynomial approximation, even one restricted to real values
of x, just as they can ruin the convergence of an infinite power series in x. If you
draw a circle in the complex plane around your m tabulated points, then you should
not expect polynomial interpolation to be good unless the nearest pole is rather far
outside the circle. A rational function approximation, by contrast, will stay “good”
as long as it has enough powers of x in its denominator to account for (cancel) any
nearby poles.

For the interpolation problem, a rational function is constructed so as to go
through a chosen set of tabulated functional values. However, we should also men-
tion in passing that rational function approximations can be used in analytic work.
One sometimes constructs a rational function approximation by the criterion that the
rational function of equation (3.4.1) itself have a power series expansion that agrees
with the first m 4 1 terms of the power series expansion of the desired function f(x).
This is called Padé approximation and is discussed in §5.12.

Bulirsch and Stoer found an algorithm of the Neville type that performs ratio-
nal function extrapolation on tabulated data. A tableau like that of equation (3.2.2)
is constructed column by column, leading to a result and an error estimate. The
Bulirsch-Stoer algorithm produces the so-called diagonal rational function, with the
degrees of the numerator and denominator equal (if m is even) or with the degree
of the denominator larger by one (if m is odd; cf. equation 3.4.2 above). For the
derivation of the algorithm, refer to [1]. The algorithm is summarized by a recur-
rence relation exactly analogous to equation (3.2.3) for polynomial approximation:

RiG+1)..Gi+m) = Ri+1)...G+m)
Ri+1)...(i+m) — Ri..i+m—1) (3.4.3)

X=X | — Ritn.itm—Ri. itm=1) _1
X—Xi+m Ri+1)...i+m)—Ri+1)...(i+m—1)

This recurrence generates the rational functions through m + 1 points from the ones
through m and (the term R +1)...(i+m—1) in equation 3.4.3) m — 1 points. Itis started
with

+

Rl' =Y (344)

and with

R = [Ri(i+1)...(i+m) with m=-1]=0 (3.4.5)

Now, exactly as in equations (3.2.4) and (3.2.5) above, we can convert the re-
currence (3.4.3) to one involving only the small differences

Cm,i = Ri.(i+m) — Ri..(i+m—1) (3.4.6)

Dim,i = Ri. (i+m) = R(i+1)..(+m)
Note that these satisfy the relation

Cn+1,i — Dm+1,i = Cmji+1 — Dm,i (3.4.7)
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which is useful in proving the recurrences

Cini+1(Crmjiv1 — Dmi)

D . =
e _xx \p . _C. .
X—Xj4+m+1 m,i m,i+1
3.4.8)
X=X , o , (3.4.
C o (x—xH_m_H) Dm,l (Cm,l-‘rl Dm,z)
e (i)p Cpyian
X—Xitm41 m,i m,i+

The class for rational function interpolation is identical to that for polynomial
interpolation in every way, except, of course, for the different method implemented
in rawinterp. See the end of §3.2 for usage. Plausible values for M are in the range
4to7.

struct Rat_interp : Base_interp
Diagonal rational function interpolation object. Construct with X and y vectors, and the number
m of points to be used locally, then call interp for interpolated values.

{
Doub dy;
Rat_interp(VecDoub_I &xv, VecDoub_I &yv, Int m)
: Base_interp(xv,&yv[0],m), dy(0.) {}
Doub rawinterp(Int jl, Doub x);
};

Doub Rat_interp::rawinterp(Int jl, Doub x)
Given a value x, and using pointers to data xx and yy, this routine returns an interpolated value
y, and stores an error estimate dy. The returned value is obtained by mm-point diagonal rational
function interpolation on the subrange xx[j1..jl+mm-1].
{
const Doub TINY=1.0e-99; A small number.
Int m,i,ns=0;
Doub y,w,t,hh,h,dd;
const Doub *xa = &xx[jl], *ya = &yy[jll;
VecDoub c(mm) ,d(mm) ;
hh=abs (x-xa[0]) ;
for (i=0;i<mm;i++) {
h=abs (x-xal[il);
if (h == 0.0) {
dy=0.0;
return yalil;
} else if (h < hh) {

ns=i;
hh=h;
}
clil=yalil;
d[il=yal[i]+TINY; The TINY part is needed to prevent a rare zero-over-zero
} condition.
y=yalns--1;

for (m=1;m<mm;m++) {
for (i=0;i<mm-m;i++) {
w=c[i+1]-d[i];

h=xa[i+m]-x; h will never be zero, since this was tested in the initial-
t=(xal[i]l-x)*d[i]/h; izing loop.

dd=t-c[i+1];

if (dd == 0.0) throw("Error in routine ratint");

This error condition indicates that the interpolating function has a pole at the
requested value of x.

dd=w/dd;

dli]l=c[i+1]*dd;

c[i]=t*dd;
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}

y += (dy=(2*%(ns+1) < (mm-m) ? c[ns+1] : d[ns--1));
}
return y;

3.4.1 Barycentric Rational Interpolation

Suppose one tries to use the above algorithm to construct a global approxima-
tion on the entire table of values using all the given nodes xg, x1,...,xy—1. One
potential drawback is that the approximation can have poles inside the interpolation
interval where the denominator in (3.4.1) vanishes, even if the original function has
no poles there. An even greater (related) hazard is that we have allowed the order of
the approximation to grow to N — 1, probably much too large.

An alternative algorithm can be derived [2] that has no poles anywhere on the
real axis, and that allows the actual order of the approximation to be specified to be
any integer d < N. The trick is to make the degree of both the numerator and the
denominator in equation (3.4.1) be N — 1. This requires that the p’s and the ¢’s not
be independent, so that equation (3.4.2) no longer holds.

The algorithm utilizes the barycentric form of the rational interpolant

R(x)=">2 (3.4.9)

One can show that by a suitable choice of the weights w;, every rational inter-
polant can be written in this form, and that, as a special case, so can polynomial
interpolants [3]. It turns out that this form has many nice numerical properties. Bary-
centric rational interpolation competes very favorably with splines: its error is often
smaller, and the resulting approximation is infinitely smooth (unlike splines).

Suppose we want our rational interpolant to have approximation order d, i.e., if
the spacing of the points is O(h), the error is O(h¢*') as h — 0. Then the formula
for the weights is

k i+d
_ . 1
we= Y D []T— (3.4.10)
i=k—d j=i kT
0<i<N-—d Jj#k
For example,
we = (=¥, d=0
o = (—1)"_1 1 N 1 ’ J=1 34.11
X — Xk—1 Xk+1 — Xk

In the last equation, you omit the terms in wg and wy—_; that refer to out-of-range
values of xj.

Here is a routine that implements barycentric rational interpolation. Given a
set of N nodes and a desired order d, with d < N, it first computes the weights
wg. Then subsequent calls to interp evaluate the interpolant using equation (3.4.9).
Note that the parameter j1 of rawinterp is not used, since the algorithm is designed
to construct an approximation on the entire interval at once.
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The workload to construct the weights is of order O (Nd) operations. For small
d, this is not too different from splines. Note, however, that the workload for each
subsequent interpolated value is O(N), not O(d) as for splines.

struct BaryRat_interp : Base_interp
Barycentric rational interpolation object. After constructing the object, call interp for inter-
polated values. Note that no error estimate dy is calculated.

{
VecDoub w;
Int d;
BaryRat_interp(VecDoub_I &xv, VecDoub_I &yv, Int dd);
Doub rawinterp(Int jl, Doub x);
Doub interp(Doub x);
};

BaryRat_interp: :BaryRat_interp(VecDoub_I &xv, VecDoub_I &yv, Int dd)
: Base_interp(xv,&yv[0],xv.size()), w(n), d(dd)
Constructor arguments are X and y vectors of length n, and order d of desired approximation.
{
if (n<=d) throw("d too large for number of points in BaryRat_interp");
for (Int k=0;k<n;k++) { Compute weights from equation (3.4.10).
Int imin=MAX(k-d,0);
Int imax = k >= n-d ? n-d-1 : k;
Doub temp = imin & 1 7 -1.0 : 1.0;
Doub sum=0.0;
for (Int i=imin;i<=imax;i++) {
Int jmax=MIN(i+d,n-1);
Doub term=1.0;
for (Int j=i;j<=jmax;j++) {
if (j==k) continue;
term *= (xx[k]-xx[jl);

}
term=temp/term;
temp=-temp;
sum += term;

}

w[k]=sum;

}
}
Doub BaryRat_interp::rawinterp(Int jl, Doub x)
Use equation (3.4.9) to compute the barycentric rational interpolant. Note that j1 is not used
since the approximation is global; it is included only for compatibility with Base_interp.
{
Doub num=0,den=0;
for (Int i=0;i<n;i++) {
Doub h=x-xx[i];
if (h == 0.0) {
return yyl[il;
} else {
Doub temp=w[i]/h;
num += tempxyy[il;
den += temp;
}
}
return num/den;
}
Doub BaryRat_interp::interp(Doub x) {
No need to invoke hunt or locate since the interpolation is global, so override interp to simply
call rawinterp directly with a dummy value of j1.
return rawinterp(1,x);

¥

It is wise to start with small values of d before trying larger values.
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3.5 Coefficients of the Interpolating Polynomial

Occasionally you may wish to know not the value of the interpolating poly-
nomial that passes through a (small!) number of points, but the coefficients of that
polynomial. A valid use of the coefficients might be, for example, to compute simul-
taneous interpolated values of the function and of several of its derivatives (see §5.1),
or to convolve a segment of the tabulated function with some other function, where
the moments of that other function (i.e., its convolution with powers of x) are known
analytically.

Please be certain, however, that the coefficients are what you need. Generally
the coefficients of the interpolating polynomial can be determined much less accu-
rately than its value at a desired abscissa. Therefore, it is not a good idea to determine
the coefficients only for use in calculating interpolating values. Values thus calcu-
lated will not pass exactly through the tabulated points, for example, while values
computed by the routines in §3.1 — §3.3 will pass exactly through such points.

Also, you should not mistake the interpolating polynomial (and its coefficients)
for its cousin, the best-fit polynomial through a data set. Fitting is a smoothing pro-
cess, since the number of fitted coefficients is typically much less than the number
of data points. Therefore, fitted coefficients can be accurately and stably determined
even in the presence of statistical errors in the tabulated values. (See §14.9.) Inter-
polation, where the number of coefficients and number of tabulated points are equal,
takes the tabulated values as perfect. If they in fact contain statistical errors, these
can be magnified into oscillations of the interpolating polynomial in between the
tabulated points.

As before, we take the tabulated points to be y; = y(x;). If the interpolating
polynomial is written as

Yy =¢o +c1x + cpx? —|—~--+cN_1xN_1 (3.5.1)

then the ¢;’s are required to satisfy the linear equation
1 2 N—1

Xo X0 e X Co Yo
2 eee x{v_l

SLRN ) (3.5.2)

2 N—-1
I xy—1 xXy_y 0 Xy CN—1 YN-1
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This is a Vandermonde matrix, as described in §2.8. One could in principle solve
equation (3.5.2) by standard techniques for linear equations generally (§2.3); how-
ever, the special method that was derived in §2.8 is more efficient by a large factor,
of order N, so it is much better.

Remember that Vandermonde systems can be quite ill-conditioned. In such a
case, no numerical method is going to give a very accurate answer. Such cases do
not, please note, imply any difficulty in finding interpolated values by the methods
of §3.2, but only difficulty in finding coefficients.

Like the routine in §2.8, the following is due to G.B. Rybicki.

void polcoe(VecDoub_I &x, VecDoub_I &y, VecDoub_0 &cof)
Given arrays x[0..n-1] and y[0..n-1] containing a tabulated function y; = f(x;), this routine

returns an array of coefficients cof [0..n-1], such that y; = Z;';g) cof; x{.
{
Int k,j,i,n=x.size();
Doub phi,ff,b;
VecDoub s(n);
for (i=0;i<n;i++) s[i]=cof[i]=0.0;
s[n-1]= -x[0];
for (i=1;i<n;i++) { Coefficients s; of the master polynomial P(x) are
for (j=n-1-i;j<n-1;j++) found by recurrence.
s[j] -= x[il*s[j+1];
s[n-1] -= x[i];

}
for (j=0;j<n;j++) {
phi=n;
for (k=n-1;k>0;k--) The quantity phi = []; 4 (x; — xx) is found as a
phi=k*s[k]+x[j]*phi; derivative of P(x;).
ff=y[j1/phi;
b=1.0; Coefficients of polynomials in each term of the La-
for (k=n-1;k>=0;k--) { grange formula are found by synthetic division of
cof [k] += bxff; P(x) by (x —x;). The solution cg is accumu-
b=s[k]+x[j]*b; lated.
}
}

3.5.1 Another Method

Another technique is to make use of the function value interpolation routine
already given (polint; §3.2). If we interpolate (or extrapolate) to find the value of
the interpolating polynomial at x = 0, then this value will evidently be c¢y. Now we
can subtract ¢o from the y;’s and divide each by its corresponding x;. Throwing out
one point (the one with smallest x; is a good candidate), we can repeat the procedure
to find ¢, and so on.

It is not instantly obvious that this procedure is stable, but we have generally
found it to be somewhat more stable than the routine immediately preceding. This
method is of order N 3, while the preceding one was of order N2. You will find, how-
ever, that neither works very well for large N, because of the intrinsic ill-condition
of the Vandermonde problem. In single precision, N up to 8 or 10 is satisfactory;
about double this in double precision.
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void polcof(VecDoub_I &xa, VecDoub_I &ya, VecDoub_0 &cof)
Given arrays xa[0..n-1] and ya[0..n-1] containing a tabulated function ya; = f(xa;), this

routine returns an array of coefficients cof [0..n-1], such that ya; = Z;’;(l) cofjxa'il.
{

Int k,j,i,n=xa.size();

Doub xmin;

VecDoub x(n),y(n);

for (j=0;j<n;j++) {

x[j1=xaljl;
y[jl=yaljl;
for (j=0;j<n;j++) { Fill a temporary vector whose size
VecDoub x_t(n-j),y_t(n-j); decreases as each coefficient is
for (k=0;k<n-j;k++) { found.
x_t[k]=x[k];
y_t[kl=y[k];
}
Poly_interp interp(x,y,n-j);
cof[j] = interp.rawinterp(0,0.); Extrapolate to x = 0.
xmin=1.0e99;
k = -1;
for (i=0;i<n-j;i++) { Find the remaining x; of smallest
if (abs(x[i]) < xmin) { absolute value
xmin=abs(x[i]);
k=i;
}
if (x[i] '= 0.0) (meanwhile reducing all the terms)
yl[il=(y[il-cof [j1)/x[il;
}
for (i=k+1;i<n-j;i++) { and eliminate it.
yli-11=y[il;
x[i-1]1=x[i];
}

If the point x = 0 is not in (or at least close to) the range of the tabulated
x;’s, then the coefficients of the interpolating polynomial will in general become
very large. However, the real “information content” of the coefficients is in small
differences from the “translation-induced” large values. This is one cause of ill-
conditioning, resulting in loss of significance and poorly determined coefficients. In
this case, you should consider redefining the origin of the problem, to put x = O ina
sensible place.

Another pathology is that, if too high a degree of interpolation is attempted on a
smooth function, the interpolating polynomial will attempt to use its high-degree co-
efficients, in combinations with large and almost precisely canceling combinations,
to match the tabulated values down to the last possible epsilon of accuracy. This
effect is the same as the intrinsic tendency of the interpolating polynomial values
to oscillate (wildly) between its constrained points and would be present even if the
machine’s floating precision were infinitely good. The above routines polcoe and
polcof have slightly different sensitivities to the pathologies that can occur.

Are you still quite certain that using the coefficients is a good idea?
CITED REFERENCES AND FURTHER READING:
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3.6 Interpolation on a Grid in Multidimensions

In multidimensional interpolation, we seek an estimate of a function of more
than one independent variable, y(x1, X2, ..., x,). The Great Divide is, Are we given
a complete set of tabulated values on an n-dimensional grid? Or, do we know func-
tion values only on some scattered set of points in the n-dimensional space? In one
dimension, the question never arose, because any set of x;’s, once sorted into as-
cending order, could be viewed as a valid one-dimensional grid (regular spacing not
being a requirement).

As the number of dimensions n gets large, maintaining a full grid becomes
rapidly impractical, because of the explosion in the number of gridpoints. Methods
that work with scattered data, to be considered in §3.7, then become the methods
of choice. Don’t, however, make the mistake of thinking that such methods are
intrinsically more accurate than grid methods. In general they are less accurate. Like
the proverbial three-legged dog, they are remarkable because they work at all, not
because they work, necessarily, well!

Both kinds of methods are practical in two dimensions, and some other kinds as
well. For example, finite element methods, of which triangulation is the most com-
mon, find ways to impose some kind of geometrically regular structure on scattered
points, and then use that structure for interpolation. We will treat two-dimensional
interpolation by triangulation in detail in §21.6; that section should be considered as
a continuation of the discussion here.

In the remainder of this section, we consider only the case of interpolating on
a grid, and we implement in code only the (most common) case of two dimensions.
All of the methods given generalize to three dimensions in an obvious way. When
we implement methods for scattered data, in §3.7, the treatment will be for general n.

In two dimensions, we imagine that we are given a matrix of functional values
yij,withi =0,...,M —land j =0,..., N — 1. We are also given an array of x;
values x1;, and an array of x, values x,;, with i and j as just stated. The relation of
these input quantities to an underlying function y(xp, x,) is just

Yij = y(X1i, X25) (3.6.1)

We want to estimate, by interpolation, the function y at some untabulated point
(x1, x2).

An important concept is that of the grid square in which the point (xy, x2)
falls, that is, the four tabulated points that surround the desired interior point. For
convenience, we will number these points from O to 3, counterclockwise starting
from the lower left. More precisely, if

X1i = X1 = X13+1)

(3.6.2)
X2j = X2 = X2(j+1)
defines values of i and j, then
Yo = Vij
Y1 =DVi+1)j (3.6.3)

Y2 = V3i+13G+1)
Y3 = Di(j+1)
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The simplest interpolation in two dimensions is bilinear interpolation on the
grid square. Its formulas are

t=(x1 —x11)/(X1G6+1) — X1i)

(3.6.4)
u = (x2 — x2;)/(X2¢j+1) — X25)

(so that ¢ and u each lie between 0 and 1) and
y(x1,x2) = (1 —=1)(1 —u)yo + 1 (L —u)yr + tuyz + (1 —t)uys (3.6.5)

Bilinear interpolation is frequently “close enough for government work.” As the
interpolating point wanders from grid square to grid square, the interpolated func-
tion value changes continuously. However, the gradient of the interpolated function
changes discontinuously at the boundaries of each grid square.

We can easily implement an object for bilinear interpolation by grabbing pieces
of “machinery” from our one-dimensional interpolation classes:

struct Bilin_interp {
Object for bilinear interpolation on a matrix. Construct with a vector of x values, a vector of
x> values, and a matrix of tabulated function values y;;. Then call interp for interpolated
values.

Int m,n;

const MatDoub &y;

Linear_interp xlterp, x2terp;

Bilin_interp(VecDoub_I &xlv, VecDoub_I &x2v, MatDoub_I &ym)
: m(xlv.size()), n(x2v.size()), y(ym),

xlterp(xlv,x1v), x2terp(x2v,x2v) {} Construct dummy 1-dim interpola-
tions for their locate and hunt
Doub interp(Doub x1p, Doub x2p) { functions.
Int i,j;

Doub yy, t, u;
i = xlterp.cor 7 xlterp.hunt(xlp) : xlterp.locate(xlp);
j = x2terp.cor 7 x2terp.hunt(x2p) : x2terp.locate(x2p);
Find the grid square.
t = (xlp-xlterp.xx[i])/(x1terp.xx[i+1]-x1terp.xx[i]); Interpolate.
u = (x2p-x2terp.xx[jl)/(x2terp.xx[j+1]-x2terp.xx[j]1);
yy = (1.-t)*x(1.-w)*y[i]l [j] + t*(1.-w)*y[i+1][j]
+ (1.-t)*uxy[i] [j+1] + t*uxy[i+1][j+1];
return yy;

};

Here we declare two instances of Linear_interp, one for each direction, and use
them merely to do the bookkeeping on the arrays xy; and x;, — in particular, to
provide the “intelligent” table-searching mechanisms that we have come to rely on.
(The second occurrence of x1v and x2v in the constructors is just a placeholder;
there are not really any one-dimensional “y” arrays.)

Usage of Bilin_interp is just what you’d expect:

Int m=..., n=...;

MatDoub yy(m,n);

VecDoub x1(m), x2(n);

Bilin_interp myfunc(x1,x2,yy);

followed (any number of times) by

interp_2d.h
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Doub x1,x2,y;

y = myfunc.interp(xl,x2);

Bilinear interpolation is a good place to start, in two dimensions, unless you posi-
tively know that you need something fancier.

There are two distinctly different directions that one can take in going beyond
bilinear interpolation to higher-order methods: One can use higher order to obtain
increased accuracy for the interpolated function (for sufficiently smooth functions!),
without necessarily trying to fix up the continuity of the gradient and higher deriva-
tives. Or, one can make use of higher order to enforce smoothness of some of these
derivatives as the interpolating point crosses grid-square boundaries. We will now
consider each of these two directions in turn.

3.6.1 Higher Order for Accuracy

The basic idea is to break up the problem into a succession of one-dimensional
interpolations. If we want to do m—1 order interpolation in the x; direction, and n-1
order in the x5 direction, we first locate an m x n sub-block of the tabulated func-
tion matrix that contains our desired point (x1, x2). We then do m one-dimensional
interpolations in the x, direction, i.e., on the rows of the sub-block, to get function
values at the points (xy;, x2), with m values of i. Finally, we do a last interpolation
in the x direction to get the answer.

Again using the previous one-dimensional machinery, this can all be coded very
concisely as

struct Poly2D_interp {
Object for two-dimensional polynomial interpolation on a matrix. Construct with a vector of x|
values, a vector of x> values, a matrix of tabulated function values y;;, and integers to specify
the number of points to use locally in each direction. Then call interp for interpolated values.
Int m,n,mm,nn;
const MatDoub &y;
VecDoub yv;
Poly_interp xlterp, x2terp;

Poly2D_interp(VecDoub_I &x1lv, VecDoub_I &x2v, MatDoub_I &ym,
Int mp, Int np) : m(xlv.size()), n(x2v.size()),
mm(mp) , nn(np), y(ym), yv(m),
xlterp(xlv,yv,mm), x2terp(x2v,x2v,nn) {} Dummy 1-dim interpolations for their
locate and hunt functions.
Doub interp(Doub x1p, Doub x2p) {
Int i,j,k;
i = xlterp.cor 7 xlterp.hunt(xlp) : xlterp.locate(xlp);
j = x2terp.cor 7 x2terp.hunt(x2p) : x2terp.locate(x2p);
Find grid block.
for (k=i;k<i+mm;k++) { mm interpolations in the x> direction.
x2terp.yy = &ylk][0];
yv[k] = x2terp.rawinterp(j,x2p);
}
return xlterp.rawinterp(i,xlp); A final interpolation in the x1 direc-
} tion.
I

The user interface is the same as for Bilin_interp, except that the constructor
has two additional arguments that specify the number of points (order plus one) to
be used locally in, respectively, the x; and x, interpolations. Typical values will be
in the range 3 to 7.
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Code stylists won’t like some of the details in Poly2D_interp (see discussion in §3.1
immediately following Base_interp). As we loop over the rows of the sub-block, we reach
into the guts of x2terp and repoint its yy array to a row of our y matrix. Further, we alter
the contents of the array yv, for which x1terp has stored a pointer, on the fly. None of this is
particularly dangerous as long as we control the implementations in both Base_interp and
Poly2D_interp; and it makes for a very efficient implementation. You should view these
two classes as not just (implicitly) friend classes, but as really intimate friends.

3.6.2 Higher Order for Smoothness: Bicubic Spline

A favorite technique for obtaining smoothness in two-dimensional interpola-
tion is the bicubic spline. To set up a bicubic spline, you (one time) construct M
one-dimensional splines across the rows of the two-dimensional matrix of function
values. Then, for each desired interpolated value you proceed as follows: (1) Per-
form M spline interpolations to get a vector of values y(x1;,x2),i =0,...,M —1.
(2) Construct a one-dimensional spline through those values. (3) Finally, spline-
interpolate to the desired value y(x1, x2).

If this sounds like a lot of work, well, yes, it is. The one-time setup work
scales as the table size M x N, while the work per interpolated value scales roughly
as M log M + N, both with pretty hefty constants in front. This is the price that
you pay for the desirable characteristics of splines that derive from their nonlocality.
For tables with modest M and N, less than a few hundred, say, the cost is usually
tolerable. If it’s not, then fall back to the previous local methods.

Again a very concise implementation is possible:

struct Spline2D_interp {
Object for two-dimensional cubic spline interpolation on a matrix. Construct with a vector of x1
values, a vector of x5 values, and a matrix of tabulated function values y;;. Then call interp
for interpolated values.

Int m,n;

const MatDoub &y;

const VecDoub &x1;

VecDoub yv;

NRvector<Spline_interp*> srp;

Spline2D_interp(VecDoub_I &x1v, VecDoub_I &x2v, MatDoub_I &ym)
: m(xlv.size()), n(x2v.size()), y(ym), yv(m), x1(xlv), srp(m) {
for (Int i=0;i<m;i++) srp[i] = new Spline_interp(x2v,&y[i] [0]);
Save an array of pointers to 1-dim row splines.

}

~Spline2D_interp(){
for (Int i=0;i<m;i++) delete srpl[il; We need a destructor to clean up.

}

Doub interp(Doub x1p, Doub x2p) {
for (Int i=0;i<m;i++) yv[i] = (*srpl[i]).interp(x2p);
Interpolate on each row.
Spline_interp scol(xl,yv); Construct the column spline,
return scol.interp(xlp); and evaluate it.

};
The reason for that ugly vector of pointers to Spline_interp objects is that we

need to initialize each row spline separately, with data from the appropriate row. The
user interface is the same as Bilin_interp, above.

interp_2d.h
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Figure 3.6.1. (a) Labeling of points used in the two-dimensional interpolation routines bcuint and
bcucof. (b) For each of the four points in (a), the user supplies one function value, two first derivatives,
and one cross-derivative, a total of 16 numbers.

3.6.3 Higher Order for Smoothness: Bicubic Interpolation

Bicubic interpolation gives the same degree of smoothness as bicubic spline
interpolation, but it has the advantage of being a local method. Thus, after you set it
up, a function interpolation costs only a constant, plus log M + log N, to find your
place in the table. Unfortunately, this advantage comes with a lot of complexity in
coding. Here, we will give only some building blocks for the method, not a complete
user interface.

Bicubic splines are in fact a special case of bicubic interpolation. In the gen-
eral case, however, we leave the values of all derivatives at the grid points as freely
specifiable. You, the user, can specify them any way you want. In other words,
you specify at each grid point not just the function y(x1, x2), but also the gradients
dy/0x1 = y.1, 0y/0xa = y, and the cross derivative 3%y /dx10x, = y.12 (see
Figure 3.6.1). Then an interpolating function that is cubic in the scaled coordinates ¢
and u (equation 3.6.4) can be found, with the following properties: (i) The values of
the function and the specified derivatives are reproduced exactly on the grid points,
and (ii) the values of the function and the specified derivatives change continuously
as the interpolating point crosses from one grid square to another.

It is important to understand that nothing in the equations of bicubic interpola-
tion requires you to specify the extra derivatives correctly! The smoothness proper-
ties are tautologically “forced,” and have nothing to do with the “accuracy” of the
specified derivatives. It is a separate problem for you to decide how to obtain the
values that are specified. The better you do, the more accurate the interpolation will
be. But it will be smooth no matter what you do.

Best of all is to know the derivatives analytically, or to be able to compute them
accurately by numerical means, at the grid points. Next best is to determine them by
numerical differencing from the functional values already tabulated on the grid. The
relevant code would be something like this (using centered differencing):
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ylal[jl [k]=(yalj+1] [k]l-yal[j-11[k])/(xlal[j+1]-x1alj-11);

y2aljl [k]1=(yalj] [k+1]-yalj] [k-1])/(x2a[k+1]-x2a[k-1]);

yi12al[jl [k]=(yalj+1] [k+1]-ya[j+1] [k-1]-yal[j-1] [k+1]+yal[j-1] [k-11)
/((x1lal[j+1]-x1al[j-11)*(x2a[k+1]-x2a[k-1]1));

To do a bicubic interpolation within a grid square, given the function y and
the derivatives y1, y2, y12 at each of the four corners of the square, there are two
steps: First obtain the 16 quantities ¢;;, i, j = 0,...,3 using the routine bcucof
below. (The formulas that obtain the ¢’s from the function and derivative values are
just a complicated linear transformation, with coefficients that, having been deter-
mined once in the mists of numerical history, can be tabulated and forgotten.) Next,
substitute the ¢’s into any or all of the following bicubic formulas for function and
derivatives, as desired:

3 3
y(x1,x2) = chijtiuj

i=0,=0
3 3
yalxr, x2) = Zzicijtl_luj(dl/dxl)
i=0/=0
s 3 (3.6.6)
Va(x1,x2) = Zch,-jt’u/_l(du/dxz)
i=0,=0
3 3
V12(x1,x2) = Z Zijcijt’_luf_l(dt/dxl)(du/dxz)
i=0,=0
where ¢ and u are again given by equation (3.6.4).
void bcucof (VecDoub_I &y, VecDoub_I &yl, VecDoub_I &y2, VecDoub_I &yi12, interp_2d.h

const Doub dl, const Doub d2, MatDoub_0 &c) {
Given arrays y[0..3], y1[0..3], y2[0..3], and y12[0..3], containing the function, gradients,
and cross-derivative at the four grid points of a rectangular grid cell (numbered counterclockwise
from the lower left), and given d1 and d2, the length of the grid cell in the 1 and 2 directions, this
routine returns the table c[0..3][0..3] that is used by routine bcuint for bicubic interpolation.
static Int wt_d[16*16]=
{1, 0, 0, 0, 0,0, 0,0,0,0,0,0,0,0,0, O,
0, 0, 0,0, 0,0,0,0,1,0,0,0,0,0,0,0O0,
-3, 0, 0, 3, 0, 0, 0, 0,-2, 0, O0,-1, O, O, O, O,

B >

B

0,1, 0,0,1,0,0,0,0
o, 0, 0, 0, 0, 0, O, 0, O
o, 0, 0, 0, 0, 1, 0, O, O,
3, 0, 0, 0, 0,-2, 0, 0,-1
-2, 0, 0, 0, 0, 1, 0, 0, 1

OOPOM
OOfDOO
OOfDOO
OOfDO[\)
I\J(A)f)!—‘O
OOPOO
OOPOO

Int 1,k,j,i;

Doub xx,d1d2=d1*d2;

VecDoub cl1(16),x(16);

static MatInt wt(16,16,wt_d);

for (i=0;i<4;i++) { Pack a temporary vector x.
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x[i]l=y[i];
x[i+4]=y1[i]*d1;
x[1+8]=y2[i]*d2;
x[i+12]=y12[i]*d1d2;

}

for (i=0;i<16;i++) { Matrix-multiply by the stored table.
xx=0.0;
for (k=0;k<16;k++) xx += wt[i] [k]*x[k];
cl[il=xx;

}

1=0;

for (i=0;i<4;i++) Unpack the result into the output table.

for (j=0;j<4;j++) clil [j1=cl[1++];

The implementation of equation (3.6.6), which performs a bicubic interpolation,
gives back the interpolated function value and the two gradient values, and uses the
above routine bcucof, is simply:

void bcuint(VecDoub_I &y, VecDoub_I &yl, VecDoub_I &y2, VecDoub_I &yi12,
const Doub x11, const Doub xlu, const Doub x21, const Doub x2u,
const Doub x1, const Doub x2, Doub &ansy, Doub &ansyl, Doub &ansy2) {
Bicubic interpolation within a grid square. Input quantities are y,y1,y2,y12 (as described in
bcucof); x11 and x1u, the lower and upper coordinates of the grid square in the 1 direction;
x21 and x2u likewise for the 2 direction; and x1,x2, the coordinates of the desired point for
the interpolation. The interpolated function value is returned as ansy, and the interpolated
gradient values as ansyl1 and ansy2. This routine calls bcucof.
Int i;
Doub t,u,dl=x1u-x11,d2=x2u-x21;
MatDoub c(4,4);
bcucof (y,yl,y2,y12,d1,d2,c); Get the ¢'s.
if (xlu == x11 || x2u == x21)
throw("Bad input in routine bcuint");
t=(x1-x11)/d1; Equation (3.6.4).
u=(x2-x21)/d2;
ansy=ansy2=ansy1=0.0;
for (i=3;i>=0;i--) { Equation (3.6.6).
ansy=t*ansy+((c[i] [3]*u+c[i] [2])*u+c[i] [1])*u+c[i] [0];
ansy2=t*ansy2+(3.0*c[1i] [8]*u+2.0xc[1i] [2])*u+c[i] [1];
ansyl=ukxansyl+(3.0*c[3] [i]*t+2.0*c[2] [i])*t+c[1][i];
}
ansyl /= di;
ansy2 /= d2;

You can combine the best features of bicubic interpolation and bicubic splines
by using splines to compute values for the necessary derivatives at the grid points,
storing these values, and then using bicubic interpolation, with an efficient table-
searching method, for the actual function interpolations. Unfortunately this is be-
yond our scope here.
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3.7 Interpolation on Scattered Data in
Multidimensions

We now leave behind, if with some trepidation, the orderly world of regular
grids. Courage is required. We are given an arbitrarily scattered set of N data points
(Xi,yi),i =0,..., N—1inn-dimensional space. Here X; denotes an n-dimensional
vector of independent variables, (x1;, X2;,...,Xn;), and y; is the value of the func-
tion at that point.

In this section we discuss two of the most widely used general methods for
this problem, radial basis function (RBF) interpolation, and kriging. Both of these
methods are expensive. By that we mean that they require O (N 3) operations to ini-
tially digest a set of data points, followed by O (N ) operations for each interpolated
value. Kriging is also able to supply an error estimate — but at the rather high cost of
O(N?) per value. Shepard interpolation, discussed below, is a variant of RBF that at
least avoids the O(N3) initial work; otherwise these workloads effectively limit the
usefulness of these general methods to values of N < 10%. It is therefore worthwhile
for you to consider whether you have any other options. Two of these are

e If 1 is not too large (meaning, usually, n = 2), and if the data points are fairly
dense, then consider triangulation, discussed in §21.6. Triangulation is an
example of a finite element method. Such methods construct some semblance
of geometric regularity and then exploit that construction to advantage. Mesh
generation is a closely related subject.

e If your accuracy goals will tolerate it, consider moving each data point to the
nearest point on a regular Cartesian grid and then using Laplace interpolation
(§3.8) to fill in the rest of the grid points. After that, you can interpolate on the
grid by the methods of §3.6. You will need to compromise between making
the grid very fine (to minimize the error introduced when you move the points)
and the compute time workload of the Laplace method.

If neither of these options seem attractive, and you can’t think of another one
that is, then try one or both of the two methods that we now discuss. RBF interpola-
tion is probably the more widely used of the two, but kriging is our personal favorite.
Which works better will depend on the details of your problem.

The related, but easier, problem of curve interpolation in multidimensions is
discussed at the end of this section.

3.7.1 Radial Basis Function Interpolation

The idea behind RBF interpolation is very simple: Imagine that every known
point j “influences” its surroundings the same way in all directions, according to
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some assumed functional form ¢ (r) — the radial basis function — that is a function
only of radial distance r = [x — X;| from the point. Let us try to approximate the
interpolating function everywhere by a linear combination of the ¢’s, centered on all
the known points,
N-1
yx) =Y wip(Ix —x;|) (3.7.1)

i=0

where the w;’s are some unknown set of weights. How do we find these weights?
Well, we haven’t used the function values y; yet. The weights are determined by re-
quiring that the interpolation be exact at all the known data points. That is equivalent
to solving a set of N linear equations in N unknowns for the w;’s:

N-1

Vi = Z wip(|x; — xi|) (3.7.2)

i=0

For many functional forms ¢, it can be proved, under various general assumptions,
that this set of equations is nondegenerate and can be readily solved by, e.g., LU
decomposition (§2.3). References [1.2] provide entry to the literature.

A variant on RBF interpolation is normalized radial basis function (NRBF) in-
terpolation, in which we require the sum of the basis functions to be unity or, equiv-
alently, replace equations (3.7.1) and (3.7.2) by

YN wig(x —xi])

y(x) = — (3.7.3)
S e(x —xi)
and
N-1 N—-1
i Y (% —xil) = Y wig(Ix; —xi) (3.7.4)
i=0 =0

Equations (3.7.3) and (3.7.4) arise more naturally from a Bayesian statistical perspec-
tive [3]. However, there is no evidence that either the NRBF method is consistently
superior to the RBF method, or vice versa. It is easy to implement both methods in
the same code, leaving the choice to the user.

As we already mentioned, for N data points the one-time work to solve for the
weights by LU decomposition is O(N 3). After that, the cost is O(N) for each inter-
polation. Thus N ~ 103 is a rough dividing line (at 2007 desktop speeds) between
“easy” and “difficult.” If your N is larger, however, don’t despair: There are fast
multipole methods, beyond our scope here, with much more favorable scaling [1,4,5].
Another, much lower-tech, option is to use Shepard interpolation discussed later in
this section.

Here are a couple of objects that implement everything discussed thus far.
RBF_fn is a virtual base class whose derived classes will embody different func-
tional forms for rbf(r) = ¢(r). RBF_interp, via its constructor, digests your data
and solves the equations for the weights. The data points X; are input as an N X n
matrix, and the code works for any dimension n. A boolean argument nrbf inputs
whether NRBF is to be used instead of RBF. You call interp to get an interpolated
function value at a new point X.
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struct RBF_fn {
Abstract base class template for any particular radial basis function. See specific examples
below.

virtual Doub rbf(Doub r) = 0;

}s

struct RBF_interp {
Object for radial basis function interpolation using n points in dim dimensions. Call constructor
once, then interp as many times as desired.

Int dim, n;

const MatDoub &pts;

const VecDoub &vals;

VecDoub w;

RBF_fn &fn;

Bool norm;

RBF_interp(MatDoub_I &ptss, VecDoub_I &valss, RBF_fn &func, Bool nrbf=false)
: dim(ptss.ncols()), n(ptss.nrows()) , pts(ptss), vals(valss),
w(n), fn(func), norm(nrbf) {
Constructor. Then X dim matrix ptss inputs the data points, the vector valss the function
values. func contains the chosen radial basis function, derived from the class RBF_fn. The
default value of nrbf gives RBF interpolation; set it to 1 for NRBF.
Int i,j;
Doub sum;
MatDoub rbf(n,n);
VecDoub rhs(n);
for (i=0;i<n;i++) { Fill the matrix ¢(Jr; —r;|) and the r.h.s. vector.
sum = O.;
for (j=0;j<n;j++) {
sum += (rbf[i][j] = fn.rbf(rad(&pts[i]l [0],&pts[j1[01)));

}
if (norm) rhs([i] = sum*vals[i];
else rhs[i] = vals[i];
}
LUdcmp lu(rbf); Solve the set of linear equations.

lu.solve(rhs,w);

}

Doub interp(VecDoub_I &pt) {
Return the interpolated function value at a dim-dimensional point pt.
Doub fval, sum=0., sumw=O0.;
if (pt.size() != dim) throw("RBF_interp bad pt size");
for (Int i=0;i<n;i++) { Sum over all tabulated points.
fval = fn.rbf (rad(&pt[0],&pts[i][01));
sumw += wl[i]*fval;
sum += fval;
}
return norm ? sumw/sum : sumw;

}

Doub rad(const Doub *pl, const Doub *p2) {

Euclidean distance.
Doub sum = O0.;
for (Int i=0;i<dim;i++) sum += SQR(p1[il-p2[il);
return sqrt(sum);

3.7.2 Radial Basis Functions in General Use

The most often used radial basis function is the multiquadric first used by Hardy,
circa 1970. The functional form is

interp_rbf.h
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p(r) = (> +r)'/? (3.7.5)

where rg is a scale factor that you get to choose. Multiquadrics are said to be less
sensitive to the choice of ry than some other functional forms.

In general, both for multiquadrics and for other functions, below, ry should
be larger than the typical separation of points but smaller than the “outer scale” or
feature size of the function that you are interpolating. There can be several orders
of magnitude difference between the interpolation accuracy with a good choice for
T, Versus a poor choice, so it is definitely worth some experimentation. One way to
experiment is to construct an RBF interpolator omitting one data point at a time and
measuring the interpolation error at the omitted point.

The inverse multiquadric
¢(r) = (> +r3)"'? (3.7.6)

gives results that are comparable to the multiquadric, sometimes better.

It might seem odd that a function and its inverse (actually, reciprocal) work
about equally well. The explanation is that what really matters is smoothness, and
certain properties of the function’s Fourier transform that are not very different be-
tween the multiquadric and its reciprocal. The fact that one increases monotonically
and the other decreases turns out to be almost irrelevant. However, if you want the
extrapolated function to go to zero far from all the data (where an accurate value is
impossible anyway), then the inverse multiquadric is a good choice.

The thin-plate spline radial basis function is
¢(r) = r*log(r/ro) (3.7.7)

with the limiting value ¢(0) = 0 assumed. This function has some physical justi-
fication in the energy minimization problem associated with warping a thin elastic
plate. There is no indication that it is generally better than either of the above forms,
however.

The Gaussian radial basis function is just what you’d expect,
¢(r) = exp(—3r?/rg) (3.7.8)

The interpolation accuracy using Gaussian basis functions can be very sensitive to
ro, and they are often avoided for this reason. However, for smooth functions and
with an optimal ry, very high accuracy can be achieved. The Gaussian also will
extrapolate any function to zero far from the data, and it gets to zero quickly.

Other functions are also in use, for example those of Wendland [6]. There is
a large literature in which the above choices for basis functions are tested against
specific functional forms or experimental data sets [1,2,7]. Few, if any, general rec-
ommendations emerge. We suggest that you try the alternatives in the order listed
above, starting with multiquadrics, and that you not omit experimenting with differ-
ent choices of the scale parameters ry.

The functions discussed are implemented in code as:
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struct RBF_multiquadric : RBF_fn {

Instantiate this and send to RBF_interp to get multiquadric interpolation.
Doub r02;
RBF_multiquadric(Doub scale=1.) : r02(SQR(scale)) {}
Constructor argument is the scale factor. See text.
Doub rbf(Doub r) { return sqrt(SQR(r)+r02); }

};

struct RBF_thinplate : RBF_fn {
Same as above, but for thin-plate spline.

Doub rO;

RBF_thinplate(Doub scale=1.) : rO(scale) {}

Doub rbf(Doub r) { return r <= 0. ? 0. : SQR(r)*log(r/r0); }
};

struct RBF_gauss : RBF_fn {
Same as above, but for Gaussian.

Doub rO;

RBF_gauss(Doub scale=1.) : rO(scale) {}

Doub rbf(Doub r) { return exp(-0.5*SQR(r/r0)); }
};

struct RBF_inversemultiquadric : RBF_fn {

Same as above, but for inverse multiquadric.
Doub r02;
RBF_inversemultiquadric(Doub scale=1.) : r02(SQR(scale)) {}
Doub rbf(Doub r) { return 1./sqrt(SQR(r)+r02); }

Typical use of the objects in this section should look something like this:

Int npts=...,ndim=...;
Doub rO=...;

MatDoub pts(npts,ndim) ;
VecDoub y(npts);

RBF_multiquadric multiquadric(rO);
RBF_interp myfunc(pts,y,multiquadric,0);

followed by any number of interpolation calls,
VecDoub pt(ndim);

Doub val;

val = myfunc.interp(pt);

3.7.3 Shepard Interpolation

An interesting special case of normalized radial basis function interpolation
(equations 3.7.3 and 3.7.4) occurs if the function ¢(r) goes to infinity as r — O,
and is finite (e.g., decreasing) for r > 0. In that case it is easy to see that the weights
w; are just equal to the respective function values y;, and the interpolation formula
is simply

N-1
Yizo Vid(x —xi)
N—1
Yi—o ¢(x —xil)
(with appropriate provision for the limiting case where x is equal to one of the x;’s).

Note that no solution of linear equations is required. The one-time work is negligible,
while the work for each interpolation is O(/N), tolerable even for very large N.

y(x) = (3.7.9)

interp_rbf.h
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Shepard proposed the simple power-law function
¢(ry=r""? (3.7.10)

with (typically) I < p < 3, as well as some more complicated functions with differ-
ent exponents in an inner and outer region (see [8]). You can see that what is going
on is basically interpolation by a nearness-weighted average, with nearby points con-
tributing more strongly than distant ones.

Shepard interpolation is rarely as accurate as the well-tuned application of one
of the other radial basis functions, above. On the other hand, it is simple, fast, and
often just the thing for quick and dirty applications. It, and variants, are thus widely
used.

An implementing object is

struct Shep_interp {
Object for Shepard interpolation using n points in dim dimensions. Call constructor once, then
interp as many times as desired.

Int dim, n;

const MatDoub &pts;

const VecDoub &vals;

Doub pneg;

Shep_interp(MatDoub_I &ptss, VecDoub_I &valss, Doub p=2.)

: dim(ptss.ncols()), n(ptss.nrows()) , pts(ptss),

vals(valss), pneg(-p) {}

Constructor. Then X dim matrix ptss inputs the data points, the vector valss the function
values. Set p to the desired exponent. The default value is typical.

Doub interp(VecDoub_I &pt) {
Return the interpolated function value at a dim-dimensional point pt.
Doub r, w, sum=0., sumw=0.;
if (pt.size() != dim) throw("RBF_interp bad pt size");
for (Int i=0;i<n;i++) {
if ((r=rad(&pt[0],&pts[i]1[0])) == 0.) return vals[il;
sum += (w = pow(r,pneg));
sumw += wkvals[i];
}
return sumw/sum;

}

Doub rad(const Doub *pl, const Doub *p2) {

Euclidean distance.
Doub sum = O0.;
for (Int i=0;i<dim;i++) sum += SQR(p1[il-p2[il);
return sqrt(sum);

3.7.4 Interpolation by Kriging

Kriging is a technique named for South African mining engineer D.G. Krige. It
is basically a form of linear prediction (§13.6), also known in different communities
as Gauss-Markov estimation or Gaussian process regression.

Kriging can be either an interpolation method or a fitting method. The distinc-
tion between the two is whether the fitted/interpolated function goes exactly through
all the input data points (interpolation), or whether it allows measurement errors to
be specified and then “smooths” to get a statistically better predictor that does not
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generally go through the data points (does not “honor the data”). In this section we
consider only the former case, that is, interpolation. We will return to the latter case
in §15.9.

At this point in the book, it is beyond our scope to derive the equations for
kriging. You can turn to §13.6 to get a flavor, and look to references [9,10,11] for
details. To use kriging, you must be able to estimate the mean square variation of
your function y(x) as a function of offset distance r, a so-called variogram,

o) ~ 3 {yx + 1) = yP) (3.7.11)

where the average is over all x with fixed r. If this seems daunting, don’t worry.
For interpolation, even very crude variogram estimates work fine, and we will give
below a routine to estimate v(r) from your input data points x; and y; = y(Xx;),
i =0,..., N —1, automatically. One usually takes v(r) to be a function only of the
magnitude r = |r| and writes it as v(r).

Let v;; denote v(|Xx; — X;|), where i and j are input points, and let v, ; denote
v(|x« — X;|), X« being a point at which we want an interpolated value y(Xx). Now
define two vectors of length N + 1,

Y - ()70»)/17-~~7YN—170)

(3.7.12)
V= (U*h U2, ..., Ux N—1, 1)
and an (N + 1) x (N + 1) symmetric matrix,
Voo Vo1 e UO,N—I 1
V1o V11 s ULN-1 1
V= (3.7.13)
UN-1,0 UN-11 ... UN—-1N—-1 I
1 1 . 1 0
Then the kriging interpolation estimate y, & y(X«) is given by
Jo=V.- VY (3.7.14)
and its variance is given by
Var(74) = V- V1.V, (3.7.15)

Notice that if we compute, once, the LU decomposition of V, and then backsub-
stitute, once, to get the vector V! - Y, then the individual interpolations cost only
O(N): Compute the vector V, and take a vector dot product. On the other hand,
every computation of a variance, equation (3.7.15), requires an O(N?) backsubsti-
tution.

As an aside (if you have looked ahead to §13.6) the purpose of the extra row and
column in V, and extra last components in V, and Y, is to automatically calculate,
and correct for, an appropriately weighted average of the data, and thus to make
equation (3.7.14) an unbiased estimator.

Here is an implementation of equations (3.7.12) — (3.7.15). The constructor
does the one-time work, while the two overloaded interp methods calculate either
an interpolated value or else a value and a standard deviation (square root of the
variance). You should leave the optional argument err set to the default value of
NULL until you read §15.9.
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template<class T>

struct Krig {

Object for interpolation by kriging, using npt points in ndim dimensions. Call constructor once,
then interp as many times as desired.

const MatDoub &x;
const T &vgram;
Int ndim, npt;

Doub lastval, lasterr; Most recently computed value and (if com-
VecDoub y,dstar,vstar,yvi; puted) error.

MatDoub v;

LUdcmp *vij;

Krig(MatDoub_I &xx, VecDoub_I &yy, T &vargram, const Doub *err=NULL)

¢ x(xx),vgram(vargram) ,npt (xx.nrows () ) ,ndim(xx.ncols()) ,dstar (npt+1),

vstar (npt+1) ,v(npt+1,npt+1) ,y(npt+1) ,yvi(npt+1) {

Constructor. The npt X ndim matrix xx inputs the data points, the vector yy the function
values. vargram is the variogram function or functor. The argument err is not used for
interpolation; see §15.9.

Int i,j;
for (i=0;i<npt;i++) { Fill'Y and V.
y[i]l = yy[il;

for (j=i;j<mpt;j++) {
v[il[j] = v[jI1[i] = vgram(rdist(&x[i][0],&x[j1[0]));
}
v[il [npt] = vinptl[i] = 1.;
}
v[npt] [npt] = y[npt] = 0.;
if (err) for (i=0;i<npt;i++) v[i][i] -= SQR(err[i]);  §15.9.
vi = new LUdcmp(v);
vi->solve(y,yvi);
}
“Krig() { delete vi; }

Doub interp(VecDoub_I &xstar) {
Return an interpolated value at the point xstar.
Int i;
for (i=0;i<npt;i++) vstar[i] = vgram(rdist(&xstar[0],&x[1][0]));
vstar[npt] = 1.;
lastval = 0.;
for (i=0;i<=npt;i++) lastval += yvil[ilxvstar[i];
return lastval;

}

Doub interp(VecDoub_I &xstar, Doub &esterr) {
Return an interpolated value at the point xstar, and return its estimated error as esterr.

lastval = interp(xstar);

vi->solve(vstar,dstar);

lasterr = 0;

for (Int i=0;i<=npt;i++) lasterr += dstar[il*vstar[i];
esterr = lasterr = sqrt(MAX(0.,lasterr));

return lastval;

}

Doub rdist(const Doub *x1, const Doub *x2) {

Utility used internally. Cartesian distance between two points.
Doub d=0.;
for (Int i=0;i<ndim;i++) d += SQR(x1[i]-x2[i]);
return sqrt(d);

The constructor argument vgram, the variogram function, can be either a func-
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tion or functor (§1.3.3). For interpolation, you can use a Powvargram object that fits
a simple model
v(r) = arf (3.7.16)

where B is considered fixed and « is fitted by unweighted least squares over all pairs
of data points i and j. We’ll get more sophisticated about variograms in §15.9;
but for interpolation, excellent results can be obtained with this simple choice. The
value of § should be in the range 1 < B < 2. A good general choice is 1.5, but
for functions with a strong linear trend, you may want to experiment with values as
large as 1.99. (The value 2 gives a degenerate matrix and meaningless results.) The
optional argument nug will be explained in §15.9.

struct Powvargram {
Functor for variogram v(r) = ar®, where B is specified, « is fitted from the data.
Doub alph, bet, nugsq;

Powvargram(MatDoub_I &x, VecDoub_I &y, const Doub beta=1.5, const Doub nug=0.)

: bet(beta), nugsq(nug*nug) {
Constructor. The npt X ndim matrix x inputs the data points, the vector y the function
values, beta the value of 8. For interpolation, the default value of beta is usually adequate.
For the (rare) use of nug see §15.9.
Int i,j,k,npt=x.nrows(),ndim=x.ncols();
Doub rb,num=0.,denom=0. ;
for (i=0;i<npt;i++) for (j=i+1;j<npt;j++) {
rb = 0.;
for (k=0;k<ndim;k++) rb += SQR(x[i] [k]1-x[j1[k]);
rb = pow(rb,0.5*beta) ;
num += rb*(0.5*SQR(y[i]l-y[j]1) - nugsq);
denom += SQR(rb);
}
alph = num/denom;

}

Doub operator() (const Doub r) const {return nugsq+alph*pow(r,bet);}

Sample code for interpolating on a set of data points is

MatDoub x(npts,ndim);
VecDoub y(npts), xstar(ndim);

Powvargram vgram(x,y);
Krig<Powvargram> krig(x,y,vgram) ;

followed by any number of interpolations of the form
ystar = krig.interp(xstar);
Be aware that while the interpolated values are quite insensitive to the vari-
ogram model, the estimated errors are rather sensitive to it. You should thus consider
the error estimates as being order of magnitude only. Since they are also relatively

expensive to compute, their value in this application is not great. They will be much
more useful in §15.9, when our model includes measurement errors.

3.7.5 Curve Interpolation in Multidimensions

A different kind of interpolation, worth a brief mention here, is when you have
an ordered set of N tabulated points in #n dimensions that lie on a one-dimensional
curve, Xg, ...Xxy—1, and you want to interpolate other values along the curve. Two

krig.h
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cases worth distinguishing are: (i) The curve is an open curve, so that x¢ and Xy —1
represent endpoints. (ii) The curve is a closed curve, so that there is an implied curve
segment connecting X ;—; back to xg.

A straightforward solution, using methods already at hand, is first to approx-
imate distance along the curve by the sum of chord lengths between the tabulated
points, and then to construct spline interpolations for each of the coordinates, O, . . .,
n — 1, as a function of that parameter. Since the derivative of any single coordinate
with respect to arc length can be no greater than 1, it is guaranteed that the spline
interpolations will be well-behaved.

Probably 90% of applications require nothing more complicated than the above.
If you are in the unhappy 10%, then you will need to learn about Bézier curves, B-
splines, and interpolating splines more generally [12,13,14]. For the happy majority,
an implementation is

struct Curve_interp {

Object for interpolating a curve specified by n points in dim dimensions.
Int dim, n, in;
Bool cls; Set if a closed curve.
MatDoub pts;
VecDoub s;
VecDoub ans;
NRvector<Spline_interp*> srp;

Curve_interp(MatDoub &ptsin, Bool close=0)
: n(ptsin.nrows()), dim(ptsin.ncols()), in(close 7 2*n : n),
cls(close), pts(dim,in), s(in), ans(dim), srp(dim) {
Constructor. The n X dim matrix ptsin inputs the data points. Input close as 0 for
an open curve, 1 for a closed curve. (For a closed curve, the last data point should not
duplicate the first — the algorithm will connect them.)

Int i,ii,im,j,ofs;

Doub ss,soff,db,de;

ofs = close 7 n/2 : 0; The trick for closed curves is to duplicate half a
s[0] = 0.; period at the beginning and end, and then
for (i=0;i<in;i++) { use the middle half of the resulting spline.

ii = (i-ofs+n) % n;
im (ii-1+n) % n;
for (j=0;j<dim;j++) pts[jl[i] = ptsinl[ii] [j1; Store transpose.
if (i>0) { Accumulate arc length.
s[i] = s[i-1] + rad(&ptsin[ii] [0],&ptsin[im] [0]);
if (s[i] == s[i-1]) throw("error in Curve_interp");
Consecutive points may not be identical. For a closed curve, the last data
point should not duplicate the first.

}
}
ss = close 7 slofs+n]-s[ofs] : s[n-1]-s[0]; Rescale parameter so that the
soff = s[ofs]; interval [0,1] is the whole curve (or one period).
for (i=0;i<in;i++) s[i] = (s[i]l-soff)/ss;
for (j=0;j<dim;j++) { Construct the splines using endpoint derivatives.
db = in < 4 ? 1.e99 : fprime(&s[0],&pts[j1[0],1);
de = in < 4 7 1.e99 : fprime(&s[in-1],&pts[j][in-1],-1);
srp[j] = new Spline_interp(s,&pts[j][0],db,de);
}

}
“Curve_interp() {for (Int j=0;j<dim;j++) delete srp[jl;}

VecDoub &interp(Doub t) {

Interpolate a point on the stored curve. The point is parameterized by t, in the range [0,1].
For open curves, values of t outside this range will return extrapolations (dangerous!). For
closed curves, t is periodic with period 1.
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if (cls) t = t - floor(t);
for (Int j=0;j<dim;j++) ans[j] = (ksrp[jl).interp(t);
return ans;

}

Doub fprime(Doub *x, Doub *y, Int pm) {
Utility for estimating the derivatives at the endpoints. x and y point to the abscissa and
ordinate of the endpoint. If pm is 41, points to the right will be used (left endpoint); if it
is —1, points to the left will be used (right endpoint). See text, below.
Doub s1 = x[0]-x[pm*1], s2 = x[0]-x[pm*2], s3 = x[0]-x[pm*3],
s12 = s1-s2, s13 = sl1-s3, s23 = s2-s3;
return -(six*s2/(s13*s23*s3))*y[pm*3]+(s1*s3/(s12*s2%s23))*y [pm*2]
- (s2%s3/(s1*s12%s13) ) *y [pm*x1]+(1./s1+1./s2+1./s3)*y[0];
}

Doub rad(const Doub *pl, const Doub *p2) {

Euclidean distance.
Doub sum = O0.;
for (Int i=0;i<dim;i++) sum += SQR(p1[i]l-p2[il);
return sqrt(sum);

The utility routine fprime estimates the derivative of a function at a tabulated
abscissa x( using four consecutive tabulated abscissa-ordinate pairs, (xg, ¥o), - - .,
(x3, y3). The formula for this, readily derived by power-series expansion, is

yo = —Coyo + C1y1 — Cay2 + C3y3 (3.7.17)
where 1 1 1
Co =— 4+ —4+ —
S1 S22 83
Cl _ $283
s1(s2 —jllggszn —51) (3.7.18)
C, =
2 (52 — 51)82(53 — 52)
5152
Cx, =
3 (53 —51)(53 — 52)53
with

S1 = X1 —Xo
S2 = X2 — X (3719)

§3 = X3 — Xo
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3.8 Laplace Interpolation

In this section we look at a missing data or gridding problem, namely, how
to restore missing or unmeasured values on a regular grid. Evidently some kind of
interpolation from the not-missing values is required, but how shall we do this in a
principled way?

One good method, already in use at the dawn of the computer age [1.2], is
Laplace interpolation, sometimes called Laplace/Poisson interpolation. The gen-
eral idea is to find an interpolating function y that satisfies Laplace’s equation in n
dimensions,

Viy =0 (3.8.1)

wherever there is no data, and which satisfies

y(Xi) = yi (3.8.2)

at all measured data points. Generically, such a function does exist. The reason
for choosing Laplace’s equation (among all possible partial differential equations,
say) is that the solution to Laplace’s equation selects, in some sense, the smoothest
possible interpolant. In particular, its solution minimizes the integrated square of the
gradient,

[ IVy|?dQ (3.8.3)
Q

where €2 denotes the n-dimensional domain of interest. This is a very general idea,
and it can be applied to irregular meshes as well as to regular grids. Here, however,
we consider only the latter.
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For purposes of illustration (and because it is the most useful example) we fur-
ther specialize to the case of two dimensions, and to the case of a Cartesian grid
whose x; and x, values are evenly spaced — like a checkerboard.

In this geometry, the finite difference approximation to Laplace’s equation has
a particularly simple form, one that echos the mean value theorem for continuous
solutions of the Laplace equation: The value of the solution at any free gridpoint
(i.e., not a point with a measured value) equals the average of its four Cartesian
neighbors. (See §20.0.) Indeed, this already sounds a lot like interpolation.

If yo denotes the value at a free point, while y,, y4, y7, and y, denote the values
at its up, down, left, and right neighbors, respectively, then the equation satisfied is

Yo—tyu =Ly =1y —1y =0 (3.8.4)

For gridpoints with measured values, on the other hand, a different (simple)
equation is satisfied,

Yo = Yo(measured) (385)

Note that these nonzero right-hand sides are what make an inhomogeneous, and
therefore generally solvable, set of linear equations.

We are not quite done, since we must provide special forms for the top, bot-
tom, left, and right boundaries, and for the four corners. Homogeneous choices that
embody “natural” boundary conditions (with no preferred function values) are

Yo — % Yu — % ya =20 (left and right boundaries)
Yo — %)’l - %yr =0 (top and bottom boundaries)

Yo — %yr - %Yd =0 (top-left corner) (3.8.6)
Yo — %yl — %J’d =0 (top-right corner) h

Yo — % yr — % Yu =0 (bottom-left corner)

Yo — % v — % yu =0 (bottom-right corner)

Since every gridpoint corresponds to exactly one of the equations in (3.8.4),
(3.8.5), or (3.8.4), we have exactly as many equations as there are unknowns. If the
grid is M by N, then there are M N of each. This can be quite a large number; but
the equations are evidently very sparse. We solve them by defining a derived class
from §2.7’s Linbcg base class. You can readily identify all the cases of equations
(3.8.4) — (3.8.6) in the code for atimes, below.

struct Laplace_interp : Linbcg {
Object for interpolating missing data in a matrix by solving Laplace’s equation. Call constructor
once, then solve one or more times (see text).

MatDoub &mat;

Int ii,jj;

Int nn,iter;

VecDoub b,y,mask;

Laplace_interp(MatDoub_IO &matrix) : mat(matrix), ii(mat.nrows()),
jj(mat.ncols()), nn(ii*jj), iter(0), b(nn), y(nn), mask(nn) {
Constructor. Values greater than 1.e99 in the input matrix mat are deemed to be missing
data. The matrix is not altered until solve is called.

Int i,j,k;

Doub vl = 0.;

interp_laplace.h
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}s;

for (k=0;k<nn;k++) {
i=%/jj;
3 = & - i35
if (mat[il[j] < 1.e99) {
b[k] = yl[k] = vl = mat[i][j];
mask[k] = 1;

Fill the r.h.s. vector, the initial guess,
and a mask of the missing data.

} else {
b[k] = 0.;
y[k] = v1;

mask[k] = 0;

}

void asolve(VecDoub_I &b, VecDoub_0 &x, const Int itrnsp);
void atimes(VecDoub_I &x, VecDoub_0 &r, const Int itrnsp);
See definitions below. These are the real algorithmic content.

Doub solve(Doub tol=1.e-6, Int itmax=-1) {

Invoke Linbcg: :solve with appropriate arguments. The default argument values will usu-
ally work, in which case this routine need be called only once. The original matrix mat is
refilled with the interpolated solution.

Int i,j,k;

Doub err;

if (itmax <= 0) itmax = 2*MAX(ii,jj);

Linbcg: :solve(b,y,1,tol,itmax,iter,err);

for (k=0,i=0;i<ii;i++) for (j=0;j<jj;j++) mat[il[j1 = y[k++];

return err;

void Laplace_interp::asolve(VecDoub_I &b, VecDoub_0 &x, const Int itrnsp) {
Diagonal preconditioner. (Diagonal elements all unity.)

¥

Int i,n=b.size();
for (i=0;i<n;i++) x[i] = b[i];

void Laplace_interp::atimes(VecDoub_I &x, VecDoub_0 &r, const Int itrnsp) {

Sparse matrix, and matrix transpose, multiply. This routine embodies egs. (3.8.4), (3.8.5), and
(3.8.6).

Int i,j,k,n=r.size(),jjt,it;
Doub del;
for (k=0;k<n;k++) r[k] = 0
for (k=0;k<n;k++) {
i=Kk/jj;
j = k- i3;
if (mask[k]) {
r[k] += x[k];
} else if (i>0 && i<ii-1 && >0 && j<jj-1) { Interior point, eq. (3.8.4).
if (itrmnsp) {
rlk] += x[k];
del = -0.25*x[k];
r[k-1] += del;
r[k+1] += del;
r[k-jjl += del;
r[k+jjl += del;
} else {
rlk] = x[k] - 0.26*(x[k-1]+x[k+1]+x[k+jjl+x[k-jj1);

L)

Measured point, eq. (3.8.5).

}
} else if (i>0 && i<ii-1) {
if (itrnsp) {
rk] += x[k];
del = -0.5%x[k];
r[k-jjl += del;

Left or right edge, eq. (3.8.6).
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r[k+jj] += del;
} else {
r[k] = x[k] - 0.5%(x[k+jjl+x[k-jj1);
}
} else if (§>0 && j<jj-1) { Top or bottom edge, eq. (3.8.6).
if (itrnsp) {
rlk] += x[k];
del = -0.5%x[k];
r[k-1] += del;
r[k+1] += del;
} else {
rlk] = x[k] - 0.5%x(x[k+1]+x[k-1]);
}
} else { Corners, eq. (3.8.6).
jjt =1i==0 7 jj : -jj;
it = §==0 7 1 : -1;
if (itrnsp) {
rlk] += x[k];
del = -0.5%x[k];
r[k+jjt] += del;
rlk+it] += del;
} else {
r(k] = x[k] - 0.5%x(x[k+jjtl+x[k+it]);
}

Usage is quite simple. Just fill a matrix with function values where they are
known, and with 1.e99 where they are not; send the matrix to the constructor; and
call the solve routine. The missing values will be interpolated. The default argu-
ments should serve for most cases.

Int m=...,n=...;
MatDoub mat (m,n);

Laplace_interp mylaplace(mat);

mylaplace.solve();
Quite decent results are obtained for smooth functions on 300 x 300 matrices in
which a random 10% of gridpoints have known function values, with 90% interpo-
lated. However, since compute time scales as M N max (M, N) (that is, as the cube),
this is not a method to use for much larger matrices, unless you break them up into
overlapping tiles. If you experience convergence difficulties, then you should call
solve, with appropriate nondefault arguments, several times in succession, and look
at the returned error estimate after each call returns.

3.8.1 Minimum Curvature Methods

Laplace interpolation has a tendency to yield cone-like cusps around any small
islands of known data points that are surrounded by a sea of unknowns. The reason
is that, in two dimensions, the solution of Laplace’s equation near a point source is
logarithmically singular. When the known data is spread fairly evenly (if randomly)
across the grid, this is not generally a problem. Minimum curvature methods deal
with the problem at a more fundamental level by being based on the biharmonic
equation

V(Vy) =0 (3.8.7)
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instead of Laplace’s equation. Solutions of the biharmonic equation minimize the
integrated square of the curvature,

/ V2y|2dQ (3.8.8)
Q

Minimum curvature methods are widely used in the earth-science community [3,4].

The references give a variety of other methods that can be used for missing data
interpolation and gridding.
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Integration of Functions

4.0 Introduction

Numerical integration, which is also called quadrature, has a history extending
back to the invention of calculus and before. The fact that integrals of elementary
functions could not, in general, be computed analytically, while derivatives could be,
served to give the field a certain panache, and to set it a cut above the arithmetic
drudgery of numerical analysis during the whole of the 18th and 19th centuries.

With the invention of automatic computing, quadrature became just one numer-
ical task among many, and not a very interesting one at that. Automatic computing,
even the most primitive sort involving desk calculators and rooms full of “comput-
ers” (that were, until the 1950s, people rather than machines), opened to feasibility
the much richer field of numerical integration of differential equations. Quadrature
is merely the simplest special case: The evaluation of the integral

b
= / f(x)dx (4.0.1)
a
is precisely equivalent to solving for the value I = y(b) the differential equation
d
d_y = f(x) (4.0.2)
X
with the boundary condition
y(@) =0 (4.0.3)

Chapter 17 of this book deals with the numerical integration of differential equa-
tions. In that chapter, much emphasis is given to the concept of “variable” or “adap-
tive” choices of stepsize. We will not, therefore, develop that material here. If the
function that you propose to integrate is sharply concentrated in one or more peaks,
or if its shape is not readily characterized by a single length scale, then it is likely
that you should cast the problem in the form of (4.0.2) — (4.0.3) and use the methods
of Chapter 17. (But take a look at §4.7 first.)

The quadrature methods in this chapter are based, in one way or another, on the
obvious device of adding up the value of the integrand at a sequence of abscissas

155
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within the range of integration. The game is to obtain the integral as accurately as
possible with the smallest number of function evaluations of the integrand. Just as
in the case of interpolation (Chapter 3), one has the freedom to choose methods of
various orders, with higher order sometimes, but not always, giving higher accuracy.
Romberyg integration, which is discussed in §4.3, is a general formalism for mak-
ing use of integration methods of a variety of different orders, and we recommend
it highly.

Apart from the methods of this chapter and of Chapter 17, there are yet other
methods for obtaining integrals. One important class is based on function approxima-
tion. We discuss explicitly the integration of functions by Chebyshev approximation
(Clenshaw-Curtis quadrature) in §5.9. Although not explicitly discussed here, you
ought to be able to figure out how to do cubic spline quadrature using the output
of the routine spline in §3.3. (Hint: Integrate equation 3.3.3 over x analytically.
See[1].)

Some integrals related to Fourier transforms can be calculated using the fast
Fourier transform (FFT) algorithm. This is discussed in §13.9. A related problem is
the evaluation of integrals with long oscillatory tails. This is discussed at the end of
§5.3.

Multidimensional integrals are a whole nother multidimensional bag of worms.
Section 4.8 is an introductory discussion in this chapter; the important technique of
Monte Carlo integration is treated in Chapter 7.

CITED REFERENCES AND FURTHER READING:

Carnahan, B., Luther, H.A., and Wilkes, J.O. 1969, Applied Numerical Methods (New York:
Wiley), Chapter 2.
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Dover), Chapter 7.
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Mathematical Association of America), Chapter 4.

Stoer, J., and Bulirsch, R. 2002, Introduction to Numerical Analysis, 3rd ed. (New York: Springer),
Chapter 3.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed.; reprinted
2001 (New York: Dover), Chapter 4.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall);
reprinted 2003 (New York: Dover), §7.4.

Kahaner, D., Moler, C., and Nash, S. 1989, Numerical Methods and Software (Englewood Cliffs,
NJ: Prentice-Hall), Chapter 5.

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical Com-
putations (Englewood Cliffs, NJ: Prentice-Hall), §5.2, p. 89.[1]
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4.1 Classical Formulas for Equally Spaced
Abscissas

Where would any book on numerical analysis be without Mr. Simpson and his
“rule”? The classical formulas for integrating a function whose value is known at
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T

X0 X1 X2 cee XN-1 XN

open formulas use these points

closed formulas use these points

Figure 4.1.1. Quadrature formulas with equally spaced abscissas compute the integral of a function
between xo and x . Closed formulas evaluate the function on the boundary points, while open formulas
refrain from doing so (useful if the evaluation algorithm breaks down on the boundary points).

equally spaced steps have a certain elegance about them, and they are redolent with
historical association. Through them, the modern numerical analyst communes with
the spirits of his or her predecessors back across the centuries, as far as the time
of Newton, if not farther. Alas, times do change; with the exception of two of the
most modest formulas (“extended trapezoidal rule,” equation 4.1.11, and “extended
midpoint rule,” equation 4.1.19; see §4.2), the classical formulas are almost entirely
useless. They are museum pieces, but beautiful ones; we now enter the museum.
(You can skip to §4.2 if you are not touristically inclined.)

Some notation: We have a sequence of abscissas, denoted x¢, X1, ..., XN—1, XN,
that are spaced apart by a constant step /,

Xi =Xo+1ih i=0,1,...,N (4.1.1)
A function f(x) has known values at the x;’s,

fGxi) = fi (4.1.2)

We want to integrate the function f(x) between a lower limit a and an upper limit b,
where a and b are each equal to one or the other of the x;’s. An integration formula
that uses the value of the function at the endpoints, f(a) or f(b), is called a closed
formula. Occasionally, we want to integrate a function whose value at one or both
endpoints is difficult to compute (e.g., the computation of f* goes to a limit of zero
over zero there, or worse yet has an integrable singularity there). In this case we
want an open formula, which estimates the integral using only x;’s strictly between
a and b (see Figure 4.1.1).

The basic building blocks of the classical formulas are rules for integrating a
function over a small number of intervals. As that number increases, we can find
rules that are exact for polynomials of increasingly high order. (Keep in mind that
higher order does not always imply higher accuracy in real cases.) A sequence of
such closed formulas is now given.
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4.1.1 Closed Newton-Cotes Formulas

Trapezoidal rule:

/xl f(x)dx = tho + %fl} + O3 f") (4.1.3)

Here the error term O( ) signifies that the true answer differs from the estimate by
an amount that is the product of some numerical coefficient times /> times the value
of the function’s second derivative somewhere in the interval of integration. The
coefficient is knowable, and it can be found in all the standard references on this
subject. The point at which the second derivative is to be evaluated is, however,
unknowable. If we knew it, we could evaluate the function there and have a higher-
order method! Since the product of a knowable and an unknowable is unknowable,
we will streamline our formulas and write only O( ), instead of the coefficient.
Equation (4.1.3) is a two-point formula (x¢ and x). It is exact for polynomials
up to and including degree 1, i.e., f(x) = x. One anticipates that there is a three-
point formula exact up to polynomials of degree 2. This is true; moreover, by a
cancellation of coefficients due to left-right symmetry of the formula, the three-point

formula is exact for polynomials up to and including degree 3, i.e., f(x) = x3.

Simpson’s rule:
2 1 4 1 5 +(4)
[Crmar=ilineine ] vous® @
X0

Here f* means the fourth derivative of the function f evaluated at an unknown
place in the interval. Note also that the formula gives the integral over an interval of
size 2h, so the coefficients add up to 2.

There is no lucky cancellation in the four-point formula, so it is also exact for
polynomials up to and including degree 3.

. >, 3 .
Simpson’s g rule:

3 3 9 9 3
/ f(x)dx = h[gfo tefitgfat §f3] + O @) 4.1.5)
X0
The five-point formula again benefits from a cancellation:

Bode’s rule:

*4 14 64 24 64 14 7 +(6)
[ sy =h[ s e g hr G h i h] 00 1)
(4.1.6)
This is exact for polynomials up to and including degree 5.
At this point the formulas stop being named after famous personages, so we
will not go any further. Consult [1] for additional formulas in the sequence.

4.1.2 Extrapolative Formulas for a Single Interval

We are going to depart from historical practice for a moment. Many texts would
give, at this point, a sequence of “Newton-Cotes Formulas of Open Type.” Here is
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an example:
" B I R S B L) 5 @)
[ res =[Sk i i ] 00 s)

Notice that the integral from ¢ = xo to b = x5 is estimated, using only the interior
points xi, X, X3, X4. In our opinion, formulas of this type are not useful for the
reasons that (i) they cannot usefully be strung together to get “extended” rules, as we
are about to do with the closed formulas, and (ii) for all other possible uses they are
dominated by the Gaussian integration formulas, which we will introduce in §4.6.
Instead of the Newton-Cotes open formulas, let us set out the formulas for esti-
mating the integral in the single interval from x( to x1, using values of the function

f at x1,xa,.... These will be useful building blocks later for the “extended” open
formulas.
x1
/ f(x)dx =hlfi] + OMh>f) (4.1.7)
x0
*1 3 1
[ e =h 3= 50| +outs @.18)
X0 | 2 2
1 [23 16 5
dx =h| = fi——=fo+ —= omh*f® 4.1.9
[ rwax=n[Fa-3n5n] +outr®) @19)
* 55 59 37 9
dx =h| = fi——fo+ = f1— — on° @)  (4.1.10
R ey ¥ IR G A AR

Perhaps a word here would be in order about how formulas like the above can
be derived. There are elegant ways, but the most straightforward is to write down the
basic form of the formula, replacing the numerical coefficients with unknowns, say
p,q,1,s. Without loss of generality take xo = 0 and x; = 1, so & = 1. Substitute
in turn for f(x) (and for f1, f>, f3, f4) the functions f(x) = 1, f(x) = x, f(x) =
x2, and f(x) = x3. Doing the integral in each case reduces the left-hand side to
a number and the right-hand side to a linear equation for the unknowns p,q,r,s.
Solving the four equations produced in this way gives the coefficients.

4.1.3 Extended Formulas (Closed)

If we use equation (4.1.3) N — 1 times to do the integration in the intervals
(x0,x1), (x1,X2),..., (xy—2,xny—1) and then add the results, we obtain an “ex-
tended” or “composite” formula for the integral from x¢ to xy—1.

Extended trapezoidal rule:

/XN_I f(x)dx = h[%fo T A+ St

- a)3f”) 4.1.11)

1
T +0
Sn—2 2fN 1:| ( N2

Here we have written the error estimate in terms of the interval b — a and the number
of points N instead of in terms of 4. This is clearer, since one is usually holding a and
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b fixed and wanting to know, e.g., how much the error will be decreased by taking
twice as many steps (in this case, it is by a factor of 4). In subsequent equations we
will show only the scaling of the error term with the number of steps.

For reasons that will not become clear until §4.2, equation (4.1.11) is in fact the
most important equation in this section; it is the basis for most practical quadrature
schemes.

The extended formula of order 1/ N3 is

[ rwdx =] ot A+

0
13 5 1
_ = = ol —

+ fn-3+ 12fN 2+ IZfN 1] + (N3)
(4.1.12)

(We will see in a moment where this comes from.)
If we apply equation (4.1.4) to successive, nonoverlapping pairs of intervals,

we get the extended Simpson’s rule:

xN -1 1. 4. 2. 4
[ rwds=nl5h e 3h e 3R A
X0
, \ 1 (4.1.13)
"'+§fN—3+§fN—2+§fN—1i| +O(W)

Notice that the 2/3, 4/3 alternation continues throughout the interior of the evalu-
ation. Many people believe that the wobbling alternation somehow contains deep
information about the integral of their function that is not apparent to mortal eyes.
In fact, the alternation is an artifact of using the building block (4.1.4). Another
extended formula with the same order as Simpson’s rule is

[x o f(x)dx = h[%fo + %fl + gfz + 3+ fat+

0

23 7 3
ot fNos+ fu—a ﬂfN—3 + ng—z + ng—1}

Lo (%) (4.1.14)

This equation is constructed by fitting cubic polynomials through successive groups
of four points; we defer details to §19.3, where a similar technique is used in the
solution of integral equations. We can, however, tell you where equation (4.1.12)
came from. It is Simpson’s extended rule, averaged with a modified version of itself
in which the first and last steps are done with the trapezoidal rule (4.1.3). The trape-
zoidal step is two orders lower than Simpson’s rule; however, its contribution to the
integral goes down as an additional power of N (since it is used only twice, not N
times). This makes the resulting formula of degree one less than Simpson.

4.1.4 Extended Formulas (Open and Semi-Open)

We can construct open and semi-open extended formulas by adding the closed
formulas (4.1.11) — (4.1.14), evaluated for the second and subsequent steps, to the
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extrapolative open formulas for the first step, (4.1.7) — (4.1.10). As discussed imme-
diately above, it is consistent to use an end step that is of one order lower than the
(repeated) interior step. The resulting formulas for an interval open at both ends are
as follows.

Equations (4.1.7) and (4.1.11) give

[ s =h[3 A pr et it 5 0nm] 40 (53)

(4.1.15)
Equations (4.1.8) and (4.1.12) give

[ rwax = DA Gt ik it

0

N3
(4.1.16)

7 23 1
_ — fa_ — fn— O\ —
+ fn 4+12fN 3+12fN 2} + ( )
Equations (4.1.9) and (4.1.13) give

EN-1 27 13 4
R Y R R

0
4 13 27 1
cee b — v — fn_ 0+ — fv_ ol —
t3fvst 5 /N-a+ 0+ SN 2} + (N4)
(4.1.17)

The interior points alternate 4/3 and 2/3. If we want to avoid this alternation,
we can combine equations (4.1.9) and (4.1.14), giving

/XN_I f(x)dx=h|:§f1—%f2+%f3+f4+fs+f6+

0

11 1 55
coo 4 fN—6 + fn—5+ ng—4 — ng—3 + ﬁfzv—z]

Lo (%) 4.1.18)

We should mention in passing another extended open formula, for use where
the limits of integration are located halfway between tabulated abscissas. This one is
known as the extended midpoint rule and is accurate to the same order as (4.1.15):

XN—1 1
/ fx)dx =hlfi2+ fap2+ fsp+ -+ fn-s;2+ fn-32] +O (m)
X0
(4.1.19)
There are also formulas of higher order for this situation, but we will refrain from
giving them.

The semi-open formulas are just the obvious combinations of equations (4.1.11)
—(4.1.14) with (4.1.15) — (4.1.18), respectively. At the closed end of the integration,
use the weights from the former equations; at the open end, use the weights from
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Figure 4.2.1. Sequential calls to the routine Trapzd incorporate the information from previous calls and
evaluate the integrand only at those new points necessary to refine the grid. The bottom line shows the
totality of function evaluations after the fourth call. The routine gsimp, by weighting the intermediate
results, transforms the trapezoid rule into Simpson’s rule with essentially no additional overhead.

the latter equations. One example should give the idea, the formula with error term
decreasing as 1/N 3, which is closed on the right and open on the left:

[ rwx =h| St s fir

0

N3
(4.1.20)

13 5 1
e 2 ol _—
+ fn—3+ 12fN 2+ IZfN 1] + ( )
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4.2 Elementary Algorithms

Our starting point is equation (4.1.11), the extended trapezoidal rule. There are
two facts about the trapezoidal rule that make it the starting point for a variety of
algorithms. One fact is rather obvious, while the second is rather “deep.”

The obvious fact is that, for a fixed function f(x) to be integrated between fixed
limits a and b, one can double the number of intervals in the extended trapezoidal
rule without losing the benefit of previous work. The coarsest implementation of the
trapezoidal rule is to average the function at its endpoints @ and b. The first stage
of refinement is to add to this average the value of the function at the halfway point.
The second stage of refinement is to add the values at the 1/4 and 3/4 points. And so
on (see Figure 4.2.1).

As we will see, a number of elementary quadrature algorithms involve adding
successive stages of refinement. It is convenient to encapsulate this feature in a
Quadrature structure:
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struct Quadratured{ quadrature.h
Abstract base class for elementary quadrature algorithms.
Int n; Current level of refinement.

virtual Doub next() = 0;
Returns the value of the integral at the nth stage of refinement. The function next () must
be defined in the derived class.

Then the Trapzd structure is derived from this as follows:

template<class T> quadrature.h
struct Trapzd : Quadrature {
Routine implementing the extended trapezoidal rule.
Doub a,b,s; Limits of integration and current value of integral.
T &func;
Trapzd() {};
Trapzd (T &funcc, const Doub aa, const Doub bb)
func(funcc), a(aa), b(bb) {n=0;}
The constructor takes as inputs func, the function or functor to be integrated between
limits a and b, also input.
Doub next() {
Returns the nth stage of refinement of the extended trapezoidal rule. On the first call (n=1),

the routine returns the crudest estimate of f: f(x)dx. Subsequent calls set n=2,3,... and

improve the accuracy by adding 2172 4dditional interior points.
Doub x,tnm,sum,del;
Int it,j;
n++;
if (n==1) {
return (s=0.5%(b-a)*(func(a)+func(b)));

} else {
for (it=1,j=1;j<n-1;j++) it <<= 1;
tnm=it;
del=(b-a)/tnm; This is the spacing of the points to be added.
x=a+0.5*del;
for (sum=0.0,j=0;j<it;j++,x+=del) sum += func(x);
$=0.5% (s+(b-a)*sum/tnm) ; This replaces s by its refined value.
return s;
}

Note that Trapzd is templated on the whole struct and does not just contain a
templated function. This is necessary because it retains a reference to the supplied
function or functor as a member variable.

The Trapzd structure is a workhorse that can be harnessed in several ways. The
simplest and crudest is to integrate a function by the extended trapezoidal rule where
you know in advance (we can’t imagine how!) the number of steps you want. If you
want 2M 4 1, you can accomplish this by the fragment

Ftor func; Functor func here has no parameters.
Trapzd<Ftor> s(func,a,b);
for(j=1;j<=m+1;j++) val=s.next();

with the answer returned as val. Here Ftor is a functor containing the function to
be integrated.

Much better, of course, is to refine the trapezoidal rule until some specified
degree of accuracy has been achieved. A function for this is
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template<class T>
Doub qtrap(T &func, const Doub a, const Doub b, const Doub eps=1.0e-10) {
Returns the integral of the function or functor func from a to b. The constants EPS can be
set to the desired fractional accuracy and JMAX so that 2 to the power JMAX-1 is the maximum
allowed number of steps. Integration is performed by the trapezoidal rule.
const Int JMAX=20;
Doub s,01ds=0.0; Initial value of olds is arbitrary.
Trapzd<T> t(func,a,b);
for (Int j=0;j<JIMAX;j++) {
s=t.next();
if (j > B) Avoid spurious early convergence.
if (abs(s-olds) < eps*abs(olds) ||
(s == 0.0 && olds == 0.0)) return s;
olds=s;
}

throw("Too many steps in routine qtrap");

The optional argument eps sets the desired fractional accuracy. Unsophisti-
cated as it is, routine gtrap is in fact a fairly robust way of doing integrals of func-
tions that are not very smooth. Increased sophistication will usually translate into
a higher-order method whose efficiency will be greater only for sufficiently smooth
integrands. gtrap is the method of choice, e.g., for an integrand that is a function
of a variable that is linearly interpolated between measured data points. Be sure that
you do not require too stringent an eps, however: If qtrap takes too many steps
in trying to achieve your required accuracy, accumulated roundoff errors may start
increasing, and the routine may never converge. A value of 10710 or even smaller is
usually no problem in double precision when the convergence is moderately rapid,
but not otherwise. (Of course, very few problems really require such precision.)

We come now to the “deep” fact about the extended trapezoidal rule, equation
(4.1.11). It is this: The error of the approximation, which begins with a term of
order 1/N?2, is in fact entirely even when expressed in powers of 1/N. This follows
directly from the Euler-Maclaurin summation formula,

/XNI f(x)dx = h[%fo + A+ ot N2+ lf1v—1:|

0

B2h2 , Bogh? (2k D k—1)
Ul = S == oS UV = 10 -
(4.2.1)
Here B,y is a Bernoulli number, defined by the generating function
o0 tn
= Z B,— 4.2.2)
n!
n=
with the first few even values (odd values vanish except for By = —1/2)
B 1 B ! B ! !
0= 2=~ bs=— Dbe=
6 30 42
(4.2.3)
B — 1 B — 5 By — 691
$T 730 T 66 2T 2730

Equation (4.2.1) is not a convergent expansion, but rather only an asymptotic expan-
sion whose error when truncated at any point is always less than twice the magnitude
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of the first neglected term. The reason that it is not convergent is that the Bernoulli
numbers become very large, e.g.,

495057205241079648212477525
66

The key point is that only even powers of & occur in the error series of (4.2.1).
This fact is not, in general, shared by the higher-order quadrature rules in §4.1. For
example, equation (4.1.12) has an error series beginning with O(1/N3), but contin-
uing with all subsequent powers of N: 1/N4, 1/N?, etc.

Suppose we evaluate (4.1.11) with N steps, getting a result Sy, and then again
with 2N steps, getting a result S . (This is done by any two consecutive calls of
Trapzd.) The leading error term in the second evaluation will be 1/4 the size of the
error in the first evaluation. Therefore the combination

S =1%Sn—1Sn 4.2.4)

50 =

will cancel out the leading order error term. But there is no error term of order 1/ N 3,
by (4.2.1). The surviving error is of order 1/N 4, the same as Simpson’s rule. In fact,
it should not take long for you to see that (4.2.4) is exactly Simpson’s rule (4.1.13),
alternating 2/3’s, 4/3’s, and all. This is the preferred method for evaluating that rule,
and we can write it as a routine exactly analogous to qtrap above:

template<class T>
Doub gsimp(T &func, const Doub a, const Doub b, const Doub eps=1.0e-10) {
Returns the integral of the function or functor func from a to b. The constants EPS can be
set to the desired fractional accuracy and JMAX so that 2 to the power JMAX-1 is the maximum
allowed number of steps. Integration is performed by Simpson's rule.
const Int JMAX=20;
Doub s,st,o0st=0.0,0s=0.0;
Trapzd<T> t(func,a,b);
for (Int j=0;j<JMAX;j++) {
st=t.next();
s=(4.0*st-0st)/3.0; Compare equation (4.2.4), above.
if (j > 5) Avoid spurious early convergence.
if (abs(s-os) < eps*abs(os) ||
(s == 0.0 && os == 0.0)) return s;
os=s;
ost=st;
}

throw("Too many steps in routine gsimp");

The routine gsimp will in general be more efficient than qtrap (i.e., require
fewer function evaluations) when the function to be integrated has a finite fourth
derivative (i.e., a continuous third derivative). The combination of gsimp and its
necessary workhorse Trapzd is a good one for light-duty work.

CITED REFERENCES AND FURTHER READING:

Stoer, J., and Bulirsch, R. 2002, Introduction to Numerical Analysis, 3rd ed. (New York: Springer),
§3.1.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall);
reprinted 2003 (New York: Dover), §7.4.1 — §7.4.2.

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical Com-
putations (Englewood Cliffs, NJ: Prentice-Hall), §5.3.
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4.3 Romberg Integration

We can view Romberg’s method as the natural generalization of the routine
gsimp in the last section to integration schemes that are of higher order than Simp-
son’s rule. The basic idea is to use the results from k successive refinements of the
extended trapezoidal rule (implemented in trapzd) to remove all terms in the error
series up to but not including O(1/N?¥). The routine gsimp is the case of k = 2.
This is one example of a very general idea that goes by the name of Richardson’s de-
ferred approach to the limit: Perform some numerical algorithm for various values
of a parameter /1, and then extrapolate the result to the continuum limit z = 0.

Equation (4.2.4), which subtracts off the leading error term, is a special case of
polynomial extrapolation. In the more general Romberg case, we can use Neville’s
algorithm (see §3.2) to extrapolate the successive refinements to zero stepsize. Ne-
ville’s algorithm can in fact be coded very concisely within a Romberg integration
routine. For clarity of the program, however, it seems better to do the extrapolation
by a function call to Poly_interp: :rawinterp, as given in §3.2.

template <class T>
Doub gromb(T &func, Doub a, Doub b, const Doub eps=1.0e-10) {
Returns the integral of the function or functor func from a to b. Integration is performed by
Romberg’s method of order 2K, where, e.g., K=2 is Simpson’s rule.
const Int JMAX=20, JMAXP=JMAX+1, K=5;
Here EPS is the fractional accuracy desired, as determined by the extrapolation error es-
timate; JMAX limits the total number of steps; K is the number of points used in the
extrapolation.

VecDoub s(JMAX) ,h(JMAXP); These store the successive trapezoidal approxi-
Poly_interp polint(h,s,K); mations and their relative stepsizes.
h[0]=1.0;

Trapzd<T> t(func,a,b);
for (Int j=1;j<=JMAX;j++) {
s[j-1]=t.next();
if (§ >=K) {
Doub ss=polint.rawinterp(j-K,0.0);
if (abs(polint.dy) <= eps*abs(ss)) return ss;
}
h[j]1=0.25%h[j-1];
This is a key step: The factor is 0.25 even though the stepsize is decreased by only
0.5. This makes the extrapolation a polynomial in A2 as allowed by equation (4.2.1),
not just a polynomial in A.
}

throw("Too many steps in routine qromb");

The routine qromb is quite powerful for sufficiently smooth (e.g., analytic) in-
tegrands, integrated over intervals that contain no singularities, and where the end-
points are also nonsingular. qromb, in such circumstances, takes many, many fewer
function evaluations than either of the routines in §4.2. For example, the integral

2
/ x*log(x + v/x2 + 1)dx
0

converges (with parameters as shown above) on the second extrapolation, after just
6 calls to trapzd, while gsimp requires 11 calls (32 times as many evaluations of
the integrand) and qtrap requires 19 calls (8192 times as many evaluations of the
integrand).
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4.4 Improper Integrals

For our present purposes, an integral will be “improper” if it has any of the
following problems:

e its integrand goes to a finite limiting value at finite upper and lower limits, but
cannot be evaluated right on one of those limits (e.g., sinx/x at x = 0)

e its upper limit is co , or its lower limit is —oo

e it has an integrable singularity at either limit (e.g., x™'/2 at x = 0)

e it has an integrable singularity at a known place between its upper and lower
limits

e it has an integrable singularity at an unknown place between its upper and
lower limits

If an integral is infinite (e.g., || 1°° x~dx), or does not exist in a limiting sense
(e.g., ffzo cos xdx), we do not call it improper; we call it impossible. No amount of
clever algorithmics will return a meaningful answer to an ill-posed problem.

In this section we will generalize the techniques of the preceding two sections
to cover the first four problems on the above list. A more advanced discussion of
quadrature with integrable singularities occurs in Chapter 19, notably §19.3. The
fifth problem, singularity at an unknown location, can really only be handled by the
use of a variable stepsize differential equation integration routine, as will be given in
Chapter 17, or an adaptive quadrature routine such as in §4.7.

We need a workhorse like the extended trapezoidal rule (equation 4.1.11), but
one that is an open formula in the sense of §4.1, i.e., does not require the integrand to
be evaluated at the endpoints. Equation (4.1.19), the extended midpoint rule, is the
best choice. The reason is that (4.1.19) shares with (4.1.11) the “deep” property of
having an error series that is entirely even in /. Indeed there is a formula, not as well
known as it ought to be, called the Second Euler-Maclaurin summation formula,

/ o S)dx = hlfij2+ f32+ fsj2 + -+ fn—sj2 + fn-3/2]

0

Byh?

+ 24 floey = )+ 4.4.1)
B h? - - -

12 T = )+

This equation can be derived by writing out (4.2.1) with stepsize &, then writing it
out again with stepsize //2, and then subtracting the first from twice the second.



quadrature.h

168 Chapter 4. Integration of Functions

It is not possible to double the number of steps in the extended midpoint rule
and still have the benefit of previous function evaluations (try it!). However, it is
possible to triple the number of steps and do so. Shall we do this, or double and
accept the loss? On the average, tripling does a factor V3 of unnecessary work,
since the “right” number of steps for a desired accuracy criterion may in fact fall
anywhere in the logarithmic interval implied by tripling. For doubling, the factor
is only +/2, but we lose an extra factor of 2 in being unable to use all the previous
evaluations. Since 1.732 < 2 x 1.414, it is better to triple.

Here is the resulting structure, which is directly comparable to Trapzd.

template <class T>
struct Midpnt : Quadrature {
Routine implementing the extended midpoint rule.
Doub a,b,s; Limits of integration and current value of inte-
T &funk; gral.
Midpnt (T &funcc, const Doub aa, const Doub bb)
funk (funcc), a(aa), b(bb) {n=0;}
The constructor takes as inputs func, the function or functor to be integrated between
limits a and b, also input.
Doub next(){
Returns the nth stage of refinement of the extended midpoint rule. On the first call (n=1),

the routine returns the crudest estimate of fab f(x)dx. Subsequent calls set n=2,3,... and

improve the accuracy by adding (2/3) x 3271 additional interior points.
Int it,j;
Doub x,tnm,sum,del,ddel;
n++;
if (n==1) {
return (s=(b-a)*func(0.5*(a+b)));
} else {
for(it=1,j=1;j<n-1;j++) it *= 3;
tnm=it;
del=(b-a)/(3.0%tnm) ;
ddel=del+del; The added points alternate in spacing be-
x=a+0.5%del; tween del and ddel.
sum=0.0;
for (j=0;j<it;j++) {
sum += func(x);

x += ddel;

sum += func(x);

x += del;
}
s=(s+(b-a)*sum/tnm) /3.0; The new sum is combined with the old inte-
return s; gral to give a refined integral.

}
}
virtual Doub func(const Doub x) {return funk(x);} Identity mapping.

};

You may have spotted a seemingly unnecessary extra level of indirection in
Midpnt, namely its calling the user-supplied function funk through an identity func-
tion func. The reason for this is that we are going to use mappings other than the
identity mapping between funk and func to solve the problems of improper inte-
grals listed above. The new quadratures will simply be derived from Midpnt with
func overridden.

The structure Midpnt could be used to exactly replace Trapzd in a driver
routine like qtrap (§4.2); one could simply change Trapzd<T> t(func,a,b) to
Midpnt<T> t(func,a,b), and perhaps also decrease the parameter JMAX since
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3MAX=1 (from step tripling) is a much larger number than 2™*~1 (step doubling).
The open formula implementation analogous to Simpson’s rule (gsimp in §4.2) could
also substitute Midpnt for Trapzd, decreasing JMAX as above, but now also changing
the extrapolation step to be

s=(9.0*st-ost)/8.0;

since, when the number of steps is tripled, the error decreases to 1/9th its size, not
1/4th as with step doubling.

Either the thus modified qtrap or gsimp will fix the first problem on the list
at the beginning of this section. More sophisticated, and allowing us to fix more
problems, is to generalize Romberg integration in like manner:

template<class T>
Doub gromo(Midpnt<T> &q, const Doub eps=3.0e-9) {
Romberg integration on an open interval. Returns the integral of a function using any specified
elementary quadrature algorithm q and Romberg’s method. Normally q will be an open formula,
not evaluating the function at the endpoints. It is assumed that q triples the number of steps
on each call, and that its error series contains only even powers of the number of steps. The
routines midpnt, midinf, midsql, midsqu, midexp are possible choices for q. The constants
below have the same meanings as in qromb.
const Int JMAX=14, JMAXP=JMAX+1, K=5;
VecDoub h(JMAXP),s (JMAX) ;
Poly_interp polint(h,s,K);
h[0]=1.0;
for (Int j=1;j<=JMAX;j++) {
s[j-1]1=q.next ) ;
if (§j >=K) {
Doub ss=polint.rawinterp(j-K,0.0);
if (abs(polint.dy) <= eps*abs(ss)) return ss;
}
h[jl=h[j-11/9.0; This is where the assumption of step tripling and an even
} error series is used.
throw("Too many steps in routine qromo");

Notice that we now pass a Midpnt object instead of the user function and limits
of integration. There is a good reason for this, as we will see below. It does, however,
mean that you have to bind things together before calling gromo, something like this,
where we integrate from a to b:

Midpnt<Ftor> q(ftor,a,b);
Doub integral=qromo(q);

or, for a bare function,

Midpnt<Doub(Doub)> q(fbare,a,b);
Doub integral=qromo(q);

Laid back C++ compilers will let you condense these to
Doub integral = qromo(Midpnt<Ftor>(Ftor(),a,b));
or

Doub integral = gqromo(Midpnt<Doub(Doub)>(fbare,a,b));

but uptight compilers may object to the way that a temporary is passed by reference,
in which case use the two-line forms above.

As we shall now see, the function gromo, with its peculiar interface, is an ex-
cellent driver routine for solving all the other problems of improper integrals in our
first list (except the intractable fifth).

romberg.h
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The basic trick for improper integrals is to make a change of variables to elim-
inate the singularity or to map an infinite range of integration to a finite one. For
example, the identity

b 1/a 1 1
/ fx)dx = [ - (—) dt ab >0 (4.4.2)
a /b I !

can be used with either b — oo and a positive, or with @ — —oo and b negative,
and works for any function that decreases toward infinity faster than 1/x2.

You can make the change of variable implied by (4.4.2) either analytically and
then use, e.g., qromo and Midpnt to do the numerical evaluation, or you can let the
numerical algorithm make the change of variable for you. We prefer the latter method
as being more transparent to the user. To implement equation (4.4.2) we simply write
a modified version of Midpnt, called Midinf, which allows b to be infinite (or, more
precisely, a very large number on your particular machine, such as 1 x 10°%), or a to
be negative and infinite. Since all the machinery is already in place in Midpnt, we
write Midinf as a derived class and simply override the mapping function.

template <class T>
struct Midinf : Midpnt<T>{
This routine is an exact replacement for midpnt, i.e., returns the nth stage of refinement of the
integral of funcc from aa to bb, except that the function is evaluated at evenly spaced points in
1/x rather than in x. This allows the upper limit bb to be as large and positive as the computer
allows, or the lower limit aa to be as large and negative, but not both. aa and bb must have
the same sign.
Doub func(const Doub x) {
return Midpnt<T>::funk(1.0/x)/(x*x); Effect the change of variable.
}
Midinf (T &funcc, const Doub aa, const Doub bb)
Midpnt<T>(funcc, aa, bb) {
Midpnt<T>::a=1.0/bb; Set the limits of integration.
Midpnt<T>::b=1.0/aa;

An integral from 2 to oo, for example, might be calculated by

Midinf<Ftor> q(ftor,2.,1.e99);

Doub integral=qromo(q);
If you need to integrate from a negative lower limit to positive infinity, you do this
by breaking the integral into two pieces at some positive value, for example,

Midpnt<Ftor> ql(ftor,-5.,2.);

Midinf<Ftor> q2(ftor,2.,1.e99);

integral=qromo(ql)+qromo(q2);
Where should you choose the breakpoint? At a sufficiently large positive value so
that the function funk is at least beginning to approach its asymptotic decrease to
zero value at infinity. The polynomial extrapolation implicit in the second call to
qromo deals with a polynomial in 1/x, not in x.

To deal with an integral that has an integrable power-law singularity at its lower

limit, one also makes a change of variable. If the integrand diverges as (x — a)™7,
0 <y < 1, near x = a, use the identity

b-a)' ™ v 1
/ f(x)dx = ;V tT=v f(tT™ + a)dt (b > a) (4.4.3)
0
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If the singularity is at the upper limit, use the identity

(b-a)' 7

b
/ f(x)dx = ﬁ 17 f(b— 1Tt (b>a)  (444)
a - 0

If there is a singularity at both limits, divide the integral at an interior breakpoint as
in the example above.

Equations (4.4.3) and (4.4.4) are particularly simple in the case of inverse square-
root singularities, a case that occurs frequently in practice:

b Vb—a
/ f(x)dx = / 2tf(a+1t2)dt (b > a) (4.4.5)
for a singularity at a, and
b Vb—a
/ f(x)dx = / 20f(b—t3dt (b > a) (4.4.6)
a 0

for a singularity at ». Once again, we can implement these changes of variable
transparently to the user by defining substitute routines for Midpnt that make the
change of variable automatically:

template <class T>
struct Midsql : Midpnt<T>{
This routine is an exact replacement for midpnt, except that it allows for an inverse square-root
singularity in the integrand at the lower limit aa.
Doub aorig;
Doub func(const Doub x) {
return 2.0*x*Midpnt<T>::funk(aorig+x*x) ; Effect the change of variable.
}
Midsql(T &funcc, const Doub aa, const Doub bb)
Midpnt<T>(funcc, aa, bb), aorig(aa) {
Midpnt<T>::a=0;
Midpnt<T>: :b=sqrt (bb-aa) ;

};

Similarly,

template <class T>
struct Midsqu : Midpnt<T>{
This routine is an exact replacement for midpnt, except that it allows for an inverse square-root
singularity in the integrand at the upper limit bb.
Doub borig;
Doub func(const Doub x) {
return 2.0*x*Midpnt<T>::funk(borig-x*x) ; Effect the change of variable.
}
Midsqu(T &funcc, const Doub aa, const Doub bb)
Midpnt<T>(funcc, aa, bb), borig(bb) {
Midpnt<T>::a=0;
Midpnt<T>: :b=sqrt(bb-aa) ;

quadrature.h
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One last example should suffice to show how these formulas are derived in
general. Suppose the upper limit of integration is infinite and the integrand falls
off exponentially. Then we want a change of variable that maps e *dx into (+)dt
(with the sign chosen to keep the upper limit of the new variable larger than the lower
limit). Doing the integration gives by inspection

t=e or x = —logt 4.4.7)

so that

—a

X=0Q0 t=e d
/  fdx = /t_o f(—logt)Tt (4.4.8)

The user-transparent implementation would be

template <class T>
struct Midexp : Midpnt<T>{
This routine is an exact replacement for midpnt, except that bb is assumed to be infinite (value
passed not actually used). It is assumed that the function funk decreases exponentially rapidly
at infinity.
Doub func(const Doub x) {
return Midpnt<T>::funk(-log(x))/x; Effect the change of variable.
}
Midexp(T &funcc, const Doub aa, const Doub bb) :
Midpnt<T>(funcc, aa, bb) {
Midpnt<T>::a=0.0;
Midpnt<T>: :b=exp(-aa) ;
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4.5 Quadrature by Variable Transformation

Imagine a simple general quadrature algorithm that is very rapidly convergent
and allows you to ignore endpoint singularities completely. Sound too good to be
true? In this section we’ll describe an algorithm that in fact handles large classes of
integrals in exactly this way.

Consider evaluating the integral

b
I =/ F(x)dx 4.5.1)

As we saw in the construction of equations (4.1.11) — (4.1.20), quadrature formulas
of arbitrarily high order can be constructed with interior weights unity, just by tun-
ing the weights near the endpoints. But if a function dies off rapidly enough near
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the endpoints, then those weights don’t matter at all. In such a case, an N -point
quadrature with uniform weights converges converges exponentially with N. (For
a more rigorous motivation of this idea, see §4.5.1. For the connection to Gaussian
quadrature, see the discussion at the end of §20.7.4.)

What about a function that doesn’t vanish at the endpoints? Consider a change
of variables x = x(t), such that x € [a,b] — t € [c,d]:

d
I = / f[x(z)]fl—j dt (4.5.2)

Choose the transformation such that the factor dx/dt goes rapidly to zero at the end-
points of the interval. Then the simple trapezoidal rule applied to (4.5.2) will give ex-
tremely accurate results. (In this section, we’ll call quadrature with uniform weights
trapezoidal quadrature, with the understanding that it’s a matter of taste whether you
weight the endpoints with weight 1/2 or 1, since they don’t count anyway.)

Even when f(x) has integrable singularities at the endpoints of the interval,
their effect can be overwhelmed by a suitable transformation x = x(¢). One need
not tailor the transformation to the specific nature of the singularity: We will dis-
cuss several transformations that are effective at obliterating just about any kind of
endpoint singularity.

The first transformation of this kind was introduced by Schwartz [1] and has
become known as the TANH rule:

1 1
x=5(b+a)+§(b—a)tanht, x € la,b] -t € [—00, ]

dx 1 2 2
i 5(b —a)sech”t = m(b —x)(x —a)

(4.5.3)

The sharp decrease of sech® as ¢ — 00 explains the efficiency of the algorithm
and its ability to deal with singularities. Another similar algorithm is the IMT rule [2].
However, x(¢) for the IMT rule is not given by a simple analytic expression, and its
performance is not too different from the TANH rule.

There are two kinds of errors to consider when using something like the TANH
rule. The discretization error is just the truncation error because you are using the
trapezoidal rule to approximate /. The trimming error is the result of truncating
the infinite sum in the trapezoidal rule at a finite value of N. (Recall that the limits
are now +00.) You might think that the sharper the decrease of dx/dt as t —
+o00, the more efficient the algorithm. But if the decrease is too sharp, then the
density of quadrature points near the center of the original interval [a, b] is low and
the discretization error is large. The optimal strategy is to try to arrange that the
discretization and trimming errors are approximately equal.

For the TANH rule, Schwartz [1] showed that the discretization error is of order

eq ~ e Tw/h (4.5.4)

where w is the distance from the real axis to the nearest singularity of the integrand.
There is a pole when sech?t — 00, i.e., when t = +im/2. If there are no poles
closer to the real axis in f(x), then w = /2. The trimming error, on the other hand,
is

€; ~ sech®ty ~ e 2Nk (4.5.5)
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Setting €5 ~ €;, we find

~ L, €~e 1z S.
" remy +56)

as the optimum /% and the corresponding error. Note that € decreases with N faster
than any power of N. If f is singular at the endpoints, this can modify equation
(4.5.5) for €;. This usually results in the constant 7 in (4.5.6) being reduced. Rather
than developing an algorithm where we try to estimate the optimal / for each inte-
grand a priori, we recommend simple step doubling and testing for convergence. We
expect convergence to set in for / around the value given by equation (4.5.6).

The TANH rule essentially uses an exponential mapping to achieve the desired
rapid fall-off at infinity. On the theory that more is better, one can try repeating the
procedure. This leads to the DE (double exponential) rule:

1 1
x==0b+a)+ E(b — a) tanh(c sinh ¢), x € la,b] >t € [—00, ]

2
dx 1 2 .
T E(b —a)sech”(c sinht)c cosht ~ exp(—cexplt]) as [t — oo

4.5.7)

Here the constant ¢ is usually taken to be 1 or 7r/2. (Values larger than /2 are not
useful since w = /2 for 0 < ¢ < 7/2, but w decreases rapidly for larger c.) By an
analysis similar to equations (4.5.4) — (4.5.6), one can show that the optimal 4 and
corresponding error for the DE rule are of order

p o~ 108@TNW/O) kNN

N , (4.5.8)

where k is a constant. The improved performance of the DE rule over the TANH
rule indicated by comparing equations (4.5.6) and (4.5.8) is borne out in practice.

4.5.1 Exponential Convergence of the Trapezoidal Rule

The error in evaluating the integral (4.5.1) by the trapezoidal rule is given by the Euler-
Maclaurin summation formula,

P @ o1 n S fas -3 B ek ) peen ) s
2 : = / e >

Note that this is in general an asymptotic expansion, not a convergent series. If all the deriva-
tives of the function f vanish at the endpoints, then all the “correction terms” in equation
(4.5.9) are zero. The error in this case is very small — it goes to zero with % faster than any
power of . We say that the method converges exponentially. The straight trapezoidal rule
is thus an excellent method for integrating functions such as exp(—x2) on (—o0, o0), whose
derivatives all vanish at the endpoints.

The class of transformations that will produce exponential convergence for a function
whose derivatives do not all vanish at the endpoints is those for which dx/dt and all its
derivatives go to zero at the endpoints of the interval. For functions with singularities at the
endpoints, we require that f(x) dx/dt and all its derivatives vanish at the endpoints. This is
a more precise statement of “dx/dt goes rapidly to zero” given above.
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4.5.2 Implementation

Implementing the DE rule is a little tricky. It’s not a good idea to simply use
Trapzd on the function f(x)dx/dt. First, the factor sech®(c sinh?) in equation
(4.5.7) can overflow if sech is computed as 1/ cosh. We follow [3] and avoid this by
using the variable ¢ defined by

g =e 25! (4.5.10)
(we take ¢ = 1 for simplicity) so that

o a)—d

— ———cosh 4.5.11
7 T+ 972 cosht 4.5.11)

For large positive 7, g just underflows harmlessly to zero. Negative ¢ is handled by
using the symmetry of the trapezoidal rule about the midpoint of the interval. We
write

ul dx
I ~h Z f(xj)zj

/= (45.12)
dx al dx
=i} fla+ 2 G|+ 2+ 5) + 10 -5 5 |
0 j=1 J
where q
s=b-x=0b-ar (4.5.13)

A second possible problem is that cancellation errors in computing a + 8 or b—§
can cause the computed value of f(x) to blow up near the endpoint singularities.
To handle this, you should code the function f(x) as a function of two arguments,
f(x,8). Then compute the singular part using § directly. For example, code the
function x™*(1 — x)™# as §7%(1 — x) P near x = 0 and x %6~ near x = 1. (See
§6.10 for another example of a f(x,§).) Accordingly, the routine DErule below
expects the function f to have two arguments. If your function has no singularities,
or the singularities are “mild” (e.g., no worse than logarithmic), you can ignore §
when coding f(x, ) and code it as if it were just f(x).

The routine DErule implements equation (4.5.12). It contains an argument /1,5
that corresponds to the upper limit for . The first approximation to [ is given by the
first term on the right-hand side of (4.5.12) with & = hy,c. Subsequent refinements
correspond to halving /& as usual. We typically take s, = 3.7 in double precision,
corresponding to ¢ = 3 x 1078, This is generally adequate for “mild” singularities,
like logarithms. If you want high accuracy for stronger singularities, you may have
to increase hpn.x. For example, for 1/./x you need hn,x = 4.3 to get full double
precision. This corresponds to ¢ = 10732 = (1071¢)2, as you might expect.

template<class T>
struct DErule : Quadrature {
Structure for implementing the DE rule.
Doub a,b,hmax,s;
T &func;

derule.h
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DErule(T &funcc, const Doub aa, const Doub bb, const Doub hmaxx=3.7)
: func(funcc), a(aa), b(bb), hmax(hmaxx) {n=0;}
Constructor. funcc is the function or functor that provides the function to be integrated between
limits aa and bb, also input. The function operator in funcc takes two arguments, x and §, as
described in the text. The range of integration in the transformed variable ¢ is (—hmaxx, hmaxx).
Typical values of hmaxx are 3.7 for logarithmic or milder singularities, and 4.3 for square-root
singularities, as discussed in the text.

Doub next() {
On the first call to the function next (n = 1), the routine returns the crudest estimate of
f: f(x)dx. Subsequent calls to next (n = 2,3,...) will improve the accuracy by adding

27—1 additional interior points.
Doub del,fact,q,sum,t,twoh;

Int it,j;
n++;
if (n == 1) {
fact=0.25;
return s=hmax*2.0*(b-a)*fact*func(0.5*(b+a),0.5*(b-a));
} else {
for (it=1,j=1;j<n-1;j++) it <<= 1;
twoh=hmax/it; Twice the spacing of the points to be added.
t=0.5%twoh;

for (sum=0.0,j=0;j<it;j++) {
g=exp(-2.0*sinh(t));
del=(b-a)*q/(1.0+q) ;
fact=q/SQR(1.0+q)*cosh(t);
sum += fact*(func(a+del,del)+func(b-del,del));
t += twoh;

}

return s=0.5%s+(b-a)*twoh*sum; Replace s by its refined value and return.

If the double exponential rule (DE rule) is generally better than the single expo-
nential rule (TANH rule), why don’t we keep going and use a triple exponential rule,
quadruple exponential rule, ...? As we mentioned earlier, the discretization error is
dominated by the pole nearest to the real axis. It turns out that beyond the double
exponential the poles come nearer and nearer to the real axis, so the methods tend to
get worse, not better.

If the function to be integrated itself has a pole near the real axis (much nearer
than the 77/2 that comes from the DE or TANH rules), the convergence of the method
slows down. In analytically tractable cases, one can find a “pole correction term” to
add to the trapezoidal rule to restore rapid convergence [4].

4.5.3 Infinite Ranges

Simple variations of the TANH or DE rules can be used if either or both of the
limits of integration is infinite:

Range TANH Rule DE Rule Mixed Rule

(0, 00) x=e' x = e2¢sinht x=e"¢ (4.5.14)

(—00,00) | x =sinht | x = sinh(c sinh?) —

The last column gives a mixed rule for functions that fall off rapidly (e ™ or e_xz) at
infinity. It is a DE rule at x = 0 but only a single exponential at infinity. The expo-
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nential fall-off of the integrand makes it behave like a DE rule there too. The mixed
rule for (—oo, 00) is constructed by splitting the range into (—oo, 0) and (0, co) and
making the substitution x — —x in the first range. This gives two integrals on
(0, 00).

To implement the DE rule for infinite ranges we don’t need the precautions we
used in coding the finite range DE rule. It’s fine to simply use the routine Trapzd
directly as a function of ¢, with the function func that it calls returning f(x) dx/dt.
So if funk is your function returning f(x), then you define the function func as a
function of t by code of the following form (for the mixed rule)

x=exp(t-exp(-t));

dxdt=x*(1.0+exp(-t));

return funk(x)*dxdt;
and pass func to Trapzd. The only care required is in deciding the range of integra-
tion. You want the contribution to the integral from the endpoints of the integration
to be negligible. For example, (—4, 4) is typically adequate for x = exp(sx sinht).

4.5.4 Examples

As examples of the power of these methods, consider the following integrals:

1 T2

/ log xlog(l —x)dx =2 — 3 (4.5.15)
0 |

L N 45.16
/0 I ETT R (210
o0

/ x73/%sin %e_x dx = [1(v/5-2)]/? (4.5.17)
0 2

/ 2707 % gy = %F(15_4) (4.5.18)
0

The integral (4.5.15) is easily handled by DErule. The routine converges to machine
precision (107'¢) with about 30 function evaluations, completely unfazed by the
singularities at the endpoints. The integral (4.5.16) is an example of an integrand
that is singular at the origin and falls off slowly at infinity. The routine Midinf fails
miserably because of the slow fall-off. Yet the transformation x = exp(s sinh?)
again gives machine precision in about 30 function evaluations, integrating ¢ over
the range (—4,4). By comparison, the transformation x = e’ for 7 in the range
(—90, 90) requires about 500 function evaluations for the same accuracy.

The integral (4.5.17) combines a singularity at the origin with exponential fall-
off at infinity. Here the “mixed” transformation x = exp(f — e~") is best, requiring
about 60 function evaluations for ¢ in the range (—4.5, 4). Note that the exponential
fall-off is crucial here; these transformations fail completely for slowly decaying
oscillatory functions like x /2 sin x. Fortunately the series acceleration algorithms
of §5.3 work well in such cases.

The final integral (4.5.18) is similar to (4.5.17), and using the same transfor-
mation requires about the same number of function evaluations to achieve machine
precision. The range of ¢ can be smaller, say (—4, 3), because of the more rapid
fall-off of the integrand. Note that for all these integrals the number of function
evaluations would be double the number we quote if we are using step doubling to
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decide when the integrals have converged, since we need one extra set of trapezoidal
evaluations to confirm convergence. In many cases, however, you don’t need this
extra set of function evaluations: Once the method starts converging, the number of
significant digits approximately doubles with each iteration. Accordingly, you can
set the convergence criterion to stop the procedure when two successive iterations
agree to the square root of the desired precision. The last iteration will then have
approximately the required precision. Even without this trick, the method is quite
remarkable for the range of difficult integrals that it can tame efficiently.

An extended example of the use of the DE rule for finite and infinite ranges is
given in §6.10. There we give a routine for computing the generalized Fermi-Dirac

integrals
% xk(1 4 lHx)l/2
Fr(n,0) = — 2 4 4.5.19
k(1. 6) /0 pr x ( )

Another example is given in the routine Stiel in §4.6.

4.5.5 Relation to the Sampling Theorem

The sinc expansion of a function is

o0
@) = 3 f(khysinc [Z(x - kh)] (4.5.20)
h
k=—o00
where sinc(x) = sinx/x. The expansion is exact for a limited class of analytic

functions. However, it can be a good approximation for other functions too, and
the sampling theorem characterizes these functions, as will be discussed in §13.11.
There we will use the sinc expansion of e to get an approximation for the complex
error function. Functions well-approximated by the sinc expansion typically fall off
rapidly as x — o0, so truncating the expansion at k = £N still gives a good
approximation to f(x).

If we integrate both sides of equation (4.5.20), we find

/ ” fydx~h Y f(kh) (4.5.21)

k=—00

which is just the trapezoidal formula! Thus, rapid convergence of the trapezoidal for-
mula for the integral of f corresponds to f being well-approximated by its sinc ex-
pansion. The various transformations described earlier can be used to map x — x(¢)
and produce good sinc approximations with uniform samples in . These approxi-
mations can be used not only for the trapezoidal quadrature of £, but also for good
approximations to derivatives, integral transforms, Cauchy principal value integrals,
and solving differential and integral equations [5].
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4.6 Gaussian Quadratures and Orthogonal
Polynomials

In the formulas of §4.1, the integral of a function was approximated by the sum
of its functional values at a set of equally spaced points, multiplied by certain aptly
chosen weighting coefficients. We saw that as we allowed ourselves more freedom
in choosing the coefficients, we could achieve integration formulas of higher and
higher order. The idea of Gaussian quadratures is to give ourselves the freedom to
choose not only the weighting coefficients, but also the location of the abscissas at
which the function is to be evaluated. They will no longer be equally spaced. Thus,
we will have rwice the number of degrees of freedom at our disposal; it will turn out
that we can achieve Gaussian quadrature formulas whose order is, essentially, twice
that of the Newton-Cotes formula with the same number of function evaluations.

Does this sound too good to be true? Well, in a sense it is. The catch is a familiar
one, which cannot be overemphasized: High order is not the same as high accuracy.
High order translates to high accuracy only when the integrand is very smooth, in the
sense of being “well-approximated by a polynomial.”

There is, however, one additional feature of Gaussian quadrature formulas that
adds to their usefulness: We can arrange the choice of weights and abscissas to make
the integral exact for a class of integrands “polynomials times some known function
W(x)” rather than for the usual class of integrands “polynomials.” The function
W (x) can then be chosen to remove integrable singularities from the desired integral.
Given W(x), in other words, and given an integer NV, we can find a set of weights w;
and abscissas x; such that the approximation

N-1

b
/ W(x) f(x)dx ~ Y w; f(x)) (4.6.1)

J=0

is exact if f(x) is a polynomial. For example, to do the integral

1 _ 2
/ exp(—cos™y) ;o 4.62)

1 1—=x2
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(not a very natural looking integral, it must be admitted), we might well be interested
in a Gaussian quadrature formula based on the choice

W(x) = (4.6.3)

1
V1 —x2
in the interval (—1, 1). (This particular choice is called Gauss-Chebyshev integration,
for reasons that will become clear shortly.)
Notice that the integration formula (4.6.1) can also be written with the weight
function W(x) not overtly visible: Define g(x) = W(x) f(x) and v; = w;/ W(x;).
Then (4.6.1) becomes

b N-—1
/ g(x)dx ~ Z vig(x;) (4.6.4)

a =0
Where did the function W(x) go? It is lurking there, ready to give high-order accu-
racy to integrands of the form polynomials times W(x), and ready to deny high-order
accuracy to integrands that are otherwise perfectly smooth and well-behaved. When
you find tabulations of the weights and abscissas for a given W(x), you have to de-
termine carefully whether they are to be used with a formula in the form of (4.6.1),

or like (4.6.4).

So far our introduction to Gaussian quadrature is pretty standard. However,
there is an aspect of the method that is not as widely appreciated as it should be: For
smooth integrands (after factoring out the appropriate weight function), Gaussian
quadrature converges exponentially fast as N increases, because the order of the
method, not just the density of points, increases with N. This behavior should be
contrasted with the power-law behavior (e.g., 1/N? or 1/N#) of the Newton-Cotes
based methods in which the order remains fixed (e.g., 2 or 4) even as the density of
points increases. For a more rigorous discussion, see §20.7.4.

Here is an example of a quadrature routine that contains the tabulated abscissas
and weights for the case W(x) = 1 and N = 10. Since the weights and abscissas
are, in this case, symmetric around the midpoint of the range of integration, there are
actually only five distinct values of each:

template <class T>
Doub ggaus(T &func, const Doub a, const Doub b)
Returns the integral of the function or functor func between a and b, by ten-point Gauss-
Legendre integration: the function is evaluated exactly ten times at interior points in the range
of integration.
{
Here are the abscissas and weights:
static const Doub x[]1={0.1488743389816312,0.4333953941292472,
0.6794095682990244,0.8650633666889845,0.9739065285171717};
static const Doub w[]={0.2955242247147529,0.2692667193099963,
0.2190863625159821,0.1494513491505806,0.0666713443086881} ;
Doub xm=0.5%(b+a) ;
Doub xr=0.5%(b-a);

Doub s=0; Will be twice the average value of the function, since the
for (Int j=0;j<5;j++) { ten weights (five numbers above each used twice)
Doub dx=xr*x[j]; sum to 2.
s += w[jl*(func(xm+dx)+func(xm-dx)) ;
}
return s *= xr; Scale the answer to the range of integration.
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The above routine illustrates that one can use Gaussian quadratures without
necessarily understanding the theory behind them: One just locates tabulated weights
and abscissas in a book (e.g., [1] or [2]). However, the theory is very pretty, and it will
come in handy if you ever need to construct your own tabulation of weights and
abscissas for an unusual choice of W(x). We will therefore give, without any proofs,
some useful results that will enable you to do this. Several of the results assume that
W(x) does not change sign inside (a, ), which is usually the case in practice.

The theory behind Gaussian quadratures goes back to Gauss in 1814, who used
continued fractions to develop the subject. In 1826, Jacobi rederived Gauss’s results
by means of orthogonal polynomials. The systematic treatment of arbitrary weight
functions W (x) using orthogonal polynomials is largely due to Christoffel in 1877.
To introduce these orthogonal polynomials, let us fix the interval of interest to be
(a,b). We can define the “scalar product of two functions f and g over a weight
function W ” as

b
(flg) = / W(x) £ (g (x)dx 4.6.5)

The scalar product is a number, not a function of x. Two functions are said to be
orthogonal if their scalar product is zero. A function is said to be normalized if its
scalar product with itself is unity. A set of functions that are all mutually orthogonal
and also all individually normalized is called an orthonormal set.

We can find a set of polynomials (i) that includes exactly one polynomial of
order j, called p;j(x), foreach j = 0,1,2,..., and (ii) all of which are mutually
orthogonal over the specified weight function W(x). A constructive procedure for
finding such a set is the recurrence relation

p-1(x) =0
po(x) =1 (4.6.6)
pis1(¥) = (x—ap)pi(x) —bypi—i(x)  j =0.1.2....
where
/1) B
(pslp)) 467
L 11 B
(Pj—1|Pj—1)

The coefficient by is arbitrary; we can take it to be zero.

The polynomials defined by (4.6.6) are monic, that is, the coefficient of their
leading term [x/ for p;(x)] is unity. If we divide each p;(x) by the constant
[( pilpj )] /2 we can render the set of polynomials orthonormal. One also encounters
orthogonal polynomials with various other normalizations. You can convert from a
given normalization to monic polynomials if you know that the coefficient of x/ in
p; is A;, say; then the monic polynomials are obtained by dividing each p; by A;.
Note that the coefficients in the recurrence relation (4.6.6) depend on the adopted
normalization.

The polynomial p;(x) can be shown to have exactly j distinct roots in the
interval (a,b). Moreover, it can be shown that the roots of p;(x) “interleave” the
J — lroots of p;j_;(x), i.e., there is exactly one root of the former in between each
two adjacent roots of the latter. This fact comes in handy if you need to find all the
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roots. You can start with the one root of p;(x) and then, in turn, bracket the roots of
each higher j, pinning them down at each stage more precisely by Newton’s rule or
some other root-finding scheme (see Chapter 9).

Why would you ever want to find all the roots of an orthogonal polynomial
p;j (x)? Because the abscissas of the N -point Gaussian quadrature formulas (4.6.1)
and (4.6.4) with weighting function W(x) in the interval (a, b) are precisely the roots
of the orthogonal polynomial py (x) for the same interval and weighting function.
This is the fundamental theorem of Gaussian quadratures, and it lets you find the
abscissas for any particular case.

Once you know the abscissas xo, ..., xny—1, you need to find the weights w;,
j =0,...,N — 1. One way to do this (not the most efficient) is to solve the set of
linear equations

po(xo) ... po(xn—1) wo fab W(x) po(x)dx
p1(xo) ces p1(xn—1) wq 0
) ) . = . (4.6.8)
PN—; (x0) ... PN—1 (.XN—I) w[\;—l 0

Equation (4.6.8) simply solves for those weights such that the quadrature (4.6.1)
gives the correct answer for the integral of the first N orthogonal polynomials. Note
that the zeros on the right-hand side of (4.6.8) appear because pq(x),..., pny—1(x)
are all orthogonal to po(x), which is a constant. It can be shown that, with those
weights, the integral of the next N — 1 polynomials is also exact, so that the quadra-
ture is exact for all polynomials of degree 2N — 1 or less. Another way to evaluate
the weights (though one whose proof is beyond our scope) is by the formula

(pN-1lPN-1)

P = 4.6.9
T pN—1(x) ply(x)) (69

where p'y (x;) is the derivative of the orthogonal polynomial at its zero x; .

The computation of Gaussian quadrature rules thus involves two distinct phases:
(i) the generation of the orthogonal polynomials py, ..., py, i.e., the computation of
the coefficients a;, b; in (4.6.6), and (ii) the determination of the zeros of py (x), and
the computation of the associated weights. For the case of the “classical” orthogonal
polynomials, the coefficients a; and b; are explicitly known (equations 4.6.10 —
4.6.14 below) and phase (i) can be omitted. However, if you are confronted with a
“nonclassical” weight function W(x), and you don’t know the coefficients a; and
b;, the construction of the associated set of orthogonal polynomials is not trivial. We
discuss it at the end of this section.

4.6.1 Computation of the Abscissas and Weights

This task can range from easy to difficult, depending on how much you already
know about your weight function and its associated polynomials. In the case of
classical, well-studied, orthogonal polynomials, practically everything is known, in-
cluding good approximations for their zeros. These can be used as starting guesses,
enabling Newton’s method (to be discussed in §9.4) to converge very rapidly. New-
ton’s method requires the derivative p’y (x), which is evaluated by standard relations
in terms of py and py_;. The weights are then conveniently evaluated by equation
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(4.6.9). For the following named cases, this direct root finding is faster, by a factor
of 3 to 5, than any other method.

Here are the weight functions, intervals, and recurrence relations that generate
the most commonly used orthogonal polynomials and their corresponding Gaussian
quadrature formulas.

Gauss-Legendre:

Wix) =1 —-l<x<l1
) ) ) (4.6.10)
(J + DPjy1 = (2j + )xPj — jPj—
Gauss-Chebyshev:
W) =(1-x)""Y2 —1<x<l
() = (1 =x%) o 4.6.11)
Tj41 =2xT; =Ty
Gauss-Laguerre:
W(x) = x%e™* 0<x<o0
) o i o . o (4.6.12)
(+DLy =(x+2j+a+ DL —( +o)Lj,
Gauss-Hermite: 5
— X _
W(x)=e oo.<x<oo 4.6.13)
Hj+1 = 2XHj —2]Hj_1
Gauss-Jacobi:
W(x) = (1 —x)%(1 + x)? —l<x<l1 w1
Cij.(i’f;) = (dj + ejx)Pj(“’B) — ijj(f’lﬁ)
where the coefficients ¢;, d;, e;, and fj are given by
¢ =2+ +a+B+DQ2j+a+p)
di = (2j )(a? - p?
[ =@ +atft - p) wo1s)

e =Qj+ta+pQj+ta+p+1DQ2j+a+p+2)
Ji =20+ + P2 +a+p+2)

We now give individual routines that calculate the abscissas and weights for
these cases. First comes the most common set of abscissas and weights, those of
Gauss-Legendre. The routine, due to G.B. Rybicki, uses equation (4.6.9) in the
special form for the Gauss-Legendre case,

2

- 4.6.16
S TP P (610

The routine also scales the range of integration from (x1, x5) to (—1, 1), and provides
abscissas x; and weights w; for the Gaussian formula

N-1

/ ’ fydx =" w; f(x)) (4.6.17)

Jj=0
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void gauleg(const Doub x1, const Doub x2, VecDoub_0 &x, VecDoub_0 &w)
Given the lower and upper limits of integration x1 and x2, this routine returns arrays x[0. .n-1]
and w[0..n-1] of length n, containing the abscissas and weights of the Gauss-Legendre n-point

quadrature formula.

{
const Doub EPS=1.0e-14;
Doub zl1,z,xm,x1,pp,p3,p2,pl;
Int n=x.size();
Int m=(n+1)/2;
xm=0.5%(x2+x1) ;
x1=0.5%(x2-x1);
for (Int i=0;i<m;i++) {

EPS is the relative precision.

The roots are symmetric in the interval, so

we only have to find half of them.

Loop over the desired roots.

z=co0s(3.141592654*(i+0.75) /(n+0.5) ) ;
Starting with this approximation to the ith root, we enter the main loop of refinement

by Newton's method.
do {
pl=1.0;
p2=0.0;
for (Int j=0;j<n;j++) {
P3=p2;
p2=pil;

Loop up the recurrence relation to get the
Legendre polynomial evaluated at z.

p1=((2.0%j+1.0) *z*p2-j*p3) / (j+1);

}

pl is now the desired Legendre polynomial. We next compute pp, its derivative,
by a standard relation involving also p2, the polynomial of one lower order.

pp=n*(zxpl-p2)/(z*z-1.0) ;

zl=z;

z=z1-p1/pp;
} while (abs(z-z1) > EPS);
x[i]=xm-x1*z;
x[n-1-i]=xm+x1*z;
wl[i]=2.0%x1/((1.0-z*z)*pp*pp) ;
wln-1-il=w[i];

Newton’s method.

Scale the root to the desired interval,
and put in its symmetric counterpart.
Compute the weight

and its symmetric counterpart.

Next we give three routines that use initial approximations for the roots given
by Stroud and Secrest [2]. The first is for Gauss-Laguerre abscissas and weights, to

be used with the integration formula

. N—-1
/0 e f(dx = 3wy f(x))

(4.6.18)
j=0

void gaulag(VecDoub_0 &x, VecDoub_0 &w, const Doub alf)

Given alf, the parameter o of the Laguerre polynomials, this routine returns arrays x[0. .n-1]
and w[0..n-1] containing the abscissas and weights of the n-point Gauss-Laguerre quadrature
formula. The smallest abscissa is returned in x[0], the largest in x[n-1].

{
const Int MAXIT=10;
const Doub EPS=1.0e-14;
Int i,its,j;
Doub ai,pl,p2,p3,pp,z,zl;
Int n=x.size();
for (i=0;i<n;i++) {
if (1 == 0) {

EPS is the relative precision.

Loop over the desired roots.
Initial guess for the smallest root.

z=(1.0+alf)*(3.0+0.92*alf)/(1.0+2.4*n+1.8*alf);

} else if (i == 1) {

Initial guess for the second root.

z += (15.0+6.25%alf)/(1.0+0.9*alf+2.5%n) ;

} else {
ai=i-1;

Initial guess for the other roots.
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z += ((1.0+2.55%ai)/(1.9%ai)+1.26*ai*alf/
(1.0+3.5%ai) ) *(z-x[i-2])/(1.0+0.3*alf);

}
for (its=0;its<MAXIT;its++) { Refinement by Newton's method.
p1=1.0;
p2=0.0;
for (j=0;j<n;j++) { Loop up the recurrence relation to get the
p3=p2; Laguerre polynomial evaluated at z.
p2=pil;
pl=((2*j+1+alf-z) *p2- (j+alf)*p3)/(j+1);
}
pl is now the desired Laguerre polynomial. We next compute pp, its derivative,
by a standard relation involving also p2, the polynomial of one lower order.
pp=(n*pl-(n+alf)*p2)/z;
zl=z;
z=z1-p1/pp; Newton'’s formula.
if (abs(z-z1) <= EPS) break;
}
if (its >= MAXIT) throw("too many iterations in gaulag");
x[il=z; Store the root and the weight.

w[i] = -exp(gammln(alf+n)-gammln(Doub(n)))/(pp*n*p2) ;

Next is a routine for Gauss-Hermite abscissas and weights. If we use the “stan-
dard” normalization of these functions, as given in equation (4.6.13), we find that
the computations overflow for large N because of various factorials that occur. We
can avoid this by using instead the orthonormal set of polynomials H ;. They are
generated by the recurrence

_ O T 2 - [ =
H_ =0, Hy= . H; =x,—H — | —H;_ 4.6.19
1 0= 73 41 Tyt Tt 1 ( )

The formula for the weights becomes

2
W, = —=—— (4.6.20)
[Hy (x)]?
while the formula for the derivative with this normalization is
H = \2jH_, (4.6.21)

The abscissas and weights returned by gauher are used with the integration formula

00 N—-1

/_ e f0)dx = 3wy f(x)) (4.6.22)

00 =0

void gauher(VecDoub_0 &x, VecDoub_0 &w)
This routine returns arrays x[0..n-1] and w[0..n-1] containing the abscissas and weights of
the n-point Gauss-Hermite quadrature formula. The largest abscissa is returned in x[0], the
most negative in x[n-1].
{

const Doub EPS=1.0e-14,PIM4=0.7511255444649425;

Relative precision and 1/711/4.

const Int MAXIT=10; Maximum iterations.

Int i,its,j,m;

gauss_wgts.h
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Doub p1,p2,p3,pp,z,zl;
Int n=x.size();

m=(n+1)/2;
The roots are symmetric about the origin, so we have to find only half of them.
for (i=0;i<m;i++) { Loop over the desired roots.
if (1 == 0) { Initial guess for the largest root.
z=sqrt (Doub(2#*n+1))-1.85575*pow (Doub(2*n+1) ,-0.16667) ;
} else if (i == 1) { Initial guess for the second largest root.
z -= 1.14*pow(Doub(n),0.426)/z;
} else if (i == 2) { Initial guess for the third largest root.
z=1.86%z-0.86*x[0] ;
} else if (i == 3) { Initial guess for the fourth largest root.
z=1.91%z-0.91*x[1];
} else { Initial guess for the other roots.
z=2.0%z-x[i-2];
}
for (its=0;its<MAXIT;its++) { Refinement by Newton's method.
pl=PIM4;
p2=0.0;
for (j=0;j<n;j++) { Loop up the recurrence relation to get
p3=p2; the Hermite polynomial evaluated at
p2=pil; z.
pl=z*sqrt(2.0/(j+1))*p2-sqrt (Doub(j)/(j+1))*p3;
}
pl is now the desired Hermite polynomial. We next compute pp, its derivative, by
the relation (4.6.21) using p2, the polynomial of one lower order.
pp=sqrt (Doub (2*n))*p2;
zl=z;
z=z1-p1/pp; Newton's formula.
if (abs(z-z1) <= EPS) break;
}
if (its >= MAXIT) throw("too many iterations in gauher");
x[il=z; Store the root
x[n-1-i] = -z; and its symmetric counterpart.
w[il=2.0/ (pp*pp) ; Compute the weight
wln-1-i]=wl[il; and its symmetric counterpart.

Finally, here is a routine for Gauss-Jacobi abscissas and weights, which imple-
ment the integration formula

N-1

1
/_ 1(1 — )"+ 0P f)dx = ) w; f(x)) (4.6.23)

Jj=0

gauss_wgts.h void gaujac(VecDoub_0 &x, VecDoub_0 &w, const Doub alf, const Doub bet)
Given alf and bet, the parameters @ and B of the Jacobi polynomials, this routine returns
arrays x[0..n-1] and w[0..n-1] containing the abscissas and weights of the n-point Gauss-
Jacobi quadrature formula. The largest abscissa is returned in x[0], the smallest in x[n-1].

{
const Int MAXIT=10;
const Doub EPS=1.0e-14; EPS is the relative precision.
Int i,its,j;
Doub alfbet,an,bn,rl,r2,r3;
Doub a,b,c,pl,p2,p3,pp,temp,z,z1;
Int n=x.size();
for (i=0;i<n;i++) { Loop over the desired roots.
if (i == 0) { Initial guess for the largest root.
an=alf/n;
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bn=bet/n;
r1=(1.0+alf)*(2.78/(4.0+n*n)+0.768*an/n) ;
r2=1.0+1.48%an+0.96*bn+0.452*an*an+0.83*an*bn;
z=1.0-r1/r2;

} else if (i == 1) { Initial guess for the second largest root.
ri=(4.1+alf)/((1.0+alf)*(1.0+0.156%*alf));
r2=1.0+0.06%(n-8.0)*(1.0+0.12*alf) /n;
r3=1.0+0.012%bet*(1.0+0.25*abs (alf))/n;

z —= (1.0-z)*rl*r2*r3;

} else if (i == 2) { Initial guess for the third largest root.
r1=(1.67+0.28*alf)/(1.0+0.37*alf);
r2=1.0+0.22%(n-8.0) /n;
r3=1.0+8.0%bet/((6.28+bet)*n*n) ;

z -= (x[0]-2z)*ri*r2*r3;

} else if (i == n-2) { Initial guess for the second smallest root.
r1=(1.0+0.235%*bet)/(0.766+0.119%bet) ;
r2=1.0/(1.0+0.639%(n-4.0)/(1.0+0.71%(n-4.0)));
r3=1.0/(1.0+20.0%alf/((7.5+alf)*n%*n));

z += (z-x[n-4])*ri*r2*r3;

} else if (i == n-1) { Initial guess for the smallest root.
r1=(1.0+0.37*bet)/(1.67+0.28%*bet) ;
r2=1.0/(1.0+0.22%(n-8.0)/n) ;
r3=1.0/(1.0+8.0%alf/((6.28+alf)*n*n));

z += (z-x[n-3])*ri*r2*r3;

} else { Initial guess for the other roots.

z=3.0*x[1-1]-3.0*x[i-2]+x[i-3];

}
alfbet=alf+bet;
for (its=1;its<=MAXIT;its++) { Refinement by Newton's method.
temp=2.0+alfbet; Start the recurrence with Py and P to avoid
pl=(alf-bet+temp*z)/2.0; a division by zero when @ + 8 = 0 or
p2=1.0; —1.
for (j=2;j<=n;j++) { Loop up the recurrence relation to get the
p3=p2; Jacobi polynomial evaluated at z.
p2=p1l;
temp=2*j+alfbet;
a=2*j*(j+alfbet)*(temp-2.0);
b=(temp-1.0) *(alf*alf-bet*bet+temp* (temp-2.0)*z) ;
c=2.0%(j-1+alf)*(j-1+bet) *temp;
pl=(b*p2-c*p3)/a;
}
pp=(n*(alf-bet-temp*z)*pl+2.0*(n+alf)* (n+bet)*p2) / (temp*(1.0-z*z)) ;
pl is now the desired Jacobi polynomial. We next compute pp, its derivative, by
a standard relation involving also p2, the polynomial of one lower order.
zl=z;
z=z1-p1/pp; Newton’s formula.
if (abs(z-z1) <= EPS) break;
}
if (its > MAXIT) throw("too many iterations in gaujac");
x[il=z; Store the root and the weight.

wl[i]l=exp(gammln(alf+n)+gammln(bet+n)-gammln(n+1.0)-
gammln(n+alfbet+1.0))*temp*pow(2.0,alfbet)/ (pp*p2) ;

Legendre polynomials are special cases of Jacobi polynomials witha = 8 = 0,
but it is worth having the separate routine for them, gauleg, given above. Chebyshev
polynomials correspond to @« = f = —1/2 (see §5.8). They have analytic abscissas
and weights:
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Xj = cos U +3) 2)
T N (4.6.24)

w; =

=| =

4.6.2 Case of Known Recurrences

Turn now to the case where you do not know good initial guesses for the zeros of your or-
thogonal polynomials, but you do have available the coefficients a; and b; that generate them.
As we have seen, the zeros of py (x) are the abscissas for the N-point Gaussian quadrature
formula. The most useful computational formula for the weights is equation (4.6.9) above,
since the derivative p’,, can be efficiently computed by the derivative of (4.6.6) in the general
case, or by special relations for the classical polynomials. Note that (4.6.9) is valid as written
only for monic polynomials; for other normalizations, there is an extra factor of Ay /An—1,
where A is the coefficient of xN in PN -

Except in those special cases already discussed, the best way to find the abscissas is not
to use a root-finding method like Newton’s method on pp (x). Rather, it is generally faster
to use the Golub-Welsch [3] algorithm, which is based on a result of Wilf [4]. This algorithm
notes that if you bring the term xp; to the left-hand side of (4.6.6) and the term p; 11 to the
right-hand side, the recurrence relation can be written in matrix form as

Po ap 1 Po 0
141 b1 ar 1 It 0
X = . +1 (4.6.25)
PN-2 by—2 ay—o> 1 PN-2 0
PN—1 by—1 an—1d Lpn— PN
or
xp=T-p+ pnven—1 (4.6.26)
Here T is a tridiagonal matrix; p is a column vector of pg, p1,..., pN—1; and ey_1 is a

unit vector with a 1 in the (N — 1)st (last) position and zeros elsewhere. The matrix T can be
symmetrized by a diagonal similarity transformation D to give

ap b1
Vb1 ay N2

J=DTD ! = : : (4.6.27)

by—2 an—2 by-1
by-1  an—1

The matrix J is called the Jacobi matrix (not to be confused with other matrices named after
Jacobi that arise in completely different problems!). Now we see from (4.6.26) that py (x;) =
0is equivalent to x; being an eigenvalue of T. Since eigenvalues are preserved by a similarity
transformation, x; is an eigenvalue of the symmetric tridiagonal matrix J. Moreover, Wilf [4]
shows that if v; is the eigenvector corresponding to the eigenvalue x;, normalized so that
v-v = 1, then

wj = Kov (4.6.28)

where b
Ho = / Wi(x)dx (4.6.29)
a

and where vj o is the zeroth component of v. As we shall see in Chapter 11, finding all
eigenvalues and eigenvectors of a symmetric tridiagonal matrix is a relatively efficient and
well-conditioned procedure. We accordingly give a routine, gaucof, for finding the abscissas
and weights, given the coefficients a; and »;. Remember that if you know the recurrence
relation for orthogonal polynomials that are not normalized to be monic, you can easily convert
it to monic form by means of the quantities A .
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void gaucof (VecDoub_IO &a, VecDoub_IO &b, const Doub amuO, VecDoub_0 &x,
VecDoub_0 &w)

Computes the abscissas and weights for a Gaussian quadrature formula from the Jacobi matrix.

On input, a[0..n-1] and b[0. .n-1] are the coefficients of the recurrence relation for the set of

monic orthogonal polynomials. The quantity o = f: W(x) dx is input as amu0. The abscissas
x[0..n-1] are returned in descending order, with the corresponding weights in w[0..n-1]. The
arrays a and b are modified. Execution can be speeded up by modifying tqli and eigsrt to
compute only the zeroth component of each eigenvector.

{
Int n=a.size();
for (Int i=0;i<n;i++)
if (i !'= 0) blil=sqrt(b[il); Set up superdiagonal of Jacobi matrix.
Symmeig sym(a,b);
for (Int i=0;i<n;i++) {
x[i]=sym.d[i];
w[il=amuO*sym.z[0] [i]*sym.z[0] [i]; Equation (4.6.28).
}
}

4.6.3 Orthogonal Polynomials with Nonclassical Weights

What do you do if your weight function is not one of the classical ones dealt with above
and you do not know the a;’s and b;’s of the recurrence relation (4.6.6) to use in gaucof?
Obviously, you need a method of finding the a;’s and b; ’s.

The best general method is the Stieltjes procedure: First compute ag from (4.6.7), and
then p1(x) from (4.6.6). Knowing pg and p;, compute a1 and b from (4.6.7), and so on.
But how are we to compute the inner products in (4.6.7)?

The textbook approach is to represent each p; (x) explicitly as a polynomial in x and to
compute the inner products by multiplying out term by term. This will be feasible if we know
the first 2N moments of the weight function,

b .
Mj:f X Wxydx  j=0,1,....2N -1 (4.6.30)
a

However, the solution of the resulting set of algebraic equations for the coefficients a; and b;
in terms of the moments ; is in general extremely ill-conditioned. Even in double precision,
it is not unusual to lose all accuracy by the time N = 12. We thus reject any procedure based
on the moments (4.6.30).

Gautschi [5] showed that the Stieltjes procedure is feasible if the inner products in (4.6.7)
are computed directly by numerical quadrature. This is only practicable if you can find a
quadrature scheme that can compute the integrals to high accuracy despite the singularities in
the weight function W(x). Gautschi advocates the Fejér quadrature scheme [5] as a general-
purpose scheme for handling singularities when no better method is available. We have per-
sonally had much better experience with the transformation methods of §4.5, particularly the
DE rule and its variants.

We use a structure Stiel that implements the Stieltjes procedure. Its member function
get_weights generates the coefficients a; and b; of the recurrence relation, and then calls
gaucof to find the abscissas and weights. You can easily modify it to return the a;’s and b;’s
if you want them as well. Internally, the routine calls the function quad to do the integrals in
(4.6.7). For a finite range of integration, the routine uses the straight DE rule. This is effected
by invoking the constructor with five parameters: the number of quadrature abscissas (and
weights) desired, the lower and upper limits of integration, the parameter /m,x to be passed
to the DE rule (see §4.5), and the weight function W(x). For an infinite range of integration,
the routine invokes the trapezoidal rule with one of the coordinate transformations discussed
in §4.5. For this case you invoke the constructor that has no smax, but takes the mapping
function x = x(¢) and its derivative dx/dt in addition to W(x). Now the range of integration
you input is the finite range of the trapezoidal rule.

This will all be clearer with some examples. Consider first the weight function

W(x) = —logx (4.6.31)

gauss_wgts2.h
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on the finite interval (0, 1). Normally, for the finite range case (DE rule), the weight function
must be coded as a function of two variables, W(x, §), where § is the distance from the end-
point singularity. Since the logarithmic singularity at the endpoint x = 0 is “mild,” there is no
need to use the argument § in coding the function:

Doub wt(const Doub x, const Doub del)
{
return -log(x);

}

A value of hymax = 3.7 will give full double precision, as discussed in §4.5, so the calling code
looks like this:

n= ...
VecDoub x(n),w(n);
Stiel s(n,0.0,1.0,3.7,wt);
s.get_weights(x,w);

For the infinite range case, in addition to the weight function W(x), you have to supply
two functions for the coordinate transformation you want to use (see equation 4.5.14). We’ll
denote the mapping x = x(¢) by £x and dx/dt by £dxdt, but you can use any names you
like. All these functions are coded as functions of one variable.

Here is an example of the user-supplied functions for the weight function

(4.6.32)

on the interval (0, co). Gaussian quadrature based on W(x) has been proposed for evaluating
generalized Fermi-Dirac integrals [6] (cf. §4.5). We use the “mixed” DE rule of equation

4.5.14),x = e Asis typical with the Stieltjes procedure, you get abscissas and weights
within about one or two significant digits of machine accuracy for N of a few dozen.

Doub wt(const Doub x)

{
Doub s=exp(-x);
return sqrt(x)*s/(1.0+s);
}
Doub fx(const Doub t)
{
return exp(t-exp(-t));
}
Doub fdxdt(const Doub t)
{
Doub s=exp(-t);
return exp(t-s)*(1.0+s);
}

Stiel ss(n,-5.5,6.5,wt,fx,fdxdt);
ss.get_weights(x,w);

The listing of the Stiel object, and discussion of some of the C++ intricacies of its
coding, are in a Webnote [9].

Two other algorithms exist [7,8] for finding abscissas and weights for Gaussian quadra-
tures. The first starts similarly to the Stieltjes procedure by representing the inner product
integrals in equation (4.6.7) as discrete quadratures using some quadrature rule. This defines a
matrix whose elements are formed from the abscissas and weights in your chosen quadrature
rule, together with the given weight function. Then an algorithm due to Lanczos is used to
transform this to a matrix that is essentially the Jacobi matrix (4.6.27).

The second algorithm is based on the idea of modified moments. Instead of using powers
of x as a set of basis functions to represent the p;’s, one uses some other known set of orthog-
onal polynomials 7 (x), say. Then the inner products in equation (4.6.7) will be expressible



4.6 Gaussian Quadratures and Orthogonal Polynomials 191

in terms of the modified moments
b
vj =/ 7 (x)W(x)dx j=0,1,...,2N —1 (4.6.33)
a

The modified Chebyshev algorithm (due to Sack and Donovan [10] and later improved by
Wheeler [11]) is an efficient algorithm that generates the desired a;’s and b;’s from the modi-
fied moments. Roughly speaking, the improved stability occurs because the polynomial basis
“samples” the interval (a, b) better than the power basis when the inner product integrals are
evaluated, especially if its weight function resembles W (x). The algorithm requires that the
modified moments (4.6.33) be accurately computed. Sometimes there is a closed form, for
example, for the important case of the log x weight function [12,8]. Otherwise you have to
use a suitable discretization procedure to compute the modified moments [7,8], just as we did
for the inner products in the Stieltjes procedure. There is some art in choosing the auxil-
iary polynomials 77, and in practice it is not always possible to find a set that removes the
ill-conditioning.

Gautschi [8] has given an extensive suite of routines that handle all three of the algo-
rithms we have described, together with many other aspects of orthogonal polynomials and
Gaussian quadrature. However, for most straightforward applications, you should find Stiel
together with a suitable DE rule quadrature more than adequate.

4.6.4 Extensions of Gaussian Quadrature

There are many different ways in which the ideas of Gaussian quadrature have
been extended. One important extension is the case of preassigned nodes: Some
points are required to be included in the set of abscissas, and the problem is to choose
the weights and the remaining abscissas to maximize the degree of exactness of the
the quadrature rule. The most common cases are Gauss-Radau quadrature, where
one of the nodes is an endpoint of the interval, either a or b, and Gauss-Lobatto
quadrature, where both a and b are nodes. Golub [13,8] has given an algorithm similar
to gaucof for these cases.

An N -point Gauss-Radau rule has the form of equation (4.6.1), where x1 is chosen to
be either a or b (x1 must be finite). You can construct the rule from the coefficients for
the corresponding ordinary N -point Gaussian quadrature. Simply set up the Jacobi matrix
equation (4.6.27), but modify the entry ay_1:

PN—2(¥1)

4.6.34
PN-1(x1) ( )

a?v_l =x1—by—1

Here is the routine:

void radau(VecDoub_IO0 &a, VecDoub_IO &b, const Doub amuO, const Doub x1,
VecDoub_0 &x, VecDoub_0 &w)

Computes the abscissas and weights for a Gauss-Radau quadrature formula. On input, a[0..n-1]

and b[0..n-1] are the coefficients of the recurrence relation for the set of monic orthogo-

nal polynomials corresponding to the weight function. (b[0] is not referenced.) The quantity

no = fab W(x)dx is input as amu0. x1 is input as either endpoint of the interval. The abscissas
x[0..n-1] are returned in descending order, with the corresponding weights in w[0..n-1]. The
arrays a and b are modified.
{
Int n=a.size();
if (m==1) {
x[0]=x1;
w[0]=amu0;
} else { Compute py—1 and py—2 by recurrence.
Doub p=x1-a[0];

gauss_wgts2.h
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Doub pmi1=1.0;

Doub pl=p;

for (Int i=1;i<n-1;i++) {
p=(x1-a[i])*p1-b[i]*pm1;
pml=pi;
pl=p;

a[n-1]=x1-b[n-1]*pml/p; Equation (4.6.34).
gaucof (a,b,amu0,x,w) ;

An N -point Gauss-Lobatto rule has the form of equation (4.6.1) where x1 = a, xy = b
(both finite). This time you modify the entries a 5y —; and by —1 in equation (4.6.27) by solving
two linear equations:

[pN—1(X1) PN—z(Xl)] [a;v_l] - [xle_l(n) ] (4.6.35)

PN—1(xN)  pPN—2(xN) | [DN_y XNPN-1(XN)

void lobatto(VecDoub_IO0 &a, VecDoub_IO &b, const Doub amuO, const Doub x1,
const Doub xn, VecDoub_0 &x, VecDoub_0 &w)

Computes the abscissas and weights for a Gauss-Lobatto quadrature formula. On input, the

vectors a[0..n-1] and b[0..n-1] are the coefficients of the recurrence relation for the set of

monic orthogonal polynomials corresponding to the weight function. (b[0] is not referenced.)

The quantity wo = ff W(x)dx is input as amu0. x1 amd xn are input as the endpoints of
the interval. The abscissas x[0..n-1] are returned in descending order, with the corresponding
weights in w[0..n-1]. The arrays a and b are modified.
{
Doub det,pl,pr,pll,plr,pmil,pmir;
Int n=a.size();
if (n <= 1)
throw("n must be bigger than 1 in lobatto");
pl=x1-al[0]; Compute py—1 and py—2 at x1 and x by recur-
pr=xn-al[0]; rence.
pm1l=1.0;
pmlr=1.0;
pil=pl;
plr=pr;
for (Int i=1;i<n-1;i++) {
pl=(x1-al[il)*p11-b[il*pmil;
pr=(xn-ali])*plr-b[i]*pmir;
pmll=pil;
pmir=pilr;
pill=pl;
plr=pr;
}
det=pl*pmlr-pr*pmil; Solve equation (4.6.35).
a[n-1]=(x1*pl*pmlr-xn*pr*pmll)/det;
b[n-1]=(xn-x1)*plx*pr/det;
gaucof (a,b,amu0,x,w) ;

The second important extension of Gaussian quadrature is the Gauss-Kronrod
formulas. For ordinary Gaussian quadrature formulas, as N increases, the sets of
abscissas have no points in common. This means that if you compare results with
increasing N as a way of estimating the quadrature error, you cannot reuse the pre-
vious function evaluations. Kronrod [14] posed the problem of searching for optimal
sequences of rules, each of which reuses all abscissas of its predecessor. If one starts
with N = m, say, and then adds n new points, one has 2n + m free parameters: the
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n new abscissas and weights, and m new weights for the fixed previous abscissas.
The maximum degree of exactness one would expect to achieve would therefore be
2n + m — 1. The question is whether this maximum degree of exactness can actually
be achieved in practice, when the abscissas are required to all lie inside (a, b). The
answer to this question is not known in general.

Kronrod showed that if you choose n = m 4+ 1, an optimal extension can
be found for Gauss-Legendre quadrature. Patterson [15] showed how to compute
continued extensions of this kind. Sequences such as N = 10,21,43,87,... are
popular in automatic quadrature routines [16] that attempt to integrate a function until
some specified accuracy has been achieved.
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4.7 Adaptive Quadrature

The idea behind adaptive quadrature is very simple. Suppose you have two
different numerical estimates /; and I, of the integral

b
1 :/ f(x)dx 4.7.1)

Suppose I; is more accurate. Use the relative difference between /; and I, as an
error estimate. If it is less than €, accept I as the answer. Otherwise divide the
interval [a, b] into two subintervals,

m b
1 =/ f(x)dx+/ f(x)dx m=(a+Db)/2 4.7.2)

and compute the two integrals independently. For each one, compute an /1 and I,
estimate the error, and continue subdividing if necessary. Dividing any given subin-
terval stops when its contribution to € is sufficiently small. (Obviously recursion will
be a good way to implement this algorithm.)

The most important criterion for an adaptive quadrature routine is reliability: If
you request an accuracy of 107, you would like to be sure that the answer is at least
that good. From a theoretical point of view, however, it is impossible to design an
adaptive quadrature routine that will work for all possible functions. The reason is
simple: A quadrature is based on the value of the integrand f(x) at a finite set of
points. You can alter the function at all the other points in an arbitrary way without
affecting the estimate your algorithm returns, while the true value of the integral
changes unpredictably. Despite this point of principle, however, in practice good
routines are reliable for a high fraction of functions they encounter. Our favorite
routine is one proposed by Gander and Gautschi [1], which we now describe. It is
relatively simple, yet scores well on reliability and efficiency.

A key component of a good adaptive algorithm is the termination criterion. The
usual criterion

|1, — 1| < €|l4] (4.7.3)

is problematic. In the neighborhood of a singularity, /; and /; might never agree
to the requested tolerance, even if it’s not particularly small. Instead, you need to
somehow come up with an estimate of the whole integral I of equation (4.7.1). Then
you can terminate when the error in /; is negligible compared to the whole integral:

|11—12| <€|1S| (474)

where I is the estimate of /. Gander and Gautschi implement this test by writing
if (is + (i1-i2) == is)
which is equivalent to setting € to the machine precision. However, modern op-

timizing compilers have become too good at recognizing that this is algebraically
equivalent to
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if (i1-i2 == 0.0)
which might never be satisfied in floating point arithmetic. Accordingly, we imple-
ment the test with an explicit €.

The other problem you need to take care of is when an interval gets subdivided
so small that it contains no interior machine-representable point. You then need to
terminate the recursion and alert the user that the full accuracy might not have been
attained. In the case where the points in an interval are supposed to be {a,m =
(a+b)/2,b}, youcan test form < aorb < m.

The lowest order integration method in the Gander-Gautschi method is the four-
point Gauss-Lobatto quadrature (cf. §4.6)

/ 11 fodx =gl fen+rm]+ i (%) + /(%) @1

This formula, which is exact for polynomials of degree 5, is used to compute /,. To
reuse these function evaluations in computing /1, they find the seven-point Kronrod
extension,

1
[ seax =3[ ren + o]+ Er(-V5) + £(V3)]
B[~ 5)+ ()] + 270
whose degree of exactness is nine. The formulas (4.7.5) and (4.7.6) get scaled from
[—1, 1] to an arbitrary subinterval [a, b].

For I, Gander and Gautschi find a 13-point Kronrod extension of equation
(4.7.6), which lets them reuse the previous function evaluations. The formula is
coded into the routine below. You can think of this initial 13-point evaluation as
a kind of Monte Carlo sampling to get an idea of the order of magnitude of the
integral. But if the integrand is smooth, this initial evaluation will itself be quite
accurate already. The routine below takes advantage of this.

Note that to reuse the four function evaluations in (4.7.5) in the seven-point
formula (4.7.6), you can’t simply bisect intervals. But dividing into six subintervals
works (there are six intervals between seven points).

To use the routine, you need to initialize an Adapt object with your required
tolerance,

(4.7.6)

Adapt s(1.0e-6);

and then call the integrate function:
ans=s.integrate(func,a,b);

You should check that the desired tolerance could be met:

if (s.out_of_tolerance)
cout << "Required tolerance may not be met" << endl;

The smallest allowed tolerance is 10 times the machine precision. If you enter a
smaller tolerance, it gets reset internally. (The routine will work using the machine
precision itself, but then it usually just takes lots of function evaluations for little
additional benefit.)

The implementation of the Adapt object is given in a Webnote [2].

Adaptive quadrature is no panacea. The above routine has no special machinery
to deal with singularities other than to refine the neighboring intervals. By using
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suitable schemes for /; and /,, one can customize an adaptive routine to deal with a
particular kind of singularity (cf. [3]).
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4.8 Multidimensional Integrals

Integrals of functions of several variables, over regions with dimension greater
than one, are not easy. There are two reasons for this. First, the number of function
evaluations needed to sample an N -dimensional space increases as the Nth power
of the number needed to do a one-dimensional integral. If you need 30 function
evaluations to do a one-dimensional integral crudely, then you will likely need on
the order of 30000 evaluations to reach the same crude level for a three-dimensional
integral. Second, the region of integration in N -dimensional space is defined by
an N — 1 dimensional boundary that can itself be terribly complicated: It need not
be convex or simply connected, for example. By contrast, the boundary of a one-
dimensional integral consists of two numbers, its upper and lower limits.

The first question to be asked, when faced with a multidimensional integral, is,
can it be reduced analytically to a lower dimensionality? For example, so-called iter-
ated integrals of a function of one variable f(¢) can be reduced to one-dimensional
integrals by the formula

/Oxdzn /Ot" dip—y -+ /Ots dzz/otz f(t)dt = 1)'/ (x — )" £(¢) dt

(4.8.1)
Alternatively, the function may have some special symmetry in the way it depends on
its independent variables. If the boundary also has this symmetry, then the dimension
can be reduced. In three dimensions, for example, the integration of a spherically
symmetric function over a spherical region reduces, in polar coordinates, to a one-
dimensional integral.

The next questions to be asked will guide your choice between two entirely
different approaches to doing the problem. The questions are: Is the shape of the
boundary of the region of integration simple or complicated? Inside the region, is
the integrand smooth and simple, or complicated, or locally strongly peaked? Does
the problem require high accuracy, or does it require an answer accurate only to a
percent, or a few percent?
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If your answers are that the boundary is complicated, the integrand is not strongly
peaked in very small regions, and relatively low accuracy is tolerable, then your prob-
lem is a good candidate for Monte Carlo integration. This method is very straight-
forward to program, in its cruder forms. One needs only to know a region with
simple boundaries that includes the complicated region of integration, plus a method
of determining whether a random point is inside or outside the region of integration.
Monte Carlo integration evaluates the function at a random sample of points and es-
timates its integral based on that random sample. We will discuss it in more detail,
and with more sophistication, in Chapter 7.

If the boundary is simple, and the function is very smooth, then the remaining
approaches, breaking up the problem into repeated one-dimensional integrals, or
multidimensional Gaussian quadratures, will be effective and relatively fast [1]. If
you require high accuracy, these approaches are in any case the only ones available
to you, since Monte Carlo methods are by nature asymptotically slow to converge.

For low accuracy, use repeated one-dimensional integration or multidimen-
sional Gaussian quadratures when the integrand is slowly varying and smooth in the
region of integration, Monte Carlo when the integrand is oscillatory or discontinuous
but not strongly peaked in small regions.

If the integrand is strongly peaked in small regions, and you know where those
regions are, break the integral up into several regions so that the integrand is smooth
in each, and do each separately. If you don’t know where the strongly peaked regions
are, you might as well (at the level of sophistication of this book) quit: It is hopeless
to expect an integration routine to search out unknown pockets of large contribution
in a huge N -dimensional space. (But see §7.9.)

If, on the basis of the above guidelines, you decide to pursue the repeated one-
dimensional integration approach, here is how it works. For definiteness, we will
consider the case of a three-dimensional integral in x, y, z-space. Two dimensions,
or more than three dimensions, are entirely analogous.

The first step is to specify the region of integration by (i) its lower and upper
limits in x, which we will denote x; and x;; (ii) its lower and upper limits in y at
a specified value of x, denoted y;(x) and y,(x); and (iii) its lower and upper limits
in z at specified x and y, denoted z;(x, y) and z>(x, y). In other words, find the
numbers x7 and x5, and the functions y;(x), y2(x), z1(x, y), and z5(x, y) such that

1 E// dxdydz f(x,y,2)

X2 y2(-x) ZZ(xay)
:/ dx/ dy/ dz f(x,y,z)
X1 y1(x) z1(x,y)

For example, a two-dimensional integral over a circle of radius one centered on the
origin becomes

(4.8.2)

1 V1—x2
d d , 4.8.3
/_ dx /_ Ly f) 48.3)

Now we can define a function G(x, y) that does the innermost integral,

z2(x,y)
G(x,y) = / f(x,y,z)dz (4.8.4)

1(x,y)
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Figure 4.8.1. Function evaluations for a two-dimensional integral over an irregular region, shown

schematically. The outer integration routine, in y, requests values of the inner, x, integral at locations
along the y-axis of its own choosing. The inner integration routine then evaluates the function at x loca-
tions suitable to iz. This is more accurate in general than, e.g., evaluating the function on a Cartesian mesh
of points.

and a function H (x) that does the integral of G(x, y),

y2(x)
H(x) = / G(x,y)dy (4.8.5)
y1(x)

and finally our answer as an integral over H (x)

= /X2 H(x)dx (4.8.6)

In an implementation of equations (4.8.4) — (4.8.6), some basic one-dimensional
integration routine (e.g., ggaus in the program following) gets called recursively:
once to evaluate the outer integral /, then many times to evaluate the middle integral
H, then even more times to evaluate the inner integral G (see Figure 4.8.1). Current
values of x and y, and the pointers to the user-supplied functions for the integrand
and the boundaries, are passed “over the head” of the intermediate calls through
member variables in the three functors defining the integrands for G, H and /.

struct NRf3 {
Doub xsav,ysav;
Doub (*func3d) (const Doub, const Doub, const Doub);
Doub operator () (const Doub z) The integrand f(x,y,z) evaluated at fixed x and
{ y.
return func3d(xsav,ysav,z);
}
};
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struct NRf2 {
NRf3 £3;
Doub (*z1) (Doub, Doub);
Doub (*z2) (Doub, Doub);
NRf2(Doub zz1(Doub, Doub), Doub zz2(Doub, Doub)) : zl(zzl), z2(zz2) {}
Doub operator() (const Doub y) Thisis G of eq. (4.8.4).
{
£3.ysav=y;
return qgaus(£3,z1(f3.xsav,y),z2(£3.xsav,y));
}
};
struct NRf1 {
Doub (*y1) (Doub) ;
Doub (*y2) (Doub) ;
NRf2 £2;
NRf1(Doub yyl1(Doub), Doub yy2(Doub), Doub z1(Doub, Doub),
Doub z2(Doub, Doub)) : yi(yyl),y2(yy2), £f2(z1,z2) {}
Doub operator() (const Doub x) Thisis H of eq. (4.8.5).
{
f2.£3.xsav=x;
return ggaus(£2,y1(x),y2(x));

};

template <class T>

Doub quad3d(T &func, const Doub x1, const Doub x2, Doub y1(Doub), Doub y2(Doub),
Doub z1(Doub, Doub), Doub z2(Doub, Doub))

Returns the integral of a user-supplied function func over a three-dimensional region specified

by the limits x1, x2, and by the user-supplied functions y1, y2, z1, and z2, as defined in (4.8.2)

Integration is performed by calling qgaus recursively.

{
NRf1 f1(y1l,y2,z1,z2);
f1.£2.£3.func3d=func;
return qgaus(f1,x1,x2);
}

Note that while the function to be integrated can be supplied either as a simple
function

Doub func(const Doub x, const Doub y, const Doub z);

or as the equivalent functor, the functions defining the boundary can only be func-
tions:

Doub y1(const Doub x);

Doub y2(const Doub x);

Doub z1(const Doub x, const Doub y);

Doub z2(const Doub x, const Doub y);
This is for simplicity; you can easily modify the code to take functors if you need to.

The Gaussian quadrature routine used in quad3d is simple, but its accuracy is
not controllable. An alternative is to use a one-dimensional integration routine like
qtrap, gsimp or gromb, which have a user-definable tolerance eps. Simply replace
all occurrences of qgaus in quad3d by qromb, say.

Note that multidimensional integration is likely to be very slow if you try for
too much accuracy. You should almost certainly increase the default eps in gromb
from 1071% to 107® or bigger. You should also decrease JMAX to avoid a lot of
waiting around for an answer. Some people advocate using a smaller eps for the
inner quadrature (over z in our routine) than for the outer quadratures (over x or y).
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Evaluation of Functions

5.0 Introduction

The purpose of this chapter is to acquaint you with a selection of the techniques
that are frequently used in evaluating functions. In Chapter 6, we will apply and
illustrate these techniques by giving routines for a variety of specific functions. The
purposes of this chapter and the next are thus mostly congruent. Occasionally, how-
ever, the method of choice for a particular special function in Chapter 6 is peculiar to
that function. By comparing this chapter to the next one, you should get some idea
of the balance between “general” and “special” methods that occurs in practice.

Insofar as that balance favors general methods, this chapter should give you
ideas about how to write your own routine for the evaluation of a function that, while
“special” to you, is not so special as to be included in Chapter 6 or the standard
function libraries.

CITED REFERENCES AND FURTHER READING:

Fike, C.T. 1968, Computer Evaluation of Mathematical Functions (Englewood Cliffs, NJ: Prentice-
Hall).

Lanczos, C. 1956, Applied Analysis; reprinted 1988 (New York: Dover), Chapter 7.

5.1 Polynomials and Rational Functions

A polynomial of degree N is represented numerically as a stored array of coeffi-
cients, c[j] with j=0,..., N. We will always take c [0] to be the constant term in
the polynomial and c [N] the coefficient of x*V; but of course other conventions are
possible. There are two kinds of manipulations that you can do with a polynomial:
numerical manipulations (such as evaluation), where you are given the numerical
value of its argument, or algebraic manipulations, where you want to transform the
coefficient array in some way without choosing any particular argument. Let’s start
with the numerical.

201
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We assume that you know enough never to evaluate a polynomial this way:
p=c[0]+c[1]*x+c [2] *x*kx+c [3] *x*x*x+C [4] *x*KK*KK*KX;
or (even worse!),
p=c[0]+c[1]*x+c [2] *pow(x,2.0)+c [3] *pow(x,3.0)+c[4]*pow(x,4.0);

Come the (computer) revolution, all persons found guilty of such criminal be-
havior will be summarily executed, and their programs won’t be! It is a matter of
taste, however, whether to write

p=c[0]+x*(c[1]+x*(c[2]+x* (c[3]+x*c[4])));
or

p=(((c[4]*x+c[3]) *x+c[2]) *x+c[1]) *x+c[0] ;

If the number of coefficients c [0. .n-1] is large, one writes

p=c[n-1]1;

for(j=n-2;j>=0;j--) p=p*x+cl[j]l;
or

p=clj=n-1];

while (j>0) p=p*x+c[--jl;
We can formalize this by defining a function object (or functor) that binds a reference
to an array of coefficients and endows them with a polynomial evaluation function,

poly.h struct Poly {
Polynomial function object that binds a reference to a vector of coefficients.
VecDoub &c;
Poly(VecDoub &cc) : c(cc) {}
Doub operator() (Doub x) {
Returns the value of the polynomial at x.
Int j;
Doub p = c[j=c.size(D-1];
while (j>0) p = p*x + c[--j];
return p;

};

which allows you to write things like
y = Poly(c) (x);

where c is a coefficient vector.
Another useful trick is for evaluating a polynomial P(x) and its derivative
dP(x)/dx simultaneously:
p=c[n-1]1;
dp=0.;
for(j=n-2;j>=0;j--) {dp=dp*x+p; p=p*x+c[jl;}
or
p=c[j=n-11;
dp=0.;
while (j>0) {dp=dp*x+p; p=p*x+c[--jl;}
which yields the polynomial as p and its derivative as dp using coefficients c [0. .n-1].
The above trick, which is basically synthetic division [1,2], generalizes to the
evaluation of the polynomial and nd of its derivatives simultaneously:
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void ddpoly(VecDoub_I &c, const Doub x, VecDoub_0 &pd)
Given the coefficients of a polynomial of degree nc as an array c[0..nc] of size nc+1 (with
c[0] being the constant term), and given a value x, this routine fills an output array pd of size
nd+1 with the value of the polynomial evaluated at x in pd[0], and the first nd derivatives at
x in pd[1..nd].
{
Int nnd,j,i,nc=c.size()-1,nd=pd.size()-1;
Doub cnst=1.0;
pd[0]=c[nc];
for (j=1;j<nd+1;j++) pd[j]1=0.0;
for (i=nc-1;i>=0;i--) {
nnd=(nd < (nc-i) ? nd : nc-i);
for (j=nnd;j>0;j--) pd[jl=pd[jl*x+pd[j-1];
pd [0]=pd [0]*x+c[i];
}
for (i=2;i<nd+1;i++) { After the first derivative, factorial constants come in.
cnst *x= i;
pd[i]l *= cnst;

As a curiosity, you might be interested to know that polynomials of degree
n > 3 can be evaluated in fewer than n multiplications, at least if you are willing to
precompute some auxiliary coefficients and, in some cases, do some extra addition.
For example, the polynomial

P(x) = ap + a1x + axx* + azx> + asx* (5.1.1)

where a4 > 0, can be evaluated with three multiplications and five additions as
follows:

P(x) = [(Ax + B)> + Ax + C][(Ax + B> + D] + E (5.1.2)
where A, B, C, D, and E are to be precomputed by
A= (04)1/4
B — M
443
D=3BZ+8B3+"1A;# (5.13)
c=2_2p_6B>-D

A2
E=ay—B*—B*(C +D)—-CD

Fifth-degree polynomials can be evaluated in four multiplies and five adds; sixth-
degree polynomials can be evaluated in four multiplies and seven adds; if any of this
strikes you as interesting, consult references [3-5]. The subject has something of the
same flavor as that of fast matrix multiplication, discussed in §2.11.

Turn now to algebraic manipulations. You multiply a polynomial of degree
n — 1 (array of range [0..n-1]) by a monomial factor x — a by a bit of code like
the following,
c[nl=c[n-1];
for (j=n-1;j>=1;j--) cljl=cl[j-1]-c[jl*a;
c[0] *= (-a);

poly.h
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Likewise, you divide a polynomial of degree n by a monomial factor x — a
(synthetic division again) using

rem=c[n] ;

c[n]=0.;

for(i=n-1;i>=0;i--) {
swap=c[i];
cl[il=rem;
rem=swap+rem*a;

}

which leaves you with a new polynomial array and a numerical remainder rem.

Multiplication of two general polynomials involves straightforward summing
of the products, each involving one coefficient from each polynomial. Division of
two general polynomials, while it can be done awkwardly in the fashion taught using
pencil and paper, is susceptible to a good deal of streamlining. Witness the following
routine based on the algorithm in [3].

void poldiv(VecDoub_I &u, VecDoub_I &v, VecDoub_0 &q, VecDoub_0 &r)
Divide a polynomial u by a polynomial v, and return the quotient and remainder polynomials
in q and r, respectively. The four polynomials are represented as vectors of coefficients, each
starting with the constant term. There is no restriction on the relative lengths of u and v, and
either may have trailing zeros (represent a lower degree polynomial than its length allows). q
and r are returned with the size of u, but will usually have trailing zeros.
{
Int k,j,n=u.size()-1,nv=v.size()-1;
while (nv >= 0 && v[nv] == 0.) nv--;
if (av < 0) throw("poldiv divide by zero polynomial");
r = u; May do a resize.
q.assign(u.size(),0.); May do a resize.
for (k=n-nv;k>=0;k--) {
q[k]=r[nv+k]/v[nv];
for (j=nv+k-1;j>=k;j--) rl[jl -= qlkl*v[j-k];
}
for (j=nv;j<=n;j++) r[j1=0.0;

5.1.1 Rational Functions

You evaluate a rational function like

Pu(x)  po+ pix+---+ puxt

— 5.1.4
0v(x)  qo+qix+--+qux¥ ( )

R(x) =

in the obvious way, namely as two separate polynomials followed by a divide. As a
matter of convention one usually chooses go = 1, obtained by dividing the numerator
and denominator by any other go. In that case, it is often convenient to have both
sets of coefficients, omitting g, stored in a single array, in the order

(vaplﬂ"'vp;Laqla---aqv) (515)

The following object encapsulates a rational function. It provides constructors
from either separate numerator and denominator polynomials, or a single array like
(5.1.5) with explicit values forn = p 4+ 1 and d = v + 1. The evaluation function
makes Ratfn a functor, like Poly. We’ll make use of this object in §5.12 and §5.13.
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struct Ratfn {
Function object for a rational function.
VecDoub cofs;
Int nn,dd; Number of numerator, denominator coefficients.

Ratfn(VecDoub_I &num, VecDoub_I &den) : cofs(num.size()+den.size()-1),
nn(num.size()), dd(den.size()) {
Constructor from numerator, denominator polyomials (as coefficient vectors).
Int j;
for (j=0;j<nn;j++) cofs[j] = num[j]/den[0];
for (j=1;j<dd;j++) cofs[j+nn-1] = den[jl/den[0];
}

Ratfn(VecDoub_I &coffs, const Int n, const Int d) : cofs(coffs), nn(n),
ad(d) {3}

Constructor from coefficients already normalized and in a single array.

Doub operator() (Doub x) const {

Evaluate the rational function at x and return result.
Int j;
Doub sumn = 0., sumd = O.;
for (j=nn-1;j>=0;j--) sumn = sumn*x + cofs[j];
for (j=nn+dd-2;j>=nn;j--) sumd = sumd*x + cofs[jl;
return sumn/(1.0+x*sumd) ;

5.1.2 Parallel Evaluation of a Polynomial

A polynomial of degree N can be evaluated in about log, N parallel steps [6].
This is best illustrated by an example, for example with N = 5. Start with the vector
of coefficients, imagining appended zeros:

cgp, €1, Ca, 3, Ca, cC5, 0, ... (5.1.6)
Now add the elements by pairs, multiplying the second of each pair by x:
co+ci1x, cx+c3x, c4+csx, 0, ... (5.1.7)
Now the same operation, but with the multiplier x2:

(co + c1x) + (c2 + c3x)x?,  (ca 4+ csx) + (0)x%, 0 ... (5.1.8)

And a final time with multiplier x*:

[(co + c1x) 4 (c2 + c3x)x%] + [(c4 + c5x) + (0)x*]x*, 0 ...  (5.1.9)

We are left with a vector of (active) length 1, whose value is the desired polynomial
evaluation. You can see that the zeros are just a bookkeeping device for taking care
of the case where the active subvector has an odd length; in an actual implementation
you can avoid most operations on the zeros. This parallel method generally has better
roundoff properties than the standard sequential coding.

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington, DC:
Mathematical Association of America), pp. 183, 190.[1]
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5.2 Evaluation of Continued Fractions

Continued fractions are often powerful ways of evaluating functions that occur
in scientific applications. A continued fraction looks like this:

a
f@)=bot — — (5.2.1)
S S T—
b3+ 4

a
Pt pst
Printers prefer to write this as

an as ayg as

ai
= by +
S ? bi+ by+ b3+ bs+ bs+

(5.22)

In either (5.2.1) or (5.2.2), the a’s and b’s can themselves be functions of x, usually
linear or quadratic monomials at worst (i.e., constants times x or times x2). For
example, the continued fraction representation of the tangent function is

x% x2 x?

nx=— >~ X X . (5.2.3)
- 3— 5—- 7-

Continued fractions frequently converge much more rapidly than power series
expansions, and in a much larger domain in the complex plane (not necessarily in-
cluding the domain of convergence of the series, however). Sometimes the continued
fraction converges best where the series does worst, although this is not a general
rule. Blanch [1] gives a good review of the most useful convergence tests for contin-
ued fractions.

There are standard techniques, including the important quotient-difference al-
gorithm, for going back and forth between continued fraction approximations, power
series approximations, and rational function approximations. Consult Acton [2] for
an introduction to this subject, and Fike [3] for further details and references.

How do you tell how far to go when evaluating a continued fraction? Unlike
a series, you can’t just evaluate equation (5.2.1) from left to right, stopping when
the change is small. Written in the form of (5.2.1), the only way to evaluate the
continued fraction is from right to left, first (blindly!) guessing how far out to start.
This is not the right way.
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The right way is to use a result that relates continued fractions to rational ap-
proximations, and that gives a means of evaluating (5.2.1) or (5.2.2) from left to
right. Let f, denote the result of evaluating (5.2.2) with coefficients through a, and
b,. Then

Jo = 7= (5.2.4)
where A, and B, are given by the following recurrence:

A_l =1 B_l =0
A()Eb() B()E 1
Aj:bjAj_1+ajAj_2 Bj:bij_1+aij_2 j=12,....n
(5.2.5)

This method was invented by J. Wallis in 1655 (!) and is discussed in his Arithmetica
Infinitorum [4]. You can easily prove it by induction.

In practice, this algorithm has some unattractive features: The recurrence (5.2.5)
frequently generates very large or very small values for the partial numerators and
denominators A; and B;. There is thus the danger of overflow or underflow of the
floating-point representation. However, the recurrence (5.2.5) is linear in the A’s and
B’s. At any point you can rescale the currently saved two levels of the recurrence,
e.g., divide A;, B;, A;j_1, and B;_; all by B;. This incidentally makes A; = f;
and is convenient for testing whether you have gone far enough: See if f; and f;_;
from the last iteration are as close as you would like them to be. If B; happens to
be zero, which can happen, just skip the renormalization for this cycle. A fancier
level of optimization is to renormalize only when an overflow is imminent, saving
the unnecessary divides. In fact, the C library function 1dexp can be used to avoid
division entirely. (See the end of §6.5 for an example.)

Two newer algorithms have been proposed for evaluating continued fractions.
Steed’s method does not use A; and B; explicitly, but only the ratio D; = B;_1/B;.
One calculates D; and A f; = f; — f;—1 recursively using

D; =1/(bj +a;D;—y) (5.2.6)
Af; = (b;D; — DAfi_ (5.2.7)

Steed’s method (see, e.g., [5]) avoids the need for rescaling of intermediate results.
However, for certain continued fractions you can occasionally run into a situation
where the denominator in (5.2.6) approaches zero, so that D; and A f; are very large.
The next A fj 41 will typically cancel this large change, but with loss of accuracy in
the numerical running sum of the f;’s. It is awkward to program around this, so
Steed’s method can be recommended only for cases where you know in advance
that no denominator can vanish. We will use it for a special purpose in the routine
besselik (§6.6).

The best general method for evaluating continued fractions seems to be the
modified Lentz’s method [6]. The need for rescaling intermediate results is avoided
by using both the ratios

C,=A;/Aj_1. Dj=Bj_/B; (5.2.8)

and calculating f; by
Ji = 1j—1G;D; (5.2.9)
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From equation (5.2.5), one easily shows that the ratios satisfy the recurrence relations
D;=1/(bj +a;Dj_), Ci=bj+a;j/Ci (5.2.10)

In this algorithm there is the danger that the denominator in the expression for D,
or the quantity C; itself, might approach zero. Either of these conditions invalidates
(5.2.10). However, Thompson and Barnett [5] show how to modify Lentz’s algorithm
to fix this: Just shift the offending term by a small amount, e.g., 1073°. If you work
through a cycle of the algorithm with this prescription, you will see that fj41 is
accurately calculated.

In detail, the modified Lentz’s algorithm is this:

e Set fo = bg;if by = 0, set fo = tiny.

° SetC0=f0.
e Set Dy = 0.
e Forj =1,2,...

Set D; =bj +a;D;_,.

If D; =0,set D; = tiny.
SetC; =b; +a;/Cj_;.
IfC; =0,set C; = tiny.
Set D; = l/Dj.

Set Aj = Cij.

Setfj =fj_1Aj.

If |[A; — 1| < eps, then exit.

Here eps is your floating-point precision, say 10~7 or 107>, The parameter tiny
should be less than typical values of eps |b;|, say 1073C.

The above algorithm assumes that you can terminate the evaluation of the con-
tinued fraction when | f; — f;_1] is sufficiently small. This is usually the case, but
by no means guaranteed. Jones [7] gives a list of theorems that can be used to justify
this termination criterion for various kinds of continued fractions.

There is at present no rigorous analysis of error propagation in Lentz’s algo-
rithm. However, empirical tests suggest that it is at least as good as other methods.

5.2.1 Manipulating Continued Fractions

Several important properties of continued fractions can be used to rewrite them
in forms that can speed up numerical computation. An equivalence transformation

an —> Aay, by — Ab,, ap+1 — Adni4q (5.2.11)

leaves the value of a continued fraction unchanged. By a suitable choice of the scale
factor A you can often simplify the form of the a’s and the b’s. Of course, you
can carry out successive equivalence transformations, possibly with different A’s, on
successive terms of the continued fraction.

The even and odd parts of a continued fraction are continued fractions whose
successive convergents are f,, and f2,41, respectively. Their main use is that they
converge twice as fast as the original continued fraction, and so if their terms are not
much more complicated than the terms in the original, there can be a big savings in
computation. The formula for the even part of (5.2.2) is

féven = dO +

C1 Co
di+ dy+

(5.2.12)



5.3 Series and Their Convergence 209

where in terms of intermediate variables

a
o = —
blan (5.2.13)
oy = , n=>2
" bnbn—l -
we have
do=by, c1=0a;, di=14+a«
o= re Hmre A 2 (5.2.14)
Cn = —Qop_102p—2, dn =14 a2p_1 + 02y, n>2

You can find the similar formula for the odd part in the review by Blanch [1]. Often a
combination of the transformations (5.2.14) and (5.2.11) is used to get the best form
for numerical work.

We will make frequent use of continued fractions in the next chapter.

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, |.A. 1964, Handbook of Mathematical Functions (Washington: Na-
tional Bureau of Standards); reprinted 1968 (New York: Dover); online athttp://www.nr.
com/aands, §3.10.

Blanch, G. 1964, “Numerical Evaluation of Continued Fractions,” SIAM Review, vol. 6, pp. 383—
421.[1]

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington, DC:
Mathematical Association of America), Chapter 11.[2]

Cuyt, A., and Wuytack, L. 1987, Nonlinear Methods in Numerical Analysis (Amsterdam: North-
Holland), Chapter 1.

Fike, C.T. 1968, Computer Evaluation of Mathematical Functions (Englewood Cliffs, NJ: Prentice-
Hall), §8.2, §10.4, and §10.5.[3]

Wallis, J. 1695, in Opera Mathematica, vol. 1, p. 355, Oxoniae e Theatro Shedoniano. Reprinted
by Georg Olms Verlag, Hildeshein, New York (1972).[4]

Thompson, I.J., and Barnett, A.R. 1986, “Coulomb and Bessel Functions of Complex Arguments
and Order,” Journal of Computational Physics, vol. 64, pp. 490-509.[5]

Lentz, W.J. 1976, “Generating Bessel Functions in Mie Scattering Calculations Using Continued
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Jones, W.B. 1973, in Padé Approximants and Their Applications, P.R. Graves-Morris, ed. (Lon-
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5.3 Series and Their Convergence

Everybody knows that an analytic function can be expanded in the neighbor-
hood of a point x¢ in a power series,

) =) ar(x = xo) (53.1)

k=0

Such series are straightforward to evaluate. You don’t, of course, evaluate the kth
power of x —xq ab initio for each term; rather, you keep the k — 1st power and update
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it with a multiply. Similarly, the form of the coefficients ay is often such as to make
use of previous work: Terms like k! or (2k)! can be updated in a multiply or two.

How do you know when you have summed enough terms? In practice, the terms
had better be getting small fast, otherwise the series is not a good technique to use
in the first place. While not mathematically rigorous in all cases, standard practice is
to quit when the term you have just added is smaller in magnitude than some small
€ times the magnitude of the sum thus far accumulated. (But watch out if isolated
instances of ax = 0 are possible!)

Sometimes you will want to compute a function from a series representation
even when the computation is not efficient. For example, you may be using the values
obtained to fit the function to an approximating form that you will use subsequently
(cf. §5.8). If you are summing very large numbers of slowly convergent terms, pay
attention to roundoff errors! In floating-point representation it is more accurate to
sum a list of numbers in the order starting with the smallest one, rather than starting
with the largest one. It is even better to group terms pairwise, then in pairs of pairs,
etc., so that all additions involve operands of comparable magnitude.

A weakness of a power series representation is that it is guaranteed not to con-
verge farther than that distance from x( at which a singularity is encountered in the
complex plane. This catastrophe is not usually unexpected: When you find a power
series in a book (or when you work one out yourself), you will generally also know
the radius of convergence. An insidious problem occurs with series that converge ev-
erywhere (in the mathematical sense), but almost nowhere fast enough to be useful
in a numerical method. Two familiar examples are the sine function and the Bessel
function of the first kind,

sinx = i %x%“ (5.3.2)
= Qk+ 1)
s b

Both of these series converge for all x. But both don’t even start to converge until
k > |x|; before this, their terms are increasing. Even worse, the terms alternate in
sign, leading to large cancellation errors with finite precision arithmetic. This makes
these series useless for large x.

5.3.1 Divergent Series

Divergent series are often very useful. One class consists of power series out-
side their radius of convergence, which can often be summed by the acceleration
techniques we will describe below. Another class is asymptotic series, such as the
Euler series that comes from Euler’s integral (related to the exponential integral E):

00 e—t 00
E(x) = dt ~ —1)kk1 Xk 5.3.4
W= > e (534

Here the series is derived by expanding (1 + x¢)~! in powers of x and integrating
term by term. The series diverges for all x # 0. For x = 0.1, the series gives
only three significant digits before diverging. Nevertheless, convergence acceleration
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techniques allow effortless evaluation of the function E(x), even for x ~ 2, when
the series is wildly divergent!

5.3.2 Accelerating the Convergence of Series

There are several tricks for accelerating the rate of convergence of a series or,
equivalently, of a sequence of partial sums

Sp = Xn:ak (5.3.5)

(We’ll use the terms sequence and series interchangeably in this section.) An ex-
cellent review has been given by Weniger [1]. Before we can describe the tricks and
when to use them, we need to classify some of the ways in which a sequence can
converge. Suppose s, converges to s, say, and that

. a

lim 2t = p (5.3.6)

n—o0o a,

If 0 < |p| < 1, we say the convergence is linear; if p = 1, it is logarithmic; and
if p = 0, it is hyperlinear. Of course, if |p| > 1, the sequence diverges. (More
rigorously, this classification should be given in terms of the so-called remainders
sp — s [1]. However, our definition is more practical and is equivalent if we restrict
the logarithmic case to terms of the same sign.)

The prototype of linear convergence is a geometric series,

1 _
=y ak= (5.3.7)

It is easy to see that p = x, and so we have linear convergence for 0 < |x| < 1. The
prototype of logarithmic convergence is the series for the Riemann zeta function,

t(x) = Z k]_x x> 1 (5.3.8)

which is notoriously slowly convergent, especially as x — 1. The series (5.3.2)
and (5.3.3), or the series for e*, exemplify hyperlinear convergence. We see that
hyperlinear convergence doesn’t necessarily imply that the series is easy to evaluate
for all values of x. Sometimes convergence acceleration is helpful only once the
terms start decreasing.

Probably the most famous series transformation for accelerating convergence is
the Euler transformation (see, e.g., [2,3]), which dates from 1755. Euler’s transfor-
mation works on alternating series (where the terms in the sum alternate in sign).
Generally it is advisable to do a small number of terms directly, through term n — 1,
say, and then apply the transformation to the rest of the series beginning with term
n. The formula (for n even) is

- (=1)°
Y (=Day=as—ar+ax...—an_1 + Z S [Aan (5.3.9)
5s=0
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Here A is the forward difference operator, i.e.,
Aap = apt1 —an

A%a, = ayio —2an41 + an (5.3.10)

A3a, = api3 —3ania + 3an11 — an etc.
Of course you don’t actually do the infinite sum on the right-hand side of (5.3.9), but
only the first, say, p terms, thus requiring the first p differences (5.3.10) obtained
from the terms starting at a,. There is an elegant and subtle implementation of
Euler’s transformation due to van Wijngaarden [6], discussed in full in a Webnote [7].

Euler’s transformation is an example of a linear transformation: The partial
sums of the transformed series are linear combinations of the partial sums of the
original series. Euler’s transformation and other linear transformations, while still
important theoretically, have generally been superseded by newer nonlinear trans-
formations that are considerably more powerful. As usual in numerical work, there
is no free lunch: While the nonlinear transformations are more powerful, they are
somewhat riskier than linear transformations in that they can occasionally fail spec-
tacularly. But if you follow the guidance below, we think that you will never again
resort to puny linear transformations.

The oldest example of a nonlinear sequence transformation is Aitken’s A2-
process. If s,,Sp41, 8,42 are three successive partial sums, then an improved es-
tmate s r (Sn+1— Sn)2 (Asn)2

S, =S, — =S8, — (5.3.11)
Sn+2 — 2Sn+1 + sp Azsn
The formula (5.3.11) is exact for a geometric series, which is one way of deriving
it. If you form the sequence of s;’s, you can apply (5.3.11) a second time to that
sequence, and so on. (In practice, this iteration will only rarely do much for you after
the first stage.) Note that equation (5.3.11) should be computed as written; there exist
algebraically equivalent forms that are much more susceptible to roundoff error.

Aitken’s A%-process works only on linearly convergent sequences. Like Euler’s
transformation, it has also been superseded by algorithms such as the two we will
now describe. After giving routines for these algorithms, we will supply some rules
of thumb on when to use them.

The first “modern” nonlinear transformation was proposed by Shanks. An effi-
cient recursive implementation was given by Wynn, called the € algorithm. Aitken’s
A2-process is a special case of the € algorithm, corresponding to using just three
terms at a time. Although we will not give a derivation here, it is easy to state ex-
actly what the € algorithm does: If you input the partial sums of a power series, the
€ algorithm returns the “diagonal” Padé approximants (§5.12) evaluated at the value
of x used in the power series. (The coefficients in the approximant itself are not
calculated.) That is, if [M/N] denotes the Padé approximant with a polynomial of
degree M in the numerator and degree N in the denominator, the algorithm returns
the numerical values of the approximants

[0,0], [t/0], [1/1], [2/1], [2/2], I[3,2], [3,3] ... (5.3.12)
(The object Epsalg below is roughly equivalent to pade in §5.12 followed by an
evaluation of the resulting rational function.)

In the object Epsalg, which is based on a routine in [1], you supply the sequence
term by term and monitor the output for convergence in the calling program. Inter-
nally, the routine contains a check for division by zero and substitutes a large number
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for the result. There are three conditions under which this check can be triggered: (i)
Most likely, the algorithm has already converged, and should have been stopped ear-
lier; (ii) there is an “accidental” zero term, and the program will recover; (iii) hardly
ever in practice, the algorithm can actually fail because of a perverse combination
of terms. Because (i) and (ii) are vastly more common than (iii), Epsalg hides the
check condition and instead returns the last-known good estimate.

struct Epsalg {

Convergence acceleration of a sequence by the € algorithm. Initialize by calling the constructor
with arguments nmax, an upper bound on the number of terms to be summed, and epss, the
desired accuracy. Then make successive calls to the function next, with argument the next
partial sum of the sequence. The current estimate of the limit of the sequence is returned by
next. The flag cnvgd is set when convergence is detected.

VecDoub e; Workspace.

Int n,ncv;

Bool cnvgd;

Doub eps,small,big,lastval,lasteps; Numbers near machine underflow and

overflow limits.
Epsalg(Int nmax, Doub epss) : e(nmax), n(0), ncv(0),
cnvgd(0), eps(epss), lastval(0.) {
small = numeric_limits<Doub>::min()*10.0;
big = numeric_limits<Doub>::max() ;

}

Doub next(Doub sum) {

Doub diff,templ,temp2,val;

e[n]=sum;

temp2=0.0;

for (Int j=n; j>0; j--) {
templ=temp2;
temp2=e[j-1];
diff=e[j]l-temp2;
if (abs(diff) <= small)

el[j-11=big;
else
e[j-1]=templ+1.0/diff;
}
n++;
val = (n & 1) ? e[0] : e[1]; Cases of n even or odd.

if (abs(val) > 0.01xbig) val = lastval;
lasteps = abs(val-lastval);

if (lasteps > eps) ncv = 0;

else ncv++;

if (ncv >= 3) cnvgd = 1;

return (lastval = val);

The last few lines above implement a simple criterion for deciding whether the
sequence has converged. For problems whose convergence is robust, you can simply
put your calls to next inside a while loop like this:

Doub val, partialsum, eps=...;
Epsalg mysum(1000,eps);
while (! mysum.cnvgd) {
partialsum = ...
val = mysum.next(partialsum);

series.h
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For more delicate cases, you can ignore the cnvgd flag and just keep calling next
until you are satisfied with the convergence.

A large class of modern nonlinear transformations can be derived by using the
concept of a model sequence. The idea is to choose a “simple” sequence that approx-
imates the asymptotic form of the given sequence and construct a transformation that
sums the model sequence exactly. Presumably the transformation will work well for
other sequences with similar asymptotic properties. For example, a geometric series
provides the model sequence for Aitken’s A2-process.

The Levin transformation is probably the best single sequence acceleration
method currently known. It is based on approximating a sequence asymptotically
by an expression of the form

k—1
Cj
= E - 5.3.13
Sn =S =0 (n+ B)/ ( )

Here w;, is the dominant term in the remainder of the sequence:
Sp—8 = wulc + O(n™ Y], n— oo (5.3.14)

The constants ¢; are arbitrary, and § is a parameter that is restricted to be positive.
Levin showed that for a model sequence of the form (5.3.13), the following transfor-
mation gives the exact value of the series:

Z( 1)] (B+n+ ) Y Snt
(B +n+ )k wpy
Z(_l)j K\ (B+n+ )t 1
= J) B +n+ k)t wny
(The common factor (8 + n + k)¥~! in the numerator and denominator reduces
the chances of overflow for large k.) A derivation of equation (5.3.15) is given in a
Webnote [4].
The numerator and denominator in (5.3.15) are not computed as written. In-

stead, they can be computed efficiently from a single recurrence relation with differ-
ent starting values (see [1] for a derivation):

(B4+n)(B+n+ k<!
(B+n+k+ 1k

(5.3.15)

Di,,(B) = Dy (B) - DI(B) (5.3.16)

The starting values are

Sp/wy, numerator

DI(B) = (5.3.17)

1/w,, denominator

Although D,’(’ is a two-dimensional object, the recurrence can be coded in a one-
dimensional array proceeding up the counterdiagonal n + k = constant.

The choice (5.3.14) doesn’t determine w, uniquely, but if you have analytic in-
formation about your series, this is where you can make use of it. Usually you won’t
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be so lucky, in which case you can make a choice based on heuristics. For example,
the remainder in an alternating series is approximately half the first neglected term,
which suggests setting w, equal to a, or a,+;. These are called the Levin 7 and
d transformations, respectively. Similarly, the remainder for a geometric series is
the difference between the partial sum (5.3.7) and its limit 1/(1 — x). This can be
written as d, d,+1/(ay —an+1), which defines the Levin v transformation. The most
popular choice comes from approximating the remainder in the ¢ function (5.3.8) by
an integral:

o0
| < Jk 1)l 1
L %/ dk _(n+ D _ (A Dans (5.3.18)
ki1 n+1 k> x—1 x—1

This motivates the choice (n + f)a, (Levin u transformation), where § is usually
chosen to be 1. To summarize:

(B +n)a,, u transformation

an, t transformation
Dn =N a,.q, d transformation (modified ¢ transformation) (3.3.19)
andn+1

, v transformation
ap —dp+1

For sequences that are not partial sums, so that the individual a,’s are not defined,
replace a, by As,_1 in (5.3.19).
Here is the routine for Levin’s transformation, also based on the routine in [1]:

struct Levin {

Convergence acceleration of a sequence by the Levin transformation. Initialize by calling the
constructor with arguments nmax, an upper bound on the number of terms to be summed, and
epss, the desired accuracy. Then make successive calls to the function next, which returns
the current estimate of the limit of the sequence. The flag cnvgd is set when convergence is
detected.

VecDoub numer,denom; Numerator and denominator computed via (5.3.16).
Int n,ncv;

Bool cnvgd;

Doub small,big; Numbers near machine underflow and overflow limits.

Doub eps,lastval,lasteps;

Levin(Int nmax, Doub epss) : numer(nmax), denom(mmax), n(0), ncv(0),

cnvgd(0), eps(epss), lastval(0.) {
small=numeric_limits<Doub>::min()*10.0;
big=numeric_limits<Doub>::max();

}

Doub next(Doub sum, Doub omega, Doub beta=1.) {

Arguments: sum, the nth partial sum of the sequence; omega, the nth remainder estimate
Wy, usually from (5.3.19); and the parameter beta, which should usually be set to 1, but
sometimes 0.5 works better. The current estimate of the limit of the sequence is returned.

Int j;

Doub fact,ratio,term,val;

term=1.0/(beta+n) ;

denom[n]=term/omega;

numer [n] =sum*denom[n] ;

if (n > 0) {
ratio=(beta+n-1)*term;
for (j=1;j<=n;j++) {

series.h



216 Chapter 5. Evaluation of Functions

fact=(n-j+beta)*term;

numer [n-j]=numer [n-j+1]-fact*numer [n-j];
denom[n-jl=denom[n-j+1]-fact*denom[n-j];
term=term*ratio;

}

n++;

val = abs(denom[0]) < small ? lastval : numer[0]/denom[0];
lasteps = abs(val-lastval);

if (lasteps <= eps) ncv++;

if (ncv >= 2) cnvgd = 1;

return (lastval = val);

}s

You can use, or not use, the cnvgd flag exactly as previously discussed for Epsalg,.

An alternative to the model sequence method of deriving sequence transforma-
tions is to use extrapolation of a polynomial or rational function approximation to
a series, e.g., as in Wynn’s p algorithm [1]. Since none of these methods generally
beats the two we have given, we won’t say any more about them.

5.3.3 Practical Hints and an Example

There is no general theoretical understanding of nonlinear sequence transforma-
tions. Accordingly, most of the practical advice is based on numerical experiments [5].
You might have thought that summing a wildly divergent series is the hardest prob-
lem for a sequence transformation. However, the difficulty of a problem depends
more on whether the terms are all of the same sign or whether the signs alternate,
rather than whether the sequence actually converges or not. In particular, logarithmi-
cally convergent series with terms all of the same sign are generally the most difficult
to sum. Even the best acceleration methods are corrupted by rounding errors when
accelerating logarithmic convergence. You should always use double precision and
be prepared for some loss of significant digits. Typically one observes convergence
up to some optimum number of terms, and then a loss of significant digits if one tries
to go further. Moreover, there is no single algorithm that can accelerate every loga-
rithmically convergent sequence. Nevertheless, there are some good rules of thumb.

First, note that among divergent series it is useful to separate out asymptotic se-
ries, where the terms first decrease before increasing, as a separate class from other
divergent series, e.g., power series outside their radius of convergence. For alter-
nating series, whether convergent, asymptotic, or divergent power series, Levin’s u
transformation is almost always the best choice. For monotonic linearly convergent
or monotonic divergent power series, the € algorithm typically is the first choice, but
the u transformation often does a reasonable job. For logarithmic convergence, the u
transformation is clearly the best. (The € algorithm fails completely.) For series with
irregular signs or other nonstandard features, typically the € algorithm is relatively
robust, often succeeding where other algorithms fail. Finally, for monotonic asymp-
totic series, such as (6.3.11) for Ei(x), there is nothing better than direct summation
without acceleration.

The v and ¢ transformations are almost as good as the u transformation, except
that the ¢ transformation typically fails for logarithmic convergence.

If you have only a few numerical terms of some sequence and no theoretical
insight, blindly applying a convergence accelerator can be dangerous. The algorithm
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can sometimes display “convergence” that is only apparent, not real. The remedy is
to try two different transformations as a check.

Since convergence acceleration is so much more difficult for a series of positive
terms than for an alternating series, occasionally it is useful to convert a series of
positive terms into an alternating series. Van Wijngaarden has given a transformation
for accomplishing this [6]:

o0 o0
dove=Y (=), (5.3.20)
r=1 r=1
where
Wy = Uy + 202, + 4v4, + 8vg, + - - (5.3.21)

Equations (5.3.20) and (5.3.21) replace a simple sum by a two-dimensional sum,
each term in (5.3.20) being itself an infinite sum (5.3.21). This may seem a strange
way to save on work! Since, however, the indices in (5.3.21) increase tremendously
rapidly, as powers of 2, it often requires only a few terms to converge (5.3.21) to
extraordinary accuracy. You do, however, need to be able to compute the v,’s ef-
ficiently for “random” values r. The standard “updating” tricks for sequential r’s,
mentioned above following equation (5.3.1), can’t be used.

Once you’ve generated the alternating series by Van Wijngaarden’s transforma-
tion, the Levin d transformation is particularly effective at summing the series [8].
This strategy is most useful for linearly convergent series with p close to 1. For
logarithmically convergent series, even the transformed series (5.3.21) is often too
slowly convergent to be useful numerically.

As an example of how to call the routines Epsalg or Levin, consider the prob-
lem of evaluating the integral

o0

I = / LJo(x) dx = Ko(1) = 0.4210244382.. .. (5.3.22)
0 1 + X2

Standard quadrature methods such as qromo fail because the integrand has a long

oscillatory tail, giving alternating positive and negative contributions that tend to

cancel. A good way of evaluating such an integral is to split it into a sum of integrals

between successive zeros of Jo(x):

I = /oo f)dx=>"1, (5.3.23)
0 =0
where
I = /xj f(x)dx, f(xj))=0, j=01,... (5.3.24)

We take x_; equal to the lower limit of the integral, zero in this example. The idea is
to evaluate the relatively simple integrals /; by qromb or Gaussian quadrature, and
then accelerate the convergence of the series (5.3.23), since we expect the contri-
butions to alternate in sign. For the example (5.3.22), we don’t even need accurate
values of the zeros of Jy(x). It is good enough to take x; = (j + 1)m, which is
asymptotically correct. Here is the code:
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Doub func(const Doub x)
Integrand for (5.3.22).

{
if (x == 0.0)
return 0.0;
else {
Bessel bess;
return x*bess.jnu(0.0,x)/(1.0+x*x);
}
}

Int main_levex(void)
This sample program shows how to use the Levin u transformation to evaluate an oscillatory
integral, equation (5.3.22).
{
const Doub PI=3.141592653589793;
Int nterm=12;
Doub beta=1.0,a=0.0,b=0.0,sum=0.0;
Levin series(100,0.0);
cout << setw(5) << "N" << setw(19) << "Sum (direct)" << setw(21)
<< "Sum (Levin)" << endl;
for (Int n=0; n<=nterm; n++) {
b+=PI;
Doub s=qromb(func,a,b,1.e-8);
a=b;
sum+=s;
Doub omega=(beta+n)x*s; Use u transformation.
Doub ans=series.next(sum,omega,beta);
cout << setw(5) << n << fixed << setprecision(14) << setw(21)
<< sum << setw(21) << ans << endl;
}

return 0;

Setting eps to 1 x 1078 in qromb, we get 9 significant digits with about 200
function evaluations by n = 8. Replacing qromb with a Gaussian quadrature routine
cuts the number of function evaluations in half. Note that n = 8§ corresponds to an
upper limit in the integral of 97, where the amplitude of the integrand is still of order
1072, This shows the remarkable power of convergence acceleration. (For more on
oscillatory integrals, see §13.9.)
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5.4 Recurrence Relations and Clenshaw’s
Recurrence Formula

Many useful functions satisfy recurrence relations, e.g.,

(n+ 1) Ppy1(x) = 2n + 1)xPy(x) —nPp_1(x) (5.4.1)
2

I (¥) = “20n() = Jea () (5.4.2)

nE,11(x) = e — xE,(x) (5.4.3)

cosnf) = 2cosBcos(n —1)0 —cos(n — 2)0 (5.4.4)

sinnf = 2cos @ sin(n — 1)0 — sin(n — 2)0 (5.4.5)

where the first three functions are Legendre polynomials, Bessel functions of the first
kind, and exponential integrals, respectively. (For notation see [1].) These relations
are useful for extending computational methods from two successive values of n to
other values, either larger or smaller.

Equations (5.4.4) and (5.4.5) motivate us to say a few words about trigonomet-
ric functions. If your program’s running time is dominated by evaluating trigono-
metric functions, you are probably doing something wrong. Trig functions whose
arguments form a linear sequence 6 = 6y + nd, n = 0,1,2,..., are efficiently
calculated by the recurrence

cos(f 4+ 8) = cos — [ cos O + Bsinb]

. . . (5.4.6)
sin(f 4+ §) = sinf — [wsin 6 — B cos 6]
where « and 8 are the precomputed coefficients
8
o = 2sin? (5) B =siné 5.4.7

The reason for doing things this way, rather than with the standard (and equivalent)
identities for sums of angles, is that here & and 8 do not lose significance if the
incremental § is small. Likewise, the adds in equation (5.4.6) should be done in the
order indicated by the square brackets. We will use (5.4.6) repeatedly in Chapter 12,
when we deal with Fourier transforms.

Another trick, occasionally useful, is to note that both sin 8 and cos 6 can be
calculated via a single call to tan:

9 1—1¢2? 2t
t=tan| = cosf = sinf = (5.4.8)
2 1412 1+12
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The cost of getting both sin and cos, if you need them, is thus the cost of tan plus 2
multiplies, 2 divides, and 2 adds. On machines with slow trig functions, this can be a
savings. However, note that special treatment is required if 6 — +7. And also note
that many modern machines have very fast trig functions; so you should not assume
that equation (5.4.8) is faster without testing.

5.4.1 Stability of Recurrences

You need to be aware that recurrence relations are not necessarily stable against
roundoff error in the direction that you propose to go (either increasing n or decreas-
ing n). A three-term linear recurrence relation

Yn+1+ @nyn +buyn—1 =0, n=12,... (5.4.9)

has two linearly independent solutions, f, and g, say. Only one of these corre-
sponds to the sequence of functions f; that you are trying to generate. The other
one, g, may be exponentially growing in the direction that you want to go, or ex-
ponentially damped, or exponentially neutral (growing or dying as some power law,
for example). If it is exponentially growing, then the recurrence relation is of little
or no practical use in that direction. This is the case, e.g., for (5.4.2) in the direction
of increasing n, when x < n. You cannot generate Bessel functions of high n by
forward recurrence on (5.4.2).
To state things a bit more formally, if

Ju/gn =0 as n— oo (5.4.10)

then f,, is called the minimal solution of the recurrence relation (5.4.9). Nonminimal
solutions like g, are called dominant solutions. The minimal solution is unique, if it
exists, but dominant solutions are not — you can add an arbitrary multiple of f, to
a given g,. You can evaluate any dominant solution by forward recurrence, but not
the minimal solution. (Unfortunately it is sometimes the one you want.)
Abramowitz and Stegun (in their Introduction!) [1] give a list of recurrences
that are stable in the increasing or decreasing direction. That list does not contain all
possible formulas, of course. Given a recurrence relation for some function f,(x),
you can test it yourself with about five minutes of (human) labor: For a fixed x in
your range of interest, start the recurrence not with true values of f;(x) and f;1(x),
but (first) with the values 1 and 0, respectively, and then (second) with O and 1,
respectively. Generate 10 or 20 terms of the recursive sequences in the direction
that you want to go (increasing or decreasing from j ), for each of the two starting
conditions. Look at the differences between the corresponding members of the two
sequences. If the differences stay of order unity (absolute value less than 10, say),
then the recurrence is stable. If they increase slowly, then the recurrence may be
mildly unstable but quite tolerably so. If they increase catastrophically, then there is
an exponentially growing solution of the recurrence. If you know that the function
that you want actually corresponds to the growing solution, then you can keep the
recurrence formula anyway (e.g., the case of the Bessel function Y, (x) for increasing
n; see §6.5). If you don’t know which solution your function corresponds to, you
must at this point reject the recurrence formula. Notice that you can do this test
before you go to the trouble of finding a numerical method for computing the two
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starting functions fj(x) and f;41(x): Stability is a property of the recurrence, not
of the starting values.

An alternative heuristic procedure for testing stability is to replace the recur-
rence relation by a similar one that is linear with constant coefficients. For example,
the relation (5.4.2) becomes

Yn+1—=2YYn + Yn-1=0 (5.4.11)

where y = n/x is treated as a constant. You solve such recurrence relations by
trying solutions of the form y, = a". Substituting into the above recurrence gives

a>=2ya+1=0 or a=y+y2—-1 (5.4.12)

The recurrence is stable if |a| < 1 for all solutions a. This holds (as you can verify)
if |y| < 1orn < x. The recurrence (5.4.2) thus cannot be used, starting with Jo(x)
and J1(x), to compute J, (x) for large n.

Possibly you would at this point like the security of some real theorems on this
subject (although we ourselves always follow one of the heuristic procedures). Here
are two theorems, due to Perron [2]:

Theorem A.  If in (5.4.9) a, ~ an®, b, ~ bn® asn — oo, and B < 2, then

Gni1/gn ~—an®,  fup1/fo ~ —(bJa)nP™® (5.4.13)

and f; is the minimal solution to (5.4.9).
Theorem B.  Under the same conditions as Theorem A, but with § = 2«,
consider the characteristic polynomial

> +at+b=0 (5.4.14)
If the roots ¢; and 7, of (5.4.14) have distinct moduli, |t;| > |#2| say, then

8n+1/8n ~ t1n%, Jn+1/fn ~ tan® (5.4.15)

and f, is again the minimal solution to (5.4.9). Cases other than those in these two
theorems are inconclusive for the existence of minimal solutions. (For more on the
stability of recurrences, see [3].)

How do you proceed if the solution that you desire is the minimal solution? The
answer lies in that old aphorism, that every cloud has a silver lining: If a recurrence
relation is catastrophically unstable in one direction, then that (undesired) solution
will decrease very rapidly in the reverse direction. This means that you can start
with any seed values for the consecutive f; and f;+; and (when you have gone
enough steps in the stable direction) you will converge to the sequence of functions
that you want, times an unknown normalization factor. If there is some other way to
normalize the sequence (e.g., by a formula for the sum of the f,’s), then this can be
a practical means of function evaluation. The method is called Miller’s algorithm.
An example often given [1,4] uses equation (5.4.2) in just this way, along with the
normalization formula

1= Jo(x) + 2J2(x) + 2J4(x) + 2J6(x) + - -+ (5.4.16)
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Incidentally, there is an important relation between three-term recurrence rela-
tions and continued fractions. Rewrite the recurrence relation (5.4.9) as

b
L " (5.4.17)
Yn—1 an + Yn+1/Yn
Iterating this equation, starting with n, gives
b b
Vn ___n n+1 (5.4.18)
Yn—1 an — dn+1 —

Pincherle’s theorem [2] tells us that (5.4.18) converges if and only if (5.4.9) has a
minimal solution f,, in which case it converges to f,/fn—1. This result, usually for
the case n = 1 and combined with some way to determine fy, underlies many of the
practical methods for computing special functions that we give in the next chapter.

5.4.2 Clenshaw’s Recurrence Formula

Clenshaw’s recurrence formula [5] is an elegant and efficient way to evaluate a
sum of coefficients times functions that obey a recurrence formula, e.g.,

N N
fO) =) crcoskf or  f(x)=> cxPr(x)
k=0 k=0

Here is how it works: Suppose that the desired sum is

N
) =) e Fi(x) (5.4.19)
k=0

and that F obeys the recurrence relation
Fuy1(x) = a(n, x) Fy(x) + B(n, x) Fy—1(x) (5.4.20)

for some functions « (1, x) and B(n, x). Now define the quantities y; (k = N, N —
1,...,1) by the recurrence
YN+2 =YN+1 =0
Vi =k, x)yk41 + Bk + LX) ypr2+cx (k=NN—-1,....1)
(5.4.21)

If you solve equation (5.4.21) for ¢ on the left, and then write out explicitly the sum
(5.4.19), it will look (in part) like this:
fla) =

+ [ys —a(8,x)yo — B(9. x) y10] Fs(x)

+ [y7 —a(7.x)ys — B(8, x) yo] F7(x)

+ [v6 — a(6,x)y7 — B(7,x)ys] Fs(x)

+ [ys —a(5,x)ye — B(6, x) y7] F5(x) (5.4.22)

+ cee

+ [y2 — (2, x)y3 — B3, x)ya] F2(x)

+ [y1 —a(l,x)y2 — B(2,x)y3] F1(x)

+ [co + (1. x)y2 — B(1, X) y2] Fo(x)
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Notice that we have added and subtracted B(1, x)y in the last line. If you examine
the terms containing a factor of yg in (5.4.22), you will find that they sum to zero
as a consequence of the recurrence relation (5.4.20); similarly for all the other y;’s
down through y,. The only surviving terms in (5.4.22) are

f(x) = B(1,x)Fo(x)y2 + F1(x)y1 + Fo(x)co (5.4.23)

Equations (5.4.21) and (5.4.23) are Clenshaw’s recurrence formula for doing the
sum (5.4.19): You make one pass down through the yj’s using (5.4.21); when you
have reached y, and y;, you apply (5.4.23) to get the desired answer.

Clenshaw’s recurrence as written above incorporates the coefficients ¢ in a
downward order, with k decreasing. At each stage, the effect of all previous cx’s
is “remembered” as two coefficients that multiply the functions Fy; and Fj (ulti-
mately Fy and Fp). If the functions Fy are small when k is large, and if the coeffi-
cients ¢ are small when k is small, then the sum can be dominated by small F’s. In
this case, the remembered coefficients will involve a delicate cancellation and there
can be a catastrophic loss of significance. An example would be to sum the trivial
series

Jis(1) =0xJo(1) +0x J1 (1) + ... +0x Ji4(1) + 1 x J35(1) (54.24)

Here J;5, which is tiny, ends up represented as a canceling linear combination of Jy
and Jp, which are of order unity.

The solution in such cases is to use an alternative Clenshaw recurrence that
incorporates the cx’s in an upward direction. The relevant equations are

Vs =y =0 (5.4.25)
1

Ve = m[yk_z —a(k. X)ye—1 —ckl. k=0,1,....N—1 (54.26)

J(x) =cenFn(x) = BN, x)Fy—1(x)yn—1 — FN(X)yN—2 (54.27)

The rare case where equations (5.4.25) — (5.4.27) should be used instead of
equations (5.4.21) and (5.4.23) can be detected automatically by testing whether
the operands in the first sum in (5.4.23) are opposite in sign and nearly equal in
magnitude. Other than in this special case, Clenshaw’s recurrence is always stable,
independent of whether the recurrence for the functions Fy is stable in the upward
or downward direction.

5.4.3 Parallel Evaluation of Linear Recurrence Relations

When desirable, linear recurrence relations can be evaluated with a lot of parallelism.
Consider the general first-order linear recurrence relation

uj =a; —‘rbj_luj_l, j=2,3....n (5.4.28)

with initial value u1 = aj. To parallelize the recurrence, we can employ the powerful general
strategy of recursive doubling. Write down equation (5.4.28) for 2j and for 2j — 1:

Upj =azj +byjquzj_y (5.4.29)
Upj—1 =azj—1+byjouzj o
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Substitute the second of these equations into the first to eliminate v ;1 and get

uzj = (azj +azj—1bzj—1) + (bzj—2b2j—1)uzj— (5.4.30)

This is a new recurrence of the same form as (5.4.28) but over only the even u;, and hence in-
volving only n/2 terms. Clearly we can continue this process recursively, halving the number
of terms in the recurrence at each stage, until we are left with a recurrence of length 1 or 2 that
we can do explicitly. Each time we finish a subpart of the recursion, we fill in the odd terms
in the recurrence, using the second equation in (5.4.29). In practice, it’s even easier than it
sounds. The total number of operations is the same as for serial evaluation, but they are done
in about log, n parallel steps.

There is a variant of recursive doubling, called cyclic reduction, that can be implemented
with a straightforward iteration loop instead of a recursive procedure [6]. Here we start by
writing down the recurrence (5.4.28) for all adjacent terms u; and u;_; (not just the even
ones, as before). Eliminating u;—1, just as in equation (5.4.30), gives

u; = (aj + aj—lbj—l) —+ (bj—ij—l)”j—Z (5.4.31)

which is a first-order recurrence with new coefficients a;. and bj/.. Repeating this process gives
successive formulas for u; in terms of uj_»,u;_4,u;_g, . ... The procedure terminates when
we reach u;_, (for n a power of 2), which is zero for all j. Thus the last step gives u; equal
to the last set of a’.’s.

In cyclic reduction, the length of the vector u ; that is updated at each stage does not
decrease by a factor of 2 at each stage, but rather only decreases from ~ n to ~ n/2 during
all log, n stages. Thus the total number of operations carried out is O(n logn), as opposed
to O(n) for recursive doubling. Whether this is important depends on the details of the com-
puter’s architecture.

Second-order recurrence relations can also be parallelized. Consider the second-order
recurrence relation

yj =aj +bj_2yj_1+ci2yj2, j=3,4,....n (5.4.32)

with initial values
y1 =ai, Y2 =ap (5.4.33)
With this numbering scheme, you supply coefficients ay,...,an, b1,...,by—2,and ¢y, ...,

cn—2. Rewrite the recurrence relation in the form [6]

i Y= O 0 LY (Vi1 =2 —1 5.4.34
(yj+1) (“j+1)+("j—1 bi—i )y ) I T 6439

that is,
u; =a; +b;_1-u;_q, j=2,....,n—1 (5.4.35)
where
= =( 0 by = (" ! 5.4.36
Y (yj+1)’ Y (aj+1)’ 7\ b (6430
and

This is a first-order recurrence relation for the vectors u; and can be solved by either of
the algorithms described above. The only difference is that the multiplications are matrix
multiplications with the 2 x 2 matrices b; . After the first recursive call, the zeros in a and b are
lost, so we have to write the routine for general two-dimensional vectors and matrices. Note
that this algorithm does not avoid the potential instability problems associated with second-
order recurrences that were discussed in §5.4.1. Also note that the algorithm generalizes in
the obvious way to higher-order recurrences: An nth-order recurrence can be written as a
first-order recurrence involving vectors and matrices of dimension 7.
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5.5 Complex Arithmetic

Since C++ has a built-in class complex, you can generally let the compiler
and the class library take care of complex arithmetic for you. Generally, but not
always. For a program with only a small number of complex operations, you may
want to code these yourself, in-line. Or, you may find that your compiler is not up to
snuff: It is disconcertingly common to encounter complex operations that produce
overflows or underflows when both the complex operands and the complex result are
perfectly representable. This occurs, we think, because software companies mistake
the implementation of complex arithmetic for a completely trivial task, not requiring
any particular finesse.

Actually, complex arithmetic is not quite trivial. Addition and subtraction are
done in the obvious way, performing the operation separately on the real and imagi-
nary parts of the operands. Multiplication can also be done in the obvious way, with
four multiplications, one addition, and one subtraction:

(a+ib)(c+id)=(ac—bd)+i(bc+ad) (5.5.1)

(the addition sign before the i doesn’t count; it just separates the real and imaginary
parts notationally). But it is sometimes faster to multiply via

(a+ib)(c+id) = (ac—bd)+i[(a+b)(c+d)—ac—bd] (5.5.2)

which has only three multiplications (ac, bd, (a+b)(c +d)), plus two additions and
three subtractions. The total operations count is higher by two, but multiplication is
a slow operation on some machines.

While it is true that intermediate results in equations (5.5.1) and (5.5.2) can
overflow even when the final result is representable, this happens only when the final
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answer is on the edge of representability. Not so for the complex modulus, if you or
your compiler is misguided enough to compute it as

la +ib| = Va2 + b2 (bad!) (5.5.3)

whose intermediate result will overflow if either a or b is as large as the square root
of the largest representable number (e.g., 10'° as compared to 1038). The right way
to do the calculation is

laly/1+ (b/a)* |a| = |b|
blV1+(a/b)? |a| < |b]

Complex division should use a similar trick to prevent avoidable overflow, un-
derflow, or loss of precision:

[a+b(d/c)]+i[b—a(d/c)]

la +ib| = (5.5.4)

a+ib c+dd/o) el = 1d] 555
c+id ) la(c/d)+ bl +i[b(c/d)—al e < |d| o
c(c/d) +d ¢

Of course you should calculate repeated subexpressions, like ¢ /d or d /c, only once.

Complex square root is even more complicated, since we must both guard inter-
mediate results and also enforce a chosen branch cut (here taken to be the negative
real axis). To take the square root of ¢ + id, first compute

0 C:d:O

d 2
/Hf“lzﬂ/c) el 2 1d]

g
Il

(5.5.6)

d d)?
M\/'C/ RN eGSR

Then the answer is
0 w=0

d
w+i|— w#0,c>0

Ve+id={ |d| (5.5.7)

— 4+ iw w#0,c<0,d>0

— — 1w w#0,c<0,d <0

CITED REFERENCES AND FURTHER READING:
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5.6 Quadratic and Cubic Equations

The roots of simple algebraic equations can be viewed as being functions of the
equations’ coefficients. We are taught these functions in elementary algebra. Yet,
surprisingly many people don’t know the right way to solve a quadratic equation
with two real roots, or to obtain the roots of a cubic equation.

There are two ways to write the solution of the quadratic equation

ax*>+bx+c¢=0 (5.6.1)
with real coefficients a, b, ¢, namely

—b £ Vb2 —4ac
X =
2a

(5.6.2)

and
2¢

X =
—b £+ /b2 —4ac

If you use either (5.6.2) or (5.6.3) to get the two roots, you are asking for trouble:
If either a or ¢ (or both) is small, then one of the roots will involve the subtraction
of b from a very nearly equal quantity (the discriminant); you will get that root very
inaccurately. The correct way to compute the roots is

(5.6.3)

= —% [b + sen(b)Vb? — 4ac] (5.6.4)

Then the two roots are

xX] = and Xp = (5.6.5)

q c
a q

If the coefficients a, b, ¢, are complex rather than real, then the above formulas
still hold, except that in equation (5.6.4) the sign of the square root should be chosen
so as to make

Re(b*vb%2 —4dac) >0 (5.6.6)

where Re denotes the real part and asterisk denotes complex conjugation.

Apropos of quadratic equations, this seems a convenient place to recall that
the inverse hyperbolic functions sinh™! and cosh™! are in fact just logarithms of
solutions to such equations

sinh™'(x) = In(x + vVx2 +1) (5.6.7)
cosh™!(x) = £1In(x + vVx2 - 1) (5.6.8)

Equation (5.6.7) is numerically robust for x > 0. For negative x, use the symmetry
sinh™!(—x) = —sinh ™! (x). Equation (5.6.8) is of course valid only for x > 1.
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For the cubic equation
x> 4ax> +bx+c=0 (5.6.9)
with real or complex coefficients a, b, ¢, first compute

2_ 2a3 — 2
a k) and R a 9ab + 27¢

5.6.10
9 54 ( )

0=

If O and R are real (always true when a, b, ¢ are real) and R*> < Q3, then the cubic
equation has three real roots. Find them by computing

0= arccos(R/@) (5.6.11)

in terms of which the three roots are

0 a
x; = -2 QCOS(E)_g

0+2
Xp = =2 Qcos( + n)_

-2
X3 =-2 Qcos(g 3 n)_

(This equation first appears in Chapter VI of Francois Viete’s treatise “De emenda-
tione,” published in 1615!)
Otherwise, compute

(5.6.12)

WK w|

a=—[R+ \/W]m (5.6.13)

where the sign of the square root is chosen to make

Re(R*/R2—03) >0 (5.6.14)

(asterisk again denoting complex conjugation). If Q and R are both real, equations
(5.6.13) — (5.6.14) are equivalent to

A = —sgn(R) [|R| + VR - Q3]1/3 (5.6.15)

where the positive square root is assumed. Next compute

A A#0
B = o/ (47#0) (5.6.16)
0 (A=0)
in terms of which the three roots are
X1 =(A+B)— % (5.6.17)
(the single real root when a, b, ¢ are real) and
1 a V3
X2 =—§(A+B)—§+i7(A_B)
(5.6.18)
1 a .3
x3=——=(A+B)—-—-i—(A—-B)

2 3 2
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(in that same case, a complex-conjugate pair). Equations (5.6.13) — (5.6.16) are
arranged both to minimize roundoff error and also (as pointed out by A.J. Glassman)
to ensure that no choice of branch for the complex cube root can result in the spurious
loss of a distinct root.

If you need to solve many cubic equations with only slightly different coeffi-
cients, it is more efficient to use Newton’s method (§9.4).

CITED REFERENCES AND FURTHER READING:

Weast, R.C. (ed.) 1967, Handbook of Tables for Mathematics, 3rd ed. (Cleveland: The Chemical
Rubber Co.), pp. 130-133.

Pachner, J. 1983, Handbook of Numerical Analysis Applications (New York: McGraw-Hill), §6.1.
McKelvey, J.P. 1984, “Simple Transcendental Expressions for the Roots of Cubic Equations,”

American Journal of Physics, vol. 52, pp. 269-270; see also vol. 53, p. 775, and vol. 55,
pp. 374-375.

5.7 Numerical Derivatives

Imagine that you have a procedure that computes a function f(x), and now you
want to compute its derivative f’(x). Easy, right? The definition of the derivative,

the limit as 4 — 0 of 7 B — £(0)
fi ~ LEFD T

practically suggests the program: Pick a small value /; evaluate f(x + h); you
probably have f(x) already evaluated, but if not, do it too; finally, apply equation
(5.7.1). What more needs to be said?

Quite a lot, actually. Applied uncritically, the above procedure is almost guar-
anteed to produce inaccurate results. Applied properly, it can be the right way to
compute a derivative only when the function f is fiercely expensive to compute;
when you already have invested in computing f(x); and when, therefore, you want
to get the derivative in no more than a single additional function evaluation. In such
a situation, the remaining issue is to choose / properly, an issue we now discuss.

There are two sources of error in equation (5.7.1), truncation error and roundoff
error. The truncation error comes from higher terms in the Taylor series expansion,

(5.7.1)

fx+h) = f(x)+hf'(x)+ IR () + 10 7 (x) + - (5.7.2)

whence
S(x+h)— f(x)
h

The roundoff error has various contributions. First there is roundoff error in /: Sup-
pose, by way of an example, that you are at a point x = 10.3 and you blindly choose
h = 0.0001. Neither x = 10.3 nor x + & = 10.30001 is a number with an ex-
act representation in binary; each is therefore represented with some fractional error
characteristic of the machine’s floating-point format, €,,, whose value in single pre-
cision may be ~ 10~7. The error in the effective value of i, namely the difference
between x + & and x as represented in the machine, is therefore on the order of €, x,

1
=f’+§hf”+--- (5.7.3)
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which implies a fractional error in i of order ~ €,,x/h ~ 10~2! By equation (5.7.1),

this immediately implies at least the same large fractional error in the derivative.
We arrive at Lesson 1: Always choose & so that x + & and x differ by an exactly

representable number. This can usually be accomplished by the program steps

t =x+h
e = (5.7.4)
h = temp — x

Some optimizing compilers, and some computers whose floating-point chips have
higher internal accuracy than is stored externally, can foil this trick; if so, it is
usually enough to declare temp as volatile, or else to call a dummy function
donothing(temp) between the two equations (5.7.4). This forces temp into and
out of addressable memory.

With /& an “exact” number, the roundoff error in equation (5.7.1) is approxi-
mately e, ~ €r|f(x)/h|. Here €y is the fractional accuracy with which f is com-
puted; for a simple function this may be comparable to the machine accuracy, €5 ~
€m, but for a complicated calculation with additional sources of inaccuracy it may
be larger. The truncation error in equation (5.7.3) is on the order of e; ~ |Af" (x)].
Varying & to minimize the sum e, + e; gives the optimal choice of &,

h~ 6; S Jerxe (5.7.5)

where x. = (f/f")"/? is the “curvature scale” of the function f or the “character-
istic scale” over which it changes. In the absence of any other information, one often
assumes x. = x (except near x = 0, where some other estimate of the typical x
scale should be used).

With the choice of equation (5.7.5), the fractional accuracy of the computed
derivative is

(er +e)/ 11 ~ Jer(f 1"/ V2 ~ J&r (5.7.6)

Here the last order-of-magnitude equality assumes that /', f’, and f” all share the
same characteristic length scale, which is usually the case. One sees that the simple
finite difference equation (5.7.1) gives at best only the square root of the machine
accuracy €.

If you can afford two function evaluations for each derivative calculation, then
it is significantly better to use the symmetrized form

Jx+h) - flx—h)

£ ~ =

(5.7.7)

In this case, by equation (5.7.2), the truncation error is e, ~ h? f"”. The roundoff
error e, is about the same as before. The optimal choice of %, by a short calculation
analogous to the one above, is now

1/3
ho~ (?{) ~ (/)3 x, (5.7.8)

and the fractional error is

(€r + e /111~ ()2 FPRUMPIf ~ () (5.7.9)
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which will typically be an order of magnitude (single precision) or two orders of
magnitude (double precision) better than equation (5.7.6). We have arrived at Lesson
2: Choose h to be the correct power of €7 or €5, times a characteristic scale x.
You can easily derive the correct powers for other cases [1]. For a function of
two dimensions, for example, and the mixed derivative formula
Pf e +hy+h)—f+hy=—m-[f&x=hy+h—fx—hy=h)]

oxdy 4h2

the correct scaling is i ~ 6}/ 4xc.

It is disappointing, certainly, that no simple finite difference formula like equa-
tion (5.7.1) or (5.7.7) gives an accuracy comparable to the machine accuracy ¢,,, or
even the lower accuracy to which f is evaluated, €. Are there no better methods?

Yes, there are. All, however, involve exploration of the function’s behavior over
scales comparable to x., plus some assumption of smoothness, or analyticity, so that
the high-order terms in a Taylor expansion like equation (5.7.2) have some meaning.
Such methods also involve multiple evaluations of the function £, so their increased
accuracy must be weighed against increased cost.

The general idea of “Richardson’s deferred approach to the limit” is particularly
attractive. For numerical integrals, that idea leads to so-called Romberg integration
(for review, see §4.3). For derivatives, one seeks to extrapolate, to & — 0, the result
of finite difference calculations with smaller and smaller finite values of /. By the
use of Neville’s algorithm (§3.2), one uses each new finite difference calculation to
produce both an extrapolation of higher order and also extrapolations of previous,
lower, orders but with smaller scales /. Ridders [2] has given a nice implementation
of this idea; the following program, dfridr, is based on his algorithm, modified by
an improved termination criterion. Input to the routine is a function f (called func),
a position x, and a largest stepsize h (more analogous to what we have called x.
above than to what we have called /). Output is the returned value of the derivative
and an estimate of its error, err.

(5.7.10)

template<class T>

Doub dfridr(T &func, const Doub x, const Doub h, Doub &err)

Returns the derivative of a function func at a point x by Ridders’ method of polynomial extrap-
olation. The value h is input as an estimated initial stepsize; it need not be small, but rather
should be an increment in x over which func changes substantially. An estimate of the error in
the derivative is returned as err.

{
const Int ntab=10; Sets maximum size of tableau.
const Doub con=1.4, con2=(con*con); Stepsize decreased by CON at each iteration.
const Doub big=numeric_limits<Doub>::max();
const Doub safe=2.0; Return when error is SAFE worse than the
Int i,j; best so far.

Doub errt,fac,hh,ans;
MatDoub a(ntab,ntab);
if (h == 0.0) throw("h must be nonzero in dfridr.");
hh=h;
a[0] [0]=(func (x+hh)-func(x-hh))/(2.0%*hh) ;
err=big;
for (i=1;i<ntab;i++) {
Successive columns in the Neville tableau will go to smaller stepsizes and higher orders of
extrapolation.
hh /= con;
a[0] [1]=(func(x+hh)-func(x-hh))/(2.0%hh) ; Try new, smaller stepsize.
fac=con2;

dfridr.h



232 Chapter 5. Evaluation of Functions

for (j=1;j<=1i;j++) { Compute extrapolations of various orders, requiring
aljllil=(alj-1]1[il*fac-a[j-11[i-1]1)/(fac-1.0); no new function eval-
fac=con2*fac; uations.

errt=MAX(abs(aljl[il-al[j-1]1[i]),abs(aljl[il-alj-1]1[i-11));
The error strategy is to compare each new extrapolation to one order lower, both
at the present stepsize and the previous one.
if (errt <= err) { If error is decreased, save the improved answer.
err=errt;
ans=a[j][i];
}
}
if (abs(al[il[i]l-al[i-1]1[i-1]) >= safe*err) break;
If higher order is worse by a significant factor SAFE, then quit early.
}

return ans;

In dfridr, the number of evaluations of func is typically 6 to 12, but is allowed
to be as great as 2xNTAB. As a function of input h, it is typical for the accuracy
to get better as h is made larger, until a sudden point is reached where nonsensical
extrapolation produces an early return with a large error. You should therefore choose
a fairly large value for h but monitor the returned value err, decreasing h if it is not
small. For functions whose characteristic x scale is of order unity, we typically take
h to be a few tenths.

Besides Ridders’ method, there are other possible techniques. If your function is
fairly smooth, and you know that you will want to evaluate its derivative many times
at arbitrary points in some interval, then it makes sense to construct a Chebyshev
polynomial approximation to the function in that interval, and to evaluate the deriva-
tive directly from the resulting Chebyshev coefficients. This method is described in
§5.8 — §5.9, following.

Another technique applies when the function consists of data that is tabulated at
equally spaced intervals, and perhaps also noisy. One might then want, at each point,
to least-squares fit a polynomial of some degree M , using an additional number ny, of
points to the left and some number 7 g of points to the right of each desired x value.
The estimated derivative is then the derivative of the resulting fitted polynomial. A
very efficient way to do this construction is via Savitzky-Golay smoothing filters,
which will be discussed later, in §14.9. There we will give a routine for getting filter
coefficients that not only construct the fitting polynomial but, in the accumulation
of a single sum of data points times filter coefficients, evaluate it as well. In fact,
the routine given, savgol, has an argument 1d that determines which derivative of
the fitted polynomial is evaluated. For the first derivative, the appropriate setting is
1d=1, and the value of the derivative is the accumulated sum divided by the sampling
interval A.

CITED REFERENCES AND FURTHER READING:

Dennis, J.E., and Schnabel, R.B. 1983, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations; reprinted 1996 (Philadelphia: S.I.A.M.), §5.4 — §5.6.[1]

Ridders, C.J.F. 1982, “Accurate computation of F/(x) and F'(x)F”(x),” Advances in Engineer-
ing Software, vol. 4, no. 2, pp. 75-76.[2]
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5.8 Chebyshev Approximation

The Chebyshev polynomial of degree n is denoted 7, (x) and is given by the
explicit formula
T (x) = cos(n arccos x) (5.8.1)

This may look trigonometric at first glance (and there is in fact a close relation be-
tween the Chebyshev polynomials and the discrete Fourier transform); however,
(5.8.1) can be combined with trigonometric identities to yield explicit expressions
for T, (x) (see Figure 5.8.1):

To(x) =1

Ti(x) =x

To(x) =2x>—1

Ts(x) = 4x> — 3x (5.8.2)

Ta(x) = 8x* —8x% + 1

Toy1(x) = 2xT0(x) = Th—1(x) n =1

(There also exist inverse formulas for the powers of x in terms of the 7;’s — see,
e.g., [11)

The Chebyshev polynomials are orthogonal in the interval [—1, 1] over a weight
(1 — x2)~/2_ In particular,

0 i #]
dx={m/2 i=j+#0 (5.8.3)
T i=j=0

'Ti(0)T(x)
-1 1 —x2

The polynomial 7, (x) has n zeros in the interval [—1, 1], and they are located
at the points

x=cos<@) k=0,1,....,.n—1 (5.8.4)

In this same interval there are n + 1 extrema (maxima and minima), located at

X = cos (%k) k=0,1,...,n (5.8.5)

At all of the maxima 7,,(x) = 1, while at all of the minima 7,,(x) = —1; it is pre-

cisely this property that makes the Chebyshev polynomials so useful in polynomial
approximation of functions.

The Chebyshev polynomials satisfy a discrete orthogonality relation as well as
the continuous one (5.8.3): If xz(k = 0,...,m — 1) are the m zeros of T,,(x) given
by (5.8.4), and if i, j < m, then

m—1 0 i 7é ]
Y T Tj(x) = {m/2 i=j#0 (5.8.6)

k=0 m i=j7=0
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Figure 5.8.1. Chebyshev polynomials To(x) through T (x). Note that 7; has j roots in the interval
(—1, 1) and that all the polynomials are bounded between %1.

It is not too difficult to combine equations (5.8.1), (5.8.4), and (5.8.6) to prove
the following theorem: If f(x) is an arbitrary function in the interval [—1, 1], and if
N coefficients ¢j, j = 0,..., N — 1, are defined by

5 N-1
¢ =~ 2 fOT(xe)
- 1 1 (5.8.7)
2 n(k +3) mjk +3)
= — flcos| ———=]|cos | ——=
N N N
k=0
then the approximation formula
N-1 |
f(x) ~ [ > Cka(x)} — 3¢ (5.8.8)
k=0

is exact for x equal to all of the N zeros of Tx (x).

For a fixed N, equation (5.8.8) is a polynomial in x that approximates the func-
tion f(x) in the interval [—1, 1] (where all the zeros of Tx (x) are located). Why is
this particular approximating polynomial better than any other one, exact on some
other set of N points? The answer is not that (5.8.8) is necessarily more accurate
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than some other approximating polynomial of the same order N (for some specified
definition of “accurate”), but rather that (5.8.8) can be truncated to a polynomial of
lower degree m < N in a very graceful way, one that does yield the “most accu-
rate” approximation of degree m (in a sense that can be made precise). Suppose N is
so large that (5.8.8) is virtually a perfect approximation of f(x). Now consider the
truncated approximation

m—1
fx) ~ [ > Cka(x)} - %Co (5.8.9)

k=0

with the same ¢;’s, computed from (5.8.7). Since the T (x)’s are all bounded be-
tween %1, the difference between (5.8.9) and (5.8.8) can be no larger than the sum
of the neglected cx’s (k = m, ..., N — 1). In fact, if the ¢, ’s are rapidly decreasing
(which is the typical case), then the error is dominated by ¢, T;, (x), an oscillatory
function with m + 1 equal extrema distributed smoothly over the interval [—1, 1].
This smooth spreading out of the error is a very important property: The Cheby-
shev approximation (5.8.9) is very nearly the same polynomial as that holy grail of
approximating polynomials the minimax polynomial, which (among all polynomi-
als of the same degree) has the smallest maximum deviation from the true function
f(x). The minimax polynomial is very difficult to find; the Chebyshev approximat-
ing polynomial is almost identical and is very easy to compute!

So, given some (perhaps difficult) means of computing the function f(x), we
now need algorithms for implementing (5.8.7) and (after inspection of the resulting
cx’s and choice of a truncating value m) evaluating (5.8.9). The latter equation then
becomes an easy way of computing f'(x) for all subsequent time.

The first of these tasks is straightforward. A generalization of equation (5.8.7)
that is here implemented is to allow the range of approximation to be between two
arbitrary limits a and b, instead of just —1 to 1. This is effected by a change of
variable
X — %(b +a)

Lb—a)

y (5.8.10)

and by the approximation of f(x) by a Chebyshev polynomial in y.

It will be convenient for us to group a number of functions related to Chebyshev
polynomials into a single object, even though discussion of their specifics is spread
out over §5.8 — §5.11:

struct Chebyshev {
Object for Chebyshev approximation and related methods.

Int n,m; Number of total, and truncated, coefficients.
VecDoub c;
Doub a,b; Approximation interval.

Chebyshev (Doub func(Doub), Doub aa, Doub bb, Int nn);
Constructor. Approximate the function func in the interval [aa,bb] with nn terms.
Chebyshev(VecDoub &cc, Doub aa, Doub bb)

: n(cc.size()), m(n), c(cc), a(aa), b(bb) {}
Constructor from previously computed coefficients.
Int setm(Doub thresh) {while (m>1 && abs(c[m-1])<thresh) m--; return m;}
Set m, the number of coefficients after truncating to an error level thresh, and return the
value set.

chebyshev.h
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Doub eval(Doub x, Int m);
inline Doub operator() (Doub x) {return eval(x,m);}
Return a value for the Chebyshev fit, either using the stored m or else overriding it.

Chebyshev derivative(); See §5.9.
Chebyshev integral();

VecDoub polycofs(Int m); See §5.10.

inline VecDoub polycofs() {return polycofs(m);}
Chebyshev(VecDoub &pc) ; See §5.11.

The first constructor, the one with an arbitrary function func as its first argu-
ment, calculates and saves nn Chebyshev coefficients that approximate func in the
range aa to bb. (You can ignore for now the second constructor, which simply makes
a Chebyshev object from already-calculated data.) Let us also note the method
setm, which provides a quick way to truncate the Chebyshev series by (in effect)
deleting, from the right, all coefficients smaller in magnitude than some threshold
thresh.

Chebyshev: :Chebyshev(Doub func(Doub), Doub aa, Doub bb, Int nn=50)
: n(on), m(an), c(n), a(aa), b(bb)
Chebyshev fit: Given a function func, lower and upper limits of the interval [a,b], compute and

save nn coefficients of the Chebyshev approximation such that func(x) & [21,?1:_01 T ()] —
¢o0/2, where y and x are related by (5.8.10). This routine is intended to be called with moder-
ately large n (e.g., 30 or 50), the array of c's subsequently to be truncated at the smaller value
m such that c;; and subsequent elements are negligible.
{
const Doub pi=3.141592653589793;
Int k,j;
Doub fac,bpa,bma,y,sum;
VecDoub f(n);
bma=0.5%(b-a) ;
bpa=0.5%(b+a) ;
for (k=0;k<n;k++) { We evaluate the function at the n points required
y=cos (pi*(k+0.5)/n); by (5.8.7).
f [k]=func (y*bma+bpa) ;
}
fac=2.0/n;
for (j=0;j<n;j++) { Now evaluate (5.8.7).
sum=0.0;
for (k=0;k<n;k++)
sum += f[k]*cos(pi*j*(k+0.5)/n);
c[jl=fac*sum;

If you find that the constructor’s execution time is dominated by the calculation
of N? cosines, rather than by the N evaluations of your function, then you should
look ahead to §12.3, especially equation (12.4.16), which shows how fast cosine
transform methods can be used to evaluate equation (5.8.7).

Now that we have the Chebyshev coefficients, how do we evaluate the approxi-
mation? One could use the recurrence relation of equation (5.8.2) to generate values
for Ty (x) from Ty = 1,77 = x, while also accumulating the sum of (5.8.9). It
is better to use Clenshaw’s recurrence formula (§5.4), effecting the two processes
simultaneously. Applied to the Chebyshev series (5.8.9), the recurrence is
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dn+1=dm =0
dj =2xdji1 —dji2 + ¢ j=m—1m-2,...,1 (5.8.11)
f(x) =do = xdi —dy + 3co

Doub Chebyshev::eval(Doub x, Int m) chebyshev.h

Chebyshev evaluation: The Chebyshev polynomial Z’,ﬁ;lo ck Tk () — co/2 is evaluated at a
point y = [x — (b + a)/2]/[(b — a)/2], and the result is returned as the function value.
{

Doub d=0.0,dd=0.0,sv,y,y2;

Int j;
if ((x-a)*(x-b) > 0.0) throw("x not in range in Chebyshev::eval");
y2=2.0%(y=(2.0*x-a-b)/(b-a)); Change of variable.
for (j=m-1;3j>0;j--) { Clenshaw's recurrence.
sv=d;
d=y2*d-dd+c[j];
dd=sv;
}
return y*d-dd+0.5%c[0]; Last step is different.

The method eval has an argument for specifying how many leading coefficients
m should be used in the evaluation. If you simply want to use a stored value of m
that was set by a previous call to setm (or, by hand, by you), then you can use the
Chebyshev object as a functor. For example,

Chebyshev approxfunc(func,0.,1.,50);
approxfunc.setm(l.e-8);

y = approxfunc(x);

If we are approximating an even function on the interval [—1, 1], its expan-
sion will involve only even Chebyshev polynomials. It is wasteful to construct a
Chebyshev object with all the odd coefficients zero [2]. Instead, using the half-angle
identity for the cosine in equation (5.8.1), we get the relation

Ton(x) = T(2x% — 1) (5.8.12)

Thus we can construct a more efficient Chebyshev object for even functions simply
by replacing the function’s argument x by 2x? — 1, and likewise when we evaluate
the Chebyshev approximation.

An odd function will have an expansion involving only odd Chebyshev polyno-
mials. It is best to rewrite it as an expansion for the function f(x)/x, which involves
only even Chebyshev polynomials. This has the added benefit of giving accurate val-
ues for f(x)/x near x = 0. Don’t try to construct the series by evaluating f(x)/x
numerically, however. Rather, the coefficients ¢, for f(x)/x can be found from
those for f(x) by recurrence:

/ —_—
Cn+1 =0

5.8.13
Chy =2Cn—Chiq,s n=N-1,N-3,... ( )

Equation (5.8.13) follows from the recurrence relation in equation (5.8.2).
If you insist on evaluating an odd Chebyshev series, the efficient way is to once
again to replace x by y = 2x2 — 1 as the argument of your function. Now, however,
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you must also change the last formula in equation (5.8.11) to be
f(x) = x[2y = Ddi — dz + ¢o] (5.8.14)

and change the corresponding line in eval.

5.8.1 Chebyshev and Exponential Convergence

Since first mentioning truncation error in §1.1, we have seen many examples of
algorithms with an adjustable order, say M, such that the truncation error decreases
as the M th power of something. Examples include most of the interpolation methods
in Chapter 3 and most of the quadrature methods in Chapter 4. In these examples
there is also another parameter, NV, which is the number of points at which a function
will be evaluated.

We have many times warned that “higher order does not necessarily give higher
accuracy.” That remains good advice when N is held fixed while M is increased.
However, a recently emerging theme in many areas of scientific computation is the
use of methods that allow, in very special cases, M and N to be increased together,
with the result that errors not only do decrease with higher order, but decrease expo-
nentially!

The common thread in almost all of these relatively new methods is the remark-
able fact that infinitely smooth functions become exponentially well determined by
N sample points as N is increased. Thus, mere power-law convergence may be just
a consequence of either (i) functions that are not smooth enough, or (ii) endpoint
effects.

We already saw several examples of this in Chapter 4. In §4.1 we pointed out
that high-order quadrature rules can have interior weights of unity, just like the trape-
zoidal rule; all of the “high-orderness” is obtained by a proper treatment near the
boundaries. In §4.5 we further saw that variable transformations that push the bound-
aries off to infinity produce rapidly converging quadrature algorithms. In §4.5.1 we
in fact proved exponential convergence, as a consequence of the Euler-Maclaurin
formula. Then in §4.6 we remarked on the fact that the convergence of Gaussian
quadratures could be exponentially rapid (an example, in the language above, of
increasing M and N simultaneously).

Chebyshev approximation can be exponentially convergent for a different
(though related) reason: Smooth periodic functions avoid endpoint effects by not
having endpoints at all! Chebyshev approximation can be viewed as mapping the
x interval [—1, 1] onto the angular interval [0, 7] (cf. equations 5.8.4 and 5.8.5) in
such a way that any infinitely smooth function on the interval [—1, 1] becomes an
infinitely smooth, even, periodic function on [0, 27r]. Figure 5.8.2 shows the idea
geometrically. By projecting the abscissas onto a semicircle, a half-period is pro-
duced. The other half-period is obtained by reflection, or could be imagined as the
result of projecting the function onto an identical lower semicircle. The zeros of the
Chebyshev polynomial, or nodes of a Chebyshev approximation, are equally spaced
on the circle, where the Chebyshev polynomial itself is a cosine function (cf. equa-
tion 5.8.1). This illustrates the close connection between Chebyshev approximation
and periodic functions on the circle; in Chapter 12, we will apply the discrete Fourier
transform to such functions in an almost equivalent way (§12.4.2).

The reason that Chebyshev works so well (and also why Gaussian quadratures
work so well) is thus seen to be intimately related to the special way that the the
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fix)

Figure 5.8.2. Geometrical construction showing how Chebyshev approximation is related to periodic
functions. A smooth function on the interval is plotted in (a). In (b), the abscissas are mapped to a
semicircle. In (c), the semicircle is unrolled. Because of the semicircle’s vertical tangents, the function is
now nearly constant at the endpoints. In fact, if reflected into the interval [, 27], it is a smooth, even,
periodic function on [0, 27].

sample points are bunched up near the endpoints of the interval. Any function that is
bounded on the interval will have a convergent Chebyshev approximation as N —
o0, even if there are nearby poles in the complex plane. For functions that are not
infinitely smooth, the actual rate of convergence depends on the smoothness of the
function: the more deriviatives that are bounded, the greater the convergence rate.
For the special case of a C* function, the convergence is exponential. In §3.0, in
connection with polynomial interpolation, we mentioned the other side of the coin:
equally spaced samples on the interval are about the worst possible geometry and
often lead to ill-conditioned problems.

Use of the sampling theorem (§4.5, §6.9, §12.1, §13.11) is often closely associ-
ated with exponentially convergent methods. We will return to many of the concepts
of exponentially convergent methods when we discuss spectral methods for partial
differential equations in §20.7.
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5.9 Derivatives or Integrals of a
Chebyshev-Approximated Function

If you have obtained the Chebyshev coefficients that approximate a function in
a certain range (e.g., from chebft in §5.8), then it is a simple matter to transform
them to Chebyshev coefficients corresponding to the derivative or integral of the
function. Having done this, you can evaluate the derivative or integral just as if it
were a function that you had Chebyshev-fitted ab initio.

The relevant formulas are these: If ¢;, i = 0, ..., m—1 are the coefficients that
approximate a function f in equation (5.8.9), C; are the coefficients that approximate
the indefinite integral of £, and c; are the coefficients that approximate the derivative
of £, then

Ci—1 — Ci+1
Ci=—7
2i

Ci_y =Cjpq +2ic i=m—-1,m-=2,...,1) (5.9.2)

(i >0) (5.9.1)

Equation (5.9.1) is augmented by an arbitrary choice of Cy, corresponding to an
arbitrary constant of integration. Equation (5.9.2), which is a recurrence, is started
with the values c,, = c,,_, = 0, corresponding to no information about the m + 1st
Chebyshev coefficient of the original function f.

Here are routines for implementing equations (5.9.1) and (5.9.2). Each returns
a new Chebyshev object on which you can setm, call eval, or use directly as a
functor.

Chebyshev Chebyshev::derivative()
Return a new Chebyshev object that approximates the derivative of the existing function over
the same range [a,b].

{
Int j;
Doub con;
VecDoub cder(n);
cder [n-11=0.0; n-1 and n-2 are special cases.
cder [n-2]=2*%(n-1) *c[n-1];
for (j=n-2;j>0;j--) Equation (5.9.2).
cder[j-1]=cder[j+1]1+2*j*c[j];
con=2.0/(b-a);
for (j=0;j<n;j++) cder[j] *= con; Normalize to the interval b-a.
return Chebyshev(cder,a,b);
}

Chebyshev Chebyshev::integral()
Return a new Chebyshev object that approximates the indefinite integral of the existing function
over the same range [a,b]. The constant of integration is set so that the integral vanishes at a.
{

Int j;

Doub sum=0.0,fac=1.0,con;

VecDoub cint(n);

con=0.25%(b-a) ; Factor that normalizes to the interval b-a.
for (j=1;j<n-1;j++) {
cint[jl=con*(c[j-11-c[j+11)/j; Equation (5.9.1).
sum += fac*cint[j]; Accumulates the constant of integration.
fac = -fac; Will equal 1.
}

cint [n-1]=con*c[n-2]1/(n-1); Special case of (5.9.1) for n-1.
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sum += fac*cint[n-1];
cint [0]=2.0%sum; Set the constant of integration.
return Chebyshev(cint,a,b);

5.9.1 Clenshaw-Curtis Quadrature

Since a smooth function’s Chebyshev coefficients ¢; decrease rapidly, generally expo-
nentially, equation (5.9.1) is often quite efficient as the basis for a quadrature scheme. As
described above, the Chebyshev object can be used to compute the integral |, ax f(x)dx when
many different values of x in the range ¢ < x < b are needed. If only the single definite

integral | : f(x)dx is required, then instead use the simpler formula, derived from equation

(5.9.1),

b 1 1 1 1
]; f(x)dx = (b —a) |:§C0 — §C2 — 1—5C4 — e — mC2k - } (593)

where the ¢;’s are as returned by chebft. The series can be truncated when c,j becomes
negligible, and the first neglected term gives an error estimate.

This scheme is known as Clenshaw-Curtis quadrature [1]. It is often combined wi