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Physical Constants

[ Name | Symbol Value Unit |
Numberrm T 3.14159265358979323846
Number e e 2.71828182845904523536

Euler’s constant

n—

v= lim (E 1/k — 1n(n)) = 0.5772156649
° \k=1

Elementary charge e 1.60217733 - 1019 C
Gravitational constant G, 6.67259 - 1011 m3kg~!s2
Fine-structure constant a = e?/2hceg ~ 1/137

Speed of light in vacuum c 2.99792458 - 108 m/s (def)
Permittivity of the vacuum €0 8.854187 - 10712 F/m
Permeability of the vacuum | 1y 471077 H/m
(4meg) 1 8.9876 - 10° Nm2C—2
Planck’s constant h 6.6260755 - 10734 Js

Dirac’s constant h=h/2r 1.0545727 - 10734 Js

Bohr magneton up = eh/2me 0.2741 - 10~24 Am?

Bohr radius ao 0.52918 A
Rydberg’s constant Ry 13.595 eV
Electron Compton wavelength Ace = h/mec 2.2463 - 1012 m

Proton Compton wavelength| Acp, = h/mpe 1.3214-1071 m
Reduced mass of the H-atom py 9.1045755 - 1031 kg
Stefan-Boltzmann’s constant| o 5.67032- 1078 Wm—2K 4
Wien’s constant kw 2.8978 - 1073 mK

Molar gasconstant R 8.31441 Jdnol~1.K~1
Avogadro’s constant Na 6.0221367 - 103 mol~!
Boltzmann’s constant k= R/Nx 1.380658 - 10~23 JIK
Electron mass Me 9.1093897 - 1031 kg

Proton mass mp 1.6726231 - 10727 kg
Neutron mass M 1.674954 - 10~27 kg
Elementary mass unit my = 5m(¢C) 16605656 - 10~27 kg
Nuclear magneton 1N 5.0508 - 1027 JT
Diameter of the Sun Dg 1392 - 109 m

Mass of the Sun Mg 1.989 - 1030 kg
Rotational period of the Sun | T 25.38 days
Radius of Earth Ry 6.378 - 106 m

Mass of Earth M 5.976 - 10%* kg
Rotational period of Earth T 23.96 hours
Earth orbital period Tropical year 365.24219879 days
Astronomical unit AU 1.4959787066 - 101! m

Light year lj 9.4605 - 10*° m

Parsec pc 3.0857 - 1016 m

Hubble constant H ~ (75 £ 25) km-s~1-Mpc—!




Chapter 1

Mechanics

1.1 Point-kinetics in a fixed coordinate system

1.1.1 Definitions

The position”, the velocity’ and the acceleratio# are defined byr = (z,y, 2), ¥ = (2,9, £), d = (£, 9, 2).
The following holds:

s(t) = so+ / |U(t)|dt ; 7(t) = 7o + /U(t)dt; o(t) = o —i—/&(t)dt

When the acceleration is constant this giveg) = vy + at ands(t) = so + vot + Fat?,
For the unit vectors in a directian to the orbite; and parallel to i€, holds:

v dr 5w €%

" ds

t =

|7

For thecurvaturek and theradius of curvaturep holds:

podh _ A _|dy
T ds  ds? |ds

) p_
||

1.1.2 Polar coordinates

Polar coordinates are defined by: = rcos(), y = rsin(d). So, for the unit coordinate vectors holds:
é. = 0&y, ey = —0é,

The velocity and the acceleration are derived frote: ré,, ¢ = i€, +r0éy, @ = (i — r62)&, + (270 +16)é;.

1.2 Relative motion

G X To . - .
Q with QD = 7p — i andw = 6.

For the motion of a point D w.r.t. a point Q holdgy = rg + 5
w

Further holds:o = 6. / means that the quantity is defined in a moving system of coordinates. In a moving
system holds:

T=tq+ v +dx7andi=dq+a +a X7 +20x 7" +dJ x (Jx7')

with & x (& x 7') = —w?7!,

1.3 Point-dynamics in a fixed coordinate system

1.3.1 Force, (angular)momentum and energy

Newton’s 2nd law connects the force on an object and the resulting acceleration of the object wheoe the
mentums given byp = m:

- dp d(m7) dv  _dm m=const _
=2 = =" md
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Newton’s 3rd law is given byﬁaction =— q,eaction.
For the power” holds: P = W = F - . For the total energyV, the kinetic energ{/’ and the potential energy
UholdsW =T+U; T=-UwithT = %va.

Thekick S is given by:S = Ay = / Fdt
2 2
The work A, delivered by a force, isl = /ﬁ L d5 = /Fcos(a)ds
1 1

The torquer is related to the angular momentuin 7 = L = 7 x E; and
L =7 x p=mt x 7, |L| = mr’w. The following equation is valid:

v
26

T =

Hence, the conditions for a mechanical equilibrium &@f; = 0 and>_ 7 = 0.

Theforce of frictionis usually proportional to the force perpendicular to the surface, except when the motion
starts, when a threshold has to be overcofig: = f - Frorm - €.

1.3.2 Conservative force fields

A conﬁservative force can be written as the gradient of a potenﬁ&gl,;S = —VU. From this follows that
V x F = 0. For such a force field also holds:

71
j{ﬁ.dgzo = U:UO—/ﬁ-d§
T0

So the work delivered by a conservative force field depends not on the trajectory covered but only on the
starting and ending points of the motion.

1.3.3 Gravitation
The Newtonian law of gravitation is (in GRT one also usésstead of;):

= mims _,

F,=-G ”

r2

The gravitational potential is then given by= —Gm /r. From Gauss law it then follows7?V = 47 Go.

1.3.4 Orbital equations
If V= V(r) one can derive from the equations of Lagrangefthhe conservation of angular momentum:

% = % =0= %(mr%) =0= L, = mr’¢ = constant
For the radial position as a function of time can be found that:
(dr>2 oW -V) L?

dt) m  m2p2

The angular equation is then:

r ez 20W —v) 12
d)%_/lmg\/( m )7m27"2

0

o ~2field i1
dr” ="“arccos |14+ —L—T0
< % + km/L?
0

If F = F(r): L =constant, ifF" is conservativel¥’ =constant, iff' 1 7thenAT = 0 andU = 0.
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Kepler’s orbital equations

In a force fieldF = kr—2, the orbits are conic sections with the origin of the force in one of the foci (Kepler's
1st law). The equation of the orbit is:

/
= —" orz24+yi=(—-ex)?
r(®) 1+ ¢ecos(f —6) Tty (¢~ ex)
with ) ) ’ ¢
L 2W L k
(= . 2 -1 =1—-=": - =
G, - T 't e, o’ T1oe2 T ow

a is half the length of the long axis of the elliptical orbit in case the orbit is closed. Half the length of the short
axis isb = v/al. ¢ is theexcentricityof the orbit. Orbits with an equal are of equal shape. Now, 5 types of
orbits are possible:

1. k < 0ande = 0: acircle.

2. k< 0and0 < ¢ < 1: an ellipse.

3. k < 0ande = 1: a parabole.

4. k < 0 ande > 1: a hyperbole, curved towards the centre of force.
5. k > 0 ande > 1: a hyperbole, curved away from the centre of force.

Other combinations are not possible: the total energy in a repulsive force field is always positivelso

If the surface between the orbit covered betweeandt, and the focus C around which the planet moves is
A(ty,12), Kepler's 2nd law is

L¢
Aty,t) = —(ta — ¢
( 1 2) Qm( 2 1)
Kepler's 3rd law is, withl" the period and\/,; the total mass of the system:
Yi _ 472
CL3 o GMtot

1.3.5 The virial theorem

The virial theorem for one particle is:

<m?7'77>=0:><T>=—§<ﬁ'F>=§<rcfl[i>=§n(U> N

The virial theorem for a collection of particles is:

<T>—§< > Eﬁ*zﬁmfm>

particles pairs

These propositions can also be written 285, + Epor = 0.

1.4 Point dynamics in a moving coordinate system

1.4.1 Apparent forces

The total force in a moving coordinate system can be found by subtracting the apparent forces from the forces
working in the reference framd?’ = F' — F,,,. The different apparent forces are given by:

1. Transformation of the origink,, = —ma,
2. Rotation:F, = —ma x 7’
3. Coriolis force:F.,, = —2md X U

i - . - - muv
4. Centrifugal forceFys = mw?r,' = —Fop ; Fop = R
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1.4.2 Tensor notation

Transformation of the Newtonian equations of motion:to= x*(z) gives:

dt — 0xP dt’
The chain rule gives:

d dx® A2z _d <8xa dxﬁ) _ 0x® d?z8 dzP d (8:6“)

dt dt  d?  dt\0zf dt ) 0zf iz dt dt \9zP
So:
Ao 0 datdr o d
dt 078  0zv 078 dt  9TPOTY dt
This leads to:

Pat _0x P3P Pat da (di
2 9xP dt2 - 0zPoxTY dt \ dt
Hence the Newtonian equation of motion
mdzx“
dt?

d?ze dx? dx
- I‘a - — FO(
m{ az dt}

[e3

will be transformed into:

B dpY
The apparent forces are taken from he origin to the effect side in th@@@%{%%.

1.5 Dynamics of masspoint collections
1.5.1 The centre of mass

The velocity w.r.t. the centre of magsis given byv — R. The coordinates of the centre of mass are given by:

7= > Mt
m
>omi

In a 2-particle system, the coordinates of the centre of mass are given by:

Ao M7 + maTs
mi + mo

With ¥ = 7, — 75, the kinetic energy become§. = %MtotRQ + %mﬁ, with thereduced masg given by:
1

gooomio mg )
The motion within and outside the centre of mass can be separated:

=

Loutsidc = Toutside 3 Linsidc = Tinside

—
—

D=mlyn; Foxx =may; Fio=pu

1.5.2 Collisions

With collisions, where B are the coordinates of the collision and C an arbitrary other position, jietds:v,,
is constant, and’ = %mﬁﬁl is constant. The changes in tiedative velocitiexan be derived fromS = Ap' =

(1(Tage — Toefore). Further holdsALe = CB x §, 7 | S =constant and: w.r.t. B is constant.
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1.6 Dynamics of rigid bodies

1.6.1 Moment of Inertia

The angular momentum in a moving coordinate system is given by:
L'=13+ L
wherel is themoment of inertiavith respect to a central axis, which is given by:

I=Y mii % T =W = 3wli;éié; = 310
1

I= %/r'deVZ /r'idm

1] . _ . _ _ 2 : ro0
Li:Iij, Ii'_lia Iij—Iji—_ mka:ixj
k

or, in the continuous case:

Further holds:

Steiner’s theorem isly, , + p = Iy.r.t.c + m(DM)? if axis C|| axis D.

| Object | I | Object I |
Cavern cylinder I =mR? Massive cylinder I=1imR?
Disc, axis in plane disc through m I = 1mR? Halter = 1uR?
Cavern sphere I =2mR? Massive sphere I = 2mR?
Bar, axis_L through c.o.m. I =4 mi? Bar, axis_L through end = mi?
Rectangle, axis. plane thr. c.o.m/| I = Lm(a? +b?) || Rectangle, axig bthr. m | I = ma?

1.6.2 Principal axes
Each rigid body has (at least) 3 principal axes which starid each other. For a principal axis holds:

oI oI oI

= = =0soL =0
Owy  Owy  Ow, "
. . . IL—1; .
The following holdswy, = —a;j,wiw; With a;;;, = if [ <1y <Is.
1.6.3 Time dependence
For torque of forcer holds:
d//L/ ,

ThetorqueT' is defined byT = F x d.

1.7 Variational Calculus, Hamilton and Lagrange mechanics

1.7.1 Variational Calculus
Starting with:

b
du

5/£(q,(j,t)dt — 0 with 6(a) = 3(b) =0 and & (dx> =4 s

a
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the equations of Lagrange can be derived:

doL _oc
dt9g; g
When there are additional conditions applying to the variational probdeitu) = 0 of the type

K (u) =constant, the new problem becomég(u) — AdK (u) = 0.

1.7.2 Hamilton mechanics

TheLagrangianis given by: £ = > T(¢;) — V(¢;). TheHamiltonianis given by: H = > ¢;p; — L. In 2
dimensions holdsC = T — U = im(#* + r2¢?) — U(r, ¢).
If the used coordinates acanonicalthe Hamilton equations are the equations of motion for the system:
@ - OH . dpi - _8H
dt — op; dt  Og

Coordinates are canonical if the following holds;, ¢;} = 0, {p:,p;} =0, {¢:,p,;} = d;; where{, } is the
Poisson bracket DAOB  OAOB
A, B} = —
{ ’ } 21: [3% dpi  Op; Oq;

The Hamiltonian of a Harmonic oscillator is given B§(z, p) = p?/2m + $mw?z?. With new coordinates

(0, I), obtained by the canonical transformatior- /21 /mw cos(f) andp = —v/2I'mw sin(#), with inverse
6 = arctan(—p/mwz) andI = p?/2mw + tmwz? it follows: H(0,1) = wl.

The Hamiltonian of a charged particle with charge an external electromagnetic field is given by:
1 -\ 2
H=o (5-ad) +qv
2m

This Hamiltonian can be derived from the Hamiltonian of a free parfitle p?/2m with the transformations

P —p— q/f andH — H — ¢V. This is elegant from a relativistic point of view: this is equivalent to the
transformation of the momentum 4-vecigt — p* — ¢A“. A gauge transformation on the potential§
corresponds with a canonical transformation, which make the Hamilton equations the equations of motion for
the system.

1.7.3 Motion around an equilibrium, linearization

For natural systems around equilibrium the following equations are valid:

8\/) . 02V
=0; V(g =V(0)+ Vikgiq WlthVi:< >
(5. (@) = VO + Vg win Vi = (200)
With T = %(Mikqiqk) one receives the set of equatials] + V¢ = 0. If ¢;(t) = a; exp(iwt) is substituted,
this set of equations has solutionslift(V — w?M) = 0. This leads to the eigenfrequencies of the problem:

9 agVak
Wy = T

a; May,

eigenvibrations.

. If the equilibrium is stable holdsvk thatw? > 0. The general solution is a superposition if

1.7.4 Phase space, Liouville’s equation

In phase space holds:

9 9 L 0 0H 0 0H
Vo (;&;/;%) SOV'U—Z(aqiapi _8p18qi>

)

If the equation of continuityp;o + V - (0¢) = 0 holds, this can be written as:

do
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For an arbitrary quantityl holds:

dA 0A
P A H _
dt (A H}+ ot
Liouville’s theorem can than be written as:
% =0; or /pdq = constant

1.7.5 Generating functions

Starting with the coordinate transformation:

{ Qi = Qi(qi,pist)
Pi = Pl(ql,put)
one can derive the following Hamilton equations with the new Hamiltofian

dQ; 9K ~ dP, 0K
dt 9P, dt = 0Q;

Now, a distinction between 4 cases can be made:

dF; 79 iat .
1. Ifp;g; — H=PQ; — K(P;,Q;,t) — %, the coordinates follow from:

8F1 8F1 aFl
=t P=—2ty K=H+—*
p 8qi an + ot

dFQ(unZ;t)
dt
R, OF, OF,

T — ’ lziaK:H Ta.
Pi= g0 9= ap o

2. Ifp;g; — H = —PZ-Qi — K(P,Q;,t)+ , the coordinates follow from:

s dF: iy Xy 3 ;
3. If—pjqs — H=P,Q; — K(P;,Q;,t) + %, the coordinates follow from:

8F3 3F3 aFS
_ . P=— . K=H+ =2
ap; 90, o

qi =

dFy(pi, Pi,t)
dt
OF, oF,

ap, o

4. If —p;q; — H = —P,Q; — K(P;,Q;,t) + , the coordinates follow from:

76F4 .
Opi '

qi =

The functionsF}, Fs», F3 andF} are calledgenerating functions
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Electricity & Magnetism

2.1 The Maxwell equations

The classical electromagnetic field can be described biravell equationsThose can be written both as
differential and integral equations:

#(5 : ﬁ)dzA = Qfree,included V- D= Pfree

ﬁ(é-ﬁ)d%:o V-B=0
B, 4o ~ 0B
Eodi=-= B=-—

% ST v o
_ dV - - oD
H'd_':-[reeincue e H = ree ar

% S free,incl ded + i V x Jf + ot

For the fluxes holds¥ = //(5 S7)d*A, ® = //(E -i)d*A.

The electric displacemenﬁ, polarizationl3 and electric field strengtﬁ depend on each other according to:

np}
350]€T

D= EOE +P= soer, P = > b0/ Vol, e, = 1+ xe, With xe =
The magnetic field strengtﬁ, the magnetizatiod/ and the magnetic flux density depend on each other
according to:

2
B = po(H + M) = popr H, M = 3711/Vol, pir = 1 4 X, With xm = MQZ?O

2.2 Force and potential

The force and the electric field between 2 point charges are given by:

5 Q. o F

Fo=—"22 ¢, E=_

12 47r505rr2€ Q

The Lorentzforce is the force which is felt by a charged particle that moves through a magnetic field. The
origin of this force is a relativistic transformation of the Coulomb forEg:= Q(v x B) =1(I x B).

The magnetic field in poinf” which results from an electric current is given by the of Biot-Savartalso
known as the law of Laplace. In hewd, || I and# points fromd! to P:

= ol -
dBp = 12 dl % ¢,

If the current is time-dependent one has to tekardationinto account: the substitutioh(t) — I(t — r/c)
has to be applied.

2
The potentials are given by, = —/E -dgandA = 1B x 7.
1

)
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Here, the freedom remains to applgauge transformationThe fields can be derived from the potentials as
follows:

Further holds the relation?5 = o x E.

2.3 Gauge transformations

The potentials of the electromagnetic fields transform as follows when a gauge transformation is applied:

{A’/:A’—Vf

of
I _ -
V=Vt

so the fieldsE and B do not change. This results in a canonical transformation of the Hamiltonian. Further,
the freedom remains to apply a limiting condition. Two common choices are:
P

LoV = 0. This separates the differential equationsjmndv: v =-=-,

1. Lorentz-gaugeV - A+ — ——
gaug +62 ot €0

DA’: —/Loj
2. Coulomb gauge¥ - A = 0. If p = 0 and.J = 0 holdsV = 0 and followsA from[J A = 0.

2.4 Energy of the electromagnetic field

The energy density of the electromagnetic field is:

aw
dvolfwf/HdBJr/EdD

The energy density can be expressed in the potentials and currents as follows:

wmag:%/j-ffd?’x , welzé/de?’x

2.5 Electromagnetic waves

2.5.1 Electromagnetic waves in vacuum
The wave equation] ¥ (7, t) = — f(7,t) has the general solution, with= (go0) /2

v - LB,

4r|7 — 7|

If this is written as.J (7, t) = J(7) exp(—iwt) and A(7, t) = A(7") exp(—iwt) with:

e o
Ay =L / 7y SRR = TD e ey = L / () SR = T s

T 4r 7= 7] 4me 7= 7]
A derivation via multipole expansion will show that for the radiated energy holds\Nfs> r:
dP k2 sl
- J —/ 1k~7>d3 /
dQY  32m2¢qc / (e "
The energy density of the electromagnetic wave of a vibrating dipole at a large distance is:
2 12 4 2 32 4 41~12
w=¢eyFE? = posin”(0)w” sin®(kr —wt), (w), = Py S (6)w” _ kel

16m2eqr2ct O O32m2e0r2¢t 7 T 127eg

The radiated energy can be derived from Bugnting vectoS: § = E x H = cW§,. Theirradianceis the
time-averaged of the Poynting vectdr= (|.S|);. The radiation pressuye is given byps = (1 + R)|S|/c,
whereR is the coefficient of reflection.
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2.5.2 Electromagnetic waves in matter

The wave equations in matter, with,.. = (ci)~'/? the lightspeed in matter, are:

% uo\ = 0 uo\ =
2 — _— = = 2 — _— = =
(V Shom ; 8t> E=0, (V Shom ; 8t) B=0

give, after substitution of monochromatic plane wavés= E exp(i(k-7—wt)) andB = Bexp(i(k-7F—wt))
the dispersion relation:
k? = epw? + e
P
The first term arises from the displacement current, the second from the conductance cukrisniritten in
the formk := k' 4 ik” it follows that:

1 1
kK = 1 1 1+ —— and k" = 1 -1 14+ ———
VR T e OV I\ T G

This results in a damped wave: = E exp(—k" 7 -7) exp(i(k'ii-7—wt)). If the material is a good conductor,

the wave vanishes after approximately one wavelerigth,(1 + 7) i

20"

2.6 Multipoles

BecauseTF_l—M = % i:: (:l) l P;(cos 0) the potential can be written aB: = . Z o
For the lowest-order terms this results in:

e Monopole:l =0, kg = [ pdV

e Dipole:l =1, ky = [ rcos(8)pdV

e Quadrupolel = 2, ky = %2(3753 —73)

1. The electric dipole: dipole moment: = Qlé, wheree goes from® to ©, andF = (p- V)Eext, and
W= 7]7' Eout-

Electric field: E ~ i

—

— ﬁ). The torque is7 = p' x Egyus

Q (3p-T
mers r2

2. The magnetic dipole: dipole momentrits vA: ji = I x (Aé.), F = (ji - V) Bous
2

muvy L=
= y W = —[i X Boy
|l 9B 12 ; .
Magnetic field:B = 4_M3 ( M2' " ﬁ). The moment is7 = ji x Bout
wr T

2.7 Electric currents

The continuity equation for charge i% + V- J = 0. Theelectric currentis given by:

Izgz//(fﬁ)d%l

For most conductors holds: = E/p, wherep is theresistivity
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. ; dd
If the flux enclosed by a conductor changes this results imdinced voltagd/;,g = —N —. If the current

flowing through a conductor changes, this results in a self-inductance which opposes the original change:

dl
Vielfind = _LE' If a conductor encloses a fldx holds: ® = LI.
The magnetic induction within a coil is approximated B/= puiNT wherel is the length,R the radius
" V2 +4R?

andN the number of coils. The energy contained within a coil is givefiby= 1 LI? andL = uN2A/!I.

Thecapacityis defined by:C = Q/V. For a capacitor holdsC' = ¢qe, A/d whered is the distance between
the plates andl the surface of one plate. The electric field strength between the pldfesis/cp = Q/eo A
whereo is the surface charge. The accumulated energy is giveWby %CV? The current through a

capacity is given by = —C%/.

For most PTC resistors holds approximatey: = Ro(1 + oT'), whereRy = pl/A. For a NTC holds:
R(T) = Cexp(—B/T) whereB andC depend only on the material.

If a current flows through two different, connecting conductoendy, the contact area will heat up or cool
down, depending on the direction of the current: Bedtier effect The generated or removed heat is given by:
W = 1l,,It. This effect can be amplified with semiconductors.

Thethermic voltagebetween 2 metals is given by: = (T — T;). For a Cu-Konstantane connection holds:
v~ 0.2 —0.7mVI/K.

In an electrical net with only stationary currenk§rchhoff’s equations apply: for a knot hold$: I,, = 0,
along a closed path hold§. V,, = > I,,R,, = 0.

2.8 Depolarizing field

If a dielectric material is placed in an electric or magnetic field, the field strength within and outside the
material will change because the material will be polarized or magnetized. If the medium has an ellipsoidal
shape and one of the principal axes is parallel with the external figldr B, then the depolarizing is field
homogeneous.

~ , , NP
Edep = Emat - EO = - -
0

ﬁdep = Hmat - ﬁO = _NM

N is a constant depending only on the shape of the object placed in the field) with/ < 1. For a few
limiting cases of an ellipsoid holds: a thin plan¥: = 1, a long, thin barA” = 0, a sphere\V = 1.

2.9 Mixtures of materials

The average electric displacement in a material which is inhomogenious on a mesoscopic scale is given by:

-1
(D) = (¢E) = * (E) wheree* = ¢, (1 - (?1’2((;/_533))> wherex = &, /e,. For a sphere holdsp =
2

1+ 2z, Further holds:

1
(Z ?) <eg* < Z¢i5i

3
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Relativity

3.1 Special relativity

3.1.1 The Lorentz transformation

The Lorentz transformatiofit’, t') = (Z'(Z,t), ¢ (Z,t)) leaves the wave equation invariantifs invariant:

9? 0? 02 1 62 0? 0? 9? 1 92

02 T "o 2o o1 oy 07 o

This transformation can also be found whést = ds’? is demanded. The general form of the Lorentz
transformation is given by:

— 17 -v)T T U
o DEDT_ gy (1 E)
C

where

The velocity difference’’ between two observers transforms according to:

. -1 S
N U1 - V2 ~ U1 V2 -
012(7(1—02>> (v2+(’y—1) 5 vl—fyvl>

If the velocity is parallel to the-axis, this becomeg = y, 2’ = 2 and:

/

' =v(x—vt), = +ot)

v x'v Uy — U1
t/:’}/(t—g) y t:’}/<t/+62) 5 U/:W

If ¥ = ve, holds:
W
jo :’Y<Pm— BC) , W=~(W —vp,)

With g = v/c the electric field of a moving charge is given by:

Q (1 _ﬂQ)gr

E =
dmegr? (1 — (42 sin?(6))3/2

The electromagnetic field transforms according to:

. L o - . UxE
E' =~v(FE+vxB) , B/:7<B— 5 >

C

Length, mass and time transform according &y, = yAtg, m, = ymyg, I, = lo/~, with o the quantities
in a co-moving reference frame andhe quantities in a frame moving with velocityw.r.t. it. The proper
time 7 is defined asdr? = ds?/c?, soAr = At/~. For energy and momentum hold§! = m,c? = yW,
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W2 = m3ct + p?c®. p = mpv = ymov = Wu/c?, andpc = W 3 where3 = v/c. Theforceis definedby
F = dpjdt.
4-vectors have the property that their modulus is independent of the observer: their companehiznge
after a coordinate transformation but not their modulus. The difference of two 4-vectors transforms also as
a 4-vector. The 4-vector for the velocity is given by* = di The relation with the “common” velocity
, . , T
u' = dx'/dt is: U® = (yu',icy). For particles with nonzero restmass hol@&'U, = —c?, for particles

with zero restmass (so with = ¢) holds: U~U, = 0. The 4-vector for energy and momentum is given by:
p* = moU® = (yp*,iW/c). SO:pap® = —mic? = p*> — W?2/c2.

3.1.2 Red and blue shift

There are three causes of red and blue shifts:

/

1. Motion: withé, - €. = cos(y) follows: F=1 1 veos(e)

C
This can give both red- and blueshift, alsdo the direction of motion.

2. Gravitational redshift:A—f = ﬂ
f rc2

3. Redshift because the universe expands, resulting in e.g. the cosmic background radiation:
Ao  Ro

N Ry
3.1.3 The stress-energy tensor and the field tensor

The stress-energy tensor is given by:
1
Tl“/ = (QC2 -i-p)u#ul, -HUQW + 672 (FyaFg + igleaﬁFag)

The conservation laws can than be written¥s7#” = 0. The electromagnetic field tensor is given by:

045 04,

Fag= 220
B~ oz 9aB

with A, := (A4,iV/c) and.J, := (J,icp). The Maxwell equations can than be written as:
81/Fl“/ = PJOJ# ) akl?/u/ + aqu)\ + al/F)\/L =0

The equations of motion for a charged particle in an EM field become with the field tensor:

dpa
=2 = gF,5u”
dr 45 apt

3.2 General relativity

3.2.1 Riemannian geometry, the Einstein tensor
The basic principles of general relativity are:

1. The geodesic postulate: free falling particles move along geodesics of space-time with the proper time
7 or arc lengths as parameter. For particles with zero rest mass (photons), the use of a free parameter is
required because for them holds = 0. Fromd [ ds = 0 the equations of motion can be derived:

d?z o, dzP dxy

ds2 P ds ds
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2. Theprinciple of equivalenceinertial mass= gravitational mass=- gravitation is equivalent with a
curved space-time were particles move along geodesics.

3. By a proper choice of the coordinate system it is possible to make the metric locally flat in each point
2t gap(Ti) = Nap :=diag—1,1,1,1).

TheRiemann tensos defined ast,‘aﬁT" = V,VgTH —-VsV,TH, where the covariant derivative is given
by Vjai = (’)ja" + I‘;kak andeai = ajai — I‘fjak. Here,

;g (391]‘ n g 99,k 0%zl oxt

OxI Ok ozl’

=5 \ ok T 5 9l ) , for Euclidean spaces this reducesig; =

are theChristoffel symbolsFor a second-order tensor holdS.,,, Vs|T) = Rl ;T + R], TV, Via) =
Opa; —I‘Ljaf +T},a}, Viai; = Opai; — T, —l"i,jajl andV,a" = dpa'l +T%,aY +T7,a". The following
. (o3 — (03 (e} « o [ a
holds: RS, = 9,I'5, — 9,I', +T5,I'5, —T5,TG,.
The Ricci tensoris a contraction of the Riemann tensat., s := Rguﬁ' which is symmetric:R.3 = Rga.
TheBianchi identitiesare: VaRoguw + Vo Ragan + VuRagur = 0.
The Einstein tensoiis given by: G*# := R*# — 14 R, whereR := R? is theRicci scalar for which
holds: V3Gag = 0. With the variational principle j(c_(gw) — Rc?/16mk)+/|g|d*x = 0 for variations
9 — 9uv + 09, theEinstein field equationsan be derived:

8 ; . 8
Gap = gTaﬁ , which can also be written asR,g = g(TQB — 59a5T%)
C C

For empty space this is equivalenta,s = 0. The equatiorR,z,, = 0 has as only solution a flat space.

The Einstein equations are 10 independent equations, which are of second gggerRrom this, the Laplace
equation from Newtonian gravitation can be derived by stating: = 7., + k.., where|h| < 1. In the
stationary case, this resultsWhoo = 8mko/c.

) . 8
The most general form of the field equationsis; s — %gaﬁR + Agop = LQKTQQ
C

whereA is thecosmological constanfThis constant plays a role in inflatory models of the universe.

3.2.2 The line element
, : : o oz* ok
Themetric tensoiin an Euclidean space is given by; = — .
- ox* Oxd

In general holdsds? = g, dz"dz". In special relativity this becomes? = —c?dt? + daz? + dy? + dz°.
This metric,n,,, :=diag(—1, 1,1, 1), is called theMinkowski metric

Theexternal Schwarzschild metrapplies in vacuum outside a spherical mass distribution, and is given by:
2m om\ !
ds* = (—1 + T) Adt* + (1 — T) dr? + r2dQ?

Here,m := Mr/c? is thegeometrical massf an object with mas3/, anddQ? = d6? + sin? fdp>. This
metric is singular for = 2m = 2xM/c?. If an object is smaller than its event horizdm, that implies that
its escape velocity is- ¢, it is called ablack hole The Newtonian limit of this metric is given by:

ds® = —(1 4 2V)2dt? + (1 — 2V)(da? + dy* + dz?)

whereV = —xM/r is the Newtonian gravitation potential. In general relativity, the componengg,ofre
associated with the potentials and the derivativeg,ofwith the field strength.

The Kruskal-Szekeres coordinates are used to solve certain problems with the Schwarzschild metric near
r = 2m. They are defined by:
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o 7> 2m!
r r t
u = — —lexp (—) cosh [ —
2m 4 am
t
vo= ﬁ —lexp (—) sinh <4m>
o r < 2m:
t
U = 1-— ﬁ exp (4—) sinh <4m>

/ r T t
v o= 1-— % exp (m) cosh (47n)

e r = 2m: here, the Kruskal coordinates are singular, which is necessary to eliminate the coordinate
singularity there.

The line element in these coordinates is given by:

3
32m e—7'/2m

ds® = — (dv? — du?) + r2dQ?

r

The liner = 2m corresponds ta = v = 0, the limitz° — oo with u = v andz® — —oo with u = —v. The
Kruskal coordinates are only singular on the hyperhgle- +? = 1, this corresponds with = 0. On the line
dv = tdu holdsdf = dy = ds = 0.

For the metric outside a rotating, charged spherical mass the Newman metric applies:

2mr — 2 r2 1 a2 cos? 0
d2 — 1- —-— - 2dt2— d2_ 9 9 20d92_
’ ( T2+a200526>c 2 —omrta2—e2) (r* 4 a” cos™0)

s o (2mr —e?)a?sin? 6 2. 2 2a(2mr — )\ .,
(T’ +a® + T2—|—a2 COS29 Sin Gdgp =+ m Sin 9(d<p)(cdt)

wherem = kM/c? a = L/Mc ande = kQ/eoc?.
A rotating charged black hole has an event horizon \iligh= m + vm?2 — a2 — e2.

Near rotating black holes frame dragging occurs becguse~ 0. For the Kerr metric = 0, a # 0) then
follows that within the surfac&®g = m + vm?2 — a2 cos? 6 (de ergosphere) no particle can be at rest.

3.2.3 Planetary orbits and the perihelion shift

To find a planetary orbit, the variational problénf ds = 0 has to be solved. This is equivalent to the problem
§ [ds? =6 [ g;jdx'dz? = 0. Substituting the external Schwarzschild metric yields for a planetary orbit:

de d27u+u —d—u(?)mu—i-ﬁ)
dp \ dp? dy h?

whereu := 1/r andh = r%p =constant. The terrmu is not present in the classical solution. This term can

. . ) kM h?
in the classical case also be found from a poteitfial) = ——— (1 + — |.
r T

The orbital equation gives=constant as solution, or can, after dividingdyy/ d, be solved with perturbation
theory. In zeroth order, this results in an elliptical orhiti(¢) = A + B cos(¢) with A = m/h? andB an
arbitrary constant. In first order, this becomes:

B? B?
u1(p) = A+ Bceos(p —ep) + ¢ <A + A 64 cos(2<p))
wheres = 3m?/h? is small. The perihelion of a planet is the point for whiclis minimal, oru maximal.
This is the case ifos(p — cp) = 0 = ¢ =~ 27n(1 + ). For the perihelion shift then followsAy = 27e =
67m?/h? per orbit.
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3.2.4 The trajectory of a photon

For the trajectory of a photon (and for each particle with zero restmass) tields- 0. Substituting the
external Schwarzschild metric results in the following orbital equation:

du [ d*u
w((W—FU—?)mu) =0

3.2.5 Gravitational waves

Starting with the approximation,,, = 7., + h,, for weak gravitational fields and the definitiohjw =
R — Anu b it follows that] h;,,, = 0 if the gauge conditiodh],, /0x” = 0 is satisfied. From this, it

follows that the loss of energy of a mechanical system, if the occurring velocitieg arand for wavelengths
> the size of the system, is given by:

dE G« (QyuY
dt ~ 5cP v dt3

with Q;; = [ o(z;z; — £6;;r?)d*x the mass quadrupole moment.

3.2.6 Cosmology

If for the universe as a whole is assumed:
1. There exists a global time coordinate which acts%sf a Gaussian coordinate system,
2. The 3-dimensional spaces are isotrope for a certain valu®, of
3. Each point is equivalent to each other point for a fixéd

then theRobertson-Walker metrican be derived for the line element:

R*(t)

kr?
2 1— —

For thescalefactorR(¢) the following equations can be derived:

ds* = —cdt* + (dr? + r2d0?)

2R R%?+kc? 8mKp
— =— A and
R + R? c2 + R? 3 3
wherep is the pressure and the density of the universe. K = 0 can be derived for theleceleration
parametery:

R+ ke 8mko A
= +

RR _ 4mne
Rz 3H?2
whereH = R/R is Hubble’s constant This is a measure of the velocity with which galaxies far away are

moving away from each other, and has the vatugrs +25) km-s~1-Mpc—1. This gives 3 possible conditions
for the universe (herd}’ is the total amount of energy in the universe):

q:

1. Parabolical universe £k =0, W =0, q = % The expansion velocity of the universe 0 if ¢ — oo.
The hereto relatedritical densityis o. = 3H?/87k.

2. Hyperbolical universe: £k = -1, W < 0, ¢ < % The expansion velocity of the universe remains

positive forever.

3. Elliptical universe: k=1, W > 0, ¢ > % The expansion velocity of the universe becomes negative
after some time: the universe starts collapsing.
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Oscillations

4.1 Harmonic oscillations

The general form of a harmonic oscillation iB(t) = We!(“!£#) = cos(wt + ¢),

where¥ is theamplitude A superposition of several harmonic oscillationi¢h the same frequencegsults in
another harmonic oscillation: R R
Z U, cos(a; + wt) = P cos(f £ wt)

i

with: .
>0, sin(ay)
tan =t _ and $*= @?4—2 U, 0. cos(ay; —
9= i LED DR ATLCE
For harmonic oscillations holds/x(t)dt = % and%r(f) = (iw)"z(t).

4.2 Mechanic oscillations

For a construction with a spring with constantparallel to a damping which is connected to a masg, to
which a periodic forceF'(t) = F cos(wt) is applied holds the equation of motieni = F(t) — k& — Cx.
With complex amplitudes, this becomesnw?z = F — Cz — ikwx. With w3 = C'/m follows:

F

T = and for the velocity holds:i = __F
m(wg — w?) + tkw ivCmd + k
wherej = wi - %. The quantityZ = F/i is called thampedancef the system. Theguality of the system
0
is given byQ = %

The frequency with minimalZ| is calledvelocity resonance frequencyhis is equal tav. In theresonance
curve|Z|/v/Cm is plotted against /wy. The width of this curve is characterized by the points wh&(e)| =
|Z(wo)[v/2. In these points holds? = X ands = +Q~*, and the width i2Awp = wy/Q.

Thestiffnesof an oscillating system is given by/x. Theamplitude resonance frequency is the frequency
whereiwZ is minimal. This is the case fary = wg4/1 — %QQ.

Thedamping frequencyp is a measure for the time in which an oscillating system comes to rest. It is given

1 N . -,
bywp = woy /1 — ITOER A weak damped oscillatiofk? < 4m() dies out aftefl, = 27 /wp. For acritical
dampedoscillation (k2 = 4m(C') holdswp = 0. A strong damped oscillatiofk? > 4mC) drops like (if
k2 > 4mC) z(t) =~ xg exp(—t/T).

4.3 Electric oscillations
Theimpedancds given by: Z = R + iX. The phase angle ig := arctan(X/R). The impedance of a

resistor isR, of a capacitod /iwC and of a self inductoiw L. The quality of a coil iS) = wL/R. The total
impedance in case several elements are positioned is given by:



Chapter 4: Oscillations 19

1. Series connectiorV = 17,
G =70 L= Li. === Q=2 z-R(1+iQs)
B i Ctot 7 Cz R
2. parallel connectionV = 17,

1 1 1 1 R R
S =Y Gu=YC Q= D=
Ztot ;&7 Lot . L;” Z @ A 1+1¢Q0

L 1
Here,Zy = {/ = andwy = —.
c vLC

The power given by a source is given Byt) = V (t) - I(t), SO(P), = Vg It cos(A¢)
= %Vf cos(py — @) = %ﬁRe(Z) = %VQRe(l/Z), wherecos(Ag) is the work factor.

4.4 Waves in long conductors

dL dx

These cables are in use for signal transfer, e.g. coax cable. For them Hglés T dC

The transmission velocity is given by= 4/ Z—E%

4.5 Coupled conductors and transformers

For two coils enclosing each others flux holds®if; is the part of the flux originating fromy, through coil 2

which is enclosed by coil 1, than holds, = Mis15, ®21 = Moy 1. For the coefficients of mutual induction

Mij holds:

N1®;  Na®y
I, I

where0 < k < 1 is thecoupling factor For a transformer is ~ 1. At full load holds:

i _ L_ wM L M
Vo I,  iwLy+ Riaa  VIa Ny

M12:M21 =M=k L1L2:

4.6 Pendulums
The oscillation timel” = 1/ f, and for different types of pendulums is given by:
e Oscillating springT” = 2w+/m/C if the spring force is given by’ = C - Al.

e Physical pendulumf’ = 274/ /7 with 7 the moment of force anflthe moment of inertia.

. . 21 . N
e Torsion pendulum? = 27/1/k with k = % the constant of torsion andthe moment of inertia.
P

mrd

e Mathematical pendulumi’ = 27/1/g with g the acceleration of gravity arithe length of the pendu-
lum.
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Waves

5.1 The wave equation
The general form of the wave equationlisu = 0, or:

1 0%u  O%u  0%*u  O%*u 1 9%u

T A N
YTz e 8x2+8y2+8z2 v2 Ot2

=0
whereuw is the disturbance and the propagation velocity In general holdsy = f\. By definition holds:
kXA =27 andw = 27 f.
In principle, there are two types of waves:

1. Longitudinal waves: for these holds| 7 || .

2. Transversal waves: for these hoEjﬁ OTH
Thephase velocitys given byv,,,, = w/k. Thegroup velocityis given by:

_dw dvpn k dn
Vg = g = Vo TR = e (1 ndk)

wheren is the refractive index of the medium. 4f,;, does not depend an holds: v, = v,. In a dispersive
medium it is possible that, > vy, Or vy < vph, andug - ve = c2. If one wants to transfer information with

a wave, e.g. by modulation of an EM wave, the information travels with the velocity at with a change in the
electromagnetic field propagates. This velocity is often almost equal to the group velocity.

For some media, the propagation velocity follows from:

e Pressure waves in a liquid or gas= +/r/0, wheres is the modulus of compression.

For pressure waves in a gas also holds: \/yp/o = \/YRT /M.

Pressure waves in a thin solid bar with diametet A: v = /E/p

waves in a stringy = \/Fspanl/m

Surface waves on a liquid: = \/<g)\ + Qm) tanh (%h>

27 oA A
whereh is the depth of the liquid angl the surface tension. < \ holds:v ~ /gh.
5.2 Solutions of the wave equation
5.2.1 Plane waves

In n dimensions a harmonic plane wave is defined by:

u(E,t) = 2" cos(wt) » _ sin(kiz;)

i=1



Chapter 5: Waves 21

The equation for a harmonic traveling plane waveu?, t) = @ cos(k - & + wt + )

If waves reflect at the end of a spring this will result in a change in phase. A fixed end gives a phase change of
7/2 to the reflected wave, with boundary conditiefi) = 0. A lose end gives no change in the phase of the
reflected wave, with boundary conditiéfiu/dz); = 0.

If an observer is moving w.r.t. the wave with a velocity,s, he will observe a change in frequency: the

Doppler effect This is given by:fi _ UL~ Yobs
0 (%3

5.2.2 Spherical waves

When the situation is spherical symmetric, the homogeneous wave equation is given by:
1 0%(ru)  0%(ru)

il =0
2 o o

with general solution:

f(r—ot) N 029(7’ + vt)

u(r,t) = Cy . .

5.2.3 Cylindrical waves

When the situation has a cylindrical symmetry, the homogeneous wave equation becomes:

10%w 10 ou 0

Sl R N (P

vZ2 Ot2  ror \' or
This is a Bessel equation, with solutions which can be written as Hankel functions. For sufficient large values
of r these are approximated by:

u(r,t) = L cos(k(r + vt))

\/,F

5.2.4 The general solution in one dimension

Starting point is the equation:
0%u(x,t al om
T) = Z (bm&vm) u(z,t)
m=0
whereb,,, € IR. Substitutingu(z,t) = Ae!**~«) gives two solutionss; = w;(k) as dispersion relations.
The general solution is given by:
u(z,t) = / (alkyer 90 4 p(gpei o= )

Because in general the frequenaigsare non-linear irk there is dispersion and the solution cannot be written
any more as a sum of functions depending onlyzah vt: the wave front transforms.

5.3 The stationary phase method

Usually the Fourier integrals of the previous section cannot be calculated exactjyk)f< IR the stationary

phase method can be applied. Assuming ia) is only a slowly varying function ok, one can state that the

parts of thek-axis where the phase &ft — w(k)t changes rapidly will give no net contribution to the integral
because the exponent oscillates rapidly there. The only areas contributing significantly to the integral are areas

with a stationary phase, determined gz(lm — w(k)t) = 0. Now the following approximation is possible:

o0

N
. 2
/ a(k)el(km—w(k)t)dk ~ E WZC) exXp [—Ziﬂ' + Z(kﬁ;‘ - W(k‘l)t)]
i=1 dk?

— 00
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5.4 Green functions for the initial-value problem

This method is preferable if the solutions deviate much from the stationary solutions, like point-like excitations.

Starting with the wave equation in one dimension, With= 92 /922 holds: if Q(x, 2’, t) is the solution with

0Q(z,a',0)
ot

= §(z — z’), then the solution of the wave equation with arbitrary initial

ou(x,0) .

initial valuesQ(x,2’,0) = é(x — ') and = 0, and P(z, 2/, t) the solution with initial values
OP(z,2',0)
ot

conditionsf(z) = u(x,0) andg(z) =

P(z,2’,0) = 0 and
is given by:

o0

u(z, t) = /f(x’)Q(x,x',t)dx'—&— /g(x')P(m,x’,t)dx’

P and@ are called theoropagators They are defined by:
Qz,2',t) = 3[6(x—a" —vt)+ (-2’ +vt)]
{ if |z—2a'| <wvt

if |x—a'| > vt

P(x,2't)

OP(x,2',t)

Further holds the relatiorQ(z, 2, t) = o

5.5 Waveguides and resonating cavities

The boundary conditions for a perfect conductor can be derived from the Maxwell equationss dfunit
vector L the surface, pointed from 1 to 2, aikdis a surface current density, than holds:

(D2~ D)=
(B2 —B1) =0

ISTRST]

In a waveguide holds because of the cylindrical symmetfy(z,t) = &(x,y)e!**=“") and B(Z,t) =
B(z,y)e'**~«t), From this one can now deduce thatBif and€, are not= 0:

5 — i %_E wagz B i k@BZ . wasz
T epw? — k2 Oz K8y Y epw? — Jy He o

s _ i &, . waBz e _ i k%fs w@Bz
T euw? — k2 ox K Oy Y euw? — k2 Oy K or

Now one can distinguish between three cases:

1. B, = 0: the Transversal Magnetic modes (TM). Boundary conditt;,..¢ = 0.

=0.

2. E, = 0: the Transversal Electric modes (TE). Boundary COHdItIEgF

surf

For the TE and TM modes this gives an eigenvalue probler§ foesp.3, with boundary conditions:

2 2
(aicz + 88yz> i) = —*y with eigenvaluesy® := epw? — k*

This gives a discrete solutiof, with eigenvaluey?: k = /euw? — vi. Forw < wy, k is imaginary
and the wave is damped. Therefoue, is called thecut-off frequency In rectangular conductors the
following expression can be found for the cut-off frequency for modeg TBf TM,,, .

2

Ao =
(m/a)? + (n/b)?
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3. E, and B, are zero everywhere: the Transversal electromagnetic mode (TEM). Than folés:
tw,/ep andvs = vy, just as if here were no waveguide. Furtiiee IR, so there exists no cut-off
frequency.

In a rectangular, 3 dimensional resonating cavity with edgésandc the possible wave numbers are given

by: k, = AT ky = sz . k. = 2T This results in the possible frequencigs- vk /2r in the cavity:
C
v [n2 ng  on?
I=VNeteta

For a cubic cavity, withu = b = ¢, the possible number of oscillating mod&$, for longitudinal waves is
given by:

4mad f3
Ne = 3v3

Because transversal waves have two possible polarizations holds for Myem:2Ny.,.

5.6 Non-linear wave equations
TheVan der Polequation is given by:

A2z
e €w0(1 - 5332)

dx

at ergz:()

Bx? can be ignored for very small values of the amplitude. Substitution of ™! gives: w = Fwy(ic &
24/1— %sQ). The lowest-order instabilities grow %swo. While x is growing, the 2nd term becomes larger

and diminishes the growth. Oscillations on a time seale;o‘1 can exist. Ifz is expanded as = 2(*) +
exM 4+ 22(2) 4 ... and this is substituted one obtains, besides perisdic,lar termsv t. If it is assumed
that there exist timescaleg, 0 < 7 < N with d7,,/0t = £™ and if the secular terms are put 0 one obtains:

d (1 /de\> | 5, NT2%
dt{2(dt> +§w0a: —€w0(1—ﬂl‘)(dt>

This is an energy equation. Energy is conserved if the left-hand side is2. ¥ 1/, the right-hand side
changes sign and an increase in energy changes into a decrease of energy. This mechanism limits the growth
of oscillations.

The Korteweg-De Vriegquation is given by:

@ =+ @ _ % + bQ@ =0
ot  Ox auax dr3
——— ——

non—lin  dispersive

This equation is for example a model for ion-acoustic waves in a plasma. For this equation, soliton solutions
of the following form exist:
—d

ule =) = cosh?(e(x — ct))

with ¢ = 1 + 1ad ande? = ad/(12b%).
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Optics

6.1 The bending of light

For the refraction at a surface holds;sin(8;) = n,;sin(6;) wheren is therefractive indexof the material.
Snell’s law is:

ng A1 !

n B A2 - V2
If An <1, the change in phase of the lightdsp = 0, if An > 1 holds: Ay = «. The refraction of light in a
material is caused by scattering from atoms. This is described by:

2
2 Ne€ fj
n® =1+

gom 0. w? — 1w

wheren, is the electron density ang} the oscillator strengthfor which holds:)" f; = 1. From this follows

J
thatv, = ¢/(1 + (nee?/2egmw?)). From this the equation of Cauchy can be derived: a + a;/A\?. More
n ap

general, it is possible to expandas:n = 2k
k=0

For an electromagnetic wave in general hotds= | /2, /i;.

The path, followed by a light ray in material can be found freemmat’s principle

2
cs)ds:0:>5/n(s)d520
1

2 2
6/dt:6/n(
1 1

6.2 Paraxial geometrical optics

6.2.1 Lenses

The Gaussian lens formula can be deduced from Fermat's principle with the approxinwatigns= 1 and
sin ¢ = . For the refraction at a spherical surface with radkuisolds:

ni no ny — Nog

v b R

where|v| is the distance of the object aftd the distance of the image. Applying this twice results in:

wheren, is the refractive index of the leng,is the focal length and; and R, are the curvature radii of both
surfaces. For a double concave lens haltds< 0, R, > 0, for a double convex lens hold3; > 0 and
Rs < 0. Further holds:
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D :=1/f is called the dioptric power of a lens. For a lens with thicknéssd diameteD holds to a good
approximation:1/f = 8(n — 1)d/D?. For two lenses placed on a line with distanideolds:

111
f i fo fife

In these equations the following signs are being used for refraction at a spherical surface, as is seen by an
incoming light ray:

[ Quantity | + \ — |
R Concave surface Convex surface
f Converging lens| Diverging lens
v Real object Virtual object
b Virtual image Real image

6.2.2 Mirrors
For images of mirrors holds:
11,12 R 1
f v b R 2\R w
whereh is the perpendicular distance from the point the light ray hits the mirror to the optical axis. Spherical

aberration can be reduced by not using spherical mirrors. A parabolical mirror has no spherical aberration for
light rays parallel with the optical axis and is therefore often used for telescopes. The used signs are:

[ Quantity | + \ — |
R Concave mirror| Convex mirror
f Concave mirror| Convex mirror
v Real object Virtual object
b Real image Virtual image

6.2.3 Principal planes

The nodal pointsN of a lens are defined by the figure on the right. If the lens is
surrounded by the same medium on both sides, the nodal points are the same as
the principal points H. The plané the optical axis through the principal points

is called theprincipal plane If the lens is described by a matrix;; than for the
distances:; andh, to the boundary of the lens holds:

-1 -1
hy=p LT g, =22
mi2 mi2
6.2.4 Magnification
Thelinear magnificatioris defined by:N = b
v
Theangular magnifications defined by:N,, = —ssiy“

whereagys is the size of the retinal image with the optical system aggl.. the size of the retinal image
without the system. Further holda: - N, = 1. For a telescope holdsV = fobjcctive/ focular- Thef-number
is defined byf/Dopjective-
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6.3 Matrix methods

A light ray can be described by a vectora, y) with « the angle with the optical axis andthe distance to
the optical axis. The change of a light ray interacting with an optical system can be obtained using a matrix

n ultiplication:
< NaQo > ﬂf( aRest )
Y2 U1

whereTr(M) = 1. M is a product of elementary matrices. These are:

1. Transfer along length My = ( l/ln (1) >

2. Refraction at a surface with dioptric powBr Mt = ( (1) _1D >

6.4 Aberrations

Lenses usually do not give a perfect image. Some causes are:

1. Chromatic aberration is caused by the fact that= n(\). This can be partially corrected with a lens
which is composed of more lenses with different functiens\). Using N lenses makes it possible to
obtain the sam¢ for V wavelengths.

2. Spherical aberration is caused by second-order effects which are usually ignored; a spherical surface
does not make a perfect lens. Incomming rays far from the optical axis will more bent.

3. Comais caused by the fact that the principal planes of a lens are only flat near the principal axis. Further
away of the optical axis they are curved. This curvature can be both positive or negative.

4. Astigmatism: from each point of an object not on the optical axis the image is an ellipse because the
thickness of the lens is not the same everywhere.

5. Field curvature can be corrected by the human eye.

6. Distorsion gives abberations near the edges of the image. This can be corrected with a combination of
positive and negative lenses.

6.5 Reflection and transmission

If an electromagnetic wave hits a transparent medium part of the wave will reflect at the same angle as the
incident angle, and a part will be refracted at an angle according to Snell's law. It makes a difference whether
the E field of the wave isL or || w.r.t. the surface. When the coefficients of reflecticand transmissionare

whereFE,. is the reflected amplitude aridy; the transmitted amplitude. Then the Fresnel equations are:

= tan(0; + 6;) = sin(6; + 6;)

. 2sin(6;) cos(6;) b 2sin(6;) cos(6;)
1= Sin(0, + 0;) cos(, — 6;) - sin(0, + 0;)

The following holds:t;, —r; = 1 andt| +r = 1. If the coefficient of reflection and transmissiof’ are
defined as (witl9; = 6,.):

: I, cos(6;)
= — T=——"=
R Iz and Il COS(&Z')
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with I = (|S]) itfollows: R+T = 1. A special case i8) = 0. This happens if the angle between the reflected
and transmitted rays 80°. From Snell’s law it then followstan(6;) = n. This angle is calleBrewster’s
angle The situation with-; = 0 is not possible.

6.6 Polarization

Ip _ Irnax - Imin
Ip + Iu B Imax + Imin
where the intensity of the polarized light is given Byand the intensity of the unpolarized light is given by

I,. L.y andly,;, are the maximum and minimum intensities when the light passes a polarizer. If polarized
light passes through a polarizeialus lawapplies:I(6) = I(0) cos?(6) whered is the angle of the polarizer.

The polarization is defined a® =

The state of a light ray can be described by$ekes-parameterstart with 4 filters which each transmits half

the intensity. The first is independent of the polarization, the second and third are linear polarizers with the
transmission axes horizontal andiat5°, while the fourth is a circular polarizer which is opaque festates.

Then holdsS; = 213, Sy = 21, — 214, Sy =213 — 21 andS, = 21, — 21I;.

The state of golarizedlight ray can also be described by thenes vectar
- EoieiSOm
E= ( Eoye'?v )
For the horizontalP-state holds:E = (1,0), for the verticalP-stateE = (0, 1), the R-state is given by
E = %\/i(l, —i) and theL-state byF = %\/?(1,2‘). The change in state of a light beam after passage of

optical equipment can be describedias= M - E;. For some types of optical equipment the Jones matfix
is given by:

Horizontal linear polarizer: < é 8 )
C o 0 0
Vertical linear polarizer: 0 1
. . o (11
Linear polarizer at-45 201 1
o . . 1 —1
Lineair polarizer at-45 2\

. . 1 —
Homogene circular polarizer left % ( ;

6.7 Prisms and dispersion

A light ray passing through a prism is refracted twice and aquires a deviation from its original direction
0 = 0; + 0, + aw.r.t. the incident direction, where is the apex anglg); is the angle between the incident
angle and a line perpendicular to the surface @nds the angle between the ray leaving the prism and a line
perpendicular to the surface. Whevaries there is an angle for whighbecomes minimal. For the refractive
index of the prism now holds:

sin(%(émin + a))

sin(3a)




28 Physics Formulary by ir. J.C.A. Wevers

The dispersion of a prism is defined by:
dé  dddn
D = = — —
d\  dnd\
where the first factor depends on the shape and the second on the composition of the prism. For the first factor
follows:
ds 2sin(a)
dn cos(%(émin +a))

For visible light usually holdgin/d\ < 0: shorter wavelengths are stronger bent than longer. The refractive
index in this area can usually be approximated by Cauchy’s formula.

6.8 Diffraction

Fraunhofer diffraction occurs far away from the source(s). The Fraunhofer diffraction of light passing through
multiple slits is described by:
I(0)  (sin(u) > [sin(Nv)\?
Io _< u ) .<Sin(v))

whereu = 7wbsin(6)/\, v = wdsin(f)/A. N is the number of slitsh the width of a slit and/ the distance
between the slits. The maxima in intensity are giverlbin(0) = k.

The diffraction through a spherical aperture with radius described by:

10)_(agoeon’

The diffraction pattern of a rectangular aperture at distaRaeith lengtha in the z-direction andb in the
y-direction is described by:
I(z,y)  (sin(a’) > (sin(3)\?
e () (%57)

wherea’ = kax /2R andg’ = kby/2R.

When X rays are diffracted at a crystal holds for the position of the maxima in inteBsityg’s relation
2dsin(f) = nA whered is the distance between the crystal layers.

Close at the source the Fraunhofermodel is invalid because it ignores the angle-dependence of the reflected
waves. This is described by tlabliquity or inclination factor, which describes the directionality of the sec-

ondary emissionsE (6) = 3 Eo(1 + cos(9)) wheref is the angle w.r.t. the optical axis.

Diffraction limits theresolutionof a system. This is the minimum angl&d,,,;, between two incident rays

coming from points far away for which their refraction patterns can be detected separately. For a circular slit
holds: A8y, = 1.22)/D whereD is the diameter of the slit.

For a grating holds:Af,,;, = 2A\/(Nacos(6,,)) wherea is the distance between two peaks aNdthe

number of peaks. The minimum difference between two wavelengths that gives a separated diffraction pattern
in a multiple slit geometry is given bAA/\ = nN whereN is the number of lines and the order of the
pattern.

6.9 Special optical effects

e Birefringe and dichroism. D is not parallel withE if the polarizability P of a material is not equal in
all directions. There are at least 3 directions, phiacipal axes in which they are parallel. This results
in 3 refractive indices; which can be used to construct Fresnel’s ellipsoid. In ease- n3 # ng,
which happens e.g. at trigonal, hexagonal and tetragonal crystals there is one optical axis in the direction
of ny. Incident light rays can now be split up in two parts: tirdinary waveis linear polarizedL the
plane through the transmission direction and the optical axiseXtraordinary waves linear polarized
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in the plane through the transmission direction and the optical Bxéhroismis caused by a different
absorption of the ordinary and extraordinary wave in some mateiixsible image®occur when the

incident ray makes an angle with the optical axis: the extraordinary wave will refract, the ordinary will

not.

e Retarders: waveplates and compensatordncident light will have a phase shift &y = 27d(|ng —

ne|)/Ao if an uniaxial crystal is cut in such a way that the optical axis is parallel with the front and back

plane. Here) is the wavelength in vacuum amg andn. the refractive indices for the ordinary and
extraordinary wave. For a quarter-wave plate holig: = /2.

e The Kerr-effect: isotropic, transparent materials can become birefringent when placed in an electric

field. In that case, the optical axis is parallelEfoThe difference in refractive index in the two directions
is given by: An = MoK E?, whereK is theKerr constantof the material. If the electrodes have an
effective length? and are separated by a distamtehe retardation is given byAy = 27 K¢V?2/d?,
whereV is the applied voltage.

e The Pockelsor linear electro-optical effect can occur in 20 (from a total of 32) crystal symmetry classes,

namely those without a centre of symmetry. These crystals arep@goelectric their polarization
changes when a pressure is applied and vice vétsa:pd + o x E. The retardation in a Pockels cell is
Ap = 2mniresV /Ao Wherergs is the 6-3 element of the electro-optic tensor.

e The Faraday effect the polarization of light passing through material with lendthnd to which a
magnetic field is applied in the propagation direction is rotated by an ghete) Bd whereV is the
Verdet constant

e Cerenkov radiation arises when a charged particle with> v arrives. The radiation is emitted within
a cone with an apex angtewith sin(a) = ¢/¢medium = ¢/nvy.

6.10 The Fabry-Perot interferometer
For a Fabry-Perot interferometer holds in
general:T + R+ A = 1 whereT is the
transmission factoi? the reflection factor
and A the absorption factor. If" is given
by F = 4R/(1 — R)? it follows for the
intensity distribution:

1_{1 A r 1
I, 1—R] 1+ Fsin?(0)

The term[1 + Fsin?(0)]~' := A(9) is Source  Lens d . Screen
called theAiry function Focussing lens

The width of the peaks at half height is given y= 4/VF. ThefinesseF is defined asF = 1xv/F. The
maximum resolution is then given kY fi,in, = ¢/2ndF.
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Statistical physics

7.1 Degrees of freedom

A molecule consisting of atoms has = 3n degrees of freedom. There are 3 translational degrees of freedom,
a linear molecule has = 3n — 5 vibrational degrees of freedom and a non-linear molesute 3n — 6. A
linear molecule has 2 rotational degrees of freedom and a non-linear molecule 3.

Because vibrational degrees of freedom account for both kinetic and potential energy they count double. So,
for linear molecules this results in a total o 6n — 5. For non-linear molecules this gives= 6n — 6. The
average energy of a molecule in thermodynamic equilibriufEis,) = %skT. Each degree of freedom of a
molecule has in principle the same energy: phiaciple of equipartition

The rotational and vibrational energy of a molecule are:

h2

Wrot = ﬁ

I(l+1)=DBl(l+1), Wb = (v+ L)hwy

The vibrational levels are excited A" ~ hw, the rotational levels of a hetronuclear molecule are excited if
kT =~ 2B. For homonuclear molecules additional selection rules apply so the rotational levels are well coupled
if kT ~ 6B.

7.2 The energy distribution function

The general form of the equilibrium velocity distribution function is
P(vg, vy, v;)dvgdvydv, = P(vg)dvy - P(vy)dvy - P(v,)dv, with

P(v;)dv ! e vf dv
4 i = X s %
ay/m Pl 7a2

wherea = +/2kT/m is the most probable velocitgf a particle. The average velocity is given ky) =
2a/+\/T, and<v2> = %oﬂ. The distribution as a function of the absolute value of the velocity is given by:

dN 4N mv?
dv  a3yT VO T

The general form of the energy distribution function then becomes:

Py = ) (£ e (<) i

wherec(s) is a normalization constant, given by:

1

2l

2. 0dds: s =21+ 1: ¢(s) = N el
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7.3 Pressure on awall

The number of molecules that collides with a wall with surfaceithin a timer is given by:

co m 2T

/// BN — O/ 0/ O/ nAvr cos(0) P(v, 0, p)dvdfdsp

From this follows for the particle flux on the watk = 1n (v). For the pressure on the wall then follows:

2mu cos(0)d> N 2
3
_ ZmYcosiy)e — n(E
d°p = , SOp 3n< )

7.4 The equation of state

If intermolecular forces and the volume of the molecules can be neglected then for gases=frgim (E)
and(E) = 3kT can be derived:

pV =n,RT = %Nm <1)2>

Here,n, is the number ofmolesparticles andV is the total number of particles within volumé. If the own
volume and the intermolecular forces cannot be neglectedahaler Waalequation can be derived:

2

an?
<p—|— V;) (V —bng) = ngRT

There is an isotherme with a horizontal point of inflection. In the Van der Waals equation this corresponds
with thecritical temperature, pressu@ndvolumeof the gas. This is the upper limit of the area of coexistence
between liquid and vapor. Frotp/dV = 0 andd?p/dV? = 0 follows:

8a

cr:m; %r:3bns

a
pcr:ﬁa

For the critical point holdspc, V. cr/RTey = % which differs from the value of 1 which follows from the
general gas law.

Scaled on the critical quantities, with := p/pc,, T* = T /T, andV,: = V,,,/ Vi, o With V,,, := V/n, holds:

(v + s ) O - ) =37

Gases behave the same for equal values of the reduced quantitiesy tifehe corresponding statea virial
expansioris used for even more accurate views:

(1 BT @)

The Boyle temperaturéy is the temperature for which the 2nd virial coefficient is 0. In a Van der Waals gas,
this happens &y = a/Rb. Theinversion temperaturé; = 275.

The equation of state for solids and liquids is given by:

V 1 [0V 1 /oV
— =14+2AT —kpAp=1+ == | A T+=(—=—] A
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7.5 Collisions between molecules

The collision probability of a particle in a gas that is translated over a distanisegiven bynodzx, whereo is
thecross sectionThe mean free path is given By= L with u = \/v? + v3 the relative velocity between
nuo

U1 na\/ﬁl

. - N 1 .
that the average time between two collisions is givernrby ——. If the molecules are approximated by hard
nov

. / 1 1 .
the particles. lfn; < ms holds: X 1+ @, sol = —. If m; = mo holds: ¢ = This means
mo no

spheres the cross section is:= 27 (D? + D3). The average distance between two molecul@s5isn /3.
Collisions between molecules and small particles in a solution result iBrthvenian motion For the average
motion of a particle with radiu® can be derived(z?) = 3 (r?) = kT't/3mnR.

A gas is called &Knudsen gasf ¢ > the dimensions of the gas, something that can easily occur at low
pressures. The equilibrium condition for a vessel which has a hole with sutfatdt for which holds that

0> \/A/mis: niyV/T1 = nay/Ts. Together with the general gas law follows://T1 = p2/v/Ts.

If two plates move along each other at a distasi@dgth velocity w, theviscosityn is given by: F,, = g 2}"’”

The velocity profile between the plates is in that case givewby) = zw,/d. It can be derived thay =
1 ol (v) wherev is thethermal velocity

T, — T

The heat conductance in a non-moving gas is describe%%y:: KA ( ) , Which results in a temper-

ature profilel’(z) = Ty + z(T> — T1) /d. It can be derived that = % '‘mvnl (v) /Na. Also holds:x = Cy 1.
A better expression for can be obtained with thEucken correctionk = (1 4+ 9R/4¢,,v )Cy - 1 with an
error <5%.

7.6 Interaction between molecules

For dipole interaction between molecules can be derivedthat —1/r5. If the distance between two
molecules approaches the molecular diamétex repulsing force between the electron clouds appears. This
force can be described WY,e, ~ exp(—7r) or Viep = +C/r® with 12 < s < 20. This results in the
Lennard-Jonegpotential for intermolecular forces:

o=e|(2)-(2)

with a minimume atr = r,. The following holds:D = 0.89r,,. For the Van der Waals coefficienisandb
and the critical quantities holda:= 5.275N2 D3¢, b = 1.3N5 D3, kTi, = 1.2e and Vi, 1, = 3.9NA D3.

A more simple model for intermolecular forces assumes a potdiitidl = oo for r < D, U(r) = Uy for
D < r < 3D andU(r) = 0forr > 3D. This gives for the potential energy of one moleculg,,;, =

3D
/ U(r)F(r)dr.
D
with F'(r) the spatial distribution function in spherical coordinates, which for a homogeneous distribution is
given by: F(r)dr = dnnr2dr.
Some useful mathematical relations are:

oo oo oo
_ 22 2n)\/m .2
x"e dr =n! *e™ dy = @n)tv/r , p? e dy = Ln!
nlo2n+1 2
0 0 0




Chapter 8

Thermodynamics

8.1 Mathematical introduction

If there exists a relatiorf (x, y, z) = 0 between 3 variables, one can write:= z(y, ), y = y(«x, z) and
z = z(z,y). Thetotal differentialdz of z is than given by:

0z 0z
= (), (5).0

By writing this also fordz anddy it can be obtained that

). (). ),

Becauselz is a total differential hold§ dz = 0.

A homogeneous function of degree obeys: c™ F(x,y,2) = F(ex,ey,ez). For such a function Euler’s

theorem applies:

F( )— a£+ 8E+ aj
m T, Y,z —l’am yay Zaz

8.2 Definitions

. . - 1
e The isochoric pressure coefficienty = — @
p \oT )

e The isothermal compressibility: = f% <2‘;)T

. . - 1
e The isobaric volume coefficient, = v (Z‘;)
p

e The adiabatic compressibilitycs = —é (86V>
P /s

For an ideal gas followsy, = 1/T, kr = 1/p andfy = —1/V.

8.3 Thermal heat capacity

e The specific heat at constakitis: Cx =T %
oT ) «

H
o The specific heat at constant pressurg:= ((ZT)
p

e The specific heat at constant voluntg;, = (aU)
oT )+,
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For an ideal gas holds?,,, — C,,vv = R. Further, if the temperature is high enough to thermalize all internal
rotational and vibrational degrees of freedom, hotds: = 1 sR. HenceC,, = 1 (s+2)R. For their ratio now
follows v = (2 + s)/s. For a lowerI’ one needs only to consider the thermalized degrees of freedom. For a
Van der Waals gas holds?,,;y = 3sR + ap/RT?.

dp ov av\? [ ap
—Cy=T|=) (=) =-T(=) (=] >
cr-co=1(57), <8T)p (8T>,,(6V —
Becausddp/0V)r is always< 0, the following is always validC, > Cy . If the coefficient of expansion is
0,C, = Cy, and also af” = OK.

In general holds:

8.4 The laws of thermodynamics

The zeroth law states that heat flows from higher to lower temperatures. The first law is the conservation of
energy. For a closed system holdg:= AU + W, whereQ is the total added heal}’ the work done and

AU the difference in the internal energy. In differential form this becord€s= dU + @, whered means

that the it is not a differential of a quantity of state. For a quasi-static process flids= pdV. So for a
reversible process holdg(Q) = dU + pdV'.

For an open (flowing) system the first law @:= AH + W + AEy, + AEL0. One can extract an amount
of work W, from the system or add’; = —W¥; to the system.

The second law states: for a closed system there exists an additive q3anttied the entropy, the differential
of which has the following property:

aQ
>
s > T

If the only processes occurring are reversible holds: = @Q,.,/T. So, the entropy difference after a
reversible process is:
2
d rev
85— 8 = / Doy
1

dQrev _
T = 0.

So, for a reversible cycle hoId?{

aq

o,
T

For an irreversible cycle hold?{

The third law of thermodynamics is (Nernst):

From this it can be concluded that the thermal heat capaeity if T — 0, so absolute zero temperature
cannot be reached by cooling through a finite number of steps.

8.5 State functions and Maxwell relations

The quantities of state and their differentials are:

Internal energy: U dU =T4dS — pdV
Enthalpy: H=U+pV dH =TdS + Vdp
Free energy: F=U-TS dF = —=SdT — pdV
Gibbs free enthalpy: G=H —-TS dG = —-SdT + Vdp
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From this one can derive Maxwell’s relations:

OTN __(Op\ (TN _ (VN - (0p) _(05\ (v _ (s
oV S_ 9s )y’ Op S_ GSP’ 0TV_ ov )’ 8Tp_ op )
From the total differential and the definitions@f, andC,, it can be derived that:

dp °)%
TdS = T+T | — dTdS = T—-T|—
dS = CydT + <8T> , dV and TdS = C\pd <8T>p dp

For an ideal gas also holds:

_ T 14 _ Ty _ p /
Sm—Cvln(To>+Rln(V0>+Smo andSm—C’pln<TO> Rln(p0>+Smo

Helmholtz’ equations are:

ou\ [ dp oH\ . (9V
@), =), (@), =v -+ (),

for an enlarged surface holdgV,., = —ydA, with ~ the surface tension. From this follows:
_(oUY _(oF
7=\oa), " \oa),

8.6 Processes

Work done

Theefficiencyn of a process is given by; = Heat added

Cold delivered

TheCold factoré of a cooling down process is given hy= “Work added

Reversible adiabatic processes

For adiabatic processes holdd: = U; — Us. For reversible adiabatic processes holds Poisson’s equation:
with v = C,/Cy one gets thapV” =constant. Also holdsT'V?~! =constant and"p'~ =constant.
Adiabatics exhibit a greater steepngsg diagram than isothermics because- 1.

Isobaric processes
Here holds:Hy, — Hy = ff CpdT. For areversible isobaric process holds — Hy = Qrev.
The throttle process

This is also called thdoule-Kelvineffect and is an adiabatic expansion of a gas through a porous material or a
small opening. Herd/ is a conserved quantity, amtd > 0. In general this is accompanied with a change in
temperature. The quantity which is important here istthettle coefficient

oT 1 ov
== = |T=) —
= (5,5 P (6r),
Theinversion temperatures the temperature where an adiabatically expanding gas keeps the same tempera-

ture. If T > T; the gas heats up, f < T; the gas cools dowrll; = 2T, with for Tg: [0(pV')/0p]r = 0.
The throttle process is e.g. applied in refridgerators.

The Carnotprocess

The system undergoes a reversible cycle with 2 isothemics and 2 adiabatics:
1. Isothermic expansion df. The system absorbs a h&at from the reservoir.

2. Adiabatic expansion with a temperature drofo




36 Physics Formulary by ir. J.C.A. Wevers

3. Isothermic compression &}, removing@- from the system.
4. Adiabatic compression tb; .

The efficiency for Carnot’s process is:

|Q2] 1 Tz

Q.

The Carnot efficiencyc is the maximal efficiency at which a heat machine can operate. If the process is
applied in reverse order and the system performs a wadik the cold factor is given by:

Qo] @ T

SSW T, T T -

The Stirling process

Stirling’s cycle exists of 2 isothermics and 2 isochorics. The efficiency in the ideal case is the same as for
Carnot’s cycle.

8.7 Maximal work

Consider a system that changes from state 1 into state 2, with the temperature and pressure of the surroundings
given byT, andpy. The maximum work which can be obtained from this change is, when all processes are
reversible:

1. Closed systemiV.x = (U1 — UQ) — T()(Sl — SQ) +p0(V1 — Vé)
2. Open systemiVy,ax = (H1 — Ha) — To(S1 — S2) — AEkin — AEps.

The minimal work needed to attain a certain staté¥%;;, = —Wiax-

8.8 Phase transitions

Phase transitions are isothermic and isobari¢/Gce= 0. When the phases are indicateddays and+~y holds:
Ge =GP and

_ga _gB _ "o
ASm = 55 = 5 =

whererg,, is the transition heat of phageto phasen andTj is the transition temperature. The following
holds:rg, = rap andrg, = ryq — ryg. Further

oG
Sy = <m>
or ),

soG has a twist in the transition point. In a two phase system Clapeyron’s equation is valid:

dp Sy —=Sp  7Tpa
daT' Ve -Vy (Ve —Va)T

m

For an ideal gas one finds for the vapor line at some distance from the critical point:
p =poe /AT

There exist also phase transitions with, = 0. For those there will occur only a discontinuity in the second
derivates of7,,. These second-order transitions appearganization phenomena

A phase-change of the 3rd order, so with @ G,,,/9T?], non continuous arises e.g. when ferromagnetic
iron changes to the paramagnetic state.
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8.9 Thermodynamic potential

When the number of particles within a system changes this number becomes a third quantity of state. Because
addition of matter usually takes place at constaand?’, G is the relevant quantity. If a system exists of more
components this becomes:

dG = —SdT + Vdp+ Y _ pidn;

wherey = <8G

3 ) is called the thermodynamic potential. This ipartial quantity. ForV holds:
% p,T,nj

c oV c
V= an (M)nj,p,T - ;nlm

i=1

whereV; is the partial volume of componentThe following holds:

‘/m, = sz‘/z
0 = > xdV;

wherez; = n;/n is the molar fraction of componeit The molar volume of a mixture of two components
can be a concave line inl&-z, diagram: the mixing contracts the volume.

The thermodynamic potentials are not independent in a multiple-phase system. It can be derived that
> nidp; = —SdT + Vdp, this gives at constaptandT”: > x;du; = 0 (Gibbs-Duhmen).

Each component has as mugls as there are phases. The number of free parameters in a system with
components ang different phases is given bfy=c + 2 — p.

8.10 Ideal mixtures
For a mixture ofn components holds (the indéis the value for the pure component):

§ 0 § 0 § 0
Umixture = anz ) Hmixture = nqu ) Smixture =n I}SZ + ASmix

where for ideal gases hold&S,,;x = —nR > x; In(x;).

For the thermodynamic potentials holgs:= u{ + RT In(z;) < p9. A mixture of two liquids is rarely ideal:

this is usually only the case for chemically related components or isotopes. In spite of this holds Raoult’s law
for the vapour pressure holds for many binary mixtungs= x;p? = y;p. Here isz; the fraction of theith
component in liquid phase ang the fraction of theth component in gas phase.

A solution of one component in another gives rise to an increase in the boilingA®inand a decrease of
the freezing poinAT;. Forzs < 1 holds:

RT? RT?2
AT = —Xzy | ATy = —"5g,
T'Ba LR7e]

with rg, the evaporation heat ands < 0 the melting heat. For thesmotic pressurél of a solution holds:
HVT?L]. = .’L‘QRT

8.11 Conditions for equilibrium

When a system evolves towards equilibrium the only changes that are possible are those for which holds:
(dS)uy > 0o0r(dU)sy <0or(dH)s, < 0or (dF)py < 0or (dG)r, < 0. In equilibrium for each
component holdsu? = u? = 1.
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8.12 Statistical basis for thermodynamics

The number of possibilitie® to distribute/V particles orm possible energy levels, each witlydold degen-
eracy is called the thermodynamic probability and is given by:

P:N!H%

The most probable distribution, that with the maximum valueffois theequilibrium state When Stirling’s
equationIn(n!) ~ nln(n) — n is used, one finds for a discrete system the Maxwell-Boltzmann distribution.
The occupation numbers in equilibrium are then given by:

mo= N e (Wi
i = Zgz p kT
Thestate sun¥ is a normalization constant, given h¥:= > g; exp(—W; /kT). For an ideal gas holds:

V (2rmkT)>/?

Z = %

The entropy can then be defined @S:= k In(P) |. For a system in thermodynamic equilibrium this becomes:

N
SZU-I-kNln(Z)—l—k’N%U—Fkln(Z)

' _ ( 2rmkT)3/2
For an ideal gas, with’ = 3T then holds:S = kN + kN In (W)

8.13 Application to other systems

Thermodynamics can be applied to other systems than gases and liquids. To do this thd/termpdV has
to be replaced with the correct work term, lif&V,., = — Fdl for the stretching of a wirefW,., = —vydA
for the expansion of a soap bubbled@i.., = —BdM for a magnetic system.

A rotating, non-charged black hole has a temparaturg ef iic/8tkm. It has an entropy = Akc?/4hx
with A the area of its event horizon. For a Schwarzschild black Hoie given by A = 16mm?2. Hawkings
area theorem states thét /dt > 0.

Hence, the lifetime of a black hote m3.




Chapter 9

Transport phenomena

9.1 Mathematical introduction

An important relation is: ifX is a quantity of a volume element which travels from positito 7+ d in a
time dt, the total differentiali X is then given by:

0X 0X 0X 0X dX 0X 0X 0X 0X
dX = Gpdrt g vt grdet Grdl = S = gp vt g T v T gy

This results in general tg:— = —

From this follows that also holds %// Xd¥V = %/// Xd*V + #X(ﬁ ii)d*A

where the volumé’ is surrounded by surfacé. Some properties of th€ operator are:

div(¢t') = ¢divd 4 grad¢ - ¥ rot(¢v) = ¢rot¥ + (grad¢g) x ¥ rot grade = 0
div(@ x ¥') =T - (rotii) — @ - (rot¥)  rot rotv = grad dive — V2§ div rot¥ =0
div grad¢ = V2¢ V25 = (V2vy, V2, V203)

Here,v'is an arbitrary vector field ang an arbitrary scalar field. Some important integral theorems are:
Gauss: ﬁ(ﬁ- ii)d*A = ///(divﬁ)cﬁv
Stokes for a scalar field%(qﬁ - &)ds = //(ﬁ x grad¢)d? A
Stokes for a vector field?{( ey )ds = // (rotv - 1)

This results in: #(mtﬁ- ii)d*A =0

Ostrogradsky: ﬁ x §)d*A / / / (rot¥)d> A
Jonea= [[[ sy

Here, the orientable surfadg d*A is limited by the Jordan curvg ds.

9.2 Conservation laws
On a volume work two types of forces:
1. The forcef, on each volume element. For gravity holds:= og.

2. Surface forces working only on the marginsFor these holds: = 7 T, whereT is thestress tensor
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T can be split in a parpl representing the normal tensions and a @artepresenting the shear stresses:
T = T’ + pl, wherel is the unit tensor. When viscous aspects can be ignored holds=digradp.

When the flow velocity ig/ at positioni” holds on positior + d:
o(dr) = U(F) + dr - (grad?)
~—~—~ —_——
translation  rotation, deformation, dilatation

The quantityL:=grad’/ can be splitin a symmetric pabtand an antisymmetric paW. L = D + W with

L 1 (9’01' 8vj L 1 6vi 81}]‘
D” T 2 (8:10] + 8CCZ> ’ Wl T 2 (8@ 811>

When the rotation ovorticity & = rot¢ is introduced holdsW;; = %aijkwk. @ represents the local rotation

velocity: dr - W = $w x dr.

For aNewtonian liquidholds: T’ = 25D. Here,n is the dynamical viscosity. This is related to the shear stress
7 by:

o 31}1

=" ax]-

Tij

For compressible media can be statdd: = ('dive’)l + 2nD. From equating the thermodynamical and
mechanical pressure it followsn’ + 2, = 0. If the viscosity is constant holdgiv(2D) = V27 + grad div{.

The conservation laws for mass, momentum and energy for continuous media can be written in both integral
and differential form. They are:

Integral notation:

1. Conservation of massg—t /// od®V + #Q(*. ii)d*A =0

2. Conservation of momentur% /// 0Td3V + #gﬁ(ﬁ‘ ii)d*A = // fod®V + ﬂﬁ -Td?A

3. Conservation of energygt ///(%v2 +e)od*V + #(%UQ +e)o(7-7)d*A =

—ﬂ(*~ﬁ)d2A+///(U~ﬁ)d3V+ﬁ(ﬁ-ﬁT)dzA

1. Conservation of massg—f +div- (o7) =0

Differential notation:

—

: 0 > >
2. Conservation of momentur@:a—i + (o V)T = fo +divT = fy — gradp + divT’

. ds de pdp .o ’
3. Conservation of energpl’ — = p— — —— = —d T:D
S TR TR A

Here, ¢ is the internal energy per unit of maBym ands is the entropy per unit of mas/m. ¢ = —xkVT is

the heat flow. Further holds:
oF B Oe T— oFE B Oe

9V 9lje’ T 9SS 0s

Oe oh
o= (5r), = o= (),

with h = H/m the enthalpy per unit of mass.

p:

SO
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From this one can derive thdavier-Stokeequations for an incompressible, viscous and heat-conducting
medium:

divi = 0
ov . R o 2
0 To(T-V)T = of —gradp+ V70
oT . 9
QCE—FQC(U-V)T = kV*T+27D:D

with C the thermal heat capacity. The foreon an object within a flow, when viscous effects are limited to
the boundary layer, can be obtained using the momentum law. If a sutfaoerounds the object outside the
boundary layer holds:

Fo —#[pﬁ—l—gﬁ(ﬁﬁ)]dQA

9.3 Bernoulli’'s equations
Starting with the momentum equation one can find for a non-viscous medium for stationary flows, with
(- grad)v = igrad(v?) + (rot¥) x @

and the potential equatigh= —grad(gh) that:
d, .
%uQ +gh+ / P _ constant along a streamline
o

For compressible flows holds}v2 + gh + p/e =constant along a line of flow. If also holds ot 0 and
the entropy is equal on each streamline heyd% + gh + [ dp/o =constant everywhere. For incompressible
flows this becomes%v2 + gh + p/ o =constant everywhere. For ideal gases with constgrandCy, holds,

with v = C,,/Cy
2

1,2 Y P _ 1.2 ¢
507+ = =350+ = constant
e A

With a velocity potential defined by = grad¢ holds for instationary flows:

3} d
£ + 30>+ gh+ / ?p = constant everywhere

9.4 Characterising of flows by dimensionless numbers

The advantage of dimensionless numbers is that they make model experiments possible: one has to make
the dimensionless numbers which are important for the specific experiment equal for both model and the
real situation. One can also deduce functional equalities without solving the differential equations. Some
dimensionless numbers are given by:

L 2
Strouhal: Sr = vk Froude: Fr = v Mach: Ma = v
v gL c
. , L L
Fourier: Fo—= —_  Peclet: Pe= — Reynolds: Re = i
wlL? a v
v La v2
Prandtl: Pr= — Nusselt: Nu = —  Eckert: Ec= ——
a K cAT

Here,v = n/p is thekinematic viscositye is the speed of sound ardis a characteristic length of the system.
o follows from the equation for heat transpeft, T’ = o AT anda = k/gc is the thermal diffusion coefficient.

These numbers can be interpreted as follows:

e Re: (stationary inertial forces)/(viscous forces)
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e Sr: (non-stationary inertial forces)/(stationary inertial forces)
e Fr: (stationary inertial forces)/(gravity)

e Fo: (heat conductance)/(non-stationary change in enthalpy)
e Pe: (convective heat transport)/(heat conductance)

e Ec: (viscous dissipation)/(convective heat transport)

e Ma: (velocity)/(speed of sound): objects moving faster than approximately Ma = 0,8 produce shock-
waves which propagate with an andlewith the velocity of the object. For this angle holds Ma
1/ arctan(6).

e Prand Nu are related to specific materials.

Now, the dimensionless Navier-Stokes equation becomesithz/L, 7' = #/V, grad = Lgrad,V'? =
L?V? andt’ = tw: o5 B s

v —/ Nzl / i v v
5 + (0" - VU = —grad'p + T + o

Sr

9.5 Tube flows

For tube flows holds: they are laminar if Re2300 with dimension of length the diameter of the tube, and
turbulent if Re is larger. For an incompressible laminar flow through a straight, circular tube holds for the
velocity profile:

_ Ldp, 2
or) =~ g (R =)
R
m™dp 4
For the volume flow holds®y = [ v(r)27xrdr = —— —R
8n dz

0
Theentrance lengttL, is given by:

1. 500 < Rep < 2300: L./2R = 0.056Rep

2. Re > 2300: L./2R ~ 50

4R3a\/77@
3 dx

For flows at a small Re holds7p = V2% and diw = 0. For the total force on a sphere with radilisn a
flow then holds:F' = 67 Rv. For large Re holds for the force on a surfatef’ = %CWAgv?

For gas transport at low pressures (Knudsen-gas) hdlgds=

9.6 Potential theory

ThecirculationT is defined asl“:j{ (T &) ds—// rotv’) - fid* A = // i)d*A

For non viscous media, if = p(o) and all forces are conservative, Kelvin's theorem can be derived:

dar

— =0

dt
For rotationless flows a velocity potentigl= grad¢ can be introduced. In the incompressible case follows
from conservation of masg€?¢ = 0. For a 2-dimensional flow a flow function(z, y) can be defined: with
d 4 g the amount of liquid flowing through a curgebetween the points A and B:

oo

(vedy — vydz)

31
Cb\m
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and the definitions, = 9v/dy, v, = —0y/dz holds: ® 45 = ¢(B) — ¥ (A). In general holds:

Py %
or?2  oy2 7

In polar coordinates holds:
_1 _ 94

oy 199

R T T T
For source flows with powe® in (z,y) = (0,0) holds: ¢ = 22 In(r) so thatv, = Q/27r, vy = 0.
7T

For a dipole of strengtt) in 2 = a and strength-Q in = = —a follows from superposition = —Qazx /271>
whereQua is the dipole strength. For a vortex holds= I"0/2.

If an object is surrounded by an uniform main flow with= ve,, and such a large Re that viscous effects are
limited to the boundary layer holdg?, = 0 andF, = —pI'v. The statement thaf, = 0 is d’Alembert’s
paradox and originates from the neglection of viscous effects. Thgliis also created by becausd™ # 0

due to viscous effects. Henxe rotating bodies also create a force perpendicular to their direction of motion: the
Magnus effect

9.7 Boundary layers

9.7.1 Flow boundary layers

If for the thickness of the boundary layer holds« L holds:§ ~ L/+/Re. With v, the velocity of the main
flow it follows for the velocityv, L the surfacew,L ~ év... Blasius’ equation for the boundary layer is,
with v, /vee = f(y/6): 2f" + ff” = 0 with boundary conditiong (0) = f/(0) = 0, f'(c0) = 1. From this
follows: Cyy = 0.664 Re; /2.

dv T

The momentum theorem of Von Karman for the boundary Iayeglrs(:ﬁﬁ) + 6*11% = .

where the displacement thicknegs and the momentum thicknegs? are given by:

(oo} (oo} 8
Iv? = /(v — Vg )Ugdy , v = /(v — v, )dy and 1 = —n Uz
Y |,_o
0 0 Y
. Qg L . dp 12nve
The boundary layer is released from the surfa e% = (. This is equivalent Wlthd— =5
Y/ y=0 T

9.7.2 Temperature boundary layers

If the thickness of the temperature boundary layer< L holds: 1. IfPr < 1: § /67 ~ +/Pr.
2.1fPr>1:6/67 ~ V/Pr.

9.8 Heat conductance
For non-stationairy heat conductance in one dimension without flow holds:

oT k O°T

ot oc Oz

where® is a source term. [ = 0 the solutions for harmonic oscillationsat= 0 are:

T3z~ o® (-p) s (et- 5)
TmaxfTOC = exXp D COS | w D
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with D = /2k/wpc. At z = wD the temperature variation is in anti-phase with the surface. The one-

dimensional solution a = 0 is
0= 5 e (1)
T,t) = exp | ——
2vVmat P 4at

This is mathematical equivalent to the diffusion problem:

on
— =DV’n+P—-A
5 Vn +

whereP is the production of andl the discharge of particles. The flow density= —DVn.

9.9 Turbulence

The time scale of turbulent velocity variationsis of the order of:r; = 7v/Re/Ma? with 7 the molecular
time scale. For the velocity of the particles holdgt) = (v) 4+ v'(¢) with (v'(¢)) = 0. The Navier-Stokes
equation now becomes:

8;? + ((T) - V) (7)) = —v;m + vV (T) + %
whereSg,;; = —o (viv;) is the turbulent stress tensor. Boussinesq’s assumption;is= —o <v§v§->. Itis

stated that, analogous to Newtonian media: = 201, (D). Near a boundary holds; = 0, far away of a
boundary holdsy; ~ vRe.

9.10 Self organization

For a (semi) two-dimensional flow hold%% = %: + J(w,¥) = vV3w

With J(w, ) the Jacobian. So i# = 0, w is conserved. Further, the kinetic enefgyA and the enstrofy
are conserved: with = V x (k)

o0

E~ (V)2 ~ /E(k,t)dk = constant, V ~ (V%¢)? ~ /kQE(k,t)dk = constant
0 0

From this follows that in a two-dimensional flow the energy flux goes towards large valiesawer struc-
tures become larger at the expanse of smaller ones. In three-dimensional flows the situation is just the opposite.
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Quantum physics

10.1 Introduction to quantum physics
10.1.1 Black body radiation

Planck’s law for the energy distribution for the radiation of a black body is:

Sthf3 1 8mhc 1
w(f) = 3 ehf/KT _ 7 ° w(A) = A5 ehc/ART _q

Stefan-Boltzmann's law for the total power density can be derived from ihis: AcT*. Wien’s law for the
maximum can also be derived from thiBA,.x = kw.

10.1.2 The Compton effect

For the wavelength of scattered light, if light is considered to exist of particles, can be derived:

h
N =X+—(1-cos) =X+ Ac(1 —cosh)
me

10.1.3 Electron diffraction

Diffraction of electrons at a crystal can be explained by assuming that particles have a wave character with
wavelength\ = h/p. This wavelength is called the Broglie-wavelength.

10.2 Wave functions

The wave character of particles is described by a wavefunetioThis wavefunction can be described in
normal or momentum space. Both definitions are each others Fourier transform:

b(kt) = [Wane*ds and W) = - [ @k 0etds

These waves define a particle with group veloeity= p/m and energyf = hw.

The wavefunction can be interpreted as a measure for the probabitityfind a particle somewhere (Born):
P = |¢|2d®V. The expectation valugf) of a quantityf of a system is given by:

/// VFYEV, {f(0) = /// * f2d°V,,

This is also written agf(t)) = (®|f|®). The normalizing condition for wavefunctions follows from this:
(@[@) = (¥|¥) = 1.
10.3 Operators in quantum physics

In guantum mechanics, classical quantities are translated into operators. These operators are hermitian because
their eigenvalues must be real:

/ ¥t APV = / () PV

A
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Whenu,, is the eigenfunction of the eigenvalue equatibh = oV for eigenvalue:,,, ¥ can be expanded into
a basis of eigenfunctionst = 3" ¢, u,. If this basis is taken orthonormal, then follows for the coefficients:

cn = (uy|¥). If the systemis in a state describedbythe chance to find eigenvalag when measuringl is
given by|c,|? in the discrete part of the spectrum dag|?da in the continuous part of the spectrum between
a anda + da. Thematrix elementd;; is given by: 4;; = (u;|Alu;). Becausd AB);; = (uw;|ABlu;) =
(wi) A% Jun) (uy|Bluy) holds: Y |uy,) (u, | = 1.
The time-dependence of an operator is given by (Heisenberg):

dA  0A | [A H]

dt Ot ih
with [A, B] = AB — BA thecommutatorof A and B. For hermitian operators the commutator is always

complex. If[4, B] = 0, the operatorsl and B have a common set of eigenfunctions. By applying this,to
andz follows (Ehrenfest)md? (z), /dt* = — (dU(z)/dx).

The first order approximatio(¥'(x)), ~ F((x)), with F' = —dU /dx represents the classical equation.

Before the addition of quantummechanical operators which are a product of other operators, they should be
made symmetrical: a classical produtB becomes; (AB + BA).

10.4 The uncertainty principle
If the uncertaintyA A in A is defined as(AA)? = (] Ao, — (A) |20) = (A2) — (A)? it follows:
AA-AB > 3| (][4, BllY) |
From this follows:AE - At > 17, and becausg, p,] = if holds: Ap, - Az > 1h, andAL, - AL, > IhL..

10.5 The Schbdinger equation

The momentum operator is given by,, = —ihV. The position operator isx,, = ihAV,. The energy
operator is given byE,, = ihd/0t. The Hamiltonian of a particle with mass, potential energy/ and total
energyFE is given by: H = p?/2m + U. From Hvy) = E+ then follows theSchiddinger equation

h?_, L O
—o VA + U = By = ih—

The linear combination of the solutions of this equation give the general solution. In one dimension it is:

vy = (S [ d8) cBrusto e (<)

The current density is given by:J = %(w*w AL
The following conservation law holdsa:Pé%t) = —VJ(z,1)

10.6 Parity

The parity operator in one dimension is given®By (z) = ¢ (—z). If the wavefunction is split in even and
odd functions, it can be expanded into eigenfunction®of

Y(@) = 5(¥(2) +9(-2)) + 5(¥(2) — (-2))

even: ¢+ odd: 1/1_

[P, H] = 0. The functions)™ = 1(1 4+ P)y(z,t) andy~ = (1 — P)y(x, t) both satisfy the Sclidinger
equation. Hence, parity is a conserved quantity.
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10.7 The tunnel effect

The wavefunction of a particle in am high potential step fromx = 0 to z = a is given byy(z) =
a~'/2sin(kx). The energylevels are given @y, = n?h?/8a?m.

If the wavefunction with energy/ meets a potential well oV, > W the wavefunction will, unlike the
classical case, be non-zero within the potential well. If 1, 2 and 3 are the areas in front, within and behind the
potential well, holds:

wl — Aeikx _|_Be7ik:c , wQ _ Ceik’x _‘_Defik’a: , 77[}3 — A/eikz
with &2 = 2m(W — W) /h* andk?® = 2mWW. Using the boundary conditions requiring continuity: =
continuous an@/0x =continuous att = 0 andx = a gives B, C and D and A’ expressed id. The

amplitudeT of the transmitted wave is defined By = |A’|?/|A]%. If W > W, and2a = n\ = 2mn/k’
holds:T = 1.

10.8 The harmonic oscillator

For a harmonic oscillator holdé! = %bx2 andw? = b/m. The Hamiltonian# is then given by:

2

H= r + %mwaQ = %hw +wATA
2m
with . .
p p
A= +/Ltmwr + and At = \/Lmwz —
2 V2mw 2 V2mw

A # AT is non hermitian.[A, AT] = h and[A, H] = hwA. Ais a so calledaising ladder operator AT a
lowering ladder operatarH Aur, = (F — hw)Aug. There is an eigenfunctiom, for which holds: Aug = 0.
The energy in this ground stateéiﬁw: the zero point energy. For the normalized eigenfunctions follows:

1 < At )n with W < mwx2>
Up = ——= | —= | wu ug = +/ —exp | —
ol \/ﬁ 0 0 s p

with E,, = (3 + n)hw.

10.9 Angular momentum

For the angular momentum operatdréolds: L., L?] = [L., H] = [L?, H] = 0. However, cyclically holds:
[Ls, Ly] = thL,. Not all components of. can be known at the same time with arbitrary accuracy. Izor

holds: 5 5 5
L,=—th—=—th|o— —y—
! Oy ! <x8y y&r)
The ladder operatots,. are defined byL, = L, &+ iL,. Now holds:L? = L, L_ + L? — hL.. Further,

Ly = het® <:|:880 +icot(9)£p>
From[L,,L.] = —hL, follows: L,(LY}) = (m+ DA(LyYm).
From[L_,L.] = RL_ follows: L.(L_Y},) = (m — 1)A(L_Y},,).
From[L?, L] = 0 follows: L?(L+Y},) = I(1 + )R (L Yim).

Becausel., andL, are hermitian (this implied|, = L) and|L.Y;,,|[2 > 0 follows: (I + 1) — m? —m >
0 = —I < m < [. Further follows that has to be integral or half-integral. Half-odd integral values give no
unigue solution) and are therefore dismissed.
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10.10 Spin

For the spin operators are defined by their commutation relatiSpss, ] = ih.S.. Because the spin operators
do not act in the physical space, y, z) the uniqueness of the wavefunction is not a criterium here: also half
odd-integer values are allowed for the spin. Becdilis&€] = 0 spin and angular momentum operators do not

have a common set of eigenfunctions. The spin operators are givﬁnﬁaihé, with

= (01 (0 =i (1 0
de=\ 10 )% =i o 9270 -1

The eigenstates f, are calledspinors x = a;x+ + a—x—, wherex; = (1,0) represents the state with
spinup 6, = %h) andx_ = (0, 1) represents the state with spin dow§) (= —%h). Then the probability
to find spin up after a measurement is given/dy|? and the chance to find spin down is given|by |%. Of
course holdsa |2 + |a_|? = 1.

Quu
Qul

The electron will have an intrinsic magnetic dipole momahtdue to its spin, given by\Z/ = —egS§/2m,
with gs = 2(1 + /27 + - - ) the gyromagnetic ratio. In the presence of an external magnetic field this gives
a potential energyy = —M - B. The Schodinger equation then becomes (becaiggox; = 0):

ox(t) _egsh_ =

ih 5 = am Bx(t)

with & = (éx, (?y, éz). If B = Be. there are two eigenvalues for this problegy: for E = +egghB/4m =
+hw. So the general solution is given lyy= (ae~"*, be™*). From this can be derivedS,) = 17 cos(2wt)
and(S,) = $hsin(2wt). Thus the spin precesses about thexis with frequencyw. This causes the normal
Zeeman splitting of spectral lines.

The potential operator for two particles with sp\'tr%h is given by:

(1 SVa) = Valr) + A(IS(S + 1) - 3

This makes it possible for two states to exiSt= 1 (triplet) or.S = 0 (Singlet).

V(r)=Vi(r) +

10.11 The Dirac formalism

If the operators fop and E are substituted in the relativistic equati6il = m2c* + p?c?, theKlein-Gordon

equation is found:
1 02 mac?
<V2 - == - 0) (&, t) =0

1 82 mic? 0 moc 0 moc
V2o 0 —_ — 4
2or T B2 {” 9o R } {7" oz, ~ h }
where the Dirac matricegare given by{~vx,v.} = 7. + 7.7 = 20, (In general relativity this becomes
2¢x,). From this it can be derived that theare hermitiant x 4 matrices given by:

. 0 —iog (T 0
Ve = i, 0 y Y4 = 0 I

With this, the Dirac equation becomes:

0 moc oo
(%\ax)\ + ﬁ) Y(E,t) =0

wherey(z) = (¢1(2), ¥2(2), ¥3(z), Pa(x)) is a spinor.
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10.12 Atomic physics

10.12.1 Solutions

The solutions of the Schdinger equation in spherical coordinates if the potential energy is a function of
alone can be written as(r, 0, ¢) = Ry (1) Y1,m, (6, ©) Xm,, With

ClnL
V2T

For an atom or ion with one electron hold3;,,, (p) = Cime™/2p' L2 F1  (p)

Yim = P/™(cos 0)e"™¢

with p = 2rZ/nag with ag = goh? /mm.e?. TheL{ are the associated Laguere functions andRffeare the
associated Legendre polynomials:

\
Pllm‘(x) =(1- xQ)m/dei [(x2 - 1)l] , LM (x) = =) m)!e_lx_m e (e™*a™)

n—1
The parity of these solutions {s-1)’. The functions ar@ >~ (21 + 1) = 2n?-folded degenerated.
=0

10.12.2 Eigenvalue equations

The eigenvalue equations for an atom or ion with with one electron are:

[ Equation | Eigenvalue | Range |
Hoptp = E E, = pe*Z%/8¢2h*n? | n > 1
L.opYim = LYy | L, = mih -1 <m <l
L2 Yim = LY | L2 =1(1+1)R° l<n
SzopX = 82X S. =msh me = +1
Seox = 5%x 52 = s(s+ 1)h? s=1

10.12.3 Spin-orbit interaction

The total momentum is given bJ =L + M. The total magnetic dipole moment of an electron is then
M = ML + Ms = (e/2me)(L + gSS) wheregs = 2.0023 is the gyromagnetic ratio of the electron.
Further holds:J2 = L2 + S2 + 2L - § = L2 + 52 + 2L.S. + L. S_ + L_S,. J has quantum numbeys
with possible valueg = [ + % with 25 + 1 possiblez-componentsi; € {—j, ..,0, .., 7}). If the interaction
energy betweey andL is small it can be stated thak = E,, + Es;, = E,, + aS - L. It can then be derived
that:

B |E, | Z%a?

SRRl 1)+ L)

After a relativistic correction this becomes:

E,1Z2%a% [ 3 1
E:En_|_|‘|a<_. 1>
n 4n j+ts

Thefine structurdn atomic spectra arises from this. Wiglh = 2 follows for the average magnetic moment:
M,y = —(e/2m¢)ghJ, whereg is the Lan@-factor:

S.J JG+1) +s(s+1)—1(1+1)
9=1+"7 + 2+ 1)

For atoms with more than one electron the following limiting situations occur:
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1. L — S coupling: for small atoms the electrostatic interaction is dominant and the state can be char-

acterized byL, S, J,my. J € {|[L-S|,...,.L+ S —1,L+ S} andm; € {—J,...,J —1,J}. The
spectroscopic notation for this interactionis:1 L ;. 25 + 1 is the multiplicity of a multiplet.

2. j — j coupling: for larger atoms the electrostatic interaction is smaller that the; interaction of
an electron. The state is characterizedjpy.j,., J, m; where only thej; of the not completely filled
subshells are to be taken into account.

The energy difference for larger atoms when placed in a magnetic fielNis= gugm ;B whereg is the
Lance factor. For a transition between two singlet states the line splits in 3 pari&pigr= —1,0 4 1. This
results in the normal Zeeman effect. At higt$ethe line splits up in more parts: the anomalous Zeeman effect.

Interaction with the spin of the nucleus gives the hyperfine structure.

10.12.4 Selection rules

For the dipole transition matrix elements followss ~ |(lamgz|E - 7|lymy)|. Conservation of angular mo-
mentum demands that for the transition of an electron holdsXhat +1.

For an atom wheré — S coupling is dominant further holdAS = 0 (but not strict),AL = 0, +1, AJ =
0, +1 except forJ = 0 — J = 0 transitionsAm ; = 0, =1, but Am ; = 0 is forbidden ifAJ = 0.

For an atom wherg — j coupling is dominant further holds: for the jumping electron holds, exéépt +1,
also: Aj = 0,+1, and for all other electronsA; = 0. For the total atom holdsAJ = 0,+1 but no
J =0 — J = 0transitions and\m ; = 0, £1, butAm ; = 0 is forbidden ifAJ = 0.

10.13 Interaction with electromagnetic fields

The Hamiltonian of an electron in an electromagnetic field is given by:

H= i(w eA)? —eV = —’fw + B L+ C g ey
2 P 2 2u 2
wherey is the reduced mass of the system. The termd? can usually be neglected, except for very strong
fields or macroscopic motions. F& = Be, it is given bye? B?(z? + y2)/8u.

When a gauge transformatiotf = A — Vf, V' =V +0f/0tis applied to the potentials the wavefunction
is also transformed according t6 = ve’c//" with ge the charge of the particle. Becauge= f(z, ), this

is called alocal gauge transformation, in contrast withgbobal gauge transformation which can always be
applied.

10.14 Perturbation theory

10.14.1 Time-independent perturbation theory

To solve the equatiotH, + A\H1)v,, = E, 1, one has to find the eigenfunctionsiédf= H,+ AH;. Suppose
that¢,, is a complete set of eigenfunctions of the non-perturbed HamiltoHignHy¢,, = E°¢,. Because
¢n, is a complete set holds:

1/}71, = N()‘) ¢71, + Z an()‘)gbk
k#n

Whenc,,; andE,, are being expanded inta ¢, = /\csk) + A%fk) + e

E,=E°+ BV + X2EP) + ...
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and this is put into the Scbdinger equation the result i€ = (¢n|H1|drn) and
(1) <¢m|H1|¢n>

Crivn = W if m # n. The second-order correction of the energy is then given by:
H
E® = Z | (bk' 1|¢” | . So to first order holdsy,, = ¢, + Z M D
k#n k#n

In case the levels are degenerated the above does not hold. In that case an orthonormal set eigerfynctions
is chosen for each level, so that(¢,,;|¢r ;) = dmndi;. Now 1 is expanded as:

k#n %

{Z QPpi + A Z cnk Z Bidrs + }

E,i=E’ + )\E( ) is approximated byz?. := EQ. Substitution in the Scidinger equation and taking dot
product withe,,; glVGSZZai (Onj|Hi|ni) = Eﬁll)aj. Normalization requires that |o;|? = 1.

10.14.2 Time-dependent perturbation theory

From the Schidinger equation# 81(@5:&)

= (Ho + AV (£))1(t)

170

and the expansion(t) = Z cn(t) exp (Zgnt) b With ¢, (£) = Gi + Aet (8) + - -

n

t
folows: e (¢) = = [ (6] (¢)}0n) exp (W) at
0

10.15 N-particle systems
10.15.1 General

Identical particles are indistinguishable. For the total wavefunction of a system of identical indistinguishable
particles holds:

1. Particles with a half-odd integer spin (Fermiong).t.1 must be antisymmetric w.r.t. interchange of
the coordinates (spatial and spin) of each pair of particles. The Pauli principle results from this: two
Fermions cannot exist in an identical state becausethgg = 0.

2. Particles with an integer spin (Bosonsg),t. must be symmetric w.r.t. interchange of the coordinates
(spatial and spin) of each pair of particles.

For a system of two electrons there are 2 possibilities for the spatial wavefunction. Ménethb are the
quantum numbers of electron 1 and 2 holds:

¥s(1,2) = Ya(L)n(2) + va(2)ths(1) , Pa(1,2) = Ya(1)¥s(2) — 1a(2)1hs(1)

Because the particles do not approach each other closely the repulsion engrginahis state is smaller.
The following spin wavefunctions are possible:

va = A2 (Mx- (@)~ xs@x- ()] m, =0

X+ (Wx+(2) ms = +1
xs =19 3V20x+(1)x-(2) + x+@2x-(1)] ms=0
x-(1)x-(2) my = —1

Because the total wavefunction must be antisymmetric it follaWsg. = ¥sxa OF Yiotal = WAXS-
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For N particles the symmetric spatial function is given by:

¥s(1,..., N) =Y (all permutations of..N)

The antisymmetric wavefunction is given by the determinapfl, ..., N) = \/% lug, (4)]

10.15.2 Molecules

The wavefunctions of atomandb are¢, andg,. If the 2 atoms approach each other there are two possibilities:
the total wavefunction approaches the bonding function with lower total engggy- %\/i(qﬁa + ¢p) Or
approaches the anti-bonding function with higher enetgy, = %\@(d)a — ¢p). If @ molecular-orbital is
symmetric w.r.t. the connecting axis, like a combination of two s-orbitals it is calle@bital, otherwise a
m-orbital, like the combination of two p-orbitals along two axes.

o (WIH )
The energy of a system i& Wy
The energy calculated with this method is alwajgherthan the real energy if is only an approximation for
the solutions of{y) = E1. Also, if there are more functions to be chosen, the function which gives the lowest
energy is the best approximation. Applying this to the functjios: > ¢;¢; one finds:(H;; — ES;;)c; = 0.
This equation has only solutions if tisecular determinant;; — ES;;| = 0. Here,H;; = (¢;|H|¢;) and
Sij = (¢il¢;). oy := Hy; is the Coulomb integral and;; := H;; the exchange integrab;; = 1 and.S;; is
the overlap integral.
The first approximation in the molecular-orbital theory is to place both electrons of a chemical bond in the
bonding orbital: ¢(1,2) = ¥p(1)¥s(2). This results in a large electron density between the nuclei and
therefore a repulsion. A better approximatiomjgl, 2) = C1¢p(1)yp(2) + Cahap(1)yap(2), withCy =1
andCs ~ 0.6.

In some atoms, such as C, it is energetical more suitable to form orbitals which are a linear combination of the
s, p and d states. There are three ways of hybridization in C:

1. SP-hybridizationz)s, = %\/5(1/;28 + 1)9p_). There are 2 hybrid orbitals which are placed on one line
under180°. Further the 2p and 2p, orbitals remain.

2. SP hybridization: s> = thas/V/3 + c19bap, + cathap , Where(cy, ¢2) € {(1/2/3,0), (—=1/v6,1/v/2)
,(=1/4/6,—1/4/2)}. The 3 SP orbitals lay in one plane, with symmetry axes which are at an angle of
120°.

3. SP hybridization: i, = (s £ 10, + Yap, T ap, ). The 4 SB orbitals form a tetraheder with the
symmetry axes at an angle 0i9°28'. '

10.16 Quantum statistics

If a system exists in a state in which one has not the disposal of the maximal amount of information about the
system, it can be described bylensity matrixp. If the probability that the system is in stateis given bya;,
one can write for the expectation valu®f A: (a) = > r;{(1;|Al;).

i

If ¢ is expanded into an orthonormal basis, } as:¢() = 3 c,(:)(bk, holds:
k

(A) = (Ap)rx = Tr(Ap)
k
wherep;, = cle. p is hermitian, with T¢p) = 1. Further holds = " r;|¢;)(¢;|. The probability to find
eigenvaluer,, when measuringl is given byp.,,,, if one uses a basis of eigenvectorsdfor {¢;}. For the
time-dependence holds (in the Sgtinger image operators are not explicitly time-dependent):
dp

zha = [H, p)
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For a macroscopic system in equilibrium hold$, p] = 0. If all quantumstates with the same energy are
equally probableP; = P(E;), one can obtain the distribution:
e~ En/kT

Po(E) = ppn = — with the state sumZ = Ze*E"/’“T

The thermodynamic quantities are related to these definitions as follbws: —kT'In(Z), U = (H) =
an n = —% In(Z), S = —kZP In(P,). For a mixed state o}/ orthonormal quantum states with
probab|I|ty1/M follows: S = kln(M)

The distribution function for the internal states for a system in thermal equilibrium is the most probable func-
tion. This function can be found by taking the maximum of the function which gives the number of states with
Stirling’s equationin(n!) ~ nln(n) — n, and the conditiond_ n, = N and)_ n,W;, = W. For identical,

k k
indistinguishable particles which obey the Pauli exclusion principle the possible number of states is given by:
P15

This results in thd=ermi-Dirac statistics For indistinguishable particles whiato notobey the exclusion
principle the possible number of states is given by:

_ 9"
P_N!Hn—k!
k

This results in theBose-Einstein statisticsSo the distribution functions which explain how particles are
distributed over the different one-particle stateshich are eacly,-fold degenerate depend on the spin of the
particles. They are given by:

nk gk _nk

N 9k
Z

1. Fermi-Dirac statistics: integer sping € {0,1}, ny =
ger spin € 10 L i = (B — ) /KT 4 1

withIn(Zg) = >" g In[1 + exp((E; — p)/kT)).

. . . : . N
2. Bose-Einstein statistics: half odd-integer spip.c IN, n, = — Ik

Zy exp((Ex, — p)/KT) =1
with In(Zg) = — > g In[1 — exp((E; — p)/kT)).

Here, Z, is the large-canonical state sum gnthe chemical potential. It is found by demandipgn, = N,
and for it holds: hm 1 = Er, the Fermi-energyN is the total number of particles. The Maxwell-Boltzmann

distribution can be derlved from this in the limfit, — > kT
N Ek . Ek
Mk = — exp <_kT) with Z = zk:gk exp (_kT)

With the Fermi-energy, the Fermi-Dirac and Bose-Einstein statistics can be written as:

9k
xp((Ex, — Er)/kT) + 1

9k
exp((Ex — Er)/KT) — 1"

1. Fermi-Dirac statisticsa, =
€

2. Bose-Einstein statistics;, =




Chapter 11

Plasma physics

11.1 Introduction
Ne
Ne + No
wheren, is the electron density and, the density of the neutrals. If a plasma contains also negative charged
ions« is not well defined.

Thedegree of ionizatiom of a plasma is defined byt =

The probability that a test particle collides with another is giver By= nodx whereo is thecross section

The collision frequency, = 1/7. = nov. Themean free patlis given by\, = 1/no. Therate coefficient

K is defined byK = (ov). The number of collisions per unit of time and volume between particles of kind 1
and 2 is given byi ng (ov) = Knjns.

The potential of an electron is given by:

—e r . Eok‘TeTi EokTe
V(r)= —— ] with A\p = ~
(r) 4dmegr P ( AD> b e2(neT; + niTe) Nee?

because charge is shielded in a plasma. Hgrejs the Debye length For distances< Ap the plasma
cannot be assumed to be quasi-neutral. Deviations of charge neutrality by thermic motion are compensated by
oscillations with frequency

nee?

Wpe =
P Me€o

The distance of closest approximation when two equal charged particles collide for a deviatig® isf
2by = €*/(4meoimu?). A “neat” plasma is defined as a plasma for which holdsx ne'’* < Ap < Ly.

HereL, := |n./Vn.| is the gradient length of the plasma.

11.2 Transport

Relaxation times are defined as= 1/v.. Starting witho,,, = 47b3 In(A¢) and with%mv2 = kT it can be

found that: ‘
_AmedmPo® | 8V2med/m(kT)3/?

m el In(Ac) net In(Ac)
For momentum transfer between electrons and ions holds for a Maxwellian velocity distribution:
6m/3ed/Te(hT.)> 6m/3e3 /T (KT)/2
Tee = R Tei , Tii =

neet In(Ag) nie* In(Ag)

The energy relaxation times for identical particles are equal to the momentum relaxation times. Because for
e-i collisions the energy transfer is onty 2m,/m; this is a slow process. Approximately holds; : 7; :
Tie 1 T2 = 1:1: \/mi/me : mi/me.

The relaxation for e-o interaction is much more complicated. Fas 10 eV holds approximatelyz., =
10—17v§2/5, for lower energies this can be a factor 10 lower.
The resistivityn = E/J of a plasma is given by:

Nee? B e?\/meIn(Ac)
Melei N 67T\/§€%(k’Te)3/2

’]7:
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The diffusion coefficientD is defined by means of the fluk by I' = niiyg = —DVn. The equation
of continuity isd;n + V(nvaig) = 0 = dyn = DV?n. One finds thatD = %Avv. A rough estimate gives
™=L,/D = L}%TC/)\?,. For magnetized plasmals, must be replaced with the cyclotron radius. In electrical
fields also holds/ = nepE = e(nefie + nip;) E With 1 = e/mu, the mobility of the particles. The Einstein
ratio is:

D _kr
7! e
Because a plasma is electrically neutral electrons and ions are strongly ¢ coupled and they don't diffuse inde-
pendent. Theoefficient of ambipolar diffusio,,,;, is defined byF I = F = —Damb Ve ;. From this

follows that
KT./e — kTi/e _ kTep;

1/ pe =1/ T
In an external magnetic field®, particles will move in spiral orbits witltyclotron radiusp = muv/eBy

and with cyclotron frequenc2 = Bye/m. The helical orbit is perturbed by collisions. A plasma is called
magnetizedf A, > p. ;. So the electrons are magnetized if

pe VMee3ne In(Ac)
>\ee B 67F\/§E%(kiTe)3/QBO

amb —

Magnetization of only the electrons is sufficient to confine the plasma reasonable because they are coupled
to the ions by charge neutrality. In case of magnetic confinement h®lgs= .J x B. Combined with the

two stationary Maxwell equations for the-field these form the ideal magneto-hydrodynamic equations. For

a uniform B-field holds:p = nkT = B2 /2uy.

If both magnetic and electric fields are present electrons and ions will move in the same direction- If
E.é. + E.¢. andB = B.é, the E x B drift results in a velocityii = (E x B)/B? and the velocity in the
r, planeisr(r, ¢, t) = @ + p(t).

11.3 Elastic collisions

11.3.1 General

The scattering angle of a particle in interaction with another
particle, as shown in the figure at the right is:

,_ﬁ_zb/ 0

7 2
e r
EO

Particles with an impact parameter betwéeand b + db,
moving through a ring withlo = 27bdb leave the scattering
area at a solid angléQ2 = 27w sin(x)dx. The differential
cross sectiornis then defined as:

da | _
a|

b 0b

1Q) = sin(x) Ox
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For a potential energy’ (1) = kr~—" follows: I(Q,v) ~ v=4/™,

For low energies(1 eV), s has aRamsauer minimunit arises from the interference of matter waves behind
the object.I(€2) for angles) < x < A/4 is larger than the classical value.

11.3.2 The Coulomb interaction

For the Coulomb interaction hold8by = q1¢2/27eqgmuv3, SOW (1) = 2bo /. This givesh = by cot(%x) and

_ b o b
o sin(y) Ox o 4sin2(%x)

Because the influence of a particle vanishes at \p holds: o = 7(\ — b3). Becauselp = d(mv) =
mug(1 — cos x) a cross section related to momentum transfgiis given by:

4
Om = /(1 — cos \)1(Q)dQ = 47bZ In (11> = 47b3 In ()\D> = 4nbg In(Ag) ~ ln(zi )
Sln(§Xmin) bO v

whereln(A¢) is theCoulomb-logarithm For this quantity holdsAc = Ap /by = 9n(Ap).

11.3.3 The induced dipole interaction

The induced dipole interaction, wifi= . E, gives a potential’ and an energyV in a dipole field given by:

5-g elp ac?
V = — = — = —
(r) dmeor? (r) S8megr? 2(4meg)?rt
o0
. 22 d

with b, = ¢ % holds: y = 7 — Zb/ T2 =
(4meg)? gmug 2. /1 b n b

o r2 = 4pt

If b > b, the charge would hit the atom. Repulsing nuclear forces prevent this to happen. If the scattering
angle is a lot timeQr it is called capture. The cross section for capteygg, = 7b? is called the Langevin
limit, and is a lowest estimate for the total cross section.

11.3.4 The centre of mass system

If collisions of two particles with masses, andm, which scatter in the centre of mass system by an apgle
are compared with the scattering under an afigiethe laboratory system holds:

mag sin(x)

tan(f) = ————=——
an(9) my + ma cos(x)

The energy losQ E of the incoming patrticle is given by:

AE  imov3 2mymea
— = = 1 —cos
FE %mlv% (m1 + m2)2 ( (X))

11.3.5 Scattering of light

Scattering of light by free electrons is called Thomson scattering. The scattering is free from collective effects
if kAp < 1. The cross sectiost = 6.65 - 10~2°m? and

% = 2%) sin(%x)

This gives for the scattered enerfiy.., ~ nA3/ (A2 — A\2)? with n the density. I\ > ) itis called Rayleigh
scattering. Thomson sccattering is a limit of Compton scattering, which is givet byA = Ac(1 — cos x)
with Ac = h/mc and cannot be used any more if relativistic effects become important.
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11.4 Thermodynamic equilibrium and reversibility
Planck’s radiation law and the Maxwellian velocity distribution hold for a plasma in equilibrium:

8rhy? 1 2mn E
T)dv = d N(E,T)YdE = ————=VFE —— | dE
P, T)dv 3 exp(hv/kT) —1 v, N(ET) (mkT)3/2 P < kT)

“Detailed balancing” means that the number of reactions in one direction equals the number of reactions in the
opposite direction because both processes have equal probability if one corrects for the used phase space. For

the reaction
Z Xforward : Z Xback

forward back

holds in a plasma in equilibriummicroscopicreversibility:
H ,f/forward = H ﬁback
forward back

If the velocity distribution is Maxwellian, this gives:

PR h? N
T e (2mmgkT)3/2

whereg is the statistical weight of the state andg := 1. For electrons holdg = 2, for excited states usually
holdsg = 2j + 1 = 2n2.

With this one finds for the Boltzmann balancg, + e~ 2 X; + e~ + (E1p):

nB g E,—F
" o_ 9 »— &1
exp( ” >

And for the Saha balanc,, + e~ + (E,;) = X{" +2e~:

ng nf Ne h3 Ep;
—_— = ——— X
G g 9 QrmekTo)32 P\ kT,

Because the number of particles on the left-hand side and right-hand side of the equation is different, a factor
g/ V. remains. This factor causes tBaha-jump

From microscopic reversibility one can derive that for the rate coefficiitis ¢, 7') := (ov),,, holds:

9p AE,,
K T =K T .
(¢,p,T) %0 (p.q, )eXp< kT)

11.5 Inelastic collisions

11.5.1 Types of collisions

The kinetic energy can be splitin a paftand a partn the centre of mass system. The endrgthe centre of
mass system is available for reactions. This energy is given by

- myma(vy — ’02)2
2(m1 + m2>
Some types of inelastic collisions important for plasma physics are:
1. Excitation:A, +e~ & Ay +e”

2. Decay:A; Z A, +hf
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lonisation and 3-particles recombinatioky, + e~ < At + 2e™
radiative recombinatioA* +e~ 2 A, + hf

Stimulated emissiom, + hf — A, + 2hf

Associative ionisationA** + B = ABT + e~

Penning ionisation: b.We* + Ar 2 Ar™ + Ne + e~

Charge transfeA* + B = A + Bt

© © N o 0o > W

Resonant charge transfed™™ + A = A + AT

11.5.2 Cross sections

Collisions between an electron and an atom can be approximated by a collision between an electron and one
of the electrons of that atom. This results in

do wZ2e*

d(AFE)  (4me9)?E(AE)?

wZ2e*AE
Then follows for the transitio : E) = s.a+1
P —gq UP‘I( ) (47T€0)2E(AE)12)q
L . . 1 1 1.250F
For ionization from statg holds to a good approximation;,, = 4raiRy ( — — = | In b
E, E E,
A[l — BIn(E)]?
For resonant charge transfer holdgy = ——F————
g 1+ CE33

11.6 Radiation

In equilibrium holds for radiation processes:

npApg + npBpep(v, T) = ngByp(v,T)
——

emission  stimulated emission absorption
Here, A, is the matrix element of the transitipn— ¢, and is given by:

_ 8m2e?v3|rp, |2

A, =
Pa 358063

with g = (¥p|7[4g)

For hydrogenic atoms holdst, = 1.58 - 108Z4p~*5, with 4, = 1/7, = 3 A,,. The intensity! of a line is
q
given byI,, = hfA,.n,/4m. The Einstein coefficient® are given by:

c? Apq % _ Y4

P Rrh By 9»

A spectral line is broadened by several mechanisms:

1. Because the states have a finite life time. The natural life time of aystatgiven byr, = 1/>" A,,.

q

From the uncertainty relation then follow&:(hv) - 7, = L1, this gives

1 > Apg
Av = =1

o 4rTy, 47

The natural line width is usually than the broadening due to the following two mechanisms:
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2. The Doppler broadening is caused by the thermal motion of the particles:

Q B g 21n(2)kT;
A ¢ m;

This broadening results in a Gaussian line profile:
k, = ko exp(—[2VIn2(v — v9)/Avp]?), with k the coefficient of absorption or emission.

3. The Stark broadening is caused by the electric field of the electrons:

" 2/3
Bz = {Cme,n)]

with for the H3 line: C(ne, T.) ~ 3 - 10M4A~-3/2cm 3.

The natural broadening and the Stark broadening result in a Lorentz profile of a spectral line:
ky, = $koAvy/[(3AvL)? 4 (v — 19)?]. The total line shape is a convolution of the Gauss- and Lorentz profile
and is called &/0igt profile

The number of transitions — ¢ is given byn, B,,qp and byn,n s (c.c) = n,(pdv/hv)o,c wheredv is the
line width. Then follows for the cross section of absorption processes: B, hv/cdv.

The background radiation in a plasma originates from two processes:

1. Free-Bound radiation, originating from radiative recombination. The emission is given by:

01 ZiNiNe he
o= S e |1 o () en

with ¢} = 1.63 - 10~*3 Wm*K!/2sr-! and¢ the Biberman factor

2. Free-free radiation, originating from the acceleration of particles in the EM-field of other particles:

C1 zinine

Eff:v\/mexp< AkT)gff()\T)

11.7 The Boltzmann transport equation

It is assumed that there exists a distribution functiofor the plasma so that
F(7,0,t) = Fp.(7,t) - F,(U,t) = Fi(x,t)Fa(y, t)F3(2,t) Fy(vg, t) F5(vy, t) F(vs, t)

dF  OF oF
Then the BTE is— = — o (FU v (Fd)=|—
! dt 6t+v ( v)+v ( a) <8t)coll rad
Assuming that does not depend ananda; does not depend an, holdsV,.-(Fv') = ¥-VF andV,,-(Fd) =
d-V,F. This is also true in magnetic fields becauke/0x; = 0. The velocity is separated in a thermal
velocity 7, and a drift velocity. The total density is given by = [ F'dv and [ 0Fdv = ni.

The balance equations can be derived by means of the moment method:

1. Mass balance/(BTE)dﬁé % + V- (nw) = (?;Z)

di -
2. Momentum baIance/(BTE)mﬁdU = mnd—z: +VT +Vp=mn(@)+R

3. Energy balance](BTE)mvzd = 5% + < > pV -0 +V-7d=Q
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Here,(d ) = e/m(E + 4 x B) is the average acceleratiafi= 1nm (7,27, the heat flow,
mvt

> dv the source term for energy productim, is a friction term andp = nkT the
pressure

e?(ne + zin;)

A thermodynamic derivation gives for the total pressure: nkT = Z Di —
p 2471'60)\1)

For the electrical conductance in a plasma follows from the momentum balancesif w;:

nj:E_fx§+Vpe

ene

In a plasma where only elastic e-a collisions are important the equilibrium energy distribution function is the
Druyvesteyn distributian

EN\? 3me [ B\’
N(E)dE = — — ° =
(E)d Cne (Eo> exp [ o (Eo)

with Ey = eE\, = eE/no.

11.8 Collision-radiative models

These models are first-moment equations for excited states. One assumes the Quasi-steady-state solution is
valid, wherev,,~.1[(On, /0t = 0) A (V - (np,w,) = 0)]. This results in:

Onp>1 B ony ony on; L (O
(%5), =0 Gevveomm = () G v = (5),
with solutionsn,, = r9nj+rin? = b,n3. Further holds for all collision-dominated levels thag := b, —1 =

bopg With peg = \/Ry/Epl and5 g x < 6. For systems in ESP, where only collisional (de)excitation
between levelp andp + 1 is taken into account holds = 6. Even in plasma’s far from equilibrium the
excited levels will eventually reach ESP, so from a certain level up the level densities can be calculated.

To find the population densities of the lower levels in the stationary case one has to start with a macroscopic
equilibrium:

Number of populating processes of lewel= Number of depopulating processes of lepel

When this is expanded it becomes:

2
Ne z NqKqp + Ne Z ngKgp + Z NgAgp + neniKyp + NeNihad =

< > >
q<p qa>p q-p coll. recomb. rad. recomb

coll. excit. coll. deexcit. rad. deex. to

NeTlp Z Kpq +neny Z Kpg+ nyp Z Apg +nenpKpy

q<p qa>p a<p .
coll. ion.

coll. deexcit. coll. excit. rad. deex. from

11.9 Waves in plasma’s

Interaction of electromagnetic waves in plasma’s results in scattering and absorption of energy. For electro-
magnetic waves with complex wave numlder w(n + ix)/c in one dimension one finds:
E, = Ege "%/ cos|w(t — nz/c)]. The refractive index: is given by:

k¢ w?
n—=«¢— = — 1 —_ 72
w vf w
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For disturbances in thedirection in a cold, homogeneous, magnetized plasﬁwa:: Byé, + Beilkz=«1) and
n = ng + ne'**~w1) (externalF fields are screened) follows, with the definitians= w,, /w andg = Q/w
andw? = w2, + Wl

1 _iﬁs 0
oL . 1-p7 102
J =GFE ,with EzisowZai if3s 1 0
s 1-52 1-42
0 0 1

where the sum is taken over particle speeaieshe dielectric tensaf, with property:
k-(E-E)=0

is given byE = I' — G /ieqw.

2 2
With the definitionss =1 — > =5 D= 3> lo‘jﬁsz , P=1-Y o

follows:
- S —D 0
E=\| D S 0
0 0 P

The eigenvalues of this hermitian matrix ake= S + D, L = S — D, \3 = P, with eigenvectorg, =
1V2(1,4,0), & = 2v2(1,-i,0) andész = (0,0,1). € is connected with a right rotating field for which
ik, /E, = 1 andéj is connected with a left rotating field for whictk, / E, = —1. Whenk makes an anglé
with 5 one finds:

P(n?> - R)(n®> - L)
S(n? — RL/S)(n? — P)
wheren is the refractive index. From this the following solutions can be obtained:

tan?(0) =

A. & = 0: transmission in the z-direction.
1. P=0: E, = E, = 0. This describes a longitudinal linear polarized wave.
2. n? = L: aleft, circular polarized wave.
3. n? = R: aright, circular polarized wave.
B. 6 = = /2: transmission L the B-field.
1. n? = P: the ordinary modeE, = E, = 0. This is a transversal linear polarized wave.
2. n? = RL/S: the extraordinary mode®, /E, = —D/S, an elliptical polarized wave.

Resonance frequenciese frequencies for which? — oo, sovs = 0. For these holdstan() = —P/S.
For R — oo this gives the electron cyclotron resonance frequency ., for L — oo the ion cyclotron
resonance frequency = ©; and forS = 0 holds for the extraordinary mode:

.02 202 2
o 1_ﬁ& — 1_m1& 1_&
me w? m2 w? w?

Cut-off frequencieare frequencies for which? = 0, sov; — co. For these holdsP = 0or R =0or L = 0.

In the case that? >> 1 one finds Alf\en waves propagating parallel to the field lines. With the &ffvelocity
VA = QeQi 2

=72 p
Whe T W

follows: n = /1 + ¢/va, and in case < c¢: w = kva.
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Solid state physics

12.1 Crystal structure

A lattice is defined by the 3 translation vectais so that the atomic composition looks the same from each
point7and7 = 7+ T, whereT is a translation vector given bgr = u1dq + Uado + usds With u; € IN. A
lattice can be constructed from primitive cells. As a primitive cell one can take a parallellepiped, with volume

Veel = |@1 - (@2 x d3)|

Because a lattice has a periodical structure the physical properties which are connected with the lattice have
the same periodicity (neglecting boundary effects):

ne(F+ T ) = ne(7)

This periodicity is suitable to use Fourier analysi$r’) is expanded as:

) :anexp(ié~f’)
G

/// )exp(—iG - 7)dV
ceH

cell

with

G is thereciprocal lattice vector If G is written asG = v1b1 + vabs + vsbs with v; € IN, it follows for the
vectorsb;, cyclically:

5= 2 6it1 X aitQ

a; - (A1 X dig2)

The set ofé-vegtorsﬁdetﬂerminesﬂthg‘dﬁtgen diffractions: a maximum in the reflected radiation occurs if:
Ak = G with Ak = k — k. So:2k - G = G2. From this follows for parallel lattice planes (Bragg reflection)
that for the maxima hold2Wd sin(0) = nA.

The Brillouin zone is defined as a Wigner-Seitz cell in the reciprocal lattice.

12.2 Crystal binding

A distinction can be made between 4 binding types:
1. Van der Waals bond
2. lon bond
3. Covalent or homopolar bond
4. Metalic bond.

For the ion binding of NaCl the energy per molecule is calculated by:

E = cohesive energy(NaCl) — ionization energy(Na) + electron affinity(Cl)
The interaction in a covalent bond depends on the relative spin orientations of the electrons constituing the
bond. The potential energy for two parallel spins is higher than the potential energy for two antiparallel spins.
Furthermore the potential energy for two parallel spins has sometimes no minimum. In that case binding is not
possible.
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12.3 Crystal vibrations

12.3.1 A lattice with one type of atoms

In this model for crystal vibrations only nearest-neighbour interactions are taken into account. The force on
atoms with massM can then be written as:

dPuy
F,=M
dt?

= Clusy1 — us) + Clus—1 — ug)
Assuming that all solutions have the same time-dependenge-iwt) this results in:
—Mw*ug = Clugyy + g1 — 2ug)

Further it is postulated thatt;1 1 = uwexp(isKa) exp(+iKa).

This gives: us = exp(iKsa). Substituting the later two equations in the fist results in a system of linear
equations, which has only a solution if their determinant is 0. This gives:

4C
w? = 573 sin?(1 Ka)

Only vibrations with a wavelength within the first Brillouin Zone have a physical significance. This requires
that—m < Ka < 7.

The group velocity of these vibrations is given by:

d Ca?
= —acos(%Ka).

YeTuk VM

and is 0 on the edge of a Brillouin Zone. Here, there is a standing wave.

12.3.2 A lattice with two types of atoms

Now the solutions are: v
2 .92 \\

Ww=C L + L +C L + L _ M \\7 20

Ml M2 Ml M2 M1M2 Mo
Connected with each value &f are two values ofv, as can be ] 127[01
seen in the graph. The upper line describes the optical branch, ///
the lower line the acoustical branch. In the optical branch, P
both types of ions oscillate in opposite phases, in the acoustical 0 K
branch they oscillate in the same phase. This results in a much T/a

larger induced dipole moment for optical oscillations, and also a
stronger emission and absorption of radiation. Furthermore each
branch has 3 polarization directions, one longitudinal and two
transversal.

12.3.3 Phonons

The quantum mechanical excitation of a crystal vibration with an enktgys called aphonon Phonons

can be viewed as quasi-particles: with collisions, they behave as particles with momeRtuihheir total
momentum is 0. When they collide, their momentum need not be conserved: for a normal process holds:
K, + Ko = K3, for an umklapp process holdé’; + K, = K3 + G. Because phonons have no spin they
behave like bosons.
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12.3.4 Thermal heat capacity

The total energy of the crystal vibrations can be calculated by multiplying each mode with its energy and sum
over all brancheg( and polarizations:

hw
U= ZZhw (nep) Z/ eXp hw/kT)—ld
for a given polarization\. The thermal heat capacity is then:

hw/kT) exp(hw/kT)
kz/ (exp(hw/kT) — 1)2 dw

Clattice -

The dispersion relation in one dimension is given by:
LdK Ld
D(w)dw = ——dw = et
T dw T Vg
In three dimensions one applies periodic boundary conditions to a cubéWighimitive cells and a volume
L3: exp(i(Kyx + Kyy + K.2)) = exp(i(Ky(z + L) + Ky(y + L) + K. (2 + L))).
Becausexp(27i) = 1 this is only possible if:

2w 4 6 2N
K, K, K,=0, £+ —; £+ —; £+ —; ... —
Y L L L L

So there is only one allowed value &f per volume(27/L)3 in K-space, or:

L\ v
CF=
allowed K -values per unit volume in]?-space, for each polarization and each branch. The total number of
states with a wave vecter K is:
(LY’ 4nK?
- <2w) 3

for each polarization. The density of states for each polarization is, according to the Einstein model:

D(w) = % = (ZWK:) dw 87 //

TheDebye modelor thermal heat capacities is a low-temperature approximation which is valid B K.
Here, only the acoustic phonons are taken into account (3 polarizations), and one assumes that,
independent of the polarization. From this follow3(w) = Vw? /27203, wherew is the speed of sound. This

gives:
., / D) () huod = /D Vw? haw W, 3VET /D 23da
= w = = .
27203 exp(hw/kT) — 1 27293k3 ) et —1
0 0

Here,xp = hwp /KT = 0p/T. Op is theDebye temperaturand is defined by:

g _ T (6m2N )1
PT R\ V

whereN is the number of primitive cells. Becausg — oo for T' — 0 it follows from this:

~ T3

T\? [ 2%z  3n*NkT* 1274 NET?
U=9NkT | — = ~T* and Cy = —————
<9D) / e — 1 50D v 563
0
In the Einstein model for the thermal heat capacity one considers only phonons at one frequency, an approxi-

mation for optical phonons.
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12.4 Magnetic field in the solid state

The following graph shows the magnetization versus fieldstrength for different types of magnetism:

M 'y
Msat

ferro
oM

Xm =
OH paramagnetism

diamagnetism

12.4.1 Dielectrics

The quantum mechanical origin of diamagnetism is the Larmorprecession of the spin of the electron. Starting
with a circular electron orbit in an atom with two electrons, there is a Coulomb fareed a magnetic force
on each electron. If the magnetic part of the force is not strong enough to significantly deform the orbit holds:

F, B B B\? B
w2:(r)j:ew:ng:e(w0+6):>w:\/(w0j:e) +~--%w0ie—:woiwL
m m 2m

mr 2m

Here,wy, is theLarmor frequency One electron is accelerated, the other decelerated. Hence there is a net
circular current which results in a magnetic momgnirhe circular current is given by = — Zewy, /27, and
(p)y = IA = Im (p*) = 2In (r*). If N is the number of atoms in the crystal it follows for the susceptibility,

with M = [iN:

oM woNZe?
- B - 6m <r>
12.4.2 Paramagnetism

Starting with the splitting of energy levels in a weak magnetic fiedds,, — i - B = mygup B, and with a
distributionf,,, ~ exp(—AU,,/kT), one finds for the average magnetic momgnt=>_ f.,u/ > fm. After
linearization and becau$€ m; = 0, J = 2J + 1 and>_ m? = 2J(J + 1)(J + 1) it follows that:

_ oM poN () pod (T + 1)g* g N
X» =g B KT
This is theCurie law, x, ~ 1/T.

12.4.3 Ferromagnetism

A ferromagnet behaves like a paramagnet above a critical tempefatufe describe ferromagnetism a field
Bpg parallel with M is postulated:Bg = A\ugM. From there the treatment is analogous to the paramagnetic
case: c

oM = xp(Ba + Bg) = Xp(Ba + ApoM) = 1o (1 — )\T) M
oM _

B, T —T.
If Bg is estimated this way it results in values of about 1000 T. This is clearly unrealistic and suggests another
mechanism. A quantum mechanical approach from Heisenberg postulates an interaction between two neigh-
bouring atomst/ = —2.J; - S = —ji- Bg. J is an overlap integral given byl = 3kT./225(S + 1), with
z the number of neighbours. A distinction between 2 cases can now be made:

which isWeiss-Curie’s law

From this follows for a ferromagnef; r =

1. J > 0: S; andS; become parallel: the material is a ferromagnet.
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2. J < 0: S; andS; become antiparallel: the material is an antiferromagnet.

Heisenberg's theory predicts quantized spin waves: magnons. Starting from a model with only nearest neigh-
bouring atoms interacting one can write:

U=-2JS,-(S,_1+Sp41) ~fi,- B, with B, = —=(5, 1 +S5,.1)

o0 ~ . ;
fsp X (Sp—1+ Sp+1)

From here the treatment is analogous to phonons: postulate traveling waves of tﬁg typ@exp(i(pka —
wt)). This results in a system of linear equations with solution:

: : ds
The equation of motion for the magnons becomg%::

hiw = 4J5(1 — cos(ka))

12.5 Free electron Fermi gas

12.5.1 Thermal heat capacity

The solution with period. of the one-dimensional Sabalinger equation isy, (z) = Asin(27z/An) with
n\, = 2L. From this follows
o h? o2
=5 (T)

In a linear lattice the only important quantum numbersraemdm,. TheFermi levelis the uppermost filled
level in the ground state, which has thermi-energyEr. If ng is the quantum number of the Fermi level, it
can be expressed a&p = N s0Ep = h*7r2N?/8mL. In 3 dimensions holds:

27 1/3 2 2 2/3
krp = 37 and Ep = = (3
14 2m 1%

. . 2mE\*/?
The number of states with energy I/ is then: N = 3—‘/2 (7;:2) .
T

ANV [2m\*/? 3N
and the density of states becoméy’F) = — = — | — E=—.
y k) = U5 2w2(n2) VE=35
The heat capacity of the electrons is approximately 0.01 times the classical expecte}W&lu&is is caused
by the Pauli exclusion principle and the Fermi-Dirac distribution: only electrons within an energy-~akifje
of the Fermi level are excited thermally. There is a fractiorT'/Tr excited thermally. The internal energy

then becomes:

T oUu T
~ NET — = — =~ Nk—
U k ™ and C T k;TF

A more accurate analysis give€iectrons = %TFQN kT/Tr ~ T. Together with thel™® dependence of the
thermal heat capacity of the phonons the total thermal heat capacity of metals is described by + AT3.

12.5.2 Electric conductance

The equation of motion for the charge carriers := mdz/dt = hdk/dt. The variation off is given by
0k = k(t) — k(0) = —eFt/h. If 7 is the characteristic collision time of the electrons,remains stable if
t = 7. Then holdsy(#) = pE, with ;1 = er /m themobility of the electrons.

The current in a conductor is given bf:: nqv = oFE = E/p = nepE. Because for the collision time holds:
1/ = 1/11, + 1/7;, wherery, is the collision time with the lattice phonons andhe collision time with the
impurities follows for the resistivity = py, + p;, with %imo pr =0.
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12.5.3 The Hall-effect

If a magnetic field is applied. to the direction of the current the charge carriers will be pushed aside by the
Lorentz force. This results in a magnetic fieldo the flow direction of the current. If = Jé, andB = Be,
thanE,/E, = uB. The Hall coefficient is defined bRy = E,/J, B, andRy = —1/ne if J, = nepkE,.

The Hall voltage is given byVyy = Bvb = I B/neh whereb is the width of the material antl de height.

12.5.4 Thermal heat conductivity

With ¢ = vp7 the mean free path of the electrons follows fram= 3C (v) {1 Kelectrons = T2nk*T7/3m.
From this follows for thaViedemann-Franz ratio< /o = §(wk/e)?T.

12.6 Energy bands

In the tight-bondapproximation it is assumed that = e**"%¢(x — na). From this follows for the energy:

(E) = (¢y|H|Y) = Ea — a — 28 cos(ka). So this gives a cosine superimposed on the atomic energy, which
can often be approximated by a harmonic oscillator. If it is assumed that the electron is nearly free one can
postulatex) = exp(z‘E -7). This is a traveling wave. This wave can be decomposed into two standing waves:

Y(+) = explinz/a)+ exp(—inxz/a) = 2cos(mx/a)
P(—) = explinz/a) — exp(—irz/a) = 2isin(mwx/a)

The probability density(+)|? is high near the atoms of the lattice and low in between. The probability
density|+)(—)|? is low near the atoms of the lattice and high in between. Hence the energy+ofis also
lower than the energy af)(—). Suppose thal/ () = U cos(2nz/a), than the bandgap is given by:

By = [ U@ [0)P ~ [9(-)P] do = U
0

12.7 Semiconductors

The band structures and the transitions between them of direct and indirect semiconductors are shown in
the figures below. Here it is assumed that the momentum of the absorbed photon can be neglected. For an
indirect semiconductor a transition from the valence- to the conduction band is also possible if the energy of
the absorbed photon is smaller than the band gap: then, also a phonon is absorbed.

\ E  /conduction
\ /  band

Direct transition Indirect transition

This difference can also be observed in the absorption spectra:
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absorption absorption
y / \
e
-/
‘ //
\ /
/ . E : - FE
hwg E; +1Q
Direct semiconductor Indirect semiconductor

So indirect semiconductors, like Si and Ge, cannot emit any light and are therefore not usable to fabricate
lasers. When light is absorbed holds, = ke, Eh(kh) = —Ee(ke), Uh = T, andmy, = —m if the
conduction band and the valence band have the same structure.

Instead of the normal electron mass one has to useffeetive maswithin a lattice. It is defined by:

o E_ dfdt L dK L, (PENT
Ca  dug/dt  dvg dk?
with E = hw andv, = dw/dk andp = hk.

With the distribution functionf.(E) =~ exp((u — E)/kT) for the electrons angl,(E) = 1 — f.(E) for the
holes the density of states is given by:

1 [2m*\>/?
D@”:%ﬂ(n2> VE=Ee

with E. the energy at the edge of the conductance band. From this follows for the concentrations of the holes

p and the electrons:
Vi m kT \ >/ uw— FE,
n= [ DuBNEIE = 2(m> eXP( i )
E

c

kT

E
For the productip follows: np = 4 ( h2> /mEmy exp <k:;>

For an intrinsic (no impurities) semiconductor holds:= p;, for an — type holds:n > p and in ap — type
holds:n < p.

An exciton is a bound electron-hole pair, rotating on each other as in positronium. The excitation energy of an
exciton is smaller than the bandgap because the energy of an exciton is lower than the energy of a free electron
and a free hole. This causes a peak in the absorption just éider

12.8 Superconductivity
12.8.1 Description

A superconductor is characterized by a zero resistivity if certain quantities are smaller than some critical values:
T <T.,I<I.andH < H.. TheBCS-modepredicts for the transition temperatiifg

-1
TC = 114@]3 exp <W>

while experiments find fof{. approximately:

) = 1) (1- 15 )

C
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Within a superconductor the magnetic field is O: kheissner effect

There are type | and type Il superconductors. Because the Meissner effect implies that a superconductor is a
perfect diamagnet holds in the superconducting stéte: MOZ\ZI. This holds for a type | superconductor, for

a type Il superconductor this only holds to a certain valyg, for higher values off the superconductor is in
avortex statdo a valueH o, which can be 100 time& ;. If H becomes larger thaH., the superconductor
becomes a normal conductor. This is shown in the figures below.

poM poM
A A

. H 5 H
HC Hcl H02

Type | Type Il

The transition to a superconducting state is a second order thermodynamic state transition. This means that
there is a twist in thd” — S diagram and a discontinuity in th&éx — 7" diagram.

12.8.2 The Josephson effect

For the Josephson effect one considers two superconductors, separated by an insulator. The electron wave-
function in one superconductoris, in the othen),. The Schédinger equations in both superconductors is
set equal:

L0 L OYs

Zhﬁ = hT'l/)Q N Zhﬁ = hT'(/J]
hT is the effect of the coupling of the electrons, or the transfer interaction through the insulator. The electron
wavefunctions are written as = /n1 exp(i6y) andyy = \/ns exp(ifs). Because a Cooper pair existtofo

electrons holdsy ~ +/n. From this follows, ifny = no:

691 . 892 8n2 o 6’/7,1
o "o M T T

The Josephson effect results in a current density through the insulator depending on the phase difference as:
J = Jpsin(fy — 61) = Josin(d), whereJy ~ T. With an AC-voltage across the junction the Sitinger
equations become:

ih% = hTv, — eV and ih% = hT¢1 +eVipo

This gives:J = .J, sin (92 — 6, - 26?).

Hence there is an oscillation with = 2eV /.

12.8.3 Flux quantisation in a superconducting ring

For the current density in general hold= qu* Ty = E[Fﬁ& — q/f}
m

From the Meissner effecf = 0 and.J = 0, follows: iVl = gA = § VOdl = 65 — 6, = 27s with s € IN.

Because:f Adl = [[(rotd,it)do = [[(B,7)do = W follows: ¥ = 2rfis/q. The size of a flux quantum
follows by settings = 1: ¥ = 27h/e = 2.0678 - 10~1° Tm?.
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12.8.4 Macroscopic quantum interference

. . 2eW
From#@y — 6; = 2eV /1 follows for two parallel junctionséd;, — 6, = %, S0

J=Jy+Jp =2Jpsin (50 cos (f)) This gives maxima itV /h = sm.

12.8.5 The London equation

A current density in a superconductor proportional to the vector pote«ﬁlihapostulated:

— —
=3 — = —

J=——= or rotJ = ——=
) [10A7,

where);, = \/eomc2/ng?. From this follows:V2B = B/)2.

The Meissner effect is the solution of this equatidii(z) = Byexp(—z/Az). Magnetic fields within a
superconductor drop exponentially.

12.8.6 The BCS model

The BCS model can explain superconductivity in metals. (So far there is no explanation f@r.téghercon-
ductance).

A new ground state where the electrons behave like independent fermions is postulated. Because of the in-
teraction with the lattice these pseudo-particles exhibit a mutual attraction. This causes two electrons with
opposite spin to combine to@ooper pair It can be proved that this ground state is perfect diamagnetic.

The infinite conductivity is more difficult to explain because a ring with a persisting current is not a real
equilibrium: a state with zero current has a lower energy. Flux quantization prevents transitions between these
states. Flux quantization is related to the existence of a coherent many-particle wavefunction. A flux quantum
is the equivalent of aboui* electrons. So if the flux has to change with one flux quantum there has to occur

a transition of many electrons, which is very improbable, or the system must go through intermediary states
where the flux is not quantized so they have a higher energy. This is also very improbable.

Some useful mathematical relations are:

xdr w2 / 22dx
e + 1 1202’ (e” +1)2
0 —o0 0
oo ©0 1
And, WhenZ(—l)" = 3 follows: /sln px)d /COb -.
o

n=0 0 0




Chapter 13

Theory of groups

13.1 Introduction

13.1.1 Definition of a group
G is a group for the operationif:
1. V4 peg = Ao B e G: Gisclosed
2.Vapceg = (AeB)e(C = Ae(Be(): Gobeys thassociative law
3. dpeg sothatvqycgA e E = E o A = A: G has aunit element
4. Y aegIa-1¢g SO thatd e A1 = E: Each element iif has arinverse
If also holds:

5.V4,Beg = A e B = Be Athe group is called\belianor commutative

13.1.2 The Cayley table

Each element arises only once in each row and column of the Cayley- or multiplication table: bBcguse
A,;l(AkAi) = A; eachA; appears once. There akepositions in each row and column when there &are
elements in the group so each element appears only once.

13.1.3 Conjugated elements, subgroups and classes

B is conjugateto A if Ix<g such thatB = XAX~!. Then A is also conjugate td3 becauseB =
(X~HAXH L

If B andC are conjugate tel, B is also conjugate withy'.

A subgroupis a subset off which is also a group w.r.t. the same operation.

A conjugacy classs the maximum collection of conjugated elements. Each group can be split up in conjugacy
classes. Some theorems:

o All classes are completely disjoint.
e Eis aclass itself: for each other element in this class would héld: XEX ! = E.
e FEis the only class which is also a subgroup because all other classes have no unit element.
e In an Abelian group each element is a separate class.
The physical interpretation of classes: elements of a group are usually symmetry operations which map a

symmetrical object into itself. Elements of one class are then the same kind of operations. The opposite need
not to be true.
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13.1.4 Isomorfism and homomorfism; representations

Two groups arésomorphicif they have the same multiplication table. The mapping from g@ugo G-, so
that the multiplication table remains the same is a homomorphic mapping. It need not be isomorphic.

A representatioris a homomorphic mapping of a group to a group of square matrices with the usual matrix
multiplication as the combining operation. This is symbolized by he following holds:

I'(E)=1I, T(AB) =T(A)I(B) , T(A™Y) =[T(4)]*
For each group there are 3 possibilities for a representation:
1. Afaithful representation: all matrices are different.
2. The representatioA — defI'(A)).
3. The identical representatiod: — 1.

An equivalent representaticis obtained by performing an unitary base transformatifa) = S~1T'(A)S.

13.1.5 Reducible and irreducible representations

If the samaunitary transformation can bring all matrices of a representationthe same block structure the
representation is callegducible
¢h)
r(4) = ( M (A) 0 )

0 r(A)

This is written asT' = '™ @ T'(?), If this is not possible the representation is calleeducible.
The number of irreducible representations equals the number of conjugacy classes.

13.2 The fundamental orthogonality theorem

13.2.1 Schur’s lemma

Lemma: Each matrix which commutes with all matrices of an irreducible representation is a corgtant
wherel is the unit matrix. The opposite is (of course) also true.

Lemma: If there exists a matrix\/ so that for two irreducible representations of gragpy")(4;) and
72 (4;), holds: M~y (4;) = v (4;) M, than the representations are equivalent/oe= 0.
13.2.2 The fundamental orthogonality theorem

For a set of unequivalent, irreducible, unitary representations holds thats the number of elements in the
group and/; is the dimension of thé—th representation:

i) ( h
>orh) (R) = 7-0ij0uadug
ReG ¢

13.2.3 Character

The characterof a representation is given by the trace of the matrix and is therefore invariant for base trans-
formations] x ) (R) = Tr(Il'Y)(R))

Also holds, with/V,. the number of elements in a conjugacy C|cl§ X (i) (Cr)x Ck)Nk = hdyj

Theorem: Y "¢} = h

i=1
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13.3 The relation with quantum mechanics

13.3.1 Representations, energy levels and degeneracy

Consider a set of symmetry transformatiafis= RZ which leave the Hamiltoniaf{ invariant. These trans-
formations are a group. An isomorfic operation on the wavefunction is givehy(z) = ¢(R~1%). This
is considered amctive rotation These operators commute witt: PrH = HPg, and leave the volume
element unchangedi( Rz ) = dZ.

Pg is the symmetry group of the physical system. It causes degeneragyisfa solution ofHy,, = E,, ¢,
than also holdsH(Pryy,) = E,.(Prt¢y). A degeneracy which is not the result of a symmetry is called an
accidental degeneracy

Assume arv,,-fold degeneracy ak,,: then choose an orthonormal s,e&"’), v=12,...,4, The function
eﬂ,

Prypy" is in the same subspacBry(” = > 4T (R)
k=1
whereI'™ is anirreducible, unitaryrepresentation of the symmetry grogpof the system. Each corre-
sponds with another energy level. One can purely mathematical derive irreducible representations of a sym-
metry group and label the energy levels with a quantum number this way. A fixed chdit® 6R) defines
the base function$,(,"). This way one can also label each separate base function with a quantum number.

Particle in a periodical potential: the symmetry operation is a cyclic group: note the operator describing one

translation over one unit aé. Then:G = {4, 4%, A3,... A" = E}.
The group is Abelian so all irreducible representations are one-dimensionél.<Fpr< h — 1 follows:

F(p) (An) _ e27ripn/h

If one defines:k = —2%? (mod%), S0: Patpy(z) = thp(x — a) = e*™P/Mq (z), this givesBloch’s
a a

theorem ¢ () = ug(x)e™ ™, with uy (z + a) = ug(z).

13.3.2 Breaking of degeneracy by a perturbation

Suppose the unperturbed system has Hamiltofifgrand symmetry groug,. The perturbed system has
H = Ho + V, and symmetry groug C Go. If T(")(R) is an irreducible representation G, it is also a
representation of but not all elements df (") in G, are also inG. The representation then usually becomes
reducible T(") = T(") ¢ T("2) ¢ ... The degeneracy is then (possibly partially) removed: see the figure
below.
ln, = dim(D(m1))
‘0, ly, = dim(D'("2))

lp, = dim(D(ms))
Spectrunt, SpectruntH

Theorem: The set of¢,, degenerated eigenfunctioﬂé”) with energyFE,, is a basis for arf,,-dimensional
irreducible representatidi(™) of the symmetry group.

13.3.3 The construction of a base function
n ¢
Each functionF' in configuration space can be decomposed sgtametry typesF’ = Z Z f,gj)
j=1k=1
The following operator extracts the symmetry types:

0 o ,
(e rrwem)r- g

Reg
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This is expressed agF(J) is the part ofF” that transforms according to tke-th row of I'(4)
F can also be expressed in base functignsF = > cajﬁwﬁaj). The functionsfﬁ(,j) are in general not
ajk

transformed into each other by elements of the group. However, this does happgndf c;q.

Theorem: Two wavefunctions transforming according to non-equivalent unitary representations or according
to different rows of an unitary irreducible representation are orthogonal:

(@S)|¢§j)> ~ 850k, and<<p(ﬁi)|¢g)> is independent of.

13.3.4 The direct product of representations

Consider a physical system existing of two subsystems. The subBpaarf the system transforms according
to T, Basefunctions are”(#;), 1 < x < ¢;. Now form all £; x £, productse'" (1) ? (#2). These
define a spac®) ® D®).

These product functions transform as:

PrleM (@)l (7)) = (PreM (1)) (Pre (#2))

In general the spacB™) ® D(?) can be split up in a number of invariant subspaces:

rer anU

A useful tool for this reduction is that for the characters hold:

O (RN (R me

13.3.5 Clebsch-Gordan coefficients

With the reduction of the direct-product matrix w.r.t. the bapﬁ‘sgo&j) one uses a new basiéf“). These base
functions lie in subspacds(**), The unitary base transformation is given by:

o) = Z%) ¥ (irj\akp)

and the inverse transformation by’ = ol (akplirjA)
akp

In essence the Clebsch-Gordan coefficients are dot produeist|akp) := <<p,(€i)<p()\j ) \<pffm>

13.3.6 Symmetric transformations of operators, irreducible tensor operators

Observables (operators) transform as follows under symmetry transformatonrs: Pr AP, L If a set of
operatorsA{’ with 0 < r < ¢; transform into each other under the transformation$ bblds:

PrAD PR =3 ADTH)(R)

v

If ') is irreducible they are callédreducible tensor operatorsl /) with components4,(3).
An operator can also be decomposed into symmetry types:> a,(j ), with:

ik

, 4 Yk _
o) = (,-; > rg) <R>) (PraP;)

Reg
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Theorem: Matrix elementsH;; of the operatof{ which is invariant undeY 4c¢, are 0 between states which
transform according to non-equivalent irreducible unitary representations or according to different rows of such

a representation. FurtthSHHW,&i)} is independent of. ForH = 1 this becomes the previous theorem.

This is applied in quantum mechanicsgarturbation theoryandvariational calculus Here one tries to diag-
onalize’H. Solutions can be found within each category of functi@ﬁ% with commoni andk: H is already

diagonal in categories as a whole.

Perturbation calculusan be applied independent within each category. With variational calthdusy func-

tion can be chosen within a separate category because the exact eigenfunctions transform according to a row
of an irreducible representation.

13.3.7 The Wigner-Eckart theorem

Theorem: The matrix elementy”|AY) |4} can only be# 0if T) @ T*) = .. & T® @ ... Ifthisis
the case holds (iF(") appears only once, otherwise one has to sum @yer

(e 1ADE)Y = (iA|jrku) (@ | AD|[p®)

This theorem can be used to determine selection rules: the probability of a dipole transition is gives by (
the direction of polarization of the radiation):

o 87T262f3‘?"12|2

Pp = 3hEOC3 with 192 = <l2ﬂ’L2|g' 77|l1m1>

Further it can be used to determine intensity ratios: if there is only one valueth# ratio of the matrix
elements are the Clebsch-Gordan coefficients. For mxvadues relations between the intensity ratios can be
stated. However, the intensity ratios are also dependent on the occupation of the atomic energy levels.

13.4 Continuous groups

Continuous groups have = oo. However, not all groups with = oo are continuous, e.g. the translation
group of an spatially infinite periodic potential is not continuous but does havex.

13.4.1 The 3-dimensional translation group

For the translation of wavefunctions over a distand®lds: P,v(z) = ¢ (z — a). Taylor expansion near
gives:
dip(x) 2 d*Y(2)

1
Vo —a) = (@) - a4 S S

—+...

. o ho . .
Because the momentum operator in quantum mechanics is given bay:—,a—, this can be written as:
1 O

Vla = a) = e ()

13.4.2 The 3-dimensional rotation group

This group is called SO(3) because a faithful representation can be constructed from ortBogdmatrices
with a determinant of +1.

For an infinitesimal rotation around theaxis holds:
Péeﬁﬁ(% Y, Z) ~ ’(/)(JJ, ) + Z(SHM zZ — y59¢)

0 0

100, Ly
= (1 - h ) 1[}($7 Y, Z)
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0
Because the angular momentum operator is giverniQy= — ( — — ya>
dy
So in an arbitrary direction holds: __Rotations: P, ; = exp —za(ﬁ f)
Translations: P, 7z = exp(—ia(7i - *)/h)

Jz, Jy andJ, are called thgeneratorsof the 3-dim. rotation groug., p, andp. are called the generators of
the 3-dim. translation group.

The commutation rules for the generators can be derived from the properties of the group for multiplications:
translations are interchangeablep,p, — pyp, = 0.

Rotations are not generally interchangeable: consider a rotation around iaxibe zz-plane over an angle

a. Then holds:P, 7 = P_g yPn .+ Ps,y, SO:

e—ia(ﬁ~f)/h — iy /hg—iady/he=i07, /R

If aﬂande are very small and are expanded to second order, and the corresponding terms are put equal with
n-J = Jycosf + J, sin 6, it follows from thead term: J, J, — J,J, = ihJ..

13.4.3 Properties of continuous groups

The elementR(py, ..., p,) depend continuously on parametgrs..., p,. For the translation group this are
e.g.ang, an, andan.. Itis demanded that the multiplication and inverse of an elerRatgpend continuously
on the parameters dt.

The statement that each element arises only once in each row and column of the Cayley table holds also for
continuous groups. The notion conjugacy class for continuous groups is defined equally as for discrete groups.
The notion representation is fitted by demanding continuity: each matrix element depends continuously on

Summation over all group elements is for continuous groups replaced by an integraji¢R, i a function
defined org, e.g.T',3(R), holds:

/f(R)dR ;:/.../f(R(pl,...,pn))g(R(pl,,,_,pn))dpl...dpn
g

Here,g(R) is thedensity function

Because of the properties of the Cayley table is demanfigdR)dR = [ f(SR)dR. This fixesg(R) except
for a constant factor. Define new variabjésy: SR(p;) = R(p}). If one writes:dV := dp; - - - dp,, holds:

o(5) = 9(B) S

Here,— v is theJacobian v

T i det(apl> andg(E) is constant.

op;
For the translation group holdg(@) = constant= (0 ) becausg(aii )da’ = ¢(0)dd andda’ = da.

This leads to the fundamental orthogonality theorem:

[T @GR = 558,06, [ dn
g g
and for the characters hold:
XD (R (R)dR = 6 / dR
g g
Compactgroups are groups with a finite group vqunfg:dR < 0.
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13.5 The group SO(3)

One can take 2 parameters for the direction of the rotational axis and one for the angle of rptafibe
parameter space is a collection poigts within a sphere with radius. The diametrical points on this sphere
are equivalent because; » = Ry _ .

Another way to define parameters is by meankulers anglesif «, 5 and~ are the 3 Euler angles, defined
as:

1. The spherical angles of axis 3 w.nlyz ared, ¢ := 3, «. Now a rotation around axis 3 remains possible.
2. The spherical angles of theaxis w.r.t. 123 ard, ¢ := 3,7 —y

then the rotation of a quantum mechanical system is described by:
W — e—ianhe—zﬂJy/he—i'sz/hq/)_ S0Py = e—z’s(ﬁj)/h_

All irreducible representations of SO(3) can be constructed from the behaviour of the spherical harmonics
Yim (0, ©) with —I < m < [ and for a fixed:

PR}/lm 9 4,0 Z}/lm DEVZLWL (R)
D is an irreducible representation of dimensiin+ 1. The character oD() is given by:

! ; A
YO (a Z e =1+ 22(?08(/{0[) = M

= P sin(sa)

o=

In the performed derivatioa is the rotational angle around theaxis. This expression is valid for all rotations
over an anglex because the classes of SO(3) are rotations around the same angle around an axis with an
arbitrary orientation.

Via the fundamental orthogonality theorem for characters one obtains the following expression for the density
function (which is normalized so thaf0) = 1):

With this result one can see that the given representations of SO(3) are the only ones: the character of another
representatiory’ would have to bel to the already found ones, s6(a) sin®(3a) = 0Va = y/(a) = 0Va.
This is contradictory because the dimension of the representation is g|v/é|(1(by

Because fermions have an half-odd integer spin the statgswith s = % andmg = i% constitute a 2-dim.
space which is invariant under rotations. A problem arises for rotationaver

—2miS. /h _ ,—2mim, _
Vi, — e TSy = e = gy

However, in SO(3) holdsR, > = E. So here hold& — +1I. Because observable quantities can always be
written as(¢|y) or (¢|Alv), and are bilinear in the states, they do not change sign if the states do. If only one
state changes sign the observable quantities do change.

The existence of these half-odd integer representations is connected with the topological properties of SO(3):
the group is two-fold coherent through the identificatiin= R., = F.

13.6 Applications to quantum mechanics

13.6.1 Vectormodel for the addition of angular momentum

If two subsystems have angular momentum quantum numbexsd j, the only possible values for the total
angular momentum aré = j; +jo, j1 +Jj2 — 1, ..., |71 — j2|. This can be derived from group theory as follows:
from xU1) (a)xU2) (a) = 3 n;xY) () follows:

J

DU ® pU2) — plirtiz) @ DU1ti—1) o o DUir—32))
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The states can be characterized by quantum numbers in two waysj;Wwith , jo, mo and withjy, jo, J, M.
The Clebsch-Gordan coefficients, for SO(3) calledWigner coefficientscan be chosen real, so:
¢j1j2JM = E wjlmlj’z”h (jlm’1j2m2|JM)
mimo

Vjrmajama > Vjrgaanr (jrmajama|J M)
JM

13.6.2 Irreducible tensor operators, matrixelements and selection rules
Some examples of the behaviour of operators under SO(3)

1. Supposgj = 0: this gives the identical representation with = 1. This state is described by a

scalar operator BecausePRAg))Plg1 = Aéo) this operator is invariant, e.g. the Hamiltonian of a
free atom. Then holds.J' M'|H|JM) ~ darprdgy-

2. Avector operatorA = (Az, Ay, A,). The cartesian components of a vector operator transform equally
as the cartesian componentsddy definition. So for rotations around theaxis holds:

cosa —sina 0
D(R,.)=| sina cosa 0
0 0 1

The transformed operator has the same matrix elements Rgi.and Pr¢:

(Prip|PrA PR |Prep) = (¢|As|¢), andx(Ra,.) = 1 + 2cos(a). According to the equation for
characters this means one can choose base operators which transfdriy,likey). These turn out to
be the spherical components:

1
(Az + iAy)v Aél) = A, A(*li - E(Af - iAy)

b

A(l) _
+1 \@

3. A cartesian tensor of rank 7;; is a quantity which transforms under rotations IKg’;, wherel and
V are vectors. Sd3; transforms likePrTi; P;' = 3 Ty Dyi(R)Dy;(R), so like DV @ D) =
ki

D® ¢ DM @ DO, The 9 components can be split in 3 invariant subspaces with dimengibf),
3(DW) and 5(D®). The new base operators are:

l. Tr(L) = Tyy + T,y + T:.. This transforms as the scafdr- V, so asD(©).

II. The 3 antisymmetric components, = %(Tmy —T,.), etc. These transform as the vedtbrx V,
so asDW),

lll. The 5 independent components of the traceless, symmetric téhsor
Sij = X(Ty; + Tji) — 30,5 Tr(T). These transform aB(2).

Selection rules for dipole transitions

Dipole operators transform @3(!): for an electric dipole transfer is the operatat for a magneticze(ﬁ +
25)/2m.

From the Wigner-Eckart theorem follow$g’ M’ | A |JM) = 0 exceptD”") is a part of DY) @ D) =
DU+ ¢ D) @ DU/=1D . This means that” € {J + 1,J,|J — 1|}: J' = JorJ = J =+ 1, except
J =J=0.

Landé-equation for the anomalous Zeeman splitting

According to Lané’s model the interaction between a magnetic moment with an external magnetic field is
determined by the projection @ff on J becausd. andS precede fast around. This can also be understood
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from the Wigner-Eckart theorem: from this follows that the matrix elements from all vector operators show a
certain proportionality. For an arbitrary operatbfollows:

(ajm|A - T|ajm)
3G+ 1n

(agm’| Alagm) = (agm/|J Jajm)

13.7 Applications to particle physics

The physics of a system does not change after performing a transformétiere’9¢) wheres is a constant.
This is aglobal gauge transformatiorthe phase of the wavefunction changes everywhere by the same amount.

There exists some freedomin the chgice of the potenﬁaﬂadqﬁ at the samé andB: gauge transformations
of the potentials do not chande and B (See chapter 2 and 10). The solutighof the Schodinger equation
with the transformed potentials ig¢ = e~/ (")),

This is alocal gauge transformatianthe phase of the wavefunction changes different at each position. The
physics of the system does not changa #ind¢ are also transformed. This is now stated as a guide principle:
the “right of existence” of the electromagnetic field is to allow local gauge invariance

The gauge transformations of the EM-field form a group: U(1), unitaxyl-matrices. The split-off of charge
in the exponent is essential: it allows one gauge field for all charged particles, independent of their charge.

This concept is generalized: particles have a “special chapg@he group elements now are
Pr = exp(—iQ0O).

Other force fields than the electromagnetic field can also be understood this way. The weak interaction together
with the electromagnetic interaction can be described by a force field that transforms accordingri® W(@R)

and consists of the photon and three intermediary vector bosons. The colour force is described by SU(3), and
has a gauge field that exists of 8 types of gluons.

In general the group elements are givenfy = exp(—if~ é), where0,, are real constants afg, operators
(generators), lik&). The commutation rules are given b¥;, 7;] = ¢ > ¢;jx 1. Thec;;;, are thestructure

k
constantsof the group. For SO(3) these constants @fg = ¢;;i, heree;;;, is the complete antisymmetric
tensor withe193 = +1.

These constants can be found with the help of group product elements: bgdaudesed holds:
lOTi® To—i®To—i0"T _ o~i®"-T Taylor expansion and setting equet ©'™-terms results in the com-
mutation rules.

The group SU(2) has 3 free parameters: because it is unitary there are 4 real conditions over 4 complex
parameters, and the determinant has to be +1, remaining 3 free parameters.

Each unitary matrixU can be written ast/ = e~*#, Here,H is a Hermitian matrix. Further it always holds
that: det(U) = e~*Tr(H),

For each matrix of SU(2) holds that H{()=0. Each Hermitian, tracele&s< 2 matrix can be written as a linear
combination of the Jauli-matricess;. So these matrices are a choice for the operators of SU(2). One can
write: SU(2)={exp(— i - ©)}.

In abstraction, one can consider an isomorphic group where only the commutation rules are considered to be
known regarding the operatdfs: [17, 1] = iT3, etc.

In elementary particle physics tfié can be interpreted e.g. as tisespinoperators. Elementary particles can
be classified in isospin-multiplets, these are the irreducible representations of SU(2). The classification is:

1. The isospin-singlet the identical representatiOtiz.*iTq'é =1=T,=0

2. The isospin-doublet the faithful representation of SU(2) @x 2 matrices.
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The group SU(3) has 8 free parameters. (The groupph§Uas N2 — 1 free parameters). The Hermitian,
traceless operators are 3 SU(2)-subgroups ireihg, ¢1¢e35 and theeyes plane. This gives 9 matrices, which
are not all 9 linear independent. By taking a linear combination one gets 8 matrices.

In the Lagrange density for the colour force one has to substgute» Dz = E T, A
X
=1

The terms of 3rd and 4th power i show that the colour field interacts with itself.




Chapter 14

Nuclear physics

14.1 Nuclear forces

9 ——— —T— T
The mass of a nucleus is given by: 8t ﬁ 4
Ma = Zmp +Nmy — Ejbind/c2 ; ;7 :’s’ |
The binding energy per nucleon is given in (MeV)g | , .
the figure at the right. The top is giFe, 4k J
the most stable nucleus. With the constants 3 7 |
ap = 15.760 MeV 2L 1
as = 17.810 MeV 1k i

as = 0.711 MeV 0 I I I I I I I I I I I I
ay = 23702 MeV 0 40 80 120 160 200 240

as = 34.000 MeV A—

andA = Z + N, in thedropletor collective modebf the nucleus the binding enerd,;.q4 is given by:

Z(Z - 1) (N — Z)?

A5 W + eaz A73/4

Ehina ]
)12n = alA — CL2A42/d — as
C

These terms arise from:
1. a1: Binding energy of the strong nuclear force, approximately.
2. ao: Surface correction: the nucleons near the surface are less bound.
3. a3: Coulomb repulsion between the protons.
4. ay: Asymmetry term: a surplus of protons or neutrons has a lower binding energy.
5

. a5 Pair off effect: nuclei with an even number of protons or neutrons are more stable because groups of
two protons or neutrons have a lower energy. The following holds:

Z even,N even:e = +1, Z odd, N odd:e = —1.
Z even,N odd:e = 0, Z odd, N even:e = 0.

The Yukawa potential can be derived if the nuclear force can to first approximation, be considered as an

exchange of virtual pions:
W
i) = -0 ()
r To

With AE - At ~ h, E, = moc® andry = cAt follows: ro = ii/mqc.

In the shell model of the nucleus one assumes that a nucleon moves in an average field of other nucleons.
Further, there is a contribution of the spin-orbit coupl'ng LSt AV, = %(Zl + 1)hw. So each level

(n,1) is split in two, withj = I + %, where the state with = [ + 1 has the lowest energy. This is just

the opposite for electrons, which is an indication that the S interaction is not electromagnetical. The
energy of a 3-dimensional harmonic oscillatorfis= (N + 2)iw. N = ny +n, + n, = 2(n — 1) +

wheren > 1 is the main oscillator number. Becausé < m < [ andm, = +if there are2(2l + 1)
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substates which exist independently for protons and neutrons. This gives rise to the smagilsl numbers
nuclei where each state in the outermost level are filled are particulary stable. This is the ¥aee i
€ {2,8,20,28,50,82,126}.

14.2 The shape of the nucleus
A nucleus is to first approximation spherical with a radiugof Ry A'/3. Here,Ry ~ 1.4-10~'> m, constant

for all nuclei. If the nuclear radius is measured including the charge distribution one oBtaiad .2 - 10~ 1°
m. The shape of oscillating nuclei can be described by spherical harmonics:

R =Ry

Im

[ = 0 gives rise to monopole vibrations, density vibrations, which can be applied to the theory of neutron stars.
| = 1 gives dipole vibrations, = 2 quadrupole, withi, o = 3 cosy andas, 12 = 1v/283siny wherej is the
deformation factor ang the shape parameter. The multipole moment is givepost Zer'Y;™(6, ¢). The

parity of the electric moment Hy = (—1)!, of the magnetic momeni,; = (—1)*1.

e e =

There are 2 contributions to the magnetic mom@?ﬁg = S.

E andMS = Jgs

mp 2my
wheregg is the spin-gyromagnetic ratio For protons holdgs = 5.5855 and for neutrongs = —3.8263.
The z-components of the magnetic moment are giverdby . = uxm; andMsg . = gspunms. The resulting
magnetic moment is related to the nuclear spaccording toM = gl(e/2mp)f. The z-component is then
M. = pngrmy.

14.3 Radioactive decay

The number of nuclei decaying is proportional to the number of nudlei: —AN. This gives for the number
of nuclei N: N(t) = Noexp(—At). Thehalf life timefollows from 71 A = In(2). The average life time
of a nucleus isr = 1/X. The probability thatV nuclei decay within a time interval is given by a Poisson
distribution:
ANe=A

N!
If a nucleus can decay into more final states then halds: " \;. So the fraction decaying into statés
Ai/ >° Ai. There are 5 types of natural radioactive decay:

P(N)dt = Ny dt

1. a-decay: the nucleus emits a Henucleus. Because nucleons tend to order themselves in groups of
2p+2n this can be considered as a tunneling of &'Haucleus through a potential barrier. The tunnel
probability P is

p_ mcom_mg ampl_ltude: o—2G with @ = 1 Qm/[V(T) — Eldr
outgoing amplitude h

G is called theGamow factor

2. p-decay. Here a proton changes into a neutron or vice versa:
pt =0+ WT - n®+ef + v, andn’ - pt + W~ —pt +e” +7..

3. Electron capture: here, a proton in the nucleus captures an electron (usually from the K-shell).
4. Spontaneous fission: a nucleus breaks apart.
5. «-decay: here the nucleus emits a high-energetic photon. The decay constant is given by

21
)\ _ P(l) ~ E'Y E'YR ~ 10—4l
hw (he)? \ he
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where! is the quantum number for the angular momentum &nthe radiated power. Usually the
decay constant of electric multipole moments is larger than the one of magnetic multipole moments.
The energy of the photon I8, = E; — E;y — T, with Tg = EZ/2mc? the recoil energy, which

can usually be neglected. The parity of the emitted radiatidi’is= II° - II/. With I the quantum
number of angular momentum of the nucleldis= %+/I(I + 1), holds the following selection rule:

I, — If| < A< |T + I

14.4 Scattering and nuclear reactions

14.4.1 Kinetic model

If a beam with intensityl hits a target with density. and lengthz (Rutherford scattering) the number of
scatteringsk per unit of time is equal t&®® = Inxo. From this follows that the intensity of the beam decreases
as—dIl = Inodz. Thisresults inl = Ipe 7% = [ye H,
do  R(0,¢)

q=

BecauselR = R(0, p)dQ/4m = Inxdo it follows: R —

. . o . AN d
If NV particles are scattered in a material with densityen holds:T = nd—gAQAx

- d 71 Z5e> 1
For Coulomb collisions holds:d—a _ L142¢

Qlg  8reouvd sin’(10)

14.4.2 Quantum mechanical model for n-p scattering

The initial state is a beam of neutrons moving along tkexis with wavefunction);,;; = ¢*** and current
density.Jinie = v|Yiis)? = v. At large distances from the scattering point they have approximately a spherical
wavefunction)s... = f(0)e’*" /r wheref(0) is thescattering amplitudeThe total wavefunction is then given

by

eikr

7/) = win + ¢scat = eikz + f(e)

r

The particle flux of the scattered particle®|§s..:|> = v|f(0)|>dS2. From this it follows that-(0) = | f(6)|>.
The wavefunction of the incoming particles can be expressed as a sum of angular momentum wavefunctions:

ik
Ginie = 2 = 4y
!

The impact parameter is related to the angular momentumiwithbp = bhk, Sobk = [. At very low energy
only particles withl = 0 are scattered, so

o, _ sin(kr)
Y =1h+ D wn and gy = —

>0

If the potential is approximately rectangular holds; = CM(IZA

,
. sin” 47 sin®
The cross section is then(d) = blnkgéo) S0 0 = /U(e)dQ = %(60)

1k /2m

At very low energies holdssin?(5y) = W
0

with W, the depth of the potential well. At higher energies holds: % Z sin?(&;)
l
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14.4.3 Conservation of energy and momentum in nuclear reactions

If a particle P, collides with a particle®, which is in rest w.r.t. the laboratory system and other particles are
created, so
Pi+P— ) P
k>2

the total energy) gained or required is given by = (my +ma — Y. my)c?.
k>2

The minimal required kinetic enerdy of P, in the laboratory system to initialize the reaction is

mi +mg + > my
2m2

T=-Q

If @ < 0there is athreshold energy.

14.5 Radiation dosimetry

Radiometric quantitiesletermine the strength of the radiation sourcel®)simetric quantitiesre related to
the energy transfer from radiation to matter. Parameters describing a relation between those ardgaralled
action parametersThe intensity of a beam of particles in matter decreases accordifig)te= I exp(—pus).
The deceleration of heavyparticle is described by thgethe-Bloch equation

E ¢
ds  v2

Thefluentionis given by® = dN/dA. Thefluxis given by¢ = d®/dt. The energy loss is defined Ry =
dW/dA, and the energy flux density = d¥/dt. Theabsorption coefficiens given by = (dN/N)/dzx.
Themass absorption coefficieigtgiven byp/ o.

Theradiation doseX is the amount of charge produced by the radiation per unit of mass, with unit C/kg. An
old unit is the Rntgen: 1Re- 2.58 - 10~4 C/kg. With the energy-absorption coefficient follows:

dQ _ eup
X=—"=-—"Y
dm  Wp
wherelV is the energy required to disjoin an elementary charge.

Theabsorbed dos® is given byD = dFE,,s/dm, with unit Gy=J/kg. An old unit is the rad: 1 rad=0.01 Gy.
Thedose tempds defined ad. It can be derived that

D="Ey
o
The Kerma K is the amount of kinetic energy of secundary produced particles which is produced per mass
unit of the radiated object.

The equivalent dosé{ is a weight average of the absorbed dose per type of radiation, where for each type
radiation the effects on biological material is used for the weight factor. These weight factors are called the
quality factors. Their unit is SvH = @QD. If the absorption is not equally distributed also weight factors

per organ need to be useH: = > w;, Hy. For some types of radiation holds:

| Radiation type \ Q]
Rontgen, gamma radiation 1
3, electrons, mesons 1
Thermic neutrons 3to5
Fast neutrons 10to 20
protons 10
«, fission products 20
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Quantum field theory & Particle physics

15.1 Creation and annihilation operators

A state with more particles can be described by a collection occupation nufnhess:s - - -). Hence the
vacuum state is given 900 - - -). This is a complete description because the particles are indistinguishable.
The states are orthonormal:

o0
(ningng - - - |njngng - -+) = H O
=1
The time-dependent state vector is given by
()= > cuymy(B)nang--)
—

The coefficients: can be interpreted as follow§:,,, .,...|? is the probability to findh; particles with momen-
tumk;y, ny particles with momenturhs,, etc., and ¥ (¢)|¥(t)) = 3" |c,, (t)|* = 1. The expansion of the states
in time is described by the Sdbdtinger equation

d
i () = HW (D)

where H = Hy + Hiy. Hp is the Hamiltonian for free particles and kedps, (t)|? constant,H,,; is the
interaction Hamiltonian and can increase or decreaseafithe cost of others.

All operators which can change occupation numbers can be expanded dnatiia! operators. a is the
annihilation operatoranda’ the creation operatorand:

a(k)|mng---ni--) = g |nang--omg—1--)

Because the states are normalized halis = 0 anda(k;)a!(k;)|n;) = ni|n;). Soaa' is an occupation
number operator. The following commutation rules can be derived:

la(k), (k)] =0, [a'(K:),al (k)] =0, la(k:),a’ (k)] = 6

Hence for free spin-0 particles hold&y = Y- a (:)a(k:) huw,

15.2 Classical and quantum fields

Starting with a real fieldb®(z) (complex fields can be split in a real and an imaginary part) Légrange
densityL is a function of the position: = (&, ict) through the fields:L = £(®“(x),0,P%(x)). The La-
grangian is given by, = [ £(z)d3z. Using the variational principlé/(£2) = 0 and with the action-integral
I(Q) = [ L(®2,8,®*)d*z the field equation can be derived:

oL 0 oL

9%°  9r, 0(0,8%) "

Theconjugated fields, analogous to momentum in classical mechanics, defined as:

oL
I%(z) = 5%a

~r-
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With this, the Hamilton density becomég(z) = I1*®* — L(z).

Quantization of a classical field is analogous to quantization in point mass mechanics: the field functions are
considered as operators obeying certain commutation rules:

[@(&), @7 (@")] =0 , (@), 1@ =0, [0%(&),11°(&")] = idap(7 — ')

15.3 The interaction picture

Some equivalent formulations of quantum mechanics are possible:
1. Schidinger picture: time-dependent states, time-independent operators.
2. Heisenberg picture: time-independent states, time-dependent operators.
3. Interaction picture: time-dependent states, time-dependent operators.

The interaction picture can be obtained from the 8dhrger picture by an unitary transformation:
(1)) = 15 |®5(1)) and O(t) = 10 OSe~i1d

The index® denotes the Schdinger picture. From this follows:

d . d
= |®(1)) = Hine(1)|2(2)) and i—O(t) = [O(t), Ho]

15.4 Real scalar field in the interaction picture

It is easy to find that, with/ := m2¢? /A2, holds:

) 0
at@( r) =I(z) and 5 I(z) = (V2 = M*)®(2)

From this follows that® obeys the Klein-Gordon equatigh] — M?2)® = 0. With the definitionk2 =
k* + M? := w and the notatioit - ¥ — ikt := kx the general solution of this equation is:

() \Fzm( (F)e zkx+aT(E)efikz> , Ti(x) \/*Z\ﬁ( Ytk 4 qf (E)eﬂ'kx)

The field operators contain a volurig which is used as normalization factor. Usually one can take the limit
V — oc.

In general it holds that the term withr***, the positive frequency part, is the creation part, and the negative
frequency part is the annihilation part.

the coefficients have to be each others hermitian conjugate be@aigdgermitian. Becaus® has only one
component this can be interpreted as a field describing a particle with spin zero. From this follows that the
commutation rules are given B9 (x), ®(2’)] = iA(x — 2’) with

Aly) = 1 /sin(k‘y)dsk

(2m)3 W

A(y) is an odd function which is invariant for proper Lorentz transformations (no mirroring). This is consistent
with the previously found resul®(Z, ¢, ®(Z’,¢)] = 0. In general holds thah(y) = 0 outside the light cone.
So the equations obey the locality postulate.

The Lagrange density is given bg{®,9,®) = —%(@(I)BV(I) +m2®2). The energy operator is given by:

H:/H(;c xfzhwka (k)a(k)
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15.5 Charged spin-0 particles, conservation of charge

The Lagrange density of charged spin-0 particles is giventby: — (9, ®9, ®* + M?®d*).

Noether’s theorem connects a continuous symmetrg @hd an additive conservation law. Suppose that
L((2*),0,(®%)) = L (®*,0,9*) and there exists a continuous transformation betvieeand ®’ such

as®’ = % + ¢f*(®). Then holds
) oL .\
oz (™) =0

This is a continuity equatios> conservation law. Which quantity is conserved depends on the symmetry. The
above Lagrange density is invariant for a change in pldase ®¢’: a global gauge transformation. The
conserved quantity is the current densify(z) = —ie(®0,9* — *0,®). Because this quantity is O for real

fields a complex field is needed to describe charged particles. When this field is quantized the field operators
are given by

1 1 7\ atkT L\ a—tkx _1 1 L\ atkz etk
(D(x)z\/vz];:m(a(k)ek F b (ke k), @T(m)_ﬁgm(auk)ek +b(k)e k)

Hence the energy operator is given by:
=Y hw, (aT(E)a(E) + bT(E)b(E))
E
and the charge operator is given by:

Qt) = —i / Ji@)d*s = Q =3 (al(F)a(k) - b (F)b(F))

From this follows thatta := N+(E) is an occupation number operator for particles with a positive charge
andb’b := N_(k) is an occupation number operator for particles with a negative charge.

15.6 Field functions for spin-; particles

Spin is defined by the behaviour of the solutionf the Dirac equation. Acalarfield ¢ has the property
that, if it obeys the Klein-Gordon equation, the rotated fi¢ldr) := ®(A~'z) also obeys it. A denotes
4-dimensional rotations: the proper Lorentz transformations. These can be written as:

O(x) = (I)(x)efiﬁ'z with Ly, = —ih <$Mai — afuai)
v N

Foru < 3,v < 3 these are rotations, for= 4, u # 4 these are Lorentz transformations.

A rotated fieldy) obeys the Dirac equation if the following condition holdstz) = D(A)y(A~'z). This
results in the conditio® v, D = A, ,,7,,. One finds:D = ¢S with S, = —i$hv,7,. Hence:

w(x) _ e_i(S+L)’L/J($C) — e—iJ,(/}(m)
Then the solutions of the Dirac equation are given by:
() =l (7)o T

Here, r is an indication for the direction of the spin, afdis the sign of the energy. With the notation
v"(p) = ul (—p) andu” (p') = u’ (p') one can write for the dot products of these spinors:

o=\, = E =N, T = E =N, (=
u+(p)u+(p):M§rr’ ) uf(p)u—(p)zﬂérr’ ’ u+(p>u—(p):O
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Because of the factoE /M this is not relativistic invariant. A Lorentz-invariant dot product is defined by
@b := a'~,4b, wherea := af~, is a row spinor. From this follows:

’

ur(p)u ( ) - 577“’ ; @Uﬂ(ﬁ) = _57“7"’ ) ur(ﬁ)vr (ﬁ) =0

Combinations of the typea give a4 x 4 matrix:

—i M _ —i - M
zu () = — PRI S () = — PR

2M

The Lagrange density which results in the Dirac equation and having the correct energy normalization is:
— 0
£(o) = =000 (0 g+ M) 01a)
and the current density i, (z) = —ieyy,1.

15.7 Quantization of spin{ fields

The general solution for the fieldoperators is in this case:

o) = ﬁ Z 75 3 (@ P + ) ()e)

and

=\ 75 EEOTER e

Here,c! andc are the creation respectively annihilation operators for an electromandd d the creation
respectively annihilation operators for a positron. The energy operator is given by

To prevent that the energy of positrons is negative the operators must obey anti commutation rules in stead of
commutation rules:

(), cL (P)]5 = [dv(F),d. (7)) = 6,40, , all other anti commutators are 0.

»r

The field operators obey

[Ya(2), ¥s(2)] =0, [Ya(@),¥s(z)] =0, [Yal@),s(@’)]s = —iSap(x — 2')

with S(z) = (”8:2 - M) A(z)

The anti commutation rules give besides the positive-definite energy also the Pauli exclusion principle and the
Fermi-Dirac statistics: becausg(p)cl.(7) = —cl.(7)cl(p) holds: {cf.(p)}? = 0. It appears to be impossible

to create two electrons with the same momentum and spin. This is the exclusion principle. Another way to see
this is the fact thaf Nt (7)}2 = N (7): the occupation operators have only eigenvalues 0 and 1.

To avoid infinite vacuum contributions to the energy and chargesneal products introduced. The expres-
sion for the current density now becomgs= —ie N (¢ry,). This product is obtained by:

e Expand all fields into creation and annihilation operators,

e Keep all terms which have no annihilation operators, or in which they are on the right of the creation
operators,

¢ In all other terms interchange the factors so that the annihilation operators go to the right. By an inter-
change of two fermion operators add a minus sign, by interchange of two boson operators not. Assume
hereby that all commutators are zero.
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15.8 Quantization of the electromagnetic field

04, DA,

Starting with the Lagrange densify= —; 7. On
H Iz

it follows for the field operatorsi(z):

Aw) = =3 — > (am(F)em (@) + at (8 )em (k) e )

The operators obef,am(E),a;,(E)] = Ok All other commutators are O gives the polarization

direction of the photon:m = 1,2 gives transversal polarized; = 3 longitudinal polarized andr = 4
timelike polarized photons. Further holds:

[Apu(x), Ay (2')] = i6y, D(x — 2) with D(y) = A(y)|m=0

In spite of the fact thatd, = iV is imaginary in the classical casd, is still defined to be hermitian be-
cause otherwise the sign of the energy becomes incorrect. By changing the definition of the inner product in
configuration space the expectation valuesAgp 3(x) € IR and forA4(x) become imaginary.

If the potentials satisfy the Lorentz gauge conditigp4,, = 0 the £ and B operators derived from these
potentials will satisfy the Maxwell equations. However, this gives problems with the commutation rules. Itis
now demanded that only those states are permitted for which holds

O0AT
1) =0
51

This results in: <8A“> =0.
oz,

From this follows tha{as(k ) — a4(k))|®) = 0. With a local gauge transformation one obtai¥ig(k ) = 0

and N4(k) = 0. However, this only applies to free EM-fields: in intermediary states in interactions there
can exist longitudinal and timelike photons. These photons are also responsible for the stationary Coulomb
potential.

15.9 Interacting fields and the S-matrix

The S(scattering)-matrix gives a relation between the initial and final states of an intera¢fi¢m)) =
S|®(—o0)). If the Schiddinger equation is integrated:

1B(1)) = |®(—o0)) — i / His (1) (t1)) ity

and perturbation theory is applied one finds that:

S = nz::o (_nl,) /"'/T{Hint(fﬁ)"'Hint(mn)}d4x1-~-d4xn = ZS(")

n=0

Here, thel-operator meanstime-ordered productthe terms in such a product must be ordered in increasing
time order from the right to the left so that the earliest terms act first. SFheatrix is then given by:S;; =
(@i|S5]D;) = (Di|D(c0)).

The interaction Hamilton density for the interaction between the electromagnetic and the electron-positron
field is: Hin () = —J,(2) A, (x) = ieN (Y, 0A,,)

When this is expanded a&t;, = ieN ((1/7r P )y (W + )AL + A;))
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eight terms appear. Each term corresponds with a possible process. Th’eﬁm¢+A; acting on|®)

gives transitions wherd | creates a photon);+ annihilates an electron angt annihilates a positron. Only
terms with the correct number of particles in the initial and final state contribute to a matrix el@Pefitd ;).
Further the factors ifit;,,; can create and thereafter annihilate particlesvitiaal particles

The expressions fa$(™ contain time-ordered products of normal products. This can be written as a sum of
normal products. The appearing operators describe the minimal changes necessary to change the initial state
into the final state. The effects of the virtual particles are described by the (anti)commutator functions. Some
time-ordened products are:

T{2(x)®(y)} NA{2(x)®(y)} + 34 (z — y)
T{va@bo@} = N{va@)is(y)} - 355 —)
T{Au(2)A,(»)} = N{A(2)A,(¥)} + 36Dy, (z —y)

Here,S¥ () = (v,0, — M)AF (z), D¥ (z) = A¥(z)],,—0 and

/e Bk ifaze>0

(27‘1’)3 wE
A () =
1 efikz i
— | ——a%k if
(27‘1‘)3 / o if zg <O

The term; AF(z — y) is called the contraction ob(z) and®(y), and is the expectation value of the time-
ordered product in the vacuum state. Wick’s theorem gives an expression for the time-ordened product of
an arbitrary number of field operators. The graphical representation of these processes afreyaiteth
diagrams In the z-representation each diagram describes a number of processes. The contraction functions
can also be written as:

—2i eth® —2i o iYupy — M
AF(z) =1 d*k and S¥(z) = lim —— / e __IMCR__ g
() Jm (2t / k2 +m2 — ic (z) lim e 02+ M2 —ic P

In the expressions fo§(?) this gives rise to term&(p + k — p’ — k’). This means that energy and momentum
is conserved. However, virtual particles do not obey the relation between energy and momentum.

15.10 Divergences and renormalization

It turns out that higher orders contribute infinite terms because only thepsuih of the four-momentum of
the virtual particles is fixed. An integration over one of them becomesln the z-representation this can
be understood because the product of two functions contadriikg singularities is not well defined. This is
solved by discounting all divergent diagrams in a renormalizatiareofd M . It is assumed that an electron, if
there would not be an electromagnetical field, would have a thgsand a charge, unequal to the observed
massM and charge:. In the Hamilton and Lagrange density of the free electron-positron field app&ars
So this gives, with\ = My + AM:

Le—p(x) = =th(x) (7.0, + Mo)p(x) = =t () (Va0 + M) () + AM () 3(x)
andHiyne = ieN (Yy,10A,) — ideN(Py,0A,).

15.11 Classification of elementary particles

Elementary particles can be categorized as follows:
1. Hadrons: these exist of quarks and can be categorized in:

I. Baryons: these exist of 3 quarks or 3 antiquarks.




Chapter 15: Quantum field theory & Particle physics 91

[I. Mesons:these exist of one quark and one antiquark.

2. Leptons: €, uF, 7%, ve, vy, Vs, Ve, Uy, Ui
3. Field quanta: v, W+, Z°, gluons, gravitons (?).
4. Higgs particle: ¢.

An overview of particles and antiparticles is given in the following table:

[ Particle [ spin@B L T T, S C B charge§) mp(MeV) [ antipart. ||
u 1/2 1/3 0 1/2 1/2 0 0 0 +2/3 5 u
d 12 13 0 12 —-1/2 0 0 0 ~1/3 9| d
S 1/2 1/3 0 0 0 -1 0 0 -1/3 175 s
c 1/2 1/3 0 O 0 0 1 0 +2/3 1350 C
b 1/2 1/3 0 O 0 0 0 -1 -1/3 4500 b
t /2 1/3 0 O 0 0 0 0 +2/3 173000 t
e 1/2 0 1 0 0 0 0 0 -1 0.511 et
wo 172 0 1 0 0 0 0 0 -1 105.658 wt
T 1/2 0 1 0 0 0 0 0 -1 1777.1 Tt
Ve 172 0 1 0 0 0 0 0 0 0o(? Ue
» 2 0 1 0 0 0 0 O 0 0(?) 7,
Uy 1/2 0 1 0 0 0 0 0 0 0(? U,
~ 1 0 0 0 0 0 0 o 0 0l
gluon 1 0 0 O 0 0O 0 O 0 0| gluon
w+ 1 0O O 0 0 0 0 0 +1 80220 WwW-—
Z 1 0 0 0 0 0 0 0 0 91187 Z
graviton 2 0 0 0O 0 0O 0 O 0 0 | graviton
Higgs 0O 0 0 O 0 0O 0 O 0 125600| Higgs

Here B is the baryon number and L the lepton number. It is found that there are three different lepton numbers,
one for e,, andr, which are separately conserved. T is the isospin, Witthe projection of the isospin on

the third axis, C the charmness, S the strangeness andeBbottomness. The anti particles have quantum
numbers with the opposite sign except for the total isospin T. The composition of (anti)quarks of the hadrons
is given in the following table, together with their mass in MeV in their ground state:

7 | 3V2(uatdd)  134.9764 || JW | cc  3096.8 >+ | dds 1197.436
at ud 139.56995|| T bb  9460.37 = uss 1314.9
T du 139.56995| p* | uud  938.27231 = uss 13149
KO sd 497672 || p~ | wud 938.27231| == | dss 1321.32
KO ds 497672 || n® |udd 93956563 =t | dss 1321.32
K+ us 493.677 || m® |uwdd 939.56563| O~ | sss 1672.45
K- su 493.677 || A uds 1115684 || Qt | ss5 1672.45
D+ cd 1869.4 A | uds 1115684 | Af | udc 22851
D~ de 1869.4 ¥+t | uus 1189.37 A%~ | wuu 1232.0
D cu 1864.6 >- | mus 1189.37 A%t | uuu 1232.0
DO uc 1864.6 Y0 | uds 1192.55 AT | uud 1232.0
Ft cs 1969.0 ¥0 | ads 1192.55 A° | udd 1232.0
F- < 1969.0 ¥~ | dds 1197.436 || A~ |ddd 1232.0

Each quark can exist in two spin states. So mesons are bosons with spin 0 or 1 in their ground state, while
baryons are fermions with sp%\ or % There exist excited states with higher interfal Neutrino’s have a
helicity of —% while antineutrino’s have only% as possible value.

The quantum numbers are subject to conservation laws. These can be derived from symmetries in the La-
grange density: continuous symmetries give rise to additive conservation laws, discrete symmetries result in
multiplicative conservation laws.

Geometrical conservation lavese invariant under Lorentz transformations and the CPT-operation. These are:
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1. Mass/energy because the laws of nature are invariant for translations in time.
2. Momentum because the laws of nature are invariant for translations in space.
3. Angular momentum because the laws of nature are invariant for rotations.

Dynamical conservation laware invariant under the CPT-operation. These are:

1. Electrical charge because the Maxwell equations are invariant under gauge transformations.
2. Colour charge is conserved.
3. Isospin because QCD is invariant for rotations in T-space.

4. Baryon number and lepton number are conserved but not under a possible SU(5) symmetry of the laws
of nature.

5. Quarks type is only conserved under the colour interaction.
6. Parity is conserved except for weak interactions.

The elementary particles can be classified into three families:

leptons| quarks| antileptons| antiquarks
1st generation| e d et d
Ve u Ve u
2nd generation  p~ s ut S
vy, C vy, [4
3rd generation| 7~ b Tt b
Vr t v, t

Quarks exist in three colours but because theycardinedthese colours cannot be seen directly. The color
force doesnot decrease with distance. The potential energy will become high enough to create a quark-
antiquark pair when it is tried to disjoin an (anti)quark from a hadron. This will result in two hadrons and not
in free quarks.

15.12 P and CP-violation

It is found that the weak interaction violates P-symmetry, and even CP-symmetry is not conserved. Some
processes which violate P symmetry but conserve the combination CP are:

1. p-decay:~ — e~ + v, + V.. Left-handed electrons appear more thad0x as much as right-handed
ones.

2. 3-decay of spin-polarize®Co: °Co —% Ni + e~ + v,. More electrons with a spin parallel to the Co
than with a spin antiparallel are created: (paraikhtiparallel)/(total)=20%.

3. There is no connection with the neutrino: the decay ofAhgarticle through:A — p* + 7= and
A — n® + 70 has also these properties.

The CP-symmetry was found to be violated by the decay of neutral Kaons. These are the lowest possible states
with a s-quark so they can decay only weakly. The following hottl&) = |K°) wherer) is a phase factor.
Further holdsP|K®) = —|K°) becausé&” andK" have an intrinsic parity of-1. From this follows thak®
andK?° are not eigenvalues of CE:P|K?) = |KO). The linear combinations

K?) := 3V2(|K%) + [K9)) and |KS) := 3V2(|K) — [K?))
are eigenstates of CRIP|KY) = +|K?) andCP|K9) = —|K9). A base ofK{ andK} is practical while
describing weak interactions. For colour interactions a bas& @ndK?O is practical because then the number
u—numbert is constant. The expansion postulate must be used for weak decays:

K?) = ((KYK") + (K3[K?))
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The probability to find a final state with GP —1 is 1| (K$|K)|?, the probability of CP=+1 decay is
3| (KYK®) 2.
The relation between the mass eigenvalues of the quarks (unaccented) and the fields arising in the weak currents

(accented) isu’, ¢/, t') = (u, ¢, t), and:
0 0 cosf; sinf; O
1 0 —sinf#; cosf; O
0 e 0 0 1

d 1 0 0 1
s’ = 0 cosfy sinfy 0
v 0 —sinfy cosbs 0
1 0 0 d
0 cosf3 sinfs s
0 —sinf3 cosbs b

01 = 0¢ is theCabibbo anglesin(f¢) ~ 0.23 + 0.01.

15.13 The standard model
When one wants to make the Lagrange density which describes a field invariant for local gauge transformations

from a certain group, one has to perform the transformation

0 D 0 g

— LAk
Oz, - Dz, Oz, Bk

Here theL;, are the generators of the gauge group (the “charges”) anﬂj}rme the gauge fieldy is the
matching coupling constant. The Lagrange density for a scalar field becomes:
L=—%4(D,®"D"® + M>®*®) — {F, FI

and the field tensors are given by, = 9, A% — 9, A% + gcff, AL AT

15.13.1 The electroweak theory

The electroweak interaction arises from the necessity to keep the Lagrange density invariant for local gauge
transformations of the group SURY(1). Right- and left-handed spin states are treated different because the
weak interaction does not conserve parity. If a fifth Dirac matrix is defined by:

0 0
0 0
V5 = V17273Y4 = — 10
0 1

o O O
OO = O

the left- and right- handed solutions of the Dirac equation for neutrino’s are given by:

Y =1(1+7)y and ¢Yr = 1(1—y5)v

It appears that neutrino’s are always left-handed while antineutrino’s are always right-handagp@ioharge
Y, for quarks given by = B+ S + C + B* 4+ T, is defined by:

Q=3Y+T;

so[Y, Tx] = 0. The group U(1) @SU(2)r is taken as symmetry group for the electroweak interaction because
the generators of this group commute. The multiplets are classified as follows:

€y | ver € | UL O | Ur | dr
T |0 z 3 0
03 53 -4 00
v -2of v | 4 |43
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Now, 1 field B,,(z) is connected with gauge group U(1) and 3 gauge fiﬁg&) are connected with SU(2).
The total Lagrange density (minus the fieldterms) for the electron-fermion field now becomes:

Comw =~ Fan* (0= 104, (56) - 3 B (-0)) (Ve )

%’7# (au - %i%(_%Bu) YeRr

Here, 1 are the generators @f and—1 and—2 the generators df .

15.13.2 Spontaneous symmetry breaking: the Higgs mechanism

All leptons are massless in the equations above. Their mass is probably genergpethtaneous symmetry
breaking This means that the dynamic equations which describe the system have a symmetry which the ground
state does not have. It is assumed that there exists an isospin-doublet of scaldr fiithiglectrical charges

+1 and 0 and potentidl (®) = —p?®*® + \(®*®)2. Their antiparticles have charged and 0. The extra

terms inL arising from these fields,; = (D, ®)*(D}®) — V(®), are globally U(1pSU(2) symmetric.

Hence the state with the lowest energy corresponds with the &tdte)®(z) = v = p?/2\ =constant.

The field can be written (were® andz are Nambu-Goldstone bosons which can be transformed away, and
me = 1\/2) as:

() (e Zaa) miron= (L)

Because this expectation valge0 the SU(2) symmetry is broken but the U(1) symmetry is not. When the
gauge fields in the resulting Lagrange density are separated one obtains:

W, = LV2(4, +iA%) , W = LV/2(4), —iA%)
gA, —4¢'B f .
zZ, = ;}274_9/2# = Az cos(fw) — By sin(fw)
g4 +9B :
A I A? sin(fw) + By, cos(fw)

L /92 + g/2

wherefyy is called theweinberg angle For this angle holdssin?(fw) = 0.255 + 0.010. Relations for the

masses of the field quanta can be obtained from the remaining téfims= %vg andMy = %v\/g2 + g%,
99 o

W = ¢’ cos(fw) = gsin(bw)

Experimentally it is found thad/y, = 80.022 4+ 0.26 GeV/& and M = 91.187 4 0.007 GeV/E. According

to the weak theory this should béfy, = 83.0 £ 0.24 GeV/ andM, = 93.8 + 2.0 GeV/E.

and for the elementary charge holds=

15.13.3 Quantumchromodynamics

Coloured particles interact because the Lagrange density is invariant for the transformations of the group SU(3)
of the colour interaction. A distinction can be made between two types of particles:

1. “White” particles: they have no colour charge, the gene@’t@f 0.

2. “Coloured” particles: the generatoféare 83 x 3 matrices. There exist three colours and three anti-
colours.

The Lagrange density for coloured particles is given by
»CQCD = iZEVHDu@k -+ ZEMM\I/Z — iFﬁqulI
k k,l

The gluons remain massless because this Lagrange density does not contain spinless particles. Because left-
and right- handed quarks now belong to the same multiplet a mass term can be introduced. This term can be
brought in the formM;,; = mydy;.
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15.14 Path integrals

The development in time of a quantum mechanical system can, besides witidiaglers equation, also be
described by @ath integral(Feynman):

Wt = / F@\ 2, t)b(a, t)da

in which F'(z/, ¢, x, t) is the amplitude of probability to find a system on tithén 2’ if it was in z on timet.

e F(x' ' x,t) = /exp (zS’[m]) d[z]
T h

whereS[z] is an action-integral:S[xz] = [ L(z, %, t)dt. The notationd[x] means that the integral has to be

taken over all possible patlfrs]:
/d” li o /d(t)
z|:= lim N |n| Z(tn

— 00

in which IV is a normalization constant. To each path is assigned a probability ampditpdes/7). The
classical limit can be found by takingS = 0: the average of the exponent vanishes, except where it is
stationary. In quantum fieldtheory, the probability of the transition of a fieldopeddttr—oo) to ®'(Z, 0o)

is given by -
F((#, 00), (7, —00)) = /eXp (ng]) d[®]

with the action-integral
S[®] =/£(<I>781,<I>)d4x

Q

15.15 Unification and quantum gravity

The strength of the forces varies with energy and the reciprocal coupling constants approach each other with
increasing energy. The SU(5) model predicts complete unification of the electromagnetical, weak and colour
forces atl0'°GeV. It also predicts 12 extra X bosons which couple leptons and quarks and are i.g. responsible

for proton decay, with dominant channet — 7% + e*, with an average lifetime of the proton 063! year.

This model has been experimentally falsified.

Supersymmetric models assume a symmetry between bosons and fermions and predict partners for the cur-
rently known particles with a spin which differ% The supersymmetric SU(5) model predicts unification at
10'GeV and an average lifetime of the protonl®f? year. The dominant decay channels in this theory are

pt — K" +7,andpt — K%+ pt.

Quantum gravity plays only a role in particle interactions at the Planck dimensions, wheteRs: mp; =
\/ hC/G =3-10% GeV,tp) = h/mp102 = v/ hG/05 =10"* sec andp; = ctp & 1073% m.




Chapter 16

Astrophysics

16.1 Determination of distances

The parallax is mostly used to determine distances in nearby space. The parallax is the angular difference
between two measurements of the position of the object from different view-points. If the annual parallax is
given byp, the distanceR of the object is given bR = a/ sin(p), in whicha is the radius of the Earth’s orbit.

The clusterparallaxis used to determine the distance of a group of stars by using their motion w.r.t. a fixed
background. The tangential velocity and the radial velocity, of the stars along the sky are given by

vy =Vecos(d) , vy =Vsin(d) =wR

-5 T T T T T
whered is the angle between the star and fiiént of convergencand 12 the 4 b 4
distance in pc. This results, with = v, tan(9), in: )8 T Type 1
, tan(6 .1 2 r .
R:UZH():RZP a1 L Type 2 |
O =
wherep is the parallax in arc seconds. The parallax is then given by X — RRlLyrae
0,1031 3 10 30100
4.74p 4 0,
= — P (days
P vy tan(6) (days)—

with p de proper motion of the star iffyr. A method to determine the distance of objects which are somewhat
further away, like galaxies and star clusters, uses the period-Brightness relation for Cepheids. This relation is
shown in the above figure for different types of stars.

16.2 Brightness and magnitudes

The brightnesss the total radiated energy per unit of time. Earth receives: 1.374 kW/m? from the Sun.
Hence, the brightness of the Sun is givenlby = 47125y = 3.82 - 1026 W. It is also given by:

Lo = 4nR% / nF,dv
0

wherer F,, is the monochromatic radiation flux. At the position of an observer thigiswith f, = (R/7)?F,
if absorption is ignored. 1f4,, is the fraction of the flux which reaches Earth’s surface, the transmission factor
is given byR, and the surface of the detector is givensay?, then the apparent brightnésis given by:

b= rma® / f A R, dv
0

Themagnituden is defined by:

b
bil — (100)é(m2—m1) _ (2.512>m2—m1
2
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because the human eye perceives lightintensities logaritmical. From this follows:thatm,; = 2.5 -19
log(by /b2), or:m = —2.5 -19 log(b) + C. The apparent brightness of a star if this star would be at a distance
of 10 pc is called theabsolute brightnes®: B/b = (#/10)2. The absolute magnitude is then given by
M = —2.51%0g(B) +C,or: M = 5+m—5-%1og(#). When an interstellar absorption tF—*/pc is taken
into account one finds:

M= (m—4-107*) +5—5-log(#)

If a detector detects all radiation emitted by a source one would measuwaibsbkite bolometric magnitude
If the bolometric correctionBC is given by

Energy flux receive J fudv
BC =25-19] =25.19] _—
¢ 5+ log <Energy flux detectej 57 log ( [ fo AR, dv

holds: M, = My — BC whereMy, is the visual magnitude. Further holds

L
M, = —2.51%1og (L) +4.72
©

16.3 Radiation and stellar atmospheres

The radiation energy passing through a surfdeeis dE = 1,(6, ¢) cos(0)dvdQ2dAdt, wherel, is the
monochromatical intensitpVm—2sr-'Hz~!]. When there is no absorption the quantityis independent
of the distance to the source. Planck’s law holds for a black body:

c B 2hv3 1
2 exp(hv/kT) —1

The radiation transport through a layer can then be written as:

dl,

E - _Il/K:l/ +,71/

Here, j, is thecoefficient of emissioandx, the coefficient of absorptionf ds is the thickness of the layer.
Theoptical thickness,, of the layer is given by, = [ ,ds. The layer is optically thin if, < 1, the layer
is optically thick if 7, > 1. For a stellar atmosphere in LTE holds: = , B, (T'). Then also holds:

I(s)=1,0e"" +B,(T)(1—e"™)

16.4 Composition and evolution of stars

The structure of a star is described by the following equations:

dM (r)

I = dmo(r)r?

d(r) _ GM(r)alr)
dr r2
% = dmo(r)e(r)r?

— = 1 T (Eddington), or
r

(dT(r)) T(r) v — 1 dp(r)

= , (convective energy transport)
dr p(r) ~ dr

(dT(r)) 3L(r)  w(r)

Further, for stars of the solar type, the composing plasma can be described as an ideal gas:

~ o(r)kKT(r)
p(r) = R—
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wherey is the average molecular mass, usually well approximated by:

o 1
nmy  2X +3Y + 17

/’L:

whereX is the mass fraction of Hy” the mass fraction of He and the mass fraction of the other elements.
Further holds:

k(r) = f(o(r),T(r),composition and e(r) = g(o(r), T(r), composition

Convection will occur when the star meets the Schwartzschild criterium:

ary - _ (dr
dr conv dr rad

Otherwise the energy transfer takes place by radiation. For stars in quasi-hydrostatic equilibrium hold the
approximations: = 1R, M(r) = £ M, dM/dr = M/R, k ~ ¢ ande ~ oT* (this last assumption is only

valid for stars on the main sequence). For pp-chains holgss and for the CNO chains holds= 12 tot 18.

It can be derived that ~ M3: themass-brightness relatiorfFurther holds:L ~ R* ~ T%&,. This results in

the equation for the main sequence in the Hertzsprung-Russel diagram:

0g(L) = 8 ' log(T.g) + constant

16.5 Energy production in stars

The net reaction from which most stars gain their energyist — “He + 2e* + 2v, + 7.
This reaction produces 26.72 MeV. Two reaction chains are responsible for this reaction. The slowest, speed-
limiting reaction is shown in boldface. The energy between brackets is the energy carried away by the neutrino.

1. The proton-proton chain can be divided into two subchains:
H+ pt — 2D + et + v,, and thertD + p — *He + .
I. ppl:3He +3 He — 2pT + “He. There is 26.21 + (0.51) MeV released.
Il. pp2:3He + a — "Be + 7y
i. 'Be+e~ — "Li+ v, then’Li+ p" — 2He + ~. 25.92 + (0.80) MeV.
i. "Be+pt — 8B+, then®B + et — 2*He + 7. 19.5 + (7.2) MeV.
Both "Be chains become more important with raisifig

2. The CNO cycle. The first chain releases 25.03 + (1.69) MeV, the second 24.74 + (1.98) MeV. The
reactions are shown below.

— N
/! — BN+pt—a+2C PN +pt — 16044
150 Lot N4 T 120_‘_];)+l_)13N_~_7 160 4 pt+ — 1TF 4 ~
14N+p+T_) 150 4 ~ 13N—>13é—|—e++1/ 17F_>17(l)+e++y
N — 13C+p+l—>14N+7 17O—i—erl—>c)4—|—14N

— 7
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The V-operator

In cartesian coordinatés;, y, z) holds:

ﬁza%éﬁa%e*ﬁiéz , gradf = vf,%;Jr%?ﬁ?gz
div&zﬁﬁz%‘?Jr%Jra;; , v2f787f 7f 82120
omnne () () (-5
In cylinder coordinate$r, ¢, z) holds:
6:687“ rJrlaa(p Jrgzez , gradf*ﬁ_’v”*lgiiergf_'

rot @ = (laaz — (%“0)

n da, 3az oy 6(1@ n ap laa,, .
r Op 0z 0z ar )¢ or r o r Oy “
In spherical coordinates:, 4, ¢) holds:

v = 9g410,, L 9,
T oo " o0 rsinf dp ©

afﬂ lafﬂ 1 of,

df = é, -
gradf = Frert L Ep%t ang 9, e

. Oa, 2a, 16&9 ag 1 Oa
diva = —£

va or + r r 00 + rtanf + rsinf Jp

10a ag 1 Oay 1 Oa da a

- 1 Uly . vae _»T r Yy Ge)

rova (r 00 +rtan0 rsind 8g0>e +<rsin9 Op or r>69+

ag , ag 100,
or r r 00
0% f 28f 182f 1 of 1 0% f

Vif = —= —Z 7 g L - 97
oz rdr | r2002 " r2tanf 00  12sin26 Op?

General orthonormal curvelinear coordinatesv, w) can be obtained from cartesian coordinates by the trans-
formationZ = Z(u, v, w). The unit vectors are then given by:

oo loF L 1oF . 10F
u_hlau’ v_hQaU, w_hg(?w

where the factorg,; set the norm to 1. Then holds:

1 8fq 10f 1 of

gadf = o™ T R 0™ hjaw@w
- 1 0
diva = il <8u(h2h3a“) ( shiay) + (h h2aw)>
. 1 5‘(h3aw hQCLU (hlau) 8(h3aw) 5
t = - - v
rota h2h3 < ov ) hghl ( ow ou €t
1 8(}12&@ _ hlau
h1h2 ou

o 1 [8 (hahs af hshy Of hihs Of
v f o hlhghg [8u hl ou T 8v hQ ov *ow aw hg ow




100 The SI units
The Sl units
Basic units Derived units with special names
[ Quantity | Unit Sym. | [ Quantity | Unit Sym. Derivation ||
Length metre m Frequency hertz Hz st
Mass kilogram kg Force newton N kg -m-s~2
Time second S Pressure pascal Pa N-m™?
Therm. temp. kelvin K Energy joule J N-m
Electr. current ampere A Power watt wW J.s !
Luminous intens, candela cd Charge coulomb C A-s
Amount of subst.| mol mol El. Potential volt \V; W-A-1
_ El. Capacitance | farad F c-v-!
Extra units El. Resistance | ohm Q V-A-L
Plane angle radian rad El. Conductance | siemens S A.v—i
solid angle sterradian  sr Mag. flux weber Wb Vs
Mag. flux density| tesla T Wb -m™2
Inductance henry H Wb- AL
Luminous flux lumen Im cd - sr
llluminance lux Ix Im - m—2
Activity bequerel Bg s7!
Absorbed dose | gray Gy J-kg!
Dose equivalent | sievert Sv J - kg™!
Prefixes
yotta Y 10* |[giga G 10° |deci d 107! | pico p 107!2
zetta Z 10! |{mega M 10° |centi ¢ 1072 | femto f 1071°
exa E 10 | kilo k 10 [mili m 1073 | atto a 10718
peta P 10' | hecto h 10? | micro p 1076 | zepto z 10~2!
tera T 102 |deca da 10 |nano n 107Y | yocto y 10~
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